
WebSphere™ Application Server Enterprise Edition
Component Broker

Application Development Tools Guide
Version 3.5

SC09-4448-01

IBM





WebSphere™ Application Server Enterprise Edition
Component Broker

Application Development Tools Guide
Version 3.5

SC09-4448-01

IBM



Second Edition (July 2000)

This document replaces SC09–4448–00.

Order publications through your IBM® representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Note
Before using this information and the product it supports, be sure to read the
general information under “Notices” on page 911.



Contents

About This Book . . . . . . . . . . xi
Who Should Read This Book . . . . . . xi
Conventions used in this book . . . . . . xi
Related information . . . . . . . . . xiii
How to send your comments . . . . . . xiii
What’s new in the Application Development
Tools Guide . . . . . . . . . . . . xiii

Chapter 1. Object Builder overview . . . . 1
Object Builder. . . . . . . . . . . . 1

Restrictions for R3.5 . . . . . . . . . 3
Composition restrictions . . . . . . . 16
Projects and models . . . . . . . . 17
Developing in Object Builder . . . . . 19
Platform-specific information . . . . . 20
OLT and Debug API support . . . . . 23

Setting up Object Builder . . . . . . . 24
Object Builder environment variables . . 24
Opening a project . . . . . . . . . 26
Setting Object Builder preferences . . . . 27
Color Assignments . . . . . . . . . 28
Find and Replace (Source page) . . . . 29
Indentation (Source page) . . . . . . 30
Searching the Tasks and Objects pane . . 30
Checking a model for consistency . . . . 31
Requirements for Java development . . . 32

Migrating projects from 3.0 . . . . . . . 33
Migrating old projects. . . . . . . . 33
Migrating from the command line . . . 35
Migrating a team environment . . . . . 36

Chapter 2. Tutorials for Object Builder . . 39
Tutorial: Creating a component with transient
data. . . . . . . . . . . . . . . 39
Tutorial: Creating a component for new DB
data. . . . . . . . . . . . . . . 50
Additional tutorials . . . . . . . . . 62

Chapter 3. Using Rational Rose with
Object Builder . . . . . . . . . . . 63
Rose . . . . . . . . . . . . . . 64

Setting up Rose 98 . . . . . . . . . 65
Setting up Rose 98i and Rose 2000 . . . 66
Importing Component Broker frameworks 68

The Rose Bridge . . . . . . . . . . 69

Rose properties and bridging guidelines . 70
Rose Bridge export . . . . . . . . . 79
Exporting a design from Rose . . . . . 80
Tutorial: Exporting from Rose . . . . . 81
Working with an exported design . . . . 88
Rose Bridge import . . . . . . . . 89
Importing a project into Rose . . . . . 92
Tutorial: Importing into Rose . . . . . 94

Rose to Object Builder mapping rules . . . 97
Projects in Rose . . . . . . . . . . 98
Modules in Rose . . . . . . . . . 99
Constructs in Rose . . . . . . . . 101
Class properties in Rose. . . . . . . 109
Attribute properties in Rose . . . . . 113
Package properties in Rose. . . . . . 116
Method properties in Rose . . . . . . 116
Class relationships in Rose . . . . . . 119

Object Builder to Rose mapping rules . . . 123

Chapter 4. Creating a component . . . . 127
Naming objects . . . . . . . . . . 128
Internationalization of data . . . . . . 132
Creating a component for transient data . . 135
Creating a component for new DB data . . 136

DDL . . . . . . . . . . . . . 137
Package file . . . . . . . . . . . 138
DBCS and Binary Data Support . . . . 138

Creating a component for existing DB data 139
Supported CORBA Types . . . . . . 140
DB2 data type mappings . . . . . . 142
Oracle data type mappings . . . . . 146
Informix data type mappings . . . . . 148
Mapping DBCS data types . . . . . . 149
Data encoding schemes . . . . . . . 152
OOSQL keywords. . . . . . . . . 154
Keywords for query support . . . . . 154
Null value tolerance with sentinel values 155

Creating a component for PA data . . . . 157
Enterprise Access Builder (EAB) . . . . 158
Procedural adaptor bean (PA bean) . . . 159
Java data type mappings . . . . . . 159
Supported platforms for connectors . . . 160
Customizing PA bean query methods . . 160
Mapping query method parameters to PA
bean attributes . . . . . . . . . . 161

© Copyright IBM Corp. 1999, 2000 iii



Handling exceptions thrown by PA bean
push-down methods . . . . . . . . 163
Adding resource methods to a sessional
business object . . . . . . . . . . 164
Tutorial: Unit test for procedural adaptors 166
Tutorial: Creating a component for PA
data (bottom-up) . . . . . . . . . 167
Tutorial: Creating a component for PA
data (meet-in-the-middle) . . . . . . 177

Creating a component for an inbound
message . . . . . . . . . . . . . 187

Tutorial: Creating an inbound message
application . . . . . . . . . . . 188

Creating a component for an outbound
message . . . . . . . . . . . . . 201

Tutorial: Creating an outbound message
application . . . . . . . . . . . 203

Reusing existing objects . . . . . . . . 215
Creating a local-only object . . . . . . 216

Local-only objects . . . . . . . . . 216
Creating a local-only object file . . . . 217
Adding a local-only object module . . . 218
Adding a local-only object . . . . . . 219
Tutorial: Creating local-only objects . . . 220

Tracking data types in models . . . . . 235
Type Usage . . . . . . . . . . . 238

File and method adornments . . . . . . 239
Adding file adornments. . . . . . . 240
Adding method adornments . . . . . 242

Business Object Behavior . . . . . . . 244
Pattern for Handling State Data . . . . 245
Object Reference . . . . . . . . . 246
Data Object Interface. . . . . . . . 247
Session Service. . . . . . . . . . 248

Data Object Behavior . . . . . . . . 249
Environment . . . . . . . . . . 249
Type of Persistence . . . . . . . . 251
Data Access Pattern . . . . . . . . 254
Handle for Storing Pointers . . . . . 255

Data Object Implementation Inheritance . . 257
Objects to source files mapping . . . . . 258

Chapter 5. Components working together 261
Creating a composite component. . . . . 261

Composite component . . . . . . . 262
Composition . . . . . . . . . . 263
Composite business object . . . . . . 264
Composite key . . . . . . . . . . 265
Tutorial: Composite component creation 267

Defining relationships . . . . . . . . 278

Defining a 1-1 relationship . . . . . . 279
Distributed query . . . . . . . . . 280
Defining a 1-n relationship. . . . . . 281
Defining a circular relationship . . . . 283
Foreign key patterns . . . . . . . . 284
Defining a foreign key pattern . . . . 285
Storing an object reference as a handle 288
Using complex relationships in SQL
clauses . . . . . . . . . . . . 289
Design patterns and iterators . . . . . 291
Dependencies within an IDL file . . . . 292

Relationship Implementation . . . . . . 293
Local Persistent Reference . . . . . . 294
OOSQL Implementation . . . . . . 295
Foreign Key Implementation . . . . . 296
Checking for null foreign key values . . 298

Chapter 6. Inheritance . . . . . . . . 299
Inheritance and overriding . . . . . . . 300

Inheritance and overriding in helper
objects . . . . . . . . . . . . 300
Inheritance and overriding in business
objects . . . . . . . . . . . . 301
Inheritance and overriding in data objects 303
Abstract base class inheritance . . . . 303

Choosing an inheritance pattern for
persistence . . . . . . . . . . . . 304
Creating a child component . . . . . . 306
Inheritance with attributes duplication . . . 307

Defining a child with attributes
duplication . . . . . . . . . . . 309
Tutorial: Inheritance with attributes
duplication . . . . . . . . . . . 310

Inheritance with key duplication . . . . . 322
Defining a child with key duplication . . 325
Tutorial: Inheritance with key duplication 327

Inheritance with a single datastore . . . . 341
Defining a child with a single datastore 342
Tutorial: Inheritance with a single
datastore . . . . . . . . . . . . 344

Inheritance with views . . . . . . . . 357
Defining a child with views . . . . . 360
Tutorial: Inheritance with views . . . . 362

Building a child component . . . . . . 380
Packaging a child component . . . . . . 381

Chapter 7. Working with external files 383
External files for method bodies . . . . . 383
Importing edited source files . . . . . . 385
Importing C++ or Java classes . . . . . 386

iv WebSphere: Application Development Tools Guide



Exporting XML . . . . . . . . . . 387
Importing XML . . . . . . . . . . 389

Chapter 8. Working with enterprise beans 391
Importing enterprise beans into Object
Builder . . . . . . . . . . . . . 392

Java to Object Builder type mapping . . 394
Keys for enterprise beans . . . . . . 395
CMP Entity Bean-Specific Settings . . . 396
BMP Entity Bean-Specific Settings . . . 399
Session Bean-Specific Settings . . . . . 400
Importing enterprise beans using Object
Builder . . . . . . . . . . . . 401
The EJB Deployment Tool . . . . . . 402
Importing enterprise beans from the
command line . . . . . . . . . . 403
Importing enterprise beans from
VisualAge for Java . . . . . . . . 405

Deploying enterprise beans . . . . . . 408
Deploying enterprise beans using Object
Builder . . . . . . . . . . . . 410
Deploying enterprise beans using the EJB
Deployment Tool . . . . . . . . . 411
Deploying enterprise beans into a
polymorphic home . . . . . . . . 412

Working with deployed EJB JAR files . . . 413
Creating a deployed EJB JAR file . . . 414
Editing an EJB JAR file . . . . . . . 415
Deleting an EJB JAR file . . . . . . 415

Working with deployed enterprise beans . . 416
Creating a deployed enterprise bean . . 416
Editing an EJB class . . . . . . . . 416
Deleting an EJB class. . . . . . . . 417

Chapter 9. Multi-platform development 419
Multi-platform development . . . . . . 419

Setting platform constraints . . . . . 421
Deployment platforms . . . . . . . 423
Platform differences . . . . . . . . 425
Cross-platform development . . . . . 426

Tutorial: Developing a multi-platform
application . . . . . . . . . . . . 429

Chapter 10. Team development . . . . 443
Developing as part of a team . . . . . . 444
Working with Rose in a team environment 444

Exporting a Rose design to a team
environment . . . . . . . . . . 445
Importing a Rose design from a team
environment . . . . . . . . . . 447

Tutorial: Team development with Rose 449
Setting up a team environment . . . . . 457

Project divisions in a team environment 458
Splitting up a project for team
development . . . . . . . . . . 459
Adding an integration project to a team
environment . . . . . . . . . . 460
Cross-project dependencies . . . . . 462
Change control. . . . . . . . . . 463
Setting up a change control process . . . 464
Setting up an automated build process 465
Setting up a team development
environment . . . . . . . . . . 467

XML-based change control . . . . . . . 469
Setting up XML-based change control for
CMVC . . . . . . . . . . . . 471
Change control sample . . . . . . . 473
Customizing XML-based change control 475
Template interpreter format . . . . . 478

Working in a team environment . . . . . 480
Creating a project in a team environment 481
Checking out files. . . . . . . . . 482
Checking in files . . . . . . . . . 483
Extracting files . . . . . . . . . . 484
Editing a project in a team environment 485
Deleting a project in a team environment 486
Building DLLs in a team environment 487
Packaging an application in a team
environment . . . . . . . . . . 489
Testing cross-project applications with
QuickTest . . . . . . . . . . . 489

Maintaining a team environment . . . . 490
Moving a project . . . . . . . . . 491
Model interchange with XML . . . . . 492
XML interchange files . . . . . . . 493
Changing project divisions . . . . . . 496
The Compare and Merge Tool for XML 497
Comparing files with the Compare and
Merge Tool for XML . . . . . . . . 497
Merging files with the Compare and
Merge Tool for XML . . . . . . . . 498
Managing cross-project dependencies . . 499
Documenting projects . . . . . . . 501

Chapter 11. Customizing Object Builder 503
XML wizards . . . . . . . . . . . 503

Creating an XML wizard . . . . . . 504
XML template design . . . . . . . 505
Starting the SmartGuide Customizer for
XML . . . . . . . . . . . . . 506

Contents v



Defining XML wizard macros . . . . . 507
Customizing value lists in an XML
wizard . . . . . . . . . . . . 510
Deriving values in an XML wizard . . . 511
Propagating values in an XML wizard 513
Constraining values in an XML wizard 515
Defining the layout of an XML wizard 516
Testing an XML wizard . . . . . . . 517
Running an XML wizard . . . . . . 518
Editing an XML wizard . . . . . . . 519
Distributing an XML wizard . . . . . 519

Attribute identity in XML . . . . . . . 520
XML ID attributes. . . . . . . . . 521
XML references . . . . . . . . . 522
XML references with customized targets 525

XML wizard properties . . . . . . . . 530
Macro setting . . . . . . . . . . 530
Element properties . . . . . . . . 530
Attribute properties . . . . . . . . 531
Attribute identity options . . . . . . 533
Constraints . . . . . . . . . . . 535

Filters . . . . . . . . . . . . . . 536
Filtering the Tasks and Objects pane . . 537
Creating a filter for the Tasks and Objects
pane . . . . . . . . . . . . . 537

XML browsing with XSL . . . . . . . 538
Browsing XML files . . . . . . . . 539
Setting up for XSL . . . . . . . . 540
The XSL sample . . . . . . . . . 541
Viewing a sample XSL-based document 543
Applying the sample XSL style sheet . . 544
Creating your own XSL style sheet . . . 546
Applying an XSL style sheet . . . . . 547

Chapter 12. Configuration . . . . . . 549
Configuring builds . . . . . . . . . 549

Specifying a build location . . . . . . 550
Generating code . . . . . . . . . 551
Defining a client DLL . . . . . . . 552
Defining a server DLL . . . . . . . 554
Generating a makefile . . . . . . . 556
Specifying the order of a build . . . . 558
Building the DLLs . . . . . . . . 558
Building the JAR files . . . . . . . 561
Building for ActiveX clients . . . . . 562
Building for Java clients. . . . . . . 563
Building for QuickTest . . . . . . . 564
Rebuilding DLLs . . . . . . . . . 565

Build configuration behavior . . . . . . 566
Default Configuration . . . . . . . 566

Build targets . . . . . . . . . . 567
Build options . . . . . . . . . . 568

Remote build configuration . . . . . . 570
Remote build . . . . . . . . . . 570
Pass ticket . . . . . . . . . . . 571
Profile . . . . . . . . . . . . 571
Launching a remote OS/390 build . . . 572
Tutorial: Launching a remote OS/390
build . . . . . . . . . . . . . 573

Packaging applications . . . . . . . . 574
Creating an application family . . . . 575
Adding an application . . . . . . . 576
Container . . . . . . . . . . . 578
Creating a container instance . . . . . 578
Home. . . . . . . . . . . . . 581
Polymorphic homes . . . . . . . . 581
Managed object configuration behavior 584
Home Name . . . . . . . . . . 584
Home Options . . . . . . . . . . 587
Configuring a managed object . . . . 588
Parent Interface for Polymorphism . . . 592
Generating the DDL files . . . . . . 593
Documenting applications . . . . . . 595

Container behavior . . . . . . . . . 595
Container service . . . . . . . . . 596
Container policies. . . . . . . . . 597
Behavior for Methods Called Outside a
Transaction . . . . . . . . . . . 599
Behavior for Methods Called Outside a
Session . . . . . . . . . . . . 600
Connection . . . . . . . . . . . 601

Application DDL files . . . . . . . . 602
Creating DDL files . . . . . . . . 603
The structure of a DDL file . . . . . 604

Chapter 13. Testing applications with
QuickTest . . . . . . . . . . . . 611
QuickTest . . . . . . . . . . . . 611

Generating QuickTest client applications 614
Running QuickTest client applications . . 615

QuickScript . . . . . . . . . . . . 616
Recording QuickScript . . . . . . . 617
Compiling the QuickScript file . . . . 618
Running QuickScript. . . . . . . . 618

The QuickTest framework . . . . . . . 620
QuickTest with the Component Broker
Programming Model . . . . . . . . 622
QuickTest with Java and JFC . . . . . 634

QuickTest-generated files . . . . . . . 647
Running the QuickTest tutorial . . . . . 647

vi WebSphere: Application Development Tools Guide



Chapter 14. Command-line interfaces . . 659
Using Object Builder from the command line 659

obmigrate . . . . . . . . . . . 659
Exporting XML from the command line . . 660

obexport . . . . . . . . . . . . 661
Importing XML from the command line . . 663

obimport. . . . . . . . . . . . 664
Importing IDL from the command line. . . 666

importidl . . . . . . . . . . . 667
Creating a local-only object by importing
an IDL file . . . . . . . . . . . 669

Importing enterprise beans from the
command line . . . . . . . . . . . 670

cbejb options . . . . . . . . . . 673
Importing edited source files from the
command line . . . . . . . . . . . 682

importimpl . . . . . . . . . . . 683
Generating code from the command line . . 684

obgen . . . . . . . . . . . . . 685
make options . . . . . . . . . . 688

obcheck . . . . . . . . . . . . . 694

Chapter 15. Object tasks . . . . . . . 697
Working with components . . . . . . . 697
Working with attributes . . . . . . . . 697

Attributes . . . . . . . . . . . 698
Adding an attribute . . . . . . . . 699
Editing an attribute . . . . . . . . 700
Deleting an attribute . . . . . . . . 701
Setting sentinel values for null field
values. . . . . . . . . . . . . 701

Mapping a data object to a persistent object 703
Mapping a data object to a DB persistent
object . . . . . . . . . . . . . 703
Mapping a data object to a PA persistent
object . . . . . . . . . . . . . 708
Mapping a data object to the parent’s
persistent object . . . . . . . . . 711
Mapping a data object to the child’s
persistent object . . . . . . . . . 712
Customizing referential integrity . . . . 714

Attribute mapping properties . . . . . . 716
Data Object Attributes . . . . . . . 716
Key Attributes . . . . . . . . . . 717
Mapping helper class . . . . . . . 719
Mapping Patterns . . . . . . . . . 722
Patterned Attribute Mapping Selection 724
Persistent Object Attributes . . . . . 726
Schema Columns . . . . . . . . . 728

Mapping data object attributes to persistent
object attributes . . . . . . . . . . 730

Mapping attributes using the Primitive
pattern . . . . . . . . . . . . 731
Mapping attributes using a key . . . . 732
Mapping helper . . . . . . . . . 735
Mapping attributes using a mapping
helper. . . . . . . . . . . . . 738
Mapping business object reference
attributes . . . . . . . . . . . 744
Complex attributes and mapping patterns 745
Mapping complex attributes using the
Primitive pattern . . . . . . . . . 746
Mapping complex attributes using the
Explode pattern . . . . . . . . . 748

Working with methods . . . . . . . . 750
User-defined methods . . . . . . . 751
Implementing methods . . . . . . . 752
Adding an initializer method . . . . . 753
Editing user-defined methods . . . . . 754
Get and set methods . . . . . . . . 755
Editing get and set methods . . . . . 756
Framework methods . . . . . . . . 757
Editing framework methods . . . . . 757
Special framework methods . . . . . 758
Editing special framework methods . . . 758
Push-down methods . . . . . . . . 759
Working with PA bean push-down
methods . . . . . . . . . . . . 760
Using push-down methods with DB
persistent objects . . . . . . . . . 761
Using push-down methods with PA
persistent objects . . . . . . . . . 762
Relationship methods . . . . . . . 764
Customizing business object OOSQL
implementation methods . . . . . . 765
Customizing persistent object ESQL
framework methods . . . . . . . . 766
Deleting a method . . . . . . . . 767

Method mapping properties . . . . . . 767
Special Framework Methods . . . . . 768
User-Defined Methods . . . . . . . 768
Method Reordering . . . . . . . . 769

Working with constructs . . . . . . . 769
Constructs . . . . . . . . . . . 770
Defining constructs with file scope . . . 770
Defining constructs with module scope 771
Defining constructs with interface scope 772
Editing a construct . . . . . . . . 773
Deleting a construct . . . . . . . . 774

Contents vii



Working with business objects . . . . . 774
Creating a business object file . . . . . 775
Adding a business object module . . . 777
Adding a business object interface . . . 777
Creating a business object by importing
an IDL file . . . . . . . . . . . 780
Adding a business object implementation
and data object interface . . . . . . 780
Adding a business object from a data
object . . . . . . . . . . . . . 784
Mapping a business object to a data
object . . . . . . . . . . . . . 787
Editing a business object file . . . . . 789
Editing a business object interface . . . 791
Editing a business object implementation 792
Editing a business object implementation
file . . . . . . . . . . . . . . 793
Deleting a business object interface . . . 794
Deleting a business object implementation 794

Working with data objects . . . . . . . 795
Creating a data object file . . . . . . 797
Editing a data object file . . . . . . 798
Adding a data object module . . . . . 800
Creating a data object interface . . . . 801
Creating a data object by importing an
IDL file . . . . . . . . . . . . 804
Adding a data object implementation . . 807
Associating a persistent object with a data
object . . . . . . . . . . . . . 811
Adding a data object from a business
object . . . . . . . . . . . . . 813
Adding a data object from a DB
persistent object . . . . . . . . . 814
Adding a data object from a PA persistent
object . . . . . . . . . . . . . 815
Editing a data object interface. . . . . 817
Editing a data object implementation . . 819
Associating a PA persistent object with an
existing data object implementation . . . 822
Editing a data object implementation file 823
Deleting a data object interface . . . . 824
Deleting a data object implementation 824

Working with keys . . . . . . . . . 825
Adding a key . . . . . . . . . . 826
Editing a key . . . . . . . . . . 828
Deleting a key . . . . . . . . . . 829

Working with copy helpers . . . . . . 829
Adding a copy helper . . . . . . . 830
Editing a copy helper . . . . . . . 831
Deleting a copy helper . . . . . . . 832

Working with DB persistent objects . . . . 832
Adding a persistent object and schema 833
Adding a persistent object from a DB
schema . . . . . . . . . . . . 837
Editing a DB persistent object . . . . . 838
Deleting a DB persistent object . . . . 839

Working with DB schema groups . . . . 840
Creating a DB schema group . . . . . 840
Editing a DB schema group . . . . . 841
Deleting a DB schema group . . . . . 843

Working with DB schemas . . . . . . . 843
Creating a DB schema by importing an
SQL file . . . . . . . . . . . . 844
Re-importing an SQL file . . . . . . 847
The SQL View Editor . . . . . . . 849
Working with the SQL View Editor . . . 850
Creating a view with the SQL View
Editor. . . . . . . . . . . . . 850
Editing a view with the SQL View Editor 851
Editing a view . . . . . . . . . . 853
Editing a DB schema. . . . . . . . 855
Editing a generated SQL file . . . . . 857
Deleting a DB schema . . . . . . . 859

Working with PA persistent objects . . . . 860
Adding a persistent object from a PA
schema . . . . . . . . . . . . 860
Editing a PA persistent object . . . . . 861
Deleting a PA persistent object . . . . 861

Working with PA schemas . . . . . . . 862
Creating a PA schema by importing a PA
bean . . . . . . . . . . . . . 862
WHERE clause syntax . . . . . . . 866
Editing a PA schema . . . . . . . . 868
Deleting a PA schema . . . . . . . 869

Working with managed objects . . . . . 869
Service to Use . . . . . . . . . . 870
Adding a managed object . . . . . . 871
Editing a managed object . . . . . . 872
Editing a managed object file . . . . . 873
Editing a managed object configuration 874
Deleting a managed object . . . . . . 874
Deleting a managed object configuration 875

Working with specialized homes . . . . . 875
Creating a specialized home . . . . . 876
Example: Creating a specialized home 878
Editing a specialized home. . . . . . 879
Deleting a specialized home . . . . . 879
Creating a specialized polymorphic home 880
Querying abstract classes . . . . . . 882

Working with container instances . . . . 883

viii WebSphere: Application Development Tools Guide



Editing a container instance . . . . . 883
Deleting a container instance . . . . . 884

Working with compositions . . . . . . 884
Creating a composition file. . . . . . 885
Adding a composition module . . . . 886
Adding a composition . . . . . . . 886
Editing a composition . . . . . . . 889

Working with composite business objects 891
Adding a composite business object
interface . . . . . . . . . . . . 892
Adding a composite business object
implementation and data object interface . 894
Editing a composite business object
interface . . . . . . . . . . . . 898
Editing a composite business object
implementation . . . . . . . . . 899

Working with composite keys . . . . . . 900
Adding a composite key . . . . . . 901
Editing a composite key . . . . . . 903

Chapter 16. Troubleshooting . . . . . 905

Troubleshooting . . . . . . . . . . 905

Appendix. IR Browser . . . . . . . . 907
Starting the IR Browser . . . . . . . . 907
Viewing objects in the repository. . . . . 907

Viewing the definition of an object . . . 907
Viewing relationships between objects 907
Viewing the operations of an interface 908

Searching the repository . . . . . . . 908
Finding an object . . . . . . . . . 908
Searching with wildcards . . . . . . 909
Finding an interface’s referencing
operations . . . . . . . . . . . 909
Searching by object type . . . . . . 909

Deleting objects from the repository. . . . 910

Notices . . . . . . . . . . . . . 911
Trademarks and service marks . . . . . 913

Index . . . . . . . . . . . . . 917

Contents ix



x WebSphere: Application Development Tools Guide



About This Book

The Application Development Tools Guide provides detailed information about
generating multi-tier applications in the VisualAge® Component Development
environment.

Who Should Read This Book

The Application Development Tools Guide is intended for application
programmers who want to use Object Builder and its associated tools to:
v create, execute and manage distributed applications across network

computing environments.
v connect multiple backend systems to dynamic, new applications.
v capture information from database systems, transaction processing systems,

and applications, as highly manageable components.

Conventions used in this book

The following conventions distinguish different text elements.

plain Window titles, folder names, icon names, and method names.
monospace Programming examples, user input at the command line prompt or into

an entry field, directory paths, and user output.
bold Menu choices and menu names, labels for push buttons, check boxes,

radio buttons, group-box controls, drop-down list boxes, combo-boxes,
notebook tabs, and entry fields.

italics Programming keywords and variables, titles of documents, and initial
use of terms that are in the glossary.

The following conventions are used to abbreviate menu selections and object
expansions within a user interface:

© Copyright IBM Corp. 1999, 2000 xi



> The right arrow when used within a menu shows a series of menu
selections. For example, File > New is translated to mean:

″On the File menu, click New.″

The right arrow, when used within a tree view, denotes a series of folder
(or object) expansions. For example, Expand Management Zones >
Sample Cell and Work Group Zone > Configurations is translated to
mean:

1. Expand Management Zones.

2. Expand Sample Cell and Work Group Zone.

3. Expand Configurations.
+ The plus sign (+) denotes where a tree structure can be expanded to

show more objects. To expand, click the plus sign (+) beside any object.
If you double-click the object itself, a new tree structure is displayed
with that object as the root of the tree.

- The minus sign (-) denotes where a tree structure can be collapsed to
remove its objects from view. To collapse, click the minus sign (-) beside
any object.

left mouse
button

The left mouse button is used for all actions in the application except for
opening the pop-up menu of an object. Unless otherwise stated, the left
mouse button is assumed.

right mouse
button

The right mouse button opens the pop-up menu of an object. The
pop-up menu contains a list of actions that can be performed on that
object. The list of options varies depending on the type of object.

The following icons are used to flag new and changed information:

Denotes information that was added for Component Broker Version 3.5

Denotes information that has changed significantly between Versions 3.0
and 3.5

The following icons are used to indicate platform-specific sections:

Denotes a section that applies to the Windows® 95 or Windows NT®

platforms.

Note: The Windows 95 platform only supports the Component Broker
Java™ client.
Denotes a section that applies to the AIX® platform.

Denotes a section that applies to the Solaris platform.

Denotes a section that applies to the OS/390® platform.

Denotes a section that applies to the HP-UX platform.

xii WebSphere: Application Development Tools Guide



The following icons are used to flag programming language-specific
information:

Denotes a section that applies to C++.

Denotes a section that applies to Java.

Related information

A complete list of books in the Component Broker library can be found in the
preface to the Planning, Performance and Installation Guide. All Component
Broker documentation is available in PDF form, accessible from the
Component Broker online library at the following URL:
http://localhost:49213/cgi-bin/vahwebx.exe/$lang/cbdoc/Extract/0/hgpdf.htm

Note: For this URL to work, the Component Broker documentation (and
supporting code) must be installed on the host on which your Web browser is
running. For more information about installing the Component Broker
documentation, see the Planning, Performance, and Installation Guide.

The PDF files can also be accessed from the Web, at the following URL:
http://www.ibm.com/software/webservers/appserv/library.html

Documentation for the IBM Distributed Debugger is available in online or
PDF form, and is accessible from the x:\IBMDebug\help subdirectory, or
through the help menus in the OLT or debugger user interfaces.

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book or any
other WebSphere Application Server Enterprise Edition documentation, send
your comments by e-mail to waseedoc@us.ibm.com. Be sure to include the
name of the book, the document number of the book, the version of
WebSphere Application Server Enterprise Edition, and, if applicable, the
specific location of the information on which you are commenting (for
example, a page number or a table number).

What’s new in the Application Development Tools Guide

Documentation updates
The documentation for WebSphere Enterprise Edition Component Broker,
Version 3.5 includes:
v New information (page xiv)

About This Book xiii



v Changes to existing information (page xviii)

Two new symbols have been introduced to show you what information topics
are new or have been changed since Version 3.0:

v Denotes information added for Component Broker Version 3.5

v Denotes information that has changed significantly between
Versions 3.0 and 3.5

New information

The following new Object Builder information has been added in Version 3.5:

Internationalization of data
The documentation now contains the set of characters valid for use in object
names and attributes in system management configuration data. For
error-free communication between different code pages, this is the set you
must use (a restricted set of ASCII characters). Since many of the objects that
you create in Object Builder are ultimately loaded into System Management
(installed on the server), when you deploy your applications, this is the set
that is valid for use for all Object Builder entities as well. See
“Internationalization of data” on page 132, and the related topic: “Naming
objects” on page 128.

Polymorphic homes
Component Broker currently supports polymorphic homes with the single
table inheritance pattern. See “Polymorphic homes” on page 581.

Informix application adaptor support

This version of Component Broker supports
Informix databases. However, the support is limited only to the Windows NT,
AIX, and Solaris platforms. For more restrictions on this support, see
“Restrictions for R3.5” on page 3.

Specifying the order of a build
You can design your build system in such a way that the projects get built in
an order, which is compatible with the logical layering of the system. See
“Specifying the order of a build” on page 558.

Propagation of changes to secondary models
When you edit a project in a team environment, some of your changes may
affect other projects, and generated code. You can now either make the
dependent projects writable, and have Object Builder propagate the changes

xiv WebSphere: Application Development Tools Guide



correctly, or cancel out of the editing process, undoing any changes you have
made to the project. See “Editing a project in a team environment” on
page 485.

Distributed query
The choice of having a distributed query is available for all platforms:
Windows NT, AIX, Solaris, and HP-UX. For the last release, it was limited to
the Windows NT, and AIX platforms.

Editing DB schemas and persistent objects
In previous releases, if you had to make changes to your schema, or the
persistent objects that mapped to it, you had to delete it and start over again,
which meant you lost all mapped data object implementations, their attributes
and framework methods. Now, you can edit DB schemas and the persistent
objects that map to them. Changes you make are propagated down to the
objects that map to them (using default mappings). See “Editing a DB
schema” on page 855 and Editing a DB persistent object.

Method adornments
Now, in addition to being able to add adornments to the top of files, you can
also add adornments to methods. This is useful for adding comments (such
as Javadoc) to methods. See “File and method adornments” on page 239.

Iconic changes indicate XML read-write or read-only state
Objects in the Tasks and Objects pane are represented by a different icon
when the XML for the object is read-only. In this state the pop-up menu for
the object has only a subset of the items it has when the object is in the
read-write state.

This feature is disabled by default. If you want to enable it, select File >
Preferences > Tasks and Objects > Environment, and select the Enable team
library check-in and check-out check box.

Single file speed-up build
In this process, the DLLs are built so that the header files are not processed
multiple times. This reduces the time required for the build. You can specify
this type of build both through Object Builder’s interface (File > Preferences >
Tasks and Objects > Make File Generation, and select the option Minimize
C++ compiler invocations), and through the command line (specify
IVB_COMBINE_SOURCE=1).

Recognition of IVB_UNOPTIMIZE=0 and IVB_OPTIMIZE=0 configuration
options for make and nmake
You can now use IVB_UNOPTIMIZE=0 instead of IVB_OPTIMIZE=1, and
IVB_OPTIMIZE=0 instead of IVB_UNOPTIMIZE=1 when you run make or
nmake.

About This Book xv



Enterprise bean deployment
Enterprise beans can now be deployed on the OS/390 and Solaris platforms in
addition to the Windows NT, and AIX platforms.

Support for the EJB Programming Model
To support the EJB Programming Model, the Component Broker Programming
Model now permits the keys and copy helpers for a business object to contain
attributes that are defined only on the business object implementation, as well
as on the business object client interface.

OLT support
In a prior version, the emitted managed object code for Solaris and OS/390
was adjusted to exploit a new set of OLT and Debug APIs. In this version of
Object Builder, the same changes in code are applied to the managed objects
for the Windows NT and AIX platforms.

Object-specific platform constraints
You can now set object-specific platform constraints on application families
besides being able to set them on other objects such as business object
interfaces, business object implementations, data object interfaces, data object
implementations, managed objects, containers, and DLLs.

Solaris 3.5 support
There is a distinction between R3.5, the CB version; and 3.5, the CB run-time
level of function (characterized by the run-time function of R3.0 plus the
run-time features for R3.5).

For version 3.0 (R3.0), the following platforms are supported in the CB
run-time level of function:
v CB/NT 3.0
v CB/AIX 3.0
v CB/Solaris 2.0
v CB/390 1.2

For version 3.5 (R3.5), the following platforms are supported in the CB
run-time level of function:
v CB/NT 3.5
v CB/AIX 3.5
v CB/Solaris 3.5
v CB/390 3.02
v CB/HP-UX 3.0 (beta)

* A minimal subset (from a tooling standpoint) of the 3.5 net function on the
workstation.

xvi WebSphere: Application Development Tools Guide



All R3.5 Object Builder features that exploit new
run-time function in 3.5 will be enabled for models and artifacts that are
deployed to the Windows NT, AIX and Solaris platforms.

All R3.5 Object Builder
features, which are pure Toolkit features will be enabled for models and
artifacts that are deployed to all platforms.

Several run-time functional enhancements were made in R3.0. Since
the Solaris run time is stepping directly from an R2.0 level of function to an
R3.5 level of function, Object Builder retroactively enables exploitation of
these R3.0 run-time features on Solaris.

Types of attributes allowed in a copy helper
Object Builder now allows you to select business object attributes of complex
types (structures, unions, sequences, arrays, anys) for addition to a copy
helper.

Ability to select attributes defined on the business object implementation
as key and copy helper attributes
To support the EJB Programming model, the CB programming model now
allows the key and copy helper of a business object to contain attributes that
are either defined on a particular business object implementation, and its
interface; or attributes that are defined only on the interface.

Null value tolerance with sentinel values
You can now set sentinel values that will represent null field values when
they are mapped to a CORBA object in Object Builder. See “Null value
tolerance with sentinel values” on page 155.

SAP connection support
Object builder now lets you use a configure a container that uses PAA session
services to use a SAP connector for connecting to a 3-tier SAP system or
group of systems.

Creating a specialized home
The documentation now contains a sample of creating a specialized home. See
Example: Creating a specialized home.

Associating a PA persistent object with an existing data object
implementation
There is now additional information about how to associate a PA persistent

About This Book xvii



object with a data object implementation, along with information about
possible pitfalls. See “Associating a PA persistent object with an existing data
object implementation” on page 822.

Documentation of obcheck tool
The obcheck command is a command-line model consistency checker tool that
verifies models built with Object Builder. Documentation for this tool is
provided. See “obcheck” on page 694.

Bridging guidelines between Rational Rose and Object Builder
The documentation now contains precautions and recovery strategies to be
adopted when bridging between the two tools. Rational Rose properties are
explained, as well as the consequences of changing them. See “Rose properties
and bridging guidelines” on page 70

Changes to existing information

Component Broker Version 3.5 also offers the following enhancements to the
Object Builder documentation:

DDL file generation

Object Builder generates the
DDL file on each deployed platform. There is no distinction between specific
and non-specific DDL files now. (Object Builder is capable of generating the
file on all platforms - Windows NT, AIX, OS/390, Solaris, and HP-UX). You
will need to load this file into System Management when you deploy your
applications.

Your DDL file is generated along with a backup version. For example, if the
name of your application family is MyAppFam, and you have specified the
name of the DDL file as AppFam, the DDL emitter will generate the following
files:

Working\platform\output_directory\MyAppFam\AppFam.ddl
Working\platform\output_ directory\MyAppFam\backup\AppFam.auto.ddl

platform is one or more of NT, AIX, Solaris, 390, or HPUX (the platforms on
which you are deploying your application).
output_directory is each of NOOPT, PRODUCTION, TRACE, TRACE_DEBUG
(that is, for a given platform, you get four sets of DDL files generated).

IR executables

Object Builder now generates code which builds the IR executables
based on business object files rather than managed object interfaces.

xviii WebSphere: Application Development Tools Guide



Consequently, you now specify the IR file name to be generated when you are
defining the business object files. In addition, migration and importing of
older models and XML, respectively, will result in the elimination of old IR
file names (based on the managed object interfaces) and the creation of new
IR file names (based on the business object files).

Object Builder generates the IR
executable based on the managed object IDL file name. idlc -eir is run
against the managed object IDL file to produce a C++ source file. This file is
then compiled and linked to produce the IR executable. The IR executable’s
name is the managed object IDL file’s root name with the suffix _IR. This is
the executable that the DDL will run when System Management loads.

This file gets the .exe extension only on Windows NT.

C++ run time in every DLL
Component Broker ships its own copy of DLLs (with the server changing the
prefix of these libraries from ’cpp’ to ’som’). Object Builder’s new default
behavior has the C++ run time dynamically linked into each DLL that is being
built. After linking, DLLRNAME is called against the DLLs to rename them to
equivalent versions shipped with CB. As a result, the DLLs that are built are
dynamically linked against our renamed version of these DLLs. This ensures
that the DLLs are always there even though the Toolkit (and the compiler) are
not required to exist on the server.

This default behavior improves performance since the DLLs that dynamically
link to the C++ run time are noticeably smaller. Besides, run-time scalability is
improved with the capacity to run a large number of objects.

1-n relationships with inherited classes
You can now have diagonal 1-n relationships. That is, a 1-n relationship is
possible between objects in the following situations:
v There are three objects: Department, Person, and Employee. Person has a

foreign key, and an object reference to Department. Employee is the child
object of Person, and inherits Person’s interface, but has no direct object
reference to Department. A 1-n relationship is possible from Department to
Employee.

v There are three objects: Person, Department, and Research. Research inherits
Department’s interface. Person has a foreign key, and an object reference to
Department. Person does not have an object reference to the child object
Research. You can set up a 1-n relationship from Research to Person.

Overriding the working directory
For each platform, you can specify what the absolute path is for the working

About This Book xix



directory. This path is emitted to the generated make files. This way, when
you move the generated code to another location (for example, another
machine or another platform), you do not have to fix the paths in the
generated files. You can set the target directory before you generate, and it
will be used in the generated files.

FlowMark® support removed
The FlowMark (or, as it is now called, IBM MQSeries® Workflow) support
previously provided with Object Builder has been removed.

xx WebSphere: Application Development Tools Guide



Chapter 1. Object Builder overview

Object Builder

Object Builder is the development environment for Component Broker. You
can use it to develop your application from start to finish, or start by
designing in Rose and then import the design into Object Builder, where you
add the final objects and program logic.

Object Builder supports the CORBA programming model using IDL, C++, and
Java. You can generate complete working applications, including full
client-server packages complete with server setup scripts.

You can use Object Builder to:
v develop new applications
v wrapper existing applications
v add new function to existing applications
v package an application

In order to build the application DLLs you define in Object Builder, you will
need the Component Broker Server SDK installed, as well as any prerequisite
application development software.

The model for your application is constructed out of components. Many of the
development tasks in Object Builder revolve around defining components.

The Object Builder user interface is divided into panes, which provide access
to different views of your application. Most interactions with Object Builder
are through the panes and the pop-up menus for the objects in these panes.
Object Builder has the following panes:

Tasks and Objects pane
This pane contains multiple folders. These folders organize the component
objects as they are created. The objects in these folders represent a rough task
flow through your use of Object Builder.
v The Framework Interfaces folder shows the framework interfaces provided by

Object Builder.
v The Local-Only Objects folder is the folder for any local-only objects you

define in Object Builder.
v The User-Defined Business Objects folder, the User-Defined Data Objects folder,

the DBA-Defined Schemas folder, the User-Defined PA Schemas folder, and the

© Copyright IBM Corp. 1999, 2000 1



User-Defined Compositions folder are the folders you use to define
component objects and show the component objects already defined.

v The Non-IDL Type Objects folder is the folder for C++ and Java objects
defined outside of Object Builder.

v The Build Configuration folder is the folder where you configure component
objects into the DLL files.

v The Application Configuration folder is the folder where you configure the
DLL files into applications.

Note: DLL files are called “shared library” files and are in
the format lib*.so.

Note: DLL files are called “shared library” files and are in the
format lib*.sl.

v The Container Definition folder and the Default Homes folder show the
container and homes with which your applications can be configured.

v The Enterprise Beans folder is the folder where you import and work with
enterprise beans.

Inheritance pane
This pane shows the inheritance structure for the selected component object.
You can switch between the interface inheritance view and the
implementation inheritance view. You can also turn off this pane, giving more
room to the Methods pane, by either using View > Minimize Pane, or
clicking the Minimize button on the upper left corner of the pane. You can
also detach the pane from the Object Builder main window using View >
Detach Pane.

Methods pane
This pane lists the methods, attribute getters and setters, relationship methods
and adornments for the object selected in the Tasks and Objects pane.

Source pane
This pane is used to edit the implementations for the selected method from
the Methods pane. When a method is selected, its source code is displayed in
this pane. It also displays the generated code for a particular object, when you
select the View Source option from an object’s pop-up menu.

To start Object Builder from the Windows NT Start menu, select
Programs > IBM Component Broker for Windows NT > Object Builder.
Object Builder takes a few moments to start. The Specify Directory wizard is
opened. Enter a directory name (for example, x:\CBroker\MyProject) and
click the Finish button. If this directory does not yet exist, a message is
displayed asking if you want to create it. Click the Yes button, and provide a
name for the new model.

2 WebSphere: Application Development Tools Guide



To start Object Builder from the command line, enter ob. Object
Builder takes a few moments to start. The Open Project wizard is opened.
Enter a directory name (for example, $HOME/MyProject) and click the Finish
button. If this directory does not yet exist, a message is displayed asking if
you want to create it. Click the Yes button, and provide a name for the new
model.

Components (Programming Guide)
“Projects and models” on page 17
Application architecture (Programming Guide)

“Opening a project” on page 26
“Filtering the Tasks and Objects pane” on page 537
“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Creating a component for transient data” on page 135
“Creating a component for new DB data” on page 136
“Creating a component for existing DB data” on page 139
“Creating a component for PA data” on page 157
“Chapter 8. Working with enterprise beans” on page 391

“Internationalization of data” on page 132
“Naming objects” on page 128

Restrictions for R3.5

The following restrictions apply to Object Builder version 3.5:

Supported characters for internationalization of data
You must use characters only from the displayable portion of the invariant
ASCII character set for Object Builder entities that will ultimately be loaded
into System Management (installed on the server) when you deploy your
applications. These objects include application families, applications, managed
objects, DLL names, application DDL files, and so on), along with some text
string properties, (for example, database names). For rules to be followed
when naming different Object Builder entities, see “Naming objects” on
page 128.

Installation and Startup

CLASSPATH restriction
The CLASSPATH variable may not have contents longer than 1780 characters.
The longer the name of your installation directory, the less space left for the

Chapter 1. Object Builder overview 3



CLASSPATH value (Therefore, it is recommended that you use the default
installation directory x:\Cbroker). If the CLASSPATH exceeds this limit, you will
get a run-time error (“line too long”) when you start Object Builder. This is
because commands (such as ob.bat), which invoke the Object Builder
functions, prefix the Object Builder .jar files to the class path, and then invoke
the Java code to run Object Builder.

Opening a project with disconnected network drives
If you open a project in Object Builder while there are disconnected network
drives on your system, when you click Browse the network drives will be
accessed and reconnected. This may take some time.

Heap size for Java Virtual Machine
If your project has 30 or more components, you may need to manually edit
the ob.bat file to increase the maximum heap size for the Java Virtual Machine
used by Object Builder. The default heap size is 255m (-mx255m): increase the
heap size by 5m for each component beyond 30.

Rational Rose

Rose design restriction
You should not restructure your design after exporting. If you restructure
your design (for example, move a class from one package to another), the
export process will treat the change as a combination add and delete, rather
than a move. This would result in two definitions of the class in Object
Builder (a new class definition for its new position, and the old class
definition for its old position), which is not valid.

Using Object Builder

Linking to non-IDL types on AIX
When you define a shared library (client or server DLL) on AIX that contains
references to a non-IDL type, the shared library statically links the code for
the non-IDL type. For example, if some of your code uses the IString class,
then the shared library that contains your code links statically to the library
file that contains the IString object code.

Static linkage can multiply the size of your shared library file by a factor of 20
or more. The advantage of static linkage is that you do not need to ship the
shared library file that defines the non-IDL type.

To link dynamically, and reduce the size of your shared library file, edit the
makefile for your shared library file (DLL) and change the referenced file
libibmcl.a to libibmcls.a. You must then ship libibmcls.a with your shared

4 WebSphere: Application Development Tools Guide



library (include it on the Additional Executables page of the DLL wizard) in
accordance with the Licensed Program Specifications for C Set++ for AIX.

Opening in editor puts model in use
If you open a schema or schema group in an editor (the Open in Editor
pop-up menu choice), the directory (the directory that the editor is invoked
from, likely the working directory) will be locked by the editor. When you
close the editor, the model remains locked until you log off of Windows NT
and log back on again, or the processes EVFXLXPM.EXE and IWFWTV35.EXE
terminate automatically after 5 minutes of inactivity.

Makefile generation for QuickTest

You do not have the option of building for the QuickTest target when
you build all targets, if the view platform (Platform > View) is OS/390.
QuickTest build does not result in an executable file
When you build for QuickTest (Build > Out-of-Date Targets > QuickTest, or
use the command nmake all.mak quicktest at the command line), the resulting
qt.ksh file that is created in the /Working/platform/config/ is not executable.
You must explicitly change its mode to executable before you can run it. See
Building for QuickTest.

The one-large-object-per-DLL build style
This new compilation style for makefiles is loosely coupled with the old one.
But, the dependencies for the combined C++ file are incomplete. This means
that some changes which would have caused a recompile of files under the
old style will not have any effects with the new style. For example, if a .ih file
is updated, building with IVB_COMBINE_SOURCE=1 will not result in any
changes. Moreover, if IVB_COMBINE_SOURCE=0 is then used in an attempt
to build with the old style, a complete rebuild according to the old style will
occur.

If you have global scope definitions of identical names, which are in two
different C++ files, you may get warnings or errors from the compiler when
you use this option.

You can use this option on OS/390 only if you do not require debug
information.

Silent exceptions
Not all exceptions are displayed in the user interface. After major actions such
as saving a project, check Object Builder’s command window for any
exceptions. The command window is the window from which you started
Object Builder, or the window that appeared in the background if you started
Object Builder from the Start menu.

Chapter 1. Object Builder overview 5



Objects

Naming restrictions for interfaces, modules, constructs, attributes, methods,
and relationships
The name must conform to CORBA naming conventions. This means it must
include only alphanumeric characters (letters and numbers), and must start
with a letter: for example, a1bc23 is acceptable; a#bc23 and 1abc23 are not
acceptable.

You cannot use the following keywords to name the interface:
v Java keywords
v IDL keywords

None of the following names can be used as interface names or module
names:
v any method name in Java.lang.Object. These include names such as clone,

finalize, hashCode, notifyAll, wait, equals, getClass, notify, and toString

v any name that is suffixed with Package, Holder, Helper, Ref, _var, or _ptr.
v goto

Also, CORBA does not allow the identifier of an object to be the same as that
of its immediate parent in the namespace. For example, a business object,
local-only or data object interface cannot have the same name as module that
contains it.

Note: For attributes, the following additional restriction applies:
If you use OOSQL keywords like KEY, REF, TYPE and WORK as attribute names,
Object Builder generates objects that cannot be used with the Query Service,
and you will not be able to perform OOSQL queries. See “OOSQL keywords”
on page 154, for a complete list.

OS/390 naming restrictions
When you create a persistent object and schema from a data object
implementation, and OS/390 is one of the deployment platforms for the data
object implementation, the persistent object class name must not exceed eight
characters. Object Builder validates the length of the persistent object class
when you create a persistent object from a data object implementation, but if
you change the deployment platform after you have created the persistent
object, be sure that you follow the rule. If not, Object Builder will truncate the
name to the 8.3 format. This may result in two persistent object file names
becoming identical after truncation, since Object Builder assumes the object’s
file name to be the same as the persistent object class name.

6 WebSphere: Application Development Tools Guide



The same restriction applies when you create a persistent object from a
schema, and OS/390 is one of the deployment platforms.

In general, when OS/390 is one of the deployment platforms, the following
names must not exceed eight bytes in length, and must start with an alphabet
character, and have only alphanumeric characters in the other positions (2 to
8):
v the persistent object class name
v the IR executable name
v the library name of an OS/390-deployed DLL
v the names of additional executables for applications
v the names of non-IDL types

If the SM/DDL file names break the above file-naming rule, you will get a
warning message. It is not an error, though, since DDL files are not
necessarily required to be copied into partitioned data sets (PDS).

Note: DB2® v5.2: The table names and user names are restricted to 18 bytes
(18 SBCS, or 9 DBCS characters) for all platforms. For a list of complete length
restrictions for tables, see “Naming objects” on page 128.

Restrictions when adding comments
When you add comments for the different objects in Object Builder (for
example, a business object module), the comments are generated within
language comment delimiters. You cannot use these delimiters: /* and */
within your comments.

Attributes

Restrictions for attributes and methods at the interface level
You cannot select a non-IDL type class that you have imported into Object
Builder as the type of an attribute, or a method return type if you are defining
attributes and methods for an object’s interface; you can use the non-IDL type
class only if you are defining the attributes or methods for the object’s
implementation.

An attribute that you define for an object’s interface can only have a public
implementation. If you want to define attributes that are either private or
protected, you must define them at the object’s implementation level.

Naming restriction for attributes of keys and copy helpers
The name of a key attribute cannot be the same as the name of the key it is
defined in. The same restriction applies to the names of copy helper attributes.

Chapter 1. Object Builder overview 7



Even similar names that differ only in capitalization are not permitted. For
example, the copy helper named AccountCopy cannot have an attribute
named accountCopy.

The Windows NT, AIX,
Solaris, OS/390 and HP-UX platforms do not support the CORBA unsigned
long long, long double and fixed types.

Besides, OS/390 does not support the CORBA long long, wchar and
wstring types.

Type of attributes available for use in copy helpers

On the Windows NT, AIX, Solaris and
HP-UX platforms, business object attributes of all types are available for use
in copy helpers.

On the OS/390 platform, the following attribute types are not
available for use in copy helpers:
v CORBA constructed types except enumerations
v CORBA template types except strings
v any, and the types that are not supported at all (long long, wchar, wstring,

fixed, typedef)

Type of attributes available for use in keys

On the Windows NT, AIX, Solaris and
HP-UX platforms, business object attributes of the following data types are
available for use in keys:
v CORBA base types (except any), enumerations, string, wstring
v object references - business object interfaces that are defined in the model

(You can define a business object interface and use it as a key attribute’s
data type for another business object.)

On OS/390, keys can use all the same attributes that are available for
use on the other platforms except for long long, wchar and wstring.

Requirement for copy helper attributes
Any attributes you include in the copy helper must also be included in the
data object.

Inheritance

8 WebSphere: Application Development Tools Guide



Business object interface inheritance restriction
Abstract base classes are supported by Object Builder. There are some
restrictions when you use them:
v To use this pattern, define a business object interface for the abstract class,

and do not provide an implementation.
v Any business object interface that derives from the abstract interface and

includes an implementation, must override all the attributes and methods
that were defined on the abstract interface.

Key and copy helper inheritance restriction
If the interface has one or more parents, the parent interface attributes are also
available for selection. If the key or copy helper will inherit from the parent’s
key or copy helper, you should not select any of the parent interface
attributes.

Polymorphic homes

v Polymorphic homes support is not available on the
OS/390 and HP-UX platforms

v If a business object interface is deployable to OS/390, you cannot
have a polymorphic home class as the parent for either the business object
interface, or the implementation. That is, you cannot select the
IPolymorphicHome class as a parent class for the business object interface,
and you cannot select IPolymorphicHome class as a parent for the business
object implementation. The same is true for a managed object that is
deployable to OS/390: it cannot inherit from the
ISpecializedPolymorphicHomeManagedObject class.

v Abstract classes must have queryable homes
v The same primary key class must be used for all types and subtypes
v All data for the types can be stored only in the same database type
v All polymorphic homes must exist on the same server
v Multiple parent inheritance is not supported by Query for polymorphic

homes in this version of Object Builder
v Component Broker does not support polymorphism over configured

managed objects using either the inheritance with attributes duplication
pattern, or the inheritance with key duplication pattern. Object Builder
enforces these restrictions, and supports only the single table pattern of
inheritance for polymorphism.

v Object Builder does not support container configuration of atomic
transactions for query (Start a new transaction)

v Object Builder does not support typed tables (this support is specific to DB2
Version 6)

Chapter 1. Object Builder overview 9



Object Mapping

Mapping pattern restrictions (data object attributes to persistent object
attributes)

v In general, user-defined mappings are not queryable, but object references
are always queryable. Key Home mappings for object references, and
Exploded mappings for structures are not primitive mappings, but can
participate in object queries. So can handle mappings for object references.
But, with handle-mapped object references, the query may not perform as
well because the query engine cannot push down these references to the
database.

v When you map a data object to multiple persistent objects, you must map
all the primary key attributes of the data object to the corresponding key
attributes of each of the different persistent objects.

v If you are mapping key attributes, you must select only those attributes of
the persistent object that are defined as PO keys, to map to the key
attributes. To check which attributes are PO keys, select the persistent object
in either the User-Defined Data Objects folder or the DBA-Defined Schemas
folder and use Properties from its pop-up menu to view the Persistent
Object page.

Mapping using helper class

v Object Builder does not provide a default mapping from the data object
implementation to the persistent object for the CORBA any, union, sequence
or array data types; or for any typedef ultimately to the aforementioned
types. In these cases, you must provide your own mapping helper class.

v When you are creating an application that involves wide character set data
(for example wcharor wstring), and is required to store persistent object data
in a column of data type CHARACTER, in a DB2 table, you must write your
own mapping helper. For an example, see the reference section “Mapping
DBCS data types” on page 149.

v When you map a data object attribute that is also specified as an attribute
of the key for the corresponding business object, to multiple persistent
object attributes using a mapping helper, all the persistent object attributes
that are mapped must be persistent object keys.

Foreign Keys

Foreign key relationship restriction
You cannot have a foreign key relationship between business object interfaces
that are contained in different modules. The interfaces can be contained in the
same module.

Foreign key not propagated down to the schema
When you map attributes using a foreign key and create a persistent object

10 WebSphere: Application Development Tools Guide



and schema from the data object implementation, it will not automatically
create a foreign key constraint in the schema. That is, the FOREIGN KEY
constraint is not created in the table’s .sql description file.

DB Schemas and Persistent Objects

Importing schemas with no primary keys
Object Builder lets you import schemas for which no primary keys have been
defined. However, these schemas can result in query exceptions at runtime.

To avoid this happening, you can either select Properties from the pop-up
menu of the schema, and select any of the schema columns as the database
key (Select the DB Key check box.), or before you import the SQL file, edit the
source file and add a PRIMARY KEY constraint.

Schema group restrictions
A table associated with a schema of one schema group cannot reference a
foreign key defined in a table within another schema group.

Multi-user database applications
It is recommended that only one user build the persistent object, and perform
the bind operation.

A database server is required for each developer workstation that is expected
to build persistent objects. That is, most developers must not have access to
the production database; instead they must do “unit test” binds against their
own test database.

Restrictions when adding a persistent object from a schema
You must map all schema columns to their corresponding persistent object
attributes; otherwise you may get exceptions thrown at run time if you use
the Query Service.

Restrictions when naming a persistent object attribute
A persistent object attribute name must not exceed 26 characters in length.

SQL

SQL statements supported for import
Currently, the only SQL statements supported are the following:
v CREATE TABLE

v ALTER TABLE

v DROP

Chapter 1. Object Builder overview 11



v CREATE VIEW

v COMMENT ON

None of these statements must contain expressions or column functions. The
CREATE VIEW statement must contain only a simple query(SELECT statement).
Currently there is no support for unnamed columns, expressions, functions, or
sub-selects in CREATE VIEW.

SQL files supported for import

v This release supports SQL DDL files for DB2 MVS™ 4.1 databases. If an
SQL DDL file contains a mix of supported and unsupported statements, the
supported statements will be imported.

v This version of Object Builder supports SQL DDL files that are compliant
with the following DBMSs:
– DB2 MVS 4.1, and DB2 V5.2 (UDB)

Object Builder has limited support for UDB V6.1.
– Oracle:

Oracle 8.0.5 databases are supported only on
the Windows NT, AIX and Solaris platforms.

Oracle 8.1.6 (Oracle 8i Release 2)
databases are supported on the Windows NT, AIX, Solaris, and HP-UX
platforms.
Oracle SQL files can be imported, but language elements that have no
analog in DB2 will not be parsed correctly except for columns of the
VARCHAR2 or NUMBER data type. Object Builder does not support any
non-ANSI syntax construction such as Oracle comments (/*...*/), SQL
commands.

– Informix:
A given transaction cannot access more than one Informix database per
CB server. To involve two Informix databases in a transaction, you must
access each database from a different server.

Informix Dynamic Server version 7.30 files are
supported only on AIX and Solaris.

Informix Dynamic Server version 7.31 files are
supported only on Windows NT, AIX and Solaris.
SQL files with the DOUBLE, TIME and TIMESTAMP types will not load
as-is into Informix. You can use a DBA design tool such as ERWin or
DataAtlas to make appropriate changes.

v SQL files larger than 2 MB are not recommended.

Oracle

12 WebSphere: Application Development Tools Guide



Restrictions when importing Oracle SQL files

v Oracle 8.0.5 databases are supported only on the
Windows NT, AIX and Solaris platforms.

Oracle 8.1.6 (Oracle 8i Release 2)
databases are supported on the Windows NT, AIX, Solaris, and HP-UX
platforms.

v Support for Oracle backend databases is limited to data objects that use the
Oracle Cache Service only. That is, data objects that use embedded SQL, or
any other type of persistence will not be able to access data stored in Oracle
databases.

v Reference collections are not supported in conjunction with Oracle backends
for this release of Component Broker.

v If your schema uses the Oracle Cache Service, you can import the schema if
the columns are of the Oracle VARCHAR2 and NUMBER data types, or any of the
IBM DB2 data types (that is, those Oracle data types that have an
equivalent type in DB2). Object Builder accepts all SQL/DS and DB2 types
and the Oracle NUMBER, NUMBER(p), NUMBER(p,s) and VARCHAR2 types. It will
not accept any other Oracle types such as RAW(n), LONG RAW, NCHAR(n),
NVARCHAR2, and ROWID. See “Oracle data type mappings” on page 146 for a
complete list.

v Object Builder will not accept the Oracle data type NUMBER with a negative
scale.

Procedural Adaptor (PA) Beans

Importing PA beans

v Procedural Adaptor Object (PAO) beans that are created with both
VisualAge for Java version 3.0 and version 2.0 are supported with this
release of Component Broker.

v You cannot import PA beans that inherit from the BeanInfo superclass in
VisualAge for Java.

v When you create the PA bean, ensure that you name its key the same name
as the PA bean, with the suffix Key. For example, if the name of the PA
bean is AccountPAO, then the name of its key must be AccountPAOKey.
Only such beans can be imported into Object Builder.

v The PA beans that you import cannot have arrays as either attribute types,
or method parameter types, or method return types. The only types that are
supported are those listed in “Java data type mappings” on page 159.

v You cannot import into Object Builder PA beans that have two methods
with the same name. You can create such PA beans with overloaded
method names (methods with the same name that differ in either the type
or number of their parameters, or both) using VisualAge for Java.

Chapter 1. Object Builder overview 13



Supported types of the PA bean
Only the Java types int, float, double, boolean, char, short, byte and
java.lang.String are supported as attribute types, push-down method return
types and parameter types, and PAA query method types for the PA bean.

Supported types for PA bean push-down methods
When you are creating a data object from a PA persistent object, only
push-down methods of the char type can be pushed up to the data object.

Java types supported in the imported PA bean
None of the Java data types except the following types are supported in the
PA bean that you import into Object Builder:
v int
v float
v double
v boolean
v short
v byte
v void
v char
v java.lang.String

OS/390 and procedural adaptors
When you import a procedural adaptor bean, and have OS/390 as the
deployment (target) platform (Platform > Constrain > 390), only the EXCI,
OTMA, and Generic connector types are available for selection (LU 6.2, HOD,
SAP, and ECI are not available).

When you use procedural adaptors, you cannot call the resource
methods endResource(), checkpointResource(), and resetResource()on the
business object when the target platform is OS/390.

OS/390 data type restrictions
When one of the constraint platforms is 390 (you select Platform > Constrain
> 390), the wchar, wstring, and long long types are not available for selection as
either attribute types, method return types, or method parameter types for
your objects.

OS/390 service restrictions
When you define a data object implementation, the Cache Service option is
not available when the target platform is OS/390. Oracle and Informix
databases are not supported on this platform.

14 WebSphere: Application Development Tools Guide



Enterprise beans support

Composers are not supported for enterprise beans that are deployed using
Object Builder and the Component Broker MOFW (CORBA) infrastructure
even though VisualAge for Java supports both composers and converters.

Some converters are supported only in concept ( in the form of its various
attribute mapping patterns, which include the specification of arbitrary,
user-defined mappings) . The physical VisualAge for Java or VisualAge
Persistence (Persistence Builder) converters will not be used when an
enterprise bean is deployed using Object Builder. For a list of the default type
conversions (the supported converter mappings) that take place during
enterprise bean deployment, s ee Java to Object Builder type mappings.

Enterprise bean support is available on the Windows NT, AIX,
Solaris, and HP-UX deployment platforms. It is also available for OS/390.
However, Component Broker and WebSphere EJB clients on platforms other
than CB OS/390 will not be able to exchange information with CB OS/390
enterprise beans. Neither will CB and WebSphere EJB clients that are on CB
OS/390 be able to exchange information with enterprise beans on other
platforms.

If the deployment platform is 390, the only backend storage options
available are DB2 V5.2 Embedded SQL, DB2 V6.1 Embedded SQL, EXCI -
Procedural Adaptors and OTMA - Procedural Adaptors.

Redeployment of CMP entity beans
If you are redeploying a CMP entity bean into the same Component Broker
model, you cannot make the following changes:
v Delete a container-managed field (You can add container-managed fields.)
v Specify a field that was earlier designated as a key field, to no longer be a

key field. (You can assign more fields to be keys.)
v Change a primitive type (for example, int, char, long) to an Object type (for

example, Integer, String, java.sql.Date)
v Change an Object type to a primitive type
v Export the redeployed enterprise bean (from VisualAge for Java) to a file

with a different name. That is, if the enterprise bean was exported to a JAR
file called foo.jar, the redeployed enterprise bean must be exported to a JAR
file with the name foo.jar as well.

MQSeries

Chapter 1. Object Builder overview 15



MQSeries application adaptor support

You can select only the Windows NT, Solaris and HP-UX
platforms for deployment if you want to use the MQSeries application
adaptor support (that is, if you want to create applications that send messages
to, or receive messages from queues that are managed by MQSeries
application adaptors).

Informix

Informix application adaptor support

v This support is not available on the OS/390 and HP-UX
platforms.

v The current version of Object Builder does not support Informix-unique
SQL column types.

v Informix Dynamic Server version 7.30 files are supported
only on AIX and Solaris.

v Informix Dynamic Server version 7.31 files are
supported only on Windows NT, AIX and Solaris.

Informix Programming
A given transaction cannot access more than one Informix database per CB
server. To involve two Informix databases in a transaction, you must access
each database from a different server.

“Troubleshooting” on page 905

“Internationalization of data” on page 132
“Naming objects” on page 128

Composition restrictions

One-to-many relationships
The one-to-many relationships of components you add to a composition will
not be available in the composition, or in the interface of any composite
components based on the composition. One-to-many relationships, and the
methods that support them (for example, addRel, removeRel, listRel), will not
be included or republished in the composites you create.

Composition include files
The include files for composited components are included automatically. You
do not need to add them to the Composition File wizard, Include Files page.

16 WebSphere: Application Development Tools Guide



The Composition File wizard, Include Files page shows IManagedClient as an
include file, even though compositions inherit from IManagedLocal. This
include file is required for code generation, and must not be deleted.

DB2 column name limitations
DB2 limits column names to 18 characters. Because of the mapping of
attribute names as they are added to a composite, the attribute names may be
longer than 18 characters. The attribute names may have to be edited in the
Add Persistent Object and Schema wizard to shorten them to less than 18
characters.

Republishing methods
Attributes in the composition should not delegate to methods that throw user
exceptions. The code generated will not compile. CORBA attributes do not
support exceptions.

Attributes in a composition must not delegate to methods that have “out” or
“inout” parameters. It is not possible to republish “out” or “inout” parameters
on attributes.

Adding or renaming a managed object after a composite is built
When you add or rename a composited component in the Composition Editor,
Composition page (Objects to Composite list), you must follow these steps:
1. Open any business object interfaces that are based on the group, and select

Refresh from Composition.
2. Update the key, if necessary.

Projects and models

A project provides the directory structure that organizes your work. It can
contain any number of components, organized into applications and
application families. Each project contains a single model, which can be used
to generate code for multiple platforms. When you create a new project, you
need to name the model, and also identify any dependencies your work will
have on other, existing, projects. The model name you provide will be used to
identify the project for team environment builds.

Within the project directory, your work is stored in several subdirectories:
v project/Model

Contains the .uni files that Object Builder uses to store your work between
sessions, or when you select File > Save. Each model directory includes the
following files:
– obp.uni

The project file. Defines project metadata. Defines the models that the

Chapter 1. Object Builder overview 17



project accesses in read-write and read-only modes. May itself be
accessed by other projects in read-write mode (so that projects can
exchange dependency information).
At minimum, the project model has a dependency on obframe.uni and
obprim.uni, models that define Component Broker framework interfaces
and Component Broker primitive elements.
This file should not be deleted, except as part of the entire project
directory, or directly edited.

– project.cfg
If you are using the OBModelPath environment variable to manage your
dependencies, then this file is not used. If you are not using the
environment variable, then this file provides an ASCII version of the
depends and usedby relationships this project’s model maintains with
other projects’ models. Generally you should manage cross-project
dependencies through the Project Dependencies page of the Open Project
wizard, and through the OBMODELPATH environment variable.

– obm.uni
The model file that contains your work. Accessed in read-write mode by
the project. Other obm.uni files in other project/Model directories may
be accessed in read-only mode.
This file must not be deleted, except as part of the entire project
directory; neither must it be directly edited.

If you are using external files to provide the implementations for some
methods, these external files are also stored here.

v project/Working
Contains the platform subdirectories for generated source files by platform
(for example, project/Working/NT, project/Working/AIX). Source files are
generated for the platforms selected on the Platform menu of Object
Builder. You can generate source files by selecting Generate > Selected or
Generate > All from the pop-up menus of folders or objects in the Tasks
and Objects pane, or by using obgen from the command line.

v project/Export
Contains any exported model elements, in XML format. You can import
these files into other projects, using the File > Import menu choice in
Object Builder.

v project/Import
Contains any XML files that were used by the Rose Bridge to export a Rose
model into Object Builder.

v project/ImportEJB
Contains the XML file for your model. For example, for the imported
EJBHotel.jar file, it will be EJBHotel.xml. You can later import this XML file
into Object Builder (for example, for another project).

18 WebSphere: Application Development Tools Guide



v project/XMI
Contains the file xmi.xml, which holds any model information that is not
directly translatable between Rose and Object Builder. When you import or
export from Rose, this file maintains the extra information that would
otherwise be lost in the transfer.

Components (Programming Guide)
“Rose” on page 64
“The Rose Bridge” on page 69
“Chapter 10. Team development” on page 443

“Opening a project” on page 26

Developing in Object Builder

Application development in Object Builder consists of defining, building, and
packaging components. Components can be defined in any of the following
ways:
v From a new design (starting from the component interface and working

down to the component datastore)
v From an existing datastore (starting from the datastore and working up to

the component interface)
v From both (combining a new component and data interface with an existing

datastore)

Each server application can consist of one or more components, each of which
could be developed in a different way.

The main development tasks are as follows:
1. “Chapter 3. Using Rational Rose with Object Builder” on page 63
2. “Chapter 4. Creating a component” on page 127
3. “Defining relationships” on page 278
4. “Creating a child component” on page 306
5. “Configuring builds” on page 549
6. “Packaging applications” on page 574
7. “Chapter 13. Testing applications with QuickTest” on page 611
8. “Developing as part of a team” on page 444
9. “Chapter 11. Customizing Object Builder” on page 503

10. “Using Object Builder from the command line” on page 659
11. Working with external files

Chapter 1. Object Builder overview 19



“Object Builder” on page 1
Components (Programming Guide)

“Chapter 2. Tutorials for Object Builder” on page 39
“Working with components” on page 697

“Internationalization of data” on page 132
“Naming objects” on page 128

Platform-specific information

Object Builder organizes its generated files into platform-specific directories,
some of them with multiple subdirectories as shown in these tables.

Generating code for Windows NT:

Subdirectory that contains the generated
code

<project>\Working\NT

Corresponding nmake command nmake -f <installation
directory>\Working\NT\all.mak

Location of generated DDL files** Working\NT\<application family
name>\<build style>

Client C++ Library Location*** Working\NT\<build style>

CBConnector installation library
directory

%SOMCBASE%\data\ntApps3.5

Generating code for AIX:

Subdirectory that contains the generated
code

<project>\Working\AIX

Corresponding nmake command make -f <installation
directory>\Working\AIX\all.mak

Location of generated DDL files** Working\AIX\<application family
name>\<build style>

Client C++ Library Location*** Working\AIX\<build style>

CBConnector installation library
directory

/var/CBConnector/data/aixApps3.5

20 WebSphere: Application Development Tools Guide



Generating code for OS/390:

Subdirectory that contains the generated
code

<project>\Working\390

Corresponding nmake command POSIX make with some extensions*

Location of generated DDL files** Working/390/<application family
name>/<build style>

Client C++ Library Location*** Working\390\<build style>

CBConnector installation library
directory

DLLs generated from the build are
automatically copied to the user- defined
data set in the second level system.****

Generating code for Solaris:

Subdirectory that contains the generated
code

<project>\Working\Solaris

Corresponding nmake command POSIX make with some extensions*

Location of generated DDL files** Working/Solaris/<application family
name>/<build style>

Client C++ Library Location*** Working\Solaris\<build style>

CBConnector installation library
directory

/var/CBConnector/data/solarisApps3.5

Generating code for HP-UX

Subdirectory that contains the generated
code

<project>\Working\HPUX

Corresponding nmake command POSIX make with some extensions*

Location of generated DDL files** Working/HPUX/<application family
name>/<build style>

Client C++ Library Location*** Working\HPUX\<build style>

CBConnector installation library
directory

/var/ CBConnector/data/hpuxApps3.0

* Extensions for the POSIX make command on
AIX, Solaris and HP-UX
The extensions we use on the UNIX platforms are an include directive that
allows us to create a makefile, which includes text from an external file. For
example, if the file XXX.mak has the following commands:
A = 1

Chapter 1. Object Builder overview 21



include $IVB_DRIVER_PATH/bin/obadll35.mk
when the make tool processes XXX.mak, it will expand
$IVB_DRIVER_PATH/bin/obadll35.mk with the contents of the actual file.

* The make command on OS/390 (equivalent to the POSIX make
command with significant extensions)
The make command on OS/390 is used along with metarules.

For example, given the makefile recipe:
a%y.o : %.c
...
the make utility will use the rule to match targets and dependencies. The ’%’
character is a wild card.

If we were to use the above metarule to build the following targets:
aby.o
a123y.o
we would need the following dependencies:
b.c
123.c

The ’%’ character must match on both sides of the target-dependency
relationship. These extensions come standard with the OS/390 make tool.

** Note the following points:

v <build style> is each of NOOPT, PRODUCTION, TRACE, TRACE_DEBUG
(that is, for a given platform, you get four sets of DDL files generated).

v A subdirectory with the name of the application family is created beneath
the <build style> subdirectory.

v The DDL file is generated along with a backup version. For example, if the
name of your application family is MyAppFam, and you have specified the
name of the DDL file as AppFam, the DDL emitter will generate the
following files:
Working\platform\<build style>\MyAppFam\AppFam.ddl
Working\platform\<build style>\MyAppFam\backup\AppFam.auto.ddl

*** Note the following points:

v The C++ client library contains the DLL files that need to be copied into the
same directory as the client C++ code, for building the client.

v <build style> is one of the configuration directories: NOOPT,
PRODUCTION, TRACE, TRACE_DEBUG. See Build targets.

v Client binding JAR files are found in Working/<platform>/<build
style>/JCB/.

22 WebSphere: Application Development Tools Guide



**** The OS/390 run time has two types of systems:
v the first level system: a common direct access storage device (DASD) that

everyone shares. Some of the common information is stored here.
v the second level system: a personal account that you can configure

according to your needs. For example, user A could be using CB R3.0, and
user B could be using CB R3.5.

C++ compilers that can be used:

See the Component Broker documentation in the Planning, Performance and
Installation Guides for the corresponding platform:

Table 1. Supported Prerequisites for Windows NT

Table 1. Supported Prerequisites for IBM AIX

Table 1. Supported Prerequisites for Solaris

Table 1. Supported Prerequisites for HP-UX

“Multi-platform development” on page 419
“Cross-platform development” on page 426
“Remote build” on page 570
Application DDL files

“Generating code” on page 551
“Launching a remote OS/390 build” on page 572
“Opening a project” on page 26
“Building the DLLs” on page 558
“Building the JAR files” on page 561
“Building DLLs in a team environment” on page 487

“Platform differences” on page 425
“Build targets” on page 567

OLT and Debug API support

The managed object code emitted by Object Builder for all the platforms has
been adjusted to exploit a new set of Object-Level Trace (OLT) and Debug
application programming interfaces (APIs).

Chapter 1. Object Builder overview 23



Business object (Programming Guide)
Managed object (Programming Guide)

“Working with methods” on page 750
“Chapter 8. Working with enterprise beans” on page 391

Setting up Object Builder

There are several tasks you need to perform before you can take advantage of
the full range of Object Builder’s functionality. At minimum, you will need to
start a project and set Object Builder preferences.

Complete the following tasks to set up tools, enable and customize function,
and start working in Object Builder on either a new or an existing project:
1. “Setting up Rose 98” on page 65
2. “Setting up Rose 98i and Rose 2000” on page 66
3. “Opening a project” on page 26
4. “Migrating old projects” on page 33
5. “Setting Object Builder preferences” on page 27
6. “Searching the Tasks and Objects pane” on page 30
7. “Checking a model for consistency” on page 31

“Rose” on page 64
“Object Builder” on page 1

“Chapter 2. Tutorials for Object Builder” on page 39
“Developing in Object Builder” on page 19

Object Builder environment variables

The values of Object Builder environment variables that are specified in make
files take precedence over external settings for the same variables.

IVB_BATCH_PROCESS_FACTOR
This variable is found in the file prjdefs.mk, which is generated during the
build process. It denotes the maximum number of submakes that can occur. It
is generated with a default value of 1, indicating that the build will be
serialized (not parallel). The value that is assigned to this variable within
prjdefs.mk overwrites the value that you assign to it outside of the file. To

24 WebSphere: Application Development Tools Guide



override the default value of 1, you would have to either edit prjdefs.mk, or
pass this variable as a parameter with the make command.

IVB_HOME
Represents the directory where tool-state settings are saved (These settings are
saved in the files panes.ini and Workbook.ini).

To look at these files, use the command:

cd /D %USERPROFILE%

cd $HOME

Note the following points:

v The /D option is required on Windows NT because it supports drive
letters.

v If this directory is not accessible, you can edit the ob.bat file, and change
the definition for IVB_HOME (change the directory path that is passed
along with the -D option to the Java Virtual Machine).

Warning: Do not change %USERPROFILE% instead as this may be used by
other programs and Windows NT services.

OBModelPath
Enables you to relink linked models when either drive letters or directories
change.

EJBOBTEMP
A temporary directory used for EJB work. It is set to the system %tmp%
directory , but if no system %TMP% is defined, it will be set to the current
directory “.”. Temporary output files are stored in this directory when you
deploy enterprise beans using Object Builder.

On AIX and Solaris, the temporary directory is /tmp.

“Object Builder” on page 1

“Deploying enterprise beans using Object Builder” on page 410

“make options” on page 688

Chapter 1. Object Builder overview 25



Opening a project

Starting Object Builder

To start Object Builder from the Windows NT desktop, follow these
steps:
1. Select Start > Programs > IBM Component Broker > Object Builder. The

Open Project wizard opens to the Specify Project Directory page.
2. Type a name for the project, or specify an existing one.

To start Object Builder on AIX (or on Windows NT from a
command prompt), type the command

ob <project_directory>

You cannot specify a directory name that contains spaces.

A project directory has a model subdirectory (called Model), where Object
Builder stores an internal model of your work. The project directory also has a
working directory (called Working), where Object Builder generates the code
(such as .idl and .cpp files) for your work.

Creating a new project
To create a new project, follow these steps:
1. Specify a new project name on the Specify Project Directory page.
2. Object Builder prompts you to provide a model name.

It provides a default model name, which it assumes is the same as the
directory name for the project.

3. Either accept the default name, or change it. The name you specify will be
used to identify the project in a team environment, regardless of any
changes in directory structure.

4. Click OK.

Note:If you are working with a large project (more than 30 components), you
may need to increase the maximum heap size of the Java virtual machine. You
can do so by editing the ob.bat file:
1. Make sure Object Builder is closed.

2. Edit <CBroker>\bin\ob.bat

3. Edit <CBroker>/bin/ob
4. Change the parameter -mx255m, increasing the number by 5m for each

additional component in your project (this number is approximate, and
assumes components of average complexity).

26 WebSphere: Application Development Tools Guide



For example, if your project contains 100 components, change the
parameter to -mx605m (70 additional components multiplied by 5m each,
plus the original 255m).

5. Start Object Builder. The new parameter is used, and the maximum size of
the Java virtual machine is increased.

Warning: Do not alter the contents of the directories: <CBroker>\obprime
and <CBroker>\obframe. These directories contain definitions for IDL
primitive types and for the Component Broker frameworks, both of which are
used by the project models you create in Object Builder.

“Object Builder” on page 1
“Projects and models” on page 17

“Migrating old projects” on page 33

“Platform-specific information” on page 20

Setting Object Builder preferences

You can customize the appearance and behavior of Object Builder using the
Preferences notebook. To access the notebook and set preferences for Object
Builder, follow these steps:
1. Click File > Preferences. The Preferences notebook opens.
2. Click on a folder or node in the tree view on the left. The General folder

organizes general settings for Object Builder’s appearance and behavior.
The other folders organize specific settings for the different panes in
Object Builder, or for the activities available through that pane (for
example, the preferences for the Tasks and Objects pane include a page for
Makefile Generation settings).

3. Select a node. The settings for the node appear on the right.
4. Specify the settings you want.

Click Help for a description of the settings for the currently selected node.
5. Click OK to apply your settings and return to Object Builder.

“Object Builder” on page 1

“Setting up Object Builder” on page 24

Chapter 1. Object Builder overview 27



Color Assignments
Indentation (Source page)

Color Assignments

Use this section of the Text Style page to specify the mapping of color to code
elements in Object Builder’s Source pane. You can select a category, then select
the color to assign to it. This section has the following controls:
v Enable
v Categories
v Color Assignment

Enable
Click this option to enable the color assignments shown under Categories.
When this option is not selected, the color assignments are ignored, and all
categories are shown in the system-defined foreground color (usually black)
text against the system-defined background color. By default, the color
assignments are used with all parsable code (method bodies in C++ or Java,
and Object Builder-generated source files in Java, C++, or IDL).

Categories
Select the category you want to assign a color to. Each category is displayed
in its currently assigned color against the system-defined background. You can
select from the following categories:
v Base text
v Comments
v Constants
v Errors
v Keywords

Color Assignment
You can set the colors using the following pages:
v Swatches

On the Swatches page, you can select a color from the provided palette. To
see the RGB values for a color, hover the mouse pointer over the color.
When you select a color, it is added to the Recent palette for easy future
retrieval.

v HSB
On the HSB page, you can customize color in the following ways:
– Moving the scroll box up and down on the color column. This selects the

hue.
– Clicking a point on the square

This selects the color’s shade. The shade is measured in terms of

28 WebSphere: Application Development Tools Guide



saturation and brightness. The bottom right corner of the square has the
least saturation and brightness percentages (0). The upper left corner of
the square has the maximum percentage values for both saturation and
brightness values. The upper right corner has a saturation percentage of
0, and the maximum brightness. The lower left corner has 100 %
saturation, and minimum brightness.

Alternatively, you can enter values for the Hue (H), Saturation (S), and
Brightness (B), or Red (R), Green (G), and Blue (B).

v RGB
On the RGB page, the values of the red, green, and blue components of the
color are set according to your selections on the HSB page. You can further
fine-tune the settings.

Preview
You can see the result of your color selections in the Preview box, as you
make the selections.

You can use the following buttons after you have made your color selections:
v Apply

Click this button to apply your selections to the current category.
v Restore Default

Click this button to restore the category to its default color.

“Setting Object Builder preferences” on page 27
“Implementing methods” on page 752

Find and Replace (Source page)

Use this section of the Source page to select the behavior you want when
finding and replacing text in the Source pane:
v Beep when no match is found
v Show message when no match is found

Beep when no match is found
When a search fails to find a match, your computer beeps.

Show message when no match is found
When a search fails to find a match, a message appears (silently) that tells you
so.

“Setting Object Builder preferences” on page 27
“Implementing methods” on page 752

Chapter 1. Object Builder overview 29



Indentation (Source page)
Use this section of the Source page to select the indentation behavior you
want in the Source pane:
v New lines are not indented
v New lines maintain existing indentation
v Parse and indent automatically

New lines are not indented
When you press Enter while editing, the cursor goes to the beginning (far left)
of the next line.

New lines maintain existing indentation
When you press Enter while editing, the cursor goes to the next line, indented
by the same amount as any text on the previous line.

Parse and indent automatically
As you enter code, it is parsed, and indented accordingly.

“Setting Object Builder preferences” on page 27
“Implementing methods” on page 752

Searching the Tasks and Objects pane

When you are working with a large or complex application, it can be difficult
to locate a particular component object or element of the application in Object
Builder. To find a particular item in the Tasks and Objects pane, follow these
steps:
1. Select Edit > Find. The Find dialog box opens.
2. Type the name of the item in the Find Next field.
3. Set any search options you want in effect:
v Match case

Only finds items with names that have the same capitalization as the
name you specified.

v Whole word
Only finds items with the exact name you specified. Does not find items
whose names merely include the string you specified.

v Wrap
Searches the entire pane. If you do not select Wrap, the search only
occurs from the currently selected item to the bottom of the pane.

4. Click Find Next.
The first item with a matching name is selected in the Tasks and Objects
pane. The tree view is expanded as necessary to show the item.

30 WebSphere: Application Development Tools Guide



5. When you are finished searching, click Cancel in the Find dialog box.

The Find function will not find any items that do not appear in the Tasks and
Objects pane. If you have applied a filter to the pane, the search will not find
items that are excluded from the pane by the filter.

“Object Builder” on page 1

“Filtering the Tasks and Objects pane” on page 537

“Naming objects” on page 128

Checking a model for consistency

While Object Builder enforces consistency on your model, there are
circumstances in which the model can become internally inconsistent. If you
are experiencing consistency problems with your generated code (for example,
type mismatches between an attribute and its referenced interface), run the
consistency checker to diagnose the problem, and generate a report on the
state of your model.

To check a model for consistency, follow these steps:
1. Open the project whose model you want to check (select File > Open New

Project). The project opens, and the project model is loaded into Object
Builder.

2. From Object Builder’s menu bar, click File > Check Model.
The consistency checker dialog opens.

3. Select the types of consistency problems you want to check for.
4. Click Run. The consistency check runs, and its output is displayed in a

report window.
5. Review the report.

You can save the report for later review by clicking Save.
Each error, warning, or information message includes the file, module,
object type, and object name to which the message applies.

6. Click OK to close the report window and return to Object Builder.

Alternatively, you can use the command-line tool obcheck to check a model’s
consistency.

Chapter 1. Object Builder overview 31



“Projects and models” on page 17
“Troubleshooting” on page 905

“obcheck” on page 694
Consistency checker errors (Problem Determination Guide)

Requirements for Java development

To develop Java business objects, you need the Java 2 SDK, Standard Edition,
Version 1.2.

Set up for NT
The configuration to support Java business objects includes updating the
PATH environment variable.
1. Logon to Windows NT as a user with administrator privileges.
2. To use the Java 2 SDK, you must update the PATH for your Component

Broker user ID. For example, if the Java 2 SDK is installed in the
c:\jdk1.2.2 directory, update the environment variable PATH:
PATH=c:\jdk1.2.2\bin;c:\jdk1.2.2\jre\bin;c:\jdk1.2.2\jre\bin\classic

3. Stop the CB Server service.
4. Restart the CB Server service.
5. Reactivate the configuration using the System Manager User Interface.

Set up for AIX
If the path does not already exist, you may need to add a path to libjava.a.

For more details on setting up the Java 2 SDK, see the chapter ’Installing and
configuring the Java 2 SDK’ in the Planning, Performance and Installation Guides
for the relevant platform.

Programming languages and conventions (Programming Guide)
Installing and configuring the Java 2 SDK ( Planning, Performance and
Installation Guides for Windows NT)
Installing and configuring the Java 2 SDK ( Planning, Performance and
Installation Guides for AIX)
Installing and configuring the Java 2 SDK ( Planning, Performance and
Installation Guides for Solaris)

32 WebSphere: Application Development Tools Guide



Migrating projects from 3.0

You can migrate projects individually as needed, simply by opening the old
project with the 3.5 version of Object Builder. This is sufficient for stand-alone
projects, but can be time-consuming for team environments. To migrate an
entire team environment at once, use the command-line utility “obmigrate” on
page 659. The obmigrate utility can be used to import stand-alone projects, or
entire sets of interdependent projects in a single step.

Once you have migrated a project (either by opening it and saving it in the
3.5 version of Object Builder, or using the obmigrate utility), it can no longer
be worked with in Object Builder 3.0.

There is no direct way to migrate from releases earlier than 3.0 to 3.5. You can
only migrate through immediately subsequent versions, until you reach 3.5
(for example: from 1.2 to 1.3 to 2.0 to 3.0 to 3.5).

For information on migrating existing NT or AIX projects to OS/390 targets,
consult the OS/390 Component Broker Planning and Installation Guide.

The following tasks cover migration of 3.0 projects to the 3.5 format:
1. “Migrating old projects”
2. “Migrating from the command line” on page 35
3. “Migrating a team environment” on page 36

“Projects and models” on page 17

“Setting up Object Builder” on page 24
“Setting Object Builder preferences” on page 27
“Opening a project” on page 26

“obmigrate” on page 659

Migrating old projects

You can migrate projects individually as needed, simply by opening the old
project with the 3.5 version of Object Builder. This is sufficient for stand-alone
projects, but can be time-consuming for team environments. To migrate an
entire team environment at once, use the utility “obmigrate” on page 659.

For information on migrating existing Windows NT or AIX projects to OS/390
targets, consult the OS/390 Component Broker Planning and Installation Guide.

Chapter 1. Object Builder overview 33



To migrate a single project from 3.0 to 3.5, follow these steps:
1. Start Object Builder.
2. Specify the location of your old project (for example,

Cbroker\my3.0Project) on the Specify Project Directory page of the Open
Project wizard.

3. Click Finish.
4. Save the project. The Model Conversion dialog opens.

You have several options in how you convert the model:
v By default, the model is saved in the 3.5 format, replacing the old

version.
v If you select the Compress 3.5 version option, Object Builder will save

the model in compressed form. This may take some time, but can result
in considerable space savings.

v If you select the Retain 3.0 version option, Object Builder will create a
backup version of the old model, in the directory \Model30, before
saving the model in the new format.

5. Click Save.
The saved project is now updated to the 3.5 version. The XML files that
are associated with the project are also migrated.

If you open a 3.0 project as a project dependency from a 3.5 project (by
selecting it on the Project Dependencies page of the Open Project wizard),
then it remains at the 3.0 level, until you open and save it directly. Use the
obmigrate utility to migrate a project and all its dependencies in a single step.

IR file name migration
During migration, if Object Builder detects a managed object IR file name
whose length is less than or equal to eight characters, it migrates this file
name as the business object interface’s IR file name property. It can be viewed
in the business object’s File Properties wizard.

Metadata migration
When you migrate an Object Builder version 3.0 model to the current version
(3.5), the following metadata is migrated by default:
v the data object implementation’s discriminator predicate with a style of

None
v the configured managed object’s disambiguated supertype, the default

being either none, or the first one in the list
(The default is none if there are no parents in the list. The default is the
first one in the list if there are two or more parents, and for new configured
managed objects, or for those whose previous choice is no longer valid due
to the deletion of the chosen configured managed object from the
application family.)

34 WebSphere: Application Development Tools Guide



v Models from older versions of Object Builder that have distributed queries
will use the path expression form of the query in the list() method, and will
have the default factory names and factory finder names.

“Projects and models” on page 17

“Setting Object Builder preferences” on page 27
“Opening a project” on page 26
“Migrating from the command line”
“Migrating a team environment” on page 36

“obmigrate” on page 659

Migrating from the command line

You can migrate your 3.0 projects to the 3.5 version using the command-line
utility “obmigrate” on page 659. The command will either migrate the
specified projects alone, or their project dependencies as well (only if it is
used with the with the -all option).

Generally, if you have project dependencies, you should migrate all the
projects at once (using the -all option), to save time. However, if your project
has no dependencies, or you want to migrate the projects it depends on
selectively, you can omit the -all option.

To migrate only specified projects (without migrating all the projects they
depend on), use the obmigrate command:
1. On the command line, type: obmigrate project1 project2 ...projectn

If the tool encounters a project dependency in the course of the migration,
you are asked how it should be handled. You have the following options:
v Y

Migrate the project being depended on. Prompt again if further
dependencies are encountered.

v A
Migrate the project being depended on, and migrate any further
dependencies without prompting.

v n
Do not migrate the project being depended on. Prompt again if further
dependencies are encountered.

v N
Do not migrate the project being depended on, and do not migrate any
further dependencies. Do not prompt again.

Chapter 1. Object Builder overview 35



2. Once the migration is complete, check the migration log (obmigrate.log), in
the directory you invoked obmigrate from.
The log consists of the following information:
v The date and time
v A list of read-only projects that could not be migrated
v A list of dependent projects that were not migrated.
v A list of dependent projects that could not be found
v A list of projects that could not be found (generally because they were

in a directory not listed by ObModelpath).

Generally, if you want to migrate all project dependencies without prompting
(option A), you should call the obmigrate command with the -all option. For
more information on using the -all option, see the task “Migrating a team
environment”.

Once migration is complete, the model for each project has been migrated to
the 3.5 version, in compressed format. The XML files that are associated with
each project are also migrated. The old model is preserved in a backup
directory (project\Model30).

If you migrate old projects by opening and saving them in Object Builder,
instead of from the command line, you have the option of saving in
uncompressed format, and the option not to create a backup model.

“Projects and models” on page 17

“Migrating old projects” on page 33
“Migrating a team environment”

“obmigrate” on page 659

Migrating a team environment

You can migrate an entire team environment from 3.0 to 3.5 in a single step
using the command-line utility “obmigrate” on page 659 with the -all option.
The command will migrate specified projects, as well as all projects that are
dependencies, in a single step.

To migrate all the projects in a team environment, follow these steps:

36 WebSphere: Application Development Tools Guide



1. Identify or create a project that lists all other projects as dependencies.
Typically your environment will include an integration project (for
building and packaging) that meets this requirement.

2. Make sure all projects are checked out (in read-write mode, and locked to
prevent others from making simultaneous changes).

3. Make sure your search path for project dependencies is set correctly (either
in the OBMODELPATH environment variable, or in the currently selected
Project Search Path in Object Builder’s Open Project wizard). The search
path should include all the directories that contain projects in your
environment.

4. On the command line, type:
obmigrate -all myIntegrationProject

For example:
obmigrate -all e:\projects\Integration

migrates the integration project, and migrates project dependencies
recursively. For example, \Integration depends directly on \A, which
depends in turn on \B, which depends in turn on \C. Even though
\Integration only depends directly on \A, it depends indirectly on \B and
\C as well, so those projects are also migrated.
If your team environment includes projects that are not listed in your
integration project (directly or indirectly), you can include these projects
on the command line as well.
For example:
obmigrate -all e:\projects\Integration e:\projects\Standalone

migrates the integration project with its dependencies, and the standalone
project with its dependencies.

5. Once the migration is complete, check the migration log (obmigrate.log), in
the directory you invoked obmigrate from.
The log consists of the following information:
v The date and time
v A list of read-only projects that could not be migrated
v A list of dependent projects that were not migrated (generally because

you did not specify -all).
v A list of dependent projects that could not be found (generally because

they were not checked out)
v A list of projects that could not be found (generally because they were

in a directory not listed by OBMODELPATH).
6. Check the projects back in to your change control system.

Chapter 1. Object Builder overview 37



The model for each project has been migrated to the 3.5 version, in
compressed format. The XML files that are associated with the projects are
also migrated. The old model is preserved in a backup directory
(project\Model30).

If you migrate old projects by opening and saving them in Object Builder,
instead of from the command line, you have the option of saving in
uncompressed format, and the option not to create a backup model.

“Projects and models” on page 17
“Change control” on page 463

“Migrating projects from 3.0” on page 33
“Setting up a team environment” on page 457
“Maintaining a team environment ” on page 490
“Opening a project” on page 26

“obmigrate” on page 659

38 WebSphere: Application Development Tools Guide



Chapter 2. Tutorials for Object Builder

The following tutorials cover some development scenarios in Object Builder.
These act as extended examples and introductions to Object Builder’s
functionalities.

You can select from the following Object Builder tutorials:
v “Tutorial: Creating a component with transient data”
v “Tutorial: Creating a component for new DB data” on page 50
v “Additional tutorials” on page 62

“Object Builder” on page 1

“Developing in Object Builder” on page 19

Tutorial: Creating a component with transient data

Objectives
To create a simple component with transient data, locatable by primary key.
To generate the code for the component.
To build the DLLs for the component.
To define the application configuration information for the component.

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database®

v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

© Copyright IBM Corp. 1999, 2000 39



You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

Sample files
There are equivalent samples for this exercise. The samples include:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on running a Java

client for the sample

The samples are in the following directories
(under <CBroker>, the install directory):

For C++:

samples\Tutorial\Fundamentals\transient\BusinessObjects
samples\Tutorial\Fundamentals\transient\Rose\TransientObjectRose.zip
samples\Tutorial\Fundamentals\transient\Docs\Transient.html

For Java:

samples\Tutorial\Fundamentals\jtransient\BusinessObjects
samples\Tutorial\Fundamentals\jtransient\Rose\JTransientRose.zip
samples\Tutorial\Fundamentals\jtransient\Docs\JTransient.html

Samples are shipped with the CB Toolkit; not Component
Broker. On Solaris and HP-UX, Component Broker and the Toolkit are
installed in different directories.

Description
This exercise describes how to create a simple component in Object Builder,
without persistent data. The component has a key and copy helper, that allow
client programs to locate and create instances of the component on the server.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

For this exercise, you will complete the following tasks:
1. Creating the project
2. Creating a business object interface

40 WebSphere: Application Development Tools Guide



3. Adding a key and copy helper
4. Adding a business object implementation
5. Adding a data object implementation
6. Adding a managed object
7. Generating the code
8. Defining a client DLL and server DLL
9. Defining an application family and application

10. Configuring the component with the application

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\transient
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Creating the business object interface
Define a business object file (sample6):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (sample6):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (csAgent). The business object interface defines the interface
for the whole component. It will be contained in the sample6 module.
1. From the pop-up menu of the module, click Add Interface to open the

Business Object Interface wizard.
2. Name the interface csAgent.
3. Click the page title and turn to the Attributes page.
4. Add the following attributes:
v readonly float commissions
v float commPercent
v float pendingPaycheck
v string agentName
v readonly long id

Chapter 2. Tutorials for Object Builder 41



5. Set the size of agentName to 100. You should always provide a size for
string attributes.

6. Click Next and turn to the Methods page.
7. Add the following method:
v void payCommission (in float amount)

8. Click Finish.

The csAgent interface now appears under the sample6 module. The attributes
and methods appear in the Methods pane, when the interface is selected.

The attributes are represented as paired get and set methods, except for the id
attribute, which was defined as read-only, and therefore only has a get
method.

The interface does not have any business logic associated with it. The
implementation of the interface is defined separately, in the business object
implementation.

Adding a key and copy helper
Add a key (csAgentKey). The key allows client applications to locate or create
instances of the component on the server. It consists of an attribute or
attributes of the business object interface that uniquely identify an instance of
the component. In this case, the csAgent id attribute is the appropriate
choice.
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Accept the default name; select the id attribute and add it to the Key

Attributes list.
3. Click Finish.

Even though the id attribute of the business object interface is read-only,
the id attribute of the key is both readable and writable. The client
application can set the value of the id on the key, and use it either to
initialize a new instance of the component, or to locate an existing instance
of the component, on the server.

Add a copy helper (csAgentCopy). The copy helper allows client applications
to create and initialize instances of the component on the server, using one
call to set numerous attributes, rather than one call per attribute.
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Accept the default name; select all listed attributes and add them to the

Copy Helper Attributes list.
3. Click Finish.

csAgentCopy appears under csAgent.

42 WebSphere: Application Development Tools Guide



Adding a business object implementation and data object interface
Add a business object implementation (csAgentBO) and data object interface
(csAgentDO). The business object implementation contains the actual business
logic of the component, including the method implementations. Any state
data attributes (those attributes that cannot be deduced or derived from other
attributes) become part of the data object interface. The separation of business
logic (in the business object) from state data (in the data object) allows issues
such as data persistence and integrity to be partitioned from the rest of the
business logic.
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Change the Pattern for Handling State Data to Delegating. This is easier

to debug than the Caching pattern.
3. Click the page title and turn to the Implementation Language page.
4. Select the language you want the business object to be implemented in

(C++or Java).
5. Click the page title and turn to the Key and Copy Helper page. The

appropriate key and copy helper are already selected.
6. Click the page title and turn to the Data Object Interface page.
7. Select all attributes and add them to the State Data list (to be preserved in

the data object).
8. Click Finish.

csAgentBO appears under csAgent, and csAgentDO appears under
csAgentBO.

Adding a method implementation
Type in the implementation for the method payCommission. The appropriate
implementation logic for the data get and set methods, and for framework
methods required by the programming model, are calculated for you by
Object Builder. You only need to provide implementations for methods you
explicitly defined.
1. Click on the business object implementation. The Methods pane shows the

user-defined method payCommission, and the various user-defined
attributes (in the form of paired get and set methods).

2. Click on long id() .The id attribute only has a get method, because it is
read-only, as defined in the business object interface. The provided
implementation appears in the Source pane.

3. Review the provided implementation for long id(). The get method for
the id attribute delegates directly to its equivalent attribute in the data
object, as defined by the Delegating pattern chosen in the business object
implementation.

Chapter 2. Tutorials for Object Builder 43



4. In the Methods pane, click on the payCommission method: void
payCommission (in float amount). The signature for the method appears
in the source pane, based on the definition you provided in the business
object interface and the language you selected in the business object
implementation. The method does not have an implementation yet. You
must provide the implementation for user-defined methods.

5. In the Source pane, provide the following implementation for
payCommission:

C++
float tmp;
tmp = amount * iDataObject->commPercent();
iDataObject->commissions(tmp);
iDataObject->pendingPaycheck(iDataObject->pendingPaycheck() + tmp);

Java
float tmp;
tmp = amount * iDataObject.commPercent();
iDataObject.commissions(tmp);
iDataObject.pendingPaycheck(iDataObject.pendingPaycheck() + tmp);

You can continue to the next step. When you click on other objects, the
implementation will disappear from the Source pane, but the code you typed
is now part of the project model, and will be generated as part of the source
code for the component (in the file sample6BO_I.cpp for a C++ business object,
or _csAgentBOBase.java for a Java business object).

Adding a data object implementation
Add a data object implementation (csAgentDOImpl). The data object
implementation defines the way in which you want to handle the
component’s state data.
1. From csAgentDO’s pop-up menu, click Add Implementation to open the

Data Object Implementation wizard.
2. Accept the default name and platform settings, and click Next to turn to

the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

The component will be locatable by its key (instead of being locatable
by a UUID).

v Type of Persistence - Transient
The component’s data will not have persistence beyond the lifespan of
the component instance. As a result, the component does not require a
persistent object (which would manage the mapping of the data to a
persistent datastore, such as a database).

44 WebSphere: Application Development Tools Guide



v Data Access Pattern - Local copy
This is the only option available for a transient data object. There is no
persistent datastore to delegate to.

4. Click the page title and turn to the Key and Copy Helper page.
csAgentKey and csAgentCopy should already be selected.

5. Click Finish.

csAgentDOImpl appears under csAgentDO.

Adding a managed object
Add a managed object (csAgentMO). The managed object mediates the
interaction between the client application and the component, or between
other components and this component. It exposes the business object interface
to the client application and other components, and accesses any relevant
services before and after a call.
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\transient\working\NT)
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.
While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

Define the client DLL configuration and client DLL or library file (for this
exercise, name them both sample6c). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.

Chapter 2. Tutorials for Object Builder 45



1. From the pop-up menu of the Build Configuration folder, click Add Client
DLL to open the Client DLL wizard to the Name and Options page.

2. Name the configuration. This is the name that uniquely identifies the
configuration node.

3. Name the library as well. This is the name for the makefile and for the
resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The sample6c DLL configuration appears under the Build Configuration
folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both sample6s). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The sample6s DLL configuration appears under the Build Configuration
folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the

46 WebSphere: Application Development Tools Guide



makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The sample6C.dll and sample6S.dll files are stored in the
working\NT\PRODUCTION directory.

The libsample6C.so and libsample6S.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the sample6C.jar and sample6S.jar are
stored in the working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBsample6C.jar). <build style> is one
of the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Chapter 2. Tutorials for Object Builder 47



Defining an application family and application
Define the application family (Sample6). An application family groups a set of
applications so they can be installed as a unit.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

The Sample6 application family appears under the Application Configuration
folder.

Define the server application (Sample6Objects). An application defines a set of
components that will operate together on the server. The application name
you provide here is the name that will be used by System Management, when
the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Finish.

The Sample6Objects application appears under the Sample6 application
family.

Configuring the component with the application
Configure the component’s managed object (sample6MO
sample6MO::csAgentMO) with the application (Sample6Objects), including the
home (BOIMHomeOfRegHomes) that will be used to find and create it, and
the container (TransientObjects) that will provide it with access to services.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.

48 WebSphere: Application Development Tools Guide



7. Name the container, and set its behavior for methods called outside a
transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The csAgentMO managed object configuration appears under the
Sample6Objects application.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into Working\platform\PRODUCTION\Sample6.

Testing the application
You can test the application using QuickTest, with the help of some additional
Java client files and a QuickTest script that ship with the samples. For
instructions on setting up and running QuickTest with your application, see
the samples documentation (under <CBroker>, the install directory):

For C++:

samples\Tutorial\Fundamentals\transient\Docs\Transient.html

For Java:

samples\Tutorial\Fundamentals\jtransient\Docs\JTransient.html

Summary
You have created a component with transient data, that can be deployed on a
server and accessed by a client or by other components on the server.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Install and Configure a New Application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Chapter 2. Tutorials for Object Builder 49



Tutorial: Creating a component for new DB data

Objectives
To create a simple component with persistent data, locatable by primary key.
To generate a DB schema for the component’s state data.
To generate the code for the component.
To build the DLLs for the component.
To define the application configuration information for the component.

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools (VisualAge Component Development Toolkit), including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

Note: If you are not compiling on the same machine as you are building, the
requirements are different. For example, if you are using Solaris and HP-UX
machines to compile and test, you need either a Windows NT, or an AIX
machine to build the model. On this machine that you use to build the model,
you only require Object Builder installed. On the Solaris and HP-UX
machines, you need the Component broker run time, the VisualAge
Component Development Toolkit, DB2, and the compiler.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

Sample files
There are equivalent samples for this exercise. The samples include:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface

50 WebSphere: Application Development Tools Guide



v Documentation for the sample, including instructions on testing it with
QuickTest

The samples are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\lifeSamples\BusinessObjects
samples\Tutorial\Fundamentals\lifeSamples\Rose\TransientObjectRose.zip
samples\Tutorial\Fundamentals\lifeSamples\Docs\sample1.html

For Java:

samples\Tutorial\Fundamentals\jsimple\BusinessObjects
samples\Tutorial\Fundamentals\jsimple\Rose\JSimpleRose.zip
samples\Tutorial\Fundamentals\jsimple\Docs\jsimple.html

Description
In this exercise you define a simple component with database persistence,
starting from the component’s business object interface and working down to
the component’s DB schema.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or use the Help menu in Object Builder.

For this exercise, you will complete the following tasks:
1. Creating the project
2. Creating a business object interface
3. Adding a key and copy helper
4. Adding a business object implementation
5. Adding a data object implementation
6. Adding a persistent object and schema
7. Adding a managed object
8. Generating the code
9. Configuring the database

10. Defining a client DLL and server DLL
11. Defining an application family and application
12. Configuring the component with the application

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\newdb
1. Start Object Builder.

Chapter 2. Tutorials for Object Builder 51



2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Creating the business object interface
Define a business object file (sample1):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (sample1):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (csAgent). The business object interface defines the interface
for the whole component. It will be contained in the sample1 module.
1. From the pop-up menu of the module, click Add Interface to open the

Business Object Interface wizard.
2. Name the interface csAgent.
3. Click the page title and turn to the Attributes page.
4. Add the following attributes:
v readonly float commissions
v float commPercent
v float pendingPaycheck
v string agentName
v readonly long id

5. Set the size of agentName to 100. You should always provide a size for
string attributes.

6. Click Next and turn to the Methods page.
7. Add the following method:
v void payCommission (in float amount)

8. Click Finish.

The csAgent interface now appears under the sample1 module. The attributes
and methods appear in the Methods pane, when the interface is selected.

The attributes are represented as paired get and set methods, except for the
read-only attributes, which have only get methods.

52 WebSphere: Application Development Tools Guide



The interface does not have any business logic associated with it. The
implementation of the interface is defined separately, in the business object
implementation.

Adding the key and copy helper
Add a key (csAgentKey). The key allows client applications to locate or create
instances of the component on the server. It consists of an attribute or
attributes of the business object interface that uniquely identify an instance of
the component. In this case, the csAgent id attribute is the appropriate
choice.
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Accept the default name; select the id attribute and add it to the Key

Attributes list.
3. Click Finish.

Even though the id attribute of the business object interface is read-only,
the id attribute of the key is both readable and writable. The client
application can set the value of the id on the key, and use it either to
initialize a new instance of the component, or to locate an existing instance
of the component, on the server.

Add a copy helper (csAgentCopy). The copy helper allows client applications
to create and initialize instances of the component on the server, using one
call to set numerous attributes, rather than one call per attribute.
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Accept the default name; select all listed attributes and add them to the

Copy Helper Attributes list.
3. Click Finish.

Adding a business object implementation and data object interface
Add a business object implementation (csAgentBO) and data object interface
(csAgentDO). The business object implementation contains the actual business
logic of the component, including the method implementations. The
separation of interface from implementation allows you to create multiple
implementations of the same interface, to test different development options
without affecting the interface. For this exercise, you will create only one
implementation for the business object.

Any state data attributes (those attributes that cannot be deduced or derived
from other attributes) become part of the data object interface. The separation
of business logic (in the business object) from state data (in the data object)
allows issues such as data persistence and integrity to be partitioned from the
rest of the business logic.
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.

Chapter 2. Tutorials for Object Builder 53



2. Change the Pattern for Handling State Data to Delegating. This is easier
to debug than the Caching pattern.

3. Click the page title and turn to the Implementation Language page.
4. Select the language you want the business object to be implemented in

(C++or Java).
5. Click the page title and turn to the Key and Copy Helper page. The

appropriate key and copy helper are already selected.
6. Click the page title and turn to the Data Object Interface page.
7. Select all attributes and add them to the State Data list (to be preserved in

the data object).
8. Click Finish.

csAgentBO appears under csAgent, and csAgentDO appears under
csAgentBO.

Adding a method implementation
Type in the implementation for the method payCommission. The appropriate
implementation logic for the data get and set methods, and for framework
methods required by the programming model, are calculated for you by
Object Builder. You only need to provide implementations for methods you
explicitly defined.
1. Click on the business object implementation. The Methods pane shows the

user-defined method payCommission, and the various user-defined
attributes (in the form of paired get and set methods).

2. Click on long id() .The id attribute only has a get method, because it is
read-only, as defined in the business object interface. The provided
implementation appears in the Source pane.

3. Review the provided implementation for long id(). The get method for
the id attribute delegates directly to its equivalent attribute in the data
object, as defined by the Delegating pattern chosen in the business object
implementation.

4. In the Methods pane, click on the payCommission method: void
payCommission (in float amount). The signature for the method appears
in the source pane, based on the definition you provided in the business
object interface and the language you selected in the business object
implementation. The method does not have an implementation yet. You
must provide the implementation for user-defined methods.

5. In the Source pane, provide the following implementation for
payCommission:

C++
float tmp;
tmp = amount * iDataObject->commPercent();
iDataObject->commissions(tmp);
iDataObject->pendingPaycheck(iDataObject->pendingPaycheck() + tmp);

54 WebSphere: Application Development Tools Guide



Java
float tmp;
tmp = amount * iDataObject.commPercent();
iDataObject.commissions(tmp);
iDataObject.pendingPaycheck(iDataObject.pendingPaycheck() + tmp);

You can continue to the next step. When you click on other objects, the
implementation will disappear from the Source pane, but the code you typed
is now part of the project model, and will be generated as part of the source
code for the component (in the file sample1BO_I.cpp for a C++ business object,
or _csAgentBOBase.java for a Java business object).

Adding a data object implementation
Add a data object implementation (csAgentDOImpl). The data object
implementation defines the way in which you want to handle the
component’s state data. As with the business object implementation, the
separation of interface and implementation allow you to create multiple
implementations of the same data object, without affecting the interface. For
this exercise, you will create only one implementation for the data object.
1. From csAgentDO’s pop-up menu, click Add Implementation to open the

Data Object Implementation wizard to the Name and Platform page.
2. Accept the default name and platform settings, and click Next to turn to

the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

The component will be locatable by its key (instead of being locatable
by a UUID).

v Type of Persistence - Embedded SQL
The component’s data will be stored in a database, and accessed by the
data object’s persistent object directly (instead of using a cache of the
database’s data managed by the Cache Service).

v Data Access Pattern - Delegating
The data object will pass on calls for data directly to its persistent object,
which provides a mapping to the database table (instead of using a local
copy of the data, and keeping it synchronized with the database).

4. Click the page title and turn to the Key and Copy Helper page.
csAgentKey and csAgentCopy should already be selected.

5. Click Finish.

csAgentDOImpl appears under csAgentDO.

Because you selected a form of persistence other than transient (Embedded
SQL), you will need to define a persistent object, which will handle the
persistence and retrieval of component data.

Chapter 2. Tutorials for Object Builder 55



Adding a persistent object and schema
Add a persistent object (csAgenPO), schema (CBSAMPDB.csAgent), and
schema group (CBSAMPDBGroup). The persistent object provides a mapping
from data object attributes (C++ data types) to table columns (SQL data
types); the schema defines the table being mapped to; and the group
represents the .sql file that contains the schema (and potentially multiple
schemas).
1. From the data object implementation’s pop-up menu, click Add Persistent

Object and Schema to open the Add Persistent Object and Schema wizard
to the Names page.

2. Name the schema group (CBSAMPDBGroup) and database (for example
CBSAMPDB). Accept the default for the other names.

3. Click Next and review the attribute mappings.
4. Click Finish.

The persistent object and schema appear under the data object
implementation.

In the DBA-Defined Schemas folder, they appear under the schema group you
named.

Adding a managed object
Add a managed object (csAgentMO). The managed object mediates the
interaction between the client application and the component, or between
other components and this component. It exposes the business object interface
to the client application and other components, and accesses any relevant
services before and after a call. You add the managed object to the
component’s business object implementation.
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\transient\working\NT).
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.

56 WebSphere: Application Development Tools Guide



While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Configuring the database
You need to define (in DB2) the CBSAMPDB database and csAgent table that
your component will access. You should have a database administrator
perform this procedure.

To configure the database and table, use the following commands:

In a DB2 command window (DB2 CLP), type:

At a command prompt, type:

db2 create database CBSAMPDB
db2 connect to CBSAMPDB
db2 -t -f csAgent.sql

Note: The syntax for the creation of the table is provided by Object Builder in
the generated SQL file for the CBSAMPDB.csAgent schema (csAgent.sql).

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

While ’DLL’ is the generic term used in Object Builder, the configuration for
the build actually results in whatever the appropriate targets are for the
selected platforms. For example, on AIX the build process creates shared
library files (lib*.so). If you chose to create a Java business object, then in
addition to DLLs there will also be JAR files. The names for these files are
derived from the name you provide for the DLL file, within the DLL
configuration node.

Start by defining the client DLL configuration and client DLL or library file
(for this exercise, name them both sample1c). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.

Chapter 2. Tutorials for Object Builder 57



3. Name the library as well. This is the name for the makefile and for the
resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The sample1c DLL configuration appears under the Build Configuration
folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both sample1s). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The sample1s DLL configuration appears under the Build Configuration
folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:

58 WebSphere: Application Development Tools Guide



1. From the Build Configuration folder’s pop-up menu, select Build >
Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The sample1C.dll and sample1S.dll files are stored in the
working\NT\PRODUCTION directory.

The libsample1C.so and libsample1S.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the sample1C.jar and sample1S.jar are
stored in the working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBsample1C.jar). <build style> is one
of the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (Sample1). An application family groups a set of
applications within System Management.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.

Chapter 2. Tutorials for Object Builder 59



3. Click Finish.

The Sample1 application family appears under the Application Configuration
folder.

Define the server application (Sample1Objects). An application defines a set of
components that will operate together on the server. The application name
you provide here is the name that will be used by System Management, when
the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Nextto turn to the Additional Executables page.
4. Select the platform you are configuring the application for (for example,

NT Files).
5. Add the file csAgent.sql:

a. Click Add Another.
b. Click the Browse button to open the Executables to Include dialog.
c. Locate your Object Builder working directory.
d. Select csAgent.sql

e. Click the Open button.

f. Click the OK button.
6. Add the file csAgentPO.bnd, in the same manner.
7. Click Finish.

The Sample1Objects application appears under the Sample1 application
family.

Configuring the component with the application
Configure the component’s managed object (sample1MO
sample1MO::csAgentMO) with the application (Sample1Objects). Create a new
container instance (Sample1Container) that will Throw an exception when a
method is called outside a transaction.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,

60 WebSphere: Application Development Tools Guide



or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The csAgentMO managed object configuration appears under the
Sample1Objects application, and the new container Sample1Container appears
in the Container Definition folder. You can review the properties of the
container, including the service and data access patterns that have been
selected for you, by clicking Properties from the container’s pop-up menu.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into Working\platform\PRODUCTION\Sample1.

Close Object Builder:
1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component with data stored in a database. The component
can be deployed on a server and accessed by a client or by other components
on the server.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Install and Configure a New Application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Chapter 2. Tutorials for Object Builder 61



Additional tutorials

The following tutorials provide introductions to specific aspects of Object
Builder functionality that go beyond basic tasks. Before doing a tutorial, you
should read any associated introductory and conceptual information, as
described in the tutorial’s pre-requisites.
v “Tutorial: Creating local-only objects” on page 220
v “Tutorial: Inheritance with attributes duplication” on page 310
v “Tutorial: Inheritance with key duplication” on page 327
v “Tutorial: Inheritance with a single datastore” on page 344
v “Tutorial: Inheritance with views” on page 362
v “Tutorial: Launching a remote OS/390 build” on page 573
v “Tutorial: Exporting from Rose” on page 81
v “Tutorial: Importing into Rose” on page 94
v “Tutorial: Team development with Rose” on page 449
v “Running the QuickTest tutorial” on page 647
v “Tutorial: Unit test for procedural adaptors” on page 166
v “Tutorial: Creating a component for PA data (bottom-up)” on page 167
v “Tutorial: Creating an inbound message application” on page 188
v “Tutorial: Creating an outbound message application” on page 203
v “Tutorial: Composite component creation” on page 267
v “Tutorial: Developing a multi-platform application” on page 429

“Object Builder” on page 1

“Chapter 2. Tutorials for Object Builder” on page 39
“Developing in Object Builder” on page 19

62 WebSphere: Application Development Tools Guide



Chapter 3. Using Rational Rose with Object Builder

You can design your application in Rose, and then export the design to Object
Builder. You can also import an Object Builder project back into Rose. You
need to modify Rose to support the import and export process, which uses
the Rose Bridge.

If you export an incomplete design to Object Builder and make changes to it
in its Object Builder form, make sure you import the Object Builder project
back into Rose before doing any more work with the Rose model. If you do
not import the changed project and continue work with the new model, your
changes will be lost the next time you export.

You can export and import the following design elements, using the Rose
Bridge:
v Packaging information (mapped to projects and modules)
v Classes (mapped either to component objects or to IDL constructs)
v One-to-one relationships (mapped to object references)
v One-to-many relationships (mapped either to an object relationship stored

in a collection, or to a sequence attribute).
v Class inheritance (mapped to component inheritance)

By default, classes in your design are mapped to components in Object
Builder.

The main design tasks are as follows:
1. “Importing Component Broker frameworks” on page 68
2. “Exporting a design from Rose” on page 80
3. “Tutorial: Exporting from Rose” on page 81
4. “Working with an exported design” on page 88
5. “Importing a project into Rose” on page 92
6. “Tutorial: Importing into Rose” on page 94
7. “Exporting a Rose design to a team environment” on page 445
8. “Importing a Rose design from a team environment” on page 447
9. “Tutorial: Team development with Rose” on page 449

“The Rose Bridge” on page 69
Components (Programming Guide)
Application Architecture (Programming Guide)

© Copyright IBM Corp. 1999, 2000 63



“Developing in Object Builder” on page 19
“Setting up Rose 98” on page 65
“Setting up Rose 98i and Rose 2000” on page 66

“Rose to Object Builder mapping rules” on page 97
“Object Builder to Rose mapping rules” on page 123
“Rose properties and bridging guidelines” on page 70

Rose

Rational Rose is an object-oriented analysis and design modeling tool. You can
use it to design your application, and then export the design to Object Builder,
where you can finish its implementation. You can also import Object Builder
projects into Rose, to work with an existing design.

Note: In order to export to and import from Object Builder, you must use the
full version of Rose 98 (or later): Enterprise edition, Professional C++ edition,
or Professional Java edition, not just the Rose Modeller. Only the full version
supports code generation properties, which are required by the export process.

To use Rose with Object Builder, you must first customize it, and then load
the Component Broker frameworks. You can then use the Component Broker
frameworks in your design.

When you export, the classes and relationships you defined in Rose are
mapped to IDL equivalents in Object Builder. You can also define additional
properties in Rose, to have the Rose Bridge create additional Component
Broker objects for your design during the export process.

When you import, the elements of the Object Builder project are mapped to
their equivalents in Rose.

“The Rose Bridge” on page 69
“Rose to Object Builder mapping rules” on page 97
“Object Builder to Rose mapping rules” on page 123

“Setting up Rose 98” on page 65
“Setting up Rose 98i and Rose 2000” on page 66
“Chapter 3. Using Rational Rose with Object Builder” on page 63

64 WebSphere: Application Development Tools Guide



Setting up Rose 98

You can use Rose to create a design for your application, which you can then
export to Object Builder. You can also import Object Builder projects into
Rose, to work with an existing design.

Note: In order to export to and import from Object Builder, you must use the
full version of Rose Enterprise edition, Professional C++ edition, or
Professional Java edition, not just the Rose Modeler. Only the full version
supports code generation properties, which are required by the export process.

Before you can use Rose with Object Builder, you must configure its import
and export facility, the Rose Bridge. Once the Rose Bridge is configured, you
can load Component Broker frameworks into Rose, create your design, and
export to and import from Object Builder.

To configure the Rose Bridge for Rose 98, follow these steps:
1. Add the export and import options to the Rose File menu, as follows:

a. Create a backup copy of the file rose.mnu (for example, rose.bak).
b. Add the following lines to the rose.mnu file:

Menu File
{

Separator
option “Export to Object Builder”
{

RoseScript $BOSS_PATH\r982c.ebx
}
option “Import from Object Builder”
{

RoseScript $BOSS_PATH\c2r98.ebx
}

}

2. Create the Rose path map BOSS_PATH, which will point to the directory
path that contains the Component Broker model files. This allows you to
import the model files, and specifies the location of the export script
(r982c.ebx) and import script (c2r98.ebx). .
a. Click File > Edit Path Map.
b. Set the BOSS_PATH variable. For example, if you installed the product

into <path>\Cbroker, set BOSS_PATH to <path>\Cbroker\rose, which
is the directory that contains the *.cat files for the Component Broker
model.

Some additional Component Broker-specific properties have been added to
Rose to enable more information exchange between Rose and Object Builder.
To enable the use of these additional properties, you must replace the
roseidl.pty and roseddl.pty files that come with Rose 98 with the Component
Broker versions. To replace these files, follow these steps:

Chapter 3. Using Rational Rose with Object Builder 65



1. Change to the directory where Rose 98 is installed
2. Create a backup copy of the file roseidl.pty (for example, roseidl.bak)
3. Create a backup copy of the file roseddl.pty (for example, roseddl.bak)
4. Copy the Component Broker versions of these files to the current directory

from the rose subdirectory of your Component Broker install:
copy <path>\CBroker\rose\*.pty

“Rose” on page 64
“The Rose Bridge” on page 69

“Importing Component Broker frameworks” on page 68
“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Setting up Rose 98i and Rose 2000”

Setting up Rose 98i and Rose 2000

You can use Rose to create a design for your application, which you can then
export to Object Builder. You can also import Object Builder projects into
Rose, to work with an existing design.

Note: In order to export to and import from Object Builder, you must use the
full version of Rose Enterprise edition, Professional C++ edition, or
Professional Java edition, not just the Rose Modeler. Only the full version
supports code generation properties, which are required by the export process.

Before you can use Rose with Object Builder, you must configure its import
and export facility, the Rose Bridge. Once the Rose Bridge is configured, you
can load Component Broker frameworks into Rose, create your design, and
export to and import from Object Builder.

To configure the Rose Bridge for Rose 98i or Rose 2000, follow these steps:
1. Add the export and import options to the Rose File menu:

a. Create a backup copy of the file rose.mnu (for example, rose.bak).
b. Add the following lines to the rose.mnu file:

Menu File
{
Separator
option “Export to Object Builder”

{
RoseScript $BOSS_PATH\r982c.ebx

}
option “Import from Object Builder”

66 WebSphere: Application Development Tools Guide



{
RoseScript $BOSS_PATH\c2r98.ebx

}
}

2. Create the Rose path map BOSS_PATH, which will point to the directory
path that contains the Component Broker model files. This allows you to
import the model files, and specifies the location of the export script
(r982c.ebx) and import script (c2r98.ebx).
a. Select File > Edit Path Map.
b. Set the BOSS_PATH variable. If you installed the product into the

d:\Cbroker directory, set BOSS_PATH to d:\Cbroker\rose, which is the
directory that contains the .cat files for the Component Broker model.

Some additional Component Broker-specific properties have been added to
Rose to enable more information exchange between Rose and Object Builder.
To enable the use of these additional properties, you must replace the
rosejava.pty and rosecpp.pty files that come with Rose 98i or Rose 2000 with
the Component Broker versions. To replace these files:
1. At a DOS prompt, go to the directory where Rose 98i is installed.
2. If you have a java subdirectory under the Rose 98i or Rose 2000 base

directory, change to it. Create a backup copy of the file rosejava.pty (for
example, rosejava.bak).

3. Copy the Component Broker version of this file to the current directory
from the rose subdirectory of your Component Broker install:
copy d:\CBroker\rose\rosejava.pty

4. If you have a cpp subdirectory under the Rose 98i base directory, change
to it. Create a backup copy of the file rosecpp.pty (for example,
rosecpp.bak).

5. Copy the Component Broker version of this file to the current directory
from the rose subdirectory of your Component Broker install:
copy d:\CBroker\rose\rosecpp.pty

Models that have been developed using Rose 98 will require a replacement of
their properties to correspond to the new Rose 98i or Rose 2000 property files.
For each model that has been developed using Rose 98, do the following
steps:
1. Load the model into Rose 98i.
2. Select Tools > Model Properties > Replace.
3. In the Replace Model Properties dialog, select the appropriate .pty file to

use (rosejava.pty in the java subdirectory if you are developing Java
models, rosecpp.pty in the cpp subdirectory if you are developing C++
models).

4. Click Open.

If the model that you have loaded has both C++ and Java classes:

Chapter 3. Using Rational Rose with Object Builder 67



1. Select Tools > Model Properties > Update.
2. In the Update Model Properties dialog, select the appropriate .pty file to

use (whichever .pty file was not selected in step 3 above).
3. Click Open.

Once you have updated the model with the appropriate properties, save the
model by selecting File > Save.

Once the model has been saved with the new properties you will be able to
bridge information between Rational Rose 98i or Rose 2000 and Object
Builder.

“Rose” on page 64
“The Rose Bridge” on page 69

“Importing Component Broker frameworks”
“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Setting up Rose 98” on page 65

Importing Component Broker frameworks

This task is only necessary if you plan to use advanced Component Broker
concepts in your analysis and design. The Rose Bridge maps your design
elements to components with default behavior. If you want customized
behavior (for example, you want to map a class to a specialized home), you
can import Component Broker frameworks, such as the Managed Object
Framework, into Rose. You can then use (for example, inherit from) these
frameworks in Rose.

To import Component Broker frameworks into Rose, follow these steps:
1. Start Rose.
2. Create a new model (using the File > New menu option) or load an

existing model.
3. Import the Component Broker Framework .cat files (managed.cat,

services.cat, boim.cat):
a. Click File > Units > Load. A dialog box opens, in which you can

specify the model files you want to import.
b. In the Files of type field, type *.cat.
c. Navigate to the <path>\Cbroker\rose directory.
d. Select one of the framework .cat files.
e. Click Open. The model files are loaded into Rose, and presented in the

current view as a category or package that is selected by default.

68 WebSphere: Application Development Tools Guide



f. Click elsewhere in the current view (to avoid importing the next .cat
file into the selected category).

g. Load the other .cat files, using the same procedure.
Note: Imported categories all appear in the same spot in the current
view, which means you often only see the last-imported category in the
view. You can drag and drop a category to reveal the categories
beneath.

The structure of the Component Broker Frameworks will appear in Rose in
accordance with the Rose-to-IDL name scoping relationship. For example,
in IDL, the Managed Object Framework contains several modules. In Rose,
the Managed Object Framework appears as a package with subpackages
corresponding to the modules that it contains. When you expand any of
these subpackages in Rose, the classes (corresponding to the interfaces)
that it contains are shown. For example, if you expand the IManagedClient
subpackage, the IManageable and IHome classes are displayed.

You can now use the framework concepts in your design.
4. Perform the analysis and design of your application in Rose and save the

design model.

“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Exporting a design from Rose” on page 80

The Rose Bridge

The Rose Bridge provides the ability to export from Rose to Object Builder,
and to import from Object Builder to Rose.

The Rose Bridge process uses subdirectories of the targeted Object Builder
projects to store information in, as follows:
v project\Model

Contains the target Object Builder project model.
v project\Import

Contains the udbo.*.xml files created by the export from Rose. These files
define all the elements that are importable into Object Builder, and are used
to create the project model.

Chapter 3. Using Rational Rose with Object Builder 69



v project\XMI
Contains the XML file created by an export or import from or to Rose. This
file stores all the elements that cannot be mapped between a Rose model
and an Object Builder model.

The Rose Bridge export and import behavior are described in:
v “Rose Bridge export” on page 79
v “Rose Bridge import” on page 89

For guidelines while bridging, refer to: “Rose properties and bridging
guidelines”.

“Rose” on page 64

“Importing Component Broker frameworks” on page 68
“Setting up Rose 98” on page 65
“Setting up Rose 98i and Rose 2000” on page 66
“Exporting a design from Rose” on page 80
“Exporting a Rose design to a team environment” on page 445
“Working with an exported design” on page 88
“Importing a project into Rose” on page 92
“Importing a Rose design from a team environment” on page 447

“Rose to Object Builder mapping rules” on page 97
“Object Builder to Rose mapping rules” on page 123

Rose properties and bridging guidelines

Use only Rational Rose to modify objects originally created in Rose
When you rebridge to move information from Rational Rose to Object Builder,
make sure that all items that are created in Rose are modified in Rose. For
example, if you bridge from Rose to Object Builder, change a class name in
Object Builder, and then rebridge, the new name that was added in Object
Builder will be lost. If the name change is made in Rose, however, both Rose
and Object Builder will have the new name for the class that is represented.

Ensure that the UUIDs for an artifact in Rose and Object Builder are the
same
A UUID is generated for each artifact created by the Rose Bridge for import
into Object Builder. This UUID is the key to synchronizing information
between the two tools. If, for whatever reason, the UUID maintained in the
UML XMI for an artifact, and the UUID which exists in Object Builder for that
artifact become different, the potential for problems greatly increases.

70 WebSphere: Application Development Tools Guide



Use Rose whenever possible to create artifacts that will exist in the Object
Builder model
If an artifact is created in Object Builder that can be created in Rose as well,
either the Rose model does not reflect the latest implementation in Object
Builder or a parallel artifact is created in Rose to mirror the one created in
Object Builder. Although you have created what appear to be the same artifact
in both places, they are not the same because the have different UUIDs. If the
attribute name is the same in both places and a rebridge is done, obimport
will not create a second attribute with the same name (the attribute from Rose
with the same name will not be imported). If you rename the attribute in
Rose, however, rebridging will result in two attributes in the Object Builder
model (one with the original attribute name from Object Builder, and one
with the new name from Rose).

Deleting objects in Object Builder
If, for some reason, an artifact needs to be deleted in Object Builder and that
artifact has been created in Rose, it should be modified or recreated in Rose
and rebridged to recreate it in Object Builder. Depending upon the artifact
deleted, the UML XMI file may need to be modified to remove any
invalidated references to UUIDs which no longer exist in the Object Builder
model due to the deletion.

Recovering from a bridge that results in XMI files that fail during import

Identify the error that results in the import failure by examining the file
export_messages.txt that captures the messages during bridging. The error
will report the UUID for the construct that fails to import into Object Builder.
The import errors are almost invariably because there is a UUID
synchronization problem between the contents of the UML XMI files and the
contents of the Object Builder model.

To correct this problem, follow these steps:
1. Delete the construct (attribute, method, class) that has the problem in

Object Builder
2. In Rose, recreate the structure, and rebridge. This will create the same

construct with a new UUID that is synchronized within Rose and Object
Builder.

3. It is important to ensure the class that you are rebridging has the
appropriate information set up so the desired Object Builder artifacts are
created.

Note:If you had added Object Builder-specific information (such as method
body implementations, and had created managed objects, data object
implementations, and so on), you may need to rework the Object Builder
model once the rebridge is done.

Chapter 3. Using Rational Rose with Object Builder 71



Properties that can be set in Rose, and the consequences on rebridging, of
changing these properties

Package properties

Name
Changing the name of a package, and rebridging results in the associated
Object Builder file, or module being renamed.

Construct properties

Name
Changing the name of a construct, and rebridging results in the associated
Object Builder construct being renamed.

IDLSpecificationType
The IDLSpecificationType of a construct must not be changed once it has been
bridged to Object Builder. Changing this property is the equivalent of deleting
the Object Builder construct, and adding a new one of the new type. The
existing Object Builder construct must be deleted before rebridging. Any
references to the construct by other artifacts will be removed as well. The class
that represents the construct must be deleted in Rose. References in the Rose
model to this type (for example, attribute types) will not be removed. Adding
a new class, giving it the same name as the one deleted, and setting the
IDLSpecificationType appropriately results in all references to the old type
being converted to the new type after a rebridge.

Member names
Changing a member name, and rebridging results in the name change being
propagated to the associated Object Builder member.

Member types
Changing a member type, and rebridging results in the name change being
propagated to the associated Object Builder member.

ImplementationType
Changing the ImplementationType, and rebridging results in the change being
propagated to the associated Object Builder artifact.

ConstValue
Changing the ConstValue, and rebridging results in the change being
propagated to the associated Object Builder artifact.

Class properties

IDLSpecificationType (as described under Contruct properties).

72 WebSphere: Application Development Tools Guide



ObjectType
Changing ObjectType from a user-defined business object to a local-only
object, and rebridging results in the interface and file structure (file and
module) being moved to the local-only section. However, inheritance is not
handled correctly (the interface inherits from both IManageable and
INonManageable after the rebridge). This situation can be resolved by
deleting the extra inheritance in the interface Properties notebook after
rebridging.

Name
Changing the class name, and rebridging results in the change being
propagated to the associated Object Builder interface.

Comments
Changing the Documentation field in Rose, and rebridging updates the
Comment field for the interface in Object Builder.

IsQueryable
Changing the IsQueryable property in Rose, and rebridging updates the
property for the interface in Object Builder.

CreateImplementation
Changing this property from False to True, and rebridging creates a business
object implementation for your interface in Object Builder. If an
implementation has already been created in Object Builder before the
rebridge, import errors result. If an implementation is required in Object
Builder, it must always be created by setting this property to true in the Rose
model, and rebridging.

Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when CreateImplementation
was set to True) was preserved. If the implementation is deleted in Object
Builder the entire file-module-interface structure must be deleted as well. In
Rose, the package structure and class must be deleted and re-created to avoid
UUID conflicts.

CreateKey
Changing this property from False to True, and rebridging creates a key
implementation for your interface in Object Builder. If a key has already been
created in Object Builder before the rebridge, import errors result. If a key is
required in Object Builder, it must always be created by setting this property
to true in the Rose model, and rebridging.

Chapter 3. Using Rational Rose with Object Builder 73



Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when CreateKey was set to
True) was preserved. If the key is deleted in Object Builder, the entire
file-module-interface structure must be deleted as well. In Rose, the package
structure and class must be deleted and re-created to avoid UUID conflicts.

CreateCopyHelper
Changing this property from False to True, and rebridging creates a copy
helper for your interface in Object Builder. If a copy helper has already been
created in Object Builder before the rebridge, import errors result. If a copy
helper is required in Object Builder, it must always be created by setting this
property to true in the Rose model, and rebridging.

Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when CreateCopyHelper
was set to True) was preserved. If the implementation is deleted in Object
Builder, the entire file-module-interface structure must be deleted as well. In
Rose, the package structure and class must be deleted and re-created to avoid
UUID conflicts.

Attribute Properties

Name
Changing the name of an attribute, and rebridging results in the associated
Object Builder attribute being renamed.

Type
Changing the type of an attribute, and rebridging results in the associated
Object Builder attribute type being changed.

Initializer
Changing the initial value of an attribute, and rebridging results in the
associated Object Builder attribute initializer being updated.

Export Control
This value must not be changed once bridged to Object Builder. Changing this
property implicitly results in a delete and re-add in Object Builder, which is
not currently supported by the Rose Bridge. If the Export Control value needs
to be changed, delete the attribute in Object Builder and in Rose, then re-add
the attribute in Rose with the appropriate values. Rebridging after this process
results in the proper information being reflected in the Object Builder model.

74 WebSphere: Application Development Tools Guide



Length
Changing the value of this property, and rebridging results in the update
being reflected in the Object Builder Size field for the attribute (if the attribute
type is ’string’).

PrimaryKey
Changing this property from False to True, and rebridging results in the
attribute being included in the key for your interface in Object Builder. If the
attribute has to be included in the key, it must always be added by setting
this property to True in the Rose model, and rebridging.

Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when PrimaryKey was set
to True) was preserved. If an attribute must no longer be included in the key,
the attribute must be deleted in Object Builder, then deleted and recreated in
Rose with the PrimaryKey set to False. Rebridging after this has been done
results in the Object Builder project having the appropriate information.

IsIncludedInCopyHelper
Changing this property from False to True, and rebridging results in the
attribute being included in the copy helper for your interface in Object
Builder. If the attribute must be included in the copy helper, it must always be
added by setting this property to True in the Rose model, and rebridging.

Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when IsPrimaryKey was set
to True) was preserved. If an attribute must no longer be included in the copy
helper, the attribute must be deleted in Object Builder, then deleted and
recreated in Rose with the IsIncludedInCopyHelper set to False. Rebridging
after this has been done results in the Object Builder project having the
appropriate information.

IsIncludedInDataObject
Changing this property from False to True, and rebridging results in the
attribute being included in the data object for your interface in Object Builder.
If the attribute must be included in the data object, it must always be added
by setting this property to True in the Rose model, and rebridging.

Changing this property from True to False, and rebridging does not affect the
Object Builder model because deletions are not propagated to Object Builder.
If the property is then set back to True and rebridged, the bridge will work as
it should because the UUID from the first bridge (when

Chapter 3. Using Rational Rose with Object Builder 75



IsIncludedInDataObject was set to True) was preserved. If an attribute must
no longer be included in the data object, the attribute must be deleted in
Object Builder, then deleted and recreated in Rose with the
IsIncludedInDataObject set to False. Rebridging after this has been done
results in the Object Builder project having the appropriate information.
IsReadOnly
Changing this property from False to True, and rebridging results in the
attribute being represented as read-only in the Object Builder model.
Changing the property from True to False, and rebridging will result in the
attribute being switched to read-write in the Object Builder model.

Override in subclass
An attribute with the same name and type in a subclass in Rose will be
represented in Object Builder as an attribute to be overridden in the Object
Builder model (if CreateImplementation is set to True for the subclass).
Changing the type of the subclass attribute, and rebridging results in a bridge
error, and the attribute will not be bridged. This results in the implementation
for the subclass in Object Builder not being affected by the rebridge. Changing
the name of the subclass attribute will result in UUID problems in the Object
Builder model. If the desired result is to remove the attribute from the
Overrides list for the subclass, move the attribute to the left-hand side of the
Attributes to Override list in the subclass implementation, and delete the
attribute from the subclass in the Rose model. Rebridging after this has been
done results in the appropriate information reflected in the Object Builder
model.

Method Properties

Name
Changing the name of a method, and rebridging results in the associated
Object Builder method being renamed.

Return Type
Changing the return type of a method, and rebridging results in the
associated Object Builder method return type being renamed.

Export Control
This value must not be changed once it is bridged to Object Builder. Changing
this property implicitly results in a delete and re-add in Object Builder, which
is not currently supported by the Rose Bridge. If the Export Control value
needs to be changed, delete the method in Object Builder and in Rose, then
re-add the method in Rose with the appropriate values. Rebridging after this
process results in the proper information being reflected in the Object Builder
model.

76 WebSphere: Application Development Tools Guide



Parameter Name
Changing the return type of a method, and rebridging results in the
associated Object Builder method return type being renamed.

Parameter Type
Changing the type of a method parameter, and rebridging results in the
associated Object Builder method parameter type being renamed.

Parameter Argument default
Changing the method parameter default, and rebridging results in the
associated Object Builder method parameter default being updated.

Exceptions
Changing the list of Exceptions for a method, and rebridging will result in the
associated Object Builder method exceptions being updated.

OperationIsOneWay
Changing the OperationIsOneWay property of a method, and rebridging
results in the associated Object Builder method being updated.

Override in subclass
A method with the same name and type in a subclass in Rose will be
represented in Object Builder as a method to be overridden in the Object
Builder model (if CreateImplementation is set to True for the subclass).
Changing the signature of the subclass method, and rebridging will result in a
bridge error and the method will not be bridged. This will result in the
implementation for the subclass in Object Builder not being affected by the
rebridge. Changing the name of the subclass method will result in UUID
problems in the Object Builder model. If the desired result is to remove the
method from the Overrides list for the subclass, move the method to the LHS
of the Methods to Override list in the subclass implementation and delete the
method from the subclass in the Rose model. Rebridging after this has been
done will result in the appropriate information reflected in the Object Builder
model. Class Relationships

Role name
Changing the role name for an association in Rose, and rebridging results in
the name change being reflected for the attribute or object relationship in
Object Builder (depending upon the cardinality of the role).

Cardinality
Changing the cardinality of a role is the equivalent of deleting the associated
Object Builder attribute, or object relationship, and re-adding a new artifact to
represent the new cardinality, which is not supported by the Rose Bridge at
this time. To accomplish this, you must first delete the attributes or object
relationships that were created in Object Builder, then delete the association in

Chapter 3. Using Rational Rose with Object Builder 77



Rose, and re-add it with the correct cardinalities. This will result in the
appropriate information being reflected in the Object Builder model.

MapAsObjectRelationship
Changing this property from True to False, and rebridging is the equivalent of
deleting the object relationship for the role, and creating a sequence attribute
to represent the collection, which is not supported by the Rose Bridge at this
time. To implement this change, you must first delete the attributes or object
relationships that were created in Object Builder for the relationship, delete
the association in the Rose model, then re-create the association with the
desired property settings. Rebridging after these changes have been made will
result in an Object Builder model with the appropriate information. The same
actions must be taken when changing this property from False to True.

RelationshipImplementation
Changing this property, and rebridging will change the object relationship
implementation in the Object Builder model.

IsReadOnly
Changing this property from False to True, and rebridging will change the
associated attribute or object relationship to read-only in Object Builder.
Changing the property from True to False, and rebridging will make the
Object Builder attribute or object relationship read-write.

Export Control
This value must not be changed once it is bridged to Object Builder. Changing
this property implicitly results in a delete and re-add in Object Builder, which
is not currently supported by the Rose Bridge. If the Export Control value
needs to be changed, delete the attributes or object relationships in Object
Builder, which correspond to the association, delete the association in Rose,
then re-add the association in Rose with the appropriate values. Rebridging
after this process will result in the proper information being reflected in the
Object Builder model.

“The Rose Bridge” on page 69
“Rose Bridge export” on page 79
“Rose Bridge import” on page 89

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Exporting a design from Rose” on page 80
“Importing a project into Rose” on page 92

78 WebSphere: Application Development Tools Guide



“Naming objects” on page 128
“Internationalization of data” on page 132
“Rose to Object Builder mapping rules” on page 97

Rose Bridge export

Once you have completed a design in Rose, you can export it to an Object
Builder project. You can export a design for use in a single Object Builder
project, or break up the design into separate projects, according to the
structure of .cat files in your design. The export process updates the \Model
subdirectory of the selected project or projects, and also creates the XML files
for the model in the project’s \Import directory. Once the export is complete,
you can use Object Builder to further refine the model and to generate code

When you export from Rose, the export process generates an XML file in the
target project\XMI subdirectory. This file allows the export process to track
changes to design elements, so that if you change the name of a method in
Rose and re-export, the change will be applied to the appropriate method in
Object Builder. It also keeps track of any elements that do not have
equivalents in both models, so that these elements are not simply lost in the
bridging process. The .xmi file in the project\XMI subdirectory does not keep
track of Rose elements outside of the Logical View.

You should not restructure your design after exporting. If you restructure
your design (for example, move a class from one package to another), the
export process will treat the change as a combination add and delete, rather
than a move. This would result in two definitions of the class in Object
Builder (a new class definition for its new position, and the old class
definition for its old position), which is not valid.

Re-export process
When you re-export a model, the export process will add new elements to
Object Builder, or update existing elements, but will not delete elements that
already exist in Object Builder. To delete existing elements, you must work
directly in Object Builder.

“Rose” on page 64
“The Rose Bridge” on page 69
“Rose Bridge import” on page 89

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Exporting a design from Rose” on page 80
“Exporting a Rose design to a team environment” on page 445

Chapter 3. Using Rational Rose with Object Builder 79



“Rose to Object Builder mapping rules” on page 97
“Rose properties and bridging guidelines” on page 70

Exporting a design from Rose

Once you have completed your design work in Rose, you can export your
design to an Object Builder project or projects. Rose must first be set up to
work with Object Builder. When the export is complete, each class in your
design will be mapped to a component in Object Builder. A component
consists of a number of related objects, and, at minimum, a business object
interface.

You can exclude portions of your design from the export (packages or classes)
by setting the property BridgeToOB=FALSE in the package or class
specification notebook. By default, your entire design is exported. If you set
BridgeToOB=FALSE in a package, all packages and classes contained within
this package will be excluded from the export.

Your design will be exported as either a single project (if your design is
contained in a single .mdl file), or to multiple projects (if your design contains
some packages that are stored in separate .cat files). The following task does
not cover the multiple projects case: see the team development documentation
for more information on exporting to a team environment.

To export, follow these steps:
1. Load your design in Rose.
2. Select File > Export to Object Builder. The Rose Bridge wizard opens to

the Export from Rose 98 to Object Builder page.
In the Source Modelfield, the current Rose model file is selected by
default.

3. Specify the Rose model you want to export, and add any necessary virtual
symbols and associated actual path mappings to the Virtual Path Mapping
listbox.
If you imported the Component Broker frameworks to use in your design,
you will need to provide the mapping for BOSS_PATH. You can check the
value for BOSS_PATH by clicking File > Edit Path Map in Rose.

4. In the Target Project field, specify the destination directory you want to
store your project in.

5. You can check the Log the error(s) to a file instead of message box option
to store errors in a file named export_results.txt, which will be generated
into the target project directory.

80 WebSphere: Application Development Tools Guide



6. You can check the Log detailed trace information to a file option to
generate more detailed processing information into the export_results.txt
file.

7. Click Next.
8. (Optional) Review the export structure. You can review which packages

and classes are being exported (as defined by the BridgeToOB property for
specific packages and classes), and review the target project directory.

9. Click Finish.

Your model is exported to the specified project directory. Your model is saved
in Rose as part of the export process.

The classes and relationships you defined in Rose have been mapped to their
Object Builder equivalents, and any component objects you specified have
been defined in skeleton form.

You are now ready to work in Object Builder.

“The Rose Bridge” on page 69
Component (Programming Guide)

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Importing Component Broker frameworks” on page 68
“Exporting a Rose design to a team environment” on page 445
“Working with an exported design” on page 88

“Rose to Object Builder mapping rules” on page 97

Tutorial: Exporting from Rose

Objectives
To create a class in Rose.
To specify class and attribute properties that will affect how the class is
exported.
To export a sample application from Rose into an Object Builder project.

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples

Chapter 3. Using Rational Rose with Object Builder 81



v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

v Rational Rose 98, Rose 98i or Rose 2000

You need Rational Rose installed and set up to work with Object Builder, as
described in the task “Setting up Rose 98” on page 65 or “Setting up Rose 98i
and Rose 2000” on page 66.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with Rational Rose. If you are not familiar with the
tool, take the Rose tutorial included with the software.

You should be familiar with Object Builder. If you are not familiar with the
tool, run through one of the introductory tutorials, for example, “Tutorial:
Creating a component with transient data” on page 39.

Sample files
Most of the samples shipped with Component Broker include Rose models.
This exercise results in a model that corresponds to the Rose model for the
transient data sample. The sample includes:
v A zipped Rational Rose model that contains definitions for a business

object, key, copy helper, and data object interface
v Documentation for the sample

The samples are in the following directories (under <CBroker>, the install
directory):

samples\Tutorial\Fundamentals\transient\Rose\TransientObjectRose.zip
samples\Tutorial\Fundamentals\transient\Docs\Transient.html

Description
This exercise describes how to create a class in Rose, prepare it for export to
Object Builder, complete the export, and open the exported project. A
follow-on exercise, “Tutorial: Importing into Rose” on page 94, describes how

82 WebSphere: Application Development Tools Guide



to reverse the process, importing the project into Rose and updating the
model with any changes that have been made to the project. A team
development version, “Tutorial: Team development with Rose” on page 449,
describes how to use a single Rose model with multiple Object Builder
projects.

For this exercise, you will complete the following tasks:
1. Create a class in Rose.
2. Add Component Broker properties to the class and its attributes.
3. Export the model to an Object Builder project.
4. Open the project in Object Builder.

Creating the class
Start Rose, and add a simple class with five attributes and one method
(Agent).

Start by adding packages that will contain the class. The packages will
translate into module scoping for the class in Object Builder. The top-level
package (LifeInsurance) will become a file, and the second-level package
(sample6) will become a module in the file, in Object Builder.

Add packages and a class, using pop-up menus in the tree view (left-hand
pane in Rose):

1. Start Rose.
2. In the tree view in the left-hand pane, locate the entry for the Logical

view.
3. From its pop-up menu, click New > Package. A new package entry

appears under the Logical view, with a default name selected for you to
type over.

4. Name the new package LifeInsurance.
5. From the pop-up menu of the LifeInsurance package, click New > Class

Diagram, and name the new diagram Main.
6. From the pop-up menu of the LifeInsurance package, click New >

Package, and name the new package sample6.
7. From the pop-up menu of the sample6 package, click New > Class

Diagram, and name the new diagram Main.
8. From the pop-up menu of the sample6 package, click New > Class, and

name the new class Agent.
9. Double-click on the Logical View - Main class diagram. It opens as a

Logical View window.
10. Click Query > Add Classes to open the Add Classes window.
11. Add Agent to the diagram, and click OK.

Chapter 3. Using Rational Rose with Object Builder 83



Add the attributes. Later you will add specific properties to the attributes,
which effect how they are exported to Object Builder. for now, simply define
their signatures:
1. From the pop-up menu of Agent in the diagram, click New Attribute. A

placeholder attribute is added (named name, type of type, initial value of
initval).

2. Type over each of the values for the new attribute, naming it commission,
with type float.

3. Click elsewhere in the diagram to apply the changes.
4. Add the following attributes in the same way:
v float commPercent

v float pendingPaycheck

v string agentName

v long id

Add the operation payCommission:
1. From the pop-up menu of Agent, click New Operation. A placeholder

operation is added (named opname, argument argname, return type
return).

2. Type over each of the values for the new operation, naming it
payCommission, with argument amount, and return value void.

3. Click elsewhere in the diagram to apply the changes.
4. From the pop-up menu of the specification in the tree view (under the

Logical View folder), click Open Specification

5. Turn to the Details page of the Operation Specification notebook.
6. Change the argument type to float.

You could also set the argument default to the parameter-passing mode
you prefer (in, out, inout). If you do not set a value, or set a value other
than those listed, it defaults to in.

7. Click OK.

You now have a class named Agent, with attributes commissions,
commPercent, pendingPaycheck, agentName, and id, and the method
payCommission(float amount).

Adding Component Broker properties to the class
You can specify properties of the class and its attributes that will affect the
way it is exported to Object Builder. Some of these properties are standard
Rose properties that have meaning for the export process, others are specific
to Component Broker, and were made available in Rose when you copied
over customized .pty files during the Rose setup.

84 WebSphere: Application Development Tools Guide



Customize the way the class will be exported, to create the following
component objects in Object Builder: business object interface, business object
implementation, data object interface, key, copy helper:
1. From the pop-up menu of the class in the class diagram, click Open

Specification to open the Class Specification notebook.
2. Turn to the IDL page. The following properties map to component objects:
v IDLSpecificationType

By default, it is set to Interface. A business object interface is created for
the class. Other values you can set for this property would make the
class export as a construct (for example, a struct or enum).

v CreateImplementation
By default, it is set to False. A business object implementation and its
accompanying data object interface are not created for the class.

v CreateKey
By default, it is set to False. A key is not created for the class.

v CreateCopyHelper
By default, it is set to False. A copy helper is not created for the class.

3. Click on CreateImplementation, then click the value False, and change it to
True.
A business object implementation and its accompanying data object
interface will be created for the class.

4. Set the values for CreateKey and CreateCopyHelper to True as well.
A key and copy helper will be created for the class.

5. Click OK.

Adding Component Broker properties to the attributes
Customize the way the attributes will be exported, to make all the attributes
public, set the size of agentName to 100, make commissions and id read-only,
and make id part of the key.

Customize id:
1. In the tree view, under the Logical View, select the attribute id.
2. From its pop-up menu, click Open Specification to open its Class

Attribute Specification notebook.
3. On the General page, set its Export Control to public.
4. Turn to the DDL page, and set the PrimaryKey property to True.
5. Turn to the IDL page, and set the isReadOnly property to True.
6. Click OK.

The attribute id will now be generated as a public read-only attribute that
is part of the business object, key, and copy helper.

Customize commission:

Chapter 3. Using Rational Rose with Object Builder 85



1. In the tree view, under the Logical View, select the attribute commission.
2. From its pop-up menu, click Open Specification to open its Class

Attribute Specification notebook.
3. On the General page, set its Export Control to public.
4. Turn to the IDL page, and set the isReadOnly property to True.
5. Click OK.

The attribute commission will now be generated as a public read-only
attribute that is part of the business object and copy helper.

Customize agentName:
1. In the tree view, under the Logical View, select the attribute agentName.
2. From its pop-up menu, click Open Specification to open its Class

Attribute Specification notebook.
3. On the General page, set its Export Control to public.
4. Turn to the DDL page, and set the Length value to 100.
5. Click OK.

The attribute agentName will now be generated as a public attribute that
has length=100, and is part of the business object and copy helper.

Customize commPercent and pendingPaycheck:
1. In the tree view, under the Logical View, select the attribute commPercent.
2. From its pop-up menu, click Open Specification to open its Class

Attribute Specification notebook.
3. On the General page, set its Export Control to public.
4. Click OK.
5. Do the same for pendingPaycheck.

You have added properties that specify how the class maps to component
objects and attributes in Object Builder. You are ready to export to an Object
Builder project.

Exporting to Object Builder
To export to Object Builder, follow these steps:
1. Save and name your model (for example,

e:\tutorials\rosemodels\agent.mdl). You cannot export an unnamed
model.

2. Click File > Export to Object Builder. The Rose Bridge wizard opens.
3. In Target Project, specify a directory to export to (for example,

e:\tutorials\roseagent\). The Rose Bridge will create the directory if
necessary, and turn it into an Object Builder project directory.
You do not need to provide virtual path mappings. These are generally
necessary only when your design is divided into multiple .cat files for

86 WebSphere: Application Development Tools Guide



team development purposes, or when you have imported the Component
Broker framework classes to do advanced design work.

4. Click Finish.

The Rose Bridge starts by saving your current Rose model. The Rose Bridge
then exports an XML version of the model, consisting of two files:
project\Import\udbo.LifeInsurance.xml, to become the component in an Object
Builder project, and project\XMI\roseagent.xml, to hold any Logical View
information that would otherwise be lost in the transfer. Finally, the Rose
Bridge imports udbo.LifeInsurance.xml into Object Builder to create the new
Object Builder model files.

You can now open the project in Object Builder and review the results of the
export.

Opening the Object Builder project
Open the Object Builder project and review the exported component:
1. Start Object Builder.
2. In the Open Project wizard, type the name of the directory you exported

to (for example, e:\tutorials\roseagent\).
3. Click Finish. The project opens.
4. In the Tasks and Objects pane, expand the User-Defined Business Objects

folder. You can see the business object file LifeInsurance.
5. Expand the file to show the sample6 module, expand the module to show

the Agent interface, expand the interface to show AgentKey, AgentCopy,
and AgentBO, and expand AgentBO to show AgentDO. These objects were
created according to the property settings of the Claim class in Rose, as
follows:
v LifeInsurance file and sample6 module

Created because the class was in a nested package, and the class’s
IDLSpecificationType was set to Interface.

v AgentKey
Created because the class’s CreateKey property was set to True.

v AgentCopy
Created because the class’s CreateCopyHelper property was set to True.

v AgentBO and AgentDO
Created because the class’s CreateImplementation property was set to
True.

6. Click the Agent interface. You can see its attributes and methods in the
Methods pane.

7. Click the AgentBO implementation. You can see the get and set methods
for the attributes, and the method signatures, in the Methods pane.

Chapter 3. Using Rational Rose with Object Builder 87



8. Click the AgentKey key. You can see the get and set methods for id, which
you set to be part of the key with the PrimaryKey DDL property.

9. Click the AgentCopy copy helper. You can see the get and set methods for
all the attributes, which are part of the copy helper by default.

You can review the skeleton signatures for the methods, the default
implementations for get and set methods, and the framework methods added
by Object Builder, by clicking on the attribute or method in the Methods pane.

Summary
You have created a class in Rose named Agent, defined its attributes and
operations, and exported the result as a set of component objects to Object
Builder. You can now continue to “Tutorial: Importing into Rose” on page 94,
in which you customize the class and then import the changes into Rose. If
you want, you can skip that scenario and continue on to “Tutorial: Team
development with Rose” on page 449, in which you add a second class with
an object relationship, and export the two classes into separate interdependent
projects.

Working with an exported design

Once the export process is complete, you can start working with your design
in Object Builder. To work with an exported design, complete the following
steps in Object Builder:
1. Review the exported business object interfaces and their equivalent files.
2. Complete the skeleton objects created by the export.
3. Create data object implementations.
4. If you want data persistence, create or map to persistent objects and

schemas.
5. Create managed objects (for packaging and instance management).

Review and edit exported objects as necessary:
1. Select the object in the Tasks and Objects pane.
2. From its pop-up menu click Properties. A wizard opens.
3. Click Next to go through all the pages of the wizard, and review its

properties. Complete or change the contents of the wizard as you require.
4. Click Finish. Any changes you made are applied to the current model.

“The Rose Bridge” on page 69

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833

88 WebSphere: Application Development Tools Guide



“Mapping a data object to a persistent object” on page 703
“Adding a managed object” on page 871

Rose Bridge import

You can make changes to the design in Object Builder, and then apply the
changes to the original Rose model. If you are doing work in both Object
Builder and Rose, make sure you keep the two versions synchronized. For
example, if you change the Object Builder model, import the changes into
Rose before doing any more work on the Rose model.

If the project was created entirely in Object Builder, then your project elements
will be mapped to Rose model elements using default mapping rules.

If the project was created by exporting a design from Rose, then your project
elements will be mapped back to their originals in the Rose model, using the
mapping rules you defined in the Specification notebooks of the various
elements. The .xmi file created by the export in the project\XMI subdirectory
preserves these mappings, as defined in the Logical View. If all your model
information is in the Logical View, then the import process creates a duplicate
of your original project, and you can discard the original. If your original
model has information in other views as well, then you will need to merge
the two projects (the original, with its information in the other views, and the
newly imported one, with its updated Logical View information). You can use
the update feature provided with Rose to resolve these differences.

The import process works as follows:
1. The import process calls the obexport command to generate XML files for

the project (\Export\udbo.*.xml).
2. The import process checks to see if there is an XML file in the project’s

\XMI subdirectory. This file is created by the Rose Bridge to preserve any
information that would otherwise be lost during transfer between Rose
and Object Builder.

3. The import process generates a Rose model file, based on the XML files in
\Export and \XMI .

4. The import process updates the XML file in project\XMI to contain any
Object Builder information that cannot be imported. For example, details
of the implementation, key, and copy helper for a component, that cannot
be stored as elements in Rose.

The import process maps Object Builder elements as follows:
v Business object files, modules, and interfaces that already have a mapping

(because they were created by export from Rose) maintain that mapping.

Chapter 3. Using Rational Rose with Object Builder 89



v New business object files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages,
and classes.

v Local-only files, modules, and interfaces that already have a mapping
(because they were created by export from Rose) maintain that mapping.

v New local-only files, modules, and interfaces (added directly to Object
Builder, not by export from Rose) are mapped to packages, subpackages,
and classes with ObjectType property set to Local-Only Objects.

v Non-IDL type objects that already have a mapping (because they were
created by export from Rose) maintain that mapping.

v New non-IDL type objects (added directly to Object Builder, not by export
from Rose) are mapped to classes with ObjectType property set to Non-IDL
Type Objects.

v IDL constructs with file or module scope become classes in Rose.
v IDL constructs with interface scope in Object Builder become nested classes

inside the Rose class which represents the interface.
v Attributes of an interface become attributes of a class in Rose.
v Methods of an interface become operations of a class in Rose.
v Parent interfaces become class relations in Rose.
v Object relationships that were created by export from Rose are imported as

the role of an association.
v Object relationships that were created in Object Builder (not by export from

Rose) are imported as the role of a unidirectional association.
v Sequence attributes of the interface that were created by export from Rose

are imported as the role of an association.

The import process keeps the following elements in the \XMI .xml file:
v Component objects other than the business object interface (business object

implementation, data object interface, copy helper, key)
v The method bodies

The import process updates the following properties in the Rose specification
notebooks:
v Class Specification, IDL page, CreateImplementation

property is set if the business object interface has a business object
implementation

v Class Specification, IDL page, CreateKey
property is set if the business object interface has a key

v Class Specification, IDL page, CreateCopyHelper
property is set if the business object interface has a copy helper

90 WebSphere: Application Development Tools Guide



v Class Specification, IDL page, IsQueryable
property is set if the business object interface has the option The interface
is queryable checked, in its properties notebook

v Class Specification, IDL page, IDLSpecificationType
property is set according to type of construct mapped from Object Builder
(Interface, Typedef, Enumeration, Const, Exception, Struct, Union)

v Class Specification, IDL page, ObjectType
property is set according to type of artifact mapped from Object Builder
(user-defined business objects, local-only objects, non-IDL type objects).

v Attribute Specification, IDL page, length
property is set if the attribute is of type string, and has associated size
information.

v Attribute Specification, DDL page, IsIncludedInCopyHelper
property is set if the attribute is part of the component’s copy helper

v Attribute Specification, DDL page, PrimaryKey
property is set if the attribute is part of the component’s key.

v Attribute Specification, DDL page, IsIncludedInDataObject
property is set if the attribute is part of the component’s data object
interface.

v Association Specification, IDL A/B pages, MapAsObjectRelationship
property is set if an object relationship or sequence attribute in the business
object interface was created by exporting the role of an association from
Rose

v Association Specification, IDL A/B pages, RelationshipImplementation
property is set if the object relationship has a selected implementation type
in the business object implementation

In order to track changes between Component Broker objects and Rose
elements, the import process uses the UUID of an element as an identifier.
The UUID is stored as the uuid property of IDL page in Rose for each
package, class, attribute, operation, and role of association.

“Rose” on page 64
“The Rose Bridge” on page 69
“Rose Bridge export” on page 79

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Importing a project into Rose” on page 92
“Importing a Rose design from a team environment” on page 447

Chapter 3. Using Rational Rose with Object Builder 91



“Object Builder to Rose mapping rules” on page 123
“Rose properties and bridging guidelines” on page 70

Importing a project into Rose

You can import an Object Builder project into Rose. If the imported project
was originally created by a Rose export, then the new Rose model created by
the import will mirror the information in the original, exported Rose model’s
Logical view. If your original model has additional information in other
views, you can consolidate the two models (the original one, and the newly
imported one) using the Rose Update feature.

If your Object Builder project was created directly in Object Builder (not by
export from Rose), then the Rose model is based on default mappings of
Object Builder elements to Rose elements.

Once the import is complete, you can work with the design in Rose, and
export the changes back to Object Builder.

To import an Object Builder project into Rose, follow these steps:
1. Select File > Import from Object Builder. The Rose Bridge wizard opens.

Note: If you intend to replace the Rose model that you have currently
loaded, you must exit from this model before running the bridge to enable
the bridge to write the .mdl file successfully.

2. In the Source Projectfield, type the directory of the Object Builder project
you are importing.

3. Click Set to add the directory to the import list.
4. Add any additional projects to the list in the same manner. You can import

multiple projects to the same model.
Note: You can only import multiple projects if the source model and its
associated .cat files have already been exported to multiple projects. You
cannot import multiple projects to a new model file, or to an existing
model file that has not been set up for multiple projects.

5. Click Next.
6. Enter the name of the new Rose model file you are importing to. If you

know your project will be imported into a category file (.cat) on Rose, then
you need to specify the virtual path mapping information by entering the
symbol and actual path data. The project will be mapped to a .cat file with
an equivalent top-level package in the Rose model file you specified.

7. Click Finish.

The projects you selected are imported into the Rose model file and .cat files
you specified.

92 WebSphere: Application Development Tools Guide



You have now imported an Object Builder project into a Rose model. If the
imported project was created by export from Rose, and the original Rose
model contains information in other views besides the Logical view, then you
should consolidate the new model with the original model before doing any
more design work.

To merge the new model with the original model, follow these steps:
1. Click File > Open to open the original Rose model.
2. Specify the original .mdl file and click Open.
3. Click File > Update to apply updates from the changed model.
4. Specify the updated .mdl file (created by the import in the previous task)

and click Open.

Your model now contains the entire updated design, and you can continue
your design work. Because the Rose Bridge preserves diagram information in
the Logical View, you may have multiple diagrams with the same information
after the update. This will cause no problems, but you can delete the
duplicate diagrams if desired. No structural information will be lost by the
deletion.

Note: If you have Rose 98i or Rose 2000, you can use the Model Integrator
provided with Rose to merge the models. Please read the documentation
provided with Rose for an explanation of this tool.

When you are ready to switch back to Object Builder, you can export the
design back to Object Builder by selecting File > Export to Object Builder.

“Object Builder” on page 1
“Projects and models” on page 17
“Rose” on page 64
“The Rose Bridge” on page 69
“Rose Bridge import” on page 89

“Exporting a design from Rose” on page 80
“Importing a Rose design from a team environment” on page 447
“Tutorial: Importing into Rose” on page 94

“Object Builder to Rose mapping rules” on page 123

Chapter 3. Using Rational Rose with Object Builder 93



Tutorial: Importing into Rose

Objectives
To add attributes to a component in Object Builder.
To edit an existing attribute in Object Builder.
To apply the change to a Rose model.

Before you begin
This scenario is a continuation of the “Tutorial: Exporting from Rose” on
page 81. You must complete the previous scenario before attempting this one.

You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

v Rational Rose 98, Rose 98i, or Rose 2000

You need Rational Rose installed and set up to work with Object Builder, as
described in the task “Setting up Rose 98” on page 65 or “Setting up Rose 98i
and Rose 2000” on page 66.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with Rational Rose. If you are not familiar with the
tool, take the Rose tutorial included with the software.

You should be familiar with Object Builder. If you are not familiar with the
tool, run through one of the introductory tutorials, for example, “Tutorial:
Creating a component with transient data” on page 39.

94 WebSphere: Application Development Tools Guide



Sample files
There are no equivalent samples for this exercise. The exercise assumes that
you have created a project by exporting a design from Rose, as described in
the previous tutorial.

Description
In this exercise, you will extend the Agent component created in the previous
exercise, by adding an attribute contactInfo, and changing the name of the id
attribute to agentID. You will then apply the changes to the original Rose
model, by importing your Object Builder project into Rose. Once you are
done, you can continue on to “Tutorial: Team development with Rose” on
page 449, in which you add a second class with an object relationship, and
export the two classes into separate interdependent projects.

For this exercise, you will complete the following tasks:
1. Open the project.
2. Edit the Agent component attributes.
3. Import the changes into Rose.

Opening the project
Open the project you created in the previous exercise:
1. Start Object Builder.
2. In the Open Project wizard, specify the project to open (for example,

e:\tutorials\roseagent\)
3. Click Finish.

Adding and editing attributes
Add the two new attributes to the business object interface, and change the
name of the existing key attribute:
1. Locate the Agent interface in the User-Defined Business Objects folder

(defined under the LifeInsurance File and sample6 module).
2. From the Agent interface’s pop-up menu, click Properties to open the

Business Object Interface wizard.
3. Click the title and turn to the Attributes page.
4. Click Add Another.
5. Define an attribute named contactInfo, of type string, with size 100.
6. Click on the id attribute.
7. Type over its name, changing it to agentID.
8. Click Refresh.
9. Click Finish.

The new attribute is automatically added to the business object
implementation, and the name change from id to agentID is applied
automatically to the key, copy helper, and implementation.

Chapter 3. Using Rational Rose with Object Builder 95



Add the new attribute to the copy helper:
1. Locate the AgentCopy copy helper, under the Agent interface.
2. From AgentCopy’s pop-up menu, click Properties to open the Copy

Helper wizard.
3. Move contactInfo from the Business Object Attributes list to the Copy

Helper Attributes list.
4. Click Finish.

Add the new attribute to the data object:
1. Locate the AgentBO business object implementation, under the Agent

interface.
2. From AgentBO’s pop-up menu, click Properties to open the Business

Object Implementation wizard.
3. Click the title and turn to the Data Object Interface page.
4. Move contactInfo from the Business Object Attributes list to the State Data

list.
5. Click Finish.

Save your changes and close Object Builder:
1. Click File > Save.
2. Click File > Exit.

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to import the project into Rose.

Importing the project into Rose
Import the changed Object Builder project to a new Rose model:
1. Start Rose.
2. Click File > Import from Object Builder. The Rose Bridge wizard opens.
3. In the Source Project field, type the Object Builder project directory path

(for example e:\tutorials\roseagent\).
4. Click Set to add the project to the import list.
5. Click Next.
6. In the Target Model field, provide the path and name for the model you

want to create (for example e:\tutorials\rosemodels\importagent.mdl).
7. Click Finish.

The Rose Bridge generates the udbo.LifeInsurance.xml file in the project’s
\Export directory, updates the agent.xml file in the project’s \XMI directory
with any project information it cannot preserve in the transfer, and then
imports the two files to create a new model file.

96 WebSphere: Application Development Tools Guide



Once the import is complete, load the newly generated file into Rose, and
review the changes.

Reviewing the changes
Under the Logical View, you can see that Agent has a new attribute,
contactInfo, and that the id attribute has become agentID.

Open the Attribute Specification notebook for contactInfo. On the DDL page,
you can see that the Length property has the value 100.

Save and close the model.

Because the model in the previous scenario contained information only in the
Logical View, with no additional diagrams, the new model can simply replace
the previous model. However, if your original model had contained
information in other views, or additional diagrams within the Logical view,
you could consolidate that information with the newly imported model by
using the the Rose Update feature, as described in the topic “Importing a
project into Rose” on page 92.

Summary
You have changed your component in Object Builder, and then applied the
changes to the component design in Rose. You can now continue working in
Rose as part of the “Tutorial: Team development with Rose” on page 449, in
which you add a second class with an object relationship, and export the two
classes into separate interdependent projects.

Rose to Object Builder mapping rules

The following topics describe the way in which elements of your Rose design
map to elements of Object Builder projects:
v “Projects in Rose” on page 98
v “Modules in Rose” on page 99
v “Constructs in Rose” on page 101
v “Class properties in Rose” on page 109
v “Package properties in Rose” on page 116
v “Attribute properties in Rose” on page 113
v “Method properties in Rose” on page 116
v “Class relationships in Rose” on page 119

Chapter 3. Using Rational Rose with Object Builder 97



“Rose” on page 64
“The Rose Bridge” on page 69
“Rose Bridge export” on page 79

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Exporting a design from Rose” on page 80
“Exporting a Rose design to a team environment” on page 445

“Object Builder to Rose mapping rules” on page 123

Projects in Rose

By default, your design in Rose maps to a single project in Object Builder,
stored in the base directory you specify at export time. You can create more
complex project divisions by dividing your design into separate .cat files.

You can assign a package and its content to a separate .cat file by selecting the
package in a Class Diagram in the Logical View, and then clicking File >
Units > Control package(where package is the name of the package you
selected). You can then set a file name for the package’s associated .cat file.

Once you have assigned the package a .cat file, you can map it to a project
directory using the IDL property OBProjectDirectory, in the package’s
Specification notebook. Set the property to the project path you want to export
to. You cannot enter a directory name that contains spaces.

When you export, you will get a separate project for every .cat file in your
design (as specified with the OBProjectDirectory setting), plus a base project
that contains the design elements in your main .mdl file.

For example:

A model consists of three base-level packages. The first contains two
subpackages, the second contains a single subpackage, and the third contains
only classes. In addition, there is a single class declared at the base level
(outside of any packages).
v Package_A

– Package_A1
– Package_A2 (stored in PackageA2.cat, OBProjectDirectory=e:\projectA2)

- Class_A3
v Package_B (stored in PackageB.cat, OBProjectDirectory=e:\projectB)

98 WebSphere: Application Development Tools Guide



– Package_B1
v Package_C
v Class_D

The model is exported to the project directory e:\myprojects and results in the
following project structure:
v e:\myprojects (contains Package_A::Package_A1, Package_C, and Class_D)
v e:\projectA2 (contains Package_A::Package_A2::Class_A3)
v e:\projectB (contains Package_B::Package_B1)

Package_A2 and Package_B get their own projects, because they are stored in
.cat files that are separate from the rest of the model, and have been targeted
for specific projects. The rest of the model is stored in the project specified at
export time, e:\myprojects .

“Projects and models” on page 17
“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Modules in Rose

The name scoping used by Component Broker is based on CORBA IDL,
where a containment relationship exists among IDL files, modules, and
interfaces. In the Rose model, a containment relationship exists among
packages (categories), subpackages (subcategories), and classes (interfaces or
data types). The export process from Rose supports the same containment
relationship as Object Builder. For this to work, some restrictions on what gets
mapped into Object Builder are necessary.

Packages that are associated with .cat files map to projects. This overrides any
of the mappings shown below. A package is considered to be top-level if it is
contained directly by the Logical View, or contained directly by a project
package.

Non-project packages map as follows. Rules are given in order of precedence:
1. Top-level packages that contain interfaces map to files
2. Packages that contain both interfaces and packages map to files
3. Packages that contain interfaces but not packages map to modules

Chapter 3. Using Rational Rose with Object Builder 99



4. Packages that contain module packages map to files
5. Other packages are ignored
6. Interfaces not in a package map to a file and interface with the same

name.

Example without project packages

Rose packages Object Builder files and modules

v PackageA

– ClassA1

v PackageB

– ClassB1

– PackageB1

- ClassB2

v PackageC

– PackageC1

- PackageC2

v ClassC3

v ClassD

v File PackageA (rule 1, overriding rule
3)

– Interface ClassA1

v File PackageB (rule 2)

– Interface ClassB1

– Module PackageB1 (rule 3)

- Interface ClassB2

v File PackageC1 (rule 4)

– Module PackageC2 (rule 3)

- Interface ClassC3

v File ClassD (rule 6)

– Interface ClassD

Not mapped: PackageC (rule 5)

Example with project packages

Rose packages Object Builder files and modules

v PackageA

– PackageA1

- PackageA2

v ClassA3

v PackageB

– PackageB1 (with .cat file)

- ClassB2

- PackageB2

v ClassB3

Main project:

v File PackageA1 (rule 4)

– Module PackageA2 (rule3)

- Interface ClassA3

Project PackageB1:

v File ClassB2 (rule 6)

– Interface ClassB2

v File PackageB2 (rule 1)

– Interface ClassB3

Not mapped: PackageA, PackageB (rule 5)

“Rose” on page 64

100 WebSphere: Application Development Tools Guide



“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Constructs in Rose

You can specify constructs in Rose by defining classes with the
IDLSpecificationType appropriate to the construct.

The IDLSpecificationType is set on the IDL page of the Class Specification
notebook. By default, it is set to Interface (so the class will become a business
object interface in Object Builder). You can change the default to one of the
following types of constructs:
v Struct
v Enumeration
v Typedef
v Union
v Const
v Exception

The following table summarizes the properties of each construct type, the
equivalent specifications for those properties in Rose, and the result when the
design is exported to Object Builder.

Element (Object
Builder)

Specification (Rose) Description

Struct Class Specification notebook
IDL page
IDLSpecificationType=Struct

Becomes a structure
with either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).
Attributes of the class
map to members of the
struct.

Name Class Specification notebook
General page
Name field

Becomes the name of the
structure. Should be a
valid C++ name.
Leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

Chapter 3. Using Rational Rose with Object Builder 101



Element (Object
Builder)

Specification (Rose) Description

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Member names Attribute Specification notebook
General page
Name field

Should be a valid C++
name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Member types Attribute Specification notebook
General page
Type field

Should be a valid type:
either a predefined IDL
type (for example, char,
short, float), a type
currently defined in
Rose, or a type already
defined in the Object
Builder model you are
exporting to. When you
specify the type, any
leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

102 WebSphere: Application Development Tools Guide



Element (Object
Builder)

Specification (Rose) Description

Enumeration Class Specification notebook
IDL page
IDLSpecificationType=Enumeration

Becomes an enumeration
with either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).
Attributes of the class
map to members of the
enumeration.

Name Class Specification notebook
General page
Name field

Becomes the name of the
struct. Should be a valid
C++ name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Member names Attribute Specification notebook
General page
Name field

Should be a valid C++
name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Chapter 3. Using Rational Rose with Object Builder 103



Element (Object
Builder)

Specification (Rose) Description

Member types Attribute Specification notebook
General page
Type field

Should be a valid type:
either a predefined IDL
type (for example, char,
short, float), a type
currently defined in
Rose, or a type already
defined in the Object
Builder model you are
exporting to. When you
specify the type, any
leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

Typedef Class Specification notebook
IDL page
IDLSpecificationType=Typedef
ImplementationType=type

Becomes a typedef with
either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).

Name Class Specification notebook
General page
Name field

Becomes the name of the
typedef. Should be a
valid C++ name.
Leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

104 WebSphere: Application Development Tools Guide



Element (Object
Builder)

Specification (Rose) Description

Type Class Specification notebook
IDL page
ImplementationType=type

Determines what type
the typedef is for.
Should be a valid type:
either a predefined IDL
type (for example, char,
short, float), a type
currently defined in
Rose, or a type already
defined in the Object
Builder model you are
exporting to. When you
specify the type, any
leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Union Class Specification notebook
IDL page
IDLSpecificationType=Union

Becomes a union with
either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).

Name Class Specification notebook
General page
Name field

Becomes the name of the
union. Should be a valid
C++ name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Chapter 3. Using Rational Rose with Object Builder 105



Element (Object
Builder)

Specification (Rose) Description

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

Type Class Specification notebook
IDL page
ImplementationType=type

Determines the type of
the union switch. Should
be a valid type: either a
predefined IDL type (for
example, char, short,
float), a type currently
defined in Rose, or a
type already defined in
the Object Builder model
you are exporting to.
When you specify the
type, any leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Const Class Specification notebook
IDL page
IDLSpecificationType=Const

Becomes a const with
either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).

Name Class Specification notebook
General page
Name field

Becomes the name of the
const. Should be a valid
C++ name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

106 WebSphere: Application Development Tools Guide



Element (Object
Builder)

Specification (Rose) Description

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

Type Class Specification notebook
IDL page
ImplementationType=type

Determines the type of
the const. Should be a
valid type: either a
predefined IDL type (for
example, char, short,
float), a type currently
defined in Rose, or a
type already defined in
the Object Builder model
you are exporting to.
When you specify the
type, any leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Value Class Specification notebook
IDL page
ConstValue=value

Determines the value of
the const.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Exception Class Specification notebook
IDL page
IDLSpecificationType=Exception

Becomes an exception
with either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).
Attributes of the class
map to members of the
exception.

Chapter 3. Using Rational Rose with Object Builder 107



Element (Object
Builder)

Specification (Rose) Description

Name Class Specification notebook
General page
Name field

Becomes the name of the
exception. Should be a
valid C++ name.
Leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

Object Builder
type

Class Specification notebook
IDL page
ObjectType property

Determines whether the
construct will be created
in the User-Defined
Business Objects or
Local-Only Objects
section of the Object
Builder project.

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
construct from the
export process. The
construct will not be
exported to Object
Builder. By default, the
BridgeToOB property is
set to True, and the
construct is exported.

Member names Attribute Specification notebook
General page
Name field

Should be a valid C++
name. Leading and
trailing blank spaces are
removed, and embedded
spaces are converted to
underscores.

Member types Attribute Specification notebook
General page
Type field

Should be a valid type:
either a predefined IDL
type (for example, char,
short, float), a type
currently defined in
Rose, or a type already
defined in the Object
Builder model you are
exporting to. When you
specify the type, any
leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores.

108 WebSphere: Application Development Tools Guide



“Projects and models” on page 17
“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Class properties in Rose

When you define a class in Rose, it can be mapped either to a business object
interface, a local-only object, a non-IDL type object, or to a type of construct
in Object Builder.

For constructs, the name, documentation, and attributes (when appropriate)
are preserved by the export process. For business object interfaces, both class
properties and class relationships are preserved. For local-only objects,
appropriate class properties are preserved.

A class is exported as a business object interface by default, based on the
setting of the IDLSpecificationType (which is set to Interface by default). The
IDLSpecificationType is set on the IDL page of the Class Specification
notebook. You can set additional properties of the class and of its attributes to
create additional component objects for the class (such as the business object
implementation) when you export.

The properties of constructs, class attributes, class methods or operations, and
class relationships are described in their own topics.

The following table describes the properties that are in effect for a class
(excluding its attributes, methods, and relationships) whose
IDLSpecificationType is set to Interface.

Chapter 3. Using Rational Rose with Object Builder 109



Component
element (Object
Builder)

Specification (Rose) Description

Business object
interface

Class Specification notebook
IDL page
IDLSpecificationType=Interface
ObjectType=User-Defined Business
Objects

Becomes a business
object interface with
either file scope (if
contained in a top-level
package) or module
scope (if contained in a
nested package).
Attributes and
operations of the class
map to attributes and
methods of the
component.

Local-only
object

Class Specification notebook
IDL page
IDLSpecificationType=Interface
ObjectType=Local-Only Objects

Becomes a local-only
object with either file
scope (if contained in a
top-level package) or
module scope (if
contained in a nested
package). Attributes and
operations of the class
map to attributes and
methods of the
component.

Non-IDL object Class Specification notebook
IDL page
IDLSpecificationType=Interface
ObjectType=Non-IDL Type Objects

Becomes a non-IDL
object. No other class
properties apply to this
object.

Name Class Specification notebook
General page
Name field

Becomes the name of the
interface. Should be a
valid C++ name.
Leading and trailing
blank spaces are
removed, and embedded
spaces are converted to
underscores. For
example, My Class
Name would become
My_Class_Name. Also
becomes the basis for
the names of any
additional component
objects that are created
during the export.

110 WebSphere: Application Development Tools Guide



Component
element (Object
Builder)

Specification (Rose) Description

Comments Class Specification notebook
General page
Documentation field

Any documentation you
enter for the class
becomes comments in
Object Builder, where
they can be accessed
from the last page of the
Business Object Interface
wizard. Do not include
/* or */ in the
documentation text: the
generated code from
Object Builder will
provide C++ comment
tags around your entries
by default.

Queryable
(True|False)

Class Specification notebook
IDL page
IsQueryable property

Defines whether the
specified interface is
queryable.

Does not apply to
local-only non-IDL
objects.

Business object
implementation
and data object
interface

Class Specification notebook
IDL page
CreateImplementation property

Defines whether a
business object
implementation, and its
accompanying data
object interface, will be
created for the current
interface. The data object
interface will include
any attributes that have
the DDL property
IsIncludedInDataObject
set to true. By default,
all public attributes of
the class are included in
the data object interface.

Does not apply to
local-only non-IDL
objects.

Chapter 3. Using Rational Rose with Object Builder 111



Component
element (Object
Builder)

Specification (Rose) Description

Key Class Specification notebook
IDL page
CreateKey property

Defines whether a key
will be created for the
current interface. The
key will include any
attributes that have the
PrimaryKey property set
to True on the DDL
page of their Attribute
Specification notebooks.
By default, no attributes
are included in the key.

When you set the
CreateKey property to
true, you should also set
the PrimaryKey
property to true for at
least one of the
interface’s public
attributes.

Does not apply to
local-only non-IDL
objects.

Copy helper Class Specification notebook
IDL page
CreateCopyHelper property

Defines whether a copy
helper will be created
for the current interface.
The copy helper will
include any attributes
that have the
IsIncludedInCopyHelper
property set to true on
the DDL page of their
Attribute Specification
notebooks. By default,
all public attributes of
the class are included in
the copy helper.

Does not apply to
local-only non-IDL
objects.

112 WebSphere: Application Development Tools Guide



Component
element (Object
Builder)

Specification (Rose) Description

Hide from
export

Class Specification notebook
IDL page
BridgeToOB property

Set to False to hide the
class from the export
process. The interface,
and its attendant
component objects, will
not be exported to
Object Builder. By
default, the BridgeToOB
property is set to True,
and the class is
exported.

“Projects and models” on page 17
“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Attribute properties in Rose

The following attribute properties apply when the class in Rose has its
IDLSpecificationType set to Interface (the default, on the Class Specification
notebook’s IDL page).

Attribute
property
(Object Builder)

Specification (Rose) Description

Name Attribute Specification
notebook
General page
Name field

Should be a valid C++ name. Leading
and trailing blank spaces are removed,
and embedded spaces are converted to
underscores. For example, my Data
Name would become my_Data_Name.

Chapter 3. Using Rational Rose with Object Builder 113



Attribute
property
(Object Builder)

Specification (Rose) Description

Type Attribute Specification
notebook
General page
Type field

Should be a valid type: either a
predefined IDL type (for example, char,
short, float), a type currently defined in
Rose, or a type already defined in the
Object Builder model you are exporting
to. When you specify the type, any
leading and trailing blank spaces are
removed, and embedded spaces are
converted to underscores.

Initializer Attribute Specification
notebook
General page
Initial Value field

Value placed in this field is transferred to
the Initializer field for the attribute in
Object Builder. This value should be
consistent with the type defined for the
attribute.

Access control Attribute Specification
notebook
General page
Export Control options

Can be one of public, protected, or
private, and maps as follows:

v Public attributes map to attributes of
the business object interface. The
business object implementation will
have get and set methods defined for
these attributes.

v Protected attributes map to protected
attributes of the business object
implementation. They do not appear
in the business object interface, and
will not be exported at all if the class’s
CreateImplementation property is set
to false.

v Private attributes map to private
attributes of the business object
implementation. They do not appear
in the business object interface, and
will not be exported at all if the class’s
CreateImplementation property is set
to false.

Length Attribute Specification
notebook
DDL page
Length property

Defines the string length if the attribute
is of type string.

114 WebSphere: Application Development Tools Guide



Attribute
property
(Object Builder)

Specification (Rose) Description

Key attribute Attribute Specification
notebook
DDL page
PrimaryKey property

Defines whether the attribute is included
in the key object for the component (if
you set the CreateKey property for the
class). If you set this property, you
should also set the IsReadOnly property
on the IDL page (key attributes must be
read-only).

Key attributes for parents will
automatically be included in the child’s
key.

Note: Do not specify complex types
(such as structures or unions) as keys.

Copy helper
attribute

Attribute Specification
notebook
DDL page
IsIncludedInCopyHelper
property

Defines whether the attribute is included
in the copy helper for the component (if
you set the CreateCopy property for the
class). By default, all public attributes are
included in the copy helper.

Data object
attribute

Attribute Specification
notebook
DDL page
IsIncludedInDataObject
property

Defines whether the attribute is included
in the data object interface for the
component (if you set the
CreateImplementation property for the
class). By default, all attributes are
included in the data object.

Read-only Attribute Specification
notebook
IDL page
IsReadOnly property

Defines whether the attribute is
read-only. By default the attribute is not
read-only.

Override If you define an attribute in a child class
that has the same name and type as an
attribute in its parent class, the attribute
will be defined as an override in Object
Builder, in the Business Object
Implementation wizard, Attributes to
Override page.

“Projects and models” on page 17
“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63

Chapter 3. Using Rational Rose with Object Builder 115



“Rose to Object Builder mapping rules” on page 97

Package properties in Rose

The following package properties apply for packages in your Rose model.

Package
property
(Object
Builder)

Specification (Rose) Description

Name Package Specification
Notebook
Name field

Name which will be used for the
association Object Builder file or
module.

Name of
associated
Object Builder
project

Package Specification
Notebook
OBProjectDirectory field

If the package is identified as a
controlled unit in Rose, the value of this
field will be the name of the Object
Builder project created to hold the
information being mapped from Rose.

Hide from
export

Package Specification
Notebook
BridgeToOB property

If this value is set to true for a package
in the Rose model, this package and all
elements (packages and classes)
contained in it will not be mapped from
Rose to Object Builder.

“Projects and models” on page 17
“Rose” on page 64

“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Method properties in Rose

When a class in Rose has its IDLSpecificationType set to Interface (the default,
on the Class Specification notebook’s IDL page), then the class’s operations
map to methods of the component in Object Builder. The properties of a
method can be set in Rose as follows.

116 WebSphere: Application Development Tools Guide



Method
property
(Object Builder)

Specification (Rose) Description

Name Operation Specification
notebook
General page
Name field

Should be a valid C++ name. Leading
and trailing blank spaces are removed,
and embedded spaces are converted to
underscores. For example, my Method
Name would become my_Method_Name.

Return type Operation Specification
notebook
General page
Return Class field

Maps to the return type for the method.
Should be a valid type: either a
predefined IDL type (for example, char,
short, float), a type currently defined in
Rose, or a type already defined in the
Object Builder model you are exporting
to. When you specify the type, any
leading and trailing blank spaces are
removed, and embedded spaces are
converted to underscores.

Access control Operation Specification
notebook
General page
Export Control options

Can be one of public, protected, or
private, and maps as follows:

v Public operations map to methods of
the business object interface.

v Protected operations map to protected
methods of the business object
implementation. They do not appear
in the business object interface, and
will not be exported at all if the class’s
CreateImplementation property is set
to false.

v Private operations map to private
methods of the business object
implementation. They do not appear
in the business object interface, and
will not be exported at all if the class’s
CreateImplementation property is set
to false.

Parameter name Operation Specification
notebook
Details page
Arguments area

The argument name maps to the
parameter name. Should be a valid C++
name. Leading and trailing blank spaces
are removed, and embedded spaces are
converted to underscores. For example,
first Parameter would become
first_Parameter.

Chapter 3. Using Rational Rose with Object Builder 117



Method
property
(Object Builder)

Specification (Rose) Description

Parameter type Operation Specification
notebook
Details page
Arguments area

The argument type maps to the
parameter type. Should be a valid type:
either a predefined IDL type (for
example, char, short, float), a type
currently defined in Rose, or a type
already defined in the Object Builder
model you are exporting to. When you
specify the type, any leading and trailing
blank spaces are removed, and
embedded spaces are converted to
underscores.

Argument
default

Operation Specification
notebook
Details page
Arguments area

Should be one of:

v in

v out

v inout

If you specify a different value, it will be
ignored, and in will be used.

Exceptions Operation Specification
notebook
Details page
Exceptions field

Map to exceptions raised by the method.
You can specify these exceptions in Rose
on the Details page of the Operation
Specification notebook. The exceptions
should be of a valid type (either one
defined in the current Rose model, or
one previously defined in the target
Object Builder model).

One-way Operation Specification
notebook
IDL page
OperationIsOneWay
property

Maps to the one-way property in Object
Builder. The property defaults to False.

Override If you define an operation in a child class
that has the same name and signature as
an operation in its parent class, the
operation will be defined as an override
in Object Builder, in the Business Object
Implementation wizard, Methods to
Override page.

“Projects and models” on page 17
“Rose” on page 64

118 WebSphere: Application Development Tools Guide



“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Class relationships in Rose

When you export your object model from Rose into Object Builder, the class
relationships you have defined are mapped as follows:

Inheritance
Inheritance relationships you define in Rose are preserved by the export
process, and applied to the business object interfaces that the exported classes
are mapped to. If you are generating additional component objects for a class
(an option of the export process), then the inheritance for the additional
components parallels the inheritance for the business object interface.

For example, if ChildClass inherits from ParentClass, then after the export the
ChildClass business object interface inherits from the ParentClass business
object interface. If you added business object implementations during the
export, then in addition the ChildClassBO business object implementation
inherits from the ParentClassBO business object implementation.

Associations and aggregations
Associations and aggregations map to attributes, object relationships, or
sequences, as explained below. Associations and aggregations are only
mapped if they are navigable.

The export process preserves or maps the following information about the
relationship:

Chapter 3. Using Rational Rose with Object Builder 119



Relationship
property
(Object
Builder)

Specification (Rose) Description

Name Association Specification
notebook
Role A General page, Role
B General page
Name field

Role A and Role B are the terms in Rose
that define the two ends of an
association. In the Association
Specification notebook, the names you
specify for the roles (on the Role A
General and Role B General pages)
determine the names of the attributes or
relationships that each class has to
represent its association with the other.

The names you specify should be valid
C++ names. Leading and trailing blank
spaces are removed, and embedded
spaces are converted to underscores. If
you do not specify names for the roles,
then default names based on the names
of the referenced interfaces are used.

For example, if a class named Agent is in
Role A and a class named Customer is in
Role B, the relationship is 1..1 and no
names are specified, then Agent gets an
attribute named the_Customer of type
Customer, and Customer gets an
attribute named the_Agent of type Agent.

Cardinality Association Specification
notebook
Role A Detail page, Role B
Detail page
Cardinality field

If the cardinality is set to one of 0..n, 1..n,
or n, then it is considered to be a
cardinality of ’many’, and the
relationship will be mapped to either an
object relationship (stored in a reference
collection) or an attribute of type
sequence ClassName (where ClassName is
the name of the class in the n role). With
all other cardinalities, the relationship
will be mapped to attributes of type
ClassName.

When the cardinality is ’many’, you can
choose whether to map as an object
relationship or a sequence with the
MapAsObjectRelationship property.

120 WebSphere: Application Development Tools Guide



Relationship
property
(Object
Builder)

Specification (Rose) Description

Relationship
mapping

Association Specification
notebook
IDL A page, IDL B page
MapAsObjectRelationship
property

For class relationships with role
cardinality set to ’many’, the
MapAsObjectRelationship property
defines whether the class relationship is
exported as an object relationship or a
sequence. By default, relationships are
exported as object relationships. To
export a relationship as a sequence, set
the MapAsObjectRelationship property to
false on the IDL A or IDL B page of the
Association Specification notebook.

Relationship
implementation

Association Specification
notebook
IDL A page, IDL B page
Relationship-
Implementation property

If the class relationship has been set to
export as an object relationship
(MapAsObjectRelationship set to true in
the appropriate IDL A or IDL B page of
the association notebook), you can
specify the implementation type for this
object relationship. The
RelationshipImplementation property on
the IDL A or IDL B page of the
Association Specification notebook can be
set to one of the three following values:

v Local Persistent Reference

v Transient Reference Collection

v Persistent Reference Collection

v User-defined OO_SQL Query

v Reference Resolved by Foreign Key

This property applies only when the
class property CreateImplementation is
set to True (the default).

Chapter 3. Using Rational Rose with Object Builder 121



Relationship
property
(Object
Builder)

Specification (Rose) Description

Read-only or
read-write

Association Specification
notebook
IDL A page, IDL B page
IsReadOnly property

You can specify that a role in an
association be read-only. When the
association is exported, then any
corresponding attribute is marked
accordingly. You can specify whether an
attribute is read-only on the appropriate
page for the role (IDL A and IDL B). You
can set the IsReadOnly property on these
pages to true or false. By default, the
property is set to false (attributes have
read/write access).

For example, if Role A (Agent) is
read-only, then Role B’s attribute
(Customer’s attribute the_Agent of type
Agent) is read-only.

Access control Association Specification
notebook
Role A General page, Role
B General page
Export Control options

If the relationship is being exported as an
attribute, then the access control you set
is applied. For example, if Agent’s role is
marked protected, then Customer’s
attribute of type Agent will be protected.
The access control can be one of public,
protected, or private, and maps as
follows:

v Public attributes map to attributes of
the business object interface. The
business object implementation will
have get and set methods defined for
these attributes.

v Protected attributes map to protected
attributes of the business object
implementation. They do not appear
in the business object interface.

v Private attributes map to private
attributes of the business object
implementation. They do not appear
in the business object interface.

“Projects and models” on page 17
“Rose” on page 64

122 WebSphere: Application Development Tools Guide



“Chapter 3. Using Rational Rose with Object Builder” on page 63

“Rose to Object Builder mapping rules” on page 97

Object Builder to Rose mapping rules

When you import an Object Builder model into Rose, elements in the Object
Builder model map to elements in a Rose model as follows:
v Business object files, modules, and interfaces that already have a mapping

(because they were created by export from Rose) maintain that mapping.
v New business object files, modules, and interfaces (added directly to Object

Builder, not by export from Rose) are mapped to packages, subpackages,
and classes.

v Local-only objects that already have a mapping (because they were created
by export from Rose) maintain that mapping.

v New local-only objects (added directly to Object Builder, not by export from
Rose) are mapped to classes with the ObjectType property set to Local-Only
Objects.

v Non-IDL objects that already have a mapping (because they were created
by export from Rose) maintain that mapping.

v New non-IDL objects (added directly to Object Builder, not by export from
Rose) are mapped to classes with the ObjectType property set to Non-IDL
Type Objects.

Business object file
Business object files in Object Builder that already have a mapping (because
they were created by export from Rose) maintain that mapping. New business
object files are mapped to packages. Properties of the module map as follows:
v Name

Stored as the subpackage name in the Package Specification notebook.
v Constructs

Constructs defined with file scope map to top-level classes (for an existing
mapping) or classes in the package (for new mappings). The
IDLSpecification property of the class on the IDL page of its Class
Specification notebook is set to one of:
– Struct
– Enumeration
– TypeDef
– Union
– Const

Chapter 3. Using Rational Rose with Object Builder 123



– Exception
v Comments

Stored as documentation for the subpackage in the Package Specification
notebook.

Business object module
Business object modules in Object Builder that already have a mapping
(because they were created by export from Rose) maintain that mapping. New
business object modules are mapped to subpackages of the file package.
Properties of the module map as follows:
v Name

Stored as the subpackage name in the Package Specification notebook.
v Constructs

Constructs with module scope map to classes contained in the subpackage.
The IDLSpecification property of the class on the IDL page of its Class
Specification notebook is set to one of:
– Struct
– Enumeration
– TypeDef
– Union
– Const
– Exception

v Comments
Stored as documentation for the subpackage in the Package Specification
notebook.

Business object interface
Business object interfaces in Object Builder that already have a mapping
(because they were created by export from Rose) maintain that mapping. New
business object interfaces are mapped to classes in a file package or module
subpackage. The IDLSpecification property of the class on the IDL page of its
Class Specification notebook is set to Interface. Properties of the interface map
to properties of the class as follows:
v Name

Stored as the class name in the Class Specification notebook.
v Constructs

Constructs with interface scope map to nested classes inside the Rose class
corresponding to the Object Builder interface. The Class Specification
Notebook for the nested class captures the information for the construct
type as described above for constructs at file or module scope.

v Interface inheritance
Parent interfaces map to generalize elements in Rose, on the Relations page
of the Class Specification notebook.

124 WebSphere: Application Development Tools Guide



v Attributes
Attributes map to attribute elements of the class in Rose.

v Sequence attributes
If an attribute of type sequence was created in Object Builder by the Rose
Bridge (by the export of an association with the MapAsObjectRelationship
property set to false), then the import preserves this original mapping. If
the attribute was created directly in Object Builder (by defining a typedef
for the sequence and using the typedef as the attribute type), it maps to an
attribute of the class.
Note: If you defined the association in Rose, exported to Object Builder to
create the sequence attribute, and then deleted the attribute in Object
Builder, the import will not delete the association in Rose, but will set the
is_navigable property of the Role to FALSE.

v Methods
Methods map to operation elements of the class in Rose.

v Object relationships
If an object relationship was created by exporting an association in Rose,
the import preserves the original mapping, to a Role in a many-to-many
association or one-to-many association in Rose. If the object relationship
was created directly in Object Builder and does not have an equivalent in
Rose, it is not imported, but is stored in the .xml file in the project’s \XMI
directory.
Note: If the object relationship was created directly in Object Builder and
does not have an equivalent in Rose, a unidirectional association will be
created in Rose to represent the relationship.

v Comments
Stored as class documentation in class specification notebook.

“Object Builder” on page 1
“Rose” on page 64
“The Rose Bridge” on page 69

“Importing a project into Rose” on page 92
“Importing a Rose design from a team environment” on page 447

Chapter 3. Using Rational Rose with Object Builder 125



126 WebSphere: Application Development Tools Guide



Chapter 4. Creating a component

Components can be defined either in Rational Rose as part of a design that
you can export to Object Builder, or directly in Object Builder.

In Object Builder, components can be defined in any of the following ways:
v From a new design (starting from the component interface and working

down to the component datastore)
v From an existing datastore (starting from the datastore and working up to

the component interface)
v From both (combining a new component and data interface with an existing

datastore)

The choices for component creation can be summarized as:
v “Creating a component for transient data” on page 135
v “Creating a component for new DB data” on page 136
v “Creating a component for existing DB data” on page 139
v “Creating a component for PA data” on page 157
v “Creating a component for an inbound message” on page 187
v “Creating a component for an outbound message” on page 201
v “Reusing existing objects” on page 215
v “Mapping a data object to a persistent object” on page 703
v “Creating a composite component” on page 261
v “Creating a local-only object” on page 216
v “Chapter 8. Working with enterprise beans” on page 391

“Object Builder” on page 1
“Rose” on page 64
Components (Programming Guide)
Component assembly (Programming Guide)

“Developing in Object Builder” on page 19
“Configuring builds” on page 549

“Naming objects” on page 128
“Internationalization of data” on page 132

© Copyright IBM Corp. 1999, 2000 127



Naming objects

The following tables show the rules for naming objects in Object Builder. You
can also refer to the supported characters for the “Internationalization of data”
on page 132.

Note: CORBA does not allow the identifier of an object to be the same as that
of its immediate parent in the namespace. For example, a business object,
local-only or data object interface cannot have the same name as the module
that contains it.

Objects for DB persistence

Entity Naming rules Maximum
length of name

database
(SM object)

Characters permitted: alphanumeric characters (a-z,
A-Z, 0-9), #, @, $.

Characters not permitted: from European, Asian
character sets (for example, umlauts)

The first character of the name must be an
alphabetic character, or one of #, @, or $.
The names are not case-sensitive.

eight characters

schema group Characters permitted:
alphanumeric characters (letters and numbers)
the underscore character
the blank character

DB schema file Characters permitted:alphanumeric characters,
the underscore character
Name must start with an alphabet.
File names must be unique (ignoring capitalization)
to prevent files overwriting each other when
generated on case-insensitive platforms.
Do not specify an extension. The extension is
supplied by the code generation process.

DB persistent
object file

DB persistent
object class *

eight characters

DB persistent
object
attribute name

26 characters.

128 WebSphere: Application Development Tools Guide



* On OS/390, if the length of the DB persistent object class exceeds
eight characters, Object Builder truncates it to the 8.3 format.

Length restrictions for the various backend stores

Entity DB2 v5.2 and v6.1 Oracle Informix Units

database name 8 8 8 characters

schema name 8 8 8 characters

table name 18 (128 on v6.1 for workstation
platforms)

30 18 bytes

column name 18 (30 on v6.1 for workstation
platforms)

30 18 bytes

Note the following points:

v Workstation platforms include Windows NT, AIX, Solaris, and HP-UX (not
OS/390).

v When the unit of length is x bytes, it implies x SBCS characters, or half the
number (x/2) of DBCS characters.

Chapter 4. Creating a component 129



Component objects

Entity Characters permitted in
name

Naming rules

business object: interface
file, implementation file

alphanumeric characters

the underscore character

Name must start with an
alphabet

File names must be unique
(ignoring capitalization) to
prevent files overwriting
each other when generated
on case-insensitive
platforms.

Do not specify an
extension. The extension is
supplied by the code
generation process.

local-only object: file,
interface

*data object file

*data object interface

*data object
implementation file

*data object
implementation interface

key class file, interface, and
module

**copy helper class file,
interface, and module

managed object file (SM
object)

specialized home:
implementation file,
module, interface

composition interface file

composition module Name must start with an
alphabet, and cannot be an
IDL reserved word.

*Entities that exist after you create a data object from a persistent object.
**A copy helper attribute name is not case-sensitive, and cannot be the same
as the name of the copy helper it is defined in.

Note:For interfaces and modules of business objects, data objects, and
local-only objects:
v You cannot use the following keywords to name the interface:

– Java keywords
– IDL keywords

v None of the following names can be used as interface names:
– any method name in Java.lang.Object. These include names such as clone,

finalize, hashCode, notifyAll, wait, equals, getClass, notify, and toString

– any name that is suffixed with Package, Holder, Helper, Ref, _var, or _ptr

130 WebSphere: Application Development Tools Guide



– goto

Configuration objects

Entity SM
object

Characters
permitted
in name

Characters
not
permitted

Naming
rules

Maximum
length of
name

container Yes alphanumeric
characters
(0-9 and
A-Z)

special
characters

The name
must start
with an
alphabet.

application
family

Yes
alphanumeric
characters

The name
must start
with an
alphabetapplication

DDL Yes

First
character
must be
alphabetic;
other
characters
(positions 2
to 8) must
be
alphanumeric.

Cannot
exceed eight
characters.

IR file Yes

Cannot
exceed eight
characters

DLL
description

alphanumeric
characters
(letters and
numbers),
the blank
character

The name
must start
with an
alphabet

factory
finder

The name must exist in the namespace at the time the
application is run.

client DLL Yes whitespace
and Unix
glob
characters
(special
characters)

Operating
system-
compliant
filenamesserver DLL

Chapter 4. Creating a component 131



Note the following points for an IR file:

Default name = business object file name with suffix _IR.

Default name = managed object IDL
file name, with suffix _IR.

This file gets the .exe extension only on Windows NT.

Object Builder
Naming conventions (Programming Guide)

“Searching the Tasks and Objects pane” on page 30

“Internationalization of data”

Internationalization of data

Objects that you create in Object Builder (for example, the application family,
the application, managed objects, DLL names, application DDL files, and so
on), along with some text string properties, (for example, database names), are
ultimately loaded into System Management (installed on the server), when
you deploy your applications. This data, along with data that is input through
the System Manager user interface constitute system management
configuration data.

Component Broker provides internationalized support for client-server and
server-server communication between different code pages.

For error-free communication between different code pages, you must use a
restricted set of ASCII characters for object names and attributes in system
management configuration data.

Supported characters for input through the System Manager user interface are
shown in the table. This constitutes the set of characters that are supported for
Object Builder entities as well. (You must use characters only from the
displayable portion of the invariant ASCII character set.)

For other rules to be followed while naming different entities in Object
Builder, see “Naming objects” on page 128.

132 WebSphere: Application Development Tools Guide



Table 1. System Manager user interface, allowed characters from ISO 8859-1
(Latin 1)

Char Value : description

!
“
#
$

0x20 : space
0x21 : exclamation mark
0x22 : quotation mark
0x23 : number sign (hash)
0x24 : dollar sign

%
&
’
(
)

0x25 : percent sign
0x26 : ampersand
0x27 : apostrophe
0x28 : left parenthesis
0x29 : right parenthesis

*
+
’
-
.

0x2A : asterisk
0x2B : plus sign
0x2C : comma
0x2D : hyphen (minus)
0x2E : full stop (period)

/
0
1
2
3

0x2F : solidus (forward slash)
0x30 : digit zero
0x31 : digit one
0x32 : digit two
0x33 : digit three

4
5
6
7
8

0x34 : digit four
0x35 : digit five
0x36 : digit six
0x37 : digit seven
0x38 : digit eight

9
:
;
<
=

0x39 : digit nine
0x3A : colon
0x3B : semicolon
0x3C : less-than sign
0x3D : equals sign

>
?
@
A
B

0x3E : greater-than sign
0x3F : question mark
0x40 : commercial at
0x41 : latin capital letter A
0x42 : latin capital letter B

C
D
E
F
G

0x43 : latin capital letter C
0x44 : latin capital letter D
0x45 : latin capital letter E
0x46 : latin capital letter F
0x47 : latin capital letter G

Chapter 4. Creating a component 133



Table 1. System Manager user interface, allowed characters from ISO 8859-1
(Latin 1) (continued)

Char Value : description

H
I
J
K
L

0x48 : latin capital letter H
0x49 : latin capital letter I
0x4A : latin capital letter J
0x4B : latin capital letter K
0x4C : latin capital letter L

M
N
O
P
Q

0x4D : latin capital letter M
0x4E : latin capital letter N
0x4F : latin capital letter O
0x50 : latin capital letter P
0x51 : latin capital letter Q

R
S
T
U
V

0x52 : latin capital letter R
0x53 : latin capital letter S
0x54 : latin capital letter T
0x55 : latin capital letter U
0x56 : latin capital letter V

W
X
Y
Z
[

0x57 : latin capital letter W
0x58 : latin capital letter X
0x59 : latin capital letter Y
0x5A : latin capital letter Z
0x5B : left square bracket

\
]
|
_
′

0x5C : reverse solidus (reverse slash)
0x5D : right square bracket
0x5E : circumflex accent
0x5F : low line (underscore)
0x60 : grave accent

a
b
c
d
e

0x61 : latin small letter a
0x62 : latin small letter b
0x63 : latin small letter c
0x64 : latin small letter d
0x65 : latin small letter e

f
g
h
i
j

0x66 : latin small letter f
0x67 : latin small letter g
0x68 : latin small letter h
0x69 : latin small letter i
0x6A : latin small letter j

k
l

m
n
o

0x6B : latin small letter k
0x6C : latin small letter l
0x6D : latin small letter m
0x6E : latin small letter n
0x6F : latin small letter o

134 WebSphere: Application Development Tools Guide



Table 1. System Manager user interface, allowed characters from ISO 8859-1
(Latin 1) (continued)

Char Value : description

p
q
r
s
t

0x70 : latin small letter p
0x71 : latin small letter q
0x72 : latin small letter r
0x73 : latin small letter s
0x74 : latin small letter t

u
v
w
x
y

0x75 : latin small letter u
0x76 : latin small letter v
0x77 : latin small letter w
0x78 : latin small letter x
0x79 : latin small letter y

z
{
|
}
x

0x7A : latin small letter z
0x7B : left curly bracket
0x7C : vertical line
0x7D : right curly bracket
0x7E : tilde

“Object Builder” on page 1

“Developing in Object Builder” on page 19
Using the System Manager user interface (System Administration Guide)

“Naming objects” on page 128

Creating a component for transient data

If your component has data that does not need to be stored, or you are
providing customized persistence rather than using Component Broker
services, you can create a component for transient data.

You can create a component for transient data in much the same way you
create a component for new DB data, starting from the business object file and
working down to the data object implementation. Because the data is
transient, you do not need a persistent object or schema.

A component is identified as containing transient data by the setting on its
data object implementation. When you create the data object implementation,
set its Persistent Behavior and Implementation to Transient.

Chapter 4. Creating a component 135



If you set the data object implementation’s “Environment” on page 249 to
BOIM with UUID key, you do not require a key for the component.

To create a component for transient data, complete these tasks:
1. “Creating a business object file” on page 775
2. “Adding a business object module” on page 777
3. “Adding a business object interface” on page 777
4. “Adding a key” on page 826
5. “Adding a copy helper” on page 830
6. “Adding a business object implementation and data object interface” on

page 780
7. “Implementing methods” on page 752
8. “Adding a data object implementation” on page 807
9. “Adding a managed object” on page 871

For rules on naming the objects of the component, see “Naming objects” on
page 128

Components (Programming Guide)

“Chapter 4. Creating a component” on page 127
“Tutorial: Creating a component with transient data” on page 39

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a component for new DB data

If you are creating a new component, which connects to a database that does
not yet exist, you can create the entire component in Object Builder, starting
with the business object interface and working your way down to a DB
schema derived from the component’s state data.

To create a new component directly in Object Builder, follow these steps:
1. “Creating a business object file” on page 775
2. “Adding a business object module” on page 777
3. “Adding a business object interface” on page 777
4. “Adding a key” on page 826
5. “Adding a copy helper” on page 830

136 WebSphere: Application Development Tools Guide



6. “Adding a business object implementation and data object interface” on
page 780

7. “Implementing methods” on page 752
8. “Adding a data object implementation” on page 807
9. “Adding a persistent object and schema” on page 833

10. “Adding a managed object” on page 871

For a scenario showing how to create a component for new DB data, see
“Tutorial: Creating a component for new DB data” on page 50.

Components (Programming Guide)

“Chapter 4. Creating a component” on page 127

“Naming objects” on page 128
“Internationalization of data” on page 132

DDL

There are two types of DDLs (Data Definition Languages): System
Management DDL and SQL DDL.

System Management DDL: a scripting language that defines the structure of
an application on both client and server. Object Builder can generate a DDL
script for your application family that defines the structure of the applications
in the family. This generated DDL file is found in your working directory,
under a subdirectory that has the same name as the application family. It is
this file that provides the System Manager with information about the
applications during the installation process.

SQL DDL: a language that describes data and their relationships in a
database. It is composed of data definition statements that create, alter, or
destroy database objects such as tables, aliases, views, and indexes.

A data definition is a program statement that describes the features of,
specifies relationships of, and establishes the context of data. It has
information that describes the contents and characteristics of a field, a record,
or a file. A data definition can include field names, lengths, locations, and
data types.

In Object Builder, you can import an SQL DDL file to create schemas within a
schema group.

Chapter 4. Creating a component 137



“Generating the DDL files” on page 593
“Creating a DB schema by importing an SQL file” on page 844

Package file

When you create an Embedded SQL persistent object and generate code for it,
a package file is created in the associated database, with the name you supply.

Follow these rules when you name the package file:

v It must not exceed eight characters
v It must be unique for each of the persistent objects that you create, if they

are to operate under the same server at run time. Package filenames must
be unique across models as well. That is, you cannot have package files
with the same name that exist in different models.

The name you supply is incorporated in the generated code of the make file
where the persistent object is built, and the package filename in the database
is set to this value.

This package file is used to resolve any unresolved names such as column
names and table names that are specified in the .sqx file, which is generated
from the persistent object.

The DB2 precompiler takes the .sqx file (a C++ file with Embedded SQL) as
input, and the make file creates a bind file with the same name as the
generated .sqx file. This file is converted into the package file, which is bound
to the database being accessed.

The purpose of the bind steps is to communicate your SQL requests to DB2,
enabling DB2 to determine an optimal database access strategy.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837

DBCS and Binary Data Support

Double-byte character set (DBCS) is an encoding scheme for Asian characters
such as Japanese. DB2 allows you to store both database metadata (for
example: table names and column names) and database data in DBCS format.
It also supports binary data storage.

138 WebSphere: Application Development Tools Guide



The current release of Object Builder enables the following storage patterns:
v Database metadata names are in DBCS format
v Database data is stored in either DBCS or Binary format

Database meta-data names are in DBCS format
When you create a persistent object from a schema that was imported, if the
given column name in the schema is an ASCII name (a legal C++ identifier),
Object Builder will use the same name as the attribute name for the persistent
object; otherwise, Object Builder generates names such as POAttribute1,
POAttribute2. You can change these tool-generated names.

Database data is stored in either DBCS or Binary format
Object Builder uses the following “Data encoding schemes” on page 152 for
data of string type that is stored in database meta-data:
v DBCS
v Single-byte character set (SBCS) or multi-byte character set (MBCS)
v Binary data

Note the following points when you do database queries:

v You can do database queries using DBCS or binary data just as you do
queries with any other data type.

v You cannot do queries over large object types such as LONG VARCHAR and
LONG VARGRAPHIC if they are used as either primary or foreign keys.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Adding a persistent object and schema” on page 833

“Data encoding schemes” on page 152
“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Mapping DBCS data types” on page 149

Creating a component for existing DB data

You can create a component for accessing existing or legacy database
information by importing the database schema into Object Builder, and
deriving a component from it, as follows:

1. “Creating a DB schema by importing an SQL file” on page 844
2. “Editing a DB schema group” on page 841

Chapter 4. Creating a component 139



3. “Editing a generated SQL file” on page 857
4. “Adding a persistent object from a DB schema” on page 837
5. “Adding a data object from a DB persistent object” on page 814
6. “Adding a business object from a data object” on page 784
7. “Implementing methods” on page 752
8. “Adding a key” on page 826
9. “Adding a copy helper” on page 830

10. “Adding a managed object” on page 871

Component (Programming Guide)
Schema (Programming Guide)
“DDL” on page 137

“Chapter 4. Creating a component” on page 127

“Naming objects” on page 128
“Internationalization of data” on page 132

Supported CORBA Types

CORBA supports the following types:

Base Types

v float
v double
v long double
v short
v long
v long long
v unsigned short
v unsigned long
v unsigned long long
v char
v wchar
v boolean
v octet
v any

140 WebSphere: Application Development Tools Guide



Constructed Types

v struct
v union
v enum

Template Types

v sequence
v string
v wstring
v fixed

Complex Declarators (arrays)

Native Types (language specific)

Note the following points:

v Object Builder currently does not support long double, unsigned long long, or
fixed.

v Object Builder does not support long long, wstring and wchar on
OS/390.

v Object Builder is packaged with the Enterprise Edition of Component
Broker, which supports both the EJB component model and a CORBA-based
component model called Managed Object Framework (MOFW). It includes
implementations of almost all the current CORBA object services.

v CORBA deployment: The Enterprise Edition contains a CORBA ORB and
the object services, but it is not designed to be used the way you would use
a stand-alone CORBA ORB; that is, you do not write directly to low-level
ORB interfaces like the Basic Object Adaptor (BOA), or the Portable Object
Adaptor (POA). You write business objects to the MOFW component
model, define the interfaces in IDL, and call CORBA object services from
within your business object methods when you need to. If you have
CORBA objects from another vendor’s ORB, those can often be run inside
Enterprise Edition, sometimes with a few modifications.

Persistent object (Programming Guide)
Application adaptor (Programming Guide)

“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Adding a data object from a DB persistent object” on page 814

Chapter 4. Creating a component 141



DB2 data type mappings

The tables on this page show the mappings among IDL, PO and SQL data
types in different situations, assuming a DB2 backend database.

The following mappings are used when you create a schema and persistent
object from a data object implementation:

IDL Type PO Type SQL Type Encoding
scheme

boolean short SMALLINT

char char[] CHARACTER

string[n]
{string length
fixed, 0< n
<255}

DB2VARCHAR VARCHAR[n] SBCS or
MBCS

string[n]
{varying
length, n>255}

DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

string (if it
represents a
decimal
number)

char[] DECIMAL

double double DOUBLE

double DECIMAL

float double DOUBLE

long long INTEGER

unsigned long long INTEGER

octet short INTEGER

short short SMALLINT

unsigned short long INTEGER

any DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

void DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

Object DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

string DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

wstring (no
size specified)

DB2VARGRAPHIC[2000] LONG VARGRAPHIC DBCS

142 WebSphere: Application Development Tools Guide



IDL Type PO Type SQL Type Encoding
scheme

wstring[n]
(fixed string
length,
0<n<128)

DB2VARCHAR[2000] VARGRAPHIC[n]
(0<n<128)

DBCS

wstring[n]
{varying
length, n>=128}

DB2VARCHAR[2000] LONG VARGRAPHIC DBCS

wchar wchar_t GRAPHIC(1) DBCS

struct DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

typedef DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

union DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

interface DB2VARCHAR[2000] VARCHAR[2000] SBCS or
MBCS

enum long INTEGER

wstring DB2VARGRAPHIC
[2000]

GRAPHIC[n] DBCS

string[n+1] char[n+1] CHAR[n] SBCS or
MBCS

IManagedClient
ByteString

::ByteString VARCHAR for bit data Binary

IManagedClient
ByteString

::ByteString LONG VARCHAR for bit
data

Binary

IManagedClient
ByteString

::ByteString VARGRAPHIC for bit data Binary

IManagedClient
ByteString

::ByteString LONG VARGRAPHIC for
bit data

Binary

All other types DB2VARCHAR[2000] LONG VARCHAR SBCS or
MBCS

You can map each of the IDL types in the table below with each of the PO
types listed, without using a mapping helper:

Chapter 4. Creating a component 143



IDL Type PO Type

char
enum

boolean
double

float
long

unsigned long
short

unsigned short
octet

char

long

short

float

double

Note: You can also map an IDL type string to a PO type char without using a
mapping helper.

Object Builder provides the mapping helper (DB2MappingHelper) for the
following IDL to PO type mappings:

IDL Type PO Type DO to PO Mapping
Method

PO to DO Mapping
Method

string _DB2VARCHAR[] stringToVarChar varCharToString

interface _DB2VARCHAR[] byteStringToVar
Char

varCharToByte
String

interface char[] byteStringToString stringToByteString

wchar wchar_t[] wStringToVar
Graphic()

varGraphicTo-
WString()

string char[11] stringTo-
JavaDateString

javaDate-
StringToString

string char[9] stringTo-
JavaTimeString

javaTime-
StringToString

string char[27] stringToJava-
TimestampString

javaTimestamp-
StringToString

string char[7] stringToJava-
BigIntegerString

javaBigInteger-
StringToString

string char[7] stringToJava-
BigDecimalString

javaBigDecimal-
StringToString

For top-down development, when you map a data object
to a persistent object, the IDL data type long long maps to the C++ long type
on the persistent object. This is a mapping of a data type of higher precision
(64 bits) to one of lower precision (32 bits), and Object Builder warns you that

144 WebSphere: Application Development Tools Guide



there may be loss of precision as a result (due to integer truncation). This
mapping is not supported on the OS/390 and Solaris platforms due to C++
compiler restrictions.

The following mappings are used when you create a persistent object from a
schema:

SQL Type Length PO Type Size IDL Type Size

CHARACTER n char[] n+1 string n

CHARACTER[1] 1 char 1 char 1

INTEGER long integer

SMALLINT short short

DOUBLE double double

DECIMAL
NUMERIC

double double

n char[] n+2 string (n+2)*Scale

BLOB n char[] n string n*Scale

CLOB n char[] n string n*Scale

DBCLOB n char[] n string n*Scale

GRAPHIC 1 wchar_t[] 1 wchar 1

GRAPHIC n wchar_t[] n+1 wstring n

DATE char[] 11 string[10]

TIME char[] 9 string[8]

TIMESTAMP char[] 27 string[26]

VARCHAR n DB2VARCHAR[] n string n

VARGRAPHIC n DB2VARGRAPHIC[] n wstring n

LONG
VARCHAR

DB2VARCHAR[] 2000 string 2000

LONG
VARGRAPHIC

DB2VARGRAPHIC[] 2000 wstring 2000

The following mappings are used when you create a data object from a
persistent object:

PO Type IDL Type Size

char char

char[n] string n-1

wchar_t wchar 1

wchar_t[n] wstring n-1

Chapter 4. Creating a component 145



PO Type IDL Type Size

short short

long long

double double

float float

DB2VARCHAR[n] string n

DB2VARGRAPHIC[n] wstring n

All other types string 256

Persistent object (Programming Guide)

“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Adding a data object from a DB persistent object” on page 814

Oracle data type mappings

Object Builder uses the Oracle Application Adaptor (OAA) to access data in
Oracle databases on the Windows NT, AIX, Solaris and HP-UX platforms.

Restrictions:

v Oracle 8.0.5 databases are supported only on the
Windows NT, AIX and Solaris platforms.

Oracle 8.1.6 (Oracle 8i Release 2)
databases are supported on the Windows NT, AIX, Solaris, and HP-UX
platforms.

v Support for Oracle backend databases is limited to data objects that use the
cache service only. That is, data objects that use embedded SQL, or any
other type of persistence will not be able to access data stored in Oracle
databases.

v Reference collections are not supported in conjunction with Oracle backends
for the current release of Component Broker.

v In the current release of Component Broker, only the Oracle VARCHAR2
and NUMBER data types are supported, along with those Oracle data types
that have an equivalent type in DB2. That is, Object Builder accepts all
SQL/DS and DB2 types and the Oracle NUMBER, NUMBER(p),

146 WebSphere: Application Development Tools Guide



NUMBER(p,s) and VARCHAR2 types. It will not accept any other Oracle
types such as RAW(n), LONG RAW, NCHAR(n), NVARCHAR2, and
ROWID.

v Object Builder will not accept the Oracle data type NUMBER with a
negative scale.

The following table shows the DB2-equivalent Oracle types and their
mappings to the persistent object type, Interface Definition Language type,
and SQL type.

Oracle SQL
type

precision
(p)

scale (s) PO type IDL type SQL type

NUMBER(p,s) 0 0 double double double

NUMBER(p,s) 1..4 0 short short smallint

NUMBER(p,s) 5..9 0 long long integer

NUMBER(p,s) >=10 0 double /
string

string decimal(p,0)

NUMBER(p,s)*** p <0 double /
string

string decimal(p,0)

NUMBER(p,s) p >38 double double double

NUMBER(p,s) p >p double double

NUMBER(p,s)* p s double /
string

string decimal(p,s)

VARCHAR2(n) string string varchar(n)

DATE** string** string timestamp

RAW(n)*** ::ByteString ::ByteString varchar for bit
data****

LONG RAW*** ::ByteString ::ByteString varchar for bit
data****

* Consider NUMBER(p) = NUMBER(p,0) and NUMBER = NUMBER(38,0).

** Length 27, not 11 as in DB2.

*** Not supported by the Import SQL action in the current release of Object
Builder.

**** Both varchar for bit data and varchar(n) for bit data are valid. If it has a
maximum length (n), you must provide it. If you do not specify n, Object
Builder allocates a buffer of 32 K.

Chapter 4. Creating a component 147



Persistent object (Programming Guide)
Application adaptor (Programming Guide)

“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Adding a data object from a DB persistent object” on page 814

Informix data type mappings

Object Builder uses the Informix Application
Adaptor (IAA) to access data in Informix databases on Windows NT, AIX and
Solaris platforms.

Informix type DB2
equivalent
type

CORBA
(DAO)
type

Comments

integer integer long

smallint smallint short

smallfloat l; float float Cannot be mapped to
CORBA::String.

float double double Cannot be mapped to
CORBA::String.

decimal(p,s) decimal(p,s) string

decimal(p) double double This is not a fixed point
decimal, and is not the
same as decimal(p,0).
decimal(p) is handled in
query as a double; not as
an ICBCDecimal.

date date string

datetime hour to second time string

datetime year to
fraction(5)

timestamp string yyyy-mm-dd hh:mm:ss.fffff

char(n) char(n) string

varchar(n) varchar(n) string

Note the following points:

v Object Builder does not support the types NCHAR(n), NVARCHAR(n),
Byte, and Text, on SQL Import, in the generated SQL/DDL or in SM/DDL.

148 WebSphere: Application Development Tools Guide



v In fact, Object Builder will neither import nor generate any
Informix-specific SQL datatypes. The SQL/DDL must consist of DB2’s
equivalents to the Informix types. For example, the SMALLFLOAT,
DATETIME HOUR TO SECOND and DATETIME YEAR TO FRACTION(5)
have to be expressed to Object Builder as FLOAT, TIME and TIMESTAMP
respectively.

v DATETIME YEAR TO FRACTION(5) has five digits of fraction (for the
seconds) whereas DB2’s timestamp has six.
Cache however pads the sixth digit with ’0’, returning datetime in ISO
formatted string form:
yyyy-mm-dd hh:mm:ss.fffff0.

Restrictions:

v A given transaction cannot access more than one Informix database per CB
server. To involve two Informix databases in a transaction, you must access
each database from a different server.

v Informix Dynamic Server version 7.30 files are supported
only on AIX and Solaris.

v Informix Dynamic Server version 7.31 files are
supported only on Windows NT, AIX and Solaris.

v SQL files with the DOUBLE, TIME, and TIMESTAMP types will not load
as-is into Informix. You can use a DBA design tool such as ERWin or
DataAtlas to make appropriate changes.

v As for Oracle databases, support for Informix backend databases is limited
to data objects that use the cache service only. That is, data objects that use
embedded SQL, or any other type of persistence will not be able to access
data stored in Informix databases. Cache will be responsible for all data
transfers (insert, retrieve, update, delete) for Informix backend datastores.
The Cache Service will use Informix ESQL and C interfaces for this
purpose.

Persistent object (Programming Guide)
Application adaptor (Programming Guide)

“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Adding a data object from a DB persistent object” on page 814

Mapping DBCS data types

Object Builder maps the wstring or wchar IDL types in the data object to the
LONG VARGRAPHIC column type in the persistent object by default.

Chapter 4. Creating a component 149



When you are creating an application that involves wstring data, and needs to
store persistent object data in a CHARACTER column in a DB2 table, you must
write your own mapping helper (a sample is given below), and follow the
procedure described in the task “Mapping a data object to a persistent object”
on page 703.

/*************************************************
Name: MyMappingHelper.hpp
Description: A mapping helper class for mapping a WString_var DO data
to char* PO data, and vice versa.
**************************************************/

#include <stdlib.h>
#include <string.h>
#include <wcstr.h>

class MyMappingHelper {
public:
// Conversion from WString_var to char*
static void wstringToString
(CORBA::WString_var& wszData, char* szData);

// Conversion from char* to Wstring_var
static void stringToWstring(const char* szData,
CORBA::WString_var& wszData);

};

inline void MyMappingHelper::wstringToString
(CORBA::WString_var& wszData, char* szData)

{
int instr_len;

if (wszData == NULL){
strcpy (szData, “”);

// This behavior, when the passed pointer is a
// NULL pointer, is user-dependent.

}else{

// Get the number of wide characters to copy.

instr_len = wcslen(wszData);

// Copy the bytes into the char* variable.

150 WebSphere: Application Development Tools Guide



memcpy(szData, (wchar_t*)wszData,
instr_len*sizeof(wchar_t));

szData[instr_len*sizeof(wchar_t)] = ’\0’;

} // end of if (wszData == NULL)

}; // end of wstringToString()

inline void MyMappingHelper::stringToWstring(const char* szData,
CORBA::WString_var& wszData)
{

int instr_len;
char* szPtr1;

if (szData == NULL){
wcscpy(wszData, L“\0”);

}else{
/* Removing trailing blanks that DB2 inserted. This procedure

is optional, but if you choose not to remove them, please keep the
string length from exceeding the buffer length. */

szPtr1 = (char*)szData;
for (; *szPtr1; ++szPtr1);
szPtr1—;
for (; szData <= szPtr1 && *szPtr1 == 0x20; —szPtr1);
memset(szPtr1+1, ’\0’, 1);
/* End of removing trailing blanks */

// Get the number of bytes to copy.

instr_len = strlen(szData);

// Copy the bytes into the wide character variable.

memcpy((wchar_t*)wszData, szData, instr_len);
wszData[instr_len/2] = L’\0’;

} // end of if (wszData == NULL)

}; // end of stringToWstring

Data object (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735

Chapter 4. Creating a component 151



“Adding a persistent object and schema” on page 833

“Data encoding schemes”

Data encoding schemes

Object Builder uses the following data encoding schemes for database data:

DBCS encoding scheme

Attribute
Type
(IDL
Type)

Attribute
is a Key

SQL Type PO Type Size ESQL or
Cache
Service

wchar Yes, No GRAPHIC[1] wchar_t[] ESQL

wstring Yes, No VARGRAPHIC[n] _DB2VARGRAPHIC ESQL

wstring No LONG
VARGRAPHIC

_DB2VARGRAPHIC ESQL

string VARCHAR char[] Caching

string No LONG VARCHAR char[] 2000 Caching

wchar GRAPHIC wchar_t[] Caching

wstring VARGRAPHIC wchar_t[] Caching

wstring No LONG
VARGRAPHIC

wchar_t[] 2000 Caching

Binary Data encoding scheme

Note the following:

v The ::ByteString option is available only with Cache Service, not ESQL.
v You should avoid using CHAR FOR BIT DATA with ESQL, because null

values are lost.

Attribute
Type (IDL
Type)

Attribute
is a Key

SQL Type PO Type

ByteString Yes, No VARCHAR FOR BIT DATA ::ByteString or
DB2VARCHAR

ByteString Yes, No VARCHAR DB2VARCHAR

ByteString No LONG VARCHAR FOR BIT
DATA

::ByteString or
DB2VARCHAR

152 WebSphere: Application Development Tools Guide



Attribute
Type (IDL
Type)

Attribute
is a Key

SQL Type PO Type

ByteString No LONG VARCHAR DB2VARCHAR

ByteString Yes, No CHAR FOR BIT DATA ::ByteString

SBCS/MBCS encoding scheme

Attribute
Type
(IDL
Type)

Attribute
is a Key

SQL Type PO Type ESQL or Cache
Service

any
void

Object
string
struct

typedef
union

No LONG
VARCHAR

DB2VARCHAR[2000] Embedded SQL

LONG
VARCHAR

char[] Cache Service

Data object (Programming Guide)
Persistent object (Programming Guide)
“DBCS and Binary Data Support” on page 138

“Adding a persistent object from a DB schema” on page 837
“Adding a data object from a DB persistent object” on page 814

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Chapter 4. Creating a component 153



OOSQL keywords

OOSQL Keywords

adt
alias
all
and
any
as
asc
avg
between
bit
bo
by
char
character
check
close
collection
commit
continue
count
create
current

cursor
dao
data
date
day
days
decimal
declare
default
define
delete
desc
describe
digits
distinct
do
double
drop
escape
eur
exists
explain

false
fetch
flatten
float
for
foreign
from
goto
grant
group
having
hour
in
indicator
insert
integer
into
is
iso
jis
key
language

lcase
like
lower
max
microsecond
min
minute
month
nest
not
null
numeric
of
off
on
open
option
optional
or
order
outer
precision

primary
procedure
public
quit
real
ref
references
remote
rollback
schema
second
select
set
smallint
some
sqlcode
sum
table
this
time
timestamp
to

true
type
ucase
union
unique
update
upper
usa
user
values
varchar
vargraphic
view
void
whenever
where
with
work
year

Object-Oriented Structured Query Language (Advanced Programming Guide)

Keywords for query support

is of dynamic type(<only> type_name , <only> type_name...)

Examples:

select e from empHome e where e is of dynamic type (managerType);
returns only those objects that are either of type manager, or a subtype of the
manager type.

select e from empHome e where e is of dynamic type (only managerType);
returns only those objects that are of type manager, and not subtypes of
manager.

select e from empHome e where e is of dynamic type (managerType,
studentType);
Note:Multiple type names can be in the list.

154 WebSphere: Application Development Tools Guide



The type name
Can either be a CORBA IDL name, or an IDL name that is mapped to Java.

The query
select e from home e where e is of dynamic type (::Module1::eClass,
::Module1::dClass);

is the same as the query
select e from home e where e is of dynamic type (Module1_eClass,
Module1_dClass);

type_name()
An OOSQL function that returns the type name. It will return the interface
name of the associated home, which is usually a CORBA IDL interface name.
It can also return Java class names.

If the interface name of home1 is Module1::eClass with a subhome with
interface Module1::dClass, then the query
select e.type_name() from home1 e; will return a list of strings that are
either Module1::eClass or Module1:dClass.
treat ... as
You have to specify a type name. The type name can be either a CORBA IDL
name, or an IDL name that is mapped to Java.
This does a safe downcast operation, returning null if the downcast cannot be
done.
select e from personHome e where 1 = ((treat e as empClass) -> method1(
123));
method1 is defined only empClass, not personClass. If the object is not a
empClass then CAST returns null and the equal predicate returns null.

“Polymorphic homes” on page 581

“OOSQL keywords” on page 154

Null value tolerance with sentinel values

Databases have the concept of null value for a field in a record. A null value
indicates that no value has been set for the field. CORBA objects, however,
have no corresponding null value concept. There is no way to represent a null
value in a CORBA object.

Chapter 4. Creating a component 155



When Object Builder encounters a null value in a field, it converts it into an
arbitrary value that is then stored in the data object. If the data object is then
written back into the persistent object, and back into the database, it is the
arbitrary value, rather than null, which is written back into the database. The
value in the database field is no longer null.

If you want to change this behavior, you can set up a sentinel value for a data
object attribute. A sentinel value is a particular value which you want to be
recognized as representing null. When Object Builder reads in a null, it will
use the designated sentinel value, rather than an arbitrary value, to represent
the field in the data object attribute. When it is writing back to a database, if it
encounters a sentinel value attribute in the data object, it will write null into
the database field.

Important: The sentinal values do not deliver null values to the client
programmer. The client programmers (to the business object interface) and
the OOSQL query writers will be exposed to the sentinal values that you, the
data object implementation/persistent object developer, choose.

You can set a sentinel value for any data object attribute that is mapped to a
persistent object, except for structure attributes and attributes which are
designated as not null in the mapping (for example, keys).

Notes:

v Unless you specifically set a sentinel value for an attribute, the default
behavior of Object Builder is to assign arbitrary values; null value tolerance
is not the default behavior.

v If you write a query that tests whether a nullable attribute is null, be sure
to check whether its value is the sentinel value, as well.

Foreign keys and null tolerance
When retrieving a foreign key from a database, the normal behavior is to
build a key object with the data retrieved from the persistent object, and then
to call the findByPrimaryKey method to get a pointer to the foreign object.
However, if the key data is null, an arbitrary value is assigned to the key.
The findByPrimaryKey method would often fail because the arbitrary value
would be invalid, and the “correct” null value would be returned. However,
there is the chance that the arbitrary value would be valid, and the
findByPrimaryKey would return a non-null value.

Another consequence of the default behaviour is that a CORBA nil object
reference will turn into a foreign key consisting of arbitrary (zeroes and empty
strings) values. If the underlying table contains a corresponding foreign key
constraint, a managed object with a nil object reference will usually fail to
insert, resulting in an exception at runtime.

156 WebSphere: Application Development Tools Guide



To avoid this kind of mistake, you can set an option on foreign keys so that if
a null value is detected in the foreign key’s persistent object, nil will be
returned to the user immediately (the findByPrimaryKey method will not be
called). Also, when inserting, it inserts a null foreign key instead of a series of
arbitrary non-null values. (Of course, if the underlying table’s foreign key also
has a not-null constraint, then this too will fail.)

Note: Unless you specifically set the Check for null option for a foreign key,
the default behavior of Object Builder is to assign an arbitrary value and to
call the findByPrimaryKey method; null value tolerance is not the default
behavior.

“Attributes” on page 698

“Setting sentinel values for null field values” on page 701
“Checking for null foreign key values” on page 298
“Editing a data object implementation” on page 819
“Mapping a data object to a DB persistent object” on page 703

Creating a component for PA data

You can create a component for accessing existing transactional information
by importing the relevant PA bean into Object Builder, and deriving a
component from it, as follows:

1. “Creating a PA schema by importing a PA bean” on page 862
2. “Customizing PA bean query methods” on page 160
3. “Adding a persistent object from a PA schema” on page 860
4. “Adding a data object from a PA persistent object” on page 815
5. “Adding a business object from a data object” on page 784
6. “Implementing methods” on page 752
7. “Adding file adornments” on page 240
8. “Adding method adornments” on page 242
9. “Adding a key” on page 826

10. “Adding a copy helper” on page 830
11. “Adding a managed object” on page 871
12. “Adding resource methods to a sessional business object” on page 164

For an introduction to this functionality, follow these tutorials:
1. “Tutorial: Unit test for procedural adaptors” on page 166
2. “Tutorial: Creating a component for PA data (bottom-up)” on page 167

Chapter 4. Creating a component 157



Once you have assembled a component for PA data, you can then build DLLs
for the component, and package the component into an application.

Components (Programming Guide)
Schema (Programming Guide)
“Procedural adaptor bean (PA bean)” on page 159
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Connections to a tier-3 system (System Management)

“Chapter 4. Creating a component” on page 127
“Configuring builds” on page 549
“Building the JAR files” on page 561
“Packaging applications” on page 574
Configuring a new ECI connection to a tier-3 CICS® region (System
Management)
Configuring a new HOD connection to a tier-3 system (System Management)
Configuring a new SAP connection to a tier-3 system (System Management)
Configuring a new APPC connection to a tier-3 system (System Management)
Configuring the iPAAServices application onto an application server (System
Management)

“Naming objects” on page 128
“Internationalization of data” on page 132

Enterprise Access Builder (EAB)

Enterprise Access Builder (EAB) is a set of class frameworks and development
tools in VisualAge for Java 3.0 that enable you to move your applications
from a front-end transaction system such as Customer Information Control
System (CICS), or Information Management System (IMS), to an
object-oriented programming environment. Procedural Adaptor (PA) beans
that are created using EAB can be imported into Object Builder as PA schemas
and PA persistent objects.

Enterprise Access Builder (EAB) used to be referred to as CICON, which
stood for Customer Information Control System (CICS) and Information
Management System (IMS) Connection, in previous releases of Component
Broker.

Persistent object (Programming Guide)

158 WebSphere: Application Development Tools Guide



Schema (Programming Guide)
“Procedural adaptor bean (PA bean)”

“Creating a PA schema by importing a PA bean” on page 862
“Adding a persistent object from a PA schema” on page 860

Procedural adaptor bean (PA bean)

A PA bean is a bean in VisualAge for Java that inherits from the
com.ibm.ivj.eab.paa.EntityProceduralAdapterObject class. PA beans, built
using Enterprise Access Builder (EAB), wrap existing transactions for reuse in
Component Broker.

PA beans are imported into Object Builder as PA schemas. By default, a PA
persistent object is generated for each bean that you import, but you can
create one yourself, for the PA schema. The PA persistent object uses the
definition of the PA schema to make calls to the PA bean.

Persistent object (Programming Guide)
Schema (Programming Guide)
“Enterprise Access Builder (EAB)” on page 158

“Creating a PA schema by importing a PA bean” on page 862
“Adding a persistent object from a PA schema” on page 860

Java data type mappings

The PA bean that you import into Object Builder cannot have arrays as either
attribute types, or method parameter types, or method return types. The only
types that are supported are those listed in the table below:

PAO Type IDL Type

int long

float float

double double

boolean boolean

short short

byte octet

void void

char char

wchar

Chapter 4. Creating a component 159



PAO Type IDL Type

java.lang.String string

wstring

Note: Depending on the type you select when you import the bean, charis
converted to either char, or wchar, and java.lang.String is converted to either
string, or wstring.

Persistent object (Programming Guide)

“Creating a PA schema by importing a PA bean” on page 862

Supported platforms for connectors

The following table shows which connectors are supported on which
platforms for Object Builder procedural application adaptor support.

Connector OS/390 AIX HP-UX Windows
NT

Solaris

HOD N Y N Y Y

SAP N Y N Y Y

ECI N Y N Y Y

APPC (LU6.2) N Y N Y Y

OTMA Y N N N N

EXCI Y N N N N

IMS-APPC
(OS/390 version)

Y N N N N

Generic Y Y N Y Y

Customizing PA bean query methods

If you import a PA bean that is queryable, the Query Methods page is
dynamically added to the wizard. The query methods are listed in the Query
Methods folder. Each of the query methods of the bean is associated with an
OOSQL WHERE clause.

160 WebSphere: Application Development Tools Guide



You can determine the subset and the type of data that a selected PA bean’s
query method will return. If you want a query method to fetch every element
in the procedural application adaptor (PAA) home, you do not have to specify
a WHERE clause for that particular query method. If you want the method to
return only certain elements in the PAA home, you must specify the search
criteria using a WHERE clause.

To customize a PA bean’s query method, follow these steps:
1. Select the query method in the Query Methods folder. A set of controls

appear on the page.
2. Type a clause in the WHERE Clausefield that indicates which of the

elements in the PAA home have to be returned. If you need a substitution
string, you can specify it. Follow the “WHERE clause syntax” on page 866
rules when you construct the clause.

If you use parameters in the WHERE clause, you must map each of them to an
attribute of similar type in the PA bean. See the task: “Mapping query method
parameters to PA bean attributes”.

“Enterprise Access Builder (EAB)” on page 158
“Procedural adaptor bean (PA bean)” on page 159
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)

“Creating a PA schema by importing a PA bean” on page 862
“Adding a data object implementation” on page 807
“Mapping query method parameters to PA bean attributes”

“WHERE clause syntax” on page 866

Mapping query method parameters to PA bean attributes

You can determine the subset and the type of data that a selected PA bean’s
query method will return. For queryable beans, you can do this using the
Query Methods page, either when you import the bean, or when you edit the
properties of the bean.

You use a WHERE clause to define the search criteria. Object Builder performs
syntax checking on the WHERE clause. If you want to fetch every element in
the procedural application adaptor (PAA) home, then you do not need a WHERE
clause for that particular query method. If you do use a WHERE clause, you

Chapter 4. Creating a component 161



may encounter situations when you have to use parameters. You would use
a parameter when a value may not be determined until run time, or when the
end user will be inputting the value.

OOSQL parameters in a WHERE clause are preceded by a colon (:). For example,
in the following WHERE clause, p1 is the parameter, and it can take variable
values:

WHERE AMOUNT > :p1

Whenever you use a parameter in a WHERE clause, you must map it to an
attribute of the same type in the PA bean. If the WHERE clause contains at least
one parameter, you cannot complete the criteria specification if you do not
provide the mapping.

The parameters that you use in the clause appear in the Query Methods
folder, beneath the selected query method, in the WHERE Clause Parameters
folder.

To provide the mapping, follow these steps:
1. Select the parameter from the WHERE Clause Parameters folder (the

parameter name will not include the colon from the WHERE statement). The
parameter’s details such as its name and data type are displayed on the
page.

2. Type the name of an attribute of the PA bean, which is of the same type as
the parameter, in the PA Attribute field. You can also click the list button,
and select one of the PA bean’s attributes of the same type.

Tip: If you are not sure of the data types of the PA bean’s attributes, do not
use the Query Methods page when you are first importing the bean. Follow
these steps:
1. Import the PA bean. (From the pop-up menu of the User-Defined PA

Schemas folder, select Import Bean. Specify, or select the bean, indicate its
key attributes, and click Finish.)

2. Then examine the properties of the PA schema that is created from the PA
bean. (From the pop-up menu of the PA schema in theUser-Defined PA
Schemas folder, select Properties.)

3. View the attribute types of the bean on the Attributes page.
4. Go to the Query Methods page of the same wizard, and specify the search

criteria for the bean’s query methods. You can now use parameters in the
WHERE clause, and provide the mapping between them and the relevant PA
bean attributes using the procedure that is explained above.

“Enterprise Access Builder (EAB)” on page 158“Procedural adaptor bean (PA

162 WebSphere: Application Development Tools Guide



bean)” on page 159
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)

“Creating a PA schema by importing a PA bean” on page 862
“Adding a data object implementation” on page 807
“Customizing PA bean query methods” on page 160

“WHERE clause syntax” on page 866

Handling exceptions thrown by PA bean push-down methods

In business applications, the client’s knowledge of exceptions that are thrown
in certain situations is crucial.

If the business logic for this transaction is stored in a procedure in the CICS
or IMS™ backend and made available through a push down method, then an
exception can be raised in such an event. The exception can be converted to
an appropriate exception as described above, be sent back to the client
program, and shown to the user.

For example, in a banking transaction, an error condition may result in the
event that there are insufficient funds in an account.

To handle exceptions that are thrown by PA bean push-down methods, follow
these steps:

When you import the PA bean, Object Builder examines the bean to determine
if there are any push-down methods defined on it. If so, these methods are
added to the PA schema and to the PA persistent object. Any exceptions that
these methods throw are also logged.

During code generation, an intermediary class (POIF) is defined to bridge the
gap between the PA persistent object, which is written in C++ and the PA
bean, which is written in Java. Exceptions that are thrown by the push-down
methods are also defined on this intermediary class.

This intermediary class is normally hidden, but is exposed for the definition
and handling of exceptions. When an exception is thrown by a push-down
method in the PA bean, that exception is caught, and converted into a C++
exception defined on this intermediary class. The data in the original Java
exception is lost, as is its inheritance.

Chapter 4. Creating a component 163



This new C++ exception is internal, and is not meant to be exposed to any
client program. You must write code in the push-down method of the data
object implementation to catch it and handle it appropriately.

If you want the exception to be handled in the business object, or by the client
program, you must convert it into an exception which is defined on the data
object. Follow these steps:
1. Define an exception in the data object.
2. Add the exception to the push-down method on the data object.
3. Convert the C++ exception to the data object exception. To do this, you

must change the implementation of the push-down method in the data
object. Where the call to the push-down method on the PA persistent
object is made, catch the C++ exception and in its place throw the data
object exception you defined in step 1.

This handles the exception from the PA bean up to the data object. You can
now handle this exception in the business object implementation. If you want
the client program to handle the exception you must convert it into an
exception defined on the business object. Follow these steps:
1. Define an exception in the business object.
2. Add the exception to the push-down method on the buniness object.
3. Convert the data object exception to the business object exception. To do

this, you must change the implementation of the push-down method in
the business object. Where the call to the push-down method on the data
object is made, catch the data object exception and in its place throw the
business object exception you defined in step 1.

This is an overview of the process you follow. For more detailed steps, refer to
the Programming Guide.

Data object (Programming Guide)
Persistent object (Programming Guide)
“Procedural adaptor bean (PA bean)” on page 159
“Push-down methods” on page 759

CICS and IMS application adaptor exception handling (Programming Guide)

Adding resource methods to a sessional business object

When a business object uses Session Service, you can provide your own code
to be called during some of the normal processing for those services. You can
do this by calling the endResource(), the checkpointResource(), and the
resetResource() method that you define on the business object, in both C++
and Java implementations.

164 WebSphere: Application Development Tools Guide



You cannot call these methods that are used for resource
management when the target platform is OS/390.

Follow these steps:
1. From the pop-up menu of the business object implementation, select

Properties. The Business Object Implementation wizard opens to the
Name and Data Access Pattern page.

2. Under the section: “Session Service” on page 248, select the Provides
resource support check box.
By selecting it, you indicate that you want Object Builder to create the
endResource()method, the checkpointResource() method, and the
resetResource() method on the business object.
When you select the business object implementation in the Tasks and
Objects pane, you see these methods that were created for the
implementation by Object Builder, in the Framework Methods folder. All
of them have empty method bodies.

3. To add your own code for these methods, first select the method from the
Framework Methods folder, and from its pop-up menu, select Properties.

4. On the Implementation page of the Method Implementation wizard, select
the Use the implementation defined in the Source pane radio button,
and click Finish.
The method is now editable in the Source pane, when you select the
method in the Methods pane.
Note: You can also select the Use an external file option, if you have the
code stored in either an external template file, or a normal file.

5. Provide your own code for the method body in the Source pane.
This method of the business object implementation that contains your code
is called by the framework when the corresponding method of the same
name is called on the managed object’s mixin.

6. If you have not yet added a managed object for your component, add one
now: From the pop-up menu of the business object implementation, select
Add Managed Object. Select Session Service as the service to be used by
the business object, and specify parents, if any, for the implementation.

7. Generate code for the managed object: From the pop-up menu of the
object, select Generate > Selected > All files, or Generate > Selected >
.cpp

The .cpp file that is generated contains the resource management methods
that contain your code. For each of these methods, if you want to write a
separate method to contain your code, you must call this method from
within the resource management method.

Chapter 4. Creating a component 165



Business object (Programming Guide)
Session Service (Advanced Programming Guide)

“Generating code” on page 551

Tutorial: Unit test for procedural adaptors

The stand-alone session support is used to provide a similar test environment
to that provided by the Component Broker run time.

When testing a PA bean outside of Component Broker, a stand-alone session
service is provided as part of the stand-alone Common Connector Framework
(CCF) classes (that is, as part of the com.ibm.ivj.communications package),
and is therefore available when you use those classes.

To use this stand-alone session service, the unit test case of the PA bean needs
to perform the following actions:
v If you are using a sessional connector, invoke the static method

com.ibm.ivj.communications.Session.startSession() before the PA bean is
constructed. There currently is no facility for testing APPC in VisualAge for
Java.

v invoke the static method
com.ibm.ivj.communications.Session.endSession(tf) when the PA bean is
no longer needed (that is, just before the end of the unit test program, or as
appropriate if the unit test needs to perform more comprehensive testing
with sessions).
The parameter tf is a boolean parameter. If its value is set to true, it
indicates that the session is to be checkpointed (which means that all
changes are committed and are to be kept); if it is set to false, it means that
the session is to be reset.

The unit test scenario requires the following steps to be done in VisualAge for
Java:
1. Before the call to startSession(), create the desired connectionSpec (for

example, HODConnectionSpec) and set appropriate values for the host
name and port.

2. After the call to startSession(), create an instance of the PA bean’s key.
Then, on the PA bean, call the static method find() and pass in the instance
of the key as a parameter. The find method will return an instance of the
PA bean.

3. On the instance of the PA bean, set the connectionSpec to the
connectionSpec created in step 1.

166 WebSphere: Application Development Tools Guide



Note: The connectionSpec set in the create, retrieve, update, and delete
methods will take precedence over any previous connectionSpec that may
have been set.

4. Once the connectionSpec is set, you can make calls on the instance of the
PA bean, as desired.

This unit test scaffolding can be kept in place even when the PA bean is
deployed in a Component Broker scenario because the connectionSpec passed
in from CB will take precedence over any previously set connectionSpec.

“Enterprise Access Builder (EAB)” on page 158
“Procedural adaptor bean (PA bean)” on page 159
Connections to a tier-3 system (System Management)

“Creating a component for PA data” on page 157
“Tutorial: Creating a component for PA data (bottom-up)”
“Working with container instances” on page 883

Tutorial: Creating a component for PA data (bottom-up)

This tutorial assumes that you have successfully installed and configured
Component Broker. You will create a component with procedural adaptor
persistence.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

Note: Procedural Adaptor Object (PAO) beans, which are created with both
VisualAge for Java version 3.0 and version 2.0 are supported with this release
of Component Broker.

Enabling the IBM Component Broker CICS and IMS application adaptor
functionality
For the bean to be found during import, ensure that the JAR file (beans.jar),
which contains the bean class you are to import, is in your system CLASSPATH
variable.

Restriction: The CLASSPATH variable may not have contents longer than 1780
characters. The longer the name of your installation directory, the less space
left for the CLASSPATH value (Therefore, it is recommended that you use the
default installation directory x:\Cbroker). If the CLASSPATH exceeds this limit,
you will get a run-time error (“line too long”) when you start Object Builder.

Chapter 4. Creating a component 167



This is because commands (such as ob.bat), which invoke the Object Builder
functions, prefix the Object Builder .jar files to the class path, and then invoke
the Java code to run Object Builder.

Creating a new project

1. Start Object Builder.
2. The Open Project wizard opens to the Project Directory page. Type a name

and path for the project directory (for example,
e:\scenarios\ABeCashAcct).

3. Click Finish.
Note: If the project directory has never been used before, and contains no
models, Object Builder confirms with you if you want to create a model in
the directory. It then prompts you for a new model name. It shows you a
default model name, which it assumes is the same as the directory name
for the project. You can either accept that name, or change it. Click OK.

4. Click Yes, to create a new project.

Importing the PA bean
The class name for this bean is paa.samples.cics.appc.acct.ABeCashAcctPAO.
1. In the Tasks and Objects pane, select the User-Defined PA Schemas folder,

and from its pop-up menu, select Import - Bean. The Import Procedural
Adaptor Bean wizard opens to the Bean Selection page.

2. You can choose to either type the name of the bean class, or select the JAR
file containing the file, and then select the bean class. Select the Enter bean
name radio button, and type the name of the class
(paa.samples.cics.appc.acct.ABeCashAcctPAO) in the field.

3. Click Next. The Names and Connectors page opens. Type the name of the
module and the persistent object to be associated with the PA schema. You
can also select the connector type to be used to access objects. Select LU6.2
as the connector type. This is the type of connector ABeCashAcctPAO uses.

When you select OS/390 as the development (target) platform
(Platform > Constrain > 390), only the EXCI, OTMA, IMS APPC, and
Generic connector types are available for selection.
Note: When you select either NT and 390, or AIX and 390 as the
development platforms, all the connector types are available for selection.
However, in this scenario you must not select 390 either alone, or in
combination with one of NT or AIX, as the sample bean is for an ECI
connector, and is not valid on OS/390: if you select 390, you will not be
able to select ABeCashAcctPAOPO as the type of your persistent object.

4. Click Next. Select res_type and account_ID (two of the properties of the
bean) from the Properties box, and move them to the Key Attributes box,
by clicking the >> button.

168 WebSphere: Application Development Tools Guide



5. Click Next. The Variable Type Specification page opens. Accept the
defaults.

6. Click Finish, and the bean will be imported into Object Builder. The
ABeCashAcctPAO schema and its associated persistent object
ABeCashAcctPAOPO appear in the tree under User-Defined PA Schemas
folder.

Connecting the imported bean with an application
We can connect the imported bean with either existing applications, or those
created after the bean is imported. We will create a new application.

Creating the application objects (business object, data object, managed
object)
Creating the ACashAcct business object file:
1. From the pop-up menu of the User-Defined Business Objects folder, select

Add File.

2. The Business Object File wizard opens to the Name page.
3. Type ACashAcct in the Name field, and click Finish.
4. The ACashAcct file appears in the User-Defined Business Objects folder.

Creating the ACashAcct interface:
1. From the pop-up menu of ACashAcct, select Add Interface.

2. The Business Object Interface wizard opens to the Name page.
3. Type ACashAcct as the name of the interface in the Name field.
4. Click the arrow to the left of the page name, and select Attributes from

the list. The page opens.
5. From the pop-up menu of the Attributes folder, select Add.
6. In the Attribute Name field, type res_type as the name of an attribute.
7. For the data type of the attribute, select string from the Type field.
8. Type 0 in the Size field.
9. Use the Add Another button to add the next attribute.

10. Add the attribute balance, of type long and the string attributes
account_ID, acct_type, and utilities, using steps 6 - 9.

11. Click Refresh instead of Add Another, after you add the last attribute.
12. Click Next. The Methods page opens.
13. Click Finish. The ACashAcct interface appears under the ACashAcct file,

in the folder.

Adding the key:
1. From the pop-up menu of the ACashAcct interface, select Add Key.

Chapter 4. Creating a component 169



2. The Key wizard opens to the Name and Key Attributes page. From the
Business Object Attributes box, select res_type and account_ID, and click
the >> button to move them to the Key Attributes box.

3. Click Finish. The key ACashAcctKey appears beneath the ACashAcct
interface.

Adding the copy helper:
1. From the pop-up menu of the ACashAcct interface, select Add Copy

Helper.
2. The Copy Helper wizard opens to the Name and Attributes page.
3. Click the All>> button to select all the business object interface attributes

as attributes of the copy helper.
4. Click Finish. The copy helper, ACashAcctCopy appears under the

ACashAcct interface.

Adding the business object implementation and the data object interface:
1. From the pop-up menu of the ACashAcct interface, select Add

Implementation.
2. The Business Object Implementation wizard opens.
3. Select Delegating as the Pattern for Handling State Data.

4. From the Data Object Interface section, make sure that Create a new one
now is selected.

5. Click the arrow to the left of the page name, and select Key and Copy
Helper from the list. The page opens. Make sure that ACashAcctKey is
selected as the key, and ACashAcctCopy is selected as the copy helper.

6. Turn to the Data Object Interface page.
7. Click the All>> button to select all the attributes of the business object as

state data for the data object.
8. Click Finish. The business object implementation ACashAcctBO appears

under the ACashAcct interface, and the data object interface ACashAcctDO
appears as a node beneath the implementation.

Adding the data object implementation and connecting the
ABeCashAcctPAOPO persistent object:

1. From the pop-up menu of the ACashAcctDO interface, select Add
Implementation.

2. The Data Object Implementation wizard opens to the Name and Platform
page.

3. Accept the default names, and select NT and AIX as the deployment
platforms.

4. Click Next. The Behavior page opens.
5. From the Environment section, select BOIM with any key.
6. From the Type of Persistence section, select Procedural Adaptors.

170 WebSphere: Application Development Tools Guide



7. Click Next. The Implementation Inheritance page opens.
8. Verify that the class IPAAExtLocalToServer appears under the Parents

folder.
9. Click the arrow to the left of the page name, and select Associated

Persistent Objects from the list. The page opens. From the pop-up menu
of the Persistent Object Instances folder, select Add

10. Type iABeCashAcctPAOPO in the Instance Name field.
11. Click Next. The Attributes Mapping page opens.

Note: The following three steps may be done automatically for you is the
names of the attributes are the same in the persistent object and in the
data object, and if the persistent object is being associated with the data
object for the first time.

12. Select the attribute res_type of the data object from the Attributes folder,
and from its pop-up menu, select Primitive.

13. Click the list button, and select the attribute iABeCashAcctPAOPO.phone
of the persistent object from the Persistent Object Attribute field. You
have just defined a one-to-one mapping between the data object and the
persistent object.

14. Repeat steps 12 and 13 for all the other attributes in the folder, mapping
them one-to-one.

15. Click Next. The Methods Mapping page opens.
16. Select the insert() special framework method from the folder, and from its

pop-up menu, select Add Mapping.
17. Click the list box, and select iABeCashAcctPAOPO.insert() from the

Persistent Object Method field.
18. Repeat steps 16 and 17 for all the methods update(), retrieve(), del(), and

setConnection(), using a one-to-one mapping.
19. Click Finish.

The data object implementation, ACashAcctDOImpl will now appear under
the ACashAcctDO interface, and the ABeCashAcctPAOPO persistent object
will appear under the ACashAcctDOImpl data object implementation.

Adding the managed object:
1. From the pop-up menu of the ACashAcctBO business object

implementation, select Add Managed Object.

2. Under Service to Use, select Transaction Service (automatically selected
for you if the platform is OS/390).

3. Click Finish.

The managed object appears under the business object implementation.

Chapter 4. Creating a component 171



Exporting as XML
If you want to reuse the component that you just created in other scenarios,
you can export it in XML format:
1. Click File > Export Model. The Export Model wizard opens.
2. Click Finish.
3. If asked whether you want to create the export directory, select Yes.

XML files that represent the elements of your component are exported to
current project’s \Working\Export directory.

Generating the application code
From the pop-up menu of the ACashAcct file in the User-Defined Business
Objects folder, select Generate > All. Code generation will begin, and you can
monitor the progress in the bottom left corner of Object Builder’s window.

Configuring the build
Add the client DLL:
1. From the pop-up menu of the Build Configuration folder, select Add

Client DLL. The Client DLL wizard opens.
2. Type ACashAcctC in the Name field.
3. Click the page title and turn to the Client Source Files page.

4. Click the All >> button to select all the client source files.
5. Click Finish.

The ACashAcctC DLL will appear in the Build Configuration folder.

Add the server DLL:
1. From the pop-up menu of the Build Configuration folder, select Add

Server DLL. The Server DLL wizard opens.
2. Type ACashAcctS in the Name field.
3. Click Next.

4. Click the >> button to add the ACashAcctC dll to the list of Libraries to
link with.

5. Click Next.

6. Click the All >> button to select all the server source files.
7. Click Finish.

The ACashAcctS DLL will appear in the Build Configuration folder.

Building the DLLs
Generate the configuration:

From the pop-up menu of the Build Configuration folder, select Generate >
All. Code generation will begin.

172 WebSphere: Application Development Tools Guide



Creating a container instance

1. From the pop-up menu of the Container Definition folder, select Add
Container Instance. The Container wizard opens.

2. Type ACashAcctContainer in the Name field.

If you are developing an application intended for deployment on
OS/390 (the Platform > Constrain > 390 menu choice is checked), you are
now done. The rest of the container definition is handled through the
System Management user interface.

3. Click the arrow to the left of the page name, and select Service from the
list. The Service page opens. Select Use PAA Transaction Service.

4. On the Service Details page, specify a name of your choice for the
connection. Select LU6.2 for the connector type used by the session.

5. Click Finish.

The ACashAcctContainer will appear in the Container Definition folder.

Configuring the application
Add an application family:
1. From the pop-up menu of the Application Configuration folder, select Add

Application Family. The Application Family wizard opens.
2. Type ACashAcctApp in the Name field.
3. Click Finish.

The ACashAcctApp family will appear in the Application Configuration
folder.

Add an application:
1. From the pop-up menu of the ACashAcctApp application family, select

Add Application. The Application wizard opens.
2. Type ACashAcct in the Name field.
3. Click Finish.

The ACashAcct application will appear under the ACashAcctApp family.

Add the application’s managed object:
1. From the pop-up menu of the ACashAcct application, select Add

Managed Object. The Managed Object Configuration wizard opens.
2. Click the list box of the Managed Object field, and select ACashAcctMO

ACashAcctMO from the list.
3. Click Next.

4. From the pop-up menu of the Implementations folder, select Add.

5. Click the list box of the Data Object Implementation field, and select
ACashAcctDOImpl from the list.

Chapter 4. Creating a component 173



6. Click Next.

7. Click the list box of the Name field, and select ACashAcctContainer from
the list.

8. Click Finish.

The ACashAcctMO managed object will appear under the Acct application.

Generate the application family:

From the pop-up menu of the ACashAcctApp family, select Generate.

Building the ACashAcct application (client and server)
Set up the environment:

You had added the location of the .jar file that contains the bean you import
to your system class path variable: CLASSPATH. This location is required for
import, and for the server to find the bean. So, reboot your system for the
new environment variables to take effect. The server will then be able to find
the bean.

Starting the build

1. Go to the working\NT directory. For this tutorial, this should be located in
e:\scenarios\ABeCashAcct.

2. Type nmake -f all.mak cpp java

3. The ACashAcct application should be built.
4. Copy ACashAcctS.dll and ACashAcctC.dll to the CBroker\bin directory to

place them in your system path.

Installing the application
To install the application, you must be logged on to DCE, and the System
Manager User Interface must be running. Then you load and configure the
application by following the steps below.

Loading the application onto System Management

1. Start the System Manager User Interface, if it is not already started.
2. Enable Control actions by selecting View > View Level > Control.
3. Expand Host Images, and select your host name.
4. From the pop-menu, select Load application to open the Load application

dialog. Select
e:\scenarios\ABeCashAcct\Working\NT\CashAcctApp\ACashAcctApp.ddl.

Configuring the application with System Management

1. Create the server:
a. From the Tasks menu, select Create Servers.

174 WebSphere: Application Development Tools Guide



b. In the Management Zone window, select Available Items >
SampleApplication Zone. Click Next.

c. In the Configuration window, select Available Items > Sample
Configuration. Click Next.

d. In the Server Group window, type ACashAcctServerGroup for the name
of the server group. Click Next. If the server group does not exist, click
Yes to create the server group.

e. In the Server window, type ACashAcctServer for the Name of the
server. Click Finish.

2. Configure the server:
a. Click on the Tasks menu and select Configure Servers.
b. In the Select Applications To Configure window, select Available

Applications > iPAAServices and ACashAcct. Click Add to move the
applications to Applications To Configure. Click Next.

c. In the Management Zone window, select Available Items > Sample
Application Zone. Click Next.

d. In the Configuration window, select Available Items > Sample
Configuration. Click Next.

e. In the Select Servers To Configure Applications on window, select
Available Server Groups > ACashAcctServerGroup. Click Add to
move the available server group to Servers To Configure Application
On. Click Finish.

3. Configure the APPC connection:
a. Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > APPC Connections and
select APPC_ACashAcct_Server.

b. From the pop-up menu, select Properties. The Properties Editor opens.
c. Click the Main tab.
d. Change the Fully qualified Local LU name field to match the local

LU6.2 LU that you will use to communicate with your CICS/IMS
system (for example, PAA01001).

e. Change the Fully qualified Partner LU name field to match the
partner LU6.2 LU that you will use to communicate with your
CICS/IMS system (for example, USIBMZP.CICS4).

f. Change the Mode Name field to match the mode name that you will
use to communicate with your CICS/IMS system (for example,
LU62PS).

g. Change the Remote Procedure Type field to match the type of
program with which you will be communicating (for example,
CICS_DPL or CICS_DTP). The CICS_DPL flavor appends eight bytes
(converted to the target code page) that correspond to the CICS
application to which the DTP program should EXEC CICS LINK.

Chapter 4. Creating a component 175



h. Change the Transaction Program Name field to match the CICS
transaction program (TP) that you will run (for example, BDPL or
BDTP).

i. Change the CICS Program Name field to match the CICS program
name that you will run under the transaction program (for example,
BECASHAC).

j. Change the transaction type field to be either optimistic or pessimistic.
Pessimistic initiates the conversation as sync-level 2 for the entire
transaction while optimistic only talks sync-level 2 during the prepare
and commit parts of the transaction.

k. Click OK to validate and accept the changes.
4. (Optional): Enable security service for the application server and the name

server:
a. Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > Server Groups, and select
ACashAcctServerGroup.

b. From the pop-up menu, select Properties to open the Properties Editor.
c. In this notebook:

1) Select the Security Service tab.
2) Change the value for the Enable security field from no to yes.
3) Change the Delegate credentials to None.
4) Change the Credential mapping to Simple.
5) Change the value for the data system principal field to the user ID

that the server will use when connecting to the CICS system.
6) Change the value for the data system password field to the

password that the server will use when connecting to the CICS
system.

7) Change the value for the Enable security field from no to yes.
8) Click OK. The changes are applied and the Properties Editor closes.

d. Expand Management Zones > Network Zone > Configurations >
Network Configuration > Name Servers and select Network Name
Server.

e. From the pop-up menu, select Properties, which opens the Properties
Editor.

5. (Optional): Enable security service for the client:
a. Expand Management Zones > Network Zone > Configurations >

Network Configuration > Client Styles, and select server name
Default Client.

b. From the pop-up menu, select Properties. The Properties Editor
opens.

c. In this notebook:

176 WebSphere: Application Development Tools Guide



1) Select the Security Service tab.
2) Change the value for the Enable security field from No to Yes.
3) Click OK. The changes are applied and the Properties Editor

closes.
6. Activate the configuration:

a. Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

b. From the pop-up menu, select Activate, automatically start the
application server. Wait for the completion message in the Action
Console window before you continue.

Building and running the test application

1. Copy ACashAcctCli.cpp and its associated makefile, ACashAcctCli.mak
from
e:\CBroker\samples\InstallVerification\PAA\Application\ACashAcctCli
into the e:\scenarios\ABeCashAcct\Working\NT directory under the
current Object Builder source directory, and go to that directory.

2. Type set APP=ACashAcct;
3. Type nmake - f ACashAcctCli.mak to build the application.

Note: If your compile command fails due to an incorrect DB2 user ID and
password error, run the following command before you run the make
(AIX) or nmake (NT) command:
export IVB_DB2AUTH=“USER test USING password”
set IVB_DB2AUTH=USER test USING password

4. When the build has finished, type ACashAcctCli to run the application.

Business object (Programming Guide)
Session Service (Advanced Programming Guide)

“Generating code” on page 551
“Building the JAR files” on page 561

Tutorial: Creating a component for PA data (meet-in-the-middle)

Developing components for the CICS or IMS Application Adaptor is most
automated when using the bottom-up
approach to development. However, this may not be the most practical for
your environment: you may want to run your component against a different
backend (such as DB2) before you attempt to run it against a CICS or IMS
system. In this situation, you would have defined both a business object and a
data object in Object Builder, and your next task would be to connect it to a
PA bean.

Chapter 4. Creating a component 177



For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.
In this exercise, we will use NT and AIX as the deployment platforms. It is
assumed that you would have created a component to manage your data.
That is, you would have already created the following objects:
v the business object file (CashAcct)
v the business object interface (CashAcct)
v the key (CashAcctKey)
v the copy helper (CashAcctCopy)
v the business object implementation (CashAcctBO)
v the managed object (CashAcctMO), which uses Session Service for this

particular example
Note:The managed object does not have to be sessional. If the persistent
object uses either the LU 6.2 APPC, IMS APPC, OTMA, or EXCI, then the
managed object must be transactional. If it uses the Generic type, the
managed object can be either sessional or transactional.

v the data object interface (CashAcctDO)

You will now import a PA bean.

Importing the PA bean
The class name for this bean is paa.samples.cics.eci.acct.BeCashAcctPAO.
1. In the Tasks and Objects pane, select the User-Defined PA Schemas folder,

and from its pop-up menu, select Import - Bean. The Import Procedural
Adaptor Bean wizard opens to the Bean Selection page.

2. You can choose to either type the name of the bean class, or select the JAR
file containing the file, and then select the bean class. Select the Enter bean
name radio button, and type the name of the class
(paa.samples.cics.eci.acct.BeCashAcctPAO) in the field.

3. Click Next. The Names and Connectors page opens. Type the name of the
module and the persistent object to be associated with the PA schema. You
can also select the connector type to be used to access objects. Select ECI
as the connector type. This is the type of connector BeCashAcctPAO uses.

When you select OS/390 as the development (target) platform
(Platform > Constrain > 390), only the EXCI, OTMA, IMS APPC, and
Generic connector types are available for selection.
Note: When you select either NT and 390, or AIX and 390 as the
development platforms, all the connector types are available for selection.
However, in this scenario you must not select 390 either alone, or in
combination with one of NT or AIX, as the sample bean is for an ECI
connector, and is not valid on OS/390: if you select 390, you will not be
able to select BeCashAcctPAOPO as the type of your persistent object.

178 WebSphere: Application Development Tools Guide



4. Click Next. Select res_type and account_ID (two of the properties of the
bean) from the Properties box, and move them to the Key Attributes box,
by clicking the >> button.

5. Click Next. The Variable Type Specification page opens. Accept the
defaults.

6. Click Finish, and the bean will be imported into Object Builder. The
BeCashAcctPAO schema and its associated persistent object
BeCashAcctPAOPO appear in the tree under User-Defined PA Schemas
folder.

To be able to connect a PA bean that you import with the component that you
already have, you need to add a data object implementation that uses PAA
Service (that one that uses procedural application adaptors).

To define a data object implementation, and connect the BeCashAcctPAO
persistent object to it, follow these steps:

1. From the pop-up menu of the data object interface (CashAcctDO), select
Add Implementation.The Data Object Implementation wizard opens to
the Name and Platform page.

2. Accept the default names for the implementation class and its file.
CashAcctDOImpl will be the name of the data object implementation you
are defining.

3. Set the deployment platforms (the platforms on which this data object
will be deployed) to NT and AIX.
Note:By default, the data object will be deployable to the set of platforms
defined in the Platforms > Constrain menu. If you cannot select either
NT, or AIX, or both as the deployment platforms, close the wizard, and
first make sure that these options are selected on the Platforms >
Constrain menu.

4. Click Next. The Behavior page opens.
5. In the Environment section, select BOIM with any key. “Environment”

on page 249.
6. In the Type of Persistence section, select Procedural Adaptors. See the

reference section: Type of Persistence.
7. In the Data Access Patternsection, accept the default, which is

Delegating. See the reference section: “Data Access Pattern” on page 254.
8. Click Next till you open the Select Key and Copy Helper page. Select the

key (CashAcctKey), and the copy helper (CashAcctCopy) to use with this
implementation.

9. Click Next. The Associated Persistent Objects page. From the pop-up
menu of the Persistent Object Instances folder, select Add.

10. Examine the list of persistent objects in the Instance Name field.

Chapter 4. Creating a component 179



11. Select iBeCashAcctPAOPO from the list.
Note: If iBeCashAcctPAOPO does not appear in the list, check to make
sure that the deployment platform for the data object implementation
does indeed match that which you selected when you imported the PA
bean. If it is different, change it as before using its File Properties pop-up
menu option.

12. Now the PA persistent object is associated with the data object
implementation, and the attributes of the implementation are mapped to
corresponding ones of the PA bean. Similarly, methods of the
implementation are mapped to corresponding methods of the PA bean.
You can turn to the Attributes Mapping page, or the Methods Mapping
page to examine the mappings.

13. Click Finish.

The data object implementation, CashAcctDOImpl will now appear under the
CashAcctDO interface, and the
BeCashAcctPAOPO persistent object will appear under the CashAcctDOImpl
data object implementation.

Connecting the imported bean with an existing application

Keep the following points in mind:

v The deployment platforms of the data object implementation must match
the deployment platforms of the persistent object. You choose the platforms
of the data object implementation in its wizard, on the Name and Platform
page. The platforms of the persistent object are chosen implicitly when you
import the bean. At import time, the Names and Connectors page of the
Procedural Adaptor Bean wizard reads in Object Builder’s platform
constraints. The appropriate connectors are enabled based on these
constraints, and the platform of the schema and persistent object are
determined by the connector chosen.

v Ensure that the Connector Type of the PA Schema (which you can view
using the Properties wizard of the PA schema) is valid on all the platforms
the data object implementation is to be deployed on.
For example, you cannot associate a persistent object whose PA Schema is
LU 6.2 (APPC) with a data object implementation that is targetted for
CB/390 (or with one that is targetted for multiple platforms including
CB/390). This is because APPC is not supported as a connector type for
CB/390. Similarly, a persistent object whose PA schema is OTMA cannot be
associated with a data object implementation which is being targetted for
NT, AIX, HP-UX or Solaris, since OTMA is only supported in CB/390.
In this tutorial, since we are using NT and AIX as the deployment
platforms for the data object implementation, you could theoretically use
PA schemas whose connector types are one of LU 6.2, HOD, ECI, SAP, or

180 WebSphere: Application Development Tools Guide



Generic for association with the data object implementation. (The sample
PA bean that we use is of the ECI connector type.)

v The only way in which you can associate a PA persistent object with an
existing data object implementation is by using the Associated Persistent
Object page of the data object implementation’s Properties wizard. This is
different for persistent objects that are backed by either Oracle or DB2: for
them you can also use the Add Persistent Object menu item for that
persistent object.

Exporting as XML
If you want to reuse the component that you just created in other scenarios,
you can export it in XML format:
1. Click File > Export Model. The Export Model wizard opens.
2. Click Finish.

XML files that represent the elements of your component are exported to
current project’s \Working\Export directory.

Generating the application code
From the pop-up menu of the CashAcct file in the User-Defined Business
Objects folder, select Generate > All. Code generation will begin, and you can
monitor the progress in the bottom left corner of Object Builder’s window.

Configuring the build
Add the client DLL:
1. From the pop-up menu of the Build Configuration folder, select Add

Client DLL. The Client DLL wizard opens.
2. Type CashAcctC in the Name field.
3. Click the page title and turn to the Client Source Files page.

4. Click the All >> button to select all the client source files.
5. Click Finish.

The CashAcctC DLL will appear in the Build Configuration folder.

Add the server DLL:
1. From the pop-up menu of the Build Configuration folder, select Add

Server DLL. The Server DLL wizard opens.
2. Type CashAcctS in the Name field.
3. Click Next.

4. Click the >> button to add the CashAcctC dll to the list of Libraries to link
with.

5. Click Next.

6. Click the All >> button to select all the server source files.
7. Click Finish.

Chapter 4. Creating a component 181



The CashAcctS DLL will appear in the Build Configuration folder.

Building the DLLs
Generate the configuration:

From the pop-up menu of the Build Configuration folder, select Generate >
All. Code generation will begin.

Creating a container instance

1. From the pop-up menu of the Container Definition folder, select Add
Container Instance. The Container wizard opens.

2. Type CashAcctContainer in the Name field.

If you are developing an application intended for deployment on
OS/390 (the Platform > Constrain > 390 menu choice is selected), you are
now done. The rest of the container definition is handled through the
System Management user interface.

3. Click the arrow to the left of the page name, and select Service from the
list. The Service page opens. Select Use PAA Session Service.

4. On the Service Details page, specify a name of your choice for the
connection. Select ECI for the connector type used by the session.

5. Click Finish.

The CashAcctContainer will appear in the Container Definition folder.

Configuring the application
Add an application family:
1. From the pop-up menu of the Application Configuration folder, select Add

Application Family. The Application Family wizard opens.
2. Type CashAcctApp in the Name field.
3. Click Finish.

The CashAcctApp family will appear in the Application Configuration folder.

Add an application:
1. From the pop-up menu of the CashAcctApp application family, select Add

Application. The Application wizard opens.
2. Type CashAcct in the Name field.
3. Click Finish.

The CashAcct application will appear under the AcctApp family.

Add the application’s managed object:
1. From the pop-up menu of the CashAcct application, select Add Managed

Object. The Managed Object Configuration wizard opens.

182 WebSphere: Application Development Tools Guide



2. Click the list box of the Managed Object field, and select CashAcctMO
CashAcctMO from the list.

3. Click Next.

4. From the pop-up menu of the Implementations folder, select Add.

5. Click the list box of the Data Object Implementation field, and select
CashAcctDOImpl from the list.

6. Click Next.

7. Click the list box of the Name field, and select CashAcctContainer from
the list.

8. Click Finish.

The CashAcctMO managed object will appear under the Acct application.

Generate the application family:

From the pop-up menu of the CashAcctApp family, select Generate.

Building the CashAcct application (client and server)
Set up the environment:

You had added the location of the .jar file that contains the bean you import
to your system class path variable: CLASSPATH. This location is required for
import, and for the server to find the bean. So, reboot your system for the
new environment variables to take effect. The server will then be able to find
the bean.

Starting the build

1. Go to the working\NT directory. For this tutorial, this should be located in
e:\scenarios\ABeCashAcct.

2. Type nmake -f all.mak
3. The CashAcct application should be built.
4. Copy CashAcctS.dll and CashAcctC.dll to the CBroker\bin directory to

place them in your system path.

Installing the application
To install the application, you must be logged on to DCE, and the System
Manager User Interface must be running. Then you load and configure the
application by following the steps below.

Loading the application onto System Management

1. Start the System Manager User Interface, if it is not already started.
2. Enable Control actions by selecting View > View Level > Control.
3. Expand Host Images, and select your host name.

Chapter 4. Creating a component 183



4. From the pop-menu, select Load application to open the Load application
dialog. Select
e:\scenarios\BeCashAcct\Working\NT\CashAcctApp\CashAcctApp.ddl.

Configuring the application with System Management

1. Create the server:
a. From the Tasks menu, select Create Servers.
b. In the Management Zone window, select Available Items >

SampleApplication Zone. Click Next.
c. In the Configuration window, select Available Items > Sample

Configuration. Click Next.
d. In the Server Group window, type CashAcctServerGroup for the name

of the server group. Click Next. If the server group does not exist, click
Yes to create the server group.

e. In the Server window, type CashAcctServer for the Name of the server.
Click Finish.

2. Configure the server:
a. Click on the Tasks menu and select Configure Servers.
b. In the Select Applications To Configure window, select Available

Applications > iPAAServices and CashAcct. Click Add to move the
applications to Applications To Configure. Click Next.

c. In the Management Zone window, select Available Items > Sample
Application Zone. Click Next.

d. In the Configuration window, select Available Items > Sample
Configuration. Click Next.

e. In the Select Servers To Configure Applications on window, select
Available Server Groups > CashAcctServerGroup. Click Add to move
the available server group to Servers To Configure Application On.
Click Finish.

3. Configure the APPC connection:
a. Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > APPC Connections and
select APPC_CashAcct_Server.

b. From the pop-up menu, select Properties. The Properties Editor opens.
c. Click the Main tab.
d. Change the Fully qualified Local LU name field to match the local

LU6.2 LU that you will use to communicate with your CICS/IMS
system (for example, PAA01001).

e. Change the Fully qualified Partner LU name field to match the
partner LU6.2 LU that you will use to communicate with your
CICS/IMS system (for example, USIBMZP.CICS4).

184 WebSphere: Application Development Tools Guide



f. Change the Mode Name field to match the mode name that you will
use to communicate with your CICS/IMS system (for example,
LU62PS).

g. Change the Remote Procedure Type field to match the type of
program with which you will be communicating (for example,
CICS_DPL or CICS_DTP). The CICS_DPL flavor appends eight bytes
(converted to the target code page) that correspond to the CICS
application to which the DTP program should EXEC CICS LINK.

h. Change the Transaction Program Name field to match the CICS
transaction program (TP) that you will run (for example, BDPL or
BDTP).

i. Change the CICS Program Name field to match the CICS program
name that you will run under the transaction program (for example,
BECASHAC).

j. Change the transaction type field to be either optimistic or pessimistic.
Pessimistic initiates the conversation as sync-level 2 for the entire
transaction while optimistic only talks sync-level 2 during the prepare
and commit parts of the transaction.

k. Click OK to validate and accept the changes.
4. (Optional): Enable security service for the application server and the name

server:
a. Expand Management Zones > Sample Application Zone >

Configurations > Sample Configuration > Server Groups, and select
CashAcctServerGroup.

b. From the pop-up menu, select Properties to open the Properties Editor.
c. In this notebook:

1) Select the Security Service tab.
2) Change the value for the Enable security field from no to yes.
3) Change the Delegate credentials to None.
4) Change the Credential mapping to Simple.
5) Change the value for the data system principal field to the user ID

that the server will use when connecting to the CICS system.
6) Change the value for the data system password field to the

password that the server will use when connecting to the CICS
system.

7) Change the value for the Enable security field from no to yes.
8) Click OK. The changes are applied and the Properties Editor closes.

d. Expand Management Zones > Network Zone > Configurations >
Network Configuration > Name Servers and select Network Name
Server.

Chapter 4. Creating a component 185



e. From the pop-up menu, select Properties, which opens the Properties
Editor.

5. (Optional): Enable security service for the client:
a. Expand Management Zones > Network Zone > Configurations >

Network Configuration > Client Styles, and select server name
Default Client.

b. From the pop-up menu, select Properties. The Properties Editor
opens.

c. In this notebook:
1) Select the Security Service tab.
2) Change the value for the Enable security field from No to Yes.
3) Click OK. The changes are applied and the Properties Editor

closes.
6. Activate the configuration:

a. Expand Management Zones > Sample Application Zone >
Configurations, and select Sample Configuration.

b. From the pop-up menu, select Activate, automatically start the
application server. Wait for the completion message in the Action
Console window before you continue.

Building and running the test application

1. Copy CashAcctCli.cpp and its associated makefile, CashAcctCli.mak from
e:\CBroker\samples\InstallVerification\PAA\Application\CashAcctCli
into the e:\scenarios\ABeCashAcct\Working\NT directory under the
current Object Builder source directory, and go to that directory.

2. Type set APP=CashAcct;
3. Type nmake - f CashAcctCli.mak to build the application.
4. When the build has finished, type CashAcctCli to run the application.

Business object (Programming Guide)
Session Service (Advanced Programming Guide)

“Creating a PA schema by importing a PA bean” on page 862
“Generating code” on page 551
“Building the JAR files” on page 561

186 WebSphere: Application Development Tools Guide



Creating a component for an inbound message

When you use the MQSeries application adaptor provided by Component
Broker to create an application, the Component Broker business application
integrates with non-Component Broker applications that are based directly on
MQSeries.

These MQSeries application adaptor-backed Component Broker applications
are of two types: those that either put messages to queues (outbound message
applications), and those that get messages from queues (inbound message
applications).

The business object of the component for an inbound message application
communicates by retrieving messages from MQSeries applications.

If you are creating a new component, which talks by means of messages to
MQSeries applications, you can create the entire component in Object Builder,
starting with the business object interface and working your way down to a
data object implementation that’s derived from the component’s state data.

To create the component directly in Object Builder, follow these steps:
1. “Creating a business object file” on page 775
2. “Adding a business object module” on page 777
3. “Adding a business object interface” on page 777
4. “Adding a key” on page 826
5. “Adding a copy helper” on page 830
6. “Adding a business object implementation and data object interface” on

page 780
7. “Implementing methods” on page 752
8. “Adding a data object implementation” on page 807
9. “Adding a managed object” on page 871

For a scenario showing how to create a component for an inbound message
application, see the “Tutorial: Creating an inbound message application” on
page 188

For more information on using Object Builder with MQSeries-backed
applications, see the related tasks for sections in the MQSeries Application
Adaptor Concepts and Development Guide

Component (Programming Guide)
The Component Broker message processing model (MQSeries Application
Adaptor Concepts and Development Guide)

Chapter 4. Creating a component 187



An overview of message queueing with MQSeries (MQSeries Application
Adaptor Concepts and Development Guide)

“Chapter 4. Creating a component” on page 127
“Generating code” on page 551
“Tutorial: Creating an outbound message application” on page 203
Developing an MQSeries-backed application (MQSeries Application Adaptor
Concepts and Development Guide)
Using Object Builder to develop the MQSeries sample applications (MQSeries
Application Adaptor Concepts and Development Guide)

The ICBMQGet interface (MQSeries Application Adaptor Concepts and
Development Guide)
MQAA Transaction Service (page 596) (Container service)
“Naming objects” on page 128
“Internationalization of data” on page 132

Tutorial: Creating an inbound message application

Component Broker inbound message applications can be used to process a
message queue, to which existing MQSeries applications can send messages.
Inbound messages can be retrieved from a queue, but they can be retrieved
only once (they are automatically deleted from the queue when they are
retrieved).

MQSeries application adaptor support is
available only in the Windows NT, Solaris and HP-UX environments. If you
are developing a model for AIX, or OS/390, none of the MQSeries functions
are available.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

To create an inbound message application, you will perform the following
tasks:
v Add a business object file
v Add a business object interface
v Add a key
v Add a business object implementation
v Add a data object implementation
v Create the inbound message

188 WebSphere: Application Development Tools Guide



v Add a managed object
v Generate code
v Define a message queue, and a queue manager in MQSeries
v Define a client DLL and a server DLL
v Build the DLLs
v Test your component
v Define an application family, and an application
v Configure the components with the application

Adding a business object file

1. From the pop-up menu of the User-Defined Business Objects folder in the
Tasks and Objects pane, select Add File.

2. The Business Object File wizard opens to the Name and Platforms page.
Specify a name for the business object file, and make sure that only NT is
selected in the section: “Deployment platforms” on page 423.

3. Click Finish.

The business object file is created in the folder.

Adding a business object interface

1. From the pop-up menu of the business object file, select Add Interface.
2. The Business Object Interface wizard opens to the Name page. Type a

name for the business object, and specify whether it is to be queryable.
That is, whether attributes and methods are to be invoked on the managed
object through a query.

3. Click Next. Define constructs for the interface, if required.
4. Click Next. The Interface Inheritance page opens. Replace the default

parent interface (IManagedClient IManagedClient::IManageable) with
IMessage IMessage::InboundMessage. The interface that you are defining
will then be able to receive messages from queues that are managed by
MQSeries application adaptors.

5. Click Next to define attributes on the Attributes page.
6. Click Next to define methods on the Methods page.
7. Click Nextto specify any relationships this object has with other objects on

the Relationships page.
8. Click Next to add comments if required for the object, and click Finish.

The business object interface is created in the User-Defined Business Objects
folder.

Note: You do not have to add a copy helper when you create an object for an
inbound message.

Chapter 4. Creating a component 189



Adding a key for the business object

1. From the pop-up menu of the business object interface, select Add Key.
2. The Key wizard opens to the Name and Key Attributes page. Type a name

for the key, or accept the default. Object Builder creates the default name
from the name of the business object interface, adding Key as a suffix.

3. Click Next. The Implementation Inheritance page opens. Make sure that
the key inherits from IMessageKey IMessageKey::InboundMessageKey.

4. Click Next to review the set of framework methods that will be
implemented for the key.

5. Click Next to indicate which of the optional framework methods you want
implemented for the key. You will have to provide your own
implementation for these methods.

6. Click Finish.

The key appears in the User-Defined Business Objects folder.

You can add file adornments for the key, if you want to.

Adding a business object implementation

1. From the pop-up menu of the business object interface, select Add
Implementation. The Business Object Implementation wizard opens to
the Name and Data Access Pattern page.
Appropriate implementation names are filled in for you (the business
object file name and interface name plus BO). You can accept these
defaults or replace them with your own names.

2. Set the types of behavior you want your business object to have. You can
set the following properties:
v “Pattern for Handling State Data” on page 245: Set the pattern to

Delegating.
v “Object Reference” on page 246
v “Data Object Interface” on page 247: Select Create a new one now.
v “Session Service” on page 248
v “Deployment platforms” on page 423

3. Click Next. The Files to Include page opens. Object Builder automatically
includes all the files that are required for MQSeries support.

4. Click Next. The Implementation Inheritance page opens. Make sure that
IManagedClient::IManageable is listed as a parent under the Parent Class
folder.

5. Click Next. The Implementation Language page opens. Select the
language you want the business object to be implemented in. You can

190 WebSphere: Application Development Tools Guide



select either Java or C++.
The default for this page is set in the Preferences notebook, on the Tasks
and Objects page.

6. Click Next. The Attributes page opens. Specify any attributes you want to
add to the business object implementation (in addition to the attributes
you already specified in the business object interface).

7. Click Next. The Methods page opens. Specify any methods you want to
add to the business object implementation (in addition to the methods
you already specified in the business object interface).

8. Click Next. The Key and Copy Helper page opens. The key that you had
defined, InboundMessageKey, is assigned for the implementation.
Note: No copy helper is required for the inbound message object
implementation. If you create a copy helper, and select it, it will not be
used unless you also create a specialized home (InboundMessageQueue
does not use a copy helper).

9. Click Next. The Handle Selection page opens. If you select a handle, then
the framework method getHandleString is implemented, which overrides
the getHandleString method of IManagedClient::IManageable. The handle
that you select determines the pattern that is used to form the string (that
is, to turn the reference into a string, or to swizzle the pointer).

10. Click Next. If the business object implementation has parent classes with
overrideable attributes, then the Attributes to Override page opens.
You can use this page to select the attributes of the parent class that you
want to override. The attributes of the defined key:
InboundMessage::objectKey, InboundMessage::correlatorKey, and
InboundMessage::correlator are automatically selected as attributes to be
overridden in this business object implementation.

11. Click Next. If the business object implementation has parent classes with
overrideable methods, then the Methods to Override page opens.

12. Click Next. The Relationships to Override page opens if the
implementation inherits from parent implementations that have
1-n relationships defined among other objects. You can specify the
relationship method implementations of the parent, if any, that you want
to override.

13. Click Next. If the business object interface defines 1-n relationships, then
the Object Relationships page opens. You can use this page to set the way
that the object relationship will be implemented.

14. Click Next. The Data Object Interface page opens. The inbound message
business object implementation is designed to always delegate the
handling of the state data to the data object. So, select all attributes of the
business object to be those of the data object as well (that is, to be state
data of the component).
Note the following points:

Chapter 4. Creating a component 191



v Appropriate data object names are filled in for you (the business object
file name and interface name plus DO). You can accept these defaults
or replace them with your own names.

v If you implemented a one-to-many relationship as a Local persistent
reference, then an attribute representing it appears here, so you can
select to preserve it in the data object.

15. Click Next. The Data Object Methods page opens. Select the business
object methods that you want to push down to the data object (that is,
call equivalent methods to be defined in the data object).

16. Click Next. The Summary of Framework Methods page opens.
Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you
selected a caching pattern to handle the essential state of your business
object (on the first page), this list includes the synchToDataObject method
that is required to keep the two sets of attributes synchronized. No action
is needed.

17. Click Finish. The business object implementation and data object
interface appear in the User-Defined Business Objects folder, under your
business object interface. The data object interface also appears in the
User-Defined Data Objects folder.

Now that the business object implementation is defined, you can type the
implementation code for each user-defined method.

Note:The business object implementation for this inbound object does not
have the insert() method, and the retrieve() method is initialized to 0(off).

Adding the data object implementation

1. From the pop-up menu of the data object interface, select Add
Implementation.

2. The Data Object Implementation wizard opens to the Name and Platform
page. In the section: “Deployment platforms” on page 423, the platforms
that are selected are those you had specified using Platform > Constrain.

MQSeries capability is not supported on the AIX, OS/390,
Solaris, or HP-UX platforms.

3. Click Next. The Behavior page opens. You can set the following properties:
Set the types of behavior you want the data object to have. You can set the
following properties:
v “Environment” on page 249: Select BOIM with any key.
v Type of Persistence: Select MQ Adaptor.
v “Data Access Pattern” on page 254: The data access pattern is

automatically set to Local copy and you cannot change it.

192 WebSphere: Application Development Tools Guide



v “Handle for Storing Pointers” on page 255: Select a handle, or accept the
default.

4. Click Next. The Implementation Inheritance page opens.
IMQAAExtLocalToServer IMQAAExtLocalToServer::IDataObject is
automatically set as the parent implementation class.

5. Click Next. The Key and Copy helper page opens. InboundMessageKey is
selected by default as the key to be used for the inbound message business
object. No copy helper is required for the implementation.

6. Click Next. The Summary of Framework Methods page opens. The CRUD
methods along with the setConnection() method will be implemented for
this data object implementation.

7. Click Finish.

The data object implementation appears in the User-Defined Business Objects
folder, beneath the data object interface.

Note:This data object implementation cannot be associated with a persistent
object, and consequently, the pop-up menu choices of Add Persistent Object
and Schema and Select Persistent Object and Schema are not available for it.

Creating the inbound message (providing code for the
InboundMessage::retrieve() method)

Now, you must provide code for the retrieve() method. This method will be
used to take the message off the message queue. You have to provide code
(see the task “Implementing methods” on page 752), which extracts pieces of
information from the byte sequence that is returned by the ICBMQGet
interface, and then assign them to attributes of the data object
implementation.

You must first add code for the retrieve() method so that it inspects the
correlatorKey attribute in the data object implementation.

There are two ways in which you can create the inbound message, depending
on whether the correlatorKey attribute is set. (The default key for an inbound
message is InboundMessageKey, and one of its attributes is correlatorKey.)

If correlatorKey is set:

1. Construct an ICBMQGet object
2. Pass the correlatorKey attribute on the constructor

If correlatorKey is not set:

1. Construct the ICBMQGet object
2. Use the constructor which does not have the correlatorKey attribute

Chapter 4. Creating a component 193



You create inbound messages by pulling them off a message queue through
two methods getNext() and get(in string correlator). Both these methods
call InboundMessage::retrieve(). getNext() causes retrieve() to be called on an
inbound message without setting its correlatorKey attribute. When you call
get(in string correlator) on the home, the home creates an inbound message,
then sets its correlatorKey attribute, and then calls retrieve() on it.

Adding the managed object
The managed object represents a message in the queue manager.
1. From the pop-up menu of the business object implementation, select Add

Managed Object. The Managed Object wizard opens to the Names and
Service page.
Appropriate names are filled in for you (the business object file name and
interface name plus MO: InboundMessage
InboundMessage::InboundMessageMO). You can accept these defaults or
replace them with your own names.

2. The deployment platform (platform on which this managed object will be
deployed) is set by default to NT.

3. Accept the default for the type of service, which is set to Transaction
Service.

4. Click Next. The Implementation Inheritance page opens. By default, no
inheritance is selected.

5. Click Finish.

The managed object appears in the User-Defined Business Objects folder,
under your business object implementation.

Generating code
When you generate code for the business object, a new folder with the name
of the key is created beneath NT folder. Within it is the key implementation
and the key helper .java files. In the NT folder you will find the .idl, .ih, and
_I.cpp files are created for the business object interface, implementation, key,
key assistant, and managed object.

Now, you must define a message queue, and a queue manager in MQSeries.
Refer to the sections Using queues to interact with an MQSeries application
and Appendix B. Configuring an MQSeries queue manager in the MQSeries
Application Adaptor Concepts and Development Guide.

Defining a client DLL and a server DLL

Defining a client DLL

1. From the pop-up menu of the Build Configuration folder, click Add Client
DLL to open the Client DLL wizard.

194 WebSphere: Application Development Tools Guide



2. Name the DLL (InboundClient), and accept the default (NT) for the
deployment platform.

3. Click the title and turn to the Client Source Files page. The items available
include the business object interface (InboundMessage) and the key
interface (InboundMessageKey).

4. Select all the client source files for the object, and add them to the Items
Chosen list.

5. Click Finish.

The client DLL appears under the Build Configuration folder.

Defining a server DLL

1. From the pop-up menu of the Build Configuration folder, click Add Server
DLL to open the Server DLL wizard.

2. Name the DLL (InboundServer), and accept the default (NT) for the
deployment platform.

3. Click Next to turn to the Libraries to Link With page. InboundClient is
listed in the Items Available box. Select InboundClient and add it to the
Items Chosen list.

4. Click Next to turn to the Server Source Files page.
5. Select all the server source files for the object, and add them to the Items

Chosen list. The items available include the business object
implementation (InboundMessageBO) and the managed object
(InboundMessageMO). You can use the All Valid>> button to move valid
objects from the Items Available list to the Items Chosen list, and the
<<All Invalid button to move invalid objects from the Items Chosenlist to
the Items Available list.

6. Click Finish.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards, follow these steps:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

Note: You do not have to build the JAR files in the following situations:
v when the business object is implemented in C++; not Java
v when you do not want to code a client in Java

To build the DLL and (optionally) JAR files:

Chapter 4. Creating a component 195



Note: You do not have to build the JAR files if you have a C++ business
object; not a Java business object, or if you do not want to code the client in
Java.
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You have to always generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you have to also build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The clientIN.dll and serverIN.dll files are stored in the
Working\NT\PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the Working\NT\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(Working\NT\<build style>\JCB\JCBclientIN.jar). <build style> is one of the
configuration directories: NOOPT, PRODUCTION, TRACE, TRACE_DEBUG.
See Platform-specific information for more information.

Testing your component
You will be using QuickTest to test the installed component with a QuickTest
client application.

Defining an application family and application
An application family is a group of applications in System Management. An
application defines a set of components that will operate together on the
server. The application name you provide here is the name that will be used
by System Management, when the application and its components are
deployed.

196 WebSphere: Application Development Tools Guide



Defining the application family

1. From the pop-up menu of the Application Configuration folder, select Add
Application Family. The Application Family wizard opens to the Name
page.

2. Type a name (InboundMessageAppFamily), and a description for the
application family, and set its version.

3. Optionally, type names for the specific and non-specific DDL files that will
be generated.

When OS/390 is one of the deployment platforms, both the
specific and non-specific DDL filenames must not exceed eight characters
in length. The first character must be alphabetic, and the other characters
(positions 2 to 8) must be alphanumeric.

The application family InboundMessageAppFamily appears in the Application
Configuration folder.

Defining the application
Define the server application (InboundMessageApplication).
1. From the pop-up menu of the application family,

InboundMessageAppFamily, in the Application Configuration folder, select
Add Application. The Application wizard opens to the Name and
Environment page.

2. Type a name (InboundMessageApplication), and a description for the
application. The version of the application is set at the version of the
application family.

3. Click Finish.

The application, InboundMessageApplication, appears under the application
family, InboundMessageAppFamily.

Creating a new container instance

1. From the pop-up menu of the Container Definition folder, click Add
Container Instance. The Container wizard opens to the Name page.

2. Type a name and description for the container. NTis selected as the
deployment platform in the section: Deployment Platforms. See
“Deployment platforms” on page 423.

3. In the Number of Components field, type an estimate for the number of
managed objects this container will hold. This sets a lower limit on the
size of the container’s hash table; additional space will be allocated when
it is needed.

4. Click Next. The Workload Management page opens.

Chapter 4. Creating a component 197



5. Specify whether the container is workload managing. If you check this
option, you must also specify the policy group it will be configured with.
For new policy groups, accept the default <New> entry.

6. Click Next. The Service page opens.
7. Select Use MQAA Transaction Service (page 596).
8. Click Next. The Services Details page now opens. Only the Behavior for

Methods Called Outside a Transaction section is enabled. (See
“Behavior for Methods Called Outside a Transaction” on page 599).
Select Throw an exception and abandon the call. Then, type a name for
the queue manager in the Queue Manager Name field.

9. Click Next. The Data Access Patterns page opens. Select the options on
this page according to the options set for the objects the container will
hold.
In the Business Object section, the default pattern is Delegating. It is
recommended that you do not change it. (This option is set according to
the pattern you defined for the business object implementation in the
section Pattern for Handling State Data of the Business Object
Implementation wizard’s Name and Data Access Pattern page.) (See
“Pattern for Handling State Data” on page 245.)
In the Data Object section, Local copy is the default. You cannot change
it since the data object implementation for the MQSeries application
adaptor has no persistent object to delegate to. (This is the same as the
option you select for the data object implementation’s Data Access
Pattern in the Data Object Implementation wizard’s, Behavior page.)
Since you selected Delegating, you have to indicate whether the data
object uses Cache Service. Select the Cache Service check box if the data
objects have their Type of Persistence set to either DB2 Cache Service or
Oracle Cache Service (Data Object Implementation wizard, Behavior
page).

10. Click Finish.

The new container is added to the Container Definition folder.

Configuring the components with the application
Configure InboundMessage’s managed object (InboundMessage
InboundMessage::InboundMessageMO) with the application
(InboundMessageApplication).

To add a managed object for the application, follow these steps:
1. From the Application Configuration folder, select your application.
2. From the application’s pop-up menu, select Add Managed Object. The

Configure Managed Object wizard opens to the Selection page. Only
managed object and primary key fields are filled in. Copy helper
information blank.

198 WebSphere: Application Development Tools Guide



The managed object InboundMessageMO InboundMessageMO is
designated to the server DLL named InboundServer, and the primary key,
InboundMessageKey InboundMessageKey, is designated to the client
DLL, InboundClient.

3. Select the managed object (InboundMessageMO) from the drop-down list.
4. Click Next. The Data Object Implementations page opens.
5. From the Implementations pop-up menu, select Add.
6. Select the data object implementations that will be available to the

application, and associated DLLs. Note that this is a packaging statement,
and not a configuration statement. You can only select data object
implementations whose type of persistence matches the service provided
by the managed object.

7. Click Next. The Container page opens.
The only containers listed are those that are appropriate for the current
managed object and selected data object implementations. If you did not
create the container instance before you started configuring the managed
object, you can select the Create a new container for this managed
objectcheck box to have Object Builder create a default container into
which you can configure the managed object. The container will have
behaviors that are appropriate for the managed object and selected data
object implementations. If you select this check box, continue with step 8;
otherwise continue with step 9.
Note: You have to ensure that the managed object is configured with a
different container than that used by its home.

8. Click Next, and use the New Container page to define a container to use
with this managed object. Indicate whether you want to use a workload
managing container. If you select this option, then only workload
managing containers are available in the Container list.
Note: If necessary, create a separate container instance for the managed
object. If a managed object and its home are configured with the same
container, the server will not activate.

9. Click Next. The Home page appears.
10. Define the home to use with this managed object. You can define a home

instance of a default home provided with Component Broker, or define a
home instance of a specialized home you created. If you specify a
specialized home, you must also specify the DLL that contains it.
IMessageHomeMO_InboundMessageQueueMO is selected by default as
the home.
InboundMessageMMO::InboundMessageIMOFactory is the default name
in factory-finding registry
InboundMessageMMO::InboundMessageIMOHome is the default name in
naming service registry

Chapter 4. Creating a component 199



Only homes that are appropriate for the current managed object are
shown. If your component is workload managed, you must select a
workload managed home (BOIMHomeofRegWLMHomes,
BOIMHomeofRegWLMQIHomes, or a specialized home that inherits
from one of them). If your component is not workload managed, you can
still select a workload managed home, although this will not make the
component workload managed: the choice of container is what makes a
component workload managed.

11. Select any other configuration options for the home
12. Click Finish. You have configured the managed object by choosing a

copy helper and a key for it to work with, data object implementations
for it to use, a container, a home, and the DLLs that contain it and the
other objects. The managed object now appears in the Application
Configuration folder, underneath the application you configured it for.

The InboundMessageMO managed object configuration appears under the
InboundMessageApplication application, and the new container
InboundMessageContainer appears in the Container Definition folder. You can
review the properties of the container, including the service and data access
patterns that have been selected for you, by clicking Properties from the
container’s pop-up menu.

Once you have finished adding managed objects to your server applications,
and have completed the configuration of the applications in your application
family, you can generate the installation image for your application family.

Generating the application installation information:

1. From the pop-up menu of the Application Configuration folder, click
Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\InboundMessageApplication.

Closing Object Builder:

1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component named InboundMessage that inherits from the
InboundMessage interface.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

200 WebSphere: Application Development Tools Guide



You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Components (Programming Guide)
The Component Broker message processing model (MQSeries Application
Adaptor Concepts and Development Guide)
An overview of message queueing with MQSeries (MQSeries Application
Adaptor Concepts and Development Guide)
Workload management (Using Object Builder) (Advanced Programming Guide)

“Chapter 4. Creating a component” on page 127
“Generating code” on page 551
“Tutorial: Creating an outbound message application” on page 203
Developing an MQSeries-backed application (MQSeries Application Adaptor
Concepts and Development Guide)
Using Object Builder to develop the MQSeries sample applications (MQSeries
Application Adaptor Concepts and Development Guide)

The ICBMQGet interface (MQSeries Application Adaptor Concepts and
Development Guide)
MQAA Transaction Service (page 596) (Container service)

Creating a component for an outbound message

When you use the MQSeries application adaptor provided by Component
Broker to create an application, the Component Broker business application
integrates with non-Component Broker applications that are based directly on
MQSeries.

These MQSeries application adaptor-backed Component Broker applications
are of two types: those that either put messages to queues (outbound message
applications), and those that get messages from queues (inbound message
applications).

The business object of the component for an outbound message application
communicates by putting messages to MQSeries message queues.

If you are creating a new component, which communicates by means of
messages to MQSeries applications, you can create the entire component in

Chapter 4. Creating a component 201



Object Builder, starting with the business object interface and working your
way down to a data object implementation that’s derived from the
component’s state data.

To create the component directly in Object Builder, follow these steps:
1. “Creating a business object file” on page 775
2. “Adding a business object module” on page 777
3. “Adding a business object interface” on page 777
4. “Adding a key” on page 826
5. “Adding a copy helper” on page 830
6. “Adding a business object implementation and data object interface” on

page 780
7. “Implementing methods” on page 752
8. “Adding a data object implementation” on page 807
9. “Adding a managed object” on page 871

For a scenario showing how to create a component for an outbound message
application, see “Tutorial: Creating an outbound message application” on
page 203

Components (Programming Guide)
The Component Broker message processing model (MQSeries Application
Adaptor Concepts and Development Guide)
An overview of message queueing with MQSeries (MQSeries Application
Adaptor Concepts and Development Guide)

“Chapter 4. Creating a component” on page 127
“Generating code” on page 551
“Tutorial: Creating an outbound message application” on page 203
Developing an MQSeries-backed application (MQSeries Application Adaptor
Concepts and Development Guide)
Using Object Builder to develop the MQSeries sample applications (MQSeries
Application Adaptor Concepts and Development Guide)

The ICBMQGet interface (MQSeries Application Adaptor Concepts and
Development Guide)
MQAA Transaction Service (page 596) (Container service)
“Naming objects” on page 128
“Internationalization of data” on page 132

202 WebSphere: Application Development Tools Guide



Tutorial: Creating an outbound message application

Outbound messages are persistent in that they are written to a message
queue, but they can neither be retrieved nor deleted from that queue
as outbound messages.

MQSeries application adaptor support is
available only in the Windows NT, Solaris and HP-UX environments. If you
are developing a model for AIX, or OS/390, none of the MQSeries functions
are available.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

To create an outbound message application, you will perform the following
tasks:
v Add a business object file
v Add a business object interface
v Add a copy helper
v Add a business object implementation
v Add a data object implementation
v Create the outbound message
v Add a managed object
v Generate code
v Define a message queue, and a queue manager in MQSeries
v Define a client DLL and a server DLL
v Build the DLLs
v Test your component
v Define an application family, and an application
v Configure the components with the application

Adding a business object file

1. From the pop-up menu of the User-Defined Business Objects folder in the
Tasks and Objects pane, select Add File.

2. The Business Object File wizard opens to the Name and Platforms page.
Specify a name for the business object file, and make sure that only NT is
selected as the deployment platform in the section: “Deployment
platforms” on page 423.

3. Click Finish.

The business object file is created in the folder.

Chapter 4. Creating a component 203



Adding a business object interface

1. From the pop-up menu of the business object file, select Add Interface.
2. The Business Object Interface wizard opens to the Name page. Type a

name for the business object, and specify whether it is to be queryable.
That is, whether attributes and methods are to be invoked on the managed
object through a query.

3. Click Next. Define constructs for the interface, if required.
4. Click Next. The Interface Inheritance page opens. Replace the default

parent interface (IManagedClient IManagedClient::IManageable) with
IMessage IMessages::OutboundMessage. The interface that you are
defining will then be able to receive messages from queues that are
managed by MQSeries application adaptors.

5. Click Next to define attributes on the Attributes page.
6. Click Next to define methods on the Methods page.
7. Click Nextto specify any relationships this object has with other objects on

the Relationships page.
8. Click Next to add comments if required for the object, and click Finish.

The business object interface is created in the User-Defined Business Objects
folder.

Note: You do not have to add a key when you create an object for an
outbound message.

Adding a copy helper

1. From the business object interface’s pop-up menu, click Add Copy Helper
to open the Copy Helper wizard.

2. Accept the default name, and select all attributes and add them to the
Copy Helper Attributes list.

3. Click Next. The Implementation Inheritance page opens. The copy helper
inherits by default from IMessages::OutboundMessageTemplate.

4. Click Finish.

The copy helper appears in the User-Defined Business Objects folder.

You can add file adornments for the copy helper, if you want to.

Adding a business object implementation

1. From the pop-up menu of the business object interface, select Add
Implementation. The Business Object Implementation wizard opens to
the Name and Data Access Pattern page.

204 WebSphere: Application Development Tools Guide



Appropriate implementation names are filled in for you (the business
object file name and interface name plus BO). You can accept these
defaults or replace them with your own names.

2. Set the types of behavior you want your business object to have. You can
set the following properties:
v “Pattern for Handling State Data” on page 245: The pattern is set to

Delegating.
v “Object Reference” on page 246
v “Data Object Interface” on page 247: Select Create a new one now.
v “Session Service” on page 248
v “Deployment platforms” on page 423

3. Click Next. The Implementation Inheritance page opens. Make sure that
IManagedClient::IManageable is listed as a parent under the Parent Class
folder.

4. Click Next. The Implementation Language page opens. Select the
language you want the business object to be implemented in. You can
select either Java or C++.
The default for this page is set in the Preferences notebook, on the Tasks
and Objects page.

5. Click Next. The Attributes page opens. Specify any attributes you want to
add to the business object implementation (in addition to the attributes
you already specified in the business object interface).

6. Click Next. The Methods page opens. Specify any methods you want to
add to the business object implementation (in addition to the methods
you already specified in the business object interface).

7. Click Next. The Key and Copy Helper page opens. The copy helper that
you had defined, OutboundMessageCopy, is assigned for the
implementation.

8. Click Next. The Handle Selection page opens. If you select a handle,
then the framework method getHandleString is implemented, which
overrides the getHandleString method of IManagedClient::IManageable.
The handle that you select determines the pattern that is used to form the
string (that is, to turn the reference into a string, or to swizzle the
pointer).

9. Click Next. If the business object implementation has parent classes with
overrideable attributes, then the Attributes to Override page opens. You
can use this page to select the attributes of the parent class that you want
to override.
The OutboundMessage::correlator attribute is automatically selected to be
overridden by this business object implementation, and so is the
objectKey attribute.

Chapter 4. Creating a component 205



10. Click Next. If the business object implementation has parent classes with
overrideable methods, then the Methods to Override page opens.

11. Click Next. The Relationships to Override page opens if the
implementation inherits from parent implementations that have 1-n
relationships defined among other objects. You can specify the
relationship method implementations of the parent, if any, that you want
to override.

12. Click Next. If the business object interface defines 1-n relationships, then
the Object Relationships page opens. You can use this page to set the way
that the object relationship will be implemented.

13. Click Next. The Data Object Interface page opens. The outbound message
business object implementation is designed to always delegate the
handling of the state data to the data object. So, you must select all
attributes of the business object to be those of the data object as well (that
is, to be state data of the component).
Appropriate data object names are filled in for you (the business object
file name and interface name plus DO). You can accept these defaults or
replace them with your own names.

14. Click Next. The Data Object Methods page opens. Select the business
object methods that you want to push down to the data object (that is,
call equivalent methods to be defined in the data object).

15. Click Next. The Summary of Framework Methods page opens.
Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you
selected a caching pattern to handle the essential state of your business
object (on the first page), this list includes the synchToDataObject method
that is required to keep the two sets of attributes synchronized. No action
is needed.

16. Click Finish. The business object implementation and data object
interface appear in the User-Defined Business Objects folder, under your
business object interface. The data object interface also appears in the
User-Defined Data Objects folder.

Now that the business object implementation is defined, you can type the
implementation code for each user-defined method.

Note:The business object implementation for this outbound object has the
insert() method.

Adding the data object implementation

1. From the pop-up menu of the data object interface, select Add
Implementation.

2. The Data Object Implementation wizard opens to the Name and Platform
page. The deployment platforms that are selected in the Deployment

206 WebSphere: Application Development Tools Guide



Platforms section are the same as the constraint platforms (those you had
specified using Platform > Constrain). See “Deployment platforms” on
page 423.

3. Click Next. The Behavior page opens. You can set the following properties:
Set the types of behavior you want the data object to have. You can set the
following properties:
v “Environment” on page 249: Select BOIM with any key.
v Type of Persistence: Select MQ Adaptor.

You will be able to select MQSeries Adaptor
only if neither AIX nor 390 are selected as the constraint platforms.

v “Data Access Pattern” on page 254: The data access pattern is
automatically set to Local copy and you cannot change it.

v “Handle for Storing Pointers” on page 255: Select a handle, or accept the
default.

4. Click Next. The Implementation Inheritance page opens.
IMQAAExtLocalToServer IMQAAExtLocalToServer::IDataObject is
automatically set as the parent implementation class.

5. Click Next. The Key and Copy helper page opens. OutboundMessageCopy
is selected by default as the copy helper to be used for the outbound
message business object. No key is required for the implementation.

6. Click Next. The Summary of Framework Methods page opens. The insert,
retrieve, update, and delete methods, along with the setConnection()
method will be implemented for this data object implementation.

7. Click Finish.

The data object implementation appears in the User-Defined Business Objects
folder, beneath the data object interface.

Note: This data object implementation cannot be associated with a persistent
object, and consequently, the pop-up menu choices of Add Persistent Object
and Schema and Add Persistent Object and Schema are not available for it.

Creating the outbound message
Now, you must provide code for the insert() method. Object Builder
provides implementation code for this method: a message body is created
from the data object attributes, and it is sent to a message queue (the
ICBMQPut object is created and the message is put to the queue). The
message body is simply a data structure which contains the contents of the
message. Since Object Builder does not know the layout of the data structure,
it shows (in the sample code) how the attributes of the data object could be
written to a hypothetical data structure in memory. You then have to modify
this code to fit the actual structure of the message body. See the task
“Implementing methods” on page 752.

Chapter 4. Creating a component 207



Adding the managed object
The managed object represents a message in the queue manager.
1. From the pop-up menu of the business object implementation, select Add

Managed Object. The Managed Object wizard opens to the Names and
Service page.
Appropriate names are filled in for you (the business object file name and
interface name plus MO). You can accept these defaults or replace them
with your own names.

2. The deployment platform (platform on which this managed object will be
deployed) is set by default to NT.

3. Accept the default for the type of service, which is set to Transaction
Service.

4. Click Next. The Implementation Inheritance page opens. By default, no
inheritance is selected.

5. Click Finish.

The managed object appears in the User-Defined Business Objects folder,
under your business object implementation.

Generating code
When you generate code for the business object, a new folder with the name
of the key is created beneath NT folder. Within it is the key implementation
and the key helper .java files. In the NT folder you will find the .idl, .ih, and
_I.cpp files are created for the business object interface, implementation, key,
key assistant, and managed object.

Now, you must define a message queue, and a queue manager in MQSeries.
Refer to the sections Using queues to interact with an MQSeries application
and Appendix B. Configuring an MQSeries queue manager in the MQSeries
Application Adaptor Concepts and Development Guide.

Defining a client DLL and a server DLL

Defining a client DLL

1. From the pop-up menu of the Build Configuration folder, click Add Client
DLL to open the Client DLL wizard.

2. Name the DLL (OutboundClient), and accept the default (NT) for the
deployment platform.

3. Click the title and turn to the Client Source Files page. The items available
include the business object interface (OutboundMessage) and the copy
helper interface (OutboundMessageCopy).
Note: If you did define a key for the object, the key interface will also be
present in the Items Available list.

208 WebSphere: Application Development Tools Guide



4. Select all the client source files for the object, and add them to the Items
Chosen list.

5. Click Finish.

The client DLL appears under the Build Configuration folder.

Defining a server DLL

1. From the pop-up menu of the Build Configuration folder, click Add Server
DLL to open the Server DLL wizard.

2. Name the DLL (OutboundServer), and accept the default (NT) for the
deployment platform.

3. Click Next to turn to the Libraries to Link With page. OutboundClient is
listed in the Items Available box. Select OutboundClient and add it to the
Items Chosen list.

4. Click Next to turn to the Server Source Files page.
5. Select all the server source files for the object, and add them to the Items

Chosen list. The items available include the business object
implementation (OutboundMessageBO) and the managed object
(OutboundMessageMO).

6. Click Finish.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards, follow these steps:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java

Chapter 4. Creating a component 209



targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The clientIN.dll and serverIN.dll files are stored in the
Working\NT\PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the Working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBclientIN.jar). <build style> is one of
the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
and you do not need to build Java client bindings.

Testing your component
You will be using QuickTest to test the installed component with a QuickTest
client application.

Defining an application family and application

Defining the application family(OutboundMessageAppFamily)
1. From the pop-up menu of the Application Configuration folder, select Add

Application Family. The Application Family wizard opens to the Name
page.

2. Type a name (OutboundMessageAppFamily), and a description for the
application family, and set its version.

The application family OutboundMessageAppFamily appears in the
Application Configuration folder.

Defining the application(OutboundMessageApplication).
1. From the pop-up menu of the application family,

InboundMessageAppFamily, in the Application Configuration folder, select
Add Application. The Application wizard opens to the Name and
Environment page.

210 WebSphere: Application Development Tools Guide



2. Type a name (OutboundMessageApplication), and a description for the
application. The version of the application is set at the version of the
application family.

3. Click Finish.

The application, OutboundMessageApplication, appears under the application
family, OutboundMessageAppFamily.

Creating a new container instance

1. From the pop-up menu of the Container Definition folder, click Add
Container Instance. The Container wizard opens to the Name page.

2. Type a name and description for the container. NTis selected as the
deployment platform in the Deployment Platforms section. (See
“Deployment platforms” on page 423.)

3. In the Number of Components field, type an estimate for the number of
managed objects this container will hold. This sets a lower limit on the
size of the container’s hash table; additional space will be allocated when
it is needed.

4. Click Next. The Workload Management page opens.
5. Specify whether the container is workload managing. If you check this

option, you must also specify the policy group it will be configured with.
For new policy groups, accept the default <New> entry.

6. Click Next. The Service page opens.
7. Select Use MQAA Transaction Service (page 596).
8. Click Next. The Services Details page now opens. Only the Behavior for

Methods Called Outside a Transaction section is enabled. (See “Behavior
for Methods Called Outside a Transaction” on page 599) Select Throw an
exception and abandon the call. Then, type a name for the queue
manager in the Queue Manager Name field.

9. Click Next. The Data Access Patterns page opens. Select the options on
this page according to the options set for the objects the container will
hold.
In the Business Object section, the default pattern is Delegating. It is
recommended that you do not change it. (This option is set according to
the pattern you defined for the business object implementation in the
section Pattern for Handling State Data of the Business Object
Implementation wizard’s Name and Data Access Pattern page. See
“Pattern for Handling State Data” on page 245.)
In the Data Object section, Local copy is the default. You cannot change
it since the data object implementation for the MQSeries application
adaptor has no persistent object to delegate to. (This is the same as the
option you select for the data object implementation’s Data Access
Pattern in the Data Object Implementation wizard’s, Behavior page.)

Chapter 4. Creating a component 211



Since you selected Delegating, you have to indicate whether the data
object uses Cache Service. Select the Cache Service check box if the data
objects have their Type of Persistence set to either DB2 Cache Serviceor
Oracle Cache Service (Data Object Implementation wizard, Behavior
page).

10. Click Finish.

The new container is added to the Container Definition folder.

Configuring the components with the application
Configure OutboundMessage’s managed object (OutboundMessage
OutboundMessage::OutboundMessageMO) with the application
(OutboundMessageApplication).

To add a managed object for the application, follow these steps:
1. From the Application Configuration folder, select your application.
2. From the application’s pop-up menu, select Add Managed Object. The

Configure Managed Object wizard opens to the Selection page. Only
managed object and copy helper fields are filled in.

3. Select the managed object (OutboundMessageMO) from the drop-down
list.

4. Click Next. The Data Object Implementations page opens.
5. From the Implementations pop-up menu, select Add.
6. Select the data object implementations that will be available to the

application, and associated DLLs. Note that this is a packaging statement,
and not a configuration statement.You can only select data object
implementations whose type of persistence matches the service provided
by the managed object.
In this case, select the data object implementation that you defined
earlier.

7. Click Next. The Container page opens.
The only containers listed are those that are appropriate for the current
managed object and selected data object implementations. If you did not
create the container instance before you started configuring the managed
object, you can select the Create a new container for this managed
objectcheck box to have Object Builder create a default container into
which you can configure the managed object. The container will have
behaviors that are appropriate for the managed object and selected data
object implementations. If you select this check box, continue with step 8;
otherwise continue with step 9.
Note: You have to ensure that the managed object is configured with a
different container than that used by its home.

8. Click Next, and use the New Container page to define a container to use
with this managed object. Indicate whether you want to use a workload

212 WebSphere: Application Development Tools Guide



managing container. If you select this option, then only workload
managing containers are available in the Container list.
Note: If necessary, create a separate container instance for the managed
object. If a managed object and its home are configured with the same
container, the server will not activate.

9. Click Next. The Home page appears.
10. Define the home to use with this managed object. You can define a home

instance of a default home provided with Component Broker, or define a
home instance of a customized home you created. If you specify a
customized home, you must also specify the DLL that contains it.
IMessageHomeMO_OutboundMessageQueueMO is selected by default as
the home.
OutboundMessageMMO::OutboundMessageIMOFactory is the default
name in factory-finding registry
OutboundMessageMMO::OutboundMessageIMOHome is the default
name in naming service registry
Only homes that are appropriate for the current managed object are
shown. If your component is workload managed, you must select a
workload managed home (BOIMHomeofRegWLMHomes,
BOIMHomeofRegWLMQIHomes, or a specialized home that inherits
from one of them). If your component is not workload managed, you can
still select a workload managed home, although this will not make the
component workload managed: the choice of container is what makes a
component workload managed.

11. Select any other configuration options for the home
12. Click Finish. You have configured the managed object by choosing a

copy helper and a key for it to work with, data object implementations
for it to use, a container, a home, and the DLLs that contain it and the
other objects. The managed object now appears in the Application
Configuration folder, underneath the application you configured it for.

The OutboundMessageMO managed object configuration appears under the
OutboundMessageApplication application, and the new container
OutboundMessageContainer appears in the Container Definition folder. You
can review the properties of the container, including the service and data
access patterns that have been selected for you, by clicking Properties from
the container’s pop-up menu.

Once you have finished adding managed objects to your server applications,
and have completed the configuration of the applications in your application
family, you can generate the installation image for your application family.

Generating the application installation information:

Chapter 4. Creating a component 213



1. From the pop-up menu of the Application Configuration folder, click
Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\OutboundMessageApplication.

Closing Object Builder:

1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component named OutboundMessage that inherits from
Person, and which provides persistence in a database table both for its own
attributes, and for the attributes it inherits from Person. You have
implemented the attributes duplication pattern for inheritance with
persistence.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Components (Programming Guide)
The Component Broker message processing model (MQSeries Application
Adaptor Concepts and Development Guide)
An overview of message queueing with MQSeries (MQSeries Application
Adaptor Concepts and Development Guide)
Workload management (Using Object Builder) (Advanced Programming Guide)

“Chapter 4. Creating a component” on page 127
“Generating code” on page 551
“Tutorial: Creating an inbound message application” on page 188
Developing an MQSeries-backed application (MQSeries Application Adaptor
Concepts and Development Guide)
Using Object Builder to develop the MQSeries sample applications (MQSeries
Application Adaptor Concepts and Development Guide)

The ICBMQPut interface (MQSeries Application Adaptor Concepts and
Development Guide)
MQAA Transaction Service (page 596) (Container service)

214 WebSphere: Application Development Tools Guide



Reusing existing objects

When you have existing data in a database that you want to use as part of a
new design, you need to assemble a component out of some objects that are
designed and some that are imported. You can also reuse objects in multiple
components; for example, several components might access the same database
table.

When you assemble a component from existing objects, the main tasks involve
mapping the data and attributes of the objects you connect. The objects can be
created as follows:
v Create business objects in the User-Defined Business Objects folder.
v Import an SQL file and add DB persistent objects from the schemas created

in the DBA-Defined Schemas folder.
v Import PA beans and add additional PA persistent objects from the PA

schemas in the User-Defined PA Schemas folder.
v Create data objects in the User-Defined Data Objects folder by adding the

data objects from the persistent objects. (Select Add Data Object from the
pop-up menu of the persistent object.)

The objects can be mapped as follows:
v Map business objects to data objects in the business object implementation’s

wizard when the business object is not associated with a data object. (Use
Select Data Object Interface from the pop-up menu of the implementation,
and in the Data Object Interface Connection wizard, map the attributes and
methods of the business object to those of the data object.)

v Map data objects to persistent objects in the data object implementation’s
wizard. (Add the persistent object created from the schema on the
Associated Persistent Objects page, and then map the attributes and
methods of the data object to those of the persistent object.)

When you reuse a schema, whether it is a DB schema or a PA schema, you
can either add multiple persistent objects (adding a new persistent object to
the schema for each use), or add a single persistent object to the schema, and
reuse the persistent object. In either case, you add the persistent object to the
schema, and then connect the persistent object with the data object in the data
object implementation’s wizard.

Component (Programming Guide)
“DDL” on page 137
“Procedural adaptor bean (PA bean)” on page 159

Chapter 4. Creating a component 215



“Working with components” on page 697
“Customizing referential integrity” on page 714

Creating a local-only object

A local-only object is not manageable, and cannot take advantage of
Component Broker services. It can be used by a component or client process
locally, but cannot be part of a component’s public interface, where it could be
accessed remotely.

To create a local-only object in Object Builder, follow these steps:
1. “Creating a local-only object file” on page 217
2. “Adding a local-only object module” on page 218
3. “Adding a local-only object” on page 219

For an in-depth introduction and accompanying sample, see “Tutorial:
Creating local-only objects” on page 220.

For rules on naming these objects, see “Naming objects” on page 128.

“Local-only objects”

“Chapter 4. Creating a component” on page 127

“Naming objects” on page 128
“Internationalization of data” on page 132

Local-only objects

A local-only object does not take advantage of the management features of the
managed object framework (MOFW). It can have attributes and methods,
which can be accessed by the component or client process that creates it. It
cannot have persistent state, and it cannot be part of a business object’s public
interface. However, it can be part of another local-only object’s public
interface.

In Object Builder, a local-only object is defined as a file, optional module, and
object implementation. A local-only object does not have separately defined
interface and implementation. Because it has no persistent state, it has no data
object; and because it is not manageable, it has no managed object.

216 WebSphere: Application Development Tools Guide



“Object Builder” on page 1
Component (Programming Guide)

“Creating a local-only object” on page 216

Creating a local-only object file

A local-only object file can contain one or more local-only objects, optionally
organized into modules.

To create a local-only object file, follow these steps:
1. In the Tasks and Objects pane, locate the Local-Only Objects folder.
2. From the folder’s pop-up menu, click Add Fileto open the Local-Only

Object File wizard.
3. Type a name for the file. This will be the name of the .idl file that defines

the interface to the local-only object.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add constants, enumerations,
exceptions, structures, typedefs, and unions. Any constructs you add are
scoped to every object in the file.
Note: To use the construct as a type within another construct, you must
first click Finish and then re-open the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

5. Click Next. The Files to Include page opens.
IManagedLocal is included by default. This is the correct choice for a
local-only object that represents a base class in your design. Also include
the files for any referenced or related objects. Object Builder will
automatically emit include statements for parent interfaces and local-only
objects, and other IDL types that are used by constructs and interfaces
within the local-only object file.

6. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated IDL code.

7. Click Finish. The wizard closes, and your file is added to the Local-Only
Objects folder. You can now add modules or local-only objects to the file.

Once you have created the file, you can modify it by selecting Properties from
its pop-up menu. The Local-Only Object File wizard opens again, with your
selections preserved.

“Local-only objects” on page 216

Chapter 4. Creating a component 217



“Creating a local-only object” on page 216
“Adding a local-only object module”
“Adding a local-only object” on page 219
“Tutorial: Creating local-only objects” on page 220

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a local-only object module

If you plan to add multiple objects to a single file, you may want to store the
objects in separate modules. Any constructs you add to a module are scoped
only to the objects within that module. To add a module to a file, follow these
steps:
1. From the Local-Only Objects folder in the Tasks and Objects pane, select

your local-only object file.
2. From the file’s pop-up menu, select Add Module. The Local-Only Object

Module wizard opens to the Name page.
3. Type a name for the module.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add enumerations, exceptions,
structures and so on.
Note: To use the construct as a type within another construct, you must
first click Finish and then reopen the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

5. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish. The wizard closes, and your module is added to the
Local-Only Objects folder, underneath the file.

You can now add local-only objects to the module.

“Local-only objects” on page 216

“Creating a local-only object” on page 216
“Adding a local-only object” on page 219
“Tutorial: Creating local-only objects” on page 220

218 WebSphere: Application Development Tools Guide



“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a local-only object

To add a local-only object to a file or module, follow these steps:
1. In the Local-Only Objects folder in the Tasks and Objects pane, select the

file or module that will contain the local-only object.
2. From the pop-up menu for the file or module, select Add Interface. The

Local-Only Object wizard opens to the Name page.
3. Type a name for the local-only object.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add constants, enumerations,
exceptions, typedefs, structures, or unions. Any constructs you add are
scoped to this object only.
Note: To use the construct as the type of an attribute, method return,
method exception, or construct member, you must first click Finish and
then re-open the wizard before you can use the type. The construct is not
added to the current model until you click Finish.

5. Click Next. The Interface Inheritance page opens.
By default, the local-only object inherits from
IManagedLocal::INonManageable. This is the correct choice for a
local-only object that represents a base class in your design. You can also
choose IManagedLocal::ILocalOnly. (The difference is that
INonManageable objects are streamable.) If your object had a parent, you
would specify the parent object on this page.

6. Click Next. The Attributes page opens.
To specify attributes for your interface, select Add from the Attributes
pop-up menu (for example, the CarPolicy interface could have the
attributes “make” and “model”).
Note: For most attribute types, a default initializer value is provided.
When there is no suitable default (for example, an attribute whose type is
an enumeration), you should assign your own initializer value, if
necessary.

7. Click Next. The Methods page opens.
To specify methods for your interface, select Add from the Methods
pop-up menu.

8. Click Next. The Summary of Framework Methods page opens. Review
the framework methods the object has.

9. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

Chapter 4. Creating a component 219



10. Click Finish. Your new local-only object is added to the Local-Only
Objects folder, with the attributes and methods you specified.

You should now see the object’s interface in the Inheritance pane, and any
methods you defined for your interface should appear under the
User-Defined Methods folder in the Methods pane. Click on a method or
attribute in the Methods pane to provide an implementation for it in the
Source pane.

“Local-only objects” on page 216

“Creating a local-only object” on page 216
“Tutorial: Creating local-only objects”

“Internationalization of data” on page 132
“Naming objects” on page 128

Tutorial: Creating local-only objects

Objectives
To create local-only (non-managed) objects that can be used to get or set
multiple attributes of the component
To add methods to a component that use the local-only objects
To generate the code for the component and its objects
To build the DLLs for the component and its objects
To define the application configuration information for the component

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

220 WebSphere: Application Development Tools Guide



You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

Sample files
There are equivalent samples for this exercise. The samples include:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on running a Java

client for the sample

The samples are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\LocalOnly\BusinessObjects
samples\Tutorial\Fundamentals\LocalOnly\Rose\LocalOnly.zip
samples\Tutorial\Fundamentals\LocalOnly\Docs\LocalOnly.html

There is no Java sample for this exercise.

Description
This exercise describes how to create a transient component, and then enhance
its interface with the use of local-only objects.

You can create local-only objects for a variety of different purposes. These
particular local-only objects will be used by the client, or by other components
on the server, to either get all the attributes of the component, or set all the
read-write attributes of the component, with a single call. This is similar to the
function a copy helper performs in component creation (collapsing multiple
calls to the server into a single call). In fact, copy helpers are special cases of
local-only objects.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

For this exercise, you will complete the following tasks:
1. Creating the project
2. Creating a business object interface
3. Adding a key and copy helper
4. Adding a business object implementation

Chapter 4. Creating a component 221



5. Adding a data object implementation
6. Adding a managed object
7. Creating the “set” local-only object
8. Creating the “get” local-only object
9. Adding methods to the component

10. Implementing the methods
11. Generating the code
12. Defining a client DLL and server DLL
13. Defining an application family and application
14. Configuring the component with the application
15. Testing the application

Creating the project
Create a sample project to hold your work. For example,
e:\tutorials\localonly
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Creating the business object interface
Define a business object file (Samplonl):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (Samplonl):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Agent). The business object interface defines the interface
for the whole component. It will be contained in the Samplonl module.
1. From the pop-up menu of the module, click Add Interface to open the

Business Object Interface wizard.
2. Name the interface csAgent.
3. Click the page title and turn to the Attributes page.
4. Add the following attributes:
v readonly float commissions

222 WebSphere: Application Development Tools Guide



v float commPercent
v float pendingPaycheck
v string agentName
v readonly long id

5. Set the size of agentName to 100. You should always provide a size for
string attributes.

6. Click Next and turn to the Methods page.
7. Add the following method:
v void payCommission (in float amount)

8. Click Finish.

The Agent interface now appears under the Samplonl module. The attributes
and methods appear in the Methods pane, when the interface is selected.

The attributes are represented as paired get and set methods, except for the id
attribute, which was defined as read-only, and therefore only has a get
method.

The interface does not have any business logic associated with it. The
implementation of the interface is defined separately, in the business object
implementation.

Adding a key and copy helper
Add a key (AgentKey). The key allows client applications to locate or create
instances of the component on the server. It consists of an attribute or
attributes of the business object interface that uniquely identify an instance of
the component. In this case, the Agent id attribute is the appropriate choice.
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Accept the default name; select the id attribute and add it to the Key

Attributes list.
3. Click Finish.

Even though the id attribute of the business object interface is read-only,
the id attribute of the key is both readable and writable. The client
application can set the value of the id on the key, and use it either to
initialize a new instance of the component, or to locate an existing instance
of the component, on the server.

AgentKey appears under Agent.

Add a copy helper (AgentCopy). The copy helper allows client applications to
create and initialize instances of the component on the server, using one call
to set numerous attributes, rather than one call per attribute.
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.

Chapter 4. Creating a component 223



2. Accept the default name; select all listed attributes and add them to the
Copy Helper Attributes list.

3. Click Finish.

AgentCopy appears under Agent.

Adding a business object implementation and data object interface
Add a business object implementation (AgentBO) and data object interface
(AgentDO). The business object implementation contains the actual business
logic of the component, including the method implementations. Any state
data attributes (those attributes that cannot be deduced or derived from other
attributes) become part of the data object interface. The separation of business
logic (in the business object) from state data (in the data object) allows issues
such as data persistence and integrity to be partitioned from the rest of the
business logic.
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Change the Pattern for Handling State Data to Delegating. This is easier

to debug than the Caching pattern.
3. Click the page title and turn to the Implementation Language page.
4. Select the language you want the business object to be implemented in

(C++or Java).
5. Click the page title and turn to the Key and Copy Helper page. The

appropriate key and copy helper are already selected.
6. Click the page title and turn to the Data Object Interface page.
7. Select all attributes and add them to the State Data list (to be preserved in

the data object).
8. Click Finish.

AgentBO appears under Agent, and AgentDO appears under AgentBO.

Adding a method implementation
Type in the implementation for the method payCommission. The appropriate
implementation logic for the data get and set methods, and for framework
methods required by the programming model, are calculated for you by
Object Builder. You only need to provide implementations for methods you
explicitly defined.
1. Click on the business object implementation. The Methods pane shows the

user-defined method payCommission, and the various user-defined
attributes (in the form of paired get and set methods).

2. Click on long id() .The id attribute only has a get method, because it is
read-only, as defined in the business object interface. The provided
implementation appears in the Source pane.

224 WebSphere: Application Development Tools Guide



3. Review the provided implementation for long id(). The get method for
the id attribute delegates directly to its equivalent attribute in the data
object, as defined by the Delegating pattern chosen in the business object
implementation.

4. In the Methods pane, click on the payCommission method: void
payCommission (in float amount). The signature for the method appears
in the source pane, based on the definition you provided in the business
object interface and the language you selected in the business object
implementation. The method does not have an implementation yet. You
must provide the implementation for user-defined methods.

5. In the Source pane, provide the following implementation for
payCommission:

C++
float tmp;
tmp = amount * iDataObject->commPercent();
iDataObject->commissions(tmp);
iDataObject->pendingPaycheck(iDataObject->pendingPaycheck() + tmp);

Java
float tmp;
tmp = amount * iDataObject.commPercent();
iDataObject.commissions(tmp);
iDataObject.pendingPaycheck(iDataObject.pendingPaycheck() + tmp);

You can continue to the next step. When you click on other objects, the
implementation will disappear from the Source pane, but the code you typed
is now part of the project model, and will be generated as part of the source
code for the component (in the file SamplonlBO_I.cpp for a C++ business
object, or _AgentBOBase.java for a Java business object).

Adding a data object implementation
Add a data object implementation (AgentDOImpl). The data object
implementation defines the way in which you want to handle the
component’s state data.
1. From AgentDO’s pop-up menu, click Add Implementation to open the

Data Object Implementation wizard.
2. Accept the default name and platform settings, and click Next to turn to

the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

The component will be locatable by its key (instead of being locatable
by a UUID).

v Type of Persistence - Transient
The component’s data will not have persistence beyond the lifespan of
the component instance. As a result, the component does not require a

Chapter 4. Creating a component 225



persistent object (which would manage the mapping of the data to a
persistent datastore, such as a database).

v Data Access Pattern - Local copy
This is the only option available for a transient data object. There is no
persistent datastore to delegate to.

4. Click the page title and turn to the Key and Copy Helper page. AgentKey
and AgentCopy should already be selected.

5. Click Finish.

AgentDOImpl appears under AgentDO.

Adding a managed object
Add a managed object (AgentMO). The managed object mediates the
interaction between the client application and the component, or between
other components and this component. It exposes the business object interface
to the client application and other components, and accesses any relevant
services before and after a call.
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

AgentMO appears under AgentBO.

You have now completely defined a transient component. You are ready to go
on to the next half of the exercise, in which you define the local-only objects,
and customize the component to use them.

Creating the “set” local-only object
The SetRWAgentLO object will have attributes that match all the writable
attributes of the Agent component. A client or component can create an
instance of the local-only object, then set all its attributes, convert the object
into a string, and pass the string to the Agent component’s setRWAttributes
method. The method takes the string and reconstitutes the SetRWAgentLO
object, then updates component attributes with the values in the local-only
object.

Local-only objects cannot be exposed as part of a component’s interface:
typically, if they must be passed between components or between the client
and a component, they are passed as strings of data that can be reconstructed
by the receiver.

Create the local-only object file (Sampgslo):

226 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the Local-Only Objects folder, click Add File to
open the Local-Only Objects File wizard.

2. Name the file.
3. Click Finish.

Add the local-only object module (Sampgslo):
1. From the pop-up menu of the file, click Add Module to open the

Local-Only Objects Module wizard.
2. Name the module.
3. Click Finish.

Add the local-only object (SetRWAgentLO), with attributes that match the
read-write attributes of Agent, as well as an attribute that represents a
reference to its matching Agent component.
1. From the pop-up menu of the module, click Add Local-Only Object to

open the Local-Only Object wizard.
2. Name the object SetRWAgentLO.
3. Click the title and turn to the Interface Inheritance page. By default,

local-only objects inherit from IManagedLocal::INonManageable. This is
the same inheritance a copy helper has, and provides the object with
streamability, something it would not get from ILocalOnly. Object Builder
overrides the internalize_from_stream and externalize_to_stream methods,
which makes for much easier flattening and rehydrating of the object’s
state.

4. Click Next and turn to the Attributes page.
5. Add the following attributes:
v float commPercent
v float pendingPaycheck
v string agentName

You do not need to create entries for the other Agent attributes, because
they are read-only: you cannot set them once the component is created.

6. Set the size of agentName to 100. This matches the size of the agentName
in Agent. You should always provide a size for string attributes.

7. Add the following attribute:
v Samptran::Agent agent

This serves as a reference to the Agent component whose attributes the
object will set.

8. Click Finish.

The SetRWAgentLO object appears under the module. You can review its
attributes and framework methods in the Methods pane. By clicking on the

Chapter 4. Creating a component 227



attributes or methods, you can review their default implementations in the
Source pane. The attributes and methods in the Methods pane have both C++
and Java implementations. You can switch between languages by clicking on

the down-pointing “v” button on Method pane’s toolbar.

Local-only objects, unlike business objects and data objects, are not separated
into interface and implementation.

Compare the attributes and methods of the local-only object to those of the
copy helper in the User-Defined Business Objects pane. They should look very
similar: they have the same inheritance, most of the same attributes, and in
fact a similar purpose.

Creating the “get” local-only object
The GetAllAgentLO object will have attributes that match all the attributes of
the Agent component. A client or component calls an Agent’s getAllAttributes
method, which creates the local-only object, populates its attributes with the
component attribute values, then converts the object to a string and returns it
to the caller. The client or calling component receives the string and
reconstitutes the local-only object, which it can then query locally for
component data.

Add the local-only object (GetAllAgentLO) to the existing local-only object
module (Sampgslo), with attributes that match all the attributes of Agent, as
well as an attribute that represents a reference to a matching Agent
component.
1. From the pop-up menu of the module, click Add Local-Only Object to

open the Local-Only Object wizard.
2. Name the object GetAllAgentLO.
3. Click the title and turn to the Interface Inheritance page. By default,

local-only objects inherit from IManagedLocal::INonManageable. This is
the same inheritance a copy helper has, and provides the object with
streamability, something it would not get from ILocalOnly. Object Builder
overrides the internalize_from_stream and externalize_to_stream methods,
which makes for much easier flattening and rehydrating of the object’s
state.

4. Click Next and turn to the Attributes page.
5. Add the following attributes:
v read-only commission
v float commPercent
v float pendingPaycheck
v string agentName
v read-only long id

228 WebSphere: Application Development Tools Guide



6. Set the size of agentName to 100. This matches the size of the agentName
in Agent. You should always provide a size for string attributes.

7. Add the following attribute:
v Samptran::Agent agent

This serves as a reference to the Agent component whose attributes the
object will set.

8. Click Finish.

The GetAllAgentLO object appears under the module. You can review its
attributes and framework methods in the Methods pane. By clicking on the
attributes or methods, you can review their default implementations in the
Source pane. It is substantially similar to the previously created local-only
object, and serves a complementary purpose.

Adding methods to the component
Now that you have created the local-only objects, you can add methods to the
Agent component that will work with the objects. You need to add two
methods:
v setRWAttributes

Takes a stringified SetRWAgentLO object, reconstitutes it, and updates the
component attributes.

v getAllAttributes
Creates a getAllAgentLO object, updates its attributes, stringifies it, and
returns it.

Define the methods:
1. From the pop-up menu of the Agent business object interface, click

Propertiesto open the Business Object Interface wizard.
2. Click the title and turn to the Methods page.
3. Add the following methods:
v public ::ByteString getAllAttributes()
v public setRWAttributes(::ByteString)

The IManagedClient ByteString type is available in the type pull-down
for the return type and parameter type.

4. Click Finish.

The methods appear in the Methods pane for the Agent interface. You are
now ready to add implementations for them.

Implement setRWAttributes(::ByteString):
1. Click on AgentBO (the implementation for the Agent interface).

Chapter 4. Creating a component 229



2. In the Methods pane, click on setRWAttributes. A skeleton implementation
appears in the Source pane.

3. Add the following implementation to the Source pane:

C++
Sampgslo::SetRWAgentLO_var AgentSetC

= Sampgslo::SetRWAgentLO::_create();
AgentSetC->fromString(objString);
iDataObject->commPercent(AgentSetC->commPercent());
iDataObject->pendingPaycheck(AgentSetC->pendingPaycheck());
::CORBA::String_var stringVar1 = AgentSetC->agentName();
iDataObject->agentName(stringVar1);
Samplonl::csAgent_var AgentAsObject = AgentSetC->agent();
iDataObject->agent(AgentAsObject);

Implement ::ByteString getAllAttributes():
1. Click on AgentBO.
2. In the Methods pane, click on getAllAttributes. A skeleton implementation

appears in the Source pane.
3. Add the following implementation to the Source pane:

C++
Sampgslo::GetAllAgentLO_var GetAllAgentLOVar

= Sampgslo::GetAllAgentLO::_create();
GetAllAgentLOVar->commissions(iDataObject->commissions());
GetAllAgentLOVar->commPercent(iDataObject->commPercent());
GetAllAgentLOVar->pendingPaycheck(iDataObject->pendingPaycheck());
GetAllAgentLOVar->id(iDataObject->id());
::CORBA::String_var stringVar1 = iDataObject->agentName();
GetAllAgentLOVar->agentName(stringVar1);
Samplonl::Agent_var AgentAsObject = iDataObject->agent();
GetAllAgentLOVar->agent(AgentAsObject);
return GetAllAgentLOVar->toString();

You are now ready to generate the code. The generated code will contain the
method implementations you provided.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\transient\working\NT)
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. From the pop-up menu of the Local-Only Objects folder, click Generate >
All.

230 WebSphere: Application Development Tools Guide



3. Once code generation is complete, review the contents of the
Working\platform directory. All the source files for the component and for
the local-only objects have been generated, and you can now define how
to build them.

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

The client DLL provides client applications with access to the component on
the server, using the key and copy helper, and will also contain the local-only
objects. You must also include the business object interface, which defines the
methods and attributes of the component that the client can access.

Define the client DLL configuration and client DLL or library file (for this
exercise, name them both SamlonlC).
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.
3. Name the library as well. This is the name for the makefile and for the

resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The SamlonlC DLL configuration appears under the Build Configuration
folder.

The server DLL is installed on the server to deploy the component, making it
available for access by client applications and other components.

Define the server DLL configuration and server DLL file (for this exercise,
name them both SamlonlS).
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

Chapter 4. Creating a component 231



5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The SamlonlS DLL configuration appears under the Build Configuration
folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The SamlonlC.dll and SamlonlS.dll files are stored in the
working\NT\PRODUCTION directory.

The libSamlonlC.so and libSamlonlS.so files are stored in the
working/AIX/PRODUCTION directory.

232 WebSphere: Application Development Tools Guide



If you have a Java business object, the SamlonlC.jar and SamlonlS.jar are
stored in the working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBSamlonlC.jar). <build style> is one
of the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (SamplonlF). An application family groups a set
of applications so they can be installed as a unit.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

The SamplonlF application family appears under the Application
Configuration folder.

Define the server application (SamplonlApp). An application defines a set of
components that will operate together on the server. The application name
you provide here is the name that will be used by System Management, when
the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Finish.

The SamplonlApp application appears under the SamplonlF application
family.

Configuring the component with the application
Configure the component’s managed object (SamplonlMO
SamplonlMO::AgentMO) with the application (SamplonlApp), including the
home (BOIMHomeOfRegHomes) that will be used to find and create it, and
the container (TransientObjects) that will provide it with access to services.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.

Chapter 4. Creating a component 233



2. In the Managed Objectlist, select the component’s managed object. The
other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The AgentMO managed object configuration appears under the SamplonlApp
application.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into Working\platform\PRODUCTION\SamplonlF.

Testing the application
You can test the application using QuickTest, with the help of some additional
Java client files that ship with the samples. For instructions on setting up and
running QuickTest with your application, see the samples documentation
(under <CBroker>, the install directory):

For C++:

samples\Tutorial\Fundamentals\LocalOnly\Docs\LocalOnly.html

For Java:

234 WebSphere: Application Development Tools Guide



samples\Tutorial\Fundamentals\JLocalOnly\Docs\JLocalOnly.html

Summary
You have created two local-only objects, and added methods to a component
that uses them. A client application, or another component, can use the
local-only objects with the methods to query all the attributes of the
component with a single call, or set all the writable attributes of the
component with a single call.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Tracking data types in models

You can view the different data types that exist in a model, and the manner in
which they are used within a model.

For either task, you must first open the Type Browser. Follow one of these
methods:
v From the Filemenu, select Display Type Browser. The Type Browser opens.
v Click the Browse button next to the Typefield when you are either defining

or editing attributes and methods of either the interface, or the
implementation; of either business objects, or data objects. You can also use
the Browse button to open the Type Browser while you either define or edit
constructs at file, module, or interface level in the case of business objects
and data objects; and at the file and module level in the case of
compositions.

Note: The search mechanism of the Type Browser will find the type no matter
the level at which it is nested. That is, the type may be contained in an
interface, which is itself contained in a module, the module being contained in
a file.

To get a filtered view of the different data types in the model, follow these
steps:
1. Open the Type Browser.
2. You can filter the types by the following different categories:
v Type name pattern
v Type scope

Chapter 4. Creating a component 235



v Object scope
v Types to display

To filter by type name, follow these steps:
a. Type either the name of a data type, or part of a type name in the Pattern

field.
b. Use the asterisk as a wild card to represent a group of characters. For

example, if the types round, goround, and merrygoround exist, and you
type *round, types named round, goround, and merrygoround will be
found (that is, all types that end with the pattern round.) If you type *go*,
the types goround, and merrygoround will be found (that is, all types that
contain the pattern go.)

c. To find types that begin with a particular group of characters, just type the
characters in the field. (You do not have to add the asterisk as part of the
search pattern, at the end.) For example, to find data types whose names
begin with the letter a, just type a in the field; to find those whose names
start with the characters admin, just type admin in the field.

To filter by type scope, follow these steps:
a. In the Type Scope section, indicate whether you want to see the types that

exist in all the projects, or only those that are only defined in the current
project.

b. Indicate your choice by selecting one of the radio buttons:
Show types from all projects
Show types from current project only.

To filter by object scope, follow these steps:
a. In the Object Scope section, indicate whether you want to see either all

objects, only the local-only objects (those that are not manageable, and
have no persistent state - those that have no associated managed object, or
data object), or only the framework objects.

b. Indicate your choice by selecting one of the following radio buttons:
Show all objects
Show local-only objects
Show framework objects

You can further filter the types to be displayed, after you have specified
criteria in the previous sections by selecting whether you want to see types
that have been defined as constructs, or interfaces. Indicate your choice by
selecting one or more of the following check boxes:
v Interfaces

v Structures

v Typedefs

v Enumerations

236 WebSphere: Application Development Tools Guide



v Constants

v Unions

v Exceptions

Note the following points:

v Only the Exceptions check box is available, and all other constructs types
are not selectable when you are defining exceptions for methods. (Methods
page of either the Business Object Interface wizard, or the Data Object
Interface wizard.)

v Since exceptions cannot be used as attribute or construct types, the
Exceptions check box is not available when you invoke the Type Browser
when you are defining either attributes or constructs.

The types are listed in the panel. When you select a type from this panel, all
types with that base name are listed in the panel beneath it. You can
differentiate the scope at which the different similarly named types are
defined by their qualifying names. For example, if a type named thistype is
defined in the object interface (thisint), which is itself defined within a module
(thismod), the fully qualified name of the type will be listed as:

thisfile thismod thisint thistype

where thisfile is the file within which the module thismod is defined.

To view the different ways in which a type is used within the model, follow
these steps:
1. Open the Type Browser.
2. Filter the types according to the set of criteria you define by specifying a

string pattern for the type name, and using the various options that are
available with the Show Options button.

3. Select a type from the filtered list.
4. Click the Show Usage button. The Type Usage dialog box opens. See the

reference: “Type Usage” on page 238. This box lists objects for which any
of a set of criteria are met by the selected type. Each criterion has its
separate list. If the type does not satisfy any of these criteria, you are
informed that no usage relationships exist for that type.
Note: In the case of either key or copy helper classes, the only objects that
can use them are business objects. Hence, only business object
implementations, if there are any that are using those classes, will be listed
as satisfying those criteria.

“Projects and models” on page 17
“Attributes” on page 698
“User-defined methods” on page 751

Chapter 4. Creating a component 237



“Get and set methods” on page 755
“Framework methods” on page 757
“Special framework methods” on page 758
“Constructs” on page 770
“Local-only objects” on page 216

“Working with attributes” on page 697
“Working with methods” on page 750
“Working with constructs” on page 769
“Creating a local-only object” on page 216
“Tutorial: Creating local-only objects” on page 220

“Type Usage”

Type Usage

This dialog box informs you how the selected type is used by the model. It
lists one or more of the following usage patterns, with the list of objects that
fall under each pattern, depending on how the type is used in the model:
v Is inherited by
v Is an attribute type in
v Is a method return type in
v Is a parameter type of a method in
v Is a member of structures
v Is a member of unions
v Is the data type of typedefs
v Is used in configured managed objects
v Key is used by
v Copy helper is used by

If the type does not satisfy any of these criteria, you are informed that no
usage relationships exist for that type.

Note: In the case of either key or copy helper classes, the only objects that can
use them are business objects. Hence, only business object implementations, if
there are any that are using those classes, will be listed as satisfying those
criteria.

“Tracking data types in models” on page 235
“Setting Object Builder preferences” on page 27

238 WebSphere: Application Development Tools Guide



File and method adornments

An adornment is a set of text that Object Builder inserts into a generated
implementation file. Object Builder allows you to add file adornments to the
beginning (prologue or prefix) or end (epilogue or suffix) of a file. It also lets
you add method adornments near method definitions. Adornments can include
comments, pragma statements, and any compilable code.

Warning: Object Builder does not inspect adornments for validity at any
stage. You are responsible for ensuring that whatever is contained within the
adornments is valid, compilable code, and that comments have correct
comment tagging.

File adornments
With file adornments, you can insert text around multiple class definitions
within a file. You can add file multiple adornments to a class or file, and you
can specify the adornment as platform-specific. Ordering of the adornments
within a generated file will be determined by the ordering of the adornments
in the tree view.

Individual file adornments are located under the ’Prefixes’ and ’Suffixes’
nodes. Each ’Prefix’ and ’Suffix’ node has a pop-up menu option Add
Adornment. This action opens the File Adornments wizard, which is similar
to the Properties wizard of a method body. In the File Adornments wizard,
you provide a name for the adornment you define, and you specify whether
to get the adornment text from the Source pane or from an external file.

The File Adornments folder organizes any prolog or epilog content you want
added to the generated files for the currently selected object in the Tasks and
Objects pane. The File Adornments folder appears when you select a business
object implementation, data object implementation, key, copy helper, or
persistent object.

You can add adornments that serve as either file prefixes or suffixes, or
interface prefixes or suffixes. The text that you specify for the adornment is
included in the generated file the next time you generate code for the object.

Method adornments
Method adornments let you add text, such as method descriptions, to your
generated code. The text is inserted in direct proximity to the method,
depending on which option you select:
v Before the start of the method.
v Just after the opening brace “{” and before the body of the method.
v Just after the body of the method, before the closing brace “}”.
v After the method body ends, immediately following the closing brace.

Chapter 4. Creating a component 239



Method adornments assist in writing Javadoc-style comments in your Java
code. The resulting generated code can be processed through Javadoc to
produce HTML documentation of the classes and methods.

As with file adornments, you can specify for method adornments where the
text comes from (a separate file or the Source pane), and for which target
platforms the adornment is generated.

“Generating code” on page 551
“Adding file adornments”
“Adding method adornments” on page 242

Adding file adornments

You can add file adornments as either prefixes or suffixes to an object’s file or
interface. The adornment can include comments, pragma statements, and so
on. You can add file adornments for the following objects:
v business object implementation
v data object implementation
v key
v copy helper
v persistent object

Warning: Object Builder does not inspect adornments for validity at any
stage. You are responsible for ensuring that whatever is contained within the
adornments is valid, compilable code, and that comments have correct
comment tagging.

To add a file adornment, follow these steps:
1. Select the object in the Tasks and Objects pane. The File Adornments

folder appears in the Methods pane.
2. From the pop-up menu of either File Prefixes, Interface Prefixes, File

Suffixes, or Interface Suffixes in the File Adornments folder, select Add.
The Add Adornments wizard opens to the Adornment Details page.

3. Type a name for the adornment in the Namefield.
4. Select the language in which files will be generated when you generate

code for the object. You can select either C++, or Java. C++ is selected by
default. This gives you the choice of selecting either .cpp, .ih, or .idl files
to hold the contents of the adornments. If you select only Java, you have
the option of placing the adornment in either the generated .idl file, or the
generated .java file.
Note:You are restricted in the choice of a language in this section
depending on the implementation language that you selected for the

240 WebSphere: Application Development Tools Guide



object. That is, you should select Java as a language on this page only if
you have Java as the object’s implementation language.

5. Select the generated file into which you want the adornment details to be
placed.
If you select C++ as one of the languages in step 4, you have the option of
placing these details in either the generated IDL file (select the IDLcheck
box), the generated header file (select the Header button), or the generated
implementation file (select the Implementation button).
If you select Java alone as the language in step 4, the only location option
available for selection on this page is the IDL file, but that selection is
optional: if you do not select the IDL check box, the adornment is placed
in the generated .java file.

6. In the Text Source section, indicate whether you want to use code for the
adornment that is contained in another file (select Use an external file), or
whether you want to directly type the code for the adornment in the
Source pane (select Use text in Source pane).
If you indicated that you wanted to use the text in the editor pane, the
Source pane will now change from Read-Only to Insert mode, and you can
start typing text to be used for the adornment that you are adding. When
you are done, you can generate code for the object.
If you want to use an external file, you must provide its name in the File
Name field, or click the Browse button, and use the Find File dialog box
to search for the exact location, and select the file. You can generate code
for the object straight away. The adornments will be piped directly from
the specified source file.

7. Select one or more operating system platforms on which files for the object
containing the adornments are to be generated.

8. Click Finish.

If you are creating either a file prefix or suffix, the adornment details,
complete with the adornment name and the text that you either type or
import from an external file will appear in the prolog section of the file that
you select in step 5, if you are creating a prefix, and at the end of file if you
are creating a suffix.

If you are creating either an interface prefix or suffix, the adornment details,
complete with the adornment name and the text that you either type or
import from a file will appear in the interface definition class in the file that
you select in step 5.
Note the following points:

v If you edit a business object file by adding new files to be included, you
must include these files as file adornment prefixes for keys and data object
implementations that you define later for the business object, as well as for
those that are already defined. These key and data object implementation

Chapter 4. Creating a component 241



IDL files will not automatically include the headers. Include them by
selecting IDL as the file location on the Adornment Details page.

v Prior to this release of Component Broker, Object Builder file adornments
were represented as prologues and epilogues in implementation source
files. During migration, these prologues will become file prefixes, and
epilogues will become file suffixes in the present release’s model.

“File and method adornments” on page 239

“Generating code” on page 551
“Adding method adornments”

Adding method adornments

You can add method adornments to method objects. The adornment can
contain any compilable text, but method adornments are most commonly
used to add comments.You can add adornments to the methods of the
following objects:
v business object implementations
v data object implementations
v keys
v copy helpers
v persistent objects
v local-only objects

You can add adornments to all types of methods that belong to these objects:
user-defined methods, user-defined attribute get/set methods, framework
methods, and user-defined relationships.

Warning: Object Builder does not inspect adornments for validity at any
stage. You are responsible for ensuring that whatever is contained within the
adornments is valid, compilable code, and that comments have correct
comment tagging.

To add a method adornment:
1. Select the object in the Tasks and Objects pane. All the object’s methods

appear in the Methods pane.
2. Select the method to which you want add the adornment. From the

method’s pop-up menu select the appropriate option for adding:
v Add Adornment before Method Definition - Inserts text before the

method is declared. This is what you would use for Javadoc-type
comments.

242 WebSphere: Application Development Tools Guide



v Add Adornment before Method Body - Inserts text immediately after
the opening brace “{”.

v Add Adornment before Method End - Inserts text immediately before
the closing brace “}”.

v Add Adornment after Method End - Inserts text immediately after the
closing brace.

The Add Adornments wizard opens to the Adornment Details page.
3. Enter a name for the adornment in the Namefield.
4. Select the language in which files will be generated when you generate

code for the object. You can select either C++, or Java. C++ is selected by
default. You are restricted in the choice of a language in this section
depending on the implementation language that you selected for the
object. That is, you should select Java as a language on this page only if
you have Java as the object’s implementation language.

5. In the Text Source section, indicate whether you want to use code for the
adornment that is contained in another file (select Use an external file), or
whether you want to directly type the code for the adornment in the
Source pane (select Use text in Source pane). If you choose to use an
external file, you must provide its name in the File Name field.

6. Select one or more operating system platforms. The adornment will be
included in generated code that is targetted for only the platforms you
select.

7. Click Finish.

When you add an adornment to a method, the tree in the Methods pane
shows the adornment beneath the method. The adornments will be listed in
the order in which they will appear in the method (for example, those placed
before the method definition first, those after the closing brace last). The
following symbols indicate what the position of the adornment is, relative to
the method:

Symbol Postition

Adornment placed before the method definition.

Adornment placed immediately after the opening brace.

Adornment placed immediately before the closing brace.

Adornment placed immediately after the closing brace.

You can add more than one adornment in each position. This can be useful,
for example, when a method has different parameters of behavior on different

Chapter 4. Creating a component 243



platforms. For example, if a method has three parameters in its Windows
implementation, and only two in its AIX implementation, you could create
two adornments. The one for Windows would describe all three parameters,
and you would select the Windows check box in the Platforms section of the
Add Adornment wizard. The adornment for AIX would describe the two
parameters, and you would select the AIX check box in the wizard.

About Javadoc comments
The text of a Javadoc comment starts with /** and ends with */. Javadoc
adornments should be placed before the method definition. For more
information about Javadoc comment tagging and formatting, see Sun’s Java
website, http://java.sun.com.

“File and method adornments” on page 239

“Generating code” on page 551
“Adding file adornments” on page 240

Business Object Behavior

Business object behavior encompasses the pattern to be used to handle the
essential state of the business object, how the business object handles object
references, whether, (only if the object if it is a sessional business object) you
can provide your own code to be called during some of the normal processing
for Session service, whether the object is to be associated with a data object,
and the platform on which the business object is to be deployed.

A business object interface can have multiple implementations, depending on
the quality of service required.

The following reference topics deal with business object behavior:
v “Pattern for Handling State Data” on page 245
v “Object Reference” on page 246
v “Data Object Interface” on page 247
v “Session Service” on page 248
v “Deployment platforms” on page 423

You can specify all these details when you define an implementation for the
business object, on the Name and Data Access Pattern page of the Business
Object Implementation wizard. This page has the same sections as the
reference topics listed. In addition, besides providing the names for the
business object implementation’s file, module and interface, you can also

244 WebSphere: Application Development Tools Guide



specify the platform on which the object is to be deployed. You can select
from one or more of Windows NT, AIX, OS/390, Solaris, and HP-UX.

Business object (Programming Guide)
Data object (Programming Guide)
Object relationships (Programming Guide)

“Adding a business object implementation and data object interface” on
page 780

Pattern for Handling State Data

The implementation of the business object must have the specifications as to
how the object has access to state data (data that is persistent). A business
object can either have a part to play in the maintenance of its state, or it can
delegate that responsibility entirely to its associated data object.

You can make this decision using the Name and Data Access Pattern page of
the Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the
business object interface in the User-Defined Business Objects folder, in the
Tasks and Objects pane), or when you edit the object’s implementation that
you have defined (Properties from the pop-up menu of the business object
implementation in the User-Defined Business Objects folder). In the bottom-up
case, when you create a business object from a data object, you can indicate
the pattern to be used for accessing state data using the Implementation
Specifications page of the Add Business Object wizard (Add Business
Objectfrom the pop-up menu of the data object interface in the User-Defined
Data Objects folder).

The Pattern for Handling State Data section on this page has the following
options:
v Delegating
v Caching
v Same as parent’s

Delegating
Select this radio button if you want to use the IManagedObjectWithDataObject
class as the data access pattern. The maintenance of the business object’s state
is delegated to the data object. The essential state is passed to the data object,
which sends it back to the business object. All non-derived, non-essential state
is still stored (cached) in the business object

Chapter 4. Creating a component 245



Note: You must select this option if you are creating objects that are to be
used with either procedural application adaptors, or MQSeries application
adaptors.

Caching
This is the default pattern. This pattern uses the
IManagedObjectWithCachedDataObject class for data access. Both the business
object and the data object cache a local copy of the essential state. All essential
state, and all non-derived, non-essential state, is cached in the business object.
The business object does not delegate any getter or setter calls to the data
object. Additional framework methods syncToDataObject() (which is used to
load the business object with data contained in the data object), and
syncFromDataObject() (which is used to send data from the business object
back to the data object) are used to keep the cached copy of the attributes in
correspondence with the data object attributes. Once this option is selected,
the Object Reference section is activated.

Same as parent’s
The pattern for handling state data, which is used by the parent of this
interface, will be used for this implementation.

Note: This option is selected by default if the interface for this business object
inherits from another business object interface. However, you still have to
indicate the parent on the Implementation Inheritance page of this wizard,
after you delete the default parent for business object implementations, which
is IManagedClient IManagedClient::IManageable.

Business object (Programming Guide)
Object relationships (Programming Guide)
Cache Service (Advanced Programming Guide)

“Adding a business object implementation and data object interface” on
page 780
“Adding a business object interface” on page 777
“Creating a specialized home” on page 876
“Creating a container instance” on page 578

Object Reference

When you specify Caching as the pattern to be used for handling the essential
state (state data) of the business object, you can select the Use lazy evaluation
check box if you want the first copy of object references in the essential state
to be fetched only when it is required, rather than automatically at startup.

246 WebSphere: Application Development Tools Guide



You can make this decision using the Name and Data Access Pattern page of
the Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the
business object interface in the User-Defined Business Objects folder, in the
Tasks and Objects pane), or when you edit the object’s implementation that
you have defined (Properties from the pop-up menu of the business object
implementation in the User-Defined Business Objects folder). Even in the
bottom-up case, when you create a business object from a data object, you can
indicate your preference for accessing object references using the Name and
Data Access Pattern page of the Add Business Object wizard (Add Business
Objectfrom the pop-up menu of the data object interface in the User-Defined
Data Objects folder).

Business object (Programming Guide)
Object relationships (Programming Guide)
Cache Service (Advanced Programming Guide)

“Adding a business object implementation and data object interface” on
page 780
“Adding a business object interface” on page 777
“Creating a specialized home” on page 876
“Creating a container instance” on page 578

Data Object Interface

Note: This section is not available when you are adding a business object
from a data object.

You can choose to have Object Builder create a data object interface along
with the business object implementation you are defining, or you can create or
select a data object interface later.

You can make this decision using the Name and Data Access Pattern page of
the Business Object Implementation wizard when you add a business object
implementation (Add Implementation from the pop-up menu of the
business object interface in the User-Defined Business Objects folder, in the
Tasks and Objects pane), or when you edit the object’s implementation that
you have defined (Properties from the pop-up menu of the business object
implementation in the User-Defined Business Objects folder).

Note: this section is not available when you are adding a business object from
a data object.

You can select one of the following radio buttons:

Chapter 4. Creating a component 247



v Create a new one now
v Add or select one later

Create a new one now
Select this option if you want the data object to be derived from the business
object. The data object is automatically created when you add a business
object implementation. This is the default option.

Add or select one later
Select this option when you want to reuse an existing data object, which is
stand-alone and not derived from a business object. This option enables you
to match the interface and function requirements of the newly created
top-down model with the classes developed from existing data.

Business object (Programming Guide)

“Adding a business object implementation and data object interface” on
page 780
“Adding a business object interface” on page 777

Session Service

This section is not applicable, and therefore not available when the
deployment platform is OS/390.

Use this section if you plan to make the business object sessional. When a
business object uses Session Service, you can provide your own code to be
called during some of the normal processing for those services. To do this,
select the Provides resource support check box in this section.

Provides resource support
Select this check box to indicate that the business object implementation
inherits from ISessions::Resource, the class that has the endResource(), the
checkpointResource(), and the resetResource() methods in it. Object Builder
creates these methods on the business object, and you can provide your own
code for each of them. Your code will be called just before the corresponding
method is called on the managed object’s mixin.

Business object (Programming Guide)
Session Service (Advanced Programming Guide)

248 WebSphere: Application Development Tools Guide



“Adding a business object implementation and data object interface” on
page 780
“Adding a business object interface” on page 777
“Creating a specialized home” on page 876
“Creating a container instance” on page 578
“Adding resource methods to a sessional business object” on page 164

Data Object Behavior

The behavior of a data object depends on various factors such as the
environment for the business object, the implementation type of the data
object and its storage options, and the pattern used by the data object for data
access and storage of references.

The following reference topics deal with different aspects of the behavior of
data objects:
v “Environment”
v Persistent Behavior and Implementation
v “Data Access Pattern” on page 254
v “Handle for Storing Pointers” on page 255
v “Deployment platforms” on page 423

You can specify all these details when you define an implementation for the
data object on the Behavior page of the Data Object Implementation wizard.
This page has the same sections as the reference topics listed.

Data object (Programming Guide)
Persistent object (Programming Guide)
Data object customization for cardinality relations (Programming Guide)

“Working with data objects” on page 795

Environment

The environment for a component has to be either conducive to to production
or deployment. The environments that use the Business Object Application
Adaptor (previously known as BOIM) are for production, when we implement
a real application with persistent data.

You can select the environment for your component in the Behavior page of
the Data Object Implementation wizard either when you add a data object

Chapter 4. Creating a component 249



implementation (Add Implementation from the pop-up menu of the data
object interface in the User-Defined Business Objects folder, in the Tasks and
Objects pane), or when you edit the data object implementation you have
defined (Properties from the pop-up menu of the data object implementation
in either the User-Defined Business Objects folder, or the User-Defined Data
Objects folder).

You have the following environment options:
v BOIM with UUID key
v BOIM with any key
v Same as parent’s

BOIM with UUID key
This environment uses the Business Object Instance Manager (BOIM),
commonly known as Business Object Application Adaptor, with the
Universally Unique Identity (UUID) key. Select this implementation to create
unique server data objects with transient data for supporting the business
object. This option is useful for short-lived business objects that do not have
to persist after your application has finished executing. The type of
persistence is automatically set to Transient, and cannot be changed. A local
copy of the essential state is used for data access.

If the data object’s environment is BOIM with UUID key (page 250), the copy
helper should inherit from
IManagedAdvancedServer::IUUIDCopyHelperBase. The copy helper will only
be usable by other components on the server: client applications should not
create UUID components on the server.

BOIM with any key
Select this implementation to create server data objects with persistent data
for supporting the business object. The data object will be installed in a
business object application adaptor, and instances of the object will be located
using keys. This is the option to select if you want to use a relational backend
datastore, as shown in the Life Insurance example, or a procedural (PAO)
backend (one that is supported by procedural application adaptors).

Important:Whenever you select this environment, you must associate a
primary key with your managed object assembly.

This environment enables you to create a persistent object or use an existing
one. If you use this option and create any persistent objects for this data
object, you must use a customized container instance. The default container
instances are only appropriate for objects with transient data.

250 WebSphere: Application Development Tools Guide



When you select this option, all the options in the Type of Persistence section
are available for selection. The default form for persistent behavior is set to
Embedded SQL.

Same as parent’s
Select Same as parent’s when you want to use the implementation type that
is specified for the parent of this interface. The datastore defined in the parent
is used. If the parent has no persistent object, this newly created data object
has no persistent back-end. However, if the parent uses Embedded SQL, the
newly created data object inherits that behavior. A local copy of the essential
state is used for data access.

If you are defining an implementation that inherits from another, this option
will be selected.

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Transient data object customization - UUID key (production use) (Programming
Guide)
Transient data object - any key (production use) (Programming Guide)
Data object customization and inheritance (Programming Guide)
“Container” on page 578
State data (Programming Guide)
Cache Service (Advanced Programming Guide)
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795
“Adding a persistent object and schema” on page 833
“Customizing referential integrity” on page 714
“Creating a container instance” on page 578
“Configuring a managed object” on page 588

Type of Persistence
“Data Object Implementation Inheritance” on page 257

Type of Persistence

The data object implementations you define differ from one another based on
whether the associated data object is persistent or not, and on the type of
service they use.

Chapter 4. Creating a component 251



You can select the type of persistence in the Behavior page of the Data Object
Implementation wizard either when you add a data object implementation
(Add Implementation from the pop-up menu of the data object interface in
the User-Defined Business Objects folder, in the Tasks and Objects pane), or
when you edit the data object implementation you have defined (Properties
from the pop-up menu of the data object implementation in either the
User-Defined Business Objects folder, or the User-Defined Data Objects
folder). Each type of persistence has a unique impact in terms of application
performance, allocation of resources, and so on.

To be able to select any one of the different types of implementations, you
must first select, on the same page of the wizard, the BOIM with any key
environment. See “Environment” on page 249.

You have a choice of the following implementations:
v Transient
v Embedded SQL
v Cache Service
v Procedural Adaptors
v MQSeries Adaptor

Transient
This option is automatically selected and is the only one available when the
data object implementation uses BOIM with UUID key. If you selected
BOIM with any key for the environment, you can select this option if you
want a transient managed object with a user-defined identity.

Embedded SQL
Select this option if embedded (static) SQL is to be used by the persistent
object to access a DB2 database.

Cache Service
Use the Cache Service option if you want the CB server to hold cached copies
(instances) of the data object in memory, accessing the corresponding rows in
the relational database only when necessary. This results in improved
performance when the values in the accessed row need to be read frequently
but not updated as frequently. Select this option if you plan to use either a
Oracle, or Informix backend (it is also optional for DB2).

Cache Service is not available when the target platform is OS/390.

Restriction:A given transaction cannot access more than one Informix
database per CB server. To involve two Informix databases in a transaction,
you must access each database from a different server.

252 WebSphere: Application Development Tools Guide



Procedural Adaptors
Select this option if the data object implementation is to be connected to a
persistent object that is created for an imported procedural adaptor (PA) bean.

MQSeries Adaptor
Select this option if you want to enable MQSeries applications to participate in
distributed transactions. The MQSeries application adaptor makes use of the
MQSeries’ XAinterface for this purpose. If you select this option, no persistent
object will be required to be associated with this data object implementation.

The MQSeries application adaptor can be used
only if the platform for the object is Windows NT, HP-UX, Solaris, or a
combination of these.

Note the following points when you configure a managed object for your
application:

v You can select only those containers that match the data object
implementation (and the managed object). For example, if your data object
implementation uses Embedded SQL, only those containers that use
embedded SQL (those without caching services) are shown. Similarly, if you
defined the data object implementation to use Procedural Adaptors, and
the related persistent object uses Session Service, the selection you made
on the Names and Connectors page of the Import Procedural Adaptor Bean
wizard, only containers that are configured for sessions are shown.

v You will be able to select only those data object implementations in the
model (on the Data Object Implementations page of the Configure Managed
Object wizard) that use the service you specified on the Names and
Connectors page of the Import Procedural Adaptor Bean wizard.

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Data object implementation (Programming Guide)
“Container” on page 578 (Programming Guide)
State data (Programming Guide)
Cache Service (Advanced Programming Guide)
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795
“Adding a persistent object and schema” on page 833
“Customizing referential integrity” on page 714
“Creating a container instance” on page 578
“Configuring a managed object” on page 588

Chapter 4. Creating a component 253



“Data Object Implementation Inheritance” on page 257
“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Informix data type mappings” on page 148

Data Access Pattern

The data access pattern determines how the data object accesses data with the
help of its persistent object.

You can set the data access pattern in the Behavior page of the Data Object
Implementation wizard either when you add a data object implementation
(Add Implementation from the pop-up menu of the data object interface in
the User-Defined Business Objects folder, in the Tasks and Objects pane), or
when you edit the data object implementation you have defined (Properties
from the pop-up menu of the data object implementation in either the
User-Defined Business Objects folder, or the User-Defined Data Objects
folder).

Data access patterns for some data object implementations are predestined by
Object Builder, depending on the type of service used, or the transient or
persistent nature of the implementation.

If the type of persistence of the data object is Embedded SQL, you can select
one of the following access patterns:
v Delegating
v Local copy

Delegating
The data object uses the attributes of its associated persistent object. The get
and set methods of the data object call the corresponding get and set methods
of the persistent object, which, in turn, access the persistent object attributes.
A local copy of the data object attributes is maintained in the private members
of the data object class. If the implementation uses either of the Cache Service
options, or Procedural Adaptors, the data access pattern is automatically set
to Delegating. This setting cannot be changed.

If Delegating is used, the essential state is passed from the persistent object to
the data object, which sends it back to the business object. If you select Local
copy, the data object caches a local copy of the essential state.

Local copy
The data object has its own local copy of its attributes. They are private
members of the data object class that can be accessed directly by the data
object’s methods. That is, the get and set methods are applied to private

254 WebSphere: Application Development Tools Guide



copies of the attributes. The attributes of the persistent object are set only
when the business object application adaptor makes a call that invokes the
database during managed object activation, or transaction commit. The local
copy is used for type conversion purposes as in the case when a mapping
helper is used to map the attributes of the data object to the attributes of an
associated persistent object. If the implementation is Transient, the data access
pattern is automatically set to Local copy, and cannot be changed.

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Data object implementation (Programming Guide)
“Container” on page 578
State data (Programming Guide)
Cache Service (Advanced Programming Guide)
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795
“Adding a persistent object and schema” on page 833
“Customizing referential integrity” on page 714
“Creating a container instance” on page 578
“Configuring a managed object” on page 588

“Data Object Implementation Inheritance” on page 257

Handle for Storing Pointers

The design pattern you use for the data object implementation determines
how object references are stored (made persistent rather than transient) for
later retrieval and use. Object references are in a format that can be stored in a
database. These persistent storage forms, when converted back to in-memory
pointers, need no further transformation in order to point to the right object.
These patterns are implemented using handles that Object Builder generates.
The choice of a pattern is based on factors such as speed of execution and
storage overhead.

You can select the handle to be used for storing pointers in the Behavior page
of the Data Object Implementation wizard either when you add a data object
implementation (Add Implementation from the pop-up menu of the data
object interface in the User-Defined Business Objects folder, in the Tasks and
Objects pane), or when you edit the data object implementation you have

Chapter 4. Creating a component 255



defined (Properties from the pop-up menu of the data object implementation
in either the User-Defined Business Objects folder, or the User-Defined Data
Objects folder).

Note:Your selection of a handle does not affect the default mapping of object
references on the Attributes Mapping page of this wizard. It is relevant only if
you override the default setting of the persistent object and schema’s attribute
mapping from Key Home to Primitive.

You can select one of the following handles:
v Default
v Stringified object reference
v Object name
v Home name and key

Default
Select this option if you prefer to have the default handle used as the design
pattern for swizzling pointers. The default handle is the one you select when
you define the implementation for the corresponding business object on the
Handle Selection page of the Business Object Implementation wizard is used.

Stringified object reference (SOR)
Select this option to distribute the object reference in the CORBA environment.
This is the string form of an object reference. It helps in externalizing an object
to a stream.

Object name
Select this option only for objects named using the Naming Service. An object
thus named provides an interface that returns its name.

Home name and key
Select this option to implement specific relationships among CB Server objects.
The handle that the data object uses to store references to other objects is
composed of a home that stores the instance of the referenced object and a
key that identifies the instance. This option is sometimes preferred over a
stringified object reference (SOR) because it takes less storage space, and can
be maintained more efficiently: transferring a home from one server to
another will not break a home name and key reference, but it would an SOR.

Data object (Programming Guide)
Persistent object (Programming Guide)
Using handles (Programming Guide)
Naming Service (Advanced Programming Guide)
Application adaptor (Programming Guide)

256 WebSphere: Application Development Tools Guide



Data object customization for cardinality relationships (Programming Guide)
Top-down custiomizations (Programming Guide)
Object relationships (Programming Guide)
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795

“Data Object Implementation Inheritance”

Data Object Implementation Inheritance

Persistence Default Parent Implementation Platforms

Transient IBOIMExtLocalToServer
IBOIMExtLocalToServer::IDataObjectBase

All but
OS/390

Transient IBOIM390ExtLocalToServer
IBOIM390ExtLocalToServer::IDataObject

OS/390

DB2 Cache
Service

IRDBIMExtLocalToServer
IRDBIMExtLocalToServer::ICachingServiceDataObject

All

Oracle Cache
Service

IRDBIMExtLocalToServer
IRDBIMExtLocalToServer::ICachingServiceDataObject

All

Informix Cache
Service

IRDBIMExtLocalToServer
IRDBIMExtLocalToServer::ICachingServiceDataObject

All

Procedural
Adaptors

IPAAExtLocalToServer
IPAAExtLocalToServer::IDataObject

All

MQSeries
Adaptor

IMQAAExtLocalToServer
IMQAAExtLocalToServer::IDataObject
IRDBIMExtLocalToServer::IDataObject

NT

Embedded
SQL

RDBIMExtLocalToServer
IRDBIMExtLocalToServer::IDataObject

All

Transient(BOIM
with UUID
Key)

IBOIMExtLocalToServer
IBOIMExtLocalToServer::IUUIDDataObject

All

Data object (Programming Guide)
Persistent object (Programming Guide)

“Working with data objects” on page 795

Chapter 4. Creating a component 257



“Adding a data object implementation” on page 807
“Editing a data object implementation” on page 819

Objects to source files mapping

The following table summarizes the types of files produced for each of the
component objects you can define in Object Builder. The objects appear in
Object Builder’s Tasks and Objects pane.

Object Source Files

Business object file filename.idl

Business object
module

filename.idl
(Module and interface artifacts are contained in
the IDL source file ( filename.idl) of the business object file that
contains them.)

Business object
interface

Key filenameKey.idl
filenameKey.ih
filenameKey_I.cpp
classnameHelper.java
_classnameImpl.java

Copy helper filenameCopy.idl
filenameCopy.ih
filenameCopy_I.cpp
classnameHelper.java
_classnameImpl.java

Business object
implementation

filename.idl
filename.ih
filename_I.cpp (if it is a C++ business object)
filenameBase.java (if it is a Java business object)
classnameKeyAssistant.idl
classnameKeyAssistant.ih
classnameKeyAssistant_I.cpp

Data object file filename.idl

Data object module filename.idl
(Module and interface artifacts are contained in
the IDL source file ( filename.idl) of the data object file that
contains them.)

Data object interface

Data object
implementation

filename.idl
filename.ih
filename.cpp

DB schema filename.sql

258 WebSphere: Application Development Tools Guide



Object Source Files

DB persistent object myPO.hpp
myPO.sqx (Embedded SQL)
myPO.sqx (Cache Service)

PA persistent object myPO.idl
myPO.hpp
myPO.cpp
myPOIFImpl.java

Managed object filename.idl
filename.ih
filename.cpp

Local-only object filename.idl
filename.ih
filename_I.cpp
classnameHelper.java
_classnameImpl.java

Build Configuration
folder

projdefs.mk
local.mak
all.mak
QT.bat
QT.txt

DLL build targets BuildTargetName.mak

Application families AppFam.ddl
AppFam.auto.ddl

Containers Not applicable

Enterprise beans Not applicable

Note the following points:

v For a business object implementation, or a local-only object, either Java
source or C++ source is generated, based on the implementation language
selected in the object’s wizard.

v classname is the name of the key or copy helper class that you specify when
you define the object.

Component (Programming Guide)
Naming conventions (Programming Guide)

“Generating code” on page 551

Chapter 4. Creating a component 259



“Internationalization of data” on page 132
“Naming objects” on page 128

260 WebSphere: Application Development Tools Guide



Chapter 5. Components working together

Creating a composite component

A composite component provides access to the methods and data of its
member components. The member components provide their own persistence
for the data the composite accesses. The composite can also define its own
original methods and data, and provide persistence for its key attributes and
original data.

To create a composite component, you need to:
1. Group components into a composition.
2. Create a composite business object based on the composition.
3. Create a composite key for the component.
4. Complete the rest of the component.

The steps for creating a composite component are as follows:
1. “Creating a composition file” on page 885
2. “Adding a composition module” on page 886
3. “Adding a composition” on page 886
4. “Creating a business object file” on page 775
5. “Adding a business object module” on page 777
6. “Adding a composite business object interface” on page 892
7. “Adding a composite key” on page 901
8. “Adding a copy helper” on page 830
9. “Adding a composite business object implementation and data object

interface” on page 894
10. “Adding a data object implementation” on page 807
11. “Adding a managed object” on page 871

For a sample-based tutorial, see “Tutorial: Composite component creation” on
page 267.

“Composite component” on page 262

“Chapter 4. Creating a component” on page 127
“Working with compositions” on page 884

© Copyright IBM Corp. 1999, 2000 261



“Working with composite business objects” on page 891
“Working with composite keys” on page 900

“Naming objects” on page 128
“Internationalization of data” on page 132

Composite component

A composite component is an access point to the data and behavior of one or
more other components, which the composite component’s implementation
delegates to. Typically, the other components are not directly accessible (in
other words, the client cannot use the composite component to get a reference
to one of the combined component instances); only specific data and behavior
of the other components are available through the composite component’s
delegation of attribute and method calls. The composite component may have
its own data and methods as well.

A composite component can be of two kinds, based on the way its references
to its constituent components are combined:
v Conjunction composite

All of the composite component’s references exist at once. In other words,
at run-time the composite component has references to instances of each of
its constituent components. All of the instances exist at the same time, and
the composite combines their interfaces to provide a single access point to
their data and behavior. This is the most common type of composite
component.

v Disjunction composite
Only one of the composite component’s references exists at run-time. In
other words, at run-time the composite component has a reference to an
instance of only one of its constituent components. The composite
component acts as a common interface for two or more mutually exclusive
kinds of component, the choice of which is made when the composite
component is created.

When you create a composite component, you start by defining the
constituent components (in any of the standard ways, for example as a
component for new DB data, legacy DB data, or PA data). Then you define
the way in which the constituent components are combined in a composition
object, and finally you create a new composite component based on that
composition.

A composite component consists of the same objects as a normal component,
with some differences to provide the compositing behavior:
v A (composite) business object, which is based on the composition.
v A (composite) key for the business object

262 WebSphere: Application Development Tools Guide



v A data object, that stores the key attributes for the component, along with
any attributes that are unique to this component (not derived from the
constituent components).

v DB persistent object and DB schema (optional), that store the values of the
key attributes, and the value of any attributes that are unique to the
component.

v A copy helper and managed object.

“Composition”
“Composite business object” on page 264
“Composite key” on page 265
Component (Programming Guide)

“Tutorial: Composite component creation” on page 267
“Creating a composite component” on page 261

Composition

A composition defines a combined interface for a group of components. In
addition, it describes the implementation of the attributes and methods in the
combined interface, which delegate to attributes and methods of the
components in the group. For example, we might define a composition,
CompositeAccount, that combines two components, SavingsAccount and
CheckingAccount. The CompositeAccount interface might include an attribute
balance that is defined as the sum of a balance attribute on the
SavingsAccount component and a balance attribute on the CheckingAccount
component.

Once you have defined the composition, you can create composite business
objects that are based on the composition.

A composition does not have its own managed object; it is only accessible as
part of the business logic of a composite component based on the
composition. It is an abstraction of the combining and delegating logic needed
to access the data and behavior of the components being combined. This logic
is implemented in a local-only helper object, for use by the composite
business object that is based on the composition.

When you package a composite component, be sure to include the source files
for the composition class in the component’s server DLL or shared library file.
Otherwise, the composition logic contained in the helper object will not be
available to the composite component.

Chapter 5. Components working together 263



You can create compositions under the User-Defined Compositions folder, in
Object Builder’s Tasks and Objects pane. For each component that you add to
a composition, the composition has:
v A managed object instance, of the same type as the component’s managed

object
v Attributes that delegate to the component attributes.
v Methods that delegate to the component methods.

You can edit which attributes and methods are included, and what they
delegate to. You can also define attributes and methods that contain logic or
data that is unique to the composition, and does not simply delegate to a
combined component. This is useful for adding private helper functions to
hold user-defined logic. For example, a composition AllAccounts, which
combines the components CheckingAccount and SavingsAccount, could have
a private helper method addFloats, which can take the two original balances
(CheckingAccount1.balance and SavingsAccount1.balance) as arguments, and
return their sum. You can then map AllAccounts.balance to the helper
method. When you add a new method, you can supply its implementation
(for example, return arg1+arg2) in Object Builder’s Source pane (after you
complete the composition, click on it in the Tasks and Objects pane; then
select the method in the Methods pane, and complete its implementation in
the Source pane).

“Composite component” on page 262
“Composite business object”

“Tutorial: Composite component creation” on page 267
“Creating a composite component” on page 261
“Working with compositions” on page 884

Composite business object

A composite business object is part of a composite component. The business
object is based on a composition, which defines the interface to one or more
combined components.

When you base a business object on a composition, the business object
automatically gets the attributes and methods defined in the composition
(except for the composition’s references to its constituent components). The
business object attributes and methods have implementations that delegate to
their equivalents in the composition helper object. As with any other business
object, you can also define other attributes and methods that are unique to the
composite component, and do not delegate to a composition. You can make
these attributes persistent through a DB schema.

264 WebSphere: Application Development Tools Guide



The composition has a component instance for each component it composites.
It does not, however, deal with managed object configuration issues such as
how and when to find or create these instances. This information is instead
provided in the composite business object. This allows you to re-use the pure
combining logic of the composition in multiple versions of a composite
component, each version providing different managed object configuration
information. You provide the information for finding and creating the
managed object instances in the composite business object implementation.
The instances are then used by the business object, in conjunction with the
logic in the composition helper, to delegate its attribute and method calls
appropriately.

Each composite business object must have a composite key, in which the key
attributes of the composite business object can be mapped to key attributes of
the combined components. If the attributes have a simple mapping, you can
define the mapping in the Key wizard and have the appropriate logic
generated by Object Builder. If you require a more complex mapping, you can
edit the provided mapping methods (for example,
get_SavingsAccount_accountNo) and provide your own implementations.

You can use the composite component’s data object to store a secondary
source for an attribute. If a delegating call to an attribute fails (for example,
because the combined component that provides it is unavailable), the
composite component will return the value in the data object instead of fail.
This is particularly useful for composite components that use the disjunction
pattern. In the disjunction pattern, only one of the combined component
instances is available at run-time, which means that any unique attributes of
the other combined components are unavailable. The data object can provide
a secondary source for these unique attributes, which is used when the
current component instance does not provide them.

“Composite component” on page 262
“Composition” on page 263
“Composite key”
Business object (Programming Guide)

“Tutorial: Composite component creation” on page 267
“Creating a composite component” on page 261
“Working with composite business objects” on page 891

Composite key

A composite key is the key object for a composite component. As with a
regular key, the composite key defines attributes of its component that are to

Chapter 5. Components working together 265



be used to find a particular instance of the component on the server. The key
consists of one or more of the business object attributes, which must contain
enough information to uniquely identify an instance. For a composite key,
these business object attributes may optionally be used to identify the
components that make up the composition.

A common pattern for locating the contributing components of a composition
is to make the identity of the composite component the union of the identities
of the contributing components. In other words, the composite key attributes
are equivalent to the various key attributes of the components in the
composition.

For example:
v A composite component AllAccounts is based on the composition

AccountComposition, that combines two other components, SavingsAccount
and CheckingAccount.

v The key attribute for SavingsAccount is accountNo.
v The key attribute for CheckingAccount is accountNo.
v The key attributes for AllAccounts are savingsAccountNo and

checkingAccountNo, each of which is mapped to its equivalent accountNo
attribute in SavingsAccount and CheckingAccount.

The composite key contains enough information to uniquely identify the
AllAccounts component, and also to locate the equivalent SavingsAccount and
CheckingAccount components. There is no need to maintain persistent
references from the composite component to its constituent components; if
you can find AllAccounts, you have enough information to find
SavingsAccount and CheckingAccount.

When you use this pattern (the identity of the composite component as the
union of the identities of its constituent components), you can provide a
mapping between the attributes of the composite key and the attributes of
keys for the combined components. You can define simple mappings between
the two sets of attributes in the composite key’s Key wizard.

For example, given the following objects and key attributes:
v AllAccountsKey is the composite key for AllAccounts, and has two key

attributes:
– savingsAccountNo
– checkingAccountNo

v AccountComposition is the composition on which AllAccounts is based,
and combines two components:
– SavingsAccount, with the key attribute accountNo, defined in the key

object SavingsAccountKey

266 WebSphere: Application Development Tools Guide



– CheckingAccount, with the key attribute accountNo, defined in the key
object CheckingAccountKey

The attributes in the composite key AllAccountsKey would be mapped as
follows:
v savingsAccountNo maps to accountNo in SavingsAccountKey
v checkingAccountNo maps to accountNo in CheckingAccountKey

For simple mappings such as this one (where the attributes are of the same
type, and the mapping is one-to-one), the mapping information will be used
to generate implementations of the get_ methods (for example,
get_SavingsAccount1_accountNo) in the composite business object
implementation. If a mapping is complex or not provided at all, then you
need to provide your own implementation for these methods.

“Composite component” on page 262
“Composition” on page 263
“Composite business object” on page 264
Key (Programming Guide)

“Tutorial: Composite component creation”
“Creating a composite component” on page 261
“Working with composite keys” on page 900
“Editing get and set methods” on page 756

Tutorial: Composite component creation

This tutorial provides instructions for creating a composite component, that
consolidates the interfaces of two other components.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

After you complete this tutorial, you will have two ordinary components,
SavingsAccount and CheckingAccount, and a composite component,
AllAcounts, that provides access to the data in SavingsAccount and
CheckingAccount through a single combined interface.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

Chapter 5. Components working together 267



Creating the project
Create a sample project to hold your work.
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory

(for example, e:\scenarios\composite).
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Creating the SavingsAccount component
Create a simple component representing a savings account at a bank. For the
sake of simplicity, you will be accepting the default for most of the object
settings, and using transient data (no persistent objects or schemas).

Define the SavingsAccount interface:
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file SAFile.
3. Click Finish. The file now appears under the folder.
4. From the file’s pop-up menu, click Add Module to open the Business

Object Module wizard.
5. Name the module SAModule.
6. Click Finish. The module now appears under the file.
7. From the module’s pop-up menu, click Add Interface to open the

Business Object Interface wizard.
8. Name the interface SavingsAccount.
9. Click the page title and turn to the Attributes page.

10. Add the following attributes:
v readonly long accountNo
v readonly float balance

11. Click Next to turn to the Methods page.
12. Add the following methods:

v void credit (in float amount)
v void debit (in float amount)

13. Click Finish. The interface now appears under the module.

Add a key:
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Select accountNo as the key attribute.
3. Click Finish. The key now appears under the interface.

Add a copy helper:

268 WebSphere: Application Development Tools Guide



1. From the interface’s pop-up menu, click Add Copy Helper to open the
Copy Helper wizard.

2. Select all the attributes to be part of the copy helper.
3. Click Finish. The copy helper now appears under the interface.

Add a business object implementation and data object interface:
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Click the page title and turn to the Key and Copy Helper page.
3. Select SavingsAccountKey and SavingsAccountCopy.
4. Click the page title and turn to the Data Object Interface page.
5. Select all attributes as state data (to be preserved in the data object).
6. Click Finish. The business object implementation appears under the

business object interface, and the data object interface appears under the
implementation.

Add a data object implementation:
1. From the data object interface’s pop-up menu, click Add Implementation

to open the Data Object Implementation wizard.
2. For the sake of simplicity, set the environment to BOIM with any key and

the form of persistence to Transient. This saves you the step of defining
the database or procedural adaptor that would normally provide
persistence for the data.

3. Click the page title and turn to the Key and Copy Helper page.
4. Select SavingsAccountKey and SavingsAccountCopy.
5. Click Finish. The data object implementation appears under the data

object interface.

Add a managed object:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard.
2. Click Finish. The managed object now appears under the business object

implementation.

Creating the CheckingAccount component
Create another simple component, in the same way, that represents a
Checking account. The steps are substantially the same as for the previous
task, so only the differences are noted here.
1. Add the CAFile file and CAModule module.
2. Add the CheckingAccount interface, with the following attributes and

methods:
v readonly long accountNo
v readonly float balance

Chapter 5. Components working together 269



v long checkCount
v void credit (in float amount)
v void debit (in float amount)

3. Add a key, with accountNo as the key attribute.
4. Add a copy helper, with all attributes selected.
5. Add a business object implementation and data object interface, with all

attributes represented in the data object interface, CheckingAccountKey
selected as the key, and CheckingAccountCopy selected as the copy helper.

6. Add a data object implementation with the BOIM with any key setting,
transient data, and CheckingAccountKey and CheckingAccountCopy
selected as the key and copy helper.

7. Add a managed object.

Creating the composition
The composition defines the combined interface and delegating
implementation for the composite component.

Add a file:
1. From the User-Defined Compositions folder’s pop-up menu, click Add

File to open the Composition File wizard.
2. Name the file ACFile.
3. Click Finish. The file appears under the folder.

Add a module:
1. From the file’s pop-up menu, click Add Module to open the Composition

Module wizard.
2. Name the module ACModule.
3. Click Finish. The module appears under the file.

Add the composition:
1. From the module’s pop-up menu, click Add Composition to open the

Composition Editor.
2. Click Add to display the Composition Palette.
3. Select SavingsAccountMO and CheckingAccountMO.
4. Click Add to add them to the Objects to Composite list.
5. Click Close to close the palette.
6. In the Objects to Composite list, you can see entries for both

SavingsAccount1 and CheckingAccount1 (the default names for the
SavingsAccountMO and CheckingAccountMO instances the composition
will hold). Under each instance entry you can see its attributes and
methods.

270 WebSphere: Application Development Tools Guide



Above the list, you can see the Composition Style that is being applied
to the selected objects to produce the resulting composition in the Results
list.

7. Try selecting some other composition styles, and review the results.
8. Return to the Conjunction without name matching style.
9. In this style, attributes with conflicting names (such as accountNo and

balance) are made unique by combining them with their instance names
(for example, SavingsAccount1_accountNo). Attributes that are already
unique (such as checkCount) are not renamed.

10. Click on the checkCount attribute to see the the delegating
implementation of its getter method in the Current Republished Value
pane.

11. Click Setter to see its setter method’s implementation.
12. You can use the pop-up menu of the current value to remap the method

to another value. For this exercise, simply accept the defaults.
13. Double-click on the checkCount attribute to see its properties. You can

change the name of the attribute, but you cannot change its
implementation details.

14. In the Results pane, click on the parent folder (named Untitled by
default). This folder represents the composition itself.

15. Click the Properties tab to display the properties of the composition.
16. Name the composition AccountComposition.
17. Click OK. The composition appears under the module.

The composition is a complete implementation object. You can generate its
IDL and C++ code by selecting Generate > All from its pop-up menu.

Click on the composition in the Tasks and Objects pane to review its attributes
and methods in the Methods pane. Note that the managed object instances
appear as attributes under the User-Defined Attributes folder.

Adding the composite component AllAccounts
Now that you have the composition, you can create a composite component
based on the composition. This is similar to the procedure for creating a
normal component, and only the differences are noted here.

Add an AAFile file and AAModule module, and then add the AllAccounts
interface:

1. From the modules’ pop-up menu, click Add Interface to open the
Business Object Interface wizard.

2. Name the interface AllAccounts.
3. Check the Composite choice.
4. From the Composition to Use list, select AccountComposition.

Chapter 5. Components working together 271



5. Click the page title and turn to the Attributes page.
6. Review the list of attributes the component has received from its base.
7. You can delete or rename these attributes, and create new ones that are

specific to the component (rather than taken from the composition). For
this exercise, accept the default.

8. Click the page title and turn to the Methods page.
9. Review the list of methods the component has received from its base.

10. You can delete or rename these methods, and create new ones that are
specific to the component (rather than taken from the composition). For
this exercise, accept the default.

11. Click Finish. The interface appears under the module.

Add a composite key:
1. From the interface’s pop-up, click Add Key to open the Key wizard.
2. Select SavingsAccount1_accountNo and CheckingAccount1_accountNo as

key attributes.
3. Click Next to turn to the Composite Key page. This page is added to the

wizard for keys of composite components.
4. On this page, you map the selected attributes of the composite component

back to the original attributes in the keys of the grouped components.
5. In the Composite Key list (on the bottom), click

SavingsAccount1_accountNo to select it.
6. In the Composite Key Element list (on the top), expand

SavingsAccountKey and click its accountNo attribute.
7. Click Add. The mapping is added to the Composite Key list, under

SavingsAccount1_accountNo.
8. Perform the same mapping for CheckingAccount1_accountNo to

CheckingAccountKey::accountNo.
9. Click Finish. The key appears under the interface.

Add a copy helper:
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Select all attributes to be part of the copy helper.
3. Click Finish. The copy helper appears under the interface.

Add a business object implementation and data object interface:
1. From the interface’s pop-up menu, click Add Implementation to open

the Business Object Implementation wizard.
2. Select Caching as the pattern for handling state data.
3. Click the page title and turn to the Key and Copy Helper page.
4. Select AllAccountsKey and AllAccountsCopy.

272 WebSphere: Application Development Tools Guide



5. Click the page title and turn to the Location page. This page is added to
the wizard for business object implementations of composite components.

6. On this page, you define the component’s relationship to the composited
managed object instances (SavingsAccountMO and
CheckingAccountMO), and provide information about the managed
objects’ locations.

7. Accept the default settings for both components (Remove the instance
when the composition is destroyed is not checked, Add the instance to
the composition by: Find or create is selected, and Create the instance
using its copy helper is not checked).

8. The component will not destroy the composition’s instances when the
composition is destroyed. Any attempt to access a managed object
instance will be resolved by finding it, if it exists, or creating it, if it does
not. The instance will be created using its primary key (i.e., not its copy
helper).

9. Accept the default pattern for locating the home (Factory Finder /
Principal).

10. Accept the default location for the home (Factory Finder Name).
11. This information should match the Name in Factory Finding Service

Registry for the managed object’s home, in the application configuration
information for the managed object (in the Managed Object Configuration
wizard, Home page). Because the managed objects are not yet configured,
you should accept the default for now.

12. Accept the default principal interface name.
13. Click the title and turn to the Data Object Interface page.
14. Add the key attributes (SavingsAccount1_accountNo and

CheckingAccount1_accountNo) to the data object.
15. Click Finish. The business object implementation and data object

interface appear under the business object interface.

Add a transient data object:
1. From the data object interface’s pop-up menu, click Add Implementation

to open the Data Object Implementation wizard.
2. Select BOIM with any key as the environment.
3. Select Transient as the form of persistence.
4. Click the page title and turn to the Key and Copy Helper page.
5. Select AllAcountsKey and AllAccountsCopy.
6. Click Finish. The data object implementation appears under the data

object interface.

Add a managed object:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard.

Chapter 5. Components working together 273



2. Click Finish. The managed object appears under the business object
implementation.

The composite component is now defined.

Editing the composition
When you edit attributes or methods in the composition, the changes are
automatically applied to the composite components based on the composition.
In this task, you will consolidate the attributes SavingsAccount1_balance and
CheckingAccount1_balance into a single balance attribute, that returns the
sum of the two component’s balances.

Consolidate the two balance attributes:
1. Locate the AccountComposition composition, in the User-Defined

Compositions folder.
2. From the composition’s pop-up menu, click Properties to open the

Composition Editor.
3. In the Results pane, select the attributes SavingsAccount1_balance and

CheckingAccount1_balance. Select the second attribute using the Ctrl key
plus right-click, to both select it and display its pop-up menu at the same
time.

4. From the pop-up menu, select Equate. The two attributes are consolidated
into a single balance attribute.

5. Click on the new balance attribute to display its delegating behavior in the
Current Republished Value pane.
By default, the consolidated attribute delegates to a sequence of the two
source attributes. This means that it will return the balance of the last
attribute in the sequence. To customize the method and have it return the
sum of the two attributes, instead of just the last value in the sequence,
you need to add some extra processing in the form of a private helper
function.

Add a private helper function:
1. In the Results pane, display the pop-up menu for the User-Defined

Methods folder and click Add. A new method with the default name
newOperation1 appears.

2. Click on the Properties tab to display the properties for the method.
3. Change its name to addFloats.
4. Change its return type to float.
5. Change its implementation to Private.
6. In the Results pane, expand the method to show the Parameters folder

underneath it.

274 WebSphere: Application Development Tools Guide



7. From the pop-up of the Parameters folder, click Add. A parameter with
the default name newParameter1 is added to the folder. The properties of
the parameter appear on the Properties page.

8. Change the parameter’s name to arg1.
9. Change the parameter’s type to float.

10. Add a second parameter named arg2, type float.

Change the delegation for balance:
1. In the Results pane, click on the balance attribute you consolidated earlier.

The delegating behavior of its Getter method (to a <sequence> of
SavingsAccount1.balance and CheckingAccount1.balance) appears in the
Current Republished Value pane. There is no delegation for the Setter
method, because the source balance attributes are read-only.

2. Delete the <sequence> node. It is replaced by an <empty> node.
3. From the pop-up menu of the <empty> node, click Set value. A list of

attributes and methods with type or return type float appear.
4. Select addFloats as the value to map to. It replaces the <empty> node, and

two parameter nodes (labelled ??) appear beneath it.
5. From the pop-up menu of the first ?? node, click Set value. Map the

parameter to SavingsAccount1.balance. The selected attribute replaces the
?? node.

6. Map the second parameter in the same way, to CheckingAccount.balance.
7. Click OK to apply your changes to the composition, and return to the

Object Builder main window.

Add the implementation for balance:
1. Click on the composition in the User-Defined Compositions folder. Its

attributes and methods appear in the Methods pane.
2. Select the addFloats method in the Methods pane. Its skeleton

implementation appears in the Source pane.
3. Add the following implementation to the Source pane:

return arg1+arg2;
The method delegation is complete. Calls to the combined balance
attribute are automatically delegated to addFloats, which takes the two
source balance attributes as parameters and returns their sum.

Review the changes in the composite component:
1. In the User-Defined Business Objects folder, locate the composite business

object implementation AllAccountsBO.
2. Click on AllAccountsBO to display its attributes and methods in the

Methods list.
It now has a balance attribute, that has replaced the
SavingsAccount1_balance and CheckingAccount1_balance attributes.

Chapter 5. Components working together 275



3. Click on the balance attribute to display its implementation, which has
already been filled in with appropriate delegation behavior.

4. Click File > Save to save your changes.

Configuring the build
Create client and server DLLs for the components. For this exercise, all the
components will be configured into the same DLLs. The AllAccounts
component is configured like a normal component. The AccountComposition
composition is a server-only object.

If the AllAccounts component were configured into a separate DLL from the
SavingsAccount and CheckingAccount components, then the AllAccounts
DLLs would need to link with the other component’s libraries (on the
Libraries to Link With page of the wizards for the DLLs). This would be
necessary to resolve the composite component’s references to the composited
managed objects.

Define the client DLL:
1. From the Build Configuration folder’s pop-up menu, click Add Client

DLL to open the Client DLL wizard.
2. Name the DLL AccountsClient.
3. Click the page title and turn to the Client Source Files page.
4. Select SAFile, SAFileKey, and SAFileCopy (the SavingsAccount client

interfaces).
5. Select CAFile, CAFileKey, and CAFileCopy (the CheckingAccount client

interfaces).
6. Select AAFile, AAFileKey, and AAFileCopy (the AllAccounts client

interfaces).
7. Click Finish. The client DLL appears under the folder.

Define the server DLL:
1. From the Build Configuration folder’s pop-up menu, click Add Server

DLL to open the Server DLL wizard.
2. Name the DLL AccountsServer.
3. Click Next to turn to the Libraries to Link With page.
4. Select the AccountsClient library file.
5. Click Next to turn to the Server Source Files page.
6. Select SAFileBO, SAFileDO, SAFileDOImpl, and SAFileMO (the

SavingsAccount server interfaces).
7. Select CAFileBO, CAFileDO, CAFileDOImpl, and CAFileMO (the

CheckingAccount server interfaces).
8. Select AAFileBO, AAFileDO, AAFileDOImpl, and AAFileMO (the

AllAccount server interfaces).

276 WebSphere: Application Development Tools Guide



9. Select ACFile (the AccountComposition composition).
10. Click Finish. The server DLL appears under the folder.

Build the DLLs:
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
2. Wait for the code generation to complete. The generated source files are

placed in the project’s \Working directory.
3. From the pop-up menu of the User-Defined Compositions folder, click

Generate > All. The code for the composition is added to the \Working
directory.

4. From the pop-up menu of the Build Configuration folder, click Generate >
All > All Targets.

5. From the same pop-up menu, click Build > All Targets. The DLLs are
built and placed in the project’s \Working\PRODUCTION directory.

Configuring the application

Create the application family:
1. From the Application Configuration folder’s pop-up menu, click Add

Application Family to open the Application Family wizard.
2. Name the application AccountFamily.
3. Click Finish. The application family appears under the folder.

Create the application:
1. From the application family’s pop-up menu, click Add Application to

open the Application wizard.
2. Name the application AccountApplication.
3. Click Finish. The application appears under the application family.

Configure the SavingsAccount managed object:
1. From the application’s pop-up menu, click Add Managed Object to open

the Managed Object Configuration wizard.
2. Select SavingsAccountMO as the managed object. The other fields become

filled in with appropriate defaults.
3. Click Next to turn to the Data Object Implementations page.
4. Select SavingsAccountDOImpl.
5. Click Finish. The correct container and home are selected by default. The

managed object configuration appears under the application.

Configure the CheckingAccount managed object using the same steps, with
the following differences:
1. Select CheckingAccountMO as the managed object.
2. Select CheckingAccountDOImpl as the data object implementation.

Chapter 5. Components working together 277



The managed object configuration appears under the application.

Configure the AllAccounts managed object using the same steps, with the
following differences:
1. Select AllAccountsMO as the managed object.
2. Select AllAccountsDOImpl as the data object implementation.
3. Click the page title and turn to the Home page.
4. Review the Name in Factory Finding Service Registry path, and verify

that it is the same as the location you provided in the Business Object
Implementation wizard, Location page (in the Factory Finder Name field).

5. Click Finish. The managed object configuration appears under the
application.

Generating the DDL files:

From the application family’s pop-up menu, click Generate. The DDL files
you need to install the application on the server are created and placed in the
project’s \Working\platform\PRODUCTION\AccountFamily\ directory.

You have now completely defined two components, a composition that
combines their interfaces, and a composite component that allows access to
the combined interfaces.

You can find information on installing components on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed components with a
QuickTest client application in “Chapter 13. Testing applications with
QuickTest” on page 611.

Defining relationships

The following tasks cover the different types of relationships you can define
between components, in Object Builder:
v “Defining a 1-1 relationship” on page 279
v “Defining a 1-n relationship” on page 281
v “Defining a circular relationship” on page 283
v “Defining a foreign key pattern” on page 285
v “Storing an object reference as a handle” on page 288
v “Using complex relationships in SQL clauses” on page 289

Object relationships (Programming Guide)

278 WebSphere: Application Development Tools Guide



“Foreign key patterns” on page 284
Model details (Object identity) (Programming Guide)
Data object customization for cardinality relations (Programming Guide)
Expanding the client programming interface (Programming Guide)
Handles (Programming Guide)
“Chapter 6. Inheritance” on page 299

“Creating a child component” on page 306

Defining a 1-1 relationship

When you add an attribute whose type is another business object, you create
a cardinality-to-1 relationship between the first object (which has the attribute)
and the second object (which is the type of the attribute).

To create an attribute that references an object, follow these steps:
1. Open the Business Object Interface wizard (either by adding a new

business object interface to a file or module, or by selecting Properties
from the pop-up menu of an existing business object interface).

2. Click the page title and turn to the Attributes page.
3. From the Attributes pop-up menu, select Add.
4. Type the name of the attribute (for example, currentClaim).
5. From the Type drop-down list, select the type for the object that you want

to reference (for example, Claim).
6. Enter any other information that defines the attribute.
7. Complete the remaining wizard pages, or click Finish.

The object you reference should already exist in Object Builder, at least as a
business object interface declaration (without methods or attributes). If you
have two objects that reference each other, create the references as follows:
1. Define the first interface (for example, Policy) without defining its

methods or attributes.
2. Define the second interface (for example, Claim) with a reference to the

first interface.
3. Go back and edit the first interface, to add a reference to the second

interface.

Expanding the client programming interface (Using handles) (Programming
Guide)
Business object (Programming Guide)
Object relationships (Programming Guide)

Chapter 5. Components working together 279



“Defining relationships” on page 278

Distributed query

Distributed queries are those that you perform over collections of objects that
are found on different servers. Factories and factory finders play important
roles in a distributed environment. Factory finders, with the help of location
objects are responsible for locating the objects that you query, on the different
servers in the distributed environment.

Structural and functional enhancements to the business object implementation,
and data object implementation make distributed queries possible.

In the business object implementation, the list() method for a 1-n foreign key
relationship has the capability of locating the home of the child interface using
a factory finder name and factory key string, and then evaluating a query
against that home. Before distributed query was supported, the list() method
could only evaluate a query on the current server.

In the data object implementation, the getter for a home/key mapped object
reference has the capability of locating the home of the parent interface using
a factory finder name and factory key string.

When you perform a distributed query, you can select the style to be used for
the query: either the current path expression form of the query, or the foreign
key pseudo attribute form of the query. You can select the style in the Foreign
Key Implementation section of the business object implementation’s Object
Relationships page.

Note: The query engine cannot handle path expressions involving collections
over multiple servers. But, Object Builder emits a foreign key query that uses
a path expression to get from the child interface to the primary key attributes
of the parent interface. In this situation, it is recommended that you surface
the foreign key attributes of the child table in the business object to data
object, and data object to data access object MappedTypes in the SM DDL,
and then use these pseudo attributes in the query.

“Complex attributes and mapping patterns” on page 745
“Foreign key patterns” on page 284
Query Service (Advanced Programming Guide)
Concepts of factories (Advanced Programming Guide)
Concepts of factory finders (Advanced Programming Guide)

280 WebSphere: Application Development Tools Guide



“Defining a 1-n relationship”
“Defining a foreign key pattern” on page 285

Defining a 1-n relationship

You can define a one-to-many (1 to n) relationship between components.
When you define a relationship, a set of patterned methods are added to the
first component to support the relationship, to allow adding, deleting, and
listing of its related objects.

To create a relationship between components, follow these steps:
1. Open the Business Object Interface wizard (either by adding a new

business object interface to a file or module, or by selecting Properties
from the pop-up menu of an existing business object interface).

2. Click the page title and turn to the Object Relationships page.
3. From the Relationships pop-up menu, select Add.
4. Type a name for the relationship.
5. Select the type for the objects that you want to define a relationship with.
6. Select whether you want the relationship that you are defining to be

read-only.
7. Complete the remaining wizard pages (if this is a new interface), or click

Finish.

If you do not select the read-only option for the relationship, the business
object interface will now have methods for adding, removing, or listing
objects of the selected type. For example, if you established a 1-n relationship
from Policy to Claim, Policy would now have the methods addClaim,
removeClaim, and listClaim. These methods allow a client to add and remove
Claim instances through the Policy class, and to iterate through a list of the
Claim instances to which Policy is related.

If you select the read-only check box on the Object Relationships page, the
business object interface will have only the method for listing objects of the
selected type; it will not have those for adding and removing objects.

If you are defining a 1-n relationship as part of a foreign key pattern, and if
the foreign key reference is read-only (for example, if Customer’s attribute
myAgent is read-only because it is part of CustomerKey), then you should
make the foreign key relationship (for example, Agent’s relationship to
Customer) read-only as well. Otherwise, the relationship’s add() and remove()
methods will throw exceptions at run time. In this situation, besides
maintaining the referenced objects, the application developer must manage the
foreign key attributes by managing their instances.

Chapter 5. Components working together 281



Now set the implementation of the relationship in the business object
implementation:
1. Open the Business Object Implementation wizard (either by adding a new

business object implementation to the previous interface, or by selecting
Properties from the pop-up menu of its existing business object
implementation).

2. Click the page title and turn to the Object Relationships page. This page
lists the relationships defined in the business object interface, as well as
those that are declared on the parents of the business object
implementation’s business object interface.

3. Click on the relationship that you want to implement.
4. Under Relationship Implementation, set the type of implementation:
v Local persistent reference

Select this option if you want to use a reference collection and tie its
implementation to the data object implementation’s “Environment” on
page 249. If the data object implementation’s environment is BOIM with
UUID key, the collection will be transient, otherwise the collection will
be persistent.

v Transient Reference Collection
Select this option if you want your reference collection to be transient.

v Persistent Reference Collection
Select this option if you want your reference collection to be persistent.

v User-Defined OOSQL Reference
The relationship will be implemented using logic you provide. Only
skeleton methods will be generated.

v Reference resolved using foreign key
The relationship is implemented using the foreign key pattern. This is
described in a separate task.

5. Click Finish.

You have defined the 1-n relationship. Depending on the type of
implementation you selected, you will need to do additional work in the
business object’s framework methods, or in the data object.

1-n relationships with inherited classes
Generally, you set up a 1-n relationship between an object and another one
that has an object reference to the first object. You can now have diagonal 1-n
relationships as well (that is 1-n relationhips between an object, and the child
object of another object). Consider the following situations:
v There are three objects: Department, Person, and Employee. Person has a

foreign key, and an object reference to Department. Employee is the child
object of Person, and inherits Person’s interface, but has no direct object
reference to Department. A 1-n relationship is possible from Department to
Employee.

282 WebSphere: Application Development Tools Guide



v There are three objects: Person, Department, and Research. Research inherits
Department’s interface. Person has a foreign key, and an object reference to
Department. Person does not have an object reference to the child object
Research. You can set up a 1-n relationship from Research to Person.

Business object (Programming Guide)
Object relationships (Programming Guide)
“Foreign key patterns” on page 284

“Defining relationships” on page 278
“Adding a business object interface” on page 777
“Adding a business object implementation and data object interface” on
page 780
“Defining a 1-1 relationship” on page 279
“Defining a foreign key pattern” on page 285

“Relationship Implementation” on page 293

Defining a circular relationship

When two components reference each other (through attributes or
one-to-many relationships), the relationship is bidirectional, or circular.

Circular relationships cannot cross module boundaries. Both interfaces must
be defined in the same module, or else they cannot be in modules at all
(though they can be in separate files).

To create a circular relationship between two components, follow these steps:
1. Create the first interface, without its reference or relationship to the second

interface.
2. Create the second interface, with its reference or relationship to the first.
3. Edit the first interface, and add its reference or relationship to the second.

A foreign key pattern is a specific case of a circular relationship. It is
documented in full in the foreign key pattern task.

“Foreign key patterns” on page 284

“Defining relationships” on page 278
“Defining a foreign key pattern” on page 285

Chapter 5. Components working together 283



Foreign key patterns

When a schema contains a foreign key reference (for example, the schema for
Customer has a foreign key reference to Agent), this allows for more efficient
relationships on the component level. For example, if Agent has a
one-to-many relationship with Customer, calls to find a particular customer
can be resolved on the database level, instead of on the business object level.

To take advantage of a foreign key reference on the component level, you
need to define a component with a foreign key attribute (based on the foreign
key reference), and then edit the component referenced by the foreign key
attribute, to add a one-to-many relationship in the other direction (resolving
references by foreign key).

For example, the component Agent has a one-to-many relationship with the
component Customer, and the component Customer has an inverse object
reference to the component Agent (each agent can have multiple customers,
but each customer is represented by only one agent).

Foreign key relationships give better performance with SQL queries, because
the references resolve directly to a database table, rather than indirectly
through business object and data object attributes.

Once you define these relationships on the component level (a one-to-many
relationship with foreign key support, and inverse references based on foreign
keys), the foreign key attribute (for example, Customer’s inverse reference to
Agent) can be mapped to a foreign key in the imported .sql for the
component.

When you are doing top-down programming, Object Builder currently will
not identify foreign keys in .sql files that it generates. While you can define
foreign key relationships using the foreign key pattern, and generate .sql files
based on the component relationship, the generated .sql files will not contain
a foreign key constraint. Query pushdown (which results in substantial
performance benefits) can still occur even if the foreign key constraint is not
present in the actual table definition. However, DB2 will not be able to access
the table as efficiently as when there is a foreign key constraint.

However, Object Builder recognizes and retains (in the generated .sql files)
any foreign key constraint that is in the model as a result of SQL import.

Object relationships (Programming Guide)
Data object customization for cardinality relations (Programming Guide)

284 WebSphere: Application Development Tools Guide



“Defining a foreign key pattern”
“Customizing referential integrity” on page 714

“Foreign Key Implementation” on page 296

Defining a foreign key pattern

When a schema contains a foreign key reference (for example, the schema for
Customer has a foreign key reference to Agent), this allows for more efficient
relationships on the component level. For example, if Agent has a
one-to-many relationship with Customer, calls to find a particular customer
can be resolved on the database level, instead of on the business object level.

To take advantage of a foreign key reference on the component level, you
need to define a component with a foreign key attribute (based on the foreign
key reference), and a component with a one-to-many relationship (resolving
references by foreign key).

To define these relationships, follow these steps:
1. Import the SQL DDL files that define the schemas for the related

components (for example, myDB.Customer and myDB.Agent).
2. Create persistent objects from the schemas (for example, CustomerPO and

AgentPO).
3. Create business object interfaces (for example, Customer and Agent).

Specify their names only, do not specify their attributes or relationships.
Note: You cannot have a foreign key relationship between business object
interfaces that are contained in different modules. The interfaces can be
contained in the same module.

4. Complete the business object interface that owns the foreign key reference.
Make sure the interface includes an object reference equivalent to the
foreign key constraint in the table.
The object reference represents a many-to-one relationship (many
Customers share one Agent). You create this relationship in the same way
you would create a one-to-one relationship, by creating an attribute of the
referenced type (for example, the business object interface is defined with
an attribute myAgent of type Agent). This is the foreign key attribute. The
foreign key attribute cannot be read-only, unless it is part of the primary
key.

5. Create the business object implementation, key and copy helper, data
object interface, and implementation for the owner of the foreign key
reference (for example, CustomerKey, CustomerCopy, CustomerBO,
CustomerDO, CustomerDOImpl).

Chapter 5. Components working together 285



Make sure the foreign key attribute (for example myAgent) is part of the
component’s state data, and is identified in the component’s key.

6. Complete the business object interface and implementation referenced by
the foreign key, and define its one-to-many relationship (for example, add
a one-to-many relationship from Agent to Customer, so that each agent
can have multiple customers).
To define a one-to-many relationship with references resolved by foreign
key, follow these steps:
a. Open the Business Object Interface wizard by selecting Properties from

the pop-up menu of the business object interface.
b. Click the page title and turn to the Object Relationships page.
c. From the Relationships pop-up menu, click Add.
d. Type a name for the relationship.
e. From the Object Type drop-down list, select the interface that has the

foreign key reference (for example, Customer).
If the foreign key reference is read-only (for example, if Customer’s
attribute myAgent is read-only because it is part of CustomerKey),
then you should make the foreign key relationship (for example,
Agent’s relationship to Customer) read-only as well. Otherwise the
relationship’s add() and remove() methods will throw exceptions at run
time. In this situation, besides maintaining the referenced objects, the
application developer must manage the foreign key attributes by
managing their instances.

f. Click Finish.
g. From the pop-up menu of the interface, click Add Implementation to

open the Business Object Implementation wizard.
h. Click the page title and turn to the Object Relationships page.
i. Under the Relationships folder, click on the relationship you defined in

the interface. You can now set the implementation behavior for the
relationship.

j. Under Relationship Implementation, click Reference resolved using
foreign key.
Note the following points:
v This option is enabled only when one of the following criteria is

satisfied:
– both interfaces are defined in the same IDL file or both interfaces

are defined in separate files but not within modules, or
– the selected interface has a reference to the current interface

v If the interfaces that are to be used in the foreign key relationship are
in different files, and either one or both interfaces are contained in
modules, you cannot create the foreign key relationship.

286 WebSphere: Application Development Tools Guide



k. From the Foreign Key Attribute list, select the attribute of the object
that you want to use as the foreign key in this relationship. The list
only displays attributes with the same type as the current object (for
example, Customer’s attribute myAgent of type Agent).

l. In the Home to Query field, specify the home that will be used on the
server to find objects of the selected type. The home that you select
must be the same one that you configure with the target component’s
managed object.
Typically the home name is derived from the target managed object’s
name (for example, CustomerMOHome).

m. If you want to set up a foreign key relationship between a parent and
a child object, where the parent and child homes reside on different
servers, select the Distributed query check box. Object Builder then
emits a query that does not use path expressions, into the list()
method of the parent to return all child objects that reference back to
the parent.

n. Optionally, you can specify a factory name, and a factory finder name.
o. Click Finish.

7. Complete the rest of the component objects (for example, AgentKey,
AgentCopy, AgentBO, AgentDO, AgentDOImpl).

8. Complete the component that owns the one-to-many relationship by
mapping the data object implementation of the component to its
equivalent persistent object (for example, map AgentDOImpl to AgentPO):
a. In the implementation’s wizard, add an instance of the persistent object

to the implementation’s Associated Persistent Objects page.
b. Turn to the Attributes Mapping page and map the data object

attributes to the persistent object attributes.
c. Turn to the Methods Mapping page and map the framework methods

there to methods of the persistent object.
9. Complete the component that owns the foreign key reference by mapping

the data object implementation of the component to its equivalent
persistent object (for example, map CustomerDOImpl to CustomerPO):
a. In the implementation’s wizard, add an instance of the persistent

object to the implementation’s Associated Persistent Objects page.
b. Turn to the Attributes Mapping page and map the data object

attributes to the persistent object attributes.
c. Map the foreign key attribute using the Key Home option, and then

map the key attributes to their equivalents in the persistent object.
d. Turn to the Methods Mapping page and map the framework methods

there to methods of the persistent object.

The foreign key pattern is now established.

Chapter 5. Components working together 287



Note: Models from older versions of Object Builder that have distributed
queries will use the path expression form of the query in the list() method,
and will have the default factory names and factory finder names. (The
Distributed query check box on the Object Relationships page of the business
object implementation will not be selected.)

“Foreign key patterns” on page 284
Component (Programming Guide)
“Home” on page 581

“Defining relationships” on page 278
“Defining a 1-1 relationship” on page 279
“Defining a 1-n relationship” on page 281
“Mapping a data object to a DB persistent object” on page 703
“Mapping attributes using a key” on page 732
“Customizing referential integrity” on page 714

Storing an object reference as a handle

You can store object references either as handles, or as home key mappings. A
handle is an encoding of the reference that can be used to recreate the
reference. A home key mapping involves the persistence of the attribute
values in the object’s key, as described in the foreign key pattern for storing a
foreign key reference.

This task describes how to store an object reference as a handle.

Object Builder supports the following handle patterns for a persistent
reference:
v Stringified Object Reference (SOR)
v Object Name
v Home Name and Key

The handle pattern used to store references to a particular object type is set in
the business object implementation of that object. The handle pattern can be
overridden, however, by the referencing object, as set in the data object
implementation of the referencing object.

To set or change the default handle pattern for a particular object type, follow
these steps:
1. Open the Business Object Implementation wizard (either by adding a new

business object implementation to an interface, or by selecting Properties
from the pop-up menu of an existing business object implementation).

288 WebSphere: Application Development Tools Guide



2. Click the page title and turn to the Handle Selection page.
3. Select the handle that will be used by default to store references to this

type of object.
4. Complete the remaining wizard pages (if this is a new business object

implementation), or click Finish.

To override the default behavior and use a single storage pattern for
references to all types of objects, follow these steps:
1. Open the Data Object Implementation wizard (either by adding a new

data object implementation to an interface, or by selecting Properties from
the pop-up menu of an existing data object implementation).

2. Turn to the Behavior page..
3. Under “Handle for Storing Pointers” on page 255, select the handle you

want to use for swizzling pointers.
4. Complete the remaining wizard pages (if this is a new data object

implementation), or click Finish.

Handles (Programming Guide)
Object relationships (Programming Guide)
Data object customization for cardinality relations (Programming Guide)
“Foreign key patterns” on page 284

“Defining relationships” on page 278
“Defining a foreign key pattern” on page 285
“Adding a business object implementation and data object interface” on
page 780
“Adding a data object implementation” on page 807

Using complex relationships in SQL clauses

In the SQL View Editor, you can specify conditions or relationships that must
exist among rows of the various schemas, for them to be included in the view.
You can do this on the Where page and the Having page of the Clauses pane.
These conditions are also called predicates, and they can be combined in the
following ways:
v All predicates must be satisfied (“AND”)
v At least one predicate must be satisfied (“OR”)
v A more complex arrangement of “AND”, “OR” and “NOT” conditions

must be satisfied

Each of these conditions can be expressed by selecting the corresponding
button (And, Or, or Use Complex Relationships) at the bottom of the page.

Chapter 5. Components working together 289



Whichever condition you specify, you can see a graphical representation of the
logic behind the condition by clicking the Edit Conditional Relationships
button.

To add a complex condition to the SQL clause when creating or editing a
view, follow these steps:
1. Click the Edit Conditional Relationships button.

The Organize Logical Combination dialog opens. Each predicate is
represented by either an entry in the list box on the left, or by a rectangle
in the graph on the right. Predicates in the list box do not belong to any
logical combination; those in the graph do.

2. You can manually change the logical combination of the predicates in the
graph view by doing one of the following tasks:
v Adding a predicate to the graph
v Removing a predicate from the graph
v Negating a predicate
v Negating a combination of predicates

To add a predicate to the graph, follow these steps:
1. Select the predicate from the list in the left-hand frame. The statement of

the predicate appears below the list box.
Note: If there are any other elements in the graph, you must select at least
one with which the new predicate will be combined. For example, if you
choose predicate ’A’ from the list, and then choose predicate ’B’ from the
graph, you are then allowed to combine ’A’ with ’B’, with either an
“AND” condition or an “OR” condition. You may choose as many
predicates from the graph as you wish, and the editor will add the new
predicate according to the combination you requested.

2. Once you have selected the predicates, you can select one of two buttons
below the list box: Add as And>> and Add as Or>>. Your selection
determines how the new predicate will be combined with the selected
ones.

To remove a predicate from the graph, follow these steps:
1. Select the predicate with the mouse.

Note: As you move the mouse over a predicate in the graph, the text of
the predicate appears.

2. Click the <<Remove button.

Notice the following indications on the graph:
v To the left of each predicate is a white NOT indicator. You can use it to

negate a condition. As you move the mouse over this symbol, a red outline
appears around the predicate. This implies that the NOT operator is

290 WebSphere: Application Development Tools Guide



associated with that predicate. Click the NOT operator to negate the
predicate indicated by the rectangle. Once a predicate is negated, its
associated NOT operator appears red.

v To the left of each combination of predicates, there is also a yellow tilde.
When you move the mouse over this tilde, a red outline appears around the
entire logical combination.

To negate a predicate (specify “NOT” conditions), follow these steps:
1. Move your mouse over the predicate and click the NOT operator closest to

it. The yellow tilde turns red, indicating that the predicate is negated.

To negate a logical combination, follow these steps:
1. Move your mouse over the combination of predicates and click the

outermost NOT operator. The yellow tilde turns red, indicating that the
combination as a whole is negated. For example, if the combination shows
’A’ AND ’B’, then by selecting the tilde for this combination, it becomes
NOT (’A’ AND ’B’).

Note: When you close the dialog, one of the radio buttons: And, Or, or Use
Complex Relationships will be selected according to the state of the
arrangement. If Use Complex Relationships is selected, it implies that one of
the following conditions exists in the arrangement:
v There are predicates left in the list box that are not yet placed in

combination
v The picture in the graph is a combination of AND, OR and NOT conditions,

and cannot be reflected using either a simple AND or a simple OR
combination.

Schema (Programming Guide)

“Working with DB schemas” on page 843
“Working with the SQL View Editor” on page 850

Design patterns and iterators

Design patterns

A design pattern describes a problem that occurs repeatedly in our
environment. It then describes the core of the solution to the problem, in such
a way that you can use this solution innumerable times without doing it the
same way twice.

Design patterns are descriptions of communicating objects and classes that are
customized to solve a general design problem in a particular context. One
object’s pattern can be another one’s building block.

Chapter 5. Components working together 291



Design patterns are less specialized and smaller architectural elements than
frameworks, but they are not frameworks, though they are more abstract than
them.

Several design patterns can be contained in a framework, but the reverse is
never true.

Design patterns must be implemented each time they are used, whereas you
can embody frameworks in code and use them directly.

Design patterns can be used in any kind of application; frameworks always
have a particular application domain.

Examples of design patterns are object factories, iterators, mediators, proxies
and bridges.

Iterators

A collection is a group of objects, and objects model real-world entities. So,
very often, you need to access either references to objects, or the objects
themselves (their references or indirection is hidden).

An iterator is a design pattern that defines three operations to traverse a
collection (access objects directly or indirectly in that collection):
v reset points to the start of a collection
v next increments the iterator’s position
v more enables you to test if there are elements left in the iteration. This

method returns true if there are more elements that you can access in the
collection; it returns false if you have reached the end of the collection.

Every time they are used on the server, iterators, like all design patterns, must
be implemented.

A data object iterator supports data objects that are backed directly by DB2
queries.

Dependencies within an IDL file

When you add modules, interfaces, or constructs to an IDL file, they are
automatically re-ordered if necessary to resolve any internal dependencies.

You can view and change this order by displaying the wizard for an existing
IDL file (select a business object file or data object file in the Tasks and Objects
pane, and select Properties from its pop-up menu). The order appears on the
Contents Ordering page.

292 WebSphere: Application Development Tools Guide



When a construct or interface references another construct or interface that
comes after it in the file, the dependency is resolved in one of two ways:
v If the dependency is within the same scope (the referencing and referenced

element are both at the file level, or both in the same module), then a
forward declaration is automatically included to resolve the reference.

v If the dependency is cross-scope (the referencing and referenced element are
at different scopes), then the order must be changed because a forward
declaration in IDL cannot be cross-scope.

You can view the type and scope dependencies for an IDL element by
selecting it on the Contents Ordering page:
v An interface dependency is listed when the interface has an attribute,

method return type, method parameter type, method exception type, object
relationship type, construct type, or construct member type that references
another interface or construct in the same file. If the referenced interface or
construct is in another module, then the dependency is listed as being on
the module.

v A construct dependency is listed when the construct is of a type, or
contains a member of a type, that references another interface or construct
in the same file. If the referenced interface or construct is in another
module, then the dependency is listed as being on the module.

v A module dependency is listed when it contains an interface or construct
that has a dependency.

The order of the contents is automatically checked for validity, and re-ordered
if necessary, whenever you click Finish in the wizard for a module or
interface contained in the file.

Note: You cannot have circular dependencies between constructs.

Interface Definition Language (Programming Guide)

“Working with constructs” on page 769

Relationship Implementation

Relationship Implementation
In a one-to-many relationship, you can force the kind of reference collection to
be used if you know in advance how you will be configuring the referenced,
child managed object. You are limited in your choice of objects that you can
select when you define a container to hold the components of your
application, depending on your configuration of the managed object. You can
explicitly choose one of the following reference collections:

Chapter 5. Components working together 293



v “Local Persistent Reference”
v Transient Reference Collection
v Persistent Reference Collection
v User-defined OOSQL Query “OOSQL Implementation” on page 295
v Reference resolved by foreign key “Foreign Key Implementation” on

page 296

Transient Reference Collection
Select this option if you know in advance that you will be using a referenced
child managed object that is configured for transient applications.

Persistent Reference Collection
Select this option if you know in advance that you will be using a referenced
child managed object that is configured for use with persistent applications.

Using sets of objects (Using Reference Collections) (Programming Guide)
Object relationships (Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581
Query Service (Advanced Programming Guide)

“Defining a 1-n relationship” on page 281
“Configuring a managed object” on page 588
“Creating a container instance” on page 578
“Defining a 1-1 relationship” on page 279
“Defining a foreign key pattern” on page 285

Local Persistent Reference
This option is selected by default. This is the only type of reference collection
implementation used if there are no object references. This type of
implementation can be used even if there is a reference between the objects.

In a one-to-many relationship, if the parent data object implementation (the
one that has a relationship with many other objects) is BOIM with UUID key,
we use a transient reference collection.

In a one-to-many relationship, if the parent data object implementation is
BOIM with any key (either transient, embedded SQL, Cache service, or
procedural adaptors), we use a persistent reference collection.

Note the following points:

v If you select this type of implementation, a read-only, protected attribute,
with the same name as the relationship is created for the business object. It

294 WebSphere: Application Development Tools Guide



will not appear on the Attributes page of the Business Object Interface
wizard, but you will be able to select it as state data (on the Data Object
Interface page) for any data object that you want to associate with this
business object.

v If you later edit the business object implementation and change the
relationship implementation, you will have to delete the attributes that were
created for relationships using local persistent reference.

Using sets of objects (Using Reference Collections) (Programming Guide)
Object relationships (Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581
Query Service (Advanced Programming Guide)

“Defining a 1-1 relationship” on page 279
“Defining a 1-n relationship” on page 281
“Defining a foreign key pattern” on page 285

Type of Persistence

OOSQL Implementation
User-defined OOSQL query
If you select this option, the following additional methods will be
implemented for the business object implementation: add(), list(), and
remove(). You can customize the list() method using the Source pane. Type
an OOSQL query for the method body. The add()and remove() method bodies
are empty by default.

Using Sets of Objects (Using Reference Collections) (Programming Guide)
Object Relationships (Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581
Query Service (Advanced Programming Guide)

“Defining a 1-1 relationship” on page 279
“Defining a 1-n relationship” on page 281
“Defining a foreign key pattern” on page 285

Chapter 5. Components working together 295



Foreign Key Implementation

Reference resolved by foreign key
This option is available when there is an object reference between this
business object and the one with which you are defining the relationship. This
implementation uses an identifier to access the individual links between
related objects.

This option is disabled unless the following conditions are met:
v Inverse reference: At least one attribute of the object with which you are

defining a relationship for the current object must be of a type which is the
interface of the current object. For example, there are two business object
interfaces named Policy and Claim. To define a foreign key relationship
from within Policy, to Claim, the Claim interface, or a parent thereof, must
have at least one attribute of the type Policy.

v Scoping: The interfaces of the business objects that reference each other can
be contained in the same module or in the global scope. You cannot have a
foreign key relationship between business object interfaces that are
contained in different modules.

Note the following points on permissions on the inverse reference:
v The attribute that is an inverse reference can either be editable (the

associated business object interface has the add(), remove(), and list()
methods but will throw exceptions if they are called); or read-only (the
associated business object interface has neither the add() nor the remove()
method, but only the list() method).

v This inverse reference will be read-only if you configured the relationship
to be read-only when you defined or edited the business object interface
(Object Relationships page of the Business Object Interface wizard).

?
Use this button to bring up the Foreign Key Assistant. It informs you whether
the conditions required to create a reference collection using a foreign key are
met.

The following fields are activated only if you are able to use a reference
resolved by a foreign key:
v Foreign Key Attribute

Click the list button and select an attribute from the list. The attributes
available for selection are attributes of the referenced object that reference
the current object.
Restriction: Even if there is a key defined for another business object and it
is designated as a foreign key, when you create a persistent object and
schema for a business object referenced by the other object, it will not
automatically create a foreign key in the schema.

296 WebSphere: Application Development Tools Guide



v Home to Query
Specify the home of the object being referenced. This home that will be
used on the server to find objects of the selected type. The home that you
select must be the same one that you configure with the target component’s
managed object.

v Factory Name
Type the name of the factory from which the home inherits. This is the
factory, in addition to the CORBA Life Cycle generic factory, from which
every home inherits.

v Factory Finder
Type the name of the factory finder. This name is optional. If you provide
it, it will be emitted in the generated code instead of the default
SERVERNAME-server-scope-widened name, but you cannot provide a
substitution value such as *SERVERNAME.

v Distributed Query
Select this check box to indicate that the query is to be distributed over
different components. That is, the interfaces of objects in the relationship
can be deployed on different servers. Selection of this check box also
changes the form of the query for foreign key relationships: the foreign key
pseudo attribute form of the query is used. If this check box is not selected,
the current path expression form of the query is generated.
By default, this check box is not selected, and it remains so for migrated
models as well. That is, models from older versions of Object Builder that
have distributed queries will use the path expression form of the query in
the list() method, and will have the default factory names and factory
finder names unless you explicitly change this default.

Restriction: If the primary key of the object of the 1-n relationship (the child
object) includes an attribute whose type is of another business object interface,
then the OOSQL query in the list() method of the object that has the
relationship (the parent object) may not function properly and may need to be
modified by hand.

Using Sets of Objects (Using Reference Collections) (Programming Guide)
Object Relationships (Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581
Query Service (Advanced Programming Guide)
Concepts of factories (Advanced Programming Guide)
Concepts of factory finders (Advanced Programming Guide)

“Defining a 1-1 relationship” on page 279
“Defining a 1-n relationship” on page 281

Chapter 5. Components working together 297



“Defining a foreign key pattern” on page 285
“Mapping business object reference attributes” on page 744

Checking for null foreign key values

CORBA has no concept of an attribute having a null value. If you retrieve a
null foreign key attribute from a database, the ensuing findByPrimaryKey
method may or may not return the null value it should, depending on what
arbitrary value Object Builder applied to the attribute (since it cannot use
null).

Since this can produce unpredictable results, you tell Object Builder to
immediately return a NIL value when it detects that a foreign key is null.
The findByPrimaryKey method will not be called.

To set this option:
1. Select Properties from the Data Object Implementation’s pop-up menu.
2. In the Properties wizard, select the Attribute Mapping page.
3. Select a primary key attribute from the tree.
4. Select the Check for null check box.

With this option set, you will always get a NIL return value if the foreign key
is null.

“Null value tolerance with sentinel values” on page 155

“Setting sentinel values for null field values” on page 701

298 WebSphere: Application Development Tools Guide



Chapter 6. Inheritance

You can inherit data and behavior between components in Object Builder.

You do not need to explicitly inherit between objects in the same component
(for example, a business object and data object, or business object and copy
helper). The relationship between the objects is handled by Object Builder.

You do not need to include any of the framework interface files for
Component Broker frameworks that your components inherit from. This also
is handled by Object Builder.

Child components can inherit full implementations from their parent
component, or only the interface.

When you create a child component with interface inheritance, only the child
business object interface needs to inherit from the parent. Then, in the child
business object implementation, the inherited interfaces can be implemented
(by selecting to override the parent methods and attributes in the Business
Object Implementation wizard). The rest of the child component objects do
not have inheritance.

When you create a child component with implementation inheritance, the
child component objects generally inherit from their equivalent parent objects:
v Object Builder automatically generates in the child business object file the

include statement that contains the parent business object file.
v The child business object interface must inherit from the parent interface.
v It may not be necessary to have a child key and copy helper. If the child

has the same key attribute as the parent, it can re-use the parent’s key. If
the child does not add any new attributes, it can re-use the parent’s copy
helper. If you do add a child key and copy helper, then they can either
inherit from their equivalents in the parent component, or they can contain
selected attributes of the parent interface, without inheriting from the
parent key or copy helper.

v The child business object implementation must inherit from the parent
implementation.

v The child data object interface must inherit from the parent data object
interface.

v The child data object implementation must inherit from the parent data
object implementation.

v The child managed object must inherit from the parent managed object.

© Copyright IBM Corp. 1999, 2000 299



For data inheritance to work, the type of persistence provided by the parent
and child data object implementations must be the same.

Components (Programming Guide)
“Inheritance and overriding in helper objects”
“Inheritance and overriding in business objects” on page 301
“Inheritance and overriding in data objects” on page 303
“Abstract base class inheritance” on page 303
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with attributes duplication” on page 307
“Inheritance with key duplication” on page 322
“Inheritance with a single datastore” on page 341
“Inheritance with views” on page 357

“Creating a child component” on page 306

Inheritance and overriding

Inheritance and overriding in helper objects

When you create the key and copy helper for a child component, you have
the option of including some or all of the parent’s equivalent attributes as part
of the helper.

For a child’s key, you have the following options:
v Use the parent’s key.

If the child has the same key attributes as the parent, there is no need to
create a separate key; you can simply re-use the one created for the parent.
In the child’s Data Object Implementation wizard, on the Key and Copy
Helper page, select the parent’s key.

v Use a mix of parent key attributes and child key attributes.
In the child’s Key wizard, on the Name and Key Attributes page, you have
parent key attributes available for selection. Select some or all of these, and
then select additional identifying attributes that are unique to the child.

v Use all the parent key attributes and additional child key attributes
In the child’s Key wizard, on the Name and Key Attributes page, select the
child attributes you want to be part of the key. Do not select any of the
parent attributes. Click Next to turn to the Implementation Inheritance
page, and select the parent key to inherit from. The child’s key then inherits
the parent’s key attributes, in addition to having the child key attributes
specified on the previous page.

300 WebSphere: Application Development Tools Guide



v Use only child key attributes.
If the parent object has no identity in common with the child, then there is
no reason for their keys to be related. You can create an entirely new key to
reflect the child’s unique identity, which includes none of the parent’s
attributes, and has default inheritance only.

For a child’s copy helper, you have the same choices. The choice that makes
sense will depend on the creation scenarios in which you intend to use the
copy helper.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
Key (Programming Guide)
Copy helper (Programming Guide)

“Creating a child component” on page 306

Inheritance and overriding in business objects

You can inherit both business object interface and business object
implementation from the parent. In the business object implementation, you
can select which attributes, methods, and relationships you want to override.
Generally, you would do so if you wanted to change the way these attributes
mapped to, or interacted with, the data object.

If you have business object implementation inheritance, you must have
corresponding data object and data object implementation inheritance.
Otherwise, your application will fail at run time.
For example, if you have the following scenario, where Employee and Person
are business objects:
Employee inherits from Person,
EmployeeBO inherits from PersonBO,
then, EmployeeDO must inherit from PersonDO, and
EmployeeDOImpl must inherit from PersonDOImpl.

However, if you override an attribute, method or relationship from the parent
business object implementation in the child business object, and since the
child data object must inherit from the parent data object, you cannot push
(delegate) any of the overridden attributes or methods from the child business
object implementation to the child data object. If you do, the overridden
attribute, relationship, or method will be defined twice, once through its
association with the business object, and once through its inheritance from the
parent.

Chapter 6. Inheritance 301



There are three main situations in which you would override in the child’s
implementation:
v Overriding all attributes and relationships and inheriting behavior

You can inherit behavior (method implementations) from a parent class,
while overriding all its attributes. This is only appropriate for parent classes
that have no data in the data object. The parent will have a business object
interface, business object implementation, and a data object interface that
contains no data. The child will inherit from each of the parent objects.

v Overriding all attributes, relationships, and behavior
You can use a parent class for interface-only inheritance, by overriding all
its attributes, relationships, and methods in the business object
implementation. The child will inherit from the parent business object
interface only. This pattern also applies to abstract base class inheritance.
You can push that attribute down to the child data object as long as there is
no data object inheritance.

v Overriding no attributes or relationships, overriding some or all behavior
There are no restrictions on overriding methods, except for PA push-down
methods (which have the same restrictions as attributes).

Note the following points:

v It is completely safe to override all methods in the child business object.
v Overriding attributes in the child business object is dangerous as it could

lead to a violation of CORBA and inheritance specifications as mentioned
above, resulting in double definitions on the child.

v If you choose to override an attribute that is implemented by getters and
setters on the parent business object implementation, in the child business
object, it must be solely for the purpose of having a custom override; it
should not be for delegation of the attribute to the data object. (When you
have pure interface inheritance, there is no parent business object
implementation, and therefore no corresponding parent data object, and this
restriction does not apply.)

v You can have attributes overridden in the child business object, and not
have them delegated to the data objects both at the parent and child levels.
In this case, there would be no corresponding getters and setters that
correspond to these attributes on the data objects, and you could provide
your own implementations of these getter and setter methods.

“Chapter 6. Inheritance” on page 299
“Inheritance and overriding in helper objects” on page 300
“Inheritance and overriding in data objects” on page 303
“Abstract base class inheritance” on page 303
“Choosing an inheritance pattern for persistence” on page 304

302 WebSphere: Application Development Tools Guide



“Creating a child component” on page 306

Inheritance and overriding in data objects

You can inherit both interface and implementation from the parent. In the
data object implementation, you can selectively map both local attributes and
inherited attributes to an associated persistent object.

When you map an inherited attribute, the mapping overrides the parent’s
mapping. The parent’s get and set methods are overridden. But, the mapping
is essentially augmented: the child data object implementation’s get and set
methods will reimplement some or all of the parent’s original mapping, and
fold in its own mapping as well. It is the mapping of the CRUD methods
(insert(), update(), retrieve() and del()), along with the setConnection() method
mapping that actually control how much of the augmented mapping is used.
In other words, the parent’s mapping will still be in effect for the parent, but
will be overridden in the child.

If you map all the inherited attributes to the child’s persistent object, and you
map the child data object implementation’s CRUD methods along with the
setConnection() method only to the child’s persistent object, you are using the
attributes duplication pattern of inheritance.

If you map only the parent’s key attributes to the child’s persistent object, and
you map the child data object implementation’s CRUD methods along with
the setConnection() method to both the parent’s and the child’s persistent
objects, you are using the key duplication pattern of inheritance.

“Chapter 6. Inheritance” on page 299
“Inheritance and overriding in helper objects” on page 300
“Inheritance and overriding in business objects” on page 301
“Abstract base class inheritance”
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with attributes duplication” on page 307
“Inheritance with key duplication” on page 322

“Creating a child component” on page 306

Abstract base class inheritance

The abstract class is one that cannot be constructed. It is used to represent a
concept, and can be used as a base class for other classes.
You cannot construct an object of an abstract class. For example, if Person is

Chapter 6. Inheritance 303



an abstract class, and it has two classes Employee and Customer that inherit
from it, you can create an Employee object in the Employee home, and a
Customer object in the Customer home, but you cannot create a Person object.
That is, the abstract interface cannot be instantiated.

Abstract base classes are supported by Object Builder. There are some
restrictions when you use them:
v To use this pattern, define a business object interface for the abstract class,

and do not provide an implementation.
v Any business object interface that derives from the abstract interface and

includes an implementation, must override all the attributes, relationships,
and methods that were defined on the abstract interface.

For polymorphic support of abstract classes, refer to the section Support for
abstract classes in the Component Broker Programming Guide.

“Polymorphic homes” on page 581
“Chapter 6. Inheritance” on page 299
“Inheritance and overriding in helper objects” on page 300
“Inheritance and overriding in business objects” on page 301
“Inheritance and overriding in data objects” on page 303
“Choosing an inheritance pattern for persistence”

“Creating a child component” on page 306

Support for abstract classes (Programming Guide)

Choosing an inheritance pattern for persistence

There are four main patterns for inheritance with persistence. For any of these
patterns to work, you must not be overriding attributes in the business object
implementation.

Your choice of inheritance pattern is based on three concerns:
v Identity: whether parent and child have the same identity (that is, they

share the same key)
v Performance tradeoffs: whether performance or space efficiency is more

important.
v Form of persistence: whether the parent has data to be persisted, and where

and how the parent’s and child’s data is persisted.

304 WebSphere: Application Development Tools Guide



Note: It is the mapping or lack thereof of the CRUD methods (insert(),
update(), retrieve() and del()) along with the setConnection() method, and not
the attributes mappings that defines and distinguishes the different mapping
patterns:
v Attributes duplication pattern: the child’s CRUD methods and

setConnection() are mapped only to its own persistent object
v Key duplication pattern: the child’s CRUD methods and setConnection() are

mapped to both its own persistent object, and that of its parent
v Single table pattern: the child’s CRUD methods and setConnection() are

mapped only to its parent’s persistent object. In this pattern, however, there
is a possibility that you can while mapping, override more than just the key
attributes of the parent (which is valid but wasteful), or you can override
only a subset of the key attributes of the parent (which is invalid for this
pattern).

The attributes duplication pattern
If the parent and child have different keys, you should probably use the
attributes duplication pattern. This means that the child’s datastore (table)
provides persistence for all of its data, including inherited data. That is, the
parent’s attributes (except for state data) are duplicated in the child’s table.
The parent’s table only provides persistence for instances of the parent, never
for instances of the child. If you do not use the attributes duplication pattern
when there are different keys, the parent’s table will have two primary keys:
the parent’s key for the parent’s data, and the child’s key for the child’s
inherited data. It then becomes problematic to determine which data belongs
to which object type.

The key duplication pattern and the single table with views pattern
If the parent and child have the same key, you can choose between the key
duplication pattern and the single table with views pattern. The key
duplication pattern will generally be more efficient in its use of space (because
the persistent objects for each component contain only the data required for
that component, and only the parent’s key is duplicated in the child), and the
views pattern will generally provide faster look-up time (because both local
and inherited data are mapped to the same underlying table). The views
pattern is based on views of the underlying database table, and requires that
there be some unique attribute of the child that can be used to select
appropriate views of the database.

If the parent and child have the same key, and the parent never actually exists
on its own (for example, there are never any pure Person instances kept in the
table), you can use the single datastore pattern instead of the views pattern.
Views are only required to select out the different object types being stored,
and if the table only provides persistence for child and inherited attributes,
the views are unnecessary.

Chapter 6. Inheritance 305



Recommendation: The inheritance with views pattern provides a way to
discriminate rows based on managed object type. However, polymorphic
homes in the run time along with the single table pattern provides better
function. It is recommended that you use polymorphic homes instead of the
views pattern.

Polymorphic homes and the single table pattern
If you use polymorphic homes, you can avail of the single table pattern only
if the parent and child have the same primary key (as for the key duplication
pattern).

“Chapter 6. Inheritance” on page 299
“Inheritance with attributes duplication” on page 307
“Inheritance with key duplication” on page 322
“Inheritance with a single datastore” on page 341
“Inheritance with views” on page 357

“Creating a child component”
“Defining a child with attributes duplication” on page 309
“Defining a child with key duplication” on page 325
“Defining a child with a single datastore” on page 342
“Defining a child with views” on page 360

Creating a child component

You can create a child component in any of the following ways. Each task is
illustrated by a tutorial, with an accompanying sample:
v “Defining a child with attributes duplication” on page 309

– “Tutorial: Inheritance with attributes duplication” on page 310
v “Defining a child with key duplication” on page 325

– “Tutorial: Inheritance with key duplication” on page 327
v “Defining a child with a single datastore” on page 342

– “Tutorial: Inheritance with a single datastore” on page 344
v “Defining a child with views” on page 360

– “Tutorial: Inheritance with views” on page 362

All of these patterns assume that you are not overriding attributes or
relationships in the business object implementation.

306 WebSphere: Application Development Tools Guide



These patterns differ primarily in the way the data object maps to the
persistent object (in other words, the way that the object hierarchy is mapped
to the datastore). The general tasks involved in that step are as follows:
v “Mapping a data object to the parent’s persistent object” on page 711
v “Mapping a data object to the child’s persistent object” on page 712

Once you have created the child component, you can build and package it:
1. “Building a child component” on page 380
2. “Packaging a child component” on page 381

“Chapter 6. Inheritance” on page 299
“Inheritance and overriding in business objects” on page 301
“Choosing an inheritance pattern for persistence” on page 304
Components (Programming Guide)

“Developing in Object Builder” on page 19

“Naming objects” on page 128
“Internationalization of data” on page 132

Inheritance with attributes duplication

If you have or want completely separate datastores for pure parent objects
and parent objects that are also child objects, you can duplicate the attributes
of the parent in the child’s datastore. For example, data for a Person who is
not a Beneficiary is stored in the Person datastore, and data for a Person who
is a Beneficiary is stored in the Beneficiary datastore.

You can duplicate the parent’s attributes in the child’s datastore when you
create the persistent object and schema from the data object. By mapping the
parent’s attributes to the child’s persistent object, you implicitly override the
parent’s mapping. In other words, the parent’s mapping will still be in effect
for the parent, but will be overridden in the child.

For example, if Person has a child Beneficiary, then Person has a datastore
that holds Person’s attributes, and Beneficiary has a datastore that holds the
total of Person’s attributes and Beneficiary’s attributes.

Advantages
The potential advantage to this approach is that you have a separate datastore
for each type of object, regardless of its inheritance relationships. If it is
important to maintain Person and Beneficiary in different datastores (for

Chapter 6. Inheritance 307



example, in different tables, different databases, or through different PA
beans), then this approach can support that distinction, while still providing a
unified object-oriented interface to the data.

This approach also allows the parent and child to use different keys to access
their data, so the child does not have to use the parent’s key.

Also, you will never accidentally retrieve the wrong type of row into the
managed object. For example, you will not retrieve a pure Person row when
you are attempting to find an object from the Beneficiary home.

In this pattern, the parent and child tables are uncoupled and optimal for
their respective business object types. Provided you do not map the child data
object implementation’s insert(), retrieve(), update(), and delete() methods to
the parent data object implementation’s persistent object (something you must
not do), this pattern is fairly space efficient.

Disadvantages
The biggest disadvantage of this pattern is that a query designed to locate an
object without foreknowledge of its type will require a sequence of distinct
queries, one per data object implementation and table in the hierarchy, until a
match is found. This is not an optimal representation in the relational
database space.

In this pattern:
v The parent’s data object attributes and special framework methods are

mapped to the parent’s persistent object.
v The child’s data object attributes, inherited attributes, and special

framework methods are mapped to the child’s persistent object.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304

308 WebSphere: Application Development Tools Guide



“Creating a child component” on page 306
“Tutorial: Inheritance with attributes duplication” on page 310

Defining a child with attributes duplication

This task covers the main steps necessary to create a component that inherits
from another component already defined in Object Builder, and provides its
own duplicated persistence for any inherited attributes. It does not cover
every step; you should first be familiar with the tasks necessary to create a
component without inheritance.

To create a child component in Object Builder, follow these steps:
1. Create the business object file.
2. Add the business object interface, and select the parent’s business object

interface on the Interface Inheritance page.
3. If the child’s identity differs from the parent’s identity (in other words, it

defines its own key attributes), you can add a key for the child. You can
include attributes of the parent’s key either by selecting specific attributes
on the Name and Key Attributes page, or include all the parent’s attributes
by selecting the parent key on the Implementation Inheritance page. Do
not do both.
If the child has the same key attributes as the parent, then you do not
need to create a key for the child. You can simply re-use the parent’s key.

4. Add the copy helper. You can include attributes of the parent’s copy
helper either by selecting specific attributes on the Name and Attributes
page, or include all the parent’s attributes by selecting the parent copy
helper on the Implementation Inheritance page. Do not do both.

5. Add the business object implementation:
a. Under Data Object Interface, click Add or select one later. This allows

you to add the data object interface in a separate step, and define its
parent.

b. Select the parent’s business object implementation on the
Implementation Inheritance page.

c. Do not override any attributes on the Attributes to Override page.
d. Do not override any relationships on the Relationships to Override

page.
e. Select any methods you want to override on the Methods to Override

page.
6. Add the managed object, and select the parent’s managed object on the

Implementation Inheritance page.
7. Add the data object interface:

Chapter 6. Inheritance 309



a. From the business object implementation’s pop-up menu, click Add
New Data Object Interface.

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

8. Add the data object implementation, and select the parent data object
implementation on the Implementation Inheritance page.

9. Add a persistent object and schema:
a. On the Attributes Mapping page, click Attributes Duplication (the

horizontal partitioning pattern) to map the child’s attributes and
inherited attributes to the child’s persistent object.

b. On the Methods Mapping page, map the special framework methods
to the child’s persistent object.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance and overriding in helper objects” on page 300
Components (Programming Guide)

“Creating a child component” on page 306
“Building a child component” on page 380
“Tutorial: Inheritance with attributes duplication”

Tutorial: Inheritance with attributes duplication

Objectives
To export a component from an existing sample
To import the component into a new project
To create a child component with DB persistence for its attributes and for its
inherited attributes (duplicating the persistence provided by its parent)
To generate the code for the component
To build the DLLs for the component

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

310 WebSphere: Application Development Tools Guide



v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with the different models for inheritance and
persistence, as described in “Choosing an inheritance pattern for persistence”
on page 304.

You should be familiar with the attributes duplication pattern for inheritance
and persistance, as described in “Inheritance with attributes duplication” on
page 307.

Sample files
There is an equivalent sample for this exercise. The sample contains the
results of all the inheritance tutorials. The sample includes:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on testing it with

QuickTest

The sample files are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\Inherit\BusinessObjects
samples\Tutorial\Fundamentals\Inherit\Docs\Inherit.html

No Java sample is available. However, the only difference is in the business
object implementations, where you can change the implementation language
to Java to turn the C++ sample into a Java sample.

There are some differences between the sample project and the one you create
in this exercise.

Chapter 6. Inheritance 311



v The sample contains four different versions of the Beneficiary component,
demonstrating the different patterns for inheritance with persistence. This
exercise results in only one version of the Beneficiary component.

v The sample contains persistent objects with short names that match the
package names. This exercise uses the default names generated by Object
Builder.

Description
In this exercise you define a child component that provides its own
persistence for inherited attributes (duplicating the persistence provided by its
parent).

After you complete this exercise, you will have a component named
Beneficiary that inherits from Person, and which provides persistence in a
database table both for its own attributes, and for the attributes it inherits
from Person.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

For this exercise, you will complete the following tasks:
1. Exporting the parent component from the sample
2. Creating the new project
3. Importing the parent component
4. Creating a business object interface
5. Adding a key and copy helper
6. Adding a business object implementation
7. Adding a data object implementation
8. Adding a persistent object and schema
9. Adding a managed object

10. Generating the code
11. Configuring the database
12. Defining a client DLL and server DLL

Exporting the parent component
Open the existing sample:
1. Start Object Builder.
2. In the Open Project wizard, type the path for the inheritance sample

model
(<CBroker>\samples\Tutorial\Fundamentals\Inherit\BusinessObjects)

3. Click Finish.

312 WebSphere: Application Development Tools Guide



Export the Person component objects:
1. Under the User-Defined Business Objects folder, locate the PersonFile

business object file.
2. From the pop-up menu of PersonFile, click Export. The Export XML

wizard opens to the XML Export Directory page.
3. Click Finish.

udbo.PersonFile.xml is exported to the specified directory. The XML file
defines the Person business object, copy helper, key, and managed object
(Person, PersonBO, PersonKey, PersonCopy, PersonMO).

4. Locate the PersonFileDO data object file in the User-Defined Data Objects
folder, and export it in the same way.
uddo.PersonFileDO.xml is exported to the specified directory. The XML
file defines the Person data object (PersonDO and PersonDOImpl).

5. Locate the PersonFileGroup schema group in the DBA-Defined Schemas
folder, and export it in the same way.
uddbschema.PersonFileGroup.xml is exported to the specified directory.
The XML file defines the PersonFileGroup schema group, the schema it
contains, and the schema’s associated persistent object (PersonFileGroup,
CBSampDB.P_PFINH, PPOPFINH).

6. Close Object Builder.

You are ready to create a new project, and import the XML files.

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\adinher
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Import the parent XML files
Import the definition of the Person component:
1. Click File > Import Model to open the Import Model wizard to the XML

File Selection page.
2. Select udbo.PersonFile.xml:

a. Click Add Another.
b. Type the path and name for the file, or click Browse to locate and

select the file.
c. Click Refresh.

3. Select uddo.PersonFileDO.xml and uddbschema.PersonFileGroup.xml in
the same way.

4. Click Finish.

Chapter 6. Inheritance 313



The component objects for Person appear in the Tasks and Objects pane. You
are ready to define a child component that inherits from Person.

Creating the business object interface
Define a business object file (AttributeDupFile):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (AttributeDupModule):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Beneficiary) to the AttributeDupModule.
1. From the module’s pop-up menu, click Add Interface to open the Business

Object Interface wizard.
2. Name the interface Beneficiary.
3. Click the page title and turn to the Interface Inheritance page.
4. Add Person as a parent (replacing the default inheritance).
5. Click the page title and turn to the Attributes page.
6. Add the following attributes:
v readonly long id
v float claimPayments

7. Click Finish. The interface now appears under the module.

Adding the key and copy helper
Add BeneficiaryKey:
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Select id as a key attribute.
3. Add ssNo and name as key attributes (so Beneficiary’s identity includes

the key attributes for its parent).
Beneficiary’s key now consists of the following:
v long id (defined in Beneficiary)
v string ssNo (defined in Person)
v string name (defined in Person)

4. Click Finish. The key now appears under the interface.

Add BeneficiaryCopy:

314 WebSphere: Application Development Tools Guide



1. From the interface’s pop-up menu, click Add Copy Helper to open the
Copy Helper wizard.

2. Add all attributes to the copy helper.
3. Click Finish. The copy helper now appears under the interface.

Adding the business object implementation
Add BeneficiaryBO:
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Set Data Object Interface > Add or select one later (you will create a new

data object as a separate step).
3. Click the page title and turn to the Implementation Inheritance page.
4. Add PersonBO as a parent.
5. Click the page title and turn to the Key and Copy Helper page.
6. Select BeneficiaryKey and BeneficiaryCopy.
7. Click Finish. The business object implementation appears under the

business object interface.

Adding the data object interface
Add BeneficiaryDO:
1. From the business object implementation’s pop-up menu, click Add New

Data Object Interface to open the Data Object Interface wizard.
2. Select all the business object attributes as state data (to be preserved in the

data object).
3. Click the page title and turn to the Interface Inheritance page.
4. Add PersonDO as a parent.
5. Click Finish. The data object interface appears under the business object

implementation.

Adding the data object implementation
Add BeneficiaryDOImpl:
1. From the data object interface’s pop-up menu, click Add Implementation

to open the Data Object Implementation wizard.
2. Click Next and turn to the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

v Type of Persistence - Embedded SQL

v Data Access Pattern - Delegating

4. Click Next to turn to the Implementation Inheritance page.
5. Add PersonDOImpl as a parent.
6. Click the page title and turn to the Key and Copy Helper page.

Chapter 6. Inheritance 315



7. Select BeneficiaryKey and BeneficiaryCopy.
8. Click Finish. The data object implementation appears under the data

object interface.

Adding the persistent object and schema
Add BeneficiaryPO and its associated schema:
1. From the data object implementation’s pop-up menu, click Add Persistent

Object and Schema to open the Add Persistent Object and Schema
wizard.

2. Type a name for the schema group (AttributeDupGroup).
3. Type a name for the database (for example, CBSampDB).
4. Type a name for the table (B_ADINH)
5. Type a name for the schema file (Beneficiary_ADINH)
6. Click Next to turn to the Attributes Mapping page. Both Beneficiary’s

attributes and Person’s attributes are displayed.
7. Click Horizonal (the attributes duplication pattern). This maps all

attributes (both Beneficiary’s and Person’s) to attributes of BeneficiaryPO.
In this step, two things are happening:
v Because BeneficiaryPO does not actually exist yet, this step defines what

attributes BeneficiaryPO contains.
v By mapping Person’s attributes to BeneficiaryPO, you are implicitly

overriding the mapping in the Person component. BeneficiaryDOImpl
now has its own copy of Person’s attributes, which map to
BeneficiaryPO instead of PersonPO. Also, the create, retrieve, update,
delete, and setConnection methods are automatically mapped to the
BeneficiaryPO but not the PersonPO. Examine the method mappings
page to see this. (This is why BeneficiaryMO assemblies do not get
persisted to the Person table.)

8. Click Finish. The persistent object and schema appear under the data
object implementation.

Adding the managed object
Add BeneficiaryMO:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\inhadup\Working\NT).

316 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the User-Defined Business Objects folder, click
Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.
While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Configuring the database
You need to define (in DB2) the CBSampDB database and its tables (Person
and Beneficiary) that your component will access. You should have a database
administrator perform this procedure.

To configure the database and table, you need to enter the following
commands from a DB2 command prompt.

create database CBSampDB

connect to CBSampDB

db2 -t -f P_PFINH.sql

db2 -t -f B_KDINH.sql

If you look inside the SQL files, you can see that the table for Beneficiary
duplicates the columns defined in Person’s table, as the name of the
inheritance pattern (attributes duplication) suggests. Person’s table definition
is a subset of Beneficiary’s table definition. Person’s table will be used to
persist Person components, and Beneficiary’s table will be used to persist
Beneficiary components.

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

While “DLL” is the generic term used in Object Builder, the configuration for
the build actually results in whatever the appropriate targets are for the
selected platforms. For example, on AIX the build process creates shared
library files (lib*.so). If you chose to create a Java business object, then in
addition to DLLs there will also be JAR files. The names for these files are
derived from the name you provide for the DLL file, within the DLL
configuration node.

Chapter 6. Inheritance 317



Start by defining the client DLL configuration and client DLL or library file
(for this exercise, name them both clientIN). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.
3. Name the library as well. This is the name for the makefile and for the

resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The clientIN DLL configuration appears under the Build Configuration folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both serverIN). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The serverIN DLL configuration appears under the Build Configuration folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:

318 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the Build Configuration folder, click Generate >
All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The clientIN.dll and serverIN.dll files are stored in the
working\NT\PRODUCTION directory.

The libclientIN.so and libserverIN.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBclientIN.jar). <build style> is one of
the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

Chapter 6. Inheritance 319



For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (DataPersistenceApplication). An application
family groups a set of applications within System Management.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

The DataPersistenceApplication application family appears under the
Application Configuration folder.

Define the server application (DataPersistenceObjects). An application defines
a set of components that will operate together on the server. The application
name you provide here is the name that will be used by System Management,
when the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Nextto turn to the Additional Executables page.
4. Select the platform you are configuring the application for (for example,

NT Files).
5. Add the file Person.sql:

a. Click Add Another.
b. Click the Browse button to open the Executables to Include dialog.
c. Locate your Object Builder working directory.
d. Select Person_PFINH.sql

e. Click the Open button.

f. Click the OK button.
6. Add the files Person_PFINH.bnd, Beneficiary_ADINH.sql, and

Beneficiary_ADINH.bnd in the same manner.
7. Click Finish.

The DataPersistenceObjects application appears under the
DataPersistenceApplication application family.

Configuring the components with the application
Configure Person’s managed object (PersonFile PersonModule::PersonMO)

320 WebSphere: Application Development Tools Guide



with the application (DataPersistenceObjects). Create a new container instance
(DataPersistenceContainer) that will Throw an exception when a method is
called outside a transaction.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The PersonMO managed object configuration appears under the
DataPersistenceObjects application, and the new container
DataPersistenceContainer appears in the Container Definition folder. You can
review the properties of the container, including the service and data access
patterns that have been selected for you, by clicking Properties from the
container’s pop-up menu.

Configure Beneficiary’s managed object in the same way:
1. From the pop-up menu of the application, click Configure Managed

Object to open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select AttributeDupFile

AttributeDupModule::BeneficiaryMO.
3. Click the page title and turn to the Container page.

Chapter 6. Inheritance 321



4. Select DataPersistenceContainer. Because Person and Beneficiary are
similar components (with the same type of datastore and the same
policies), they can use the same container.

5. Click Finish.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\DataPersistenceApplication.

Close Object Builder:
1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component named Beneficiary that inherits from Person,
and which provides persistence in a database table both for its own attributes,
and for the attributes it inherits from Person. You have implemented the
attributes duplication pattern for inheritance with persistence.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611 .

Inheritance with key duplication

If your datastores are divided in a way that mirrors your component
hierarchy, then inheritance works the same for persistent data as it does for
data on the object level. In other words, a child has its own datastore for its
own attributes, and uses its parent’s datastore for inherited attributes. The
only exception is for key attributes: in this pattern, the child typically uses the
same key as the parent, and the parent’s key is duplicated in the child’s
datastore.

This is the default inheritance pattern in Object Builder. If you create new
parent and child components (starting from the business object interface and
working down to persistent objects and DB schemas), then each schema holds

322 WebSphere: Application Development Tools Guide



only the definitions for data defined in its component. The child component
uses its own persistent object for its own data, and its parent’s persistent
object for inherited data.

Advantages
The advantage to this approach is its precision, and efficient use of space. It is
almost as space-efficient as the attribute duplication pattern. It is very efficient
for type-constrained (non-polymorphic) queries.

Disadvantages
Because data access can span multiple datastores, access time may be slower
than with other patterns. Also, this approach is problematic if your parent and
child use different keys. Because part of the child’s data is stored in the
parent’s datastore, the parent datastore needs to support both keys (the child’s
and the parent’s), to ensure data for the right object type is returned.
Generally, you should only use this pattern when the parent and the child use
the same key.

For this pattern, the parent’s table and the child’s table must be in the same
database.

Note: This pattern is not supported for polymorphic homes.

In this pattern:
v The parent’s data object attributes and special framework methods are

mapped to the parent’s persistent object.
v The child’s data object attributes, and its inherited key, are mapped to the

child’s persistent object. This creates a duplicate of the parent’s key in the
child’s persistent object, which allows it to locate the parent’s persistent
object when it needs to retrieve inherited attributes.

Chapter 6. Inheritance 323



v The child’s data object special framework methods are mapped in one of
two ways, depending on the type of creation and deletion scenarios you
want to support.

Mapping for separate creation and deletion
If you want to support creation of a child with an existing parent entry, and
deletion of a child without deletion of its parent entry, map as follows:
v insert and update map first to the parent’s, and then to the child’s

persistent objects, with the Always complete calling sequence check box
selected. (For example, insert() maps to iPersonPO.insert() and
iBeneficiaryPO.insert().)
Because they map to both, and the calling sequence ignores errors, you can
successfully create a Beneficiary that already exists as a Person: the parent
insert fails, but still proceeds to the child insert(), which is successful.
You will not be able to set values for the attributes of an existing parent
during creation of the child. If you create the child using a copy helper, any
values you set for inherited attributes are ignored, because they are applied
to the parent’s existing records using insert() instead of update(). You can
change the inherited attributes in a separate update call after you create the
child.

v retrieve and setConnection map to first the child’s and then the parent’s
persistent objects, with the Always complete calling sequence check box
not selected. (For example, retrieve() maps to iBeneficiaryPO.retrieve() and
iPersonPO.retrieve().)
Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the parent’s
retrieve(), it abandons the calling sequence and returns an error.

v delete() maps to the child’s persistent object. (For example,
iBeneficiaryPO.delete().)
Because the delete() method maps only to the child’s persistent object,
when a child object is deleted, its record as a parent object remains. (For
example, when you delete a Beneficiary, you retain an entry for the Person,
even though the Person is no longer a Beneficiary.)

Mapping for unified creation and deletion
You create only new parents and children, and delete the child and its parent
in the same step, map as follows:
v insert and update map first to the parent’s, and then to the child’s

persistent objects, with the Always complete calling sequence check box
not selected. (For example, insert() maps to iPersonPO.insert() and
iBeneficiaryPO.insert().)
This always creates a new parent along with the child.

324 WebSphere: Application Development Tools Guide



If you wanted to create a new child from an existing parent, you could still
find the existing parent, create a copy of its attribute values, delete the
parent, and then create the child as a new object with the values of the
deleted parent.

v retrieve() and setConnection() map first to the child’s, and then to the
parent’s persistent objects, with the Always complete calling sequence
check box not selected. (For example, retrieve() maps to
iBeneficiaryPO.retrieve() and iPersonPO.retrieve().)
Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the parent’s
retrieve, it abandons the calling sequence and returns an error.

v delete maps to first the child’s and then the parent’s persistent objects, with
the Always complete calling sequence check box not selected.(For
example, iBeneficiaryPO.delete and iPersonPO.delete.)
This deletes the parent along with the child.
If you wanted to delete the child and leave the parent entry, you could still
copy the existing parent values, continue with the deletion of the child, and
then recreate the parent with the copied values.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304

“Creating a child component” on page 306
“Defining a child with key duplication”
“Tutorial: Inheritance with key duplication” on page 327

Defining a child with key duplication

This task covers the main steps necessary to create a component that inherits
from another component already defined in Object Builder, and duplicates its
parent’s key in the child’s datastore, so it can look up its parent and use its
parent’s persistence for other inherited attributes. It does not cover every step;
you should first be familiar with the tasks necessary to create a component
without inheritance.

To use the key duplication pattern, the child must have the same key
attributes as the parent. If the child has a different key, use the attributes
duplication pattern. Also, if persistence is provided in a database, both the
parent and child must use tables in the same database.

To create a child component in Object Builder, follow these steps:
1. Create the business object file.

Chapter 6. Inheritance 325



2. Add the business object interface, and select the parent’s business object
interface on the Interface Inheritance page.

3. Add the copy helper. You can include attributes of the parent’s copy
helper either by selecting specific attributes on the Name and Attributes
page, or include all the parent’s attributes by selecting the parent copy
helper on the Implementation Inheritance page. Do not do both.

4. Add the business object implementation:
a. Under Data Object Interface, click Add or select one later. This allows

you to add the data object interface in a separate step, and define its
parent.

b. Select the parent’s business object implementation on the
Implementation Inheritance page.

c. Select the parent’s key on the Key and Copy Helper page.
d. Do not override any attributes on the Attributes to Override page.
e. Do not override any relationships on the Relationships to Override

page.
f. Select any methods you want to override on the Methods to Override

page.
5. Add the managed object, and select the parent’s managed object on the

Implementation Inheritance page.
6. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add
New Data Object Interface.

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

7. Add the data object implementation, and select the parent data object
implementation on the Implementation Inheritance page.

8. Add a persistent object and schema, and on the Attributes Mapping page,
click Key Duplication to map the child’s data object attributes, and its
inherited key, to the child’s persistent object.

9. Open the data object implementation’s properties, and map the special
framework methods as follows:
v On the Methods Mapping page:

– delete maps to the child’s persistent object. (For example,
iBeneficiary.delete.)

– insert and update map to first the parent’s and then the child’s
persistent objects, with the Always complete calling sequence option
checked. (For example, insert maps to iPersonPO.insert and
iBeneficiaryPO.insert.)

326 WebSphere: Application Development Tools Guide



– retrieve and setConnection map to first the child’s and then the
parent’s persistent objects, with the Always complete calling
sequence option not checked. (For example, retrieve maps to
iBeneficiaryPO.retrieve and iPersonPO.retrieve.)

These mappings support creation of a child when its entry as a parent
already exists (for example, creation of a Beneficiary when a Person
with the same key value already exists). If you wanted to restrict
creation to entirely new objects, you could uncheck the Always
complete calling sequence option on the insert and update mappings.
This would mean that new children are always created with new
parents.

These mappings also support deletion of the child without deletion of
its parent, leaving the parent entry behind (for example, deletion of a
Beneficiary does not affect its Person values). If you wanted to have
deletion remove the parent along with the child, you could map the
delete method to the parent’s persistent object as well.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with key duplication” on page 322
Components (Programming Guide)

“Creating a child component” on page 306
“Building a child component” on page 380
“Tutorial: Inheritance with key duplication”

Tutorial: Inheritance with key duplication

Objectives
To export a component from an existing sample
To import the component into a new project
To create a child component that uses its parent’s persistence for inherited
attributes
To generate the code for the component
To build the DLLs for the component

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples

Chapter 6. Inheritance 327



v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with the different models for inheritance and
persistence, as described in “Choosing an inheritance pattern for persistence”
on page 304.

You should be familiar with the key duplication pattern for inheritance and
persistence, as described in “Inheritance with key duplication” on page 322.

Sample files
There is an equivalent sample for this exercise. The sample contains the
results of all the inheritance tutorials. The sample includes:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on testing it with

QuickTest

The sample files are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\Inherit\BusinessObjects
samples\Tutorial\Fundamentals\Inherit\Docs\Inherit.html

No Java sample is available. However, the only difference is in the business
object implementations, where you can change the implementation language
to Java to turn the C++ sample into a Java sample.

There are some differences between the sample project and the one you create
in this exercise.

328 WebSphere: Application Development Tools Guide



v The sample contains four different versions of the Beneficiary component,
demonstrating the different patterns for inheritance with persistence. This
exercise results in only one version of the Beneficiary component.

v The sample contains persistent objects with short names that match the
package names. This exercise uses the default names generated by Object
Builder.

Description
In this exercise you define a child component that uses its parent’s persistence
for inherited attributes (so that each component in the object hierarchy
provides persistence for its own attributes, plus its parent’s key, which is used
to look up the parent and find the value of inherited attributes). This
inheritance pattern makes the most sense when parent and child share the
same key. For a scenario where parent and child have different keys, see
“Tutorial: Inheritance with attributes duplication” on page 310.

After you complete this tutorial, you will have a component named
Beneficiary that inherits from Person, and provides persistence in a database
table for its own attributes (plus Person’s key), and uses Person’s database
table to access inherited attributes. For example, a query on Beneficiary.name
(an attribute inherited from Person) results in a lookup on Beneficiary’s table
to find the parent Person’s key (which is duplicated in Beneficiary’s table),
and then a lookup on Person’s table to find the value of the name attribute.

Note: For this pattern, the parent’s table and the child’s table must be in the
same database.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

For this exercise, you will complete the following tasks:
1. Exporting the parent component from the sample
2. Creating the new project
3. Importing the parent component
4. Creating a business object interface
5. Adding a key and copy helper
6. Adding a business object implementation
7. Adding a data object implementation
8. Adding a persistent object and schema
9. Adding a managed object

10. Generating the code

Chapter 6. Inheritance 329



11. Configuring the database
12. Defining a client DLL and server DLL

Exporting the parent component
Open the existing sample:
1. Start Object Builder.
2. In the Open Project wizard, type the path for the inheritance sample

model
(<CBroker>\samples\Tutorial\Fundamentals\Inherit\BusinessObjects)

3. Click Finish.

Export the Person component objects:
1. Under the User-Defined Business Objects folder, locate the PersonFile

business object file.
2. From the pop-up menu of PersonFile, click Export. The Export XML

wizard opens to the XML Export Directory page.
3. Click Finish.

udbo.PersonFile.xml is exported to the specified directory. The XML file
defines the Person business object, copy helper, key, and managed object
(Person, PersonBO, PersonKey, PersonCopy, PersonMO).

4. Locate the PersonFileDO data object file in the User-Defined Data Objects
folder, and export it in the same way.
uddo.PersonFileDO.xml is exported to the specified directory. The XML
file defines the Person data object (PersonDO and PersonDOImpl).

5. Locate the PersonFileGroup schema group in the DBA-Defined Schemas
folder, and export it in the same way.
uddbschema.PersonFileGroup.xml is exported to the specified directory.
The XML file defines the PersonFileGroup schema group, the schema it
contains, and the schema’s associated persistent object (PersonFileGroup,
CBSampDB.P_PFINH, PPOPFINH).

6. Close Object Builder.

You are ready to create a new project, and import the XML files.

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\inhkdup
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Import the parent XML files
Import the definition of the Person component:

330 WebSphere: Application Development Tools Guide



1. Click File > Import Model to open the Import Model wizard to the XML
File Selection page.

2. Select udbo.PersonFile.xml:
a. Click Add Another.
b. Type the path and name for the file, or click Browse to locate and

select the file.
c. Click Refresh.

3. Select uddo.PersonFileDO.xml and uddbschema.PersonFileGroup.xml in
the same way.

4. Click Finish.

The component objects for Person appear in the Tasks and Objects pane. You
are ready to define a child component that inherits from Person.

Creating the business object interface
Define a business object file (KeyDupFile):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (AttributeDupModule):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Beneficiary) to the AttributeDupModule.
1. From the module’s pop-up menu, click Add Interface to open the Business

Object Interface wizard.
2. Name the interface Beneficiary.
3. Click the page title and turn to the Interface Inheritance page.
4. Add Person as a parent (replacing the default inheritance).
5. Click the page title and turn to the Attributes page.
6. Add the following attribute:
v float claimPayments

7. Click Finish. The interface now appears under the module.

Adding the copy helper
Because the child component inherits its key attribute from its parent, you do
not need to define a separate key. The child component can re-use its parent’s
key helper.

Chapter 6. Inheritance 331



You still need to define a separate copy helper for the child.

Add BeneficiaryCopy:
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Add all attributes to the copy helper (both parent’s and child’s).
3. Click Finish. The copy helper now appears under the interface.

Adding the business object implementation
Add BeneficiaryBO:
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Set Data Object Interface > Add or select one later (you will create a new

data object as a separate step).
3. Click the page title and turn to the Implementation Inheritance page.
4. Add PersonBO as a parent.
5. Click the page title and turn to the Key and Copy Helper page.
6. Select PersonKey and BeneficiaryCopy.
7. Click Finish. The business object implementation appears under the

business object interface.

Adding the data object interface
Add BeneficiaryDO:
1. From the business object implementation’s pop-up menu, click Add New

Data Object Interface to open the Data Object Interface wizard.
2. Select all the business object attributes as state data (to be preserved in the

data object).
3. Click the page title and turn to the Interface Inheritance page.
4. Add PersonDO as a parent.
5. Click Finish. The data object interface appears under the business object

implementation.

Adding the data object implementation
Add BeneficiaryDOImpl:
1. From the data object interface’s pop-up menu, click Add Implementation

to open the Data Object Implementation wizard.
2. Click Next to turn to the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

v Type of Persistence - Embedded SQL

v Data Access Pattern - Delegating

4. Click Next to turn to the Implementation Inheritance page.

332 WebSphere: Application Development Tools Guide



5. Add PersonDOImpl as a parent.
6. Click the page title and turn to the Key and Copy Helper page.
7. Select PersonKey and BeneficiaryCopy.
8. Click Finish. The data object implementation appears under the data

object interface.

Adding the persistent object and schema
Add BeneficiaryPO and its associated schema:
1. From the data object implementation’s pop-up menu, click Add Persistent

Object and Schema to open the Add Persistent Object and Schema
wizard.

2. Type a name for the schema group (KeyDupGroup).
3. Type a name for the database (for example, CBSampDB).
4. Type a name for the table (B_KDINH)
5. Type a name for the schema file (Beneficiary_KDINH)
6. Click Next to turn to the Attributes Mapping page. Both Beneficiary’s

attributes and Person’s attributes are displayed.
7. Click Key Duplication. This maps the child’s attributes and the parent’s

key to the child’s persistent object, creating a duplicate entry for the key in
the child’s persistent object.
Because Beneficiary now has a record of the parent’s key, a call to
Beneficiary for an inherited attribute (such as town) can be delegated to
the parent table. Beneficiary receives the call, then uses the parent’s key to
find the right row in the parent’s table, and retrieve the called attribute.
Contrast this with the situation in “Tutorial: Inheritance with attributes
duplication” on page 310, in which all of the parent’s data is persisted in
the child’s table.

8. Click Finish. The persistent object and schema appear under the data
object implementation.

Mapping the special framework methods
Map the way in which the data object’s special framework methods will call
the persistent objects’ special framework methods:
1. From BeneficiaryDOImpl’s pop-up menu, click Properties to open the

Data Object Implementation wizard.
2. Click the page title and turn to the Methods Mapping page.

Because Beneficiary has its own data in one persistent object and inherited
data in a separate persistent object, the special framework methods need
to access both persistent objects in order to ensure all the right data is
retrieved.

3. Map each method as follows:

Chapter 6. Inheritance 333



v insert and update map to first iPersonPO’s methods and then
iBeneficiaryPO’s methods, with the Always complete calling sequence
option checked.
Because they map to both, and the calling sequence will ignore errors,
you can successfully create a Beneficiary that already exists as a Person:
the parent insert will fail, but still proceed to the child insert, which is
successful.
You will not be able to set values for the attributes of an existing parent
during creation of the child. If you create the Beneficiary using a copy
helper, any values you set for inherited attributes of Person are ignored,
since they are applied to Person’s existing records using insert, when
they need to use update. You can change the inherited attributes in a
separate update call after you create the child.

v retrieve and setConnection map to first iBeneficiaryPO’s methods and
then iPersonPO’s methods, with the Always complete calling sequence
option not checked.
Because Beneficiary stores its inherited attributes in Person’s datastore, it
must be able to retrieve the parent’s data. If an error occurs on the
parent’s retrieve, it abandons the calling sequence and returns an error.
By mapping to both the parent and the child persistent object, you allow
a call to Beneficiary for its parent’s data (for example, Beneficiary.town)
to resolve as follows:
a. Person’s key is retrieved from iBeneficiaryPO
b. The appropriate Person is located, and Person.town is retrieved from

iPersonPO.
v delete maps to iBeneficiaryPO.delete.

Because the delete method maps only to the child’s persistent object,
when a Beneficiary is deleted, its record as a Person remains. (So you
retain an entry for the Person, even though the Person is no longer a
Beneficiary.)

This scenario supports creation of a Beneficiary when its entry as a Person
already exists.

If you wanted to restrict creation to entirely new objects, you could clear
the Always complete calling sequence option on the insert and update
mappings. This would mean that new children are always created with
new parents.

This scenario also supports deletion of the Beneficiary without deletion of
its parent Person, leaving the Person entry behind. If you wanted to have
deletion remove the parent along with the child, you could map the delete
method to the parent’s persistent object as well.
Recommendation:It is recommended that only advanced users follow this

334 WebSphere: Application Development Tools Guide



method of mapping. The normal method of mapping is to restrict creation
to entirely new objects, and have deletion remove the parent along with
the child.

4. Click Finish.

Adding the managed object
Add BeneficiaryMO:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\inhkdup\Working\NT).
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.
While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Configuring the database
You need to define (in DB2) the CBSampDB database and its tables (Person
and Beneficiary) that your component will access. You should have a database
administrator perform this procedure.

To configure the database and table, you need to enter the following
commands from a DB2 command prompt.

create database CBSampDB
connect to CBSampDB

db2 -t -f P_PFINH.sql

db2 -t -f B_KDINH.sql

Chapter 6. Inheritance 335



If you look in the listed SQL files, you can see that the table for Beneficiary
duplicates the key column defined in Person’s table, as the name of the
inheritance pattern (key duplication) suggests. Person’s table definition is
otherwise different from Beneficiary’s table definition, and does not repeat the
definitions for any other inherited attributes. Person’s table will be used to
persist Person components, and will also be used to persist the inherited
attributes of Beneficiary components.

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

While “DLL” is the generic term used in Object Builder, the configuration for
the build actually results in whatever the appropriate targets are for the
selected platforms. For example, on AIX the build process creates shared
library files (lib*.so). If you chose to create a Java business object, then in
addition to DLLs there will also be JAR files. The names for these files are
derived from the name you provide for the DLL file, within the DLL
configuration node.

Start by defining the client DLL configuration and client DLL or library file
(for this exercise, name them both clientIN). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.
3. Name the library as well. This is the name for the makefile and for the

resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The clientIN DLL configuration appears under the Build Configuration folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both serverIN). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.

336 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the Build Configuration folder, click Add Server
DLL to open the Server DLL wizard.

2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The serverIN DLL configuration appears under the Build Configuration folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

Chapter 6. Inheritance 337



The clientIN.dll and serverIN.dll files are stored in the
working\NT\PRODUCTION directory.

The libclientIN.so and libserverIN.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBclientIN.jar). <build style> is one of
the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (DataPersistenceApplication). An application
family groups a set of applications within System Management.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

The DataPersistenceApplication application family appears under the
Application Configuration folder.

Define the server application (DataPersistenceObjects). An application defines
a set of components that will operate together on the server. The application
name you provide here is the name that will be used by System Management,
when the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Nextto turn to the Additional Executables page.
4. Select the platform you are configuring the application for (for example,

NT Files).
5. Add the file Person.sql:

a. Click Add Another.
b. Click the Browse button to open the Executables to Include dialog.

338 WebSphere: Application Development Tools Guide



c. Locate your Object Builder working directory.
d. Select Person_PFINH.sql

e. Click the Open button.

f. Click the OK button.
6. Add the files Person_PFINH.bnd, Beneficiary_KDINH.sql, and

Beneficiary_KDINH.bnd in the same manner.
7. Click Finish.

The DataPersistenceObjects application appears under the
DataPersistenceApplication application family.

Configuring the components with the application
Configure Person’s managed object (PersonFile PersonModule::PersonMO)
with the application (DataPersistenceObjects). Create a new container instance
(DataPersistenceContainer) that will Throw an exception when a method is
called outside a transaction.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

Chapter 6. Inheritance 339



The PersonMO managed object configuration appears under the
DataPersistenceObjects application, and the new container
DataPersistenceContainer appears in the Container Definition folder. You can
review the properties of the container, including the service and data access
patterns that have been selected for you, by clicking Properties from the
container’s pop-up menu.

Configure Beneficiary’s managed object in the same way:
1. From the pop-up menu of the application, click Configure Managed

Object to open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select KeyDupFile

KeyDupModule::BeneficiaryMO.
3. Click the page title and turn to the Container page.
4. Select DataPersistenceContainer. Because Person and Beneficiary are

similar components (with the same datastore and the same policies), they
can use the same container.

5. Click Finish.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\DataPersistenceApplication.

Close Object Builder:
1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component named Beneficiary that inherits from Person,
and which provides persistence in a database table for its own attributes, as
well as for the key attributes it shares with its parent, and uses its parent’s
table for other inherited attributes. You have implemented the key duplication
pattern for inheritance with persistence.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

340 WebSphere: Application Development Tools Guide



Inheritance with a single datastore

If all the components in an inheritance hierarchy share a single datastore (for
example, both Person and its child Beneficiary store their data in the same
database table), then you can represent the datastore with a single persistent
object. You can then map the data object attributes of each component to
selected persistent object attributes.

Essentially, this approach flattens the object hierarchy into a single datastore.
There is only one entry for each unique attribute, and only one persistent
object for both parent and child components.

Advantages
The biggest advantage of this inheritance pattern is that you can configure
polymorphic behavior into your application, and do complex ’findBy’
operations and queries. It is the most query-efficient pattern, because there are
no joins (as in the key duplication pattern), or sequential table queries (as in
the attributes duplication pattern).

Besides, this approach has faster access to the datastore, because both local
and inherited attributes are in the same place.

Disadvantages

v This approach is problematic if you need to store pure parent objects (for
example, a Person component that is not a Beneficiary). If you need to store
both parent and child objects in the table, you must provide discriminator
predicates for the data object implementations and configure the managed
objects into either specialized or default polymorphic homes. (Note: It is
recommended that you use this pattern instead of the inheritance with
views pattern.)

v This approach is not very efficient in its use of space: each component
accesses only a small part of the datastore, leaving most of the persistent
object and schema unused for any one specific task.

v Growth in the hierarchy in object space requires the table to be redefined
for the addition of new attributes from new data object implementations
joining the hierarchy.

v This approach is problematic if your parent and child use different keys.
Because both the parent’s data and child’s data is stored in a single
datastore, the datastore needs to support both keys (the child’s and the
parent’s), to ensure data for the right object type is returned. Generally, you
should only use this pattern when the parent and the child use the same
key.

Chapter 6. Inheritance 341



In this pattern:
v The parent’s data object attributes and special framework methods are

mapped to the shared persistent object.
v The child’s data object attributes and special framework methods are also

mapped to the shared persistent object.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304

“Creating a child component” on page 306
“Defining a child with a single datastore”
“Tutorial: Inheritance with a single datastore” on page 344

Defining a child with a single datastore

This task covers the main steps necessary to create a component that inherits
from another component already defined in Object Builder, and shares a
single datastore with its parent. It does not cover every step; you should first
be familiar with the tasks necessary to create a component without
inheritance.

To use the single datastore pattern, the child must have the same key
attributes as the parent, and the parent must be used for inheritance only (in
other words, the only parent data in the datastore is for the child’s inherited
attributes). If the child has a different key, use the attributes duplication
pattern. If the child has the same key but the parent is used as a real object
(not just for inheritance), use the views pattern. The views pattern uses views
of the datastore to select parent data of pure parent objects from parent data
that is inherited by a child.

342 WebSphere: Application Development Tools Guide



In the single datastore pattern, the parent’s persistent object and schema
include the attributes of the child component. Typically you would use this
pattern after importing the data in a single large datastore into Object Builder,
as part of a strategy to break up the data among several components in a
class hierarchy.

To create the child component in Object Builder, follow these steps:
1. Create the business object file.
2. Add the business object interface, and select the parent’s business object

interface on the Interface Inheritance page.
3. Add the copy helper. You can include attributes of the parent’s copy

helper either by selecting specific attributes on the Name and Attributes
page, or include all the parent’s attributes by selecting the parent copy
helper on the Implementation Inheritance page. Do not do both.

4. Add the business object implementation:
a. Under Data Object Interface, click Add or select one later. This allows

you to add the data object interface in a separate step, and define its
parent.

b. Select the parent’s business object implementation on the
Implementation Inheritance page.

c. Select the parent’s key on the Key and Copy Helper page.
d. Do not override any attributes on the Attributes to Override page.
e. Do not override any relationships on the Relationships to Override

page.
f. Select any methods you want to override on the Methods to Override

page.
5. Add the managed object, and select the parent’s managed object on the

Implementation Inheritance page.
6. Add the data object interface:

a. From the business object implementation’s pop-up menu, click Add
New Data Object Interface.

b. Select the attributes and methods of the business object you want
represented in the data object.

c. You should select the parent data object interface on the Interface
Inheritance page.

7. Add the data object implementation:
a. From the data object interface’s pop-up menu, click Add

Implementation.
b. Select the parent data object implementation on the Implementation

Inheritance page.

Chapter 6. Inheritance 343



c. Select the parent’s key and the child’s copy helper on the Key and
Copy Helper page.

d. Map the child’s attributes to the parent’s persistent object on the
Attributes Mapping page.

8. Map the child’s data object attributes and special framework methods to
the parent’s (now shared) persistent object.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with a single datastore” on page 341
Components (Programming Guide)

“Creating a child component” on page 306
“Building a child component” on page 380
“Tutorial: Inheritance with a single datastore”

Tutorial: Inheritance with a single datastore

Objectives
To export a component from an existing sample
To import the component into a new project
To define a single DB table that provides persistence for both parent and child
attributes
To create a child component based on the table
To remap the parent component to the table
To generate the code for the component
To build the DLLs for the component

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

344 WebSphere: Application Development Tools Guide



For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with the different models for inheritance and
persistence, as described in “Choosing an inheritance pattern for persistence”
on page 304.

You should be familiar with the single datastore pattern for inheritance and
persistance, as described in “Inheritance with a single datastore” on page 341.

Sample files
There is an equivalent sample for this exercise. The sample contains the
results of all the inheritance tutorials. The sample includes:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on testing it with

QuickTest

The sample files are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\Inherit\BusinessObjects
samples\Tutorial\Fundamentals\Inherit\Docs\Inherit.html

No Java sample is available. However, the only difference is in the business
object implementations, where you can change the implementation language
to Java to turn the C++ sample into a Java sample.

There are some differences between the sample project and the one you create
in this exercise.
v The sample contains four different versions of the Beneficiary component,

demonstrating the different patterns for inheritance with persistence. This
exercise results in only one version of the Beneficiary component.

v The sample contains a persistent object with a short name. This exercise
uses a longer name to make the persistent object easier to distinguish in
text.

Chapter 6. Inheritance 345



v The sample has the parent and child in the same module. This exercise has
the parent and child in separate modules, so that you can reuse the parent
component more easily.

Description
In this exercise you define a parent component and child component that
share a single datastore.

This inheritance pattern makes the most sense when parent and child share
the same key. For a scenario where parent and child have different keys, see
“Tutorial: Inheritance with attributes duplication” on page 310.

This scenario also does not use views, which means there is no easy way to
determine when data is for a pure parent component, or part of the inherited
data for a child component. While this is acceptable when there are no pure
parent components to take into consideration (in other words, there are no
pure parent instances to be persisted), it does not work well for datastores
that contain a mix of objects. To manage distinct row types in a single table,
you can configure polymorphic behavior into your application. See the task:
Creating a specialized polymorphic home.

After you complete this exercise, you will have a component named
Beneficiary that inherits from Person, and a single database table that
provides persistence for both Beneficiary’s attributes and Person’s attributes.

The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizards. If you are experiencing problems, click
the Help button within a wizard, or go to the Help pulldown in Object
Builder.

For this exercise, you will complete the following tasks:
1. Exporting the parent component from the sample
2. Creating the new project
3. Importing the parent component
4. Creating a shared table definition (schema) and persistent object
5. Mapping the parent component to the shared persistent object
6. Adding a business object interface
7. Adding a key and copy helper
8. Adding a business object implementation
9. Adding a data object implementation and mapping it to the shared

persistent object
10. Adding a managed object
11. Generating the code

346 WebSphere: Application Development Tools Guide



12. Configuring the database
13. Defining a client DLL and server DLL

Exporting the parent component
Open the existing sample:
1. Start Object Builder.
2. In the Open Project wizard, type the path for the inheritance sample

model
(<CBroker>\samples\Tutorial\Fundamentals\Inherit\BusinessObjects)

3. Click Finish.

Export the Person component objects:
1. Under the User-Defined Business Objects folder, locate the PersonFile

business object file.
2. From the pop-up menu of PersonFile, click Export. The Export XML

wizard opens to the XML Export Directory page.
3. Click Finish.

udbo.PersonFile.xml is exported to the specified directory. The XML file
defines the Person business object, copy helper, key, and managed object
(Person, PersonBO, PersonKey, PersonCopy, PersonMO).

4. Locate the PersonFileDO data object file in the User-Defined Data Objects
folder, and export it in the same way.
uddo.PersonFileDO.xml is exported to the specified directory. The XML
file defines the Person data object (PersonDO and PersonDOImpl).

5. Locate the PersonFileGroup schema group in the DBA-Defined Schemas
folder, and export it in the same way.
uddbschema.PersonFileGroup.xml is exported to the specified directory.
The XML file defines the PersonFileGroup schema group, the schema it
contains, and the schema’s associated persistent object (PersonFileGroup,
CBSampDB.P_PFINH, PPOPFINH).

6. Close Object Builder.

You are ready to create a new project, and import the XML files.

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\inhsngl
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Import the parent XML files
Import the definition of the Person component:

Chapter 6. Inheritance 347



1. Click File > Import Model to open the Import Model wizard to the XML
File Selection page.

2. Select udbo.PersonFile.xml:
a. Click Add Another.
b. Type the path and name for the file, or click Browse to locate and

select the file.
c. Click Refresh.

3. Select uddo.PersonFileDO.xml and uddbschema.PersonFileGroup.xml in
the same way.

4. Click Finish.

The component objects for Person appear in the Tasks and Objects pane. You
are ready to define a child component that inherits from Person.

Creating the shared table and persistent object
You need to create a schema that contains columns for all of Person’s and
Beneficiary’s attributes.

1. Create a file with the following contents. If you are viewing this online,
you can cut and paste these lines directly into an editor:
CREATE TABLE S_DINH
(
“ssNo” VARCHAR(20) NOT NULL ,
“name” VARCHAR(100) NOT NULL ,
“street” LONG VARCHAR ,
“town” LONG VARCHAR ,
“claimPayments” DOUBLE
, PRIMARY KEY
( “ssNo”, “name” )
);

2. From the pop-up menu of the DBA-Defined Schemas folder in Object
Builder, click Import > SQL.

3. Select the file you created.
4. Name the database CBSampDB (or provide the name of your own

database).
5. Name the group ShareDataGroup.
6. Click Finish.

The schema appears in the folder, under the schema group.
7. From the pop-up menu of the schema, click Add Persistent Object.
8. Name the persistent object SharedPO, and name its package file S_DINH.
9. Set its type of persistence to Embedded SQL, to match the type of

persistence set in PersonDOImpl.
10. Click Finish.

The persistent object appears under the schema.

348 WebSphere: Application Development Tools Guide



Mapping the shared persistent object to the parent
Replace PPOPFINH (the persistent object defined in the imported XML) with
SharedPO.

Delete the old persistent object:
1. Delete Person’s old persistent object (PPOPFINH) from under

PersonDOImpl.
2. Delete Person’s old schema (CBSampDB) from the DBA-Defined Schemas

folder.
3. Delete Persons’ old schema group (PersonFileGroup) from the

DBA-Defined Schemas folder.

Map to the shared persistent object:
1. From the pop-up menu of PersonDOImpl, click Properties to open the

Data Object Implementation wizard.
2. Click the page title and turn to the Associated Persistent Objects page.
3. Add SharedPO as an associated persistent object, with the instance name

iPersonPO.
4. Click Next to turn to the Attributes Mapping page.
5. Map Person’s attributes to their equivalents in iPersonPO.
6. Click Next to turn to the Methods Mapping page.
7. Map Person’s methods to their equivalents in iPersonPO.
8. Click Finish.

SharedPO and its schema now appear under PersonDOImpl.

You can now define the child component.

Creating the business object interface
Define a business object file (SingleDataFile):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (SingleDataModule):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Beneficiary) to SingleDataModule.

Chapter 6. Inheritance 349



1. From the module’s pop-up menu, click Add Interface to open the Business
Object Interface wizard.

2. Name the interface Beneficiary.
3. Click the page title and turn to the Interface Inheritance page.
4. Add Person as a parent (replacing the default inheritance).
5. Click the page title and turn to the Attributes page.
6. Add the following attributes:
v readonly long id
v float claimPayments

7. Click Finish. The interface now appears under the module.

Adding the copy helper
Add BeneficiaryCopy:
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Add all attributes to the copy helper (both parent’s and child’s).
3. Click Finish. The copy helper now appears under the interface.

You do not need to add a key, because Beneficiary can re-use Person’s key.

Adding the business object implementation
Add BeneficiaryBO:
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Set Data Object Interface > Add or select one later (you will create a new

data object as a separate step).
3. Click the page title and turn to the Implementation Inheritance page.
4. Add PersonBO as a parent.
5. Click the page title and turn to the Key and Copy Helper page.
6. Select PersonKey and BeneficiaryCopy.
7. Click Finish. The business object implementation appears under the

business object interface.

Adding the data object interface
Add BeneficiaryDO:
1. From the business object implementation’s pop-up menu, click Add New

Data Object Interface to open the Data Object Interface wizard.
2. Select all the business object attributes as state data (to be preserved in the

data object).
3. Click the page title and turn to the Interface Inheritance page.
4. Add PersonDO as a parent.

350 WebSphere: Application Development Tools Guide



5. Click Finish. The data object interface appears under the business object
implementation.

Adding the data object implementation, and mapping it to the shared
persistent object
Add BeneficiaryDOImpl, and map it to SharedPO:

1. From the data object interface’s pop-up menu, click Add Implementation
to open the Data Object Implementation wizard.

2. Click Next to turn to the Behavior page.
3. Set the following patterns:
v Environment - BOIM with any key

v Type of Persistence - Embedded SQL

v Data Access Pattern - Delegating

4. Click Next to turn to the Implementation Inheritance page.
5. Add PersonDOImpl as a parent.
6. Click the page title and turn to the Key and Copy Helper page.
7. Select PersonKey and BeneficiaryCopy.
8. Click the page title and turn to the Attributes Mapping page.
9. Map claimPayments to SharedPO.claimPayments. SharedPO is available

for selection because it is associated with Beneficiary’s parent. It is
recommended that you inspect the method mappings, and make sure
that they map to SharedPO.

10. Click Finish. The data object implementation appears under the data
object interface.

Adding the managed object
Add BeneficiaryMO:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\inhsngl\Working\NT).
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.

Chapter 6. Inheritance 351



While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Configuring the database
You need to define (in DB2) the CBSampDB database and its table (S_DINH)
that your components will access. You should have a database administrator
perform this procedure.

To configure the database and table, you need to enter the following
commands from a DB2 command prompt.

create database CBSampDB
connect to CBSampDB

db2 -t -f S_DINH.sql

As the name of the inheritance pattern (single datastore) suggests, there is
only one table definition for both Person and Beneficiary. This is appropriate
for cases where there will be no pure Person components, and the datastore
does not need to distinguish between Person components and Beneficiary
components.

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

While “DLL” is the generic term used in Object Builder, the configuration for
the build actually results in whatever the appropriate targets are for the
selected platforms. For example, on AIX the build process creates shared
library files (lib*.so). If you chose to create a Java business object, then in
addition to DLLs there will also be JAR files. The names for these files are
derived from the name you provide for the DLL file, within the DLL
configuration node.

Start by defining the client DLL configuration and client DLL or library file
(for this exercise, name them both clientIN). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.

352 WebSphere: Application Development Tools Guide



3. Name the library as well. This is the name for the makefile and for the
resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The clientIN DLL configuration appears under the Build Configuration folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both serverIN). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The serverIN DLL configuration appears under the Build Configuration folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.

Chapter 6. Inheritance 353



You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The clientIN.dll and serverIN.dll files are stored in the
working\NT\PRODUCTION directory.

The libclientIN.so and libserverIN.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the Working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBclientIN.jar). <build style> is one of
the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (DataPersistenceApplication). An application
family groups a set of applications within System Management.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

354 WebSphere: Application Development Tools Guide



The DataPersistenceApplication application family appears under the
Application Configuration folder.

Define the server application (DataPersistenceObjects). An application defines
a set of components that will operate together on the server. The application
name you provide here is the name that will be used by System Management,
when the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Nextto turn to the Additional Executables page.
4. Select the platform you are configuring the application for (for example,

NT Files).
5. Add the file S_DINH.sql:

a. Click Add Another.
b. Click the Browse button to open the Executables to Include dialog.
c. Locate your Object Builder working directory.
d. Select S_DINH.sql

e. Click the Open button.

f. Click the OK button.
6. Add the file S_DINH.bnd in the same manner.
7. Click Finish.

The DataPersistenceObjects application appears under the
DataPersistenceApplication application family.

Configuring the components with the application
Configure Person’s managed object (PersonFile PersonModule::PersonMO)
with the application (DataPersistenceObjects). Create a new container instance
(DataPersistenceContainer) that will Throw an exception when a method is
called outside a transaction.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

Chapter 6. Inheritance 355



4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The PersonMO managed object configuration appears under the
DataPersistenceObjects application, and the new container
DataPersistenceContainer appears in the Container Definition folder. You can
review the properties of the container, including the service and data access
patterns that have been selected for you, by clicking Properties from the
container’s pop-up menu.

Configure Beneficiary’s managed object in the same way:
1. From the pop-up menu of the application, click Configure Managed

Object to open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select SingleDataFile

SingleDataModule::BeneficiaryMO.
3. Click the page title and turn to the Container page.
4. Select DataPersistenceContainer. Because Person and Beneficiary are

similar components (with the same type of datastore and the same
policies), they can use the same container.

5. Click Finish.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\DataPersistenceApplication.

Close Object Builder:
1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

356 WebSphere: Application Development Tools Guide



Summary
You have created a component named Beneficiary that inherits from Person,
and defined a shared database table that provides persistence for attributes of
both components. You have implemented the shared datastore pattern for
inheritance with persistence.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Inheritance with views

Important: The functionality of the inheritance with views pattern is
being replaced with the polymorphic homes function. When starting new
work, use polymorphic homes. If you have applications that use
inheritance with views, you must migrate them to polymorphic homes.
See “Polymorphic homes” on page 581 for more information.

If your persistence is provided by a single datastore that stores both pure
parent objects and child objects, you can use views to select out the
appropriate data from the datastore. This combines an attributes duplication
approach (one persistent object per component, with the parent’s attributes
duplicated in the child’s persistent object) with a single datastore approach (a
single datastore for all components in the hierarchy). The attributes
duplication approach is used for retrieving data (allowing greater precision in
selection of data), and the single datastore approach is used for changing
(creating, updating, or deleting) data.

To accomplish this, the table must include a mechanism for identifying which
data belongs to the parent, and which data belongs to the child. Typically, this
can be accomplished by identifying a unique attribute for each component.
For example, Beneficiary has an attribute claimPayment, and Person does not.
So if the claimPayments column contains a value, then the component must
be a Beneficiary.

Using the identifying attribute, you can create selective views of the table for
each component type, and then create a persistent object for each view. These
are the persistent objects that will be used to retrieve data, following the same
pattern as the object-oriented approach. For example, Beneficiary could have a
persistent object BeneficiaryPO, which represents a view of the table where

Chapter 6. Inheritance 357



claimPayments=notNull, and Person could have PersonPO, with a view of the
table where claimPayments=Null. These persistent objects are referred to as
retrieving persistent objects.

You also need to create persistent objects that map all the rows in the table,
but only the relevant columns. These are the persistent objects that
components will use to create, update, or delete data. Children at the bottom
of a hierarchy can use persistent objects that map directly to the table, because
all columns in the table are relevant; all data is inherited. (Note that sibling
subclasses of a single base class do not know about each other’s attributes.)
All other components in the hierarchy require an additional view for this
purpose. For example, in the hierarchy Person -> Beneficiary ->
PrimaryBeneficiary, Person and Beneficiary would require their own views,
but PrimaryBeneficiary could use the full table, and would not require its own
view. These persistent objects are referred to as updating persistent objects.

The need for special updating persistent objects is based on the way null
columns are handled. Because the concept of a null value does not exist in the
object-oriented world of the components, a new parent component that maps
directly to the shared table could accidentally initialize the unused columns to
a not-null value, when the persistent object state was applied to the new
database row. Later, when a retrieving persistent object performed a notNull
check on the data, the row would be incorrectly identified as belonging to a
child component, and would be inaccessible. The special updating persistent
object, and its selective view, insulate the component from any contact with
columns that are not relevant to it, and prevent accidental initialization of
child columns.

Note: You can use the null-tolerance features to prevent this type of
mistake from happening. See Null value tolerance with sentinel values
for more information.

Advantages
The advantage of this approach is that it takes up less space than the pure
attributes duplication approach (because there is only one table for all
attributes), with more precision than the single datastore approach (which
cannot easily distinguish between pure parent data and inherited parent data).

Disadvantages
It is neither as efficient as the pure attributes duplication pattern, nor as fast
as the single datastore pattern. Also, like the single datastore pattern, the
views pattern is problematic if your parent and child use different keys,
because then the shared table would need to have two primary keys at once.
Generally, you should only use this pattern when the parent and the child use
the same key.

358 WebSphere: Application Development Tools Guide



In this pattern:
v The parent’s data object attributes are mapped first to its updating

persistent object, and then to its retrieving persistent object.
v The parent’s retrieve method is mapped to its retrieving persistent object.
v The parent’s insert, update, and delete methods are mapped to its updating

persistent object.
v The parent’s setConnection method is mapped first to its updating

persistent object, and then to its retrieving persistent object.
v The child’s data object attributes and its inherited attributes are mapped

first to its updating persistent object, and then to its retrieving persistent
object.

v The child’s retrieve method maps first to its retrieving persistent object, and
then to its updating persistent object, with the Always complete calling
sequence check box not selected.

v The child’s insert, update, and delete methods are mapped to its updating
persistent object only.

v The child’s setConnection method is mapped first to its updating persistent
object, and then to its retrieving persistent object.

This mapping creates a new parent along with the child, and deletes the
parent along with the child.

Chapter 6. Inheritance 359



If you wanted to create a new child from an existing parent, you could find
the existing parent, create a copy of its attribute values, delete the parent, and
then create the child as a new object with the values of the deleted parent.

If you wanted to delete the child and leave the parent entry, you could copy
the existing parent values, continue with the deletion of the child, and then
re-create the parent with the copied values.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Polymorphic homes” on page 581
“Null value tolerance with sentinel values” on page 155

“Creating a child component” on page 306
“Defining a child with views”
“Tutorial: Inheritance with views” on page 362

Defining a child with views

This task covers the main steps necessary to create a component that inherits
from another component already defined in Object Builder, shares the same
database table as its parent, and uses views to select the appropriate data out
of the table. It does not cover every step; you should first be familiar with the
tasks necessary to create a component without inheritance.

This approach is a variant of the single datastore pattern. To use this pattern,
the child must have the same key attributes as the parent. If the child has a
different key, use the attributes duplication pattern.

Typically you would use this pattern after importing the data in a single large
datastore into Object Builder, as part of a strategy to break up the data among
several components in a class hierarchy.

The parent maps to its data as follows:
v A single database table stores all the attributes for both parent and child.
v A view of the table selects the columns that apply to the parent. The view

represents all rows, but only some columns. Its persistent object is used
when updating parent attributes.

v A view of the table selects out those rows in which a unique child attribute
is null (that is, the rows that do not contain data for a child component).
The view represents only relevant rows. Its persistent object is used when
retrieving parent attributes.

360 WebSphere: Application Development Tools Guide



v The parent’s data object attributes, and its retrieve method, map to the
retrieving persistent object.

v The parent’s include, update, delete, and setConnection methods map to the
updating persistent object.

To create the child component in Object Builder, follow these steps:
1. Create a view of the shared table, selecting out those rows in which a

unique child attribute is not null (that is, the rows that contain data for a
child component).

2. Create a persistent object based on that view. This is the child’s equivalent
of the parent’s retrieving persistent object.

3. Create a persistent object based on the original table. This is the child’s
equivalent of the parent’s updating persistent object. The child does not
need a separate view, because it does not need to exclude columns.
In an inheritance case with deeper nesting, all ancestors would require
views. Only components at the absolute bottom of the hierarchy, with
access to all the inherited data of the components above it, would map
directly to the table.
For example, in the hierarchy Person -> Beneficiary -> PrimaryBeneficiary,
you would need to create views for Person and Beneficiary, but could map
directly to the shared table with PrimaryBeneficiary.

4. Create the business object file.
5. Add the business object interface, and select the parent’s business object

interface on the Interface Inheritance page.
6. Add the copy helper. You can include attributes of the parent’s copy

helper either by selecting specific attributes on the Name and Attributes
page, or include all the parent’s attributes by selecting the parent copy
helper on the Implementation Inheritance page. Do not do both.

7. Add the business object implementation:
a. Under Data Object Interface, click Add or select one later. This allows

you to add the data object interface in a separate step, and define its
parent.

b. Select the parent’s business object implementation on the
Implementation Inheritance page.

c. Select the parent’s key on the Key and Copy Helper page.
d. Do not override any attributes on the Attributes to Override page.
e. Do not override any relationships on the Relationships to Override

page.
f. Select any methods you want to override on the Methods to Override

page.
8. Add the managed object, and select the parent’s managed object on the

Implementation Inheritance page.

Chapter 6. Inheritance 361



9. Add the data object interface:
a. From the business object implementation’s pop-up menu, click Add

New Data Object Interface.
b. Select the attributes and methods of the business object you want

represented in the data object.
c. You should select the parent data object interface on the Interface

Inheritance page.
10. Add the data object implementation, and select the parent data object

implementation on the Implementation Inheritance page.
11. Map the data object implementation to the table-based persistent object

(the updating persistent object) and the view-based persistent object (the
retrieving persistent object, as follows:
a. The child’s data object attributes and its inherited attributes are

mapped to its retrieving persistent object.
b. The child’s retrieve method maps to first its retrieving persistent

object and then its parent’s retrieving persistent object, with the
Always complete calling sequence option not checked.

c. The child’s insert, update, delete, and setConnection methods are
mapped to its updating persistent object.
This always creates a new parent along with the child, and deletes the
parent along with the child.
If you wanted to create a new child from an existing parent, you
could still find the existing parent, create a copy of its attribute values,
delete the parent, and then create the child as a new object with the
values of the deleted parent.
If you wanted to delete the child and leave the parent entry, you
could still copy the existing parent values, continue with the deletion
of the child, and then re-create the parent with the copied values.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with views” on page 357
Components (Programming Guide)

“Creating a child component” on page 306
“Building a child component” on page 380
“Tutorial: Inheritance with views”

Tutorial: Inheritance with views

Important: The functionality of the inheritance with views pattern is
being replaced with the polymorphic homes function. When starting new

362 WebSphere: Application Development Tools Guide



work, use polymorphic homes. If you have applications that use
inheritance with views, it is recommended that you adjust your model to
use polymorphic homes. See Polymorphic homes for more information.

Objectives
To export a component from an existing sample
To import the component into a new project
To define a single DB table that provides persistence for both parent and child
attributes
To define views that separate out child and parent attributes from the shared
table
To create a child component based on the child view
To remap the parent component to the parent view
To generate the code for the component
To build the DLLs for the component

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with the different models for inheritance and
persistence, as described in “Choosing an inheritance pattern for persistence”
on page 304.

You should be familiar with the single datastore pattern for inheritance and
persistence, as described in “Inheritance with views” on page 357.

Chapter 6. Inheritance 363



Sample files
There is an equivalent sample for this exercise. The sample contains the
results of all the inheritance tutorials. The sample includes:
v A BusinessObjects project that contains the finished Object Builder model
v A zipped Rational Rose model that contains definitions for the business

object, key, copy helper, and data object interface
v Documentation for the sample, including instructions on testing it with

QuickTest

The sample files are in the following directories (under <CBroker>, the install
directory):

For C++:

samples\Tutorial\Fundamentals\Inherit\BusinessObjects
samples\Tutorial\Fundamentals\Inherit\Docs\Inherit.html

No Java sample is available. However, the only difference is in the business
object implementations, where you can change the implementation language
to Java to turn the C++ sample into a Java sample.

There are some differences between the sample project and the one you create
in this exercise.
v The sample contains four different versions of the Beneficiary component,

demonstrating the different patterns for inheritance with persistence. This
exercise results in only one version of the Beneficiary component.

v The sample contains some persistent objects with short names. This exercise
uses longer names throughout, to make persistent objects easier to
distinguish in the text.

v The sample has the parent and child in the same module. This exercise has
the parent and child in separate modules, so that you can re-use the parent
component more easily.

Description
In this tutorial you define a parent component and child component that
share the same database table, but map to it selectively using
component-specific views. This inheritance pattern makes the most sense
when parent and child share the same key. For a scenario where parent and
child have different keys, see “Tutorial: Inheritance with attributes
duplication” on page 310.

After you complete this scenario, you will have a component named
Beneficiary that inherits from Person, a single database table that provides
persistence for both Beneficiary’s attributes and Person’s attributes, and views
of the table that provide component-specific schemas.

364 WebSphere: Application Development Tools Guide



The following tasks do not give explicit instructions for every step, but should
at least get you into the right wizard. If you are experiencing problems, click
the Help button within a wizard, or go to the Help menu in Object Builder.

For this exercise, you will complete the following tasks:
1. Exporting the parent component from the sample
2. Creating the new project
3. Importing the parent component
4. Creating a shared table definition (schema) and persistent object
5. Creating component-specific views and associated persistent objects
6. Mapping the parent component to persistent objects
7. Adding a business object interface
8. Adding a key and copy helper
9. Adding a business object implementation

10. Adding a data object implementation and mapping it to persistent objects
11. Adding a managed object
12. Generating the code
13. Configuring the database
14. Defining a client DLL and server DLL

Exporting the parent component
Open the existing sample:
1. Start Object Builder.
2. In the Open Project wizard, type the path for the inheritance sample

model
(<CBroker>\samples\Tutorial\Fundamentals\Inherit\BusinessObjects)

3. Click Finish.

Export the Person component objects:
1. Under the User-Defined Business Objects folder, locate the PersonFile

business object file.
2. From the pop-up menu of PersonFile, click Export. The Export XML

wizard opens to the XML Export Directory page.
3. Click Finish.

udbo.PersonFile.xml is exported to the specified directory. The XML file
defines the Person business object, copy helper, key, and managed object
(Person, PersonBO, PersonKey, PersonCopy, PersonMO).

4. Locate the PersonFileDO data object file in the User-Defined Data Objects
folder, and export it in the same way.
uddo.PersonFileDO.xml is exported to the specified directory. The XML
file defines the Person data object (PersonDO and PersonDOImpl).

Chapter 6. Inheritance 365



5. Locate the PersonFileGroup schema group in the DBA-Defined Schemas
folder, and export it in the same way.
uddbschema.PersonFileGroup.xml is exported to the specified directory.
The XML file defines the PersonFileGroup schema group, the schema it
contains, and the schema’s associated persistent object (PersonFileGroup,
CBSampDB.P_PFINH, PPOPFINH).

6. Close Object Builder.

You are ready to create a new project, and import the XML files.

Creating the project
Create a sample project to hold your work. For example, e:\tutorials\inhview
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Import the parent XML files
Import the definition of the Person component:
1. Click File > Import Model to open the Import Model wizard to the XML

File Selection page.
2. Select udbo.PersonFile.xml:

a. Click Add Another.
b. Type the path and name for the file, or click Browse to locate and

select the file.
c. Click Refresh.

3. Select uddo.PersonFileDO.xml and uddbschema.PersonFileGroup.xml in
the same way.

4. Click Finish.

The component objects for Person appear in the Tasks and Objects pane. You
are ready to define a child component that inherits from Person.

Creating the shared table
You need to create a schema that contains columns for all of Person’s and
Beneficiary’s attributes.
1. Create a file with the following contents. If you are viewing this online,

you can cut and paste these lines directly into an editor:
CREATE TABLE S_DINH
(
“ssNo” VARCHAR(20) NOT NULL ,
“name” VARCHAR(100) NOT NULL ,
“street” LONG VARCHAR ,
“town” LONG VARCHAR ,

366 WebSphere: Application Development Tools Guide



“claimPayments” DOUBLE
, PRIMARY KEY
( “ssNo”, “name” )
);

2. From the pop-up menu of the DBA-Defined Schemas folder in Object
Builder, click Import > SQL.

3. Select the file you created.
4. Name the database CBSampDB (or provide the name of your own

database).
5. Name the group ShareDataGroup.
6. Click Finish.

The schema appears in the folder, under the schema group.

Creating views for the parent
The parent requires two views: one for retrieval, and one for updates. Both
these views are based on the shared table defined in the previous task.

The retrieval view needs to differentiate between pure Person components
and Beneficiary components with inherited Person attributes. The update view
merely needs to hide child-specific attributes from the parent.

Create the retrieval view CBSampDB.PView:
1. From the pop-up menu of ShareDataGroup, click Add SQL View. The

SQL View Editor opens.
2. Name the view PView.
3. Click on the View Work Area tab.
4. Click on the S_DINH table in the Schemas pane.
5. In the Clauses pane, click the Selected Columns tab.
6. In the Columns pane, click on the columns you want represented in the

view:
v ssNo
v name
v street
v town

Their data appears in the fields of the Selected Columns page.
7. In the Clauses pane, click the Where tab.
8. In the Columns pane, click on claimPayments. Its data appears in the

fields of the Where page.
This is the column you are using to test whether the row contains data
for the parent component, and to exclude rows that are for child
components.

Chapter 6. Inheritance 367



9. Click the list button of the Conditions field on the Where page, and select
Is NULL.
This ensures that only rows without claimPayments information appear
in the view. Because the claimPayments column only contains
information for Beneficiary components, this excludes child data from the
view.
If Person had additional child components, you could add additional Is
NULL conditions, based on their unique attributes, to exclude them from
the parent’s view.

10. Click on the View Summary tab.
11. Review the SQL clauses that define the view, based on your selections on

the previous page.
12. Click Finish.

The view appears under ShareDataGroup, in the DBA-Defined Schemas
folder.

Create the update view CBSampDB.VP_DINH:
1. From the pop-up menu of ShareDataGroup, click Add SQL View. The

SQL View Editor opens.
2. Name the view VP_DINH.
3. Click on the View Work Area tab.
4. Click on the S_DINH table in the Schemas pane.
5. In the Clauses pane, click the Selected Columns tab.
6. In the Columns pane, click on the columns you want represented in the

view:
v ssNo
v name
v street
v town

Their data appears in the fields of the Selected Columns page.
7. Click Finish.

Creating the parent’s persistent objects
Replace PPOPFINH (the persistent object defined in the imported XML) with
PViewPO and ViewPPO, based on the new views of the shared table.

Delete the old persistent object:
1. Delete Person’s old persistent object (PPOPFINH) from under

PersonDOImpl.

368 WebSphere: Application Development Tools Guide



2. Delete Person’s old schema (CBSampDB) from the DBA-Defined Schemas
folder.

3. Delete Persons’ old schema group (PersonFileGroup) from the
DBA-Defined Schemas folder.

Add the persistent object for retrieval:
1. From the pop-up menu of CBSampDB.PView, click Add Persistent Object.
2. Name the persistent object PViewPO, and name its package file PView.
3. Set its type of persistence to Embedded SQL, to match the type of

persistence set in PersonDOImpl.
4. Click Finish.

Add the persistent object for updates:
1. From the pop-up menu of CBSampDB.VP_DINH, click Add Persistent

Object.
2. Name the persistent object ViewPPO, and name its package file VP_DINH.
3. Set its type of persistence to Embedded SQL, to match the type of

persistence set in PersonDOImpl.
4. Click Finish.

The persistent objects appear under their schemas.

Mapping the parent’s data object to persistent objects
Map PersonDOImpl to PViewPO and ViewPPO:

1. From the pop-up menu of PersonDOImpl, click Properties to open the
Data Object Implementation wizard.

2. Click the page title and turn to the Associated Persistent Objects page.
3. Add ViewPPO as an associated persistent object, with the instance name

iViewPPO.
4. Add PViewPO as an associated persistent object, with the instance name

iPViewPO.
5. Click Next to turn to the Attributes Mapping page.
6. Map each attribute of Person to first its equivalent in iViewPPO, and then

its equivalent in iPViewPO.
7. Click Next to turn to the Methods Mapping page.
8. Map Person’s retrieve method to iPViewPO.retrieve.
9. Map Person’s insert, update, and delete methods to iViewPPO.insert,

iViewPPO.update, and iViewPPO.delete.
10. Map Person’s setConnection method to first iViewPPO.setConnection,

and then iPViewPO.setConnection.
11. Click Finish.

PViewPO and ViewPPO now appear under PersonDOImpl.

Chapter 6. Inheritance 369



You can now define the child component.

Creating the view for the child
The child component also needs a retrieval view, which can differentiate
between pure Person components and Beneficiary components with inherited
Person attributes. It does not need a special update view, because the child
maps to all the columns in the shared table: it does not need to exclude any
columns.

Create the retrieval view CBSampDB.BView:
1. From the pop-up menu of ShareDataGroup, click Add SQL View. The

View Editor opens.
2. Name the view BView.
3. Click on the View Work Area tab.
4. Click on the S_DINH table in the Schemas pane.
5. In the Clauses pane, click the Selected Columns tab.
6. In the Columns pane, click on the columns you want represented in the

view:
v ssNo
v name
v street
v town
v claimPayments

Their data appears in the fields of the Selected Columns page.
7. In the Clauses pane, click the Where tab.
8. In the Columns pane, click on claimPayments. Its data appears in the

fields of the Where page.
This is the column you are using to test whether the row contains data
for the child component, and to exclude rows that are for parent
components.

9. Click the list button of the Conditions field on the Where page, and select
Is Not NULL.
This ensures that only rows with claimPayments information appear in
the view. Because the claimPayments column only contains information
for Beneficiary components, this excludes data of pure parent
components from the view.

10. Click on the View Summary tab.
11. Review the SQL clauses that define the view, based on your selections on

the previous page.
12. Click OK.

370 WebSphere: Application Development Tools Guide



The view appears under ShareDataGroup, in the DBA-Defined Schemas
folder.

Creating the child’s persistent objects
Create BViewPO, based on the new view of the shared table:
1. From the pop-up menu of CBSampDB.BView, click Add Persistent Object.
2. Name the persistent object BViewPO, and name its package file BView.
3. Set its type of persistence to Embedded SQL.
4. Click Finish.

Create SharedPO, based on the actual shared table:
1. From the pop-up menu of the schema, click Add Persistent Object.
2. Name the persistent object SharedPO, and name its package file S_DINH.
3. Set its type of persistence to Embedded SQL, to match the type of

persistence set in PersonDOImpl.
4. Click Finish.

The persistent objects appear under their schemas.

You can now define the child component.

Creating the business object interface
Define a business object file (ViewDataFile):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (ViewDataModule):
1. From the pop-up menu of the file, click Add Module to open the Business

Object Module wizard.
2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Beneficiary) to SingleDataModule.
1. From the module’s pop-up menu, click Add Interface to open the Business

Object Interface wizard.
2. Name the interface Beneficiary.
3. Click the page title and turn to the Interface Inheritance page.
4. Add Person as a parent (replacing the default inheritance).
5. Click the page title and turn to the Attributes page.
6. Add the following attributes:
v readonly long id

Chapter 6. Inheritance 371



v float claimPayments
7. Click Finish. The interface now appears under the module.

Adding the copy helper
Add BeneficiaryCopy:
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Add all attributes to the copy helper (both parent’s and child’s).
3. Click Finish. The copy helper now appears under the interface.

You do not need to add a key, because Beneficiary can re-use Person’s key.

Adding the business object implementation
Add BeneficiaryBO:
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Set Data Object Interface > Add or select one later (you will create a new

data object as a separate step).
3. Click the page title and turn to the Implementation Inheritance page.
4. Add PersonBO as a parent.
5. Click the page title and turn to the Key and Copy Helper page.
6. Select PersonKey and BeneficiaryCopy.
7. Click Finish. The business object implementation appears under the

business object interface.

Adding the data object interface
Add BeneficiaryDO:
1. From the business object implementation’s pop-up menu, click Add New

Data Object Interface to open the Data Object Interface wizard.
2. Select all the business object attributes as state data (to be preserved in the

data object).
3. Click the page title and turn to the Interface Inheritance page.
4. Add PersonDO as a parent.
5. Click Finish. The data object interface appears under the business object

implementation.

Adding the data object implementation, and mapping it to persistent
objects
Add BeneficiaryDOImpl, and map it to SharedPO:

1. From the data object interface’s pop-up menu, click Add Implementation
to open the Data Object Implementation wizard.

2. Click Next to turn to the Behavior page.
3. Set the following patterns:

372 WebSphere: Application Development Tools Guide



v Environment > BOIM with any key

v Type of Persistence > Embedded SQL

v Data Access Pattern > Delegating

4. Click Next to turn to the Implementation Inheritance page.
5. Add PersonDOImpl as a parent.
6. Click the page title and turn to the Key and Copy Helper page.
7. Select PersonKey and BeneficiaryCopy.
8. Click the page title and turn to the Associated Persistent Objects page.

The parent’s persistent objects appear by default.
9. Add BViewPO as an associated persistent object, with the instance name

iBViewPO.
10. Add SharedPO as an associated persistent object, with the instance name

iSharedPO.
11. Click Next to turn to the Attributes Mapping page.
12. Map Beneficiary’s claimPayments attribute to first

iSharedPO.claimPayments, and then iBViewPO.claimPayments.
13. Map Beneficiary’s inherited attributes to first iSharedPO and then

iBViewPO.
For example, Person.ssNo maps to first iSharedPO.ssNo and then
iBViewPO.ssNo

14. Click Finish.

Mapping the special framework methods
Map the way in which the data object’s special framework methods will call
the persistent objects’ special framework methods:
1. From BeneficiaryDOImpl’s pop-up menu, click Properties to open the

Data Object Implementation wizard.
2. Click the page title and turn to the Methods Mapping page.
3. Map Beneficiary’s retrieve method first to iBViewPO.retrieve, and then to

PViewPO.retrieve, and make sure the Always complete calling sequence
option is not checked.

4. Map Beneficiary’s insert, update, and delete methods to iSharedPO.insert,
iSharedPO.update, iSharedPO.delete.

5. Map Beneficiary’s setConnection method to first iSharedPO.setConnection
and then iBViewPO.setConnection.
This creates a new parent along with the child, and deletes the parent
along with the child.
If you wanted to create a new child from an existing parent, you could
find the existing parent, create a copy of its attribute values, delete the
parent, and then create the child as a new object with the values of the
deleted parent.

Chapter 6. Inheritance 373



If you wanted to delete the child and leave the parent entry, you could
copy the existing parent values, continue with the deletion of the child,
and then re-create the parent with the copied values.

6. Click Finish.

Adding the managed object
Add BeneficiaryMO:
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

Generating the code
You are now ready to generate the code for the objects you have defined.
Generated code will appear in your project’s \Working\platform directory (for
example, e:\tutorials\inhview\Working\NT).
1. From the pop-up menu of the User-Defined Business Objects folder, click

Generate > All.
The code generation can take several minutes.

2. Review the contents of the Working\platform directory. All the source files
for the component have been generated, and you can now define how to
build them.
While you can view the generated source files for a particular object (by
selecting View Source from its pop-up menu), you cannot edit the source
files through Object Builder. If you edit them outside of Object Builder,
you should restrict your changes to method implementations, and import
your changes back into Object Builder before re-generating.

Configuring the database
You need to define (in DB2) the CBSampDB database, its table (S_DINH), and
its views (PView, and BView), which your components will access. You should
have a database administrator perform this procedure.

To configure the database, table, and views, you need to enter the following
commands from a DB2 command prompt.

create database CBSampDB
connect to CBSampDB

db2 -t -f S_DINH.sql

db2 -t -f PView.sql

db2 -t -f BView.sql

374 WebSphere: Application Development Tools Guide



db2 -t -f VP_DINH.sql

As the name of the inheritance pattern (inheritance with views) suggests,
there is a single datastore with distinct views for each component (Person and
Beneficiary).

Defining a client DLL and server DLL
Configure the build process that will create the client and server DLLs.

While “DLL” is the generic term used in Object Builder, the configuration for
the build actually results in whatever the appropriate targets are for the
selected platforms. For example, on AIX the build process creates shared
library files (lib*.so). If you chose to create a Java business object, then in
addition to DLLs there will also be JAR files. The names for these files are
derived from the name you provide for the DLL file, within the DLL
configuration node.

Start by defining the client DLL configuration and client DLL or library file
(for this exercise, name them both clientIN). The client DLL provides client
applications with access to the component on the server, using the key and
copy helper. You must also include the business object interface, which defines
the methods and attributes of the component that the client can access.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard to the Name and Options page.
2. Name the configuration. This is the name that uniquely identifies the

configuration node.
3. Name the library as well. This is the name for the makefile and for the

resulting DLL file. You can create multiple configuration nodes that
produce different versions of the same DLL. For example, you could set
different compile and link options to produce a development version and
a deployment version of the same DLL.

4. For this exercise, the default configuration options are sufficient.
5. Click the title and turn to the Client Source Files page.
6. Select all the client files and add them to the Items Chosen list.
7. Click Finish.

The clientIN DLL configuration appears under the Build Configuration folder.

Define the server DLL configuration and server DLL file (for this exercise,
name them both serverIN). The server DLL is installed on the server to
deploy the component, making it available for access by client applications
and other components.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.

Chapter 6. Inheritance 375



2. Name the configuration and target DLL file.
3. Click Next to turn to the Libraries to Link With page.
4. Add the client DLL file. The server DLL needs access to the client DLL

because the client DLL defines the component’s interface, and the
component implementation inherits from it.

5. Click Next to turn to the Server Source Files page.
6. Select all the server source files for the component, and add them to the

Items Chosen list.
7. Click Finish.

The serverIN DLL configuration appears under the Build Configuration folder.

Building the DLLs
To generate the makefiles, based on the configuration choices you made in the
DLL wizards:
1. From the pop-up menu of the Build Configuration folder, click Generate >

All > All Targets. This generates makefiles for all the DLL files defined in
the folder and generates an all.mak file that calls the individual DLL
makefiles. By choosing All Targets, you set the default behavior of the
makefile, when it is built. You can still override this default when you
build (for example, you can choose to build Java targets only, and override
the default of all targets).

To build the DLL and (optionally) JAR files:
1. From the Build Configuration folder’s pop-up menu, select Build >

Out-of-Date Targets > C++.
You always need to generate C++ targets, even if you selected Java as
your business object implementation language. The other objects of the
component (such as the data object implementation and managed object)
are still implemented in C++.

2. If you selected Java as your business object implementation language, then
you also need to build the Java targets. From the Build Configuration
folder’s pop-up menu, select Build > Out-of-Date Targets > Java.
When you have a mixed-language application (some business objects are
implemented in C++, some in Java) you must generate both C++ and Java
targets for all components, even for those implemented in C++. The .jar
files for C++ components allow Java components to interact with the C++
components on the server.
For this exercise, your application contains just a single component, so you
only need to build the Java targets if you implemented the business object
in Java.

The clientIN.dll and serverIN.dll files are stored in the
working\NT\PRODUCTION directory.

376 WebSphere: Application Development Tools Guide



The libclientIN.so and libserverIN.so files are stored in the
working/AIX/PRODUCTION directory.

If you have a Java business object, the clientIN.jar and serverIN.jar files are
stored in the Working\platform\PRODUCTION directory.

If you had a Java client application, regardless of the language your
component is implemented in, you would also select Build > Out-of-Date
Targets > Java Client Bindings to generate Java client bindings
(working\platform\<build style>\JCB\JCBclientIN.jar). <build style> is one of
the configuration directories: NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG. See Platform-specific information for more information.

For this exercise, you will be using QuickTest to run and test your application,
which has its own build process that includes generation of client bindings.

Defining an application family and application
Define the application family (DataPersistenceApplication). An application
family groups a set of applications within System Management.
1. From the pop-up menu of the Application Configuration folder, click Add

Application Family to open the Application Family wizard.
2. Name the application family.
3. Click Finish.

The DataPersistenceApplication application family appears under the
Application Configuration folder.

Define the server application (DataPersistenceObjects). An application defines
a set of components that will operate together on the server. The application
name you provide here is the name that will be used by System Management,
when the application and its components are deployed.
1. From the pop-up menu of the application family, click Add Application to

open the Application wizard.
2. Name the application.
3. Click Nextto turn to the Additional Executables page.
4. Select the platform you are configuring the application for (for example,

NT Files).
5. Add the file S_DINH.sql:

a. Click Add Another.
b. Click the Browse button to open the Executables to Include dialog.
c. Locate your Object Builder working directory.
d. Select S_DINH.sql

Chapter 6. Inheritance 377



e. Click the Open button.

f. Click the OK button.
6. Add the files S_DINH.bnd, VP_DINH.sql, VP_DINH.bnd, PView.sql,

PView.bnd, BView.sql, and BView.bnd in the same manner.
7. Click Finish.

The DataPersistenceObjects application appears under the
DataPersistenceApplication application family.

Configuring the components with the application
Configure Person’s managed object (PersonFile PersonModule::PersonMO)
with the application (DataPersistenceObjects). Create a new container instance
(DataPersistenceContainer) that will Throw an exception when a method is
called outside a transaction.
1. From the pop-up menu of the application, click Add Managed Object to

open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select the component’s managed object. The

other lists should be automatically populated with the appropriate
selections.

3. Click Next and select the data object implementation. Click Add Another.
The appropriate data object implementation and DLL will be selected. If
there were more than one data object implementation for the component,
or it was being built into more than one DLL, you would click Add
Another again to add the extra information.

4. Click Nextto turn to the Container page.
5. Check the Create a new container option. An extra page is inserted into

the wizard, to allow you to name the new container and specify its
policies.

6. Click Next to turn to the Create New Container page.
7. Name the container, and set its behavior for methods called outside a

transaction.
Most of the container’s behavior is defined for you, based on the managed
object you are configuring, and the data object implementation you
selected.

8. Click Next and review the home. The appropriate home is already
selected, and the default options are acceptable. If there were more than
one appropriate home, you could choose the home to use.

9. Click Finish.

The PersonMO managed object configuration appears under the
DataPersistenceObjects application, and the new container
DataPersistenceContainer appears in the Container Definition folder. You can

378 WebSphere: Application Development Tools Guide



review the properties of the container, including the service and data access
patterns that have been selected for you, by clicking Properties from the
container’s pop-up menu.

Configure Beneficiary’s managed object in the same way:
1. From the pop-up menu of the application, click Configure Managed

Object to open the Managed Object Configuration wizard.
2. In the Managed Objectlist, select ViewDataFile

ViewDataModule::BeneficiaryMO.
3. Click the page title and turn to the Container page.
4. Select DataPersistenceContainer. Because Person and Beneficiary are

similar components (with the same type of datastore and the same
policies), they can use the same container.

5. Click Finish.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into
Working\platform\PRODUCTION\DataPersistenceApplication.

Close Object Builder:
1. Click File > Save to save your work.
2. Click File > Exit to close Object Builder.

Summary
You have created a component named Beneficiary that inherits from Person,
and defined a shared database table that provides persistence for attributes of
both components. You have defined selective views that allow the two
components to treat the shared table as separate datastores. You have
implemented the views pattern for inheritance with persistence.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Chapter 6. Inheritance 379



Building a child component

This task covers the main steps necessary to build a component that inherits
from another component, already defined in a separate DLL. It does not cover
every step; you should first be familiar with the tasks necessary to build a
component without inheritance.

To build a child component in Object Builder, follow these steps:
1. Generate the code for the child component.
2. Define a client DLL for the component, or open the properties wizard for

an existing client.
3. In the Client DLL wizard, on the Libraries to Link With page, select the

import library file for the parent component’s client DLL.
4. In the Client DLL wizard, on the Client Source Files page, add the

component’s client source files.
5. Define a server DLL for the component, or open the properties wizard for

an existing server DLL.
6. In the Server DLL wizard, on the Libraries to Link With page, select the

import library file for the parent component’s server DLL.
7. In the Server DLL wizard, on the Server Source Files page, add the

component’s server source files.
8. Generate the makefiles for the DLLs.
9. Build the DLLs.

“Chapter 6. Inheritance” on page 299
Components (Programming Guide)

“Creating a child component” on page 306
“Configuring builds” on page 549
“Packaging a child component” on page 381

“Naming objects” on page 128
“Internationalization of data” on page 132

380 WebSphere: Application Development Tools Guide



Packaging a child component

This task covers the main steps necessary to package a component that
inherits from another component already defined in Object Builder. It does not
cover every step; you should first be familiar with the tasks necessary to
package a component without inheritance.

To package a child component in Object Builder, follow these steps:
1. Create the application family.
2. Add the client application. On the Additional Executables page, select the

client executable, the component’s client DLL, and the parent component’s
client DLL.

3. Add the server application.
4. Configure the component’s managed object with the server application.
5. Generate the DDL.

“Chapter 6. Inheritance” on page 299
Components (Programming Guide)

“Creating a child component” on page 306
“Packaging applications” on page 574

Chapter 6. Inheritance 381



382 WebSphere: Application Development Tools Guide



Chapter 7. Working with external files

External files for method bodies

Most of the editing you do in Object Builder is of method bodies. You can
either create a method body in Object Builder using the Source pane editor, or
define the method body in an external file that will get pulled into the
generated code for the object.

You can select to use an external file for a particular method in its Method
Implementation wizard. First click on the business object implementation to
display its methods in the Methods pane. Then from the pop-up menu of the
method in the Methods pane, click Properties to display the wizard. By
default, new external files will be placed in the current project’s \Model
directory. The advantage of using external files is that you can do more work
outside of Object Builder. You can edit the external files with your preferred
editor, and then use the obgen command (with the -change option), outside of
Object Builder, to generate the code for the relevant objects and pull together
the code from the external file.

An alternative to the use of external files is direct editing of method bodies in
the generated source files. You can enter your modifications of method bodies
between the lines:
// <GeneratedMethodBody>
// <Body origin=“...” xmi.uuid=“...”>
// Insert method modifications here
...
// End method modifications here
// </Body>
// </GeneratedMethodBody>
within a generated source file that includes method bodies. If you edit a
framework method, you must also change the Body origin value to “user”.

While this removes the need to use obgen to pull in your changes, you do
need to remember to import the changes back into Object Builder before you
generate code again, or your changes will get over-written.

Template Files
Another advantage of external files is that you can use the same external file
for multiple methods, by putting macros in the file and identifying the file as
a template. Macros are identified within the file by the delimiter $ .

© Copyright IBM Corp. 1999, 2000 383



For example, given the following template file:
GenericMethodBody.template
char* str = “This is a method of $classname$”;
cout << str << endl;
return ::CORBA::string_dup (str);

In a method’s wizard, for example the deny() method of a ClaimBO, specify
the external file GenericMethodBody.template, specify that it is a template file,
and on the next page, add a Template File Macro with the name classname
and the substitution value ClaimBO. When you generate the code for
ClaimBO, it contains a method body something like this:
::CORBA::Void ClaimBO_Impl::deny()
{
//Version identifier DCE:F3F30755-6F47-11d2-AF4E-000629B3CFEE:1
// Insert Method modifications here

char* str = “This is a method of ClaimBO”;
cout << str << endl;
return ::CORBA::string_dup (str);

// End Method modifications here
}

You could then access the same method body from another method, for
example SpecialClaimBO::deny, and substitute a different class name in the
macro (for example SpecialClaimBO).

The macro is defined as a simple string, and Object Builder will not recognize
it as a reference to any existing elements. In the above example, if you
changed the name of ClaimBO (for example, to EGClaimBO), you would need
to manually update the macro string to match.

“User-defined methods” on page 751
“Get and set methods” on page 755
“Framework methods” on page 757
“Special framework methods” on page 758
“Push-down methods” on page 759
“External files for method bodies” on page 383

“Importing edited source files” on page 385
“Generating code from the command line” on page 684
“Implementing methods” on page 752

384 WebSphere: Application Development Tools Guide



Importing edited source files

If you make changes to method implementations in the generated source
code, you need to import the changes back into Object Builder, or the changes
will be overwritten the next time you generate code.

When you import edited code, only changes to method implementations are
applied. The import process recognizes method implementations by the
comment block that delimits them. The comment block varies depending on
whether it is a user-defined method or a framework method.

User-defined method

// <GeneratedMethodBody>
// <Body origin=“user” xmi.uuid=“...”>
// Insert method modifications here
...
// End method modifications here
// </Body>
// </GeneratedMethodBody>

Framework method

// <GeneratedMethodBody>
// <Body origin=“ob” xmi.uuid=“...”>
// Insert method modifications here
...
// End method modifications here
// </Body>
// </GeneratedMethodBody>

If you edit a framework method, you must also change the Body origin
attribute to “user”. Otherwise your changes will be ignored.

When you import the framework method, the existing body will be compared
with the imported body. If the two are identical, there is no change. If the two
are different, then the imported body replaces the existing one, and the
framework method’s property is set to Use the implementation defined in
the Source pane(as defined in the method’s Method Implementation wizard
in Object Builder).

The comment block is inserted by the code generation process. Any changes
you make outside of these generated comment blocks, or inside a comment
block with <Body origin=“ob”>, are ignored.

To import code you have edited, follow these steps:

Chapter 7. Working with external files 385



1. From the pop-up menu of either the User-Defined Business Objects folder
or the User-Defined Data Objects folder, click Import > Changes to open
the Import Changes wizard.

2. From the Available files list, select those that contain changes to method
bodies that you want to import.

3. Click >> to move the files to the Files to be imported list.
4. Click Finish. The method body changes are applied.
5. Make any other changes necessary (for example, if the interface of a

method has changed, you need to change its definition in the Business
Object Interface wizard).

“Importing edited source files from the command line” on page 682
“Editing a business object implementation” on page 792
“Generating code” on page 551
“Implementing methods” on page 752

“importimpl” on page 683

Importing C++ or Java classes

If you have an existing C++ or Java class that you want your component to
use, and you do not want to create an IDL interface for it, you can import the
class into Object Builder as a non-IDL type.

Once the class is imported, you can select it as an interface type within Object
Builder (that is, as a method return type, method parameter, or attribute type).

Note: Because this is not an IDL type, it cannot be accessed through the
distributed environment. The component’s managed object will not expose
methods or attributes that use this type. Methods or attributes that use the
type should be added to the business object implementation, not the business
object interface.

To import a non-IDL type, follow these steps:
1. In the Tasks and Objects pane, find the Non-IDL Type Objects folder.
2. From the folder’s pop-up menu, click Import Non-IDL Type. The Import

Non-IDL Type wizard opens to the Name and Language page.
3. Type the name of the class you want to import.

For a Java class, if the class is defined in a package, you must specify the
full class name including the package name. When the code is generated,

386 WebSphere: Application Development Tools Guide



the names of non-IDL types are fully qualified in the body (there is no
import statement for them).
For example:

MyCppClass

java.util.Hashtable (where java.util is the name of the package,
and Hashtable is the class name)

4. Select whether the class is implemented in C++ or Java.
5. If you selected C++, then click Next, otherwise click Finish.
6. Provide implementation details for the class.

For a C++ class, provide the name of the header file that defines the class
and the name of the library file that contains its object code. Include the
file extensions.

7. Click Finish.

The class now appears in the Non-IDL Type Objects folder, and you can select
it as the type of a method parameter, a method return type, or an attribute
type.

Programming languages and conventions (Programming Guide)

“Adding a business object interface” on page 777

Exporting XML

You can export the data in a project’s model in XML format. The exported
files are named according to the structure of the Tasks and Objects pane.
Within each folder in the pane, you can export XML for the top-level
elements. The exported file names are based on the folder name plus element
name: for example, udbo.ClaimFile.xml defines the Claim business object layer
in the User-Defined Business Objects folder. You can export either from within
Object Builder, or from a command line. Once you have exported, you can
import the data into another project’s model.

The files you can export are described in “XML interchange files” on page 493.

To export the XML for a project:
1. Open the project.
2. Click File > Export Model.
3. Select whether to export to a single file or to multiple files.

Chapter 7. Working with external files 387



Generally you should export to multiple files. For the purposes of change
control or changing project divisions, you should always export to
multiple files.

4. Click Finish. Files are exported to the \Export subdirectory.

To export the XML for a folder (any folder except for Framework Interfaces or
Default Homes):
1. From the folder’s pop-up menu, click Export to open the Export XML

wizard.
2. Click Finish. The appropriate XML files are exported to the \Export

subdirectory.

To export the XML for a component layer:
1. From the pop-up menu of a file or top-level object within a folder (any

folder except for Framework Interfaces or Default Homes), click Export to
open the Export XML wizard.

2. Click Finish. The appropriate XML file is exported to the \Export
directory, as described in “XML interchange files” on page 493.

The exported XML files are placed in the project’s \Export directory, and
named according to the source folder for the exported items. For example, if
you exported the contents of the Application Configuration folder, the
exported files all start with udaf. If you exported the business object layer for
a component with the business object file name ClaimFile, the exported file is
udbo.ClaimFile.xml.

Once you have exported the file, you can import it into another project. The
file conforms to the DTD (document type definition) eom.dtd for Object
Builder models.

“Model interchange with XML” on page 492

“Maintaining a team environment ” on page 490
“Exporting XML from the command line” on page 660
“Importing XML” on page 389

“XML interchange files” on page 493
“obexport” on page 661

388 WebSphere: Application Development Tools Guide



Importing XML

You can import XML that has been exported from Object Builder. This allows
you to transfer information from one project model to another.

XML can be imported from the File menu. Click File > Import Model, and
select XML files to import.

The exported XML conforms to a DTD (document type definition) for
Component Broker models: eom.dtd. When you import an XML file, it is
parsed and checked against the DTD. Only XML that conforms to the DTD
can be imported.

The current project must contain the information necessary to resolve any
references in the XML file, or the references will not be imported (the rest of
the XML will be).

For example:
v If you are importing XML that defines a child component, the child’s parent

component must already be defined in the current project.
v If you are importing XML that defines application configuration, the

managed objects configured with the application must already be defined in
the current project.

v If you are importing XML that defines a component Customer that
references a component Account, the referenced Account component must
already be defined in the current project.

To import XML, follow these steps:
1. Click File > Import Model.The Import XML wizard opens to the File

Selection page.
2. Specify the files you want to import. Unless you have moved them, they

are in the \Export subdirectory of the project you exported them from.
3. Click Finish.

The data in the XML files is loaded into the current project.
4. Select File > Save. The newly imported data is saved to the project’s

model.

You can also import XML from the command line, with additional options. If
you are importing multiple files with circular references, or importing into
multiple projects, you should import from the command line with the -X
option.

“Model interchange with XML” on page 492

Chapter 7. Working with external files 389



“Maintaining a team environment ” on page 490
“Exporting XML” on page 387
“Importing XML from the command line” on page 663

“XML interchange files” on page 493
“obimport” on page 664

390 WebSphere: Application Development Tools Guide



Chapter 8. Working with enterprise beans

An enterprise bean is a Java component that can be combined with other
enterprise beans, and other Java components to create a distributed,
three-tiered application. You can create enterprise beans using VisualAge for
Java, and then import them into Object Builder for deployment by importing
the EJB JAR file that encapsulates them.

The following tasks deal with enterprise beans:
v “Importing enterprise beans into Object Builder” on page 392
v “Deploying enterprise beans” on page 408

Note:VisualAge for Java supports composers and converters. Composers are
not supported for enterprise beans that are deployed using Object Builder and
the Component Broker MOFW (CORBA) infrastructure. However, some
converters are supported - not physically, but in concept (in the form of its
various attribute mapping patterns, which include the specification of
arbitrary, user-defined mappings). This infrastructure is used for deploying
enterprise beans only in this version of WebSphere. See the reference topic
’Java to Object Builder type mappings’, which lists the default type
conversions that take place during enterprise bean deployment.

Enterprise bean support is available on the Windows NT, AIX,
Solaris, and HP-UX deployment platforms. It is also available for OS/390.
However, Component Broker and WebSphere EJB clients on platforms other
than CB OS/390 will not be able to exchange information with CB OS/390
enterprise beans. Neither will CB and WebSphere EJB clients that are on CB
OS/390 be able to exchange information with enterprise beans on other
platforms.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Java to Object Builder type mapping” on page 394

© Copyright IBM Corp. 1999, 2000 391



Importing enterprise beans into Object Builder

Enterprise beans encapsulate the business logic and data used and shared by
EJB clients. Enterprise beans are contained in EJB JAR files, which you can
import into Object Builder.

You can import enterprise beans into Object Builder in one of the following
ways:
v “Importing enterprise beans using Object Builder” on page 401
v “Importing enterprise beans from the command line” on page 670
v “Importing enterprise beans from VisualAge for Java” on page 405

From VisualAge for Java, you can export an EJB JAR file that contains any
type of enterprise bean, directly into Object Builder. You can also define the
mapping between the data object and the persistent object in VisualAge for
Java.

Enterprise bean support is available on the Windows NT, AIX,
Solaris, and HP-UX deployment platforms. It is also available for OS/390.
However, Component Broker and WebSphere EJB clients will not be able to
exchange information with CB OS/390 enterprise beans.

Whichever method you use to import the beans, it follows the deployment
flow as in the diagram:

392 WebSphere: Application Development Tools Guide



For enterprise beans that are created using a tool other than VisualAge for
Java:

If you have either create the JAR file, or modify an existing one, and then
import it into Object Builder, it undergoes the following processes:
1. Object Builder creates default data object to persistent object mappings for

the beans that you choose to deploy
2. It then deploys those beans

For enterprise beans that are created using VisualAge for Java:

If you create a JAR file for which you define schema mappings, and then
import it into Object Builder, it undergoes the following processes:
1. Object Builder checks these mappings, and translates them into

corresponding data object to persistent object mappings
2. It then deploys the beans

If you create a JAR file for which you do not define schema mappings, and
then import it into Object Builder, it undergoes the following processes:
1. Object Builder creates default data object to persistent object mappings for

the beans that you choose to deploy

Chapter 8. Working with enterprise beans 393



2. It then deploys those beans

If you modify a JAR file by redefining its schema mappings, and then import
it into Object Builder, it undergoes the following processes:
1. Object Builder checks these mappings, and translates them into

corresponding data object to persistent object mappings
2. It then deploys the beans

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Importing enterprise beans using Object Builder” on page 401
“Importing enterprise beans from the command line” on page 670
“Importing enterprise beans from VisualAge for Java” on page 405

Java to Object Builder type mapping

The existing VisualAge for Java tooling supports composers and converters.
Composers are not supported for enterprise beans that are deployed using
Object Builder and the CB MOFW (CORBA) infrastructure. However, some
converters are supported in concept, and this infrastructure is used for
deploying enterprise beans only in this version of WebSphere.

The physical VisualAge for Java or VisualAge Persistence (Persistence Builder,
or VAP) converters will not be used when an enterprise bean is deployed
using Object Builder. However, Object Builder does provide some type
conversion capability, using a C++ data object. Some predefined mapping
helpers exist, and ship with Object Builder, or you can define and use your
own.

The following table shows the default type conversion (the supported
converter mappings), with the types that will be created in Object Builder:

Java type IDL type SQL type

int long INTEGER

short short SMALLINT

long long long (workstation)

long (CB/390)

BIGINT (Note: not yet
supported by Query.
Fallback type is INTEGER)

char char CHAR(1)

String string (wstring) VARCHAR or CHAR
(VARGRAPHIC or
GRAPHIC)

byte octet SMALLINT

394 WebSphere: Application Development Tools Guide



Java type IDL type SQL type

byte[] bytestring
(sequence<octet>)

VARCHAR FOR BITDATA

boolean boolean SMALLINT

float float REAL

double double DOUBLE

The following types do not have a direct mapping, but can be converted
relatively easily. They will require this conversion in the tie bean, and in the
data object.

Java type IDL type SQL type

Java.sql.Date String DATE

Java.sql.Time String TIME

Java.sql.Timestamp String TIMESTAMP

Java.math.BigInteger String DECIMAL

Java.math.BigDecimal String DECIMAL

Note: User-defined types, such as Java classes that you provide, and VAP
composers and persisters, will not be automatically mapped in this version of
Object Builder version. Any type other than those listed above will be
serialized in the tie bean, and persisted as a binary VARCHAR FOR BIT
DATA field in the database.

“Chapter 8. Working with enterprise beans” on page 391

Keys for enterprise beans

In general, a primary key must have the least number of attributes (state
data), which are used to uniquely identify an instance of a business object. All
the attributes of the key must be set by the client to ensure uniqueness, but at
least one attribute of the key must be set if the key is to be used on the server.
Like a copy helper, a key is a local-only object, which means it is not
accessible remotely. A key usually has a subset of the attributes defined for
the copy helper associated with the same business object.

In the Managed Object Framework (MOFW), the key, if it is defined for a
relational database, is made up of some subset of the fields that are in the
externalized IDL interface.

Chapter 8. Working with enterprise beans 395



For an enterprise bean, a key is made up of some subset of
container-managed persistence (CMP) fields. However, there are cases where
the keys are not related to CMP. The CMP fields usually represent the same
fields that are in the remotable interface to the enterprise bean. However, very
often, in addition to these field representations, there are additional CMP
attributes that are part of the key. This is to support encapsulation.

Enterprise beans do not expose query to client programs, but instead enable
query of all CMP fields. They encapsulate this logic in finders. This differs
from the Component Broker MOFW, where the ability to write arbitrary
predicates is exposed to clients and servers by means of homes and query
evaluators.

Object Builder, in keeping with the MOFW, now supports two styles of
primary keys (and copy helpers):
v Those consisting strictly of attributes from a business object client interface
v Those consisting of attributes from a single business object server

implementation and, optionally, from the business object client interface

When the key includes attributes only from the business object interface, you
can use it to map to the remote EJB interface. When it includes attributes from
a business object implementation as well, you can use it to map to the EJB
object.

Modeling EJB keys that have attributes that are not defined on the remote
EJB interface
When you define keys and copy helpers in Object Builder, you can select a
business object implementation so that its attributes can be used in the
definition of these objects. When you select a business object implementation,
your choice of attributes is not limited to those that are defined on the
implementation only; you can also select the attributes that are defined on the
related business object interface. However, you do not have to use attributes
from the business object interface. This follows the model of the EJB keys that
contain attributes that are not defined on the remote EJB interface.

“Adding a key” on page 826
“Editing a key” on page 828
“Adding a copy helper” on page 830
“Chapter 8. Working with enterprise beans” on page 391

CMP Entity Bean-Specific Settings

This section has entries for container-managed beans that are not sessional.
Details include the type of backend storage, whether the bean is queryable,

396 WebSphere: Application Development Tools Guide



whether it is one that is created by importing a PA bean using procedural
adaptors, and whether it uses wstring to map to the bean-specific Java string
type, in its corresponding data object.

Backend Storage Type
The backend storage type for the enterprise bean’s persistent data can be one
of the following data stores:
v DB2 V5.2 Embedded SQL
v DB2 V6.1 Embedded SQL
v DB2 V5.2 Cache Service
v DB2 V6.1 Cache Service
v Oracle Cache Service
v Informix Cache Service
v HOD - Procedural Adaptors
v ECI - Procedural Adaptors
v LU6.2 - Procedural Adaptors
v EXCI - Procedural Adaptors
v OTMA - Procedural Adaptors

Select one from the list.

Note: If you do not specify a backend storage type, DB2 V5.2 Embedded SQL
is taken as the default.

Restrictions:

If the deployment platform is 390, you can select only from the
following options:
v DB2 V5.2 Embedded SQL
v DB2 V6.1 Embedded SQL
v EXCI - Procedural Adaptors
v OTMA - Procedural Adaptors

Informix If you are using the Informix Cache Service, a given transaction will
not be able to access more than one Informix database per CB server. To
involve two Informix databases in a transaction, you must access each
database from a different server.

Home Type
You can select the type of the home to be generated. You have the following
choices:
v Regular home
v Queryable home

Chapter 8. Working with enterprise beans 397



v Polymorphic home

These options can be used only for CMP entity beans that store their
persistent data in a relational database. That is, you can select one of these
home types only if you have selected one of the following backend data
storage types:
v DB2 V5.2 Embedded SQL
v DB2 V6.1 Embedded SQL
v DB2 V5.2 Cache Service
v DB2 V6.1 Cache Service
v Oracle Cache Service
v Informix Cache Service

Regular home
This is the default. A regular home is always generated if you do not specify
the type.

Queryable home
Select this option to direct the tool to generate a queryable Component Broker
(CB) home object. This option must be used if the finder helper class, which is
used to implement the finder methods in a CMP entity bean, uses the CB
Query Service. This option must not be used if an entity bean uses CICS or
IMS to store its persistent data. When you designate the home to be
queryable, the generated business object interface is automatically marked as
queryable.

Note: If you select either Oracle Cache Service, or Informix Cache Service, you
must select the Queryable homeoption.

Polymorphic home
Select this option if you want to deploy the enterprise beans into a
polymorphic home. It directs the tool to generate a polymorphic Component
Broker (CB) home object. This option must be used if the finder helper class,
which is used to implement the finder methods in a CMP entity bean, uses
the CB Query Service. This option must not be used if an entity bean uses
CICS or IMS to store its persistent data. When you designate the home to be
polymorphic, the generated business object interface is automatically marked
as polymorphic (that is, it inherits from IManagedClient
IManagedClient::IPolymorphicHome).

Note:You must use either this option, or the Queryable homeoption if the
finder helper class, which is used to implement the finder methods in a CMP
entity bean, uses the CB Query Service.

398 WebSphere: Application Development Tools Guide



Bottom-up PAA
This check box is selected, and cannot be edited if the enterprise bean that
you selected for deployment was generated using the PAOToEJB tool. The
enterprise bean in this case, is created as a wrapper for the Enterprise Access
Builder business object, which is itself a wrapper for a procedural adaptor
object (one that is usually imported into Object Builder as a PA bean).

Workload management
Select this check box if workload management is to be used in the
deployment of the enterprise bean. When you select this option, Object
Builder marks the CMP entity bean to be used in a workload
manager-enabled container.

The workload management service improves the scalability of the EJB server
environment by grouping multiple EJB servers into server groups. Clients can
access these server groups as if they are a single EJB server, and the workload
management service ensures that the workload is evenly distributed across
the EJB servers in the server groups. An EJB server can belong to only one
server group.

Use wstring in data object
Directs the tool to map the container-managed fields of an entity bean (which
are of Java string type) to the wstring IDL type (rather than the string IDL
type) on the data object. It is preferable to map to the string IDL type if the
data source contains single-byte character data; it is preferable to map to the
wstring IDL type if the data source contains double-byte or Unicode character
data.

Entity beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)
The EJB JAR file (Writing Enterprise Beans in WebSphere)
Workload management (Using Object Builder) (Advanced Programming Guide)

“Importing enterprise beans into Object Builder” on page 392
“Deploying enterprise beans” on page 408
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)

BMP Entity Bean-Specific Settings

This section has entries for bean-managed beans that are not sessional. These
are the options:

Chapter 8. Working with enterprise beans 399



Workload management
If this option is selected, Object Builder generates a home interface that is
workload manager-enabled.

The workload management service improves the scalability of the EJB server
environment by grouping multiple EJB servers into server groups. Clients can
access these server groups as if they are a single EJB server, and the workload
management service ensures that the workload is evenly distributed across
the EJB servers in the server groups. An EJB server can belong to only one
server group.

JDBCAA
Select this check box if the BMP entity beans require JDBC (Java Database
Connectivity), along with the ability to carry out distributed transactions. The
JDBC application adaptor handles distributed transactions by enabling the
bean implementation to connect to the CB Transaction Service. If you do not
select this option, the BMP beans handle persistence by themselves: they may
or may not use JDBC.

Entity beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)
The EJB JAR file (Writing Enterprise Beans in WebSphere)
Workload management (Using Object Builder) (Advanced Programming Guide)

“Importing enterprise beans into Object Builder” on page 392
“Deploying enterprise beans” on page 408
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)

Session Bean-Specific Settings

This section has information for session beans that are sessional. You can view
the following settings:

Workload management
If this option is selected for a stateful session bean, Object Builder generates a
home interface that is workload manager-enabled. If this option is selected for
a stateless session bean, it indicates that the bean is to be used in a workload
manager-enabled container.

Session beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)
The EJB JAR file (Writing Enterprise Beans in WebSphere)
Workload management (Using Object Builder) (Advanced Programming Guide)

400 WebSphere: Application Development Tools Guide



“Importing enterprise beans into Object Builder” on page 392
“Deploying enterprise beans” on page 408
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)

Importing enterprise beans using Object Builder

Enterprise beans are contained in EJB JAR files, which you can import into
Object Builder. You can import both session and entity beans into Object
Builder using this method.

To import enterprise beans, follow the steps in the task “Creating a deployed
EJB JAR file” on page 414.

When you click Finish from the Import EJB JAR wizard, XML is imported
into Object Builder. The EJB JAR file is represented as a node in the Enterprise
Beans folder, with a class corresponding to each of the enterprise beans that
you selected to be deployed, as a separate node beneath it.

The Tie class, and the IDL and Java files corresponding to the imported JAR
file are created in the Working\<platform> directory.
The data object and its implementation are created in the User-Defined Data
Objects folder. The IDL attributes of the data object interface correspond to the
entity bean’s container-managed fields. The User-Defined Business Objects
folder has the associated business object, the key, the copy helper, and the
managed object.

CMP entity beans

For CMP entity beans the default mappings between the data object and the
persistent object are created when you import the beans into Object Builder.
You can override these mappings, and provide your own.

Session beans, or BMP entity beans

Normally, you do not have to make any additions to your model for these
beans. But, in the case of session beans that are associated with an MQSeries
application adaptor-backed business object, you must follow this step:
1. Complete the definition of the data object implementation for the business

object that is associated with the session bean.

The business object referred to is either an existing one that you specified
when you created the session bean using the mqaaejb tool, or one that you
created while running the tool. See the section: Creating an enterprise bean
that communicates with MQSeries in Writing Enterprise Beans in WebSphere.

Chapter 8. Working with enterprise beans 401



You can select the Do All option from the File menu to run the Consistency
Checker on your model.

Entity beans (Writing Enterprise Beans in WebSphere)
Session beans (Writing Enterprise Beans in WebSphere)
The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Chapter 8. Working with enterprise beans” on page 391
“Deploying enterprise beans” on page 408
Enabling transactions and security in enterprise beans (Writing Enterprise Beans
in WebSphere)
Setting the transaction attribute (Writing Enterprise Beans in WebSphere)
Creating an enterprise bean that communicates with MQSeries (Writing
Enterprise Beans in WebSphere)

The EJB Deployment Tool

The EJB Deployment Tool works with Object Builder to create and compile
the files required by the EJB server (CB) to manage an enterprise bean. The
EJB Deployment Tool introspects the EJB JAR file, paying attention to the EJB
home, the EJB object classes and the deployment descriptors. The EJB
Deployment Tool generates a model that Object Builder uses to create the
necessary deployment library files. The output of this process is a set of server
side and client side JAR and library files.

The EJB Deployment Tool deploys enterprise beans by generating extensible
markup language (XML) files and importing those files into Object Builder. If
the XML import fails, you can view any error messages generated by Object
Builder in the import_model.log file located in the project directory.

When you deploy enterprise beans with the EJB Deployment Tool, a
Component Broker data object IDL interface is created. The IDL attributes of
this interface correspond to the entity bean’s container-managed fields. The
EJB Deployment Tool maps the container-managed fields of entity beans to
data object IDL attributes, and it also maps these IDL attributes to the entity
bean’s data source. You can use an existing data source such as a DB2, Oracle
or Informix database for meet-in-the-middle deployment, or you can define a
new one for top-down deployment.

By default, Object Builder creates the persistent objects and schemas for
deployed enterprise beans. If a user is deploying an enterprise bean from
VisualAge for Java version 3.5, the schema mappings created in VisualAge for
Java are preserved. For JAR files that are created using earlier versions of

402 WebSphere: Application Development Tools Guide



VisualAge for Java, and for those created using other tools, Object Builder
creates the default persistent objects and schemas. The default mappings that
are created will be similar to those created when you do top-down
development.

The EJB JAR file (Writing Enterprise Beans in WebSphere)

“Importing enterprise beans from the command line” on page 670
“Deploying enterprise beans” on page 408

“cbejb options” on page 673

Importing enterprise beans from the command line
After you have installed the EJB deployment tool, from a command prompt,
invoke it using the cbejb command, specifying the EJB JAR file that contains
the enterprise beans that you want to deploy, the project directory within
Object Builder that you want to use for the beans, the names of the beans that
you want to deploy, and whether you want to use the graphical user interface
of Object Builder to make deployment-specific changes (-guisg).

Type:
cbejb ejb-jarFile [-ob projDir] [-bean beanNames] [-guisg]

For CMP entity beans, and MQSeries application adaptor-backed beans

If you specify -guisg
After the data object to persistent object mapping is done, (and if you had not
specified -nousraction with cbejb), you are presented with a dialog box from
which you can select different actions to be taken:
v launch Object Builder if you want to change the default mappings between

the data object and the persistent object;
v continue with code generation and build; or
v stop the deployment without generating and building code.

If you do not specify -guisg
After the data object to persistent object mapping is done, (and if you had not
specified -nousraction with cbejb), you are prompted for the next action (at
the command line):
v x, to cancel out of the deployment process;
v c, to continue with model check, code generation and build; or
v o, to launch Object Builder (most often if you want to change the default

mapping between the data object and the persistent object).

Chapter 8. Working with enterprise beans 403



When you exit Object Builder, after you have deployed either CMP entity
beans, or session beans that are associated with an MQSeries application
adaptor-backed business object, the Do Alldialog box appears. You can
specify further actions to be taken: run the Model Consistency Checker,
generate all code for model, build targets, or exit Object Builder. You also
have the option of changing the default checks that the Consistency Checker
will perform (click the Checker Options button, and select a different set of
options, if you want to). Click Start to run the Model Consistency Checker,
generate code, and compile it (if you have selected the corresponding check
box options).

After the data object to persistent object mapping is done, (and if you had
specified -nousraction with cbejb), the deployment flow (codegen and build, if
specified previously using the respective cbejb options) will continue by
means of the command line only.

For BMP entity beans, and session beans
If you had either specified -guisg, and used the graphical user interface of
Object Builder, and completed the task of importing the beans using the
wizards; or if you did not specify -guisg, but specified all other options (you
chose to deploy the beans entirely using the command line); the deployment
flow continues uninterrupted, with code generation and build using the
command line.

Using Object Builder with the EJB Deployment Tool
If you use the -guisg option, Object Builder’s graphical user interface is
displayed, and you can use it to import the beans into Object Builder for
deployment.

Follow these steps:
1. On the first page (the Enterprise Bean Selection page) of the Import EJB

JAR wizard, specify the EJB JAR file that you want to import, and the
project directory for the imported enterprise beans.

2. Indicate whether you want code to be generated, and then built for the
objects that are created at the time of the import.

3. Select which of the imported enterprise beans in the JAR file have to be
deployed.

4. Click Finish. The Import EJB JAR wizard opens to the EJB Browser page.
You can use this page to view, or edit the settings of the beans to be
deployed.

5. Click Properties.The Deployment Information page opens.
6. Except for the deployment platforms, you can edit all other information on

this page. You can specify a finder helper class name (the name of the
public interface class that contains the definitions and initializations of the

404 WebSphere: Application Development Tools Guide



enterprise bean’s finder methods, which are used to find entity bean
objects); name an application family into which the beans are to be
configured; specify the name of the DLL that is to be associated with the
application family; and for CMP beans, specify a database to be associated
with the beans. You can also add or delete client and server JAR file
dependencies, and specify whether the bean is to be deployed into a
regular home, a queryable home, or a polymorphic home. Besides, you can
edit information specific to the bean type.

7. Click Finish.

During deployment, a deployed JAR file is generated from an EJB JAR file.
The enterprise beans are deployed in the EJB server (CB) environment. The
deployed JAR file (which is represented by a node in the EJB Folder in the
Tasks and Objects pane of Object Builder) contains classes required by the EJB
server.

The EJB deployment tool also generates the data definition language (DDL)
file used during installation of the enterprise bean into the EJB server (CB).

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)

“Chapter 8. Working with enterprise beans” on page 391
“Importing enterprise beans into Object Builder” on page 392
Deploying enterprise beans into a polymorphic home

“cbejb options” on page 673

Importing enterprise beans from VisualAge for Java

You can export session, BMP, and CMP beans from VisualAge for Java,
directly into Object Builder.

In VisualAge for Java, once you have finished creating and testing your
enterprise beans, follow these steps:
1. In the Enterprise Beans pane of the EJB page, select the EJB group that

contains the enterprise beans that you want to import.
2. From the EJB menu, select Export, and then EJB JAR for CB.
3. The Export to an EJB JAR File for Component Broker wizard opens.
4. Specify the name of the EJB JAR file and its contents, as well as other

options such as debugging, compressing, or overwriting information.

Chapter 8. Working with enterprise beans 405



5. Click Finish.

The Import EJB JAR wizard of Object Builder opens to the Enterprise Bean
Selection page. Follow these steps:
1. Using the Enterprise Bean Selection page, specify the project directory for

the imported enterprise beans. The default project directory is
x:\tmpCBDeploy, where x is the directory from which you launched
VisualAge for Java. You must provide a different directory name each time
you import a JAR file, unless you are redeploying the beans. Otherwise,
information will be overwritten. You can indicate whether you want code
to be generated, and then built for the objects that are created at the time
of the import. Select which of the imported enterprise beans in the JAR file
have to be deployed.

2. Click Next. The EJB Browser page opens.
3. You can use this page to view, or edit the settings of the beans to be

deployed. Select the bean from the Enterprise Beans to Be Deployed list,
and click the Properties button.

4. The Deployment Information page opens. Except for the deployment
platforms, you can edit all other information on this page. You can provide
a finder helper class name, a database name, and add or delete client and
server JAR file dependencies.
Note: If you created the beans that you imported using VisualAge for Java,
do not use the finder helper class that is generated by the tool. Instead,
you must use the FinderHelperGenerator utility of the EJB server in CB to
implement the finder helper class. For example, to generate a finder helper
class for the AccountHome interface, use the command:
# ejbfhgen com.ibm.ejs.doc.account.AccountHome

This command generates the finder helper class named
com.ibm.ejs.doc.account.AccountHome.
For more information on finder helper classes, see Defining finder
methods, and in particular, Creating finder logic in the EJB server (CB) in
Writing Enterprise Beans in WebSphere.

5. Click Finish.

A window is launched.

The batch file and the response file
During import, two files: a batch file (.bat extension), and a response file (.rsp
extension) are created in your project directory. They take their names from
the name of the JAR file that you are importing. For example if the name of
the EJB JAR file is EJBHotel.jar, the names of these files will be EJBHotel.bat,
and EJBHotel.rsp.

Both these files contain the options that you select as you import the beans for
deployment.

406 WebSphere: Application Development Tools Guide



The batch file sets the local class path, and adds all the client and server JAR
file dependencies to your class path. It has the cbejb command used along
with the process options (options used with the cbejb command to generate
and compile code).

The response file contains the deployment options that you specify for the
bean that you select to import and deploy (these include any options that you
selected as you imported the bean, except for the process options). When you
import enterprise beans subsequently from the same JAR file, the batch and
the response files are regenerated, and they overwrite the existing files.

The window shows the class path and the cbejb command that is used for
deployment. You also see the response file used with the command. You will
notice that the cbejb command is invoked with -nousraction. You are not
prompted for any action after the data object to persistent object mapping is
done. Object Builder is not launched. The deployment flow (codegen and
build, if specified as process options) will continue by means of the command
line only. However, from the command line, you can bring up Object Builder
if you want to either view or modify your model.

This window is non-interactive, but you can save the output in a file for later
reference.

Recommendations:

v Do not close this button using the Close (X) button in the title bar. Instead,
close it by terminating and removing your program from VisualAge for
Java’s Console window.

v Before you deploy another JAR file, refresh VisualAge for Java’s Console
window: select Programs > Terminate and Remove.

v If you prefer to comment on the output of deployment as it progresses,
rather than later, instead of saving the output from the non-interactive
window, use VisualAge for Java’s Console window itself: as the output
scrolls in the Outputpanel, type your comments in the Standard In panel.
You can then save this documented output of deployment using File >
Save As.

Note:When you deploy beans using the EJB Deployment Tool (cbejb), you can
make use of this same response file that is generated (specifying it with the
-rsp option for the cbejb command), if you are specifying different process
options. You can also use these files when you are redeploying the same JAR
file, and prefer not to use VisualAge for Java (in which case, you can run the
generated batch file, if you are using the same process options).

A deployed JAR file is generated from an EJB JAR file. The deployed JAR file
(represented by a node in the Enterprise Beans folder in the Tasks and Objects

Chapter 8. Working with enterprise beans 407



pane of Object Builder) contains the EJB classes (represented by nodes beneath
the deployed JAR file) that are required by the EJB server (CB) environment.

The ImportEJB directory, which is created in the same directory as the batch
and response files, and which is at the same level as the Model and Working
directories contains the XML file for your model. For example, for the
imported EJBHotel.jar file, it will be EJBHotel.xml. You can later import this
XML file into Object Builder.

When you exit Object Builder, after you have deployed either CMP entity
beans, or session beans that are associated with an MQSeries application
adaptor-backed business object, the Do Alldialog box appears. You can
specify further actions to be taken: run the Model Consistency Checker,
generate all code for model, build targets, or exit Object Builder. You also
have the option of changing the default checks that the Consistency Checker
will perform (click the Checker Options button, and select a different set of
options, if you want to). Click Start to run the Model Consistency Checker,
generate code, and compile it (if you have selected the corresponding check
box options).

Additional information on exporting EJB JAR files is found in the VisualAge
for Java EJB Development Environment online help topic ’Exporting
enterprise beans to EJB or deployed JAR files’. For points to consider when
you deploy CMP beans that are created in VisualAge for Java to Component
Broker, refer to the VisualAge for Java topic ’Default type mappings for
deployment to Component Broker’.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)

“Chapter 8. Working with enterprise beans” on page 391
“Deploying enterprise beans”
Importing XML
Creating finder logic in the EJB server (CB) (Writing Enterprise Beans in
WebSphere)

Deploying enterprise beans

Enterprise beans encapsulate the business logic and data used and shared by
EJB clients.

408 WebSphere: Application Development Tools Guide



The C++ code that is required
to deploy an enterprise bean onto CB must be compiled on the target
platform.

There are two ways to deploy enterprise beans onto Component Broker:
v “Deploying enterprise beans using Object Builder” on page 410
v “Deploying enterprise beans using the EJB Deployment Tool” on page 411

(cbejb)

Aspects of the enterprise bean persistence model that are not transferred to
Object Builder
VisualAge for Java supports both composers and converters. However,
composers are not supported for enterprise beans that are deployed using
Object Builder and the Component Broker MOFW (CORBA) infrastructure.
Some converters are supported in concept (in the form of its various attribute
mapping patterns, which include the specification of arbitrary, user-defined
mappings). This infrastructure is used for deploying enterprise beans only in
this version of WebSphere. See the reference topic ’Java to Object Builder type
mappings’, which lists the default type conversions that take place during
enterprise bean deployment.

Deploying from Windows to AIX
If you developed an EJB JAR file in VisualAge for Java on Windows, and you
want to deploy it onto CB on AIX, export it using the export function in the
VisualAge for Java integrated development environment (IDE). Copy the
exported JAR file, and any other JAR files the beans may need to use, to your
AIX machine. See the VisualAge for Java IDE help topics, ’Exporting code’
and ’Deploying code’ for more details.

Redeploying CMP entity beans
Certain restrictions apply when you redeploy CMP entity beans into the same
Component Broker model. See ’Restrictions for R3.5’.

Restrictions for R3.5
The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Chapter 8. Working with enterprise beans” on page 391
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)

Chapter 8. Working with enterprise beans 409



“Java to Object Builder type mapping” on page 394

Deploying enterprise beans using Object Builder

Enterprise bean support is available on the Windows NT, AIX,
Solaris, and HP-UX deployment platforms. It is also available for OS/390.
However, Component Broker and WebSphere EJB clients on platforms other
than CB OS/390 will not be able to exchange information with CB OS/390
enterprise beans. Neither will CB and WebSphere EJB clients that are on CB
OS/390 be able to exchange information with enterprise beans on other
platforms.

Enterprise beans encapsulate the business logic and data used and shared by
EJB clients. Using Object Builder, you can deploy any type of enterprise bean.

Once you have imported the EJB JAR file into Object Builder, the deployed
enterprise beans are created. For enterprise beans that are created using
VisualAge for Java version 3.5, and for which you have defined schema and
mapping information in that tool, Object Builder translates that information
into data object to persistent object mappings. For enterprise beans that are
created using versions of VisualAge for Java prior to 3.5, or for those beans
tated using any other tool, Object Builder creates default mappings between
the data object and the persistent object. Of course, you can override the
default mappings and provide your own.

If you select to generate and build code (by using either the pop-up menu
items from the Enterprise beans folder, or from the File menu), code for the
required objects is generated into the appropriate directories within your
project directory.

Object Builder creates the following objects for each enterprise bean that you
select for deployment:

In the User-Defined Data Objects folder:
v the data object file
v the data object interface
v the data object implementation

Note: The IDL attributes of the data object interface correspond to the entity
bean’s container-managed fields.

In the User-Defined Business Objects folder:
v the associated business object
v the key

410 WebSphere: Application Development Tools Guide



v the copy helper
v the managed object

Warning:It is recommended that you do not change the business object’s
implementation language, which is C++.

The following files that correspond to the imported JAR file are created in the
Working\<platform> directory:
v the Tie class
v the IDL files
v the Java files

You can now build and configure your application.

Restriction:Composers are not supported for enterprise beans that are
deployed using Object Builder and the Component Broker MOFW (CORBA)
infrastructure even though VisualAge for Java supports both composers and
converters.

For a list of the default type conversions (the supported converter mappings)
that take place during enterprise bean deployment, see the reference topic
’Java to Object Builder type mappings’.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Deploying enterprise beans” on page 408
“Importing enterprise beans into Object Builder” on page 392
“Mapping a data object to a persistent object” on page 703
“Configuring builds” on page 549
“Packaging applications” on page 574

“Java to Object Builder type mapping” on page 394

Deploying enterprise beans using the EJB Deployment Tool

You can use the EJB deployment tool, which has a command-line interface, to
deploy BMP entity beans, session beans, and CMP entity beans. See the task
Importing enterprise beans using the EJB Deployment Tool.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

Chapter 8. Working with enterprise beans 411



“Chapter 8. Working with enterprise beans” on page 391
“Importing enterprise beans from the command line” on page 670
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)

“cbejb options” on page 673

Deploying enterprise beans into a polymorphic home

The process of deploying an enterprise bean into a polymorphic home is
different for beans that have been mapped (by means of the mapping between
the associated data object and persistent object), and for those that have not
been mapped.

Note:You can use polymorphic homes for deployment only if the inheritance
follows the single table pattern: you cannot use polymorphic homes and have
inheritance with either the attributes duplication pattern, or the key
duplication pattern (that is, any root-leaf patterns).

Polymorphic deployment for unmapped enterprise beans

To deploy an unmapped enterprise bean, follow these steps:
1. Import the enterprise beans into Object Builder using either the interface

(see “Importing enterprise beans using Object Builder” on page 401), or the
command line (see “Importing enterprise beans from the command line”
on page 670)

2. On the Deployment Information page, specify the type of home for the
enterprise beans to be polymorphic. This instructs the tool to create a
polymorphic specialized home instead of a queryable, iterable, or a regular
home.

Object Builder automatically creates a single table mapping (inheritance with
a single datastore pattern) from a hierarchy of enterprise beans. It follows
these steps:
1. Defines a table that contains columns for the container-managed (CM)

fields of the enterprise beans in the hierarchy.
2. Defines a column to hold a discriminator value.
3. Defines a unique discriminator value for each pair of objects that consists

of an enterprise bean and its data object implementation. This unique
value is the EJB class name.

4. Defines a discriminator expression on each data object implementation.
This expression contains both the discriminator column and the unique
value it is set to.

412 WebSphere: Application Development Tools Guide



Note: The homes of enterprise beans reside in the Object Builder model as
specialized homes. Each enterprise bean that is deployed into Object
Builder is supported by two complete managed object assemblies:
v a regular managed object assembly for the EJBObject, and
v a specialized home managed object assembly for the enterprise bean’s

EJBHome.

Polymorphic deployment for mapped enterprise beans
Given a hierarchy of enterprise beans that are mapped (in the Managed Object
Framework (MOF)) to a single table, an equivalent mapping is automatically
created in Object Builder.

In VisualAge Persistence (VAP, which is also called the Persistence Builder),
you can define a discriminator column (which is unmapped to any CM field
of the enterprise beans) for the hierarchy, and a discriminator value for each
enterprise bean in the hierarchy.

Object Builder follows these steps:
1. Creates an unmapped column in the single table
2. Creates a discriminator expression on each data object implementation that

contains the equal to (=) sign, and equates the discriminator column to the
discriminator value for the data object implementation’s enterprise bean.

Note: If you provide your own data object to persistent object mappings, and
it does not satisfy all the criteria for a polymorphic model, the Consistency
Checker will warn you.

“cbejb options” on page 673

Working with deployed EJB JAR files

You can import an EJB JAR file that is created using either VisualAge for Java,
or any other tool such as the jetace tool, into Object Builder.

The following tasks deal with deployed EJB JAR files:
v “Creating a deployed EJB JAR file” on page 414
v “Editing an EJB JAR file” on page 415
v “Deleting an EJB JAR file” on page 415

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

Chapter 8. Working with enterprise beans 413



“Working with components” on page 697

Creating a deployed EJB JAR file

An EJB JAR file contains one or more enterprise beans. When you import an
EJB JAR file into Object Builder, it is converted to a deployed JAR file.

To create a deployed EJB JAR file in the Enterprise Beans folder, follow these
steps:
1. Select the Enterprise Beans folder in the Tasks and Objects pane.
2. From its pop-up menu, select Import EJB JAR.
3. The Import EJB JAR wizard opens to the Enterprise Bean Selection page.

Specify the JAR file that you want to import, and the project directory for
the imported enterprise beans. You can indicate whether you want code to
be generated, and then built for the objects that are created at the time of
the import. Select which of the imported enterprise beans in the JAR file
have to be deployed. You can also indicate whether you want to preserve
the mapping between the data object and the persistent object if it has
already been defined.

4. Click Next. The EJB Browser page opens.
5. You can use this page to view, or edit the settings of the beans to be

deployed: Select the bean from the Enterprise Beans to Be Deployed list,
and click the Properties button.

6. The Deployment Information page opens. Except for the deployment
platforms, you can edit all other information on this page. You can provide
a finder helper class name, a database name, and add or delete client and
server JAR file dependencies.
Note: If you created the beans that you imported using VisualAge for Java,
do not use the finder helper class that is generated by the tool. Instead,
you must use the FinderHelperGenerator utility of the EJB server in CB to
implement the finder helper class. For example, to generate a finder helper
class for the AccountHome interface, use the command:
# ejbfhgen com.ibm.ejs.doc.account.AccountHome

This command generates the finder helper class named
com.ibm.ejs.doc.account.AccountHome.
For more information on finder helper classes, see Defining finder
methods, and in particular, Creating finder logic in the EJB server (CB) in
Writing Enterprise Beans in WebSphere.

7. Click Finish.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

414 WebSphere: Application Development Tools Guide



“Working with deployed EJB JAR files” on page 413

“Naming objects” on page 128
“Internationalization of data” on page 132

Editing an EJB JAR file

You cannot edit the properties of an EJB JAR file; you can only view its
details. Follow these steps:
1. Select the EJB JAR file from the Enterprise Beans folder.
2. From the pop-up menu of the file, select Properties. The Import EJB JAR

wizard opens to the EJB JAR File page.
3. This page shows you the project directory that is used for the deployment

of the enterprise beans, and the deployed enterprise beans that belong to
the EJB JAR file.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with deployed EJB JAR files” on page 413

Deleting an EJB JAR file

To delete an EJB JAR file, follow these steps:
1. Select the EJB JAR file in the Enterprise Beans folder.
2. From the pop-up menu of the file, select Delete.

The EJB JAR file, and all the classes that belong to it are deleted from the
folder.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with deployed EJB JAR files” on page 413

Chapter 8. Working with enterprise beans 415



Working with deployed enterprise beans

You can import an EJB JAR file that is created using either VisualAge for Java,
or any other tool such as the jetace tool, into Object Builder. Deployed
enterprise beans are generated in the process.

The following tasks deal with deployed enterprise beans:
v “Creating a deployed enterprise bean”
v “Editing an EJB class”
v “Deleting an EJB class” on page 417

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with components” on page 697

Creating a deployed enterprise bean

Enterprise beans are contained in EJB JAR files. When you import an EJB JAR
file into Object Builder, it is converted to a deployed JAR file, with the
enterprise beans being converted into deployed enterprise beans.

To create a deployed enterprise bean, follow the steps in the task “Creating a
deployed EJB JAR file” on page 414.

When you click Finish from the Import EJB JAR wizard, the deployed
enterprise beans are created in the Enterprise Beans folder , and are
represented as EJB classes beneath the EJB JAR file.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with deployed enterprise beans”

“Naming objects” on page 128
“Internationalization of data” on page 132

Editing an EJB class

The EJB class represents a deployed enterprise bean in Object Builder, and is
represented as a node beneath the deployed EJB JAR file in the Enterprise
Beans folder.

416 WebSphere: Application Development Tools Guide



You cannot edit the properties of an EJB class, but you can view them. Follow
these steps:
1. Select the EJB class in the Enterprise Beans folder.
2. From the pop-up menu of the file, select Properties. The EJB Browser

wizard opens to the Deployment Descriptor page. This page is read-only.
View the deployment descriptor settings for the enterprise bean.

3. Click Next. The Deployment Information page opens.
4. View the information, and click Finish.

You can edit the EJB class with the tool that you used to create the enterprise
bean that you imported into Object Builder. You can then reimport the bean
into Object Builder, and redeploy it.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with deployed enterprise beans” on page 416

Deleting an EJB class

To delete an EJB class, follow these steps:
1. Select the EJB class in the Enterprise Beans folder.
2. From the pop-up menu of the class, select Delete.

The EJB class is deleted from the folder.

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Working with deployed enterprise beans” on page 416

Chapter 8. Working with enterprise beans 417



418 WebSphere: Application Development Tools Guide



Chapter 9. Multi-platform development

Multi-platform development

You can use Object Builder to develop components for deployment on
Windows NT, AIX, OS/390, Solaris, or HP-UX servers, with some varying
functionality from platform to platform.

Most development options are the same for all platforms: the main differences
appear when you generate the code for your components. There are three
mechanisms in place for dealing with these differences: platform-filtered
views, platform-targeted code generation, and platform-specific development
constraints. You can also implement different versions of your method
implementations (and correspondingly, different versions of file and method
adornments) for different platforms.

Views
You can select a platform view from the Platform > View menu in Object
Builder. Inheritance options, framework methods, and framework method
implementations will be filtered for the selected platform. The information for
all views is stored in the same project model; you can switch between views
at any time.

Code generation
You can select platforms to generate for from the Platform > Generate menu
in Object Builder. For each platform you select, an equivalent subdirectory
will be added to the project’s \Working directory. For example, if you select
AIX and 390, you will have code generated to the directories
<project>\Working\AIX and <project>\Working\390 . Every time you select a
Generate option from within the Tasks and Objects pane, code will be
generated for all selected platforms. The more platforms you select to generate
for, the longer code generation will take.

Constraints
You can set constraints to ensure that the components you develop will be
deployable on your target platforms. Select platform constraints on the
Platform > Constrain menu in Object Builder. By default, any components
you develop will be deployable on the platforms you selected. You can
override these defaults on a particular object, reducing the number of
platforms to which it can be deployed, to create a platform-specific version of
the object. The more platforms an artifact is deployable to, the more
restrictions there may be in its definition.

© Copyright IBM Corp. 1999, 2000 419



You can set object-specific platform constraints on business object interfaces,
business object implementations, data object interfaces, data object
implementations, local-only objects, managed objects, containers, application
families, and DLLs. For containers, DLLs, and application families, you can
set the constraints when you either create the object, or edit its properties
(Properties from the pop-up menu of the object). For the other objects, you
can set the object-specific platform constraints when you either create the
object, or edit its file properties (File Properties from the pop-up menu of the
object).

On the first page of the object’s wizard (if you are creating the object, or even
if you are editing containers and DLLs), or the object’s File wizard (if you are
editing the object’s file), in the section Deployment Platforms, you can select
a subset of the platform constraints to apply.

For example, if your platform constraints are set to AIX and 390, you can
specify one of the following sets of deployment platforms:
v select only 390 to apply only 390 constraints (to develop a 390-specific

version of the object)
v select only AIX to apply only AIX constraints (to develop an AIX-specific

version of the object)
v select both 390 and AIX (to deploy the object on both platforms)

After you have set platform constraints, you can apply the constraints to your
primary model (except to method bodies and adornments) by selecting
Platform > Constrain > Apply Constraints to Model. All existing files, DLLs
and containers in the model will be updated to reflect any changes. After the
update, the Consistency Checker is automatically run on the model. This
option is particularly useful if you want to apply a new platform constraint to
your earlier models.

Methods
In the Properties wizard for a method, you can define whether its
implementation in the Source pane is to be used for all platforms, or to be
defined separately for each platform. Access the wizard from the Methods
pane, by selecting Properties from a method’s pop-up menu. Once you have
set to use different versions, you can use the Platform > View menu option to
choose which platform-specific implementation to display and edit in the
Source pane.

Properties for file and method adornments also allow for platform tagging.

“Cross-platform development” on page 426
“File and method adornments” on page 239

420 WebSphere: Application Development Tools Guide



“Setting platform constraints”
“Generating code” on page 551
“Tutorial: Developing a multi-platform application” on page 429
“Adding file adornments” on page 240
“Adding method adornments” on page 242

“Platform differences” on page 425

Setting platform constraints

In Object Builder, you can develop components that will work on Windows
NT, AIX, OS/390, Solaris, and HP-UX. However, not all development options
are available for every platform. To ensure that your components will run on
the platforms you intend to deploy on, and to take advantage of all
opportunities available for each platform, you can constrain your
development options on both a project level and on an object level.

To ensure that objects you create will run on your deployment platforms, you
can set project-wide constraints that allow access only to development options
available on all your deployment platforms. To set project-wide platform
constraints, follow these steps:
1. From the Object Builder menu bar, click Platform > Constrain.
2. From the cascade, select a platform constraint.
3. Add additional platform constraints in the same way.

Once you set these constraints, development options (such as framework
inheritance and services) are filtered to ensure that the application you
develop will be deployable to the platforms you select. This is a “least
common denominator” approach; you may want to supplement it by
developing some objects in multiple versions, to take advantage of some
platform-specific options.

Within the project-wide constraints, you can develop multiple versions of an
object for your different deployment platforms. For example, in a project to be
deployed on AIX and OS/390, you could develop a data object
implementation for AIX only, and another data object implementation for
OS/390 only. This would allow you to use the Cache Service on AIX, which is
unavailable for OS/390 (where the Embedded SQL pattern performs well
enough to require no alternative).

You can set object-specific platform constraints on data object
implementations, managed objects, application families, business object
interfaces,

Chapter 9. Multi-platform development 421



business object implementations, containers, and DLLs. You can set the
constraints when you create the object, or when you edit its file properties.

To set object-specific constraints when you create the object, follow these
steps:
1. Open the object’s wizard.

On the first page of the wizard, the group box Deployment Platforms
contains check boxes for NT, AIX, OS/390, Solaris, and HP-UX. Only
platforms that are listed in your project-wide constraints are available for
selection.
By default, all the platforms in the project-wide constraints are listed.

2. Clear the platform check boxes for any platforms that you are not
deploying this object on. For example, if you are deploying the object for
AIX only, make sure the NT and OS/390 check boxes are not checked.
The wizard will now allow access to all options available for the platforms
you indicated. For example, if you are deploying the object for AIX only,
all AIX-specific options will be available, even those not available on other
platforms.

3. Complete your selections in the wizard, and click Finish.

To set object-specific platform constraints when you edit the object, follow
these steps:
1. From the pop-up menu of the object, select File Properties. The object’s

wizard opens to the Name page.
2. In the “Deployment platforms” on page 423 section, select or clear the

deployment platform check boxes of your choice.
3. Click Finish.

The platform constraint settings for the object take effect.

To change your project-wide platform constraints, follow these steps:
1. From the Object Builder menu bar, click Platform > Constrain.
2. From the cascade, select or clear a platform constraint.
3. Add or remove additional platform constraints in the same way.

The new constraints will affect the choices you have in developing new
objects, but will not affect any existing objects created under different
constraints. To check your application under the new constraints, run a
consistency check on the project’s model.

4. From the Object Builder menu bar, click File > Check Model.
5. Review the report, and save it if you want before closing it.
6. Edit objects as necessary to make your model consistent under the new

constraints.

422 WebSphere: Application Development Tools Guide



If you want to apply the current set of constraints to all artifacts in your
primary model, select Platform > Constrain > Apply Constraints to Model.
This will apply the constrains to all artifacts (except method bodies and
adornments), and then run the consistency checker. You may find this useful
when you are retrofitting a new platform (such as HP-UX) into earlier models;
it will save you from opening the wizard for each artifact in the model.

“Multi-platform development” on page 419

“Checking a model for consistency” on page 31
“Tutorial: Developing a multi-platform application” on page 429

“Platform differences” on page 425

Deployment platforms

You can select a particular deployment platform or platforms for an object
within a multi-platform application. By making the object specific to a
particular platform or platforms, you can take advantage of development
options available only on those platforms.

The deployment platforms available for selection are based on the choices
made in the Platform > Constrain menu. For example, if you have
constrained your entire project to only NT and AIX platforms, then you
cannot select to deploy an object on OS/390, but you can still decide to make
an object deployable only on NT.

The full range of deployment platforms are:
v NT
v AIX
v 390
v Solaris
v HP-UX

Note the following points:

v For version 3.5 (R3.5), the following platforms are supported in the CB
run-time level of function:
– CB/NT 3.5
– CB/AIX 3.5
– CB/Solaris 3.5

Chapter 9. Multi-platform development 423



– CB/390 3.02 (A minimal subset, from a tooling standpoint, of the 3.5 net
function on the workstation.)

– CB/HP-UX 3.0 (HP-UX support is at version 3.0 beta level.)

v All R3.5 Object Builder features that exploit new
run-time function in 3.5 will be enabled for models and artifacts that are
deployed to the Windows NT, AIX and Solaris platforms.

v All R3.5 Object Builder
features, which are pure Toolkit features will be enabled for models and
artifacts that are deployed to all platforms.

v Several run-time functional enhancements were made in R3.0.
Since the Solaris run time is stepping directly from an R2.0 level of function
to an R3.5 level of function, Object Builder retroactively enables exploitation
of these R3.0 run-time features on Solaris.

By default, all the platforms specified on the Platform > Constrain menu are
selected. You can only select from these deployment platforms: a platform that
has not been selected on the Constrain menu cannot be selected as a
deployment platform.

You can select only the Windows NT, Solaris and
HP-UX platforms for deployment if you want to use the MQSeries application
adaptor support (that is, if you want to create applications that send messages
to, or receive messages from queues that are managed by MQSeries
application adaptors).

Enterprise bean support is available on the Windows NT, AIX,
Solaris, and HP-UX deployment platforms. It is also available for OS/390.
However, Component Broker and WebSphere EJB clients on platforms other
than CB OS/390 will not be able to exchange information with CB OS/390
enterprise beans. Neither will CB and WebSphere EJB clients that are on CB
OS/390 be able to exchange information with enterprise beans on other
platforms.

“Multi-platform development” on page 419

“Setting platform constraints” on page 421

“Platform differences” on page 425

424 WebSphere: Application Development Tools Guide



Platform differences

Most development options are the same for all platforms. The main
differences are between OS/390 and the workstation platforms, NT, AIX,
Solaris, and HP-UX.

The following differences apply between OS/390 and the workstation
platforms:
v Inheritance

Different framework inheritance may apply for the different platforms.
When you generate code for multiple platforms, the right inheritance will
automatically be used. When you view a specific platform, the inheritance
that applies to that platform is shown. Not all inheritance options have
cross-platform equivalents.
If you are developing an OS/390 component, you cannot select the parent:

IBOIMExtLocal IBOIMExtLocal::IUUIDCopyHelperBase
v Framework methods

Different framework methods may apply for the different platforms. When
you generate code for multiple platforms, the right framework methods will
automatically be implemented. When you view a specific platform, the
framework methods that apply to that platform, and the appropriate
method implementations, are shown.

v Wide and long long types
Wide and long long types are not available on OS/390. Do not use when
you develop for OS/390. They are not available for selection if you have
390 listed as a platform constraint.

v Services
Cache Service is not available on OS/390.

v Sessionable managed objects
You cannot create sessionable managed objects for OS/390.

v PA development
Procedural Adaptor persistent objects on OS/390 and the workstation
platforms have mutually exclusive connection types. You cannot create
common PA persistent objects for both OS/390 and any other platform. You
must create platform-specific versions of the data object implementations
and persistent objects for PA components.

v Container definition
OS/390 servers do not use any of the container information you provide
when you define a container, except for its name and description. If you are
developing an OS/390-specific container, the additional pages are not
available. If you are developing a container for multiple platforms including
OS/390, the additional pages are available, but the information on them
will be ignored by the OS/390 server.

Chapter 9. Multi-platform development 425



“Multi-platform development” on page 419

“Setting platform constraints” on page 421
“Generating code” on page 551
“Tutorial: Developing a multi-platform application” on page 429

Cross-platform development

You can use Object Builder on one platform to generate code for another
platform. For example, you can develop an application on Windows NT, and
build the application on AIX and OS/390.

Transfer of files among platforms
When you transfer files between Windows NT and other platforms, or
between OS/390 and other platforms, use an ASCII-aware mechanism (such
as FTP in ASCII mode, or an ASCII NFS mount). Some programs, such as
Systems Management, fail unless the file is a valid, native ASCII file. If you
transfer code in binary form (for example, with binary FTP, a binary NFS
mount, or inside a .tar archive), the following problems occur:

v Windows NT CR/LF characters will notbe mapped to equivalent
UNIX new line characters, and files that depend on line formatting (for
example, .mak, .sql, .ddl) will not be usable.

v The ASCII character codings on NT and Unix will not be mapped
to equivalent EBCDIC character codings on OS/390. All files will be
transferred in EBCDIC, and will be unusable.

v If a business object depends on other business
objects, the paths to the directories that contain those models is written by
Object Builder into the file prjdefs.mk. If you copy the generated source to
OS/390, HP-UX, or Solaris, you must edit prjdefs.mk, and modify the path
to be compliant with the Solaris machines. (It is an NT path that is
generated into prjdefs.mk.)
In fact, the paths can differ whenever generated code is moved, including
from one directory to another within a single AIX or NT system. Use the
Build Location page in the Build Configuration wizard to override absolute
path names for each target platform. These pathnames will be emitted
instead of .../project/Working/<platform>... in prjdefs.mk, qt.bat,
QTjar.txt and the DDL file.

It is recommended that you use the ASCII transfer option of the basic ftp
client to transfer files between different platforms.

426 WebSphere: Application Development Tools Guide



Transfer of single files among platforms
To transfer a single file in text mode without the addition of Ctrl-M’s, use the
-asciioption when you use ftp.

To transfer a zip file, use binary mode with ftp, and use the following
command to unzip it:

unzip -a <zip filename>

To remove Ctrl-M’s from files after you transfer them from another
platform to AIX, follow these steps:
1. Create a file called mydos2unix, which has the following commands:

#!/bin/ksh
cat $1 | sed s/|M//g 2>&1 | tee $1 # Use CTRL-v-m to get the |M
Note: You must use CTRL-v-m to replace the character ’|M’ with blanks.

2. Save and Exit
3. Move this file somewhere in your PATH environment.
4. Change its mode to executable:

chmod +x mydos2unix

5. Run it using the following command syntax, within the directory where
the files are you want to change.
ls -l | grep -v |drw | awk ’{print $9}’ | xargs -i mydos2unix {}

Note:grep -v |drw excludes directories.

This will copy <DOS file> (which is the file that contains the Ctrl-M
characters) back to itself to become the <UNIX file>, stripping it of the
Ctrl-M’s.

To remove Ctrl-M’s from files after you transfer them from another
platform to Solaris, use the command:

dos2unix -ascii

To remove Ctrl-M’s from files after you transfer them from another
platform to HP-UX, use the following commands:

dos2ux file > tmpfile
mv tmpfile file

Note the following points:

v You must use a temporary file for the transfer: if you use the command
dos2ux file > file, you will lose the contents of the file.

Chapter 9. Multi-platform development 427



v The transferred file must be named following HP-UX standards.

Transfer of directories among platforms
Some ftp programs do not transfer directories correctly. For example, the NT
ftp program will transfer directories as zero-byte files (even though the ftp
client acknowledges that it cannot transfer directories). If the output
directories NOOPT, PRODUCTION, TRACE and TRACE_DEBUG are present
on the target system as zero-byte files, the makefiles will fail. So, if you have
content in the output directories, or if you have QuickTest artifacts that are
generated, you must either use an ftp program such as Hummingbird®

Exceed ftp that is capable of transferring nested directories, or NFS (the
standard file transfer facility on UNIX systems) for the transfer.

To easily transfer a group of files and subdirectories, follow these steps:
1. Archive them into a single file using either the tar or zip utility
2. Transfer the archive file
3. Extract the archive on the target machine.

For example, if you want to transfer the directory Solaris, follow these steps:
1. cd to its parent directory
2. Archive the files by running the command: tar cvf Solaris.tar Solaris

3. Transfer the files using the command: ftp <target_machine> (and transfer
Solaris.tar)

4. Login to the target machine, and cd to the parent directory.
5. Extract the archive using the command: tar xvf Solaris.tar

You now have a Solaris directory that contains all the files and subdirectories
from the original directory.

“Multi-platform development” on page 419
“Remote build” on page 570

“Launching a remote OS/390 build” on page 572

“Platform-specific information” on page 20

428 WebSphere: Application Development Tools Guide



Tutorial: Developing a multi-platform application

Objectives
To create a component for deployment on two different platforms.
To add platform-specific method implementations.
To create platform-specific versions of a data object implementation.
To build DLLs for the different platforms.
To define containers for use on each platform.
To create application packages for each platform.

Before you begin
You need the following installed on your system:
v A CB Server
v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide.

You should be familiar with the steps involved in defining, building, and
packaging components in Object Builder. For most tasks in this tutorial, you
will be given only general directions. For more specific instructions, you can
refer to the referenced scenario or one of its sequels.

Description
This exercise defines the objects required to create a component named
“Claim” for deployment on the AIX and OS/390 platforms. The component
will have platform-specific versions of its data object implementation. For this
exercise, you will:

1. Create the project
2. Create a business object interface
3. Add a key and copy helper
4. Add a business object implementation

Chapter 9. Multi-platform development 429



5. Add a data object implementation for AIX
6. Define a data object implementation for OS/390
7. Define a persistent object and schema
8. Add a managed object
9. Generate the code

10. Define a client DLL and server DLL for AIX
11. Define a client DLL and server DLL for OS/390
12. Define an application family and application for AIX
13. Define an application family and application for OS/390
14. Configure the component with both applications

Creating the project
Create a sample project to hold your work.
1. Start Object Builder.
2. In the Open Project wizard, type a name and path for the project directory.
3. Click Finish.
4. When asked whether you want to create a new project, click Yes.

Ensure that platform constraints are set to include AIX and OS/390. Click
Platform > Constrain and ensure that AIX and 390 are selected. By default,
any objects that have platform-specific development options will only allow
selection of options that exist on both AIX and OS/390. These constraints will
be overridden when you create the data object implementation, to allow
separate versions for each platform.

Set code generation for AIX and OS/390:
1. Click Platform > Generate > AIX

2. Click Platform > Generate > 390

Code will be generated for both platforms, into the \Working\AIX and
\Working\390 directories.

3. Click Platform > View > AIX

When there are differences in an object’s inheritance or framework
methods for different platforms, you will see the AIX version.

Creating the business object interface
Define a business object file (MPFile):
1. From the User-Defined Business Objects folder’s pop-up menu, click Add

File to open the Business Object File wizard.
2. Name the file.
3. Click Finish. The file now appears under the folder.

Add a module (MPModule):

430 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the file, click Add Module to open the Business
Object Module wizard.

2. Name the module.
3. Click Finish. The module now appears under the file.

Add an interface (Agent):
1. From the pop-up menu of the module, click Add Interface to open the

Business Object Interface wizard.
2. Name the interface csAgent.
3. Click the page title and turn to the Attributes page.
4. Add the following attributes:
v readonly float commissions
v float commPercent
v float pendingPaycheck
v string agentName
v readonly long id

5. Set the size of agentName to 100. You should always provide a size for
string attributes.

6. Click Next and turn to the Methods page.
7. Add the following method:
v void payCommission (in float amount)

8. Click Finish.

Adding a key and copy helper
Add a key (AgentKey):
1. From the interface’s pop-up menu, click Add Key to open the Key wizard.
2. Accept the default name; select the id attribute and add it to the Key

Attributes list.
3. Click Finish.

Even though the id attribute of the business object interface is read-only,
the id attribute of the key is both readable and writable. The client
application can set the value of the id on the key, and use it either to
initialize a new instance of the component, or to locate an existing instance
of the component, on the server.

Add a copy helper (AgentCopy):
1. From the interface’s pop-up menu, click Add Copy Helper to open the

Copy Helper wizard.
2. Accept the default name; select all listed attributes and add them to the

Copy Helper Attributes list.
3. Click Finish.

Chapter 9. Multi-platform development 431



Adding a business object implementation and data object interface
Add a business object implementation (AgentBO) and data object interface
(AgentDO):
1. From the interface’s pop-up menu, click Add Implementation to open the

Business Object Implementation wizard.
2. Change the Pattern for Handling State Data to Delegating. This is easier

to debug than the Caching pattern.
3. Click the page title and turn to the Implementation Language page.
4. Select the language you want the business object to be implemented in

(C++or Java).
5. Click the page title and turn to the Key and Copy Helper page. The

appropriate key and copy helper are already selected.
6. Click the page title and turn to the Data Object Interface page.
7. Select all attributes and add them to the State Data list (to be preserved in

the data object).
8. Click Finish.

Adding platform-specific method implementations
For each method, you can specify whether to use a different method
implementation for each platform, or share the same implementation on all
platforms. By default, method implementations are shared.

Make the payCommission() method implementation platform-specific:
1. Click on AgentBO in the Tasks and Objects pane. Its methods and

attributes are listed in the Methods pane.
2. In the Methods pane, locate the payCommission() method.
3. From the pop-up method for the approve() method, click Properties to

open the Method Implementation wizard.
4. Deselect the option Method body is the same for all platforms.
5. Click Finish.

Add an implementation for the payCommission() method on AIX:
1. Click on the payCommission() method in the Methods pane. The skeleton

implementation appears in the Source pane.
2. Type the following implementation for the payCommission() method:

C++
float tmp;
tmp = amount * iDataObject->commPercent();
iDataObject->commissions(tmp);
iDataObject->pendingPaycheck(iDataObject->pendingPaycheck() + tmp);
// Applies to AIX

Java

432 WebSphere: Application Development Tools Guide



float tmp;
tmp = amount * iDataObject.commPercent();
iDataObject.commissions(tmp);
iDataObject.pendingPaycheck(iDataObject.pendingPaycheck() + tmp);
// Applies to AIX

Add an implementation for the payCommission method on OS/390:
1. Click Platform > View > 390.
2. Click on the payCommission() method in the Methods pane. The method

implementation you provided for AIX does not appear. Instead you see a
skeleton implementation for the 390-specific version of the
implementation.

3. Type the following implementation for the payCommission() method:

C++
float tmp;
tmp = amount * iDataObject->commPercent();
iDataObject->commissions(tmp);
iDataObject->pendingPaycheck(iDataObject->pendingPaycheck() + tmp);
// Applies to 390

Java
float tmp;
tmp = amount * iDataObject.commPercent();
iDataObject.commissions(tmp);
iDataObject.pendingPaycheck(iDataObject.pendingPaycheck() + tmp);
// Applies to 390

When you generate code for the business object implementation, the code in
the Working\AIX directory will use the AIX-specific implementation, and the
code in the Working\390 directory will use the OS/390-specific
implementation.

In most cases, you should be able to use the same implementation for all
platforms. This example is intended to show the procedure, but is not
intended as a model for you to follow.

The method implementations for the attribute get and set methods apply to
all platforms you generate code for, because you did not change the default
settings in the methods’ Method Implementation wizards.

Adding a data object implementation for AIX

1. From AgentDO’s pop-up menu, click Add Implementation to open the
Data Object Implementation wizard.
On the first page, the Deployment Platforms constraints are listed:
v NT is disabled, and cannot be selected, because the project-wide

platform constraints exclude it. This prevents you from creating an
NT-specific object within project constraints for AIX and 390.

Chapter 9. Multi-platform development 433



v AIX is selected by default, based on the project-wide platform
constraints.

v 390 is selected by default. based on the project-wide platform
constraints.

2. Deselect the 390 option. AIX-specific development options are now
available.

3. Name the object AgentAIXDOImpl, with the file name
AgentFileAIXDOImpl.

4. Click Next to turn to the Behavior page.
5. Set the following behaviors:
v Environment: BOIM with any key

v Type of Persistence: Cache Service

The Cache Service is not used on OS/390. By making this object
AIX-specific, it can take advantage of the Cache Service, while the
390-specific version can use the delegating pattern.
For more information on the Cache Service, see the IBM Component
Broker Advanced Programming Guide.

v Data Access Pattern: Delegating

6. Click Finish. AgentAIXDOImpl appears under ClaimDO.

Adding a data object implementation for OS/390

1. From AgentDO’s pop-up menu, click Add Implementation to open the
Data Object Implementation wizard.
On the first page, the Deployment Platforms constraints are listed:
v NT is greyed out and cannot be selected, because the project-wide

platform constraints exclude it. This prevents you from creating an
NT-specific object within project constraints for AIX and 390.

v AIX is selected by default, based on the project-wide platform
constraints.

v 390 is selected by default. based on the project-wide platform
constraints.

2. Deselect the AIX option.
3. Name the object Agent390DOImpl, with the file name

AgentFile390DOImpl.
4. Click Next to turn to the Behavior page.
5. Set the following behaviors:
v Environment: BOIM with any key

v Type of Persistence: Embedded SQL

You cannot select the Cache Service option here, because it is not
available on OS/390. The embedded SQL option on OS/390 is fast
enough not to require an alternative.

434 WebSphere: Application Development Tools Guide



v Data Access Pattern: Delegating

6. Click Finish. AgentAIXDOImpl appears under ClaimDO.

Defining a persistent object and schema
Each version of the data object requires its own persistent object (one with the
Cache Service type of persistence and one with the Embedded SQL type of
persistence), but they can share the same schema definition because they are
both accessing the same data.

Add a persistent object for AIX, and a common schema for both platforms:
1. From the pop-up menu of AgentAIXDOImpl, click Add Persistent Object

and Schema to open the Add Persistent Object and Schema wizard.
2. Type AgentDBGroup in the Group Name field.
3. Type CBSampDB in the Database field.
4. Name the persistent object AgentAIXPO.
5. Click the Finish button.

The AgentDBGroup schema group, CBSampDB.Agent schema, and
AgentAIXPO persistent object appear in the DBA-Defined Schemas folder.

Add a persistent object for OS/390:
1. From the pop-up menu of CBSampDB.Agent in the DBA-Defined Schemas

folder, click Add Persistent Object to open the Add Persistent Object
wizard.

2. Make sure the type of persistence is set to Embedded SQL.
3. Review the mappings (from SQL Type INTEGER to Attribute Type long,

and so on).
4. Name the persistent object Agent390PO.
5. Click Finish.

Agent390PO appears under CBSampDB.Agent in the DBA-Defined Schemas
folder.

Map the OS/390 data object implementation and persistent object:
1. From the pop-up menu of Agent390DOImpl in the User-Defined Data

Objects folder, click Properties to open the Data Object Implementation
wizard.

2. Click the page title and turn to the Associated Persistent Objects page.
3. Add a persistent object instance with the default instance name (iPO), and

with type Agent390PO.
4. Click Next to turn to the Attributes Mapping page.
5. Map the attributes (commissions to iPO.commissions, commPercent to

iPO.commPercent, and so on).

Chapter 9. Multi-platform development 435



6. Click Next to turn to the Methods Mapping page.
7. Map each method to its equivalent (insert to iPO.insert, retrieve to

iPO.retrieve, and so on).
8. Click Finish.

Agent390PO appears under Agent390DOImpl, in the User-Defined Data
Objects folder and User-Defined Business Objects folder.

Adding a managed object
While you can create separate managed objects for both platforms, there is no
need in this case. Both versions of the component can use the same managed
object.
1. From the business object implementation’s pop-up menu, click Add

Managed Object to open the Managed Object wizard to the Name and
Service page.

2. Accept all the defaults and click Finish.
3. Click File > Save to save your work before continuing to the next step.

AgentMO appears under AgentBO, in the User-Defined Business Objects
folder.

Generating the code
You can generate all the code for the components, including the separate
method versions and data object implementations for each platform, in one
step:
1. From the pop-up menu of AgentFile in the User-Defined Business Objects

folder, click Generate > All.

This will take some time. When the code generation is complete, review the
contents of the two directories (Working\AIX and Working\390).

Configuring the database
You need to define (in DB2) the CBSAMPDB database and csAgent table that
your component will access. You should have a database administrator
perform this procedure.

To configure the database and table, you need to enter the following
commands from a DB2 command prompt.

create database CBSAMPDB
connect to CBSAMPDB
db2 -t -f csAgent.sql

Defining a common client DLL
Because the client interfaces are the same on both platforms, there is no need
to specify separate client DLLs (known on AIX as shared library files). You

436 WebSphere: Application Development Tools Guide



can define a single client DLL, using the same build configuration options.
The appropriate makefile will be generated into both the
Working\AIX\PRODUCTION and Working\390\PRODUCTION directories.
1. From the pop-up menu of the Build Configuration folder, click Add Client

DLL to open the Client DLL wizard.
2. Name the DLL AgentC.
3. Set the deployment platforms to AIX and 390.
4. Click the page title and turn to the Client Source Files page.
5. Select all the client source files for Agent and add them to the Items

Chosen list.
6. Click Finish.

AgentC appears under the Build Configuration folder.

Defining a server DLL for AIX
Because you have different data object implementations for the two platforms,
you need to define different server DLLs.
1. From the pop-up menu of the Build Configuration folder, click Add Server

DLL to open the Server DLL wizard.
2. Name the DLL AgentAIXS.
3. Set the deployment platform to AIX.
4. Click Next to turn to the Libraries to Link With page.
5. Select ClaimC.
6. Click Next to turn to the Server Source Files page.
7. Select all the server source files for Claim except for Claim390DOImpl, and

add them to the Items Chosen list.
8. Click Finish.

Defining a server DLL for OS/390
In addition to defining a separate server DLL for OS/390, you can also choose
to run a remote build.

1. From the pop-up menu of the Build Configuration folder, click Remote
OS/390 Options to open the Remote OS/390 Options wizard.
You can specify an OS/390 host on which to build the Claim DLLs for
OS/390, using the generated source in the Working\390 subdirectory.
When you build the DLLs, the OS/390 DLL will get built on the specified
host.

2. Click Finish when you have completed the configuration. If you do not
configure the remote build, then the DLLs will be built locally. You will
still be able to debug the code, but you will not be able to run it.

3. From the pop-up menu of the Build Configuration folder, click Add
Server DLL to open the Server DLL wizard.

Chapter 9. Multi-platform development 437



4. Name the DLL Claim390S.
5. Set the deployment platform to 390.
6. Click Next to turn to the Libraries to Link With page.
7. Select ClaimC.
8. Click Next to turn to the Server Source Files page.
9. Select all the server source files for Claim except for ClaimAIXDOImpl,

and add them to the Items Chosen list.
10. Click Finish.

Building the DLLs
To generate the makefiles and build the DLL files:
1. From the pop-up menu of the Build Configuration folder, select Generate

> All > C++ Default Targets to generate makefiles for all the DLL files
defined in the folder and generate an all.mak file that calls the DLL
makefiles.

2. From the same pop-up menu, select Build > Out-of-Date Targets > C++ to
call all.mak and display the progress of the build in a window.

3. Close this window after the build finishes.

For OS/390, the ClaimC.dll and ClaimS.dll files are stored in the specified
directory on the specified host.

For AIX, the libClaimC.so and libClaimS.so files are stored in
Working\AIX\PRODUCTION.

Defining a container
Define a container to hold the component on the server. You can use the same
container definition for both application families.
1. From the pop-up menu of the Container Definition folder, click Add

Container Instance to open the Add Container wizard.
2. Accept the deployment constraints of AIX and 390.
3. Name the container ContainerOfClaims.

The name is the only information that will be used in the OS/390
installation. The rest of the information in the wizard will be ignored on
OS/390, and can be AIX-specific.

4. Click the page title and turn to the Service page.
5. Click Use RDB Transaction Service.
6. Click the page title and turn to the Data Access Patterns page.
7. Set the following patterns:
v Business Object: Delegating

v Data Object: Delegating

v Cache Service

438 WebSphere: Application Development Tools Guide



These are based on the settings in the ClaimBO business object
implementation, and the ClaimAIXDOImpl data object implementation.

8. Click Finish.

ContainerOfClaims appears under the Container Definition folder.

Defining an application family and application for AIX
To define the application family and server application for AIX, follow these
steps:

1. From the pop-up menu of the Application Configuration folder, click
Add Application Family to open the Add Application Family wizard.

2. Name the family ClaimAppFamAIX.
3. Clear the 390 deployment option.
4. Click Finish. ClaimAppFamAIX appears under the Application

Configuration folder.
5. From the pop-up menu of ClaimAppFamAIX, click Add Application to

open the Add Application wizard.
6. Name the application ClaimAppAIX.
7. Set the initial state of the application to stopped.
8. Click Next to turn to the Additional Executables page.
9. Click the Browse button to open the Executables to Include dialog box.

10. Locate your Object Builder working directory.
11. From this directory, select:

v Claim.sql
v ClaimAIXPO.bnd

12. Click the OK button.
13. Click Finish. ClaimAppAIX appears under ClaimAppFamAIX.

Defining an application family and application for OS/390
To define the application family and server application for OS/390, follow
these steps:

1. From the pop-up menu of the Application Configuration folder, click
Add Application Family to open the Add Application Family wizard.

2. Name the family ClaimAppFam390.
3. Clear the AIX deployment option.
4. Click Finish. ClaimAppFam390 appears under the Application

Configuration folder.
5. From the pop-up menu of ClaimAppFam390, click Add Application to

open the Add Application wizard.
6. Name the application ClaimApp390.
7. Set the initial state of the application to stopped.

Chapter 9. Multi-platform development 439



8. Click Next to turn to the Additional Executables page.
9. Click the Browse button to open the Executables to Include dialog box.

10. Locate your Object Builder working directory.
11. From this directory, select:

v Claim.sql
v Claim390PO.bnd

12. Click the OK button.
13. Click Finish. ClaimApp390 appears under ClaimAppFam390.

Configuring the component with both applications
Configure Claim for AIX:
1. From the pop-up menu of ClaimAppAIX in the Application Configuration

folder, click Add Managed Object to open the Managed Object
Configuration wizard.

2. Select ClaimFileMO ClaimMO. The rest of the fields should fill in with
correct defaults.

3. Click Next to turn to the Data Object Implementations page.
4. Add ClaimAIXDOImpl.
5. Click Next to turn to the Container page.
6. Select ContainerOfClaims.
7. Click Finish.

ClaimMO appears under the ClaimAppAIX application.

Configure Claim for OS/390:
1. From the pop-up menu of ClaimApp390 in the Application Configuration

folder, click Add Managed Object to open the Managed Object
Configuration wizard.

2. Select ClaimFileMO ClaimMO. The rest of the fields should fill in with
correct defaults.

3. Click Next to turn to the Data Object Implementations page.
4. Add Claim390DOImpl.
5. Click Next to turn to the Container page.
6. Select ContainerOfClaims.
7. Click Finish.

Generate the application installation information:
1. From the pop-up menu of the Application Configuration folder, click

Generate.
The DDL that defines the applications for System Management is
generated into the Working\AIX\ClaimAppFamAIX and
Working\390\ClaimAppFam390.

440 WebSphere: Application Development Tools Guide



Summary
You have created a component for deployment on either AIX or OS/390, with
different versions of some component objects to take advantage of
platform-specific development options. You have defined separate build and
packaging processes, and have created two separate application packages
targeted at two different platforms, based on a single project model.

You can find information on installing the component on the server in the
System Administration Guide, “Configure a New Application Environment”
chapter, or online in the topic Installing and configuring a new application.

You can find information on testing the installed component with a QuickTest
client application in “Chapter 13. Testing applications with QuickTest” on
page 611.

Chapter 9. Multi-platform development 441



442 WebSphere: Application Development Tools Guide



Chapter 10. Team development

When you develop a stand-alone project, the entire application is contained in
a single project, and its development cycle, from component definition
through build to packaging, is all handled through that single project. To
develop this same application in a team environment, you simply distribute
the application’s components among a number of interdependent projects.
Each project can then be worked on by a separate developer, with the code in
the project built as required.

Typically, a team environment begins with a stand-alone project or Rose
design, in which the basic structure of the application is defined. Then the
stand-alone project is split out into multiple projects, that are accessed and
edited through a change control system, and kept up-to-date with regular,
automated builds.

If you are working in Rose, then your design can be split out by package,
with selected packages in Rose corresponding to projects in the team
environment.

If you are starting with a stand-alone Object Builder project, then your design
can be split out by package (that is, conceptual groupings of related
components) or by layer (that is, different layers of component objects:
business objects, data objects, or persistent objects).

If you want to define a set of standard interfaces for which other projects can
provide implementations, you can do so by defining the standard interfaces as
simple business objects with minimal implementations, and inherit from them
as if they were abstract base classes.

Generally, a team environment consists of:
v A number of interdependent projects, which contain the component objects

that make up the application.
v An integration project, which defines the build configuration and

application packaging options for the application.
v A change control system, which holds all the projects, and controls access to

them. The change control system can also be set up to operate on a finer
level of granularity, using XML files that represent component elements.

v An automated build process, which extracts all projects and XML files,
generates and builds the code, on a daily or nightly basis.

© Copyright IBM Corp. 1999, 2000 443



v A project repository, which is the result of the automated build process, and
that can be used to resolve inter-project dependencies when a team member
checks out and updates a project.

“Projects and models” on page 17
“Change control” on page 463
“XML-based change control” on page 469
“Model interchange with XML” on page 492
“Abstract base class inheritance” on page 303

“Setting up a team environment” on page 457
“Working in a team environment” on page 480
“Maintaining a team environment ” on page 490

Developing as part of a team

The basis of team development is the division of an application into multiple
projects. Members of the team can then each have their own project, which
lets them work with part of the application (contained in their project,
accessed in read-write mode) while maintaining relationships with others
parts of the application (contained in other projects, referenced in read-only
mode).

The main development tasks in a team environment are as follows:
1. “Working with Rose in a team environment”
2. “Setting up a team environment” on page 457
3. “Working in a team environment” on page 480
4. “Maintaining a team environment ” on page 490

“Chapter 10. Team development” on page 443

“Developing in Object Builder” on page 19

Working with Rose in a team environment

The following tasks discuss how to use Rose with a team environment, in
which you have multiple developers working with multiple projects through a
change control system:
v “Exporting a Rose design to a team environment” on page 445

444 WebSphere: Application Development Tools Guide



v “Importing a Rose design from a team environment” on page 447

For an introduction to these capabilities, complete the following tutorial series:
v “Tutorial: Exporting from Rose” on page 81
v “Tutorial: Importing into Rose” on page 94
v “Tutorial: Team development with Rose” on page 449

“Rose” on page 64
“The Rose Bridge” on page 69
“Chapter 10. Team development” on page 443

“Chapter 3. Using Rational Rose with Object Builder” on page 63
“Developing as part of a team” on page 444
“Working in a team environment” on page 480

Exporting a Rose design to a team environment

When you export a Rose design to Object Builder, it becomes a project or set
of projects, depending on the way you have divided your design into .cat
files.

You can specify a separate .cat file for any package in your design. Any
package stored in a separate .cat file will be exported to a separate project.
The division of your design into .cat files should reflect the project divisions
you want to work with. The project is the primary unit of work in a team
environment: each .cat file should be as self-contained as possible, and each
resulting project should be worked on by only one person at a time.

The OBProjectDirectory property in the IDL page of the package specification
notebook identifies the name of the Object Builder project that corresponds to
the .cat file. If an absolute path is specified in this property, the Object Builder
project will be created in this directory. If a relative path is entered in the
property, the specified directory will be created relative to the target project
directory you specify at export time. If the property is left blank, a default
project name will be generated using the package name and this project will
be created as a subdirectory of the target project directory.

You can also specify virtual symbols in the OBProjectDirectory property, or
use a mix of virtual symbols and relative paths (for example,
$basedir\myprojects\project1). You can then define the virtual symbol as
whatever base directory you want when you are ready to export. If you use
the same virtual symbol and paths in both the OBProjectDirectory property
and in the path specification for the .cat files (for example,
$basedir\mycats\cat1, $basedir\myprojs\proj1), you can move the entire

Chapter 10. Team development 445



directory at once and only have to modify one virtual symbol definition.
Using virtual symbols makes your model more portable.

To specify a separate .cat file for a package, follow these steps:
1. Select the package in a Class Diagram in the Logical View.
2. Click File > Units > Control package (where package is the name of the

package you selected).
3. Specify a path and file name for the .cat file that will contain the package.
4. Click Save.
5. From the package’s pop-up menu, click Open Specification to open its

Specification notebook.
6. Turn to the IDL page, and set the property OBProjectDirectory to the

project directory path. The project directory can be defined as:
v An absolute directory path. For example, e:\projects\package1.
v A relative directory path. The project will be a subdirectory of the target

project you specify during export. For example, the value package1
creates the project directory e:\myproject\package1 (if you specified
e:\myproject as the main export directory when you exported).
Generally speaking, you should not use relative paths. The result
(nested project directories) can be hard to manage.

v A virtual path mapping. You can also set the property to a virtual path
mapping, as defined in Rose. Click File > Edit Path Map to define a
virtual path mapping in Rose. For example, you can specify
PACKAGE1_PATH in the Specification notebook, and set it to resolve to
e:\projects\package1 in the Virtual Path Map window.

v A mix of virtual path map and relative path For example, you can
specify BASE_DIR\Package1 in the Specification notebook, and set
BASE_DIR to resolve to e:\myprojects, resulting in
e:\myprojects\Package1 when you export.

7. Click OK to apply your changes and close the notebook.

The package and its contents will now be stored in the .cat file, rather than in
the main .mdl file, and its contents will be exported to the project directory
you specified.

You can exclude portions of your design from the export (packages or classes)
by setting the property BridgeToOB=FALSE in the package or class
specification notebook. Set BridgeToOB=FALSE for a package to prevent all
packages and classes contained within the package from being mapped into
Object Builder. By default, your entire design is exported.

To export, follow these steps:
1. Start Rose, and open the design you want to export.

446 WebSphere: Application Development Tools Guide



2. Select File > Export to Object Builder. The Rose Bridge wizard opens to
the Export from Rose to Object Builder page.
In the Source Model field, the current Rose model file is selected by
default.

3. Provide any virtual path mapping information needed to locate any
separate .cat files. If you used Component Broker frameworks in your
design, you will need to provide the mapping for BOSS_PATH. You can
check the value for any virtual path maps in Rose by clicking File > Edit
Path Map.

4. In the Target Project field, specify a main project directory. Any portions
of your design which are not stored in separate .cat files will be exported
to this project. The portions of your design that are stored in .cat files will
be exported to the directories specified in the package OBProjectDirectory
property.

5. Click Next.
6. Review the export structure. You can review which packages and classes

are being exported (as defined by the BridgeToOB property for specific
packages and classes), and review the target project directories (as defined
by the .cat file structure within Rose, and the package OBProjectDirectory
properties).

7. Click Finish.
Your model is exported to projects in the specified directories. Your model is
saved in Rose as part of the export process.

“The Rose Bridge” on page 69
“Rose Bridge import” on page 89
“Projects and models” on page 17
“Chapter 10. Team development” on page 443

“Setting up a team environment” on page 457
“Importing Component Broker frameworks” on page 68
“Tutorial: Team development with Rose” on page 449
“Exporting a design from Rose” on page 80
“Importing XML” on page 389
“Working with an exported design” on page 88

“Rose to Object Builder mapping rules” on page 97

Importing a Rose design from a team environment

You can create or update a Rose design by importing Object Builder projects
into Rose. If the imported projects were originally created by a Rose export,

Chapter 10. Team development 447



then the new Rose model created by the import will mirror the information in
the original, exported Rose model’s Logical View. If your original model has
additional information in other views, you can consolidate the two models
(the original exported one, and the newly imported one) using the Rose
Update feature.

If the projects were created only in Object Builder, or the original design is
unavailable, then the import process creates a new Rose design. When the
import is completed, each project maps to a package in Rose with an
associated .cat file, and each business object interface maps to a class in one of
the packages. You can then work with the design in Rose, and export the
changes back to Object Builder.

To import a set of interdependent Object Builder projects (that is, projects in a
team environment) into Rose, follow these steps:
1. Select File > Import from Object Builder. The Rose Bridge wizard opens

to the Source page.
2. Specify the projects you want to import:

a. Type the project directory path in the Project Directory field.
b. Click Set to add the path to the import list.

3. Click Next.
4. Enter the name of the Rose model (.mdl) file you are importing to.
5. If your projects have equivalent .cat files in your design (that is, they were

created by exporting .cat files from Rose), then you need to specify any
virtual path mapping information used to locate the .cat files. For each
virtual path map, enter the symbol and its mapping to an actual directory
path.

6. Click Finish.

The project in the directories you selected are imported into the Rose model
file you specified, and overwrite any previously existing .cat files.

If the imported project was created by export from Rose, and the original
Rose model contains information in other views besides the Logical view, then
you should consolidate the new model with the original model before doing
any more design work.

To merge the new model with the original model, follow these steps:
1. Click File > Open to open the original Rose model.
2. Specify the original .mdl file and click Open.
3. Click File > Update to apply updates from the changed model.
4. Specify the updated .mdl file (created by the import in the previous task)

and click Open.

448 WebSphere: Application Development Tools Guide



Your model now contains the entire updated design, and you can continue
your design work. Because the Rose Bridge preserves diagram information in
the Logical View, you may have multiple diagrams with the same information
after the update. This will cause no problems, but you can delete the
duplicate diagrams if desired. No structural information will be lost by the
deletion.

Note: If you have Rose 98i or Rose 2000, you can use the Model Integrator
provided with Rose to merge the models. Please read the documentation
provided with Rose for an explanation of this tool.

When you are ready to switch back to Object Builder, you can export the
design back to Object Builder by selecting File > Export to Object Builder.

“Object Builder” on page 1
“Projects and models” on page 17
“Rose” on page 64
“The Rose Bridge” on page 69
“Chapter 10. Team development” on page 443

“Exporting a design from Rose” on page 80
“Exporting a Rose design to a team environment” on page 445
“Tutorial: Team development with Rose”

“Object Builder to Rose mapping rules” on page 123

Tutorial: Team development with Rose

Objectives
To create an object relationship in Rose.
To export from Rose to multiple projects.
To import from multiple projects to Rose.

Before You Begin
This tutorial is a continuation of the tutorial sequence:
1. “Tutorial: Exporting from Rose” on page 81
2. “Tutorial: Importing into Rose” on page 94

You must complete the previous scenarios before attempting this one.

You need the following installed on your system:
v A CB Server

Chapter 10. Team development 449



v A CB Client
v CB tools, including Samples
v DB2 Universal Database
v DB2 SDK

v VisualAge for C++ and (for Java applications) VisualAge for Java

v IBM C and C++ Compilers for AIX V3.6.4 and (for Java
applications) VisualAge for Java

v Rational Rose 98, Rose 98i, or Rose 2000.

You need Rational Rose installed and set up to work with Object Builder, as
described in the task “Setting up Rose 98” on page 65 or “Setting up Rose 98i
and Rose 2000” on page 66.

For a complete list of prerequisites that you must install on your system, see
the Getting Started with Component Broker documentation for the appropriate
platform.

You should be familiar with the Component Broker programming model, as
described in the IBM Component Broker Programming Guide. At minimum, you
should have read chapter 1, the introduction to the programming model.

You should be familiar with Rational Rose. If you are not familiar with the
tool, take the Rose tutorial included with the software.

You should be familiar with Object Builder. If you are not familiar with the
tool, run through one of the introductory tutorials, for example, “Tutorial:
Creating a component with transient data” on page 39.

Sample files
There are no equivalent samples for this exercise. The exercise assumes that
you have created a design by importing a project from Object Builder, as
described in the previous tutorial.

Description
In this exercise, you will extend the Rose model for Agent to include a second
component, Customer, which Agent has a one-to-many relationship with (each
Agent can have multiple Customers). You will then export the modified
model to a new set of interdependent project directories, modify the exported
components in Object Builder, and import the changes.

Note that when you are creating more complicated team environments (with
multiple projects, each containing multiple components), you will want to
minimize the number of cross-project dependencies. In Rose terms, you would

450 WebSphere: Application Development Tools Guide



group your classes into base-level packages with associated .cat files, and
minimize the cross-package relationships and references.

For this exercise, you will complete the following tasks:
1. Create a package in Rose, and assign it to a .cat file.
2. Add the Customer class to the package.
3. Edit the Agent class.
4. Export the model to Object Builder projects.
5. Edit the Agent component.
6. Edit the Customer component.
7. Import the projects and apply the changes to your Rose model and .cat

file.

Creating the RelComp package
Create a new package to represent a project in Object Builder:
1. Open the model you created in the previous tutorial (for example,

e:\tutorials\rosemodels\importagent.mdl).
The existing Agent class appears in the Logical view’s Main class diagram.

2. Click Tools > Create > Package.
3. Click on the background of the class diagram to create a new package.
4. Type over the default name (NewPackage) to name it RelComp (as in

“Related Components”).
5. Click File > Units > Control RelComp to display the Save dialog box for

the package.
You can now specify a location for the .cat file in which the package’s
information will be stored. By assigning the package a separate .cat file,
you are specifying that the package represents a separate project in your
target development environment.

6. Provide a name and path for the .cat file (for example,
e:\tutorials\rosemodels\relcomp.cat).

7. Click Save. The package information will be stored in the specified .cat
file, and exported as a separate project to Object Builder.

Packages that represent projects must have an assigned project directory, to
which their contents can be exported. The project directory can be specified as
a virtual path mapping, a relative path (a subdirectory of the Object Builder
base project directory), or an absolute path. For this exercise, you will assign
an absolute path for the project directory.

Assign a project directory to the new package:
1. From the pop-up menu of the RelComp package, click Open Specification

to open its Specification notebook.

Chapter 10. Team development 451



2. Turn to the IDL page.
3. Set the OBProjectDirectory property to a project directory path (for

example, e:\tutorials\roserel).
4. Click OK to apply the changes and close the notebook.

The contents of the package are now associated with the Object Builder
project directory you specified (although the project directory does not yet
exist).

Adding the Customer class
Start Rose, and add the Customer class, with three attributes.

Add the Customer class:
1. Locate the RelComp package in the tree view (left-hand pane in Rose).
2. From the pop-up menu of the RelComp package, click New > Class, and

name the new class Customer.
3. In the tree view, locate the Logical View - Main class diagram.
4. Double-click on the Logical View - Main class diagram. It opens as a

Logical View window.
5. Click Query > Add Classes to open the Add Classes window.
6. Add Customer to the diagram, and click OK

Add the attributes custName, sales, and customerNo:
1. From the pop-up menu of Customer in the diagram, click New Attribute.

A placeholder attribute is added (named name, type of type, initial value
of initval).

2. Type over each of the values for the new attribute, naming it custName,
with type string.

3. Click elsewhere in the diagram to apply the changes.
4. Add the following attributes in the same way:
v float sales
v long customerNo

Customize the attributes. For each attribute of Customer:
1. Double-click on the attribute (in the tree view) to open its Specification

notebook.
2. On the General page, set export control to Public.
3. Click OK.

For the custName attribute of Customer:
1. Double-click on the attribute to open its Specification notebook.
2. On the DDL page, set Length to 100.
3. Click OK.

452 WebSphere: Application Development Tools Guide



The class and its attributes are defined. You could add Component Broker
properties to the class and its attributes in order to customize the mappings to
component elements, but for this exercise simply accept the default.

Editing the Agent class
Add a one-to-many relationship from Agent to Customer:
1. Click Tools > Create > Aggregate Association. Your mouse pointer

changes to an arrow.
2. Click and hold on Customer, and then drag to Agent, to draw the

aggregation. When you release the mouse button, an arrow is drawn from
Agent to Customer.

3. Double-click on the arrow to open Aggregation Specification notebook.
4. Turn to the Role B Detail page, and set the cardinality to n (one Agent can

have many Customers).
5. Turn to the IDL A or B page. Review the values for the aggregation

properties:
v MapAsObjectRelationship=True

The aggregation will map to an object relationship in Object Builder. If
this value were false, the aggregation would map to an attribute of type
sequence in Object Builder.

v RelationshipImplementation=Local Persistent Reference
The relationship will be implemented in the business object
implementation as a local persistent reference, rather than mapping to a
database query.

6. Click OK to close the diagram and apply your changes.

Agent now has a one-to-many object relationship to Customer.

Exporting to Object Builder
You are ready to export the classes to Object Builder. A separate project will
be created for the RelComp package, and the project dependencies will be set
accordingly.

To export to separate Object Builder projects, follow these steps:
1. Click Save As to save and rename your model (for example, as

e:\tutorials\rosemodels\AgentTeam.mdl). The model file contains the
information that defines Agent, and has a reference to the .cat file that
defines Customer.

2. Click File > Export to Object Builder. The Rose Bridge Export wizard
appears.

3. In Target Project, specify a directory to export to (for example,
e:\tutorials\roseteam\). The Rose Bridge will create the directory if
necessary, and turn it into an Object Builder project directory.

Chapter 10. Team development 453



4. Accept the default for the other options.
5. Click Finish. Your existing Rose model is automatically saved as part of

the export process.

Project directories are created for the two components. Your project directory
structure should look something like this:
v e:\tutorials\roserel

Defines the Customer component, and has a dependency on
e:\tutorials\roseteam to support Customer’s relationship to Agent. The
project directory was defined in the RelComp package’s Specification
notebook, on the IDL page, with the OBProjectDirectory property.

v e:\tutorials\roseteam
Defines the Agent component, and has a dependency on
e:\tutorials\roserel to support Agent’s relationship to Customer. The project
directory was defined during the export process, in the Rose Bridge wizard.

You are ready to open the projects in Object Builder, review the results of the
export, and edit the components in Object Builder.

Working with Customer
Open Customer’s project:
1. Start Object Builder.
2. In the Open Project wizard, specify the project directory created by the

export for the RelComp package (for example, e:\tutorials\roserel).
3. Click Next to turn to the Project Dependencies page. Note the dependency

on Agent’s project (for example e:\tutorials\roseteam). This has been
added to support Customer’s relationship with Agent.

4. Click Finish. The project for Customer opens.

Edit Customer’s attributes:
1. Expand the User-Defined Business Objects, and locate the Customer

interface (under the Customer file).
2. From the pop-up menu of the Customer interface, click Properties to open

the Business Object Interface wizard.
3. Click the page title and turn to the Attributes page.
4. Set customerNo to be read-only.
5. Click Finish.

Add a key and copy helper:
1. From the pop-up menu of the Customer interface, click Add Key to open

the Key wizard.
2. Add the customerNo attribute to the key attributes list.
3. Click Finish.

454 WebSphere: Application Development Tools Guide



4. From the pop-up menu of the Customer interface, click Add Copy Helper
to open the Copy Helper wizard.

5. Add all attributes to the copy helper attributes list.
6. Click Finish.

Save your changes and close Object Builder:
1. Click File > Save.
2. Click File > Exit.

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to work with Agent’s project.

Editing Agent
Review the exported Agent component.

Open Agent’s project:
1. Start Object Builder.
2. In the Open Project wizard, specify the project directory created by the

export for the Rose model (for example, e:\tutorials\roseteam).
3. Click Next to turn to the Project Dependencies page. Note the dependency

on Customer’s project (for example, e:\tutorials\roserel). This has been
added to support Agent’s relationship with Customer.

4. Click Finish. The project for Customer opens.

Edit the interface:
1. Expand the User-Defined Business Objects, and locate the Agent interface.
2. Click on the interface. Note the relationship to Customer that appears in

the Methods pane, in the User-Defined Relationships folder.
3. From the pop-up menu of the Customer interface, click Properties to open

the Business Object Interface wizard.
4. Click the title and turn to the Attributes page.
5. Change the name of the agentID attribute to id .
6. Delete the contactInfo attribute.
7. Click Finish.

Review the implementation:
1. Locate the AgentBO implementation (under the Agent interface in the

Tasks and Objects pane).
2. From the pop-up menu of AgentBO, click Properties to open the Business

Object Implementation wizard.
3. Click the page title and turn to the Object Relationships page.

Chapter 10. Team development 455



4. Note that the relationship is implemented as a local persistent reference.
This matches the RelationshipImplementation property set for the
relationship in Rose.

5. Click Finish.

Save your changes and close Object Builder:
1. Click File > Save.
2. Click File > Exit.

You have made your changes to the project, saved them, and closed Object
Builder. You are ready to import your changes from both projects into Rose,
and review their effect on your Rose model.

Importing into Rose
To import your changes into Rose, follow these steps:
1. Start Rose.
2. Click File > Import from Object Builder. The Rose Bridge Import wizard

opens.
3. In the Object Builder Project Directories field, type the path for the Agent

component’s project (for example e:\tutorials\roseteam\) and click Set.
The project is added to the import list.

4. Add the Customer project directory (for example e:\tutorials\roserel\) in
the same manner.

5. Click Next.
6. In the Output File field, type the name of the Rose model you want to

import to (for example e:\tutorials\rosemodels\ImportAgentTeam.mdl).
You do not need to provide any virtual path mapping information,
because you did not use virtual path maps in your original Rose design
(as created in the previous tutorials).

7. Click Finish.

The Rose Bridge imports Agent’s project into the specified model (creating a
new model), and imports Customer’s project into the existing .cat file
(overwriting the existing .cat file).

Because the import process only maps information to the Logical View, the
import process assumes that you do not want to overwrite the existing model
(which could potentially contain unmapped information in other views). The
import process does overwrite the .cat file, however, since .cat files only
contain Logical View information.

In this case, all your information for both components was in the Logical
View: there is no need to merge with the original model, and you could
discard it if you wanted.

456 WebSphere: Application Development Tools Guide



Even within the Logical View, there are some elements that do not have
Object Builder equivalents: every time you import from or export to Object
Builder, any unmapped information is preserved in a file called
modelname.xml, which is stored in the Object Builder project’s \XMI directory.
When you store your project in a change control system, be sure to preserve
the contents of the \XMI directory as well as the Object Builder model files,
or Rose design information will be lost.

Reviewing the changes
Your changes in the Object Builder projects are applied, and have had the
following effect:
v Customer now has the IDL properties CreateKey and CreateCopyHelper

properties set to True (reflecting your creation of CustomerKey and
CustomerCopy, in Object Builder)

v Customer’s attribute customerNo now has the DDL property isPrimaryKey
set to True (reflecting your inclusion of the attribute in CustomerKey, in
Object Builder).

v Agent’s attribute agentID has been renamed to id .
v Agent’s attribute contactInfo has been deleted.

Summary
You have created a team environment with two interdependent project
directories, created a cross-project object relationship, and applied changes in
the team environment to your Rose model.

Setting up a team environment

To set up a team environment, you typically start by defining the structure of
your application (either in a Rose design, or in a single Object Builder project),
then divide the structure into working units (either by exporting from Rose,
or by splitting up the single Object Builder project). Once you have the
directory structure that holds your design defined, you can add an integration
or build project. You can then store the structure in a change control system,
set up an automated build process, and finally set up the individual
development machines.

The tasks involved in setting up a team environment are as follows:
1. “Splitting up a project for team development” on page 459
2. “Adding an integration project to a team environment” on page 460
3. “Setting up a change control process” on page 464
4. “Setting up XML-based change control for CMVC” on page 471
5. “Setting up an automated build process” on page 465
6. “Setting up a team development environment” on page 467

Chapter 10. Team development 457



You can also set up a team environment starting from Rose, as discussed in
“Working with Rose in a team environment” on page 444.

“Chapter 10. Team development” on page 443
“Project divisions in a team environment”
“Change control” on page 463
“XML-based change control” on page 469

“Developing as part of a team” on page 444
“Working in a team environment” on page 480

Project divisions in a team environment

When you create an application in a team environment, the contents of the
application needs to be split up into multiple projects. You can choose to split
along package lines or component layers, or combine the approaches:
v Packages

Your application design can be viewed in terms of categories or groupings
of related components, which serve to partition the logical model of your
application. In UML terms, these categories are packages. If you created
your application design in Rational Rose, you can export the design directly
to a team environment. Any packages that are stored in separate .cat files in
Rose will automatically be exported to separate projects. You can set the
directory for the exported project in the package’s specification notebook
(IDL page, OBProjectDirectory property).
If your team development roles align with divisions in the design, this is
the main strategy you will use.

v Component layers
Each component consists of a behavior layer (the business object), a data
layer (the data object), and a persistence layer (the persistent object). You
can split out a component into its separate component objects, and maintain
them in separate, interdependent projects.
If your team development roles align with component layers (for example,
an object-oriented designer at one end versus a database administrator at
the other), this is the main strategy you will use.

You can mix strategies within a team environment. You will also want an
additional, separate project from which you can coordinate application-wide
builds and application packaging.

There are two general rules to use when deciding on project divisions:
v Avoid overlapping ownership

Each project should have a single clear owner within your team, whenever

458 WebSphere: Application Development Tools Guide



possible. Only one person should work on a project at a time, so
overlapping ownership creates access conflicts.

v Minimize cross-project dependencies
Components that are closely related should stay in the same project
whenever possible. Some component dependencies, such as foreign key
pattern relationships, nearly always belong in the same project.

“Chapter 10. Team development” on page 443

“Setting up a team environment” on page 457
“Splitting up a project for team development”
“Changing project divisions” on page 496

Splitting up a project for team development

To divide an existing project into separate projects, follow these steps:
1. Open the existing project.
2. Click File > Export Model. XML files are exported for the project, as

described in “XML interchange files” on page 493.
The exported files are placed in the \Export subdirectory of the project
directory.

3. Create a set of project directories that represent the groupings of
component objects you want, under a single parent directory.
For example, you could create the project directories
e:\allprojects\policyBO, e:\allprojects\carpolicyBO, e:\allprojects\allDOs,
e:\allprojects\integration.

4. In each project directory, create a subdirectory (for example, \Import).
5. Place the component XML files for each grouping in the subdirectory of its

equivalent project.
You can place as many or as few XML files in each subdirectory as you
want, depending on the way you want to organize the project contents,
and following the project division guidelines (avoid overlapping
ownership, minimize cross-project dependencies).
In the Policy example, you could divide the files as follows:
v e:\allprojects\policyBO\Import

udbo.Policy.xml
v e:\allprojects\carpolicyBO\Import

udbo.CarPolicy.xml
v e:\allprojects\allDOs\Import

uddo.PolicyDO.xml, uddo.CarPolicyDO.xml,
uddbschema.PolicyGroup.xml, uddbschema.CarPolicyGroup.xml

Chapter 10. Team development 459



v e:\allprojects\integration
uddll.PolicyS.xml uddll.PolicyC.xml, udaf.MyAppFamily.xml

6. From the command line, run the obimport command to create a set of
interdependent project models based on the XML files in each project’s
subdirectory (for example \Import). For example:
obimport -X -d Import -newuuid e:\allprojects\policyBO
e:\allprojects\carpolicyBO e:\allprojects\allDOs e:\allprojects\integration
This example would create four projects, by importing the XML files found
in the \Import subdirectories of the listed directories. The -newuuid
option guarantees that the imported files will have unique identifiers
across the set of projects.

Once you have split the project into a set of projects in a team environment,
you can continue with your team environment set up. You need to choose a
change control unit, and a system to store the units in. You need to set up the
team environment, and the development machines, to support either local
dependency resolution (with project dependencies extracted from the change
control system) or remote dependency resolution (with project dependencies
resolved by a project repository on a shared network drive). You need to set
the makefile generation preferences for each Object Builder installation to
reflect a team environment.

“Chapter 10. Team development” on page 443
“Project divisions in a team environment” on page 458
“Projects and models” on page 17
“Model interchange with XML” on page 492

“Exporting XML” on page 387
“Importing XML” on page 389
“Changing project divisions” on page 496
“Adding an integration project to a team environment”

“XML interchange files” on page 493

Adding an integration project to a team environment

If you created your team environment by splitting up an existing project, then
your integration project already exists, and simply contains the build and
application configuration information from the original project. However, if
you created your team environment by exporting a model from Rose, you will
need to add a new integration project, as described here.

460 WebSphere: Application Development Tools Guide



The integration project will define the build configuration options and
makefiles for all the components defined in your projects. Typically, it will
also contain the application configuration information, when you reach the
stage of packaging the application. To add an integration project, follow these
steps:
1. Create a new project. It should be part of the same directory structure as

your other projects (that is, they should all be under the same parent
directory). In the Open Projects wizard, Project Dependencies page, list all
the projects in your team environment as dependencies.

2. Once the new project is open, click File > Preferences to open the
Preferences notebook.

3. Click on the Tasks and Objects node in the Preferences tree view.
4. Under Environment, set the Team Environment option. This allows the

project’s build process to locate the generated code in the dependency
projects’ \Working directories.
In order to locate the other projects’ generated code, the integration
project’s makefiles will use absolute paths instead of relative ones. These
absolute paths are, by default, the paths where the dependent models are
found on the Object Builder Model Path. You can change these paths for
each platform for the current project on the Build Location page of the
Build Configuration wizard. If your directory structure changes, you will
need to regenerate the makefiles.

5. Add client and server DLLs for all the components in your application. If
a DLL is already defined in one of the dependency projects, then you must
use a different name for the DLL configuration node in the integration
project, but you should use the same name for the built DLL file.

6. Add application families and applications, and configure the managed
objects of the various components in the other projects.

7. Save and close the project.

The project will be used as the starting point for any regular automated
builds, and for packaging the application.

“Chapter 10. Team development” on page 443
“Projects and models” on page 17

“Setting up a team environment” on page 457
“Splitting up a project for team development” on page 459
“Setting up an automated build process” on page 465

Chapter 10. Team development 461



Cross-project dependencies

Building multiple projects

When you work with multiple projects within Object Builder, some
lower-level projects that provide services for higher-level projects must be
built first (before the higher-level ones). This is especially important if you
have modules within your projects. Object Builder provides a Contents
Ordering page for you to specify the order in which the DLLs have to be
built. You can design your build system in such a way that the projects get
built in an order, which is compatible with the logical layering of the system.

For Java compile cycles, the normal way of incrementally building Java
projects is in this order:
1. Build JAR files for the lower layers
2. Then, include these JAR files on the -classpath command line argument

when compiling higher level classes

This is automatically done for you by Object Builder when you specify the
order that has to be used during the build. Object Builder resolves these
dependencies between different levels of projects.

For the C++ build phases, the order of the DLLs is not very critical for the
following reasons:
v compiling C++ sources (pass4) only requires access to header files of other

imported files
v the creation of DLLs (pass6) does not require that other DLLs on which one

depends are built yet. Only the .lib files have to be available, and these also
get built in isolation during the previous phase (pass5).

“Specifying the order of a build” on page 558
“Building the DLLs” on page 558
“Configuring builds” on page 549
“Launching a remote OS/390 build” on page 572
“Generating a makefile” on page 556
“Packaging applications” on page 574

462 WebSphere: Application Development Tools Guide



Change control

When you set up a team environment, you will need to provide a change
control mechanism to ensure that your team members are always working
with the latest versions of their projects. Whatever change control mechanism
you use, you need to set a consistent unit of change control that can be used
throughout your change control system. The unit you choose will be checked
out and locked while a team member is working with it, and then checked
back in and released when the team member has finished working with it.

You can set up your change control system to manage information in any of
the following units. Whichever unit you choose should be used consistently
throughout your system.
v The model files for a project (the contents of a project’s \Model directory).

This is the recommended unit of change control for most team development
environments, and most of the documentation assumes you are doing so.
The model files can simply be opened and worked with. If you are using
external files to provide method implementations, it may be easier to
package the entire \Model directory (for example, in a .zip file) and use
that as the unit of change control.

v The model files, plus the .xmi files for a project (the contents of a project’s
\Model directory, as well as the contents of a project’s \XMI directory). If
you are working extensively with Rational Rose, this is the recommended
unit of change control.

v The XML files for a project’s contents
You can check in or check out files for objects in the Tasks and Objects pane
as described in “XML interchange files” on page 493. This allows you to
store and exchange information at a granular level, and allows you to
integrate Object Builder with your change control system using
customizable check-in and check-out wizards. If you have a simple team
development environment with static project divisions, and overlapping
team roles that require this level of granularity, this is the recommended
unit of change control.

v The generated source files for a project (the contents of a project’s \Working
directory).
This assumes that each team member is maintaining a single copy of their
project model. The generated code is stored for backup purposes only, and
for regular automated builds.

Once your change control system is in place, and your project information is
stored in it, you can use it to manage your team environment.

Typically, you should use a daily build process to extract all projects, build
them, and make the result available to team members. A team member who

Chapter 10. Team development 463



wants to make a change to a project can then check out the project from the
change control system, and use the daily build structure to resolve the
project’s dependencies.

“Chapter 10. Team development” on page 443
“XML-based change control” on page 469
“Projects and models” on page 17
“Model interchange with XML” on page 492
“Project divisions in a team environment” on page 458

“Setting up a change control process”
“Setting up XML-based change control for CMVC” on page 471
“Importing edited source files” on page 385

“XML interchange files” on page 493

Setting up a change control process

Once you have created your team directory structure and skeleton projects
(either through export from Rose, or by splitting up an existing project), you
can set up a change control process, to ensure that only one person makes
changes to a project at a time.

Typically, you should use a daily build process to extract all projects, build
them, and make the result available to team members. A team member who
wants to make a change to a project can then check out the project from the
change control system, and use the daily build structure to resolve the
project’s dependencies.

Setting up a change control process requires the following general steps. Most
of these steps are discussed in detail in their own tasks. This list gives you an
overview of how the steps fit together, from a change control perspective.
1. Create the team directory structure (that is, a set of project directories that

hold the elements of your application). You can create the structure either
by exporting a design from Rose, or by taking a design in an existing
Object Builder project, and splitting it up into multiple projects. This is
discussed in other tasks.

2. Add an integration project to the team directory structure. This is
discussed in another task.

3. Select a unit to use for change control (for example, the contents of each
project’s \Model directory).

464 WebSphere: Application Development Tools Guide



4. If you selected XML files as your unit of change control, customize the
check-in, check-out, and extract wizards in Object Builder. This is
discussed in another task.

5. Check all projects, or their individual elements, into the change control
system.

6. Set up a daily or nightly build process, that will extract all projects or
project elements, generate code for the entire application using the
integration project, and build the application DLLs. The resulting project
repository (all projects, with their generated and built code) needs to be
available for team members to access (for example, as a zip file in the
change control system, or as a directory structure on the LAN).

“Change control” on page 463
“Chapter 10. Team development” on page 443
“Projects and models” on page 17

“Setting up a team environment” on page 457
“Exporting a Rose design to a team environment” on page 445
“Splitting up a project for team development” on page 459
“Adding an integration project to a team environment” on page 460
“Setting up XML-based change control for CMVC” on page 471
“Setting up an automated build process”

Setting up an automated build process

You can use an automated build process to create and update a project
repository, which can be used to resolve the dependencies of a project being
edited.

Note: It is advisable to run the Consistency Checker before you generate
makefiles, or start building, to ensure that the configuration for your client
DLL is correct. This is crucial particularly if your client DLL does not have at
least one IDL file selected.

The automated build process needs to do the following:
1. Extract all projects from the change control system.

If you are using XML-based change control, then you need to extract all
XML files, and import them into their respective projects:
a. In each project directory, create an Import subdirectory.
b. Place the extracted XML files for a particular project in that project’s

\Import subdirectory.
c. Run “obimport” on page 664 with the -x option to import the files into

the projects, with resolution of cross-project references. For example:

Chapter 10. Team development 465



obimport -x e:\projects\projectA e:\projects\projectB
e:\projects\projectC

2. Generate code for all projects, using “obgen” on page 685 with the -linked
option. For example:
obgen -pF:\projects\projectA -aAll -tNT -linked
obgen -pF:\projects\projectB -aAll -tNT -linked
obgen -pF:\projects\projectC -aAll -tNT -linked

The above commands generate the code for all objects (-aAll) in projectA,
projectB, and projectC (the equivalent of selecting Generate > All from the
pop-up menu of the User-Defined Business Objects folder in each project),
and also generates makefiles and SM DDL files for the DLLs and
applications defined in the projects. The code is generated for the platform
Windows NT (-tNT), and placed in each project’s \Working\NT\ directory
(-linked).

3. Generate the makefiles for the application integration project. For example:
obgen -pF:\allprojects\Integration -aMake -linked -tNT
The above command generates the makefiles (-aMake) defined in the
Integration project. The -linked option generates the makefiles with
absolute paths to the code found in the other projects’ \Working\NT
directories (if you have not specified your own paths in the Project Build
Location page of the Build Configuration Properties wizard), rather than
generating makefiles that assume the generated code is in the current
project’s \Working\NT directory.

4. Build all the DLLs defined in the application integration project. For
example, for a Windows NT machine:
nmake -f F:\allprojects\Integration\Working\NT\all.mak
The DLLs, .jar files, and any other targets defined in the makefiles are
built in the integration project’s \Working\NT\PRODUCTION directory.
Note the following points:

v If your compile command fails due to an incorrect DB2 user ID and
password error, run the following command before you run the make
(AIX) or nmake (NT) command:

set IVB_DB2AUTH=USER test USING password

export IVB_DB2AUTH=“USER test USING
password”

test is the user ID that you log on to DB2 with, and password is the
password for your user ID.

v On Solaris and HP-UX, you have to manually start
the ’make’ process that is used to build an Object Builder model. Where

466 WebSphere: Application Development Tools Guide



authentication is required to complete the bind, you must run make
from within an authenticated DB2 command shell, instead of from
within a vanilla shell.

5. Make the full extracted directory structure available, including the \Model
directories, and the \Working directories with the generated code and
built DLLs.
For example, you could export F:\allprojects on the network, or zip the
contents of the directory and place the zip file in the change control
system.

The following sample build script extracts the project model directories for
four projects, including an integration project, generates their code, generates
the makefiles, builds the code, and creates a zip file:
allprojectsbuild.bat
<Extract all projects from your change control system>
obgen -pF:\allprojects\projectA -aAll -tNT -linked
obgen -pF:\allprojects\projectB -aAll -tNT -linked
obgen -pF:\allprojects\projectC -aAll -tNT -linked
obgen -pF:\allprojects\Integration -aMake -linked -tNT
nmake -f F:\allprojects\Integration\Working\NT\all.mak
zip latest.zip F:\allprojects\* -r
<publish latest.zip>

“Chapter 10. Team development” on page 443

“Generating code from the command line” on page 684
“Adding an integration project to a team environment” on page 460
“Setting up a team environment” on page 457

Setting up a team development environment

Once the projects in the team environment have been stored in a change
control system, and an automated build process has begun producing
regularly updated project repositories, you can set up the development
machines to be part of the team environment.

On each development machine, set up the team environment as follows:
1. Create a local directory that will hold the project repository created by the

nightly build (for example, f:\allprojects\). Each team member will be
responsible for updating their copy of the repository when required.

2. Create another local directory to hold any projects you check out from the
change control system for editing (for example, f:\currentprojects\).

On each development machine, set up Object Builder’s search path:
1. Start Object Builder. The Open Project wizard opens.

Chapter 10. Team development 467



2. In the Model Search Path field, include first the current projects directory,
and then the project repository directory. For example:
f:\currentprojects;f:\allprojects;

The directories, and their subdirectories, will be searched for project
dependencies in the order they are listed. For example, if you check out three
interdependent projects into f:\currentprojects\, then the duplicates of those
projects in the f:\allprojects\ directory are ignored, because their
dependencies on each other are resolved before the f:\allprojects\ directory is
searched. Any additional dependencies, beyond just the three checked out
projects, will be resolved in the f:\allprojects\ directory.

On each development machine, set up Object Builder for a Team
Environment:
1. Open Object Builder, with any project.
2. Click File > Preferences to open the Preferences notebook.
3. Click on the Tasks and Objects node in the tree view.
4. Under Environment, set the Team Environment option. This allows the

project’s build process to locate code and makefiles in other project
\Working directories, to resolve makefile dependencies correctly.
In order to locate code in other projects’ Working directories, the generated
makefiles will use absolute paths instead of relative ones. If your directory
structure changes, you can edit the file prjdefs.mk to reflect the new paths,
or simply regenerate the makefiles.
For each target platform, you can override the default working directory
paths emitted into prjdefs.mk on the Build Location page of the Build
Configuration wizard.
If a business object depends on other business objects, the paths to the
directories that contain those models is written by Object Builder into the
file prjdefs.mk. If you then copy the generated source another location (for
example, to another platform), you must edit prjdefs.mk to reflect the
paths on the new location. Alternatively, you can customize the path that
is emitted for each platform on the Build Location page in the Build
Configuration wizard.

5. Save and close the project.

“Chapter 10. Team development” on page 443
“Projects and models” on page 17

“Setting up a team environment” on page 457
“Working in a team environment” on page 480
“Maintaining a team environment ” on page 490

468 WebSphere: Application Development Tools Guide



XML-based change control

You can integrate Object Builder with the change control system of your
choice, using XML wizards. The wizards accept input from the user, and use
the input to construct a command line, that checks in or checks out the XML
file for the current Object Builder element.

This is not the recommended unit of change control for this version of Object
Builder, especially if you are using Rational Rose: the XML does not contain
information on Rational Rose mappings. If you have a team environment with
many projects, or use additional tools with Object Builder, you should use the
project directory, specifically its \Model and \XMI subdirectories, as the unit
of change control.

If you decide to use XML-based change control, you will still need to break
your application up into multiple projects, for the sake of efficient access. The
projects do not need to be under change control themselves, but they do need
to be regularly refreshed to reflect any changes made in the change control
system to the XML files. You can create a batch process or shell script to
accomplish this. The process needs to extract all XML files from the change
control system, import them into their respective projects, and then publish
the projects (make them available for use by the team).

Once you have your projects updated and their contents stored as XML files
in your change control system, you can access the system through Object
Builder using change control wizards. Open a project in Object Builder, check
out a file or series of files (that are already defined in the project, but become
locked in the change control system once they are checked out), and work
normally within the project and its team environment until you are ready to
check in your changes.

There are three different XML formats involved in the XML-based change
control process:
v Object Builder’s XML format

Defines the elements being checked in and checked out. During checkout,
an XML file is taken from the change control system and imported into the
current project. During checkin, an XML file is exported from the current
project and put into the change control system. The XML files use a
specialized tag set that can express the range of elements and relationships
that exist in an Object Builder model. The tag set is defined in the DTD
(document type definition) eom.dtd.
This is the format used in the unit of change control. Files in this format
can be imported into and exported from Object Builder. Examples:
udbo.Claim.xml, uddo.ClaimDO.xml

Chapter 10. Team development 469



The files you can export in this format are described in “XML interchange
files” on page 493.

v The checkin, checkout, and extract template format
Defines the fields required to assemble the appropriate checkin or checkout
command. The default checkin template, for example, defines fields for
filename (set by Object Builder’s XML export process), and for defect,
release, component, family, and relative path (all set by the user).
You can define your own template format or base one on the provided
samples. The samples are described in more detail in “Change control
sample” on page 473

v The checkin and checkout script or macro format
Defines defaults for the fields, and organizes the fields into a wizard for the
user
This is the format created by the SmartGuide Customizer for XML. You can
use files in this format to run XML wizards, using the xmllaunch command.
Typically these files have the same name as the input file, with “-macro”
added to the filename. The XML wizards produce a filled-in template and
feeds it back to Object Builder. Object Builder uses the filled-in template to
assemble a command-line command that checks in or checks out the
appropriate file. Examples: checkin-macro.xml, checkout-macro.xml

v The template interpreter format
Defines the way in which the filled-in template (generated by the XML
wizard) will be used to construct a command line. This format is described
in “Template interpreter format” on page 478.

How the command line for checking in a file is assembled
In Object Builder, you select an element, display its pop-up menu, and click
Check In. A wizard opens, whose format and content are determined by the
files checkin.xml plus checkin-macro.xml. You provide information in the
wizard, which it uses to create a filled-in template (based on checkin.xml) that
is fed to a template interpreter. The filled-in template is interpreted based on
rules specified in checkin.tde, and the assembled instruction runs on the
command line.

470 WebSphere: Application Development Tools Guide



“Change control” on page 463
“Chapter 10. Team development” on page 443

“Setting up a change control process” on page 464
“Setting up XML-based change control for CMVC”
“Customizing XML-based change control” on page 475

“XML interchange files” on page 493
“Change control sample” on page 473
“Template interpreter format” on page 478

Setting up XML-based change control for CMVC

You can check work in and out of your change control system using XML files
as your unit of change control. This capability is built into Object Builder: you
can check in or check out files from the Tasks and Objects pane, on a
per-folder basis or on a per-file basis.

This is not the recommended unit of change control for this version of Object
Builder. The XML does not contain information such as project dependencies,
or Rational Rose mappings. If you have a team environment with many
projects, or use additional tools with Object Builder, you should use the
project directory, with its subdirectories, as the unit of change control.

Chapter 10. Team development 471



If you have an uncomplicated team environment with relatively static project
divisions and no dependencies on other tools, you can use the XML check-in
and check-out feature provided with Object Builder.

Before you can begin using the feature, you must populate CMVC with your
files, and customize the wizards in Object Builder.

To populate CMVC with your XML files, export all files for all projects. Store
them in CMVC. Generally, you will need to include the project directory as
part of each file’s path (for example, MyProject\Export\udbo.AgentFile.xml).
This ensures that the record of the file will be unique within the system, even
if the file name is used by other projects or applications stored in the system.

The check-in, check-out, and extract wizards are actually XML wizards, and
you can edit them using the SmartGuide Customizer for XML. By default, the
wizards work with CMVC, and provide input fields for defect number,
release, component, family, and path to the file (generally the project’s
\Export directory, for example e:\myproject\Export). You can also customize
the wizards to work with any system that has a command-line interface, or to
extend the range of information the user provides (for example, to include
feature numbers).

To set up the existing check-in, check-out, and extract wizards for use with
your CMVC system, follow these steps:
1. Start the SmartGuide Customizer for XML, by typing the command

xmlcustm on the command line.
2. Click File > Open.
3. Locate and select the file checkin-macro.xml, located in your

<CBroker>\bin directory.
4. Click OK. The file is opened in the Customizer.
5. In the Contents pane, expand each element in turn, and review its

properties and the properties of its attributes. There are separate elements
that define the defect number, release, family, and relative path for the
check-in command.
Note that the DEFECT element has been specified as repeatable, and
instructions for specifying multiple defects are provided as introduction
text for the wizard page. A repeatable element gets its own page in the
XML wizard, where a tree view allows the user to specify and organize
multiple instances of the element (in this case, multiple defect numbers to
be used when checking in a file).

6. Expand the FAMILY element, and click on its name node (the value of the
FAMILY element).

472 WebSphere: Application Development Tools Guide



7. Change the default value for name from “family” to the name of your
CMVC family. This saves you the trouble of providing the family name
every time you check in a file.

8. Click File > Save.
9. Customize the checkout-macro.xml file and extract-macro.xml file in the

same manner.

You can go beyond this simple customization, to include constraints on valid
values, organize the way the information is laid out in the wizard, and
provide flyover help or HTML help for the wizard fields and pages.

Once XML-based change control is set up, you can open a project in Object
Builder, check out a file or series of files (that are already defined in the
project, but become locked in the change control system once they are checked
out), and work normally within the project and its team environment until
you are ready to check in your changes.

When you access the change control wizard from within Object Builder (by
checking in or checking out a file), the wizard takes your input, creates a
customized XML document, and feeds the document to the template
interpreter, which resolves the macros and assembles a command line
instruction that completes the check-in, check-out, or extract action.

With the contents of each project under change control in the form of XML
files, the project models do not need to be stored as well. However, they do
need to be regularly refreshed to reflect any changes made in the change
control system. This can be accomplished using a batch process, which
extracts all XML files from the change control system, imports them into their
respective projects, and then publishes the projects (makes them available for
use by the team).

“XML-based change control” on page 469
“Change control” on page 463

“Customizing XML-based change control” on page 475
“Exporting XML” on page 387
“Exporting XML from the command line” on page 660

“XML interchange files” on page 493
“Change control sample”

Change control sample

The change control sample consists of the following files:

Chapter 10. Team development 473



v checkout.xml, checkout.dtd, checkout-macro.xml, checkout.tde
Define a process for checking out a file from CMVC.

v checkin.xml, checkin.dtd, checkin-macro.xml, checkin.tde
Define a process for checking in a file to CMVC

v extract.xml, extract.dtd, extract-macro.xml, extract.tde
Define a process for extracting a file from CMVC

Each set of files supports an equivalent process in Object Builder. For
example, for the checkout process, the user selects an element within a project
(such as a business object file) and selects Checkout from its pop-up menu. A
wizard appears, prompts the user for information, and uses the information to
construct and run a command-line instruction that performs the actual
checkout process (by locating the equivalent XML file in the change control
system, checking it out, and importing it into Object Builder).

The files have the following purpose:
v checkout.xml, checkin.xml, extract.xml

Define the elements that are required to construct the command line (for
example, defect number, release, family). These act as templates, that define
the format by example.

v checkout.dtd, checkin.dtd, extract.dtd
Formally define the formats using the document type definition language
specified in the XML standard.

v checkout-macro.xml, checkin-macro.xml, extract-macro.xml
Define the way in which the user fills in the templates. These files are in
the format generated by the SmartGuide Customizer for XML, and identify
which information in the template needs to be provided by the user. They
act as scripts for XML wizards, which run when the user clicks Checkout,
Checkin, or Extract. The XML wizards produce filled-in templates, which
are passed to an interpreter to be used in assembling the equivalent
command line instructions.

v checkout.tde, checkin.tde, extract.tde
Define the way in which the filled-in templates are interpreted, and the
user-provided information is assembled into command-line instructions.

There is also a simpler version of the sample that does not use a DTD. It
consists of the following simplified files:
v checkout2.xml, checkin2.xml, extract2.xml

Define the elements that are required to construct the command line.
Rename the files to checkout.xml, checkin.xml, and extract.xml in order to
use them with Object Builder.

v checkout2-macro.xml, checkin2-macro.xml, extract2-macro.xml
Define the way in which the user fills in the templates. Rename the files to
checkout-macro.xml, checkin-macro.xml, and extract-macro.xml in order to
use them with Object Builder.

474 WebSphere: Application Development Tools Guide



The simplified sample uses the same .tde files as the original sample, and
does not use DTDs.

“XML-based change control” on page 469
“Change control” on page 463

“Setting up XML-based change control for CMVC” on page 471
“Customizing XML-based change control”
“Template interpreter format” on page 478

Customizing XML-based change control

You can check work in and out of your change control system using XML files
as your unit of change control. This capability is built into Object Builder: you
can check in or check out files from the Tasks and Objects pane, on a
per-folder basis or on a per-file basis.

This is not the recommended unit of change control for this version of Object
Builder. The XML does not contain information such as project dependencies,
or Rational Rose mappings. If you have a team environment with many
projects, or use additional tools with Object Builder, you should use the
project directory, with its subdirectories, as the unit of change control.

If you have an uncomplicated team environment with relatively static project
divisions and no dependencies on other tools, you can use the XML check-in
and check-out feature provided with Object Builder. Before you can begin
using the feature, however, you must customize it to work with your change
control system.

If your change control system is CMVC, you can use the samples provided
with Object Builder as a starting point, as described in “Setting up XML-based
change control for CMVC” on page 471.

If you are using a change control system other than CMVC, or want to extend
the sample CMVC support, follow these steps:

1. Create backup copies of the main change control XML sample:
checkin.xml, checkin-macro.xml, checkout.xml, checkout-macro.xml,
extract.xml, extract-macro.xml

2. Locate the sample files in the <CBroker>\samples\teamlib directory
(checkin2.xml, checkout2.xml, and so on). These form a simpler version
of the change control sample, and will be easier to start with if you are
unfamiliar with XML.

3. Create copies of them, renamed to checkin.xml, checkout.xml, and so on.

Chapter 10. Team development 475



4. Move the copies over to the original directory (<CBroker\bin).
5. Modify the files checkin.xml, checkout.xml, and extract.xml. They need to

define the fields for which you will need to gather data during the
checkin and checkout processes.
When you modify the files, create a separate element tag for each type of
information you need to gather (for example, <DEFECT> for defect
numbers, <FEATURE> for feature numbers). This is necessary so that you
can identify an element’s content when you construct and execute the
command-line command.
A simple prompting structure might look something like this:
<?xml version=“1.0” standalone=“yes”?>
<CHECKOUT>

<USER>username</USER>
<PASSWORD>password_here</PASSWORD>
<COMMENTS>why you are checking it out</COMMENTS>

</CHECKOUT>

A more sophisticated XML documented could include a DTD, and IDs
and attributes, for a more robust macro implementation and
DTD-enforced value constraints. The main sample (the original
checkin.xml, checkout.xml, and so on) illustrates such an implementation.
It includes a DTD and IDs. For the purpose of constructing a
command-line instruction, however, a simple document, as shown in the
secondary sample, should be sufficient.

6. Start the SmartGuide Customizer for XML, by entering the command
xmlcustm on the command line.

7. Click File > Open, and open checkin.xml.
8. Locate the Text node for each element (the content you are going to be

prompting the user for).
9. For each Text node, set its Macro value in the Contents pane to Editable.

10. For each Text node, apply any constraints you want enforced by the
wizard interface. By default, no spaces are allowed in the value. In the
example above, you would need to change the constraint for
<COMMENTS> to Any, to allow the user to enter text that includes
spaces.

11. If any of the elements are repeatable (such as <DEFECT>), click on the
element and check the Repeatable option in the Contents pane. Also set
the Macro value to Hidden.

12. Click File > Save. The file checkin-macro.xml is created. This is the file
that runs (using xmllaunch) when you click Checkin in Object Builder
(from a folder or file pop-up menu).

13. Do the same for checkout.xml and extract.xml.
14. Open the file checkout.tde in a plain text editor (for example, notepad).

This file takes the content supplied by the user (a filled-in XML template

476 WebSphere: Application Development Tools Guide



generated by the checkout XML wizard) and uses it to construct a
checkout command line. Edit the file to construct the command line you
require. For example, a template interpreter file for the sample structure
above could look like this:
<?xml version=“1.0”?>
<!DOCTYPE _TDEBlock_ SYSTEM “../dtd/tde.dtd”>
<_TDEBlock_>
<sameline>

File -checkout %1
<hasscope NAME=“USER”>
-user $USER//TEXT$
</hasscope>
<hasscope NAME=“PASSWORD”>
-passwd $PASSWORD//TEXT$
</hasscope>
<hasscope NAME=“COMMENTS”>
-comments “$COMMENTS//TEXT$”
</hasscope>
</sameline>

</_TDEBlock_>
You can create multiple-line commands using the <sameline> grouping.
Each set of instructions grouped within a <sameline> element is
assembled into a single line. If you include multiple <sameline>
elements, the assembled commands will be run in sequence.
Use %1 or $1 to identify where in the command line the name of the file
should go. The file name is defined by Object Builder, based on the
element being checked out.
Within the <sameline> element, you can have multiple elements that pull
in variable information from the XML file the XML wizard produces. For
example, the user name, password, and any comments provided by the
user can now be pulled in to the assembled command line. The
information to be used is identified by source element name.
For example, if the user specifies “abc123” as a password in the checkout
wizard, then the element:

<hasscope NAME=“PASSWORD”>
-passwd $PASSWORD//TEXT$
</hasscope>

queries the XML file created by the checkout wizard, gets the content of
the file’s <PASSWORD> element, and assembles it into the command-line
fragment “-passwd abc123”.
You can use <repeatscope> elements for repeatable sections of the
command line (as identified when you defined the XML wizard). Use

Chapter 10. Team development 477



<hasscope> elements for optional non-repeatable elements (such as
comments). You can also use <Scope> elements if a non-repeatable
element is required.

15. Save and exit the file.
16. Customize checkin.tde and extract.tde in a similar manner, to query

information from checkin.xml and extract.xml and assemble the
information into the appropriate commands for your change control
system.

“XML-based change control” on page 469
“Change control” on page 463

“Setting up XML-based change control for CMVC” on page 471
“Exporting XML” on page 387
“Exporting XML from the command line” on page 660

“XML interchange files” on page 493
“Change control sample” on page 473

Template interpreter format

The template interpreter format takes information provided in a checkout,
checkin, or extract wizard and turns it into a command line instruction or
instructions. The format is organized as follows:
v Header
v Body
v Lines
v %1 or $1
v Scopes (repeatscope, hasscope, Scope)

Header
<?xml version=“1.0”?>
<!DOCTYPE _TDEBlock_ SYSTEM “../dtd/tde.dtd”>

Identifies the format as XML, names the document type as _TDEBlock, and
provides the location of the document type definition (tde.dtd).

Body
<_TDEBlock_>
...
</_TDEBlock_>

Identifies the start and end of the XML information.

478 WebSphere: Application Development Tools Guide



Lines
<sameline>
...
</sameline>

Identifies information that should be assembled into a command line
instruction. The body can contain multiple sameline elements, which will
construct multiple command lines that will be run in sequence.

The <sameline> element contains a mix of plain text information
(command-line fragments that will always be executed) and scoped
information (command-line fragments that will vary based on user-provided
information).

%1
To pull in the name of the file being checked in, checked out, or extracted, use
the special flag %1. Wherever %1 appears within a <sameline> element, the
name of the file will be substituted. The file name is defined by Object
Builder, based on the element selected within the Tasks and Objects pane.

Scopes
<repeatscope>...</repeatscope>
<hasscope>...</hasscope>
<Scope>...</Scope>

Identifies information that is pulled from the wizard-produced XML file (that
is, information provided by the user).

<repeatscope>
<repeatscope NAME=“SOURCE_ELEMENT”>some text $SOURCE_ELEMENT$
some text</repeatscope>

Use for elements that have been specified as repeatable in the XML wizard
(using the SmartGuide Customizer for XML). Allows for 1-n elements with
this name, turned into a corresponding number of command-line fragments.

Example:
<repeatscope NAME=“DEFECT”>-defect=$DEFECT$</repeatscope>

<hasscope>
<hasscope NAME=“SOURCE_ELEMENT”>some text $SOURCE_ELEMENT$
some text</hasscope>

Use for elements that are required. Allows for one element with this name,
turned into a single command-line fragment.

Chapter 10. Team development 479



Example:
<hasscope NAME=“FAMILY”>-family=$FAMILY$</hasscope>

<Scope>
<Scope NAME=“SOURCE_ELEMENT”>some text $SOURCE_ELEMENT$ some
text</Scope>

Use for optional elements. Allows for 0 or 1 element with this name, turned
into a single command-line fragment if present.

Example:
<Scope NAME=“COMMENTS”>-comments “$COMMENTS$”<Scope>

“XML-based change control” on page 469
“Chapter 10. Team development” on page 443

“Setting up a change control process” on page 464
“Setting up XML-based change control for CMVC” on page 471
“Customizing XML-based change control” on page 475

“XML interchange files” on page 493
“Change control sample” on page 473

Working in a team environment

The same rules that apply to developing an application within a single project
apply to developing an application across multiple projects. You must define
parent components before child components, and referenced interfaces before
referencing interfaces.

There are some considerations that are specific to development in a team
environment, including how you check information in and out of a change
control system, and how you work with references across projects. They are
described in the following tasks:
1. “Checking out files” on page 482
2. “Checking in files” on page 483
3. “Extracting files” on page 484
4. “Creating a project in a team environment” on page 481
5. “Editing a project in a team environment” on page 485
6. “Deleting a project in a team environment” on page 486

480 WebSphere: Application Development Tools Guide



7. “Building DLLs in a team environment” on page 487
8. “Packaging an application in a team environment” on page 489
9. “Testing cross-project applications with QuickTest” on page 489

“Chapter 10. Team development” on page 443

“Developing as part of a team” on page 444
“Working with Rose in a team environment” on page 444
“Maintaining a team environment ” on page 490

Creating a project in a team environment

When you create a project in a team environment, make sure it contains an
appropriate amount of the overall application. Avoid overlapping ownership
of projects: try to have only one owner or developer per project. Minimize
cross-project dependencies: try to keep related components in the same
project.

To create a project in a team environment, follow these steps:
1. Create a project directory for the project, in your local project directory

structure (for example, f:\currentprojects\mynewproject).
2. Identify any existing interfaces that will be required by the new project’s

component (for example, parent interfaces, or interfaces that will be used
as attribute types or in method signatures).

3. List the projects that contain those interfaces as dependencies in the Open
Project wizard, Project Dependencies page (for example,
f:\allprojects\projectA, f:\allprojects\projectB).

4. Open the project, and begin your work on the new application elements it
will contain. Add components in the same way you would in a
stand-alone environment (starting with the business object interface file, an
imported DB or PA schema, or data object interface file).

5. Save the project, and check your work (either the project model, or its
associated XML files) into your change control system.

6. Check out the integration project (either the project model, or its
associated dll.xml file) and add any build configuration nodes that apply
(for example, client and server DLL configurations for any components
you added to the new project).

7. Save your changes to the integration project, and check your work back
into the change control system.

8. Update the automated build process to include the new project.

Chapter 10. Team development 481



“Chapter 10. Team development” on page 443
“Project divisions in a team environment” on page 458

“Working in a team environment” on page 480
“Editing a project in a team environment” on page 485
“Setting up a change control process” on page 464
“Setting up XML-based change control for CMVC” on page 471
“Setting up an automated build process” on page 465

“Naming objects” on page 128
“Internationalization of data” on page 132

Checking out files

If you are using XML-based change control, you can check XML files in and
out of your change control system directly from Object Builder. You must first
have the contents of the project stored as individual XML files in your change
control system, and have Object Builder’s check-in and check-out wizards set
up to work with your change control system’s command-line interface.

To check out a file from your change control system into Object Builder:
1. Start Object Builder.
2. Make sure that the check box Enable team library check-in and

check-outis selected in the Environment page for the Tasks and Objects
folder. (Select File > Preferences > Tasks and Objects.) If the check box is
not selected, you will need to reload the project or restart Object Builder to
make the option effective.

3. Open the project that contains your work.
4. Locate the element that you want to check out in the Tasks and Objects

pane.
Note the following points:

v The element that you want to check out must already exist as an XML
file in your change control system.

v It should be read-only in the model. This state is indicated by a different
icon from the one it is usually represented by in the model. The
read-only icon looks like the read-write icon enclosed in a box.

v Even if the object is read-write, you can manually change its state from
the command-line:
attrib +R filename
Once you have done this, the object’s icon changes, and the Check Out
option appears on its pop-up menu.

482 WebSphere: Application Development Tools Guide



5. From the pop-up menu of the element (for example, a business object file),
click Check Out to open the XML Check Out wizard.

6. Fill in the information requested by the wizard (such as user name, defect
number, and so on). The exact information required will depend on your
change control system, and the way you set up the check-out wizard.

7. Click Finish.

The XML for the selected element is taken from your change control system
and imported into the current Object Builder project. The definition of the
element in Object Builder is updated, its icon and the icons of all its children
change (indicating the state is read-write), and its definition in your change
control system is locked, to prevent others from accessing it while you are
working with it.

You can now make your changes to the element (using its Properties wizard),
and check the element back into the change control system when you are
done (the Check In pop-up menu option is enabled, and it does not have the
Check Out option at this point).

“Chapter 10. Team development” on page 443
“XML-based change control” on page 469

“Working in a team environment” on page 480
“Setting up a team environment” on page 457
“Checking in files”

Checking in files

If you are using XML-based change control, you can check XML files in and
out of your change control system directly from Object Builder. You must first
have the contents of the project stored as individual XML files in your change
control system, and have Object Builder’s check-in and check-out wizards set
up to work with your change control system’s command-line interface.

To check in a file from Object Builder into your change control system:
1. Start Object Builder.
2. Ensure the Enable team library check-in and check-out option is enabled

in the Preferences dialog. If the check box is not selected, you will need to
reload the project or restart Object Builder to make the option effective.

3. Open the project that contains your work.
4. Locate the element you want to check in, in the Tasks and Objects pane.

Note the following points:

Chapter 10. Team development 483



v The element that you want to check in must already exist as an XML
file in your change control system, and you must have it currently
checked out.

v It should be read-write in the model. This state is indicated by the same
icon the object is usually represented by in the model.

v Even if the object is read-only, you can manually change its state from
the command-line:
attrib -R filename
Once you have done this, the object’s icon changes, and the Check In
option appears on its pop-up menu.

5. From the pop-up menu of the element (for example, a business object file),
click Check In to open the XML Check In wizard.

6. Fill in the information requested by the wizard (such as user name, defect
number, and so on). The exact information required will depend on your
change control system, and the way you set up the check-in wizard.

7. Click Finish.

The XML for the selected element is exported from Object Builder (into the
Export directory), and then put into your change control system. The XML file
in the change control system is now updated with your changes, and your
lock on the file is released, to allow others to check out the file and make
changes to it.

The object and its children are now rendered read-only in the model. (They
are represented by the different icons in the Tasks and Objects pane.)

“Chapter 10. Team development” on page 443
“XML-based change control” on page 469

“Working in a team environment” on page 480
“Setting up a team environment” on page 457
“Checking out files” on page 482

Extracting files

If you are using XML-based change control, you can extract XML files from
your change control system directly into Object Builder. You must first have
the contents of the project stored as individual XML files in your change
control system, and have Object Builder’s extract wizard set up to work with
your change control system’s command-line interface. The extraction is meant
to refresh the version of the element in your project, without actually checking
it out, which would prevent other users from making any changes to it.

484 WebSphere: Application Development Tools Guide



To extract a file from your change control system into Object Builder:
1. Start Object Builder.
2. Open the project that contains your work.
3. Locate the element you want to extract (refresh), in the Tasks and Objects

pane.
The element you want to extract must already exist as an XML file in your
change control system.

4. From the pop-up menu of the element (for example, a business object file),
click Extract to open the XML Extract wizard.

5. Fill in the information requested by the wizard (such as family, release,
and so on). The exact information required will depend on your change
control system, and the way you set up the extract wizard.

6. Click Finish.

The XML for the selected element is extracted from the change control system
and imported into Object Builder. Any changes that had been made to the file
since you last extracted or checked it in are now reflected in your project.

Editing a project in a team environment

To edit a project in a team environment, follow these steps:
1. Ensure your local copy of the project repository (created by the automated

build process) is up-to-date.
2. If you are using project or model-based change control, check out the

project you want to edit from the change control system.
3. Open the project. Its dependencies on other projects should resolve using

the project repository (based on the paths specified in the Open Project
wizard’s Project Search Path, or the paths specified in the OBModelPath
environment variable).

4. If you are using XML-based change control, check out the elements you
want to edit from your change control system.

5. Make your changes to the project. If your changes affect the way the
project relates to other projects (for example, you want to add a reference
that requires another project as a dependency, or you delete a reference
that justifies an existing dependency), you will need to close and open the
project again, to update the listed project dependencies (for example, add
the dependency first, then add the new reference; or delete the reference,
then remove the dependency).

6. Generate updated code for the project.

Chapter 10. Team development 485



7. Build your code, using either a local definition of the DLLs you want to
build, or using the integration project’s DLL configurations.

8. If you are using XML-based change control, check in the elements you
edited.

9. If you are using project or model-based change control, close Object
Builder and check in the project or model.

Some of your changes may affect other projects, and generated code. For
instance, if you change the type of an attribute, or the signature of a method
in a business object interface in model A, and you override these artifacts in a
child business object implementation (for example) in model B, Object Builder
warns you that the child model is not writable. Follow these steps:
1. Make model B available for write mode.
2. Click Continue to have Object Builder open the model and propagate the

change correctly, or click Cancelto return to the wizard, where you can
cancel the change.

If you rename an interface, any methods, attributes, constructs, or
relationships that reference the interface have their type renamed
automatically. If a referenced interface is deleted, the reference type becomes
invalidType. For example, if Customer has an attribute custAgent of type
Agent, and the Agent interface is deleted, Customer now has an attribute
custAgent of type invalidType. You can locate all occurrences of invalidType
within a project by running the Model Consistency Checker.

“Chapter 10. Team development” on page 443

“Working in a team environment” on page 480
“Checking out files” on page 482
“Checking in files” on page 483
“Building DLLs in a team environment” on page 487
“Checking a model for consistency” on page 31

Deleting a project in a team environment

To delete a project in a team environment, follow these steps:
1. If you are using project or model-based change control, delete the project

from your change control system.
2. If you are using XML-based change control, delete the project’s XML files

from your change control system.
3. Update the automated build process, to remove any reference to the

project.

486 WebSphere: Application Development Tools Guide



4. Check out the integration project (either the project model, or its
associated dll.xml file), and remove any build configuration nodes for code
in the project.

5. If you are using project- or model-based change control, check out any
projects that have dependencies on the deleted project, and remove their
dependencies on the Open Project wizard’s Project Dependencies.

6. Check in the checked-out projects or XML files.

Any references within a project that depend on the deleted interface will be
automatically modified to point to type invalidType the next time the project
is opened. The following properties will be automatically modified:
v Attributes are modified when the interface whose type they are is deleted.
v Methods are modified when an interface used as their return type, or as a

parameter, is deleted.
v Object relationships are modified when the interface they refer to is deleted.

You can find invalidType references within a project by checking the project
model’s consistency.

“Chapter 10. Team development” on page 443

“Working in a team environment” on page 480
“Checking out files” on page 482
“Checking in files” on page 483
“Checking a model for consistency” on page 31

Building DLLs in a team environment

When your project is part of a team environment, typically the entire
application will share a single integration project, that defines the build
configuration options for all the components in the team environment,
regardless of the project they are defined in.

When you have edited a project and want to rebuild the code that was
affected by your changes, you can use the integration project in the project
repository to rebuild the affected DLLs. This will only affect your local copies
of the DLLs; once you check an edited project back into your change control
system, the DLLs will be rebuilt by your automated build process, and the
updates will be made available in the next version of the project repository.

Note: It is advisable to run the Consistency Checker before you generate
makefiles, or start building, to ensure that the configuration for your client
DLL is correct. This is crucial particularly if your client DLL does not have at
least one IDL file selected.

Chapter 10. Team development 487



To build a DLL locally in a team environment, after you have made changes
to a checked-out project, follow these steps:
1. Regenerate the makefiles in your integration project (in your local copy of

the project repository). This creates a version of the makefiles that correctly
points to the updated code in your local check-out directory.

2. Build the updated makefiles, using the integration project’s all.mak file.

If your project repository is editable, then you can regenerate the makefiles
and build the code from within Object Builder:
1. Open the integration project.
2. From the Build Configuration folder’s pop-up menu click Generate > All

Targets

3. From the same pop-up menu click Build > Out-of-Date Targets > Default.

If your project repository is read-only, then you can regenerate the makefiles
and build the code from the command line. For example:
1. obgen -pF:\allprojects\Integration -aMake -linked -tNT
2. nmake -f F:\allprojects\Integration\Working\NT\all.mak

Note: If your compile command fails due to an incorrect DB2 user ID
and password error, run the following command before you run the
make (AIX) or nmake (NT) command:
export IVB_DB2AUTH=“USER test USING password”
set IVB_DB2AUTH=USER test USING password

You can also create a build configuration definition within the checked-out
project, without using the integration project. To do so, simply add client and
server DLL definitions in the usual manner. You can use the same DLL file
names as those in the integration project, but should define different DLL
configuration node names.

“Chapter 10. Team development” on page 443

“Working in a team environment” on page 480
“Setting up an automated build process” on page 465
“Adding an integration project to a team environment” on page 460
“Generating code from the command line” on page 684
“Configuring builds” on page 549
“Packaging an application in a team environment” on page 489

488 WebSphere: Application Development Tools Guide



Packaging an application in a team environment

You can use the integration project of your team environment to do your
application packaging. Add application families, applications, and managed
object configurations in the usual manner. Before you create the install image,
you will need to build the DLLs for the entire application, so that the built
files in the project’s \Working directories are up-to-date.

If you are packaging your application in a different project than your
integration project, you will still need to build from the integration project
first, and then copy the contents of the integration project’s \Working
directory (including subdirectories) to the application packaging project’s
\Working directory.

You can then configure the application, and create the install image, in the
same way you would in a standalone project environment.

“Chapter 10. Team development” on page 443

“Working in a team environment” on page 480
“Packaging applications” on page 574

Testing cross-project applications with QuickTest

The source of the QuickTest-generated Java code is in the <Working
directory>\QT directory. When these files are compiled, the resultant JAR file
is located under the target environment directory. For example, if the
production directory is the target, then these files are located in <Working
directory>\PRODUCTION\QT. After the QuickTest Java files are compiled,
the tests may be executed by selecting Build Configuration > Build > Run
QuickTest.

To run a QuickTest client for a server application in a team environment (with
components in multiple projects working together, for example, various JCB
files residing on different machines), follow these steps:

1. Run the qtgen.bat file

Run the qtgen.ksh file
Note: Both these files are located in the <CBroker>\bin directory.
This will start QuickTest with a menu option File > Generate. The
QuickScript Generator window opens.

2. Use this window to select all of the JCB and QT JAR files for every project
that is part of the team development environment.

Chapter 10. Team development 489



3. When you have selected the appropriate JAR files, select File > Save.
All the selected JAR files are copied to the selected directory location, and
a qt.bat file (on Windows NT), or qt.ksh file (on AIX) is created that will
invoke QuickTest to support the test cases.

Note:If you have debug and trace enabled, you
must make sure that the JAVA_HOME environment variable is set to the
directory in which your JDK is installed. You must do this before you run
Object Builder (if you will launch QuickTest from Object Builder), or before
you start QuickTest (that is, before you can invoke the qt.bat, or the qt.ksh file
from the command line).

“Chapter 10. Team development” on page 443
“QuickTest” on page 611

“Working in a team environment” on page 480
“Building DLLs in a team environment” on page 487
“Chapter 13. Testing applications with QuickTest” on page 611

“Platform-specific information” on page 20

Maintaining a team environment

After your team environment is defined (either through migration or
evolution), maintenance of the environment must provide for the relocation of
projects, the relocation of objects between projects, and the management of
cross-project dependencies.

The main strategies for managing multiple projects are:
v Make changes in logical units (move parent and child components together

when possible).
v Make changes in logical order (change parent components before child

components, change referenced components before referencing
components).

v Edit project divisions by selectively exporting the project’s contents as XML
files, deleting the content from the project, then importing the XML files
into another project or projects.

v When you have two versions of a project, resolve the differences by
exporting and merging their XML with the Compare and Merge Tool for
XML.

The specific tasks for maintaining a team environment are as follows:

490 WebSphere: Application Development Tools Guide



1. “Exporting XML” on page 387
2. “Importing XML” on page 389
3. “Moving a project”
4. “Changing project divisions” on page 496
5. “The Compare and Merge Tool for XML” on page 497
6. “Comparing files with the Compare and Merge Tool for XML” on page 497
7. “Merging files with the Compare and Merge Tool for XML” on page 498
8. “Managing cross-project dependencies” on page 499
9. “Documenting projects” on page 501

“Chapter 10. Team development” on page 443

“Developing as part of a team” on page 444

Moving a project

To change the location of a project, follow these steps:
1. Move the project directory, and its subdirectories, to its new location.
2. Update your project search path to point to the new directory, so that any

other projects that depend on the moved one will still be able to find it.

To set the project search path:
1. Start Object Builder. The Open Project wizard opens.
2. In the Project Search Path field, type the directories Object Builder should

search for related projects. You can create a new project search path, or
edit a previously defined one.

3. Select any project to open.
4. Click Finish.
5. Close Object Builder. The new project search path is saved, and will be

available for selection whenever you use Object Builder on the current
machine.

If you prefer, you can also use the OBMODELPATH environment variable,
instead of defining search paths through Object Builder. To set the
OBMODELPATH environment variable, use the following command:
set OBMODELPATH=[directory1;directory2;...directoryn]

For example:
set OBMODELPATH=f:\project1;g:\project2

Chapter 10. Team development 491



“Chapter 10. Team development” on page 443

“Maintaining a team environment ” on page 490

Model interchange with XML

You can exchange model information between projects using an exported
XML format. This format should not be edited directly.

You cannot exchange XML files between a 2.0 version project and a 3.0
version project. The 2.0 project must be migrated to 3.0, and the XML files
re-exported.

Version 3.5 supports XML files of version 3.0 format, and such files can be
imported directly into Object Builder version 3.5.
No migration is needed.

When you export XML, it is placed in the exporting project’s \Export
directory.

You can export information at the project, folder, or object level. The exported
XML conforms to a DTD (document type definition) for Component Broker
models: eom.dtd. Only XML that conforms to the DTD can be imported.

The files you can export are documented in “XML interchange files” on
page 493. You can export XML for each level as follows:

Project
You can export the entire project model by selecting File > Export Model in
Object Builder. The XML files that define the project’s contents are generated
to the \Export directory. This is equivalent to selecting Export from the
pop-up menu of each folder in the Tasks and Objects pane, with the addition
of the file uddep.xml, which defines project dependencies.

The file uddep.xml is only created when you export at the project level.

Folder
You can export the contents of a particular folder by selecting Export from the
folder’s pop-up menu. The XML files representing the folder’s contents are
generated to the \Export directory. For folders that have files as their top-level
element, this is equivalent to selecting Export from the pop-up menu of each
file in the folder.

492 WebSphere: Application Development Tools Guide



You can generate XML files for all the folders in the Tasks and Objects pane
except for Framework Interfaces and Default Homes.

Component or object
You can export XML for a single file or top-level object within a folder by
selecting Export from the file or object’s pop-up menu. The XML file
representing the file’s associated objects is generated to the \Export directory.
You can generate files for individual objects in all folders in the Tasks and
Objects pane except for Framework Interfaces and Default Homes.

“Chapter 10. Team development” on page 443

“Exporting XML” on page 387
“Exporting XML from the command line” on page 660
“Importing XML” on page 389
“Importing XML from the command line” on page 663

“XML interchange files”
“obexport” on page 661
“obimport” on page 664

XML interchange files

You can export XML files from Object Builder at the project level, at the folder
level within a project, or at the file or top-level object level within a folder.

Folder Exported files Contents

Whole project uddep.xml
plus all others

Example:
uddep.xml

depends-on ProjectA
depended-on-by ProjectB

Project dependencies

Chapter 10. Team development 493



Folder Exported files Contents

Local-Only
Objects

udlocal.lofilename.xml

Example:
udlocal.LFile.xml

LOModule::SetRWAgentLO
LOModule::GetAllAgentLO

udlocal.LFile.xml
LOModule::SetRWAgentLO
LOModule::GetAllAgentLO

A local-only object

User-Defined
Business
Objects

udbo.bofilename.xml

Example:
udbo.AFile.xml

AModule::Agent
AModuleBO::AgentBO
AModuleKey::AgentKey
AModuleCopy::AgentCopy
AModuleMO::AgentMO

v Business object
interfaces (one file,
plus the modules and
interfaces it contains)

v Business object
implementations

v Keys and copy
helpers for the
business object
interfaces

v Managed objects for
the business object
implementations

User-Defined
Compositions

udcb.compfile.xml

Example:
udcb.ACFile.xml

ACModule::AccountComposition

Compositions (one
composition file, plus
the modules and
compositions it defines)

User-Defined
Data Objects

uddo.dofile.xml

Example:
uddo.AFileDO.xml

AModuleDO::AgentDO
AModuleDOImpl::AgentDOImpl

Data objects (one data
object file, plus the
modules and interfaces
it contains, along with
their associated
implementations)

DBA-Defined
Schemas

uddbschema.schemagroup.xml

Example:
uddbschema.CBSampDBGroup.xml

CBSampDBGroup
CBSampDB.Agent
AgentPO

v A schema group

v Schemas in the
schema group

v Persistent objects for
the schemas

494 WebSphere: Application Development Tools Guide



Folder Exported files Contents

User-Defined
PA Schemas

udpaschema.paschema.xml

Example:
udpaschema.SampPA.xml

SampPA
AgentPO

A PA schema and its
persistent objects

Non-IDL Type
Objects

udnidl.nidltype.xml

Example:
udnidl.IDate.xml

IDate

A non-IDL type

Build
Configuration

uddll.dllconfig.xml

Example:
uddll.AgentS.xml

AgentS.dll
AgentS.jar

A build configuration
node (DLL
configuration)

Application
Configuration

udaf.appfamily.xml

Example:
udaf.SampleAppFam.xml

SampleAppFam
SampleApp
AgentMO
CustomerMO

An application family
and its contents

Container
Definition

udcontainer.container.xml

Example:
udcontainer.ContainerOfAgents.xml

ContainerOfAgents

A user-defined container

EJB udejb.ejbname.xml

Example:
udejb.AgentBean.xml

AgentBean

A user-defined EJB bean

“Chapter 10. Team development” on page 443
“Model interchange with XML” on page 492

Chapter 10. Team development 495



“Exporting XML” on page 387
“Exporting XML from the command line” on page 660
“Importing XML” on page 389
“Importing XML from the command line” on page 663

“obexport” on page 661
“obimport” on page 664

Changing project divisions

You can move information from one project to another by exporting the
information in XML format, and then importing it into the other project.

When possible, follow these guidelines for transferring information.
Otherwise, relationships or references may be automatically deleted during
the transfer.
v Move information in logical units (move parent and child components

together when possible)
v Move information in logical order (move parent components before child

components, move referenced components before referencing components)

To transfer information from one project to another, follow these steps:
1. Select the element that you want to transfer. The elements you can export

are described in “XML interchange files” on page 493.
2. From the element’s pop-up menu, click Export.

An XML file corresponding to the element is exported into the project’s
\Export subdirectory.

3. Delete the element from the project.
4. Save and close the project.
5. Open the target project.
6. Click File > Import Model.
7. Click Find and select the XML file you had exported.
8. Click Finish. The information is imported, and appears in the folder.
9. Save and close the project.

If you are using XML-based change control and CMVC, you will also need to
rename the file in CMVC to reflect its new path.

“Chapter 10. Team development” on page 443
“Model interchange with XML” on page 492

496 WebSphere: Application Development Tools Guide



“Maintaining a team environment ” on page 490
“Managing cross-project dependencies” on page 499
“Setting up XML-based change control for CMVC” on page 471
“Exporting XML” on page 387
“Importing XML” on page 389

“XML interchange files” on page 493

The Compare and Merge Tool for XML

You can use the Compare and Merge Tool for XML to compare the XML files
generated from project models based on node identification, and then merge
them. You can decide which differences to include in the resultant, merged
file.

You can use the tool in two specific scenarios: you can review changes that
you made to a file over a course of time, and you can merge the changes if
you want to, or you can use the tool to review and consolidate changes made
to a single XML file by different users, who essentially work on the project in
a team development environment.

Note: To eliminate any inconsistencies that might exist in the resulting
model, you can use another tool called the Model Consistency Checker.

“Chapter 10. Team development” on page 443
“Model interchange with XML” on page 492

“Comparing files with the Compare and Merge Tool for XML”
“Merging files with the Compare and Merge Tool for XML” on page 498
“Comparing files with the Compare and Merge Tool for XML”
“Merging files with the Compare and Merge Tool for XML” on page 498
“Maintaining a team environment ” on page 490
“Importing XML” on page 389
“Exporting XML” on page 387

Comparing files with the Compare and Merge Tool for XML

You can compare XML files at the element level (a level higher than the file
level), based on node identification. Follow these steps:
1. Launch the Compare and Merge Tool for XML using the command

xmldiff from a command line.

Chapter 10. Team development 497



2. Use the menu to import the files to be compared into the tool: from the
File Menu, choose Open. The Select Base XML File dialog box opens. Type
the name of the base (control) file against which to base your comparison.
The tool parses the file.

3. The Select Modified XML File dialog box opens. Type the name of the
modified file that you want to compare with the base file. The tool parses
the file, and displays a preliminary, combined view of the two files in the
Merged View pane. Symbols and color highlight the differences between
the two files.

“The Compare and Merge Tool for XML” on page 497
“Model interchange with XML” on page 492
“Chapter 10. Team development” on page 443

“Merging files with the Compare and Merge Tool for XML”

Merging files with the Compare and Merge Tool for XML

Once you have a display of the combined XML files in the Merged View
pane, you can walk through the changed nodes and decide whether the
change should be incorporated in the merged file from either the base file, or
the phase file.
Every modified node in the tree has an associated pop-up menu, with choices
that enable you to implement the decision whether to incorporate properties
from either the base file, or the modified file.

The new nodes have the following pop-up menu choices:
v Do not use new: the new node is not incorporated in the merged file.
v Use new element: the merged file has the new node, and its children, if

any, as they are in the modified file.

The deleted nodes have the following pop-up menu choices:
v Do not delete: the merged file has the node as it exists in the base file.
v Delete from base file: the merged file does not have the node that was

deleted from the base file.

The changed nodes have the following pop-up menu choices:
v Use old, where conflict: the merged file has the nodes as they are in the

base file for the current node, and any of its unresolved children (those
modified child nodes for which you have not made a decision about
incorporation in the merged file yet).

v Use new, where conflict: the merged file has the nodes as they are in the
modified file for the current node, and any of its unresolved children.

498 WebSphere: Application Development Tools Guide



These choices are also available from the Selected menu.
To merge the two XML files, follow these steps:
1. Select one of the highlighted nodes in the merged tree view.
2. Select Use modified file for node and unresolved children from the

pop-up menu of the node if you want to have the merged file incorporate
the changes that were made in the modified XML file. Select Use base file
for node and unresolved children from the pop-up menu of the node if
you want to have the merged file have the older version of the
corresponding node.

3. Use Edit > Undo to undo all of your actions up to the last time you saved
your work.

The menu selection you make on a node is applied to the node, as well as to
all its unresolved child nodes.

For example, if you select a new node to be part of the merged file (Use
modified file for node and unresolved children), then all its children will
also be in the merged file; in addition, if this was the only node with a
conflict under its parent, then the parent would be marked as resolved (its red
cross-bar will disappear). Similarly, if you use the phase file as the source for
change propagation for a deleted node, the node and all its children will not
be present in the merged file.

Whenever the changes of all the child nodes are resolved, the parent node and
all its child nodes will have a check mark in front of them.

“The Compare and Merge Tool for XML” on page 497

“Comparing files with the Compare and Merge Tool for XML” on page 497

Managing cross-project dependencies

Each project maintains its own list of dependencies. The list covers both the
dependencies it has on other projects (displayed in its Open Project wizard,
Project Dependencies page), and the dependencies other projects have on it
(displayed in the Project Dependencies page of other projects).

When you create a dependency from one project on another, the dependency
is added in the dependencies files for both projects.

When you open a project that has dependencies, the models of the projects
depended on are opened in read-only mode. The dependency files for the
projects are opened in read-write mode.

Chapter 10. Team development 499



When you delete a dependency from a project, its listing is removed from the
dependencies files for both projects (the dependent project and the depending
project).

To avoid managing the dependency files when you move a project or change
the directory structure, use the project search path, which you can define or
select whenever you open a project. The directories you specify, and their
subdirectories, will be searched to locate project dependencies.

If you prefer not to use the project search path, you can use the
OBMODELPATH environment variable instead.

To set the OBMODELPATH environment variable, use the following
command:
set OBMODELPATH=[directory1;directory2;...directoryn]

For example:
set OBMODELPATH=f:\project1;g:\project2

The directories you list, and their subdirectories, will be searched for project
dependencies whenever you open an Object Builder project.

Note: The more directories Object Builder searches, the longer it will take to
open projects. Try to achieve a compromise between completeness (searching
all appropriate project directories) and speed (avoid listing the root directory
of every drive).

If you are importing XML that contains cross-project references, you can use
the obimport command with the -X option to import the XML for all the
affected projects at once, while preserving the cross-project references.

For example:

obimport -X -d Import e:\myRBprojects\projA e:\myRBprojects\projB
e:\myRBprojects\projC

This command looks in the Import subdirectory of each listed project
directory, and imports the XML files it finds there.

“Chapter 10. Team development” on page 443

500 WebSphere: Application Development Tools Guide



“Maintaining a team environment ” on page 490
“Importing XML” on page 389
“Moving a project” on page 491

“XML interchange files” on page 493
“obimport” on page 664

Documenting projects

You can document projects, or parts of projects, by applying XSL style sheets
to exported XML files. An XSL style sheet can filter and format the XML file
into a browsable HTML document.

To get you started, there is an XSL style sheet sample. It does not cover all
aspects of a project, however. You can extend or replace the sample with your
own style sheet.

“Chapter 10. Team development” on page 443
“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Maintaining a team environment ” on page 490
“Browsing XML files” on page 539

Chapter 10. Team development 501



502 WebSphere: Application Development Tools Guide



Chapter 11. Customizing Object Builder

You can extend the way you work with Object Builder by creating new
wizards to work with project elements, by developing for multiple platforms,
and by filtering the view of your projects in the Tasks and Objects pane.
v “Creating an XML wizard” on page 504
v “Setting platform constraints” on page 421
v “Tutorial: Developing a multi-platform application” on page 429
v “Filtering the Tasks and Objects pane” on page 537
v “Creating a filter for the Tasks and Objects pane” on page 537

“Object Builder” on page 1

“Developing in Object Builder” on page 19
“Setting up Object Builder” on page 24

XML wizards

When you create a complex XML document, one of the standard authoring
strategies is to look at an example document first, and then re-use its structure
and content, customizing only the parts that you need. In this way you start
with a valid structure that roughly meets your needs, and then extend or
change it only as necessary. This reduces the time you need to learn a DTD
before working in it, and makes it both quicker and easier to create valid,
useful XML documents.

This process can be made even simpler and more repeatable by creating a
wizard as an interface to editing the example document. You can create an
XML wizard, or SmartGuide, using the SmartGuide Customizer for XML. The
wizard or SmartGuide allows you to selectively add and edit element types in
the document.

Begin the process of creating an XML wizard by identifying or creating the
sample XML file. You can then open the file in the SmartGuide Customizer for
XML, and explicitly mark those sections you want to change or extend. When
you are done, you can generate an XML wizard script. When you run the
script, the wizard exposes the elements you chose to be editable, and applies
your edits to create a new document based on the original. The new
document is extended only in the ways you selected; the structure and context

© Copyright IBM Corp. 1999, 2000 503



of the original file is preserved. All your changes are applied through the
wizard, without editing the source directly.

Once you have created the wizard, anyone can use it to create new documents
following the pattern you set, without having to understand the XML DTD at
all, or ever work in XML directly. You can also add help text and hover text to
the wizard, and default values for its fields, to make it even easier to use.

“Model interchange with XML” on page 492

“Creating an XML wizard”
“Exporting XML” on page 387
“Importing XML” on page 389

Creating an XML wizard

You can use an XML wizard, or SmartGuide, to allow selective editing and
extension of an XML file through a wizard interface that provides constraints,
descriptions, hover help, and HTML help. The wizard script can include
customized default values, derivation relationships between values, and
customized lists of selectable values.

To create an XML wizard, you first need an example XML file, that you can
use as a template for the output that the wizard will generate. Once you have
the example XML file, open it in the SmartGuide Customizer for XML, and
begin working with its elements.

To create an XML wizard, you can follow these steps:
1. “XML template design” on page 505
2. “Starting the SmartGuide Customizer for XML” on page 506
3. “Defining XML wizard macros” on page 507
4. “Customizing value lists in an XML wizard” on page 510
5. “Deriving values in an XML wizard” on page 511
6. “Propagating values in an XML wizard” on page 513
7. “Constraining values in an XML wizard” on page 515
8. “Defining the layout of an XML wizard” on page 516
9. “Testing an XML wizard” on page 517

Once you have created the XML wizard, you can run it to produce new XML
files based on your original template.

You can work with existing XML wizards in the following ways:

504 WebSphere: Application Development Tools Guide



v “Running an XML wizard” on page 518
v “Editing an XML wizard” on page 519
v “Distributing an XML wizard” on page 519

“XML wizards” on page 503
“Model interchange with XML” on page 492

“Chapter 11. Customizing Object Builder” on page 503
“Exporting XML” on page 387

XML template design

When you create an XML wizard template:
v Use a format that already has a DTD, if one is available, or define a DTD

for the format.
v Use a format that has meaningful tag names.
v If you are going to have multiple instances of a particular element, make

sure the element has an ID attribute that is identified as such in the DTD.

Although you can use a template that has no DTD, a DTD can provide
considerable value both as a check on the validity of generated documents
and as a source of default information for the SmartGuide Customizer which
creates the wizard.

One of the more important things a DTD can provide is a definition of ID
attributes. While you can define IDs in the Customizer, this is not the same as
defining them in a DTD. If you define ID attributes in the DTD then the XML
wizard script, which will apply a series of user changes to the template, can
identify the target for the changes more accurately, based on element IDs.

If you do not use IDs, the target for the changes will be determined by
position information (for example, second child of third element has changed).
If the original template changes, this can render the positioning information
inaccurate by changing the target element’s position count. If you use IDs, the
target for the changes is determined by ID, and is unaffected by changes to
the original template.

Editing templates
When you edit an XML wizard template, XML wizard scripts that are based
on the template can be rendered not valid. It may be safest to create new
XML wizard scripts after you edit a template.

There are some situations, however, in which you may want to edit the
template without rebuilding the wizard. In these cases, make sure that the

Chapter 11. Customizing Object Builder 505



template’s contents use ID attributes that are defined in a DTD. This allows
the XML wizard’s changes to be applied to the correct element in the
template, even if the content of the template (for example, the order or
number of elements) changes.

You might need this functionality if the XML document you intend to produce
will have multiple authors, each of which will have authoring control of a
different section of the XML document. In this case, the lifecycle of the
document might look something like this:
v Define the original template Original.xml, with IDs and a DTD. The

template has three main sections: A, B, C.
v Define three wizards (AWizard, BWizard, CWizard): AWizard allows editing

of section A, BWizard allows editing of section B, and CWizard allows
editing of section C.

v User A runs AWizard against Original.xml, and produces an XML file:
Original.A.xml. Section A of the document has been completed.

v User B runs BWizard against Original.A.xml, and produces an XML file:
Original.A.B.xml. Section B of the document has been completed.

v User C runs CWizard against Original.A.B.xml, and produces the final XML
file: Original.A.B.C.xml. All sections of the document have been completed.

“XML wizards” on page 503

“Creating an XML wizard” on page 504

Starting the SmartGuide Customizer for XML

You can use the SmartGuide Customizer for XML to build an XML wizard, or
SmartGuide, for creating XML documents.

Before you start the Customizer, you should have a sample of the XML
document type you want your XML wizard to create. You will use this sample
as a template, which the XML wizard’s output will be based on.

To start the Customizer, follow these steps:
1. Locate or create the sample XML file you want to start with. If the sample

XML has an associated XML DTD, then the sample file must include the
DTD, or point to a place where the DTD is available.

2. Run the SmartGuide Customizer. From the command line, type the
command:
xmlcustm

3. In the Customizer, click File > Open and select the example XML file.

506 WebSphere: Application Development Tools Guide



The Customizer parses the XML document, and displays its content as a
tree of element nodes in the left-hand pane.

You are now ready to begin identifying the elements that your XML wizard
will work with.

“XML wizards” on page 503
“XML template design” on page 505

“Creating an XML wizard” on page 504
“Defining XML wizard macros”

Defining XML wizard macros

When you load an XML file in the SmartGuide Customizer, you see the
structure of the document displayed in a tree view in the left-hand pane of
the tool. This structure contains two types of node:
v Container element nodes

These are XML elements that organize sub-elements with content, or have
attributes with content, but do not have their own content aside from this.

v Element content or attribute nodes
These are either the content of an XML element, or the value of an element
attribute. They appear under a container element. Content nodes are labeled
as Text in the tree view. Content nodes only appear when there is actual
content in the sample XML file; if the element in the sample file has no
content, then it does not have a content node in the SmartGuide
Customizer.

When you click on a container element, the right-hand pane enables settings
for you to define a wizard page for that element’s contents. By default, none
of the container elements have wizard pages associated with them.

You can also select whether the element structure is repeatable. If you check
the Repeatable option, then the user will be able to add multiple instances of
the selected element, using a tree view control on the wizard page. Each
instance the user adds will have the editable properties you set for the
element’s content or attributes.

When you click on an element’s content or attribute, the right-hand pane
enables settings for you to make the content or attribute a macro. When you
set an element’s content or attribute to be a macro, its value becomes part of
the wizard’s XML script.

Chapter 11. Customizing Object Builder 507



Macros are also automatically defined when you create a derivation or
propagation relationship between elements.

To define an element’s content or attribute as a simple wizard macro (without
derivation or propagation), follow these steps:
1. In the left-hand pane, click on a content or attribute node. Its settings

appear in the right-hand pane.
2. From the Macro pulldown, select one of the following:
v Hidden

The content or attribute value will not appear in the wizard interface,
but will be used internally by the wizard (for example, it might have a
derived value).

v Editable
The content or attribute value appears in the wizard interface, and is
editable by the wizard user.

v Read-only
The content or attribute value appears in the wizard interface, but is not
editable by the wizard user.

The default value is None, which indicates that all settings for the content
or attribute are ignored, and the original value from the source XML file is
used instead.

3. Type a label for the content or attribute in the Label field. If you are
creating an Editable or Read-only macro, this label appears in the wizard
interface as the label for the associated value (for example, Name: ).

4. Type a default value for the content or attribute in the Default field’s
Value section. If you do not change the default value, the value from the
original sample file is used.
If the definition for the element or attribute in the XML DTD prescribes a
list of valid values, then the Value section becomes a drop-down list
which you can select valid values from. You can also define your own list,
without reference to the DTD, by clicking on Values and specifying the
values you want in the list.
If you provide a list of values (either in the DTD or in the Customizer),
and the macro type is Editable or Read Only, then the wizard user will be
presented with this list as well. When set to Editable, the macro allows
users to select from the list or define their own value. When set to Read
Only, the macro requires the user to select one of the predefined values.
You can customize the terms used in the list (but should not change the
underlying values). Click Values to customize the terms for the wizard
user, as described in the customizing value lists task.
Even if the definition for the element or attribute allows any content type,
you can limit the user’s choices to a set of values that make sense for the

508 WebSphere: Application Development Tools Guide



wizard’s intended use. If the macro type is Editable, the user will be
presented with a drop-down list that contains only the values you specify.
You can create or customize the value list the user sees by clicking Values,
as described in the customizing value lists task.
You can use the prefix and suffix sections to add a prefix or suffix to the
value provided by the user. The prefix and suffix sections are also
important for deriving or propagating values between related elements, as
described in the derivation and propagation tasks.
If the macro type is Hidden, then the default value is always applied in
the wizard’s output, except where overridden by derivation or identity
rules, as described in the derivation and propagation tasks, and in the
attribute identity topics.
If the macro type is Read Only, then the default value is displayed in the
wizard, but cannot be changed by the user. If there is a list of valid values,
then the user can select which one to apply, but cannot define any new
values.
If the macro type is Editable, then the default value appears in the wizard
interface as a default, and can by typed over by the wizard user.

5. If the attribute is the ID for the element, set the “Attribute identity
options” on page 533 to ID. If the current element is repeatable, identify
any referencing elements that need to be created to match new instances of
the current (referenced) element.

6. If the attribute is an ID reference to another element, set the “Attribute
identity options” on page 533 to Reference to ID. If the current element is
repeatable, specify whether a new target element should be created to
match each new referencing element (Point to existing target or Create
new target).
If you select to create a new target element, specify how and when the
target element should be created (Select Owner and Select Target).

7. If the macro type is Editable, select the constraint (if any) you want to
apply to the user’s input. You can select from the following values:
v NoSpace
v C++
v CORBA
v SQL
v LongFile
v File83
v File8
v Any
v Action

Chapter 11. Customizing Object Builder 509



You can also define your own constraints, as described in the constraining
values task.

8. If the macro type is Editable, type a brief description of the element
content or attribute in the Fly-Over Help field. This description will
appear when the wizard user moves the mouse pointer over the field.

“XML wizards” on page 503
“Attribute identity in XML” on page 520

“Creating an XML wizard” on page 504
“Customizing value lists in an XML wizard”
“Deriving values in an XML wizard” on page 511
“Propagating values in an XML wizard” on page 513
“Constraining values in an XML wizard” on page 515

“Macro setting” on page 530
“Element properties” on page 530
“Attribute properties” on page 531
“Attribute identity options” on page 533
“Constraints” on page 535

Customizing value lists in an XML wizard

When you define a macro of type Editable for an element content or attribute,
the wizard user will be able to enter a value for that content or attribute in
the wizard. You can provide the user with a set of values to choose from that
make sense for the wizard’s intended use. These values will be displayed in
the wizard interface in one of the following forms, depending on the number
of possible values:

Two Check box (for choices such as True or False, Yes or No, Y or N)

Three to Four
Radio buttons in a group

More than Four
Drop-down list

If you have more than four choices, then the user also has the option to type
in a different value in the list field. To restrict the user to the listed choices
only, change the macro type to Read only.

If an element content or attribute already has a set of acceptable values
enumerated in the DTD, the SmartGuide Customizer for XML displays them

510 WebSphere: Application Development Tools Guide



as a set of choices by default. You can customize the terms used in the list to
make them more descriptive for your wizard users, but should not change the
underlying values; otherwise the XML wizard will generate XML that is not
valid.

To create or customize a value list, follow these steps:
1. In the SmartGuide Customizer tree view, click on the element’s content or

attribute whose value list you want to customize.
In the right-hand pane, the properties of the selected node appear. The
Default field’s Value section should be a drop-down list. If the section is
an entry field (no drop-down arrow), then the content or attribute does
not have a list of acceptable values in the XML DTD, and there is no value
selection list to customize.

2. Click the Values button. The Customize Value List dialog opens.
The existing value appears in the list as the default. Any additional valid
values defined in the DTD appear as well.

3. If the DTD defines a list of valid values, you can change the terms used in
the list, or remove terms from the list, but should not change the
underlying values or add new values that are not compliant with the DTD
definition.

4. If the DTD does not define a list of valid values, you can change or add
new values, and customize the terminology, as required.

5. Select which term you want to be selected by default.
6. Click OK. The Value section of the Default field becomes a drop-down

list, if it was not already such a list.

When you create the XML wizard, the wizard user will be able to select a
value for this element content or attribute from the list you created. The user
will see the terms you specified, which will map to the underlying values
according to the mapping you created.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Constraining values in an XML wizard” on page 515

Deriving values in an XML wizard

When you create an XML wizard with the SmartGuide Customizer for XML,
you can derive the value for one element’s content or attribute from the value
given for another element’s content or attribute, rather than identifying the

Chapter 11. Customizing Object Builder 511



values separately. For example, you could make the first value editable, and
then the second, derived value be a simple reflection of what the user enters
for the first value, with the addition of a prefix or suffix.

This task deals with creating a derivation relationship, starting with the
derived element value and specifying what its source should be. You can also
work in the other direction to create a propagation relationship, starting with
an existing value and propagating it to a number of deriving elements.

There are two ways you can create a derivation relationship:
v Using the implicit derivation rules in your XML sample document, based

on the comparison of content strings in the different elements.
v Making an explicit association, regardless of the content strings in the

sample document.

To create a derivation relationship based on the existing content of the sample
document, follow these steps:
1. Select the element content or attribute for which you want to specify a

source.
2. In the Default field’s Value section, type the substring of its value that

was derived, in the original XML file.
For example, if you know that the attribute’s current value PersonBO is
derived from another attribute’s value Person, then decompose the value
into Value of Person and suffix of BO. You can then search to find all
other attributes or element content with the value Person, and select one
of them as the source to be derived from.

3. In the toolbar, click the Derive button. A Derive Value dialog appears, and
highlights the first node in the tree view that has the value you listed.

4. Click Find Next or Find Previous to navigate through all the nodes in the
tree that have the listed value, and are valid sources for a derivation
relationship.

5. When you have found the node you want to derive from, click the Derive
From button.
The derivation relationship is created. The Derived value option is
checked, and the selected source node is marked as a macro. The Default
field’s Value section is greyed out, to prevent you from editing the derived
value.

6. Mark the content or attribute as a macro (Hidden, Editable, or
Read-only). The relationship will be implemented in the XML wizard.

To create a derivation relationship regardless of existing content, follow these
steps:
1. In the tree view, locate the element content or attribute that you want to

specify as derived.

512 WebSphere: Application Development Tools Guide



2. From the pop-up menu of the node, click Derive Value From.
A Derivation Tree appears. You can select any node in the tree as the
source to derive from. You should ensure that the node you select to
derive from has a value associated with it, and that the value is of an
appropriate type to act as the source for the deriving value.

3. Select the node you want to derive from.
4. Click OK.

The derivation relationship is created. The Derived value option is
checked, and the selected source node is marked as a macro. The Default
field’s Value section is greyed out, to prevent you from editing the derived
value.

5. Fill in any prefix or suffix that you want to apply to the derived value.
6. Mark the content or attribute as a macro (Hidden, Editable, or

Read-only). The relationship will be implemented in the XML wizard.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Propagating values in an XML wizard”

Propagating values in an XML wizard

When you create an XML wizard with the SmartGuide Customizer for XML,
you can derive the value for one element from the value given for another
element, rather than identifying the values separately. In other words, you can
base the value for an element content or attribute on the value given for
another element’s content or attribute within the same XML document. For
example, you could make the first value editable, and then the second,
derived value be a simple reflection of what the user enters for the first value,
with the addition of a prefix or suffix.

This task deals with creating a propagation relationship, starting with the
source content or attribute value and specifying what other values are derived
from it. You can also work in the other direction to create a derivation
relationship, starting with derived values and specifying where the value
should be derived from.

There are two ways you can create a propagation relationship:
v Using the implicit propagation rules in your XML sample document, based

on the comparison of content strings in the different elements.

Chapter 11. Customizing Object Builder 513



v Making an explicit association, regardless of the content strings in the
sample document.

To create a propagation relationship based on the existing content of the
sample document, follow these steps:
1. Select the element content or attribute whose value you want to propagate.
2. In the toolbar, click the Propagate button. A Propagate Value dialog

appears, and highlights the first node in the tree view that has the selected
value.
For example, if the current value is Person, then you can search through
all other nodes whose value includes that substring (PersonBO,
PersonDOImpl, iPersonPO, and so on).

3. Click Find Next or Find Previous to navigate through all the nodes in the
tree that have the listed value, and are valid targets for a propagation
relationship.

4. When you have found a node you want to propagate to, click the
Propagate To button.
A propagation relationship is created. The selected target’s Derived value
option is checked, and the source node is marked as a macro. The selected
target’s Default field’s Value section is greyed out, to prevent you from
editing the derived value.
The Propagate Value dialog remains open, for you to select additional
nodes to propagate to.

5. When you have finished propagating values, click Cancel to close the
dialog.

6. Edit each propagation target:
a. Fill in any prefix or suffix that you want to apply to the derived value.
b. Mark the target node as a macro (Hidden, Editable, or Read-only).

The relationship will be implemented in the XML wizard.

To create a propagation relationship regardless of existing content, follow
these steps:
1. In the tree view, locate the element content or attribute whose value you

want to propagate.
2. From the pop-up menu of the node, click Propagate Value To.

A Propagation Tree appears. You can select any nodes in the tree as targets
to propagate values to. You should ensure that the nodes you select to
propagate to have values associated with them, and that the values are of
an appropriate type to act as the target for your source value.

3. Select the nodes you want to propagate to.
4. Click OK.

514 WebSphere: Application Development Tools Guide



The propagation relationships are created. The selected targets’ Derived
value options are checked, and the source node is marked as a macro. The
selected targets’ Default fields’ Value sections are greyed out, to prevent
you from editing the derived value.

5. Edit each propagation target:
a. Fill in any prefix or suffix that you want to apply to the derived value.
b. Mark the target node as a macro (Hidden, Editable, or Read-only).

The relationship will be implemented in the XML wizard.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Deriving values in an XML wizard” on page 511

Constraining values in an XML wizard

When you define an XML wizard macro as Editable in the SmartGuide
Customizer for XML, you can also select a constraint to apply to it. This will
prevent the wizard user from entering a value outside the selected constraint.

The following constraints are provided by default:
v NoSpace
v C++
v CORBA
v SQL
v LongFile
v File83
v File8
v Any
v Action

You can provide your own constraint by creating a Java class that implements
the Constraint interface, provided with the SmartGuide Customizer for XML.
To apply the constraint, select the Actions option in the Constraints field, and
then type over the selection with the name of the class. When the XML
wizard runs, it will look for a Java class with that name, and call its test()
function with the value the user entered as a parameter.

“XML wizards” on page 503

Chapter 11. Customizing Object Builder 515



“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Customizing value lists in an XML wizard” on page 510

Defining the layout of an XML wizard

The XML wizard you create, using the SmartGuide Customizer for XML, will
walk through all the macros you identify, displaying entry fields or
drop-down lists for macros that are Editable and displaying read-only text for
macros that are Read-only.

Macros are generally grouped by the element that contains them. For each
element that contains macros, you can select whether to start a new page for
the contained and any subsequent macros.

To define an XML wizard page, follow these steps:
1. In the SmartGuide Customizer tree view, click on the element you want to

define a page for.
2. In the properties pane, select whether the element is Repeatable.

If you make an element repeatable, then the wizard will display a tree
view for the element, to which the user can add instances of the element.
Each element instance will have its own set of values, as defined in the
SmartGuide Customizer. Values marked as Editable are editable by the
user, on a per-instance basis.

3. In the properties pane, click the Start new page option.
The values of the current element will now be on a new page. Values of
subsequent elements will also appear on the current page, until the next
element defined as the start of a page.
Generally, if you make an element Repeatable, it should have its own
page. In other words, it should have the Start new page option checked,
and the next element that contains Editable or Read-only macros should
also have the Start new page option checked.

4. Type a title for the new page in the Title field.
5. Type a description for the new page in the Description field. The

description appears directly below the title, and above any editing controls
for the element contents and attributes on the page.

6. Type a URL for an HTML file that provides help for the page in the Help
URL field. The URL can be absolute (for example,
http://mycompany.intranet/product/wizard1/NamePage.html) or relative
to the location of the wizard macro script (for example,
help/NamePage.html). This URL will be associated with the Help button
on the wizard page, and the HTML file will be loaded in the user’s default
web browser when the user clicks Help.

516 WebSphere: Application Development Tools Guide



Once you have defined the layout, you can view the results from within the
SmartGuide Customizer by testing the XML wizard.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Testing an XML wizard”

Testing an XML wizard

Once you have selected the elements you want represented in the XML
wizard, and customized the XML wizard’s layout, you can save the XML
macro file for the wizard, and test it through the SmartGuide Customizer’s
interface.

To generate the XML wizard script, follow these steps:
1. Select File - Save.
2. Select a location in which to save the file.
3. Type the name of the file as name.xml.
4. Save the file.

Once you have generated the script, and before you use it to create new files,
you can test it from within the SmartGuide Customizer. To test the script,
follow these steps:
1. Select File > Test.
2. Run through the wizard pages, and review the result of your layout

selections in the SmartGuide Customizer.
3. Click Finish.

You are prompted for the location of the original XML file (on which the
wizard is based), and a path and file name for the resulting
wizard-generated XML file.

4. Provide the names and click Finish, or click Cancel to return to the
SmartGuide Customizer without saving the results of your test.

You can also run the wizard script from the command line, by running the
SmartGuide Launcher for XML (type xmllaunch on the command line).

“XML wizards” on page 503

Chapter 11. Customizing Object Builder 517



“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Defining the layout of an XML wizard” on page 516
“Running an XML wizard”

Running an XML wizard

Once you have created an XML wizard script in the SmartGuide Customizer
for XML, you can run the wizard using the SmartGuide Launcher for XML,
and use the wizard to create new XML documents.

In order to run an XML wizard, you need the following:
v The XML wizard script, generated by the SmartGuide Customizer for XML.
v Any help files for the wizard script, if they are linked using a relative path

(rather than, for example, an http address on your intranet).
v The original XML file on which the wizard script is based.
v The DTD for the original XML file, either contained in, or referenced by, the

original file. If the DTD is referenced using a relative path, the path is
resolved relative to the current directory (the directory from which the
SmartGuide Launcher tool is run).

v Any classes that provide customized input constraints.
v The SmartGuide Launcher tool, which runs the script.

To run an XML wizard, follow these steps:
1. On the command line, type the following command:

xmllaunch
The SmartGuide Launcher wizard opens.

2. Type the name of the wizard script you want to run.
3. Click Finish.

The XML wizard opens.
4. In the XML wizard, follow the prompts to add elements and edit element

values. Hover help, and HTML help for each page, are available if they
were defined in the SmartGuide Customizer.

5. Click Finish.
You are prompted for the location of the original file on which the script is
based, and a location in which to save the new document generated by the
wizard.

6. Provide the location of the original source XML file.
7. Provide a name and path in which to save the new XML document, which

is based on that original.
8. Click Finish.

518 WebSphere: Application Development Tools Guide



The XML file is created, with the name and path you specified.

“XML wizards” on page 503
“Model interchange with XML” on page 492

“Creating an XML wizard” on page 504
“Editing an XML wizard”
“Importing XML” on page 389
“Distributing an XML wizard”

Editing an XML wizard

You can customize an XML wizard by loading its XML script file into the
SmartGuide Customizer for XML, selecting elements to expose in the wizard
interface, setting how they will be exposed, and then regenerating the XML
wizard script.

To open an existing XML wizard script in the SmartGuide Customizer, follow
these steps:
1. Run the SmartGuide Customizer. From the command line, type the

command:
xmlcust

2. Open the script file in the SmartGuide Customizer. Click File > Open and
select the file.
The SmartGuide Customizer recognizes the XML file as a script or macro
file, and displays it in terms of its original source document structure
(rather than interpreting the contents of the file literally), with the macros
applied as a set of modifications and selections.

3. Edit the macros, and create new ones, in the same you would when
creating a new XML wizard.

4. Click File > Save to save the XML script with your changes applied.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Running an XML wizard” on page 518

Distributing an XML wizard

Once you have created and tested the XML wizard, you can package it for use
by others.

Chapter 11. Customizing Object Builder 519



Each package should include the following:
v The XML wizard script, generated by the SmartGuide Customizer for XML.
v Any help files for the wizard script, if you linked to the files using a

relative path (rather than, for example, an http address on your intranet).
v The original XML file on which the wizard script is based.
v The DTD for the original XML file, either contained in, or referenced by, the

original file. If the DTD is referenced using a relative path, the path is
resolved relative to the current directory (the directory from which the
SmartGuide Launcher tool is run).

v Any classes you defined to provide customized input constraints.
v The SmartGuide Launcher tool, which runs the script.

The relative paths from the wizard script’s location to the original XML file
and its DTD should be preserved in the package.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Constraining values in an XML wizard” on page 515
“Testing an XML wizard” on page 517
“Running an XML wizard” on page 518

Attribute identity in XML

You can use the SmartGuide Customizer for XML to define an XML wizard
that allows users to define new XML documents based on an initial template.

When the initial template contains elements with IDs, and references between
elements, then you need to decide how issues of attribute identity will be
resolved.

Attribute identity primarily has implications for elements that are repeatable.
When you specify in the Customizer that an element is repeatable, the user of
the resulting XML wizard can add multiple instances of the element. If the
element contains an ID attribute, or references other elements by ID, you can
use the attribute identity options in the attribute’s property page to specify
how the new element instances will relate to other elements (that is, how
references involving the new instance will be resolved).

There are three main cases for a repeatable element with attributes that
involve identity:

520 WebSphere: Application Development Tools Guide



v “XML ID attributes”
v “XML references” on page 522
v “XML references with customized targets” on page 525

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507

“Attribute identity options” on page 533

XML ID attributes

When you create an XML wizard using the SmartGuide Customizer for XML,
you can specify elements as repeatable. If the element has an ID attribute (that
uniquely identifies the element within the document), then you need to
specify how to handle the ID attribute when the wizard user creates new
element instances.

The first step is identifying the attribute as an ID. In the SmartGuide
Customizer, click on the attribute in the Contents pane to display its
properties. Then in the Properties pane, click the ID option. In the XML
wizard, when a user adds multiple instances of the element, the additional
instances will be assigned new IDs by the XML wizard. The new IDs are
generated using a DCE-compliant algorithm and are unique.

When you specify that an attribute is an ID, the Referencing Elements choice
is enabled. This allows you to relate the creation of specific referencing
elements to the creation of the current element. When a new instance of the
current element is created, new instances of the selected referencing elements
will be created to match.

Example: selecting referencing elements
You create an XML template file that contains the following:
<Student xmi.id=“key1” name=“Richard”/>
<University.allStudents>

<UStudent xmi.idref=“key1”/>
</University.allStudents>

In the SmartGuide Customizer, you specify:
v Student is a repeatable element.
v Student//name is an editable attribute (in fact, the only editable attribute).

Chapter 11. Customizing Object Builder 521



v Student//xmi.id is the ID for Student, with UStudent as a referencing
element.

v UStudent//xmi.idref is a reference to Student//xmi.id

You run the resulting XML wizard. You are prompted to add students. The
default entry is “Richard” (the ID is not shown). You add a second student
named “Mike”, and click Finish. The final result is an XML file that contains
the following:
<Student xmi.id=“key1” name=“Richard”/>
<Student xmi.id=“key2” name=“Mike”/>
<University.allStudents>

<UStudent xmi.idref=“key1”/>
<UStudent xmi.idref=“key2”/>

</University.allStudents>

The new Student element <Student xmi.id=“key2” name=“Mike”/> has a
name specified by the user, and an ID generated by the wizard (in actual fact
the ID would be DCE-compliant).

The new UStudent element is generated by the wizard because it has been
identified as a referencing element in the SmartGuide Customizer, in the
Properties pane for the Student//xmi.id attribute.

“XML wizards” on page 503
“Attribute identity in XML” on page 520
“XML references”
“XML references with customized targets” on page 525

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507

“Attribute identity options” on page 533

XML references

When you create an XML wizard using the SmartGuide Customizer for XML,
you can specify elements as repeatable. If the element has an attribute that is
a reference to another element (using the other element’s ID attribute), then
you need to specify how to handle the reference when the wizard user creates
new element instances.

The first step is identifying the attribute as a reference. In the SmartGuide
Customizer, click on the attribute in the Contents pane to display its
properties. Then in the Properties pane, click the Reference to ID option.

522 WebSphere: Application Development Tools Guide



Once an attribute is identified as a reference, its default value is used to
associate it with the ID it references (which contains a matching default
value). When the reference is part of a repeatable element, you need to specify
how to resolve the reference when new instances are added. You have two
options:
v Point to existing target

The new instance will reference the same ID as the original.
v Create new target

The new instance will point to a new target that is created to match. If you
select this option, then you can customize the way in which the creation
takes effect, as described in “XML references with customized targets” on
page 525.

Example: pointing to existing target
You create an XML template file that contains the following:
<Tenant xmi.id=“tenantKey1” name=“Simpson”>

<TenantHome xmi.idref=“houseKey1”>
</Tenant>
<House xmi.id=“houseKey1” address=“some_address”/>

In the SmartGuide Customizer, you specify:
v Tenant as a repeatable element.
v Tenant//name as an editable attribute.
v Tenant//xmi.id as the ID for the family.
v TenantHome as a hidden element.
v TenantHome//xmi.idref as a reference to House//xmi.id, with Point to

existing target set.
v House as a hidden element.
v House//xmi.id as the ID for the house.

You run the resulting XML wizard. You are prompted to add families. The
default entry is “Simpson” (the ID is not shown). You add a second family
named “Johnson”, and click Finish. The final result is an XML file that
contains the following:
<Tenant xmi.id=“tenantKey1” name=“Simpson”>

<TenantHome xmi.idref=“houseKey1”>
</Tenant>
<Tenant xmi.id=“tenantKey2” name=“Johnson”>

<TenantHome xmi.idref=“houseKey1”>
</Tenant>
<House xmi.id=“houseKey1” address=“some_address”/>

The new Tenant element <Tenant xmi.id=“tenantKey2” name=“Johnson”> has
a name specified by the user, and an ID generated by the wizard (unlike the
example the ID would be DCE-compliant).

Chapter 11. Customizing Object Builder 523



The new tenant home element <TenantHome xmi.idref=“houseKey1”> has
been automatically created for the new Tenant element. Because it was
identified as a reference to ID, and had the option Point to existing target
selected, it points to the existing house: both tenants are living at the same
address.

Example: creating new target
You create an XML template file that contains the following:
<Family xmi.id=“familyKey1” name=“Simpson”>

<FamilyHome xmi.idref=“houseKey1”>
</Family>
<House xmi.id=“houseKey1” address=“some address”/>

In the SmartGuide Customizer, you specify:
v Family as a repeatable element.
v Family//name as an editable attribute.
v Family//xmi.id as the ID for the family.
v FamilyHome as a hidden element.
v FamilyHome//xmi.idref as a reference to House//xmi.id, with Create new

target set.
v House as a hidden element.
v House//xmi.id as the ID for the house.

You run the resulting XML wizard. You are prompted to add families. The
default entry is “Simpson” (the ID is not shown). You add a second family
named “Johnson”, and click Finish. The final result is an XML file that
contains the following:
<Family xmi.id=“familyKey1” name=“Simpson”>

<FamilyHome xmi.idref=“houseKey1”>
</Family>
<Family xmi.id=“familyKey2” name=“Johnson”>

<FamilyHome xmi.idref=“houseKey2”>
</Family>
<House xmi.id=“houseKey1” address=“some_address”/>
<House xmi.id=“houseKey2” address=“some_address”/>

The new Family element <Family xmi.id=“familyKey2” name=“Johnson”> has
a name specified by the user, and an ID generated by the wizard (unlike the
example the ID would be DCE-compliant).

The new FamilyHome element <FamilyHome xmi.idref=“houseKey2”> has
been automatically created for the new Family element. Because it was
identified as a reference to ID, and had the option Create new target selected,
a new target House element has been created to match. The new target has an
ID generated by the wizard (again, the ID would be DCE-compliant, which is
not shown here).

524 WebSphere: Application Development Tools Guide



The new House element <House xmi.id=“houseKey2”
address=“some_address”/> has been generated by the wizard to resolve the
reference from FamilyHome, which in turn was added because the user added
a new Family element.

“XML wizards” on page 503
“Attribute identity in XML” on page 520
“XML ID attributes” on page 521
“XML references with customized targets”

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507

“Attribute identity options” on page 533

XML references with customized targets

When you create an XML wizard using the SmartGuide Customizer for XML,
you can specify elements as repeatable. If the element has an attribute that is
a reference to another element (using the other element’s ID attribute), then
you can specify that the referenced element should be created along with the
referencing element.

The first step is identifying the attribute as a reference. In the SmartGuide
Customizer, click on the attribute in the Contents pane to display its
properties. Then in the Properties pane, click the Reference to ID option.

Once an attribute is identified as a reference, its default value is used to
associate it with the ID it references (which contains a matching default
value). Select Create new target to specify that a new instance of the
referenced element should be created when a new instance of the current
element is created. In other words, when a new referencing instance is
created, a new referenced instance will be created to match. The new
referenced instance will have a generated ID, and otherwise default content.

Once you have selected Create new target, you can customize the way in
which the new target is created. You have two choices, each of which allow
you to customize one part of the creation process:
v Select Owner

By default, the new target element is created when the current (referencing)
element is created. This is appropriate for simple cases, when the current
element is created directly. However, if the current element is created

Chapter 11. Customizing Object Builder 525



indirectly (for example, as part of the content of a higher-level element, or
as part of a chain of references), then you should specify the directly
created element as the owner of the reference. This ensures that the
reference target will be created when the current element is created
indirectly.

v Select Target
By default, the owner of the referenced ID is the target element. This is
appropriate for simple cases, when the referenced element has no other
dependencies. However, if the referenced element has a context that needs
to be created with it (for example, a higher-level element that always
contains just one instance of the referenced element), then you should select
the appropriate target (for example, the higher-level or parent element).

Example: selected owner
You create an XML template file that contains the following:
<TenantFamily xmi.id=“familyKey1” name=“Simpson”>

<Child xmi.id=“childKey1” name=“Julia”>
<Child.Toy xmi.idref=“tbearKey1”/>

</Child>
<TenantHome xmi.idref=“houseKey1”/>

</TenantFamily>
<House xmi.id=“houseKey1” name=“House”>

<Toy.Bear xmi.id=“tbearKey1” name=“Bear”/>
<Toy.Car xmi.id=“tcarKey1 name=”Car“/>

</House>

The important reference for this example is from Child.Toy to Toy.Bear. In the
SmartGuide Customizer, you specify:
v TenantFamily as a repeatable element.
v TenantFamily//name as an editable attribute.
v TenantFamily//xmi.id as the ID for the family.
v Child//xmi.id as the ID for the child.
v Child.Toy//xmi.idref as a reference to Toy.bear//xmi.id, with Create new

target set.
v TenantHome as a hidden element.
v TenantHome//xmi.idref as a reference to House//xmi.id, with Point to

existing target set.
v House as a hidden element.
v House//xmi.id as the ID for the house.
v Toy.Bear//xmi.id is the ID for the toy bear.
v Toy.Car//xmi.id is the ID for the toy car.

With the settings so far, a new family would automatically point to the same
address (based on the setting for TenantHome//xmi.idref). Each new family
has a child, which owns a reference to a toy bear. This reference does not

526 WebSphere: Application Development Tools Guide



resolve. The reference has been set to Create new target, which works fine
when the owning element is created directly, or with only one level of
indirection. In other words, if Child.Toy were created directly, or Child were
created directly, then the Create new targetoption would take effect, and a
new toy would be created. But in this case, the only element that is created
directly is the TenantFamily. It needs to be explicitly identified as the owner of
the reference (Child.Toy//xmi.idref(, for the purpose of creating the new
target.

Return to the SmartGuide Customizer, and the Properties pane for
Child.Toy//xmi.idref . The Create new target option is already set, and there
are two buttons available: Select Owner and Select Target. Click on Select
Ownerto display the Select Owner window. Within the window, select Family,
and click OK.

You run the resulting XML wizard. You are prompted to add families. The
default entry is ”Simpson“ (the ID is not shown). You add a second family
named ”Johnson“, and click Finish. With the revised settings, a new family
automatically gets a new house, and the new family’s child automatically gets
a new toy.

The final result is an XML file that contains the following:
<TenantFamily xmi.id=”familyKey1“ name=”Simpson“>

<Child xmi.id=”childKey1“ name=”Julia“>
<Child.Toy xmi.idref=”tbearKey1“/>

</Child>
<TenantHome xmi.idref=”houseKey1“/>

</TenantFamily>
<TenantFamily xmi.id=”familyKey2“ name=”Johnson“>

<Child xmi.id=”childKey2“ name=”Julia“>
<Child.Toy xmi.idref=”tbearKey2“/>

</Child>
<TenantHome xmi.idref=”houseKey2“/>

</TenantFamily>
<House xmi.id=”houseKey1“ name=”House“>

<Toy.Bear xmi.id=”tbearKey1“ name=”Bear“/>
<Toy.Bear xmi.id=”tbearKey2“ name=”Bear“/>
<Toy.Car xmi.id=”tcarKey1 name=“Car”/>

</House>

The new TenantFamily element <TenantFamily xmi.id=“familyKey2”
name=“Johnson”> has a name specified by the user, and an ID generated by
the wizard (unlike the example the ID would be DCE-compliant).

The new TenantHome element <TenantHome xmi.idref=“houseKey2”> has
been automatically created for the new TenantFamily element. Because it was

Chapter 11. Customizing Object Builder 527



identified as a reference to ID, and had the option Point to existing target
selected, it points to the existing house: both tenants are living at the same
address.

The new Child element <Child xmi.id=“childKey2” name=“Julia”/> has also
been automatically created for the new TenantFamily element. It includes a
new Child.Toy element <Child.Toy xmi.idref=“tbearKey2”/>. Because it was
identified as a reference to ID, had the option Create new target selected, and
had the owner of the reference set to be TenantFamily (the only element being
created directly), a new Toy.Bear element has been added to the House
element.

Example: selected target
You create an XML template file that contains the following:
<Family xmi.id=“familyKey1” name=“Simpson”>

<FamilyHome xmi.idref=“houseKey1”/>
</Family>
<Property>

<House xmi.id=“houseKey1” name=“House”/>
<Pool xmi.id=“poolKey1” name=“Pool”/>
<Garden xmi.id=“gardenKey1” name=“Garden”/>

</Property>

In the SmartGuide Customizer, you specify:
v Family as a repeatable element.
v Family//name as an editable attribute.
v Family//xmi.id as the ID for the family.
v FamilyHome as a hidden element.
v FamilyHome//xmi.idref as a reference to House//xmi.id, with Create new

target set.
v House as a hidden element.
v House//xmi.id as the ID for the house.
v Pool//xmi.id as the ID for the pool.
v Garden//xmi.id as the ID for the garden.

With the settings so far, a new house would be created for each new family,
but all the houses would be on the same property (the FamilyHome reference
points to to the House element within Property, not to the parent Property
element).

To specify that a new property should be created for each family, you can
modify the target of the FamilyHome reference (for the purposes of this
creation action).

528 WebSphere: Application Development Tools Guide



Return to the SmartGuide Customizer, and the Properties pane for
FamilyHome//xmi.idref . The Create new target option is already set, and
there are two buttons available: Select Owner and Select Target. Cick on
Select Targetto display the Select Target window. Within the window, select
Property, and click OK.

You run the resulting XML wizard. You are prompted to add families. The
default entry is “Simpson” (the ID is not shown). You add a second family
named “Johnson”, and click Finish. The final result is an XML file that
contains the following:
<Family xmi.id=“familyKey1” name=“Simpson”>

<FamilyHome xmi.idref=“houseKey1”>
</Family>
<Family xmi.id=“familyKey2” name=“Johnson”>

<FamilyHome xmi.idref=“houseKey2”>
</Family>
<Property>

<House xmi.id=“houseKey1” name=“House”/>
<Pool xmi.id=“poolKey1” name=“Pool”/>
<Garden xmi.id=“gardenKey1” name=“Garden”/>

</Property>
<Property>

<House xmi.id=“houseKey2” name=“House”/>
<Pool xmi.id=“poolKey2” name=“Pool”/>
<Garden xmi.id=“gardenKey2” name=“Garden”/>

</Property>

The new Family element <Family xmi.id=“familyKey2” name=“Johnson”> has
a name specified by the user, and an ID generated by the wizard (unlike the
example the ID would be DCE-compliant).

The new FamilyHome element <FamilyHome xmi.idref=“houseKey2”> has
been automatically created for the new Family element. Because it was
identified as a reference to ID, and had the option Create new target selected,
a new target House element, along with a new parent Property element and
sibling Pool and Garden topics, have been created to match. The new target
and its sibling elements have IDs generated by the wizard (again, the IDs
would be DCE-compliant, which is not shown here).

“XML wizards” on page 503
“Attribute identity in XML” on page 520
“XML ID attributes” on page 521
“XML references” on page 522

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507

Chapter 11. Customizing Object Builder 529



“Attribute identity options” on page 533

XML wizard properties

Macro setting

In the SmartGuide Customizer properties pane, you can define values and
constraints for the currently selected content (text) or attribute node. The
macro setting does not affect elements.

The changes you make to the properties of an attribute or element content are
applied according to the setting of the Macro control:
v None

Any changes are ignored.
v Hidden

Your changes are applied by the wizard script, but are not exposed to the
wizard user.

v Read-only
The value for the content or attribute is exposed in the wizard interface as
read-only text.

v Editable
The value for the content or attribute is editable in the wizard interface.

“XML wizards” on page 503

“Creating an XML wizard” on page 504

Element properties

In the SmartGuide Customizer for XML, you can define the layout of an XML
wizard by setting the properties of selected element nodes in the Contents
pane.

The element properties:
v Define whether to start a new page with the controls associated with the

selected element, in the wizard interface
v Define whether the attributes and content for this element are a repeatable

set (the user can add more than one set of values)

The macro settings for an element definition are ignored. Only the macro
settings for the element’s content or attributes are applied.

530 WebSphere: Application Development Tools Guide



You have the following controls:
v Repeatable

If you make an element repeatable, then the wizard will display a tree view
for the element, to which the user can add instances of the element. Each
element instance will have its own set of values, as defined in the
SmartGuide Customizer. Values marked as Editable are editable by the
user, on a per-instance basis.

v Start new page
Click this option to start a new page with the content and attributes
exposed under this element. Once you select this option, you can provide a
title and description for the page, and associate a URL for the Help button
on that page.

v Title
Type a title for the page.

v Description
Type a description for the page. The description appears directly below the
title, on the page.

v Help URL
Type a URL for a help file that describes the controls on this page. The URL
can be absolute (for example, http://myserver/help1.htm ) or relative to
the location of the XML wizard script (for example, help/help1.htm).

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining the layout of an XML wizard” on page 516

Attribute properties

In the SmartGuide Customizer for XML, you can set the following properties
for an attribute. Click on an attribute or text node in the Contents pane to
display and set its options in the Properties pane.

The options you set are applied according to the current selection in the
“Macro setting” on page 530 list.
v Derived value

Indicates that the value for the current content or attribute is derived in
part from another value elsewhere in the XML structure. The derived value
option is checked automatically when you derive a value for the content or
attribute from its pop-up menu in the Contents pane, or when you
propagate a value to the content or attribute from another node’s pop-up
menu. Once the option is checked, you can uncheck it to break the
derivation or propagation relationship.

Chapter 11. Customizing Object Builder 531



v Label
Type a label for the element content or attribute. If the Macro setting is
Read-only or Editable, this becomes the label for the field in the wizard
user interface.

v Default
Type a default value for the content or attribute. You can split the value
into prefix, value, and suffix to create derivation or propagation
relationships with other values in the structure. An existing value may be
provided based on the content of the source XML file being used as a
template.

v Attribute identity
Select the type of identity the attribute represents:
– None (page 533)
– ID (page 533)
– Reference to ID (page 534)

When an element is specified as repeatable, the user can add multiple
instances of the element in an XML wizard. You can use the attribute
identity options to specify how the new element instances will relate to
other elements (that is, how references involving the new instance will be
resolved).

v Constraints
Select a constraint to apply to the value a user can enter for the content or
attribute. Only applies when the Macro setting is Editable. You can set
one of the following constraints:
– NoSpace
– C++
– CORBA
– SQL
– LongFile
– File83
– File8
– Any
– Action

v Fly-over Help
Provide a fly-over description for the label and field in the wizard user
interface. Only applies when the Macro setting is Editable.

v Values
Displays a dialog in which you can specify or modify the set of acceptable
values for the current content or attribute. When you specify more than one
acceptable value, the wizard user is presented with a drop-down list to
choose from, rather than an editable field. For each value, you can specify

532 WebSphere: Application Development Tools Guide



the term to display in the drop-down list, and the associated value to
generate in the XML. Only applies when the Macro setting is Editable.

“XML wizards” on page 503
“Attribute identity in XML” on page 520

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Customizing value lists in an XML wizard” on page 510
“Deriving values in an XML wizard” on page 511
“Propagating values in an XML wizard” on page 513
“Constraining values in an XML wizard” on page 515

“Attribute identity options”

Attribute identity options

In the SmartGuide Customizer for XML, an attribute can be assigned the
following types of identity:
v None
v ID
v Reference to ID

Attribute identity can have implications for elements that are repeatable.
When an element is specified as repeatable, the user can add multiple
instances of the element in an XML wizard. You can use the attribute identity
options to specify how the new element instances will relate to other elements
(that is, how references involving the new instance will be resolved).

The following sections describe the implications of each option, and include
descriptions of the additional choices available when ID or Reference to ID is
selected.

None
The attribute is neither an ID nor a reference to an ID. It is simply data. There
are no special implications for this choice.

ID
The attribute is the ID for its element. If the element is specified as repeatable
(that is, the user can add multiple instances of this element), then the
additional instances will be assigned new IDs by the XML wizard. The new
IDs are generated using a DCE-compliant algorithm and are unique.

Chapter 11. Customizing Object Builder 533



When you specify that an attribute is an ID, the Referencing Elements choice
is enabled. This allows you to tie the creation of specific referencing elements
to the creation of the current element. When a new instance of the current
element is created, new instances of the selected referencing elements will be
created to match.

For more information on this option, including an example, see “XML ID
attributes” on page 521.

Reference to ID
The attribute is a reference to the ID of another element. If the element is
specified as repeatable (that is, the user can add multiple instances of this
element), then you can specify how to resolve the reference. You have two
options:
v Point to existing target

The new instance will reference the same ID as the original.
v Create new target

The new instance will point to a new target that is created to match.

For more information on these options, including examples, see “XML
references” on page 522.

If you select Create new target, you can customize the way in which the
target element is created:
v Select Owner

By default, the new target element is created when the current (referencing)
element is created. This is appropriate for simple cases, when the current
element is created directly. However, if the current element is created
indirectly (for example, as part of the content of a higher-level element, or
as part of a chain of references), then you should specify the directly
created element as the owner of the reference. This ensures that the
reference target will be created when the current element is created
indirectly.

v Select Target
By default, the owner of the referenced ID is selected as the target element.
This is appropriate for simple cases, when the referenced element has no
other dependencies. However, if the referenced element has a context that
needs to be created with it (for example, a higher-level element that always
contains just one instance of the referenced element), then you should select
the appropriate target (for example, the higher-level or parent element).

For more information on customizing target creation, including examples, see
“XML references with customized targets” on page 525.

“XML wizards” on page 503

534 WebSphere: Application Development Tools Guide



“Attribute identity in XML” on page 520
“XML ID attributes” on page 521
“XML references” on page 522
“XML references with customized targets” on page 525

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Constraining values in an XML wizard” on page 515

Constraints

When you create a wizard, or SmartGuide, with the SmartGuide Customizer
for XML, you set which elements will be editable in the wizard. These
elements are exposed in the wizard as fields, in which the wizard user can
enter values.

When you set the element as editable, you can also set constraints that will be
applied to the field, to limit the user to certain value types or formats.

You can set one of the following constraints:
v NoSpace

No spaces are allowed in the value.
v C++

The value must be a valid C++ type.
v CORBA

The value must be a valid CORBA type.
v SQL

The value must be a valid SQL type.
v LongFile

The value must be a valid file name, for a system that supports long file
names.

v File83
The value must be a valid file name, for systems that have a maximum file
name length of 8, with a maximum file extension length of 3.

v File8
The value must be a valid file name, for systems that have a maximum file
name length of 8, and the value must not include a file extension.

v Any
There are no constraints on the value the user enters.

v Action
Replace the selection with the name of a Java class that provides a
constraint you defined. The class must implement the Constraint interface,
provided with the SmartGuide Customizer for XML. When the XML wizard

Chapter 11. Customizing Object Builder 535



runs, it will look for a Java class with that name, and call its test() function
with the value the user entered as a parameter.

“XML wizards” on page 503

“Creating an XML wizard” on page 504
“Defining XML wizard macros” on page 507
“Constraining values in an XML wizard” on page 515

Filters

You can use filters in Object Builder to exclude information from the Tasks
and Objects pane. You can use the filters provided with Object Builder, or
define your own.

Object Builder provides the following filters or views:
v Business Objects View

Displays the User-Defined Business Objects folder, the Non-IDL Types
folder, and the Build Configuration folder. Use this view if you are creating
or working with components for new data, and do not need to work with
data objects separately or import existing DB or PA schemas.

v Data Objects View
Displays the User-Defined Data Objects folder, the Non-IDL Types folder,
and the Build Configuration folder. Use this view if you are working
primarily with data objects, and do not need to create business objects or
import existing DB or PA schemas.

v Schema View
Displays the DBA-Defined Schemas folder, the Non-IDL Types folder, and
the Build Configuration folder. Use this view if you are working primarily
with existing DB schemas, and do not need to work with data objects
separately or create business objects.

The views hide other information, but do not prevent reference to it. For
example, while using the data objects view, you can still define a data object
attribute with the type of a hidden business object interface.

You can customize these views, or add new ones. For example, you could
create a new view for working primarily with PA schemas, or for packaging
(showing only the Build Configuration and Application Configuration
folders).

536 WebSphere: Application Development Tools Guide



“Object Builder” on page 1
Component assembly (Programming Guide)

“Filtering the Tasks and Objects pane”“Creating a filter for the Tasks and
Objects pane”
“Searching the Tasks and Objects pane” on page 30

Filtering the Tasks and Objects pane

You can apply a filter to the Tasks and Objects pane in Object Builder, to show
only the tasks that you are doing or the objects that you are using.

To apply a filter, follow these steps:
1. From Object Builder’s menu bar, select View > Set Filter.
2. Select a filter from the cascade of available views. Your selection is

indicated with a checkmark.
3. Select View > Turn Filter On.

The filter you selected is applied to the Tasks and Objects pane. You can
switch filters at any time, and turn the currently selected filter off and on.

You can customize the existing filters, or add new filters as required.

While a filter is in effect, some menu items may be unavailable. This product’s
task documentation assumes an unfiltered view.

“Object Builder” on page 1
“Filters” on page 536

“Creating a filter for the Tasks and Objects pane”

Creating a filter for the Tasks and Objects pane

You can create your own filter for the Tasks and Objects pane, to hide folders
or objects that you are not using. Once you create a filter, it is available from
the View > Set Filter menu, and you can turn it on or off with the View >
Turn Filter On/Off menu choice.

To create a filter, follow these steps:
1. From Object Builder’s menu bar, select View > Set Filter > Create New.

The Filter Tree window opens.

Chapter 11. Customizing Object Builder 537



2. Select one of the existing filters from the filter list, to use as a starting
point.

3. Select the folders and objects you want included in the new view. Folders
or objects that are not selected will be excluded by the filter.

4. Click Save As. The Save Filter Scheme window opens.
5. Name the filter.
6. Click OK.
7. Click Finish.

The new filter now appears in the View > Set Filter menu, and is
automatically selected and applied.

“Object Builder” on page 1
“Filters” on page 536

“Filtering the Tasks and Objects pane” on page 537

XML browsing with XSL

When you export an XML file from Object Builder, you can open and read the
file in any text editor. However, the XML format is packed with information
and can be overwhelming. You can make the XML files generated by Object
Builder more readable by applying XSL style sheets to transform them into
HTML files, which you can view in a browser.

An XSL style sheet can:
v Filter or reorder an XML document (arranging content)
v Apply fonts and HTML markup to an XML document (formatting content)

A sample XSL style sheet is included with Object Builder. It takes an XML file
(model.xml) as input, filters out everything but business object and data object
interface information (arranges content), and creates HTML files (formats
content).

In order to use XSL style sheets, you will need an XSL processor.
Some web browsers have their own XSL processing capability, but if you do
not want to change web browsers, or you want to make the results available
to team members with other web browsers, then you can use a stand-alone
XSL processor such as the LotusXSL Processor available from IBM’s
alphaWorks site (http://www.alphaworks.ibm.com/tech/LotusXSL). The

538 WebSphere: Application Development Tools Guide



LotusXSL processor applies XSL style sheets to XML files and produces HTML
files which can be viewed by any web browser.

The documentation for XSL browsing applies primarily to Windows
NT. The samples are available on AIX, but you will need to do your own
investigation and setup for processing XSL.

The sample XSL style sheet provided by Object Builder creates HTML files
that require a frames-capable browser. When you create your own style sheet,
you can avoid frames if you prefer.

For more information about XSL and style sheets:
v The XSL specification: http://www.w3.org/TR/WD-xsl/
v XSL resources (links to tutorials, browser and tool resources)

http://www.w3.org/Style/XSL/
v alphaWorks site (XML developer resources):

http://www.alphaworks.ibm.com/

“The XSL sample” on page 541

“Browsing XML files”

Browsing XML files

You can use XSL style sheets to filter and transform complex XML files into
simple HTML documents. You can use the XSL sample provided with Object
Builder as a starting point, and then define your own XSL style sheet for your
own browsing needs.

The following tasks describe the steps involved in using the XSL sample and
creating your own XSL style sheet:
1. “Setting up for XSL” on page 540
2. “Viewing a sample XSL-based document” on page 543
3. “Applying the sample XSL style sheet” on page 544
4. “Creating your own XSL style sheet” on page 546
5. “Applying an XSL style sheet” on page 547

The documentation for XSL browsing applies primarily to Windows
NT. The samples are still available on AIX, but you will need to your own
investigation and setup for processing XSL.

Chapter 11. Customizing Object Builder 539



“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Chapter 11. Customizing Object Builder” on page 503

Setting up for XSL

The XSL process documented for the Object Builder XML format assumes that
you are using IBM’s XML for Java, and the LotusXSL processor. These are
both installed along with Object Builder.

In order to use the LotusXSL processor, you must install JDK 1.2 or JRE 1.2, or
a later compatible version. This is available from
http://java.sun.com/products/jdk/1.2/index.html

Note:The LotusXSL Processor is not dependent on a certain version of JDK as
long as it is not earlier than version 1.2.

You must also set up your class path to include the JAR files provided by the
LotusXSL package ( v2.0.15 of xml4j.jar, lotusxsl.jar, compat.jar and xalan.jar ).
Note the following points about the LotusXSL JAR files:

v These JAR files are installed along with Object Builder, and are located in
the <CB installation directory>\lib.

v xml4j.jar is renamed to be ivbxml.jar.
v lotusXSL.jar must be placed before xalan.jar in the class path.

For example, if you have installed Component Broker to e:\CBroker, then
modify your class path as follows:
CLASSPATH=e:\CBroker\lib\ivbxml.jar;e:\CBroker\lib\lotusxsl.jar;

e:\CBroker\lib\compat.jar;e:\CBroker\lib\xalan.jar;%CLASSPATH%

The documentation for XSL browsing applies primarily to Windows
NT. The samples are still available on AIX, but you will need to your own
investigation and setup for processing XSL.

“XML browsing with XSL” on page 538

“Browsing XML files” on page 539

540 WebSphere: Application Development Tools Guide



The XSL sample

The XSL sample demonstrates how an XSL style sheet can be used to browse
XML files exported from Object Builder. The style sheet sample is located in:

<CB installation directory>\xsl

The sample consists of style sheets, a frameset file to present the output of the
style sheets, batch files to simplify the process of applying the style sheets,
and sample output in the xsl\AccountFileSample directory, based on a sample
XML file.

Style sheets
This sample uses the following style sheets:

tree1.xsl, tree2.xsl
Each creates an HTML table of contents for the source XML file (for
example, model.xml). Indexes business object interfaces (files,
modules, interfaces), data object interfaces (files, modules, interfaces)
and relationships (1-n). The table of contents links to anchors in
another HTML document, created by the second XSL file.

view.xsl
Creates an HTML page that documents business object interfaces and
data object interfaces. Each interface is documented in both a
summary table format (listing its members) and a detailed format
(providing a full signature and details for each member).

When you apply the style sheets one pair at a time (tree1.xsl with view.xsl
using render1.bat; and tree2.xsl with view.xsl using render2.bat) to the source
XML file (for example, model.xml), it creates two HTML files based on the
XML (the table of contents, and the documentation file), which you can view
using a third HTML file that defines a frameset for the two files (so they can
be read side-by-side).

Frameset file
The frameset HTML file (frames.html) is in the same directory as the XSL
files. You can use the frameset file to view HTML files you create with the
sample style sheets.

The stylesheets were developed with LotusXSL 1.0.0 and are based on the
November 1999 Recommendation.

Batch file
The batch files (render1.bat and render2.bat) are in the same directory as the
XSL files. You can use the batch file to apply the pair of style sheets to an
XML file in a single step.

Chapter 11. Customizing Object Builder 541



HTML files
Sample HTML files created by the style sheets are in <CB installation
directory>\xsl\AccountFileSample:

AccountFile_tree.html
The output from tree.xsl, which provides links to
AccountFile_view.html within a frameset

AccountFile_view.html
The output from view.xsl

AccountFile_frames.html
A modified version of frame.html, which points to the other two files.

Directory structure
The sample is now consolidated under one directory (xsl\AccountFileSample).
model.xml, which contains the exported XML for the model, exists in this
directory. This directory has two subdirectories view_with_tree1 and
view_with_tree2, containing the HTML output rendered by tree1.xsl and
tree2.xsl respectively. These two subdirectories each contain the
AccountFile_frames.html file, which is a generic HTML file with a frameset
for two frames that correctly load AccountFile_tree.html on the left, and
AccountFile_view.html on the right.

This is the directory structure:
xsl\tree1.xsl
xsl\tree2.xsl
xsl\view.xsl
xsl\frames.xsl
xsl\render1.bat
xsl\render2.bat
xsl\AccountFileSample\model.xml
xsl\AccountFileSample\view_with_tree1\AccountFile_frames.html
xsl\AccountFileSample\view_with_tree1\AccountFile_tree.html
xsl\AccountFileSample\view_with_tree1\AccountFile_view.html
xsl\AccountFileSample\view_with_tree2\AccountFile_frames.html
xsl\AccountFileSample\view_with_tree2\AccountFile_tree.html
xsl\AccountFileSample\view_with_tree2\AccountFile_view.html

The XSL style sheets were run against the XML file for the Composite
Business Object sample to produce two files: tree.html and view.html. These
files were renamed and their linking modified to use the names
AccountFile_tree.html and AccountFile_view.html.

542 WebSphere: Application Development Tools Guide



The two files are viewable through a third file, AccountFile_frames.html, in
the same directory. This is a modified version of the basic frameset file which
points to the renamed tree and view html files, and organizes the two files
into a two-frame layout.

XML file
The HTML files provided in the sample are based on a file model.xml, which
was created by exporting the model for the Composite Business Object sample
project. The sample model is in the same directory as its associated sample
output: <CB installation directory>\xsl\AccountFileSample\

“XML browsing with XSL” on page 538

“Browsing XML files” on page 539
“Viewing a sample XSL-based document”
“Applying the sample XSL style sheet” on page 544

Viewing a sample XSL-based document

You can make the XML files generated by Object Builder more readable by
applying XSL style sheets to transform them into HTML files, which you can
view in a browser. The XSL sample provided with Object Builder filters XML
files and produces HTML files that include a subset of the original
information, organized for readability. The provided sample includes some
sample output. To view the sample output, follow these steps:
1. Start your web browser.

You must use a frames-compatible browser.
2. Browse the following file:

<CB installation
directory>\xsl\AccountFileSample\AccountFile_frames.html
Note:The AccountFileSample is a model in Component Broker’s
Tutorial\CBOB\Accounts directory.
If you know the path to the file, you can type it in the URL field in your
browser. Otherwise, use the File menu to locate and open the file.

The file AccountFile_frames.html organizes two other files into a frameset:
AccountFile_tree.html, on the left, displays a table of contents for
AccountFile_view.html, on the right. Click on the entries in the table of
contents (on the left) to jump to a particular topic in the main view (on the
right), or scroll through the view.

Chapter 11. Customizing Object Builder 543



“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Browsing XML files” on page 539

Applying the sample XSL style sheet

You can apply the XSL sample style sheet to your own XML files to produce a
simple set of documentation for your project. For more complete
documentation, or customized documentation for your own or your team
members’ needs, you should create your own XSL style sheet.

To generate an XML file for use with the sample style sheet:
1. Open a project that contains business objects and data objects.
2. Click File > Export Model to open the Export Model wizard.
3. Check the Export the model in one file option.
4. Click Finish.

The XML file for the model is placed in the current project’s Working\Export
directory.
You are provided with two sample style sheets in the xsl subdirectory within
Component Broker’s install directory: tree1.xsl and tree2.xsl.

The new stylesheet, tree2.xsl renders a different view from the one tree1.xsl
does. This new view presents a navigation pane that is based on the file
hierarchy of the model. This resembles to a great extent the way Object
Builder organizes its components, rather than just grouping the objects by
their type, as in version 3.0.

view.xsl is another sample stylesheet that renders the right-hand content pane.
The new sample does not include a stylesheet for rendering the content pane.
So, it uses the same file view.xsl as does the first sample.

The sample is now consolidated under one directory (xsl\AccountFileSample).
model.xml, which contains the exported XML for the model exists in this
directory. This directory has two subdirectories view_with_tree1 and
view_with_tree2, containing the HTML output rendered by tree1.xsl and
tree2.xsl respectively. These two subdirectories each contain the
AccountFile_frames.html file, which is a generic HTML file with a frameset
for two frames that correctly load AccountFile_tree.html on the left, and
AccountFile_view.html on the right.

544 WebSphere: Application Development Tools Guide



This is the directory structure:
xsl\tree1.xsl
xsl\tree2.xsl
xsl\view.xsl
xsl\frames.xsl
xsl\render1.bat
xsl\render2.bat
xsl\AccountFileSample\model.xml
xsl\AccountFileSample\view_with_tree1\AccountFile_frames.html
xsl\AccountFileSample\view_with_tree1\AccountFile_tree.html
xsl\AccountFileSample\view_with_tree1\AccountFile_view.html
xsl\AccountFileSample\view_with_tree2\AccountFile_frames.html
xsl\AccountFileSample\view_with_tree2\AccountFile_tree.html
xsl\AccountFileSample\view_with_tree2\AccountFile_view.html
To apply the tree1.xsl sample style sheet to your XML file, use the batch file
(render1.bat) that comes with the sample:

render1 model

The render1.bat batch file contains the following commands:

java com.lotus.xsl.Process -PARSER
com.lotus.xml.xml4j2dom.XML4JLiaison4dom -in %1.xml -xsl tree1.xsl -out
tree.html - VALIDATE

java com.lotus.xsl.Process -PARSER
com.lotus.xml.xml4j2dom.XML4JLiaison4dom -in %1.xml -xsl view.xsl -out
view.html - VALIDATE

To apply the tree2.xsl sample style sheet to your XML file, use the batch file
(render2.bat) that comes with the sample:

render2 model

The render2.bat batch file contains the following commands:

java com.lotus.xsl.Process -PARSER
com.lotus.xml.xml4j2dom.XML4JLiaison4dom -in %1.xml -xsl tree2.xsl -out
tree.html - VALIDATE

java com.lotus.xsl.Process -PARSER
com.lotus.xml.xml4j2dom.XML4JLiaison4dom -in %1.xml -xsl view.xsl -out
view.html - VALIDATE

Object Builder’s XML DTD (eom.dtd) must be in the same directory as your
input file. (eom.dtd is shipped with the install.)

Chapter 11. Customizing Object Builder 545



The sample style sheet assumes that your input XML file contains definitions
of business object interfaces and data object interfaces, for example the
model.xml file created when you export XML for an entire project. The sample
style sheet is not appropriate for XML files that define other elements (for
example, a udcontainer.ContainerOfAgents.xml file that defines a container).

The documentation for XSL browsing applies primarily to Windows
NT. The samples are still available on AIX, but you will need to your own
investigation and setup for processing XSL.

“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Browsing XML files” on page 539

Creating your own XSL style sheet

You can create your own XSL style sheet for viewing XML files. You can use
the existing XSL sample file tree.xsl as a starting point. It includes a number
of comments to help you understand and extend it for your needs. Once you
are familiar with tree.xsl, see view.xsl for a more advanced example of XSL
usage.

The source XML format uses xmi.id and xmi.idref attributes to identify and
reference elements. They can be used to create hypertext links in the output
HTML, as demonstrated in both tree.xsl and view.xsl.

Limitations of the sample style sheet:
v The example style sheet does not resolve links between models; any

unresolved links are formatted in red in the HTML output.
v It supports only basic members of typedef, union, struct, and exception.
v It does not support nested modules.

While XSL is still an emerging standard, there are already a number of
resources to help with the task of writing XSL style sheets. Many of them are
organized and linked to from: http://www.w3.org/Style/XSL/

Note the following points when you create your own XSL stylesheets:

v When an xsl:attribute contains a text node with a newline, the XML output
must contain a character reference. If it does not, a character reference,
which for version 1.0 of LotusXSL is a sequence of ’%20’s, is placed
between the two lines. To prevent this, you must explicitly create an xsl:text
node. An example of this can be found in line 575 and 607 of view.xsl. For

546 WebSphere: Application Development Tools Guide



more information refer to the XSLT 1.0 W3C Recommendation of 16
November 1999, Section 7.1.3 Creating Attributes with xsl:attribute.

v You may find it easier to examine the HTML output from view.xsl by
turning on the indent function in the xsl:output directive. To do this, change
the attribute indent to “yes”. (indent=“yes”). The generated HTML will
then be indented and neatly organized. This function had been turned off
in view.xsl because automatic indenting puts some relative positioning out
of place: for example, the arrow in the Relationship Details section for each
business object interface. If indentation is turned on, the arrows will not
align.

“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Browsing XML files” on page 539
“Applying an XSL style sheet”

Applying an XSL style sheet

Once you have written an XSL style sheet, you can apply it to XML files
exported from Object Builder.

To apply an XSL style sheet to your XML file, use the Java class that is named
Process:

java com.lotus.xsl.Process -PARSER
com.lotus.xml.xml4j2dom.XML4JLiaison4dom -in myfile.xml -xsl
mystylesheet.xsl -out myoutput.html - VALIDATE

For example, as in the XSL sample, myfile can be model, mystylesheet can be
tree1, myoutput can be tree.
Object Builder’s XML DTD (eom.dtd) must be in the same directory as your
input file.

The documentation for XSL browsing applies primarily to Windows
NT. The samples are still available on AIX, but you will need to your own
investigation and setup for processing XSL.

“XML browsing with XSL” on page 538
The XSL sample

Chapter 11. Customizing Object Builder 547



“Browsing XML files” on page 539
“Creating your own XSL style sheet” on page 546

548 WebSphere: Application Development Tools Guide



Chapter 12. Configuration

Configuring builds

Once you have defined your components in Object Builder, you are ready to
build the components into client and server dynamic link libraries (DLLs, also
known as shared library files). The client DLLs contain the component
interfaces, and helper classes, which allow your client applications to locate
and use the components on the server. The server DLLs contain the
implementations and data objects for the component.

To configure and build your DLLs, complete the following steps:
1. Specifying a build location
2. “Generating code” on page 551
3. “Defining a client DLL” on page 552
4. “Defining a server DLL” on page 554
5. “Generating a makefile” on page 556
6. “Building the DLLs” on page 558
7. “Building the JAR files” on page 561
8. “Building for ActiveX clients” on page 562
9. “Building for Java clients” on page 563

10. “Building for QuickTest” on page 564
11. “Rebuilding DLLs” on page 565
12. “Launching a remote OS/390 build” on page 572

For an example of how to set up a remote OS/390 build, see “Tutorial:
Launching a remote OS/390 build” on page 573.

Once you have built the DLLs, you can debug them, or package them as part
of an application.

“Developing in Object Builder” on page 19
“Building DLLs in a team environment” on page 487
“Packaging applications” on page 574
“Chapter 13. Testing applications with QuickTest” on page 611

© Copyright IBM Corp. 1999, 2000 549



“Internationalization of data” on page 132
“Naming objects” on page 128

Specifying a build location

Before you generate code, you can specify the absolute path for the working
directory, for each of the build platforms. It is this path that is emitted to the
generated make files. You can then move the generated code to another
location (for example, another machine or another platform, by copying the
entire working directory), without having to modify the paths in the
generated files.

To specify a build location, follow these steps:
1. Select the Build Configuration folder in the Tasks and Objects pane.
2. From its pop-up menu, select Properties. The Build Configuration wizard

opens to the Contents Ordering page.
3. Click Next. The Build Location page opens.
4. For each of the platforms, you can type in the absolute path.
5. Click Finish.

The paths that you specify will be used in the files that are generated to the
target build platforms.

Note the following points:

v If you do not specify an absolute path for the working directory, Object
Builder emits the project paths of the models into prjdefs.mk, qt.bat,
QTjar.txt, and the DDL files. If you specify a path, Object Builder emits the
contents of the entry field instead.

v The Build Location page allows you to specify absolute paths only for the
currently loaded model. You cannot specify your own paths for dependent
models. You must do this by opening Object Builder on each of the
dependent models directly.

“Cross-platform development” on page 426

“Configuring builds” on page 549
“Generating code” on page 551
“Setting up a team development environment” on page 467

“Build targets” on page 567

550 WebSphere: Application Development Tools Guide



Generating code

Before building an application, you must generate source code for the objects
you have created. By selecting Generate > Selected or Generate > All from
an object’s pop-up menu, you can generate code for that object only, or for
that object and all objects below it in the tree. You can also generate code for a
project from a command line, using the obgen command.

Until you generate code, all information for your objects is maintained in an
Object Builder model (for example, MyProject/Model/*.uni). When you
generate, the resulting files are placed in the /Working/platform subdirectory
of the project directory you specified, ready to be compiled (for example,
MyProject\Working\NT\*.idl, *.cpp, *.java). Java versions of the key and copy
helper, for use by Java client applications, are generated into subdirectories
with names based on the module names of the key or copy helper (for
example,
MyProject\Working\NT\ClaimModuleCopy\ClaimCopyHelper.java).

Before you generate code, you can specify the absolute path for the working
directory, for each of the build platforms. See the task Specifying a build
location.

You can select which platforms you generate code for using the Platforms >
Generate menu on the Object Builder main menu bar. You can also select
which platform to view information for, and constrain your development
options to a particular set of platforms. You can only view one platform at a
time, but you can generate code for multiple platforms at a time.

You can generate source code for any object in the User-Defined Business
Objects folder, User-Defined Data Objects folder, DBA-Defined Schemas
folder, and User-Defined Compositions folder. To generate code for an object,
follow these steps:
1. Select an object.
2. From the object’s pop-up menu, click Generate > Selected > All Files. The

appropriate code for the object is generated into the working directory.
You can also select to generate only a particular type of code, from the
Selected choices. These choices display the list of file types that can be
generated for the selected object (for example, .ih, .cpp, .java)

Note: Because a business object interface is physically contained in a business
object file, you generate the code for the interface by generating the code for
the file (from the business object file’s pop-up menu, click Generate >
Selected). The same applies to data object interfaces in the User-Defined Data
Objects folder.

Chapter 12. Configuration 551



You can generate the code for all the objects in a folder by selecting Generate
> All from the folder’s pop-up menu.

The generation process is tracked by a progress indicator, and may take some
time. The more platforms you are generating code for, the longer the
generation process will take.

You may also generate code from the command line, using the obgen
command.

To view the source code for any of the objects you defined, select View
Source from the object’s pop-up menu. The .idl, .ih, and .cpp or .java files for
the object are loaded in the Source pane. Click the drop-down arrow on the
right end of the editor pane’s title bar to access a list of currently loaded files
and switch between them. You cannot edit the source code directly: if you
want to change the source code, do so by changing the selections in the
wizards, or editing the code associated with your methods in the Methods
pane. The next time you generate the source code, your changes are applied.

Note: Outside of Object Builder, you can edit the source code with the editor
of your choice. Changes to method bodies should be imported back into
Object Builder, or your changes will be over-written the next time code is
generated.

You can now generate the makefiles that will set your build options and
define your target DLLs.

“Multi-platform development” on page 419

“Importing edited source files” on page 385
“Generating a makefile” on page 556
“Building the DLLs” on page 558
“Generating code from the command line” on page 684

“Objects to source files mapping” on page 258
“obgen” on page 685

Defining a client DLL

Your application will typically consist of both client and server shared
libraries, or dynamic link libraries (DLLs). To define a client DLL, follow these
steps:

552 WebSphere: Application Development Tools Guide



1. Under Tasks and Objects, select the Build Configuration folder.
2. From its pop-up menu, select Add Client DLL. The Client DLL wizard

opens to the Name and Options page.
3. Type a name for the dynamic link library or shared library file, without

the file extension. If you want, you can also type a description of the
configuration.

4. Set the platforms for which you want to build DLLs (Deployment
Platforms).

5. Set the options for each platform:
a. Select a platform from the Deployment Platforms list. All the options

you enter below will apply to the DLL built for this platform.
b. Type a name for the library (DLL), without the file extension.

Note the following points:

v You cannot have spaces in the DLL file name. When you click
Finish to close the wizard, the program strips out any spaces. It
also removes the file extension, if you happened to include it.

v If you do not specify a file name, the name of the configuration
will be used (with the extension .dll).

v The file name cannot exceed eight characters.
c. In the Make Options field, type any options you want to call the

DLL’s makefile with. The options are added to the all.mak file that
calls the DLL makefile.
There are several options specific to Component Broker that you can
enter in this field. These options supplement or override the selection
you make for your “Default Configuration” on page 566. They do not
affect the output directory set by the default configuration.
v IVB_TRACE=1 (page 691)(not appropriate for a client DLL)
v IVB_TRACE_DEBUG=1 (page 691) (not appropriate for a client

DLL)
v IVB_UNOPTIMIZE=1 (page 692)
v IVB_DYNAMIC_LINK=1 (page 690)
v IVB_BUILD_VERBOSE=1 (page 689)
v IVB_OPTIMIZE=1 (page 690)
v activex (page 692)
v all (page 692)
v cleandll (page 693)
v cpp (page 693)
v java (page 693)
v jcb (page 693)

Chapter 12. Configuration 553



v quicktest (page 693)
d. In the IDL Compile Options, IOM Java Compile Options, JCB Java

Compile Options, and CPP Compile Options fields, specify any
options you want passed to the IDL, Java, and C++ compilers by the
makefile (in addition to those set by any macros specified in the
“Default Configuration” on page 566 or in the Make Options field).

e. In the Link Options field, specify any linker options you want to
build the DLL with. Also enter any non-Object Builder user-defined
libraries for any DLLs that are referenced by this DLL.

6. Click Next. The Libraries to Link With page opens.
7. Select the names of the import libraries for any other DLLs you have

defined in Object Builder that are referenced by this DLL.
For example, if this DLL contains a child interface whose parent is
defined in another DLL, you need to select the import library for the
parent’s DLL here.

8. Click Next. The Client Source Files page opens.
9. Select the files you want to use as source for the DLL. Only files that are

candidates for a client DLL (for example, key and copy interfaces) are
available for selection.
If you are building a composition or a composite component, you need to
include the client interface files of the member components in the
composition (business object file, key file, and copy helper file).

10. Click Finish. The client DLL object appears in the Build Configuration
folder and you are ready to generate the makefile that will build it.

“Configuring builds” on page 549
“Defining a server DLL”
“Generating a makefile” on page 556

Defining a server DLL

Your application will typically consist of both client and server shared
libraries, or dynamic link libraries (DLLs). To define a server DLL, follow
these steps:

1. Under Tasks and Objects, select the Build Configuration folder.
2. From the pop-up menu of the folder, select Add Server DLL. The Server

DLL wizard opens to the Name and Options page.
3. Type a name for the configuration. This is a unique identifier for the

build configuration that creates the DLL. If you want, you can also type a
description of the configuration.

4. Set the platforms for which you want to build DLLs (Deployment
Platforms).

554 WebSphere: Application Development Tools Guide



5. Set the options for each platform:
a. Select a platform from the Deployment Platforms list. All the options

you enter below will apply to the DLL built for this platform.
b. Type a name for the library (DLL), without the file extension.

Notes:

v You cannot have spaces in the DLL file name. When you click
Finish to close the wizard, the program strips out any spaces. It
also removes the file extension, if you happened to include it.

v If you do not specify a file name, the name of the configuration
will be used (with a .dll extension).

v The file name cannot exceed 8 characters.
c. In the Make Options field, type any options you want to call the

DLL’s makefile with. The options are added to the all.mak file that
calls the DLL makefiles.
There are several options specific to Component Broker that you can
enter in this field. These options supplement, or override, the
selection you make for your “Default Configuration” on page 566.
They do not affect the output directory set by the default
configuration.
v IVB_TRACE=1 (page 691)
v IVB_TRACE_DEBUG=1 (page 691)
v IVB_UNOPTIMIZE=1 (page 692)
v IVB_DYNAMIC_LINK=1 (page 690)
v IVB_BUILD_VERBOSE=1 (page 689)
v OPTIMIZE=1
v activex (page 692)
v all (page 692)
v cleandll (page 693)
v cpp (page 693)
v java (page 693)
v jcb (page 693)
v quicktest (page 693)

d. In the IDL Compile Options, IOM Java Compile Options, JCB Java
Compile Options, and CPP Compile Options fields, specify any
options you want passed to the IDL, Java, and C++ compilers by the
makefile.

e. In the Link Options field, specify any linker options you want to
build the DLL with. Also enter any non-Object Builder user-defined
libraries for any DLLs that are referenced by this DLL.

Chapter 12. Configuration 555



6. Click Next. The Libraries to Link With page opens.
7. Select the name of the import library (.lib file) for the corresponding

client DLL. Also select the names of the import libraries for any other
DLLs you have defined in Object Builder that are referenced by this DLL.
For example, if this DLL contains a child interface whose parent is
defined in another DLL, you need to select the import library for the
parent’s DLL here.

8. Click Next. The Server Source Files page opens.
9. Select the IDL files you want to use as source for the DLL. Only files that

are candidates for a server DLL (for example, business object
implementations and managed objects) are available for selection.
When you select the source file for a data object implementation, the
source files for its associated persistent objects are automatically included.

10. Click Finish. The server DLL object appears in the Build Configuration
folder. You are now ready to generate the makefile that will build it.

“Configuring builds” on page 549
“Defining a client DLL” on page 552
“Generating a makefile”

Generating a makefile

To generate the makefiles that will build the shared libraries or dynamic link
libraries (DLLs) in the Build Configuration folder, follow these steps:
1. Select the Build Configuration folder.
2. From the folder’s pop-up menu, select one of the options under Generate

> All (as described below). The makefiles (all.mak, local.mak, and the
makefiles for the DLLs in the folder) are generated into your working
directory.

This builds the targets that are configured in the build configuration for the
current project. Once the makefiles have been generated, you can view them
by clicking View Source from the folder’s pop-up menu.

When you generate from the folder’s pop-up menu, the option you select
under Generate > All determines what is included in the makefiles as their
default targets. You can select from the following options:
v C++ Default Targets

The makefile will build all C++ DLLs.
v Java Default Targets

The makefile will build all Java JAR files.

556 WebSphere: Application Development Tools Guide



v Java Client Bindings Default Targets
The makefile will build all Java client bindings.

Not available on OS/390.

v ActiveX Interfaces Default Targets
The makefile will build all ActiveX client DLLs.

v QuickTest Default Targets
Compiles QuickTest client files, in the
Working\platform\config\QTCLS\DLLname\ directory.
Builds the QuickTest client .jar file in the
Working\platform\config\QT\QTDLLname.jar.
Places the qt QuickTest script file that is used to run the QuickTest client
application, in Working\platform\config\

v All Targets
The makefile will build all DLLs and associated objects available for a
particular platform, except for ActiveX and QuickTest, which are excluded
by default. You can include them with selections in the Preferences
notebook, on the Makefile Generation page.

For more details see “Build targets” on page 567.

The menu item you select determines what the Build > Default Targets action
will build. The makefile you generate can still be used to build other targets,
through the folder pop-up menu’s Build actions.

The makefile for each DLL includes any IDL compile, Java compile, CPP
compile, and link options you specified for the DLL. Do not use these files
directly. Use the all.mak file or local.mak file, which call the makefiles for each
DLL, and include any make options you specified for each DLL. The all.mak
file builds all targets; local.mak builds only the targets configured in the build
configuration for the current project. Using these .mak files ensures that the
DLLs are built in the correct order.

Note the following points:

v If an interface defined using an Object Builder wizard or imported from an
.idl file ’includes’ other interfaces, the ’included’ interface or header files
does not appear in the makefile as dependencies of the ’including’ interface.
Prior to rebuilding the generated source, you must either manually edit the
makefile to add the missing dependencies, or clean and rebuild all targets.

v You must build the DLLs on a server development machine (typically, the
one on which you are using Object Builder). If you move the makefiles to
another machine without the server SDK installed, the DLLs may not
compile.

Chapter 12. Configuration 557



“Configuring builds” on page 549
“Defining a client DLL” on page 552
“Defining a server DLL” on page 554

Specifying the order of a build

You can design your build system in such a way that the projects get built in
an order, which is compatible with the logical layering of the system.

When you work with multiple Object Builder subprojects, some lower-level
projects that provide services for higher-level projects must be built first
(before the higher-level ones). This is especially important if you have
modules within your projects.

To specify the order of a build, follow these steps:
1. From the pop-up menu of the Build Configuration folder, select

Properties. The Build Configuration wizard opens to the Contents
Ordering page. The DLLs are listed in a tree view in the order in which
they were added to the project. This tree view represents the order in
which the DLLs will be built when you either select the Build action from
within Object Builder, or use either make or nmake from the command line.

2. Select a DLL from the tree view. This action enables the Order by
Dependency button, and you can use it to have Object Builder order the
DLLs so that dependencies are resolved. The new order will closely
resemble the old one.

3. When you have a DLL selected, you can also use the Move Up and Move
Down buttons to manually change the order of the DLLs within the tree
view.

“Cross-project dependencies” on page 462

“Building the DLLs”“Configuring builds” on page 549
“Launching a remote OS/390 build” on page 572
“Generating a makefile” on page 556
“Packaging applications” on page 574

Building the DLLs

Before packaging an application, you must build your client and server DLLs
(that is, compile and link the generated code). You can do this by running
either the all.mak makefile, or the local.mak makefile, which you generated.
local.mak calls only the client and server makefiles in the current project,
unlike all.mak, which calls the other DLL make files as well.

558 WebSphere: Application Development Tools Guide



Do not run the makefiles for the individual DLLs directly. Using all.mak
ensures that the DLLs are built in the correct order.

You must build the DLLs on a server development machine (typically, the one
on which you are using Object Builder). If you move the makefiles to another
machine without the server SDK installed, the DLLs may not compile.

If you are building for OS/390, you can use the OS/390 remote build
process to build on a specified remote host.

To run all.mak, follow these steps:
1. Under Tasks and Objects, select the Build Configuration folder.
2. From the folder’s pop-up menu, select Build, and then one of the

following options:
v Out-of-Date Targets

You can select the type of out-of-date targets to build:
– C++

Builds C++ client and server DLLs.
– Java

Builds JAR files for Java business objects and for components with
PA-based persistence.

– Java Client Bindings
Builds Java client bindings that allow a Java client application to
access the equivalent components in the server application.

– Default
Builds whatever was selected when the makefile was generated (for
example, if Generate > All > C++ Default Targets was used to
generate the makefiles, then selecting Build > Out-of-Date Targets >
Default will build the C++ targets).

v All Targets
Builds all targets.

v Rebuild All Targets
Performs a build clean, followed by a build all targets.

v Clean
Performs a build clean, but does not perform a build.

3. When the build has finished, you can review the record of the build in the
command window.

You can also make all.mak from a command line, with the following flags:
v IVB_TRACE=1 (page 691)
v IVB_TRACE_DEBUG=1 (page 691)
v IVB_UNOPTIMIZE=1 (page 692) (or IVB_OPTIMIZE=0)

Chapter 12. Configuration 559



v IVB_DYNAMIC_LINK=1 (page 690)
v IVB_BUILD_VERBOSE=1 (page 689)
v IVB_OPTIMIZE=1 (or IVB_UNOPTIMIZE=0)
v IVB_COMBINE_SOURCE=1 (page 692)
v activex (page 692)
v all (page 692)
v cleandll (page 693)
v cpp (page 693)
v java (page 693)
v jcb (page 693)
v quicktest (page 693)

If you make all.mak from the command line, you can override your “Default
Configuration” on page 566 selection in Object Builder.

Note: The options that enable you to build for the QuickTest target
are not available both from the Object Builder interface, and the command
line, if the view platform (Platform > View) is OS/390.

Once you have built all applicable targets, your DLLs and JAR files exist on
your hard drive, in one of the following project working directories, as
defined by your macro selection or by your default configuration setting.

Configuration setting Directory

Unoptimized configuration
(IVB_UNOPTIMIZE=1 (page 692))

Working\platform\NOOPT

Production configuration
(IVB_OPTIMIZE=1)
(This is the default.)

Working\platform\PRODUCTION

Trace configuration (IVB_TRACE=1 (page
691))

Working\platform\TRACE

Trace and debug configuration
(IVB_TRACE_DEBUG=1 (page 691))

Working\platform\TRACE_DEBUG

For C++ components, the DLLs (MyClientDLL.dll and MyServerDLL.dll) are
built with the file name that you specify, and are placed in the project
working directory. If you have Java components in the same application, then
you will need a JAR file for each C++ component that provides Java
components on the server with access to the C++ components:
MyClientDLL.jar.

560 WebSphere: Application Development Tools Guide



If you are supporting a Java client application, then the Java client bindings
file: jcbMyClientDLL.jar must also be built in the
working\platform\config\JCB\ directory.

The DLLs and JAR files are automatically pulled into an application when
you configure the managed object with the application.

“Troubleshooting” on page 905

“Configuring builds” on page 549
“Launching a remote OS/390 build” on page 572
“Generating a makefile” on page 556
“Packaging applications” on page 574

Building the JAR files

If some of your components include Java business objects or use PA-based
persistence, you need to build JAR files as well as DLLs. The process is
equivalent to building DLLs, and the JAR files are created according to their
definitions in the Client and Server DLL wizards.

To build Java targets:
1. Under Tasks and Objects, select the Build Configuration folder.
2. From the folder’s pop-up menu, select Build > Out-of-Date Targets > Java

3. When the build is finished, review the results of the build in the command
window.

You can also build from the command line by making all.mak directly. If you
build with the java (page 693) flag (nmake all.mak java), only Java targets will
be built.

For Java components, three .jar files are created:
v MyClientDLL.jar

Supports access to the component by other components on the server.
– Source: \Working\platform\
– Compiled classes: \Working\platform\config\JAVACLS\MyClientDLL\
– JAR file location: \Working\platform\config\

v MyServerDLL.jar
Supports and implements the Java business object on the server.
– Source: \Working\platform\
– Compiled classes: \Working\platform\config\JAVACLS\MyServerDLL\
– JAR file location: \Working\platform\config\

Chapter 12. Configuration 561



v JCB\jcbMyClientDLL.jar
Java client bindings that support access to the component by the client
application.
– Source: \Working\platform\JCB\
– Compiled classes: \Working\platform\config\JCBCLS\MyClientDLL\
– JAR file location: \Working\platform\config\JCB\

“Troubleshooting” on page 905

“Configuring builds” on page 549
“Building the DLLs” on page 558
“Launching a remote OS/390 build” on page 572
“Generating a makefile” on page 556
“Packaging applications” on page 574

Building for ActiveX clients

When you build ActiveX interfaces in Object Builder, a set of source files, and
a makefile that you can use to build them into DLLs, are placed in the current
project’s Working\NT\config\ACTIVEX directory. You still need to build the
DLLs outside of Object Builder before you can use them with your client
application.

To generate the interfaces that ActiveX clients can use to access your server
components, follow these steps:
1. In Object Builder, click File > Preferences to open the Preferences

notebook.
2. Click Tasks and Objects > Makefile Generation to turn to the Makefile

Generation page.
3. Check the Include ActiveX in “all” target option
4. Click OK to apply your changes to Object Builder.

From now on, whenever you select to generate all targets or build all
targets the result will include ActiveX client interfaces. You can also build
specifically for ActiveX without changing this default, as described in the
next few steps.

5. Under Tasks and Objects, select the Build Configuration folder.
6. From the folder’s pop-up menu, click Generate -ActiveX Interfaces

Default Targets.
7. From the same pop-up menu, select Build > Out-of-Date Targets >

ActiveX Interfaces

562 WebSphere: Application Development Tools Guide



8. When the build is finished, review the results of the build in the command
window.

You can also build from the command line by making all.mak directly. If you
build with the activex (page 692) flag (nmake all.mak activex), only ActiveX
interfaces will be generated.

The interfaces are generated into the current platform’s
Working\NT\config\ACTIVEX directory.

ActiveX client programming model (Programming Guide)

“Configuring builds” on page 549
Developing the Component Broker ActiveX client (Programming Guide)

Building for Java clients

To build interfaces that Java clients can use to access your server components,
follow these steps:
1. Under Tasks and Objects, select the Build Configuration folder.
2. From the folder’s pop-up menu, select Build > Out-of-Date Targets > Java

Client Bindings

3. When the build is finished, review the results of the build in the command
window.

You can also build from the command line by making all.mak directly. If you
build with the jcb (page 693) flag (nmake all.mak jcb), only Java client
bindings will be built.

The client bindings are placed in JAR files with names based on the names of
your configured client DLLs in the Build Configuration folder.

The Java client bindings are built as follows:
v File: jcbMyClientDLL.jar
v Source: \Working\platform\JCB\
v Compiled classes: \Working\platform\config\JCBCLS\MyClientDLL\
v JAR file location: \Working\platform\config\JCB\

Java client programming model (Programming Guide)

Chapter 12. Configuration 563



“Configuring builds” on page 549
“Defining a client DLL” on page 552
“Generating a makefile” on page 556

Building for QuickTest

To build a QuickTest client to test your application with, follow these steps:
1. In Object Builder, click File > Preferences to open the Preferences

notebook.
2. Click Tasks and Objects > Makefile Generation to turn to the Makefile

Generation page.
3. Check the Add QuickTest target to ’all’ target option
4. Click OK to apply your changes to Object Builder.

From now on, whenever you select to generate all targets or build all
targets the result will include a refresh of your QuickTest client. You can
also build QuickTest specifically without changing this default, as
described in the next few steps.

5. Under Tasks and Objects, select the Build Configuration folder.
6. From the folder’s pop-up menu, select Build > Out-of-Date Targets >

QuickTest

7. When the build is finished, review the results of the build in the command
window.

You can also build from the command line by making all.mak directly. If you
build with the quicktest (page 693) flag (nmake all.mak quicktest), only
QuickTest files will be built.

The QuickTest files are built as follows:
v Source: \Working\platform\QT\
v Compiled classes: \Working\platform\config\QTCLS\DLLname\
v JAR files: \Working\platform\config\QT\QTDLLname.jar

v QuickTest executable location: \Working\platform\config\qt.bat

v QuickTest executable location: /Working/platform/config/qt.ksh
Object Builder does not automatically make the qt.ksh file executable. To
change its mode, follow these steps:

1. Change directory to the location of qt.ksh.
2. Type the following command to change qt.ksh to be an executable

file:
chmod +x qt.ksh

v QuickTest executable location: /Working/platform/config/qt.ksh

564 WebSphere: Application Development Tools Guide



v QuickTest executable location: /Working/platform/config/qt.ksh

Once your QuickTest client is built, you can run it from the Build
Configuration folder’s pop-up menu. Click Build > Run QuickTest to run the
QuickTest client.

Note:If you have debug and trace enabled, you
must make sure that the JAVA_HOME environment variable is set to the
directory in which your JDK is installed. You must do this before you run
Object Builder (if you will launch QuickTest from Object Builder), or before
you start QuickTest (that is, before you can invoke the qt.bat, or the qt.ksh file
from the command line).

“QuickTest” on page 611

“Configuring builds” on page 549
“Defining a client DLL” on page 552
“Generating a makefile” on page 556
“Chapter 13. Testing applications with QuickTest” on page 611

Rebuilding DLLs

If you have made changes to your build configuration, and want to rebuild
your DLLs without recompiling any code, you can use the command-line
option cleandll with the nmake or make command.

For example:

obgen -pe:\myproject -aMake

nmake -f all.mak cleandll all

will generate the makefiles for your updated build configuration, then delete
the existing DLLs and supporting files (such as .def). Finally, it will rebuild
the DLLs according to the updated makefiles.

Note: If your compile command fails due to an incorrect DB2 user ID
and password error, run the following command before you run the
make (AIX) or nmake (NT) command:
> export IVB_DB2AUTH=“USER test USING password”
set IVB_DB2AUTH=USER test USING password

You can also run nmake in two separate steps:

Chapter 12. Configuration 565



1. Run nmake without the all option:
nmake -f all.mak cleandll
This will only delete the existing DLLs and supporting files, but not
rebuild the DLLs.

2. Next, run nmake without the cleandll option:
nmake -f all.mak
This will rebuild the DLLs.

Note: It is advisable to run the Consistency Checker before you generate
makefiles, or start building, to ensure that the configuration for your client
DLL is correct. This is crucial particularly if your client DLL does not have at
least one IDL file selected.

“Configuring builds” on page 549
“Building the DLLs” on page 558
“Generating code from the command line” on page 684

“obgen” on page 685
“make options” on page 688

Build configuration behavior

Default Configuration

You can configure your builds to produce output for a particular use, such as
production or debugging. Globally, you can set a default, that will be in effect
unless explicitly overridden in a particular DLL configuration. You can set one
of four default configurations: debug, production, trace, or trace and debug.
The global configuration determines where all DLLs are built, even if a
particular DLL is built with a different configuration. For example, if you are
building for production use, but have one DLL configured for debugging, all
output, including that DLL, is placed in the Working\platform\PRODUCTION
directory.

Set the configuration you want as your default in the Object Builder
Preferences notebook. Click File > Preferences to open the notebook, then
click on the Tasks and Objects - Makefile Generation node.

You can select one of the following configurations:
v Unoptimized

Creates unoptimized output. This configuration gives shorter build times at
the expense of run-time performance. Output goes in the project’s

566 WebSphere: Application Development Tools Guide



Working\platform\NOOPT directory. Equivalent to setting the make macro
IVB_UNOPTIMIZE=1 (page 692) (or IVB_OPTIMIZE=0).

v Production
This is the default. Optimizes output for production use. Output goes in the
project’s Working\platform\PRODUCTION directory. Equivalent to setting
the make macro IVB_OPTIMIZE=1 (page 690) (or IVB_UNOPTIMIZE=0).

v Trace
Enables output for tracing. Output goes in the project’s
Working\platform\TRACE directory. Equivalent to setting the make macro
IVB_TRACE=1 (page 691).

v Trace and debug
Enables output for tracing and distributed debugging. Output goes in the
project’s Working\platform\TRACE_DEBUG directory. Equivalent to setting
the make macro IVB_TRACE_DEBUG=1 (page 691).

If you are building all.mak from the command line, you can select a default
configuration by defining the equivalent macro.

“Configuring builds” on page 549
Specifying a build location
“Defining a client DLL” on page 552
“Defining a server DLL” on page 554
“Generating a makefile” on page 556
“Building the DLLs” on page 558

“Build options” on page 568
“make options” on page 688

Build targets

When you generate the makefiles for your DLLs, you can set the default
targets they will build.

You can generate for the following default targets:
v C++ Default Targets

Builds C++ client and server DLLs, in the Working\platform\config
directory.

v Java Default Targets
Compiles Java class files, in the
Working\platform\config\JAVACLS\DLLname directory.
Builds Java server JAR files for server DLL configurations that contain Java
business objects, in the Working\platform\config\ directory.
Builds Java client JAR files (that run on the server) for all client DLL

Chapter 12. Configuration 567



configurations (to allow access to components on the server using the Java
language). JAR files are placed in the Working\platform\config directory.

v Java Client Bindings Default Targets
Compiles Java client binding files, in the
Working\platform\config\JCBCLS\clientDLLname directory.
Builds Java client binding JAR files for all client DLL configurations in the
Working\platform\config\JCB directory.

v ActiveX Interfaces Default Targets
Generates source files and a makefile into the
Working\NT\config\ACTIVEX\ directory. You will still need to call the
makefile from outside of Object Builder in order to build the ActiveX client
DLLs.

v QuickTest Default Targets
Compiles QuickTest client files, in the
Working\platform\config\QTCLS\DLLname\ directory.
Builds the QuickTest client .jar file in the
Working\platform\config\QT\QTDLLname.jar.
Places the qt QuickTest script file that is used to run the QuickTest client
application, in Working\platform\config\

v All Targets
Builds all of the above.

The default target that you select determines the default behavior of the
all.mak makefile. This behavior can be overridden when you build, either
from the command line (using a make option to specify a different target), or
from within Object Builder (selecting a specific target from the Build
Configuration folder’s Build > Out-of-Date Targets menu).

“Configuring builds” on page 549
“Generating a makefile” on page 556
Specifying the order of a build
“Building the DLLs” on page 558
“Building the JAR files” on page 561
“Building for ActiveX clients” on page 562
“Building for Java clients” on page 563
“Building for QuickTest” on page 564

Build options

When you build DLLs from within Object Builder, you have a number of
options that define how and where your DLLs and JAR files will be built.
These options correspond to make options that you can set on the command
line when making all.mak.

568 WebSphere: Application Development Tools Guide



Configuration options
You can set a default configuration within Object Builder, in Object Builder’s
Preferences notebook. Click File > Preferences, then navigate to the Tasks and
Objects > MakeFile Generation page, to select which configuration to use
when building within Object Builder. The option you select in the notebook
corresponds to a command-line option you can use with all.mak, and also sets
which configuration is set as the default within all.mak (when you call
all.mak from the command line).

Default Configuration make option

Unoptimized IVB_NOOPT=1

Production(default) IVB_OPTIMIZE=1

Trace IVB_TRACE=1 (page 691)

Trace Debug IVB_TRACE_DEBUG=1 (page 691)

Target options
The following options determine which targets get built by the make
program. When you build within Object Builder, the appropriate make option
is defined based on your choice in the Build Configuration folder’s pop-up
menu. For example, if you click Build > Out-of-Date Targets > Java, then
make is called with the java option.

When you generate a makefile, you can set a default option. From the Build
Configuration folder’s pop-up menu, click Generate > Selected > Targetto
generate only all.mak, and set the default, or Generate > All > Targetto
regenerate all the DLL makefiles, as well as local.mak (which is an all.mak
that filters out client and server makefiles from the current project’s
dependencies), and to set the default. The build target that you define during
generation sets a corresponding make option as the default, as shown in the
following table:

Platforms Build Target make option

All C++ Default Targets cpp (page 693)

Java Default Targets java (page 693)

Java Client Bindings
Default Targets

jcb (page 693)

ActiveX Interfaces Default
Targets

activex (page 692)

QuickTest Default Targets quicktest (page 693)

All* All Default Targets* all (page 692)*

Chapter 12. Configuration 569



*Builds all targets available for a particular platform, except for ActiveX and
QuickTest, which are excluded by default, but can be included with selections
in the Preferences notebook, on the MakeFile Generation page.

DLL options
The following options can be set within Object Builder on a per-DLL basis
(within a DLL configuration’s wizard). They are stored within all.mak, so you
will need to re-generate all.mak before your next build for the options to take
effect.

You can also specify these options on the command line when you make
all.mak (as described in make options). Options specified on the command
line can override the default configuration selected within Object Builder.
They do not override any DLL-specific options set within Object Builder.

DLL-specific options do not affect the output directory. For example, if you set
IVB_NOOPT=1 for ClaimS.DLL, and then build with the default configuration
setting Production (or build from the command line with IVB_OPTIMIZE=1),
all DLLs will be built into Working\platform\PRODUCTION, including the
unoptimized ClaimS.DLL
v IVB_NOOPT=1
v IVB_OPTIMIZE=1
v IVB_TRACE=1 (page 691)
v IVB_TRACE_DEBUG=1 (page 691)
v IVB_DYNAMIC_LINK=1 (page 690)
v IVB_BUILD_VERBOSE=1 (page 689)

“Using Object Builder from the command line” on page 659
“Generating code from the command line” on page 684
“Setting Object Builder preferences” on page 27

“Default Configuration” on page 566
“Build targets” on page 567
“make options” on page 688

Remote build configuration

Remote build

A build that is activated on another computer that is distant from a central
site, usually over a network connection. The remote computer may be
stationary and non-portable, or it may be portable.

570 WebSphere: Application Development Tools Guide



“Profile”
“Pass ticket”
“Cross-platform development” on page 426

“Launching a remote OS/390 build” on page 572
“Tutorial: Launching a remote OS/390 build” on page 573

Pass ticket

In Resource Access Control Facility (RACF) secured sign-on, and for the
OS/390 secure server, a pass ticket is a dynamically generated, random,
one-time-use, password substitute that a workstation or other client can use to
sign on to the host rather than sending a RACF password across the network.

This pass ticket is composed of eight characters, which can be any of the
letters A to Z, and the digits 0 to 9.

A pass ticket can be used only once in the ten-minute period from its
generation. It acts as a secure bridge from legacy applications to the modern
world, though it is not as secure as digital certificates.

“Remote build” on page 570
“Profile”

“Launching a remote OS/390 build” on page 572
“Tutorial: Launching a remote OS/390 build” on page 573

Profile

In Object Builder, when you are specifying the options for a remote OS/390
build, you can optionally specify the name of a profile file. This is a shell file
that contains initializations of the OS/390 environment variables.

“Remote build” on page 570
“Pass ticket”

“Launching a remote OS/390 build” on page 572
“Tutorial: Launching a remote OS/390 build” on page 573

Chapter 12. Configuration 571



Launching a remote OS/390 build

Preliminary steps:
v Ensure that the rexec daemon is running on the OS/390 host machine.
v Have Object Builder for Windows NT up and running.
v Change the platform view to OS/390. Select Platform > View > 390 from

Object Builder’s main menu.

To launch a remote build, follow these steps:
1. Select the Build Configuration folder in the Tasks and Objects pane.
2. From its pop-up menu, select Remote OS/390 Options. The Remote Build

wizard opens to the OS/390 Options page.
3. Specify the name of the OS/390 machine on which you want to run the

remote build in theHost Name field.
4. Type the user ID and password by which you will access the host

machine.
5. Type the full directory path on the OS/390 host machine, which is to

contain the files generated by Object Builder in the Host Directory field.
This is the directory that will contain the files and directories that are
normally contained in Object Builder’s Working\390 directory after file
generation.

6. You can optionally specify the name of a shell profile file, to be used to
initialize environment variables.

7. Indicate the format in which data is to be returned by the host. You can
choose between the American Standard Code for Information Interchange
(ASCII) and the Extended Binary Coded Decimal Interchange Code
(EBCDIC). Your selection determines the data translations, if any, that are
required.

8. Click Finish.
Your user ID and password are stored in memory, but the host name, host
directory, and profile name (if you provide it) are saved.

9. Select the Build Configuration folder again, and from its pop-up menu,
selectBuild.
The remote build will be activated if the host name, user ID, password,
and host directory are properly set.
Note: As long you use the same Object Builder session, you do not have
to retype your user ID and password each time you want to do a remote
build; you can just execute step 9. You will have to follow the preliminary
steps, and steps 1 to 4, 6, 8 and 9, if you close Object Builder, and restart
it.

“Remote build” on page 570

572 WebSphere: Application Development Tools Guide



“Tutorial: Launching a remote OS/390 build”

Tutorial: Launching a remote OS/390 build

Preliminary steps:
v You must ensure that the rexec daemon is running on the OS/390 host

machine.
v Optionally, create an NFS read/write mount of your OS/390 host directory.

You can then generate code directly into the NFS mounted directory.
Instead, you can generate the files onto your local file system, and then use
the File Transfer Protocol (FTP) to transfer them over to an Open Edition
for OS/390 system.

v Set up Object Builder for Windows NT.
v Once it is running, change the platform view to OS/390. Select Platform >

View > 390 from Object Builder’s main menu.

To launch a remote build, follow these steps:
1. Select the Build Configuration folder in the Tasks and Objects pane.
2. From its pop-up menu, select Remote OS/390 Options. The Remote Build

wizard opens to the OS/390 Options page.
3. Specify machine.host.com as the name of the OS/390 machine on which

you want to run the remote build in the Host Name field.
4. Type the user ID and password by which you will access the host

machine.
5. Type .../Working/390 as the full directory path on the OS/390 host

machine, which is to contain the files generated by Object Builder in the
Host Directory field. This is the directory that will contain the files and
directories that are normally contained in Object Builder’s Working\390
directory after file generation.

6. If you maintain the settings of the Component Broker Toolkit environment
variables such as CLASSPATH, PATH, and so on in a shell profile file
similar to .profile in AIX, specify its name.

7. Accept the default, which is the ASCII (American Standard Characters for
Information Interchange) format in which data is to be returned by the
host. The other choice is the Extended Binary Character Digital
Interchange Code (EBCDIC). Your selection determines the data
translations, if any, that are required.

8. Click Finish.
Your user ID and password are stored in memory, but the host name, host
directory, and profile name are saved.

9. Select the Build Configuration folder again, and from its pop-up menu,
selectBuild.

Chapter 12. Configuration 573



The remote build will be activated if the host name, user ID, password,
and host directory are properly set.
Note: As long you use the same Object Builder session, you do not have
to retype your user ID and password each time you want to do a remote
build; you can just execute step 9. You will have to follow the preliminary
steps, and steps 1 to 4, 6, 8 and 9, if you close Object Builder, and restart
it.

You can now make incremental changes to your files, and you will not have
to use the File Transfer Protocol.

“Remote build” on page 570

“Launching a remote OS/390 build” on page 572

Packaging applications

When your application is ready to ship, you can package it for easy
installation at a customer site. Applications consist of managed object
configurations, which define the component objects and DLLs you want
installed on the server.

To package an application, follow these steps:
1. “Creating an application family” on page 575
2. “Adding an application” on page 576
3. “Creating a container instance” on page 578
4. “Configuring a managed object” on page 588
5. “Generating the DDL files” on page 593
6. “Documenting applications” on page 595

“DDL” on page 137

“Developing in Object Builder” on page 19

“Internationalization of data” on page 132
“Naming objects” on page 128

574 WebSphere: Application Development Tools Guide



Creating an application family

An application family consists of one or more applications that are packaged
together on a CD and need to run at the same code level. There is a single
installation process for each application family you define. You can group
applications in a family to ensure version compatibility. The installation
checks each application’s version, and at the end of the installation ensures
that all applications in the family are at the same version.

When you install an application family, you cannot select which applications
you want to install. You must install all or none of the applications in the
family.

Application families consist of applications, which include all the necessary
code (DLLs, JAR files, and so on) necessary to support the deployment of
configured components on the server.

To create an application family, follow these steps:
1. Under Tasks and Objects, select the Application Configuration folder.
2. From the folder’s pop-up menu, select Add Application Family. The Add

Application Family wizard opens to the Name page.
3. Type a name, description, and version number for the application family.
4. Select the platforms on which your application is to be deployed.
5. Optionally, type the name of the DDL file that will be generated.

If you do not specify a name, Object Builder uses the name of the
application family for the generated DDL.

When OS/390 is one of the deployment platforms, the DDL file
name must not exceed eight characters in length. The first character must
be alphabetic, and the other characters (positions 2 to 8) must be
alphanumeric.

6. Click Finish. The application family is added to the Application
Configuration folder.

You can now add applications to the application family.

Note the following points:

v Object Builder generates the
DDL file on each deployed platform. (Object Builder is capable of
generating the file on all platforms - Windows NT, AIX, OS/390, Solaris,
and HP-UX). You will need to load this file into System Management when
you deploy your applications.

v Your DDL file is generated along with a backup version.
For example, if the name of your application family is MyAppFam, and

Chapter 12. Configuration 575



you have specified the name of the DDL file as AppFam, the DDL emitter
will generate the following files:
Working\platform\output_directory\MyAppFam\AppFam.ddl
Working\platform\output_ directory\MyAppFam\backup\AppFam.auto.ddl
platform is one or more of NT, AIX, Solaris, 390, or HPUX (the platforms on
which you are deploying your application).
output_directory is each of NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG (that is, for a given platform, you get four sets of DDL
files generated).

“Packaging applications” on page 574
“Adding an application”

“Application DDL files” on page 602

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding an application

An application consists of components, which encapsulate distributed data
and resources for the use of a client application.

To add a server application to your application family, follow these steps:
1. From the Application Configuration folder, select your application family.
2. From the family’s pop-up menu, select Add Application. The Add

Application wizard opens to the Name and Environment page.
3. Enter a name, description, and version number for the application.

You can also specify a Java virtual machine name.
4. Click Next. The Additional Executables page opens.
5. Browse for and select the following files:
v Any client DLL or .jar files (defined in Object Builder) for components

in other application families that are referenced by your application.
DLLs and .jar files for components in this application are automatically
included when you configure the component managed objects with the
application.

v Any additional DLLs or .jar files (not defined in Object Builder) that
contain code required by your application.

v Any bind files for components that use embedded SQL (that is, the
component’s data object implementation has the Embedded SQL option
set on the Behavior page of its wizard).

576 WebSphere: Application Development Tools Guide



Bind files are the compiled form of a persistent object .sqx file (for
example, ClaimPO.sqx becomes ClaimPO.bnd).

v Any SQL files for components that connect to new (as opposed to
pre-existing) database tables.
When the server application is installed, the SQL files can be used to
configure the database for use by the application’s components.

v Any JAR files that exist on your system, and have to be available when
the application server runs (if the application is backed by a procedural
application adaptor). These JAR files include the one that contains the
PA bean that you imported into Object Builder (and are going to use
with this application), and those that contain classes that are used by
the bean. JAR files are platform-independent, and you must add them
for all of the platforms on which you have the server running.

The JAR file is copied into the
x:\Cbroker\ntApps\<familyName> directory when the application is
loaded into the system.

The JAR file is copied into the
x:\Cbroker\aixApps\<familyName> directory when the application is
loaded into the system.
When the application server is activated for the first time, the JAR file is
added to the class path of the server, following which the application is
associated with the server. The classes in the JAR file are made available
to the server at run time. So, you do not have to add the JAR file to the
classpath environment variable.
Note the following points:

– The JAR files that you add as additional executables take precedence
over the directory into which you import the JAR files (when you
import a PA bean) since the JAR files are added to the front of the
CLASSPATH when the Component Broker server is started.

– If the DLL or JAR file that you want to add does not appear in the
Object Builder file dialog, ensure that the file is not hidden. Using
Windows NT Explorer, select View > Options. In the Options dialog
box, click the View tab and set the Show All Files check box. Close
the Object Builder file dialog box, close the wizard, save your work,
and shut down and restart Object Builder. When you return to the
wizard, turn to this page and click the Browse button again, the file
should be displayed.

6. Click Finish. The application appears under your application family in the
Application Configuration folder.

You can now configure managed objects with your application and, if you
want, create a container that handles object services for the managed objects.

Chapter 12. Configuration 577



“Packaging applications” on page 574
“Creating a container instance”
“Configuring a managed object” on page 588
“Creating a PA schema by importing a PA bean” on page 862

“Internationalization of data” on page 132
“Naming objects” on page 128

Container

A container is a configured version of a particular application adaptor that
represents a physical boundary around objects. It can be thought of as where
the objects exist. A container can provide some level of isolation between it
and other containers. A container can also provide some isolation among
objects within the container.

When you add a managed object to an application, you configure it with a
container that will be responsible for handling object services for the managed
object.

A container is a part of the runtime environment that provides components
with transaction and security management, network distribution of clients,
scalable management of resources, and other services that are generally
required as part of a manageable server platform. A container forms a logical
boundary around components and can be thought of as where the
components exist.
When you add a managed object to an application, you configure it with a
container that will be responsible for providing the required quality of service
and that also defines management properties used by the application adaptor.

Managed object (Programming Guide)

“Configuring a managed object” on page 588
“Creating a container instance”

Creating a container instance

The Component Broker frameworks provide a number of default containers,
which are appropriate for components with transient data (that is, without
persistent objects) on Windows NT, AIX, Solaris, and HP-UX. If your
component has data that you want to be persistent, or you are targetting

578 WebSphere: Application Development Tools Guide



different or additional platforms, you must define a container for the
particular needs of the component. You can define new containers in the
Container Definition folder.

You can also define new containers as part of the process of configuring a
managed object. If you select the Create a new container option, in the
Managed Object Configuration wizard, Container page, a default container
instance will be created that provides behaviors that are appropriate for the
selected managed object and its data object.

To add a container instance in the Container Definition folder (without basing
the container on an existing managed object), follow these steps:

1. Under Tasks and Objects, select the Container Definition folder.
2. From the folder’s pop-up menu, click Add Container Instance. The

Container wizard opens to the Name page.
3. Type a name and description for the container.

If you are developing an application intended for deployment
on OS/390 (the Platform > Constrain > 390 menu choice is checked),
then you are now done. The rest of the container definition is handled
through the System Management user interface.

4. In the “Deployment platforms” on page 423 section, select the platform
or platforms on which the container will be deployed.

5. In the Number of Components field, type an estimate for the number of
managed objects this container will hold. This sets a lower limit on the
size of the container’s hash table; additional space will be allocated when
it is needed.

6. Click Next. The Workload Management page opens.
7. Specify whether the container is workload managing. If you check this

option, you must also specify the policy group it will be configured with.
For new policy groups, accept the default <New> entry.

8. Click Next. The Service page opens.If you select not to provide
Transaction Services, select how the container should handle object data
when the server stops running (the Save all data when server is about to
stop (page 597)policy).

9. Select whether the container should passivate objects not in use, or keep
objects in memory at all times (the Passivate a component after its data
is saved (page 597)policy).

10. If you select not to provide any object services (Use no Object Services),
select whether to Enable persistent references (page 598).

11. Select the Container-managed entity beans onlycheck box if you want
this container to be available for selection when you are configuring the
managed object that is associated with a CMP entity bean.

Chapter 12. Configuration 579



Note: This check box is enabled only if either Use RDB Transaction
Service, Use PAA Transaction Service, Use PAA Session Service, or Use
MQAA Transaction Service is selected. In other cases, it is disabled.

12. Click Next.
13. If you selected Use RDB Transaction Service (page 596), Use PAA

Transaction Service (page 596), Use PAA Session Service (page 596),
or Use MQAA Transaction Service (page 596), then the Services Details
page now opens. Specify the behavior you want for methods called
outside the scope of a transaction or session (the “Behavior for Methods
Called Outside a Transaction” on page 599 and “Behavior for Methods
Called Outside a Session” on page 600 policies), and for sessions specify
the type of session. For PAA Session Services, specify the name of the
connection (“Connection” on page 601).

14. Click Next when you are done.
15. The Data Access Patterns page opens. Select the options on this page

according to the options set for the objects the container will hold.
16. Under Business Object, click Delegating or Caching according to the

option selected for the business object implementation’s Pattern for
Handling State Data (Business Object Implementation wizard, Name and
Data Access Pattern page).

17. Under Data Object, click Delegating or Local copy according to the
option selected for the data object implementation’s Data Access Pattern
(Data Object Implementation wizard, Behavior page).

18. If you select Delegating, then you need to indicate whether or not the
data object uses the Cache Service. Select the Cache Service check box if
the data objects have their Type of Persistence set to Cache Service
(Data Object Implementation wizard, Behavior page). Otherwise, click
No.

19. Click Finish. The new container is added to the Container Definition
folder.

“Container” on page 578
Transaction Service (Advanced Programming Guide)
Session Service (Advanced Programming Guide)
Cache Service (Advanced Programming Guide)
Workload management (Using Object Builder) (Advanced Programming Guide)

“Packaging applications” on page 574
“Working with container instances” on page 883
“Configuring a managed object” on page 588’

580 WebSphere: Application Development Tools Guide



“Internationalization of data” on page 132
“Naming objects” on page 128
Container configuration parameters (Programming Guide)
Typical settings for container configuration parameters (Programming Guide)
Summary of supported container configurations (Programming Guide)

Home

A home is the birthplace of managed objects. It serves as both a factory and a
collection for managed objects. It is like a factory designed to manufacture
only objects of a specific type.

Component Broker provides some default instances of homes, and most
managed objects will use home instances based on these default ones.
However, you can create a specialized home in Object Builder if your
managed objects require home instances with additional or specific behaviors.

When you add a managed object to an application, you select the type of
home that will be used to create it on the Add Managed Object wizard, Home
page. When you generate the DDL files for the application, the generated
DDL defines the home instance that will be responsible for finding and
creating instances of the managed object.

Managed object (Programming Guide)
“DDL” on page 137
Creating specialized homes (Programming Guide)

“Creating a specialized home” on page 876
“Configuring a managed object” on page 588

Polymorphic homes

A polymorphic home is one that supports polymorphic behavior within a set
of classes that inherit from one another. It can have objects of different types
and subtypes configured into it.

A polymorphic component has IPolymorphicHome as the parent of its
business object interface; ISpecializedPolymorphicHome as the parent of its
business object implementation; and
ISpecializedPolymorphicHomeManagedObject as the parent of its managed
object.

Chapter 12. Configuration 581



Polymorphic homes provide functional support that is referred to as run-time
inheritance support because the run time provides interfaces and behavior
that takes inheritance relationships into account. This support which includes
query support and relationship (association) support.

Query support
You can execute a query over a home, and return types as well as subtypes of
the objects that are supported by that home, for all types that are configured
into a polymorphic home.

Relationship support
This support will also include polymorphic support for 1-1 and 1-n
relationships. Support for 1-n support is provided by query support. Support
for 1-1 support is provided by a new polymorphic find interface.

Component Broker currently supports polymorphic homes only with the
single table inheritance pattern.

A managed object is considered appropriate for configuration into a
polymorphic home when two conditions, both related to the data object
implementation are met.
v A discriminator predicate is defined on the data object implementation
v The data object implementation is persisted according to the single table (or

datastore) pattern. This can occur in one of the following ways:
v The data object implementation is at the top of the hierarchy (it

inherits from the framework), and persists to its own persistent objects
(one or more).

v The data object implementation inherits from another data object
implementation, and persists only to the persistent objects (one or
more) of the data object implementation at the top of the hierarchy.

So, for polymorphism, an entire hierarchy of data object implementations is
mapped to a single table.

Note the following points:

v When you create a business object that implements a specialized,
polymorphic home, Object Builder selects IManagedAdvancedServer
IManagedAdvancedServer::ISpecializedPolymorphicHome as the default
class to inherit from. This is because a polymorphic home requires a fully
backed business object interface (complete with business object
implementation inheritance); business object interface inheritance from the
polymorphic home is not sufficient.

v Only if data object implementations are part of the single table mapping
can they be configured into polymorphic homes.

582 WebSphere: Application Development Tools Guide



Restrictions:

v Abstract classes must have queryable homes
v The same primary key class must be used for all types and subtypes
v All data for the types can be stored only in the same database type
v All polymorphic homes must exist in the same server
v Multiple parent inheritance is not supported by Query for polymorphic

homes in this version of Object Builder
v Component Broker does not support polymorphism over configured

managed objects using either the inheritance with attributes duplication
pattern, or the inheritance with key duplication pattern. Object Builder
enforces these restrictions.

v Object Builder does not support container configuration of atomic
transactions for query (start a new transaction)

v Object Builder does not support typed tables (this support is specific to DB2
Version 6)

v If a business object interface is deployable to either
OS/390 or HP-UX, you cannot have a polymorphic home class as the
parent for either the business object interface, or the implementation. That
is, you cannot select the IPolymorphicHome class as a parent class for the
business object interface, and you cannot select IPolymorphicHome class as
a parent for the business object implementation. The same is true for a
managed object that is deployable to OS/390 or HP-UX: it cannot inherit
from the ISpecializedPolymorphicHomeManagedObject class.

“Home” on page 581
“Container” on page 578
Polymorphic behavior for extended business objects (Programming Guide)
Managed object (Programming Guide)
Data object (Programming Guide)

“Adding a business object interface” on page 777
“Adding a business object implementation and data object interface” on
page 780
“Adding a managed object” on page 871
“Adding a data object implementation” on page 807
“Configuring a managed object” on page 588
“Creating a specialized polymorphic home” on page 880
“Packaging applications” on page 574
“Tutorial: Inheritance with views” on page 362

Chapter 12. Configuration 583



IPolymorphicHome interface (Programming Reference)
ISpecializedPolymorphicHome Interface (Programming Reference)
ISpecializedPolymorphicHomeManagedObject Interface (Programming
Reference)
Keywords for query support

Managed object configuration behavior

Managed object configurations include the definition of a home instance to be
used when creating or locating instances of the component.

You can set the following options for a managed object configuration’s home
instance:
v “Home Name”
v “Home Options” on page 587

Managed object (Programming Guide)
“Home” on page 581

“Working with managed objects” on page 869

Home Name

When you create or edit a managed object configuration, you can specify the
home instance that will be used to create instances of the component.

On the Home page of the Managed Object Configuration wizard, you can
select whether you are using a default home (provided by Component Broker)
or a specialized home (provided by you or another Component Broker user).
The home must be the same as the home to query that you specified.

The Home Name field lists two different types of homes depending on your
selection on the Home page.

Default homes
If you select the Default Home button, the Home Name field lists names of
appropriate, predefined home instances, which can create a default home
(either any instance of a home class that is provided by Component Broker, or
the predefined home instances, which can be used to create such homes).

Home instances that can appear in the list:

584 WebSphere: Application Development Tools Guide



v BOIMHomeOfRegHomes
This entry is only available when you select Default Home. If you want
your home instance to be registered with the Life Cycle and Naming
services, select this entry, or select a specialized home with equivalent
behavior. The managed object’s home instance will be created by this home
instance.

v BOIMHomeOfNotRegHomes
This entry is only available when you select Default Home. If your home
instance does not require the Life Cycle or Naming services, select this
entry, or select a specialized home with equivalent behavior. The managed
object’s home instance will be created by this home instance.

v BOIMHomeOfRegQIHomes
This entry is only available if the managed object is queryable (as set on the
associated business object interface).

v BOIMHomeOfRegWLMHomes
This entry is automatically selected if you selected a workload-managing
container on the Container page, and the managed object is not queryable
(as set on the associated business object interface).
You can still select a workload-managed (WLM) home even if your
component is not workload-managed.

When the contraint platform is OS/390 (Platform > Constrain >
390), this option is not available for selection. These default WLM homes do
not exist on OS/390.

v BOIMHomeOfRegWLMQIHomes
This entry is automatically selected if you selected a workload-managing
container on the Container page, and the managed object is queryable (as
set on the associated business object interface). If your component is not
workload managed, you can still select a workload managed home,
although this will not make the component workload managed: the choice
of container is what makes a component workload managed.

Specialized homes
If you select the Specialized Home button, the Home Name field lists class
names.
v Specialized home classes (business object interface names)

These entries are only available when you select Specialized Home. It lists
the specialized homes you have defined in Object Builder. You must
configure the selected specialized home with the current managed object:
specialized homes, and the managed objects that use them, cannot be in
separate applications. The managed object’s home will be an instance of the
selected specialized home class.

Polymorphic homes
The Home Name list also contains two new default (or system) homes as

Chapter 12. Configuration 585



appropriate on the Windows NT, AIX and Solaris platforms only for
configured managed objects that are candidates for polymorphism. These
homes are available (and can also be viewed in the Framework Interfaces
folder in the Tasks and Objects pane, along with their methods) only when
the Platform > View menu does not include either OS/390 or HP-UX.

A managed object is a candidate for polymorphism only when its data object
implementation follows the single table pattern of inheritance. That is, it
satisfies both these conditions:
v Its data object implementation has no parents (it is at the top of the

inheritance hierarchy, and inherits directly from the framework), and it is
persisted to one or more of its own persistent objects

v Its data object implementation inherits from a parent, and is persisted to
one or more of its parent’s persistent objects only.
A data object implementation, which inherits from another implementation,
and also persists to its own persistent object, violates the single table
pattern of inheritance.

v Its business object inherits from IPolymorphicHome.

The following homes can also appear in the Home name list:
v BOIMHomeOfPolymorphicHomes

This entry is available for selection for any managed object whose business
object is queryable, and whose container is not workload-managed.

v BOIMHomeOfPolymorphicWLMHomes
This entry is available for selection for any managed object whose business
object is queryable, and whose container is workload-managed.

Note:If the business object is queryable, the list will also contain any
specialized, polymorphic homes from the Object Builder models. Specialized,
polymorphic homes are not available for selection unless the same conditions
are met.

Message queuing-specific homes

v IMessageHomeMO_OutboundMessageQueueMO
This entry is available only when you select Default Home. It is the
OutboundMessages home, designed for use with message queues. It
provides a put method, instead of the usual createFromXxx method, for the
creation of the message objects.

v IMessageHomeMO_InboundMessageQueueMO
This entry is available only when you select Default Home. It is the
InboundMessages home, designed for use with message queues. It
provides a get method, instead of the usual findByXxx method, for the
retrieval of the message objects.

586 WebSphere: Application Development Tools Guide



Note: Make sure that the home uses a different container instance than the
managed object. If necessary, create a separate container instance for the
managed object. If a managed object and its home are configured with the
same container, the server will not activate.

“Home” on page 581
Workload management (Advanced Programming Guide)
Query Service for Windows NT and AIX (Advanced Programming Guide)
Query Service for OS/390 and Solaris (Advanced Programming Guide)

“Configuring a managed object” on page 588
“Creating a specialized home” on page 876

Home Options

When you create or edit a managed object configuration, you can provide
information about the home instance that will be used to create instances of
the component.

Home options can be set on the Home page of the Managed Object
Configuration wizard. The home options you select define how the home
instance will be registered with services, and the state of the home. Home
instances have the following options:
v Name in Factory Finding Service Registry

Define the name used to register the managed object’s home with the life
cycle factory finding service.
Note: This must be the same as the name of the factory name, if you
provided one, on the Attributes Mapping page of the data object
implementation.

v Name in Naming Service Registry
Define the name used to register the managed object’s home with the
naming service.

v Name Contexts
If this managed object is a specialized home, then this field determines
where instances of the specialized home will be registered in the system. In
most cases, you should accept the default for this field.
If this managed object is not a specialized home, then this field is ignored.

v Locatable by Cell
Makes the home visible in the cell name tree, which allows the life cycle
service to locate the home or factory by its cell.

Chapter 12. Configuration 587



v Locatable by Workgroup
Makes the home visible in the workgroup name tree, which allows the life
cycle service to locate the home or factory by its workgroup.

v State of Home
Defines the state you expect the home to be in when the managed object is
installed. You can select from exists (the home is defined but has not been
used) or created(the home has been used at least once). Select exists if the
home is new or has never been used. Select created if the home is part of
an existing, installed application.

“Home” on page 581

“Configuring a managed object”
“Creating a specialized home” on page 876

Configuring a managed object

Once you have defined a server application, you can add and configure the
managed objects you want your application to consist of.

To add a managed object to an application, follow these steps:
1. From the Application Configuration folder, select your application.
2. From the application’s pop-up menu, select Add Managed Object. The

Configure Managed Object wizard opens to the Selection page.
3. Select the managed object from the drop-down list.

If the managed object has been added to a DLL, and is associated with a
key and a copy helper, then the primary key, copy helper, and DLL fields
are filled in for you. You can type over these automatic selections, or
make alternative selections from the drop-down lists.

4. You can also select a configured managed object parent interface for the
managed object that you selected from the Parent field.
Note: If the managed object has no parents (yet, or, at all), this field is
empty, and disabled. If the managed object has a single parent, this field
displays the parent, and is disabled. If the managed object has two or
more parents, they are listed in ascending lexical order, and the first one
is selected by default. You can change the selection.

5. If you are configuring the application for
polymorphism, and if the Parent Interface for Polymorphism field is
enabled, select a parent interface to act as the parent for polymorphic
queries and findBy’s.

588 WebSphere: Application Development Tools Guide



Note: This box lists all parent managed objects that are configured within
application families. It is enabled only if there is more than one parent
configured managed object.

6. Click Next. The Data Object Implementations page opens.
7. From the Implementations pop-up menu, select Add.
8. Select the data object implementations that will be available to the

application, and associated DLLs. Note that this is a packaging statement,
and not a configuration statement.
You can only select data object implementations whose type of
persistence matches the service provided by the managed object
(transaction service for DB persistence, session service for PA persistence).
If you select a data object implementation that is associated with a PA
bean, and if you have not included all the JAR files that are associated
with the bean, and that have to be present when the application server
runs, you must first add them on the Additional Executables page of the
Add Application wizard. (Select the application in the Tasks and Objects
pane, and from its pop-up menu, select Properties.) You must add them
separately for each platform on which you have the server running.

9. Click Next. The Container page opens.
10. Specify whether you want to use a workload managing container. If you

select this option, then only workload-managing containers are available
in the Container list.

11. Select the container to use with this managed object. The container
determines the quality of service (that is, how objects are instantiated,
terminated, and so on). If you select a workload managing container, then
the component will be workload managed.
Note the following points:

v Make sure that the managed object is configured with a different
container than that used by its home. If necessary, create a separate
container instance for the managed object. If a managed object and its
home are configured with the same container, the server will not
activate.

v If a container is designated ’not valid’, you can click the ’?’ button to
see why it is not valid.

v Valid containers must be deployable to at least all of the family’s
deployment platforms. Also, the DLLs containing the business object
or managed object, key, copy helper, data object implementation and
specialized home must also be tagged for at least the same platforms
as the family.

v that are selected for the business object, and the managed object DLLs.
v If there is an enterprise bean that is associated with this managed

object, and if it is a CMP entity bean (that is, it is not a session bean,
and the associated data object implementation is neither

Chapter 12. Configuration 589



IXOInterface.DO_IMPL_DETAILS_NoDetails nor
IXOInterface.DO_IMPL_DETAILS_Transient), then only containers that
have the Container-managed entity beans only check box selected on
the Service page of the Container Definition wizard are valid.
Non-CMP beans and configured managed objects are not allowed to
use containers that are meant for CMP beans.

v If you are developing an application intended for deployment
on OS/390 (the Platform > Constrain > 390 menu choice is selected),
then all containers are listed, and you need to make an appropriate
choice based on the kind of managed object you are configuring, and
the services it requires. The rest of the container definition is handled
through the System Management user interface.

v OS/390 does not support the default containers. The default
containers are only set for Windows NT, AIX, Solaris, and HP-UX. If
you are creating an application for 390 (you have the constraints set for
390), when you are building the application object, the Container page
will not show any of the default containers: you must create your own
container, and this container must have the 390 constraint set.

If no containers are listed, or you want to create a new one, follow these
steps:
a. Select the Create a new container for this configurationcheck box.

Object Builder creates a default container into which you can
configure the managed object. An extra page (the New Container
page) will be added to the end of the wizard.

b. On the New Container page, name the container, and set any
additional behaviors that are not defined by default.
By default, the container will have behaviors that are appropriate for
the managed object and selected data object implementations, with
the exception that all deployment platforms will be set as constraints
for this new container, even if only a subset of platforms is all that is
required based on the platform constraints for the associated managed
object and data object implementations.
If there is a CMP entity bean that is associated with this managed
object, you can indicate whether this new container can be used for
the configuration by selecting the Container-managed entity beans
only check box.
Note the following points:

v This check box can be selected only if you had selected either Use
RDB Transaction Service, Use PAA Transaction Service, Use PAA
Session Service, or Use MQAA Transaction Serviceon the Service
page.

590 WebSphere: Application Development Tools Guide



v Containers that are available for use in configuring managed objects
that are associated with CMP entity beans are not restricted to only
those that have this check box selected.

v Containers that have this check box selected (are marked for use by
only CMP entity beans) cannot be used to configure managed
objects that are associated with either BMP entity beans, or session
beans.

You can use one of these methods to change the platform constraints for
the new container, based on the objects in the model:
v From the Platform menu, select Constrain > Apply Constraints to

Model. All files, DLLs, and containers will be updated with the
constraint platforms that are selected on this menu.

v From the pop-up menu of the container, select Properties, and clear the
deployment platforms that are not required.

12. Click Next. The Home page appears.
13. Define the home to use with this managed object. The home can either be

an instance of a default (system) home provided with Component Broker,
or an instance of a specialized home which you created. If you specify a
specialized home, you must also specify which DLL contains it.
The home that you specify here (either a system home, or a specialized
home) determines whether the home of the configured managed object in
Systems Management will be polymorphic. If it is a specialized home, it
inherits from the IManagedAdvancedClient::IPolymorphicHome interface.
Only those homes that are appropriate for the current managed object are
shown. For example, if the managed object is workload-managed
(because you previously selected a workload-managing container on the
Container page), then you must select a workload-managed home, and so
only workload-managed homes are shown.

14. Select any other configuration options for the home
15. Click Finish. You have configured the managed object by choosing a

copy helper and a key for it to work with, data object implementations
for it to use, a container, a home, and the DLLs that contain it and the
other objects. The managed object now appears in the Application
Configuration folder, underneath the application you configured it for.

Once you have finished adding managed objects to your server applications,
and have completed the configuration of the applications in your application
family, you can generate the installation image for your application family.

Exception:You can use a data object to connect to a business object
implementation even if the set of its deployment platforms is a superset of the
platforms that you selected for the business object implementation.

Chapter 12. Configuration 591



“Home” on page 581
“Container” on page 578
Managed object (Programming Guide)
Data object (Programming Guide)
Naming Service (Advanced Programming Guide)
LifeCycle Service (Advanced Programming Guide)
Workload management (Advanced Programming Guide)

“Packaging applications” on page 574
“Working with managed objects” on page 869
“Creating a container instance” on page 578
“Creating a specialized home” on page 876
“Adding an application” on page 576
“Generating the DDL files” on page 593

Parent Interface for Polymorphism

Polymorphism is supported only on the
Windows NT, AIX and Solaris run times. This field is disabled for managed
objects being deployed to either OS/390 or HP-UX.

This box lists all parent managed objects that are configured within
application families. It is enabled only if there is more than one parent
configured managed object. All these configured managed objects are listed in
the form: application_name managed_ object_ name. The list is ordered based on
these names.

You can select only one of two or more parent interfaces to act as the parent
for polymorphic queries and findBy’s.

Note the following points:

v If one or more parent managed objects are not yet configured, they will not
appear in this list. So, it is important that managed objects are configured
top-down with respect to inheritance. That is, you must configure all parent
managed objects into a family before configuring the managed object that
inherits from them.

v If there are no parents, this control is disabled, and empty.
v If the managed object interface inherits from exactly one parent, this control

is disabled, but will display that parent configured managed object. This
parent will be used for polymorphic query and findBy.

v If there are two or more parents, this control is enabled.

592 WebSphere: Application Development Tools Guide



v For new configured managed objects, or for those that are not listed due to
their deletion from the application family, the first entry in the list will be
selected by default.

v The business object interfaces that are associated with these configured
managed objects are the immediate parents of the business object interface
that is associated with the managed object that is selected in the Managed
Object field.

Managed object (Programming Guide)
Key (Programming Guide)
Copy helper (Programming Guide)

“Configuring a managed object” on page 588
“Creating a specialized polymorphic home” on page 880

Generating the DDL files

Once you have created an application family, added applications to the family
and configured your managed objects, you can generate the DDL file that
defines your data object to the server.

To generate the DDL files, follow these steps:
1. From the Application Configuration folder, select your application family.
2. From the family’s pop-up menu, select Generate.

If you have multiple application families, you can generate the DDL files
for all of them at once. Select Generate > All from the pop-up menu of the
Application Configuration folder to generate images for all the families in
the folder. You will still need to build the image for each application
family individually.
Files are generated to each of the current project’s configuration
directories:
v project\Working\platform\NOOPT\AppFamilyName\*.ddl

Used to load the unoptimized versions of the application family DLLs
and JAR files.

v project\Working\platform\PRODUCTION\AppFamilyName\*.ddl
Used to load the production (optimized) versions of the application
family DLLs and JAR files.

v project\Working\platform\TRACE\AppFamilyName\*.ddl
Used to load the trace-enabled versions of the application family DLLs
and JAR files.

Chapter 12. Configuration 593



v project\Working\platform\TRACE_DEBUG\AppFamilyName\*.ddl
Used to load the trace- and debug-enabled versions of the application
family DLLs and JAR files.

Each directory contains
the DDL file for the application family (AppFamily.ddl). You will need to
load this file into System Management when you deploy your
applications.

Note: Your DDL file is generated along with a backup version
(AppFamily.auto.ddl) . The DDL emitter thus generates the following files:
Working\platform\output_directory\ AppFamilyName \ AppFamily .ddl
Working\platform\output_ directory\ AppFamilyName \backup\ AppFamily
.auto.ddl
platform is one or more of NT, AIX, Solaris, 390, or HPUX (the platforms
on which you are deploying your application).
output_directory is each of NOOPT, PRODUCTION, TRACE,
TRACE_DEBUG (that is, for a given platform, you get four sets of DDL
files generated).

If you have developed your code for OS/390 , the generated DDL
for the application family includes the statement:
targetplatform=“390”

This statement prevents the application family from being accidentally
installed on an incompatible System Management platform.

You can now load the DDL into System Manager, and configure your
application on the server.

Once the application is installed and configured with system management,
you can run it to make the components available to client applications.

Note: Before you run a Java client application, you need to add the following
JAR files to the beginning of your classpath:
v somojor.zip

Contains classes to support the client-side Java ORB. If this is not at the
beginning of the classpath, the wrong classes will be found, and your
application will not run.

v The JAR files that contain your Java client bindings (located in the JCB
subdirectory, with the naming convention jcbMyObjectC.jar). These contain
classes to support a client application accessing the equivalent Java
component on the server.

594 WebSphere: Application Development Tools Guide



“DDL” on page 137

“Creating an application family” on page 575
“Adding an application” on page 576
“Configuring a managed object” on page 588
Installing and configuring a new application (System Administation Guide)

Documenting applications

You can document applications on a per-project or object basis by applying
XSL style sheets to exported XML files. An XSL style sheet can filter and
format the XML file into a browsable HTML document.

To get you started, there is an XSL style sheet sample. It does not cover all
aspects of an application, nor is it targetted at a client programmer. You can
extend or replace the sample with your own style sheet.

“XML browsing with XSL” on page 538
“The XSL sample” on page 541

“Packaging applications” on page 574
“Browsing XML files” on page 539

Container behavior

The following properties can be set for a container developed in Object
Builder:
v “Deployment platforms” on page 423
v “Container service” on page 596
v “Container policies” on page 597
v “Behavior for Methods Called Outside a Transaction” on page 599
v “Behavior for Methods Called Outside a Session” on page 600
v “Connection” on page 601

“Container” on page 578

“Creating a container instance” on page 578

Chapter 12. Configuration 595



Container service

When you create a container, you can define the type of service it provides to
its components. The service is defined in the Container Definition wizard, on
the Service page. You have the following choices:
v Use no Object Services (page 596)
v Use Home Service (page 596)
v Use RDB Transaction Service (page 596)
v Use PAA Transaction Service (page 596)
v Use PAA Session Service (page 596)
v Use MQAA Transaction Service (page 596)

Use no Object Services
Select this option if the container’s components will have transient data only.
Components with transient data can also use the RDB or PAA Transaction
Service.

Use Home Service
Select this option if the container will hold specialized homes.

Use RDB Transaction Service
Select this option if the container’s components have database persistence, and
require the Transaction Services. If you do not select this option, then either
the objects do not connect to a database, or the transaction support (commit
and rollback) is provided in some other manner, for example by a client
process, or by embedded SQL calls in the data object. You can also select this
option to provide transaction support for components with transient data.

Use PAA Transaction Service
Select this option if the container’s components have persistence provided by
a procedural adaptor, using the transaction services to provide secure
persistence. You can also select this option to provide transaction support for
components with transient data.

Use PAA Session Service
Select this option if the container’s components have persistence provided by
a procedural adaptor, using session service to provide secure persistence.

Use MQAA Transaction Service
Select this option if the container’s components have persistence provided by
a MQSeries application adaptor, using transaction service to provide secure
persistence.

596 WebSphere: Application Development Tools Guide



“Container” on page 578
Workload management (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Session Service (Advanced Programming Guide)

“Creating a container instance” on page 578
“Editing a container instance” on page 883

Container policies

When you create a container, you can define the termination and memory
management policies it will implement for its components. The policies
available depend on the type of container service defined. Both the service
and the policies are set in the Container Definition wizard, on the Service
page.

You have the following choices:
v Save all data when server is about to stop (page 597)
v Passivate a component after its data is saved (page 597)
v Enable persistent references (page 598)

Save all data when the server is about to stop
This option is required if you selected Use Home Service, is optional if you
selected Use no Object Services, and is not available in any other case.

If you check this option, the container stores all its in-memory objects when
the server is about to stop. The container stores objects by calling their
checkpointToDatastore framework method.

If you do not check this option, the container does not store object data when
the server is about to stop. The data of in-memory objects may be lost when
the server stops.

Passivate a component after its data is saved
Select whether the container should passivate components not in use, or keep
components in memory at all times.

If you check this option, objects are passivated when they are not in use.
Passivation occurs as follows:
v If the container uses the Transaction Services (as specified above), an object

is passivated when a transaction that involves the object is committed or
rolled back.

Chapter 12. Configuration 597



v If the container does not use the Transaction Services (as specified above),
an object is passivated when its framework method checkpointToDatastore
is called (by the client, or by the container if the server stopped and the
Checkpoint the data option is selected above).

If you do not check this option, objects remain in memory once they are
activated. There may be performance benefits for this option: objects can be
accessed more quickly, but take up memory even if they are accessed rarely. If
the container components have transient data (that is, they have data objects
with no datastore), then it may be necessary to select this option to avoid
losing the objects’ data.

Enable persistent references
This option is only available if you select Use no Object Services. By default,
object references are not made persistent when there are no object services
enabled (the data is assumed to be transient), and instances held by the
container are dropped when the server stops. Check this option if your
components have persistent data, that you are accessing without the Object
Services.

If you check this option, then an attempt to find a component in the container
will first try looking in current memory, and if that fails, then try calling the
retrieve method of the component’s data object implementation. If the retrieve
method does not throw an exception, the retrieve is assumed to be successful,
and the container returns an object reference.

To force the retrieve method to fail for a particular data object (when, for
example, there is no datastore to access), you can modify the code of the
retrieve method to return exception IBOIMException::IDataKeyNotFound.

If you do not check this option, then an attempt to find a component in the
container will succeed only if the component is currently in memory. The
component will be in memory if it has been created and added to the
container since the server was last started. Check this option if your
components have only transient data.

“Container” on page 578
Workload management (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Session Service (Advanced Programming Guide)

“Creating a container instance” on page 578
“Editing a container instance” on page 883

598 WebSphere: Application Development Tools Guide



Behavior for Methods Called Outside a Transaction

When you create a container that uses Transaction Service (by selecting either
Use RDB Transaction Service (page 596), or Use PAA Transaction Service
(page 596), or Use MQAA Transaction Service (page 596) on the Service page
of the Container Definition wizard), you can set the way the container will
handle methods called outside a transaction.

You have the following options:
v Start a new transaction and complete the call
v Throw an exception and abandon the call
v Ignore the condition and complete the call

Start a new transaction and complete the call
Click this option if components require the Transaction Services at all times. If
a method is called outside of the scope of an existing transaction, the
Transaction Services start a new transaction for that method, and commit the
transaction when the method completes.

Throw an exception and abandon the call
Click this option if components require the Transaction Services at all times,
but you do not want transactions to be started automatically. If a method is
called outside of the scope of an existing transaction, the object throws the
exception CORBA::TRANSACTION_REQUIRED. If you select this option,
transactions must be explicitly started and committed (for example, by the
client that calls the method).

Ignore the condition and complete the call
Click this option if some but not all components require the Transaction
Services. If a method is called outside of the scope of an existing transaction,
the method will complete without transaction support. While the Transaction
Services will support components in this container, transactions must be
explicitly started and committed when they are needed.

Restriction: When the development platform is OS/390, the Use
PAA Session Service option is not available on the Service page of the
Container wizard.

The Use MQAA Transaction Service option is
available only on the Windows NT, Solaris and HP-UX deployment platforms.

Application adaptor (Programming Guide)
“Container” on page 578

Chapter 12. Configuration 599



“DDL” on page 137
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Connections to a tier-3 system (System Management)

“Creating a component for PA data” on page 157
“Working with container instances” on page 883

Behavior for Methods Called Outside a Session

If you select Use PAA Session Service on the Service page of the Container
Definition wizard, you can set the way the container will handle methods
called outside a session. The options are available on the Service Details page
of the Container Definition wizard.

You have the following options:
v Throw an exception and abandon the call
v Ignore the condition and complete the call

Throw an exception and abandon the call
When a method is called outside of the scope of an existing session, and you
select this option, the object throws the exception CORBA::BAD_OPERATION
with a minor code of 0x49420330, which indicates that a session is required.
This is the sessional equivalent of CORBA::TRANSACTION_REQUIRED.

Ignore the condition and complete the call
Select this option if some but not all components require Session Service. If a
method is called outside of the scope of an existing session, the method will
complete without session support. While Session Service will support
components in this container, sessions must be explicitly started and
committed when they are needed.

Application adaptor (Programming Guide)
“Container” on page 578
“DDL” on page 137
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Connections to a tier-3 system (System Management)

“Creating a component for PA data” on page 157
“Working with container instances” on page 883

600 WebSphere: Application Development Tools Guide



Connection

When you create a container that uses PAA services (by selecting either Use
PAA Transaction Service (page 596) or Use PAA Session Service (page 596)
on the Service page of the Container Definition wizard), you need to specify
the details of the connection. You specify the connection details on the Service
Details page of the Container wizard.

You have the following options:
v Connection Name
v Connector type used by session (HOD, ECI, SAP, Generic)

Connection Name
Type a name for the connection (the machine name) to be used by the session,
or the PAA transaction.

Connector type used by session
You can select options from this section only if you selected Use PAA Session
Service (page 596) on the previous page (the Services page) of this wizard.

Use this section to specify the connector type to be used by the session. You
have one of the following options:
v HOD
v ECI
v SAP
v Generic

HOD
Select this option if you want to use or reuse TN3270 communications
provided by Host On Demand (HOD) to a tier-3 CICS region or IMS system.

ECI Connection
Select this option if you want to use the External CICS Interface (ECI)
communications provided by a CICS Common Client to connect to a tier-3
CICS region or IMS system.

SAP Connection
Select this option if you want to connect to a 3-tier SAP system or group of
SAP systems.

Generic Connection
A generic connection is used to configure and manage a generic physical
connection to a tier-3 system other than that defined by a HOD connection, an
ECI connection, a SAP connection, or a RDB connection.

Chapter 12. Configuration 601



Application adaptor (Programming Guide)
“Container” on page 578
“DDL” on page 137
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)
Connections to a tier-3 system (System Management)

“Creating a component for PA data” on page 157
“Working with container instances” on page 883

Application DDL files

The installation package for an application family contains a DDL file that
describes the contents of the application family. It describes the applications in
the family and the objects, attributes, and relationships that make up each
application. For example, the DDL file for an application family has the
following definitions:
v The applications to run on servers, and their relationships to objects that

they provide
v The applications to run on clients, and their relationships to objects that

they provide
v The classes, DLLs, homes, containers, and other objects provided by the

applications, and appropriate relationships between such objects
v Appropriate attributes of the applications, and other objects in the

application family

The application family installation program uses the information in the DDL
file to create Install objects that the System Manager can use to define and
configure the applications.

When you use Object Builder to create an application family, it generates a
DDL file for the application family along with a backup version.

Object Builder generates the
DDL file on each deployed platform. (Object Builder is capable of generating
the file on all platforms - Windows NT, AIX, OS/390, Solaris, and HP-UX).
You will need to load this file into System Management when you deploy
your applications.

For example, if the name of your application family is MyAppFam, and you
have specified the name of the DDL file as AppFam, the DDL emitter will

602 WebSphere: Application Development Tools Guide



generate the following files:
Working\platform\output_directory\MyAppFam\AppFam.ddl
Working\platform\output_ directory\MyAppFam\backup\AppFam.auto.ddl
platform is one or more of NT, AIX, Solaris, 390, or HPUX (the platforms on
which you are deploying your application).
output_directory is each of NOOPT, PRODUCTION, TRACE, TRACE_DEBUG
(that is, for a given platform, you get four sets of DDL files generated).

Use the DDL files in a particular directory to load the equivalent version of
the application libraries. For example, Working\NT\TRACE\AppFamily\*.ddl
can be used to deploy the trace-enabled version of the application family.

If you have developed your code for OS/390 , the generated DDL for
the application family includes the statement:
targetPlatform=“390”;

This statement prevents the application family from being accidentally
installed on an incompatible System Management platform.

You do not normally change DDL files after the application family has been
installed into Component Broker. When you load an application family into
Component Broker, each application in the DDL file is represented as an
available application through the System Manager user interface. If you need
to customize the application within Component Broker, you normally do so
by changing model objects for the application through the System Manager
user interface.

“Application DDL files” on page 602
“Creating DDL files”

Creating an application family
“Packaging applications” on page 574
“Generating the DDL files” on page 593

Creating DDL files

When you use Object Builder to create an application family, it generates a
DDL file for the application family. This generated DDL file is found in a
subdirectory of your working directory that has the same name as the
application family. That is, in
Working\platform\output_directory\app_family_name. A backup DDL file is also
created in the backup directory within this directory.

Chapter 12. Configuration 603



Note: platform is one or more of NT, AIX, Solaris, 390, or HPUX (the platforms
on which you are deploying your application).
output_directory is each of NOOPT, PRODUCTION, TRACE, TRACE_DEBUG
(that is, for a given platform, you get four sets of DDL files generated).

When you use Object Builder to add objects to the application family package,
it adds entries for those objects into the DDL file with appropriate attributes
and relationships.

Before you generate the the DDL for an application family, you can add
additional files to an application, or change your configured managed objects.
Such objects are sometimes needed to configure special application functions;
for example, when packaging an application family for a controlled server
group, you can add policy groups, bind policies and their associated C++
classes.

You do not normally change DDL files after the application family has been
installed into Component Broker. When you load an application family into
Component Broker, each application in the DDL file is represented as an
available application through the System Manager user interface. If you need
to customize the application within Component Broker, you normally do so
by changing model objects for the application through the System Manager
user interface.

“Application DDL files” on page 602

“Generating the DDL files” on page 593

The structure of a DDL file

This topic describes the general internal structure of an application DDL file.
It is intended as a review aid in case you need to look within a DDL file after
it has been generated by Object Builder (using a text editor, in either review
or debug mode).

Recommendation: You must not directly edit DDL files after the application
family has been installed into Component Broker. When you load an
application family into Component Broker, each application in the DDL file is
represented as an available application through the System Manager user
interface. If you need to customize the application within Component Broker,
you can change model objects for the application through the System Manager
user interface.

The following description of the DDL file structure is based on an extract of
the Insurance.ddl file provided with Component Broker. The application

604 WebSphere: Application Development Tools Guide



family defined within the DDL file is referred to as ’your application family’.
Other application families provided by Component Broker are referred to by
name. Some lines have been missed out, and replaced with ellipsis (...), where
they do not add any significant value to the description.

Declaration of objects supplied by Component Broker that are used by your
application family
At the top of the DDL file is a set of lines that declare the objects supplied by
Component Broker that are used by your application family. Most, if not all,
of these objects are defined in the iDefaultApplications application family
provided by Component Broker. You should not change the definitions for
these objects.
//********************************************************************
// Top of DDL file
//********************************************************************
//Pre-Declare objects used by the Application which are Supplied by CB
//********************************************************************
ApplicationFamily.iDefaultApplications;
ApplicationFamily.iDefaultApplications/Dll.somibl1i; ...
ApplicationFamily.iDefaultApplications/
ManagedObjectClass.IBOIMManagedObject_IViewCollectionImpl;

Declaring objects
Objects within a DDL file are identified by their class and object name, in the
following format:
object_class.object name;

If an object exists in a different DDL file, the name is prefixed with the name
of the other application family where the object is defined; for example,
ApplicationFamily.iDefaultApplications/Dll.somibl1i. Note that the DDL file name
is joined to the object name by a forward slash character (/) and each
declaration line ends in a semi-colon (;). Several declarations, separated by
commas, can be grouped on the same line.

Object names
If the name of an object is to contain embedded blanks or any of the
following characters, the name must be enclosed in double quotation marks:

{ } , ; . /

(Open brace, close brace, comma, semi-colon, period, and forward
slash.).Otherwise, the use of double quotation marks is optional.

The OS/390 intepreter does not allow blanks, even when in
quotation marks.

Chapter 12. Configuration 605



The System Manager expands the name of a DLL object into a fully qualified
path name when it creates the corresponding DLL Image. The DLL object
name is prefixed with the install path for the application family, and has the
file type (.dll or .a) appended. For example, for the DLL object myappinit and
its application family installed in c:\Cbroker\appfamily\ on Windows NT,
the name of the DLL Image becomes c:\Cbroker\appfamily\myappinit.dll.

Definition of your application family
A DDL file defines one application family only. Everything about that
application family is contained within the definition of that application family,
which is delimited by the ApplicationFamily.family_name statement and its
opening and closing braces { ... }. When you use Object Builder to create an
application family, it creates this definition. Normally, your application family
and all its objects have the same value for the version attribute.
// Describe the application family named “Insurance”.
ApplicationFamily.“Insurance”
{ // Set the attributes of the application family.
description = “”; version = “1.0.0”; ... }
//************************************************************
// Bottom of DDL file
//************************************************************

Object attributes
All object attribute statements have the general form attribute_name = value;

Text string values must be enclosed in doubles quotes. If an attribute has
several values (at the same time), the sequence of values is enclosed within
braces and each value separated by commas; for example,
{value1,value2,value3}

When needed, attribute statements are created automatically by Object
Builder. Other attributes do not need to be defined in a DDL file, and are left
to assume their default values.

Forward declaration of objects that are needed later
At the top of your application family definition is a set of entries that declare
the objects that are defined later within your application family. For each
entry, the object class and name must match its later definition.
Foward declarations of objects which will be needed later.
Xarm.“LifeIns”; MappedType.BCPBO_csClaimBOBO_DO; ...
Container.InsuranceContainer;

Definition of objects within your application family
Within your application family definition there are separate definitions for all
the objects of the family, as declared at the top of your application family
definition.

606 WebSphere: Application Development Tools Guide



All these object definitions are at the same level within your application
family definition, and have the same general format, as shown below:
// Define the Xarm image
for “LifeIns”. Xarm.“LifeIns” { openString = “LifeIns”;
switchLoadFile = “db2slf”; }

An object definition is delimited by its class_name.object_name statement
and its opening and closing braces { ... }.

Definition of applications within your application family
An application within an application family is defined like any other object. A
server application is delimited by its Application.application_name statement
and its opening and closing braces { ... }. A client application is delimited in
the same way by its ClientApplication.application_name statement and
braces.

Within the braces are statements that define appropriate attributes of the
application and the “provides” relationships to objects that the application
provides.
// Define applications.
Application.“LifeInsObjects”
{ // Set the attributes of the application.
description = “”; version = “1.0.0”; runControl = stop;
requiredJavaVMName = “”; ProvidesXarm -> { Xarm.“LifeIns” };
ProvidesManagedObjectClass -> { ManagedObjectClass.“BCPMO_csClaimMO”,
ManagedObjectClass.“BCPMO_csPayoutFractionMO”, ...
ManagedObjectClass.“A_C_ModuleMO_csAgentMO” }; ... }
// End definition of application LifeInsObjects.

Application “provides” relationships
For each non-application object within your application family there should be
a “provides” relationship with at least one application. (An object can have
“provides” relationships with more than one application.) These relationships
are created automatically by Object Builder.

The “provides” relationships have the same form:
Providesrelationship_name -> {
object_class.object_name };

The “arrow” (->) indicates a forward relationship to the object that the
application provides. If an application provides several objects of the same
class, the sequence of object identifiers is enclosed within braces and each
identifier separated by a comma.

Other relationships between objects
Some objects need to contain relationships with other objects. A relationship
should exist in only one of the two related objects. (If an object in your

Chapter 12. Configuration 607



application family needs a relationship to an object in the default application
family, it must be defined in the object in your DDL file.) These relationships
are created automatically by Object Builder.

The relationships of an object are normally listed after the objects attributes;
for example:
// Define the MO class 'BCPMO_csClaimMO'.
ManagedObjectClass.“BCPMO_csClaimMO”
{ // Define the attributes. description =
“Description of the class named csClaim.”; ... interfaceName =
“BCP::csClaim”;
// Define the relationships. This defines the DLLs containing
//this class's information. ContainsManagedObjectImplementation
<- dll.b_s; containsmanagedobjectkeyimplementation
<- dll.b_c; containsmanagedobjectcopyhelperimplementation
<- dll.b_c; }

The direction of the relationship, defined by the arrow (<- or ->), must be
appropriate for the object that the relationship is defined in. You can get a
clue about the correct direction from the relationship name: relationship
names that begin with ’Uses’ or ’Provides’ are forward relationships (->);
relationship names that begin with starting ’Contains’ or ’Collects’ are
backward relationships (<-).

For example, the relationships for a home define the managed object class,
data object class, and container used by the home (as forward relationships). It
also defines the home provided by Component Broker that ’collects’ this home
(as a backward relationship) and the home of view objects provided by
Component Broker that this home uses (as forward relationships).
// Define a home for the “LifeInsObjects_BCPMO
csClaimMO_BCPDOImpl_csClaimDOImpl” class. Home.“LifeInsObjects_BCPMO
csClaimMO_BCPDOImpl_csClaimDOImpl”
{
// Define the attributes. ...
// Define therelationships.
UsesManagedObjectClass ->

ManagedObjectClass.BCPMO_csClaimMO;
UsesDataObjectClass ->

DataObjectClass.“LifeInsObjects_BCPDOImpl_csClaimDOImpl”;
UsesContainer ->

Container.InsuranceContainer;
CollectsHome <-

applicationfamily.idefaultapplications/home.iboimhomeofregqihomes;
homeofviews ->

ApplicationFamily.iDefaultApplications/Home.iBOIMViewCollection;
}

“Application DDL files” on page 602
“Creating DDL files” on page 603

608 WebSphere: Application Development Tools Guide



“Generating the DDL files” on page 593

“Internationalization of data” on page 132
“Naming objects” on page 128

Chapter 12. Configuration 609



610 WebSphere: Application Development Tools Guide



Chapter 13. Testing applications with QuickTest

Once you have deployed your application on the server, you can test it with
QuickTest. Object Builder can generate a simple QuickTest client program,
based on the QuickTest Java framework, which you can use to perform
queries and run methods on your components. This enables you to test your
business logic without going through the steps of writing a complete client
application.
1. “Generating QuickTest client applications” on page 614
2. “Running QuickTest client applications” on page 615
3. “Testing cross-project applications with QuickTest” on page 489
4. “Recording QuickScript” on page 617
5. “Compiling the QuickScript file” on page 618
6. “Running QuickScript” on page 618
7. “Running the QuickTest tutorial” on page 647

“Chapter 4. Creating a component” on page 127

“QuickTest”
“QuickScript” on page 616
“Building for QuickTest” on page 564

QuickTest

Component Broker provides a suite of server application development tools
that enables you to quickly generate server application code without knowing
the programming model. QuickTest is a Java framework for creating simple
Java clients that have a standard GUI (graphical user interface). The Java
clients can be generated by Object Builder and used to quickly test your
server applications. QuickTest requires no technical expertise or knowledge of
the Component Broker programming model. You can also use QuickTest to
record your test steps in a QuickScript file. Subsequently, you can invoke
QuickTest to playback the QuickScript for repetitive testing.

QuickTest provides a 100% pure Java application framework. The QuickTest
framework Java source is shipped with Component Broker in the samples
directory. The generated QuickTest Java application allows you to access the

© Copyright IBM Corp. 1999, 2000 611



Component Broker client programming model and exercise the server objects.
You can, for example, create managed objects and invoke the methods that
have been defined for that object.

Here is a summary of some of the features of QuickTest:
v Server code testing

In large corporations, the individuals responsible for the server business
logic implementation may not necessarily develop the client GUI code.
Although the server application can be compiled, client code is required to
test it. With QuickTest, a visual Java client application can be created by
Object Builder to let you test the business logic of the server code.

v Run-time problem diagnosis
QuickTest-generated client code can be saved to help identify run-time
problems of client/server applications. Often, it is not clear if a run-time
problem is the result of the client or the server implementation because of
the complexities of client/server applications. With QuickTest, the generated
client code, which was used at application development time can be reused
to narrow the scope of the run-time problem.

v Education
The QuickTest framework (which includes source code) together with the
generated Java client code demonstrates component reuse and is an
example of implementing the Component Broker programming model.

v Regression testing
QuickTest can record every transaction that is initiated with its client
application. The transactions are saved as QuickScript files which can be
compiled and played back at a later time for regression testing.

v Long-running tests
With QuickScript, tests can be assembled and placed in long-running loops
to stress test the system. Since each QuickScript runs in its own process,
multiple processes of the same QuickScript can be exercised in combination
with other QuickScripts to simulate deployment environments.

v Visual demonstrations
QuickScripts can be run in an active mode to visually display processing as
it occurs. This can be used to demonstrate the functionality of server
applications.

The following features are supported by QuickTest:
v Transaction and session processing
v Use of attributes of the following types: boolean, char, octet, string, short,

unsigned short, long, unsigned long, float and double, enumeration,
sequences, structures, any, and multi-dimensional arrays

v In, out, and inout parameter support for methods and object types
v Enumeration support with names of enumerated values
v Character length restriction support on data entry

612 WebSphere: Application Development Tools Guide



v Key processing to assist with data entry fields that only allow numeric
values

v UUID support
v Method invocations with parameter types as described above
v Processing of return values from methods
v Availability of object return values from methods for copy and paste actions
v Pasting of object parameters to methods
v Copying of selected objects as the parameters of methods
v Copying and pasting of iterator return values from methods to the tester

iterator
v Automatic copying of iterators to transient reference collections so that they

can be used outside the scope of the transaction
v Creation of objects using keys (Add by Key)
v Creation of objects using copy helpers (Add by Copy)
v Updating objects (Options > Key with update from the Test Cases

window)
v Deletion of objects
v Iteration on queryable homes
v Evaluation (evaluate()) on queryable homes using OOSQL predicates
v Finding objects by primary key
v Multithreaded transaction processing
v Specialized homes that inherit from IHome or IQueryableIterableHome
v Savings settings for the home, port, and timeout values
v Saving properties for persistence, scoping, window positions, and whether

the objects reside in queryable homes
v Inheritance of attributes and methods
v Inclusion of Java code snippets in each generated bean during generation

time, in the following forms:
– Import statements
– Declarations
– Method modifications at the beginning and end of the bean definition

class
– New methods

v Invocation of customized scripts in Java by the framework (No knowledge
of CORBA or the Component Broker Programming Model is required.)

v Query evaluators with data arrays
v Security using DCE and SSL
v Reference collection support (either transient or relational database-backed)

Chapter 13. Testing applications with QuickTest 613



v Queries over reference collection (View > Reference Collection from the
Test Cases window)

Note: QuickTest does not support the union type.

“Generating QuickTest client applications”
“Running QuickTest client applications” on page 615
“Recording QuickScript” on page 617
“Compiling the QuickScript file” on page 618
“Running QuickScript” on page 618
“Running the QuickTest tutorial” on page 647

“QuickScript” on page 616

“The QuickTest framework” on page 620
“QuickTest-generated files” on page 647

Generating QuickTest client applications

You can generate a QuickTest client application that you can use to test your
application code. First define the client and server DLLs for your application,
and then build them.

To generate a QuickTest client once you have built your DLLs, follow these
steps:
1. Select the Build Configuration folder in the Tasks and Objects pane.
2. From its pop-up menu, select Generate > All > QuickTest Default

Targets.

This generates the makefile that will be used to build or remove the QuickTest
client, and the batch file that will be used to run the QuickTest client:

Makefile:
Working\<platform>\<DLLname>.QT.mak

Batch file:

Working\<platform>\<config>\qt.bat

Working/<platform>/<config>/qt.ksh

“Running QuickTest client applications” on page 615

614 WebSphere: Application Development Tools Guide



“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611

“The QuickTest framework” on page 620
“QuickTest-generated files” on page 647

Running QuickTest client applications
Once you have defined and built your DLLs, and generated the makefile for
your QuickTest client, you can build and run the QuickTest client application
to test your application code.

To build the QuickTest client, follow these steps:
1. Select the Build Configuration folder
2. From its pop-up menu, select Build > Out-of-Date Targets > QuickTest

The makefile for your QuickTest client is built. You can follow the progress of
the build in the Command window.

To rebuild your entire application including QuickTest in a single step:
1. Click File > Preferences to open the Object Builder Preferences notebook.
2. Expand the Tasks and Objects folder.
3. Click the Makefile Generation node.
4. In the right-hand pane, select the Add QuickTest target to “all” target

option.
5. Click OK to close the notebook and apply your changes.
6. From the pop-up menu of the Build Configuration folder, select Generate

> All > All Targets.
7. From the pop-up menu of the Build Configuration folder, select Build >

All Targets.

The source of the QuickTest-generated .java files is in the
Working\<platform>\QT directory. When these files are compiled, the
resultant JAR file is located under the target configuration directory:
Working\<platform>\<config>\QT. For example, if Production is the target
configuration directory, then the files are located in
Working\<platform>\PRODUCTION\QT.

Once the build is complete, you can run the QuickTest client application. You
can run the client application in two ways:
v Within Object Builder:

1. From the Build Configuration folder’s pop-up menu, click Build > Run
QuickTest.

Chapter 13. Testing applications with QuickTest 615



v Outside Object Builder:
1. Go to the project’s \Working\<platform>\<config> directory.
2. Type the command qt.

For example, if the platform is Windows NT with Production configuration,
then you must change directory to Working\NT\PRODUCTION, before
you run the qt command.

“Testing cross-project applications with QuickTest” on page 489
“Generating QuickTest client applications” on page 614
“Recording QuickScript” on page 617
“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611

“The QuickTest framework” on page 620
“QuickTest-generated files” on page 647

QuickScript

When you are running a QuickTest client application, you can record your test
steps. When the client application terminates, it saves a QuickScript Java file,
which contains the recorded test steps. QuickTest can compile and then
playback the QuickScript file for repetitive testing. The saved QuickScript file
is lastQuickTest.java.

The code in the QuickScript file accesses the classes that were generated in
QuickTest’s build step. The recorded actions are the events that occurred
during the running of the QuickTest client application.

Individual elementary events like keystrokes and mouse movements are not
recorded; but the state of the data for Adds, Updates, Deletes, and the
invoked query statements are recorded. Replaying QuickScript events does
not verify that the data processed during the initial recording and replay
session is identical. But, it does verify that the activities successfully
completed during replay.

“Recording QuickScript” on page 617
“Compiling the QuickScript file” on page 618
“Running QuickScript” on page 618
“Running the QuickTest tutorial” on page 647

616 WebSphere: Application Development Tools Guide



“QuickTest” on page 611

“The QuickTest framework” on page 620
“QuickTest-generated files” on page 647

Recording QuickScript

By default, the QuickTest client application records test events in a
QuickScript file. This .java file is saved automatically at intervals while the
client is running, and finally saved when the client program exits. The script
can be cleared at any time. You can verify that the recording is active by
clicking on the File menu in the QuickTest Main window to see if Record
Script has been selected. If Record Script is not selected, you can restart the
recording. Follow these steps:
1. Go to the QuickTest main window.
2. From the File menu, select Record Script.

Whenever you toggle Record Script off, the contents of the QuickScript file
are cleared.

By default, the QuickScript file is saved when the QuickTest client application
terminates. However, if you wish to record only a part of the test steps, you
should save the QuickScript file using these steps:
1. In the QuickTest Main window, select File > Save Script.
2. Specify a name, and path for the saved file.

Once you have saved the QuickScript file, you can toggle Record Script off to
clear the previously recorded events, and stop the recording. If you want to
continue to record events in a new QuickScript file, you must clear the
contents of the QuickScript file after it has been saved.

When you are recording test steps during the execution of a QuickTest client
application, you can restart the recording with a clean file by following this
step:

In the QuickTest Main window, select File > Clear Script.

All the steps that have been recorded are erased. Recording continues in a
clean QuickScript file.

“Running QuickTest client applications” on page 615
“Compiling the QuickScript file” on page 618
“Running QuickScript” on page 618

Chapter 13. Testing applications with QuickTest 617



“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611
“QuickScript” on page 616

Compiling the QuickScript file

Once a QuickScript file has been saved, it can be compiled and run at a later
time. QuickTest is used to compile the QuickScript .java file, as follows:

Follow these steps in the QuickTest Main window:
1. Start the project the QuickTest client was generated for.
2. From the Build Configuration window, click Build > Run QuickTest to

start the QuickTest client. The QuickTest Main window opens.
3. From the File menu, select Load Script.
4. Select the QuickScript file that you want to compile. QuickTest compiles

the QuickScript file.

A window with the compilation status appears.

The end result of compilation is a QuickScript file, which is a class file
(extension .class). This class inherits from a Script class within the QuickTest
framework. The Script class is abstract; the script is concrete. So when the
framework tries to execute the Script class, it actually works with the new
script class.

If there is an error, an error output file is generated and saved to the same
directory as the QuickScript file. You can view this error file and modify the
QuickScript file. If there are errors with the QuickScript compilation, you can
contact IBM Support to resolve the errors.

“Running QuickTest client applications” on page 615
“Recording QuickScript” on page 617
“Running QuickScript”
“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611
“QuickScript” on page 616

Running QuickScript

After you successfully compile the QuickScript .java file, you can run
QuickScript to repeat the testing that you recorded when you ran the
QuickTest client application.

618 WebSphere: Application Development Tools Guide



When you run QuickScript, the Controller window appears, where you can
select QuickScript’s execution settings.

In the QuickScript Controller window, set the following entries on the right
side of the window:
v Number of Loops

Specifies the number of times the QuickScript application will loop. This
enables you to stress test the system.

v Sleep Duration
Specifies the sleep duration in milliseconds (5000 ms = 5 seconds). This
value can be modified at any time. The new value is used for the next
statement which has Sleep selected.

The remaining fields at the right side of the window show the status of the
QuickScript application as it runs:
v Current Loop

Displays the current loop count when QuickScript runs.
v Start Time

When you click Start, this value is updated to show the time the
QuickScript execution started.

v End Time
When the number of loops has been completed, this value is updated with
the time the execution completed.

The table at the left side of the window lists all the actions that were recorded
while running the QuickTest client application. Each action is recorded as a
statement (row) in the table. The table has the following columns:
v Stop

When you select this check box for a row, and the value of After for that
row is greater than the Current Loop count, QuickScript stops before
executing this statement. To continue its execution, click Continue. For
example, if the statement at row 15 has Stop selected, and the After value
is 15, then whenever the Current Loop count is greater than 15, QuickScript
will stop before the execution of this statement. To disable the stop action
before this statement, clear the Stop check box, or change the value of After
to a number less than the Current Loop count.

v After
This value is compared with the Current Loop to determine if QuickScript
should pause before the execution of this statement. This value is used only
when Stop has been selected for the same row.

v Sleep
When selected, QuickScript will pause at that statement for the amount of
time specified in the Sleep Duration field. The entire Sleep column can be
toggled on or off by clicking the title of the column: Sleep.

Chapter 13. Testing applications with QuickTest 619



v Row
This is the statement number in the QuickScript file. When QuickScript
stops at a statement, the command console displays a statement number
indicating the row that is currently stopped. You can use this number to
find the row which has the active Stop statement. This becomes very useful
when you have a large number of statements in this table and several of
them have Stop selected.

v Statements
These are the QuickScript statements that were recorded when the
QuickTest client application was executing.

At the right side of the window, you can use the following buttons to control
QuickScript processing:
v Start

To begin the execution of QuickScript. Be sure to start the testing from a
known status of your data. For example, you may want to ensure an empty
database before you start testing.

v Continue
To continue QuickScript execution, after it has stopped at a statement,
which you indicated had to halt its execution (a statement for which the
Stop check box is selected).

“Running QuickTest client applications” on page 615
“Recording QuickScript” on page 617
“Compiling the QuickScript file” on page 618
“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611
“QuickScript” on page 616

The QuickTest framework

This section describes the object model for the QuickTest framework. The Java
classes that are emitted during the build process inherit from some of these
classes. Objects that are defined as Interface inherit from TestBean; those that
are identified as Copy inherit from TestBeanCopy; and those identified as Key
inherit from TestBeanKey.

The Test Case presents the TestBean derived classes on the left side of the Test
Case window, while the Home behavior is presented through the Tester. Each
TestBean derived class is wired to an instance of a Tester.

620 WebSphere: Application Development Tools Guide



For those TestBeans that support either the key, or the copy helper, or a
combination of both, the derived class is wired to the TestBean. The Java
classes that are wired together (TestBean, Tester, TestBeanCopy, TestBeanKey)
are then contained in a TestFrame. The TestHomeBean is the base class for
specialized homes and will be wired with the appropriate Tester. The
QuickTest class is responsible for performing the wiring of those classes that
are derived from these base classes.

For help with programming tasks involving the framework, see the following
topics:
v “QuickTest with the Component Broker Programming Model” on page 622
v “QuickTest with Java and JFC” on page 634

“Generating QuickTest client applications” on page 614
“Running QuickTest client applications” on page 615

Chapter 13. Testing applications with QuickTest 621



“Recording QuickScript” on page 617
“Running the QuickTest tutorial” on page 647

“QuickTest” on page 611
“QuickScript” on page 616

“QuickTest-generated files” on page 647

QuickTest with the Component Broker Programming Model

The following table provides information for assisting in locating code
snippets within the QuickTest framework. The Java code for QuickTest is
located in samples\Tutorial\QuickTest\
framework\com\ibm\quicktest\framework (under the Object Builder install
directory).

How do I Answer Example QuickTest Java
Source

Get a
queryable,
iterable
home

Use the factoryFinder to find the factory
using the object interface name. Then
narrow the returned object using the
IQueryableIterableHomeHelper.

Uses package:
com.ibm.IManagedAdvancedClient.

IQueryableIterableHomeHelper

CBGeneral.get_QI_home

Get a regular
home

Use the factoryFinder and find the factory
using the object interface name. Then
narrow the returned object using the
IQueryableIterableHomeHelper.

Uses package:
com.ibm.IManagedClient.IHomeHelper

CBGeneral.get_home

Get
transaction
or session
and set the
timeout
value

The ORB from CBSeriesGlobal has a
method, get_current which takes the string
parameter for either
“CosTransactions::Current” or
“ISessions::Current”. The returned ORB is
then narrowed to the current transaction or
session, after which the timeout can be set.

Uses packages:
com.ibm.CBCUtil.CBSeriesGlobal
org.omg.CosTransactions.Current
com.ibm.ISessions.Current

CBGeneral.

setCurrentTransaction

622 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Initialize the
ORB as an
applet or
application

Use a Properties object, or pass arguments
to the Initialize method. The Properties
object is used when you run the ORB as an
application while the args[] parameter is
used when you run it as an applet.

Uses package:
com.ibm.CBCUtil.CBSeriesGlobal.Initialize

CBGeneral.
resolve_with_string

Set DCE
Security

When using Properties, use props.put
(“com.ibm.CORBA.EnableDCESecurity”,

“true”).

When using the args[] parameter, use args[x]
= “-ORBEnableDCESecurity”; args[x+1] =
“true”;

Uses package:
com.ibm.CBCUtil.CBSeriesGlobal.Initialize

CBGeneral.
resolve_with_string

Start a
transaction

Depending on the container, either use the
begin() method on the transaction, or the
beginSession() operation on the session.

Uses package:
org.omg.CosTransactions com.ibm.ISessions

CBGeneral.begin

Commit a
transaction
or session

Depending on the container, use the
commit() method on the transaction, and
endSession() operation on the session.
Note the following points:

v If you have an atomic container, you do
not have to use transaction semantics.
They are automatically done for you.

v An EndMode value needs to be set for the
session. This enumeration indicates the
type of end-session processing that should
be performed. For a list of possible values
for EndMode, see ISessions in the
Sessions Service.

Uses package:
org.omg.CosTransactions com.ibm.ISessions

CBGeneral.commit

Chapter 13. Testing applications with QuickTest 623



How do I Answer Example QuickTest Java
Source

Rollback a
transaction
or session

Depending on the container, use the
rollback() operation on the transaction and
endSession() operation on the session.
Note: An EndMode value must be set for
the session.

Uses package:
org.omg.CosTransactions com.ibm.ISessions

CBGeneral.rollback

Identify the
factory for a
transient or a
RDB
reference
collection

For a transient reference collection, find the
factory or home for:

IManagedCollections::
IReferenceCollection.object

interface/
TransReferenceCollectionFactory.object

home

For a relational database (RDB), use:

IManagedCollections::
IReferenceCollection.object interface or

DB2ReferenceCollectionFactory.object home.

Then narrow the result with
ICollectionHomeHelper.narrow().

Uses package:
com.ibm.IManagedCollections

RefColPanel.createRefCol

Create the
collection

Once the factory is found, use the
createCollectionFor() method and provide
the parameter of the IDL tag for the name
that is to be contained within the collection.
The form of the IDL tag is
“IDL::HomeName/Object:1.0”

Uses package:
com.ibm.IManagedCollections

RefColPanel.createRefCol

624 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Create and
process an
iterator on
the reference
collection

The iterator is obtained from the reference
collection using the createIterator() method.
The iterator is processed using the more()
method and the next() method to retrieve an
element.

The iterator returns IManageable objects,
which must be narrowed to the appropriate
object.

Uses packages:
com.ibm.ICollectionsBase
com.ibm.IManagedCollections
com.ibm.IManagedClient.IManageable

RefColPanel.createRefCol

Query over a
reference
collection

This is a typical query evaluator
implementation except for the use of a
ParameterListBuilder (PLB) to identify the
reference collection. First create a PLB using
the PLBHelper and identify the reference
collection using the add_object_parm()
method by providing a name and a pointer
to the reference collection. Then create a
NVPair[] from the PLB with the method
get_parm_list().

Uses package:
com.ibm.IExtendedQuery
org.omg.CosQueryCollection

RefColPanel.createRefCol

Create a
query
evaluator

Find the factory for
“host/resources/servers/”, the server as
defined in System Management, and
“/query-evaluators/default”. Then narrow
the object with
QueryEvaluatorHelper.narrow.

Uses package:
com.ibm.IExtendedQuery

QueryPanel.doQuery

Chapter 13. Testing applications with QuickTest 625



How do I Answer Example QuickTest Java
Source

Create,
remove, and
populate a
query data
array iterator

Once a data array iterator holder
(DataArrayIteratorHolder) has been created,
and before it reuses the value, a data array
iterator (DataArrayIterator) must be
removed from the server. The data array
iterator is then populated with the
evaluate_to_data_array() method on the
query evaluator.

Uses package:
com.ibm.IExtendedQuery

QueryPanel.doQuery

Find out
how many
fields are
contained in
the data
array iterator

Use the method get_number_of_fields() on
the data array iterator.

Uses package:
com.ibm.IExtendedQuery

QueryPanel.doQuery

Find out the
names of the
fields in the
data array

Use the method get_field_name() for each
field in the data array iterator.

Uses package:
com.ibm.IExtendedQuery

QueryPanel.doQuery

Get access to
the field
values in the
data array

Use the method next_one() on the data array
iterator with the parameter being a
DataArrayHolder. This is the equivalent of
retrieving one row of data. The
DataArrayHolder now contains all the
columns for the single row. Next process the
DataArrayHolder’s value (which is an
array). Since each element is a CORBA:any,
the type().kind() will indicate the
org.omg.CORBA.TCKind. Once the kind is
determined, the appropriate value can be
extracted from the any.

Uses package:
com.ibm.IExtendedQuery

QueryPanel.doQuery

Process an
iterator

The iterator is processed using the more()
and next() methods. The object that is
returned from the next() method is of type
CORBA and must be converted to a
managed object.

Uses package:
com.ibm.ICollectionsBase.IIterator

Tester.doPasteIterator

626 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Access
attributes
from a
CORBA
object

When the CORBA object is available, it must
be narrowed to the class of the particular
type of the processed application. For
QuickTest, look at the generated code for the
display method to see how the object is
narrowed appropriately. Then follow the
code to the object’s display() method to see
the attributes retrieved from the narrowed
object. With QuickTest, the message is sent
from the Tester to the TestBean, and the
TestBean extracts the attribute values and
sends a message back to the Tester
containing the attribute value array for
display within the table.

Uses package:
CORBA.Object _fooBean.display(TesterEvent
e)

Tester.doPasteIterator

Process
through an
iterator
multiple
times

The iterator is positioned at the end after
being processed once. To reprocess the same
iterator means to reposition the pointer to
the beginning. This is accomplished with the
reset() method.

Uses package:
com.ibm.ICollectionsBase.IIterator

Tester.doPasteIterator

Find a
CORBA
object

Using the appropriate home, use the byte
string that represents the object being
searched and then invoke the
findByPrimaryKeyString method.
Note:QuickTest responds to either the
button or the script by first sending a
message to the TestBean so that a byte string
can be created.

The TestBean sends a message back to Tester
and the result is stored in the variable
keyString. See the
Tester.testerResponseEvents method for
information on where the keyString is set.

Uses package:
com.ibm.IManagedAdvancedClient
com.ibm.IManagedClient

Tester.find

Chapter 13. Testing applications with QuickTest 627



How do I Answer Example QuickTest Java
Source

Determine
whether
two
CORBA
objects are
identical

Use the _is_equivalent() method on one
object with the other as a parameter.

Uses package:
org.omg.CORBA.Object

Tester.haveIdentical

Create a
managed
object using
a primary
key

Use the keyString provided by the
fooKeyHelper to invoke the
createFromPrimaryKeyString against the
appropriate home.

Uses package:
com.ibm.IManagedAdvancedClient
com.ibm.IManagedClient

Tester.key

628 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Create a
keyString
byte string

When you run make for each object in the
project, the Java client bindings are
generated, and one of the files is
fooKeyHelper.java. The use of fooKeyHelper
is demonstrated in the QuickTest-emitted
code in the _fooKeyBean class where the
_create() method is invoked to create the
IPrimaryKey subclass. Each of the attributes
that make up the key are then set, and the
_toString() method can be invoked to obtain
the byte string.

Note: QuickTest performs both operations
(add by primary key, and update) during a
single transaction. At the completion of the
primary key creation, the Proxy screen (left
side of the screen) responds to an update
message.
The Proxy screen holds only one instance of
a class. But, the right side of the screen,
which is called the Tester, holds a
collection. The Proxy screen has all the
attributes of the object, some of which may
be identified as belonging to a key. All the
attributes can be entered on the screen.
When the add by key operation is performed,
only those attributes pertaining to the key
are used to build the key. QuickTest
immediately requests an update, ensuring
that all the attributes of the object are
updated with all of the values on the screen.

Uses package:
com.ibm.IManagedLocal fooKeyHelper

Tester.key

Create a
UUID
primary key

When an object is defined as a BOIM with
UUID in an Object Builder data object
implementation, the key is created using the
IUUIDPrimaryKeyHelper._create method.
Then the generate() and _toString() methods
produce the required byte string to use
against the home with the normal
createFromPrimaryKeyString() method.

Uses package:
com.ibm.IBOIMExtLocal

Tester.key

Chapter 13. Testing applications with QuickTest 629



How do I Answer Example QuickTest Java
Source

Create an
object using
the copy
helper

This is similar to creating the key helper
except that all the attributes that make up
the copy helper are set to the fooCopy object
before the _toString() method is invoked.

The copy helper creates fooCopy:

csAgentCopy aCopy =
csAgentCopyHelper._create();

All the attributes of csAgentCopy are set:

aCopy.commPercent(((Float)
obj0).floatValue());

The byte string is obtained from the
fooCopy object:

aCopy._toString()

This byte string is provided to the
Component Broker framework to create the
object with a call against the appropriate
home using the
home.createFromCopyString(keyString)
method.

You can also refer to the QuickTest-emitted
code for _fooCopyBean for an example of
generating the required byte string.

Uses package:
com.ibm.IManagedLocal

Tester.copy

630 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Evaluate an
OOSQL
statement
against a
home

The evaluate method can only be called on a
queryable, iterable home. The statement that
is passed to the evaluate method uses the
WHERE clause. For QuickTest, the OOSQL is
derived by examining the Proxy Screen and
determining if any of the OOSQL predicates
have been selected. These predicates appear
to the left of each attribute of the proxy
object. The clause is made up of
<attributename predicate value>predicates
that are joined together with the AND
operator. An example would be
“customerName = ’Barton’ AND customerAge
< 55”. The evaluate method returns an
iterator.

Uses package:
com.ibm.IManagedAdvancedClient

Tester.iterate

Create an
iterator
against a
home

If the home is a queryable, iterable home
(one that has the QueryableIterableHome
interface), then the iterator is obtained with
the createIterator() method. An iterator will
contain all objects within the home. This is
an inefficient means of obtaining the data
for all these objects. Since QuickTest takes
each object returned within the iterator and
extracts the attribute values, much network
traffic is generated since each call to get the
attribute value is another round trip. A
much better mechanism to obtain the
attribute values with reduced network traffic
is to evaluate to a data array, which is
demonstrated in the RefColPanel and
QueryPanel code.
Note: RefColPanel and QueryPanel are two
panels that perform OOSQL queries.
RefColPanel performs against a reference
collection (whether it is transient, or
RDB-backed). QueryPanel performs against
either the Component Broker run time, or
DB2 objects.

Uses package:
com.ibm.IManagedAdvancedClient

Tester.iterate

Chapter 13. Testing applications with QuickTest 631



How do I Answer Example QuickTest Java
Source

Return a
small
population
of an iterator

An iterator has a method called nextN
which takes two parameters, one is the size
request of the return set and the other is a
member list holder (MemberListHolder) that
contains the requested set. The
MemberListHolder is a kind of structure,
with one of the attributes being an array.
This array holds this list of values after the
call. Process the array by checking the
length.

Uses package:
com.ibm.ICollectionsBase

Tester.iterate

Update a
CORBA
object’s
attributes

Before an object can have its attributes
modified, a transaction may need to be
started depending upon the container of the
home. Once the transaction is started, the
subclass can have its attributes set. For
QuickTest, the _fooBean object has an
update method where the values from the
Proxy Screen are retrieved and set into the
object. Tester (the right side of the screen)
starts the transaction and then sends a
message to _fooBean to perform the update.
When _fooBean is complete, Tester commits
the transaction.

Uses package:
org.omg.CORBA.Object

Tester.update

Delete a
managed
object

The managed Proxy object is sent a message
to remove itself. The message is sent during
the scope of a transaction. The
QuickTest-emitted _fooBean.delete() method
is invoked, and the remove() method is
invoked on the CORBA object.

Uses package:
org.omg.CORBA.Object

Tester.delete

632 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest Java
Source

Retain the
elements of
an iterator
for
processing
outside the
transaction
that created
the iterator

If an iterator is created from a queryable,
iterable, home (QueryableIterableHome), or
a return value from a method, the contents
can be placed into a transient reference
collection. From this collection, an iterator
can be created that is then made available to
other objects for processing. This is how
QuickTest takes the iterator from a foreign
key pattern method Parent.listChildren,
which returns an iterator containing
Children.

Uses package:
com.ibm.IManagedCollections
com.ibm.ICollectionsBase

CopyPaste.setObject

Find out if a
CORBA
object is
actually an
iterator

Use the _is_a method with the IDL name.
For example,
foo._is_a(“IDL:ICollectionsBase/IIterator:1.0”).
The IDL name can be determined using the
IR Browser.

Uses package:
org.omg.CORBA.Object

CopyPaste.setObject

Create a
transient
reference
collection

Find the factory for the reference collection
using the string “IManagedCollections::

IReferenceCollection.object
interface/

TransReferenceCollectionFactory.object
home”. This returns a CORBA object.
Narrow this object to the specific home (in
this case, ICollectionHome), and invoke the
createCollection() method.

Uses package:
com.ibm.IManagedCollections

CopyPaste.setObject

Copy objects
from a
transactional
iterator to a
reference
collection

Make a duplicate of the IManageable object
since the one contained within the
transaction iterator will go out of scope
when the surrounding transaction commits.
Then take this duplicate object and use the
addElement method on the reference
collection home.

Uses package:
com.ibm.IManagedCollection
org.omg.CORBA.Object

CopyPaste.setObject

Chapter 13. Testing applications with QuickTest 633



How do I Answer Example QuickTest Java
Source

Process the
elements of
an iterator

Use the more method to determine if there
are additional objects. Then use the next
method to obtain the CORBA object.

Uses package:
com.ibm.ICollectionsBase.IIterator

CopyPaste.setObject

Remove an
iterator

Use the remove method on the Iterator.

Uses package:
com.ibm.ICollectionsBase.IIterator

CopyPaste.clearObject

“Chapter 13. Testing applications with QuickTest” on page 611

“QuickTest” on page 611

“The QuickTest framework” on page 620
“QuickTest with Java and JFC”
ISessions in the Sessions Service (Programming Reference)

QuickTest with Java and JFC

The following table provides information for locating code snippets within the
QuickTest Framework. The Java code for QuickTest is located in the
“samples\Tutorial\QuickTest\framework\com\ibm\quicktest\framework”
directory.

How do I Answer Example QuickTest
Java Source

Initialize the
Swing
look-and-feel

Use the UIManager class, and the
setLookAndFeel method to set the
look-and-feel to the appropriate selection.
For a cross-platform consistent look-and-feel,
use
getCrossPlatformLookAndFeelClassName().

Uses package:
javax.swing

QuickTest.initLF

634 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Change the
look-and-feel
while the
system is
active

Provide JRadioButtonMenuItems for each
look-and-feel. Add an ItemListener to each
MenuItem and when the state becomes
selected, update the UIManager with the
look-and-feel. Then all the existing frames
must be validated and repainted to display
the new look.

Uses package:
com.sun.java.swing.plaf

QuickTest.setupOptions

Process a
zipped file for
input and read
serialized
objects

Create a FileInputStream and provide it to
the GZIPInputStream constructor. Then
supply the GZIP class to an
ObjectInputStream. GZIP is an internal class
that compresses data to reduce the size of
the file that is used either for storage, or for
transmittal over the wire.

Uses package:
java.io java.net

QuickTest.restoreIni

Update each
frame with a
new
look-and-feel

For each container, update, invalidate,
validate, and repaint ComponentTreeUI
using the respective methods.

Uses packages:
java.awt
javax.swing

QuickTest.doLNF

Determine the
superclass for
a given name

Create a class using Class.forName(). Then
use getSuperClass() to obtain the class name.

Uses package:
java.lang

QuickTest.
determineClass

Create an
instance of a
specific class
given a name

Use the Class object and the newInstance()
method and typecast to the desired class
using the typeCast operator.

Uses package:
java.lang

QuickTest.getTestBean

Save a file
using the
FileDialog and
show existing
files with a
specific
extension

Set the filenameFilter of a FileDialog to
accept files that have the desired extension.

Uses package:
java.awt

QuickTest.saveScript

Chapter 13. Testing applications with QuickTest 635



How do I Answer Example QuickTest
Java Source

Compile Java
code from
within a Java
application

Instantiate a javac compiler using the
command javac xxx.java, where xxx is the
name of the file to be compiled. The input,
output, and error streams are monitored in
separate threads to obtain the completion
status.

Uses package:
sun.tools.javac

QuickTest.loadScript

Determine the
center of the
screen

Use the getDefaultToolkit() method, and
then the getScreenSize() method. Divide the
Dimension object’s width and height by
two.

Uses package:
java.lang.Toolkit

QuickTest.centerScreen

Display a
pop-up menu
within a cell
in a JTable

The QTBool Editor works with any QTBool
object. When the TestTable class puts data
into its JTable, the data may contain type
QTBool. The JTable will render that for
display purposes but when you use the
pop-up trigger, the Editor can be invoked.
QTBool has a mouse listener added to it.
When the pop-up trigger is detected, a
JPopupMenu is displayed. The menu items
have listeners to perform the copy and paste
actions. See the inner class of
QTBoolTableCellEditor in TestTable to know
how the cell is associated with an instance
of this class.

Uses package:
javax.swing

QTBoolEditor.
QTBoolEditor

Determine the
size of a
component

Use the getPreferredSize() method on the
component.

Uses package:
java.awt.Component

TestBean.TestBean

Determine the
greater of two
numbers

Use the Math.max(value1, value2). The
return value is the largest value.

Uses package:
java.lang.Math

TestBean.TestBean

636 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Fire a property
change event

Use the PropertyChangeSupport and
firePropertyChange methods, providing the
key value, old value, and new value. Those
classes that listen for the property change
will be notified.

Uses package:
java.beans

TestBean.setQueryable

Change the
font of a label

Create a new Font object with the desired
type and set the font on the Label object.

Uses package:
java.awt

QTAnyField.isKey

Change the
attributes of a
file on AIX or
Solaris

Get the run time, and execute the command
“chmod” with the appropriate permissions.
This will create a process. Use the waitFor()
method on the process for execution to
complete.

Uses package:
java.lang.Runtime

GenModel.
setExecutable

Use a JTable,
and control
cell display
and editing

Provide default cell renderers and editors
for the tables that are associated with the
data types that will be placed into the data
model.

Uses package:
javax.swing.table

TestTable

Control the
rendering for
a specific data
type in a
JTable

Implement a DefaultTableCellRenderer and
set it on the table for the specific class. To
keep a consistent display for selection and
focus, first obtain the component by
invoking the superclass method, and then
customize this component for the new look.

Uses package:
javax.swing

TestTable.
setDataModel

Associate a
customized
editor for a
specific data
type in a
JTable

Instantiate a class that extends a
DefaultCellEditor and associate it with the
desired data type by using the
setDefaultEditor() method on the JTable.

Uses package:
javax.swing

TestTable.setEditors

Chapter 13. Testing applications with QuickTest 637



How do I Answer Example QuickTest
Java Source

Use an
interface to
avoid use of
the instanceof
operator

Define an interface that defines a method
that needs to be implemented to achieve the
desired behavior. In this example, all of the
data that is displayed in the JTable can be
copied using a pop-up menu. To guarantee
that each representation can support the
execute statement and that the value
obtained from the data model does not
require integration using the
instanceof operator with a series of if
statements (for example, if (foo
instanceof bar)...), have each object
implement the interface. Every object that
implements the QTExecute interface has the
execute() method.

Since each QT data element (object
contained in TestTable that participates in
the TestTable behavior) is an instance of
QTExecute, and implements the QTExecute
interface, each of them has the execute()
method, and implementation code in that
method. As new data types are introduced,
if they implement QTExecute, the following
code will not require any modification:

if (obj instanceof QTExecute)
((QTExecute) obj).execute()

This allows for polymorphism. If this is not
the case, you would have to use code that
needs modification for each new object that
is introduced into the system. For example:

if (obj instance of Type1)
((Type1)obj).doSomething();

else if (obj instanceof Type2)
((Type2)obj.somethingElse();

Uses package:
java.lang

TestTable.
selectAndCopy

Set an icon in
the upper
left-hand
corner of a
window

Use the setIconImage method of the frame
and use an icon image.

Uses package:
java.awt

TestFrame.TestFrame

638 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Add a toolbar
with buttons
to a frame

Create a JToolBar and add JButtons to it.

Uses package:
javax.swing

TestFrame.TestFrame

Use scroll
panes within
split panels

Use two scroll panes and setViewportView
with the JPanel which contains the objects to
scroll. Then take a JSplitPane and set the left
and right components.

Uses package:
javax.swing

TestFrame.TestFrame

Protect the
screen during
a long
operation

Create a JComponent that covers the screen,
and set it as the glass pane for the frame.
Whenever protection from user interaction is
desired, set the component to be visible.
Then, no interaction with data entry fields,
buttons, list boxes, or any other interface
element will be possible. See the
QTGlassPane for a complete sample.

Uses package:
javax.swing

TestFrame.TestFrame

Create
“CheckBox
MenuItems”
and know
when the user
selects it

Create an instance of the
JCheckBoxMenuItem and add an
anonymous action listener which
implements the actionPerformed method.
When the user toggles the item, the
ActionEvent object is a parameter to the
actionPerformed method. Use the object
with the getSource() method, and then check
the state of the check box with the
isSelected() method.

Uses package:
javax.swing

TestFrame.
setOptionsMenu

Create a radio
button group
with menu
items

Create JRadioButtonMenuItems and a
ButtonGroup. Add the menu items to the
menu for display and selection. Add the
menu items to the ButtonGroup so that they
behave in a mutually exclusive manner.

Uses package:
javax.swing

TestFrame.
setOptionsMenu

Chapter 13. Testing applications with QuickTest 639



How do I Answer Example QuickTest
Java Source

Create a
submenu,
which contains
other menu
options

Add to the main JMenu a new JMenu that
contains MenuItem.

Uses package:
javax.swing

TestFrame.
setOptionsMenu

Detect a
mouse click on
a JTable
heading

On the table, use the getTableHeader()
method and add a mouse listener that
responds to mouseClicked events. When the
event occurs, use the getColumnModel()
method of the table and determine if the x
coordinate is in the desired column.

Uses package:
javax.swing

Script.
addMouseListener
ToHeaderInTable

Change the
font of a label

Create a new Font object with the desired
type and set the font on the Label object.

Uses package:
java.awt

QTTextField.isKey

Control the
data displayed
in a JTextField

If a JTextField is edited within a JTable,
when editing is complete, the document
itself is modified; the JTextField.setText()
method is not modified. When you type into
a JTextField, the document is actually
notified first so that the data can be edited.
See the QTNumberDocument class for
further information.

Uses package:
javax.swing.text

QTTextField.

createDefaultModel

Edit JTextField
data before the
data is visible
in the text
field

Extend a PlainDocument class and provide
that class using the
JTextField.createDefaultModel()
implementation.

Uses package:
javax.swing.text

QTTextField.

QTNumberDocument

640 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Prevent
erroneous data
from entering
JTextField by
keyboard
entry, or by
Copy or Paste
actions

When data is to be set into the Model for
JTextField, the insertString() method of the
default Model is called. The string that is to
be inserted is available in the parameters.
The string will consist of one character if
entry is being made using the keyboard. The
string will have potentially more characters
if a Paste operation is being performed.

Uses package:
javax.swing.text

QTTextField.

QTNumberDocument.
insertString

Position the
text caret at
the left if the
string is
padded with
blanks.

Large strings can have trailing filler blanks
and when set into a JTextField, the display
will be right-justified. You may not see the
initial character values if the display is
smaller then the length of the string. To
force the display to the left position, use the
setCaretPosition() method of the JTextField.

Uses package:
javax.swing.text

QTTextField.

QTNumberDocument.
insertString

Implement a
custom layout
manager

Implement the LayoutManager interface.
The QTLayout example shows laying out
the components either vertically or
horizontally. This layout manager supports
the components all occupying the same area.
This is used so that TestFrame can lay out
multiple panels that contain parallel rows of
information and keep them presented in
line. Without the same size constraint, the
components would assume their preferred
size.

Note:TestFrame is a component within
QuickTest. It is a frame with a title bar,
complete with its own set of Minimize and
Maximize buttons, and so on. All the test
cases are contained within a TestFrame.

Uses package:
java.awt

QTLayout

Chapter 13. Testing applications with QuickTest 641



How do I Answer Example QuickTest
Java Source

Load an image
as an applet
from the
containing .jar
or .zip file

Unzip the somiaqf.zip file to see the .gif files
that are contained in the package directory.
Determine where the applet is a stream
resource and create an InputStream. Use the
input stream to read the the image into a
byte array. Then initialize an ImageIcon with
the byte array. From the ImageIcon, an
image can be retrieved.

Uses packages:
java.net
java.awt
java.io

Util.loadImage

Load an image
as an
application
from the
containing .jar
or .zip file

Unzip the somiaqf.zip file to see the .gif files
that are contained in the package directory.
Get the URL for the resource given the name
of the file. Then create a MediaTracker and
allow it to get the image. This gets the
image without flickering.

Uses packages:
java.net
java.awt
java.io

Util.loadImage

Copy a file Use the FileInputStream class to read each
character, and the FileOutputStream class to
write each character.
Note:FileInputStream and FileOutputStream
are core Java classes that permit file
manipulation (either reading or writing) in a
platform-independent manner.

Uses package:
java.io

Util.copyFile

Get
parameters
from applet
tags

The HTML contains tags with name and
value pairs. To obtain the values, use the
getParameter method.

Uses package:
javax.swing

QuickTestApplet.init

642 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Read a .jar file
from within
an applet, and
determine the
contents

Get the document base and build a URL
with the name of the .jar file. The .jar file
name can be obtained from a tag within the
HTML source. Using the URL, open a
stream and pass the stream to the
constructor of a ZipInputStream. Using this
stream, process each ZipEntry.

This gives QuickTest the ability to inspect a
.jar file at run time, and determine what the
contents are. QuickTest needs this ability
because it does not know what beans are
contained in the .jar file (what test cases are
being processed). QuickTest needs to
instantiate each class and look at the base
classes to determine how to perform the
dynamic wiring of the events.

Uses package:
java.net
java.util.zip

QuickTestApplet.init

Send a
window
message to a
specific frame

Create a WindowEvent with a type of event
to be processed and then invoke the
dispatchEvent().

Uses package:
javax.swing

QuickTestApplet.stop

Detect a
JComboBox
selection

A JComboBox will create its own model of
data if the constructor has the data
provided. When an item is selected, the
method itemStateChanged is called with the
event that occurred. By extending the
JComboBox, the method can be overridden
and the getSelectedIndex can be called to
determine the current selection.

Uses package:
javax.swing

TestBean.QTChoice

Chapter 13. Testing applications with QuickTest 643



How do I Answer Example QuickTest
Java Source

Get the
headings for
the tables on
initialization

A tester (an object within QuickTest) and a
subclass of TestBean are identified during
initialization so that messages can be sent
between them. For the tester to display the
headings in the TestTable, Tester sends a
message to the TestBean. The TestBean sends
a message back to the tester which contains
an array of the attribute names that can be
used as column headings.

Uses package:
java.awt.event.ActionEvent

Tester.testFrame

Process
PropertyChange

Event
(Beans)

When the Host panel is completed, it sends
messages to the listeners to inform them
that the properties have changed. The event
contains the property name and new value.

Uses package:
java.beans

Tester.propertyChange

Process
elements
contained in
Vector

Use the Enumeration object obtained from
the elements() method. Then process the
Enumeration object by checking if there are
more elements with the hasMoreElements()
method and if true, obtain the next element
with nextElement().

The returned object must be typecast to the
correct type since the Vector contains objects
of type java.lang.Object.

Uses package:
java.util

Tester.haveIdentical

Keep the
screen
repainted
during
long-running
calls

The QuickTest class Perform starts a thread
and calls a Runnable object. A Runnable
object implements the run() method. This
thread allows the screen to continue to be
refreshed and allows for simultaneous
execution of commands.
Note: During QuickTest script playback,
threading is not used.

Uses package:
java.lang.Thread

Tester.actionPerformed

644 WebSphere: Application Development Tools Guide



How do I Answer Example QuickTest
Java Source

Implement a
clone

The clone method allows an object to return
a copy of itself. This is important, for
example, when a copy or paste of the object
requires a unique object. When QuickTest
copies a CORBA Proxy object, the clone is
used so that the original and new clone are
edited separately, in the same way as when
the clear method is invoked.

Uses package:
java.lang.Object

CopyPaste.clone

Use a
clipboard and
transfer a
CORBA Proxy
using the
paste
operation

Multiple objects are copied to the clipboard.
A static clipboard is used to contain the
Transferable object. The Transferable object
is of a specific DataFlavor (type such as
string, Object, integer, and so on). The
DataFlavor determines if the contents of the
clipboard are appropriate for the copy. If
there is no Transferable object in the
clipboard, there is nothing to paste.

Uses package:
java.awt.datatransfer

CopyPaste.execute

Use a
clipboard and
copy a
CORBA Proxy
to it

A static clipboard is used to contain the
Transferable object. QuickTest uses the
ProxySelection object that implements the
Transferable and ClipboardOwner interfaces.
When the user selects a Copy, a
ProxySelection object is instantiated for the
DataFlavor and CORBA object. The
clipboard then has the contents set with this
ProxySelection.

Uses package:
java.awt.datatransfer

CopyPaste.
copyToClipboard

Chapter 13. Testing applications with QuickTest 645



How do I Answer Example QuickTest
Java Source

Release system
resources
when garbage
collection
occurs

When the Java virtual machine (JVM)
recognizes that a specific instance of an
object is no longer referenced, and is
therefore not necessary to the program, the
JVM can free that memory in a process
called garbage collection.
When an object is garbage-collected, the
finalize() method is invoked. Within this
method, an action can be performed to
release system resources. For QuickTest, the
CopyPaste object detects an iterator,
transfers the contents to a transient reference
collection, and creates a new iterator from
the collection. The contents can then be
processed outside the scope of the
transaction that created the original iterator.

The collection of objects that is referenced by
the iterator can be accessed without having
a transaction. Component Broker’s behavior
is such that when an iterator of objects is
created within a transaction, the objects can
only be referenced within the scope of that
transaction. For QuickTest, for example, we
may return rows of employees and want to
scroll through them over time and select
some to see their details. We may not want
to keep the transaction active during that
process. So, we can retrieve them first from
the iterator, and store them in a transient
iterator. Because it is transient, if the system
were to fail, we would lose the collection
itself. But mainly, by putting the objects in
the transient collection, we can access them
without a transaction being required.

This means that the transient iterator needs
to be removed when the CopyPaste object is
garbage-collected.

Uses package:
java.lang

CopyPaste.finalize

646 WebSphere: Application Development Tools Guide



“Chapter 13. Testing applications with QuickTest” on page 611

“QuickTest” on page 611

“The QuickTest framework” on page 620
“QuickTest with the Component Broker Programming Model” on page 622

QuickTest-generated files

Object Builder generates the makefiles which invoke the QuickTest emitter to
create the following files for QuickTest:
v Source: \Working\<platform>\QT\
v Compiled classes: \Working\<platform>\<config>\QTCLS\<DLLname>\
v JAR files: \Working\<platform>\<config>\QT\QT<DLLname>.jar

v QuickTest executable location:
\Working\<platform>\<config>\qt.bat

v QuickTest executable location:
/Working/<platform>/<config>/qt.ksh

You cannot build for QuickTest on OS/390.

“Generating QuickTest client applications” on page 614
“Running QuickTest client applications” on page 615
“Recording QuickScript” on page 617
“Running the QuickTest tutorial”

“QuickTest” on page 611
“QuickScript” on page 616

“The QuickTest framework” on page 620

Running the QuickTest tutorial

The QuickTest tutorial uses the ForeignKey sample to demonstrate the use of
the QuickTest client application and its QuickScript replay facilities.

Chapter 13. Testing applications with QuickTest 647



Objective of the QuickTest tutorial
The objective of the QuickTest tutorial is to demonstrate how you can use a
QuickTest client application to test your Component Broker server application.

The QuickTest tutorial’s programming model
The QuickTest tutorial uses the Foreign Key sample that is provided with
Component Broker. This sample is located in
%IVB_DRIVER_PATH%\samples\Tutorial\Fundamentals\foreignkey
directory.

Note: The documentation is written using the Windows NT paths and
naming conventions. For a UNIX environment, %IVB_DRIVER_PATH%
should be $IVB_DRIVER_PATH and the backward slash (\) should be a
forward slash (/).

The Rose model
The following is a Rose model depicting the sample that is used by the
QuickTest tutorial:

Files shipped for the QuickTest tutorial
The QuickTest Framework source code is located in the
<Cbroker>\samples\Tutorial\QuickTest directory on a machine that has the
samples installed. The emitted code from the make process is located in the
project’s Working\<platform>\<config>\QT directory.

648 WebSphere: Application Development Tools Guide



Description of the QuickTest tutorial
This is a summary of the steps in the QuickTest tutorial:

1. Delete all objects in the csAgent and csCustomer homes.
2. Add some agents by using the Add by Key and Add by Copy methods.
3. Iterate over the csAgent home to observe its contents.
4. Add some customers to the csCustomer home using the Add by Copy

method.
5. Perform an evaluate on the csCustomer home.
6. Some customers are assigned to agents using the methods provided with

the csAgent object. You can use the Copy and the Paste functions to copy
a customer to the parameter of the agent’s addCustomers method.

7. Invoke the listCustomers method on a particular agent to return an
iterator which contains objects of type Customer. You can copy and paste
this iterator to the iterator of the customer’s home to display its contents.

8. Use the query evaluator to perform OOSQL queries over the csAgent
home.

9. Add some customers to a transient reference collection and proceed to
query that reference collection.

10. Save all the recorded test events as a QuickScript file.
11. Replay the QuickScript file.

For detailed descriptions of the options on a particular window, select Help,
or press F1, from within the window.

Assumptions
This tutorial assumes that you have performed the following preliminary
steps:
1. The ForeignKey sample has been built, and installed on a host machine

that is accessible.
2. The client is running on the server machine.
3. All the files that are required to support QuickTest are installed on the

server (somojij.zip, somshcl.zip, somojor.zip, somiaqe.zip, somiaqf.zip and
ivbjfc.jar).
Note: If QuickTest is running on a client install machine, copy these files
from the %IVB_DRIVER_PATH%\lib directory from the server machine.

Starting the QuickTest Tutorial
When we start QuickTest (by clicking Build > Run QuickTest from the Build
Configuration folder’s pop-up menu), we must first establish the host, port,
timeout, and security options in the CB Server Host window:
v Type a host name and server name that are appropriate for your

environment.

Chapter 13. Testing applications with QuickTest 649



v Set Timeout to 180
v Set Port to 900
v Set Iterate Count to 25

Refer to help from within the window for more details on the contents of the
window.

Assigning keys and copy helpers for managed clients
If this is the first time you are running QuickTest, or if this is a subsequent
time but you have deleted the configuration files (config.key and config.copy),
the Assign Key Helpers and Assign Copy Helpers windows open, and you
can associate keys and copy helpers for the managed clients.

By default, QuickTest assigns a default keys and copy helpers for the
managed clients.

Note the following points:

v The associations that you create here determine success or failure when you
run QuickTest.

v When you are assigning keys, keep in mind that in the case of inheritance,
both the parent and child can be mapped to the same key.

The QuickTest tour
Now we are ready for a guided tour of QuickTest by maintaining data,
invoking methods and exercising the Foreign Key sample that is installed on
Component Broker. We will use the Copy and Paste actions throughout the
process, and show how all the test actions are recorded. These QuickScript
recordings are then reloaded and replayed.

Step 1 - Delete All
In the QuickTest Main window, from the Test Cases menu,
selectsample5._csAgentBean to open the Test Case window. Refer to help
from within the window for more details on the entries in the window. The
default options in the Test Case window are correct for this application.
Review the default options in the window’s Options menu. The defaults are:
v No security
v Queryable
v Persistence is transactional
v Reference collection is transient

Note: The same defaults apply to sample5._csCustomerBean. To start the
csCustomerBean, select the Test Cases menu and
thensample5._csCustomerBean in the QuickTest Main window.

650 WebSphere: Application Development Tools Guide



Select Delete All from the home toolbar for both test cases to delete all the
objects defined in the csAgent and csCustomer homes so that when we replay
the QuickScript that is being recorded, we will not have problems with
duplicate key adds. If the purpose of the QuickScript replay is to have exactly
the same behavior as the initial run, then start the test by deleting all the
objects.

Step 2 - Add Agents
Now that the csAgent home is empty, we will add agents: FirstAgent and
SecondAgent. Type the information, and for the first agent, click the Add by
Key push button from the Proxy toolbar. For the second, select Add by Copy.
These two types of Adds are available because keys and copy helpers were
defined within Object Builder. If a key or copy helper is not defined in the
model, the Add by Key and Add by Copy push buttons are not enabled on
the toolbar.

Note:As the objects are added, they are displayed in the home table (either for
transient objects or for non-queryable homes). When a home is not queryable,
the table can be populated by performing either the Find, or Add by Keyand
Add by Copy functions. Also, when an object is deleted, the row that contains
the object will be removed from the table.

Follow these steps using the Proxy pane:
1. Type the data:

Michael Francis, ID = 10, commPercent = .50
2. Select Add by Key on the toolbar.
3. Type the data:

Charles Hobbes, ID = 20, commPercent = .50
4. Select Add by Copy on the toolbar.
5. Select any column from the resulting row in the table of objects in the

right pane (the home).

Note that the sample5.csAgent* label is now cyan which means that it can be
copied. Also, the method buttons (lower left) for the Proxy are also enabled,
indicating that the methods can be invoked.

Step 3 - Iterate on Agent Home
Select Iterate from the Home’s toolbar. After the iteration is complete, you can
alter the window in the following ways:
v The columns can be rearranged by selecting the column heading with the

mouse and dragging it to a new column position.
v The column headings can be stretched or expanded by dragging the

separators with the mouse.

Chapter 13. Testing applications with QuickTest 651



v The panes can be resized by dragging separators of the panes with your
mouse. However, each pane cannot be resized to an area that is smaller
than the width of its toolbar.

v The entire window can also be resized.

Step 4 - Add Customers to Customer Home
In the QuickTest Main window, from Test Case menu,
selectsample5._csCustomerBean. Then in the Proxy pane of the Test Case
window, add customers with the following details:
1. Bob Smith, customerNo =11
2. Adam Smith, customerNo = 12
3. John Smith-Jones, customerNo = 13
4. Andrea Andrews, customerNo =21
5. Elijah Aardvark, customerNo = 22
6. John Q. Public, customerNo = 23
7. Marie Forest, customerNo=31

Select Add by Copy after specifying the data for each customer.

Step 5 - Evaluate on Customer Home
The following steps perform an evaluate on the customer home. This
incorporates the OOSQL predicate usage. The evaluate statement on the home
is created by using one or more OOSQL predicates with a value supplied for
the corresponding attribute. The window is updated after you complete these
actions.
1. Select > (greater than) from the list box next to customerNo.
2. Set the customerNo value to 0.
3. Select Iterate from the Home toolbar.

As a result, a predicate of customerNo > 0 is passed to the evaluate method
on the csCustomer Home when Iterate is selected.

Step 6 - Associate a csCustomer to a csAgent
The ForeignKey pattern provides three methods, addFoo, removeFoo and
listFoo where Foo is the child object contained by the parent. In this sample,
the child is the csCustomer. To establish the relationship between the parent
and child (Agent and Customer), the Agent must be identified and the
Customer object must be provided as the customer parameter of the
addCustomer method.

In this step, you select a customer and copy that customer to the agent
window as a parameter to the addCustomers method. The parameter name is
csCustomer. Before the customer can be copied to the agent, an agent must be
selected.

652 WebSphere: Application Development Tools Guide



1. Select Agent
From the sample5._csAgentBean window, select the row with Michael
Francis.
Note: sample5.csAgent* is cyan, which indicates that there is a selected
agent that can be copied and pasted.

2. Select Customer
From the sample5._csCustomerBean window select the row with Bob
Smith. Note that the label sample5.csCustomer is now cyan, and indicates
that the selected customer can be copied and pasted.

3. Copy Customer
To copy the selected customer, select the label sample5.csCustomer* in the
sample5._csCustomerBean window, and from its pop-up menu, select
Copy. This copies the CORBA object to the clipboard.

4. Paste customer to agent method’s parameter
In the sample5._csAgentBean window, select the label sample5.csCustomer
(which is a parameter of the addCustomers method for the proxy). From
its pop-up menu, select Paste. The customer object is pasted from the
clipboard, and the label changes to sample5.csCustomer*.

5. Invoke Agent addCustomers method
Click the addCustomers method to add the customer to this agent.

6. Using the same method, add one more customer to this agent by following
these steps:
a. From the sample5._csCustomerBean window, select the row on Adam

Smith.
b. In the Proxy pane, select sample5.csCustomer*, and from its pop-up

menu, select Copy.
c. In the sample5._csAgentBean window, right-click on the label,

sample5.csCustomer, which is a parameter of the addCustomers
method for the proxy, and select Paste.

d. Click addCustomers method to invoke the method.

Step 7 - Display Customers associated with Agent
The objective of this step is to determine which customers are now associated
with the selected agent. It also demonstrates how return values from method
invocations can be displayed. In this particular case, the return value is of
type Iterator.

You have to perform the following actions in this step:
v Invoke the listCustomers method on csAgent
v Copy the return value of Iterator*
v Paste the Iterator* to the Iterator label in the csCustomerBean window

Chapter 13. Testing applications with QuickTest 653



Select the listCustomers method. The Return = Iterator* now indicates that a
CORBA object is available for copying. Select the returned Iterator*, and from
its pop-up menu, select Copy.

In the sample5._csCustomerBean window, select the Iterator, and from its
pop-up menu, select Paste.

Once you have pasted Iterator*, you see the two customers that belong to
agent Michael Francis displayed in the window.

Step 8 - Query Evaluator
This step demonstrates the use of the query evaluator for the csAgentBean. In
the sample5._csAgentBean window, from the Options menu, select Query
Evaluator. The Query Evaluator window opens, and you can specify OOSQL
statements against the home. Refer to the help from within the window for
more details.

Specify the OOSQL statement in the Query Prompt field. To initialize the
prompt with an OOSQL statement that includes all the attributes and objects
that are contained in the home, make sure that the radio button Select all is
selected, and then click Set Prompt. Once the prompt field is populated, click
Query (which is next to the prompt entry) to perform the query. The result
sets are presented in a table similar to the Test Case Home table in the lower
part of the window. You can copy attributes from the table to paste into other
parts of QuickTest. In this exercise, after initializing the prompt field, add the
method listCustomers to the select clause. This is the way to invoke methods
in OOSQL statements. Click Query to run the query.

You can see the results of the query against the home in the window. There
is a column for the method listCustomers, which shows the return values of
type Iterator, which contains the customers defined for the csAgent. Note that
even though there are no customers defined for Charles Hobbes, the Iterator
is non-null, but the Iterator contains no elements.

Note:An Iterator will always be non-null. It is supposed to always return an
object instance. It may not contain any elements, depending upon how it was
created, and the data source. In this example, there were no customers
defined. So, the Iterator returned empty.

Now select the row with Charles Hobbes and the cell under the column
_csAgent. From the pop-up menu of the cell, select Copy. This provides the
CORBA object for Charles Hobbes, which can be copied for pasting to other
windows in QuickTest.

654 WebSphere: Application Development Tools Guide



Now, in the sample5._csAgentBean window, place the mouse on the Proxy
label, right-click and select Paste. This displays all the attributes for this
object.

Step 9 - Reference Collection
The reference collection must first be populated with data. To achieve this for
the tutorial, perform the following steps:
v Select the sample5._csCustomerBean window.
v Click Iterate on the home so that all the csCustomers are returned.
v Select the Add All to Reference Collection to add all the csCustomers to

the transient reference collection.
v Open the Reference Collection window, sample5._csCustomerBeanRefCol,

by selecting View > Reference Collection from the
sample5._csCustomerBean window. Select Iterate in the Reference
Collection window.

Refer to the help from within the Reference Collection window for more
details on the entries in the window.

Note that the two csCustomers have the agent attribute set with the agent
they were assigned to from the previous steps. As with the Query Evaluator,
you can select the cell, and copy and paste it to the csAgent window proxy
label. Also, the Query Prompt field of the Reference Collection window is
populated in the same manner as that of the Query Evaluator window. Note
that since both the Query Evaluator and Reference Collection tables are only
for display, you can only copy from these tables.

When this Reference Collection window is closed, the collection is removed.
The collection can always be extended by adding other objects using either
the Add to Reference Collection from the Proxy pane, or the Add All to
Reference Collection from the Home pane in the proxy window.

Step 10 - Save the QuickScript
During this entire tutorial, QuickTest has been recording all the activities that
have been exercised. At this time, use the QuickTest Main window and save
your actions in a QuickScript file using File > Save Script. Save the file in the
default directory (where the build and run scripts are located), and use the
default name: tmpScript.java.

The tmpScript.java file that is saved contains all the instructions that were
executed during the steps of the tutorial.

QuickScript files are written in Java. The scripts access the classes that were
emitted in the build step. The actions that are recorded are the events that
occurred during execution of QuickTest that involve Component Broker.

Chapter 13. Testing applications with QuickTest 655



Individual, elementary events such as key strokes, or mouse movements are
not recorded. Besides, the state of data for Adds, Updates and Deletes, and
the query statements that were invoked are also recorded. The replay of
QuickScript does not verify that the data processed during the initial
recording is the same but rather that the activity can be replayed successfully.

Step 11 - Loading the Script
Select File > Load Scriptand select the saved file, tmpscript.java. QuickTest
will compile the QuickScript for you. A message appears while the
compilation takes place. If there is an error, an output file is generated and
saved to the directory. This file can be viewed, and corrections made to the
QuickScript file.

Step 12 - Replaying QuickScript
Once the compilation completes successfully, the Controller window gives you
the following options, which are available when running the QuickScript file:

These options are found on the right side of the screen:
v Number of Loops

The entire QuickScript file will be executed using as many loops as
indicated. This provides the capability to stress the system. For our
purposes, type 2.

v Current Loop
While the QuickScript file is running, the current loop is displayed.

v Sleep Duration
This value is in terms of milliseconds (5000 ms = 5 seconds). Type 500. This
is equal to half a second.

v Start Time
When you click the Start button, this value is updated to identify the time
at which the execution started.

v End Time
When the specified number of loops is completed, this field is updated with
the time the execution completed.

These columns appear on the left side of the screen:
v Stop

Each cell in this column has a check box, which you can select, or clear to
toggle the option on or off. The entire column can be toggled by clicking
the title of the column. The statement that is ready to execute first checks if
the Stop cell is set. This statement will not execute until you clear the Stop
value, or click Continue. But first, the Stop value is checked against the
value of the corresponding After column. The value of the After cell
determines when the statement will stop executing (if Stop is enabled) in
relation to the value specified for Current Loop. For example, if the After
value is set to 1, row 15 will stop executing only when the value of Current

656 WebSphere: Application Development Tools Guide



Loop exceeds 1. This enables the system to execute the loop many times,
and provides the capability to stop after, for example, the 53rd loop.

v After
This value is compared with that of Current Loop to determine if the Stop
cell at the same row position is set should be activated. When the After
value is equal to the Current Loop value, if the Stop cell is set, the
statement will be stopped.
For example, if the After value is 3, processing starts, and it passes the first
and second loops without incident. On the third time through, it encounters
this statement. It halts before executing the statement, and will not proceed
until you click Continue, or you clear the Stop check box.

v Sleep
Rows that have the Sleep cell set will pause for the amount of time
specified in Sleep Duration before execution. The entire column can be
toggled on or off by clicking the column heading Sleep. The duration of
sleep will be 5000 milliseconds. The value of Sleep Duration can be
modified at any time, and the next execution of the Sleep row will use the
new value.

v Row
This is the count of the statement within the QuickScript file. When the
execution of a statement is stopped, the command console displays a
statement indicating the row that is currently stopped. This is to assist the
user in scrolling the table to the row with the active Stop statement when
they are viewing a large table of statements.

v Statements
These are the QuickScript statements that were executed during the
recording stage of QuickTest.

Buttons:
v Start

Begins the execution of the QuickScript file.
v Continue

When a Stop statement is reached, this button will be enabled. If you click
the button at this time, the statement will proceed to execute and the Stop
setting will remain.

Start the playback by clicking the Start button. You will observe that each row
that is to execute will be selected within the window. In the command
window that started the QuickTest application, a message appears with
information on which row is sleeping. After the sleep time is satisfied, the
selected row is executed. When a statement with Stop selected is encountered,
the application will stop until you either click Continue, or clear the check
box on that row. In either case, the execution of that statement will then
proceed. For this example, we will use the Continue button so that on the
second iteration, the Stop flag will still be in effect for this statement.

Chapter 13. Testing applications with QuickTest 657



While a statement is stopped, it is possible to check the database or server
application. For example, during this breakpoint, you could access the table in
the database for the application, and select all the rows to determine the state
of the contents.
Allow the script to continue through to the end of the statements. Since the
loop count was set at two (2), another execution of the script is required.
Again, the breakpoint on the stopped statement will be performed since the
check box is still selected. Allow the application to continue. After completion
of the two loops, the QuickScript Controller will still be active. Note the new
time in the End Time field. If desired, the Sleep, Stops and Loop counts can
be modified and additional testing performed.

“Generating QuickTest client applications” on page 614
“Running QuickTest client applications” on page 615
“Recording QuickScript” on page 617
“Compiling the QuickScript file” on page 618
“Running QuickScript” on page 618

“QuickTest” on page 611
“QuickScript” on page 616

“The QuickTest framework” on page 620
“QuickTest-generated files” on page 647

658 WebSphere: Application Development Tools Guide



Chapter 14. Command-line interfaces

Using Object Builder from the command line

The following tasks describe command-line interfaces to Object Builder:
v “Migrating from the command line” on page 35
v “Exporting XML from the command line” on page 660
v “Importing XML from the command line” on page 663
v “Importing IDL from the command line” on page 666
v “Importing edited source files from the command line” on page 682
v “Importing enterprise beans from the command line” on page 670
v “Generating code from the command line” on page 684
v “Rebuilding DLLs” on page 565

“Object Builder” on page 1

“Developing in Object Builder” on page 19

“obmigrate”
“obexport” on page 661
“obimport” on page 664
“obgen” on page 685
“make options” on page 688
“importidl” on page 667
“importimpl” on page 683
“cbejb options” on page 673

obmigrate

The obmigrate command can be used from the command line to migrate a
project or projects, along with the projects they depend on, from the 3.0
format to the 3.5 format.

The syntax of the obmigrate command is:

obmigrate -all project1 project2 ...projectn

The parameters are:

© Copyright IBM Corp. 1999, 2000 659



v -all
If the listed projects depend on other projects, these other projects will also
be migrated. This is generally the appropriate option when you want to
migrate a set of interdependent projects (a team environment) in a single
step. Dependencies will be migrated recursively.
For example, if you migrate a project \Integration, which depends directly
on \A, which depends in turn on \B, which depends in turn on \C, then
even though \Integration only depends directly on \A, it depends
indirectly on \B and \C as well, so those projects are also migrated.
If you omit the -all option, and one of the listed projects has dependencies,
then you will be prompted on how to handle these dependencies.

v project1 ...projectn
The list of projects to migrate. Project directories should be fully qualified
and separated by spaces (for example e:\myprojects\projectA
e:\myprojects\projectB)

“Projects and models” on page 17

“Migrating projects from 3.0” on page 33
“Migrating from the command line” on page 35
“Migrating a team environment” on page 36

Exporting XML from the command line

You can export the XML that defines a project’s model either from within
Object Builder, or from the command line.

To export from the command line or batch interface, use the “obexport” on
page 661 command:

obexport
-p project_directory

[-d target_file]

-ALL | [-UDBO -UDDO -UDCB -UDLOCAL -DLL -APPL -NIDL -CONT -UDPAO
-UDSCHEMA -UDEJB]

-v

Files are exported from the project directory (-p) to its \Export subdirectory.
Optionally, the exported content can be generated into a single target file (-d).

660 WebSphere: Application Development Tools Guide



You can either export the files for the main folders in the project (-ALL), or for
a specific folder or object type (for example, -UDBO for the User-Defined
Business Objects folder).

For example, if a project defines three components (Policy, CarPolicy, and
Claim), then the command:
obexport -p e:\myproject -UDBO -DLL -APPL

generates the following files into e:\myproject\Export\ :
v udbo.PolicyFile.xml, udbo.CarPolicyFile.xml, udbo.ClaimFile.xml (the

component business object layers)
v uddll.PolicyS.xml, uddll.PolicyC.xml, uddll.ClaimS.xml, uddll.ClaimC.xml

(the contents of the Build Configuration folder)
v udaf.MyApplicationFamily.xml (the application family defined in the

Application Configuration folder)

“Model interchange with XML” on page 492

“Using Object Builder from the command line” on page 659
“Exporting XML” on page 387

“XML interchange files” on page 493
“obexport”

obexport

The obexport command can be used from the command line to export XML
files for a specified project.

The syntax of the obexport command is:

obexport
-p project_directory

[-d target_file]

-ALL | [-UDBO -UDDO -UDCB -UDLOCAL -DLL -APPL -NIDL -CONT -UDPAO
-UDSCHEMA -UDEJB]

-v

The parameters are:
v -p project_directory

The project directory you are exporting from. The exported contents will be

Chapter 14. Command-line interfaces 661



placed in the project directory’s \Export subdirectory, unless you are
exporting to a target file and you specify a different path. Required.

v -d target_file
The name and path of a target file to generate content into. If you do not
specify a target file, the contents are exported to separate files based on the
content type, as described in “XML interchange files” on page 493.

v -ALL
Exports XML for the contents of the project’s folders. Cannot be set with
any of the folder- or object-specific export options.

v -UDBO
Exports udbo.bofile.xml for each business object file defined in the project’s
User-Defined Business Objects folder. Cannot be set with -ALL.

v -UDDO
Exports uddo.dofile.xml for each data object file defined in the project’s
User-Defined Data Objects folder. Cannot be set with -ALL.

v -UDCB
Exports udcb.composition.xml for each composition file defined in the
project’s User-Defined Compositions folder. Cannot be set with -ALL.

v -UDLOCAL
Exports udlocal.localonly.xml for each local-only object file defined in the
project’s Local-Only Objects folder. Cannot be set with -ALL.

v -DLL
Exports uddll.dll.xml for each DLL defined in the project’s Build
Configuration folder. Cannot be set with -ALL.

v -APPL
Exports udaf.appfamily.xml for each application family in the project’s
Application Configuration folder. Cannot be set with -ALL.

v -NIDL
Exports udnidl.nonidltype.xml for each non-IDL type in the project’s
Non-IDL Types folder. Cannot be set with -ALL.

v -CONT
Exports udcontainer.container.xml for each user-defined container in the
project’s Container Definition folder. Cannot be set with -ALL.

v -UDPAO
Exports udpaschema.paschema.xml for each PA schema in the project’s
User-Defined PA Schemas folder. Cannot be set with -ALL.

v -UDSCHEMA
Exports uddbschema.dbschemagroup.xml for each DB schema group in the
project’s DBA-Defined Schemas folder. Cannot be set with -ALL.

v -UDEJB
Exports udejb.ejbfile.xml for each enterprise bean in the project’s EJB folder.
Cannot be set with -ALL.

662 WebSphere: Application Development Tools Guide



v -v
Exports in verbose mode, with information on the status of each exported
item.

“Model interchange with XML” on page 492

“Using Object Builder from the command line” on page 659
“Exporting XML from the command line” on page 660

“XML interchange files” on page 493

Importing XML from the command line

There are two main cases that apply when you import XML into an Object
Builder project from the command line:
v Importing files into a single project
v Importing files into multiple projects

Importing files into a single project
To import from the command line into a single project, use the “obimport” on
page 664 command:

obimport -p project_directory -d source_dir [xmlfile1 xmlfile2 ...
xmlfilen | -ALL][-COE]

Files are imported into the project directory (-p) from the source directory (-d).
If you do not specify a source directory, it defaults to the \Export
subdirectory of the specified project directory. You can import specific files
from the source directory, or all files (-ALL). You can select to stop the import
if an error occurs, or continue despite the error (-COE, for continue on error).

For example:
obimport -Pe:\myproject -de:\anotherproject\Export -ALL

imports all XML files in e:\anotherproject\Export into the e:\myproject
project.

When you are importing related files (for example, the files for Agent and the
files for Customer, where Agent has a relationship to Customer), import all
the files involved in a single step to ensure that the cross-references are
correctly resolved. If you import related files in multiple steps, some
information may be lost or incorrectly imported.

Chapter 14. Command-line interfaces 663



Importing files into multiple projects
You can import files into multiple projects with obimport, using the -X option.
This is especially useful for projects that have cross-dependencies, where you
would otherwise have to import some sets of XML files multiple times.

Use the following command syntax to import into multiple projects:

obimport -x -d source_subdir project1 project2 ... projectn [-newuuid]
[-COE]

For each project listed, the XML files in the specified subdirectory are
imported, and any cross-project references will be resolved. If the XML files
are originally from the same model, specify -newuuid to assign new UUIDs as
necessary to avoid cross-project identity conflicts. UUIDs are used within the
XML file to uniquely identify elements. If you specify -COE, then the import
process will continue even if errors are encountered in some XML files.

“Model interchange with XML” on page 492

“Using Object Builder from the command line” on page 659
“Importing XML” on page 389

“XML interchange files” on page 493
“obimport”

obimport

The obimport command can be used from the command line to import XML
files to one or more specified projects.

There are two syntaxes you can use. The first is appropriate for importing into
single projects. The second is appropriate for importing into multiple projects.

Simple syntax

obimport -p project_directory -d import_dir [xmlfile1 xmlfile2 ...
xmlfilen | -ALL ][-COE]

Use the simple syntax when you are importing files into a single project.

Cross-project syntax

664 WebSphere: Application Development Tools Guide



obimport -x -d import_subdirectory project1 project2 ... projectn
[-newuuid] [-COE]

Use the cross-project syntax when you are importing files into multiple
projects.

Parameters

v -p
The project directory you are importing into. If you set -x, you do not need
to set -p : any directories you list on the command line will be assumed to
be project directories.

v -d
The directory that contains the XML files you are importing. Defaults to the
\Export subdirectory of the project directory you specified. If you set -x,
then you cannot specify an absolute path: you must specify a path that is
relative to the project directory, or accept the default.

v xmlfile1...xmlfilen
The XML files that you want to import. If you set -x or ALL, you cannot
specify particular files: all files in the import directories will be imported.

v -ALL
Imports all the XML files in the specified import directory. If you set -x, or
want to import particular XML files, you must not specify -ALL.

v -x
Specifies that you want to use the cross-project import syntax.
If you set -x:
– You cannot use -p. All directories listed on the command line will be

assumed to be target project directories.
– You cannot specify an absolute path with -d. You can specify a

subdirectory to import from, or accept the default.
– You cannot list particular files to import. -ALL is assumed.
– You must list at least one target project directory.

The import process will preserve any cross-dependencies among the files
being imported, and create any necessary project dependencies.

v project1...projectn
The projects that you want to import into. You must set -x for multiple
project directories to be recognized, otherwise you can only set one project
directory, with the -p option.

v -newuuid
Assigns new UUIDs for target models as necessary to avoid identity
conflicts (for example, to perform model refactoring). Only use with -x.
Specify this option when the source XML files come from the same project.

Chapter 14. Command-line interfaces 665



Every element within an XML file is identified by a UUID. When you move
elements from a single model into multiple models, the UUIDs need to be
recalculated to keep them unique.

v -COE
Continues the import process even if errors are encountered in the files
being imported. If you do not set -COE, the import process will stop when
it encounters an error.

“Model interchange with XML” on page 492

“Using Object Builder from the command line” on page 659
“Importing XML from the command line” on page 663

“XML interchange files” on page 493

Importing IDL from the command line

You can import IDL files into Object Builder directly from the command line
to create business object interfaces or data object interfaces in an Object
Builder project.

Note: The IDL must be CORBA 2.2-compliant without IDL extensions. You
can make sure the IDL files you are importing are valid by compiling them
first. Object Builder will only import IDL files that are considered valid by the
compiler.

To import IDL from the command line, use the importidl command:

importidl
-p project_directory

-d source_directory

-ALL | -fimport_files

-i include_directories

-BO | -DO | -LOCAL

-v]

Files are imported into the target project directory (-p) from the source
directory (-d). You can either import all the files in the source directory
(-ALL), or only specified files (-f). If the files you import include other files,
you need to specify the directories that contain those include files (-i).

666 WebSphere: Application Development Tools Guide



By default, imported files becomes business object interfaces (-BO). You can
import them as data object interfaces by setting the -DO option.

If you have problems importing, set the -v option to display processing
messages and errors, to help you debug the problem files.

The order of the options is not important, except for -ALL, which must come
after -d source_directory.

Examples

importidl -p E:\myProject -d E:\myIDLfiles -ALL
Imports all the IDL files in E:\myIDLfiles into the project
E:\myProject as business object interfaces.

importidl -v -p E:\myProject -d E:\myIDLfiles -ALL
Attempts to import all the IDL files in E:\myIDLfiles into the project
E:\myProject as business object interfaces, and displays processing
messages to help you locate and debug any problem files.

importidl -p E:\myProject -d E:\myIDLfiles -f claimdata.idl
policydata.idl -i E:\dependencies -DO

Imports E:\myIDLfiles\claimdata.idl and
E:\myIDLfiles\policydata.idl, as well as any include files they
reference in the E:\dependencies directory, into the project
E:\myProject as data object interfaces.

Interface Definition Language (Programming Guide)

“Using Object Builder from the command line” on page 659
“Creating a business object by importing an IDL file” on page 780
“Creating a data object by importing an IDL file” on page 804
“Creating a local-only object by importing an IDL file” on page 669

importidl

The importidl command can be used from the command line to import IDL
files into an Object Builder project.

The syntax of the importidl command is:

importidl
-p project_directory

Chapter 14. Command-line interfaces 667



-d source_directory

-ALL | -f idl_files

-i include_directories

-BO | -DO | -LOCAL

-v

importidl has the following options:
v -p project_directory

A target directory (the project directory you are importing into). Required.
v -d source_directory

A source directory (the location of the files you are importing). Required.
v -i include_dir1 include_dir2...include_dirn

Any include directories (the location of any include files referenced by the
files you are importing). Required if the files you import have references to
include files.

v -ALL
Imports all files in the source directory. You must specify this option, or -f
with a list of files; you cannot specify both options. This option, if it
appears, must come after the -d option.

v -f file1 file2 ... filen
Imports the specified files from the source directory. You must specify this
option, or -ALL; you cannot specify both options.

v -BO
The contents of the imported files are added to the target project as
business object files, business object modules, or business object interfaces.
These objects appear in the User-Defined Business Objects folder. This is the
default behavior, and you do not have to explicitly set this option. You
cannot specify this option with either the -DO option, or the -LOCAL
option.

v -DO
The contents of the imported files are added to the target project as data
object files, data object modules, or data object interfaces. These objects
appear in the User-Defined Data Objects folder. You cannot specify this
option with either the -BO option, or the -LOCAL option.

v -LOCAL
The contents of the imported files are added to the target project as
local-only object files, local-only object modules, or local-only object
interfaces. These objects appear in the Local-Only Objects folder.You cannot
specify this option with either the -BO option, or the -DO option.

v -v
Debugs the imported files, and displays processing messages during the
import. Specify this option if you experience problems importing files.

668 WebSphere: Application Development Tools Guide



Interface Definition Language (Programming Guide)

“Importing IDL from the command line” on page 666

Creating a local-only object by importing an IDL file

If you have code already in IDL files, you can parse the code into Object
Builder, and incorporate the classes, relationships, and code in the IDL files
into your Object Builder application. A relationship is imported as methods.

Note: The IDL must be CORBA 2.2-compliant without IDL extensions. You
can make sure the IDL files you are importing are valid by compiling them
first. Object Builder will only import IDL files that are considered valid by the
compiler.

To import an existing IDL file, follow these steps:
1. Under Tasks and Objects, select the Local-Only Objects folder.
2. From the folder’s pop-up menu, select Import IDL. The Import IDL

wizard opens to the File Selection page.
3. Browse for and select the files you want to import. The files you select,

and any files they include, will be parsed and imported into Object
Builder.

4. Click Next. The Search Paths for Nested Files page opens.
5. From the Include directories pop-up menu, select Add. Browse for the

directories you want searched.
When you import a file that includes other files (that is, a file with nested
files), the import process will search for the other files in the directories
you specify here.

6. Click Finish. The selected files (and files they include) are parsed into
Object Builder, and the information in the IDL is added to the current
project model as business object files, business object modules, and
business object interfaces.

Interface Definition Language (Programming Guide)

“Importing IDL from the command line” on page 666
Creating a business object by importing an IDL file
“Creating a data object by importing an IDL file” on page 804

Chapter 14. Command-line interfaces 669



Importing enterprise beans from the command line

For redeployment, you can bypass the creation of the persistent object, and
the mapping of the data object to the persistent object, if these steps are not
required (as when you modify an enterprise bean, for example, by adding a
method to it) by importing from the command line.

You can import BMP entity beans and session beans from the command line.

To import enterprise beans from the command line, follow these steps:
1. Install the EJB Deployment Tool.
2. Invoke the tool using the “cbejb options” on page 673 command: at a

command prompt, type:

cbejb EJB_JARFile [-ob projDir] [-bean beanNames] -guisg

Note:The cbejb command has many other options that you can specify
according to your requirements. If you do not use the -guisg option, the
deployment process takes place entirely using only the command line,
without launching any interface.

If you use the -guisg option with the cbejb command, Object Builder’s Import
EJB JAR wizard opens. Follow these steps:
1. The Import EJB JAR wizard opens to the Enterprise Bean Selection page. It

shows the deployment options (the directory in which your project’s
models are stored, and the full directory path of the enterprise bean JAR
file that you specified for import), and the process options (the code
generation, compilation and build options) that you had specified with the
command. Only the process options are editable. If you had specified the
beans to be deployed with the cbejb command, they are listed in the
Enterprise Beans to Be Deployedpanel. You can change your selections.

2. Click Finish. The EJB Browser page opens. You can change the set of
deployment platforms for the beans, and change the setting of the target
build platform.You can select a bean from the Enterprise Beans to Be
Deployedpanel, and click Propertiesto either view or edit its definition.

3. The Import EJB JAR wizard opens to the Deployment Information page.
Except for the deployment platforms, you can edit all other information on
this page. You can provide a finder helper class name, a database name,
and add or delete client and server JAR file dependencies.
Note: If you created the beans that you imported using VisualAge for Java,
do not use the finder helper class that is generated by the tool. Instead,
you must use the FinderHelperGenerator utility of the EJB server in CB to
implement the finder helper class. For example, to generate a finder helper
class for the AccountHome interface, use the command:

670 WebSphere: Application Development Tools Guide



# ejbfhgen com.ibm.ejs.doc.account.AccountHome

This command generates the finder helper class named
com.ibm.ejs.doc.account.AccountHome.
For more information on finder helper classes, see Defining finder
methods, and in particular, Creating finder logic in the EJB server (CB) in
Writing Enterprise Beans in WebSphere.

4. If you are deploying either session or BMP entity beans, you can now click
Finish. If you are deploying CMP entity beans, click Next.

5. The Container-Managed Bean Settings page opens. You set the sentinel
values and string behavior for the Java primitive object types of the
enterprise bean that you have selected for deployment.

6. Click Next. The Container-Managed Bean Field-Level Settings page opens.
This page enables you to set the sentinel values and string behavior for
each CMP field in the bean.
Note: If you do not set a sentinel value for a field of appropriate type, a
default value is assumed. This is either the value that you set at the bean
level using the previous page (the Container-Managed Bean Settings page),
or if you had not explicitly set any values at the bean level, the default
values at the bean level that are assumed from the EJB JAR-level settings.

7. Click Finish.

The enterprise beans in the EJB JAR file (EJB_JARFile) that you selected for
deployment, are imported into Object Builder for deployment.

During deployment, a deployed JAR file is generated from an EJB JAR file.
The EJB Deployment Tool is thus used to deploy enterprise beans in the EJB
server (CB) environment. The deployed JAR file (which is represented by a
node in the Enterprise Beans folder in the Tasks and Objects pane of Object
Builder) contains classes required by the EJB server.

For session beans and BMP beans
The remaining deployment process (code generation and build) continues
automatically by means of the command line.

For CMP beans and MQSeries application adaptor-backed session beans
If cbejb is used with -guisg, you are presented with a dialog box from which
you can select different actions to be taken:
v launch Object Builder if you want to change the default mappings between

the data object and the persistent object;
v continue with code generation and build; or
v stop the deployment without generating and building code.

If cbejb is used without -guisg, you must type (at the command line) a
specific character that corresponds to the same actions:

Chapter 14. Command-line interfaces 671



v o, to launch Object Builder (most often if you want to change the default
mapping between the data object and the persistent object).

v c, to continue with model check, code generation and build
v x, to cancel out of the deployment process

Important:If you are working with MQSeries application adaptor-backed
session beans, you must select the action to launch Object Builder.

If you selected the action to open Object Builder, you will find the deployed
enterprise beans present in the Enterprise Beans folder under the JAR file
from which they were imported. Besides, Object Builder creates the following
objects for each enterprise bean that you select for deployment:

In the User-Defined Data Objects folder:
v the data object file
v the data object interface
v the data object implementation

Note: The IDL attributes of the data object interface correspond to the entity
bean’s container-managed fields.

In the User-Defined Business Objects folder:
v the associated business object
v the key
v the copy helper
v the managed object

Warning:It is recommended that you do not change the business object’s
implementation language, which is C++.

The following files that correspond to the imported JAR file are created in the
Working\<platform> directory:
v the Tie class
v the IDL files
v the Java files

You can now build and configure your application.

The EJB Deployment Tool also generates the data definition language (DDL)
file used during installation of the enterprise bean into the EJB server (CB).

After you have completed these steps, saved the model, and exited from
Object Builder, if you are working with either CMP entity beans, or session
beans that are associated with an MQSeries application adaptor-backed
business object, the Do All dialog box appears. You can specify further actions
to be taken: run the Model Consistency Checker, generate all code for model,

672 WebSphere: Application Development Tools Guide



build targets, or exit Object Builder. You also have the option of changing the
default checks that the Consistency Checker will perform (click the Checker
Options button, and select a different set of options, if you want to). Click
Start to run the Model Consistency Checker, generate code, and compile it (if
you have selected the corresponding check box options).

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)
The deployment descriptor (Writing Enterprise Beans in WebSphere)

“Chapter 8. Working with enterprise beans” on page 391
“Importing enterprise beans into Object Builder” on page 392
“Deploying enterprise beans into a polymorphic home” on page 412

“cbejb options”

cbejb options

The EJB deployment tool (cbejb) can be invoked using the following syntax:

cbejb EJB_JARFile [options]

The tool has the following options:
[-rsp responseFile]
[-ob projDir]
[-nm][-nc][-ng][-cc]
[-guisg]
[-platform [NT | AIX | OS390 | Solaris | HPUX]]
[-bean beanNames]
[-dllname DLLName beanName]
[-usecurdopo]
[-nousraction]
[-dbname DBName [beanName] ]
[-queryable beanName[:beanName]]
[-cacheddb2v52|-cacheddb2v61|-db2v61

|-oracle|-informix|-jdbcaa beanName[:beanName]]
[-ccf | -hod | -eci | -appc | -exci |

| -otma beanName[:beanName]]
[-finderhelper finderHelperClassName beanName[:beanName]]
[-polymorphichome beanName[:beanName]]
[-usewstringindo [beanNames]]
[-workloadmanaged [beanNames]]
[-family familyName [beanNames]]
[-clientdep deployed-jarFile [beanNames]]

Chapter 14. Command-line interfaces 673



[-serverdep deployed-jarFile [beanNames]]
[-sentinel [JavaPrimitiveObjectType=]sentinelValue
beanName[+CMFieldName][:beanName[+CMFieldName]]]
[-strbehavior strip|corba
beanName[+CMFieldName][:beanName[+CMFieldName]]]

Note: The EJB JAR file must be specified soon after the cbejb command. You
can specify the other options in any order.

Required option

v EJB_JARFile
This is a required parameter. It must be the first argument and it must
specify a valid EJB JAR file as described in Creating an EJB JAR file in
Writing Enterprise Beans in WebSphere.

Substitution option

v -rsp responseFiles
Specifies a file that contains a list of command-line options that you want to
use along with the cbejb command. This file can contain all options except
the EJB JAR file name. This makes the command you have to type at the
prompt much shorter and easier. You can also use options that you have
not specified in the response file, along with the -rsp option on the
command line.

Deployment-specific options

Optional options
v -ob projDir

The relative or full path name of the project directory in which the
generated files are stored. If this option is not specified, the current working
directory is used as the project directory.

v -bean beanNames
Identifies the enterprise beans (in the EJB JAR file) to be deployed. By
default, all enterprise beans in the EJB JAR file are deployed. This is a list
of one or more fully qualified enterprise bean names delimited by colons (:)
(for example,
com.ibm.ejs.doc.transfer.Transfer:com.ibm.ejs.doc.account.Account). For the
enterprise bean name, specify either the bean’s remote interface name, or
the name of its deployment descriptor. beanNames is the class name of the
EJB object interface. If you do not specify the bean names, all the enterprise
beans in the JAR file for which the option is valid are selected for
deployment.

Code generation and compilation options
v -nm

Does not generate and import XML.

674 WebSphere: Application Development Tools Guide



v -nc
Does not compile and link the code.

v -ng
Does neither XML generation, nor XML importing, nor code generation, but
runs make. That is, it compiles and links the code. You can use this option
instead of using make -f all.mak separately, after running cbejb. As an
example, you can use the command cbejb -My EJB.jar -nm -ng instead of
using cbejb -My EJB.jar, and then using make -f all.mak

v -cc
Cleans the compiled code (runs nmake with the clean option:nmake clean -f
all.mak), to remove make-generated files (the compiled and linked code).
That is, it generates the makefiles for your updated build configuration,
then deletes the existing DLLs and supporting files (such as .def). Finally, it
rebuilds the DLLs according to the updated makefiles.
Note the following points:

– If you specify -nm, -ng and -nc in a command-line invocation, you
must use the -cc option as well. That is, you must specify -cc if you
specify either of these combinations:
- -ng -nc
- -nm -ng -nc

– If you do not specify any of these options, the tool generates and
imports XML, does the code generation, and runs make, which compiles
and links the code.

For changes in the makefiles that are generated, refer to the section
Component Broker Support for Enterprise JavaBeans™ in the Component
Broker Information’s Release Notes.

v -guisg
Presents a graphical user interface (GUI) with which you can input tool
options, rather than use the command line for their input.

v -platform
Specifies the platform for which code is to be generated. You can specify
any one of NT, AIX, OS390, Solaris and HPUX, corresponding to the
platform on which you want to build.
Note: The platform that you specify will be automatically set in Object
Builder’s wizard pages (in the Deployment Platforms section). However,
this selection will not automatically update Object Builder’s Platform menu
settings. You will have to manually select the platforms for which you want
to view and edit code (Platform > View), those for which you want Object
Builder to generate code (Platform > Generate), and those for which you
want to apply development constraints according to the platforms for
which you are developing your application (Platform > Constrain).

Chapter 14. Command-line interfaces 675



v -dllname dllName beanName
Specifies the name of the DLL that should contain CB artifacts when the
EJB class called beanName is deployed.

v -usecurdopo
Uses the current mapping between the data object and the persistent object
in the existing model. Does not bring up the Object Builder interface for the
mapping.
Note: Use this option when you are redeploying the beans, if you had
already created a mapping between the data object and the persistent
object, and you either have no need to, or do not want to change it during
redeployment. The deployment will proceed automatically, without any
interruption.
When you first deploy CMP beans, you must not use -usecurdopo. The
default data object to persistent object mapping is created, and Object
Builder will be launched if requested, when you are prompted for the next
action to be taken.

v -nousraction
Does not prompt you for any action after the data object to persistent object
mapping is done.
The deployment flow (codegen and build, if specified previously using the
respective cbejb options) will continue by means of the command line only.
If you do not use this option, you are prompted for the next action, which
can be either x, to cancel out of the deployment process; c, to continue with
model check, code generation and build; or o, to launch Object Builder
(most often if you want to change the default mapping between the data
object and the persistent object).
If you do not use this option, and you use -guisg, you are presented with a
dialog box from which you can select different actions to be taken:
– launch Object Builder if you want to change the default mappings

between the data object and the persistent object;
– continue with code generation and build; or
– stop the deployment without generating and building code.

Backend storage type options
If none of the backend storage types are specified, DB2 version 5.2 with
embedded SQL is used as the default backend for CMP entity beans.

Note the following points:

If you specify 390 as a platform with the -platform option, you can only
specify one of the following options for backend storage:
v -db2v61
v -exci

676 WebSphere: Application Development Tools Guide



v -otma

Enterprise bean support is available on the Windows NT, AIX, Solaris, and
HP-UX deployment platforms. It is also available for OS/390. However,
Component Broker and WebSphere EJB clients will not be able to exchange
information with CB OS/390 enterprise beans.
v -dbname DBName [beanName]

Specifies the name of the database for CMP beans.
v -cacheddb2v52 beanName [:beanName]

Specifies CMP beans that use the DB2 version 5.2 backend with the Cache
Service.

v -cacheddb2v61 beanName [:beanName]
Specifies CMP beans that use the DB2 version 6.1 backend with the Cache
Service.

v -db2v61 beanName [:beanName]
Specifies CMP beans that use DB2 version 6.1 backend and embedded SQL.

v -oracle beanName [:beanName]
Identifies CMP entity beans that require Oracle to store persistent data.

v -informix beanName [:beanName]
Identifies CMP entity beans that require Informix that uses the Cache
Service, to store persistent data.
Restriction: A given transaction cannot access more than one Informix
database per CB server. To involve two Informix databases in a transaction,
you must access each database from a different server.

v -jdbcaa beanName [:beanName]
Identifies BMP entity beans that require JDBC (Java Database Connectivity),
along with the ability to carry out distributed transactions. -jdbcaa handles
distributed transactions by enabling the bean implementation to connect to
the CB Transaction Service. BMP beans that do not use the -jdbcaa option
handle persistence by themselves: they may or may not use JDBC.
If you do not specify a bean name, all beans in the JAR file use this option.

v -hod beanName [:beanName]
Identifies CMP entity beans that use Host-on Demand (HOD) to store
persistent data.

Must not be used for enterprise beans generated from the PAOToEJB
tool.

v -eci beanName [:beanName]
Identifies CMP entity beans that use the external call interface (ECI) to store
persistent data.
Must not be used for enterprise beans generated from the PAOToEJB tool.
Note: CMP beans that connect to HOD or ECI backends use Session
Service. All other CMP beans use Transaction Service.

Chapter 14. Command-line interfaces 677



v -appc beanName [:beanName]
Identifies CMP entity beans that use advanced program-to-program
communications (APPC) to store persistent data.
Must not be used for enterprise beans generated from the PAOToEJB tool.

v -exci beanName [:beanName]
Specifies CMP beans that use the EXCI backend.
Must not be used for enterprise beans generated from the PAOToEJB tool.

v -otma beanName [:beanName]
Specifies CMP beans that use the OTMA backend.
Must not be used for enterprise beans generated from the PAOToEJB tool.

v -ccf beanName [:beanName]
Specifies CMP beans that use the SAP backend, which is a common
connector framework (CCF) backend.
Can be used only with session beans, and with those that do not use the
MQSeries application adaptor backend support.

Run time-specific options

v -finderHelperfinderHelperClassName beanName [:beanName]
Specifies the finder helper class name for CMP entity beans. If unspecified,
it is assumed that no finder helper class is provided by the deployer.
You can use the FinderHelperGenerator utility to implement the finder
helper class. For example, to generate a finder helper class for the
AccountHome interface, use the command:
# ejbfhgen com.ibm.ejs.doc.account.AccountHome
This command generates the finder helper class named
com.ibm.ejs.doc.account.AccountHome.
For more information on finder helper classes, see Defining finder methods,
and in particular,
Creating finder logic in the EJB server (CB) in Writing Enterprise Beans in
WebSphere.
For more information on finder helper classes, see Defining finder methods
in Writing Enterprise Beans in WebSphere.

v -queryable beanName [:beanName]
Specifies CMP beans that are queryable, and generates a queryable CB
home object. You can use this option only for CMP entity beans that store
their persistent data in either a DB2, Oracle or Informix relational database.
You must use either this option, or the -polymorphichome option if the
finder helper class, which is used to implement the finder methods in a
CMP entity bean, uses the CB Query Service.
Note the following points:

– You must use this option if you use either Oracle or Informix Cache
Service as the backend storage type.

678 WebSphere: Application Development Tools Guide



– You must not use this option if an entity bean uses CICS or IMS to store
its persistent data.

By default, the interface definition language (IDL) interface of an enterprise
bean’s CB home extends the IManagedClient::IHome class, and the home
implementation extends the IManagedAdvancedServer::ISpecializedHome
class. An IDL interface of a queryable home extends the
IManagedAdvancedClient::IQueryableIterableHome class, and the home
implementation extends the
IManagedAdvancedServer::ISpecializedQueryableIterableHome class.

In addition, the generated business object (BO) interface is marked as
queryable. For queryable homes, the EJB client programming model
remains unchanged; however, a Common Object Request Broker
Architecture (CORBA), Java or C++ EJB client can treat the EJB home as an
IManagedAdvancedClient::IQueryableIterableHome object.

For more information on queryable homes, see the Advanced Programming
Guide.

v -polymorphichomebeanName[:beanName]
Specifies CMP beans that are polymorphic, and generates a polymorphic CB
home object. You can use this option only for CMP entity beans that store
their persistent data in either a DB2, Oracle or Informix relational database.
You must use either this option, or the -queryable option if the finder
helper class, which is used to implement the finder methods in a CMP
entity bean, uses the CB Query Service.
Note: If you do not specify either the -queryable, or -polymorphichome,
the tool generates a regular CB home.

v -usewstringindo
Maps the container-managed fields of an entity bean to the wstring IDL
type (rather than the string type) on the data object. It is preferable to map
to the string IDL type if the data source contains single-byte character data;
it is preferable to map to the wstring IDL type if the data source contains
double-byte or Unicode character data.

v -workloadmanaged
Marks a CMP entity bean or a stateless session bean for use in a
workload-managed container, or to generate for a BMP entity bean or a
stateful session bean a home interface that is workload-managed.

v -family familyName
Specifies the application family name to be generated. By default, this name
is set to the name of the EJB JAR file, with the word Family appended.

Chapter 14. Command-line interfaces 679



v -clientdepclient-dependentJARFile beanName [:beanName]
Specifies the name of the deployed JAR file that the EJB client depends on
at run time. It is used to compile the client JAR file. This is the file that uses
the enterprise bean being deployed.
You must specify the full path name of the file. To create multiple client
JAR files, specify this option for each JAR file that you want to create.

v -serverdep server-dependentJARFile beanName [:beanName]
Specifies the name of the deployed JAR that the EJB server (CB) depends
on at run time. This is the file that runs the deployed enterprise bean.
You must specify the full path name of the file. To create multiple server
JAR files, specify this option for each JAR file that you want to create. You
can also use this option to identify existing JAR files that contain classes
that are required by the enterprise bean being deployed. If you do, the EJB
server’s CLASSPATH environment variable is automatically updated to
include this specified JAR file.
Note:Only the options -finderhelper, -family, -clientdep, and -serverdep
can be specified more than once with a different value. For example:
-family fmy1 bean1:bean2 -family fmy2 bean3:bean4 is valid.
-family fmy1 bean1:bean2 -family fmy1 bean3:bean4 will result in an
error.

v -sentinel [JavaPrimitiveObjectType=]sentinelValue
beanName[+CMFieldName][:beanName[+CMFieldName]]]
Specifies a sentinel value for either a CM field, a Java primitive object type
of an enterprise bean, or a Java primitive object type of all deployed
enterprise beans.
Note: There must not be a space either before or after the = (equal to) sign.
Examples:
-sentinel java.lang.Integer=-55555

specifies the value -55555 for the Java primitive type java.lang.Integer
-sentinel java.lang.Integer=-55555
com.ibm.ejb.cb.samples.hello.tier2.Hello:
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel

specifies the value -55555 for the Java primitive object type java.lang.Integer
for both the beans com.ibm.ejb.cb.samples.hello.tier2.Hello and
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel
-sentinel -55555

com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel+hotelNumber:
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel+price

specifies the value -55555 for the two fields named hotelNumber and price,
of the enterprise bean com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel.

v -strbehavior strip|corba
beanName[+CMFieldName][:beanName[+CMFieldName]]]

680 WebSphere: Application Development Tools Guide



Specifies the string behavior for a CM field, all strings in an enterprise
bean, or all strings in all deployed enterprise beans. Use the stripoption to
remove trailing spaces in the string. Use corbato indicate that the string is a
CORBA string.
Examples:
-strbehavior CORBA

Specifies that all strings in all deployed enterprise beans in the JAR file are
to have the CORBA string behavior.
-strbehavior corba
com.ibm.ejb.cb.samples.hello.tier2.Hello:
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel

Specifies that the string behavior of all strings in the two enterprise beans
com.ibm.ejb.cb.samples.hello.tier2.Hello, and
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel is to be CORBA
-strbehavior strip
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel+hotelNumber:
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel+price

Strips trailing spaces from the two fields hotelNumber and price (which are
of string type), of the enterprise bean
com.ibm.ejb.cb.samples.travel.tier2.hotel.Hotel

Note: The -sentinel and -strbehavior options can be used to change the
settings at the JAR level, the bean level, or the field level. You can only set
bean- and field-level settings when you use Object Builder to deploy the
beans (using the Container-Managed Bean Settings page, and the
Container-Managed Bean Field-Level Settings page respectively).

The EJB JAR file (Writing Enterprise Beans in WebSphere)
An introduction to enterprise beans (Writing Enterprise Beans in WebSphere)

“Importing enterprise beans into Object Builder” on page 392
“Deploying enterprise beans using the EJB Deployment Tool” on page 411
Developing and deploying enterprise beans with EJB server (CB) tools
(Writing Enterprise Beans in WebSphere)
Creating finder logic in the EJB server (CB) (Writing Enterprise Beans in
WebSphere)

Chapter 14. Command-line interfaces 681



Importing edited source files from the command line

If you make changes to method implementations in the generated source
code, you need to import the changes back into Object Builder, or the changes
will be overwritten the next time you generate code.

When you import edited code, only changes to method implementations are
applied. The import process recognizes method implementations by the
comment block that delimits them:

User-defined method

// <GeneratedMethodBody>
// <Body origin=“user” xmi.uuid=“...”>
// Insert method modifications here
...
// End method modifications here
// </Body>
// </GeneratedMethodBody>

Framework method

// <GeneratedMethodBody>
// <Body origin=“ob” xmi.uuid=“...”>
// Insert method modifications here
...
// End method modifications here
// </Body>
// </GeneratedMethodBody>

The comment block is inserted by the code generation process. Any changes
you make outside of these generated comment blocks are ignored.

You can import changes in batch mode, with the “importimpl” on page 683
command:

importimpl -p project_directory -f platform\file1
platform\file2...platform\filen

where project_directory is the name of the project directory that contains your
model, and the file names that follow are the business object implementation
files that contain your changes, including their path relative to the current
project’s \Working directory, or in other words, including the name of the
platform subdirectory they are in. For example:

importimpl -pF:\MyProject -fNT\ClaimBO.cpp NT\AgentBO.java

682 WebSphere: Application Development Tools Guide



You can also import code changes from within Object Builder, from the
pop-up menu of the User-Defined Business Objects folder.

“Using Object Builder from the command line” on page 659
“Importing edited source files” on page 385
“Editing a business object implementation” on page 792
“Generating code” on page 551
“Implementing methods” on page 752

“importimpl”

importimpl

The importimpl command can be used from the command-line to apply
changes in edited source files to the original Object Builder project. You can
only import changes to method bodies, which are bracketed in the source files
with the following comment lines:

// Insert method modifications here
...
// End method modifications here

Any other changes in the source files will be ignored, and you must apply
them separately, by editing the project in Object Builder.

The syntax of the importimpl command is:

importimpl -p project_directory -f platform\file1
platform\file2...platform\filen

importimpl has the following options:
v -p project_directory

A target directory (the project directory you are importing into). Should be
the same project the source files were generated from. Required.

v -f platform\files
The source files that you have changed, including, for each one, the name
of the platform subdirectory it is in. Should be business object
implementation files, with modifications only to method bodies, as marked
by the comment syntax shown above.

“Using Object Builder from the command line” on page 659
“Importing edited source files” on page 385

Chapter 14. Command-line interfaces 683



“Editing a business object implementation” on page 792
“Generating code” on page 551
“Implementing methods” on page 752

Generating code from the command line

You can generate code from Object Builder from the command line, using the
utility “obgen” on page 685.

The utility has the following command-line syntax:

obgen -p project_directory

-d destination_directory

-a [All|BO|DO|Make|SM]
-t [NT|AIX|Solaris|390]
-o [IVB_UNOPTIMIZE | IVB_OPTIMIZE | IVB_TRACE | IVB_TRACE_DEBUG
]

-changed

-linked

You can use obgen to generate code for specific objects (-a[BO|DO], code for
all objects (-aAll), makefiles (-aMake), or System Management DDL files
(-aSM).

You can generate to any of the platforms supported by Object Builder (-t). The
code will be generated into the appropriate platform subdirectory of the
destination directory you specify (by default, code goes to the current project’s
Working\platform\config directory).

Note: If you find the process of generating code using
obgen slowing down, shut down the run time components. That is, use the
System Manager (SM) user interface to stop any CB application servers that
are running on your system, and then stop the CBConnector service (bgmain
process). This improves the performance of obgen by making more memory
available.

If you are generating makefiles or SM DDL files, you can have them target
one of four default configurations, with equivalent output directories, with the
-o option. The code will be built into the appropriate config subdirectory of the
destination\platform directory (by default, code will be built into the current
project’s Working\platform\PRODUCTION directory). Makefiles will be
configured to build targets with the appropriate options (unoptimized,
optimized, trace-enabled, or trace- and debug-enabled).

684 WebSphere: Application Development Tools Guide



You can select to generate every file for the objects you select (the default), or
only changed files (-changed).

You can generate for just the current project (the default), or for all dependent
projects as well (-linked).

“Projects and models” on page 17

“Using Object Builder from the command line” on page 659
“Generating code” on page 551
“Generating a makefile” on page 556
“Generating the DDL files” on page 593
“Setting Object Builder preferences” on page 27

obgen

You can generate code from Object Builder from the command line, using the
obgen.bat utility.

The utility has the following command-line syntax:

obgen -p <project_directory>

-d <destination_directory>

-a [All|BO|CO|LO|DO|Make|SM]
-t [NT|AIX|Solaris|390|HPUX]
-o [IVB_UNOPTIMIZE | IVB_OPTIMIZE | IVB_TRACE | IVB_TRACE_DEBUG
]

-changed

-linked

obgen has the following options:
v -p <project_directory>

The project directory you want to generate code for. Required.
For example: -pE:\myproject

v -d <destination_directory>
The directory you want to generate code into. By default, code is generated
into the listed project’s \Working\platform directory (where platform is your
target development platform, as set in Object Builder’s Platform menu).

v -a <object_type>
The type of objects you want to generate. The object type must be one of
the following:

Chapter 14. Command-line interfaces 685



– All
Generate all objects in the project (equivalent to selecting Generate > All
from the pop-up menus of the User-Defined Business Objects folder, the
Build Configuration folder, and the Application Configuration folder).

– BO
Generate all business objects (equivalent to selecting Generate > Selected
from the pop-up menu of each business object interface and business
object implementation).

– CO
Generate all compositions (equivalent to selecting Generate > Selected
from the pop-up menu of each composite business object interface, and
composite business object implementation).

– LO
Generate all local-only objects (equivalent to selecting Generate >
Selected from the pop-up menus of each local-only object).

– DO
Generate all data objects (equivalent to selecting Generate > All from the
pop-up menu of the User-Defined Data Objects folder).

– Make
Generate all makefiles (equivalent to selecting Generate Makefiles from
the pop-up menu of the Build Configuration folder).

– SM
Generate all SM DDL (equivalent to selecting Generate > All from the
pop-up menu of the Application Configuration folder).

v -t <platform_name>
Specify platforms to generate code for. By default, code is generated for the
current platform only. Options are NT, AIX, 390, Solaris and HPUX. Also
sets the platform subdirectory code will be generated into (for example,
Working\NT\).

v -o <configuration_type>
Specify the output directory and configuration type the generated makefiles
will target. Also sets the directory for generated SM DDL files. You can set
the following:
– IVB_UNOPTIMIZE

Makefiles will build into the Working\platform\NOOPT directory.
Makefiles will be generated to build unoptimized targets (equivalent to
setting the default configuration Unoptimized, in the environment
preferences for Object Builder).

– IVB_OPTIMIZE
Makefiles will build into the Working\platform\PRODUCTION directory.
Makefiles will be generated to build optimized targets (equivalent to
setting the default configuration Production, in the environment
preferences for Object Builder). This is the default.

686 WebSphere: Application Development Tools Guide



– IVB_TRACE
Makefiles will build into the Working\platform\TRACE directory.
Makefiles will be generated to build targets enabled for trace (equivalent
to setting the default configuration Trace, in the environment preferences
for Object Builder).

– IVB_TRACE_DEBUG
Makefiles will build into the Working\platform\TRACE_DEBUG
directory. Makefiles will be generated to build targets enabled for trace
and debug (equivalent to setting the default configuration Trace and
debug, in the environment preferences for Object Builder).

v -changed
Generate only code for files that have changed. By default, all files are
regenerated.

v -linked
Generate code for the current project only (not for projects listed as
dependencies). Generate makefiles that refer to the \Working directories of
other projects for any dependencies on other projects. This is equivalent to
setting the Team environment option in the Object Builder Preferences
notebook (on the Tasks and Objects page of the notebook).
If you do not specify the -linked option, then code is generated for objects
in the specified project, and for projects listed as dependencies, and for
their dependencies, and so on. This is not equivalent to the Stand-alone
environment option in Object Builder: when you generate code from within
Object Builder, for a standalone environment, only objects in the current
project, and their direct dependencies, are included.
For example, the command:
obgen -pe:\myproject -aBO
generates the code for all business objects in the project e:\myproject , code
for business objects in projects it depends on, and code for projects they
depend on, until all dependencies are fulfilled. The generated code for all
projects is placed in the e:\myproject\Working\platform directory (where
platform is your target development platform, as set in Object Builder’s
Platform menu or with the -t option).

Note: If you find the process
of compiling code slowing down when you use obgen, shut down the run
time components. That is, use the System Manager (SM) user interface to stop
any CB application servers that are running on your system, and then stop
the CBConnector service (bgmain process). This improves the performance of
obgen by making more memory available.

“Projects and models” on page 17

Chapter 14. Command-line interfaces 687



“Generating code from the command line” on page 684
“Generating code” on page 551
“Generating a makefile” on page 556
“Generating the DDL files” on page 593
“Setting Object Builder preferences” on page 27

make options

When you build your DLLs from the command line (by making all.mak), you
can set options that determine how and where your DLLs and JAR files are
built. When a make option corresponds to a build option that you can set
within Object Builder, it is described in “Build options” on page 568.

While you can configure a build without using these options (for example, by
specifying a set of compile and link options in the Properties wizard that
enable a DLL for debugging), the make options are applicable cross-platform,
and will set the appropriate compile and link options for whichever platform
you are targeting.

There are two categories of options available for make:

Configuration options Target options

v IVB_BUILD_VERBOSE=1 (page 689)

v IVB_DYNAMIC_LINK=1 (page 690)

v IVB_OPTIMIZE=1 (page 690)

v IVB_TRACE=1 (page 691)

v IVB_TRACE_DEBUG=1 (page 691)

v IVB_UNOPTIMIZE=1 (page 692)

v IVB_COMBINE_SOURCE=1 (page 692)

v activex (page 692)

v all

v cleandll (page 693)

v cpp (page 693)

v java (page 693)

v jcb (page 693)

v quicktest (page 693)

When used on the command-line, some of the configuration options set the
output directory. For example, the command:

nmake -f all.mak IVB_TRACE=1

builds the resulting DLLs in the directory Working\platform\TRACE. Options
specified on the command line override the default configuration selected
within Object Builder. They do not override any DLL-specific options set
within Object Builder.

688 WebSphere: Application Development Tools Guide



Note: If your compile command fails due to an incorrect DB2 user ID
and password error, run the following command before you run the
make (AIX) or nmake (NT) command:
export IVB_DB2AUTH=“USER test USING password”
set IVB_DB2AUTH=USER test USING password

If you run into this problem on the Solaris or HPUX,
make sure that you are authenticated to DB2 before you run the make
command.

DLL-specific options do not affect the output directory. For example, if you set
IVB_UNOPTIMIZE=1 for ClaimS.DLL (within its DLL configuration wizard),
and then build from the command line with IVB_OPTIMIZE=1, then the
specific option for ClaimS.DLL overrides the global option in terms of what is
built, but accepts the global target in terms of where it is built: all DLLs are
built into Working\platform\PRODUCTION, including the unoptimized
ClaimS.DLL

If you specify conflicting configuration options on the same command line,
only the highest priority configuration option takes effect. The order in which
they are listed does not matter. The order of priority is:
1. IVB_UNOPTIMIZE=1 (equivalent to IVB_OPTIMIZE=0)
2. IVB_OPTIMIZE=1 (equivalent to IVB_UNOPTIMIZE=0)
3. IVB_TRACE=1
4. IVB_TRACE_DEBUG=1

For example:

nmake -f all.mak IVB_TRACE=1 IVB_UNOPTIMIZE=1 IVB_OPTIMIZE=1

results in all DLLs being built in Working\platform\NOOPT, and all DLLs
being built unoptimized (except where overridden in a particular DLL’s
configuration). The IVB_TRACE=1 and IVB_OPTIMIZE=1 options are ignored.

The predefined make options provided by Object Builder function as follows:

IVB_BUILD_VERBOSE=1
The DLLs are compiled and linked with the maximum amount of feedback
generated. Options set:

CPP Compile:

v /Wall

v -qinfo=all

Chapter 14. Command-line interfaces 689



v -V -v

v -verbose=%all

v -v

Link:

v /VERBOSE

v none (lisings exist in .map files)

v none (listings exist in .llst.files)

v none (listings exist in .map files)

v -Wl, -v

javac:
v all platforms: -verbose

IVB_DYNAMIC_LINK=1
The DLLs are linked dynamically with the VisualAge C++ run-time DLLs.
Dynamic linking reduces the size of your DLLs, but makes them dependent
on the presence of the VisualAge C++ DLLs. This is the default behavior.
After linking, dllrname is called against the DLLs to rename them to
equivalent versions shipped with CB (the server renames the DLLs, changing
the prefix from CPP to SOM). As a result, the DLLs that are built are
dynamically linked against our renamed version of these DLLs. This ensures
that the DLLs are always there even though the Toolkit (and the compiler) are
not required to exist on the server.
You must then package the run-time DLLs with your application:

CPP Compile:
v /Gd+

Only Windows needs the ability to switch between dynamic and static linking
because the C/C++ run time is part of the compiler. On the other platforms,
the run times are part of the operating system.

IVB_OPTIMIZE=1
You can also use IVB_UNOPTIMIZE=0 instead. If specified on the
command-line, the DLLs are built in the Working\platform\PRODUCTION
directory. On by default. The DLLs are compiled with optimization, including
inlining of code.

690 WebSphere: Application Development Tools Guide



CPP Compile:

v /O+

v -O -Q

v -O

v -O

v -O

javac:
v all platforms: -O

IVB_TRACE=1
If specified on the command-line, the DLLs are built in the
Working\platform\TRACE directory. Defines the CBS_TRACE_DEBUG
preprocessor macro, which then includes code that allows the DLL to send
trace data to the Object Level Trace tool. Option set:

CPP Compile:

v /DCBS_TRACE_DEBUG

v -DCBS_TRACE_DEBUG

v -DCBS_TRACE_DEBUG

v -DCBS_TRACE_DEBUG

v -DCBS_TRACE_DEBUG

The resulting executables and libraries are linked to the Object Level Trace
library.

IVB_TRACE_DEBUG=1
If specified on the command-line, the DLLs are built in the
Working\platform\TRACE_DEBUG directory. Options set:

CPP Compile:

v /O- /Ti+ /Tm+ /DCBS_TRACE_DEBUG

v -g -DCBS_TRACE_DEBUG

v -g -DCBS_TRACE_DEBUG

Chapter 14. Command-line interfaces 691



v -g -xs

v -gl

The resulting executables and libraries are linked to the Object Level Trace
library.

IVB_UNOPTIMIZE=1
You can also use IVB_OPTIMIZE=0 instead. If specified on the command line,
the DLLs are built in the Working\platform\NOOPT directory. The DLLs are
compiled without optimization. Option set:

CPP Compile:

v /O-

v -qnooptimize

activex
Builds ActiveX interfaces. Only available on Windows NT.

IVB_COMBINE_SOURCE=1
This is the single file build speed-up process. If you specify
IVB_COMBINE_SOURCE=1 on the command line, the DLLs are built so that
the header files are not processed multiple times. This reduces the time
required for the build. This is equivalent to using the Minimize C++ compiler
invocationsoption on the Makefile Generation page, when you specify your
build preferences (File > Preferences, Tasks and Objects, Makefile Generation).

Note:When you use this single file build speed-up process you will see a
warning message due to automatic changing of the _import and _export
status symbols. This warning can safely be ignored. It is part of an internal
mechanism to ensure that code in separate compilation units, if any, (that is,
in separate DLL files) does not fail to link. This is particularly true if, for
example, one file contains the definition of a function, and another one
contains its actual implementation.

all
Builds as follows:

692 WebSphere: Application Development Tools Guide



NT Unix OS/390

v IDL

v C++

v Java

v JCB

v ActiveX (if enabled in
Preferences)

v QuickTest (if enabled in
Preferences)

v IDL

v C++

v Java

v JCB

v QuickTest (if enabled in
Preferences)

v IDL

v C++

v Java

cleandll
Rebuilds DLLs (linking), without recompiling. This option is available on the
command line, and can be used when you have made changes in the Build
Configuration folder that require rebuilding your DLLs, but have not made
any changes to your components that require regenerating or recompiling
code. For example, if you move a managed object configuration from one DLL
to another in Object Builder, you can rebuild from the command line with the
cleandll option, to build the updated DLLs.

cpp
Builds IDL and C++.

java
Builds IDL and Java.

jcb
Builds Java client bindings.

Not available on OS/390.

quicktest
Builds QuickTest targets.

Not available on OS/390.

“Configuring builds” on page 549
“Defining a client DLL” on page 552
“Defining a server DLL” on page 554
“Generating a makefile” on page 556
“Building the DLLs” on page 558
“Rebuilding DLLs” on page 565
“Setting Object Builder preferences” on page 27

Chapter 14. Command-line interfaces 693



“Default Configuration” on page 566
“Build options” on page 568

obcheck

The obcheck command is a command-line model consistency checker tool that
verifies models that you have built with the Object Builder. It helps you
identify problems, such as dangling relationships, in your model before you
compile or run your application. Running the obcheck command is the same
as selecting Check Model from the File menu in Object builder.

The command format is:
obcheck modelName option1+ option2- option3+ ...

Each option is followed by a “+” or a “-” to turn the option on or off,
respectively. For example, the following will check model integrity (-i+), but
not platform constraints (-p-):
obcheck myModel -i+ -p-

You may use the following options with obcheck:

Option Description Default value

-3 CB OS/390-specific checks. -3-

-a Check changed framework and accessor methods. -a+

-c Check data object and container consistency. -c+

-d Locate files not in DLLs. -d+

-e Check for null sentinal mappings. -e-

-f Fix model integrity problems. -f-

-i Check model integrity. -i-

-l Display only local model messages. -l-

-m Check for empty method bodies. -m+

-n Locate object naming errors. -n+

-o Warn about dangerous method overrides. -o+

-p Check platform constraints. -p+

-s Check key attribute string behavior. -s+

-t Check for use of “invalidType”. -t+

-w CB workstation-specific checks. -w+

-y Display warning messages. -y+

694 WebSphere: Application Development Tools Guide



Option Description Default value

-z Display informational messages. -z+

“Troubleshooting” on page 905

“Checking a model for consistency” on page 31
Verify models with model consistency checker (Problem Determination Guide)

Consistency checker errors (Problem Determination Guide)

Chapter 14. Command-line interfaces 695



696 WebSphere: Application Development Tools Guide



Chapter 15. Object tasks

Working with components

The following tasks deal with creating relationships between components,
inheritance between components, importing and exporting information, and
working with the various component objects:
v “Working with attributes”
v “Working with methods” on page 750
v “Working with constructs” on page 769
v “Working with business objects” on page 774
v “Working with data objects” on page 795
v “Working with keys” on page 825
v “Working with copy helpers” on page 829
v “Working with DB persistent objects” on page 832
v “Working with DB schema groups” on page 840
v “Working with DB schemas” on page 843
v “Working with PA persistent objects” on page 860
v “Working with PA schemas” on page 862
v “Working with managed objects” on page 869
v “Working with specialized homes” on page 875
v “Working with container instances” on page 883
v “Working with compositions” on page 884
v “Working with composite business objects” on page 891
v “Working with composite keys” on page 900
v “Working with the SQL View Editor” on page 850

Component (Programming Guide)

“Developing in Object Builder” on page 19

Working with attributes

Component attributes are defined in the business object interface. You can also
define attributes for specific component objects (business object
implementations, data object interfaces, data object implementations).

© Copyright IBM Corp. 1999, 2000 697



The get and set methods for component attributes are defined in the business
object implementation and data object implementation. The mapping between
attributes and data stores is accomplished using special framework methods
in the data object and persistent objects.

The following tasks deal with attributes:
v “Adding an attribute” on page 699
v “Editing an attribute” on page 700
v “Mapping data object attributes to persistent object attributes” on page 730
v “Deleting an attribute” on page 701

“Attributes”

“Working with components” on page 697
“Working with methods” on page 750

Attributes

Public attributes of a component are defined in the business object interface or
in a local-only object. You can define protected or private attributes in the
business object implementation. When you change an attribute in a business
object interface, the change is applied automatically to the business object
implementation, and is applied to the key, copy helper, and managed object
the next time you edit them (open and finish their properties wizard). When
you change an attribute in a data object interface, the change is applied
automatically to the data object implementation.

You can also define implementation-only attributes in the Business Object
Implementation wizard or Data Object Implementation wizard. These
attributes are not available in the IDL and are not exposed in the managed
object for the component.

Attributes are defined in component objects as follows:
v Behavior:

– Business object interface: IDL attributes
– Business object implementation: get and set methods, in C++ or Java
– Key: get and set methods, in C++ and Java
– Copy helper: get and set methods, in C++ and Java

v Data:
– Data object interface: IDL attributes
– Data object implementation: get and set methods, in C++

698 WebSphere: Application Development Tools Guide



– Persistent object: get and set methods, in C++
– Schema: table columns in a database, or methods of a procedural adaptor

bean.

Component
“Get and set methods” on page 755
Attribute declarations (Programming Guide)

“Working with attributes” on page 697

Adding an attribute

You can explicitly define attributes in the business object interface, or in data
object interfaces that are not associated with a business object. You can also
add implementation-only attributes to either a business object implementation
or a data object implementation. Implementation-only attributes are not
exposed in the component’s managed object.

When you add objects from an interface, any elements necessary to support
the interface’s attributes are added automatically. When you add a business
object implementation and a data object interface in a single step, you do not
need to define the data object attributes separately: you can select the data
object attributes from a list of the existing business object attributes.

To define new attributes in an existing component, add them in the business
object interface, edit the key and copy helper if you want the attribute to be
used in those objects, and then edit the business object implementation to
make it part of the data object. The changes are applied automatically to the
implementations.

To add an attribute to an existing interface, follow these steps:
1. From the interface’s pop-up menu, click Properties.
2. In the interface’s wizard, click the page title and turn to the Attributes

page.
3. From the pop-up menu of the Attributes folder on that page, click Add.
4. Define the attribute.
5. Click Refresh. The attribute is added to the Attributes folder.
6. Click Finish.

To make the new attribute part of an associated data object, follow these
steps:
1. From the business object implementation’s pop-up menu, click Properties.

Chapter 15. Object tasks 699



2. In the implementation’s wizard, click the page title and turn to the Data
Object Interface page.

3. Move the attribute from the Business Object Attributes list to the State
Data list.

4. Click Finish. The attribute is added to the data object, including its data
object implementation.

If appropriate, you can also edit the key and copy helper associated with the
interface, and add the new attribute to them.

“Attributes” on page 698

“Working with attributes” on page 697
“Editing an attribute”
“Editing a business object interface” on page 791
“Editing a data object interface” on page 817

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing an attribute

When you edit attributes in an existing component, you must edit them in the
business object interface. The change is automatically applied to the other
objects in the component.

You can also edit an attribute in a data object interface, if it is not yet
connected to a business object implementation.

To edit an attribute, follow these steps:
1. From the interface’s pop-up menu, click Properties.
2. In the interface’s wizard, click the page title and turn to the Attributes

page.
3. Select an existing attribute under the Attributes folder.
4. Edit the properties of the attribute.
5. Click Refresh. The changes are applied.
6. Click Finish.

The change is automatically applied to the equivalent attribute in any related
key, copy helper, implementation, or data objects.

700 WebSphere: Application Development Tools Guide



“Attributes” on page 698

“Working with attributes” on page 697
“Deleting an attribute”
“Editing a business object interface” on page 791
“Editing a data object interface” on page 817

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting an attribute

When you delete attributes from a component, you must delete them in the
business object interface. References to the attribute in the rest of the
component, and in other components will be automatically removed.

You can also delete an attribute from a data object interface, if it is not yet
connected to a business object implementation.

To delete an attribute, follow these steps:
1. From the interface’s pop-up menu, click Properties.
2. In the interface’s wizard, click the page title and turn to the Attributes

page.
3. Select an existing attribute under the Attributes folder.
4. From the attribute’s pop-up menu, click Delete. The attribute is removed.
5. Click Finish.

“Attributes” on page 698

“Working with attributes” on page 697
“Editing an attribute” on page 700
“Editing a business object interface” on page 791
“Editing a data object interface” on page 817

Setting sentinel values for null field values

CORBA has no concept of an attribute having a null value. If you want to
maintain a null value read from a persistent object into a data object, and then
write the null value back to the database, you must set up a sentinel value,

Chapter 15. Object tasks 701



which Object Builder will substitute for a null value into the corresponding
data object attribute. It will also substitute a null value for the sentinel when
writing the data back to the database.

To set sentinel value for a data object attribute:
1. Select Properties from the Data Object Implementation’s pop-up menu.
2. In the Properties wizard, select the Attribute Mapping page.
3. Select a data object attribute from the tree.
4. In the Sentinel Value field, input the value you want Object Builder to

recognize as indicating null for this attribute. The value you input must be
of the same type as the attribute. Enclose sentinel values for string
attributes in quote marks (for example, “this is a null string value”).

Be sure to choose a sentinel value that will not be a valid non-null value for
the attribute.

The Sentinel Value field may be unavailable for the following reasons:
v The data object attribute has not been mapped to a persistent object

attribute.
v The mapping is not primitive (that is, it is a key home or explode

mapping); the attribute is a structure.
v The attribute has been marked as Not Null (for example, it is part of the

key).

Sentinel values for double-byte character strings
Sentinel values for wstring attributes must be in the following form:

L“nullString”

If the wstring sentinel contains DBCS characters, you must set the /Sn+ C++
compile option on the server DLL.
1. In the Build Configuration folder, select the server DLL.
2. From the server DLL’s pop-up menu, select Properties.
3. On the Name and Options page of the Properties wizard, type the

following option in the CPP Compile Options field:
/Sn+

4. Click Finish.

“Null value tolerance with sentinel values” on page 155

“Checking for null foreign key values” on page 298
“Editing a data object implementation” on page 819
“Mapping a data object to a DB persistent object” on page 703

702 WebSphere: Application Development Tools Guide



Mapping a data object to a persistent object

The following tasks deal with mapping a data object to a persistent object:
v “Mapping a data object to a DB persistent object”
v “Mapping a data object to a PA persistent object” on page 708
v “Mapping a data object to the parent’s persistent object” on page 711
v “Mapping a data object to the child’s persistent object” on page 712
v “Mapping data object attributes to persistent object attributes” on page 730
v “Customizing referential integrity” on page 714

Note the following points:

v In the meet-in-the-middle case, when you associate an existing persistent
object with a data object, Object Builder does the default mapping between
data object attributes and persistent object attributes if the following
properties hold true:
– The attributes are of the same name
– The attributes are of the same type

v In the top-down case, when you create a persistent object from a data
object, Object Builder always does the default mapping for you, assigning
to the attributes of the data object, persistent object attributes of similar
name and type.

Restriction: When you map a data object to multiple persistent objects, you
must map all the primary key attributes of the data object to the
corresponding key attributes of each of the different persistent objects.

“Attributes” on page 698
Data object (Programming Guide)
Persistent object (Programming Guide)

“Working with attributes” on page 697
“Working with data objects” on page 795
“Working with DB persistent objects” on page 832

Mapping a data object to a DB persistent object

There are certain stages in development in which you can map a data object
to a persistent object:
v When you associate a persistent object in the model with the data object

implementation that you are creating (meet-in-the-middle)
Note the following points:

Chapter 15. Object tasks 703



– The persistent object has to use the same type of persistence as the data
object implementation.

– You can customize the mapping of both attributes and special framework
methods of the data object to relevant attributes and methods of the
persistent object. Object Builder does not do the default mapping.

v When you create a persistent object and schema from a data object
implementation (top-down)
Note: In this case you can customize only the mapping of the attributes of
the two objects. The default mapping of attributes is done for you.

v When you create a data object from a persistent object. (bottom-up)
Note: As in the meet-in-the-middle case, you can customize the mapping of
both attributes and special framework methods of the data object to
relevant attributes and methods of the persistent object. In the bottom-up
case, however, Object Builder does the default mappings for you.

Restrictions:

v Multiple data object attributes cannot be mapped to the same persistent
object attribute.

v When you map a data object to multiple persistent objects, you must map
all the primary key attributes of the data object to the corresponding key
attributes of each of the different persistent objects.

Meet-in-the-middle
These are the preliminary steps you must follow before you can map a data
object to a DB persistent object, when you associate a persistent object in the
model to the data object implementation being created.
1. Create a schema by importing an SQL file.
2. Add a persistent object to the schema.
3. Add a data object implementation. The environment for the

implementation must be BOIM with any key, and the implementation
must not be transient (select any option except the Transient option from
the Type of Persistence section).

Note the following points:

v To map a data object to a persistent object, there must be an association
between the two objects, which you specify on the Associated Persistent
Objects page of the Data Object Implementation wizard.

v As soon as you associate a persistent object with the data object, the
Attributes Mapping page, the Methods Mapping page, and the
Discriminators page are dynamically added to the wizard.

To define the mapping between the attributes of the data object and the
persistent object, follow these steps:
1. If you are in the process of defining the data object implementation,

proceed with step 2. If you have already defined the data object

704 WebSphere: Application Development Tools Guide



implementation (you want to map the persistent object to a data object
that exists in the model, and for which an implementation has been
created), from the data object implementation’s pop-up menu, select Select
Persistent Object. The Data Object Implementation wizard opens to the
Associated Persistent Objects page. Continue with step 3.

2. Go to the Associated Persistent Objects page.
3. Select either the persistent object, which you added to the schema that you

just imported, or one which is associated with any other schema that you
previously created.

4. Go to the Attributes Mapping page. Here, you can map the data object
interface attributes to the attributes of the persistent object.
Note: Object Builder does the default mapping between business object
attributes and data object attributes if the following properties hold true:
v The attributes are of the same name
v The attributes are of the same type

You can map a data object attribute to a persistent object attribute in one of
the following ways:
v Using the primitive pattern
v Using the exploded mapping pattern (for structures, which are complex

attributes)
v Using a foreign key
v Using a mapping helper

To define the mapping between the methods of the data object and the
persistent object, follow these steps:
1. If you are in the process of defining the data object implementation,

proceed with step 2. If you have already defined the data object
implementation, from the data object implementation’s pop-up menu,
select Select Persistent Object. The Data Object Implementation wizard
opens to the Associated Persistent Objects page. Continue with step 3.

2. Go to the Associated Persistent Objects page.
3. Select either the persistent object that you added to the schema that you

just imported, or one that is associated with any other schema, which you
previously created.

4. Go to the Methods Mapping page. When you define the mapping between
methods, you actually “Customizing referential integrity” on page 714: you
define the processing order of the persistent object methods that you
associate with the data object’s special framework methods insert(),
update(), retrieve(), del() and setConnection(). These persistent object
methods act directly on data in the persistent store (tables in the database).
Note: Object Builder does the default mapping between business object
methods and data object methods if the following properties hold true:

Chapter 15. Object tasks 705



v The method names are the same
v The method return types are the same
v The methods have the same number of parameters, and they are of the

same type. (The names of the parameters are irrelevant.)

Of course, you can modify these mappings, if you want to.

Object Builder always provides the default mapping for the insert(),
update(), del(), retrieve(), and setConnection() methods.

5. Click Finish.

Attention: If a persistent object is not created from this implementation but
was created from another implementation and is used with this data object
(you selected it on the Associated Persistent Objects page), you have to define
the mapping between the data object methods and the persistent object
methods (on the Methods Mapping page) for the special framework methods
in the Methods pane to have implementations. The code for these methods
gets modified according to the changes you make on the Methods Mapping
page. Similarly, any changes you make to the mapping of attributes on the
Attributes Mapping page, get recorded in the code for the attributes’ get and
set methods.

Top-down
These are the preliminary steps you must follow before you can map a data
object to a DB persistent object, when you are defining the persistent object
and the schema from the implementation.
1. Add a data object implementation to a data object interface.
2. Indicate that the environment for the implementation is BOIM with any

key.

To define the mapping between the attributes of the data object and the
persistent object, follow these steps:
1. Add the persistent object and schema from the implementation: from the

pop-up menu of the data object implementation, select the Add Persistent
Object and Schema option.

2. Turn to the Attributes Mapping page of the Add Persistent Object and
Schema wizard.

3. Change the mapping of the attributes, if you want to. Object Builder
provides a default mapping between the attributes of the data object and
those of the persistent object.
Note:If you have an attribute in the key that is either an unbounded string
(a string whose size is not specified), or a bounded string with length in
excess of 4000 characters, and you are creating a persistent object and
schema for the data object, Object Builder does not provide a mapping

706 WebSphere: Application Development Tools Guide



helper for the mapping of that attribute as the string does not contain the
proper size information. You will have to provide one. Follow these steps:
a. From the Attributes folder, select the persistent object that is mapped

to this data object attribute.
b. Type a length for this SQL type in the Length field of the schema

column.
4. Click Finish.

Note: While you are defining the mapping of attributes using the Attributes
Mapping page, you can also change the defaults that Object Builder sets for
both the persistent object (names and types of persistent object attributes) and
the schema (column names and SQL types for the columns).

Bottom-up
Before you can map a data object to a persistent object in the bottom-up case,
you must follow these steps:
1. Create a schema by importing an SQL file.
2. Add a persistent object to the schema.

To define the mapping between the attributes of the data object and the
persistent object, follow these steps:
1. From the pop-up menu of the persistent object in the DBA-Defined

Schemas folder, select Add Data Object. The Add Data Object wizard
opens to the Names page, where you can specify the names and the file
names for the data object interface and its implementation which you are
adding.

2. Click Next. The Methods page opens, and you can define methods specific
to the data object.

3. Click Finish.

The data object file, interface, and implementation are created in the
User-Defined Data Objects folder, and are associated with the persistent
object. At this point the default mapping exists between the data object and
the persistent object. You can customize the mapping. Follow these steps:
1. From the data object implementation’s pop-up menu, select Properties.

The Data Object Implementation wizard opens.

Go to the Attributes Mapping page. Here, you can change the mapping
between the attributes of the data object interface and those of the persistent
object. You can use one of the three mapping patterns, and for each pattern,
decide whether to provide a mapping helper.

Note: The wchar and wstring IDL data types of the data object are mapped by
Object Builder to the LONG VARGRAPHIC column type in the persistent object, by
default. When you are creating an application that involves wide character set
data, and is required to store persistent object data in a column of data type

Chapter 15. Object tasks 707



CHARACTER, in a DB2 table, you must write your own mapping helper. For an
example, see the reference section “Mapping DBCS data types” on page 149.
1. Click Next. The Methods Mapping page opens, and you can override the

default mappings of the special framework methods to the methods of the
persistent object.

2. Click Finish.

Note: At this point the data object is stand-alone (it is not associated with a
business object). To render the data object functional, you can associate it with
an existing business object: first delete the business object’s associated data
object interface (if any), and then, from its pop-up menu, select Select Data
Object Interface, and specify the one that was created from the persistent
object.

Data object (Programming Guide)
Persistent object (Programming Guide)
“Special framework methods” on page 758

“Working with data objects” on page 795
“Working with DB persistent objects” on page 832
“Mapping data object attributes to persistent object attributes” on page 730
“Adding a data object implementation” on page 807
“Creating a DB schema by importing an SQL file” on page 844
“Defining relationships” on page 278
“Customizing referential integrity” on page 714
“Working with methods” on page 750
“Creating a child component” on page 306
“Editing a DB persistent object” on page 838
“Editing a DB schema” on page 855

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Mapping a data object to a PA persistent object
Mapping a data object to a persistent object consists of mapping of attributes
and methods from one object to the other. Mapping of attributes and methods
is required to define the bonding between the objects. A data object attribute
can be mapped to one or more persistent object attributes, and each special
framework method of the data object can be mapped to one or more
persistent object methods.

Restrictions:

708 WebSphere: Application Development Tools Guide



v When you use procedural adaptors, you are restricted to either the
meet-in-the-middle scenario, or the bottom-up scenario since you cannot
create a PA persistent object from a data object.

v When you map a data object to multiple persistent objects, you must map
all the primary key attributes of the data object to the corresponding key
attributes of each of the different persistent objects.

Meet-in-the-middle
These are the preliminary steps you must follow before you can map a data
object to a PA persistent object:
1. Create a PA schema and its associated PA persistent object by importing a

PA bean.
2. Add a customized PA persistent object to the PA schema if you do not

want to use the one Object Builder provides.
3. Add a data object implementation. (The environment for the

implementation should be Procedural Adaptors.)
Note:To map a data object to a persistent object, there must be an
association between the two objects.

4. Associate a PA persistent object with the data object using the Associated
Persistent Objects page of the Data Object Implementation wizard (You
can open this wizard by selecting Properties from the desired Data Object
Implementation’s pop-up menu).
As soon as you associate a persistent object with the data object, the
Attributes Mapping page and the Methods Mapping page are dynamically
added to the wizard.
Note: Object Builder does the default mapping between business object
attributes and data object attributes if the following properties hold true:
v The attributes are of the same name
v The attributes are of the same type

To define the mapping between the attributes of the data object and the
persistent object, follow these steps:
1. If you are in the process of defining the data object implementation, go to

the Associated Persistent Objects page. If you have already defined the
data object implementation and have associated a PA persistent object with
it, then select Select Persistent Object from the data object
implementation’s pop-up menu. The Data Object Implementation wizard
opens to the Associated Persistent Objects page.

2. Select either the persistent object that you added to the PA schema, or one
that is associated with any other PA schema, which you previously
created.

3. Turn to the Attributes Mapping page. Here, you can map the data object
interface attributes to the attributes of the persistent object.

Chapter 15. Object tasks 709



You can map a data object attribute to a persistent object attribute in one of
the following ways:
v Using the primitive pattern
v Using the exploded mapping pattern (for some CORBA types that are not

base types: for example, structures)
v Using a foreign key
v Using a mapping helper

To define the mapping between the methods of the data object and the
persistent object, follow these steps:
1. If you are in the process of defining the data object implementation, go to

the Associated Persistent Objects page. If you have already defined the
data object implementation, and have associated a PA persistent object
with it, then select Select Persistent Object from the data object
implementation’s pop-up menu. The Data Object Implementation wizard
opens to the Associated Persistent Objects page.

2. Select either the persistent object that you added to the PA schema, which
you just imported, or one that is associated with any other PA schema,
which you previously created.

3. Turn to the Methods Mapping page. When you define the mapping
between methods, you define the processing order of the persistent object
methods that you associate with the data object’s special framework
methods insert(), update(), retrieve(), del(), setConnection(long) and
setWorkspaceID(long). These persistent object methods act directly on
elements of transaction logic in the legacy business applications.
Note: Object Builder does the default mapping between business object
methods and data object methods if the following properties hold true:
v The method names are the same
v The method return types are the same
v The methods have the same number of parameters, and they are of the

same type. (The names of the parameters are irrelevant.)

Of course, you can modify these mappings, if you want to.

Object Builder always provides the default mapping for the insert(),
update(), del(), retrieve(), setConnection(long) and setWorkspaceID(long)
methods.

4. The methods that you defined for the data object appear in the
User-Defined Methods folder. You can map each of them to a push-down
method of the PA persistent object.

Data object (Programming Guide)
Persistent object (Programming Guide)

710 WebSphere: Application Development Tools Guide



“Special framework methods” on page 758
“User-defined methods” on page 751
“Push-down methods” on page 759

“Working with data objects” on page 795
“Working with PA persistent objects” on page 860
“Working with PA schemas” on page 862
“Adding a data object implementation” on page 807
“Mapping data object attributes to persistent object attributes” on page 730
“Defining relationships” on page 278
“Working with methods” on page 750
“Using push-down methods with PA persistent objects” on page 762

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Mapping a data object to the parent’s persistent object

In top-down development, if the data object implementation that you are
defining inherits from another (you select a parent implementation for the
current one on the Implementation Inheritance page of the Data Object
Implementation wizard), you can use one of two patterns (the key duplication
pattern, or the attributes duplication pattern), to map the data object to a
persistent object.

To map attributes of the data object to attributes of persistent objects that were
created from the parent implementation, you use the flattening pattern.
Follow these steps:
1. Turn to the Attributes Mapping page.
2. Select an attribute from the Attributes folder.
3. From the pop-up menu of the attribute, select the pattern for the mapping.

You can select one of either the Primitive, Key Home, or Explode
patterns.

4. Click the list button of the Persistent Object Attribute field and select
an attribute that belongs to a persistent object that was created for the
parent data object implementation.

5. Click Finish.

Note the following points:

v From the Attributes folder, you can select attributes that are specific to the
data object implementation (those you define on the Attributes page of this
wizard), as well as those defined for the business object and specified as

Chapter 15. Object tasks 711



data object attributes (state data) on the Data Object Interface page of the
Business Object Implementation wizard.

v The Persistent Object Attribute field lists not only the attributes of the
parent implementation’s persistent object, but also those of persistent
objects belonging to the current implementation.

v You cannot select a parent persistent object for the current implementation
on the Associated Persistent Objects page. That page is used only for
associating with the implementation persistent objects that are at the same
level of hierarchy as those that would be created directly from this
implementation.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with a single datastore” on page 341
“Complex attributes and mapping patterns” on page 745

“Creating a child component” on page 306
“Mapping a data object to a DB persistent object” on page 703
“Mapping a data object to a PA persistent object” on page 708
“Mapping a data object to the child’s persistent object”
“Mapping data object attributes to persistent object attributes” on page 730
“Tutorial: Inheritance with a single datastore” on page 344

Mapping a data object to the child’s persistent object

In top-down development, if the data object implementation that you are
defining inherits from another (you select a parent implementation for the
current one on the Implementation Inheritance page of the Data Object
Implementation wizard), you can use one of two types of patterns (flattening
type or partitioning type), to map the data object to a persistent object.

The flattening pattern type is inheritance with a single table (Inheritance with
a single datastore). There are two partitioning types. Which one you use
depends on the type of inheritance between the current data object
implementation and its parent:
v “Inheritance with key duplication” on page 322
v “Inheritance and overriding in helper objects” on page 300

Inheritance with key duplication
When you use this pattern of mapping, you map attributes of the parent
implementation, and all attributes of the current implementation to attributes
of the persistent object that you are creating. Follow these steps:
1. From the pop-up menu of the data object implementation, select Add

Persistent Object and Schema.

712 WebSphere: Application Development Tools Guide



2. The Add Persistent Object and Schema opens to the Names page. Type the
identification for the schema and the persistent object that you are
defining.

3. Click Next. The Attributes Mapping page opens. Click the Key
Duplication(vertical partitioning) button. Object Builder maps only those
inherited attributes of the parent implementation which are key attributes
of its business object, as well as all attributes of the current
implementation, to attributes of the new persistent object. That is, for each
of the key attributes of the parent implementation, and all attributes of the
current implementation, it creates corresponding attributes in the
persistent object, and does the mapping.

4. Click Next. The Columns and Attributes page opens. You can view the
definition of the persistent object attributes and the corresponding schema
columns that are created.

5. Click Next, and add any comments you want to, on the Comments page.
You can type comments specific to the persistent object, the schema, and
each of the schema columns.

6. Click Finish.

Unlike using inheritance with attribute duplication, with this pattern, the
create, retrieve, update, and delete methods will be automatically mapped to
both the parent data object implementation’s persistent object and the child
data object implementation’s persistent object.

Inheritance with overriding persistence
When you use this pattern of mapping, you map all attributes of the parent
implementation, both key attributes and non-key attributes, and all attributes
of the current implementation to attributes of the persistent object that you are
creating.

Follow the same steps as for Inheritance with key duplication, but in step 3,
select the Attributes Duplication(the horizontal partitioning pattern) button
instead of the Key Duplication (the vertical partitioning pattern) button.

Unlike using inheritance with key duplication, with this pattern, the create,
retrieve, update, and delete methods will be automatically mapped only to the
child data object implementation’s own persistent object.

Object Builder maps all inherited attributes of parent implementation - those
which are key attributes of its business object as well as the non-key
attributes, and all attributes of the current implementation, to attributes of the
new persistent object. That is, for every one of the attributes that are
inherited from the parent implementation, and all attributes of the current
implementation, it creates corresponding attributes in the persistent object,
and does the mapping.

Chapter 15. Object tasks 713



Note: You can map a data object to persistent objects using these same
patterns even in the meet-in-the-middle case (on the Attributes Mapping page
of the Data Object Implementation wizard), when you associate a data object
implementation with one or more persistent objects with matching persistence
type that exist in the model. However, you will have to do the entire mapping
on your own. For a sample mapping helper, see the section “Mapping DBCS
data types” on page 149.

Data object (Programming Guide)
Persistent object (Programming Guide)
Schema (Programming Guide)
“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance with key duplication” on page 322
“Inheritance with attributes duplication” on page 307
“Complex attributes and mapping patterns” on page 745

“Creating a child component” on page 306
“Adding a persistent object and schema” on page 833
“Mapping a data object to a DB persistent object” on page 703
“Mapping data object attributes to persistent object attributes” on page 730
“Defining a child with key duplication” on page 325
“Tutorial: Inheritance with key duplication” on page 327
“Defining a child with attributes duplication” on page 309
“Tutorial: Inheritance with attributes duplication” on page 310

Customizing referential integrity

When every value of each foreign key of a database is valid, the database is in
a state of referential integrity. A foreign key is a subset of columns in a table
whose values match at least one primary key, or unique key value of a row of
the parent table. For a database to be in a state of referential integrity, a
referential constraint must be met. This referential constraint is that the values
of the foreign key are valid only if one of the following statements is true:
v The values of the foreign key appear as values of a parent key (the key of

the parent table).
v Some component of the foreign key is null.

Referential constraints are optional and can be defined in CREATE TABLE and
ALTER TABLE statements. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE ADD
constraint, and SET CONSTRAINTS statements. Corresponding to these

714 WebSphere: Application Development Tools Guide



statements, the data object has the set of special framework methods: insert(),
update(), retrieve(), del(), and setConnection() that perform, respectively, the
same tasks as the SQL statements:
v insert() is called when a table is created or altered.
v update() puts data back into the database when a table is altered.
v retrieve() gets data from the database.
v del() deletes a row in the table.
v setConnection() defines the database that is affected by the SQL statements

in the insert(), update(), retrieve(), and del() methods. This method is
implemented only if the data object implementation uses Embedded SQL.

You can customize referential integrity by specifying the processing order of
methods so that they conform to constraints applied by the database.

Note: You can access the Methods Mapping page, where you can specify the
processing order using the “Method Reordering” on page 769 controls only if
there is a persistent object associated with the data object. The insert(),
update(), retrieve(), and del() methods are not implemented for a transient
data object implementation.

To specify the order of the persistent object methods, follow these steps:
1. Select the data object implementation that corresponds to the persistent

object whose methods you want to arrange in a specific processing order.
2. From the data object implementation’s pop-up menu, select Properties.

The Data Object Implementation wizard opens.
3. Click the arrow to the left of the page name, and select the Methods

Mapping page from the list. The page opens.
4. The “Special Framework Methods” on page 768 folder contains the

framework methods you can customize: insert(), update(), retrieve(), del(),
and setConnection().
Note: The setConnection() method is available only if you specified the
Type of Persistence as Embedded SQL on the Behavior page of the Data
Object Implementation wizard.

5. Select the method you want customized, display its pop-up menu and
select Add Mapping. The Persistent Object Method field appears with the
del() method selected by default. The method name has the form:
POInstance_name.Method _name.

6. Click the list button and select the persistent object methods in the order
you want them executed for the selected framework method. For each of
the methods insert(), update(), retrieve(), del(), and setConnection(), you
can select the Always complete calling sequence (ignore warnings) check
box if you want the next method to be implemented even if a warning
message is issued.

Chapter 15. Object tasks 715



7. Click Finish. The ordered list of methods is saved. You can view it later by
opening the same wizard. You can also view the order you specified by
examining the method body in the Source pane after selecting the special
framework method in the Methods pane.

Persistent object (Programming Guide)

“Adding a data object implementation” on page 807
“Mapping a data object to a DB persistent object” on page 703

Attribute mapping properties

The following topics describe the details of specific attribute mappings.
v “Data Object Attributes”
v “Key Attributes” on page 717
v “Mapping helper class” on page 719
v “Mapping Patterns” on page 722
v “Patterned Attribute Mapping Selection” on page 724
v “Persistent Object Attributes” on page 726
v “Schema Columns” on page 728

“Object Builder” on page 1

“Working with attributes” on page 697
“Mapping data object attributes to persistent object attributes” on page 730
“Mapping a data object to a persistent object” on page 703

Data Object Attributes

When you map a data object to a persistent object, you map the attributes of
the data object to those of the persistent object.

You can do this on the Attributes Mapping page of either the Data Object
Implementation wizard (select Add Implementation from the pop-up menu
of the data object interface, and associate a persistent object with the
implementation on the Associated Persistent Objects page), or the Add
Persistent Object and Schema wizard (select Add Persistent Object and
Schema from the pop-up menu of the data object implementation).

716 WebSphere: Application Development Tools Guide



When you select a data object attribute in the Attributes folder on the
Attributes Mapping page, the following sections are available:
v Data Object Attribute Properties
v “Mapping helper class” on page 719
v Sentinel value information

Data Object Attribute Properties
This section is read-only and displays the properties of the data object
attribute that is selected in the Attributes folder.
v Data Object Attribute

This field shows the name of the data object attribute.
v Type

This field shows the data type of the data object attribute.
v Size

If the data type of the data object attribute is string, this field shows the
string size. If you use the default mapping to LONG VARCHAR, it has a
buffer size of 2000. You may specify another size.

Sentinel value information
You can handle null field value input and output by specifying a sentinel
value for the attribute to use in case a null is encountered.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Complex attributes and mapping patterns” on page 745
Null value tolerance with sentinel values

“Mapping a data object to a persistent object” on page 703
“Setting sentinel values for null field values” on page 701
“Checking for null foreign key values” on page 298

Key Attributes

When you map a data object to a persistent object, you map the attributes of
the data object to those of the persistent object. If you want to use a key to
define the mapping between the two objects, you map the attributes of the
key to those of the persistent object.

You can do this on the Attributes Mapping page of either the Data Object
Implementation wizard (select Add Implementation from the pop-up menu
of the data object interface, and associate a persistent object with the

Chapter 15. Object tasks 717



implementation on the Associated Persistent Objects page), or the Add
Persistent Object and Schema wizard (select Add Persistent Object and
Schema from the pop-up menu of the data object implementation).

When you map a data object to a persistent object, if you select Key Home
from among the “Mapping Patterns” on page 722, and specify the key to be
used to define the mapping, the key appears in the Attributes folder, beneath
the data object attribute.

The Attributes Mapping page will then have the following fields:

Key
This field shows the key selected for the mapping. You can click the list
button, and select a different key, if you want to. The list shows the keys
defined for the business object associated with this data object. The selected
key and its attributes appear in the folder.

Home to Query
Type the name of a home, which is to contain the object that is referenced by
the data object. This is the object for which the selected key is the foreign key.
The home must be the same as the one that you use for the configured
managed object of the object reference that you will configure into the same
application family.

Factory Name
Type the name of a factory. The resulting factory key string will refine the
factory key. Entry in this field is optional. However, if you provide a name, it
must be the same as the factory name that you use when you configure the
managed object (the name that you specify in the Name in Factory Finding
Registry field in the “Home Options” on page 587 section on the Home page
of the Configure Managed Object wizard).

Factory Finder Name
This field is enabled only if you select the Key Home mapping pattern. Entry
in this field is optional. You can specify the name of a factory finder that will
be used instead of the default factory finder that Object Builder emits
(/host/resources/factory -finders/SERVERNAME-server-scope-widened). You cannot
specify substitution values such as *SERVERNAME in this field.

Check for null
Select this check box if you want to return NIL immediately if a retrieved key
is null. If you leave this check box clear, and the key is null, then the
findByPrimaryKey call may return a valid value instead of null, which can
produce unexpected results.

Note the following points:

718 WebSphere: Application Development Tools Guide



v The data object attributes that compose the key are shown below the key in
the folder.

v From the pop-up menu of each of these key attributes, you can select either
the Primitive or Key Home mapping as before, according to the conditions
satisfied. You will not be able to select the Explode type of mapping as
structures are not supported in keys.

v So, you can map each of the key attributes to a persistent object attribute,
opting to use your own mapping helper, or accepting the default mapping
helper that Object Builder provides in certain situations.

v The mapping from a key attribute to a persistent object attribute is
one-to-one.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance and overriding in helper objects” on page 300
“Inheritance with key duplication” on page 322
“Complex attributes and mapping patterns” on page 745
“Foreign key patterns” on page 284
Query Service (Advanced Programming Guide)
“Null value tolerance with sentinel values” on page 155

“Mapping a data object to a persistent object” on page 703
“Mapping attributes using a key” on page 732
“Mapping business object reference attributes” on page 744
“Creating a child component” on page 306
“Defining a child with key duplication” on page 325
“Tutorial: Inheritance with key duplication” on page 327
“Defining a 1-n relationship” on page 281
“Defining a foreign key pattern” on page 285
“Configuring a managed object” on page 588
“Checking for null foreign key values” on page 298

Mapping helper class

When you map a data object to a persistent object, you map the attributes of
the data object to those of the persistent object. You can also use an
intermediate helper class to define the mapping between the attributes of the
two objects.

Chapter 15. Object tasks 719



You can do this on the Attributes Mapping page of either the Data Object
Implementation wizard (select Add Implementation from the pop-up menu
of the data object interface, and associate a persistent object with the
implementation on the Associated Persistent Objects page), or the Add
Persistent Object and Schema wizard (select Add Persistent Object and
Schema from the pop-up menu of the data object implementation).

This section enables you to use an intermediate helper class to define the
mapping between the attributes of the two objects. You can either provide
your own mapping helper, or use the one provided by Object Builder. This
section is available for any of the mapping patterns that you choose.

The default mapping helper (the class and its methods) is provided in the
following cases:
v When a Stringified Object Reference (SOR) of the data object is mapped to a

persistent object of type char. This happens if there exists an object reference
between the selected object and another object.
Warning: When an SOR of the data object is mapped to a persistent object
of type char(n), DB2’s embedded SQL truncates the ByteString that contains
the handle at the first occurrence of a null, even if the field of type char(n)
is declared as FOR BIT DATA. So, it is recommended that you map an object
reference handle to either a VARCHAR(n), or a LONG VARCHAR instead of to a
char(n) type.

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object of type VARCHAR. This happens if there exists an object
reference between the selected object and another object.

v When a data object attribute of type string is mapped to a persistent object
attribute of type VARCHAR.

v When a data object attribute of type wstring is mapped to a persistent object
attribute of type DB2VARGRAPHIC.

When one of the constrain platforms is 390 (you select Platform >
Constrain > 390), wchar and wstring are not available for selection as an
attribute type for your object.

v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type DB2VARCHAR.

v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type char[] (length greater than 0). Note the warning
about mapping to the char type. Map the ByteString to a VARCHAR(n), or a
LONG VARCHAR, especially for embedded SQL.

v When a data object attribute of type string is mapped to a persistent object
attribute of type char (for SQL CHAR or CHARACTER columns).

There are also helpers to handle some common EJB-to-DB2 mappings (These
are useful for EJB deployment scenarios.):

720 WebSphere: Application Development Tools Guide



v string to java.sql.Date: data object attribute of type string is mapped to a
persistent object attribute of type char [11].

v string to java.sql.Time: data object attribute of type string is mapped to a
persistent object attribute of type char[9].

v string to java.sql.TimeStamp: data object attribute of type string is mapped
to a persistent object attribute of type char[27].

v string to java.sql.BigInteger: data object attribute of type string is mapped
to a persistent object attribute of type char[7].

v string to java.sql.BigDecimal: data object attribute of type string is mapped
to a persistent object attribute of type char[7].

Restriction: Object Builder does not provide the default mapping between
complex data types ( any, wchar and wstring and types defined as constructs,
which include typedefs, structures, and unions) and DB2 database types. You
must provide your own helper class for these mappings. No other kind of
mapping is permitted. Structures may be mapped according to either the
primitive pattern, in which you must provide a user-defined mapping helper,
or the explode pattern, in which you may map the individual members of the
structure to the persistent object. The members, in turn, obey the same
mapping rules and offer the same mapping options based upon their
datatypes as do the top-level attributes of a data object implementation.

This section has the following fields:
v Class Name

Type a name for the class that is to contain the mapping methods between
the data object and the persistent object, or accept the default.

v PO to DO Method
Type a name for the mapping method from the persistent object to the data
object, or accept the default.

v DO to PO Method
Type a name for the mapping method from the data object to the persistent
object, or accept the default

v Sentinel Value
Type a value (the same type as the attribute) to serve as a sentinel value
when the object is retrieving and writing null values to a database.
Note:You can use IDL-defined constants that you created earlier as values
for the intializers. However, Object Builder does not automatically include
the IDL where the constant is defined: you must explicitly include it.

v Java Mapping Helper

v Java Mapping Pair

Attribute Reordering
When you map an attribute of the data object to more than one persistent
object attribute, even if they are of like type, it is recommended you use a

Chapter 15. Object tasks 721



mapping helper. In this case, you have to ensure that the order in which the
persistent object attributes are listed in the mapping helper method signatures
is the same as the order in which they are mapped to the data object attribute.
You can use the following buttons to reorder the attributes:
v Move Up

This button is available for selection when you have selected any of the
persistent object attributes except the first one, from the Attributes folder.
Each time you use this button, the selected attribute shifts one level higher
in the tree.

v Move Down
This button is available for selection when you have selected any of the
persistent object attributes except the last one, from the Attributes folder.
Each time you use this button, the selected attribute shifts one level lower
in the tree.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Complex attributes and mapping patterns” on page 745
“Null value tolerance with sentinel values” on page 155

“Mapping a data object to a persistent object” on page 703
“Adding file adornments” on page 240
“Generating code” on page 551
“Setting sentinel values for null field values” on page 701

Mapping Patterns

When you map a data object to a persistent object, you can select different
ways or patterns in which the mapping is to be done. The pop-up menu of
the data object attribute enables you to select one of the following mapping
patterns:
v Primitive
v Key Home
v Explode

Note: The Key Home and Explode patterns are available only if certain
conditions are satisfied.

Primitive
This is the only option available, and the type of mapping provided by
default by Object Builder if the data object attribute is a basic CORBA type,
and the conditions for mapping as a key are not satisfied. Even if other

722 WebSphere: Application Development Tools Guide



options are available, you can select this option if the data object attribute is
not a complex type that requires a mapping helper.

Note: In general, all attributes are queryable. However, user-defined
mappings and handle-mapped object references may result in poorer query
performance because the query engine cannot push down these references to
the database. Key Home mappings for object references, and Exploded
mappings for structures usually perform well in queries.

Key Home
When there is a reference between two objects, you can use one or more
foreign keys to define the mapping between the data object and the persistent
object by mapping the key attributes to the persistent object attributes. The
mapping from the key to the persistent object is one-to-one.

In this situation, and even when there are nested object reference attributes
(for example, if the key contains an attribute, which is itself an object
reference), you can use the Key Home option.

Note:Your selection of a handle does not affect the default mapping of object
references, which is the mapping using the Key Home pattern. It is relevant
only if you override the default setting of the persistent object and schema’s
attribute mapping from Key Home to Primitive.

You will have to provide the name of a home, which is to contain the object
that is referenced by the data object. This is the object for which the selected
key is the foreign key.

Note:If you provide a name for the factory, it must be the same as the factory
name that you use when you configure the managed object (the name that
you specify in the Name in Factory Finding Registry field in the Home
Options section in the Home page of the Configure Managed Object wizard).

Restriction: When you map attributes using a foreign key, and create a
persistent object and schema from the data object implementation, it will not
automatically create a foreign key in the schema.

Warning: If your component stores an object reference in a database, and you
expect the database field to be queried by other objects or applications, then
the object reference must be mapped from the data object to the persistent
object as a key (Key Home option). Otherwise, queries will not be valid.

Explode
This option is available only if the data object attribute is of a complex type
such as a struct. Explode enables you to map each member of the structure to
a relevant attribute in the persistent object.

Chapter 15. Object tasks 723



Note the following points:

v This version of Object Builder supports the Explode mapping only for
complex attributes of the struct type.

v If a data object attribute is of type structure, you have the option of doing a
primitive mapping with a user-defined mapping helper, or mapping each of
the structure members to a persistent object attribute. (Select Explode from
the pop-up menu of the attribute.)

v Further, if a structure member is of type interface, you can map that
member using the foreign key mapping pattern.

v If there are any reference collection relationships defined for the object,
Object Builder provides the mapping for the relationship attribute, with a
default mapping helper.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance and overriding in helper objects” on page 300
“Inheritance with key duplication” on page 322
“Complex attributes and mapping patterns” on page 745
“Foreign key patterns” on page 284
Query Service (Advanced Programming Guide)

“Mapping a data object to a persistent object” on page 703
“Creating a child component” on page 306
“Defining a child with key duplication” on page 325
“Tutorial: Inheritance with key duplication” on page 327
“Defining a 1-n relationship” on page 281
“Defining a foreign key pattern” on page 285

Patterned Attribute Mapping Selection

This section appears only if the data object implementation from which you
are creating the persistent object and schema inherits from another data object
implementation.

You get this section on the Attributes Mapping page of the Add Persistent
Object and Schema wizard (select Add Persistent Object and Schema from
the pop-up menu of the data object implementation).

724 WebSphere: Application Development Tools Guide



Use this section to have Object Builder map the attributes of the data object to
the persistent object based on the type of inheritance pattern you want, using
one of the following patterns:
v Key Duplication (vertical partitioning)
v Attributes Duplication (horizontal partitioning)

Key Duplication
When you select this button, Object Builder maps only those attributes of the
parent data object implementations that are key attributes of the business
object, as well as attributes of the current implementation, to the attributes of
the persistent object that is being created.

Attributes Duplication
When you select this button, Object Builder maps all attributes of the parent
data object implementations (this list of attributes includes key as well as
non-key attributes of the business object that were designated as state data, as
well as any attributes defined specifically for the parent implementation), and
all attributes of the current implementation to attributes of the persistent
object that is being created.

“Chapter 6. Inheritance” on page 299
“Choosing an inheritance pattern for persistence” on page 304
“Inheritance and overriding in helper objects” on page 300
“Inheritance with key duplication” on page 322
“Inheritance with attributes duplication” on page 307
“Inheritance with a single datastore” on page 341
Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Complex attributes and mapping patterns” on page 745
“Foreign key patterns” on page 284
Query Service (Advanced Programming Guide)

“Creating a child component” on page 306
“Defining a child with key duplication” on page 325
“Tutorial: Inheritance with key duplication” on page 327
“Defining a child with attributes duplication” on page 309
“Tutorial: Inheritance with attributes duplication” on page 310
“Defining a child with a single datastore” on page 342
“Tutorial: Inheritance with a single datastore” on page 344
“Mapping a data object to a persistent object” on page 703

Chapter 15. Object tasks 725



“Defining a 1-n relationship” on page 281
“Defining a foreign key pattern” on page 285

Persistent Object Attributes

When you map a data object to a persistent object, you map the attributes of
the data object to those of the persistent object.

You can do this on the Attributes Mapping page of either the Data Object
Implementation wizard (select Add Implementation from the pop-up menu
of the data object interface, and associate a persistent object with the
implementation on the Associated Persistent Objects page), or the Add
Persistent Object and Schema wizard (select Add Persistent Object and
Schema from the pop-up menu of the data object implementation).

In the Data Object Implementation wizard, only the Persistent Object Name
field is seen when you select a persistent object attribute in the Attributes
folder. This field lists only those persistent objects that are associated with the
implementation.

If you are in the Add Persistent Object and Schema wizard, and select a
persistent object attribute in the Attributes folder, you see the following
sections:
v Mapping Information
v Persistent Object Attributes
v “Schema Columns” on page 728

Mapping Information
This field shows the full name of the persistent object attribute that is being
created and mapped to the data object attribute.

Persistent Object Attributes
This section shows details about the persistent object being created.This
section has the following controls:
v PO Attribute
v Type
v Size
v PO Key

PO Attribute
This column shows the attribute name for the persistent object, corresponding
to the selected data object attribute. You can change the persistent object
attribute’s name.

Type
This field shows the data type of the persistent object attribute. If you change

726 WebSphere: Application Development Tools Guide



the SQL type corresponding to the column in the Schema section, this field
changes to show the corresponding implementation language data type.

Note: ...DB2VARCHAR is the special persistent object attribute type, which is a
structure, and corresponds to the SQL types VARCHAR, VARGRAPHIC, LONG
VARCHAR and LONG VARGRAPHIC.Details of the structure corresponding to each
attribute can be viewed in the .hpp file generated from the persistent object
created. This information will be useful if you are mapping a persistent object
to a data object and are “Mapping attributes using a mapping helper” on
page 738 that you have defined yourself.

Size
This field shows the size of the buffer containing the string for persistent
object attributes of the string type (char[]), or the size of the buffer within the
structure for persistent object attributes of the ..DB2VARCHAR type. You can
either accept the default or type a new value.

Note the following points:

v The SQL types that correspond to the persistent object attribute type char[]
are CHARACTER, GRAPHIC, DATE, TIME, and TIMESTAMP. The SQL types that
correspond to the persistent object attribute type ...DB2VARCHAR are VARCHAR,
LONG VARCHAR, VARGRAPHIC, and LONG VARGRAPHIC.

v The default size for GRAPHIC is 2 though the default length for thistype is
1. This is because the persistent object attribute types are C++ types, and
C++ automatically adds the null character (\0) at the end of strings.

PO Key
This column contains a if there exists a key object that has the
corresponding attribute as a key attribute; otherwise, it is blank. You can
select the check box or clear it. However, if the corresponding schema column
is a DB key, this attribute must be a PO key: you cannot clear the check box.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
“Complex attributes and mapping patterns” on page 745

“Mapping a data object to a persistent object” on page 703

Chapter 15. Object tasks 727



Schema Columns

You get this section on the Attributes Mapping page of the Add Persistent
Object and Schema wizard (select Add Persistent Object and Schema from
the pop-up menu of the data object implementation).

This section shows details of the schema being created. It has the following
controls:
v Column Name
v SQL Type
v ForBitData
v Length
v Scale
v DB Key
v Not Null

Column Name
This field shows the column being created in the schema corresponding to the
selected persistent object attribute. The name may or may not be in quotation
marks. The default top-down behavior is to put it in quotation marks, but
you can change this default on the Tasks and Objects page in the Preferences
guide. You can change the name of the column, including adding or
removing quotation marks from around it.

SQL Type
This field shows the SQL data type of the column. You can click the list
button and select a different type from the list. The attribute type of the
persistent object changes accordingly.

ForBitData
Click the field and select the check box if the schema column is to be used to
store an object reference. The possible SQL types for columns that store
Stringified Object References (SORs) are VARCHAR,CHARACTER or LONG VARCHAR.
If the SQL type is not one of these types, this field is not editable. If a data
object attribute is an object reference, and a schema and a persistent object are
being added to its implementation, its ForBitData check box is selected by
default.

Note the following points:
v If this check box is selected, the .sql file generated from the schema will

have the FOR BIT DATA information appended to the column type. For
example, the line in the generated code corresponding to the column of
type VARCHAR, which is used to store an SOR will be VARCHAR FOR BIT DATA.

728 WebSphere: Application Development Tools Guide



v If this check box is not selected for a column that is to store object
references, the string that is used to store the object reference will be treated
as character data (SORs are considered binary data), and will undergo
character conversions when stored in the database.

v The default SQL type that is used to store SORs is VARCHAR. If you choose
to use CHARACTER or LONG VARCHAR instead, you must provide a mapping
helper.

v If you change the default column type from VARCHAR to a non-string type
(for example, INTEGER), the ForBitData check box is automatically cleared. If
you then change it back to a string type that stores an SOR, the check box
is not automatically selected: you must click in the ForBitData field and
select the check box.

Length
This column shows the length of the SQL type. For the DECIMAL type, this
length indicates the precision, which is the total number of digits in the
decimal. If you had defined the attribute type as string and you did not
specify its length (when you defined the business object), it gets the default
length of 32 characters.

Scale
If the attribute is of the SQL type GRAPHIC or VARGRAPHIC, you can select one of
the scales: K (Kilo=103), M (Mega=106) and G (Giga=109). For example, if the
SQL type BLOB is of length 63 and scale K, its actual size is 63*103, represented
by 63 K. If the SQL type is DECIMAL, you can select a number from 1 to 31 for
the scale, indicating the number of digits after the decimal point.

DB Key
This check box contains a if there exists a key object that has the
corresponding attribute as a key attribute; otherwise, it is blank. You can
select the check box or clear it. Any column that is a database key must not be
null and must be selected as a persistent object key as well. Object Builder, by
default, selects the corresponding Not Null and PO Key check boxes if you
select a column as the database key.

Not Null
This check box contains a if there exists a key object that has the
corresponding attribute as a key attribute; otherwise, it is blank. You can
select the check box if it is not selected, but you can clear it only if the
attribute is neither a PO key nor a DB key.

Data object (Programming Guide)
Schema (Programming Guide)
Persistent object (Programming Guide)

Chapter 15. Object tasks 729



“Mapping helper” on page 735
“Complex attributes and mapping patterns” on page 745

“Mapping a data object to a persistent object” on page 703

Mapping data object attributes to persistent object attributes

You can map attributes of the data object to those of the persistent object
using any one of the following methods:
v “Mapping attributes using the Primitive pattern” on page 731
v “Mapping attributes using a key” on page 732
v “Mapping attributes using a mapping helper” on page 738

The following tasks deal with mapping of complex attributes of the data
object to persistent object attributes:
v “Mapping complex attributes using the Primitive pattern” on page 746
v “Mapping complex attributes using the Explode pattern” on page 748

The following task deals with mapping of business object reference attributes
of the data object to persistent object attributes:
v “Mapping business object reference attributes” on page 744

Note the following points:

v In the meet-in-the-middle case, when you associate an existing persistent
object with a data object, Object Builder does the default mapping between
data object attributes and persistent object attributes if the following
properties hold true:
– The attributes are of the same name
– The attributes are of the same type

v In the top-down case, when you create a persistent object from a data
object, Object Builder always does the default mapping for you, assigning
to attributes of the data object, persistent object attributes of similar name
and type.

Restriction: When you map a data object to multiple persistent objects, you
must map all the primary key attributes of the data object to the
corresponding key attributes of each of the different persistent objects.

“Attributes” on page 698
Data object (Programming Guide)
Persistent object (Programming Guide)

730 WebSphere: Application Development Tools Guide



“Working with attributes” on page 697
“Working with data objects” on page 795
“Working with DB persistent objects” on page 832

Mapping attributes using the Primitive pattern

When you map an attribute of the data object to an attribute of the persistent
object of corresponding type, you do not have to use a mapping helper to
provide the conversion, or use a key as an intermediate object to perform the
mapping.

Note: In general, user-defined mappings are not queryable, but object
references are always queryable. Key Home mappings for object references,
and Explode mappings for structures are not primitive mappings, but can
participate in object queries. So can handle mappings for object references.
But, with handle-mapped object references, the query may not perform as
well because the query engine cannot push down these references to the
database.

To define a mapping using the default mapping pattern, follow these steps:
1. In the Tasks and Objects pane, select the data object implementation of the

object whose attributes you want to map to the attributes of a persistent
object.
Note: The data object implementation can be selected from either the
User-Defined Business Objects folder or the User-Defined Data Objects
folder.

2. From the implementation’s pop-up menu, select Properties. The Data
Object Implementation wizard opens to the Name and Platform page.
Click Next, or click the title of page, and select Attributes Mapping page
from the list. The page opens.
Note: You can also define the mapping when you are defining the data
object implementation, if you have selected an associated persistent object
to be used with the data object on the Associated Persistent Objects page
of this wizard, or when you add a persistent object and schema from a
data object implementation.

3. From the Attributes folder, select the data object attribute that you want to
map.

4. From the pop-up menu of the attribute, select Primitive.
5. Click the list button, and select the corresponding PO attribute from the

Persistent Object Attribute list.

Note: When you click Finish, if there are any mappings whose types are not
suitable for the default mapping pattern, you will be notified.

Chapter 15. Object tasks 731



Data object (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
Query Service (Advanced Programming Guide)

“Mapping a data object to a DB persistent object” on page 703
“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Mapping attributes using a key

When there is a one-to-one relationship (a reference) between two objects, you
can use one or more foreign keys to define the mapping between the data
object and the persistent object by mapping the key attributes to the persistent
object attributes. You can use this method to also map nested object reference
attributes (for example, if the key contains an attribute, which is itself an
object reference).

Note the following points:

v In general, user-defined mappings are not queryable, but object references
are always queryable. Key Home mappings for object references, and
Exploded mappings for structures are not primitive mappings, but can
participate in object queries. So Object Builder can handle mappings for
object references. But, with handle-mapped object references, the query may
not perform as well because the query engine cannot push down these
references to the database.

v If the persistent object is created from the implementation itself, Object
Builder uses the Key Home pattern as the default attribute mapping
pattern, but you can change this by deleting the Key Home mapping, and
creating a Primitive mapping instead.

v You can map an attribute using both the key mapping, and the primitive
mapping: multiple mapping is supported.

To define the mapping, follow these steps:
1. In the Tasks and Objects pane, select the data object implementation of the

object which has a reference to another object (that is, at least one of the
attributes of the data object must have as its type an interface of another
object, and the other object must have at least one key defined).

732 WebSphere: Application Development Tools Guide



Note: You can select the data object implementation from either the
User-Defined Business Objects folder or the User-Defined Data Objects
folder.

2. From the implementation’s pop-up menu, select Properties. The Data
Object Implementation wizard opens to the Name and Platform page.
Click Next, or click the title of the page, and select Attributes Mapping
page from the list. The page opens.
Note: You can also define the mapping when you are defining the data
object implementation, if you have selected an associated persistent object
to be used with the data object on the Associated Persistent Objects page,
or when you add a persistent object and schema for the implementation,
using the Add Persistent Object and Schema wizard.

3. From the Attributes folder, select the data object attribute that you want to
map. From its pop-up menu, you have the following choices: Primitive
(the default mapping), Key Home, or Explode (if the data object attribute
is a structure). The choices are not complementary: the mapping can be
done using more than one pattern.

4. Select the Key Home option. The first key defined for the referenced object
is taken as the default, and appears (with its attributes) in the folder,
beneath the data object attribute.
Restriction: When you create a DB persistent object and DB schema from
this data object implementation, it will not automatically create a foreign
key in the DB schema. That is, the FOREIGN KEY constraint will not be
created in the table’s .sql description file.

5. You can change the key you want to use to define the mapping: Select the
key in the Attributes folder. Click the list button of the Key field and select
a key from the list of keys defined for the object.

6. Type a name for the home, which is to contain the object that is referenced
by the data object in the Home to Query field. The name that you specify
must be the same as that which you specify as the name of the home on
the Home page of the Configure Managed Object wizard when you later
configure the managed object.

7. Optionally, type the name of a factory in the Factory Name field. The
name that you specify must be the same as that which you specify as the
name in factory-finding registry on the Home page of the Configure
Managed Object wizard when you later configure the managed object.

8. Select a key attribute. (From its pop-up menu, only the Primitive mapping
pattern is available. But, if the key attribute is an object reference, then it
can be mapped using the Key Home pattern.) The Mapping Helper Class
section appears. For each key attribute, you can optionally specify a
mapping helper class and its methods to define the mapping to a
persistent object attribute.
Note the following points:

Chapter 15. Object tasks 733



v You must map all the key attributes of the data object. You can map
each key attribute to only one attribute per persistent object.

v Key attributes can be mapped using either the Primitive pattern, or the
Key Home pattern. The Explode pattern is not supported.

If you want to provide a mapping helper, follow these steps:
a. Type the name of the mapping helper class in the Class Name field.
b. Type the name of the method that does the mapping from the key

attribute to the persistent object attribute in the Key to PO Method
field.

c. Type the name of the method that does the mapping from the
persistent object attribute to the key attribute in the PO to Key Method
field.

d. From the key attribute’s pop-up menu, select Add Mapping. The first
of the defined persistent object attributes is mapped to the selected key
attribute. You can change the persistent object attribute you want to
use for the mapping: Click the list button of the Persistent Object
Attribute field and select an attribute from the list of attributes defined
for the persistent object. The Type field shows the type of the selected
attribute. For char and string types, the Size field shows the size of the
type.

Note: The mapping from a key attribute to a persistent object attribute is
one-to-one. If the persistent object is associated with a schema, and the
schema has at least one foreign key, the default one-to-one mapping between
the key attributes and the persistent object attributes is provided by Object
Builder.

Data object (Programming Guide)
Persistent object (Programming Guide)
Object relationships (Programming Guide)
“Mapping helper” on page 735
Query Service (Advanced Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581

“Mapping data object attributes to persistent object attributes” on page 730
“Mapping business object reference attributes” on page 744
“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833
“Mapping a data object to a DB persistent object” on page 703
“Mapping attributes using a mapping helper” on page 738

734 WebSphere: Application Development Tools Guide



“Working with specialized homes” on page 875
“Defining a foreign key pattern” on page 285

Mapping helper

A mapping helper is a class that contains mapping methods that are
responsible for type conversion between attributes of a data object
implementation and a persistent object. Every mapping helper class contains
at least two static methods that always return void. These methods must be
declared as public members of the class.

Type conversion is required for greater flexibility. For example, an attribute of
type string may be required to map to an attribute of type VARCHAR, so that the
length of the string is not a fixed, predetermined quantity. In this way, the
string has the ability to take on different values, depending on the run-time
allotment of the string’s contents.

Object Builder provides the default mapping helper file
(DB2MappingHelper.hpp, which contains the mapping helper class and its
methods) in the following cases:
v When an object reference is stringified and mapped to a persistent object

attribute of type char. This happens if there exists an object reference
between the selected object and another object.
Warning: When an object reference is stringified and mapped to a
persistent object attribute of type char[], DB2’s embedded SQL truncates the
ByteString that contains the handle at the first occurrence of a null, even if
the field of type char[n] is declared as FOR BIT DATA. So, it is
recommended that you map an object reference handle to either a
VARCHAR[n], or a LONG VARCHAR instead of to a char[n] type.

v When an object reference is stringified and mapped to a persistent object
attribute of type VARCHAR. This happens if there exists an object reference
between the selected object and another one.

v When a data object attribute of type string is mapped to an ESQL persistent
object attribute for a VARCHAR column. (A data object attribute of type
string is normally mapped to a persistent object attribute of C++ string
type. For example, a string of length 20 is mapped to char[21].)

v When a data object attribute of type wstring is mapped to an ESQL
persistent object attribute for a VARGRAPHIC column.

When one of the constraint platforms is 390 (you select Platform
> Constrain > 390), wchar and wstring are not available for selection as an
attribute type for your object.

v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type DB2VARCHAR.

Chapter 15. Object tasks 735



v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type char[] (length greater than 0). Note the warning
about mapping to the char type. Map the ByteString to a VARCHAR(n), or a
LONG VARCHAR, especially for embedded SQL.

v When a data object attribute of type string is mapped to a persistent object
attribute of type char (for SQL CHAR or CHARACTER columns).

There are also helpers to handle some common EJB-to-DB2 mappings (These
are useful for EJB deployment scenarios.):
v string to java.sql.Date: data object attribute of type string is mapped to a

persistent object attribute of type char [11].
v string to java.sql.Time: data object attribute of type string is mapped to a

persistent object attribute of type char[9].
v string to java.sql.TimeStamp: data object attribute of type string is mapped

to a persistent object attribute of type char[27].
v string to java.sql.BigInteger: data object attribute of type string is mapped

to a persistent object attribute of type char[7].
v string to java.sql.BigDecimal: data object attribute of type string is mapped

to a persistent object attribute of type char[7].

Note: Whenever Object Builder provides the mapping helper, it is
recommended that you use it rather than provide your own.

Restriction: Object Builder does not provide the default mapping between
complex data types (including any, Object, and types defined as constructs,
such as typedefs, structures, and unions) and DB2 database types. You must
provide your own helper class for these mappings.

If the type of an attribute in the data object implementation is a typedef, Object
Builder provides the same default mapping as the type that the typedef is
aliased to. For example, for a typedef called MyFloat of the CORBA float type,
the default mapping of the attribute to a new persistent object will be double.

When you are creating an application that involves wide character set data
(for example wchar or wstring), and is required to store persistent object data
in a column of data type CHARACTER, in a DB2 table, you must write your own
mapping helper. For an example, see the reference section “Mapping DBCS
data types” on page 149.

Note: By default, Object Builder maps the wchar and wstring IDL data types of
the data object to the LONG VARGRAPHIC column type in the persistent object.

The mapping helper information can be viewed in the section “Mapping
helper class” on page 719 on the Attributes Mapping page of the Data Object

736 WebSphere: Application Development Tools Guide



Implementation wizard. The .cpp file generated from the data object
implementation contains the mapping helper (DB2MappingHelper.hpp) in its
include section.

If you want to provide your own mapping helper, you must create (outside
Object Builder) a .hpp file, which contains the mapping helper class. When
you define the mapping helper, follow these rules:
v Define both the mapping methods: from the persistent object to the data

object, and from the data object to the persistent object, in the mapping
helper class.

v Declare both mapping methods as public members of the class.
v Define both methods as inline methods to avoid linker errors.
v Define both methods as static methods.
v Define the return type of both methods as void.
v Pass the input arguments for both methods by const reference. Pass the

input arguments as prescribed by the CORBA C++ type bindings for “in”
arguments, and the output arguments as prescribed by the CORBA C++
type bindings for “inout” arguments. Be sure to obey the CORBA memory
management rules within the implementation of your helper.

v For the persistent object to data object mapping method, use the following
signature:
inline static void PO_to_DO_ mapping_method_name(att1, att2, ...attn,
attribute_of_the_data_object)

where att1, att2,... attn are the persistent object attributes that are mapped
to the data object attribute, and require the mapping helper.

v For the data object to persistent object mapping method, use the following
signature:
inline static void DO_to_PO_
mapping_method_name(attribute_of_the_data_object, att1, att2,..., attn )

where att1, att2,... attn are the persistent object attributes that are mapped
to the data object attribute, and require the mapping helper.

v Ensure that the .hpp file has the same name as the mapping helper class
name.

Note the following points:

v When you use a mapping helper when a foreign key is used for the
mapping, the mapping methods must be defined from the key to the
persistent object, and from the persistent object to the key.

v When you map a data object attribute to a persistent object attribute using a
mapping helper that you provide, you have to specify the name of the
mapping helper file (without the extension) as the class name, and the
names of the methods used for the mapping.

Chapter 15. Object tasks 737



v Query Pushdown will be defeated over user-defined mapping helpers. You
can still form OOSQL queries involving business object attributes that are
ultimately mapped using a user-defined helper. However, the performance
of the query may suffer since some or all of it must be executed in the
object space.

Data object (Programming Guide)
Persistent object (Programming Guide)
Data object customization for cardinality relationships (Additional
customizations) (Programming Guide)

“Mapping attributes using a mapping helper”
“Mapping a data object to a DB persistent object” on page 703
“Mapping a data object to a PA persistent object” on page 708
“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Mapping DBCS data types” on page 149

Mapping attributes using a mapping helper

When you map an attribute of the data object to an attribute of the persistent
object of corresponding type, you do not have to use a mapping helper to
provide the conversion. When you map attributes of different types, a
mapping helper is required. The mapping helper is a class that contains
mapping methods. Mapping methods provide the conversion between the
attribute types of the two objects. You can either use the mapping helpers
provided by Object Builder, or you can define your own.

Note the following points:

v Even if you map a single data object attribute to multiple persistent object
attributes of the same type, it is recommended that you use a mapping
helper so that any method that copies the persistent object attributes to the
data object attribute copies all mapped persistent object attributes; not just
the last one that is mapped.

v In general, user-defined mappings are not queryable, but object references
are always queryable. Key Home mappings for object references, and
Explode mappings for structures are not primitive mappings, but can
participate in object queries. So can handle mappings for object references.

738 WebSphere: Application Development Tools Guide



But, with handle-mapped object references, the query may not perform as
well because the query engine cannot push down these references to the
database.

Object Builder provides the default mapping helper (the class and its
methods) in the following cases:
v When a Stringified Object Reference (SOR) of the data object is mapped to a

persistent object attribute of type VARCHAR. To use this mapping helper, you
should have followed these steps:
1. Specified the type of one of the attributes to be a reference to an object

on the Attributes page of the Business Object Interface wizard. For
example, if you wanted the selected object (say Claim) to reference the
Policy object, you should have selected the type of one of the attributes
of the Claim object to be of type Policy PolicyInterf, where PolicyInterf
is the interface defined for the business object named Policy.

2. Selected a handle for storing pointers in the section: “Handle for Storing
Pointers” on page 255 on the Behavior page of the Data Object
Implementation wizard.

3. Mapped the data object attribute that is of an object reference type to
the persistent object attribute of type VARCHAR on the Attributes Mapping
page of the Data Object Implementation wizard. The object reference
handle is mapped to a FOR BIT DATA field in DB2.

v When a Stringified Object Reference (SOR) of the data object is mapped to a
persistent object of type char.

To use this mapping helper, you should have followed the same steps as in
the previous case, only replacing the persistent object attribute of type
VARCHAR with one of type char.
Warning: When an SOR of the data object is mapped to a persistent object
of type char(n), DB2’s embedded SQL truncates the ByteString that
contains the handle at the first occurrence of a null, even if the field of
typechar(n) is declared as FOR BIT DATA. So, it is recommended that you
map an object reference handle to either a VARCHAR(n), or a LONG VARCHAR
instead of to a char(n) type.

v When a data object attribute of type string is mapped to a persistent object
attribute of type VARCHAR (A data object attribute of type string is normally
mapped to a persistent object attribute of C++ string type. For example, a
string of length 20 is mapped to char[21].) To use this mapping helper, you
should have followed these steps:
1. Specified one of the attributes of the business object to be of type string

on the Attributes page of the Business Object Interface wizard.
2. Changed the SQL type of the column name that corresponds to the

business object attribute of type string, to VARCHAR on the Name and
Attributes page of the Add Persistent Object and Schema wizard.

Chapter 15. Object tasks 739



3. Mapped the data object attribute that is of type string to the persistent
object attribute of type VARCHAR on the Attributes Mapping page of the
Data Object Implementation wizard.

v When a data object attribute of type wstring is mapped to a persistent
object attribute of IDL type DB2VARGRAPHIC (persistent object SQL type
VARCHAR).

When one of the constrain platforms is 390 (you select Platform >
Constrain > 390), wchar, wstring, and long long are not available for
selection as an attribute type for your object.

v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type DB2VARCHAR (persistent object SQL type VARCHAR).

v When a data object attribute of type ByteString is mapped to a persistent
object attribute of type char[](length greater than 0). It is recommended
that you map the ByteString to a VARCHAR(n), or a LONG VARCHAR, especially
for embedded SQL.

You can view the mapping helper information on the Attributes Mapping
page of the Data Object Implementation wizard when you select the mapped
data object attribute in the folder. The .cpp file generated from the data object
implementation contains the mapping helper file (DB2MappingHelper.hpp) in
its include section.

Restrictions:

v Object Builder does not provide a default mapping from the data object
implementation to the persistent object for the CORBA any, union,
sequence or array data types; or for any typedef ultimately to the
aforementioned types (except for sequence IManagedClient ByteString,
which Object Builder does understand). In these cases, you must provide
your own mapping helper class.

v If the type of an attribute in the data object implementation is a typedef,
Object Builder provides the same default mapping as the type that the
typedef is aliased to. For example, for a typedef called MyFloat of the
CORBA float type, the default mapping of the attribute to a new persistent
object will be double.

v When you are creating an application that involves wide character set data
(for example wchar or wstring), and is required to store persistent object
data in a column of data type CHARACTER, in a DB2 table, you must write
your own mapping helper. For an example, see the reference section
“Mapping DBCS data types” on page 149.
Note: The wchar and wstring IDL data types of the data object are mapped
by Object Builder to the LONG VARGRAPHIC column type in the persistent
object, by default.

v Object Builder does not provide the mapping helper in this case too: if you
have an attribute in the key that is either an unbounded string (a string

740 WebSphere: Application Development Tools Guide



whose size is not specified), or a bounded string with length in excess of
4000 characters, and you are creating a persistent object and schema for the
data object. That is because the string does not contain the proper size
information. You will have to provide a mapping helper. Follow these steps:
1. From the Attributes folder, select the persistent object that is mapped to

this data object attribute.
2. Type a length for this SQL type in the Length field of the schema

column.

v For top-down development, the IDL data type long long
maps to the ::CORBA::LongLong data type in C++, and the long data type in
Java, and is not supported on the OS/390 and Solaris platforms due to C++
compiler restrictions.

v For mapping helpers that convert to or from String types, the required
buffer length is not available outside the helper. Therefore, the mapping
helper will be passed a parameter that is an IDL inout String, which results
in a C++ signature of char*&. The mapping helper is responsible for
allocating the buffer itself.
Note that this is a change to the interface of the 2.0 generated code. Existing
code that uses char* will still work for DB objects. Using String_var,
inadvisable even before, is no longer permissible.

To map attributes using a mapping helper, follow the steps laid out, noting
the recommendations that precede them:
Recommendations:

v Follow steps 4 through 11 in the sequence laid out.
v If you want to provide your own mapping helper, follow steps 1 through

11.
v If you want to use the mapping helper provided by Object Builder, follow

steps 4 through 7.
1. Create (outside Object Builder) a .hpp file, which contains the mapping

helper class.
When you define the mapping helper, follow these rules:
v Ensure that the .hpp files have the same name as the mapping helper

class name.
v Define both the mapping methods: from the persistent object to the

data object, and from the data object to the persistent object, in the
mapping helper class.

v Declare both mapping methods as public members of the class.
v Define both methods as inline methods to avoid linker errors.
v Define both methods as static methods.
v Define the return type of both methods as void.

Chapter 15. Object tasks 741



v Pass the input arguments for both methods by const reference. Pass the
input arguments as prescribed by the CORBA C++ type bindings for
“in” arguments, and the output arguments as prescribed by the
CORBA C++ type bindings for “inout” arguments. Be sure to obey the
CORBA memory management rules within the implementation of your
helper.

v For the persistent object to data object mapping method, use the
following signature:
inline static void PO_to_DO_ mapping_method_name(att1, att2,
...attn, attribute_of_the_data_object)

where att1, att2,... attn are the persistent object attributes that are
mapped to the data object attribute, and require the mapping helper.

v For the data object to persistent object mapping method, use the
following signature:
inline static void DO_to_PO_
mapping_method_name(attribute_of_the_data_object, att1,
att2,..., attn )

where att1, att2,... attn are the persistent object attributes that are
mapped to the data object attribute, and require the mapping helper.
Note: The mapping helper file can be located in any directory that is in
your include search path.

2. In the Tasks and Objects pane, select the data object implementation of
the object whose attributes you want to map to the attributes of a
persistent object.
Note: The data object implementation can be selected from either the
User-Defined Business Objects folder or the User-Defined Data Objects
folder.

3. From the implementation’s pop-up menu, select Properties. The Data
Object Implementation wizard opens to the Name and Platform page.
Click Next, or click the arrow to the left of the page name, and select
Attributes Mapping page from the list. The page opens.
Note: You can also define the mapping when you are defining the data
object implementation, if you have selected an associated persistent object
to be used with the data object on the Associated Persistent Objects page.

4. From the Attributes folder, select the data object attribute that you want
to map to the persistent object.

5. From the data object attribute’s pop-up menu, select Mapping.
6. Click the list button of the Persistent Object Attribute field, and select

the attribute of the persistent object that you want to map to this data
object attribute. The persistent object attribute is added to the tree
beneath the data object attribute.

742 WebSphere: Application Development Tools Guide



Note: The order in which you map the different persistent object
attributes to the data object attribute must be the same as the order in
which they are listed in the mapping helper method signatures.

7. Select the data object attribute from the folder.
Note: If the mapped attributes meet the conditions for which Object
Builder provides the default mapping helper, the Map using helper class
option is automatically selected and the names of the mapping helper
class and methods are shown in their respective fields. It is recommended
that you use the default mapping helper provided. If you still want to
provide your own mapping helper, follow steps 9 through 11.

8. Specify the mapping pattern: select the Map using helper class option.
9. Type the name of the mapping helper class in the Class Name field.

10. Type the name of the method that does the mapping from the attribute of
the data object to the attributes of the persistent object in the DO to PO
Mapping Method field.

11. Type the name of the method that does the mapping from the attributes
of the persistent object to the attributes of the data object in the PO to
DO Mapping Method field.

Note: Mapping helpers are also used when you map an attribute of the data
object to an attribute of the persistent object using a foreign key. If a key
attribute and the persistent object attribute being mapped are of different
types, the mapping helper includes the methods that map between the key
and the persistent object.

Data object (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
Query Service (Advanced Programming Guide)

“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833
“Mapping a data object to a DB persistent object” on page 703
“Mapping a data object to a PA persistent object” on page 708
“Adding file adornments” on page 240

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Mapping DBCS data types” on page 149

Chapter 15. Object tasks 743



Mapping business object reference attributes

When an attribute of a business object is of the interface type (that is, it uses
the interface of another business object as its type), it is called a reference
attribute. If the primary key of the business object itself contains a business
object reference attribute, this reference attribute is a nested attribute. You can
map such both nested and non-nested attributes of the data object using either
of the following methods:
v Map the attribute to a foreign key
v Map the attribute to a stringified handle

Mapping to a foreign key
In this method, you map the primary key of the object reference attribute to
the foreign key (which can be either simple or compound) of the referencing
object’s persistent object and table (schema).

To map the business object attribute to its primary key, follow these steps:
1. Map the business object reference attribute of the data object to its primary

key attributes
2. Map the primary key attributes to primitive fields in the persistent object.

Follow the steps in the task “Mapping attributes using a key” on page 732

Using this method, Object Builder is able to handle an object reference
mapping to database tables with PRIMARY KEY constraints that include FOREIGN
KEY constraints to other tables.
Note: When you map attributes using a foreign key, and create a persistent
object and schema from the data object implementation, it will not
automatically create a foreign key in the schema. That is, the FOREIGN KEY
constraint is not created in the table’s .sql description file.

Mapping to a stringified handle

To map the business object attribute to a stringified handle, follow these steps:
1. Map the reference attribute to a stringified handle
2. Map the stringified handle to a binary field (such as a VARCHAR(2000)FOR

BIT DATA in DB2) in the persistent object.

Follow the steps in the task “Mapping attributes using a mapping helper” on
page 738

Data object (Programming Guide)
Persistent object (Programming Guide)
“Mapping helper” on page 735
Query Service (Advanced Programming Guide)

744 WebSphere: Application Development Tools Guide



Object relationships (Programming Guide)
“Foreign key patterns” on page 284
“Home” on page 581

“Mapping data object attributes to persistent object attributes” on page 730
“Adding a data object implementation” on page 807
“Adding a persistent object and schema” on page 833
“Mapping a data object to a DB persistent object” on page 703
“Mapping attributes using a key” on page 732
“Mapping attributes using a mapping helper” on page 738
“Working with specialized homes” on page 875
“Defining a foreign key pattern” on page 285

Complex attributes and mapping patterns

An attribute that is made up of multiple entities is called a complex attribute.
For example, an attribute whose data type is a structure, is a complex
attribute.

Note: Complex attributes in Object Builder are those whose data types
correspond to the CORBA constructed types, template types, or complex
declarators.

Restrictions:

v This release of Object Builder supports the mapping of structs in whole or
by their individual fields. Other complex types can be mapped only if you
define mapping helpers for them.

v Nested structures are not supported. However, structures whose members
are themselves other structures are supported.

When you make a complex attribute persistent using a relational backend
data store, you can use the following mapping patterns:
v Primitive
v Explode

Primitive: The structure is streamed out into a single column whose format is
known to the client programmer. That is, you create a single attribute in the
persistent object (and a corresponding column in the associated schema) to
support a complex data object attribute. You then provide a mapping helper
which can both convert (or, flatten) the structure into a field in the persistent
object and schema, and do the reverse: convert the field in the persistent
object and schema into a structure.
Explode: Each of the primitive members of the attribute is mapped to a
different column in the table. This is the same table to which the data object

Chapter 15. Object tasks 745



that contains the attribute is mapped. You must select the complex attribute
members as distinct items from which to create a persistent object and a
schema.

The members of the complex attribute are displayed on the Attributes
Mapping page of the Data Object Implementation wizard. You can associate a
member of a complex attribute with one or more persistent object attributes.

Persistent object (Programming Guide)
Schema (Programming Guide)

“Working with DB persistent objects” on page 832
“Working with DB schemas” on page 843
“Adding a data object implementation” on page 807
“Mapping a data object to a DB persistent object” on page 703
“Editing a DB schema” on page 855
“Editing a generated SQL file” on page 857

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
Type and constant declarations (Programming Guide)

Mapping complex attributes using the Primitive pattern

Mapping of a complex attribute using the primitive pattern is similar to
mapping an ordinary attribute of the data object to one in the persistent
object.

Note: This release of Object Builder supports the mapping of structs in whole
or by their individual fields. Other complex types can be mapped only if you
define mapping helpers for them.

Top-down

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder,
select Add Persistent Object and Schema.

2. The Add Persistent Object and Schema wizard opens to the Names page.
Name the persistent object and schema you are adding.

3. Click Next. The Attributes Mapping page opens. By default, Object Builder
maps all struct data object attributes using the Explode mapping pattern.

746 WebSphere: Application Development Tools Guide



4. Delete the default mapping. From the pop-up menu of Explode in the
Attributes folder, select Delete. The exploded form of the mapping is
deleted.

5. The pop-up menu of the complex attribute has two options: Primitive and
Explode. Select Primitive. The complex attribute is mapped directly to the
persistent object attribute.

6. Click Finish. A message informs you that the mapping between the
complex attribute of the data object and the persistent object requires a
mapping helper.

7. Click Yes to add the mapping helper. (Since, for this release, only
structures are supported as complex types, and the primitive mapping of a
structure (struct) requires a mapping helper.)

When you examine the properties of the persistent object (Properties from the
pop-up menu of the persistent object), you will see that each of the complex
attributes of the data object for which you defined the Primitive mapping is
mapped to just one attribute of the persistent object, and therefore to the
corresponding column in the schema (the backend database table).

Meet-in-the-middle

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder,
select Properties.

2. As long as the environment for the data object implementation is BOIM
with any key, you can associate persistent objects with the
implementation. Click the arrow to the left of the page name, and select
Associated Persistent Objects page from the list. The page opens.

3. Add a persistent object instance, and click Next.
4. The Attributes Mapping page opens. Object Builder does not provide the

default mappings. For each attribute in the Attributes folder, you can
provide a mapping. The simple attributes have only the Primitive
mapping option available from their pop-up menus; the complex attributes
have both the Primitive as well as the Explode mapping options.

5. For each of the complex attributes, select the Primitive mapping pattern.
Each complex attribute is mapped directly to the persistent object attribute.

6. Click Finish. A message informs you that the mapping between the
complex attribute of the data object and the persistent object requires a
mapping helper.

7. Click No to have the mapping exist in its primitive form, without the
mapping helper.

Bottom-up
Complex types in database columns are not supported. So, there is no
mapping of complex attributes in the bottom-up case.

Chapter 15. Object tasks 747



Persistent object (Programming Guide)
Schema (Programming Guide)

“Adding a data object implementation” on page 807
“Mapping a data object to a DB persistent object” on page 703
“Mapping data object attributes to persistent object attributes” on page 730

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Mapping complex attributes using the Explode pattern

The Explode pattern is the default mapping pattern provided by Object
Builder when you map a complex attribute of a data object to an attribute of
the persistent object. The complex attribute is exploded into its primitive
component data elements and mapped across a set of columns in a table.

Note: This release supports the Explode mapping pattern only for attributes
that are structures (type struct).

To map attributes using the Explode pattern, follow these steps:
1. From the pop-up menu of the data object implementation in either the

User-Defined Business Objects or the User-Defined Data Objects folder,
select Add Persistent Object and Schema.

2. The Add Persistent Object and Schema wizard opens to the Names page.
Name the persistent object and schema you are adding.

3. Click Next. The Attributes Mapping page opens. By default, Object Builder
maps all complex data object attributes using the Explodemapping
pattern. In this pattern, each member of the complex attribute is mapped
to a different persistent object attribute that is associated with the same
database table.
Note: If you are editing the properties of the data object implementation
(that is, you are redefining the mapping that is to be set up between the
data object and any persistent objects that are to be created later from this
data object implementation), from the pop-up menu of the complex
attribute, select Explode. Then, continue with step 4. In this case, however,
those persistent objects created before you edit the data object
implementation retain their original mapping pattern.

4. Accept the default mapping, and click Finish. You can, however, change
the attributes of the persistent object to which the members of the complex
attribute of the data object are mapped.

748 WebSphere: Application Development Tools Guide



When you examine the properties of the persistent object (Properties from the
pop-up menu of the persistent object), you will see that instead of each of the
complex attributes of the data object being mapped to a persistent object
attribute, only the members of the complex attributes are mapped. So, each
member of the data object’s complex attributes has a counterpart in the
corresponding database table.

Note: For the Explode mapping, it is not necessary to provide your own
implementation of the mapping helper: you can use the one provided by
Object Builder.

Meet-in-the-middle

1. From the pop-up menu of the data object implementation in either the
User-Defined Business Objects or the User-Defined Data Objects folder,
select Properties.

2. As long as the environment for the data object implementation is BOIM
with any key, you can associate persistent objects with the
implementation. Click the arrow to the left of the page name, and
select the Associated Persistent Objects page from the list.

3. Add a persistent object instance, and click Next.
4. The Attributes Mapping page opens. Object Builder does not provide the

default mappings. For each attribute in the Attributes folder, you can
provide a mapping. The simple attributes have only the Primitive
mapping option available from their pop-up menus; the complex attributes
have both the Primitive as well as the Explode mapping options.

5. For each of the complex attributes, select the Explode mapping pattern.
Each of the component data elements of the complex attribute is mapped
directly to a different persistent object attribute in the associated schema
(table in the backend store: the database).

6. Click Finish.

The resulting mapping is the same as in the top-down case.

Bottom-up

Complex types in database columns are not supported. So, there is no
mapping of complex attributes in the bottom-up case.

Persistent object (Programming Guide)
Schema (Programming Guide)

Chapter 15. Object tasks 749



“Adding a data object implementation” on page 807
“Mapping a data object to a DB persistent object” on page 703

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Working with methods

There are several different kinds of methods in Component Broker:
user-defined methods (methods you define for a component or component
object), the get and set methods that are automatically generated for attributes
you define, framework methods that are automatically generated to support
the server programming model, relationship methods that are generated
whenever you define a relationship between two objects, and special
framework methods that data objects use to handle persistent data.

For most cases, you only need to provide implementations for user-defined
methods. Default implementations are provided for other methods.

Methods that you define at the interface level, get and set methods for
attributes that you define at the interface level, and relationship methods are
automatically designated as public. You can define private or protected
methods only for an object’s implementation. You can see these modifiers that
indicate the scope of access of the methods in the method signatures, when
the methods are listed in their respective folders in the Methods pane.

The following objects display their methods in the Methods pane when you
select them in the Tasks and Objects pane:
v business object interface
v business object
v data object interface
v data object implementation
v persistent object
v key
v copy helper

The following tasks deal with methods:
v “Implementing methods” on page 752
v “Adding an initializer method” on page 753
v “Editing user-defined methods” on page 754

750 WebSphere: Application Development Tools Guide



v “Editing get and set methods” on page 756
v “Editing framework methods” on page 757
v “Editing special framework methods” on page 758
v “Using push-down methods with DB persistent objects” on page 761
v “Using push-down methods with PA persistent objects” on page 762
v “Handling exceptions thrown by PA bean push-down methods” on

page 163
v “Customizing business object OOSQL implementation methods” on

page 765
v “Customizing persistent object ESQL framework methods” on page 766
v “Deleting a method” on page 767

“User-defined methods”
“Get and set methods” on page 755
“Framework methods” on page 757
“Special framework methods” on page 758
“External files for method bodies” on page 383

“Working with components” on page 697
“Working with attributes” on page 697

User-defined methods

You can define methods on the following objects:
v Business object interfaces

Methods you define here are available to other components and
applications, through the managed object. The method implementation is
defined in the business object implementation.

v Business object implementations
Methods you define here are specific to the implementation, and not
exposed in the component’s interface.

v Data object interfaces
Methods you define here are available to other objects, but are not exposed
in the managed object. The method implementation is defined in the data
object implementation.

v Data object implementations
Methods you define here are specific to the implementation, and not
exposed in the component’s interface.

v Local-only objects

Once you define a method on an object, it appears in the Methods pane when
you click on the object.

Chapter 15. Object tasks 751



When you define a method for an interface, its definition is automatically
added to any associated implementation objects.

To provide the method body for a method, click on the business object
implementation or data object implementation, and then click the method in
the Methods pane. You can now type the method body directly in the Source
pane.

You can also provide a method body by referencing an external file in the
method’s Method Implementation wizard (accessed from the method’s pop-up
in the Methods pane). The external file can be a template, with macros that
you can substitute values for.

Business object (Programming Guide)
“External files for method bodies” on page 383

“Adding a business object interface” on page 777
“Implementing methods”
“Adding an initializer method” on page 753
“Editing user-defined methods” on page 754
“Deleting a method” on page 767

Implementing methods

Once you have defined a method interface and properties (either in the
business object interface and implementation, or data object interface and
implementation), you can add actual logic to the method body.

To add implementation code for a method you have defined, follow these
steps:
1. In the User-Defined Business Objects folder, find the business object

implementation or data object implementation (for example, CarPolicyBO)
whose method you want to implement.

2. Click on the object. The following folders appear in the Methods pane:
v User-Defined Methods
v User-Defined Attributes
v User-Defined Relationships
v Framework Methods
v File Adornments

The User-Defined Methods folder is expanded by default, and under it
appear the methods you have defined for the business object.

752 WebSphere: Application Development Tools Guide



3. Click a method.
The signature of the method appears in the Source pane. You can add an
implementation to the signature directly in the Source pane, or you can
edit the properties of the method and get its implementation from
elsewhere.

4. From the method’s pop-up menu, click Properties. The Method
Implementation wizard opens to the Implementation page.

5. Select whether to use the implementation defined in the Source pane, or
get the implementation code for the method from an external file.
If you select to get the information from an external file, you can specify it
as a template file, in which case you can use substitution macros, as
defined on the Template File Macros page of the wizard.

6. Select whether to have a single implementation for all platforms, or use a
separate implementation for each platform.
If you select to have a different implementation for each platform, then the
implementation you provide in the Source pane will apply only to the
current platform selected in the Platform > View menu. You can switch
the view to provide implementations for each of the platforms you intend
to deploy on.

7. Click Finish. The selected behavior will be used the next time code is
generated for the business object implementation.

“User-defined methods” on page 751
“Multi-platform development” on page 419
“External files for method bodies” on page 383 (Template files)

“Working with methods” on page 750
“Importing edited source files” on page 385

Adding an initializer method

If there is code that you need called when a component is loaded (the
equivalent of a static initializer method in Java), you can put the code in a
static method that gets called by a static attribute. When the component is
loaded, the attribute is initialized, and calls the initializer method.

To add an initializer method that will contain code to be executed on the
loading of the component, follow these steps:

1. Open the Business Object Implementation wizard (from the
implementation’s pop-up menu, click Properties).

2. Click the page title and turn to the Methods page.
3. Add a static method that returns type int.

Chapter 15. Object tasks 753



4. Click the page title and turn to the Attributes page.
5. Add a static attribute of type int. In the attribute’s initializer field, type a

call to the static method.
6. Click Finish. The wizard closes.
7. In the Tasks and Objects pane, make sure the business object

implementation is in focus.
8. In the Methods pane, expand the User-Defined Methods folder and select

the method you defined. Its skeleton implementation appears in the
Source pane.

9. In the Source pane, add to the method body any code you want called
during initialization of the component. As the final step, return some int
value to the calling attribute, to complete the attribute’s initialization.

10. Click File > Save.

“User-defined methods” on page 751
“Attributes” on page 698

“Working with methods” on page 750
“Adding an attribute” on page 699
“Implementing methods” on page 752

Editing user-defined methods

To edit the signature of a user-defined method, follow these steps:
1. From the pop-up menu of the business object interface or data object

interface where the method is defined, click Properties to open the
Business Object Interface wizard.

2. Click the page title and turn to the Methods page.
3. Select the method under the Methods folder.
4. Make your changes to the method.

Note:If the implementation language is Java, you can indicate that
methods that you define for objects are to be synchronized. This is
important to prevent concurrency problems in critical sections of code.

5. Click Finish.

You can edit the implementation of a user-defined method directly in the
Source pane. If the Source pane is in read-only mode, then the
implementation is being provided from an external file, as set in the method’s
wizard.

To access a method’s wizard, follow these steps:

754 WebSphere: Application Development Tools Guide



1. Select the business object implementation or data object implementation
that implements the method.

2. In the Methods pane, select the user-defined method.
3. From the pop-up menu of the method, click Properties to open the

Method Implementation wizard.
4. Make your changes in the wizard and click Finish to apply them.

You can add adornments to methods, to add descriptive comments to them.
These adornments will be output to the generated files.

“User-defined methods” on page 751

“Implementing methods” on page 752
“Importing edited source files” on page 385
Adding method adornments

Get and set methods

Object Builder adds get and set methods to objects for each public attribute
you define, as follows:
v Business object implementation:

Has get and set methods for each public attribute in the business object
interface. Read-only attributes, such as those that have been added to a key,
have no set method.

v Key:
Has get and set methods for each attribute that makes up the key.

v Copy helper:
Has get and set methods for each attribute that makes up the copy helper.

v Data object implementation:
Has get and set methods for each attribute defined in the data object
interface.

v Persistent object:
Has get and set methods for each attribute in the data object that it
provides persistence for.

The implementations for get and set methods are provided by Object Builder,
although you can edit them if necessary.

“Attributes” on page 698
“Special framework methods” on page 758

Chapter 15. Object tasks 755



“Editing get and set methods”

Editing get and set methods

Get and set methods provide access to attributes defined in either a business
object interface or a data object interface.

To edit the signature of a get or set method, you must edit the attribute it
represents, in the business object interface or data object interface.

By default, the get and set implementations are read-only. To edit the
implementation of a get or set method (not recommended), follow these steps:
1. Click on the business object implementation or data object implementation

in the Tasks and Objects pane.
2. In the Methods pane, locate the get or set method under the Attributes

folder.
3. From the pop-up menu of the attribute, click Properties. The Method

Implementation wizard appears, open to the Implementation page.
4. Select the check box Method body is the same for all platforms if you

plan to provide your own code for the method body, and you want it to
be the same for all platforms.

5. Click Use the implementation defined in the Source pane.
You could also click Use an external file, and select an external file that
contained the method implementation.

6. Click Finish.

At any time, you can reset the implementation by opening the Method
Implementation wizard and clicking Return to Default. If you want to return
to using only the default, click Use the implementation provided by Object
Builder to put the implementation back into read-only mode.

You can add adornments to get and set methods, to add descriptive
comments to them. These adornments will be output to the generated files.

“Get and set methods” on page 755
“Attributes” on page 698

“Working with methods” on page 750
“Importing edited source files” on page 385
“Editing an attribute” on page 700
Adding method adornments

756 WebSphere: Application Development Tools Guide



Framework methods

Framework methods are added to an object by Object Builder. Generally,
framework methods are only called by other framework methods, or by
Component Broker services.

Framework methods provide the functionality your objects need to work in a
Component Broker distributed environment.

There are also special framework methods, which are a particular kind of
framework method that let a component access its persistent data.

“Special framework methods” on page 758

“Editing framework methods”

Editing framework methods

Framework methods are added to an object by Object Builder. Generally,
framework methods are only called by other framework methods, or by
Component Broker services.

You cannot edit the signature of a framework method. Some methods are
added or deleted based on your selections in the component wizards.

By default, the implementations of framework methods are read-only. To edit
the implementation of a framework method (not recommended), follow these
steps:
1. In the Tasks and Objects pane, click on the object whose framework

methods you want to edit.
2. In the Methods pane, locate the framework method under the Framework

Methods folder.
3. From the pop-up menu of the attribute, click Properties. The Method

Implementation wizard appears, open to the Implementation page.
4. Click Use the implementation defined in the Source pane.

You could also click Use an external file, and select an external file that
contained the method implementation.
As long as this option is selected, the method’s implementation will be
determined by what is provided in the Source pane. The implementation
will not be automatically updated in response to design changes. The
implementation must be updated by hand.

5. Click Finish.

Chapter 15. Object tasks 757



At any time, you can reset the implementation by opening the Method
Implementation wizard and clicking Return to Default. If you want to return
to using only the default, click Use the implementation provided by Object
Builder to put the implementation back into read-only mode.

The framework methods create(), retrieve(), update(), del(), and
setConnection() are special framework methods of the data object
implementation and persistent object. Unless you provide your own
implementation, the special framework method implementations are defined
based on the mapping of the data object to the persistent object.

“Framework methods” on page 757
“Special framework methods”

“Working with methods” on page 750
“Importing edited source files” on page 385
“Editing special framework methods”

Special framework methods

Data objects and persistent objects that access a schema have the special
framework methods insert, update, retrieve, del, and setConnection. The
implementations for these methods are calculated based on the mapping
between the persistent object methods and the data object methods.

The order in which the data object methods call their equivalent methods in
persistent objects can affect the integrity of the references.

“Editing special framework methods”
“Customizing referential integrity” on page 714

Editing special framework methods

Data objects and persistent objects that access a schema have the special
framework methods insert(), update(), retrieve(), del(), and setConnection().
The implementations for these methods are calculated based on the mapping
between the persistent object methods and the data object methods.

By default, the method implementations are read-only in the Source pane. To
override the calculated method implementations in the Source pane, follow
these steps:
1. Locate the method in the Methods pane.
2. From the method’s pop-up menu, click Properties.

758 WebSphere: Application Development Tools Guide



3. In the Method Implementation wizard, select where you want to get the
implementation from: the tool-provided implementation, the Source pane,
or an external file.

4. If you select the Source pane as the source, the implementation becomes
editable in the Source pane, and whatever changes you make will be
preserved.

Note the following points:

v If you edited a special framework method, you can switch back to the
calculated method body at any time, by changing the setting in the wizard.

v To change the calculated method body for a special framework method,
change the mapping of the persistent object method to the data object
method on the Methods Mapping page of the Data Object Implementation
wizard.

v For most special framework methods, the method bodies that Object
Builder provides should be sufficient.

v Most views are read-only. By default, persistent objects are read-only for
views, and read-write for tables (schemas), but you can change these
settings. For persistent objects that represent read-only views in the
database, Object Builder emits the insert(), update() and del() methods with
empty method bodies.

“Special framework methods” on page 758

“Working with methods” on page 750
“Importing edited source files” on page 385
“Customizing referential integrity” on page 714

Push-down methods

Push-down methods are those that are “pushed down” from the business
object to the data object, and finally to the persistent object. Depending on
whether they are used along with DB persistent objects, or PA persistent
objects, it is either the relational database application adaptor, or the procedural
application adaptor (PAA) that handles the pass-through processing.

In Object Builder, push-down methods are used to expose functionality to the
client. In particular, they are used for the following purposes:
v To transmit transactional data of existing applications (when they are used

with PA persistent objects)
v To transmit data that is contained in databases that is used by existing

applications (when they are used with DB persistent objects, or when they
are used as stored procedures).

Chapter 15. Object tasks 759



Note: You can edit push-down methods in Object Builder at the data object
implementation level.

In Enterprise Access Builder (EAB), a push-down method is one that is
written on the procedural adaptor bean. In Object Builder, it is a mapping to
the implementation of the method in EAB.

When these methods are executed using the HOD mechanism for accessing
IMS applications, the changes resulting from their execution are visible to
other sessions.

When these methods are executed using the ECI mechanism for accessing
CICS applications, the changes resulting from their execution are not visible to
other sessions.

Note: When you are creating a data object from a PA persistent object, only
push-down methods of the char type can be pushed up to the data object.

“Enterprise Access Builder (EAB)” on page 158
Persistent object (Programming Guide)
Data object (Programming Guide)
An overview of application adaptors (Programming Guide)

“Using push-down methods with PA persistent objects” on page 762
“Using push-down methods with DB persistent objects” on page 761
“Handling exceptions thrown by PA bean push-down methods” on page 163

Working with PA bean push-down methods

When you add a data object from a PA persistent object, some methods may
be automatically defined for you on the data object. These methods
correspond to the push-down methods on the PA persistent object (and their
PA bean). The implementation of these methods in the data object will cause
the corresponding PA bean method to be called. You can add your own
methods to the data object, but unlike the push-down methods, they will not
be used to call the methods on the PA persistent object.

You can take the following actions on push - down methods:
v Deletion
v Renaming

Deletion
You can delete the push-down methods from the list if you do not want them
to be available on the data object. If you accidentally delete one, it is made

760 WebSphere: Application Development Tools Guide



available for you to add back to the list by the Selectoption. The Selectoption
is only available in the pop-up menu when there are push- down methods
that you have removed from the list.

Renaming
You can also rename the push-down methods, and change the names of their
parameters. These changes only affect the method that is defined in the data
object; not the one defined in the PA persistent object.

Restriction:The following properties of push-down methods are determined
by the PA bean, which you imported , and you cannot change them:
v the types of the parameters
v the order of the parameters
v the number of parameters

P ush-down methods also show an additional folder which indicates which
method on the PA bean the data object method maps to. You cannot change
the name of the method on the PA bean.

The following tasks also deal with push-down methods of the PA bean:
v “Using push-down methods with PA persistent objects” on page 762
v “Handling exceptions thrown by PA bean push-down methods” on

page 163

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)

Using push-down methods with DB persistent objects

When push-down methods are used with database (DB) persistent objects to
transmit data that is contained in databases that are used by existing
applications, they can only be used when you map a business object to a data
object; they cannot be used when you map a data object to a persistent object.

To employ push-down methods when you map a business object to a DB
persistent object, follow these steps:

1. Import the .sql file corresponding to the schema. The DB schema is
created in the DBA-Defined Schemas folder.

2. Add a persistent object to the schema. From the pop-up menu of the
schema, select Add Persistent Object. The Add Persistent Object wizard
opens to the Names and Attributes page. Accept the defaults. Ensure that
at least one attribute is selected as the persistent object key. The persistent
object is created in the folder, beneath the schema.

Chapter 15. Object tasks 761



3. Add a data object to the persistent object. From the pop-up menu of the
persistent object, select Add Data Object. The Add Data Object wizard
opens to the Names and Attributes page. Accept the defaults. Ensure that
at least one attribute is selected as the persistent object key. The persistent
object is created in the folder, beneath the schema.

4. On the Methods page of the Add Data Object wizard, define the method
(along with any parameters) that maps to the push-down method
associated with the DB persistent object.

5. Create a business object.
6. At the business object interface level, define the method to correspond

with the push-down mentod..
7. Add an implementation for the business object. Select the option Add or

select one later.
8. From the pop-up menu of the business object implementation, select

Select a Data Object Interface. On the Selection page, ensure that you
select the data object interface, which was created when you added the
data object from the DB persistent object. The data object interface,
implementation, and the DB persistent object and DB schema are added
to the business object implementation in the User-Defined Business
Objects folder.

9. Turn to the Methods Mapping page. The Business Object Methods folder
shows the method.

10. Select the method, and from its pop-up menu, select Add. The Data
Object Method field appears.

11. Click the list button, and select the data object method to be mapped to
the business object method.

12. Click Finish.

“Push-down methods” on page 759
Persistent object (Programming Guide)
Data object (Programming Guide)
Application adaptor (Programming Guide)

“Mapping a business object to a data object” on page 787
“Mapping a data object to a DB persistent object” on page 703

Using push-down methods with PA persistent objects

When push-down methods are used to transmit transactional data of existing
applications, they have to be used with PA persistent objects. The method of

762 WebSphere: Application Development Tools Guide



using them differs, depending on whether you are mapping a business object
to a data object, or whether you are mapping a data object to a persistent
object.

Method 1 (Mapping a business object to a data object)

1. Import the PA bean (See Creating a PA schema by importing a PA bean).
The PA schema is created in the User-Defined PA Schemas folder along
with the PA persistent object.

2. Add a data object to the persistent object.
3. On the Methods page of the Add Data Object wizard, define the method

debit (of type long, with parameter amount that maps to the push-down
method associated with the PA persistent object, for example,
iBeCashAcctPAOPO.debit)
Note: The type of the data object method must be the same as the type of
the method defined in the PA bean.

4. Create a business object.
5. At the business object interface level, define method debit (return type

void) with a parameter amount (of type long).
Note: You must define the method signature to match the one you
created for your PA bean.

6. Add an implementation for the business object. Select the option Add or
select one later.

7. From the pop-up menu of the business object implementation, select
Select a Data Object Interface. On the Selection page, ensure that you
select the data object interface, which was created when you added the
data object from the PA persistent object (BeCashAcctPAODO). The data
object interface, implementation, and the PA persistent object and PA
schema are added to the business object implementation in the
User-Defined Business Objects folder.

8. Turn to the Methods Mapping page. The Business Object Methods folder
shows the method (debit).

9. Select the method, and from its pop-up menu, select Add. The Data
Object Method field appears.

10. Click the list button, and select the data object method (debit) to be
mapped to the business object method.

11. Click Finish.

Method 2 (Mapping a data object to a persistent object)

1. At the business object interface level, define method debit (return type
void) with a parameter amount (of type long)

2. Add an implementation for the business object.
3. On the Data Object Interface page, specify the attributes of the business

object that are to be data object attributes.

Chapter 15. Object tasks 763



4. Turn to the Data Object Methods page, and select the methods of the
business object to be pushed down to the data object.

5. Add a data object implementation, selecting Procedural Adaptors for the
implementation.

6. Associate a PA persistent object with the implementation.
7. Turn to the Methods Mapping page.
8. The method you defined for the data object (debit) appears in the

User-Defined Methods folder, and you can map it to the corresponding
persistent object push-down method.

“Enterprise Access Builder (EAB)” on page 158
“Push-down methods” on page 759
Persistent object (Programming Guide)
Data object (Programming Guide)
Application adaptor (Programming Guide)

Creating a PA schema by importing a PA bean
“Working with methods” on page 750
“Mapping a business object to a data object” on page 787
“Mapping a data object to a PA persistent object” on page 708
“Handling exceptions thrown by PA bean push-down methods” on page 163

Relationship methods

When you define a relationship from one business object to another, there is a
set of methods created for the relationship. They are the add(), list(), and
remove()methods, that enable you to access the relationship.
Note: Read-only relationships do not have the add()and the remove()methods.

For example, if you have a one to many relationship between the Policy
business object and the Claim object, you can use the add()method to add
claims for a policy, the list()method to list claims in the policy, and the
remove()method to remove claims from a policy.

There are different kinds of relationship methods: reference collection
methods, foreign key tool-defined methods, and those that you implement
yourself by providing your own code. However, you can only customize the
implementation of the list()method.

Business object (Programming Guide)

764 WebSphere: Application Development Tools Guide



“Adding a business object implementation and data object interface” on
page 780
“Defining relationships” on page 278
“Customizing business object OOSQL implementation methods”

Customizing business object OOSQL implementation methods

If you define a relationship from one business object to another, and you
choose to implement the relationship using OOSQL queries, which you
indicate on the Object Relationships page of the Business Object
Implementation wizard, you can provide the OOSQL code for the list()
method of the business object implementation. Object Builder will not validate
the code you provide. Your code will overwrite the default tool-generated
code for this method.

Follow these steps to customize the implementation of the list()method:
1. In the Tasks and Objects pane, select the business object implementation

for which you have defined the relationship whose implementation is to
use OOSQL queries.

2. The User-Defined Relationships folder in the Methods pane shows the
relationship you have defined. Expand the relationship node to view the
add, list and remove methods for the relationship that are being
implemented for the business object implementation.

3. Select the list method.
4. From its pop-up menu, select Properties. The Method Implementation

wizard opens to the Implementation page.
5. Accept the defaults and click Next to advance to the OOSQL

Customization page.
6. Select the Provide your own OOSQL code check box.
7. The tool-generated code is cleared from the panel, and it becomes editable.

Type in your code for the method and click Finish.

You can view the code you provided in the Source pane, when you select the
list()method in the Methods pane.

Business object (Programming Guide)
“Relationship methods” on page 764

“Working with methods” on page 750

Chapter 15. Object tasks 765



“Adding a business object implementation and data object interface” on
page 780
“Defining relationships” on page 278

Customizing persistent object ESQL framework methods

You can use the ESQL Customization page of the Method Implementation
wizard to provide your own embedded SQL code for the special framework
methods of any persistent object in the model that uses embedded SQL.

Note the following points:

v The persistent object’s special framework methods that you can customize
are the insert(), update(), retrieve(), and del() methods; not the
setConnection() method.

v Object Builder will not validate the code you provide. Your code will
overwrite the default tool-generated code for this method.

Follow these steps to customize the ESQL clauses for the special framework
methods of the persistent object:
1. Select the persistent object that uses embedded SQL in the Tasks and

Objects pane. (You can select it from any one of these folders:
User-Defined Business Objects folder, User-Defined Data Objects folder,
DBA-Defined Schemas folder.) You will see the persistent object’s methods
in the Methods pane.

2. Select the persistent object’s special framework method that you want to
customize from the Framework Methods folder.

3. From its pop-up menu, select Properties. The Method Implementation
wizard opens to the Implementation page.

4. Ensure that the Use the implementation provided by Object Builder
option is selected.

5. Click Next, or click the arrow to the left of the page name, and select
ESQL Customization page from the list. The page opens.

6. Select the check box Provide your own ESQL code. This makes the panel
that shows the code for the method editable, and you can either edit the
code provided by Object Builder, or type in entirely different code for the
method. Object Builder will not validate the code you provide.

7. Click Finish.

Note: You can overwrite the code you provide with Object Builder’s code for
the method by clearing the Provide your own ESQL code check box.

Persistent object (Programming Guide)
“Special framework methods” on page 758

766 WebSphere: Application Development Tools Guide



“Working with methods” on page 750
“Working with DB persistent objects” on page 832

Deleting a method

To delete a user-defined method, follow these steps:
1. In the User-Defined Business Objects folder, locate the object (business

object interface, data object interface, business object implementation, or
data object implementation) that defines the method.

2. From the pop-up menu of the interface, click Properties to open the
object’s wizard.

3. Click the page title and turn to the Methods page.
4. Locate the method under the Methods folder.
5. From the pop-up menu of the method, click Delete.
6. Click Finish.

If the method was defined in an interface, then it is automatically deleted
from any associated implementations.

Get and set methods are deleted automatically when the attribute they
represent is deleted.

“User-defined methods” on page 751

“Working with methods” on page 750

Method mapping properties

The following topics describe the details of specific method mappings:
v “Special Framework Methods” on page 768
v “User-Defined Methods” on page 768
v “Method Reordering” on page 769

“Object Builder” on page 1

“Working with methods” on page 750

Chapter 15. Object tasks 767



Special Framework Methods

The Special Framework Methods folder contains the special framework
methods - insert(), update(), retrieve(), del(), and setConnection() - that
are implemented for the data object. You can specify the processing order of
the framework methods with the method reordering controls (see the
reference section: “Method Reordering” on page 769), and can thus customize
the implementation and referential integrity. For each of the special
framework methods, the order of selection of the persistent object methods is
the calling sequence and determines the order of processing. To specify the
processing order, select the special framework method for which you want to
define the implementation and select Add Mapping from its pop-up menu.

Persistent object (Programming Guide)
“Framework methods” on page 757
“Special framework methods” on page 758

“Customizing referential integrity” on page 714
“Working with methods” on page 750

“Method Reordering” on page 769

User-Defined Methods

When you are working with the Procedural Application Adaptor, the methods
you defined for the data object using the Methods page of the Data Object
Interface wizard appear in the User-Defined Methods folder, and you can map
them to the corresponding persistent object push-down method.

Data object (Programming Guide)
Persistent object (Programming Guide)
“User-defined methods” on page 751
“Push-down methods” on page 759

“Working with methods” on page 750
“Using push-down methods with PA persistent objects” on page 762
“Customizing referential integrity” on page 714
“Adding a business object implementation and data object interface” on
page 780
“Creating a data object interface” on page 801

768 WebSphere: Application Development Tools Guide



“Mapping a data object to a DB persistent object” on page 703
“Mapping a data object to a PA persistent object” on page 708

Method Reordering

When a special framework method calls more than one persistent object
method, the order in which they are called determines the order of processing.
You can use the following buttons to reorder the methods:
v Move Up

This button is available for selection when you have selected any of the
persistent object methods except the first one, from the Special Framework
Methods folder. Each time you use this button, the selected method shifts
one level higher in the tree.

v Move Down
This button is available for selection when you have selected any of the
persistent object methods except the last one, from the Special Framework
Methods folder. Each time you use this button, the selected method shifts
one level lower in the tree.

Persistent object (Programming Guide)
“Framework methods” on page 757
“Special framework methods” on page 758

“Customizing referential integrity” on page 714
“Working with methods” on page 750

Working with constructs

Constructs (constants, enumerations, exceptions, typedefs, structures, and
unions) can be defined at the file, module, or interface level of a business
object interface or data object interface, or at the file or module level of a
composition.

You can define them directly in Object Builder, or define them in Rose and
export them to Object Builder.

The following tasks deal with constructs:
v “Defining constructs with file scope” on page 770
v “Defining constructs with module scope” on page 771
v “Defining constructs with interface scope” on page 772
v “Editing a construct” on page 773
v “Deleting a construct” on page 774

Chapter 15. Object tasks 769



“Constructs”

“Working with methods” on page 750
“Working with attributes” on page 697

“Constructs in Rose” on page 101

Constructs

In Object Builder, the following items are referred to throughout as constructs:
v Constant
v Enumeration
v Exception
v Typedef
v Structure
v Union

They can be defined at the file, module, or interface level of a business object
interface, data object interface, or local-only object, or at the file or module
level of a composition.

“Working with constructs” on page 769

Defining constructs with file scope

You can define constructs with file scope using the Business Object File
wizard, Data Object File wizard, or Composition File wizard. You can add the
constructs when you create a new file, or by modifying the properties of an
existing file (from the file’s pop-up menu, select Properties).

Warning: File scope constructs are not qualified. In C++ implementations,
they pollute the namespace and may conflict with other definitions. In Java
implementations they are placed in the “unnamed” package, and may
produce compilation errors (processing of classes in the unnamed package is
implementation dependent). It is recommended that all constructs be defined
at module or interface scope.

To define a construct, follow these steps:
1. In the wizard, click the page title and turn to the Constructs page.

770 WebSphere: Application Development Tools Guide



2. From the pop-up menu of the Constructs folder, select the construct you
want to add. You can select from the following options:
v Constant
v Enumeration
v Exception
v Typedef
v Structure
v Union

If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct,
follow these steps:
a. Under the construct in the tree view, select the Members folder.
b. From the Members pop-up menu, click Add.
c. Type a name for the member and any other requested information. The

information is saved when you click another item, select another
action, or leave the page.

Note: To use the construct as a type within another construct, you must
first click Finish and then re-open the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

3. Complete the rest of the pages, or click Finish.

“Working with constructs” on page 769
“Creating a business object file” on page 775
“Creating a data object file” on page 797
“Creating a composition file” on page 885

Defining constructs with module scope

You can define constructs with module scope using the Business Object
Module wizard, Data Object Module wizard, or Composition Module wizard.
You can add the constructs when you create a new module, or by modifying
the properties of an existing module (from the module’s pop-up menu, select
Properties).

To define a construct, follow these steps:
1. In the wizard, click the page title and turn to the Constructs page.
2. From the Constructs pop-up menu, select the construct you want to add.

You can select from the following options:
v Constant
v Enumeration

Chapter 15. Object tasks 771



v Exception
v Typedef
v Structure
v Union

If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct,
follow these steps:
a. Under the construct in the tree view, select the Members folder.
b. From the Members pop-up menu, select Add Member.
c. Type a name for the member and any other requested information. The

information is saved when you click another item, select another
action, or leave the page.

Note: To use the construct as a type within another construct, you must
first click Finish and then re-open the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

3. Complete the rest of the pages, or click Finish.

“Working with constructs” on page 769
“Adding a business object module” on page 777
“Adding a data object module” on page 800
“Adding a composition module” on page 886

Defining constructs with interface scope

You can define constructs with interface scope using the Business Object
Interface wizard or Data Object Interface wizard. You can add the constructs
when you create a new interface, or by modifying the properties of an
existing interface (from the interface’s pop-up menu, select Properties).

To define a construct, follow these steps:
1. In the wizard, click the page title and turn to the Constructs page.
2. From the Constructs pop-up menu, select the construct you want to add.

You can select from the following options:
v Constant
v Enumeration
v Exception
v Typedef
v Structure
v Union

772 WebSphere: Application Development Tools Guide



If the construct is an enumeration, exception, structure, or union, you must
define at least one member for it. To define a member for a construct,
follow these steps:
a. Under the construct in the tree view, select the Members folder.
b. From the Members pop-up menu, select Add Member.
c. Type a name for the member and any other requested information. The

information is saved when you click another item, select another
action, or leave the page.

3. Complete the rest of the pages, or click Finish.
Note: To use the construct as the type of an attribute, method return,
method exception, or construct member, you must first click Finish and
then re-open the wizard before you can use the type. The construct is not
added to the current model until you click Finish.

“Working with constructs” on page 769
“Adding a business object interface” on page 777
“Creating a data object interface” on page 801

Editing a construct

To edit a construct, follow these steps:
1. Locate the file, module, or interface that defines the construct in the

User-Defined Business Objects folder.
2. From the pop-up menu of the item, click Properties. The item’s wizard

opens.
3. Click the page title and turn to the Constructs page.
4. Under the Constructs folder, locate the construct, and select it.
5. Edit the construct. If the construct has a Members folder, you can add,

delete, or edit the members.
6. Click Finish.

The construct is changed. Any methods that used the construct as their
method return type or as a parameter, and any attributes that had the
construct as their type, are automatically updated.

“Constructs” on page 770

“Working with constructs” on page 769

Chapter 15. Object tasks 773



Deleting a construct

To delete a construct, follow these steps:
1. Locate the file, module, or interface that defines the construct in the

User-Defined Business Objects folder.
2. From the pop-up menu of the item, click Properties. The item’s wizard

opens.
3. Click the page title and turn to the Constructs page.
4. Under the Constructs folder, locate the construct.
5. From the pop-up menu of the construct, click Delete.
6. Click Finish.

The construct is deleted. Any methods that used the construct as their method
return type or as a parameter, and any attributes that had the construct as
their type, are automatically modified to refer to invalidType.

“Constructs” on page 770

“Working with constructs” on page 769

Working with business objects

Business objects are defined in the User-Defined Business Objects folder, and
are presented in terms of four objects:
v The business object file (which contains one or more interfaces, optionally

organized into modules)
v The business object module, if any (which contains one or more interfaces)
v The business object interface (which has one or more implementations)
v The business object implementation (which has its own file, defined on the

first page of its wizard)

The four objects are created and edited separately, but collectively form a
single business object. Each business object (each set of business object file,
module, interface, and implementation) typically has its own data object.

The following tasks deal with business objects:
v “Creating a business object file” on page 775
v “Adding a business object module” on page 777
v “Adding a business object interface” on page 777
v “Creating a business object by importing an IDL file” on page 780

774 WebSphere: Application Development Tools Guide



v “Adding a business object implementation and data object interface” on
page 780

v “Adding a business object from a data object” on page 784
v “Mapping a business object to a data object” on page 787
v “Editing a business object interface” on page 791
v “Editing a business object implementation” on page 792
v “Editing a business object implementation file” on page 793
v “Customizing business object OOSQL implementation methods” on

page 765
v “Deleting a business object interface” on page 794
v “Deleting a business object implementation” on page 794

Business object (Programming Guide)
Data object (Programming Guide)

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a business object file

A business object file (IDL) is a container for your business object interfaces.
Although a file can hold multiple business object interfaces, which you may
organize into modules, you typically add one interface to each file.

To create a business object file, follow these steps:
1. From the Tasks and Objects pane, select the User-Defined Business

Objects folder.
2. From the folder’s pop-up menu, select Add File. The Business Object File

wizard opens to the Name page.
3. Type a name for the file (for example, an insurance application might have

a file named Policy).

4. Accept the default name for the IR file, or type one. This is the
executable that the DDL will run when System Management loads. It
populates the Interface Repository with interfaces that are required for the
client.
Object Builder generates the default name using the business object’s
filename, with the suffix _IR. Object Builder does not add an extension for
this file. Whether you accept the default name, or create a new name for
the file, you must make sure that its primary name does not exceed eight
characters.

Chapter 15. Object tasks 775



Note: For each business object interface, idlc - eir is run against the
business object IDL file to generate a C++ source file. This source file is
then compiled and linked, resulting in the IR executable.

5. In the Deployment Platforms section, select the platforms on which the
business object is to be deployed.

6. Click Next. The Constructs page opens.
Use the Constructs pop-up menu to add constants, enumerations,
exceptions, structures, typedefs, and unions. Any constructs you add are
scoped to every interface in the file.
Note: To use the construct as a type within another construct, you must
first click Finish and then re-open the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

7. Click Next. The Files to Include page opens.
IManagedClient is included by default. This is the correct choice for a
component that represents a base class in your design. If your component
has a parent, you would specify the business object file of the parent
component in this field. For example, if the CarPolicy component inherits
from the Policy component, then you would specify the business object file
for Policy on this page. Also include the business object files for any
referenced or related components. For example, if CarPolicy has an
attribute of type Claim, you would need to include the business object file
for Claim on this page.

8. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated IDL code.

9. Click Finish. The wizard closes, and your file is added to the User-Defined
Business Objects folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from
its pop-up menu. The Business Object File wizard opens again, with your
selections preserved.

Business object (Programming Guide)

“Working with business objects” on page 774
“Defining constructs with file scope” on page 770
“Adding a business object module” on page 777
“Adding a business object interface” on page 777

“Internationalization of data” on page 132
“Naming objects” on page 128

776 WebSphere: Application Development Tools Guide



Adding a business object module

You can group your interfaces into modules to provide them with a unique
namespace. Generally, all your interfaces should be in modules to reduce the
chance of naming conflicts once they are deployed on a network. Any
constructs you add to a module are scoped only to the interfaces within that
module. To add a module to a file, follow these steps:
1. From the User-Defined Business Objects folder, select your business object

file.
2. From the file’s pop-up menu, select Add Module. The Business Object

Module wizard opens to the Name page.
3. Type a name for the module.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add enumerations, exceptions,
structures and so on.
Note: To use the construct as a type within another construct, you must
first click Finish and then re-open the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

5. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish. The wizard closes, and your module is added to the
User-Defined Business Objects folder, underneath the file.

You can now add business object interfaces to the module.

Business object (Programming Guide)

“Working with business objects” on page 774
“Defining constructs with module scope” on page 771
“Adding a business object interface”

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a business object interface

You can add multiple business object interfaces to the same file or module.
However, the more interfaces a file contains, the slower the compilation
process will be.
Recommendation: To improve performance, limit the number of interfaces per
file to less than ten.

Chapter 15. Object tasks 777



To add a business object interface to a file (or module), follow these steps:
1. From the User-Defined Business Objects folder, select the file or module

that will contain the interface.
2. From the pop-up menu for the file or module, select Add Interface. The

Business Object Interface wizard opens to the Name page.
3. Type a name for the interface (for example, CarPolicy).
4. Select whether the interface will be queryable or not.

If you select this option, the generated code for the managed object
contains the dynamic dispatch method callMethodByName, which allows
the Query Service to call the methods of the managed object. You should
also configure the managed object with a queryable home.

5. Click Next. The Constructs page opens.
Use the pop-up menu of the Constructs folder to add constants,
enumerations, exceptions, typedefs, structures, or unions. Any constructs
you add are scoped to this interface only.
Note: To use the construct as the type of an attribute, method return,
method exception, or construct member, you must first click Finish and
then reopen the wizard before you can use the type. The construct is not
added to the current model until you click Finish.

6. Click Next. The Interface Inheritance page opens.
By default, the interface inherits from IManagedClient::IManageable. This
is the correct choice for a component that represents a base class in your
design. If your component had a parent, you would specify the business
object interface of the parent component on this page.
For applications that use MQSeries application adaptors to send or
receive messages to or from a queue, you need to change the inheritance
to one of the following:
v IMessage IMessage::InboundMessage - for an interface that receives

inbound messages from queues that are managed by an MQSeries
application adaptor; or

v IMessage IMessage::OutboundMessage - for an interface that writes
message to outbound queues that are managed by an MQSeries
application adaptor.

Do not select any of the home inheritance options. These are only
appropriate if you are creating a specialized home.

If the business object is deployable to OS/390, the
IPolymorphicHome class is not available for selection as a parent
interface.

7. Click Next. The Attributes page opens.
To specify attributes for your interface, select Add from the Attributes
pop-up menu (for example, the CarPolicy interface could have the

778 WebSphere: Application Development Tools Guide



attributes “make” and “model”).
You can view how all the different data types, even those from other
projects, are used within the model. (Use the Browse button to open the
Type Browser.)
Note: For most attribute types, a default initializer value is provided.
When there is no suitable default (for example, an attribute whose type is
an enumeration), you should assign your own initializer value, if
necessary.
All attributes you specify will be exposed as part of the public interface
of the component. You can specify protected-access attributes in the
business object implementation.

8. Click Next. The Methods page opens.
To specify methods for your interface, select Add from the Methods
pop-up menu. For example, the CarPolicy interface could have the
method “riskQuotient”.

9. Click Next. The Object Relationships page opens.
To specify any relationships that this class has to other classes, select Add
from the Objects pop-up menu. The relationships will be 1-n. You can
specify the implementation details for the relationship when you add a
business object implementation to this interface.

10. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

11. Click Finish. Your new interface is added to the User-Defined Business
Objects folder, with the attributes and methods you specified.

You should now see your interface in the Inheritance pane, and any methods
you defined for your interface should appear under the User-Defined
Methods folder in the Methods pane.

Business object (Programming Guide)
Query service (Advanced Programming Guide)

“Working with business objects” on page 774
“Tracking data types in models” on page 235
“Defining constructs with interface scope” on page 772
“Creating a specialized home” on page 876
“Adding a key” on page 826

“Internationalization of data” on page 132
“Naming objects” on page 128

Chapter 15. Object tasks 779



Creating a business object by importing an IDL file

If you have code already in IDL files, you can parse the code into Object
Builder, and incorporate the classes, relationships, and code in the IDL files
into your Object Builder application. A relationship is imported as methods.

Note: The IDL must be CORBA 2.2-compliant without IDL extensions. You
can make sure the IDL files you are importing are valid by compiling them
first. Object Builder will only import IDL files that are considered valid by the
compiler.

To import an existing IDL file, follow these steps:
1. Under Tasks and Objects, select the User-Defined Business Objects folder.
2. From the folder’s pop-up menu, select Import IDL. The Import IDL

wizard opens to the File Selection page.
3. Browse for and select the files you want to import. The files you select,

and any files they include, will be parsed and imported into Object
Builder.

4. Click Next. The Search Paths for Nested Files page opens.
5. From the Include directories pop-up menu, select Add. Browse for the

directories you want searched.
When you import a file that includes other files (that is, a file with nested
files), the import process will search for the other files in the directories
you specify here.

6. Click Finish. The selected files (and files they include) are parsed into
Object Builder, and the information in the IDL is added to the current
project model as business object files, business object modules, and
business object interfaces.

Interface Definition Language (Programming Guide)

“Importing IDL from the command line” on page 666
“Creating a data object by importing an IDL file” on page 804
“Creating a local-only object by importing an IDL file” on page 669

Adding a business object implementation and data object interface

Once you have created a business object interface, you can add one or more
implementations for that business object, and also create the data object
interface that provides your business object with access to data. You can
accomplish both tasks using the Business Object Implementation wizard.
Ensure that you have added a key and a copy helper to the business object
interface before proceeding with this task.

780 WebSphere: Application Development Tools Guide



To create the business object implementation, and its associated data object
interface, follow these steps:

1. From the User-Defined Business Objects folder, select the business object
interface you want to implement.

2. From the interface’s pop-up menu, click Add Implementation. The
Business Object Implementation wizard opens to the Name and Data
Access Pattern page.

3. Appropriate implementation names are filled in for you (the business
object file name and interface name plus BO: for example,
CPFile::CarPolicy gets an implementation named
CPFileBO::CarPolicyBO). You can accept these defaults or replace them
with your own names.

4. Set the types of behavior you want your business object to have. You can
set them in the following sections:
v “Pattern for Handling State Data” on page 245
v “Object Reference” on page 246
v “Data Object Interface” on page 247
v “Session Service” on page 248
v “Deployment platforms” on page 423

Note: If you create a new implementation file when you create the
business object implementation, Object Builder associates the deployment
platforms that you specify with that file. If you create a new business
object implementation, and add it to an existing file (that is, you specify
the name of a business object implementation file that already exists in
the model in the File Name field, Object Builder checks whether the
deployment platforms that you specified for the implementation are the
same as those that are selected for the existing implementation file. If
they are not the same, you must follow one of these procedures:
v Change the existing implementation file’s platforms to be the same as

those for the implementation you are adding, before adding the new
implementation: From the pop-up menu of the existing business object
implementation, select File Properties, and change the deployment
platforms on the Name page of the Business Object Implementation
File wizard.

v Change the implementation’s platforms to match those of the existing
file, on this page (the Name and Data Access Pattern page).

5. Click Next. If C++ is your default implementation language, then the
Files to Include page opens.

If you are developing a C++ business object, you can specify
files to include here.

Chapter 15. Object tasks 781



If you are developing a Java business object, ignore this page. It
will be removed from the wizard once you select Java as the
implementation language (on the Implementation Language page).

6. Click Next. The Implementation Inheritance page opens.
7. Make sure that IManagedClient::IManageable is listed as a parent under

the Parent Class folder.
You can also select any parent business object implementations you want
to inherit behavior from.

If the business object is deployable to OS/390, the
ISpecializedPolymorphicHome class is not available for selection as a
parent interface.

8. Click Next. The Implementation Language page opens. Select the
language you want the business object to be implemented in. You can
select either Java or C++.
The default for this page is set in the Preferences notebook, on the Tasks
and Objects page.

9. Click Next. The Attributes page opens. Specify any attributes you want to
add to the business object implementation (in addition to the attributes
you already specified in the business object interface).

For C++ business objects, if you want to specify attributes of
type Object, you must use the type alone, and not the corresponding _ptr
type. This is because Object Builder automatically does the _ptr tagging
for C++ business objects.

For Java business objects, you can specify the _ptr type for
attributes of type Object.

10. Click Next. The Methods page opens. Specify any methods you want to
add to the business object implementation (in addition to the methods
you already specified in the business object interface).

11. Click Next. The Key and Copy Helper page opens. Select a key and,
optionally, copy helper that you have created for this business object (for
example, CarPolicyKey and CarPolicyCopy).
Note: Any primary key or copy helper in the model that contain
attributes from another business object implementation will not be
available for selection.

12. Click Next. The Handle Selection page opens.
You can select a handle for the business object implementation. If you
select a handle, then the framework method getHandleString is
implemented, which overrides the getHandleString method of
IManagedClient::IManageable. The method provides a way to
encapsulate the business object implementation, by returning a string that
represents a reference to the business object. The handle you select

782 WebSphere: Application Development Tools Guide



determines the pattern that is used to form the string (that is, to turn the
reference into a string, or to swizzle the pointer).

13. Click Next. If the business object implementation has parent classes with
overrideable attributes, then the Attributes to Override page opens.
You can use this page to select which of the parent class’s attributes you
want to override.

14. Click Next. If the business object implementation has parent classes with
overrideable methods, then the Methods to Override page opens.
You can use this page to select which of the parent class’s methods you
want to override.

15. Click Next. If the business object implementation has parent classes with
overrideable relationships, then the Relationships to Override page opens.
You can use this page to select which of the parent class’s relationships
you want to override.

16. Click Next. If the business object interface defines 1-n relationships, then
the Object Relationships page opens.
You can use this page to set the way that the object relationship will be
implemented.

17. Click Next. The Data Object Interface page opens.
Note:This page does not open if, on the first page, you chose not to
create a new data object.
Appropriate data object names are filled in for you (the business object
file name and interface name plus DO: for example, CPFile::CarPolicy
gets the data object interface CPFileDO::CarPolicyDO). You can accept
these defaults or replace them with your own names.

18. Select the attributes that you want preserved in the data object. These
attributes constitute the state data for the component.
If you implemented a one-to-many relationship as a Local persistent
reference, then an attribute representing it appears here, so you can select
to preserve it in the data object.

19. Click Next. The Data Object Methods page opens.
Note:This page does not open if, on the first page, you chose not to
create a new data object.

20. Select which business object methods you want to push down to the data
object (that is, call equivalent methods to be defined in the data object).

21. Click Next. The Summary of Framework Methods page opens.
Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you
selected a caching pattern to handle the essential state of your business
object (on the first page), this list includes the synchToDataObject method
required to keep the two sets of attributes synchronized. No action is
needed.

Chapter 15. Object tasks 783



22. Click Finish. The business object implementation and data object
interface appear in the User-Defined Business Objects folder, under your
business object interface. The data object interface also appears in the
User-Defined Data Objects folder.

Now that the business object implementation is defined, you can specify the
implementation code for each user-defined method.

Business object (Programming Guide)
Data object (Programming Guide)
Session Service (Advanced Programming Guide)

“Implementing methods” on page 752
“Adding resource methods to a sessional business object” on page 164
“Adding a data object implementation” on page 807
“Defining a 1-n relationship” on page 281

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a business object from a data object

Note: You can add a business object to a data object only if the data object has
no associated business object.

To add a business object directly from a data object, follow these steps:
1. Select the data object interface in the User-Defined Data Objects folder.
2. From the pop-up menu of the object, select Add Business Object. The

Add Business Object wizard opens to the Name page.
Type the names for the business object file, interface, and IR file, and
indicate whether the interface is to be queryable. Then select the platforms
on which the object is to be deployed. The defaults are set by the platform
selections you make from the Platform > Constrain menu.

3. Click Next. The Interface Inheritance page opens. By default, the interface
inherits from IManagedClient::IManageable. This is the correct choice for
a component that represents a base class in your design. If your
component has a parent, you would specify the business object interface of
the parent component on this page.

4. Click Next. The Name and Data Access Pattern page opens. Appropriate
implementation names are filled in for you (the business object file name
and interface name plus BO: for example, CPFile::CarPolicy gets an

784 WebSphere: Application Development Tools Guide



implementation named CPFileBO::CarPolicyBO). You can accept these
defaults or replace them with your own names.
Set the types of behavior you want your business object to have. You can
set the following properties:
v “Pattern for Handling State Data” on page 245
v “Object Reference” on page 246
v “Session Service” on page 248

5. Click Next. The Implementation Language page opens. You can select
either C++ or Java as the implementation language for the business object.
The objects’ classes will be implemented in the language you select.
The default for this page is set in the Preferences notebook, on the Tasks
and Objects page.

6. Click Next. The Handle Selection page opens.
You can select a handle for the business object implementation. If you
select a handle, then the framework method getHandleString is
implemented, which overrides the getHandleString method of
IManagedClient::IManageable. The method provides a way to encapsulate
the business object implementation, by returning a string that represents a
reference to the business object. The handle you select determines the
pattern used to form the string (that is, to turn the reference into a string,
or to swizzle the pointer).

7. Click Next. The Attributes page opens. Here, you can indicate whether
you want to push a selected attribute of the data object interface up to the
business object interface, or the business object implementation (using the
Define Attribute in section), whether the selected attribute that will be an
attribute of the key class, or of the copy helper class, or of both (using the
Add Attribute to section), and you can also add new attributes for either
the business object interface, or the business object implementation (again,
indicating the level at which the attribute is to be defined using the
Define in section). If you select data object interface in the Define
Attribute in section, the attribute is not added to either the business object
interface, or its implementation.
If the highlighted attribute is a string, the String Behavior section appears.
You can indicate whether the string is to be a CORBA string, if trailing
blank spaces in the string are to be stripped off, or if the string is to be
padded with spaces.
Among the other properties that you can specify are whether the attribute
is read-only, overrideable by a subclass, static, and if the get method for
the attribute is made a constant (const), which indicates that it will not
change the state of the business object.

8. Click Next. The Methods page opens. Here, you can indicate whether you
want to push a selected method up to the business object interface, or the
business object implementation (using the Define Method in section), and

Chapter 15. Object tasks 785



you can also add new methods for either the business object interface, or
the business object implementation (again, indicating the level at which
the method is to be defined using the Define Method in section). If you
select data object interface in the Define Method in section, the method is
not added to either the business object interface, or its implementation.

9. Click Finish.

The business object appears in the User-Defined Business Objects folder,
complete with its file, interface, implementation, and its key and copy helper.
(A key and copy helper appear only if you marked some of the attributes on
the Attributes page as “key” or “copy helper” in the Add attribute to section.)

The following objects inherit from default classes:
v the business object implementation (inherits from

IManagedClient::IManageable)
v the key (inherits from IManagedLocal::IPrimaryKey)
v the copy helper (inherits from IManagedLocal::INonManageable)

You can edit the properties of either the business object interface, or the
business object implementation (Properties from the pop-up menu of the
object) to change the inheritance, as well as perform the following tasks:
v Override attributes and methods
v Indicate the way in which relationships with other objects are to be

implemented by modifying the properties of the business object
implementation.

v Add constructs for the business object
Note: You cannot add constructs while you are creating this business object
interface. Once the interface is created, you can add constructs at the
different scoping levels (file, module, and interface) when you modify the
business object’s properties (select Properties from the pop-up menu of its
file, module, or interface).

You can now add a managed object for the business object before you can
deploy it.

Note: An indirect way of adding a business object to a data object is to create
the business object separately, and then associate it with either a new or
existing data object. (Select the option Add or select one later from the Name
and Data Access Pattern page of the Business Object Implementation wizard.)

Data object (Programming Guide)
Business object (Programming Guide)

786 WebSphere: Application Development Tools Guide



“Creating a component for existing DB data” on page 139
“Working with business objects” on page 774
“Working with data objects” on page 795
“Creating a business object file” on page 775
“Adding a business object module” on page 777
“Adding a business object interface” on page 777
“Mapping a business object to a data object”

“Internationalization of data” on page 132
“Naming objects” on page 128

Mapping a business object to a data object

Once you have added a business object and its implementation, and have
specified that it uses the meet-in-the-middle approach, you can map it to an
existing data object. You can map both attributes and methods of one object to
the other. To do so, follow these steps:
1. From the business object implementation’s pop-up menu, click Select Data

Object Interface. The Data Object Interface Connection wizard opens to
the Selection page.

2. In the Data Object Interface Name field, type the name of an existing
data object interface in the form data_object_name data_object_interface_name,
or select one of the interface names from the list.
Note: If you select a data object, which was created using the bottom-up
approach (that is, one created from a persistent object), it is recommended
that you initialize the attributes of the data object before you map the
attributes of the business object to those of the data object. (They are not
initialized by default.) So, follow these steps:
a. Click Finish. This adds the selected data object interface to the

User-Defined Business Objects folder, beneath the business object
implementation.

b. Initialize the attributes of the data object. Follow these steps:
1) Select the data object interface in the User-Defined Data Objects

folder.
2) From the pop-up menu of the data object interface, select

Properties. The Data Object Interface wizard opens.
3) Click Next, or click the arrow to the left of the page name, and

select Attributes page from the list. The page opens.
4) Select the data object attributes from the Attributes folder and type

the initial value for the attribute in the Initializer field.

Chapter 15. Object tasks 787



c. Continue with the mapping: from the pop-up menu of the data object
interface (which was selected for the business object), select Properties.
The Data Object Interface Connection wizard opens.

d. Click Next, or click the arrow to the left of the page name, and select
Attributes Mapping page from the list. The page opens.

e. Follow step 4.
3. Click Next. The Attributes Mapping page opens. On this page, you can

map the business object attributes to the data object attributes available
from the business object interface. A business object attribute can map to a
single data object attribute of the same data type: the mapping is
one-to-one.
Note: Object Builder does the default mapping between business object
attributes and data object attributes if the following properties hold true:
v The attributes are of the same name
v The attributes are of the same type

Of course, you can modify these mappings, if you want to.

To map business object attributes to data object attributes (those that are
not mapped), follow these steps:
a. From the pop-up menu of the Business Object Attributes folder, select

Add.
b. Type the name of an attribute of the data object interface you specified

earlier, or select one from the Data Object Attribute field’s list.
4. Click Next. The Methods Mapping page opens. On this page, you can map

the business object methods to the data object methods. You can only have
a one-to-one mapping between any business object methods and data
object methods, and the signatures of the two methods must be the same.
Note: Object Builder does the default mapping between business object
methods and data object methods if the following properties hold true:
v The method names are the same
v The method return types are the same
v The methods have the same number of parameters, and they are of the

same type. (The names of the parameters are irrelevant.)

Of course, you can modify these mappings, if you want to.

Object Builder always provides the default mapping for the insert(),
update(), del(), retrieve(), and setConnection() methods.

To map business object methods to data object methods (those that are not
mapped), follow these steps:

788 WebSphere: Application Development Tools Guide



a. From the pop-up menu of the Business Object Methods folder, select
Add.

b. Select a method of the data object from the Data Object Methods
field’s list. This list contains only those methods of the data object that
you defined for its interface.

5. Click Next, and add any comments about the mapping on the Comments
page.

The current mapping takes effect when you proceed to map the next business
object attribute, or when you click Finish. The selected data object interface
appears in the User-Defined Business Objects folder, under the business object
implementation node.

Note: After you have mapped a business object to a data object, you can view
and edit the mapping of the attributes on the Attributes Mapping page and
the Methods Mapping page of the Business Object Implementation wizard.
This wizard will no longer have the Data Object Interface page.

Business object (Programming Guide)
Data object (Programming Guide)

“Working with business objects” on page 774
“Working with data objects” on page 795

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146

Editing a business object file

You can edit a business object file using either of the following methods:
v Using Properties from the pop-up menu of the business object file
v Using File Properties from the pop-up menu of either the business object

module, or the business object interface

To edit a business object file using the file itself, follow these steps:
1. Select the business object file in the User-Defined Business Objects folder.
2. From its pop-up menu, select Properties. The Business Object File wizard

opens to the Name page. You can rename the file, if you want to.

You can also specify another IR file name (the executable file that
the DDL will run when System Management loads).

Chapter 15. Object tasks 789



3. Click Next. The Constructs page opens. Add new constructs, or modify, or
delete existing ones. You can add constants, enumerations, exceptions,
structures, typedefs, and unions. Any constructs you add are scoped to
every interface in the file.
Note: To use the construct as a type within another construct, you must
first click Finish and then reopen the wizard before you can use the type.
The construct is not added to the current model until you click Finish.
Click Next. The Files to Include page opens. Add new header files if you
want to, or delete existing ones.
Note: If you add new files to be included in your business object file, you
must include these files as file adornment prefixes for keys and data object
implementations that are already associated with this business object, and
for those that you will define later. The key and data object
implementation IDL files will not automatically include the headers that
you specify for the business object file. Include them by selecting IDL as
the file location on the Adornment Details page. See the task Adding file
adornments.

4. Click Next. The Contents Ordering page opens. Use this page to view or
set the order of constructs and interfaces in the IDL file.

5. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated IDL code.

6. Click Finish. The wizard closes. Any modules or interfaces that you add
for this object, will have the modifications that you made propagated to
them.

To edit the business object file using either a business object module, or a
business object interface, follow these steps:
1. From the pop-up menu of either the business object module, or the

business object file, select File Properties. The Business Object File wizard
opens to the Name page.

2. You can type a new name for the business object file, and select a different
set of deployment platforms for the object.
Note: The remaining pages are the same as when you edit the business
object file using the file itself: the Constructs page, the Files to Include
page, the Contents Ordering page, and the Comments page. Change these
properties, if you want to.

3. Click Finish to apply your changes.

Business object (Programming Guide)

“Working with business objects” on page 774
“Defining constructs with file scope” on page 770

790 WebSphere: Application Development Tools Guide



“Adding a business object module” on page 777
“Adding a business object interface” on page 777
“Adding file adornments” on page 240

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a business object interface

Business object interfaces are defined in the User-Defined Business Objects
folder, where they are shown under the file (and module, if any) in which
they are defined. You can edit the file, module, and business object interface
as separate objects, following these steps:
1. From the pop-up menu of the file, module, or interface, click Properties to

open the appropriate wizard.
2. Click the page title to select a page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

Note the following points:

v To change the deployment platforms for the object, you must edit the
object’s file properties. See the task: “Setting platform constraints” on
page 421.

v If you want to specify a parent for the interface after you have defined the
implementation for the business object, follow these steps:
1. Add the parent to the Parents folder on the Interface Inheritance page of

the Business Object Interface wizard
2. Open the Business Object Implementation wizard, and on the Name and

Data Access Pattern page specify the pattern for handling state data as
Same as parent’s.

3. Click Next.

4. Add the implementation parent on the Implementation Inheritance
page.

v If you want to change the order of the business object file contents, follow
these steps:
1. Open the file’s wizard.
2. Click the page title and turn to the Contents Ordering page.
3. Move elements into the new order.
4. Click Order by Dependency to validate the new order.
5. Click Finish.

Chapter 15. Object tasks 791



Business object (Programming Guide)
“Dependencies within an IDL file” on page 292

“Working with business objects” on page 774
“Setting platform constraints” on page 421

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a business object implementation

Business object implementations are defined in the User-Defined Business
Objects folder, where they are shown under the business object interface they
were added to.

You can edit a business object implementation by following these steps:
1. From the pop-up menu of the business object implementation, click

Properties. The Business Object Implementation wizard opens to the
Name and Data Access Pattern page.

2. Click the page title to select another page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

Note the following points:
v To change the deployment platforms for the object, you must edit the

object’s file properties. This is described in the task: “Setting platform
constraints” on page 421.

v The Same as parent’s option is selected by default if the interface for this
business object inherits from another business object interface. However,
you still have to indicate the implementation parent on the Implementation
Inheritance page of this wizard, after you delete the default parent for
business object implementations, which is IManagedClient
IManagedClient::IManageable.

v You cannot change the business object implementation file name, and the
deployment platforms using the Name and Data Access Patterns page. To
change these properties of the implementation, select File Properties from
the pop-up menu of the business object implementation. The Business
Object Implementation File wizard opens to the Name page, and you can
make the changes.

792 WebSphere: Application Development Tools Guide



v On the Key and Copy Helper page, only those keys and copy helpers that
do not contain attributes from other business object implementations are
available for selection.

Business object (Programming Guide)

“Working with business objects” on page 774
“Setting platform constraints” on page 421

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a business object implementation file

To edit a business object implementation file, follow these steps:
1. From the pop-up menu of the business object implementation, select File

Properties. The Business Object Implementation File wizard opens to the
Name page.

2. You can type a new name for the business object implementation file, and
select a different set of deployment platforms for the object.
Note: You can select or clear only check boxes that correspond to
platforms that are selected on the Platform > Constrain menu. The other
check boxes will be disabled.

3. Click Next. The Contents Ordering page opens. Use this page to view or
set the order of constructs and interfaces in the IDL file.

4. Click Finish to apply your changes.

Editing a business object implementation file to match a new business
object implementation

If you create a new implementation file when you create a business object
implementation, Object Builder associates the deployment platforms that you
specify with that file. If you create a new business object implementation, and
add it to an existing file (that is, you specify the name of a business object
implementation file that already exists in the model in the File Name field),
Object Builder checks whether the deployment platforms that you specified
for the implementation are the same as those that are selected for the existing
implementation file. If they are not the same, you can change the existing
business object implementation file’s platforms to be the same as those for the
implementation that you are adding, before adding the new implementation:
From the pop-up menu of the existing business object implementation, select
File Properties, and change the deployment platforms on the Name page of
the Business Object Implementation File wizard.

Chapter 15. Object tasks 793



Business object (Programming Guide)
“Multi-platform development” on page 419

“Working with business objects” on page 774
“Setting platform constraints” on page 421

“Deployment platforms” on page 423
“Platform differences” on page 425
“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a business object interface

To delete a business object interface, follow these steps:
1. Locate the business object interface in the User-Defined Business Objects

folder.
2. Delete any managed objects defined off of the interface’s business object

implementation.
3. Delete or remove the data object interface defined off of the business

object implementation.
4. Delete the business object implementation.
5. Delete any keys and copy helpers defined off of the interface.
6. From the pop-up menu of the business object interface, click Delete.

When you delete a business object interface, any methods, attributes,
constructs, or one-to-many relationships that use it as a type have the type
changed to invalidType. For example, if you delete the interface of Agent,
then an attribute Agent custAgent becomes attribute invalidType custAgent.
You can find all occurrences of invalidType by running the model consistency
checker.

Business object (Programming Guide)

“Working with business objects” on page 774
“Checking a model for consistency” on page 31

Deleting a business object implementation

To delete a business object implementation, follow these steps:

794 WebSphere: Application Development Tools Guide



1. Locate the business object implementation in the User-Defined Business
Objects folder.

2. Delete any managed objects defined off of the business object
implementation.

3. Delete or remove the data object interface defined off of the business
object implementation.

4. From the pop-up menu of the business object implementation, click
Delete.

Note:When you delete a business object implementation, any of its attributes
that are used in its associated keys, or copy helpers are automatically deleted.

Business object (Programming Guide)

“Working with business objects” on page 774
“Deleting a managed object” on page 874
“Deleting a data object interface” on page 824
“Working with keys” on page 825“Working with copy helpers” on page 829

Working with data objects

A data object manages the state of a business object. It encapsulates the
object’s persistent behavior, if there is any.

In the User-Defined Data Objects folder, a data object is fully presented in
terms of four objects:
v The data object file (which contains one or more interfaces, optionally

organized into modules)
v The data object module, if any (which contains one or more interfaces)
v The data object interface (which has one or more implementations)
v The data object implementation (which has its own file, defined on the first

page of its wizard)

You can create these objects separately when you create a data object interface
that is not connected to a business object. See the task “Creating a data object
interface” on page 801. Collectively, these objects form a single data object.
Each data object (each set of data object file, module, interface, and
implementation) typically has its own persistent object.

The objects are created automatically in the User-Defined Data Objects folder
when you perform one of the following tasks:
v “Adding a data object from a DB persistent object” on page 814

Chapter 15. Object tasks 795



v “Adding a data object from a PA persistent object” on page 815
v “Adding a data object implementation” on page 807

The following tasks deal with data objects:
v “Creating a data object file” on page 797
v “Editing a data object file” on page 798
v “Adding a data object module” on page 800
v “Creating a data object interface” on page 801
v “Adding a business object implementation and data object interface” on

page 780
v “Creating a data object by importing an IDL file” on page 804
v “Adding a data object implementation” on page 807
v “Adding a data object from a business object” on page 813
v “Adding a data object from a DB persistent object” on page 814
v “Adding a data object from a PA persistent object” on page 815
v “Mapping a business object to a data object” on page 787
v “Mapping a data object to a DB persistent object” on page 703
v “Mapping a data object to a PA persistent object” on page 708
v “Editing a data object interface” on page 817
v “Editing a data object implementation” on page 819
v “Editing a data object implementation file” on page 823
v “Deleting a data object interface” on page 824
v “Deleting a data object implementation” on page 824

Note: In the User-Defined Business Objects folder, the DBA-Defined Schemas
folder and the User-Defined PA Schemas folder, the data object is only
presented in terms of its interface and implementation.

Data object (Programming Guide)
Persistent object (Programming Guide)
Business object (Programming Guide)

“Working with components” on page 697

“Naming objects” on page 128
“Internationalization of data” on page 132

796 WebSphere: Application Development Tools Guide



Creating a data object file

A data object file (IDL) can hold multiple data object interfaces, which you
may organize into modules. However, you typically add one interface to each
file.

To create a data object file, follow these steps:
1. From the Tasks and Objects pane, select the User-Defined Data Objects

folder.
2. From the folder’s pop-up menu, select Add File. The Data Object File

wizard opens to the Name page.
3. Type a name for the file.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add constants, enumerations,
exceptions, typedefs, structures, or unions. Any constructs you add are
scoped to this file only.
Note: To use the construct as the type of an attribute, method return,
method exception, or as a type within another construct, you must first
click Finish and then reopen the wizard before you can use the type. The
construct is not added to the current model until you click Finish.

5. Click Next. The Files to Include page opens.
If your component had a parent, you would specify the data object file of
the parent component in this field. For example, if the CarPolicy
component inherits from the Policy component, then you would specify
the data object file for Policy on this page. The data object files for any
referenced or related components are automatically added to the Include
Files folder. For example, if the CarPolicy interface has an attribute of type
Claim, the data object file for Claim is automatically included on this page
as soon as the attribute is defined for the interface. You can also use this
page to add headers to the data object interface’s IDL file. These headers
can be in the form of #include statements that include other IDL files that
have definitions that you want to use.

6. Click Next.
Note: If the file has constructs or other interfaces defined in it, continue
with step 6; otherwise, continue with step 7.

7. The Contents Ordering page opens. This page enables you to view the
order of elements within the IDL file. You can also change the order of
these constructs and interfaces within the file by using either the Move Up
and Move Down buttons, or the Order by Dependency button. When
you are satisfied with the order of elements, click Next.

8. The Comments page opens. Type any comments you want to include as
comment lines in your generated IDL code.

Chapter 15. Object tasks 797



9. Click Finish. The wizard closes, and your file is added to the User-Defined
Data Objects folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from
its pop-up menu. The Data Object File wizard opens again, with your
selections preserved. You can change the name of the file and the construct
names or their types only if the file was not defined in another model. (If the
file was defined in another model, and you specify that model as a project
dependency when you open the current project, the project dependency
model is read-only, and can be used for inheritance purposes, and for reuse of
interfaces, attribute types and constructs.)

Data object (Programming Guide)

“Working with data objects” on page 795
“Adding a business object module” on page 777
“Creating a data object interface” on page 801

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a data object file

You can edit a data object file using either of the following methods:
v Using Properties from the pop-up menu of the data object file
v Using File Properties from the pop-up menu of either the data object

module, or the data object interface

To edit a data object file using the file itself, follow these steps:
1. From the Tasks and Objects pane, select the User-Defined Data Objects

folder.
2. From the folder’s pop-up menu, select Properties. The Data Object File

wizard opens to the Name page.
3. Type a new name for the file.

Note:You can change the name of the file, and the names of constructs or
their types only if the file was not defined in another model. (If the file
was defined in another model, and you specify that model as a project
dependency when you open the current project, the project dependency
model is read-only, and can be used for inheritance purposes, and for
reuse of interfaces, attribute types and constructs.)

4. Click Next. The Constructs page opens.

798 WebSphere: Application Development Tools Guide



Use the Constructs pop-up menu to add constants, enumerations,
exceptions, typedefs, structures, or unions. Any constructs you add are
scoped to this file only.
Note: To use the construct as the type of an attribute, method return,
method exception, or as a type within another construct, you must first
click Finish and then reopen the wizard before you can use the type. The
construct is not added to the current model until you click Finish.

5. Click Next. The Files to Include page opens.
If your component had a parent, you would specify the data object file of
the parent component in this field. For example, if the CarPolicy
component inherits from the Policy component, then you would specify
the data object file for Policy on this page. The data object files for any
referenced or related components are automatically added to the Include
Files folder. For example, if the CarPolicy interface has an attribute of type
Claim, the data object file for Claim is automatically included on this page
as soon as the attribute is defined for the interface. You can also use this
page to add headers to the data object’s IDL file. These headers can be in
the form of #include statements that include other IDL files that have
definitions that you want to use: for example, exceptions that are defined,
and that are to be thrown in push-down methods.

6. Click Next.
Note: If the file has constructs or other interfaces defined in it, continue
with step 6; otherwise, continue with step 7.

7. The Contents Ordering page opens. This page enables you to view the
order of elements within the IDL file. You can also change the order of
these constructs and interfaces within the file by using either the Move Up
and Move Down buttons, or
the Order by Dependency button. When you are satisfied with the order
of elements, click Next.

8. The Comments page opens. Type any comments you want to include as
comment lines in your generated IDL code.

9. Click Finish. The wizard closes, and the file is saved with your changes.

To edit the data object file using either a data object module, or a data object
interface, follow these steps:
1. From the pop-up menu of either the data object module, or the data object

file, select File Properties. The Data Object File wizard opens to the Name
page.

2. You can type a new name for the data object file, and select a different set
of deployment platforms for the object.
Note: The remaining pages are the same as when you edit the data object
file using the file itself: the Constructs page, the Files to Include page, the
Contents Ordering page, and the Comments page. Change these
properties, if you want to.

Chapter 15. Object tasks 799



3. Click Finish to apply your changes.

Data object (Programming Guide)

“Working with data objects” on page 795
“Adding a business object module” on page 777
“Creating a data object interface” on page 801

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a data object module

If you plan to add multiple data object interfaces to a single file, you may
want to store the interfaces in separate modules. To add a module to a file,
follow these steps:
1. From the User-Defined Data Objects folder, select your data object file.
2. From the file’s pop-up menu, select Add Module. The Data Object Module

wizard opens to the Name page.
3. Type a name for the module.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add constants, enumerations,
exceptions, typedefs, structures, or unions. Any constructs you add are
scoped to this module only.
Note: To use the construct as the type of an attribute, method return,
method exception, or as a type within another construct, you must first
click Finish and then reopen the wizard before you can use the type. The
construct is not added to the current model until you click Finish.

5. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish. The wizard closes, and your module is added to the
User-Defined Data Objects folder, underneath the file.

You can now add data object interfaces to the module.

Data object (Programming Guide)

“Working with data objects” on page 795
“Creating a data object interface” on page 801

800 WebSphere: Application Development Tools Guide



“Internationalization of data” on page 132
“Naming objects” on page 128

Creating a data object interface

You can add a data object interface in different situations, from the following
folders:
v User-Defined Business Objects folder
v User-Defined Data Objects folder
v DBA-Defined Schemas folder

From the User-Defined Business Objects folder
Once you have deleted a data object interface that was created along with a
business object implementation, you can create a new one to be associated
with the implementation. Follow these steps:
1. From the pop-up menu of the unassociated business object implementation

in the User-Defined Business Objects folder, select Add New Data Object
Interface. The Add New Data Object wizard opens to the Data Object
Interface page.

2. Accept the default data object file name and interface name, or rename
them, and select those attributes of the business object to be used as state
data in the data object.

3. Click Next. The Data Object Methods page opens.
4. Select the methods of the business object that are to be delegated to the

data object. The methods you select form part of the data object’s interface.
5. Click Next. The Constructs page opens. Use the pop-up menu of the

Constructs folder to add constants, enumerations, exceptions, typedefs,
structures, or unions. Any constructs you add are scoped to this interface
only.
Note: To use the construct as the type of an attribute, method return, or
method exception, you must first click Finish and then reopen the wizard
and define the attribute. The construct is not added to the current model
until you click Finish.

6. The Interface Inheritance page opens. Here you can specify one or more
classes from which the interface can inherit. Click the list button of the
Parent Interface and select a parent from the list of available classes, or
type the interface name using the following syntax: filename interface_name

7. When you have specified all the parents for this interface, click Next. The
Comments page opens. Type any comments you want to include as
comment lines in your generated code.

8. Click Finish. The interface is added to the folder.

Chapter 15. Object tasks 801



Once the data object interface is created, its file properties (File Properties
from the pop-up menu of the object) will include the platforms that you set
using the Platforms > Constrain menu.

From the User-Defined Data Objects folder
In this folder, you can create a data object interface in the following ways:
v From a data object file
v From a data object module
v By importing an IDL file

From a data object file

1. Select the User-Defined Data Objects folder.
2. From its pop-up menu, select Add File. The Data Object File wizard

opens to the Name page.
3. Specify a name for the data object file.
4. Click Finish. The data object file is added to the folder.
5. Select the file, and from its pop-up menu, select Add Interface. The Data

Object Interface wizard opens to the Name page.
6. Specify a name for the interface.
7. Click Next if you want to define constructs at the interface level.
8. Go to the Interface Inheritance page if you want this interface to inherit

from an existing one.
9. Go to the Attributes page if you want to define attributes that are specific

to the data object interface.
10. Go to the Methods page if you want to define methods for the interface.
11. Add any comments you want to, on the Comments page.
12. Click Finish.

The data object interface is added to the folder, and appears as a node
beneath the file.

From a data object module
If you want the data object interface to be scoped within a module, follow this
method.

Follow steps 1 to 4 that are outlined in the previous method. Once the data
object file is created, follow these steps:
1. Select the file, and from its pop-up menu, select Add Data Object

Module. The Data Object Module wizard opens to the Name page.
2. Type a name for the module.
3. Click Next if you want to add constructs at the module level.

802 WebSphere: Application Development Tools Guide



4. Go to the Comments page if you want to add comments about the
module.

5. Click Finish. The data object module is created, and appears as a node
beneath the data object file.

6. Select the module in the folder, and from its pop-up menu, select Add
Interface. The Data Object Interface wizard opens to the Name page.

Follow steps 6 to 12 as when you added the interface from the file. The data
object interface is added to the folder, and appears as a node beneath the
module.

By importing an IDL file
This is actually a method of reusing an existing data object interface. You add
it, or create it within Object Builder by importing it. Follow these steps:
1. Select the User-Defined Data Objects folder.
2. From its pop-up menu, select Import > IDL. The Import IDL wizard opens

to the IDL File Selection page.
3. From the IDL Files folder’s pop-up menu, select Add. You can then specify

the IDL file to be imported in the File Name field. You can also use the
Browse button to open the File to Import dialog box. Use it to view the
contents of the different drives and find the exact path for the IDL file to
be imported.
Note: The IDL must be CORBA 2.2-compliant without IDL extensions. You
can make sure the IDL files you are importing are valid by compiling
them first. Object Builder will only import IDL files that are considered
valid by the compiler.

4. Click Next. The Search Paths for Nested Files page opens.
Include files (that is, those that are nested in another file), which are not
already in the model, have to be imported. Other include files, (for
example, IManagedClient), which exist in the model, do not have to be
imported.

5. Indicate the directories that must be searched for the include files that are
specified in the IDL file to be imported: from the pop-up menu of the
Directories folder, select Add. Type the include directory in the Directory
field.

6. Click Finish.

The data object interface appears in the folder beneath the file that contains it,
or if it is scoped within a module, beneath the module that contains it.

From the DBA-Defined Schemas folder
This method assumes you have imported an SQL file into Object Builder, and
added a persistent object from it. Follow these steps to add a data object
interface from the persistent object:

Chapter 15. Object tasks 803



1. Select the persistent object that you added to the imported schema.
2. From its pop-up menu, select Add Data Object.
3. The Add Data Object wizard opens to the Names page.
4. Specify the names for the data object interface and its file, and for the

associated data object implementation and its file.
5. Click Next to go to the Methods page, if you want to add methods for the

data object.
6. Click Finish.

The data object interface appears beneath its file in the User-Defined Data
Objects folder, with the data object implementation beneath it, with the
implementation connected to the persistent object, which in turn is connected
to the schema.

Data object (Programming Guide)
Query Service (Advanced Programming Guide)

“Working with data objects” on page 795
“Creating a DB schema by importing an SQL file” on page 844
“Adding a persistent object from a DB schema” on page 837
“Creating a data object by importing an IDL file”

“Internationalization of data” on page 132
“Naming objects” on page 128

Creating a data object by importing an IDL file

If you have code already in IDL files, you can parse the code into Object
Builder, and incorporate the classes, relationships, and code in the IDL files
into your Object Builder application.

Note: The IDL must be CORBA 2.2-compliant without IDL extensions. You
can make sure the IDL files you are importing are valid by compiling them
first. Object Builder will only import IDL files that are considered valid by the
compiler.

To import an existing data object interface IDL file, follow these steps:
1. Under Tasks and Objects, select the User-Defined Data Objects folder.
2. From the folder’s pop-up menu, select Import IDL. The Import IDL

wizard opens to the IDL File Selection page.

804 WebSphere: Application Development Tools Guide



3. Browse for, and select the files you want to import. The files you select,
and any files they include, will be parsed and imported into Object
Builder.
Note: The files will be imported under the User-Defined Business Objects
folder. You will have to delete the data object interface files from the
business object interface.

4. Click Next. The Search Paths for Nested Files page opens.
5. From the Directories pop-up menu, select Add. Browse for the directories

you want searched.
When you import a file that includes other files (that is, a file with nested
files), the import process will search for the other files in the directories
you specify here.

6. Click Finish. The selected files (and files they include) are parsed into
Object Builder, and the information in the IDL is added to the current
project model as data object files, data object modules, and data object
interfaces.

Consequences of importing an interface that has dependencies on other
interfaces
If the data object interface that you import inherits from another object - either
a business object or another data object, the interfaces of those objects are
imported into the model as well, and appear under the User-Defined Business
Objects folder.

Follow these steps to complete the import process:
1. Specify the directory the parent interfaces are in, on the Include Files page

of this wizard.
2. Delete the extraneous data object interfaces from the User-Defined

Business Objects folder (from the pop-up menu of the interface, select
Delete).

3. Import the same data object interfaces again into the User-Defined Data
Objects folder.
Note: Even after you import the data object interfaces, inheritance will no
longer work because the definition of the interface changes as soon as the
objects are deleted from the User-Defined Business Objects folder. The IDL
file that you generate from this interface will not contain the include
statements. So, follow step 4.

4. Open the Data Object Interface wizard and add the parent interfaces on
the Interface Inheritance page.

Example

1. You have the following IDL files:

Chapter 15. Object tasks 805



1. FileDO.idl has an interface that inherits from the test interface of the IDL
file FileDO1.idl , and another one that has an attribute of a type defined
in an interface of the file File.idl .

2. You try to import FileDO.idl (Select Import IDL from the pop-up menu
of the User-Defined Data Objects folder and specify FileDO.idl as the file
to be imported.)

3. The business object IDL file File is imported into the User-Defined
Business Objects folder, along with its three interfaces. The data object IDL
file FileDO is also imported into the User-Defined Business Objects folder,
along with its interface.

4. You must delete the FileDO1 from the User-Defined Business Objects
folder.

5. Select Import IDL from the pop-up menu of the User-Defined Data
Objects folder and this time, specify FileDO1.idl as the file to be
imported.

6. Open FileDO’s Data Object Interface wizard. Turn to the Interface
Inheritance page and select interface2 and test as the parent interfaces.

7. Click Finish.

806 WebSphere: Application Development Tools Guide



Work-around
If you have an IDL file you want imported, and you know the interfaces it
depends on (the other data object interfaces it inherits from), and the other
.idl files from which it wants to use information (for example, you want to
use the exceptions defined in some business object interface IDL file), you can
import the data object IDL file without the business object interface and other
supporting data object interfaces being imported into the User-Defined
Business Objects folder, if you follow these steps:
1. Import the data object interfaces from which this interface is to inherit,

before importing the interface itself (on the IDL File Selection page).
2. Include the business object interface IDL files which have the information

required for the interface, on the Include Files page of the same wizard.

Note: If a data object has an interface and you create a new interface for it,
when you generate code for the data object (file level), the interface you just
created will appear last in the code. If you want the old interface to inherit
from the new one, and you specify this on the Interface Inheritance page of
the Data Object Interface wizard, and then generate code from the data object
file, Object Builder places the definition of the new interface in the beginning,
before the definition of the interfaces that inherit from it.

Interface Definition Language (Programming Guide)

“Importing IDL from the command line” on page 666
“Creating a business object by importing an IDL file” on page 780
“Creating a local-only object by importing an IDL file” on page 669

Adding a data object implementation

Once you have either created or selected the data object interface for your
business object, you can create a data object implementation. The business
object is dependent on the data object interface, but not on its implementation.
However, for the business object to be of any use, the data object interface
must be implemented. The data object implementation can emulate the real
application environment with a full client-server setup.

To create a data object implementation, follow these steps:
1. From the Tasks and Objects pane, select the data object interface for

which you want to create an implementation (for example, CarPolicyDO).

Chapter 15. Object tasks 807



2. From the pop-up menu of the interface, select Add Implementation. The
Data Object Implementation wizard opens to the Name and Platform
page.

3. Type the name of the implementation class and its file, and optionally the
implementation module; or, accept the default names (for example
FileDOImpl for the implementation file name, IntDOImpl for the
implementation interface name, and ModDOImpl for the implementation
module name). If the data object interface is contained in a module,
specify the module name in the Module Name field.

4. Set the deployment platforms (the platforms on which this data object
will be deployed). This determines the development options that are
selectable (you can only select options that are available on all selected
platforms). By default, the data object is deployable to the set of
platforms defined in the Platforms > Constrain menu. You cannot select
platforms that are not already selected in the Platforms > Constrain
menu.
Note: If you create a new implementation file when you create the data
object implementation, Object Builder associates the deployment
platforms that you specify with that file. If you create a new data object
implementation, and add it to an existing file (that is, you specify the
name of a data object implementation file that already exists in the model
in the File Name field, Object Builder checks whether the deployment
platforms that you specified for the implementation are the same as those
that are selected for the existing implementation file. If they are not the
same, you must follow one of these procedures:
v Change the existing implementation file’s platforms to be the same as

those for the implementation you are adding, before adding the new
implementation: From the pop-up menu of the existing data object
implementation, select File Properties, and change the deployment
platforms on the Name page of the Data Object Implementation File
wizard.

v Change the implementation’s platforms to match those of the existing
file, on this page (the Name and Platform page).

5. Click Next. The Behavior page opens.
6. Select the environment for testing the object in the Environment section.

See the reference section: “Environment” on page 249.
7. Select the type of persistence from the Type of Persistence section of the

same page. See the reference section: Type of Persistence. All options in
this section are available for selection only if you have selected BOIM
with any key in step 6.

TheCache Service option is not available when the target
platform is OS/390.

808 WebSphere: Application Development Tools Guide



The MQSeries Adaptor option is not selectable if one
of the deployment platforms is either AIX, or OS/390.

8. Select the data access pattern to be used in the data object
implementation from the Data Access Patternsection. See the reference
section: “Data Access Pattern” on page 254. This section is available for
selection only if you have selected BOIM with any key in step 6. The
access pattern can be either Delegating, which is the default option, or
Local copy.

9. Select the handle for storing references from the Handle for Storing
Pointers section. See the reference section: “Handle for Storing Pointers”
on page 255.

Note:Your selection of a handle does not affect the default mapping of
object references on the Attributes Mapping page of this wizard. It is
relevant only if you override the default setting of the persistent object
and schema’s attribute mapping from Key Home to Primitive.

10. Click Next. The Implementation Inheritance page opens. Click the list
button of the Parent Class field and select a parent, or accept the default,
which is provided by Object Builder.

11. Click Next. The Attributes page opens. You can use this page to add
more attributes for the data object. These attributes will be specific to this
implementation.

12. Click Next. The Methods page opens. Here, you can add
implementation-specific methods for the data object. These methods can
access the implementation-specific attributes you added on the previous
page. These methods can also be called from within other methods that
you define for the data object interface.

13. Click Next. The Key and Copy Helper page opens. Select the key and the
copy helper to use with this implementation.
Note: If you selected BOIM with any key in step 5, and there is at least
one persistent object in the model that has the same type of persistence
as that for the implementation, which you specify in step 6, the
Associated Persistent Objects page is added to the wizard, and you can
continue with step 14; if not, continue with step 17.

14. Click Next. The Associated Persistent Objects page opens. You can specify
existing persistent object instances that are to be associated with the data
object. These instances are stored as protected members of the data object
implementation.

Note the following points:

v At this point, you can also finish the wizard and add a persistent object and
schema from the data object implementation. The persistent object you
create is automatically associated with the data object and appears in the
Persistent Object Instances folder on the Associated Persistent Objects page.

Chapter 15. Object tasks 809



v If you associated one or more existing persistent object instances with the
data object, the Attributes Mapping page and the Methods Mapping page
are added to the wizard. You can map the data object to the persistent
object: continue with step 15. If you did not associate any persistent object
with the data object, continue with step 17.

v You can also finish the wizard, and from the data object implementation’s
pop-up menu, select Select Persistent Object and Schema to associate an
existing schema and persistent object with the implementation, and to map
attributes and methods of the data object to those of the persistent object.

15. Click Next. The Attributes Mapping page opens. You can specify the
mapping between the data object attributes and the persistent object
attributes.

16. Click Next. The Methods Mapping page opens. For each of the special
framework methods associated with the implementation, you can specify
the persistent object methods that it calls. The order of the methods in
the tree determines the order in which they are called.
Note: If you have associated any Procedural Adaptor (PA) persistent
objects with this implementation, this page has the User-Defined
Methods folder as well.This folder contains the methods you defined for
the data object using the Methods page of the Data Object Interface
wizard. You can map each of these methods to the corresponding
push-down method of the persistent object, if you want these methods to
be called immediately.

17. Click Next. The Discriminators page opens.

This page is available for polymorphic home
support only if the constraint platforms do not include either OS/390 or
HP-UX.
If you are using a single, backend table, you can use this page to specify
the discriminator predicate (typecode) that will allow the data object
implementation to isolate appropriate rows from the table. See the task
Using customized discriminator predicates

18. Click Next. The Summary of Framework Methods page opens. On this
page you can review the framework methods that are implemented by
Object Builder for this class. These methods have to be implemented for
the data object to work properly in the server.

19. Click Finish. The data object implementation appears in the Tasks and
Objects pane, with the appropriate methods added in the Method List
pane. You can now add your own code to implement those methods.
None of the framework methods have implementations at this point.
Object Builder provides the code for these methods as soon as there is a
persistent object associated with this data object.

Sometimes, you will have an already-existing data object implementation,
associated with a non-PA persistent object (for example, if you started

810 WebSphere: Application Development Tools Guide



working against a database backend to get things up and running), which you
now want to associate with a PA persistent object. To change the persistent
object associated with a data object implementation, go to the Associated
Persistent Object page in the data object implementation’s Properties wizard.
See “Associating a PA persistent object with an existing data object
implementation” on page 822 for more information.

Data object (Programming Guide)
Persistent object (Programming Guide)
Object relationships (Programming Guide)
Application adaptor (Programming Guide)
Data object customization for cardinality relationships (Programming Guide)
State data (Programming Guide)
Data object implementation (Programming Guide)
“Container” on page 578
“Home” on page 581
Using handles (Programming Guide)
Naming Service (Advanced Programming Guide)
Cache Service (Advanced Programming Guide)
“Special framework methods” on page 758
“Framework methods” on page 757
Using Sets of Objects (Using Reference Collections) (Programming Guide)

“Working with data objects” on page 795
Using customized discriminator predicates
“Adding a persistent object and schema” on page 833
“Setting platform constraints” on page 421
“Customizing referential integrity” on page 714
“Creating a container instance” on page 578
“Configuring a managed object” on page 588
“Working with attributes” on page 697“Working with methods” on page 750
“Implementing methods” on page 752
“Adding resource methods to a sessional business object” on page 164
“Associating a PA persistent object with an existing data object
implementation” on page 822

“Data Object Implementation Inheritance” on page 257
“Internationalization of data” on page 132
“Naming objects” on page 128

Associating a persistent object with a data object

You can associate a persistent object with a data object in the following ways:

Chapter 15. Object tasks 811



v When you define the data object implementation. See the task “Adding a
data object implementation” on page 807.

v After you have defined the data object implementation, when you edit its
properties. See the task “Editing a data object implementation” on page 819.

v After you have defined the data object implementation, by selecting a
pop-up menu option. This option cannot be used to associate a PA
persistent object with a data object implementation. Follow these steps:

1. Select the data object implementation, and from its pop-up menu, select
Select Persistent Object and Schema. The Select Persistent Object and
Schema wizard opens to the Associated Persistent Objects page, where you
can select one or more existing persistent object instances to be associated
with the data object implementation. These instances are stored as
protected members of the data object implementation.

2. Click Next. The Attributes Mapping page opens. You can specify the
mapping between the data object attributes and the persistent object
attributes.

3. Click Next. The Methods Mapping page opens. For each of the special
framework methods associated with the implementation, you can specify
the persistent object methods that it calls. The order of the methods in the
tree determines the order in which they are called.

4. Click Next. The Discriminators page opens. You can specify the
discriminator predicate that will be used if this data object implementation
will be configured against a polymorphic home.

5. Click Next. The Summary of Framework Methods page opens. On this
page you can review the framework methods that are implemented by
Object Builder for this class. These methods have to be implemented for
the data object to work properly in the server.

6. Click Finish. The data object implementation appears in the Tasks and
Objects pane, with the appropriate methods added in the Methods pane.
You can now add your own code to implement those methods. Object
Builder provides the code for the framework methods as soon as there is a
persistent object associated with this data object.

Data object (Programming Guide)
Persistent object (Programming Guide)
State data (Programming Guide)
Data object implementation (Programming Guide)
“Special framework methods” on page 758
“Framework methods” on page 757
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795

812 WebSphere: Application Development Tools Guide



“Adding a data object implementation” on page 807
“Editing a data object implementation” on page 819.
“Adding a persistent object and schema” on page 833
Associating a PA persistent object with an existing data object implementation
“Customizing referential integrity” on page 714
“Working with attributes” on page 697
“Working with methods” on page 750
“Implementing methods” on page 752
“Adding resource methods to a sessional business object” on page 164

“Data Object Implementation Inheritance” on page 257

Adding a data object from a business object

A business object is normally created with its own data object. If however,
you delete the associated data object, or select the Add or select one later
option when you add the business object implementation (in the section “Data
Object Interface” on page 247, on the Name and Data Access Pattern page of
the Business Object Implementation wizard), you can either select a data
object interface that exists in the model, or define an entirely new one for the
business object.

To add a data object from a business object, follow these steps:
1. From the pop-up menu of the business object, select Add Data Object

Interface. The Add New Data Object wizard opens to the Data Object
Interface page.
Appropriate data object names are filled in for you (the business object file
name and interface name plus DO: for example, CarPolicy gets the data
object interface CarPolicyDO). You can accept these defaults or replace
them with your own names.
Select the business object attributes that you want preserved in the data
object. These attributes constitute the state data for the component.

2. Click Next to open the Constructs page. Use the Constructs pop-up menu
to add constants, enumerations, exceptions, typedefs, structures, or unions.
Any constructs you add are scoped to this interface only.
Note: To use the construct as a type within another construct, you must
first click Finish and then reopen the wizard before you can use the type.
The construct is not added to the current model until you click Finish.

3. Click Next to open the Interface Inheritance page. Here you can specify
one or more classes from which the interface can inherit. Click the list
button of the Parent Interface and select a parent from the list of available
classes, or type the interface name using the following syntaxes:

Chapter 15. Object tasks 813



filename interface_name (if the interface is stand-alone)
filename module_name::interface_name (if the interface derives from a
module)

4. When you have specified all the parents for this interface, click Next.
5. Type any comments you need to add, on the Comments page.
6. Click Finish. The interface is added to the folder.

Business object (Programming Guide)
Data object (Programming Guide)

“Working with data objects” on page 795

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a data object from a DB persistent object

To add a data object to a persistent object, follow these steps:
1. From the pop-up menu of the persistent object in the DBA-Defined

Schemas folder, select Add Data Object. The Add Data Object wizard
opens to the Names page.

2. Type a name for the interface file in the Interface File Name field, or
accept the default.

3. Type a name for the data object interface in the Interface Name field, or
accept the default.

4. Type a filename for the data object implementation in the Implementation
File Name field, or accept the default.

5. Type a name for the data object implementation in the Implementation
Name field, or accept the default.

6. Click Finish.

The data object appears in the User-Defined Data Objects folder under the
data object filename you provided. The data object interface exists in the tree
as a child of the data object file, and the data object implementation exists as
a child of the interface. The data object implementation has the persistent
object as its child node and the persistent object has the schema as its child
node.

Note the following points:

v A default mapping is generated between the attributes of the data object
and the persistent object. If there are mappings generated that need a

814 WebSphere: Application Development Tools Guide



mapping helper, Object Builder will inform you for which pairs of
attributes it is required. You can then follow these steps:
1. Select the data object implementation that was just created.
2. Select Properties from its pop-up menu. The Data Object

Implementation wizard opens.
3. Click Next, or click the arrow to the left of the page name, and select.

Attributes Mapping page from the list. The page opens.
4. Select Map using a helper class and provide the mapping helper class

and method names for each pair of attributes.
v You can initialize the attributes of the data object interface that is created.

(They are not initialized by default.) Follow these steps:
1. Select the data object interface in the User-Defined Data Objects folder.
2. From the pop-up menu of the data object interface, select Properties.

The Data Object Interface wizard opens.
3. Click Next, or click the arrow to the left of the page name, and select

Attributes page from the list. The page opens.
4. Select the data object attributes from the Attributes folder and type the

initial value for the attribute in the Initializer field.

Data object (Programming Guide)
Persistent object (Programming Guide)
Schema (Programming Guide)

“Working with data objects” on page 795
“Working with DB persistent objects” on page 832
“Mapping attributes using a mapping helper” on page 738

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a data object from a PA persistent object

To add a data object from a PA persistent object, follow these steps:
1. From the pop-up menu of the PA persistent object in the User-Defined PA

Schemas folder, select Add Data Object. The Add Data Object wizard
opens to the Names page.

2. Type a name for the interface file in the Interface File Name field, or
accept the default.

Chapter 15. Object tasks 815



3. Type a name for the data object interface in the Interface Name field, or
accept the default.

4. Type a filename for the data object implementation in the Implementation
File Name field, or accept the default.

5. Type a name for the data object implementation in the Implementation
Name field, or accept the default.

6. Click Next. The Methods page opens. To specify methods for your
interface, select Add from the Methods folder’s pop-up menu. You can add
new user-defined methods to the data object, and also modify them
(except, you cannot map them to existing persistent object methods).

The data object appears in the User-Defined Data Objects folder under the
data object filename you provided. The data object interface exists in the tree
as a child of the data object file, and the data object implementation exists as
a child of the interface. The data object implementation has the PA persistent
object as its child node and the persistent object has the PA schema object as
its child node.

Note the following points:

v A default mapping is generated between the attributes of the data object
and the persistent object. If there are mappings generated that need a
mapping helper, Object Builder will inform you for which pairs of
attributes it is required. You can then follow these steps:
1. Select the data object implementation that is just created.
2. Select Properties from its pop-up menu. The Data Object

Implementation wizard opens.
3. Click the arrow to the left of the page name, and select Attributes

Mapping page from the list.
4. Select Map using a helper class and provide the mapping helper class

and method names for each pair of attributes.
v You can initialize the attributes of the data object interface that is created.

(They are not initialized by default.) Follow these steps:
1. Select the data object interface in the User-Defined Data Objects folder.
2. From the pop-up menu of the data object interface, select Properties.

The Data Object Interface wizard opens.
3. Click Next, or click the arrow to the left of the page name, and select

Attributes page from the list. The page opens.
4. Select the data object attributes from the Attributes folder and type the

initial value for the attribute in the Initializer field.

816 WebSphere: Application Development Tools Guide



Data object (Programming Guide)
Persistent object (Programming Guide)
Schema (Programming Guide)

“Creating a component for PA data” on page 157
“Working with data objects” on page 795
“Working with PA persistent objects” on page 860
“Mapping attributes using a mapping helper” on page 738

Editing a data object interface

You can edit a data object interface, whether it was created with a business
object or created by itself.

To edit a data object interface that was created with a business object, follow
these steps:
1. From the pop-up menu of the data object interface in the User-Defined

Business Objects folder, select Properties. The Data Object Interface
wizard opens to the Name page. You cannot change the name of the data
object file, or module. You can rename the data object interface: specify a
new name in the Name field.
Restriction: You cannot change the name of the interface if it inherits from
another.

2. Click Next. The Interface Inheritance page opens. You can add new
parents for the interface, delete the ones specified earlier, or rename them.

3. Click Next. The Methods page opens. Make changes as required.
4. Click Next. The Comments page opens. Type any remarks, if you want to.
5. Click Finish. The changes you made to the interface are saved and can be

viewed later by examining the same wizard using the same option from
the data object interface’s pop-up menu.

Note the following points:

v To change the deployment platforms for the object, you must edit the
object’s file properties. See the task “Setting platform constraints” on
page 421.

v To ensure that valid code is generated after a rename, use Generate > All
instead of Generate > Selected from the pop-up menu of the object.

v If the data object has dependent objects such as a business object, key, or
copy helper, and you change an attribute of the data object, you must make
the change in the dependent objects as well. For each of the objects, follow
these steps:
1. Open the object’s wizard.

Chapter 15. Object tasks 817



2. Click Finish.

To edit a stand-alone data object interface, follow these steps:
1. From the pop-up menu of the data object interface in the User-Defined

Data Objects folder, select Properties. The Data Object Interface wizard
opens to the Name page. You can rename the data object interface if it
does not inherit from another.

2. Click Next. The Interface Inheritance page opens. You can add new
parents for the interface, delete the ones specified earlier, or rename them.

3. Click Next. The Attributes page opens. You can add new attributes for the
interface, or delete or rename the ones specified earlier.
Note the following points:

v You can only access the Attributes page when you are viewing the
properties of the data object interface from the User-Defined Data
Objects folder.

v If there is a data object implementation created from this data object
interface, follow these steps to refresh the model after you modify the
interface in any way:
a. From the pop-up menu of the data object implementation, select

Properties. The Data Object Implementation wizard opens to the
Name and Platform page.

b. Click Finish, or turn to any other page of the wizard and click
Finish.

v If there is a persistent object associated with the data object that has a
mapping defined between the attributes of these objects, and you
change any of the data object’s attributes, these attributes lose the
defined mapping. You will either have to remap the attributes of the
data object to those of the persistent object (on the Attributes Mapping
page of the Data Object Implementation wizard), or you can delete the
persistent object and schema, and create a new one, which will
automatically use the changed attributes.

4. Click Next. The Methods page opens. Add new methods or make changes
as required.

5. Click Next. The Comments page opens. Type any remarks, if required.
6. Click Finish. The changes you made to the interface are saved and can be

viewed later by opening the same wizard using the same option from the
data object interface’s pop-up menu.

Whichever data object interface you are editing, if you want to change the
order of the file’s contents (modules, interfaces and constructs within the file),
follow these steps:
1. Open the data object file’s wizard.

818 WebSphere: Application Development Tools Guide



2. Click the arrow to the left of the page name, and select Contents Ordering
page from the list.

3. Move elements into the new order.
4. Click Order by Dependency to validate the new order.
5. Click Finish.

Data object (Programming Guide)
“Dependencies within an IDL file” on page 292

“Working with data objects” on page 795

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a data object implementation

To edit a data object implementation, follow these steps:
1. Select the data object implementation in either the User-Defined Business

Objects folder or the User-Defined Data Objects folder. From its pop-up
menu, select Properties. The Data Object Implementation wizard opens
to the Name and Platform page. Change the names of the data object
implementation’s interface, or module, if you want to.
Restriction: You cannot change the names of the objects if the
implementation inherits from another data object implementation.
Note the following points:

v You cannot change the data object implementation file name, and the
deployment platforms using this page. To change these properties of
the implementation, select File Properties from the pop-up menu of
the data object implementation. The Data Object Implementation File
wizard opens to the Name page, and you can make the changes.

v To ensure that valid code is generated after a rename, use Generate >
All instead of Generate > Selected from the pop-up menu of the
object.

2. Click Next to turn to the Behavior page.
3. You can modify the type of implementation. You can select to test your

business object either in a distributed environment, or as a stand-alone.
Select one of the different options inthe Environment section. See the
reference topic: “Environment” on page 249.

4. You can change the data object behavior and its implementation in the
Type of Persistence section of the same page. See the reference topic:
Type of Persistence. All options in this section are available for selection

Chapter 15. Object tasks 819



only if you have selected BOIM with any key in step 3.

The Cache Service option is not available when the target
platform is OS/390.

5. The choices available in the next section, the Data Access Patternsection
(See the reference section: “Data Access Pattern” on page 254.) are
determined by your selection of the type of persistence in step 4. The
access pattern is either Delegating or Local copy.

6. Select the handle for storing references to objects in the Handle for
Storing Pointers section. See the reference section: “Handle for Storing
Pointers” on page 255.

7. Click Next. The Implementation Inheritance page opens. You can specify
new parent classes for the implementation to inherit from, or delete
existing ones.

8. Click Next. The Attributes page opens. You can use this page to add
more attributes for the data object. These attributes will be specific to this
implementation.

9. Click Next. The Methods page opens. Here, you can add
implementation-specific methods for the data object.

10. Click Next. The Select Key and Copy Helper page opens. Select a
different key and copy helper, if necessary.
Note: If you selected BOIM with any key in step 3, and there is at least
one persistent object in the model that has the same type of persistence
as that for the implementation, which you specify in step 4, the
Associated Persistent Objects page is added to the wizard, and you can
follow steps 11 through 15; if not, continue with step 14.

11. Click Next. The Associated Persistent Objects page opens. You can specify
new persistent object instances that are to be stored as protected members
of the data object implementation, and edit or delete existing ones.
Note: If the PA persistent object you are looking for does not appear in
this page, or if the page does not appear at all, there is likely an error in
the PA schema definition or the data object implementation definintion.
Check to make sure the deployment platforms selected for the data object
implementation are correct, and that they match up with the platforms
that are supported by the PA schema’s connector type. For example, you
cannot associate a persitent object that uses LU 6.2 (APPC) connector
with a data object implementation that is targetted for OS/390 (or
multilple platforms including OS/390), because Component Broker does
not support APPC as a connector type for OS/390. For more
information, see “Associating a PA persistent object with an existing data
object implementation” on page 822.

12. Click Next. The Attributes Mapping page opens. You can specify or
change the mapping between the data object attributes and the persistent
object attributes.

820 WebSphere: Application Development Tools Guide



13. Click Next. The Methods Mapping page opens. For each of the special
framework methods associated with the implementation, you can specify
the persistent object methods that it calls. You can change the mappings
by adding new persistent object methods, deleting existing ones or
changing the order of the methods in the tree. Their order determines the
order in which they are called.
Note: If you have associated any PA persistent objects with this
implementation, this page has the User-Defined Methods folder as well.
This folder contains methods you defined at the data object interface
level. When the business object uses Session Service, you can provide
your own code to be called during some of the normal processing for
those services. You can then map each of these methods to the
corresponding push-down method of the persistent object.
When a business object uses Session Service, you can provide your own
code to be called during some of the normal processing for those
services. You can do this by calling the endResource(), the
checkpointResource(), and the resetResource() method that you define on
the business object, in both C++ and Java implementations.

14. Click Next. The Discriminators page opens. If you are using a single,
backend table, you can use this page to set or change the type of the the
discriminator predicate (typecode) that will allow the data object
implementation to isolate appropriate rows from the table.

15. Click Next. The Summary of Framework Methods page opens. This page
shows you the framework methods that Object Builder implements for
this data object implementation. You cannot edit this page.

16. Click Finish. The data object implementation appears in the Tasks and
Objects pane, with the changes to its properties.

Note: If there is no persistent object associated with the data object, none of
the special framework methods will have implementations. You can
“Implementing methods” on page 752 that you want to implement, or for
those for which you do not want to use the implementation provided by
Object Builder.

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)
Data object customization for cardinality relationships (Programming Guide)
Object relationships (Programming Guide)
Data object customization (Storage options) (Programming Guide)
“Container” on page 578
“Home” on page 581
State data (Programming Guide)
Handles (Programming Guide)

Chapter 15. Object tasks 821



Naming Service (Advanced Programming Guide)
Cache Service (Advanced Programming Guide)
“Special framework methods” on page 758
“Framework methods” on page 757
Using sets of objects (Using reference collections) (Programming Guide)

“Working with data objects” on page 795
“Adding a persistent object and schema” on page 833
“Setting platform constraints” on page 421
“Customizing referential integrity” on page 714
“Creating a container instance” on page 578
“Configuring a managed object” on page 588
“Working with methods” on page 750
“Implementing methods” on page 752
“Adding resource methods to a sessional business object” on page 164
“Associating a PA persistent object with an existing data object
implementation”

“Data Object Implementation Inheritance” on page 257
“Internationalization of data” on page 132
“Naming objects” on page 128

Associating a PA persistent object with an existing data object
implementation

Sometimes you need to change the persistent object associated with an
existing data object implementation. For example, you may have started
development using a persistent object created from a database schema, to get
things up and running. If your final scenario changes to one that connects to a
backend such as CICS or IMS, the data object implementation will need to be
associated with a PA persistent object.

To change the association:
1. Select Properties from the data object implementation’s pop-up menu.
2. Go to the Behavior page. In the Type of Persistence section, ensure that

Procedural Adaptors is selected.
3. Go to the Associated Persistent Object page.
4. Select the desired PA persistent object.

If the persisent object you are looking for does not appear in the Associated
Persistent Object page, or if the page does not appear at all, there is likely an
error in the PA schema definition or the data object implementation
definintion. Check to make sure the deployment platforms selected for the

822 WebSphere: Application Development Tools Guide



data object implementation are correct, and that they match up with the
platforms that are supported by the PA schema’s connector type. For example,
you cannot associate a persistent object that uses LU 6.2 (APPC) connector
with a data object implementation that is targetted for OS/390 (or multiple
platforms including OS/390), because Component Broker does not support
APPC as a connector type for OS/390.

Note that the only way to associate a PA persistent object with an existing
data object implementation is by using the data object implementation’s
Properties wizard.

Data object (Programming Guide)
Persistent object (Programming Guide)
Application adaptor (Programming Guide)

“Editing a data object implementation” on page 819
“Working with data objects” on page 795
“Adding a persistent object and schema” on page 833
“Setting platform constraints” on page 421

Editing a data object implementation file

To edit a data object implementation file, follow these steps:
1. From the pop-up menu of the data object implementation, select File

Properties. The Data Object Implementation File wizard opens to the
Name page.

2. You can type a new name for the data object implementation file, and
select a different set of deployment platforms for the object.
Note: You can select or clear only check boxes that correspond to
platforms that are selected on the Platform > Constrain menu. The other
check boxes will be disabled.

3. Click Next. The Contents Ordering page opens. Use this page to view or
set the order of constructs and interfaces in the IDL file.

4. Click Finish to apply your changes.

Editing a data object implementation file to match a new data object
implementation

If you create a new implementation file when you create a data object
implementation, Object Builder associates the deployment platforms that you
specify with that file. If you create a new data object implementation, and add
it to an existing file (that is, you specify the name of a data object
implementation file that already exists in the model in the File Name field,

Chapter 15. Object tasks 823



Object Builder checks whether the deployment platforms that you specified
for the implementation are the same as those that are selected for the existing
implementation file. If they are not the same, you can change the existing data
object implementation file’s platforms to be the same as those for the
implementation that you are adding, before adding the new implementation:
From the pop-up menu of the existing data object implementation, select File
Properties, and change the deployment platforms on the Name page of the
Data Object Implementation File wizard.

Data object (Programming Guide)
“Multi-platform development” on page 419

“Working with data objects” on page 795
“Setting platform constraints” on page 421

“Deployment platforms” on page 423
“Platform differences” on page 425
“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a data object interface

To delete a data object interface, follow these steps:
1. If there is a data object implementation created for the data object, you

must first delete the implementation before you can delete the data object
interface.

2. Select the data object interface in either the User-Defined Business Objects
folder or the User-Defined Data Objects folder.

3. From the pop-up menu of the data object interface, select Delete. The
interface is deleted from both folders.

Data object (Programming Guide)

“Working with data objects” on page 795

Deleting a data object implementation

To delete a data object implementation, follow these steps:
1. Select the data object implementation in either the User-Defined Business

Objects folder or the User-Defined Data Objects folder.

824 WebSphere: Application Development Tools Guide



2. From the pop-up menu of the data object implementation, select Delete.

Note: If the data object implementation has a persistent object and schema
associated with it, these objects no longer appear in these folders. However,
the persistent object and schema are not deleted, and still exist in the
DBA-Defined Schemas folder.

Data object (Programming Guide)

“Working with data objects” on page 795

Working with keys

Keys are defined in the User-Defined Business Objects folder, where you can
add them from the pop-up menu of a business object interface.

The key provides a way for the client to locate a specific instance of a
component on the server.

You can add multiple keys to a business object interface, but each component
you configure can only have one key.

The following tasks deal with keys:
v “Adding a key” on page 826
v “Editing a key” on page 828
v “Deleting a key” on page 829

Note the following points when you select attributes for the key:

v All business object attributes that you select as primary key attributes will
become read-only, even if they were read-write attributes before.

v After you either edit a key by removing some of its attributes, or delete a
key, the business object attributes that you had selected as key attributes
when you defined the key remain read-only attributes of the business
object. You can change their state to read-write using the Attributes page of
the Business Object Interface wizard as long as these attributes do not
compose any other key of the business object.

Key (Programming Guide)

“Working with components” on page 697

Chapter 15. Object tasks 825



“Naming objects” on page 128
“Internationalization of data” on page 132

Adding a key

Each component must include a primary key class that contains enough
information to uniquely identify the component. The key is used when new
instances of the component are created or when existing instances need to be
found.

Object Builder supports two types of primary keys:
v Those consisting strictly of attributes from a business object client interface

(according to the traditional Component Broker Programming Model).
v Those consisting of attributes from a single business object server

implementation and, optionally, from the business object client interface
(according to the traditional EJB Programming Model).

To add a key, follow these steps:
1. From the User-Defined Business Objects folder, select your business object

interface (for example, CarPolicy).
2. From the object’s pop-up menu, select Add Key. The Key wizard opens to

the Name and Key Attributes page.
3. Appropriate key names are filled in for you (the business object file name

and interface name plus Key: for example, CPFile::CarPolicy gets a key
named CPFileKey::CarPolicyKey). You can accept these defaults or replace
them with your own names.
Select the business object attributes that make up the primary key. If the
business object has a parent interface, you can also select from the parent
interface’s attributes (you should not select attributes of the parent
interface if you are planning to inherit from the parent interface’s key).
Note the following points about key attributes:

v Attributes that you select for the primary key will become read-only,
even if you had defined them as read-write attributes when you created
the business object.

v If you have an attribute in the key that is either an unbounded string (a
string whose size is not specified), or a bounded string with length in
excess of 4000 characters, and you are creating a persistent object and
schema for the data object, Object Builder does not provide a mapping
helper for the mapping of that attribute as the string does not contain
the proper size information. You will have to provide one on the
Attributes Mapping page of that wizard.

4. Click Next. The Implementation Inheritance page opens.

826 WebSphere: Application Development Tools Guide



On this page, you can specify the type of key (primary or unique), and
inherit from the appropriate parent class (IPrimaryKey or IUniqueKey) .
If the key has a parent, you can specify it here.
Note: You should not inherit from a parent key if you also selected
inherited attributes on the previous page.

5. Click Next. The Summary of Framework Methods page opens. This page
summarizes the framework methods this object implements. No action is
needed.

6. Click Next. The Optional Framework Methods page opens. Select any
additional framework methods you want to implement. Object Builder will
add signatures for the methods you select, but you must provide your
own implementation code. The methods you implement will override the
equivalent framework methods of the parent class.
Note: The Source pane will not allow you to edit these methods until you
set them as editable in the Method Implementation wizard. To set a
method as editable, follow these steps:
a. In the Methods pane, select the framework method.
b. From its pop-up menu, click Properties.
c. In the Method Implementation wizard, specify that you want to use

the Source pane.
7. Click Finish. The key appears in the User-Defined Business Objects folder,

under your business object interface.

If the key consists of one or more attributes from a business object
implementation, Object Builder establishes this primary key as the one ’used
by’ the business object implementation, so long as the business object
implementation is not already using another primary key.

In the Methods pane, you should see some items listed in the Framework
Methods folder. Default implementation code is provided for these methods,
which you can view in the Source pane by selecting a method. Normally, you
will not want to edit this code (except for the code for the optional framework
methods, as noted above). The code for framework methods is read-only by
default.

Key (Programming Guide)

“Working with keys” on page 825
“Adding a copy helper” on page 830

Chapter 15. Object tasks 827



Keys for enterprise beans
“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a key

Keys are defined in the User-Defined Business Objects folder, where they are
shown under the business object interface they were added to. You can edit a
key by following these steps:
1. From the pop-up menu of the key, click Properties. The Key wizard opens

to the Name and Key Attributes page.
2. Click the title to select a page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

Note: After you edit a key by removing some of its attributes, the business
object attributes that you had selected as key attributes when you defined the
key remain read-only attributes of the business object. You can change their
state to read-write using the Attributes page of the Business Object Interface
wizard as long as these attributes do not compose any other key of the
business object.

If the key you edited was already used by a business object implementation,
Object Builder determines if the key is still viable for the business object
implementation. If the revised primary key consists of attributes from a
different business object implementation than the one using it, Object Builder
warns you that the relationship between the business object implementation
that was originally using it, and the primary key will be dismantled. You then
have the option of proceeding, or going back to the wizard to make further
changes.

Key (Programming Guide)

“Working with keys” on page 825

Keys for enterprise beans
“Internationalization of data” on page 132
“Naming objects” on page 128

828 WebSphere: Application Development Tools Guide



Deleting a key

To delete a key, follow these steps:
1. Remove the key from any business object implementations that are

configured with it.
2. Remove the key from any data object implementations that are configured

with it.
3. Remove the key from any managed object configuration that uses it.
4. Locate the key in the User-Defined Business Objects folder.
5. From the key’s pop-up menu, click Delete.

Note: After you delete a key, the business object attributes that you had
selected as key attributes when you defined the key remain read-only
attributes of the business object. You can change their state to read-write using
the Attributes page of the Business Object Interface wizard as long as these
attributes do not compose any other key of the business object.

Key (Programming Guide)

“Working with keys” on page 825
“Editing a business object implementation” on page 792
“Editing a data object implementation” on page 819
“Editing a managed object configuration” on page 874

Working with copy helpers

Copy helpers are defined in the User-Defined Business Objects folder, where
they are shown below the business object interface they were added to.

The copy helper is an optional object that provides a way to initialize multiple
attributes of a component instance with a single call to the server.

You can add multiple copy helpers to a business object interface, but each
component you configure can only have one copy helper.

The following tasks deal with copy helpers:
v “Adding a copy helper” on page 830
v “Editing a copy helper” on page 831
v “Deleting a copy helper” on page 832

Copy helper (Programming Guide)

Chapter 15. Object tasks 829



“Working with components” on page 697

“Naming objects” on page 128
“Internationalization of data” on page 132

Adding a copy helper

The copy helper is an optional component object that lets you initialize the
attributes of a new component on the server with a single call. It embodies
the business object attributes that you will want to initialize.

Object Builder supports two types of copy helpers:
v Those consisting strictly of attributes from a business object client interface

(according to the traditional Component Broker Programming Model).
v Those consisting of attributes from a single business object server

implementation and, optionally, from the business object client interface
(according to the traditional EJB Programming Model).

To add a copy helper, follow these steps:
1. From the User-Defined Business Objects folder, select your business object

interface (for example, CarPolicy).
2. From the object’s pop-up menu, select Add Copy Helper. The Copy

Helper wizard opens to the Name and Attributes page.
3. Appropriate copy helper names are filled in for you (the business object

file name and interface name plus Copy: for example, CPFile::CarPolicy
gets a copy helper named CPFileCopy::CarPolicyCopy). You can accept
these defaults or replace them with your own names.

4. Select which business object attributes to externalize in the copy helper. If
the business object has a parent interface, you can also select from the
parent interface’s attributes (you must not select attributes of the parent
interface if you are planning to inherit from the parent interface’s copy
helper).

Restriction: CORBA complex types such as any and wstring, and
typedefs, structures, and unions, which are defined as constructs cannot be
used as copy helper attributes if either OS/390 are selected as the platform
constraints (Platform > Constrain). If the business object has such
attributes, they will not appear in the Business Object Attributes list.

5. Click Next. The Implementation Inheritance page appears.
If the copy helper is for a component with a parent, you can select to
inherit from the parent component’s copy helper. You should not inherit
from a parent copy helper if you also selected inherited attributes on the
previous page.

830 WebSphere: Application Development Tools Guide



If you are not inheriting from a parent copy helper, then you can accept
the default IManagedLocal IManagedLocal::INonManageable.
If the data object’s environment is BOIM with UUID key (page 250), the
copy helper should inherit from
IManagedAdvancedServer::IUUIDCopyHelperBase. The copy helper will
only be usable by other components on the server: client applications
should not create UUID components on the server.

6. Click Next. The Summary of Framework Methods page opens. This page
summarizes the framework methods this object implements. No action is
needed.

7. Click Finish. The key appears in the User-Defined Business Objects folder,
under your business object interface.

If the copy helper consists of one or more attributes from a business object
implementation, Object Builder establishes this copy helper as the one ’used
by’ the business object implementation, so long as the business object
implementation is not already using another copy helper.

In the Methods pane, you should see some items listed in the Framework
Methods folder. Default implementation code is provided for these methods,
which you can view in the Source pane by selecting a method. By default, this
code is read-only.

Copy helper (Programming Guide)

“Working with copy helpers” on page 829
“Adding a business object implementation and data object interface” on
page 780

“Environment” on page 249
“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a copy helper

Copy helpers are defined in the User-Defined Business Objects folder, where
they are shown under the business object interface they were added to. You
can edit a copy helper by following these steps:
1. From the pop-up menu of the copy helper, click Properties. The Copy

Helper wizard opens to the Name and Attributes.
2. Click the page title to select a page to turn to.
3. Change your selections as necessary.

Chapter 15. Object tasks 831



4. Click Finish to apply your changes.

Copy helper (Programming Guide)

“Working with copy helpers” on page 829

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a copy helper

To delete a copy helper, follow these steps:
1. Remove the copy helper from any data object implementations that are

configured with it.
2. Remove the copy helper from any managed object configurations that use

it.
3. From the pop-up menu of the copy helper, click Delete.

Copy helper (Programming Guide)

“Working with copy helpers” on page 829
“Editing a data object implementation” on page 819
“Editing a managed object configuration” on page 874

Working with DB persistent objects

DB persistent objects are defined in the DBA-Defined Schemas folder. A DB
schema is created when you import an SQL DDL file into Object Builder. You
can create multiple DB persistent objects for every DB schema. You can also
create multiple data objects from the DB persistent object. Further, you can
also associate a DB persistent object with a data object implementation, or
create a DB persistent object and its associated schema from the
implementation.

The following tasks deal with DB persistent objects:
v “Adding a persistent object and schema” on page 833
v “Adding a persistent object from a DB schema” on page 837
v “Mapping a data object to a DB persistent object” on page 703
v “Editing a DB persistent object” on page 838

832 WebSphere: Application Development Tools Guide



v “Customizing persistent object ESQL framework methods” on page 766
v “Deleting a DB persistent object” on page 839

Persistent object (Programming Guide)
Schema (Programming Guide)
“DDL” on page 137

“Working with components” on page 697

“Naming objects” on page 128
“Internationalization of data” on page 132

Adding a persistent object and schema

Once you have added a data object implementation to the data object
interface, you can either create schemas and persistent objects for the
implementation, or map existing persistent objects and schemas to the
implementation.

Note:Before you set about the task of creating the schema and persistent
object, if you want either the column names in the schema, or the schema
name itself to be enclosed in quotation marks, make sure that these options
are set on the Tasks and Objects page, which you can access from File >
Preferences.

To create a schema and a persistent object, follow these steps:
1. From the User-Defined Data Objects folder, select the data object

implementation for which you want to create the persistent object.
2. From the data object implementation’s pop-up menu, select Add

Persistent Object and Schema. The Add Persistent Object and Schema
wizard opens to the Names page.
a. Type a name for the group.

Note: Group names can contain only alphanumeric characters, the
blank space, and the underscore, and they are case-sensitive.

b. Type a name for the database file.
Note the following points about database names:

v They must not exceed eight characters.
v They can contain any of the following characters: the letters a-z and

A-Z, 0-9, #, @, $.

Chapter 15. Object tasks 833



v The first character of the name must be an alphabetic character, or
one of #, @, or $. They must not contain characters from European or
Asian character sets (for example, umlauts are not allowed).

v They are not case-sensitive.

Restriction: A given transaction cannot access more than one Informix
database per CB server. To involve two Informix databases in a
transaction, you must access each database from a different server.

c. Type the table name, or accept the default.
d. Type the user name.
e. Type a name for the schema file, or accept the default.

Follow these rules when you name a DB schema:
v The name must not exceed 18 characters for DB2; 30 characters for

Oracle.
v All alphanumeric characters from your database character set and

the characters _, $, #, @ are allowed. Characters include those from
DBCS or European sets (including umlauts).

v There is no case-sensitivity for names containing these characters,
unless they are surrounded by double quotation marks.

v Non-alphanumeric names must be enclosed in double-quotes, and
their case is maintained internally.

f. If you had selected Embedded SQL as the type of persistence, you
must type a name in the Package File field, or accept the default.
Note: The name of the package file must not exceed eight characters. It
must be unique for each of the persistent objects that you create, if they
are to operate under the same server at run time.
You can either type the names for the persistent object class and
instance, or accept the default names.

If OS/390 is one of the deployment platforms for the data
object implementation, the persistent object class name must not exceed
eight characters. Object Builder validates the length of the persistent
object class when you create a persistent object from a data object
implementation, but if you change the deployment platform after you
have created the persistent object, be sure that you follow the rule. If
not, Object Builder will truncate the name to the 8.3 format. This may
result in two persistent object file names becoming identical after
truncation, since Object Builder assumes the object’s file name to be the
same as the persistent object class name.
Note: A schema must have a database key specified.

834 WebSphere: Application Development Tools Guide



g. If you had selected Cache Service on the Behavior page of the data
object implementation, you can specify one of the Cache Service
options: DB2 Cache Service, Oracle Cache Service, or Informix Cache
Service.

Cache Service is not available when the target platform is
OS/390.
Restriction:If you are using the Informix Cache Service, a given
transaction will not be able to access more than one Informix database
per CB server. To involve two Informix databases in a transaction, you
must access each database from a different server.

3. Click Next. The Attributes Mapping page opens. Here, you can map
attributes of the data object to those of the persistent object. You can also
change the names of the attributes of the persistent object and the
corresponding columns of the schema, and their data types, and specify
the persistent object keys if necessary, and the database keys for the table.
Note the following points:

v The persistent object attribute name must not exceed 26 characters in
length.

v If you have an attribute in the key that is either an unbounded string (a
string whose size is not specified), or a bounded string with length in
excess of 4000 characters, and you are creating a persistent object and
schema for the data object, Object Builder does not provide a mapping
helper for the mapping of that attribute as the string does not contain
the proper size information. You will have to provide one on the
Attributes Mapping page.

4. Click Next. The Columns and Attributes page opens. Use this page to
view the mapping between the schema and the persistent object.

5. Click Next. The Comments page opens. Use it to save any comments
about the schema, any of the schema columns, or the persistent object.

The persistent object is automatically associated with the data object
implementation: the persistent object instance is added to the folder on the
Associated Persistent Objects page. Object Builder provides the default
mapping of both attributes and methods of the data object to the persistent
object. You can change the default mappings.

The persistent object appears as a node beneath the data object
implementation, and the schema appears as a node beneath the persistent
object in both the User-Defined Business Objects folder and the User-Defined
Data Objects folder. In the DBA-Defined Schemas folder, the schema exists
(with its persistent object) in the schema group you named.

Restriction: Even if there is a key defined for a business object and it is
designated as a foreign key, when you create a persistent object and schema

Chapter 15. Object tasks 835



for a business object referenced by the other object, it will not automatically
create a foreign key in the schema. That is, the FOREIGN KEY constraint is not
created in the table’s .sql description file.

Note: In some RDBMS configurations, the .sql files that Object Builder
generates from the schemas must be processed by a database administrator
using a design tool such as Logic Works’ ERWin version 3.5 or 3.0, before
they can be used to create tables in the database catalog. In others, you may
be able to bypass the design tool, and instead use command line or other
procedures to populate the database catalog.

Example:

v In the DB2 NT 5.0 single-user environment, you can use the following
sequence of commands from the DB2 command window:
db2 connect to <name of working database>
db2 -t -f <full path name of SQL file>

v In Oracle 8.0.4.0 script center, you can import the .sql files.

ERWin 3.0 does not support the following database systems that ERWin 3.5
supports:
v DB2 / 390 5
v DB2 / CS 2
v DB2 / UDB 5
v Oracle 8.x

If you are using ERWin 3.0 or 3.5 to generate SQL files to be imported into
Object Builder, you cannot use the default options provided by ERWin for the
Oracle DBMS. In ERWin, when you select Tasks > Forward Engineer/Schema
Generation, you must change the referential integrity options for the primary
key and foreign key to use the CREATE statements instead of the ALTER
statements.

Persistent object (Programming Guide)
Schema (Programming Guide)

“Working with DB persistent objects” on page 832
“Working with DB schemas” on page 843
“Adding a data object implementation” on page 807
“Mapping a data object to a DB persistent object” on page 703
“Tutorial: Creating a component for new DB data” on page 50

836 WebSphere: Application Development Tools Guide



“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
Informix data type mappings

Adding a persistent object from a DB schema

To add a persistent object to an existing schema, follow these steps:
1. From the DBA-Defined Schemas folder, select the schema to which you

want to add a persistent object.
2. From the schema’s pop-up menu, select Add Persistent Object. The Add

Persistent Object wizard opens to the Name and Attributes page.
3. Type a name for the persistent object in the Name field.

If OS/390 is one of the deployment platforms (that is Platform
> Constrain > 390 is selected), the persistent object class name must not
exceed eight characters. If the name exceeds eight characters, Object
Builder truncates it to the 8.3 format. This may result in two persistent
object file names becoming identical after truncation, since Object Builder
assumes the object’s file name to be the same as the persistent object class
name.

4. Change the setting of the Table is updatable check box, if you want.
Your selection determines if the schema is read-only or if it can be
updated. For schemas, this check box is selected by default; for views, it
is not selected.

5. Select Cache Service (one of DB2, Oracle, or Informix is available,
depending on your schema definition) or Embedded SQL to specify the
type of persistence for the object.

6. If you select Embedded SQL, you must type a name for the package file,
or accept the default.

7. Indicate whether a particular schema column is to be mapped to the
corresponding persistent object attribute: click the Mapped field and
select the check box for the column.
Restriction: You must map all schema columns to their corresponding
persistent object attributes; otherwise you may get exceptions thrown at
run time if you use the Query Service.

8. Modify the name of the persistent object attribute, if required.
9. Specify whether a schema column’s corresponding persistent object

attribute is to be the key for the persistent object by selecting the PO Key
check box for the column.

10. Click Next. The Comments page opens. Use it to add any comments
about the persistent object.

Restrictions:

Chapter 15. Object tasks 837



v If your schema uses Oracle Cache Service, you can import the schema only
if the columns are of the NUMBER or VARCHAR2 data types, or any of the IBM
DB2 data types. Object Builder will not accept any other Oracle types such
as RAW(n), LONG RAW, NCHAR(n), NVARCHAR2, and ROWID. See “Oracle data type
mappings” on page 146 for a complete list.

v Even if there is a key defined for a business object and it is designated as a
foreign key, when you create a persistent object and schema for a business
object referenced by the other object, it will not automatically create a
foreign key in the schema. That is, the FOREIGN KEY constraint is not created
in the table’s .sql description file.

Persistent object (Programming Guide)
Schema (Programming Guide)
Cache Service (Advanced Programming Guide)
Query Service (Advanced Programming Guide)

“Creating a component for existing DB data” on page 139
“Working with DB persistent objects” on page 832
“Creating a DB schema by importing an SQL file” on page 844
“Adding a persistent object and schema” on page 833
“Adding a data object from a DB persistent object” on page 814

“DB2 data type mappings” on page 142
“Oracle data type mappings” on page 146
“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a DB persistent object

To modify a persistent object, follow these steps:
1. Select the persistent object in the Tasks and Objects pane.
2. From its pop-up menu, select Properties.
3. The Persistent Object wizard opens to the Persistent Object page. You can

rename the persistent object and provide a new name for the package file.
In the panel, you can rename the persistent object attribute: double-click in
the field, and type in the new name. You can also specify different
persistent object attributes as the keys for the object. Click in the PO Key
field, and select, or clear the check box.
Restriction: A persistent object attribute name cannot exceed 26 characters
in length.

4. Click Next if you want to change any comments about the persistent
object.

838 WebSphere: Application Development Tools Guide



You can also change properties for a DB persistent object in the DB schema
properties window. To open the window, select the DB schema to which the
PO is mapped. Select Properties from the schema’s pop-up menu.

When you select a column from the schema columns table, the table at the
bottom of the Schema properties window shows the corresponding attributes
from all POs mapped to that column. Select the PO that you want to edit.
Then you can edit the following PO properties:
v Mapped Select the check box to indicate that the selected PO maps the

selected column.
v Attribute Name Changes the name of the PO attribute that is mapped to

the selected column.
v Attribute Type and Size Changes the type and size of the attribute mapped

to the selected column.
v PO Key Select the check box to indicate that the attribute is part of the PO

key.

Note the following points:

v To ensure that valid code is generated after a rename, use Generate > All
instead of Generate > Selected from the pop-up menu of the object.

v You cannot change the database type of the persistent object.

Persistent object (Programming Guide)
Schema (Programming Guide)

“Working with DB persistent objects” on page 832
“Editing a DB schema” on page 855

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a DB persistent object

To delete a DB persistent object, follow these steps:
1. Select the persistent object from either the User-Defined Business Objects

folder, the User-Defined Data Objects folder, or the DBA-Defined Schemas
folder.

2. From the pop-up menu of the persistent object, select Delete.

If the persistent object is not connected to a data object implementation, it is
deleted from the DBA-Defined Schemas folder.

Chapter 15. Object tasks 839



If the persistent object is associated with a data object implementation, the
following deletions take place:
v the persistent object and its underlying schema are deleted from the

User-Defined Business Objects folder and the User-Defined Data Objects
folder.

v the persistent object is deleted from the DBA-Defined Schemas folder

Persistent object (Programming Guide)

“Working with DB persistent objects” on page 832

Working with DB schema groups

All DB schemas in Object Builder exist in schema groups for organizational
purposes.

The following tasks deal with schema groups:
v “Creating a DB schema group”
v “Editing a DB schema group” on page 841
v “Deleting a DB schema group” on page 843

“DDL” on page 137
Schema (Programming Guide)
Schema group (Programming Guide)

“Working with components” on page 697
“Creating a component for existing DB data” on page 139

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a DB schema group

You can create a schema group in Object Builder in the following ways:
v by specifying the name of the schema group when you add a persistent

object and schema for a data object implementation
See the task “Adding a persistent object and schema” on page 833.

840 WebSphere: Application Development Tools Guide



v by specifying the name of the schema group when you create schemas by
importing an SQL file into Object Builder
See the task “Creating a DB schema by importing an SQL file” on page 844.

v by selecting Add Schema Group from the pop-up menu of the
DBA-Defined Schemas folder

To create an empty schema group, follow these steps:
1. From the pop-up menu of the DBA-Defined Schemas folder, select Add

Schema Group. The Schema Group wizard opens to the Schema Group
Name page.

2. Type a name for the schema group in the Schema Group Name field.
3. Type a name of the database to be associated with this schema group in

the Database Name field.
4. Select the type of the relational database backend for which you are

creating the schema group. You can select DB2, Oracle, or Informix.

Note the following points:

v Whenever you create a schema group in Object Builder, along with the
schema group name, you must specify the name of the database to be
associated with the schema group.

v You can import SQL files into any of the existing schema groups.

“DDL” on page 137
Schema (Programming Guide)
Schema group (Programming Guide)

“Working with DB schema groups” on page 840
“Creating a component for existing DB data” on page 139

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a DB schema group

You can edit a schema group by editing either the properties of the group or
its contents.

To edit the properties of a schema group, follow these steps:
1. From the pop-up menu of the schema group, select Properties.
2. The Schema Group wizard opens to the Schema Group page.
3. You can rename the group and the database to be associated with the

group. The name of the group must be unique.

Chapter 15. Object tasks 841



4. In the File to Open in Editor section, indicate the file you want to view
when you use the Open in Editor option from the pop-up menu of either
the schema group, or any schema within the group. You can change it
from the source file (the original SQL DDL file that was imported), which
is the default, to the generated file, which is the SQL file that Object
Builder generates (when you select Generate from the pop-up menu of the
schema group).
Note the following points:

v The editor in which the SQL file is opened will be either Object
Builder’s default editor, or the one that you specified in the file:

\CBroker\bin\sqledit.bat

sqledit.sh
Recommendation:If you would like to use the key stroke recording
function with DBCS characters, you must edit this file to invoke an
editor that supports key stroke recording with DBCS characters.

v Generated is the only option available for schema groups that are
created top-down.

v For a schema group, using Generate > Selected is the only way to emit
a .sql file for the group.

v The generated file exists in the working directory and has the same
name as the name of the schema group. If you want to preserve these
generated files, you must rename the existing generated file before you
select the Generate option from the schema group’s pop-up menu. This
is particularly important if you want to re-import the SQL source file
and this file exists in the working directory, and has the same name as
the group. You can re-import an SQL file using the Statements to Import
page of the Import SQL DDL File wizard.

New and existing schemas within the group will be associated with the new
database name.

The following tasks deal with editing the contents of a schema group:
v “Creating a DB schema by importing an SQL file” on page 844
v “Re-importing an SQL file” on page 847
v “Creating a view with the SQL View Editor” on page 850
v “Editing a view with the SQL View Editor” on page 851

“DDL” on page 137
Schema (Programming Guide)
Schema group (Programming Guide)

842 WebSphere: Application Development Tools Guide



“Creating a component for existing DB data” on page 139
“Working with DB schema groups” on page 840
“Working with DB schemas”

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a DB schema group

To delete a schema group, follow these steps:
1. Delete any schemas belonging to another group that reference schemas

within this group.
2. From the DBA-Defined Schemas folder, select the schema group.
3. From the pop-up menu of the schema group, select Delete. You get a

warning message informing you that if you delete the group, any
associated persistent objects that are contained within that group will be
deleted as well.

4. To continue with the deletion process, click Yes. The entire schema group
is removed from the DBA-Defined Schemas folder, and any schemas and
their persistent objects that were members of the group are deleted from
the User-Defined Business Objects folder and the User-Defined Data
Objects folder as well.

Schema (Programming Guide)
Schema group (Programming Guide) Persistent object (Programming Guide)

“Working with DB schema groups” on page 840
“Working with DB schemas”

Working with DB schemas

A schema is a structural and behavioral composition that defines data storage
and data access mechanisms within the database. A schema is always related
to storage. A persistent object is usually associated with the schema, and
provides persistence of the data beyond the execution time of the application
that instantiated the object.

A schema can be created based on a data object, or it can be created from the
database definitions stored in a DDL file.

The following tasks deal with DB schemas:
v “Adding a persistent object and schema” on page 833

Chapter 15. Object tasks 843



v “Creating a DB schema by importing an SQL file”
v “Creating a view with the SQL View Editor” on page 850
v “Using complex relationships in SQL clauses” on page 289
v “Editing a view with the SQL View Editor” on page 851
v “Editing a view” on page 853
v “Editing a DB schema” on page 855
v “Editing a generated SQL file” on page 857
v “Deleting a DB schema” on page 859

Schema (Programming Guide)
Persistent object (Programming Guide)

“Working with components” on page 697
“Working with DB schema groups” on page 840
“Adding a persistent object from a DB schema” on page 837

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a DB schema by importing an SQL file

When you import an SQL DDL file, you import the description of the
database schema as it is defined in a relational database. Schemas imported
from an SQL file exist in Object Builder within a schema group.

The DDL file is an ASCII file containing SQL statements that describe the
schema. A schema can have tables. Each row must be uniquely identifiable:
each table must have a unique primary key. A row of a table (or of a view) is
represented as a single persistent object instance. All rows in the table can be
represented by a single persistent object class but each row is a separate
instance of that class.

Restrictions:

v This version of Object Builder supports SQL DDL files only from the
following database types and versions:
– Oracle:

Oracle 8.0.5 databases are supported only on
the Windows NT, AIX and Solaris platforms.

844 WebSphere: Application Development Tools Guide



Oracle 8.1.6 (Oracle 8i Release 2)
databases are supported on the Windows NT, AIX, Solaris, and HP-UX
platforms.

– DB2: MVS 4.1 databases, and Object Builder tolerates UDB syntax of
versions 5.0 and 6.1. This means that you may not be able to import a 5.0
or 6.1 DDL file, but if you have a DDL file containing 4.1 DDL with a
few 5.0-, or 6.1-specific lines, you will be able to import the 4.1 DDL
lines from that file.

– Informix:
A given transaction cannot access more than one Informix database per
CB server. To involve two Informix databases in a transaction, you must
access each database from a different server.

Informix Dynamic Server version 7.30 files are
supported only on AIX and Solaris.

Informix Dynamic Server version 7.31 files are
supported only on Windows NT, AIX and Solaris.

v SQL files larger than 2 MB are not recommended.

To import an existing DDL file, follow these steps:
1. From the pop-up menu of DBA-Defined Schemas folder or the schema

group, select Import SQL. The Import SQL DDL File wizard opens to the
SQL File Selection page.

2. Type the name of the DDL file (.sql file) or click Find to specify the path
and select from a list of files.
Note: It is recommended that the SQL source file be placed in a directory
other than the Working directory. This is to avoid having the file
overwritten when you select either Generate > Selected or Generate > All
from the schema group’s pop-up menu.

3. Type a name for the database to be associated with the schema being
imported, or accept the default in the Database Name field.

4. Type a name for the group to contain the schemas being imported or
accept the default in the Group Name field. The schemas appear in the
DBA-Defined Schemas, folder beneath the the group.

5. Click Next. The Statements to Import page opens with all the SQL
statements in the imported file selected for parsing. To clear all the
selections, click Undo Selection. You can then select the specific ones you
want parsed. Multiple selections are possible. To select all the statements,
click Select All.
Note: At least one CREATE TABLE statement must be selected for the import
process to succeed.
Restriction: Currently, the only SQL statements supported are DROP,
CREATE TABLE, CREATE VIEW, ALTER TABLE, and COMMENT ON. None of

Chapter 15. Object tasks 845



these statements must contain expressions or column functions. The
CREATE VIEW statement must contain only a simple query (SELECT
statement). Currently there is no support for unnamed columns,
expressions, functions, or sub-selects in CREATE VIEW.

6. Click Finish. Schemas thus imported into Object Builder, appear in the
DBA-Defined Schemas folder, within a group that gets its name from the
.sql file.

Note: You can re-import a schema group to include different tables, or to
modify or delete existing tables. To do so, follow these steps:
1. Select the schema group in the DBA-Defined Schemas folder. From the

pop-up menu of the schema group, select Import SQL. The Import SQL
DDL File wizard opens to the Statements to Import page.

2. All the SQL statements in the imported file are selected for parsing. To
clear all the statements, click Undo Selection. You can select the specific
ones you want parsed. Multiple selections are possible. To select all the
statements, click Select All. The schema group is overwritten.

Importing an SQL file is the first step in the bottom-up scenario, when you
can reuse existing data. The scenario continues with the following steps:
1. Using the schema information, create a persistent object.
2. Create a data object that corresponds to the persistent object.
3. Create a business object and select the data object (created in step 2) to be

used by the business object. The data object uses the mapping information
you provide when you select it, to manage the business object’s persistent
state.

Restrictions:

v A table that is associated with a schema of one schema group cannot
reference a foreign key defined in a table within another schema group.

v Object Builder lets you import schemas for which no primary keys have
been defined. However, these schemas can result in exceptions thrown at
run time if you use Query Services. To avoid this happening, you can
follow any one of these steps:
1. After you import the SQL file, select Properties from the pop-up menu

of the schema, and select any of the schema columns as the database
key. (Select the DB Key check box.)

2. Before you import the SQL file, edit the source file and add a PRIMARY
KEY constraint for at least one of the tables.

3. Edit the primaryKey entry in the table MappedType.tablename_Table, in
the System Management Data Definition Language (SM DDL) file
generated from the Application Family. This file’s primary name will
have the term Specific before the family name you specified and its
extension will be .ddl. For tables that do not have at least one primary
key defined, the primaryKey entry will be void (“”). Edit it to include

846 WebSphere: Application Development Tools Guide



the names of all the table columns that comprise the primary key you
want to define. For example, if you want to indicate that the columns
COMP, PLAT, SEQ and ATTEMPT comprise the primary key, this would be
the entry: primaryKey = “\”COMP\“,\”PLAT\“,\”SEQ\“,\”ATTEMPT\“”;

Note: Most views are read-only, but you can update some of them. Object
Builder emits insert(), update() and del() with empty method bodies on
associated persistent objects that have been marked read-only. By default,
persistent objects are read-only for views, and updatable for tables, but you
can change this setting.

“DDL” on page 137
Schema (Programming Guide)
Persistent object (Programming Guide)
“Special framework methods” on page 758

“Creating a component for existing DB data” on page 139
“Working with DB schemas” on page 843
“Working with DB persistent objects” on page 832
“Editing a DB schema group” on page 841
“Editing special framework methods” on page 758
“Generating code” on page 551

“Internationalization of data” on page 132
“Naming objects” on page 128

Re-importing an SQL file

To re-import an SQL file, follow these steps:
1. From the pop-up menu of DBA-Defined Schemas folder or the schema

group, select Import SQL. The Import SQL DDL File wizard opens to the
SQL File Selection page.

2. The name of the DDL file (.sql file) previously imported appears in the
Last File Name Imported field.

Note: It is recommended that the SQL source file be placed in a directory
other than the subdirectories of the Working directory, which are named
according to the platform for which you are generating code. This is to
avoid having the file overwritten when you select either Generate >
Selected or Generate > All from the schema group’s pop-up menu.

Chapter 15. Object tasks 847



3. The name of the database previously associated with the schema being
imported is shown in the Database Name field. This entry cannot be
changed.

4. The name of the group shown in the Group Name field too cannot be
changed. The schemas appear in the DBA-Defined Schemas folder
beneath the group.

5. Click Next. The Statements to Import page opens with all the SQL
statements in the imported file selected for parsing. To deselect all the
statements, click Undo Selection. You can select the specific ones you
want parsed. Multiple selections are possible. To select all the statements,
click Select All.
Restriction: Currently, the only SQL statements supported are DROP,
CREATE TABLE, CREATE VIEW, ALTER TABLE, and COMMENT ON. None of
these statements must contain expressions or column functions. The
CREATE VIEW statement must contain only a simple query (SELECT
statement). Currently there is no support for unnamed columns,
expressions, functions, or sub-selects in CREATE VIEW.

6. Click Finish.

If you use Import SQL from the folder, the schemas imported into Object
Builder appear in the DBA-Defined Schemas folder, within a group whose
default name is the name of the .sql file. You can change the name of the
group and the default name of the database as well. If you use Import SQL
from a schema group, you can neither change the name of the group nor that
of the database.

If you select statements that act on existing tables, Object Builder warns you
that the tables will be overwritten.

“DDL” on page 137
Schema (Programming Guide)
Schema group (Programming Guide)
“The SQL View Editor” on page 849

“Creating a DB schema by importing an SQL file” on page 844
“Working with DB schemas” on page 843
“Adding a persistent object from a DB schema” on page 837
“Editing a DB schema” on page 855
“Editing a generated SQL file” on page 857

848 WebSphere: Application Development Tools Guide



The SQL View Editor

The SQL View Editor is a tool that enables you to create and modify views
from within Object Builder. You can invoke it from the pop-up menu of a
schema group in the DBA-Defined Schemas folder when you want to create a
view, or from the pop-up menu of a view when you want to edit the view.

The SQL View Editor has the following notebook pages:
v View Properties
v View Work Area
v View Summary

View Properties
This page enables you to provide identification for the view you are adding.
You can review details about the view, and edit any comments you added
when you created the view, when you use the Editor to edit a view.

View Work Area
This page is where most of your interaction with the View Editor takes place.
This area is further subdivided into the following panes:
v Schemas: This pane lists the schemas that belong to the schema group. In

the Graphic view, it also shows foreign key relationships among the
schemas.

v Columns: This pane lists the columns of the schema that you select in the
Schemas pane. You can select these columns for inclusion in SQL clauses.

v Clauses: This pane enables you to construct or modify clauses to define the
view, with the columns that you select. It is further divided into the
following panes for defining the clauses:
– Selected Columns
– Where
– Group By
– Having

View Summary
Use this section to view the SQL code for the different clauses you defined
using the Clauses pane in the View Work Area. You can view the code either
as a single SQL statement, or clause by clause.

Schema (Programming Guide)
Schema group (Programming Guide)

“Creating a view with the SQL View Editor” on page 850

Chapter 15. Object tasks 849



“Editing a view with the SQL View Editor” on page 851
“Using complex relationships in SQL clauses” on page 289

Query Service (Advanced Programming Guide)

Working with the SQL View Editor

You can perform the following tasks with the SQL View Editor.
v “Creating a view with the SQL View Editor”
v “Editing a view with the SQL View Editor” on page 851
v “Using complex relationships in SQL clauses” on page 289

Schema (Programming Guide)
Object relationships (Programming Guide)

“Creating a component for existing DB data” on page 139
“Working with components” on page 697
“Editing a DB schema group” on page 841
“Storing an object reference as a handle” on page 288

Creating a view with the SQL View Editor

To create an SQL view in Object Builder, follow these steps:
1. Select the schema group from which you want to create the view, in the

DBA-Defined Schemas folder.
Note: The schema group must contain the schemas from which you want
to create the view.

2. From its pop-up menu, select Add SQL View. The SQL View Editor
opens.

3. Click the View Properties tab of the editor. On the View Properties page,
type a name for the view, and optionally specify a userid and add any
comments.

4. Click the Selected Columns tab of the Clauses pane.
5. Select a schema to be used for the view in the Schemas pane. The schema

columns and their details appear in the Columns pane.
6. Select the columns you require for the view from the Columns pane. As

you select each column, the column name and the table it belongs to
appear in the Selected Columns page.

7. Repeat steps 4, 5 and 6 for each of the schemas whose columns you want
to include in the view.

850 WebSphere: Application Development Tools Guide



8. Click the Where tab of the Clauses pane. On the Where page, you can
specify conditions that have to be met by the various schema columns,
for inclusion in the view.

9. Click the Group By tab of the Clauses pane. On the Group By page, you
can specify the columns, based on whose values the order of occurrence
of the view’s rows is determined: Click the Select All button. All
columns that you specified as selected columns on the Selected Columns
page are set as the grouping columns. The first grouping column
determines the initial grouping. Subsequent grouping columns are used
to resolve the order of the rows when there is a tie within a group of
rows formed by its predecessor.
Note: You cannot select a subset of the selected columns to group the
view by. You have to use the Select All button.

10. Click the Having tab of the Clauses pane. On the Having page, you can
apply a qualifying condition to the groups created with the <span
style=″text-transform: uppercase″>GROUP BY<span> clause. Only those
groups that meet the HAVING condition are included in the view.
Note: From the Where page and the Having page, you can bring up the
Organize Logical Combination dialog box, where you can manually
arrange the predicates to be combined for the view.

11. Click the View Summary tab to open the View Summary page of the
Clauses pane. Use this page to view the SQL clauses you defined for the
view.

12. When you have finished reviewing your definition, click Finish.

The view appears in the schema group in the DBA-Defined Schemas folder.

Schema (Programming Guide)
Schema group (Programming Guide)

“Working with DB schemas” on page 843
“Working with the SQL View Editor” on page 850
“Creating a DB schema group” on page 840
“Editing a view with the SQL View Editor”

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a view with the SQL View Editor

To edit an SQL view in Object Builder, follow these steps:
1. Select the view in the DBA-Defined Schemas folder.

Chapter 15. Object tasks 851



2. From its pop-up menu, select SQL View Editor. The SQL View Editor
opens.

3. Click the View Properties tab. You cannot change the name and userid of
the view. However, you can modify the comments on the View Properties
page.

4. Click Next, or click the View Work Area tab. Columns of the view appear
in the Selected Columns page of the Clauses pane. As you select the
different schemas in the Schemas pane, their schema columns and
corresponding details appear in the Columns pane. To add a new column
to the view, click on it in the Columns pane. To remove a column from the
view, right-click on any field in column’s row in the Clauses pane, and
select Remove from the pop-up menu. To rename a view column,
right-click on the name in the View Column of the Selected Columns
page, and select Change Value from the pop-up menu. The Change
Column Name dialog box appears, and you can type a new name in the
field.
Note: On all the other pages of this pane, you can view the previous
settings and make changes if you want. To remove an entry in a field on
either the Where page or the Having page, right click in the field and
select Remove. To specify a new entry for the Table/Column field in the
predicate section, select the column from the Columns pane; to specify a
new entry in the search conditions’ Table/Column section, first click in the
field, and then, select a column from the Columns pane.

5. Click the Where tab of the Clauses pane. On the Where page, you can
view the conditions that were previously set for the various schema
columns, for inclusion in the view.

6. Click the Group By tab of the Clauses pane. On the Group By page, if no
GROUP BY clause had been specified for the view, you can specify the
columns, based on whose values the order of occurrence of the view’s
rows is determined: Click the Select All button. All columns that you
specified as selected columns on the Selected Columns page are set as the
grouping columns. If the view’s previous definition included a GROUP BY
clause, the only modification you can make on this page is to deselect all
grouping columns: click on Clear All. The view will not have an orderly
grouping for its rows.

7. Click the Having tab of the Clauses pane. On the Having page, you can
apply a qualifying condition to the groups created with the GROUP BY
clause. Only those groups that meet the HAVING condition are included in
the view.
Note: From the Where page and the Having page, you can bring up the
Organize Logical Combination dialog box, where you can manually
arrange the predicates to be combined for the view.

852 WebSphere: Application Development Tools Guide



8. Click the View Summary tab to open the View Summary page of the
Clauses pane. Use this page to view the SQL clauses you redefined for the
view.

9. When you have finished reviewing your definition, click Finish.

The view will be redefined according to your modifications.

Schema (Programming Guide)
Schema group (Programming Guide)

“Working with the SQL View Editor” on page 850
“Creating a DB schema group” on page 840
“Creating a view with the SQL View Editor” on page 850

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a view

You can modify a view that exists in Object Builder using the Schema page of
the Schema wizard the same way you modify a schema in Object Builder.

To change the identification for a view, follow these steps:
1. In the DBA-Defined Schemas folder, select the view. From the pop-up

menu of the view, select Properties. The Schema page opens.
2. You can modify the user ID, table name and schema filename.
3. Click Finish.

A new, stand-alone view is created only when the old view is referenced
under another view. If the view is not under another view, it is renamed.
So, even a view that has associated persistent objects will be renamed, not
copied. A copy of the view, with the new name and properties is created
only for views that are under other views.

Note: To ensure that valid code is generated after a rename, use Generate >
All instead of Generate > Selected from the pop-up menu of the object.

You can modify the structure of a view by editing the Schema page, and the
Clause Summary page.

To change the structure of a view using the Schema page, follow these steps:
1. From the pop-up menu of the view object, select Properties. The Schema

page opens.

Chapter 15. Object tasks 853



2. You can edit the ForBitData, DB Key and Not Null fields. The existing
view is overwritten with the changes.

To change the structure of a view using the Clause Summary page, follow
these steps:
1. From the pop-up menu of the view object, select Properties. The Schema

wizard opens to the Schema page. You can edit the ForBitData, DB Key
and Not Null fields.

2. Click the arrow to the left of the page name, and select Clause Summary
page from the list. By default, the text panel on this page is read-only, and
you can select the radio buttons associated with the different SQL clauses
to see their definition.
Attention: It is not recommended that you edit the Object
Builder-generated SQL clauses for the view definition. The changes you
make affect the DDL that Object Builder generates and you can access the
original code only by redefining the view, or importing once again into
Object Builder the SQL file that contains the definition of the
view. However, if you must edit some of the view’s definition clauses,
follow step 3; otherwise proceed with step 4.

3. Select the Provide your own SQL for the clause check box. Once you
select this box, the text panel containing the clauses becomes editable, and
you can overwrite the definition provided by Object Builder. You can
overwrite one clause at a time.

4. Turn to the Comments page. Here, you can type comments for the view, as
well as for the schema columns that are used in the definition of the view.

5. Click Finish.

The existing view is overwritten with the changes.

Note: To delete a view that has an associated persistent object, you must first
delete the persistent object. To delete a view that is used to create other views,
you must first delete the view that is created from it.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Working with DB schemas” on page 843
“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Editing a DB schema group” on page 841

854 WebSphere: Application Development Tools Guide



“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a DB schema

You can modify any DB schema that exists in Object Builder, whether it was
created from a data object or imported from an SQL DDL file.

To make changes to the DB schema, select Properties from its pop-up
menu. The Schema page opens. On the schema page, you can make changes
to the following properties:
v Identification (page 855)
v Column properties (page 855)
v Schema structure (page 856)

You can also change persistent object attribute mapping properties on this
page.

Changes you make here will be propagated up through the persistent objects
and the data object implementation to persistent object mappings for the
schema. Check the resulting mapping changes to ensure they are what you
expect.

Identification
Use the Schema Name, Table, and Schema File fields to change what the
schema is called. You cannot modify the schema access type (the database
type of the schema).

Click Next to go to the Comments page, where you can edit comments about
the schema.

In the case of a view, you can also modify the clauses that define the view
(Clause Summary page). When you edit the view definition, a new,
stand-alone schema is created only if the old schema is referenced under
another view. If the schema is not referenced by another view, the view you
are editing is simply renamed. So, even a schema that has foreign key
relationships or associated persistent objects will be renamed, not copied. A
copy of the schema, with a new name and new properties is created only for
schemas that are referenced under other views.

Note: To ensure that valid code is generated after a rename, use Generate >
All instead of Generate > Selected from the pop-up menu of the object.

Chapter 15. Object tasks 855



Column properties
Each column in the schema is shown in the table, along with the properties
for that schema. To edit a column property, double-click on the corresponding
field.
v Column Name Changes the name of the column in the schema.
v SQL Type Changes the SQL type associated with the column. If you change

the column type to a type for which Object Builder “understands” how to
properly map (for example, string to varchar), a reasonable mapping will be
propagated to the PO and DOImpl. Otherwise, the previous mapping will
be kept (which may result in unexpected run-time behavior). Check the
propagated type mapping in case you want to change it.

v Length and Scale For numeric types such as DECIMAL, changes the length
and scale of the type.

v ForBitData Select the check box if the schema column is used to store an
object reference. Object references are stored as strings.

v DB Key Select the check box to specify this column as being part of the
database key.

v Not Null Select the check box to indicate that this column is not nullable.
v Foreign key fields

Note: All columns that you indicate as DB keys have to be “not null”. This
specification cannot be changed.

Schema structure
While you may modify schema structure by re-importing the SQL file, by
doing so, you will lose changes you have made. Instead, you can make
schema structure modifications in the Schema properties window. The existing
schema is overwritten with the changes.

To add a column:
1. Select Add Schema Column from the table’s pop-up menu. A column with

some default values will be added to the table.
2. Edit the values as appropriate.

To delete a column:
1. Select the column in the table.
2. Select Delete Schema Column from the pop-up menu.

The column is not actually deleted until you exit the properties window.
Instead, a red X will appear beside the column, indicating your intention to
delete it. If you decide to keep it, select Undo Delete from its pop-up menu.

Note: If you choose to change the structure of a schema by re-importing
the SQL file, follow these steps:

856 WebSphere: Application Development Tools Guide



1. From the pop-up menu of the schema group, select Import SQL. The
Statements to Import page opens.

2. Select those ALTER TABLE statements that refer to the schema that you
want to modify in this group.
Warning: Do not re-import CREATE statements.

These changes will be propagated up through the POs and DOImpl-PO
mappings, using default mappings which you may want to confirm
before generating.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Working with DB schemas” on page 843
“Adding a persistent object and schema” on page 833
“Adding a persistent object from a DB schema” on page 837
“Editing a DB schema group” on page 841
“Editing a DB persistent object” on page 838

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a generated SQL file

When you generate a schema that is created from a data object, using either
Generate > Selected or Generate > All from the pop-up menu of the schema,
or Generate > All from the pop-up menu of its containing schema group, the
resulting .sql file cannot be used as such by DB2 to create tables.

Note the following points:

v In some RDBMS configurations, the .sql files that Object Builder generates
from the schemas must be processed by a database administrator using a
design tool such as Logic Works’ ERWin version 3.5 or 3.0, before they can
be used to create tables in the database catalog. In others, you may be able
to bypass the design tool, and instead use command line or other
procedures to populate the database catalog.
Example:
In the DB2 NT 5.0 single-user environment, you can use the following
sequence of commands from the DB2 command window:
db2 connect to “name of working database”
db2 -t -f “SQL filename with the path”

In Oracle 8.0.4.0 script center, you can import the .sql files.

Chapter 15. Object tasks 857



v ERWin 3.0 does not support the following database systems that ERWin 3.5
supports:
– DB2 / 390 5
– DB2 / CS 2
– DB2 / UDB 5
– Oracle 8.x

If you are using ERWin 3.0 or 3.5 to generate SQL files to be imported into
Object Builder, you cannot use the default options provided by ERWin for
the Oracle DBMS. In ERWin, when you select Tasks > Forward
Engineer/Schema Generation, you must change the Referential Integrity
Options for the Primary Key and Foreign Key to use the CREATE statements
instead of the ALTER statements.

v If the design tool you use includes a startup command that takes a DDL file
as an argument, you can place that command in the file named
sqlparse.cmd (on NT) and sqlparse.sh (on AIX). The Open in Editor option
from the pop-up menu of the schema, would then launch the tool.

v The SQL DDL files that you create using a database design tool can be
imported into Object Builder.

To launch ERWin from Object Builder, follow these steps:
1. Open the file sqledit.bat (which is located in the bin subdirectory of

Component Broker tools installation directory, which is usually
\CBroker\bin in your current drive).

2. Comment out (add rem before) the command that launches the LPEX
editor (or, any other editor of your choice, if you had earlier modified this
statement):
rem @start evfxlxpm %sqleditargs%

3. Delete rem, which is at the beginning of the command that launches
ERWin
@start mmopn32 %sqleditargs%

The sqledit.bat file should have the following entries:
rem @start evfxlxpm %sqleditargs%
@start mmopn32 %sqleditargs%

4. From the DBA-Defined Schemas folder or the User-Defined Data Objects
folder, select the schema.

5. From the pop-up menu of the schema, select Open in Editor. This
launches ERWin .

ERWin does not run on AIX, but if you still want to use it as the
design tool, follow these steps:
1. Transfer the generated .sql file from AIX to NT.

858 WebSphere: Application Development Tools Guide



2. Process the .sql file using ERWin against an NT DB2 client installation,
which is backed by an AIX DB2 server.

With AIX, too you can specify the editor of your choice. This is done in the
file sqledit.sh.
1. Comment out (add # before) the command line that launches the vi editor

# dtterm -e vi $* &

2. Include the editor of your choice instead of vi (for example, LPEX: lpex $*
& )

ERWin runs only on Windows NT.

Note: LPEX is available only if SDE/6000 is installed.

The sqledit.sh file should have the following entries:

# dtterm -e vi $* &

lpex $* &

Hint: When you use ERWin to create table columns that will hold object
references, you can specify the VARCHAR FOR BIT DATA type.

Schema group (Programming Guide)
Object relationships

“Creating a component for existing DB data” on page 139
“Working with DB schemas” on page 843
“Editing a DB schema group” on page 841
“Storing an object reference as a handle” on page 288

Deleting a DB schema

To delete a DB schema, follow these steps:
1. Delete any persistent objects that are associated with this DB schema.

Note: If you delete the persistent objects from the the User-Defined Data
Objects folder, or the User-Defined Business Objects folder, the schemas
are automatically deleted from these folders. You still have to delete it
from the DBA-Defined Schemas folder. (Follow step 4.)

2. Delete any views that use this schema.
3. Delete any other schemas that reference this schema.

Chapter 15. Object tasks 859



4. From the pop-up menu of the schema in the DBA-Defined Schemas folder,
select Delete.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Working with DB schemas” on page 843
“Deleting a DB persistent object” on page 839

Working with PA persistent objects

PA persistent objects are defined in the User-Defined PA Schemas folder. A PA
persistent object is created along with every PA schema that is created in
Object Builder, as a result of importing a PA bean.

You can create additional PA persistent objects for every PA schema. You can
also create multiple data objects from the PA persistent object. Further, you
can also associate a PA persistent object with a data object implementation.

The following tasks deal with PA persistent objects:
v “Adding a persistent object from a PA schema”
v “Editing a PA persistent object” on page 861
v “Adding a data object from a PA persistent object” on page 815
v “Mapping a data object to a PA persistent object” on page 708
v “Deleting a PA persistent object” on page 861

Persistent object (Programming Guide)
Schema (Programming Guide)
“Procedural adaptor bean (PA bean)” on page 159

“Working with components” on page 697

Adding a persistent object from a PA schema

To add a persistent object to an existing PA schema, follow these steps:
1. From the User-Defined PA Schemas folder, select the schema to which you

want to add a persistent object.
2. From the schema’s pop-up menu, select Add Persistent Object. The Add

Procedural Adaptor Persistent Object wizard opens to the Attributes
Mapping page.

860 WebSphere: Application Development Tools Guide



3. Type a name for the persistent object in the Name field.
4. Modify the names of the persistent object attributes, if required.

Persistent object (Programming Guide)
Schema (Programming Guide)

“Creating a component for PA data” on page 157
“Working with PA persistent objects” on page 860
“Working with PA schemas” on page 862
“Adding a data object from a PA persistent object” on page 815

Editing a PA persistent object

In this release of Object Builder, you cannot edit a PA persistent object that
was created for you along with the PA bean that you imported into Object
Builder.

However, you can add another persistent object to the schema (from the
pop-up menu of the PA schema, select Add Persistent Object), and you can
change the names of the attributes, if you want to. Once the persistent object
is created, it is not editable.

Persistent object (Programming Guide)

“Working with PA persistent objects” on page 860

Deleting a PA persistent object

To delete a PA persistent object, follow these steps:
1. Select the persistent object from either the User-Defined Business Objects

folder, the User-Defined Data Objects folder, or the User-Defined PA
Schemas folder.

2. From the pop-up menu of the persistent object, select Delete.

If the persistent object is not connected to a data object implementation, the
following deletions take place:
v the persistent object is deleted from the User-Defined PA Schemas folder

(the schema is not removed from this folder)

If the persistent object is associated with a data object implementation, the
following deletions take place:

Chapter 15. Object tasks 861



v the persistent object and its underlying schema are deleted from the
User-Defined Business Objects folder (if the data object implementation is
associated with a business object as in the case when you build a model
bottom-up) and the User-Defined Data Objects folder.

v the persistent object is deleted from the User-Defined PA Schemas folder
(the schema is not removed from this folder)

Persistent object (Programming Guide)

“Working with PA persistent objects” on page 860

Working with PA schemas

You can create a component for existing transactional information by
importing the PA bean into Object Builder, and deriving a component from it.

The following tasks deal with PA schemas:
v “Creating a PA schema by importing a PA bean”
v “Adding a persistent object from a PA schema” on page 860
v “Editing a PA schema” on page 868
v “Deleting a PA schema” on page 869

Persistent object (Programming Guide)
Schema (Programming Guide)
“Procedural adaptor bean (PA bean)” on page 159

“Working with components” on page 697

Creating a PA schema by importing a PA bean

Suggestion: It is important to have your CLASSPATH system environment
variable always up-to-date with the directory into which you are importing
the PA beans. If modifying the class path is a problem - especially if you want
to avoid rebooting your system, which is usually required each time you
update any system environment variables, in this case the class path, always
follow these steps when you import PA beans into Object Builder:
1. Maintain one specific directory into which you always import PA beans.

862 WebSphere: Application Development Tools Guide



2. Update your CLASSPATH system environment variable to include this
directory path.

3. Whenever you import a PA bean from within Object Builder, place it in
this directory (unzip the JAR file into this directory). If you are importing
a PA bean by exporting it directly from VisualAge for Java, export it as a
directory with the same name as the directory you included in the class
path; do not export it as either a DAT file or a JAR file.

Note:The suggestion above is recommended only for importing beans; not for
deploying them. When you deploy the beans, you must include their JAR files
as additional executables for the application (add them on the Additional
Executables page of the Application wizard). This ensures that the bean is
available to the Component Broker server at run time. The JAR files that are
listed as additional executables take precedence over the directory since the
JAR files are added to the front of the CLASSPATH when the Component Broker
server is started.

Restrictions:

v You cannot import PA beans that inherit from the BeanInfo superclass in
VisualAge for Java.

v When you create the PA bean, ensure that you name its key the same name
as the PA bean, with the suffix Key. For example, if the name of the PA
bean is AccountPAO, then the name of its key must be AccountPAOKey.
Only such beans can be imported into Object Builder.

v The PA beans that you import cannot have arrays as either attribute types,
or method parameter types, or method return types. The only types that are
supported are those listed in “Java data type mappings” on page 159.

v You cannot import into Object Builder PA beans that have two methods
with the same name. You can create such PA beans with overloaded
method names (methods with the same name that differ in either the type
or number of their parameters, or both) using VisualAge for Java. However,
since overloaded method names are not allowed in IDL, Object Builder
enforces the IDL restriction.

v Procedural Adapter Object (PAO) beans, which may be created with
VisualAge for Java (version 2.0 and later) are supported with this release of
Component Broker.

To import a procedural adaptor schema (PA schema), follow these steps:
1. In the Tasks and Objects pane, select the User-Defined PA Schemas folder.
2. From its pop-up menu, select Import > Bean. The Import Procedural

Adaptor Bean wizard opens to the Bean Selection page.
3. You can import the bean using one of the following methods:

a. Specify the name of the EntityProceduralAdapterObject bean class.
Follow these steps:

Chapter 15. Object tasks 863



1) Select the Enter bean name radio button, and type the fully
qualified name of the class (package name and class name) in the
field. For example, to import the BeCashAcct bean, type
paa.samples.cics.eci.acct.BeCashAcctPAO.

b. Specify a JAR file. Follow these steps:
1) Select the Select a bean from an existing JAR file radio button.

The Find JAR file button becomes active, and you can use it to
locate the file.

2) Once you have selected the JAR file (for example BeCashAcct.jar),
the panel lists the classes contained in the file and you can select
the one you want imported. The field just below the Enter bean
name button shows the name of the selected object class.
See the notes below this procedure for possible error conditions
and their causes.

4. Click Next. The Names and Connectors page opens. Here, you can name
the module and the persistent object to be associated with the PA schema.
You can also select the connector type to be used to access objects. The
connector type must match the one you used when you created the
procedural adaptor bean.

When you choose OS/390 as the development (target) platform
(Platform > Constrain), only the EXCI, OTMA, IMS APPC, and Generic
connector types are available for selection.
When you select either NT and 390, or AIX and 390 as the development
platforms, all the connector types (LU 6.2, HOD, SAP, and ECI, besides the
types available for OS/390) are available for selection.
When you select NT and AIX, all the types except those that are specific to
OS/390 (EXCI, OTMA, and IMS APPC) are available for selection.

5. Click Next. The Key Selection page opens with the properties of the PA
schema listed in the Properties box.

6. Select the properties that are part of the PA bean’s key class from the
Properties box, and move them to the Key Attributes box.

7. Click Next. The Variable Type Specification page opens, and for all
attributes of string type in your imported bean, you can specify whether
they correspond to the IDL string type, or the IDL wstring type. Similarly,
for char properties in your imported bean, you can specify whether they
correspond to the char IDL type, or the wchar IDL type.

8. Click Next. The Method and Parameter Type Specification page opens, and
you can specify whether the return type of the methods defined on the PA
bean that are of character or string type are either single-byte, or
multi-byte. You can also specify the same for the character and string
types of these method’s parameters.
Note: If the bean is queryable, the Query Methods page will be

864 WebSphere: Application Development Tools Guide



dynamically added to the wizard. On this page, you can specify what each
of the query methods will fetch using a WHERE clause.

9. Click Finish. The bean will be imported into Object Builder. The PA
schema (for example, BeCashAcctPAO) and its associated persistent object
(BeCashAcctPAOPO) will now appear in the Tasks and Objects pane under
the User-Defined PA Schemas folder.

Note the following points:

Typically, the following types of classes are referenced in the bean that you
select for import:
1. The PAA run-time file sompart.zip, and the someab.jar file, and if you are

using host on-demand (HOD) connections, somhod20.jar.
2. User-defined classes (any JAR files corresponding to the PA beans you

created using Enterprise Access Builder (EAB), and any other classes you
defined that are used by the PA bean)

If you get a message about files not being in the class path, follow these steps:
1. Ensure that the PA bean (the EntityProceduralAdapterObject) is in the

class path (in the CLASSPATH environment variable).
2. If your PA bean is in a JAR file, ensure that the JAR file is in the class

path.
3. If your PA bean is in .class files in a directory, ensure that the directory

path is in your class path. (Do not specify the package name in the
directory path.)

4. Ensure that the IBM Component Broker CICS and IMS Application
Adaptor component is installed.

5. Ensure that all the user classes that are referenced in the bean are included
in your system environment variable CLASSPATH. The class path must either
contain the JAR file (if you archived the classes into a JAR file), or the
directory under which the class files exist (if you did not create a JAR file).

If you have any other trouble while importing the bean, it could be that you
created the the BeanInfo class when the Inherit BeanInfo from superclass
option was enabled in VisualAge for Java’s integrated development
environment (IDE).

When you select the PA persistent object in the Tasks and Objects pane, the
Methods pane shows you the attributes and methods defined on the PA
schema, based on those that you had defined on the PA bean that you
imported. The names of method parameters may not appear as you specified
them in the VisualAge for Java Integrated Development Environment (IDE).
However, this is only superficial, and it does not affect the behavior when the
method is called on the bean.

Chapter 15. Object tasks 865



Persistent object (Programming Guide)
Schema (Programming Guide)

“Creating a component for PA data” on page 157
“Building the JAR files” on page 561
“Working with PA schemas” on page 862
“Adding a persistent object from a PA schema” on page 860
“Adding a data object implementation” on page 807
“Mapping query method parameters to PA bean attributes” on page 161
“Customizing PA bean query methods” on page 160

“WHERE clause syntax”
“Java data type mappings” on page 159
“Internationalization of data” on page 132
“Naming objects” on page 128

WHERE clause syntax

You can specify what the selected query method will return using a WHERE
clause, which defines the search criteria.

Substitution Strings
A WHERE clause may contain a substitution string. Use the percent symbol (%)
for the subsitution character in the WHERE clause field. Then, in the
Substitution String field, specify the character that the backend uses as a
substitution character (for example, ? or *).

If you want to fetch every element in the procedural application adaptor
(PAA) home, then you do not need a WHERE clause for that particular query
method. In that case, you should not specify a substitution string for that
method.

WHERE Clause Checking
Object Builder performs a check for the following conditions:
1. The only logical operator that can appear in the WHERE clause is AND

2. All the predicates in the WHERE clause should be of the form
X op [CONSTANT|PARAMETER]

where
a. X is an attribute reference (e.g. MenuCustomerPO.number)
b. op must be one of =, >, <, >=, <=, or LIKE (When LIKE is the operator,

the substitution character may appear inside CONSTANT.)

866 WebSphere: Application Development Tools Guide



c. CONSTANT is any string or numerical constant
You must enclose any string constants in the WHERE clause in single
quotes. For example, WHERE name like ’S%’

Note: Exponential and hexadecimal numbers (whose representation
include a letter; for example, 1.0E-324 or 0xFFFF) are not permitted as
constants in the query over the PAA OOSQL WHERE clause. To
represent one of these values, code the constant in the PAO bean
directly and do not expose it in the WHERE clause.

d. PARAMETER represents any parameter to be taken by the transaction.
Every parameter name is preceded by a colon. For example, if you
define a parameter named p1 on the query method named
queryAllItems, then the WHERE clause of queryAllItems would refer to
that parameter as :p1

You must use parameters when the values of the criteria will not be
constant and you have to use a query.

Examples:
a. To specify the clause WHERE MenuCustomerPO.salary > 30000, type

WHERE salary > 30000.
(You do not have to type the name of the persistent object; it is
automatically added to the attribute of the bean.)

b. To use a variable (parameter) p1 that is predefined with value 30000,
type WHERE salary > :p1

Note the following points:

v You must declare the variable named p1 on that particular query
method and map p1 to an attribute in the bean.

v Since salary is a number, p1 must also be a number. If we use name, p1
must be a string.

v A bean attribute can be mapped to only one parameter in a query
method. Each parameter that you use in the WHERE clause must be
mapped to an attribute in the PA bean. The attribute to which the
parameter is mapped must be of the same type as the attribute
reference.

v Each attribute of the bean can be used in each query method even if
another method has used it already.

v Each parameter can be mapped to any attribute on the bean, except the
key attribute.

Besides checking the syntax of the WHERE clause, Object Builder also performs
these checks:
v If you do not use a WHERE clause for a particular method, then there must be

no substitution string for that method

Chapter 15. Object tasks 867



v If you create a parameter, you must map it to an attribute on the bean, and
the parameter must be of the same type as the attribute

v You cannot map an OOSQL parameter to the key on the bean. (This is
because the key is read-only.)

“Enterprise Access Builder (EAB)” on page 158
“Procedural adaptor bean (PA bean)” on page 159
Persistent object (Programming Guide)
Application adaptor (Programming Guide)

Query Service for AIX and Windows NT (Advanced
Programming Guide)

Query Service for OS/390 and Solaris (Advanced
Programming Guide)
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)

“Creating a PA schema by importing a PA bean” on page 862
“Adding a data object implementation” on page 807
“Mapping query method parameters to PA bean attributes” on page 161
“Customizing PA bean query methods” on page 160

Editing a PA schema

Note: You cannot rename the PA schema.

To edit a PA schema, follow these steps:
1. Select the PA schema in the User-Defined PA Schemas folder.
2. From its pop-up menu, select Properties. The PA Schema wizard opens to

the Attributes page. You can change the connector type information for the
schema. You can select from HOD, ECI, SAP, LU 6.2, Generic, EXCI,
OTMA, or IMS APPC.

If the deployment platform is OS/390, you can only select from
among EXCI, OTMA, IMS APPC, and Generic.

3. If the PA bean associated with the PA schema is queryable, click Next. The
Query Methods page opens.

4. Here, you can map each of the the query methods of the bean to an
OOSQL WHERE clause.

Note: If you had associated the PA persistent object that is connected with this
PA schema, with a data object implementation, you must first disassociate this
PA persistent object from the data object implementation (delete the persistent

868 WebSphere: Application Development Tools Guide



object from the Persistent Object Instances folder on the Associated Persistent
Objects page of the Data Object Implementation wizard) before you can
change the connector type.

Schema (Programming Guide)

“Working with PA schemas” on page 862

“WHERE clause syntax” on page 866

Deleting a PA schema

To delete a PA schema, follow these steps:
1. Delete any persistent objects that are associated with this PA schema.

Note: If you delete the persistent objects from the the User-Defined Data
Objects folder, or the User-Defined Business Objects folder, the schemas
are automatically deleted from these folders. You still have to delete it
from the User-Defined PA Schemas folder. (Follow step 2.)

2. From the pop-up menu of the schema in the User-Defined PA Schemas
folder, select Delete.

Schema (Programming Guide)
Persistent object (Programming Guide)

“Working with PA schemas” on page 862
“Deleting a PA persistent object” on page 861

Working with managed objects

Managed objects are defined in the User-Defined Business Objects folder,
where they are shown under the business object implementation they were
added to.

Once you configure a managed object with an application, an object
representing that configuration appears in the Application Configuration
folder, where it is shown under the application it was added to.

Chapter 15. Object tasks 869



You can add multiple managed objects to each business object
implementation, but each component you configure will have only one
managed object. In fact, the component is defined by the configuration of the
managed object.

The following tasks deal with managed objects:
v “Adding a managed object” on page 871
v “Configuring a managed object” on page 588
v “Editing a managed object” on page 872
v “Editing a managed object file” on page 873
v “Editing a managed object configuration” on page 874
v “Deleting a managed object” on page 874
v “Deleting a managed object configuration” on page 875

Managed object (Programming Guide)

“Working with components” on page 697

“Naming objects” on page 128
“Internationalization of data” on page 132

Service to Use

When you create or edit a managed object, you can set the service it will
provide for its business object. The Managed Object wizard lists two services,
based on the type of persistence the component needs.

You can select one of the following services:
v Transaction Service
v Session Service

Transaction Service
Select this type of service if the business object is to be associated with a DB
persistent object. This is the only service that can be used even if the business
object is associated with a PA persistent object, and the development platform
is OS/390.

Session Service
Select this type of service if the business object is to be associated with a PA
persistent object.

870 WebSphere: Application Development Tools Guide



Managed object (Programming Guide)
Business object (Programming Guide)
Persistent object (Programming Guide)
Session Service (Advanced Programming Guide)
Transaction Service (Advanced Programming Guide)

“Adding a managed object”

Adding a managed object

For a component to be installed on the server, it must have a managed object.
End-user applications primarily interact with the managed object, which
inherits the interface of the business object. The managed object controls the
key and the copy helper, the relationship between the business object and its
data object, and so on. You must create a new managed object for each of
your business object implementations.

To add a managed object, follow these steps:
1. From the User-Defined Business Objects folder, select your business object

implementation (for example, CarPolicyBO).
2. From the object’s pop-up menu, select Add Managed Object. The

Managed Object wizard opens to the Names and Service page.
Appropriate names are filled in for you (the business object file name and
interface name plus MO: for example, CPFile::CarPolicy gets a managed
object CPFileMO::CarPolicyMO). You can accept these defaults or replace
them with your own names.

3. Set the deployment platforms (the platforms on which this managed object
will be deployed). This determines the development options that are
selectable (you can only select options that are available on all selected
platforms). By default, the managed object is deployable to the set of
platforms defined in the Platforms > Constrain menu. You cannot select
platforms that are not already selected in the Platforms > Constrain menu.

4. Make sure the correct service is selected. The services should be
appropriate for the form of persistence provided by the component’s data
object implementations.
Note: Transaction Service is the appropriate choice for every form of
persistence except for the Procedural Application Adaptor. The type of
service required by the Procedural Application Adaptor depends on the
connector type of your PA bean. If the connector type is HOD, SAP, or
ECI, use Session Service. If your connector type is Generic, you can use
either Session or Transaction Service. Other connector types require
Transaction Service.

Chapter 15. Object tasks 871



If one of your deployment platforms is OS/390, you can only
select Transaction Service.

5. Click Next. The Implementation Inheritance page opens.
By default, no inheritance is selected. If, however, the managed object is
for a component that already has an inheritance tree (for example, this is
the managed object for the interface CarPolicy, which inherits from Policy),
then the managed object should follow the same inheritance pattern
(CarPolicyMO should inherit from PolicyMO).
Note: The options available in the Parent Class drop-down list are for
defining a container or home (specialized forms of managed objects).
There are separate instructions for these tasks. Do not use the list’s options
when creating a simple managed object.

If the managed object is deployable to OS/390, the
ISpecializedPolymorphicHomeManagedObject class is not available for
selection as a parent interface.

6. Click Finish. The managed object appears in the User-Defined Business
Objects folder, under your business object implementation.

Managed object (Programming Guide)
An overview of application adaptors (Programming Guide)

“Working with managed objects” on page 869
“Setting platform constraints” on page 421
“Configuring builds” on page 549
“Configuring a managed object” on page 588

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a managed object

Managed objects are defined in the User-Defined Business Objects folder,
where they are shown under the business object implementation they were
added to. The configuration of a managed object with an application is
represented by a separate object, in the Application Configuration folder,
where it is shown under the application it was configured with.

You can change the services used by the managed object by following these
steps:
1. From the pop-up menu of the managed object, click Properties. The

Managed Object wizard opens to the Name and Services page.

872 WebSphere: Application Development Tools Guide



2. Change your selections as necessary.
3. Click Finish to apply your changes.

You can change the name of the managed object file, and the platforms on
which the managed object is to be deployed by following these steps:
1. From the pop-up menu of the managed object, select File Properties. The

Managed Object File wizard opens to the Name page.
2. You can type a new name for the managed object, or select a different set

of deployment platforms.
3. Click Finish to apply your changes.

Managed object (Programming Guide)

“Working with managed objects” on page 869

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a managed object file

To edit a managed object file, follow these steps:
1. From the pop-up menu of the managed object, select File Properties. The

Managed Object File wizard opens to the Name page.
2. You can type a new name for the managed object file, and select a

different set of deployment platforms for the object.

Object Builder generates the IR
executable based on the managed object IDL file name. idlc -eir is run
against the managed object IDL file to produce a C++ source file. This file
is then compiled and linked to produce the IR executable. The IR
executable’s name is the managed object IDL file’s root name with the
suffix _IR. This is the executable that the DDL will run when System
Management loads.

This file gets the .exe extension only on Windows NT.
For example, given a managed object IDL file with the name fooMO.idl,
the IR executable that is generated will be fooMO_IR.exe on Windows
NT, and and fooMO_IR on AIX, Solaris, and HP-UX.

3. Click Next. The Contents Ordering page opens. Use this page to view or
set the order of constructs and interfaces in the IDL file.

4. Click Finish to apply your changes.

Chapter 15. Object tasks 873



Managed object (Programming Guide)

“Working with managed objects” on page 869

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a managed object configuration

To edit a managed object configuration, follow these steps:
1. Locate the managed object configuration in the Application Configuration

folder.
2. From the pop-up menu of the configuration, click Properties to open the

Managed Object Configuration wizard.
3. Click the page title to display the contents of the guide, and turn to a

particular page.
4. Make your changes.
5. Click Finish.

Managed object (Programming Guide)

“Working with managed objects” on page 869

Deleting a managed object

To delete a managed object, follow these steps:
1. Delete its configuration, if any, in the Application Configuration folder.

If the managed object is a specialized home, then you must also remove it
from any configurations of other managed objects that use it.

2. From the pop-up menu of the managed object, click Delete.

Managed object (Programming Guide)
“Home” on page 581

“Working with managed objects” on page 869

874 WebSphere: Application Development Tools Guide



“Deleting a managed object configuration”
“Editing a managed object configuration” on page 874

Deleting a managed object configuration

To delete a managed object configuration, click Delete from its pop-up menu.

Note: If the managed object configuration is part of a specialized home, then
you must first remove it from any other managed object configurations that
use it as their home.

Managed object (Programming Guide)

“Working with managed objects” on page 869
“Working with specialized homes”

Working with specialized homes

Customized homes, also known as specialized homes, are shown in the
User-Defined Business Objects folder, and are presented in terms of five
objects:
v The business object file (which contains one or more interfaces, optionally

organized into modules), customized to be the file for a home.
v The business object module, if any (which contains one or more interfaces).
v The business object interface (which has one or more implementations),

customized to be the interface for a home.
v The business object implementation (which has its own file, defined on the

first page of its wizard), customized to be the implementation for a home.
v The managed object (which acts as an access point for the business object),

customized to serve as a home.

The following tasks deal with specialized homes:
v “Creating a specialized home” on page 876
v “Editing a specialized home” on page 879
v “Deleting a specialized home” on page 879
v “Creating a specialized polymorphic home” on page 880

“Home” on page 581

Chapter 15. Object tasks 875



“Working with components” on page 697

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a specialized home

When you configure a managed object with an application, you define a home
instance that will be used to create and find instances of the managed object.
Component Broker provides default home instances for you to base home
instances on, which should be sufficient for most managed objects. However,
you may want to create a home instance based on a specialized home class for
the needs of a particular application adaptor type, for example, by adding
customized create and find methods.

To create a specialized home, follow these steps:
1. From the pop-up menu of the User-Defined Business Objects folder, click

Add File to open the Business Object File wizard.
2. Name the file.
3. Click the page title and turn to the Files to Include page.
4. Under the Include Files folder, click the existing file to display its

information.
5. If you want a queryable home, select IManagedAdvancedClient from the

list.
6. Complete the remaining wizard pages and click Finish.
7. From the pop-up menu of the file you just added, click Add Module to

open the Business Object Module wizard.
8. Name the module and click Finish.
9. From the pop-up menu of the file you just added, click Add Interface to

open the Business Object Interface wizard.
10. Click the page title and turn to the Interface Inheritance page.
11. Change the default parent interface:

v If you want a queryable home, click the Component Broker
Specialized, Queryable Home button, or select
IManagedAdvancedClient::IQueryableIterableHome from the list.

v If you want a queryable, iterable home with polymorphic properties,
click the Component Broker
Specialized, Polymorphic Home, or select
IManagedAdvancedClient::IPolymorphicHome from the list.

876 WebSphere: Application Development Tools Guide



v If you do not need a queryable home, click the Component Broker
Specialized Home button to include the appropriate file.

12. Complete the remaining wizard pages and click Finish.
13. From the pop-up menu of the interface you just added, click Add

Implementation to open the Business Object Implementation wizard.
On the first page, the data access and data object options are absent
because this is a specialized home. The data object interface pages of the
wizard are also absent.

14. Provide any user data you want associated with the home in the central
data store (CDS).

15. Click the page title and turn to the Implementation Inheritance page.
The appropriate parent implementation is selected by default.

16. Complete the remaining wizard pages and click Finish.
17. From the pop-up menu of the implementation you just added, click Add

Managed Object to open the Managed Object wizard.
18. Click the page title and turn to the Implementation Inheritance page.
19. From the Parents pop-up menu, click Add.
20. Select the appropriate Component Broker home class from the Parent

Class drop-down list.
21. Complete the remaining wizard pages and click Finish.
22. Configure the specialized home, as a managed object, with your

application.
Note: Make sure that the specialized home and its associated managed
objects are configured with different containers. If a managed object and
its home are configured with the same container, the server will not
activate.

You now have a specialized home class.

Specialized homes do not require data object interfaces, data object
implementations, copy helpers, or key classes. When you configure managed
objects for an application, you can associate them with your specialized home
(on the Managed Object Configuration wizard, Home page). An instance of
the specialized home class will be defined in the generated DDL for the
managed object, and used on the server to create and find instances of the
managed object.

Example: Creating a specialized home

You must package the specialized home in the same application as the
managed objects that use it.

Chapter 15. Object tasks 877



“Home” on page 581
“DDL” on page 137

“Working with specialized homes” on page 875
“Configuring a managed object” on page 588
“Packaging applications” on page 574

“Internationalization of data” on page 132
“Naming objects” on page 128

Example: Creating a specialized home

Note: This example is not independently reproduceable. It assumes a model
where the type Warehouse, and corresponding managed object and business
object have been created. It is just an example of how you would do it, given
this type of model.

To create a specialized home, follow these steps:
1. Add a file called warehouseHome to the User-Defined Business Object

folder.
2. Add an interface called warehouseSpHome to the User-Defined Business

Object folder.
a. On the Interface Inheritance page, click the Component Broker

Specialized Home button.
b. On the Method page, add a method called create, which returns

warehouse of type Warehouse, and throws IManagedClient
IManagedClient IInvalidKey and IManagedClient IManagedClient
IDuplicateKey.

c. Add another method, called findWarehouse, which returns warehouse
of type Warehouse; has two parameters, parametername (id) and type
(long), and throws IManagedClient IManagedClient INoObjectWkey.

3. Right-click on the new interface, and select Add Implementation.
a. Select C++ as the implementation language.
b. On the Method page, add a method called getUnique, with a return

type long.
4. Add a managed object to the User-Definied Business Object folder.
5. Right-click on the warehouseSpHome file in the User-Defined Business

Object folder. Select Generate -> All.
6. Add warehouseSpHomeContainer to the Container definition folder.

878 WebSphere: Application Development Tools Guide



7. In the Build Configuration folder, define a server DLL. Select
warehouseSpHomeMO and warehouseSpHomeBO on the Server Source
File page.

8. In the Application Configuration folder, add warehouseSpHomeMO to the
application warehouse7. Select warehouseSpHomeContainer on the
Container page.

9. In the Application Configuration, modify WarehouseMO7. Click the
Customized Home button on the Home page. Set the Home Name to
warehouseHomeMO warehouseSpHomeMO.

10. Generate the DDL for Wh7ApplFamily in the Application Configuration
folder.

11. Create the make file by selecting Generate->Select->C++ Default Target
from the Build Configuration folder.

Editing a specialized home

Specialized homes are defined in the User-Defined Business Objects folder,
where they are shown as a tree of business object file, module (if any),
business object interface, business object implementation, and managed object.
You can edit these objects by following these steps:
1. From the pop-up menu of the object, click Properties to display the

appropriate wizard.
2. Click the page title to select a page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

Note: When you click Finish, the framework methods for the business
object implementation are recalculated. If you made any changes to the
framework method implementations (not recommended), those changes
are lost.

“Home” on page 581

“Working with specialized homes” on page 875

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a specialized home

To delete a specialized home, follow these steps:

Chapter 15. Object tasks 879



1. Remove the specialized home from any managed object configurations
that use it.

2. Delete the managed object configuration for the specialized home’s
managed object.

3. Delete the specialized home’s managed object.
4. Delete its business object implementation.
5. Delete its business object interface.
6. If it is the only interface defined in the file, delete the business object file.

“Home” on page 581

“Working with specialized homes” on page 875

Creating a specialized polymorphic home

When you configure a managed object with an application, you can choose to
integrate polymorphic behavior into it.

To create a specialized, polymorphic home, follow these steps:
1. From the pop-up menu of the User-Defined Business Objects folder, click

Add File to open the Business Object File wizard.
2. Name the file.
3. Click the page title and turn to the Files to Include page.
4. Under the Include Files folder, click the existing file to display its

information. Object Builder generates the necessary includes
automatically as you select types (such as for parent interfaces).

5. Complete the remaining wizard pages and click Finish.
6. From the pop-up menu of the file you just added, click Add Module to

open the Business Object Module wizard.
7. Name the module and click Finish.
8. From the pop-up menu of the file you just added, click Add Interface to

open the Business Object Interface wizard.
9. Click the page title and turn to the Interface Inheritance page.

10. Change the default parent interface:
Click the Component Broker Specialized, Polymorphic Home push
button. The IManagedAdvancedClient
IManagedAdvancedClient::IPolymorphicHome class is added to the
Parents folder.

If the business object interface is deployable to

880 WebSphere: Application Development Tools Guide



OS/390, or HP-UX, this button is disabled, and the IPolymorphicHome
class is not available for selection as a parent interface.

11. Complete the remaining wizard pages and click Finish.
12. From the pop-up menu of the interface you just added, click Add

Implementation to open the Business Object Implementation wizard.
On the first page, the data access and data object options are absent
because this is a specialized home. The data object interface pages of the
wizard are also absent.

13. Provide any user data you want associated with the home in the central
data store (CDS).

14. Click the page title and turn to the Implementation Inheritance page.
The appropriate parent implementation is selected by default.

15. Complete the remaining wizard pages and click Finish.
16. From the pop-up menu of the implementation you just added, click Add

Managed Object to open the Managed Object wizard.
17. Click the page title and turn to the Implementation Inheritance page.

For a polymorphic home, Object Builder selects
IManagedAdvancedServer
IManagedAdvancedServer::ISpecializedPolymorphicHomeManagedObject
as the default class to inherit from.

If the managed object is deployable to OS/390, or
HP-UX, the ISpecializedPolymorphicHomeManagedObject class is not
available for selection as a parent interface.

18. From the Parents pop-up menu, click Add.
19. Select the appropriate Component Broker home class from the Parent

Class drop-down list.
20. Complete the remaining wizard pages and click Finish.
21. Configure the specialized polymorphic home, as a managed object, with

your application. Refer to the task “Configuring a managed object” on
page 588.
Note: Make sure that this specialized polymorphic home and its
associated managed objects are configured with different containers. If a
managed object and its home are configured with the same container, the
server will not activate.

You now have a specialized, polymorphic home class.

Like specialized homes, specialized polymorphic homes do not require data
object interfaces, data object implementations, copy helpers, or key classes.
When you configure managed objects for an application, you can associate
them with your specialized polymorphic home (on the Managed Object
Configuration wizard, Home page). An instance of the specialized

Chapter 15. Object tasks 881



polymorphic home class will be defined in the generated DDL for the
managed object, and used on the server to create and find instances of the
managed object.

You must package the specialized polymorphic home in the same application
as the managed objects that use it.

“Home” on page 581
“Polymorphic homes” on page 581

“Working with specialized homes” on page 875
“Configuring a managed object” on page 588
“Packaging applications” on page 574

“Internationalization of data” on page 132
“Naming objects” on page 128

Querying abstract classes

To query abstract classes, follow any one of these tasks:
v Provide a specialized home that has the create() and remove() methods

return exceptions instead of performing their normal duties.
v Develop a component assembly (managed object assembly) of a standard

managed object, a business object, a data object, and most likely, a transient
data object.

This component will be configured with its specialized home, and can be built
and loaded just like any other component. You can run the query against the
home, and get the polymorphic behavior, but since no objects of that type can
be created or deleted, the type is abstract.
Note: Abstract classes are not supported by VisualAge for Java, so although it
will be possible to provide support for abstract classes in the EJB
environment, it will have to be done outside of VisualAge for Java.

“Home” on page 581
“Container” on page 578
Managed object (Programming Guide)
Data object (Programming Guide)
Abstract base class inheritance
Naming Service (Advanced Programming Guide)
LifeCycle Service (Advanced Programming Guide)

882 WebSphere: Application Development Tools Guide



Workload management (Using Object Builder) (Advanced Programming Guide)

“Packaging applications” on page 574

Working with container instances

Containers provide object services for components. Default containers are
provided for objects with transient data. If you have objects with persistent
data, or want to customize the types of service that are provided by a
container, you need to define your own container instance.

The following tasks deal with containers:
v “Creating a container instance” on page 578
v “Editing a container instance”
v “Deleting a container instance” on page 884

“Container” on page 578

“Working with components” on page 697
“Configuring a managed object” on page 588

“Naming objects” on page 128
“Internationalization of data” on page 132
Container configuration parameters (Programming Guide)
Typical settings for container configuration parameters (Programming Guide)
Summary of supported container configurations (Programming Guide)

Editing a container instance

To edit a container instance you have defined, follow these steps:
1. From the pop-up menu of your container, click Properties. The Container

Definition wizard opens to the Name of Container and Number of
Components page.

2. Click the title to select another page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

“Container” on page 578

Chapter 15. Object tasks 883



“Working with container instances” on page 883

“Internationalization of data” on page 132
“Naming objects” on page 128

Deleting a container instance

You cannot delete the default container instances. To delete a container
instance that you have defined, follow these steps:
1. Remove the container from any managed object configurations that use it.
2. Locate the container in the Container Definition folder.
3. From the pop-up menu of the container, click Delete.

“Container” on page 578

“Working with container instances” on page 883
“Packaging applications” on page 574
“Editing a managed object configuration” on page 874

Working with compositions

A composition defines a combined interface for a group of components. In
addition, it describes the implementation of the attributes and methods in the
combined interface, which delegate to attributes and methods of the
components in the group. Once you have combined the components into a
composition, you can create composite components that are based on the
composition.

The following tasks deal with compositions:
v “Creating a composition file” on page 885
v “Adding a composition module” on page 886
v “Adding a composition” on page 886
v “Editing a composition” on page 889

“Composition” on page 263

“Creating a composite component” on page 261

884 WebSphere: Application Development Tools Guide



“Working with components” on page 697
“Working with composite business objects” on page 891
“Working with composite keys” on page 900

“Naming objects” on page 128
“Internationalization of data” on page 132

Creating a composition file

A composition file (IDL) is a container for your compositions. Although a file
can hold multiple compositions, which you may organize into modules, you
typically add one composition to each file.

To create a composition file, follow these steps:
1. From the Tasks and Objects pane, select the User-Defined Compositions

folder.
2. From the folder’s pop-up menu, select Add File. The Composition File

wizard opens to the Name page.
3. Type a name for the file (for example, CGFile).
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add enumerations, exceptions,
structures and so on. Any constructs you add are scoped to every interface
in the file.

5. Click Next. The Files to Include page opens.
IManagedClient is included by default. Do not change this.

6. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated IDL code.

7. Click Finish. The wizard closes, and your file is added to the User-Defined
Compositions folder. You can now add modules or interfaces to the file.

Once you have created the file, you can modify it by selecting Properties from
its pop-up menu. The Composition File wizard opens again, with your
selections preserved.

“Composition” on page 263

“Creating a composite component” on page 261
“Working with compositions” on page 884
“Adding a composition module” on page 886
“Adding a composition” on page 886

Chapter 15. Object tasks 885



“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a composition module

If you plan to add multiple compositions to a single file, you may want to
store the compositions in separate modules. Any constructs you add to a
module are scoped only to the compositions within that module. To add a
module to a file, follow these steps:
1. From the User-Defined Compositions folder, select your composition file.
2. From the file’s pop-up menu, select Add Module. The Composition

Module wizard opens to the Name page.
3. Type a name for the module.
4. Click Next. The Constructs page opens.

Use the Constructs pop-up menu to add enumerations, exceptions,
structures and so on.

5. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

6. Click Finish. The wizard closes, and your module is added to the
User-Defined Compositions folder, underneath the file.

You can now add compositions to the module.

“Composition” on page 263

“Creating a composite component” on page 261
“Working with compositions” on page 884
“Adding a composition”

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a composition

The composition is a server-side implementation object that provides a
composite business object with access to its member components’ methods
and data. It can also define its own methods and attributes for use by the
composite business object.

To add a composition to a file (or module), follow these steps:

886 WebSphere: Application Development Tools Guide



1. From the User-Defined Compositions folder, select the file or module that
will contain the interface.

2. From the pop-up menu for the file or module, click Add Composition.
The Composition Editor opens.

3. Click Add to open the Composition Palette.
4. Select the components you want to add to the composition.
5. Click Add, then Close. The components are added to the composition in

the form of managed object instances, with default names based on the
original component interface (for example, SavingsAccount component
becomes SavingsAccount1).

6. Review the list of objects to composite in the Objects to Composite list.
7. You can rename a managed object instance by clicking on its name and

then clicking Renameor by double-clicking on its name.
8. Select a composition style to apply to the objects. The result is applied to

the list of composited attributes and methods in the Results pane. For
conjunction composites you should choose the variant (that is, with or
without name matching) that produces a result that is closest to what you
want.

9. If you choose the Conjunction with name matching style, but would still
like certain attributes or methods to remain separate, you can selectively
reverse the name-matching and split the combined attribute or method
into its separate elements. To split a combined attribute or method, select
Split from the pop-up menu of the attribute or method.
Generally, key attributes should not be combined; if the Conjunction
with name matching style has matched key attributes of the objects you
are compositing (for example, SavingsAccount.accountNo and
CheckingAccount.accountNo become accountNo), you should split them
back out into separate attributes (savingsAccount_accountNo and
checkingAccount_accountNo). Key attributes need to be kept separate, so
that they can be delegated to by attributes of the composite key.

10. If you choose the Conjunction without name matching style, but would
still like certain attributes or methods to be combined (as if you had
chosen the Conjunction with name matching style), you can selectively
match and combine attributes or methods. To combine multiple attributes
or methods, select them by holding down the Ctrl key and clicking the
left mouse button, then click on the last one with the Ctrl key plus right
mouse button to display its pop-up menu, and select Equate.
Generally, you should not equate key attributes of the objects you are
compositing, as noted previously.
You can use the Equate command to join attributes or methods with the
same type. They do not need to have the same names.

11. Click on an attribute or method to view its republishing (delegating)
behavior, in the Current Republish Value pane.

Chapter 15. Object tasks 887



12. Click on the Properties tab to display the properties of the currently
selected attribute and method. You can also double-click on the attribute
or method to display its properties.

13. Only the name of the attribute or method is editable, because their
definitions are based on their equivalents in the combined components.

14. Add any new attributes or methods you want to be part of the
composition, that may or may not be based on combined components.
You can add new attributes or methods from the pop-up menus of the
folders in the Results pane. These new methods could, for example,
provide extra processing of the information being combined (beyond
simple delegation).
For example, a composition AllAccounts, which combines the
components CheckingAccount and SavingsAccount, could have a private
helper method addFloats, which can take the two original balances
(CheckingAccount1.balance and SavingsAccount1.balance) as arguments,
and return their sum. You can then map AllAccounts.balance to the
helper method.
When you add a new method, you can supply its implementation (for
example, return arg1+arg2) in Object Builder’s Source pane (after you
complete the composition, click on it in the Tasks and Objects pane; then
select the method in the Methods pane, and complete its implementation
in the Source pane).

15. Edit republishings using the pop-up menu of the current value in the
pane. You can also change a republish value by simply double-clicking
on it, and then selecting a new value from the drop-down list that
appears.
For conjunction composites, you can map attributes and methods either
to attributes and methods of the combined components, or to a sequence
of attributes and methods (in which all listed attributes or methods are
called in sequence, and the result of the last one is returned). The
delegating attribute or method must have a type or return type that
matches the result of the last call in the sequence.
Disjunction attributes and methods usually map to a select of attribute
and methods (that is, a list of mutually exclusive attributes and methods,
only one of which will exist at run time and be called).
You can map to attributes or methods of the combined components, or to
other attributes and methods that are unique to the composition.
For example, if the composition AllAccounts combines CheckingAccount
and SavingsAccount with the Conjunction with name matching style,
then by default AllAccounts.balance returns a sequence of
CheckingAccount1.balance and SavingsAccount1.balance (which simply
returns the second value in the sequence). You can replace this default
mapping with a more useful one that returns their sum, by adding a

888 WebSphere: Application Development Tools Guide



private helper method addFloats (as described in the previous step), and
changing the mapping to call the helper method, with the two original
balance attributes as arguments.

16. Click on the parent folder (representing the composition as a whole) in
the Results pane. By default, its name is Untitled.

17. Click on the Properties tab.
18. Type a name for the composition. The name is reflected in the Results

pane.
19. Set the implementation language (C++ or Java).
20. Click OK.

“Composition” on page 263

“Creating a composite component” on page 261
“Working with compositions” on page 884
“Adding a composite business object interface” on page 892
“Adding a composite key” on page 901

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a composition

Compositions are defined in the User-Defined Compositions folder, where
they are shown under the file (and module, if any) in which they are defined.
You can edit the file and module as separate objects, following these steps:
1. From the pop-up menu of the file or module, click Properties to display

the appropriate wizard.
2. Click the page title to select a page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

To edit the attributes or methods of the composition, follow these steps:
1. From the pop-up menu of the composition group, click Properties to open

the Composition Editor.
You can edit the delegating behavior of the methods or attributes currently
in the composition, add new methods or attributes that are unique to the
composition, or change the components that are combined in the
composition.

2. When you are done editing, click OK.

Chapter 15. Object tasks 889



From within the editor, you can turn to the Compositions page to change the
components that make up the composition:

To delete a component from the composition, follow these steps:
1. Select its managed object instance in the Objects to Composite list.
2. Click Delete.

To add a component to the composition, follow these steps:
1. Click Add to open the Composition Palette.
2. Select a managed object.
3. Click Add, then Close.

To rename a component in the composition, follow these steps:
1. Select its managed object instance in the Objects to Composite list.
2. Click Rename.
3. Type over the old name.
4. Click elsewhere in the list to apply the new name.

Once you are done editing, click OK to apply your changes.

If your changes are limited to renaming or deleting elements, then your
changes will automatically be reflected in the other composite component
objects that are based on the composition (for example, the business object
and key). If, however, you added new components to the composition, you
need to provide these objects with the information necessary to locate or
create instances of the new component.

When you have added new components to a composition, follow these steps
for each composite component based on the composition:
1. From the pop-up menu of the composite component’s key, click Properties

to open the Key wizard.
2. Add any new key attributes that may be required and provide the

composite key to component key mappings if possible.
3. Click Finish.
4. From the pop-up menu of the composite component’s business object

implementation, click Properties to open the Business Object
Implementation wizard.

5. Click the page title and turn to the Location page.
6. Review and update the location information for any new or edited

components of the composition.
7. Click the page title and turn to the Data Object Interface page.
8. Add any new key attributes to the data object interface.
9. Click Finish.

890 WebSphere: Application Development Tools Guide



“Composition” on page 263

“Working with compositions” on page 884

“Internationalization of data” on page 132
“Naming objects” on page 128

Working with composite business objects

Composite business objects are defined in the User-Defined Business Objects
folder, and are presented in terms of four objects:
v The business object file (which contains one or more interfaces, optionally

organized into modules)
v The business object module, if any (which contains one or more interfaces)
v The business object interface (which has one or more implementations)
v The business object implementation (which has its own file, defined on the

first page of its wizard)

The four objects are created and edited separately, but collectively form a
single business object. Each business object (each set of business object file,
module, interface, and implementation) typically has its own data object.

A business object is composite when it is based on a composition, as set by
the business object interface. A composite business object has attributes and
methods based on those in the composition, which are in turn based on the
composited components that make up the composition.

The following tasks deal with composite business objects:
v “Adding a composite business object interface” on page 892
v “Adding a composite business object implementation and data object

interface” on page 894
v “Editing a composite business object interface” on page 898
v “Editing a composite business object implementation” on page 899

“Composite business object” on page 264

“Working with components” on page 697
“Creating a composite component” on page 261
“Working with composite keys” on page 900

Chapter 15. Object tasks 891



“Naming objects” on page 128
“Internationalization of data” on page 132

Adding a composite business object interface

Once you have defined a composition, you can create composite components
that are based on the composition, starting with the business object.

First, add a business object file (and optionally module) to the User-Defined
Business Objects folder.

To add a composite business object interface to a file (or module), follow these
steps:

1. From the User-Defined Business Objects folder, select the file or module
that will contain the interface.

2. From the pop-up menu for the file or module, select Add Interface. The
Business Object Interface wizard opens to the Name page.

3. Type a name for the interface (for example, CompositeCustomer). Do not
use the same name as the composition unless one or both are nested in
modules.

4. Select the Composite check box.
5. From the Composition to Use list, select the composition you want to

base the interface on.
6. Click Next. The Constructs page opens.
7. Use the Constructs pop-up menu to add enumerations, exceptions,

structures and so on. Any constructs you add are scoped to this interface
only.
Note: To use the construct as the type of an attribute, method return, or
method exception, you must first click Finish and then re-open the
wizard and define the attribute. The construct is not added to the current
model until you click Finish.

8. Click Next. The Interface Inheritance page opens.
By default, the interface inherits from IManagedClient::IManageable. This
is the correct choice for a component that represents a base class in your
design. If your component had a parent, you would specify the business
object interface of the parent component on this page.

9. Click Next. The Attributes page opens.
The public attributes (except for the attributes that represent references to
instances of the combined components) of the composition you selected
appear here, but are not editable. You can edit them (for example, change

892 WebSphere: Application Development Tools Guide



their names or delegating behavior) in the composition where they are
defined. Changes to the composition are applied to the composite
business object automatically.
When you add the composite business object implementation, the get and
set methods for these attributes will be implemented, and delegate to the
composition helper object.
To specify additional attributes for your interface, select Add from the
Attributes pop-up menu. When you add the business object
implementation, these attributes will receive default implementations in
the usual manner.

10. Click Next. The Methods page opens.
The public methods of the composition you selected appear here, but are
not editable. You can edit them in the composition where they are
defined. Changes to the composition are applied to the composite
business object automatically.
When you add the composite business object implementation, the
implementations for these methods will be implemented, and delegate to
the composition helper object.
To specify additional methods for your interface, select Add from the
Methods pop-up menu. When you add the business object
implementation, you can provide your own implementations for the
methods in the usual manner.

11. Click Next. The Object Relationships page opens.
To specify any relationships that this class has to other classes, select Add
from the Objects pop-up menu. You can specify how the relationship will
be implemented when you add the business object implementation.

12. Click Next. The Comments page opens. Type any comments you want to
include as comment lines in your generated code.

13. Click Finish. Your new interface is added to the User-Defined Business
Objects folder, with the attributes and methods of the composition you
selected, as well as any additional attributes and methods you specified.

You should now see your interface in the Tasks and Objects pane. Any
methods defined for your interface should appear under the User-Defined
Methods folder in the Methods pane, and any attributes defined for your
interface should appear under the User-Defined Attributes folder in the
Methods pane.

“Composite business object” on page 264
Business object (Programming Guide)

Chapter 15. Object tasks 893



“Creating a composite component” on page 261
“Working with composite business objects” on page 891
“Adding a composite key” on page 901

“Internationalization of data” on page 132
“Naming objects” on page 128

Adding a composite business object implementation and data object
interface

Once you have created a composite business object interface, you must add
one or more implementations for that composite business object, and also
create its data object interface. You can accomplish both tasks using the
Business Object Implementation wizard. Ensure that you have added a key to
the composite business object interface before proceeding with this task.

To create the composite business object implementation, and its associated
data object interface, follow these steps:

1. From the User-Defined Business Objects folder, select the composite
business object interface you want to implement.

2. Display the pop-up menu for the interface and select Add
Implementation. The Business Object Implementation wizard opens to
the Name and Data Access Pattern page.
Appropriate implementation names are filled in for you (the business
object file name and interface name plus BO: for example,
AAFile::AllAccounts gets an implementation named
AAFileBO::AllAccountsBO). You can accept these defaults or replace
them with your own names.

3. Select the pattern you want to use for handling the component’s state
data (that is, any attributes of the component that are not derived from
the composition it is based on). The following patterns are available:
v Delegating

The business object delegates every request for the essential state to the
data object interface.

v Caching
Both the business object and the data object have their own copies of
the essential state, which are synchronized. Lazy evaluation is the
default synchronization method, meaning that cached copies of the
attributes are synchronized at first use, rather than at instantiation.

v Same as parent’s
The business object inherits its pattern from a parent interface.
Note: This option is selected by default if the interface for this business

894 WebSphere: Application Development Tools Guide



object inherits from another business object interface. However, you
still have to indicate the implementation parent on the Implementation
Inheritance page of this wizard.

There is also an option listed for None, which would generate a transient
data object. This option is not available in this release.

The pattern you select will apply for any attributes you created that are
unique to the composite component. It does not apply to any attributes
derived from the component’s composition. Attributes derived from the
composition are always implemented as delegation calls to their
equivalents in the composition helper object, regardless of the pattern
selected here.

4. Select whether to create a new data object now, or add or select one later.
5. Click Next. The Implementation Inheritance page opens.
6. Make sure that IManagedClient::IManageable is listed as a parent under

the Parent Class folder.
7. You can also select any parent business object implementations you want

to inherit behavior from.

8. Click Next. The Implementation Language page opens. Select the
language you want the business object to be implemented in. You can
select either Java or C++.

9. The default for this page is set in the Preferences notebook, on the Tasks
and Objects page.

10. Click Next. The Attributes page opens.
A private attribute with the same name as the composition being used is
automatically included. This attribute is used to access the composition
helper object in the delegating implementations of composite attributes
and methods (for example, the composite component method. debit calls
the composition’s method iCompositeAccount.debit).
You can also specify any attributes you want to add to the business
object implementation (in addition to the attributes you already specified
in the business object interface).

11. Click Next. The Methods page opens.
12. Several private methods related to composition are automatically

included:

v A method of the form loc_<instance name> is included for each
component instance of the composition being used (e.g.
loc_SavingsAccount1 and loc_CheckingAccount1). These methods are
called during activation to locate or create the managed objects that are

Chapter 15. Object tasks 895



used to initialize the composition helper object when it is created. The
implementation of these methods is automatically generated by Object
Builder using the information provided on the Location page (see
below).

v A method of the form get_<instance name>_<key attribute name> is
included for every key attribute of each component instance of the
composition being used (for example,.
get_SavingsAccount1_accountNo and
get_CheckingAccount1_accountNo). These methods are called by the
loc_ methods to get the values used to initialize the primary key
attributes of the component instances. These methods will be
automatically generated by Object Builder if simple key attribute
mappings were supplied for the composite key.

You can also specify any methods you want to add to the business object
implementation (in addition to the methods you already specified in the
business object interface).

13. Click Next. The Key and Copy Helper page opens. Select a key and,
optionally, a copy helper that you have created for this business object
(for example, AllAccountsKey and AllAccountsCopy).

14. Click Next. The Handle Selection page opens.
You can select a handle for the business object implementation. If you
select a handle, then the framework method getHandleString is
implemented, which overrides the getHandleString method of
IManagedClient::IManageable. The method provides a way to
encapsulate the business object implementation, by returning a string that
represents a reference to the business object. The handle you select
determines the pattern used to form the string (that is, to turn the
reference into a string, or to swizzle the pointer).

15. Click Next. The Location page opens.
On this page, you set the composite business object’s relationship to the
managed objects being combined in the composition.

16. For each managed object in the composition, provide the following
information:
a. Indicate whether it should be destroyed when the composition is

destroyed, or have its destruction managed independently.
b. Indicate the expected state of the managed object:
v Click Find or create if the managed object might or might not

already exist.
v Click Find if the managed object must already exist (and should

not be created if it does not).
v Click Create if the managed object must not already exist (and

should not be returned if it does).

896 WebSphere: Application Development Tools Guide



c. Indicate whether the managed object should be created using a copy
helper instead of its primary key. When creating a component using a
copy helper, the attributes that are also key attributes will be
initialized as usual (by calling get_ methods). The other attributes on
the copy helper will be set to the initial values specified in the
Interface wizard of the component being created.
Note: Components using PAA Services (that is, CICS components) can
only be created using a copy helper.

d. Select the way the managed object should be located.
e. Provide the information necessary to implement the selected location

pattern.
17. Click Next. If the business object implementation has parent classes with

overrideable attributes, then the Attributes to Override page opens.
You can use this page to select which of the parent class’s attributes you
want to override.

18. Click Next. If the business object implementation has parent classes with
overrideable methods, then the Methods to Override page opens.
You can use this page to select which of the parent class’s methods you
want to override.

19. Click Next. If the business object interface defines one-to-many
relationships, then the Object Relationships page opens.
You can use this page to set the way that the object relationship will be
implemented.

20. Click Next. The Data Object Interface page opens.
Note: This page does not open if, on the first page, you chose not to
create a new data object.
Appropriate data object names are filled in for you (the business object
file name and interface name plus DO: for example, AAFile::AllAccounts
gets the data object interface AAFileDO::AllAccountsDO). You can accept
these defaults or replace them with your own names.
If you implemented a one-to-many relationship as a Local persistent
reference, then an attribute representing it appears here, so you can select
to preserve it in the data object.

21. Select the attributes you want preserved in the data object. Because this
component is a composite one, the state for all of the composite attributes
is already preserved in the referenced components. In other words,
composite attributes are already preserved in the data objects of their
originating components. You only need to select the key attributes here,
and any non-composite (not derived from the composition) attributes you
defined for the business object.

22. Click Next. The Data Object Methods page opens. (This page does not
open if, on the first page, you chose not to create a new data object.)

Chapter 15. Object tasks 897



23. Select which business object methods you want to push down to the data
object (that is, call equivalent methods to be defined in the data object).

24. Click Next. The Summary of Framework Methods page opens.
Based on your selections on the previous pages of the wizard, this page
displays the methods that your object implements. For example, if you
selected a caching pattern to handle the essential state of your business
object (on the first page), this list includes the synchToDataObject method
required to keep the two sets of attributes synchronized.
Because this business object is a composite, this list also includes two
composition methods, initializeComposition and uninitComposition.
These two methods are also automatically generated by Object Builder.
You can review the framework methods before closing the wizard.

25. Click Finish. The business object implementation and data object
interface appear in the User-Defined Business Objects folder, under your
business object interface. The data object interface also appears in the
User-Defined Data Objects folder.

Now that the business object implementation is defined, you can enter the
implementation code for any new methods you defined.

“Composite business object” on page 264
Business object (Programming Guide)
Data object (Programming Guide)

“Creating a composite component” on page 261
“Working with composite business objects” on page 891
“Implementing methods” on page 752
“Adding a data object implementation” on page 807
“Defining a 1-n relationship” on page 281

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a composite business object interface

Composite business object interfaces are defined in the User-Defined Business
Objects folder, where they are shown under the file (and module, if any) in
which they are defined.

Composite business objects are based on compositions, from which they
derive attributes and methods. These derived methods are not editable in the
business object interface. You can edit them (for example, change their names

898 WebSphere: Application Development Tools Guide



or delegating behavior) in the composition where they are defined. Changes
to the composition are applied to the composite business object automatically.

You can edit the file, module, and the non-composite attributes and methods
of the business object interface as follows:
1. From the pop-up menu of the file, module, or interface, click Properties to

display the appropriate wizard.
2. Click the the page title to select a page to turn to.
3. Change your selections as necessary.

If you want to specify a parent for the interface after you have defined the
implementation for the business object, follow these steps:
a. Add the parent to the Parents folder on the Interface Inheritance page

of the Business Object Interface wizard
b. Open the Business Object Implementation wizard, and on the Name

and Data Access Pattern page specify the pattern for handling state
data as Same as parent’s.

c. Click Next.

d. Add the implementation parent on the Implementation Inheritance
page.

4. Click Finish to apply your changes.

“Composite business object” on page 264

“Working with composite business objects” on page 891

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a composite business object implementation

Composite business object implementations are defined in the User-Defined
Business Objects folder, where they are shown under the composite business
object interface they were added to. You can edit a composite business object
implementation by following these steps:
1. From the pop-up menu of the business object implementation, click

Properties. The Business Object Implementation wizard opens to the
Name and Data Access Pattern page.

2. Click the page title to select another page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

Chapter 15. Object tasks 899



Note: The Same as parent’s option is selected by default if the interface for
this business object inherits from another business object interface. However,
you still have to indicate the implementation parent on the Implementation
Inheritance page of this wizard.

“Composite business object” on page 264

“Working with composite business objects” on page 891
“Setting platform constraints” on page 421

“Internationalization of data” on page 132
“Naming objects” on page 128

Working with composite keys

A composite key object defines which attributes are to be used to find a
particular instance of the composite component on the server. The key consists
of one or more of the business object attributes, which must contain enough
information to uniquely identify an instance.

The following tasks deal with composite keys:
v “Adding a composite key” on page 901
v “Editing a composite key” on page 903

“Composite key” on page 265
“Composite component” on page 262

“Creating a composite component” on page 261
“Working with components” on page 697
“Working with composite business objects” on page 891

“Naming objects” on page 128
“Internationalization of data” on page 132

900 WebSphere: Application Development Tools Guide



Adding a composite key

Each composite component must have a primary key class that contains
enough information to uniquely identify the component. The key is used
when new instances of the component are created or when existing instances
need to be found.

Once you have created a composite business object interface, you can define
its composite key.

To add a composite key, follow these steps:
1. From the User-Defined Business Objects folder, select your composite

business object interface.
2. From the object’s pop-up menu, select Add Key. The Key wizard opens

to the Name and Key Attributes page.
3. Appropriate key names are filled in for you (the business object file name

and interface name plus Key: for example, AAFile::AllAccounts gets a
key named AAFileKey::AllAccountsKey). You can accept these defaults or
replace them with your own names.

4. Select the composite business object attributes that make up the primary
key.
If possible, you will want to select attributes that were part of the keys
for the original combined components.
For example, given the following situation:
v A composite component AllAccounts is based on a composition of two

other components, SavingsAccount and CheckingAccount.
v The primary keys of both SavingsAccount and CheckingAccount

contain a single attribute accountNo (the account number).
v The two account numbers are exposed in the composite business object

as attributes savingsAccountNo and checkingAccountNo.

If you select the attributes savingsAccountNo and checkingAccountNo
for the primary key of AllAccounts, the composite key then includes all
the information needed not only to uniquely identify the AllAccounts
component, but to identify the SavingsAccount and CheckingAccount
components as well. This eliminates the need to maintain persistent
references from the composite component to the original combined
components.

If the composite business object has a parent business object (specified on
the Interface Inheritance page of its wizard), you can also select from the
parent interface’s attributes (you should not select attributes of the parent
interface if you are planning to inherit from the parent interface’s key).

Chapter 15. Object tasks 901



5. Click Next. The Composite Key page opens. Here you are given the
opportunity to provide mappings between the composite key attributes
and the attributes of keys for the grouped components.

6. For each key attribute you selected that corresponds directly to an
attribute of a component key, describe the mapping:
a. Select an attribute in the Composite Key list (for example,

checkingAccountNo).
b. Select an attribute of a key in the Composite Key Elements list (for

example, the accountNo attribute of CheckingAccountKey).
c. Click Add.

7. Click Next. The Implementation Inheritance page opens.
On this page, you can specify the type of key (primary or unique), and
inherit from the appropriate parent class (IPrimaryKey or IUniqueKey).

8. Verify that the primary key type is selected.
If the key has a parent, you can specify it here.
Note: You should not inherit from a parent key if you also selected
inherited attributes on the previous page.

9. Click Next. The Summary of Framework Methods page opens. This page
summarizes the framework methods this object implements. No action is
needed.

10. Click Next. The Optional Framework Methods page opens. Select any
additional framework methods you want to implement. Object Builder
will add signatures for the methods you select, but you must provide
your own implementation code. The methods you implement will
override the equivalent framework methods of the parent class.
Note: The Source pane will not allow you to edit these methods until you
set them as editable in the Method Implementation wizard. To set a
method as editable, follow these steps:
a. In the Methods pane, select the framework method.
b. From its pop-up menu, click Properties.
c. In the Method Implementation wizard, specify that you want to use

the implementation defined in the Source pane. This lets you use the
Source pane editor to edit the method implementation.

11. Click Finish. The key appears in the User-Defined Business Objects
folder, under your composite business object interface.

In the Methods pane, you should see some items listed in the Framework
Methods folder. Default implementation code is provided for these methods,
which you can view in the edit pane by selecting a method. Normally, you
will not want to edit this code (except for the code for the optional framework
methods, as noted above). The code for framework methods is read-only by
default.

902 WebSphere: Application Development Tools Guide



“Composite key” on page 265
Key (Programming Guide)

“Creating a composite component” on page 261
“Working with composite keys” on page 900
“Adding a composite business object implementation and data object
interface” on page 894

“Internationalization of data” on page 132
“Naming objects” on page 128

Editing a composite key

Composite keys are defined in the User-Defined Business Objects folder,
where they are shown under the composite business object interface they were
added to. You can edit a key by following these steps:
1. From the pop-up menu of the key, click Properties. The Key wizard opens

to the Name and Key Attributes page.
2. Click the page title to select a page to turn to.
3. Change your selections as necessary.
4. Click Finish to apply your changes.

“Composite key” on page 265

“Working with composite keys” on page 900

“Internationalization of data” on page 132
“Naming objects” on page 128

Chapter 15. Object tasks 903



904 WebSphere: Application Development Tools Guide



Chapter 16. Troubleshooting

Troubleshooting

If you encounter problems when you build your code into DLLs, the
following tips may help you.

Memory problems
If you are working with a large project (more than 30 components), you may
need to increase the maximum heap size of the Java virtual machine. You can
do so by editing the ob.bat file:
1. Make sure Object Builder is closed.
2. Edit \Cbroker\bin\ob.bat
3. Change the parameter -mx255m, increasing the number by five for each

additional component in your project (this number is approximate, and
assumes components of average complexity).
For example, if your project contains one hundred components then
change the parameter to -mx605m (seventy additional components
multiplied by 5m each, plus the original 255m).

4. Start Object Builder. The new parameter is used, and the maximum size of
the Java virtual machine is increased.

Generally odd behavior
Not all exceptions are displayed in the user interface. After major actions such
as saving a project, check Object Builder’s command window for any
exceptions. The command window is the window from which you started
Object Builder, or the window that appeared in the background if you started
Object Builder from the Start menu.

Cannot start Object Builder on AIX
If you receive the operating system message “Killed” when you try to start
Object Builder, you need to increase the amount of paging space on your
machine. Object Builder requires a minimum of 200MB of paging space in
order to run on AIX.

BAD_OPERATION exception with composite components
If the client program receives a BAD_OPERATION exception while using a
composite component, the most probable cause is inaccurate location
information in the business object implementation’s properties. Look in the
activity log of the server to determine the cause of the exception. If the

© Copyright IBM Corp. 1999, 2000 905



problem is a failure to locate one of the member components in the
composition, check the Location page of the composite component’s Business
Object Implementation wizard.

Java server fails to run with composite components
If the Java client and Java server are installed on the same machine, make
sure the CLASSPATH has the files ibmcbjs.zip and somshor.zip listed before
somojor.zip. Otherwise the Java business object will attempt to use the ORB
interfaces in somojor.zip, instead of the server-side ORB interfaces it requires
in ibmcbjs.zip and somshor.zip.

Error on running Object Builder: “The input line is too long”
If the CLASSPATH environment variable is too long (approximately 1700
characters or more), then you cannot run Object Builder. You must shorten the
classpath by removing directories and .jar or .zip files (besides those added by
the Component Broker install, and besides any PA beans and their
dependencies being used in your projects), before running Object Builder.

Unsatisfactory build performance
The performance of a build (nmake -f all.mak), particularly if you are using
Java-based compilers such as javac, rmic, and so on can suffer if Object
Builder, or any other large Java application is up and running at the time of
the build. To improve the performance of large builds, close Object Builder
after generating either from within Object Builder or by using obgen, and run
nmake from the command line.

Compilation fails because of an incorrect user ID and password error
If your compile command fails due to an incorrect DB2 user ID and password
error, run the following command before you run the make (AIX) or nmake
(NT) command:
export IVB_DB2AUTH=“USER test USING password”

set IVB_DB2AUTH=USER test USING password

906 WebSphere: Application Development Tools Guide



Appendix. IR Browser

Starting the IR Browser

The IR Browser enables you to examine and modify the contents of the
Component Broker Interface Repository.

You can start the IR Browser in one of the following ways:
v From the command line, type irbrowser.

v From the Windows NT desktop, select Start > Programs > IBM Component
Broker > Interface Repository (IR) Browser.

To exit the IR Browser, select Repository > Quit.

Interface Repository (Advanced Programming Guide)

Viewing objects in the repository

Viewing the definition of an object
To view the contents of an object, double-click on the object in the
Containmentview. A textual representation (such as the IDL definition or IR
dump output) appears in the IDL view.

Viewing relationships between objects
To view the ancestors or children of an interface, double-click the object in the
Containment or Inheritance view. A graphical representation appears in the
Inheritance view, showing the following relationships to the highlighted
object:
v Direct base (parent) interfaces
v Direct derived (child) interfaces

The flow of the Inheritance view is from left to right. The base interfaces are
to the left of the selected interface, and the derived interfaces are to the right.

To view the siblings of an interface, double-click the direct base interface in
the Containment view. The tree expands to show a hierarchical representation.
A container such as a module can be expanded to show sibling interfaces for
the interface.

“Finding an object” on page 908

© Copyright IBM Corp. 1999, 2000 907



Viewing the operations of an interface
To view the operations of an interface, double-click the object in the
Containment or Inheritance view. The hierarchical representation for the
object, which shows the container relationships, appears in the left pane of the
window.

Searching the repository

Finding an object
To find an object in the Interface Repository, follow these steps:
1. Select Search > Find. The Find window opens.

2. Click the Search By field, and select either Object name or Repository ID.
Both methods accept wildcard characters as input.

3. To specify your search criteria, select or clear the Object Types and Used
By check boxes.

4. Click Find. All objects that match the search criteria are listed in the
Result box.

5. Double-click on an object in the list. It will appear in the Containment,
IDL, and Inheritance views.

6. Close the window: click the Close button (X) in the right hand, top corner
of the window.

908 WebSphere: Application Development Tools Guide



Note: Due to the size and complexity of the Interface Repository, some
searches might take several minutes. You can click Cancel to stop the search,
and narrow your search criteria.

“Finding an interface’s referencing operations”
“Searching with wildcards”
“Searching by object type”

Searching with wildcards
The Find window uses a string-matching facility to find object types either
within the selected containment or in the entire repository. The following
wildcards are allowed:

Asterisk (*)
Matches any number of characters.

Question mark (?)
Matches one character.

“Finding an object” on page 908

Finding an interface’s referencing operations
To find the operations that reference a particular interface, follow these steps:
1. In the IR Browser, select Search > Find.
2. Type the name of the interface in the Name field.
3. Under Object Types, select Interface.
4. Under Used By, select the listed operations that you are interested in.
5. Click Find.

“Searching with wildcards”
“Searching by object type”

Searching by object type
To find an attribute, constant, exception, interface, module, operation or type,
follow these steps:
1. Select Search > Find. The Find window opens.
2. In the Object Name field, type the name of the attribute, constant,

exception, interface, module, operation, or type.
Restriction:You can only use single-byte alphanumeric characters to search
for objects.

Appendix. IR Browser 909



3. To narrow the scope of the search, select the appropriate Object Type.
Note: Use the Used By check boxes to restrict the search to a list of objects
that reference the input objects.

4. Click Find.

All objects that match the search criteria are listed in the Result list box.
When you select an item from the list, that object is highlighted in the
Containment view and displayed in the IDL and Inheritance views.

“Finding an interface’s referencing operations” on page 909
“Searching with wildcards” on page 909

Deleting objects from the repository

Note: Objects that you delete from the Interface Repository cannot be restored.

To permanently delete an object, follow these steps:
1. Select Options > Allow Updating Interface Repository.
2. In either the Containment or the Inheritance view, select the object that

you want to delete.
3. Select Edit > Delete. The IR Browser returns a dialog box listing any

objects that will also be deleted as a result of your action.

4. Verify that you want to delete all of these objects by clicking Delete.
Otherwise, click Cancel.

910 WebSphere: Application Development Tools Guide



Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999, 2000 911



be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

912 WebSphere: Application Development Tools Guide



Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

AFS
AIX
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM

IMS
MQSeries
MVS/ESA
OS/2
OS/390
OS/400
PowerPC
RISC System/6000
RS/6000
S/390
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks
of Microsoft Corporation in the United States and/or other countries.

Oracle and Oracle8 are registered trademarks of the Oracle Corporation in the
United States and/or other countries.

Notices 913



UNIX is a registered trademark of The Open Group in the United States
and/or other countries licensed exclusively through X/Open Company
Limited.

OSF and Open Software Foundation are registered trademarks of the Open
Software Foundation, Inc.

* HP-UX is a Hewlett-Packard branded product. HP, Hewlett-Packard, and
HP-UX are registered trademarks of Hewlett-Packard Company.

Orbix is a registered trademark and OrbixWeb is a trademark of IONA
Technologies Ltd.

Sun, SunLink, Solaris, SunOS, Java, all Java-based trademarks and logos, NFS,
and Sun Microsystems are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

914 WebSphere: Application Development Tools Guide



Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 915



916 WebSphere: Application Development Tools Guide



Index

A
abstract base class

inheritance 303
abstract classes

querying 882
ActiveX clients, building for 562
adornments

around methods 239, 242
in files 239, 240

application
DDL files

generating 581
application adaptor 578
application DDL files

defined 602
application family

creating 575
DDL files 602
install path 604
objects, definition 604
trace-enabled version 602

application libraries 602
applications

deploying 602
documenting 595
existing

extending 215
packaging 574
team environment, packaging

in 489
testing

with QuickTest 611
attribute

foreign key 296
attribute identity in XML 520
attribute mapping properties 716

data object attributes 716
DB schema columns 728
key attributes 717
mapping helper class 719
mapping patterns 722
patterned attribute mapping

selection 724
persistent object attributes 726

attribute properties
Rational Rose, in 113

attributes 698
adding 699
deleting 701

attributes 698 (continued)
editing 700
foreign key 284
IDL 698
implementation-only 698
in implementation,

overriding 301
private 698
protected 698
public 698

automated build process
setting up 465

B
bean-managed persistence

(BMP) 399
behavior

business object 244
data object 249
in implementation,

overriding 301
binary data encoding scheme 138
bind steps 138
BMP (bean-managed

persistence) 399
BMP entity beans 670

settings 399
workload management 399

bridging
between Rose and Object

Builder 70
build configuration behavior

build options 568
build targets 567
default configuration 566

build configuration options 688
build order

specifying 558
build process

automated
generating code 465
setting up 465

building DLLs 549, 558
in a team environment 487

builds
configuring 549
specifying location 550
specifying order 558

business object
behavior 244

business object (continued)
composite 264
data object, adding from 784
OOSQL implementation methods

customizing 765
working with 774

business object application
adaptor 249

business object file
creating 775
editing 789

business object implementation 239
composite

editing 899
with data object interface,

adding 894
deleting 794
editing 792
methods 751
resource methods

checkpointResource() 248
endResource() 248
resetResource() 248

with data object implementation
adding 780

business object implementation file
editing 793

business object interface 698
adding 777
composite

adding 892
editing 898

creating
by importing an IDL file 780

deleting 794
editing 791
methods 751

business object module
adding 777

business object reference
attributes 744

C
C++ 1
CB Server service 32
cbejb command

options 670, 673
change control

defined 463

© Copyright IBM Corp. 1999, 2000 917



change control (continued)
managing a team

environment 463
managing information 463
process

setting up 464
system 463
XML-based 469

change control system 469
child component

building 380
copy helper, creating 300
creating 306
key, creating 300
packaging 381
with attributes duplication

defining 309
with key duplication

defining 325
with single datastore

defining 342
with views

defining 360
class properties

Rational Rose, in 109
class relationships

Rational Rose, in 119
classes

C++, Java
importing 386

client DLL
defining 552

CMP (container-managed
persistence) 396

CMP entity beans
settings 396

backend storage type 396
bottom-up PAA 396
home type 396
use wstring in data

object 396
workload management 396

CMVC (Change Management
Version Control)

XML-based change control 471
code

generating 383, 551
from command line 684

collections 291, 581
color assignments 28
command line

migrating projects 35
command-line interfaces

cbejb 673

command-line interfaces (continued)
importidl

syntax 667
importimpl

syntax 683
make options 688
obcheck

syntax 694
obexport

syntax 661
obgen

syntax 685
obimport

syntax 664
obmigrate

syntax 659
Compare and Merge Tool for

XML 497
comparing files with 497
merging files with 498

complex attributes
defined 745
mapping

using the Explode
pattern 748

using the Primitive
pattern 746

mapping patterns
Explode 745
Primitive 745

with persistent objects,
associating 745

Component Broker 602
development environment 1
distributed environment 757
frameworks

importing 68
services 757

Component Broker frameworks 64
QuickTest 611

Component Broker Server SDK 1
component layers 458
components

creating 127
for existing DB data 139
for new DB data 136
for PA data 157
for transient data 135

working with 697
composers

in VisualAge for Java 394
composite business objects

attributes 264
defined 264
helper objects 264

composite business objects
(continued)

key 264
methods 264
working with 891

composite components
creating 262

overview 261
defined 262
kinds of

conjunction 262
disjunction 262

objects, composed of 262
packaging 263

composite keys
adding 901
defined 265
editing 903
location of composition

components, using for 265
working with 900

composition file
creating 885

compositions
adding 886
class source files 263
composite business objects,

creating from 263
defined 263
editing 889
helper objects 263
modules

adding 886
objects, composed of 263
restrictions 16
working with 884

configuration directories 602
Configuration Management Version

Control (CMVC) 471
conjunction composite 262
connection 601
consistency checker 487, 565
constructs

constant 770
defined 770
deleting 774
editing 773
enumeration 770
exception 770
Rational Rose, in 101
structure 770
typedef 770
union 770
with file scope

defining 770

918 WebSphere: Application Development Tools Guide



constructs (continued)
with interface scope

defining 772
with module scope

defining 771
working with 769

container behavior 595
connection 601
container policies 597
container service 596
deployment platforms 423
methods, called outside session

behavior 600
methods, called outside

transaction
behavior 599

container instances
creating 578
deleting 884
editing 883
working with 883

container-managed persistence
(CMP) 396

container policies 597
container service 596
containers 578, 602
converters

in VisualAge for Java 394
copy helpers 239, 698

adding 830
deleting 832
editing 831
for child component,

creating 300
CORBA

data types
complex declarators 745
constructed types 745
template types 745

programming model 1
CORBA IDL 99
CORBA types, supported 140
cross-platform development 426
cross-project applications

testing
with QuickTest 489

cross-project dependencies 458, 462

D
data

internationalization 132
persistent 757

data access pattern 254
data definition 137

statements 137
data encoding schemes 152

data encoding schemes 152
(continued)

binary 138, 152
double-byte character set

(DBCS) 138
multi-byte character set

(MBCS) 152
single-byte character set

(SBCS) 152
data inheritance 299
data object

adding
from a DB persistent

object 814
from a PA persistent

object 815
behavior 249

data access pattern 254
deployment platforms 423
environment 249
handle for storing

pointers 255
type of persistence 251

business object, adding
from 813

with persistent object,
associating 811

data object behavior 249
data object file

creating 797
editing 798

data object implementation 239
adding 807
deleting 824
editing 760, 819, 822
methods 751

data object implementation file
editing 823

data object interface 247, 698
adding or selecting later 247
creating 801

by importing an IDL file 804
deleting 824
editing 817
methods 751
with business object,

creating 247
data object module

adding 800
data storage formats

binary 138
DBCS 138
multi-byte character set

(MBCS) 138

data storage formats (continued)
single-byte character set

(SBCS) 138
data type mappings

DB2 142
DBCS 149
Informix 148
Java 159
Java to Object Builder 394
Oracle 146

data types
tracking, in models 235
usage, in model 238

database data 138
database metadata 138
database queries 138, 291
databases

DB2 844
Informix 844
Oracle 844

DB (database) persistent objects
deleting 839

DB (database) schemas
deleting 859

DB persistent objects
editing 838
using push-down methods

with 761
DB schema group

deleting 843
editing 841

DB schemas
creating

by importing an SQL file 844
editing 855

DB2 844
DB2 precompiler 138
DBCS data types 735
DBCS encoding scheme 138
DDL

files
objects 604
structure 604

SQL 137
system management 137

DDL files 603
applications 602
creating 603
generating 593
structure 604

dependencies
cross-project 458, 462

managing 499
IDL files, in 292

deployment descriptor 402

Index 919



deployment library files 402
deployment platforms 419, 423, 602
design patterns

defined 291
iterators 291

designs
Rose, exporting from 80

development
cross-platform 426
Java

requirements for 32
multi-platform

code generation 419
constraints 419
method implementation 419
views 419

dialog box
Type Usage 238

disjunction composite 262
distributed query 280, 296
DLLs

client
configuration 565

rebuilding 565
document type definition

(DTD) 492
DTD (document type

definition) 492

E
EAB (Enterprise Access

Builder) 759
edited source files

importing 385
from command line 682

EJB class
deleting 417
editing 416

EJB Deployment Tool, the 402
cbejb command 670

syntax 673
EJB JAR file 670

deleting 415
editing 415
introspecting 402

EJB JAR files
deployed

creating 414
working with 413

embedded SQL 138
Enterprise Access Builder

(EAB) 159
defined 158
system

managing a team
environment 158

Enterprise Access Builder
(EAB) 159 (continued)

system (continued)
managing information 158

enterprise beans
command line, importing

from 670
deployed

creating 416
working with 416

deploying 408
into polymorphic homes 412
using Object Builder 410
using the EJB Deployment

Tool 411
entity

CMP (container-managed
persistence) 578

managing 402
Object Builder, importing

into 392
using Object Builder 401
using the EJB Deployment

Tool 670
using VisualAge for Java 405

working with 391
environment 249
environment variables 32

Object Builder’s 24
existing objects

reusing 215
Explode mapping pattern 745
exported design

working with 88

F
factories 291, 581
factory name 296
file adornments 239

adding 240
files

.cat 79, 98

.dll 604

.java 618

.sqx 138

.xmi 69, 79, 89
application DDL 604
back-up 65
batch 541
checking in 469, 478, 482
checking out 469, 478, 483
DDL 604
EJB JAR files 413
extracting 478, 484
frameset 541

files (continued)
generating 602
HTML 538
HTML (Hypertext Markup

Language) 541
JAR 167, 177
template 383
XML 79, 123, 402, 538, 541

exported 541
XML interchange 492, 493

filters
available 536
creating

for viewing Tasks and Objects
pane 537

creating new 536
folders

DBA-Defined Schemas 849
in Tasks and Objects pane 1
non-IDL type object 1, 661
User-Defined Compositions 263

foreign key
attributes 284, 296
patterns 284
reference 284, 296
relationships 284

Foreign Key Assistant 296
foreign key mapping 735
foreign key pattern

defining 285
framework methods

calling 757
defined 757
editing 757
special 757

frameworks
importing 68

G
generating code 685

performance 684, 685
get and set methods

business object
implementation 755

copy helpers 755
data object implementation 755
defined 755
editing 756
key 755
persistent object 755

H
handles

for storing pointers 255
home 602

920 WebSphere: Application Development Tools Guide



home 602 (continued)
defined 581
instance 581
PAA 866
polymorphic 581
specialized 581

home to query 296
homes

polymorphic 396
queryable 396
regular 396

HTML 538

I
IBM’s alphaWorks site 538
IDL 1, 64, 99

importing
from command line 666

IDL (Interface Definition Language)
files

dependencies within 292
IDL attributes 698
IDL file dependencies

constructs 292
interface 292
module 292

importidl 667
importimpl 683
importing

non-IDL types 386
inbound MQSeries data

component, creating for 187
Informix 844

data type mappings 148
inheritance

abstract base class 303
behavior 299
business object

implementation 248
component objects, recommended

for 299
data 299
data object implementation 257
defined 299
implementation 299
interface 299
with attributes duplication 307
with key duplication 322
with single datastore 341
with views 357

inheritance and overriding
in business objects 301
in data objects 303

inheritance patterns
attributes duplication 303, 304
for persistence 304

inheritance patterns (continued)
key duplication 303, 304
single datastore with views 304

initializer method
adding 753

install objects 602
integration project

team environment, adding
to 460

Interface Repository Browser 907
internationalization

data 132
inverse object reference 284, 296
IR file name

migrating 33

J
J2SDK (the Java 2 SDK) 32
JAR files

building 561
Java 1
Java business objects 32
Java clients, building for 563
Javadoc comments 239, 242

K
key 239, 698

adding 826
deleting 829
editing 828
for child component,

creating 300
key and copy helper

inheritance 300
overriding 300

keywords
query support 154

L
lazy evaluation

using 246
libraries

application 602
list()

OOSQL customization 764
local-only object

adding 219
creating

by importing an IDL file 669
local-only object file

creating 217
local-only object module

adding 218
local-only objects 216
local-only objects, creating 216

Logical View
Class Diagram 98

M
macros 383
makefiles

generating 556
managed object configuration

deleting 875
editing 874

managed object configuration
behavior 584

home name 584
home options 587

managed object file
editing 873

Managed Object Framework
(MOFW)

MOFW (Managed Object
Framework) 216

managed objects 578, 581, 698
adding 871
configuring 588
deleting 874
editing 872
services

Session 870
Transaction 870

working with 869
mapping

attributes
using a key 732, 744
using a mapping helper 738
using the Primitive

pattern 731
business object

to data object 787
complex attributes

using the Explode
pattern 748

using the Primitive
pattern 746

data object
to child’s persistent

object 712
to DB persistent object 703
to parent’s persistent

object 711
to persistent object 703

data object to persistent
object 307

data objects, to persistent
objects 322, 357, 670

data objects, to shared persistent
object 341

Index 921



mapping (continued)
using foreign key 735

mapping helper
class 735
file

default 735
methods 735
Object Builder, provided by 735
providing your own 735
sample 149
using 735

mapping rules
Object Builder to Rose 123
Rational Rose to Object

Builder 97
non-project packages 99

MBCS encoding scheme 138
metadata

migrating 33
method adornments 239, 242
method bodies

editing 383
external files for 383

method mapping properties 767
method reordering 769
special framework methods 768
user-defined methods 768

method properties
Rational Rose, in 116

methods
changes, importing 385
deleting 767
for public attributes 755
get 755
implementing 752
push-down

in Enterprise Access
Builder 759

in Object Builder 759
using 759
using ECI 759
using HOD 759

relationship 764
reordering 769
set 755
user-defined

defining 751
method bodies,

providing 751
working with 750

methods, called outside session
behavior 600

methods, called outside transaction
behavior 599

Methods pane 419

migrating
IR file name 33
metadata 33

migrating projects
from the command line 35

Model Consistency Checker 487,
565

command line 694
model information

between projects,
exchanging 492

model objects 602
changing 602

modeling tools
object-oriented analysis, design

Rational Rose 64
models

consistency, checking for 31, 694
secondary

propagating changes to 485
tracking data types in 235

multi-platform development 419

N
naming objects 128
non-IDL type object 128, 493

folders 1
non-IDL types 3

folders 536, 661
importing 386

non-project packages 99
null value tolerance 155, 701

for foreign keys 155, 298

O
obexport 661
obimport 664
Object Builder 469, 757

command-line usage 659
components 1
customizing 503
defined 1
developing in 19
environment variables 24
panes 1
preferences

setting 27
restrictions 3
starting 1
tutorials 39

Object Builder and Rose
bridging guidelines 70

Object Builder projects 97
Object Builder Tools

setting up 24
Object Editor 604

object references 246
foreign key 284
foreign key, resolved by 296
inverse 284, 296
storing 288

object relationships 602, 604
objects 128

forward declaration 604
naming 128
System Management 128

objects to source files mapping 258
obmigrate 659
OOSQL clauses

WHERE 866
OOSQL keywords 154
operating system platforms

for deployment 419
Oracle 844
OS/390 602

environment variables 571
outbound MQSeries data

component, creating for 201

P
PA (procedural adaptor) bean 159
PA bean 158, 698

push-down methods
exceptions, handling 163

query methods
customizing 160

PA persistent objects 158
associating with data object

implementation 822
deleting 861
editing 861
push-down methods 301
using push-down methods

with 762
working with 860

PA schema 158
creating

by importing a PA bean 862
PA schemas

deleting 869
editing 868
working with 862

PAA 768
PAA (procedural application

adaptor) 759
package file

creating 138
naming 138
using 138

package properties
Rational Rose, in 116

922 WebSphere: Application Development Tools Guide



packages 458
Rational Rose, in 98, 99

panes, Object Builder
Methods pane 419
Source pane 263, 383, 419
Tasks and Objects 263, 536

pass ticket
compositions 571
for OS/390 571
in RACF 571
using 571

patterns, state data handling
Caching 245, 246
Delegating 245
Same as parent’s 245

performance
code compilation using

obgen 684, 685
persistence

inheritance patterns 304
single datastore, provided

by 357
type 870

persistent data 757
persistent object 239, 698, 745, 811

DB schema, adding from 837
ESQL framework methods

customizing 766
PA schema, adding from 860

persistent object and schema,
adding 833

persistent objects 602
platform constraints

object-specific 419
setting 421

platform differences 425
platform-specific information 20
polymorphic homes 581

deploying enterprise beans
into 412

specialized
creating 880

polymorphism 588
Primitive mapping pattern 745
problem diagnosis

run-time 611
procedural adaptor (PA)

bean
importing 159

persistent object 159
schema 159

procedural application adaptor
(PAA) 759

processing
visual display 611

profile
file 571

for remote OS/390 build 571
project divisions 458

changing 496
in a team environment 458

project owner 458
projects 469, 602

creating
in a team environment 481

deleting
in a team environment 486

directories 17
documenting 501
editing

in a team environment 485
files 17
migrating, old 33
model name

using 17
moving 491
multiple

building 462
Object Builder 97
organization 17
Rational Rose, in 98
Rose, importing into 92
splitting

for team development 459
starting 26

propagating changes
to_secondary models 485

Q
queries 138, 284

abstract classes 882
distributed 280, 296
SQL 284

query method parameters
PA bean attributes, mapping

to 161
query methods 866
query support for keywords 154
QuickScript 611, 616, 617, 622, 634,

647
description 616
recording 617
running 618

QuickScript file
compiling 618

QuickTest
description 611
features 611
files

generated 647

QuickTest (continued)
Framework 621
Java and JFC 634
programming model, Component

Broker 622
QuickScript 616
tutorial 647, 648

QuickTest, building for 564
QuickTest client applications 616

generating 614

R
RACF (Resource Access Control

Facility) 571
Rational Rose 1, 99, 469

attribute properties 113
bridging guidelines 70
class properties

exporting 109
class relationships

associations and
aggregations 119

exporting 119
inheritance 119

classes 64
Object Builder classes,

mapping to 109
constructs 101
defined 64
editions 64
element identifier 89
elements

attribute 89
class 89
package 89
role of association 89

IDL name scoping in 99
Logical View 79
method properties 116
modules 99
package properties 116
packages 99
properties

changing 70
relationships 64
Rose, exporting from 80
using 64
versions 64

Rational Rose, using with Object
Builder 63

Rational Rose, working with
in team environment 444

Rational Rose 2000
setting up 66

Index 923



Rational Rose 98
setting up 65

Rational Rose 98i
setting up 66

Rational Rose design
rules 97
team environment, exporting

to 445
team environment, importing

from 447
referential integrity

customizing 714
regression

testing 611
relationship methods

add() 764
list() 764
remove() 764
using 764

relationships
1-n (one-to-many) 284
circular

defining 283
foreign key 284
in implementation,

overriding 301
one-to-many

defining 281
one-to-one

defining 279
remote build 570

launching 572
Resource Access Control Facility

(RACF) 571
resource methods

sessional business object, adding
to 164

restrictions
compositions 16
Object Builder 3

Rose Bridge, the
design, exporting 79
design, re-exporting 69
loading Component Broker

frameworks 69
Object Builder project, exporting

design to 69
Rose, importing design into 69

Rose design
Object Builder, exporting to 69
Object Builder, importing

from 69
Rose model

re-exporting 79

Rose properties
changing 70

S
samples

change control 473
mapping helper 149
XSL 541

SBCS encoding scheme 138
schema 698, 745

column properties 855
identification 855
structure

editing 855
schema columns 698
schema groups

creating 840
sentinel values for null 155, 701,

719
server application

adding 576
server code

testing 611
server DLL 263

defining 554
services

Component Broker 757
session beans 670

settings 400
state management 400
timeout value 400
workload management 400

Session service 248
sessional business object

resource methods, adding
to 164

shared library file 263
SmartGuide Customizer for XML

attribute properties 531
constraints 535
element properties 530
macro setting 530
starting 506

SmartGuides
constraints 535

Source pane 263, 383, 419
editing 29

special framework methods 769
del() 758
editing 758
insert() 758
retrieve() 758
setConnection() 758
update() 758

specialized homes 581

specialized homes 581 (continued)
creating 876

example 878
deleting 879
editing 879
working with 875

specialized polymorphic homes
creating 880

SQL clauses
using complex relatonships

in 289
SQL DDL 137
SQL files

generated
editing 857

re-importing 847
SQL queries 284
SQL View Editor 849

notebook pages
View Properties 849
View Summary 849
View Work Area 849

working with 850
state data

pattern for handling 245
structures

members 745
nested 745

style sheets
XSL 541

subdirectories
Export 89
Import 69, 79
Model 69, 79, 469
XMI 69, 79, 89, 469

substitution string 866
syntax

WHERE clause 866
System Management 602
system management DDL 137
system management objects 128
System Manager 602

user interface 602
System Manager User Interface 32

T
tables

columns
persistent object, mapping

to 357
parent and child data, identifying

in 357
rows

persistent object, mapping
to 357

Tasks and Objects pane 263, 536

924 WebSphere: Application Development Tools Guide



Tasks and Objects pane 263, 536
(continued)

filtering 537
searching 30

team development 444
defined 443
environment

Object Builder project,
working with 443

Rose package, working
with 443

team environment 469
applications, packaging 489
building DLLs in 487
designs, exporting to 445
editing projects 485
integration project

adding 460
maintaining 490
migrating 36
projects, deleting in 486
projects, importing from 447
Rational Rose, working

with 444
setting up 457
working in 480

template design
XML 505

template files 383
template interpreter format 478
testing

regression 611
server code 611

the Java 2 SDK (J2SDK) 32
troubleshooting

class path environment variable
too long 905

exception with composite
components 905

inability to start Object Builder
on AIX 905

Java Server failure with
composite components 905

memory problems 905
odd behavior 905

tutorials
additional 62
component for new DB data,

creating 50
component for PA data,

creating 167, 177
component with transient data,

creating 39
composite component,

creating 267

tutorials (continued)
inbound message application,

creating 188
inheritance with attributes

duplication 310
inheritance with key

duplication 327
inheritance with single

datastore 344
inheritance with views 362
local-only objects, creating 220
multi-platform applications,

developing 429
Object Builder, for 39
outbound message application,

creating 203
procedural adaptors, unit test

for 166
QuickTest, running 647
remote OS/390 build,

launching 573
Rose, exporting from 81
Rose, importing into 94
team development with

Rose 449
type of persistence 251

U
Univerally Unique Identifier

(UUID) 89
user-defined methods 768

code, adding 752
editing 754

user interface
System Manager 602

UUID (Univerally Unique
Identifier) 89

V
view

creating
with SQL View Editor 850

editing 853
with SQL View Editor 851

VisualAge for Java 394

W
Web browsers 538
WHERE clause

syntax 866
wide character set data 735
with data object, associating 811
wizards

XML 469
properties 533, 535

workload management 396, 399,
400

X
XML

attribute identity 520
export levels 492
exporting 387, 492

from command line 660
ID attributes 521
importing 389

from command line 663
model interchange with 492
references 522

XML-based change control
customizing 475

XML-based change control process
XML formats

macro format (script
format) 469

Object Builder’s 469
template format 469
template interpreter

format 469
XML browsing

with XSL 538
XML files

browsing 539, 541
XML interchange files 492, 493
XML references 522

with customized targets 525
XML template design 505
XML wizards 469

constraining values in 515
constraints 535
creating 504
deriving values in 511
distributing 519
editing 519
in SmartGuide Customizer for

XML
using 503

layout
defining 516

macros
defining 507

propagating values in 513
properties

attribute identity 533
constraints 535

running 518
testing 517
value lists

customizing 510
XSL

setting up 540

Index 925



XSL-based document

sample, viewing 543

XSL processor 538

XSL sample 541

XSL style sheets 541

applying 547
capabilities 538
creating your own 546
samples

applying 544

926 WebSphere: Application Development Tools Guide





IBMR

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC09-4448-01



Spine information:

IBM WebSphere Application Development Tools Guide Version 3.5 SC09-4448-01


	Contents
	About This Book
	Who Should Read This Book
	Conventions used in this book
	Related information
	How to send your comments
	What's new in the Application Development Tools Guide

	Chapter 1. Object Builder overview
	Object Builder
	Restrictions for R3.5
	Composition restrictions
	Projects and models
	Developing in Object Builder
	Platform-specific information
	OLT and Debug API support

	Setting up Object Builder
	Object Builder environment variables
	Opening a project
	Setting Object Builder preferences
	Color Assignments
	Find and Replace (Source page)
	Indentation (Source page)
	Searching the Tasks and Objects pane
	Checking a model for consistency
	Requirements for Java development

	Migrating projects from 3.0
	Migrating old projects
	Migrating from the command line
	Migrating a team environment


	Chapter 2. Tutorials for Object Builder
	Tutorial: Creating a component with transient data
	Tutorial: Creating a component for new DB data
	Additional tutorials

	Chapter 3. Using Rational Rose with Object Builder
	Rose
	Setting up Rose 98
	Setting up Rose 98i and Rose 2000
	Importing Component Broker frameworks

	The Rose Bridge
	Rose properties and bridging guidelines
	Rose Bridge export
	Exporting a design from Rose
	Tutorial: Exporting from Rose
	Working with an exported design
	Rose Bridge import
	Importing a project into Rose
	Tutorial: Importing into Rose

	Rose to Object Builder mapping rules
	Projects in Rose
	Modules in Rose
	Constructs in Rose
	Class properties in Rose
	Attribute properties in Rose
	Package properties in Rose
	Method properties in Rose
	Class relationships in Rose

	Object Builder to Rose mapping rules

	Chapter 4. Creating a component
	Naming objects
	Internationalization of data
	Creating a component for transient data
	Creating a component for new DB data
	DDL
	Package file
	DBCS and Binary Data Support

	Creating a component for existing DB data
	Supported CORBA Types
	DB2 data type mappings
	Oracle data type mappings
	Informix data type mappings
	Mapping DBCS data types
	Data encoding schemes
	OOSQL keywords
	Keywords for query support
	Null value tolerance with sentinel values

	Creating a component for PA data
	Enterprise Access Builder (EAB)
	Procedural adaptor bean (PA bean)
	Java data type mappings
	Supported platforms for connectors
	Customizing PA bean query methods
	Mapping query method parameters to PA bean attributes
	Handling exceptions thrown by PA bean push-down methods
	Adding resource methods to a sessional business object
	Tutorial: Unit test for procedural adaptors
	Tutorial: Creating a component for PA data (bottom-up)
	Tutorial: Creating a component for PA data (meet-in-the-middle)

	Creating a component for an inbound message
	Tutorial: Creating an inbound message application

	Creating a component for an outbound message
	Tutorial: Creating an outbound message application

	Reusing existing objects
	Creating a local-only object
	Local-only objects
	Creating a local-only object file
	Adding a local-only object module
	Adding a local-only object
	Tutorial: Creating local-only objects

	Tracking data types in models
	Type Usage

	File and method adornments
	Adding file adornments
	Adding method adornments

	Business Object Behavior
	Pattern for Handling State Data
	Object Reference
	Data Object Interface
	Session Service

	Data Object Behavior
	Environment
	Type of Persistence
	Data Access Pattern
	Handle for Storing Pointers

	Data Object Implementation Inheritance
	Objects to source files mapping

	Chapter 5. Components working together
	Creating a composite component
	Composite component
	Composition
	Composite business object
	Composite key
	Tutorial: Composite component creation

	Defining relationships
	Defining a 1-1 relationship
	Distributed query
	Defining a 1-n relationship
	Defining a circular relationship
	Foreign key patterns
	Defining a foreign key pattern
	Storing an object reference as a handle
	Using complex relationships in SQL clauses
	Design patterns and iterators
	Dependencies within an IDL file

	Relationship Implementation
	Local Persistent Reference
	OOSQL Implementation
	Foreign Key Implementation
	Checking for null foreign key values


	Chapter 6. Inheritance
	Inheritance and overriding
	Inheritance and overriding in helper objects
	Inheritance and overriding in business objects
	Inheritance and overriding in data objects
	Abstract base class inheritance

	Choosing an inheritance pattern for persistence
	Creating a child component
	Inheritance with attributes duplication
	Defining a child with attributes duplication
	Tutorial: Inheritance with attributes duplication

	Inheritance with key duplication
	Defining a child with key duplication
	Tutorial: Inheritance with key duplication

	Inheritance with a single datastore
	Defining a child with a single datastore
	Tutorial: Inheritance with a single datastore

	Inheritance with views
	Defining a child with views
	Tutorial: Inheritance with views

	Building a child component
	Packaging a child component

	Chapter 7. Working with external files
	External files for method bodies
	Importing edited source files
	Importing C++ or Java classes
	Exporting XML
	Importing XML

	Chapter 8. Working with enterprise beans
	Importing enterprise beans into Object Builder
	Java to Object Builder type mapping
	Keys for enterprise beans
	CMP Entity Bean-Specific Settings
	BMP Entity Bean-Specific Settings
	Session Bean-Specific Settings
	Importing enterprise beans using Object Builder
	The EJB Deployment Tool
	Importing enterprise beans from the command line
	Importing enterprise beans from VisualAge for Java

	Deploying enterprise beans
	Deploying enterprise beans using Object Builder
	Deploying enterprise beans using the EJB Deployment Tool
	Deploying enterprise beans into a polymorphic home

	Working with deployed EJB JAR files
	Creating a deployed EJB JAR file
	Editing an EJB JAR file
	Deleting an EJB JAR file

	Working with deployed enterprise beans
	Creating a deployed enterprise bean
	Editing an EJB class
	Deleting an EJB class


	Chapter 9. Multi-platform development
	Multi-platform development
	Setting platform constraints
	Deployment platforms
	Platform differences
	Cross-platform development

	Tutorial: Developing a multi-platform application

	Chapter 10. Team development
	Developing as part of a team
	Working with Rose in a team environment
	Exporting a Rose design to a team environment
	Importing a Rose design from a team environment
	Tutorial: Team development with Rose

	Setting up a team environment
	Project divisions in a team environment
	Splitting up a project for team development
	Adding an integration project to a team environment
	Cross-project dependencies
	Change control
	Setting up a change control process
	Setting up an automated build process
	Setting up a team development environment

	XML-based change control
	Setting up XML-based change control for CMVC
	Change control sample
	Customizing XML-based change control
	Template interpreter format

	Working in a team environment
	Creating a project in a team environment
	Checking out files
	Checking in files
	Extracting files
	Editing a project in a team environment
	Deleting a project in a team environment
	Building DLLs in a team environment
	Packaging an application in a team environment
	Testing cross-project applications with QuickTest

	Maintaining a team environment 
	Moving a project
	Model interchange with XML
	XML interchange files
	Changing project divisions
	The Compare and Merge Tool for XML
	Comparing files with the Compare and Merge Tool for XML
	Merging files with the Compare and Merge Tool for XML
	Managing cross-project dependencies
	Documenting projects


	Chapter 11. Customizing Object Builder
	XML wizards
	Creating an XML wizard
	XML template design
	Starting the SmartGuide Customizer for XML
	Defining XML wizard macros
	Customizing value lists in an XML wizard
	Deriving values in an XML wizard
	Propagating values in an XML wizard
	Constraining values in an XML wizard
	Defining the layout of an XML wizard
	Testing an XML wizard
	Running an XML wizard
	Editing an XML wizard
	Distributing an XML wizard

	Attribute identity in XML
	XML ID attributes
	XML references
	XML references with customized targets

	XML wizard properties
	Macro setting
	Element properties
	Attribute properties
	Attribute identity options
	Constraints

	Filters
	Filtering the Tasks and Objects pane
	Creating a filter for the Tasks and Objects pane

	XML browsing with XSL
	Browsing XML files
	Setting up for XSL
	The XSL sample
	Viewing a sample XSL-based document
	Applying the sample XSL style sheet
	Creating your own XSL style sheet
	Applying an XSL style sheet


	Chapter 12. Configuration
	Configuring builds
	Specifying a build location
	Generating code
	Defining a client DLL
	Defining a server DLL
	Generating a makefile
	Specifying the order of a build
	Building the DLLs
	Building the JAR files
	Building for ActiveX clients
	Building for Java clients
	Building for QuickTest
	Rebuilding DLLs

	Build configuration behavior
	Default Configuration
	Build targets
	Build options

	Remote build configuration
	Remote build
	Pass ticket
	Profile
	Launching a remote OS/390 build
	Tutorial: Launching a remote OS/390 build

	Packaging applications
	Creating an application family
	Adding an application
	Container
	Creating a container instance
	Home
	Polymorphic homes
	Managed object configuration behavior
	Home Name
	Home Options
	Configuring a managed object
	Parent Interface for Polymorphism
	Generating the DDL files
	Documenting applications

	Container behavior
	Container service
	Container policies
	Behavior for Methods Called Outside a Transaction
	Behavior for Methods Called Outside a Session
	Connection

	Application DDL files
	Creating DDL files
	The structure of a DDL file


	Chapter 13. Testing applications with QuickTest
	QuickTest
	Generating QuickTest client applications
	Running QuickTest client applications

	QuickScript
	Recording QuickScript
	Compiling the QuickScript file
	Running QuickScript

	The QuickTest framework
	QuickTest with the Component Broker Programming Model
	QuickTest with Java and JFC

	QuickTest-generated files
	Running the QuickTest tutorial

	Chapter 14. Command-line interfaces
	Using Object Builder from the command line
	obmigrate

	Exporting XML from the command line
	obexport

	Importing XML from the command line
	obimport

	Importing IDL from the command line
	importidl
	Creating a local-only object by importing an IDL file

	Importing enterprise beans from the command line
	cbejb options

	Importing edited source files from the command line
	importimpl

	Generating code from the command line
	obgen
	make options

	obcheck

	Chapter 15. Object tasks
	Working with components
	Working with attributes
	Attributes
	Adding an attribute
	Editing an attribute
	Deleting an attribute
	Setting sentinel values for null field values

	Mapping a data object to a persistent object
	Mapping a data object to a DB persistent object
	Mapping a data object to a PA persistent object
	Mapping a data object to the parent's persistent object
	Mapping a data object to the child's persistent object
	Customizing referential integrity

	Attribute mapping properties
	Data Object Attributes
	Key Attributes
	Mapping helper class
	Mapping Patterns
	Patterned Attribute Mapping Selection
	Persistent Object Attributes
	Schema Columns

	Mapping data object attributes to persistent object attributes
	Mapping attributes using the Primitive pattern
	Mapping attributes using a key
	Mapping helper
	Mapping attributes using a mapping helper
	Mapping business object reference attributes
	Complex attributes and mapping patterns
	Mapping complex attributes using the Primitive pattern
	Mapping complex attributes using the Explode pattern

	Working with methods
	User-defined methods
	Implementing methods
	Adding an initializer method
	Editing user-defined methods
	Get and set methods
	Editing get and set methods
	Framework methods
	Editing framework methods
	Special framework methods
	Editing special framework methods
	Push-down methods
	Working with PA bean push-down methods
	Using push-down methods with DB persistent objects
	Using push-down methods with PA persistent objects
	Relationship methods
	Customizing business object OOSQL implementation methods
	Customizing persistent object ESQL framework methods
	Deleting a method

	Method mapping properties
	Special Framework Methods
	User-Defined Methods
	Method Reordering

	Working with constructs
	Constructs
	Defining constructs with file scope
	Defining constructs with module scope
	Defining constructs with interface scope
	Editing a construct
	Deleting a construct

	Working with business objects
	Creating a business object file
	Adding a business object module
	Adding a business object interface
	Creating a business object by importing an IDL file
	Adding a business object implementation and data object interface
	Adding a business object from a data object
	Mapping a business object to a data object
	Editing a business object file
	Editing a business object interface
	Editing a business object implementation
	Editing a business object implementation file
	Deleting a business object interface
	Deleting a business object implementation

	Working with data objects
	Creating a data object file
	Editing a data object file
	Adding a data object module
	Creating a data object interface
	Creating a data object by importing an IDL file
	Adding a data object implementation
	Associating a persistent object with a data object
	Adding a data object from a business object
	Adding a data object from a DB persistent object
	Adding a data object from a PA persistent object
	Editing a data object interface
	Editing a data object implementation
	Associating a PA persistent object with an existing data objectimplementation
	Editing a data object implementation file
	Deleting a data object interface
	Deleting a data object implementation

	Working with keys
	Adding a key
	Editing a key
	Deleting a key

	Working with copy helpers
	Adding a copy helper
	Editing a copy helper
	Deleting a copy helper

	Working with DB persistent objects
	Adding a persistent object and schema
	Adding a persistent object from a DB schema
	Editing a DB persistent object
	Deleting a DB persistent object

	Working with DB schema groups
	Creating a DB schema group
	Editing a DB schema group
	Deleting a DB schema group

	Working with DB schemas
	Creating a DB schema by importing an SQL file
	Re-importing an SQL file
	The SQL View Editor
	Working with the SQL View Editor
	Creating a view with the SQL View Editor
	Editing a view with the SQL View Editor
	Editing a view
	Editing a DB schema
	Editing a generated SQL file
	Deleting a DB schema

	Working with PA persistent objects
	Adding a persistent object from a PA schema
	Editing a PA persistent object
	Deleting a PA persistent object

	Working with PA schemas
	Creating a PA schema by importing a PA bean
	WHERE clause syntax
	Editing a PA schema
	Deleting a PA schema

	Working with managed objects
	Service to Use
	Adding a managed object
	Editing a managed object
	Editing a managed object file
	Editing a managed object configuration
	Deleting a managed object
	Deleting a managed object configuration

	Working with specialized homes
	Creating a specialized home
	Example: Creating a specialized home
	Editing a specialized home
	Deleting a specialized home
	Creating a specialized polymorphic home
	Querying abstract classes

	Working with container instances
	Editing a container instance
	Deleting a container instance

	Working with compositions
	Creating a composition file
	Adding a composition module
	Adding a composition
	Editing a composition

	Working with composite business objects
	Adding a composite business object interface
	Adding a composite business object implementation and data objectinterface
	Editing a composite business object interface
	Editing a composite business object implementation

	Working with composite keys
	Adding a composite key
	Editing a composite key


	Chapter 16. Troubleshooting
	Troubleshooting

	Appendix. IR Browser
	Starting the IR Browser
	Viewing objects in the repository
	Viewing the definition of an object
	Viewing relationships between objects
	Viewing the operations of an interface

	Searching the repository
	Finding an object
	Searching with wildcards
	Finding an interface's referencing operations
	Searching by object type

	Deleting objects from the repository

	Notices
	Trademarks and service marks

	Index

