
WebSphere™ Application Server

Writing Enterprise Beans in WebSphere

Version 4.0

SC09-4431-04

���

Note
Before using this information and the product it supports, be sure to read the general information under
“Notices” on page 201.

Fifth Edition (June 2001)

This edition replaces SC09-4431-03.

Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 1999, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. v

Tables ix

About this book xi
Who should read this book xi
Document organization xi
Related information xii
Conventions used in this book xii
How to send your comments xiv

Chapter 1. An architectural overview of the
EJB programming environment 1
Components of the EJB environment 1
The EJB server 2

The security service 3
The workload management service. . . . 5
The persistence service 5
The naming service 6
The transaction service 6

The data source 9
The EJB clients 9
The Web server 11
The administration interface. 11

Chapter 2. An introduction to enterprise
beans 13
Bean basics 13

Entity beans 13
Session beans 15

Creating an EJB module 17
The EJB module. 17
The deployment descriptor 17

Deploying an EJB module 19
Developing EJB applications 20

An example: enterprise beans for a bank 21
Using the banking beans to develop EJB
banking applications 22

Life cycles of enterprise bean instances . . . 23
Session bean life cycle. 23
Entity bean life cycle 25

Chapter 3. Tools for developing and
deploying enterprise beans 27

Using VisualAge for Java 27
Developing and deploying enterprise beans 28

Installing and configuring the software for
the EJB server 28
Setting the CLASSPATH environment
variable in the EJB server environment . . 29
Creating the components of an enterprise
bean 29
Creating finder logic in the EJB server . . 30
Creating an EJB module 30
Creating a database for use by entity beans 31

Chapter 4. Developing enterprise beans . . 33
Developing entity beans with CMP 33

Writing the enterprise bean class (entity
with CMP) 34
Writing the home interface (entity with
CMP) 43
Writing the remote interface (entity with
CMP) 46
Writing the primary key class (entity with
CMP) 47
Interacting with databases 50

Developing session beans 50
Writing the enterprise bean class (session) 51
Writing the home interface (session) . . . 62
Writing the remote interface (session) . . 63

Implementing interfaces common to multiple
types of enterprise beans 64

Methods inherited from javax.ejb.EJBObject 65
The javax.ejb.EJBHome interface 65
The java.io.Serializable and
java.rmi.Remote interfaces 66

Using threads and reentrancy in enterprise
beans 66
Creating an EJB module for enterprise beans 66

Making bean components part of a Java
package 67
Creating an EJB module and deployment
descriptor 67

Chapter 5. Enabling transactions and
security in enterprise beans 69
Setting transactional attributes in the
deployment descriptor 69

© Copyright IBM Corp. 1999, 2001 iii

Setting the transaction attribute 70
Setting the transaction isolation level
attribute 72

Setting the security attribute in the
deployment descriptor 74

Chapter 6. Developing EJB clients. . . . 77
Importing required Java packages 78
Creating and getting a reference to a bean’s
EJB object 79

Locating and creating an EJB home object 80
Creating an EJB object 83

Handling an invalid EJB object for a session
bean 84
Removing a bean’s EJB object 86
Managing transactions in an EJB client . . . 86

Chapter 7. Developing servlets that use
enterprise beans 91
An overview of standard servlet methods . . 91
Writing an HTML page that embeds a servlet 91
Developing the servlet 93

The servlet’s instance variables. 94
The servlet’s init method. 95
The servlet’s doGet method 97
Creating an enterprise bean 98
Determining the content of the user
response 99
Sending the user response 100

Threading issues 101

Chapter 8. More-advanced programming
concepts for enterprise beans 103
Developing entity beans with BMP 103

Writing the enterprise bean class (entity
with BMP) 104
Writing the home interface (entity with
BMP) 114
Writing the remote interface (entity with
BMP) 117
Writing or selecting the primary key class
(entity with BMP) 118

Using a database with a BMP entity bean 119
Managing database connections in the
EJB server environment 120
Manipulating data in a database 123

Using bean-managed transactions 124

Chapter 9. WebSphere Programming
Model Extensions 129
The distributed-exception package 129

Overview 130
Extending the DistributedException class 133
Implementing the
DistributedExceptionEnabled interface . . 134
Using distributed exceptions 139

The command package 140
Overview 141
Writing command interfaces 144
Implementing command interfaces . . . 147
Using a command 155
Using the WebSphere EJBCommandTarget
bean as a command target 157
Writing a command target (server) . . . 159
Targets and target policies 161
Writing a command target (client-side
adapter) 166

The localizable-text package 170
Overview 170
Writing a localizable application 178
Using optional arguments 182
Deploying the formatter enterprise bean 191

Appendix A. Changes for version 1.1 of
the EJB specification 193
New and updated features 193
Migrating from version 1.0 to version 1.1 193

Appendix B. Example code provided with
WebSphere Application Server 197
Information about the examples described in
the documentation 197
Information about other examples 198

Appendix C. Extensions to the EJB
Specification 199
Access beans 199
Associations between enterprise beans . . . 200
Inheritance in enterprise beans 200

Notices 201
Trademarks and service marks 203

Index 207

iv WebSphere: Writing Enterprise Beans in WebSphere

Figures

1. The components of the EJB environment 1
2. Example of a distributed transaction 7
3. The components of an entity bean 14
4. The components of a session bean 16
5. The major components of a deployed

entity bean 20
6. Conceptual view of EJB applications 21
7. Code example:

AccountBeanFinderHelper interface for
the EJB server 30

8. Code example: The AccountBean class 35
9. Code example: The variables of the

AccountBean class 36
10. Code example: The business methods of

the AccountBean class 38
11. Code example: The ejbCreate and

ejbPostCreate methods of the
AccountBean class 41

12. Code example: Implementing the
EntityBean interface in the AccountBean
class 43

13. Code example: The AccountHome home
interface 44

14. Code example: The findLargeAccounts
method 45

15. Code example: The Account remote
interface 47

16. Code example: The ItemKey primary
key class 49

17. Code example: The TransferBean class 53
18. Code example: The business methods of

the TransferBean class 55
19. Code example: Creating the

InitialContext object in the ejbCreate
method of the TransferBean class . . . 58

20. Code example: The getProviderURL
method 59

21. Code example: Creating the
AccountHome object in the ejbCreate
method of the TransferBean class . . . 60

22. Code example: Looking up an enterprise
bean’s environment naming context . . 61

23. Code example: Implementing the
SessionBean interface in the
TransferBean class 62

24. Code example: The TransferHome home
interface 63

25. Code example: The Transfer remote
interface 64

26. Code example: The import statements
for the Java application
TransferApplication. 79

27. Code example: Creating the
InitialContext object 82

28. Code example: Creating the EJBHome
object 83

29. Code example: Creating the EJB object 84
30. Code example: Refreshing the EJB object

reference for a session bean 85
31. Code example: Removing a session EJB

object 86
32. Code example: Managing transactions in

an EJB client 89
33. Code example: Content of the

create.html file used to access the
CreateAccount servlet 92

34. The initial form and output of the
CreateAccount servlet 93

35. Code example: The CreateAccount class 94
36. Code example: The instance variables of

the CreateAccount class 95
37. Code example: The init method of the

CreateAccount servlet 96
38. Code example: The doGet method of the

CreateAccount servlet 98
39. Code example: Creating an enterprise

bean in the doGet method 99
40. Code example: Determining a user

response in the doGet method. . . . 100
41. Code example: Responding to the user

in the doGet method 101
42. Code example: The AccountBMBean

class 105
43. Code example: The instance variables

of the AccountBMBean class 106
44. Code example: The ejbCreate methods

of the AccountBMBean class 109
45. Code example: The

ejbFindByPrimaryKey method of the
AccountBMBean class 111

© Copyright IBM Corp. 1999, 2001 v

46. Code example: The
ejbFindLargeAccounts method of the
AccountBMBean class 112

47. Code example: The AccountBMHome
home interface 115

48. Code example: The AccountBM remote
interface 118

49. Code example: Getting an EJB object
reference to a data source bean instance
in the setEntityContext method
(rewritten to use DataSource) 121

50. Code example: The checkConnection
and makeConnection methods of the
AccountBMBean class (rewritten to use
DataSource) 122

51. Code example: The dropConnection
method of the AccountBMBean class
(rewritten to use DataSource) 122

52. Code example: Constructing and
executing an SQL update call in an
ejbCreate method 123

53. Code example: Manipulating a
ResultSet object in the ejbLoad method . 124

54. Code example: Getting an object that
encapsulates a transaction context . . 126

55. Code example: Constructors for the
DistributedException class 131

56. Code example: Constructors in an
exception class that extends the
DistributedException class 134

57. Code example: The structure of an
exception class that implements the
DistributedExceptionEnabled interface . 135

58. Code example: Constructors for an
exception class that implements the
DistributedExceptionEnabled interface . 136

59. Code example: Implementations of the
methods in the
DistributedExceptionEnabled interface . 138

60. Code example: Testing for an exception
that implements the
DistributedExceptionEnabled interface . 139

61. Code example: Adding an exception to
a chain 139

62. Code example: Extracting exceptions
from a chain. 140

63. Code example: The structure of an
interface for a targetable command . . 142

64. Code example: The structure of an
interface for a targetable, compensable
command 142

65. Code example: The structure of an
implementation class for a command
interface 143

66. Code example: The structure of a
command-target entity bean 144

67. Code example: The
ModifyCheckingAccountCmd interface . 146

68. Code example: The structure of the
ModifyCheckingAccountCmdImpl class 147

69. Code example: The variables in the
ModifyCheckingAccountCmdImpl class 148

70. Code example: Constructors in the
ModifyCheckingAccountCmdImpl class 149

71. Code example: Command-specific
methods in the
ModifyCheckingAccountCmdImpl class 150

72. Code example: Methods from the
Command interface in the
ModifyCheckingAccountCmdImpl class 151

73. Code example: Methods from the
TargetableCommand interface in the
ModifyCheckingAccountCmdImpl class 152

74. Code example: Method from the
CompensableCommand interface in the
ModifyCheckingAccountCmdImpl class 153

75. Code example: Variables and
constructor in the
ModifyCheckingAccountCompensatorCmd
class 154

76. Code example: Methods in
ModifyCheckingAccountCompensatorCmd
class 155

77. Code example: Using the
ModifyCheckingAccountCmd
command 156

78. Code example: Using the
ModifyCheckingAccountCompensator
command 157

79. Code example: Using an
EJBCommandTarget bean 158

80. Code example: The remote interface for
the CheckingAccount entity bean, also
a command target 160

81. Code example: The bean class for the
CheckingAccount entity bean, also a
command target 161

vi WebSphere: Writing Enterprise Beans in WebSphere

82. Code example: The TargetPolicyDefault
class 162

83. Code example: Identifying a target
with CommandTarget 163

84. Code example: Identifying a target
with CommandTargetName 164

85. Code example: Mapping a command to
a target in an external application . . 164

86. Code example: Creating a custom
target policy 165

87. Code example: Using a custom target
policy 166

88. Code example: The structure of a
client-side adapter for a target 167

89. Code example: Instantiating the
client-side adapter 167

90. Code example: A client-side
implementation of the
executeCommand method 168

91. Code example: Running the command
in the servlet 169

92. Three elements in an English message
catalog 173

93. Three elements in a German message
catalog 173

94. Code example: Creating a
LocalizableTextFormatter object and
setting values on it 180

95. Code example: Setting the locale
programmatically 181

96. Code example: Formatting a
LocalizableTextFormatter object . . . 182

97. A message-catalog entry with a
variable substring 183

98. Code example: Formatting a message
with a variable substring 184

99. A message-catalog entry with two
variable substrings 184

100. Code example: Formatting a message
with a localizable variable substring . . 185

101. Code example: The structure of the
LocalizableTextDateTimeArgument
class 188

102. Code example: The methods in the
LocalizableTextDateTimeArgument
class 188

103. Code example: The format method in
the LocalizableTextDateTimeArgument
class 190

Figures vii

viii WebSphere: Writing Enterprise Beans in WebSphere

Tables

1. Conventions used in this book xii
2. Effect of the enterprise bean’s

transaction attribute on the transaction
context 72

3. Examples available with the EJB server 198

© Copyright IBM Corp. 1999, 2001 ix

x WebSphere: Writing Enterprise Beans in WebSphere

About this book

This document focuses on the development of enterprise beans written to the
Sun Microsystems Enterprise JavaBeans™ specification in the WebSphere™

Application Server programming environment. It also discusses development
of EJB clients that can access enterprise beans.

Who should read this book

This document is written for developers and system architects who want an
introduction to programming enterprise beans and EJB clients in WebSphere
Application Server. It is assumed that programmers are familiar with the
concepts of object-oriented programming, distributed programming, and
Web-based programming. Knowledge of the Sun Microsystems Java™

programming language is also assumed.

Document organization

This document is organized as follows:
v “Chapter 1. An architectural overview of the EJB programming

environment” on page 1 provides a high-level introduction to the EJB server
environment in WebSphere Application Server.

v “Chapter 2. An introduction to enterprise beans” on page 13 explains the
main concepts associated with enterprise beans.

v “Chapter 3. Tools for developing and deploying enterprise beans” on
page 27 explains how to set up and use the tools used in developing and
deploying enterprise beans.

v “Chapter 4. Developing enterprise beans” on page 33 explains how to
develop entity beans with container-managed persistence (CMP) and
session beans. It also provides information on how to package enterprise
beans for later deployment.

v “Chapter 5. Enabling transactions and security in enterprise beans” on
page 69 explains how to enable transactions in enterprise beans by using
the appropriate deployment descriptor attributes.

v “Chapter 6. Developing EJB clients” on page 77 explains the basic code
required by an EJB client to use an enterprise bean. This chapter covers
generic issues relevant to enterprise beans, Java applications, and Java
servlets that use enterprise beans.

v “Chapter 7. Developing servlets that use enterprise beans” on page 91
discusses the basic code required in a servlet that accesses an enterprise
bean.

© Copyright IBM Corp. 1999, 2001 xi

v “Chapter 8. More-advanced programming concepts for enterprise beans” on
page 103 explains how to develop a simple entity bean with bean-managed
persistence and discusses the basic code required of an enterprise bean that
manages its own transactions.

v “Appendix A. Changes for version 1.1 of the EJB specification” on page 193
describes features that are new or have changed in version 1.1 of the EJB
specification and discusses migration issues for enterprise beans written to
version 1.0 of the EJB specification.

v “Appendix B. Example code provided with WebSphere Application Server”
on page 197 describes the major example used throughout this book and
the additional examples that are delivered with the various editions of
WebSphere Application Server.

v “Appendix C. Extensions to the EJB Specification” on page 199 describes the
extensions to the EJB Specification that are specific to WebSphere
Application Server. Use of these extensions is supported in VisualAge for
Java only.

Related information

For further information on the topics discussed in this manual, see the
following documents:
v Getting Started with WebSphere Application Server

v Building Business Solutions with WebSphere

Conventions used in this book

This document uses the following typographical and keying conventions.

Table 1. Conventions used in this book

Convention Meaning

Bold Indicates command names. When referring to graphical user interfaces
(GUIs), bold also indicates menus, menu items, labels, and buttons.

Monospace Indicates text you must enter at a command prompt and values you must
use literally, such as commands, functions, and resource definition attributes
and their values. Monospace also indicates screen text and code examples.

Italics Indicates variable values you must provide (for example, you supply the
name of a file for fileName). Italics also indicates emphasis and the titles of
books.

Ctrl-x Where x is the name of a key, indicates a control-character sequence. For
example, Ctrl-c means hold down the Ctrl key while you press the c key.

Return Refers to the key labeled with the word Return, the word Enter, or the left
arrow.

xii WebSphere: Writing Enterprise Beans in WebSphere

Table 1. Conventions used in this book (continued)

Convention Meaning

% Represents the UNIX command-shell prompt for a command that does not
require root privileges.

Represents the UNIX command-shell prompt for a command that requires
root privileges.

C:\> Represents the Windows NT
®

command prompt.

> When used to describe a menu, shows a series of menu selections. For
example, “Click File > New” means “From the File menu, click the New
command.”

When used to describe a tree view, shows a series of folder or object
expansions. For example, “Expand Management Zones > Sample Cell and
Work Group Zone > Configuration” means:

1. Expand the Management Zones folder

2. Expand the management zone named Sample Cell and Work Group Zone

3. Expand the Configurations folder

Note: An object in a view can be expanded when there is a plus sign (+)
beside that object. After an object is expanded, the plus sign is replaced by a
minus sign (-).

+ Expands a tree structure to show more objects. To expand, click the plus sign
(+) beside any object.

- Collapses a branch of a tree structure to remove from view the objects
contained in that branch. To collapse the branch of a tree structure, click the
minus sign (-) beside the object at the head of the branch.

Entering commands When instructed to “enter” or “issue” a command, type the command and
then press Return. For example, the instruction “Enter the ls command”
means type ls at a command prompt and then press Return.

[] Enclose optional items in syntax descriptions.

{ } Enclose lists from which you must choose an item in syntax descriptions.

| Separates items in a list of choices enclosed in braces ({ }) in syntax
descriptions.

... Ellipses in syntax descriptions indicate that you can repeat the preceding
item one or more times. Ellipses in examples indicate that information was
omitted from the example for the sake of brevity.

IN In function descriptions, indicates parameters whose values are used to pass
data to the function. These parameters are not used to return modified data
to the calling routine. (Do not include the IN declaration in your code.)

OUT In function descriptions, indicates parameters whose values are used to
return modified data to the calling routine. These parameters are not used to
pass data to the function. (Do not include the OUT declaration in your code.)

About this book xiii

Table 1. Conventions used in this book (continued)

Convention Meaning

INOUT In function descriptions, indicates parameters whose values are passed to the
function, modified by the function, and returned to the calling routine. These
parameters serve as both IN and OUT parameters. (Do not include the
INOUT declaration in your code.)

$CICS Indicates the full pathname where the CICS product is installed; for example,
C:\opt\cics on Windows NT or /opt/cics on Solaris. If the environment
variable named CICS is set to the product pathname, you can use the
examples exactly as shown; otherwise, you must replace all instances of
$CICS with the CICS product pathname.

CICS on Open Systems Refers collectively to the CICS products for all supported UNIX platforms.

TXSeries CICS Refers collectively to the CICS for AIX, CICS for Solaris, and CICS for
Windows NT products.

CICS Refers generically to the CICS on Open Systems and CICS for Windows NT
products. References to a specific version of a CICS on Open Systems
product are used to highlight differences between CICS on Open Systems
products. Other CICS products in the CICS Family are distinguished by their
operating system (for example, CICS for OS/2 or IBM mainframe-based CICS
for the ESA, MVS, and VSE platforms).

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. If you have any comments about this book, send
your comments by e-mail to wasdoc@us.ibm.com. Be sure to include the name
of the book, the document number of the book, the edition and version of
WebSphere Application Server, and, if applicable, the specific location of the
information you are commenting on (for example, a page number or table
number).

xiv WebSphere: Writing Enterprise Beans in WebSphere

Chapter 1. An architectural overview of the EJB
programming environment

The World Wide Web (the Web) has transformed the way in which businesses
work with their customers. At first, it was good enough just to have a Web
home page. Then, businesses began to deploy active Web sites that allowed
customers to order products and services. Today, businesses not only need to
use the Web in all of these ways, they need to integrate their Web-based
systems with their other business systems. The IBM® WebSphere Application
Server, and specifically the support for enterprise beans, provides the model
and the tools to accomplish this integration.

Components of the EJB environment

IBM’s implementation of the Sun Microsystems Enterprise JavaBeans (EJB)
Specification enables users of the WebSphere Application Server to integrate
their Web-based systems with their other business systems. A major part of
this implementation is the WebSphere EJB server and its associated
components, which are illustrated in Figure 1.

The WebSphere EJB server environment contains the following components,
which are discussed in more detail in the specified sections:

Figure 1. The components of the EJB environment

© Copyright IBM Corp. 1999, 2001 1

v EJB server—A WebSphere EJB server contains and runs one or more
enterprise beans, which encapsulate the business logic and data used and
shared by EJB clients. The enterprise beans installed in an EJB server do not
communicate directly with the server; instead, an EJB container provides an
interface between the enterprise beans and the EJB server, providing many
low-level services such as threading, support for transactions, and
management of data storage and retrieval. For more information, see “The
EJB server”.

v Data source—There are two types of enterprise beans: session beans, which
encapsulate short-lived, client-specific tasks and objects, and entity beans,
which encapsulate permanent or persistent data. The EJB server stores and
retrieves this persistent data in a data source, which can be a database,
another application, or even a file. For more information, see “The data
source” on page 9.

v EJB clients—There are two general types of EJB clients:
– HTTP-based clients that interact with the EJB server by using either Java

servlets or JavaServer Pages™ (JSP) by way of the Hypertext Transfer
Protocol (HTTP).

– Java applications that interact directly with the EJB server by using Java
remote method invocation over the Internet Inter-ORB Protocol
(RMI/IIOP).

For more information, see “The EJB clients” on page 9.
v The administration interface—The administrative interface allows you to

manage the EJB server environment. For more information, see “The
administration interface” on page 11.

The EJB server

The EJB server is the application server tier of WebSphere Application Server’s
three-tier architecture. The EJB server has three components: the EJB server
runtime, the EJB containers, and the enterprise beans. EJB containers insulate
the enterprise beans from the underlying EJB server and provide a standard
application programming interface (API) between the beans and the container.
The EJB Specification defines this API.

Together, the EJB server and container components provide or give access to
the following services for the enterprise beans that are deployed into it:
v A tool that deploys enterprise beans. When a bean is deployed, the

deployment tool creates several classes that implement the interfaces that
make up the predeployed bean. In addition, the deployment tool generates
Java ORB, stub, and skeleton classes that enable remote method invocation.
For entity beans, the tool also generates persistor and finder classes to
handle interaction between the bean and the data source that stores the

2 WebSphere: Writing Enterprise Beans in WebSphere

bean’s persistent data. Before an enterprise bean can be deployed, the
developer must create an EJB module and associated deployment descriptor.
The deployment descriptor provides information about each enterprise bean
in the module and instructions for the container on how to handle the
beans. For more information on deployment, see “Deploying an EJB
module” on page 19.

v A security service that handles authentication and authorization for
principals that need to access resources in an EJB server environment. For
more information, see “The security service”.

v A workload management service that ensures that resources are used
efficiently. For more information, see “The workload management service”
on page 5.

v A persistence service that handles interaction between an entity bean and
its data source to ensure that persistent data is properly managed. For more
information, see “The persistence service” on page 5.

v A naming service that exports a bean’s name, as defined in the deployment
descriptor, into the name space. The EJB server uses the Java Naming and
Directory Interface™ (JNDI) to implement a naming service. For more
information, see “The naming service” on page 6.

v A transaction service that implements the transactional attributes in a bean’s
deployment descriptor. For more information, see “The transaction service”
on page 6.

The security service
When enterprise computing was handled solely by a few powerful
mainframes located at a centralized site, ensuring that only authorized users
obtained access to computing services and information was a fairly
straightforward task. In distributed computing systems where users,
application servers, and resource managers can be spread out across the
world, securing computing resources has become a much more complicated
task. Nevertheless, the underlying issues are basically the same.

Authentication and authorization
A good security service provides two main functions: authentication and
authorization.

Authentication takes place when a principal (a user or a computer process)
initially attempts to gain access to a computing resource. At that point, the
security service challenges the principal to prove that the principal is who it
claims to be. Human users typically prove who they are by entering a user ID
and password; a process normally presents an encrypted key. If the password
or key is valid, the security service gives the user a token or ticket that
identifies the principal and indicates that the principal has been authenticated.

Chapter 1. An architectural overview of the EJB programming environment 3

After a principal is authenticated, it can then attempt to use any of the
resources within the boundaries of the computing system protected by the
security service; however, a principal can use a particular computing resource
only if it has been authorized to do so. Authorization takes place when an
authenticated principal requests the use of a resource and the security service
determines if the user has been granted permission to use that resource.
Typically, authorization is handled by associating access control lists (ACLs)
with resources that define which principal (or groups of principals) are
authorized to use the resource. If the principal is authorized, it gains access to
the resource.

In a distributed computing environment, principals and resources must be
mutually suspicious of each other’s identity until both have proven that they
are who they say they are. This is necessary because principals can attempt to
falsify an identity to get access to a resource, and a resource can be a trojan
horse, attempting to get valuable information from the principal. To solve this
problem, the security service contains a security server that acts as a trusted
third party, authenticating principals and resources so that these entities can
prove their identities to each other. This security protocol is known as mutual
authentication.

Using the security server
The security service does not use the access control and run-as identity security
attributes defined in the deployment descriptor. However, it does use the
run-as mode attribute as the basis for mapping a user identity to a user
security context. For more information on this attribute, see “The deployment
descriptor” on page 17.

The main component of the security service is an EJB server that contains
security enterprise beans. When system administrators administer the security
service, they manipulate the security beans in the security EJB server.

Once an EJB client is authenticated, it can attempt to invoke methods on the
enterprise beans that it manipulates. A method is successfully invoked if the
principal associated with the method invocation has the required permissions
to invoke the method. These permissions can be set at the application level
(an administrator-defined set of Web and object resources) and at the method
group level (an administrator-defined set of Java interface/method pairs). An
application can contain multiple method groups.

In general, the principal under which a method is invoked is associated with
that invocation across multiple Web servers and EJB servers (this association is
known as delegation). Delegating the method invocations in this way ensures
that the user of an EJB client needs to authenticate only once. HTTP cookies
are used to propagate a user’s authentication information across multiple Web

4 WebSphere: Writing Enterprise Beans in WebSphere

servers. These cookies have a lifetime equal to the life of the browser session,
and a logout method is provided to destroy these cookies when the user is
finished.

For information on administering security, see the WebSphere InfoCenter and
the online help available with the WebSphere Administrative Console.

The workload management service
The workload management service improves the scalability of the EJB server
environment by grouping multiple EJB servers into server groups. Clients then
access these server groups as if they are a single EJB server, and the workload
management service ensures that the workload is evenly distributed across
the EJB servers in the server groups. An EJB server can belong to only one
server group.

The creation of server groups is an administrative task that is handled from
within the WebSphere Administrative Console. For more information on
workload management, consult the WebSphere InfoCenter and the online help
for the appropriate administrative interface.

The persistence service
There are two types of enterprise beans: session beans and entity beans.
Session beans encapsulate temporary data associated with a particular client.
Entity beans encapsulate permanent data that is stored in a data source. For
more information, see “Chapter 2. An introduction to enterprise beans” on
page 13.

The persistence service ensures that the data associated with entity beans is
properly synchronized with their corresponding data in the data source. To
accomplish this task, the persistence service works with the transaction service
to insert, update, extract, and remove data from the data source at the
appropriate times.

There are two types of entity beans: those with container-managed persistence
(CMP) and those with bean-managed persistence (BMP). In entity beans with
CMP, the persistence service handles nearly all of the tasks required to
manage persistent data. In entity beans with BMP, the bean itself handles
most of the tasks required to manage persistent data.

The persistence service uses the following components to accomplish its task:
v The Java Database Connectivity (JDBC™) API, which gives entity beans a

common interface to relational databases.
v Java transaction support, which is discussed in “Using transactions in the

EJB server environment” on page 8. The EJB server ensures that persistent
data is always handled within the appropriate transactional context.

Chapter 1. An architectural overview of the EJB programming environment 5

The naming service
In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify objects so that the clients, objects, and
resources appear to be on the same machine. A naming service provides this
mechanism. In the EJB server environment, JNDI is used to mask the actual
naming service and provide a common interface to the naming service.

JNDI provides naming and directory functionality to Java applications, but the
API is independent of any specific implementation of a naming and directory
service. This implementation independence ensures that different naming and
directory services can be used by accessing them by way of the JNDI API.
Therefore, Java applications can use many existing naming and directory
services such as the Lightweight Directory Access Protocol (LDAP), the
Domain Name Service (DNS), or the DCE Cell Directory Service (CDS).

JNDI was designed for Java applications by using Java’s object model. Using
JNDI, Java applications can store and retrieve named objects of any Java
object type. JNDI also provides methods for executing standard directory
operations, such as associating attributes with objects and searching for objects
by using their attributes.

In the EJB server environment, the deployment descriptor is used to specify
the JNDI name for an enterprise bean. When an EJB server is started, it
registers these names with JNDI.

The transaction service
A transaction is a set of operations that transforms data from one consistent
state to another. This set of operations is an indivisible unit of work, and in
some contexts, a transaction is referred to as a logical unit of work (LUW). A
transaction is a tool for distributed systems programming that simplifies
failure scenarios.

Transactions provide the ACID properties:
v Atomicity: A transaction’s changes are atomic: either all operations that are

part of the transaction happen or none happen.
v Consistency: A transaction moves data between consistent states.
v Isolation: Even though transactions can run (or be executed) concurrently, no

transaction sees another’s work in progress. The transactions appear to run
serially.

v Durability: After a transaction completes successfully, its changes survive
subsequent failures.

As an example, consider a transaction that transfers money from one account
to another. Such a transfer involves money being deducted from one account
and deposited in the other. Withdrawing the money from one account and

6 WebSphere: Writing Enterprise Beans in WebSphere

depositing it in the other account are two parts of an atomic transaction: if
both cannot be completed, neither must happen. If multiple requests are
processed against an account at the same time, they must be isolated so that
only a single transaction can affect the account at one time. If the bank’s
central computer fails just after the transfer, the correct balance must still be
shown when the system becomes available again: the change must be durable.
Note that consistency is a function of the application; if money is to be
transferred from one account to another, the application must subtract the
same amount of money from one account that it adds to the other account.

Transactions can be completed in one of two ways: they can commit or roll
back. A successful transaction is said to commit. An unsuccessful transaction is
said to roll back. Any data modifications made by a rolled back transaction
must be completely undone. In the money-transfer example, if money is
withdrawn from one account but a failure prevents the money from being
deposited in the other account, any changes made to the first account must be
completely undone. The next time any source queries the account balance, the
correct balance must be shown.

Distributed transactions and the two-phase commit process
A distributed transaction is one that runs in multiple processes, often on several
machines. Each process participates in the transaction. This is illustrated in
Figure 2, where each oval indicates work being done on a different machine,
and each arrow indicates a remote method invocation (RMI).

Distributed transactions, like local transactions, must adhere to the ACID
properties. However, maintaining these properties is greatly complicated for
distributed transactions because a failure can occur in any process, and in the
event of such a failure, each process must undo any work already done on
behalf of the transaction.

A distributed transaction processing system maintains the ACID properties in
distributed transactions by using two features:

Figure 2. Example of a distributed transaction

Chapter 1. An architectural overview of the EJB programming environment 7

v Recoverable processes: Recoverable processes are those that can restore earlier
states if a failure occurs.

v A commit protocol: A commit protocol enables multiple processes to
coordinate the committing or rolling back (aborting) of a transaction. The
most common commit protocol, and the one used by the EJB server, is the
two-phase commit protocol.

Transaction state information must be stored by all recoverable processes.
However, only processes that manage application data (such as resource
managers) must store descriptions of changes to data. Not all processes
involved in a distributed transaction need to be recoverable. In general, clients
are not recoverable because they do not interact directly with a resource
manager. Processes that are not recoverable are referred to as ephemeral
processes.

The two-phase commit protocol, as the name implies, involves two phases: a
prepare phase and a resolution phase. In each transaction, one process acts as
the coordinator. The coordinator oversees the activities of the other participants
in the transaction to ensure a consistent outcome.

In the prepare phase, the coordinator sends a message to each process in the
transaction, asking each process to prepare to commit. When a process
prepares, it guarantees that it can commit the transaction and makes a
permanent record of its work. After guaranteeing that it can commit, it can no
longer unilaterally decide to roll back the transaction. If a process cannot
prepare (that is, if it cannot guarantee that it can commit the transaction), it
must roll back the transaction.

In the resolution phase, the coordinator tallies the responses. If all participants
are prepared to commit, the transaction commits; otherwise, the transaction is
rolled back. In either case, the coordinator informs all participants of the
result. In the case of a commit, the participants acknowledge that they have
committed.

Using transactions in the EJB server environment
The enterprise bean transaction model corresponds in most respects to the
OMG OTS version 1.1. An enterprise bean instance that is transaction enabled
corresponds to an object of the OTS TransactionalObject interface. However,
the enterprise bean transaction model does not support transaction nesting.

In the EJB server environment, transactions are handled by three main
components of the transaction service:
v A transaction manager interface that enables the EJB server to control

transaction boundaries within its enterprise beans based on the
transactional attributes specified for the beans.

8 WebSphere: Writing Enterprise Beans in WebSphere

v An interface (UserTransaction) that allows an enterprise bean or an EJB
client to manage transactions. The container makes this interface available
to enterprise beans and EJB clients by way of the name service.

v Coordination by way of the X/Open XA interface that enables a
transactional resource manager (such as a database) to participate in a
transaction controlled by an external transaction manager.

For most purposes, the enterprise bean developers can delegate the tasks
involved in managing a transaction to the container. The developer performs
this delegation by setting the deployment descriptor attributes for
transactions. These attributes and their values are described in “Setting
transactional attributes in the deployment descriptor” on page 69.

In other cases, the enterprise bean developer will want or need to manage the
transactions at the bean level or involve the EJB client in the management of
transactions. For more information on this approach, see “Using
bean-managed transactions” on page 124.

The data source

Entity beans contain persistent data that must be permanently stored in a
recoverable data source. Although the EJB Specification often refers to
databases as the place to store persistent data associated with an entity bean,
it leaves open the possibility of using other data sources, including operating
system files and other applications.

If you want to let the container handle the interaction between an entity bean
and a data source, you must use the data sources supported by that container.

If you write the additional code required to handle the interaction between a
BMP entity bean and the data source, you can use any data source that meets
your needs and is compatible with the persistence service. For more
information, see “Developing entity beans with BMP” on page 103.

The EJB clients

An EJB client can take one of the following forms: it can be a Java application,
a Java servlet, a Java applet-servlet combination, or a JSP file. The EJB client
code required to access and manipulate enterprise beans is very similar across
the different Java EJB clients. EJB client developers must consider the
following issues:
v Naming and communications—A Java EJB client must use either HTTP or

RMI to communicate with enterprise beans. Fortunately, there is very little
difference in the coding required to enable communications between the

Chapter 1. An architectural overview of the EJB programming environment 9

EJB client and the enterprise bean, because JNDI masks the interaction
between the EJB client and the name service.
– Java applications communicate with enterprise beans by using RMI/IIOP.
– Java servlets and JSP files communicate with enterprise beans by using

HTTP. To use servlets with an EJB server, a Web server must be installed
and configured on a machine in the EJB server environment. For more
information, see “The Web server” on page 11.

v Threading—Java clients can be either single-threaded or multithreaded
depending on the tasks that the client needs to perform. Each client thread
that uses a service provided by a session bean must create or find a
separate instance of that bean and maintain a reference to that bean until
the thread completes; multiple client threads can access the same entity
bean.

v Security – EJB clients that access an EJB server over HTTP (for example,
servlets and JSP files) encounter the following two layers of security:
1. Universal Resource Locator (URL) security enforced by the WebSphere

Application Server Security Plug-in attached to the Web server in
collaboration with the security service.

2. Enterprise bean security enforced at the server working with the
security service.

When the user of an HTTP-based EJB client attempts to access an enterprise
bean, the Web server (using the WebSphere Server plug-in) authenticates
the user. This authentication can take the form of a request for a user ID
and password or it can happen transparently in the form of a certificate
exchange followed by the establishment of a Secure Sockets Layer (SSL)
session.

The authentication policy is governed by an additional option: secure
channel constraint. If the secure channel constraint is required, an SSL
session must be established as the final phase of authentication; otherwise,
SSL is optional.

v Transactions—Both types of Java clients can use the transaction service by
way of the JTA interfaces to manage transactions. The code required for
transaction management is identical in the two types of clients. For general
information on transactions and the Java transaction service, see “The
transaction service” on page 6. For information on managing transactions in
a Java EJB client, see “Managing transactions in an EJB client” on page 86.

10 WebSphere: Writing Enterprise Beans in WebSphere

The Web server

To access the functionality in the EJB server, Java servlets and JSP files must
have access to a Web server. The Web server enables communication between
a Web client and the EJB server. The EJB server, Web server, and Java servlet
can each reside on different machines.

For information on the Web servers supported by the EJB servers, see the
Advanced Application Server Getting Started document.

The administration interface

The EJB server uses the WebSphere Administrative Console. For more
information on this interface, consult the WebSphere InfoCenter and the
online help available with the WebSphere Administrative Console. You can
also administer the EJB server using the wscp command-line tool. For more
information, see the Advanced Edition Information Center.

Chapter 1. An architectural overview of the EJB programming environment 11

12 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 2. An introduction to enterprise beans

This chapter looks at the characteristics and purpose of enterprise beans. It
describes the two basic types of enterprise beans and their life cycles, and it
provides an example of how enterprise beans can be combined to create
distributed, three-tiered applications.

Bean basics

An enterprise bean is a Java component that can be combined with other
enterprise beans and other Java components to create a distributed,
three-tiered application. There are two types of enterprise beans:
v An entity bean encapsulates permanent data, which is stored in a data

source such as a database or a file system, and associated methods to
manipulate that data. In most cases, an entity bean must be accessed in
some transactional manner. Instances of an entity bean are unique and they
can be accessed by multiple users.
For example, the information about a bank account can be encapsulated in
an entity bean. An account entity bean might contain an account ID, an
account type (checking or savings), and a balance variable and methods to
manipulate these variables.

v A session bean encapsulates ephemeral (nonpermanent) data associated with
a particular EJB client. Unlike the data in an entity bean, the data in a
session bean is not stored in a permanent data source, and no harm is
caused if this data is lost. However, a session bean can update data in an
underlying database, usually by accessing an entity bean. A session bean
can also participate in a transaction.
When created, instances of a session bean are identical, though some
session beans can store semipermanent data that makes them unique at
certain points in their life cycle. A session bean is always associated with a
single client; attempts to make concurrent calls result in an exception being
thrown.
For example, the task associated with transferring funds between two bank
accounts can be encapsulated in a session bean. Such a transfer session
bean can find two instances of an account entity bean (by using the account
IDs), and then subtract a specified amount from one account and add the
same amount to the other account.

Entity beans
This section discusses the basics of entity beans.

© Copyright IBM Corp. 1999, 2001 13

Basic components of an entity bean
Every entity bean must have the following components, which are illustrated
in Figure 3:
v Bean class—This class encapsulates the data for the entity bean and contains

the developer-implemented business methods that access the data. It also
contains the methods used by the container to manage the life cycle of an
entity bean instance. EJB clients (whether they are other enterprise beans or
user components such as servlets) never access objects of this class directly;
instead, they use the container-generated classes associated with the home
and remote interfaces to manipulate the entity bean instance.

v Home interface—This interface defines the methods used by the client to
create, find, and remove instances of the entity bean. This interface is
implemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home
objects.

v Remote interface—Once the client has used the home interface to gain access
to an entity bean, it uses this interface to invoke indirectly the business
methods implemented in the bean class. This interface is implemented by
the container during deployment in a class known generically as the EJB
object class; instances are referred to as EJB objects.

v Primary key — One or more variables that uniquely identify a specific entity
bean instance. A primary key that consists of a single variable of a primitive
Java data type can be specified at deployment. A primary key class is used to
encapsulate primary keys that consist of multiple variables or more
complex Java data types. The primary key class also contains methods to
create primary key objects and manipulate those objects.

Figure 3. The components of an entity bean

14 WebSphere: Writing Enterprise Beans in WebSphere

Data persistence
Entity beans encapsulate and manipulate persistent (or permanent) business
data. For example, at a bank, entity beans can be used to model customer
profiles, checking and savings accounts, car loans, mortgages, and customer
transaction histories.

To ensure that this important data is not lost, the entity bean stores its data in
a data source such as a database. When the data in an enterprise bean
instance is changed, the data in the data source is synchronized with the bean
data. Of course, this synchronization takes place within the context of the
appropriate type of transaction, so that if a router goes down or a server fails,
permanent changes are not lost.

When you design an entity bean, you must decide whether you want the
enterprise bean to handle this data synchronization or whether you want the
container to handle it. An enterprise bean that handles its own data
synchronization is said to implement bean-managed persistence (BMP), while an
enterprise bean whose data synchronization is handled by the container is
said to implement container-managed persistence (CMP).

Unless you have a good reason for implementing BMP, it is recommended
that you design your entity beans to use CMP. The code for an enterprise
bean with CMP is easier to write and does not depend on any particular data
storage product, making it more portable between EJB servers. However, you
must use entity beans with BMP if you want to use a data source that is not
supported by the EJB server.

Session beans
This section discusses the basics of session beans.

Basic components of a session bean
Every session bean must have the following components, which are illustrated
in Figure 4 on page 16:
v Bean class—This class encapsulates the data associated with the session bean

and contains the developer-implemented business methods that access this
data. It also contains the methods used by the container to manage the life
cycle of an session bean instance. EJB clients (whether they are other
enterprise beans or user applications) never access objects of this class
directly; instead, they use the container-generated classes associated with
the home and remote interfaces to manipulate the session bean.

v Home interface—This interface defines the methods used by the client to
create and remove instances of the session bean. This interface is
implemented by the container during deployment in a class known
generically as the EJB home class; instances are referred to as EJB home object.

v Remote interface—After the client has used the home interface to gain access
to an session bean, it uses this interface to invoke indirectly the business

Chapter 2. An introduction to enterprise beans 15

methods implemented in the bean class. This interface is implemented by
the container during deployment in a class known generically as the EJB
object class; instances are referred to as EJB objects.

Unlike an entity bean, a session bean does not have a primary key class. A
session bean does not require a primary key class because you do not need to
search for specific instances of session beans.

Stateless versus stateful session beans
Session beans encapsulate data and methods associated with a user session,
task, or ephemeral object. By definition, the data in a session bean instance is
ephemeral; if it is lost, no real harm is done. For example, at a bank, session
beans can represent a funds transfer, the creation of a customer profile or new
account, and a withdrawal or deposit. If information about a fund transfer is
already typed (but not yet committed), and a server fails, the balances of the
bank accounts remains the same. Only the transfer data is lost, which can
always be retyped.

The manner in which a session bean is designed determines whether its data
is shorter lived or longer lived:
v If a session bean needs to maintain specific data across methods, it is

referred to as a stateful session bean. When a session bean maintains data
across methods, it is said to have a conversational state. A Web-based
shopping cart is a classic use of a stateful session bean. As the shopping
cart user adds items to and subtracts items from the shopping cart, the
underlying session bean instance must maintain a record of the contents of
the cart. After a particular EJB client begins using an instance of a stateful
session bean, the client must continue to use that instance as long as the
specific state of that instance is required. If the session bean instance is lost
before the contents of the shopping cart are committed to an order, the
shopper must load a new shopping cart.

Figure 4. The components of a session bean

16 WebSphere: Writing Enterprise Beans in WebSphere

v If a session bean does not need to maintain specific data across methods, it
is referred to as a stateless session bean. The example Transfer session bean
developed in “Developing session beans” on page 50 provides an example
of a stateless session bean. For stateless session beans, a client can use any
instance to invoke any of the session bean’s methods because all instances
are the same.

Creating an EJB module

The last step in the development of an enterprise bean is the creation of an
EJB module. An EJB module consists of the following:
v One or more deployable enterprise beans.
v A deployment descriptor, stored in an Extensible Markup Language (XML)

file. This file contains information about the structure and external
dependencies of the beans in the module, and application assembly
information describing how the beans are to be used in an application.

The EJB module can be created by using the tools within an integrated
development environment (IDE) like IBM’s VisualAge for Java Enterprise
Edition or by using the tools contained in WebSphere. For more information,
see “Chapter 3. Tools for developing and deploying enterprise beans” on
page 27.

The EJB module
The EJB module is used to assemble enterprise beans into a single deployable
unit; this file uses the standard Java archive file format. The EJB module can
contain individual enterprise beans or multiple enterprise beans. For more
information, see “Creating an EJB module and deployment descriptor” on
page 67.

The deployment descriptor
The EJB module contains one or more deployable enterprise beans and one
deployment descriptor. The deployment descriptor contains attribute and
environment settings for each bean in the module, and it defines how the
container invokes functionality for all beans in the module. The deployment
descriptor attributes can be set for the entire enterprise bean or for the
individual methods in the bean. The container uses the definition of the
bean-level attribute unless a method-level attribute is defined, in which case
the latter is used.

The deployment descriptor contains the following information about entity
and session beans. These attributes can be set on the bean only; they cannot
be set on a specific method of the bean.
v The bean’s name, class, home interfaces, remote interfaces, and bean type

(entity or session).

Chapter 2. An introduction to enterprise beans 17

v Primary key class attribute—Identifies the primary key class for the bean. For
more information, see “Writing the primary key class (entity with CMP)” on
page 47 or “Writing or selecting the primary key class (entity with BMP)”
on page 118.

v Persistence management. Specifies whether persistence management is
performed by the enterprise bean or by the container.

v Container-managed fields attribute—Lists those persistent variables in the
bean class that the container must synchronize with fields in a
corresponding data source to ensure that this data is persistent and
consistent. For more information, see “Defining variables” on page 35.

v Reentrant attribute—Specifies whether an enterprise bean can invoke
methods on itself or call another bean that invokes a method on the calling
bean. Only entity beans can be reentrant. For more information, see “Using
threads and reentrancy in enterprise beans” on page 66.

v State management attribute—Defines the conversational state of the session
bean. This attribute must be set to either STATEFUL or STATELESS. For
more information on the meaning of these conversational states, see
“Stateless versus stateful session beans” on page 16.

v Timeout attribute—Defines the idle timeout value in seconds associated with
this session bean. (This attribute is an extension to the standard deployment
descriptor.)

v References to external resources, such as resource connection factories, to
the homes of other enterprise beans, and to security roles.

The deployment descriptor contains the following application assembly
information:
v A display name and icons for identifying the module.
v The location of class files needed for a client program to access the beans in

the module.
v Security roles— Define a logical grouping of principals. Access to operations

(such as EJB methods) is controlled by granting access to a role.
v Method permissions—Define a mapping between one or more security roles

and one or more methods that a member of the role can invoke. This value
is set per method.

v Transaction attributes—Define the transactional manner in which the
container invokes a method for enterprise beans that require
container-managed transaction demarcation. This value is set per method.
The values for this attribute are described in “Chapter 5. Enabling
transactions and security in enterprise beans” on page 69.

v Transaction isolation level attribute—Defines the degree to which transactions
are isolated from each other by the container. This value is set per method.
The values for this attribute are described in “Chapter 5. Enabling

18 WebSphere: Writing Enterprise Beans in WebSphere

transactions and security in enterprise beans” on page 69. (This attribute is
an extension to the standard deployment descriptor.)

v RunAsMode and RunAsIdentity attributes—The RunAsMode attribute defines
the identity used to invoke the method. If a specific identity is required, the
RunAsIdentity attribute is used to specify that identity. This value is set per
bean. The values for the RunAsMode attribute are described in “Chapter 5.
Enabling transactions and security in enterprise beans” on page 69. (This
attribute is an extension to the standard deployment descriptor.)

The following binding attribute is stored in the repository (it is not part of the
deployment descriptor):
v JNDI home name attribute—Defines the Java Naming and Directory Interface

(JNDI) home name that is used to locate instances of an EJB home object.
This value is set per bean. The values for this repository attribute are
described in “Creating and getting a reference to a bean’s EJB object” on
page 79.

Deploying an EJB module

When you deploy an EJB module, the deployment tool creates or incorporates
the following elements:
v The container-implemented EJBObject and EJBHome classes (hereafter

referred to as the EJB object and EJB home classes) from the enterprise
bean’s home and remote interfaces (and the persistor and finder classes for
entity beans with CMP).

v The stub and skeleton files required for remote method invocation (RMI).

Figure 5 on page 20 shows a simplified version of a deployed entity bean.

Chapter 2. An introduction to enterprise beans 19

You can deploy an EJB module with a variety of different tools. For more
information, see “Chapter 3. Tools for developing and deploying enterprise
beans” on page 27.

Developing EJB applications

To create EJB applications, create the enterprise beans and EJB clients that
encapsulate your business data and functionality and then combine them
appropriately. Figure 6 on page 21 provides a conceptual illustration of how
EJB applications are created by combining one or more session beans, one or
more entity beans, or both. Although individual entity beans and session
beans can be used directly in an EJB client, session beans are designed to be
associated with clients and entity beans are designed to store persistent data,
so most EJB applications contain session beans that, in turn, access entity
beans.

Figure 5. The major components of a deployed entity bean

20 WebSphere: Writing Enterprise Beans in WebSphere

This section provides an example of the ways in which enterprise beans can
be combined to create EJB applications.

An example: enterprise beans for a bank
If you develop EJB applications for the banking industry, you can develop the
following entity beans to encapsulate your business data and associated
methods:
v Account bean—An entity bean that contains information about customer

checking and savings accounts.
v CarLoan bean—An entity bean that contains information about an

automobile loan.
v Customer bean—An entity bean that contains information about a customer,

including information on accounts held and loans taken out by the
customer.

v CustomerHistory bean—An entity bean that contains a record of customer
transactions for specified accounts.

v Mortgage bean—An entity bean that contains information about a home or
commercial mortgage.

An EJB client can directly access entity beans or session beans; however, the
EJB Specification suggests that EJB clients use session beans to in turn access
entity beans, especially in more complex applications. Therefore, as an EJB
developer for the banking industry, you can create the following session beans
to represent client tasks:
v LoanApprover bean—A session bean that allows a loan to be approved by

using instances of the CarLoan bean, the Mortgage bean, or both.

Figure 6. Conceptual view of EJB applications

Chapter 2. An introduction to enterprise beans 21

v CarLoanCreator bean—A session bean that creates a new instance of a
CarLoan bean.

v MortgageCreator bean—A session bean that creates a new instance of a
Mortgage bean.

v Deposit bean—A session bean that credits a specified amount to an existing
instance of an Account bean.

v StatementGenerator bean—A session bean that generates a statement
summarizing the activities associated with a customer’s accounts by using
the appropriate instances of the Customer and CustomerHistory entity
beans.

v Payment bean—A session bean that credits a payment to a customer’s loan
by using instances of the CarLoan bean, the Mortgage bean, or both.

v NewAccount bean—A session bean that creates a new instance of an
Account bean.

v NewCustomer bean—A session bean that creates a new instance of a
Customer bean.

v LoanReviewer bean—A session bean that accesses information about a
customer’s outstanding loans (instances of the CarLoan bean, the Mortgage
bean, or both).

v Transfer bean—A session bean that transfers a specified amount between
two existing instances of an Account bean.

v Withdraw bean—A session bean that debits a specified amount from an
existing instance of an Account bean.

This example is simplified by necessity. Nevertheless, by using this set of
enterprise beans, you can create a variety of EJB applications for different
types of users by combining the appropriate beans within that application.
One or more EJB clients can then be built to access the application.

Using the banking beans to develop EJB banking applications
When using beans built to the Sun Microsystems JavaBeans™ Specification (as
opposed to the EJB Specification), you combine predefined components such
as buttons and text fields to create GUI applications. When using enterprise
beans, you combine predefined components such as the banking beans to
create three-tiered applications.

For example, you can use the banking enterprise beans to create the following
EJB applications:
v Home Banking application—An Internet application that allows a customer

to transfer funds between accounts (with the Transfer bean), to make
payments on a loan by using funds in an existing account (with the
Payment bean), to apply for a car loan or home mortgage (with the
CarLoanCreator bean or the MortgageCreator bean).

22 WebSphere: Writing Enterprise Beans in WebSphere

v Teller application—An intranet application that allows a teller to create new
customer accounts (with the NewCustomer bean and the NewAccount
bean), transfer funds between accounts (with the Transfer bean), and record
customer deposits and withdrawals (with the Withdraw bean and the
Deposit bean).

v Loan Officer application—An intranet application that allows a loan officer
to create and approve car loans and home mortgages (with the
CarLoanCreator, MortgageCreator, LoanReviewer, and LoanApprover
beans).

v Statement Generator application—A batch application that prints monthly
customer statements related to account activity (with the
StatementGenerator bean).

These examples represent only a subset of the possible EJB applications that
can be created with the banking beans.

Life cycles of enterprise bean instances

After an enterprise bean is deployed into a container, clients can create and
use instances of that bean as required. Within the container, instances of an
enterprise bean go through a defined life cycle. The events in an enterprise
bean’s life cycle are derived from actions initiated by either the EJB client or
the container in the EJB server. You must understand this life cycle because
for some enterprise beans, you must write some of the code to handle the
different events in the enterprise bean’s life cycle.

The methods mentioned in this section are discussed in greater detail in
“Chapter 4. Developing enterprise beans” on page 33.

Session bean life cycle
This section describes the life cycle of a session bean instance. Differences
between stateful and stateless session beans are noted.

Creation state
A session bean’s life cycle begins when a client invokes a create method
defined in the bean’s home interface. In response to this method invocation,
the container does the following:
1. Creates a new memory object for the session bean instance.
2. Invokes the session bean’s setSessionContext method. (This method passes

the session bean instance a reference to a session context interface that can
be used by the instance to obtain container services and get information
about the caller of a client-invoked method.)

3. Invokes the session bean’s ejbCreate method corresponding to the create
method called by the EJB client.

Chapter 2. An introduction to enterprise beans 23

Ready state
After a session bean instance is created, it moves to the ready state of its life
cycle. In this state, EJB clients can invoke the bean’s business methods defined
in the remote interface. The actions of the container at this state are
determined by whether a method is invoked transactionally or
nontransactionally:
v Transactional method invocations—When a client invokes a transactional

business method, the session bean instance is associated with a transaction.
After a bean instance is associated with a transaction, it remains associated
until that transaction completes. (Furthermore, an error results if an EJB
client attempts to invoke another method on the same bean instance if
invoking that method causes the container to associate the bean instance
with another transaction or with no transaction.)
The container then invokes the following methods:
1. The afterBegin method, if that method is implemented by the bean class.
2. The business method in the bean class that corresponds to the business

method defined in the bean’s remote interface and called by the EJB
client.

3. The bean instance’s beforeCompletion method, if that method is
implemented by the bean class and if a commit is requested prior to the
container’s attempt to commit the transaction.

The transaction service then attempts to commit the transaction, resulting
either in a commit or a roll back. When the transaction completes, the
container invokes the bean’s afterCompletion method, passing the
completion status of the transaction (either commit or rollback).

If a rollback occurs, a stateful session bean can roll back its conversational
state to the values contained in the bean instance prior to beginning the
transaction. Stateless session beans do not maintain a conversational state,
so they do not need to be concerned about rollbacks.

v Nontransactional method invocations—When a client invokes a
nontransactional business method, the container simply invokes the
corresponding method in the bean class.

Pooled state
The container has a sophisticated algorithm for managing which enterprise
bean instances are retained in memory. When a container determines that a
stateful session bean instance is no longer required in memory, it invokes the
bean instance’s ejbPassivate method and moves the bean instance into a
reserve pool. A stateful session bean instance cannot be passivated when it is
associated with a transaction.

If a client invokes a method on a passivated instance of a stateful session
bean, the container activates the instance by restoring the instance’s state and

24 WebSphere: Writing Enterprise Beans in WebSphere

then invoking the bean instance’s ejbActivate method. When this method
returns, the bean instance is again in the ready state.

Because every stateless session bean instance of a particular type is the same
as every other instance of that type, stateless session bean instances are not
passivated or activated. These instances exist in a ready state at all times until
their removal.

Removal state
A session bean’s life cycle ends when an EJB client or the container invokes a
remove method defined in the bean’s home interface and remote interface. In
response to this method invocation, the container calls the bean instance’s
ejbRemove method.

If you attempt to remove a bean instance while it is associated with a
transaction, the javax.ejb.RemoveException is thrown. After a bean instance is
removed, any attempt to invoke a method on that instance causes the
java.rmi.NoSuchObjectException to be thrown.

A container can implicitly call a remove method on an instance after the
lifetime of the EJB object has expired. The lifetime of a session EJB object is set
in the deployment descriptor with the timeout attribute.

For more information on the remove methods, see “Removing a bean’s EJB
object” on page 86.

Entity bean life cycle
This section describes the life cycle of entity bean instances. Differences
between entity beans with CMP and BMP are noted.

Creation State
An entity bean instance’s life cycle begins when the container creates that
instance. After creating a new entity bean instance, the container invokes the
instance’s setEntityContext method. This method passes the bean instance a
reference to an entity context interface that can be used by the instance to
obtain container services and get information about the caller of a
client-invoked method.

Pooled State
After an entity bean instance is created, it is placed in a pool of available
instances of the specified entity bean class. While the instance is in this pool,
it is not associated with a specific EJB object. Every instance of the same
enterprise bean class in this pool is identical. While an instance is in this
pooled state, the container can use it to invoke any of the bean’s finder
methods.

Chapter 2. An introduction to enterprise beans 25

Ready State
When a client needs to work with a specific entity bean instance, the container
picks an instance from the pool and associates it with the EJB object initialized
by the client. An entity bean instance is moved from the pooled to the ready
state if there are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the
pooled state to the ready state:
v When a client invokes the create method in the bean’s home interface to

create a new and unique entity of the entity bean class (and a new record in
the data source). As a result of this method invocation, the container calls
the bean instance’s ejbCreate and ejbPostCreate methods, and the new EJB
object is associated with the bean instance.

v When a client invokes a finder method to manipulate an existing instance
of the entity bean class (associated with an existing record in the data
source). In this case, the container calls the bean instance’s ejbActivate
method to associate the bean instance with the existing EJB object.

When an entity bean instance is in the ready state, the container can invoke
the instance’s ejbLoad and ejbStore methods to synchronize the data in the
instance with the corresponding data in the data source. In addition, the client
can invoke the bean instance’s business methods when the instance is in this
state. All interactions required to handle an entity bean instance’s business
methods in the appropriate transactional (or nontransactional) manner are
handled by the container.

When a container determines that an entity bean instance in the ready state is
no longer required, it moves the instance to the pooled state. This transition to
the pooled state results from either of the following events:
v When the container invokes the ejbPassivate method.
v When the EJB client invokes a remove method on the EJB object or on the

EJB home object. When one of these methods is called, the underlying
entity is removed permanently from the data source.

Removal State
An entity bean instance’s life cycle ends when the container invokes the
unsetEntityContext method on an entity bean instance in the pooled state. Do
not confuse the removal of an entity bean instance with the removal of the
underlying entity whose data is stored in the data source. The former simply
removes an uninitialized object; the latter removes data from the data source.

For more information on the remove methods, see “Removing a bean’s EJB
object” on page 86.

26 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 3. Tools for developing and deploying enterprise
beans

There are two basic approaches to developing and deploying enterprise beans:
v You can use one of the available integrated development environments

(IDEs) such as IBM VisualAge™ for Java Enterprise Edition. IDE tools
automatically generate significant parts of the enterprise bean code and
contain integrated tools for packaging and testing enterprise beans.
VisualAge for Java is the recommended development tool. For more
information on using VisualAge for Java, see “Using VisualAge for Java”.

v You can use the tools available in the Java Software Development Kit (SDK)
and the Advanced Application Server. For more information, see
“Developing and deploying enterprise beans” on page 28.

Using VisualAge for Java

Before you can develop enterprise beans in VisualAge for Java, you must set
up the EJB development environment. You need to perform this setup task
only once. This setup procedure directs VisualAge for Java to import all of the
classes and interfaces required to develop enterprise beans.

After generating an enterprise bean, you complete its development by
following these general steps:
1. Implement the enterprise bean class.
2. Create the required abstract methods in the bean’s home and remote

interfaces by promoting the corresponding methods in the bean class to
the appropriate interface.

3. For entity beans, do the following:
a. Create any additional finder methods in the home interface by using

the appropriate menu items.
b. Create a finder helper interface, if required.

4. Create the EJB module and corresponding deployment descriptor.
5. Generate the deployment code for the bean.

VisualAge for Java contains a complete WebSphere Application Server run
time environment and a mechanism to generate a test client to test your
enterprise beans. For much more detailed information on developing
enterprise beans in VisualAge for Java, refer to the VisualAge for Java
documentation.

© Copyright IBM Corp. 1999, 2001 27

Developing and deploying enterprise beans

If you have decided to develop enterprise beans without an IDE, you need at
minimum the following tools:
v An ASCII text editor. (You can use also use a Java development tool that

does not support enterprise bean development.)
v The SDK Java compiler (javac) and Java Archiving tool (jar).
v The WebSphere Application Assembly Tool and the WebSphere

Administrative Console.

This section describes steps you can follow to develop enterprise beans by
using these tools. The following tasks are involved in the development of
enterprise beans:
1. Ensure that you have installed and configured the prerequisite software to

develop, deploy, and run enterprise beans in the EJB server environment.
For more information, see “Installing and configuring the software for the
EJB server”.

2. Set the CLASSPATH environment variable required by different
components of the EJB server environment. For more information, see
“Setting the CLASSPATH environment variable in the EJB server
environment” on page 29.

3. Write and compile the components of the enterprise bean. For more
information, see “Creating the components of an enterprise bean” on
page 29.

4. (Entity beans with CMP only) Create a finder helper interface for each entity
bean with CMP that contains specialized finder methods (other than the
findByPrimaryKey method). For more information, see “Creating finder
logic in the EJB server” on page 30.

5. Create an EJB module and corresponding deployment descriptor by using
the Application Assembly Tool. For more information, see “Creating an
EJB module” on page 30.

6. (Entity beans only) Create a database schema to enable storage of the entity
bean’s persistent data in a database. For more information, see “Creating a
database for use by entity beans” on page 31.

7. Generate deployment code for the EJB module by using the Application
Assembly Tool. For more information, see the WebSphere InfoCenter and
the online help available with the Application Assembly Tool.

8. Install the EJB module into an EJB server and start the server by using the
WebSphere Administrative Console.

Installing and configuring the software for the EJB server
You must ensure that you have installed and configured the following
prerequisite software products before you can begin developing enterprise
beans and EJB clients with the EJB server:

28 WebSphere: Writing Enterprise Beans in WebSphere

v WebSphere Application Server Advanced Edition
v One or more of the following databases for use by entity beans with

container-managed persistence (CMP):
– DB2
– Oracle
– Sybase
– Informix
– Microsoft SQL Server
– InstantDB

v The Java Software Development Kit (SDK)

For information on the appropriate version numbers of these products and
instructions for setting up the environment, see the WebSphere InfoCenter.

Setting the CLASSPATH environment variable in the EJB server
environment

In addition to the classes.zip file contained in the SDK, the following
WebSphere JAR files must be appended to the CLASSPATH environment
variable for developing enterprise beans:
v ejs.jar
v ujc.jar
v otherDeployedBean.jar (if the enterprise bean uses another enterprise bean).

This is the deployed JAR file containing the enterprise bean being used by
this enterprise bean.

For developing and running an EJB client, the following WebSphere JAR files
must be appended to the CLASSPATH environment variable:
v ejs.jar
v ujc.jar
v servlet.jar (required by EJB clients that are servlets)
v otherDeployedBean.jar. This is the deployed JAR file containing the enterprise

bean being used by this EJB client.

Creating the components of an enterprise bean
If you use an ASCII text editor or a Java development tool that does not
support enterprise bean development, you must create each of the
components that compose the enterprise bean you are creating. You must
ensure that these components match the requirements described in
“Chapter 4. Developing enterprise beans” on page 33.

To manually develop a session bean, you must write the bean class, the bean’s
home interface, and the bean’s remote interface. To manually develop an

Chapter 3. Tools for developing and deploying enterprise beans 29

entity bean, you must write the bean class, the bean’s primary key class, the
bean’s home interface, the bean’s remote interface, and if necessary, the bean’s
finderHelper interface.

After you have properly coded these components, use the Java compiler to
create the corresponding Java class files. For example, because the components
of the example Account bean are stored in a specific directory, the bean
components can be compiled by issuing the following command:
C:\MYBEANS\COM\IBM\EJS\DOC\ACCOUNT> javac *.java

This command assumes that the CLASSPATH environment variable contains
all of the packages used by the Account bean.

Creating finder logic in the EJB server
For the EJB server environment, the following finder logic is required for each
finder method (other than the findByPrimaryKey method) contained in the
home interface of an entity bean with CMP:
v The logic must be defined in a public interface named

NameBeanFinderHelper, where Name is the name of the enterprise bean (for
example, AccountBeanFinderHelper).

v The logic must be contained in a String constant named
findMethodNameWhereClause, where findMethodName is the name of the
finder method. The String constant can contain zero or more question
marks (?) that are replaced from left to right with the value of the finder
method’s arguments when that method is invoked.

Note: Encapsulating the logic in a String constant named
findMethodNameQueryString has been deprecated.

If you define the findLargeAccounts method shown in Figure 14 on page 45,
you must also create the AccountBeanFinderHelper interface shown in
Figure 7.

Creating an EJB module
The WebSphere Application Server Application Assembly Tool can be used to
create an EJB module. An EJB module can contain one or more enterprise
beans. The tool automatically creates the required deployment descriptor for
the module based on information specified by the user.

...
public interface AccountBeanFinderHelper{

String findLargeAccountsWhereClause = "balance > ?";
}

Figure 7. Code example: AccountBeanFinderHelper interface for the EJB server

30 WebSphere: Writing Enterprise Beans in WebSphere

Using the Application Assembly Tool
To create an EJB module and corresponding deployment descriptor, use the
Create EJB Module wizard in the Application Assembly Tool. This wizard
prompts you to specify the following information for each enterprise bean to
be included in the module:
v The enterprise bean class, home interface class, and remote interface class.
v The bean type (entity or session), and associated attributes (such as

persistence management type and primary key class for entity beans).
v References to another enterprise bean’s home interface and to resource

connection factories.
v References to security roles for the enterprise bean.
v CMP fields, if applicable.
v Transaction isolation level attributes for enterprise bean methods.

The wizard also prompts you to specify the following application assembly
information for the module itself:
v General properties of the EJB module, such as the location of class files

needed for a client program to access the enterprise beans in the module
and the icons to be associated with the module.

v The deployable enterprise beans that the module will contain.
v Security roles used to access resources in the module.
v Transaction attributes for the enterprise bean methods.

Both bean and module information are used to create the deployment
descriptor. See the WebSphere InfoCenter and the online help for details on
how to use the Application Assembly Tool.

Creating a database for use by entity beans
For entity beans with container-managed persistence (CMP), you must store the
bean’s persistent data in one of the supported databases. The Application
Assembly Tool automatically generates SQL code for creating database tables
for CMP entity beans. The tool names the database schema and table
ejb.beanNamebeantbl, where beanName is the name of the enterprise bean (for
example, ejb.accountbeantbl). If your CMP entity beans require complex
database mappings, it is recommended that you use VisualAge for Java to
generate code for the database tables. At run time, the WebSphere
Administrative Console displays a prompt asking whether you want to
execute the generated SQL code that creates the database table.

For entity beans with bean-managed persistence (BMP), you can create the
database and database table by using the database tools or use an existing
database and database table. Because entity beans with BMP handle the
database interaction, any database or database table name is acceptable.

Chapter 3. Tools for developing and deploying enterprise beans 31

For more information on creating databases and database tables, consult your
database documentation and the online help for the WebSphere
Administrative Console.

32 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 4. Developing enterprise beans

This chapter explains the basic tasks required to develop and package the
most common types of enterprise beans. Specifically, this chapter focuses on
creating stateless session beans and entity beans that use container-managed
persistence (CMP); in the discussion of stateless session beans, important
information about stateful beans is also provided. For information on
developing entity beans that use bean-managed persistence (BMP), see
“Developing entity beans with BMP” on page 103.

The information in this chapter is not exhaustive; however, it includes the
information you need to develop basic enterprise beans. For information on
developing more complicated enterprise beans, consult a commercially
available book on enterprise bean development. The example enterprise beans
discussed in this chapter and the example Java applications and servlets that
use them are described in “Information about the examples described in the
documentation” on page 197.

This chapter describes the requirements for building each of the major
components of an enterprise bean. If you do not intend to use one of the
commercially available integrated development environments (IDE), such as
IBM’s VisualAge for Java, you must build each of these components manually
(by using tools in the Java Development Kit and WebSphere). Manually
developing enterprise beans is much more difficult and error-prone than
developing them in an IDE. Therefore, it is strongly recommended that you
choose an IDE with which you are comfortable.

Developing entity beans with CMP

In an entity bean with CMP, the container handles the interactions between
the entity bean and the data source. In an entity bean with BMP, the entity
bean must contain all of the code required for the interactions between the
entity bean and the data source. For this reason, developing an entity bean
with CMP is simpler than developing an entity bean with BMP.

This section examines the development of entity beans with CMP. While much
of the information in this section also applies to entity beans with BMP, there
are some major differences between the two types. For information on the
tasks required to develop an entity bean with BMP, see “Developing entity
beans with BMP” on page 103.

Every entity bean must contain the following basic parts:

© Copyright IBM Corp. 1999, 2001 33

v The enterprise bean class. For more information, see “Writing the enterprise
bean class (entity with CMP)”.

v The enterprise bean’s home interface. For more information, see “Writing
the home interface (entity with CMP)” on page 43.

v The enterprise bean’s remote interface. For more information, see “Writing
the remote interface (entity with CMP)” on page 46.

v The enterprise bean’s primary key class. For more information, see “Writing
the primary key class (entity with CMP)” on page 47.

Writing the enterprise bean class (entity with CMP)
In a CMP entity bean, the bean class defines and implements the business
methods of the enterprise bean, defines and implements the methods used to
create instances of the enterprise bean, and implements the methods used by
the container to inform the instances of the enterprise bean of significant
events in the instance’s life cycle. Enterprise bean clients never access the bean
class directly; instead, the classes that implement the home and remote
interfaces are used to indirectly invoke the methods defined in the bean class.

By convention, the enterprise bean class is named NameBean, where Name is
the name you assign to the enterprise bean. The enterprise bean class for the
example Account enterprise bean is named AccountBean.

Every entity bean class with CMP must meet the following requirements:
v It must be public, it must not be abstract, and it must implement the

javax.ejb.EntityBean interface. For more information, see “Implementing the
EntityBean interface” on page 41.

v It must define instance variables that correspond to persistent data
associated with the enterprise bean. For more information, see “Defining
variables” on page 35.

v It must implement the business methods used to access and manipulate the
data associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 36.

v It must define and implement an ejbCreate method for each way in which
the enterprise bean can be instantiated. A corresponding ejbPostCreate
method must be defined for each ejbCreate method. For more information,
see “Implementing the ejbCreate and ejbPostCreate methods” on page 39.

Note:

The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the
this variable as a method argument.

34 WebSphere: Writing Enterprise Beans in WebSphere

An enterprise bean class cannot implement two different interfaces if
the methods in the interfaces have the same name, even if the methods
have different signatures, due to the Java-IDL mapping specification.
Errors can occur when the enterprise bean is deployed.

Figure 8 shows the main parts of the enterprise bean class for the example
Account enterprise bean. (Emphasized code is in bold type.) The sections that
follow discuss these parts in greater detail.

Defining variables
An entity bean class can contain both persistent and nonpersistent instance
variables; however, static variables are not supported in enterprise beans
unless they are also final (that is, they are constants). Static variables are not
supported because there is no way to guarantee that they remain consistent
across enterprise bean instances.

Container-managed fields (which are persistent variables) are stored in a
database. Container-managed fields must be public.

Nonpersistent variables are not stored in a database and are temporary.
Nonpersistent variables must be used with caution and must not be used to
maintain the state of an EJB client between method invocations. This
restriction is necessary because nonpersistent variables cannot be relied on to
remain the same between method invocations outside of a transaction because
other EJB clients can change these variables, or they can be lost when the
entity bean is passivated.

The AccountBean class contains three container-managed fields (shown in
Figure 9 on page 36):
v accountId, which identifies the account ID associated with an account
v type, which identifies the account type as either savings (1) or checking (2)
v balance, which identifies the current balance of the account

...
import java.util.Properties;
import javax.ejb.*;
import java.lang.*;
public class AccountBean implements EntityBean {

// Set instance variables here
...
// Implement methods here
...

}

Figure 8. Code example: The AccountBean class

Chapter 4. Developing enterprise beans 35

The deployment descriptor is used to identify container-managed fields in
entity beans with CMP. In an entity bean with CMP, each container-managed
field must be initialized by each ejbCreate method (see “Implementing the
ejbCreate and ejbPostCreate methods” on page 39).

A subset of the container-managed fields is used to define the primary key
class associated with each instance of an enterprise bean. As is shown in
“Writing the primary key class (entity with CMP)” on page 47, the accountId
variable defines the primary key for the Account enterprise bean.

The AccountBean class contains two nonpersistent variables:
v entityContext, which identifies the entity context of each instance of an

Account enterprise bean. The entity context can be used to get a reference
to the EJB object currently associated with the bean instance and to get the
primary key object associated with that EJB object.

v bundle, which encapsulates a resource bundle class
(com.ibm.ejs.doc.account.AccountResourceBundle) that contains
locale-specific objects used by the Account bean.

Implementing the business methods
The business methods of an entity bean class define the ways in which the
data encapsulated in the class can be manipulated. The business methods
implemented in the enterprise bean class cannot be directly invoked by an EJB
client. Instead, the EJB client invokes the corresponding methods defined in
the enterprise bean’s remote interface, by using an EJB object associated with
an instance of the enterprise bean, and the container invokes the
corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean
class, a corresponding method must be defined in the enterprise bean’s
remote interface. The enterprise bean’s remote interface is implemented by the
container in the EJB object class when the enterprise bean is deployed.

...
public class AccountBean implements EntityBean {

private EntityContext entityContext = null;
private ListResourceBundle bundle =

ResourceBundle.getBundle(
"com.ibm.ejs.doc.account.AccountResourceBundle");

public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...

}

Figure 9. Code example: The variables of the AccountBean class

36 WebSphere: Writing Enterprise Beans in WebSphere

Figure 10 on page 38 shows the business methods for the AccountBean class.
These methods are used to add a specified amount to an account balance and
return the new balance (add), to return the current balance of an account
(getBalance), to set the balance of an account (setBalance), and to subtract a
specified amount from an account balance and return the new balance
(subtract).

The subtract method throws the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException if a client attempts to
subtract more money from an account than is contained in the account
balance. The subtract method in the Account bean’s remote interface must
also throw this exception as shown in Figure 15 on page 47. User-defined
exception classes for enterprise beans are created as are any other user-defined
exception class. The message content for the InsufficientFundsException
exception is obtained from the AccountResourceBundle class file by invoking
the getMessage method on the bundle object.

Note: If an enterprise bean container catches a system exception from the
business method of an enterprise bean, and the method is running
within a container-managed transaction, the container rolls back the
transaction before passing the exception on to the client. However, if
the business method is throwing an application exception, then the
transaction is not rolled back (it is committed), unless the application
has called setRollbackOnly function. In this case, the transaction is
rolled back before the exception is re-thrown.

Chapter 4. Developing enterprise beans 37

Standard application exceptions for entity beans
Version 1.1 of the EJB specification defines several standard application
exceptions for use by enterprise beans. All of these exceptions are subclasses
of the javax.ejb.EJBException class. For entity beans with both container- and
bean-managed persistence, the EJB specification defines the following
application exceptions:
v javax.ejb.CreateException
v javax.ejb.DuplicateKeyException
v javax.ejb.RemoveException
v javax.ejb.FinderException
v javax.ejb.ObjectNotFoundException

Application programmers can use the generic EJBException class or one of the
provided subclassed exceptions, or programmers can define their own
exceptions by subclassing any of this family of exceptions. All of these

...
public class AccountBean implements EntityBean {

...
public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...
public float add(float amount) {

balance += amount;
return balance;

}
...
public float getBalance() {

return balance;
}
...
public void setBalance(float amount) {

balance = amount;
}
...
public float subtract(float amount) throws InsufficientFundsException {

if(balance < amount) {
throw new InsufficientFundsException(

bundle.getMessage("insufficientFunds"));
}
balance -= amount;
return balance;

}
...

}

Figure 10. Code example: The business methods of the AccountBean class

38 WebSphere: Writing Enterprise Beans in WebSphere

exceptions inherit from the javax.ejb.RuntimeException class and do not have
to be explicitly declared in throws clauses.

Each exception is discussed in more detail within the relevant section; for
more information on:
v CreateException and DuplicateKeyException (a subclass of the

CreateException class), see “Implementing the ejbCreate and ejbPostCreate
methods”.

v javax.ejb.RemoveException, see “Implementing the EntityBean interface” on
page 41.

v FinderException and ObjectNotFoundException (a subclass of the
FinderException class), see “Defining finder methods” on page 45.

Note: Version 1.0 of the EJB specification used the java.rmi.RemoteException
class to capture application-specific exceptions; the EJBException class
and its subclasses are new in the 1.1 version of the specification.
Therefore, using the RemoteException class is now deprecated in favor
of the more precise exception classes. Older applications that use the
RemoteException class can still run, but enterprise beans compliant
with version 1.1 of the specification must use the new exception classes.

Implementing the ejbCreate and ejbPostCreate methods
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created. For each
ejbCreate method, you must also define a corresponding ejbPostCreate
method. Each ejbCreate and ejbPostCreate method must correspond to a
create method in the home interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate
methods cannot be invoked directly by the client. Instead, the client invokes
the create method of the enterprise bean’s home interface by using the EJB
home object, and the container invokes the ejbCreate method followed by the
ejbPostCreate method. If the ejbCreate and ejbPostCreate methods are
executed successfully, an EJB object is created and the persistent data
associated with that object is inserted into the data source.

For an entity bean with CMP, the container handles the required interaction
between the entity bean instance and the data source between calls to the
ejbCreate and ejbPostCreate methods. For an entity bean with BMP, the
ejbCreate method must contain the code to directly handle this interaction.
For more information on entity beans with BMP, see “Developing entity beans
with BMP” on page 103.

Each ejbCreate method in an entity bean with CMP must meet the following
requirements:

Chapter 4. Developing enterprise beans 39

v It must be public and return the same type as the primary key. The actual
return value must be null.

v Its arguments must be valid for Java remote method invocation (RMI). For
more information, see “The java.io.Serializable and java.rmi.Remote
interfaces” on page 66.

v It must initialize the container-managed fields of the enterprise bean
instance. The container extracts the values of these variables and writes
them to the data source after the ejbCreate method returns.

Each ejbPostCreate method must be public, return void, and have the same
arguments as the matching ejbCreate method.

If necessary, both the ejbCreate method and the ejbPostCreate method can
throw the javax.ejb.EJBException exception or one of the creation-related
subclasses, the CreateException or the DuplicateKeyException exceptions. The
DuplicateKeyException class is a subclass of the CreateException class.
Throwing the java.rmi.RemoteException exception is deprecated; see
“Standard application exceptions for entity beans” on page 38 for more
information.

Figure 11 on page 41 shows two sets of ejbCreate and ejbPostCreate methods
required for the example AccountBean class. The first set of ejbCreate and
ejbPostCreate methods are wrappers that call the second set of methods and
set the type variable to 1 (corresponding to a savings account) and the balance
variable to 0 (zero dollars).

40 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the EntityBean interface
Each entity bean class must implement the methods inherited from the
javax.ejb.EntityBean interface. The container invokes these methods to inform
the bean instance of significant events in the instance’s life cycle. (For more
information, see “Entity bean life cycle” on page 25.) All of these methods
must be public and return void; they can throw the javax.ejb.EJBException
exception or, in the case of the ejbRemove method, the
javax.ejb.RemoveException exception. Throwing the java.rmi.RemoteException
exception is deprecated; see “Standard application exceptions for entity beans”
on page 38 for more information.
v ejbActivate—This method is invoked by the container when the container

selects an entity bean instance from the instance pool and assigns that
instance to a specific existing EJB object. This method must contain any
code that you want to execute when the enterprise bean instance is
activated.

v ejbLoad—This method is invoked by the container to synchronize an entity
bean’s container-managed fields with the corresponding data in the data
source. (That is, the values of the fields in the data source are loaded into
the container-managed fields in the corresponding enterprise bean instance.)

...
public class AccountBean implements EntityBean {

...
public long accountId = 0;
public int type = 1;
public float balance = 0.0f;
...
public Integer ejbCreate(AccountKey key) {

ejbCreate(key, 1, 0.0f);
}
...
public Integer ejbCreate(AccountKey key, int type, float initialBalance)
throws EJBException {

accountId = key.accountId;
type = type;
balance = initialBalance;

}
...
public void ejbPostCreate(AccountKey key)
throws EJBException {

ejbPostCreate(key, 1, 0);
}
...
public void ejbPostCreate(AccountKey key, int type, float initialBalance) { }
...

}

Figure 11. Code example: The ejbCreate and ejbPostCreate methods of the AccountBean class

Chapter 4. Developing enterprise beans 41

This method must contain any code that you want to execute when the
enterprise bean instance is synchronized with associated data in the data
source.

v ejbPassivate—This method is invoked by the container when the container
disassociates an entity bean instance from its EJB object and places the
enterprise bean instance in the instance pool. This method must contain any
code that you want to execute when the enterprise bean instance is
″passivated″ or deactivated.

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface from
the javax.ejb.EJBHome interface. This method must contain any code that
you want to execute before an enterprise bean instance is removed from the
container (and the associated data is removed from the data source). This
method can throw the javax.ejb.RemoveException exception if removal of
an enterprise bean instance is not permitted.

v setEntityContext—This method is invoked by the container to pass a
reference to the javax.ejb.EntityContext interface to an enterprise bean
instance. If an enterprise bean instance needs to use this context at any time
during its life cycle, the enterprise bean class must contain an instance
variable to store this value. This method must contain any code required to
store a reference to a context.

v ejbStore—This method is invoked by the container when the container
needs to synchronize the data in the data source with the values of the
container-managed fields in an enterprise bean instance. (That is, the values
of the variables in the enterprise bean instance are copied to the data
source, overwriting the previous values.) This method must contain any
code that you want to execute when the data in the data source is
overwritten with the corresponding values in the enterprise bean instance.

v unsetEntityContext—This method is invoked by the container, before an
enterprise bean instance is removed, to free up any resources associated
with the enterprise bean instance. This is the last method called prior to
removing an enterprise bean instance.

In entity beans with CMP, the container handles the required data source
interaction for these methods. In entity beans with BMP, these methods must
directly handle the required data source interaction. For more information on
entity beans with BMP, see “Chapter 8. More-advanced programming concepts
for enterprise beans” on page 103.

These methods have several possible uses, including the following:
v They can contain audit or debugging code.
v They can contain code for allocating and deallocating additional resources

used by the bean instance (for example, an SNA connection to a
mainframe).

42 WebSphere: Writing Enterprise Beans in WebSphere

As shown in Figure 12, except for the setEntityContext and unsetEntityContext
methods, all of these methods are empty in the AccountBean class because no
additional action is required by the bean for the particular life cycle states
associated with the these methods. The setEntityContext and
unsetEntityContext methods are used in a conventional way to set the value
of the entityContext variable.

Writing the home interface (entity with CMP)
An entity bean’s home interface defines the methods used by clients to create
new instances of the bean, find and remove existing instances, and obtain
metadata about an instance. The home interface is defined by the enterprise
bean developer and implemented in the EJB home class created by the
container during enterprise bean deployment.

The container makes the home interface accessible to enterprise bean clients
through the Java Naming and Directory Interface (JNDI). JNDI is independent
of any specific naming and directory service and allows Java-based
applications to access any naming and directory service in a standard way.

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the Account enterprise
bean’s home interface is named AccountHome.

Every home interface must meet the following requirements:

...
public class AccountBean implements EntityBean {

private EntityContext entityContext = null;
...
public void ejbActivate() throws EJBException { }
...
public void ejbLoad () throws EJBException { }
...
public void ejbPassivate() throws EJBException { }
...
public void ejbRemove() throws EJBException { }
...
public void ejbStore () throws EJBException { }
...
public void setEntityContext(EntityContext ctx) throws EJBException {

entityContext = ctx;
}
...
public void unsetEntityContext() throws EJBException {

entityContext = null;
}

}

Figure 12. Code example: Implementing the EntityBean interface in the AccountBean class

Chapter 4. Developing enterprise beans 43

v It must extend the javax.ejb.EJBHome interface. The home interface inherits
several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 65 for information on these methods.

v Each method in the interface must be either a create method that
corresponds to a set of ejbCreate and ejbPostCreate methods in the EJB
object class, or a finder method. For more information, see “Defining create
methods” and “Defining finder methods” on page 45.

v The parameters and return value of each method defined in the home
interface must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 13 shows the relevant parts of the definition of the home interface
(AccountHome) for the example Account bean. This interface defines two
abstract create methods: the first creates an Account object by using an
associated AccountKey object, the second creates an Account object by using
an associated AccountKey object and specifying an account type and an initial
balance. The interface defines the required findByPrimaryKey method and a
findLargeAccounts method, which returns a collection of accounts containing
balances greater than a specified amount.

Defining create methods
A create method is used by a client to create an enterprise bean instance and
insert the data associated with that instance into the data source. Each create
method must be named create and it must have the same number and types

...
import java.rmi.*;
import java.util.*;
import javax.ejb.*;
public interface AccountHome extends EJBHome {

...
Account create (AccountKey id) throws CreateException, RemoteException;
...
Account create(AccountKey id, int type, float initialBalance)

throws CreateException, RemoteException;
...
Account findByPrimaryKey (AccountKey id)

RemoteException, FinderException;
...
Enumeration findLargeAccounts(float amount)

throws RemoteException, FinderException;
}

Figure 13. Code example: The AccountHome home interface

44 WebSphere: Writing Enterprise Beans in WebSphere

of arguments as a corresponding ejbCreate method in the enterprise bean
class. (The ejbCreate method must itself have a corresponding ejbPostCreate
method.)

Each create method must meet the following requirements:
v It must be named create.
v It must return the type of the enterprise bean’s remote interface. For

example, the return type for the create methods in the AccountHome
interface is Account (as shown in Figure 13 on page 44).

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception, and all of the application
exceptions defined in the throws clause of the corresponding ejbCreate and
ejbPostCreate methods.

Defining finder methods
A finder method is used to find one or more existing entity EJB objects. Each
finder method must be named findName, where Name further describes the
finder method’s purpose.

At minimum, each home interface must define the findByPrimaryKey method
that enables a client to locate an EJB object by using the primary key only. The
findByPrimaryKey method has one argument, an object of the bean’s primary
key class, and returns the type of the bean’s remote interface.

Every other finder method must meet the following requirements:
v It must return the type of the enterprise bean’s remote interface, the

java.util.Enumeration interface, or the java.util.Collection interface (when a
finder method can return more than one EJB object or an EJB collection).

v It must have a throws clause that includes the java.rmi.RemoteException
and javax.ejb.FinderException exception classes.

While every entity bean must contain the default finder method, you can
write additional finder methods if needed. For example, the Account bean’s
home interface defines the findLargeAccounts method to find objects that
encapsulate accounts with balances of more than a specified amount, as
shown in Figure 14. Because this finder method can be expected to return a
reference to more than one EJB object, its return type is Enumeration.

Enumeration findLargeAccounts(float amount)
throws RemoteException, FinderException;

Figure 14. Code example: The findLargeAccounts method

Chapter 4. Developing enterprise beans 45

Every EJB server can implement the findByPrimaryKey method. During
enterprise bean deployment, the container generates the code required to
search the database for the appropriate enterprise bean instance.

However, for each additional finder method that you define in the home
interface, the enterprise bean deployer must associate finder logic with that
finder method. This logic is used by the EJB server during deployment to
generate the code required to implement the finder method.

The EJB Specification does not define the format of the finder logic, so the
format can vary according to the EJB server you are using. For more
information on creating finder logic, see “Creating finder logic in the EJB
server” on page 30.

Writing the remote interface (entity with CMP)
An entity bean’s remote interface provides access to the business methods
available in the bean class. It also provides methods to remove an EJB object
associated with a bean instance and to obtain the bean instance’s home
interface, object handle, and primary key. The remote interface is defined by
the enterprise bean developer and implemented in the EJB object class created
by the container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the Account enterprise bean’s
remote interface is named Account.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The enterprise bean’s

remote interface inherits several methods from the javax.ejb.EJBObject
interface. See “Methods inherited from javax.ejb.EJBObject” on page 65 for
information on these methods.

v You must define a corresponding business method for every business
method implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 15 on page 47 shows the relevant parts of the definition of the remote
interface (Account) for the example Account enterprise bean. This interface
defines four methods for displaying and manipulating the account balance
that exactly match the business methods implemented in the AccountBean
class.

46 WebSphere: Writing Enterprise Beans in WebSphere

All of the business methods in the remote interface throw the
java.rmi.RemoteException exception class. In addition, the subtract method
must throw the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException because the corresponding
method in the bean class throws this exception. Furthermore, any client that
calls this method must either handle the exception or pass it on by throwing
it.

Writing the primary key class (entity with CMP)
Within a container, every entity EJB object has a unique identity that is
defined by using a combination of the object’s home interface name and its
primary key, the latter of which is assigned to the object at creation. If two
EJB objects have the same identity, they are considered identical.

Primary keys are specified in two ways:
v Simple primary keys, which map to a single field in the entity bean class

and are comprised of primitive Java data types (such as integer or long),
are specified in the deployment descriptor.

v Composite primary keys, which map to multiple fields in the entity bean
class (or to data structures built from the primitive Java data types), must
be encapsulated in a primary key class. More complicated enterprise beans
are likely to have composite primary keys, with multiple instance variables
representing the primary key.

The primary key class is used to manage an EJB object’s primary key. By
convention, the primary key class is named NameKey, where Name is the
name of the enterprise bean. For example, the Account enterprise bean’s
primary key class is named AccountKey.

...
import java.rmi.*;
import javax.ejb.*;
public interface Account extends EJBObject
{

...
float add(float amount) throws RemoteException;
...
float getBalance() throws RemoteException;
...
void setBalance(float amount) throws RemoteException;
...
float subtract(float amount) throws InsufficientFundsException,

RemoteException;
}

Figure 15. Code example: The Account remote interface

Chapter 4. Developing enterprise beans 47

The primary key class must meet the following requirements:
v It must be public and it must be serializable. For more information, see

“The java.io.Serializable and java.rmi.Remote interfaces” on page 66.
v Its instance variables must be public, and the variable names must match a

subset of the container-managed field names defined in the enterprise bean
class.

v It must have a public default constructor, at a minimum.

Note: The primary key class of a CMP entity bean must override the equals
method and the hashCode method inherited from the java.lang.Object
class.

Figure 16 on page 49 shows a composite primary key class for an example
enterprise bean, Item. In effect, this class acts as a wrapper around the string
variables productId and vendorId. The hashCode method for the ItemKey class
invokes the corresponding hashCode method in the java.lang.String class after
creating a temporary string object by using the value of the productId variable.
In addition to the default constructor, the ItemKey class also defines a
constructor that sets the value of the primary key variables to the specified
strings.

48 WebSphere: Writing Enterprise Beans in WebSphere

A primary key class can also be used to encapsulate a primary key that is not
known ahead of time — for instance, if the entity bean is intended to work
with several persistent data stores, each of which requires a different primary
key structure. The entity bean’s primary key type is derived from the primary
key type used by the underlying database that stores the entity objects; it does
not necessarily have to be known to the enterprise bean developer.

To specify an unknown primary key, do the following:
v Declare the argument of the findByPrimaryKey class as java.lang.Object.
v Declare the return value of the ejbCreate method as java.lang.Object

...
import java.io.*;
// Composite primary key class
public class ItemKey implements java.io.Serializable {

public String productId;
public String vendorId;
// Constructors
public ItemKey() { };
public ItemKey(String productId, String vendorId) {

this.productId = productId;
this.vendorId = vendorId;

}

public String getProductId() {
return productId;

}
public String getVendorId() {

return vendorId;
}

...
// EJB server-specific method
public boolean equals(Object other) {

if (other instanceof ItemKey) {
return (productId.equals(((ItemKey)

other).productId)
&& vendorId.equals(((ItemKey)

other).vendorId));
}
else

return false;
}

...
// EJB server-specific method
public int hashCode() {

return (new productId.hashCode());
}

}

Figure 16. Code example: The ItemKey primary key class

Chapter 4. Developing enterprise beans 49

v In the deployment descriptor, specify the primary key class as being of the
type java.lang.Object.

When the primary key selection is deferred to deployment, client applications
cannot use methods that rely on knowledge of the primary key type. In
addition, applications cannot always depend on methods that return the type
of the primary key (such as the EntityContext.getPrimaryKey method) because
the return type is determined at deployment.

Interacting with databases
This section contains general information and tips on enterprise beans and
database access.
v Although it is not necessary, it is good practice to specify the user ID and

password for a data source either in the enterprise bean to be using the
data source, or in the container of the bean.

v The container supports Option A and Option C caching. When Option A
caching is in use, the application server hosting the enterprise bean
container must be the only updater of the data in the persistent store. As
such, Option A caching is incompatible with the following:
– Workload managed servers (such as a cluster of clones)
– Databases with data being shared among multiple applications

The default caching option is C (multiple entity bean instances, possibly in
different servers, can update bean state in the database). The default
caching option can be changed from Option C to Option A by selecting
″exclusive persistent store″ in the administrative console when creating the
entity bean.

Shared database access corresponds to Option C caching. Option A and
Option C caching are also known as commit option A and commit option C,
respectively.

Developing session beans

In their basic makeup, session beans are similar to entity beans. However,
their purposes are very different.

From a component perspective, one of the biggest differences between the two
types of enterprise beans is that session beans do not have a primary key class
and the session bean’s home interface does not define finder methods. Session
enterprise beans do not require primary keys and finder methods because
session EJB objects are created, associated with a specific client, and then
removed as needed, whereas entity EJB objects represent permanent data in a
data source and can be uniquely identified with a primary key. Because the

50 WebSphere: Writing Enterprise Beans in WebSphere

data for session beans is never permanently stored, the session bean class
does not have methods for storing data to and loading data from a data
source.

Every session bean must contain the following basic parts:
v The enterprise bean class. For more information, see “Writing the enterprise

bean class (session)”.
v The enterprise bean’s home interface. For more information, see “Writing

the home interface (session)” on page 62.
v The enterprise bean’s remote interface. For more information, see “Writing

the remote interface (session)” on page 63.

Writing the enterprise bean class (session)
A session bean class defines and implements the business methods of the
enterprise bean, implements the methods used by the container during the
creation of enterprise bean instances, and implements the methods used by
the container to inform the enterprise bean instance of significant events in
the instance’s life cycle. By convention, the enterprise bean class is named
NameBean, where Name is the name you assign to the enterprise bean. The
enterprise bean class for the example Transfer enterprise bean is named
TransferBean.

Every session bean class must meet the following requirements:
v It must define and implement the business methods that execute the tasks

associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 53.

v It must define and implement an ejbCreate method for each way in which
you want it to be able to instantiate the enterprise bean class. For more
information, see “Implementing the ejbCreate methods” on page 56.

v It must be public, it must not be abstract, and it must implement the
javax.ejb.SessionBean interface. For more information, see “Implementing
the SessionBean interface” on page 61.

Note: Version 1.0 of the EJB specification allowed the methods in the session
bean class to throw the java.rmi.RemoteException exception to indicate
a non-application exception. This practice is deprecated in version 1.1
of the specification. A session bean compliant with version 1.1 of the
specification should throw the javax.ejb.EJBException exception (a
subclass of the java.lang.RuntimeException class) or another
RuntimeException exception instead. Because the javax.ejb.EJBException
class is a subclass of the java.lang.RuntimeException, EJBException
exceptions do not need to be explicitly listed in the throws clause of
methods.

Chapter 4. Developing enterprise beans 51

A session bean can be either stateful or stateless. In a stateless session bean,
none of the methods depend on the values of variables set by any other
method, except for the ejbCreate method, which sets the initial (identical) state
of each bean instance. In a stateful enterprise bean, one or more methods
depend on the values of variables set by some other method. As in entity
beans, static variables are not supported in session beans unless they are also
final.

Stateful session beans possibly need to synchronize their conversational state
with the transactional context in which they operate. For example, a stateful
session bean possibly needs to reset the value of some of its variables if a
transaction is rolled back or it possibly needs to change these variables if a
transaction successfully completes.

If a bean needs to synchronize its conversational state with the transactional
context, the bean class must implement the javax.ejb.SessionSynchronization
interface. This interface contains methods to notify the session bean when a
transaction begins, when it is about to complete, and when it has completed.
The enterprise bean developer can use these methods to synchronize the state
of the session enterprise bean instance with ongoing transactions.

The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class implements
the remote interface, it is possible to inadvertently pass the this variable as a
method argument.

Figure 17 on page 53 shows the main parts of the enterprise bean class for the
example Transfer bean. The sections that follow discuss these parts in greater
detail.

The Transfer bean is stateless. If the Transfer bean’s transferFunds method
were dependent on the value of the balance variable returned by the
getBalance method, the TransferBean would be stateful.

52 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the business methods
The business methods of a session bean class define the ways in which an EJB
client can manipulate the enterprise bean. The business methods implemented
in the enterprise bean class cannot be directly invoked by an EJB client.
Instead, the EJB client invokes the corresponding methods defined in the

...
import java.rmi.RemoteException;
import java.util.Properties;
import java.util.ResurceBundle;
import java.util.ListResourceBundle;
import javax.ejb.*;
import java.lang.*;
import javax.naming.*;
import com.ibm.ejs.doc.account.*;
...
public class TransferBean implements SessionBean {

...
private SessionContext mySessionCtx = null;
private InitialContext initialContext = null;
private AccountHome accountHome = null;
private Account fromAccount = null;
private Account toAccount = null;
...
public void ejbActivate() throws EJBException { }
...
public void ejbCreate() throws EJBException {

...
}
...
public void ejbPassivate() throws EJBException { }
...
public void ejbRemove() throws EJBException { }
...
public float getBalance(long acctId) throws FinderException,

EJBException {
...

}
...
public void setSessionContext(javax.ejb.SessionContext ctx)

throws EJBException {
...

}
...
public void transferFunds(long fromAcctId, long toAcctId, float amount)

throws EJBException {
...

}
}

Figure 17. Code example: The TransferBean class

Chapter 4. Developing enterprise beans 53

enterprise bean’s remote interface, by using an EJB object associated with an
instance of the enterprise bean, and the container invokes the corresponding
methods in the enterprise bean instance.

Therefore, for every business method defined in the enterprise bean’s remote
interface, a corresponding method must be implemented in the enterprise
bean class. The enterprise bean’s remote interface is implemented by the
container in the EJBObject class when the enterprise bean is deployed.

Figure 18 on page 55 shows the business methods for the TransferBean class.
The getBalance method is used to get the balance for an account. It first
locates the appropriate Account EJB object and then calls that object’s
getBalance method.

The transferFunds method is used to transfer a specified amount between two
accounts (encapsulated in two Account entity EJB objects). After locating the
appropriate Account EJB objects by using the findByPrimaryKey method, the
transferFunds method calls the add method on one account and the subtract
method on the other.

Like all finder methods, findByPrimaryKey can throw both the
FinderException and RemoteException exceptions. The try/catch blocks are
set up around invocations of the findByPrimaryKey method to handle the
entry of invalid account IDs by users. If the session bean user enters an
invalid account ID, the findByPrimaryKey method cannot locate an EJB object,
and the finder method throws the FinderException exception. This exception
is caught and converted into a new FinderException exception containing
information on the invalid account ID.

To call the findByPrimaryKey method, both business methods need to be able
to access the EJB home object that implements the AccountHome interface
discussed in “Writing the home interface (entity with CMP)” on page 43.
Obtaining the EJB home object is discussed in “Implementing the ejbCreate
methods” on page 56.

54 WebSphere: Writing Enterprise Beans in WebSphere

public class TransferBean implements SessionBean {
...
private Account fromAccount = null;
private Account toAccount = null;
...
public float getBalance(long acctId) throws FinderException, EJBException {

AccountKey key = new AccountKey(acctId);
try {

fromAccount = accountHome.findByPrimaryKey(key);
} catch(FinderException ex) {

throw new FinderException("Account " + acctId
+ " does not exist.");

} catch(RemoteException ex) {
throw new FinderException("Account " + acctId

+ " could not be found.");
}
return fromAccount.getBalance();

}
...
public void transferFunds(long fromAcctId, long toAcctId, float amount)

throws EJBException, InsufficientFundsException, FinderException {
AccountKey fromKey = new AccountKey(fromAcctId);
AccountKey toKey = new AccountKey(toAcctId);
try {

fromAccount = accountHome.findByPrimaryKey(fromKey);
} catch(FinderException ex) {

throw new FinderException("Account " + fromAcctId
+ " does not exist.");

} catch(RemoteException ex) {
throw new FinderException("Account " + acctId

+ " could not be found.");
}
try {

toAccount = accountHome.findByPrimaryKey(toKey);
} catch(FinderException ex) {

throw new FinderException("Account " + toAcctId
+ " does not exist.");

} catch(RemoteException ex) {
throw new FinderException("Account " + acctId

+ " could not be found.");
}
try {

toAccount.add(amount);
fromAccount.subtract(amount);

} catch(InsufficientFundsException ex) {
mySessionCtx.setRollbackOnly();
throw new InsufficientFundsException("Insufficient funds in "

+ fromAcctId);
}

}
}

Figure 18. Code example: The business methods of the TransferBean class

Chapter 4. Developing enterprise beans 55

Implementing the ejbCreate methods
You must define and implement an ejbCreate method for each way in which
you want an enterprise bean to be instantiated.

Each ejbCreate method must correspond to a create method in the enterprise
bean’s home interface. (Note that there is no ejbPostCreate method in a
session bean as there is in an entity bean.) Unlike the business methods of the
enterprise bean class, the ejbCreate methods cannot be invoked directly by the
client. Instead, the client invokes the create method in the bean instance’s
home interface, and the container invokes the ejbCreate method. If an
ejbCreate method is executed successfully, an EJB object is created.

An ejbCreate method for a session bean must meet the following
requirements:
v The method must be declared as public and cannot be declared as final or

static.
v It must return void.
v A stateless session bean must have only one ejbCreate method, which must

return void and contain no arguments. A stateful session bean can have
multiple ejbCreate methods.

The throws clause can define arbitrary application exceptions. The
javax.ejb.EJBException or another runtime exception can be used to indicate
non-application exceptions.

An ejbCreate method for an entity bean must meet the following
requirements:
v The method must be declared as public and cannot be declared as final or

static.
v It must return the entity bean’s primary key type.
v It must contain code to set the values of any variables needed by the EJB

object.

The throws clause can define arbitrary application exceptions. The
javax.ejb.EJBException or another runtime exception can be used to indicate
non-application exceptions.

Figure 19 on page 58 shows the ejbCreate method required by the example
TransferBean class. The Transfer bean’s ejbCreate method obtains a reference
to the Account bean’s home object. This reference is required by the Transfer
bean’s business methods. Getting a reference to an enterprise bean’s home
interface is a two-step process:

56 WebSphere: Writing Enterprise Beans in WebSphere

1. Construct an InitialContext object by setting the required property values.
For the example Transfer bean, these property values are defined in the
environment variables of the Transfer bean’s deployment descriptor.

2. Use the InitialContext object to create and get a reference to the home
object. For the example Transfer bean, the JNDI name of the Account bean
is stored in an environment variable in the Transfer bean’s deployment
descriptor.

Creating the InitialContext object: When a container invokes the Transfer
bean’s ejbCreate method, the enterprise bean’s initialContext object is
constructed by creating a Properties variable (env) that requires the following
values:
v The location of the name service (javax.naming.Context.PROVIDER_URL).
v The name of the initial context factory

(javax.naming.Context.INITIAL_CONTEXT_FACTORY).

The values of these properties are discussed in more detail in “Creating and
getting a reference to a bean’s EJB object” on page 79.

Chapter 4. Developing enterprise beans 57

Although the example Transfer bean stores some locale specific variables in a
resource bundle class, like the example Account bean, it also relies on the
values of environment variables stored in its deployment descriptor. Each of
these InitialContext Properties values is obtained from an environment
variable contained in the Transfer bean’s deployment descriptor. A private get
method that corresponds to the property variable is used to get each of the
values (getNamingFactory and getProviderURL); these methods must be
written by the enterprise bean developer. The following environment variables
must be set to the appropriate values in the deployment descriptor of the
Transfer bean.
v javax.naming.Context.INITIAL_CONTEXT_FACTORY
v javax.naming.Context.PROVIDER_URL

Figure 20 on page 59 illustrates the relevant parts of the getProviderURL
method that is used to get the PROVIDER_URL property value. The
javax.ejb.SessionContext variable (mySessionCtx) is used to get the Transfer
bean’s environment in the deployment descriptor by invoking the
getEnvironment method. The object returned by the getEnvironment method

...
public class TransferBean implements SessionBean {

private static final String INITIAL_NAMING_FACTORY_SYSPROP =
javax.naming.Context.INITIAL_CONTEXT_FACTORY;

private static final String PROVIDER_URL_SYSPROP =
javax.naming.Context.PROVIDER_URL;

...
private String nameService = null;
...
private String providerURL = null;
...
private InitialContext initialContext = null;
...
public void ejbCreate() throws EJBException {

// Get the initial context
try {

Properties env = System.getProperties();
...
env.put(PROVIDER_URL_SYSPROP, getProviderUrl());
env.put(INITIAL_CONTEXT_FACTORY_SYSPROP, getNamingFactory());
initialContext = new InitialContext(env);

} catch(Exception ex) {
...

}
...
// Look up the home interface using the JNDI name
...

}

Figure 19. Code example: Creating the InitialContext object in the ejbCreate method of the
TransferBean class

58 WebSphere: Writing Enterprise Beans in WebSphere

can then be used to get the value of a specific environment variable by
invoking the getProperty method.

Getting the reference to the home object: An enterprise bean is accessed by
looking up the class implementing its home interface by name through JNDI.
Methods on the home interface provide access to an instance of the class
implementing the remote interface.

After constructing the InitialContext object, the ejbCreate method performs a
JNDI lookup using the JNDI name of the Account enterprise bean. Like the
PROVIDER_URL and INITIAL_CONTEXT_FACTORY properties, this name is
also retrieved from an environment variable contained in the Transfer bean’s
deployment descriptor (by invoking a private method named getHomeName).
The lookup method returns an object of type java.lang.Object.

The returned object is narrowed by using the static method
javax.rmi.PortableRemoteObject.narrow to obtain a reference to the EJB home
object for the specified enterprise bean. The parameters of the narrow method
are the object to be narrowed and the class of the object to be created as a
result of the narrowing. For a more thorough discussion of the code required
to locate an enterprise bean in JNDI and then narrow it to get an EJB home
object, see “Creating and getting a reference to a bean’s EJB object” on
page 79.

...
public class TransferBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
private String getProviderURL() throws RemoteException {

//get the provider URL property either from
//the EJB properties or, if it isn't there
//use "iiop:///", which causes a default to the local host
...
String pr = mySessionCtx.getEnvironment().getProperty(

PROVIDER_URL_SYSPROP);
if (pr == null)

pr = "iiop:///";
return pr;

}
...

}

Figure 20. Code example: The getProviderURL method

Chapter 4. Developing enterprise beans 59

Looking up an enterprise bean’s environment naming context: The
enterprise bean’s environment is implemented by the container. It enables the
bean’s business logic to be customized without the need to access or change
the bean’s source code. The container provides an implementation of the JNDI
naming context that stores the enterprise bean environment. Business methods
access the environment by using the JNDI interfaces. The deployment
descriptor provides the environment entries that the enterprise bean expects at
runtime.

Each enterprise bean defines its own environment entries, which are shared
between all of its instances (that is, all instances with the same home).
Environment entries are not shared between enterprise beans.

An enterprise bean’s environment entries are stored directly in the
environment naming context (or one of its subcontexts). To retrieve its
environment naming context, an enterprise bean instance creates an
InitialContext object by using the constructor with no arguments. It then looks
up the environment naming via the InitialContext object under the name
java:comp/env.

The enterprise bean in Figure 22 on page 61 changes an account number by
looking up an environment entry to find the new account number.

...
public class TransferBean implements SessionBean {

...
private String accountName = null;
...
private InitialContext initialContext = null;
...
public void ejbCreate() throws EJBException {

// Get the initial context
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(accountName);
accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(

ejbHome, AccountHome.class);
} catch (NamingException e) { // Error getting the home interface

...
}
...

}
...

}

Figure 21. Code example: Creating the AccountHome object in the ejbCreate method of the
TransferBean class

60 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the SessionBean interface
Every session bean class must implement the methods inherited from the
javax.ejb.SessionBean interface. The container invokes these methods to inform
the enterprise bean instance of significant events in the instance’s life cycle.
All of these methods must be public, must return void, and can throw the
javax.ejb.EJBException. (Throwing the java.rmi.RemoteException exception is
deprecated; see 51 for more information.)
v ejbActivate—This method is invoked by the container when the container

selects an enterprise bean instance from the instance pool and assigns it a
specific existing EJB object. This method must contain any code that you
want to execute when the enterprise bean instance is activated.

v ejbPassivate—This method is invoked by the container when the container
disassociates an enterprise bean instance from its EJB object and places the
enterprise bean instance in the instance pool. This method must contain any
code that you want to execute when the enterprise bean instance is
passivated (deactivated).

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface (from
the javax.ejb.EJBHome interface). This method must contain any code that
you want to execute when an enterprise bean instance is removed from the
container.

v setSessionContext—This method is invoked by the container to pass a
reference to the javax.ejb.SessionContext interface to a session bean instance.
If an enterprise bean instance needs to use this context at any time during
its life cycle, the enterprise bean class must contain an instance variable to
store this value. This method must contain any code required to store a
reference to the context.

public class AccountService implements SessionBean {
...

public void changeAccountNumber(int accountNumber, ...)
throws InvalidAccountNumberException{

....
// Obtain the bean's environment naming context
Context initialContext = new InitialContext();
Context myEnvironment = (Context)initialContext.lookup("java:comp/env);

...
// Obtain new account number from environment
Integer newNumber = (Integer)myEnvironment.lookup("newAccountNumber");
... }

}

Figure 22. Code example: Looking up an enterprise bean’s environment naming context

Chapter 4. Developing enterprise beans 61

A session context can be used to get a handle to a particular instance of a
stateful session bean. It can also be used to get a reference to a transaction
context object, as described in “Using bean-managed transactions” on
page 124.

As shown in Figure 23, except for the setSessionContext method, all of these
methods in the TransferBean class are empty because no additional action is
required by the bean for the particular life cycle states associated with the
these methods. The setSessionContext method is used in a conventional way
to set the value of the mySessionCtx variable.

Writing the home interface (session)
A session bean’s home interface defines the methods used by clients to create
and remove instances of the enterprise bean and obtain metadata about an
instance. The home interface is defined by the enterprise bean developer and
implemented in the EJB home class created by the container during enterprise
bean deployment. The container makes the home interface accessible to clients
through JNDI.

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the Transfer enterprise
bean’s home interface is named TransferHome.

Every session bean’s home interface must meet the following requirements:
v It must extend the javax.ejb.EJBHome interface. The home interface inherits

several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 65 for information on these methods.

v Each method in the interface must be a create method that corresponds to a
ejbCreate method in the enterprise bean class. For more information, see

...
public class TransferBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
public void ejbActivate() throws EJBException { }
...
public void ejbPassivate() throws EJBException { }
...
public void ejbRemove() throws EJBException { }
...
public void setSessionContext(SessionContext ctx) throwEJBException {

mySessionCtx = ctx;
}
...

}

Figure 23. Code example: Implementing the SessionBean interface in the TransferBean class

62 WebSphere: Writing Enterprise Beans in WebSphere

“Implementing the ejbCreate methods” on page 56. Unlike entity beans, the
home interface of a session bean contains no finder methods.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 24 shows the relevant parts of the definition of the home interface
(TransferHome) for the example Transfer bean.

A create method is used by a client to create an enterprise bean instance. A
stateful session bean can contain multiple create methods; however, a stateless
session bean can contain only one create method with no arguments. This
restriction on stateless session beans ensures that every instance of a stateless
session bean is the same as every other instance of the same type. (For
example, every Transfer bean instance is the same as every other Transfer
bean instance.)

Each create method must be named create and have the same number and
types of arguments as a corresponding ejbCreate method in the EJB object
class. The return types of the create method and its corresponding ejbCreate
method are always different.

Each create method must meet the following requirements:
v It must return the type of the enterprise bean’s remote interface. For

example, the return type for the create method in the TransferHome
interface is Transfer.

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception class, and all of the
exceptions defined in the throws clause of the corresponding ejbCreate
method.

Writing the remote interface (session)
A session bean’s remote interface provides access to the business methods
available in the enterprise bean class. It also provides methods to remove an
enterprise bean instance and to obtain the enterprise bean’s home interface

...
import javax.ejb.*;
import java.rmi.*;
public interface TransferHome extends EJBHome {

Transfer create() throws CreateException, RemoteException;
}

Figure 24. Code example: The TransferHome home interface

Chapter 4. Developing enterprise beans 63

and handle. The remote interface is defined by the enterprise bean developer
and implemented in the EJB object class created by the container during
enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the Transfer enterprise bean’s
remote interface is named Transfer.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The remote interface

inherits several methods from the EJBObject interface. See “Methods
inherited from javax.ejb.EJBObject” on page 65 for information on these
methods.

v You must define a corresponding business method for every business
method implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 25 shows the relevant parts of the definition of the remote interface
(Transfer) for the example Transfer bean. This interface defines the methods
for transferring funds between two Account bean instances and for getting the
balance of an Account bean instance.

Implementing interfaces common to multiple types of enterprise beans

Enterprise beans must implement the interfaces described here in the
appropriate enterprise bean component.

...
import javax.ejb.*;
import java.rmi.*;
import com.ibm.ejs.doc.account.*;
public interface Transfer extends EJBObject {

...
float getBalance(long acctId) throws FinderException, RemoteException;
...
void transferFunds(long fromAcctId, long toAcctId, float amount)

throws InsufficientFundsException, RemoteException;
}

Figure 25. Code example: The Transfer remote interface

64 WebSphere: Writing Enterprise Beans in WebSphere

Methods inherited from javax.ejb.EJBObject
The remote interface inherits the following methods from the
javax.ejb.EJBObject interface, which are implemented by the container during
deployment:
v getEJBHome—Returns the enterprise bean’s home interface.
v getHandle—Returns the handle for the EJB object.
v getPrimaryKey—Returns the EJB object’s primary key. (For session beans,

this cannot be used because session beans do not have a primary key.)
v isIdentical—Compares this EJB object with the EJB object argument to

determine if they are the same.
v remove—Removes this EJB object.

These methods have the following syntax:

These methods are implemented by the container in the EJB object class.

The javax.ejb.EJBHome interface
The home interface inherits two remove methods and the getEJBMetaData
method from the javax.ejb.EJBHome interface. Just like the methods defined
directly in the home interface, these inherited methods are also implemented
in the EJB home class created by the container during deployment.

The remove methods are used to remove an existing EJB object (and its
associated data in the database) either by specifying the EJB object’s handle or
its primary key. (The remove method that takes a primaryKey variable can be
used only in entity beans.) The getEJBMetaData method is used to obtain
metadata about the enterprise bean and is mainly intended for use by
development tools.

These methods have the following syntax:

The javax.ejb.EJBHome interface also contains a method to get a handle to the
home interface. It has the following syntax:
public abstract HomeHandle getHomeHandle();

public abstract EJBHome getEJBHome();
public abstract Handle getHandle();
public abstract Object getPrimaryKey();
public abstract boolean isIdentical(EJBObject obj);
public abstract void remove();

public abstract EJBMetaData getEJBMetaData();
public abstract void remove(Handle handle);
public abstract void remove(Object primaryKey);

Chapter 4. Developing enterprise beans 65

The java.io.Serializable and java.rmi.Remote interfaces
To be valid for use in a remote method invocation (RMI), a method’s
arguments and return value must be one of the following types:
v A primitive type; for example, an int or a long.
v An object of a class that directly or indirectly implements

java.io.Serializable; for example, java.lang.Long.
v An object of a class that directly or indirectly implements java.rmi.Remote.
v An array of valid types or objects.

If you attempt to use a parameter that is not valid, the
java.rmi.RemoteException exception is thrown. Note that the following
atypical types are not valid:
v An object of a class that directly or indirectly implements both Serializable

and Remote.
v An object of a class that directly or indirectly implements Remote, but

contains a method that does not throw the RemoteException or an
exception that inherits from RemoteException.

Using threads and reentrancy in enterprise beans

An enterprise bean must not contain code to start new threads (nor can
methods be defined with the keyword synchronized). Session beans can never
be reentrant; that is, they cannot call another bean that invokes a method on
the calling bean. Entity beans can be reentrant, but building reentrant entity
beans is not recommended and is not documented here.

The EJB server enforces single-threaded access to all enterprise beans. Illegal
callbacks result in a java.rmi.RemoteException exception being thrown to the
EJB client.

Creating an EJB module for enterprise beans

There are two tasks involved in preparing an enterprise bean for deployment:
v Making the components of the bean part of the same Java package. For

more information, see “Making bean components part of a Java package”
on page 67.

v Creating an EJB module and associated deployment descriptor. For more
information, see “Creating an EJB module and deployment descriptor” on
page 67.

If you develop enterprise beans in an IDE, these tasks are handled from
within the tool that you use. If you do not develop enterprise beans in an
IDE, you must handle each of these tasks by using tools contained in the Java
Software Development Kit (SDK) and WebSphere Application Server. For

66 WebSphere: Writing Enterprise Beans in WebSphere

more information on the tools used to create an EJB module in the EJB server
programming environment, see “Chapter 3. Tools for developing and
deploying enterprise beans” on page 27.

Making bean components part of a Java package
You determine the best way to allocate your enterprise beans to Java
packages. A Java package can contain one or more enterprise beans. The
example Account and Transfer beans are stored in separate packages. All of
the Java source files that make up the Account bean contain the following
package statement:
package com.ibm.ejs.doc.account;

All of the Java source files that make up the Transfer bean contain the
following package statement:
package com.ibm.ejs.doc.transfer;

Creating an EJB module and deployment descriptor
An EJB module contains one or more deployable enterprise beans. It also
contains a deployment descriptor that provides information about each
enterprise bean and instructions for the container on how to handle all
enterprise beans in the module. The deployment descriptor is stored in an
XML file.

During creation of the EJB module, you specify the files for each enterprise
bean to be included in the module. These files include:
v The class files associated with each component of the enterprise bean.
v Any additional classes and files associated with the enterprise bean; for

example: user-defined exception classes, properties files, and resource
bundle classes.

You also specify other information about the bean, such as references to other
enterprise beans, resource connection factories, and security roles. After
defining the enterprise beans to be included in the module, you specify
application assembly instructions that apply to the module as a whole. Both
bean and module information are used to create a deployment descriptor. See
“The deployment descriptor” on page 17 for a list of deployment descriptor
settings and attributes.

Chapter 4. Developing enterprise beans 67

68 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 5. Enabling transactions and security in enterprise
beans

This chapter examines how to enable transactions and security in enterprise
beans by setting the appropriate deployment descriptor attributes:
v For transactions, a session bean can either use container-managed

transactions or implement bean-managed transactions; entity beans must
use container-managed transactions. To enable container-managed
transactions, you must set the transaction attribute to any value except
BeanManged and set the transaction isolation level attribute. To enable
bean-managed transactions, you must set the transaction attribute to
BeanManaged and set the transaction isolation level attribute. For more
information, see “Setting transactional attributes in the deployment
descriptor”.
If you want a session bean to manage its own transactions, you must write
the code that explicitly demarcates the boundaries of a transaction as
described in “Using bean-managed transactions” on page 124.
If you want an EJB client to manage its own transactions, you must
explicitly code that client to do so as described in “Managing transactions
in an EJB client” on page 86.

v For security, the run-as mode attribute is used by the EJB server
environments. For information on the valid values of this attribute, see
“Setting the security attribute in the deployment descriptor” on page 74.

These attributes, like the other deployment descriptor attributes, are set by
using one of the tools available. For more information, see “Chapter 3. Tools
for developing and deploying enterprise beans” on page 27.

Setting transactional attributes in the deployment descriptor

The EJB Specification describes the creation of applications that enforce
transactional consistency on the data manipulated by the enterprise beans.
However, unlike other specifications that support distributed transactions, the
EJB specification does not require enterprise bean and EJB client developers to
write any special code to use transactions. Instead, the container manages
transactions based on two deployment descriptor attributes associated with
the EJB module, and the enterprise bean and EJB application developers are
freed to deal with the business logic of their applications.

© Copyright IBM Corp. 1999, 2001 69

Enterprise bean developers can specifically design enterprise beans and EJB
applications that explicitly manage transactions. For more information, see
“Using bean-managed transactions” on page 124.

Under most conditions, transaction management can be handled within the
enterprise beans, freeing the EJB client developer of this task. However, EJB
clients can participate in transactions if required or desired. For more
information, see “Managing transactions in an EJB client” on page 86.

Two attributes determine the way in which an enterprise bean is managed
from a transactional perspective:
v The transaction attribute defines the transactional manner in which the

container invokes a method. This attribute is part of the standard
deployment descriptor. “Setting the transaction attribute” defines the valid
values of this attribute and explains their meanings.

v The transaction isolation level attribute defines the manner in which
transactions are isolated from each other by the container. This attribute is
an extension to the standard deployment descriptor. “Setting the transaction
isolation level attribute” on page 72 defines the valid values of this attribute
and explains their meanings.

Setting the transaction attribute
The transaction attribute defines the transactional manner in which the
container invokes enterprise bean methods. This attribute is set for individual
methods in a bean.

The following are valid values for this attribute in decreasing order of
transactional strictness:

BeanManaged
Notifies the container that the bean class directly handles transaction
demarcation. This attribute value can be specified only for session
beans and it cannot be specified for individual bean methods. For
more information on designing session beans to implement this
attribute value, see “Using bean-managed transactions” on page 124.

Mandatory
Directs the container to always invoke the bean method within the
transaction context associated with the client. If the client attempts to
invoke the bean method without a transaction context, the container
throws the javax.jts.TransactionRequiredException exception to the
client. The transaction context is passed to any EJB object or resource
accessed by an enterprise bean method.

EJB clients that access these entity beans must do so within an
existing transaction. For other enterprise beans, the enterprise bean or
bean method must implement the BeanManaged value or use the

70 WebSphere: Writing Enterprise Beans in WebSphere

Required or RequiresNew value. For non-enterprise bean EJB clients,
the client must invoke a transaction by using the
javax.transaction.UserTransaction interface, as described in “Managing
transactions in an EJB client” on page 86.

Required
Directs the container to invoke the bean method within a transaction
context. If a client invokes a bean method from within a transaction
context, the container invokes the bean method within the client
transaction context. If a client invokes a bean method outside of a
transaction context, the container creates a new transaction context
and invokes the bean method from within that context. The
transaction context is passed to any enterprise bean objects or
resources that are used by this bean method.

RequiresNew
Directs the container to always invoke the bean method within a new
transaction context, regardless of whether the client invokes the
method within or outside of a transaction context. The transaction
context is passed to any enterprise bean objects or resources that are
used by this bean method.

Supports
Directs the container to invoke the bean method within a transaction
context if the client invokes the bean method within a transaction. If
the client invokes the bean method without a transaction context, the
container invokes the bean method without a transaction context. The
transaction context is passed to any enterprise bean objects or
resources that are used by this bean method.

NotSupported
Directs the container to invoke bean methods without a transaction
context. If a client invokes a bean method from within a transaction
context, the container suspends the association between the
transaction and the current thread before invoking the method on the
enterprise bean instance. The container then resumes the suspended
association when the method invocation returns. The suspended
transaction context is not passed to any enterprise bean objects or
resources that are used by this bean method.

Never Directs the container to invoke bean methods without a transaction
context.
v If the client invokes a bean method from within a transaction

context, the container throws the java.rmi.RemoteException
exception.

v If the client invokes a bean method from outside a transaction
context, the container behaves in the same way as if the

Chapter 5. Enabling transactions and security in enterprise beans 71

NotSupported transaction attribute was set. The client must call the
method without a transaction context.

Table 2. Effect of the enterprise bean’s transaction attribute on the transaction context

Transaction attribute Client transaction context Bean transaction context

Mandatory No transaction Not allowed

Client transaction Client transaction

RequiresNew No transaction New transaction

Client transaction New transaction

Required No transaction New transaction

Client transaction Client transaction

Supports No transaction No transaction

Client transaction Client transaction

NotSupported No transaction No transaction

Client transaction No transaction

Never No transaction No transaction

No transaction No transaction

When setting the deployment descriptor for an entity bean, you can mark
getter methods as ″Read-Only″ methods to improve performance. If a
transaction unit of work includes no methods other than ″Read-Only″
designated methods, then the entity bean state synchronization does not
invoke store.

Setting the transaction isolation level attribute
The transaction isolation level determines how strongly one transaction is
isolated from another. This attribute is set for individual methods in a bean.
However, within a transactional context, the isolation level associated with the
first method invocation becomes the required isolation level for all other
methods invoked within that transaction. If a method is invoked with a
different isolation level from that of the first method, the
java.rmi.RemoteException exception is thrown.

The following are valid values for this attribute, in decreasing order of
isolation:

Serializable
This level prohibits all of the following types of reads:
v Dirty reads, where a transaction reads a database row containing

uncommitted changes from a second transaction.

72 WebSphere: Writing Enterprise Beans in WebSphere

v Nonrepeatable reads, where one transaction reads a row, a second
transaction changes the same row, and the first transaction rereads
the row and gets a different value.

v Phantom reads, where one transaction reads all rows that satisfy an
SQL WHERE condition, a second transaction inserts a row that also
satisfies the WHERE condition, and the first transaction applies the
same WHERE condition and gets the row inserted by the second
transaction.

RepeatableRead
This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

ReadCommitted
This level prohibits dirty reads, but allows nonrepeatable reads and
phantom reads.

ReadUncommitted
This level allows dirty reads, nonrepeatable reads, and phantom
reads.

These isolation levels correspond to the isolation levels defined in the Java
Database Connectivity (JDBC) java.sql.Connection interface.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence (BMP)—For

each database connection used by the bean, the container sets the
transaction isolation level at the start of each transaction.

v Entity beans with container-managed persistence (CMP)—The container
generates database access code that implements the specified isolation level.

None of these values permits two transactions to update the same data
concurrently; one transaction must end before another can update the same
data. These values determine only how locks are managed for reading data.
However, risks to consistency can arise from read operations when a
transaction does further work based on the values read. For example, if one
transaction is updating a piece of data and a second transaction is permitted
to read that data after it has been changed but before the updating transaction
ends, the reading transaction can make a decision based on a change that is
eventually rolled back. The second transaction risks making a decision on
transient data.

Deciding which isolation level to use depends on several factors:
v The acceptable level of risk to data consistency
v The acceptable levels of concurrency and performance
v The isolation levels supported by the underlying database

Chapter 5. Enabling transactions and security in enterprise beans 73

The first two factors, risk to consistency and level of concurrency, are related.
Decreasing the risk to consistency requires you to decrease concurrency
because reducing the risk to consistency requires holding locks longer. The
longer a lock is held on a piece of data, the longer concurrently running
transactions must wait to access that data. The Serializable value protects data
by eliminating concurrent access to it. Conversely, the ReadUncommitted
value allows the highest degree of concurrency but entails the greatest risk to
consistency. You need to balance these two factors appropriately for your
application.

By default, most developers deploy enterprise beans with the transaction
isolation level set to Serializable. This is the default value in IBM VisualAge
for Java Enterprise Edition and other deployment tools. It is also the most
restrictive and protected transaction isolation level incurring the most
overhead. Some workloads do not require the isolation level and protection
afforded by Serializable. A given application might never update the
underlying data or be run with other applications that also make concurrent
updates. In that case, the application would not have to be concerned with
dirty, non-repeatable, or phantom reads. The ReadUncommitted isolation level
would probably be sufficient.

Because the transaction isolation level is set in the EJB module’s deployment
descriptor, the same enterprise bean could be reused in different applications
with different transaction isolation levels. The isolation level requirements
should be reviewed and adjusted appropriately to increase performance.

The third factor, isolation levels supported in the database, means that
although the EJB specification allows you to request one of the four levels of
transaction isolation, it is possible that the database being used in the
application does not support all of the levels. Also, vendors of database
products implement isolation levels differently, so the precise behavior of an
application can vary from database to database. You need to consider the
database and the isolation levels it supports when deciding on the value for
the transaction isolation attribute in deployment descriptors. Consult your
database documentation for more information on supported isolation levels.

Setting the security attribute in the deployment descriptor

When an EJB client invokes a method on an enterprise bean, the user context
of the client principal is encapsulated in a CORBA Current object, which
contains credential properties for the principal. The Current object is passed
among the participants in the method invocation as required to complete the
method.

The security service uses the credential information to determine the
permissions that a principal has on various resources. At appropriate points,

74 WebSphere: Writing Enterprise Beans in WebSphere

the security service determines if the principal is authorized to use a
particular resource based on the principal’s permissions.

If the method invocation is authorized, the security service does the following
with the principal’s credential properties based on the value of the run-as mode
attribute of the enterprise bean. If a specific identity is required, the
RunAsIdentity attribute is used to specify that identity.

Identity of Caller
The security service makes no changes to the principal’s credential
properties.

Identity of EJB Server
The security service alters the principal’s credential properties to
match the credential properties associated with the EJB server.

Identity Assigned to Specified Role
A security principal that has been assigned to the specified role is
used for the execution of the bean’s methods. This association is part
of the application binding where the role is associated with a user ID
and password of a user who is granted that role.

Chapter 5. Enabling transactions and security in enterprise beans 75

76 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 6. Developing EJB clients

An enterprise bean can be accessed by all of the following types of EJB clients
in both EJB server environments:
v Java servlets. For more information about writing Java servlets that use

enterprise beans, see “Chapter 7. Developing servlets that use enterprise
beans” on page 91.

v Java Server Pages (JSP). For more information about writing JSP, consult a
commercially available book.

v Java applications that use remote method invocation (RMI). For more
information on writing Java applications, consult a commercially available
book.

v Other enterprise beans. For example, the Transfer session bean acts as a
client to the Account bean, as described in “Chapter 4. Developing
enterprise beans” on page 33.

It is recommended that you avoid accessing EJB entity beans from client or
servlet code. Instead, wrap and access EJB entity beans from EJB session
beans. This improves performance in two ways:
v It reduces the number of remote method calls. When the client application

accesses the entity bean directly, each getter method is a remote call. A
wrapping session bean can access the entity bean locally, and collect the
data in a structure, which it returns by value.

v It provides an outer transaction context for the EJB entity bean. An entity
bean synchronizes its state with its underlying data store at the completion
of each transaction. When the client application accesses the entity bean
directly, each getter method becomes a complete transaction. A store and a
load action follow each method. When the session bean wraps the entity
bean to provide an outer transaction context, the entity bean synchronizes
its state when the outer session bean reaches a transaction boundary.

Except for the basic programming tasks described in this chapter, creating a
Java servlet, JSP, or Java application that is a client to an enterprise bean is not
very different from designing standard versions of these types of Java
programs. This chapter assumes that you understand the basics of writing a
Java servlet, a Java application, or a JSP file.

Except where noted, all of the code described in this chapter is taken from the
example Java application named TransferApplication. This Java application

© Copyright IBM Corp. 1999, 2001 77

and the other EJB clients available with the documentation example code are
explained in “Information about the examples described in the
documentation” on page 197.

To access and manipulate an enterprise bean in any of the Java-based EJB
client types listed previously, the EJB client must do the following:
v Import the Java packages required for naming, remote method invocation

(RMI), and enterprise bean interaction.
v Get a reference to an instance of the bean’s EJB object by using the Java

Naming and Directory Interface (JNDI). For more information, see
“Creating and getting a reference to a bean’s EJB object” on page 79.

v Handle invalid EJB objects when using session beans. For more information,
see “Handling an invalid EJB object for a session bean” on page 84.

v Remove session EJB objects when they are no longer required or remove
entity EJB objects when the associated data in the data source must be
removed. For more information, see “Removing a bean’s EJB object” on
page 86.

In addition, an EJB client can participate in the transactions associated with
enterprise beans used by the client. For more information, see “Managing
transactions in an EJB client” on page 86.

Importing required Java packages

Although the Java packages required for any particular EJB client vary, the
following packages are required by all EJB clients:
v java.rmi — This package contains most of the classes required for remote

method invocation (RMI).
v javax.rmi — This package contains the PortableRemoteObject class required

to get a reference to an EJB object.
v java.util — This package contains various Java utility classes, such as

Properties, Hashtable, and Enumeration used in a variety of ways
throughout all enterprise beans and EJB clients.

v javax.ejb — This package contains the classes and interfaces defined in the
EJB specification.

v javax.naming — The package contains the classes and interfaces defined in
the Java Naming and Directory Interface (JNDI) specification and is used by
clients to get references to EJB objects.

v The package or packages containing the enterprise beans with which the
client interacts.

The Java client object request broker (ORB), which is automatically initialized
in EJB clients, does not support dynamic download of implementation

78 WebSphere: Writing Enterprise Beans in WebSphere

bytecode from the server to the client. As a result, all classes required by the
EJB client at runtime must be available from the files and directories identified
in the client’s CLASSPATH environment variable. For information on the JAR
files required by EJB clients, see “Setting the CLASSPATH environment
variable in the EJB server environment” on page 29. You can install needed
files on your client machine by doing a WebSphere Application Server
installation on the machine. Select the Developer’s Client Files option. You
also need to make sure that the ioser and ioserx executable files are accessible
on your client machine; these files are normally part of the Java install. If you
are using a Windows System, make sure that EJB clients can locate the
ioser.dll library file at run time.

Figure 26 shows the import statements for the example Java application
com.ibm.ejs.doc.client.TransferApplication. In addition to the required Java
packages mentioned previously, the example application imports the
com.ibm.ejs.doc.transfer package because the application communicates with a
Transfer bean. The example application also imports the
InsufficientFundsException class contained in the same package as the
Account bean.

Creating and getting a reference to a bean’s EJB object

To invoke a bean’s business methods, a client must create or find an EJB
object for that bean. After the client has created or found this object, it can
invoke methods on it in the standard way.

To create or find an instance of a bean’s EJB object, the client must do the
following:

...
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.rmi.*
...
import javax.naming.*;
import javax.ejb.*;
import javax.rmi.PortableRemoteObject;
...
import com.ibm.ejs.doc.account.InsufficientFundsException;
import com.ibm.ejs.doc.transfer.*;
...
public class TransferApplication extends Frame implements

ActionListener, WindowListener {
...

}

Figure 26. Code example: The import statements for the Java application TransferApplication

Chapter 6. Developing EJB clients 79

1. Locate and create an EJB home object for that bean. For more information,
see “Locating and creating an EJB home object”.

2. Use the EJB home object to create or (for entity beans only) find an
instance of the bean’s EJB object. For more information, see “Creating an
EJB object” on page 83.

The TransferApplication client contains one reference to a Transfer EJB object,
which the application uses to invoke all of the methods on the Transfer bean.
When using session beans in Java applications, it is a good idea to make the
reference to the EJB object a class-level variable rather than a variable that is
local to a method. This allows your EJB client to repeatedly invoke methods
on the same EJB object rather than having to create a new object each time the
client invokes a session bean method. As discussed in “Threading issues” on
page 101, this approach is not recommended for servlets, which must be
designed to handle multiple threads.

Locating and creating an EJB home object
JNDI is used to find the name of an EJB home object. The properties that an
EJB client uses to initialize JNDI and find an EJB home object vary across EJB
server implementations. To make an enterprise bean more portable between
EJB server implementations, it is recommended that you externalize these
properties in environment variables, properties files, or resource bundles
rather than hard code them into your enterprise bean or EJB client code.

The example Transfer bean uses environment variables as discussed in
“Implementing the ejbCreate methods” on page 56. The TransferApplication
uses a resource bundle contained in the
com.ibm.ejs.doc.client.ClientResourceBundle.class file.

To initialize a JNDI name service, an EJB client must set the appropriate
values for the following JNDI properties:

javax.naming.Context.PROVIDER_URL
This property specifies the host name and port of the name server
used by the EJB client. The property value must have the following
format: iiop://hostname:port, where hostname is the IP address or
hostname of the machine on which the name server runs and port is
the port number on which the name server listens.

For example, the property value iiop://bankserver.mybank.com:9019
directs an EJB client to look for a name server on the host named
bankserver.mybank.com listening on port 9019. The property value
iiop://bankserver.mybank.com directs an EJB client to look for a
name server on the host named bankserver.mybank.com at port
number 900. The property value iiop:/// directs an EJB client to look
for a name server on the local host listening on port 900. If not
specified, this property defaults to the local host and port number 900,

80 WebSphere: Writing Enterprise Beans in WebSphere

which is the same as specifying iiop:///. The port number used by
the name service can be changed by using the administrative
interface.

javax.naming.Context.INITIAL_CONTEXT_FACTORY
This property identifies the actual name service that the EJB client
must use. This property must be set to
com.ibm.ejs.ns.jndi.CNInitialContextFactory.

Locating an EJB home object is a two-step process:
1. Create a javax.naming.InitialContext object. For more information, see

“Creating an InitialContext object”.
2. Use the InitialContext object to create the EJB home object. For more

information, see “Creating EJB home object” on page 82.

Creating an InitialContext object
Figure 27 on page 82 shows the code required to create the InitialContext
object. To create this object, construct a java.util.Properties object, add values
to the Properties object, and then pass the object as the argument to the
InitialContext constructor. In the TransferApplication, the value of each
property is obtained from the resource bundle class named
com.ibm.ejs.doc.client.ClientResourceBundle, which stores all of the
locale-specific variables required by the TransferApplication. (This class also
stores the variables used by the other EJB clients contained in the
documentation example, described in “Information about the examples
described in the documentation” on page 197).

The resource bundle class is instantiated by calling the
ResourceBundle.getBundle method. The values of variables within the
resource bundle class are extracted by calling the getString method on the
bundle object.

The createTransfer method of the TransferApplication can be called multiple
times as explained in “Handling an invalid EJB object for a session bean” on
page 84. However, after the InitialContext object is created once, it remains
good for the life of the client session. Therefore, the code required to create
the InitialContext object is placed within an if statement that determines if the
reference to the InitialContext object is null. If the reference is null, the
InitialContext object is created; otherwise, the reference can be reused on
subsequent creations of the EJB object.

Chapter 6. Developing EJB clients 81

Creating EJB home object
After the InitialContext object (ivjInitContext) is created, the application uses it
to create the EJB home object, as shown in Figure 28 on page 83. This creation
is accomplished by invoking the lookup method, which takes the JNDI name
of the enterprise bean in String form and returns a java.lang.Object object. The
JNDI name specified in the deployment descriptor is used.

...
public class TransferApplication extends Frame implements ActionListener,

WindowListener {
...
private InitialContext ivjInitContext = null;
private Transfer ivjTransfer = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.ClientResourceBundle");
...
private String nameService = null;
private String accountName = null;
private String providerUrl = null;
...
private Transfer createTransfer() {

TransferHome transferHome = null;
Transfer transfer = null;

// Get the initial context
if (ivjInitContext == null) {

try {
Properties properties = new Properties();
// Get location of name service
properties.put(javax.naming.Context.PROVIDER_URL,

bundle.getString("providerUrl"));
// Get name of initial context factory
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

bundle.getString("nameService"));
...
ivjInitContext = new InitialContext(properties);

} catch (Exception e) { // Error getting the initial context
...
}

}
...
// Look up the home interface using the JNDI name
...
// Create a new Transfer object to return
...
return transfer;

}

Figure 27. Code example: Creating the InitialContext object

82 WebSphere: Writing Enterprise Beans in WebSphere

The example TransferApplication gets the JNDI name of the Transfer bean
from the ClientResourceBundle class.

After an object is returned by the lookup method, the static method
javax.rmi.PortableRemoteObject.narrow is used to obtain an EJB home object
for the specified enterprise bean. The narrow method takes two parameters:
the object to be narrowed and the class of the EJB home object to be returned
by the narrow method. The object returned by the
javax.rmi.PortableRemoteObject.narrow method is cast to the class associated
with the home interface.

Creating an EJB object
After the EJB home object is created, it is used to create the EJB object.
Figure 29 on page 84 shows the code required to create the EJB object by using
the EJB home object. A create method is invoked to create an EJB object or (for
entity beans only) a finder method is invoked to find an existing EJB object.
Because the Transfer bean is a stateless session bean, the only choice is the
default create method.

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
// Get the initial context
...
// Look up the home interface using the JNDI name
try {

java.lang.Object homeObject = ivjInitContext.lookup(
bundle.getString("transferName"));

transferHome = (TransferHome)javax.rmi.PortableRemoteObject.narrow(
homeObject, TransferHome.class);

} catch (Exception e) { // Error getting the home interface
...

}
...
// Create a new Transfer object to return
...
return transfer;

}

Figure 28. Code example: Creating the EJBHome object

Chapter 6. Developing EJB clients 83

Handling an invalid EJB object for a session bean

Because session beans are ephemeral, the client cannot depend on a session
bean’s EJB object to remain valid. A reference to an EJB object for a session
bean can become invalid if the EJB server fails or is restarted or if the session
bean times out due to inactivity. (The reference to an entity bean’s EJB object
is always valid until that object is removed.) Therefore, the client of a session
bean must contain code to handle a situation in which the EJB object becomes
invalid.

An EJB client can determine if an EJB object is valid by placing all method
invocations that use the reference inside of a try/catch block that specifically
catches the java.rmi.NoSuchObjectException, in addition to any other
exceptions that the method needs to handle. The EJB client can then invoke
the code to handle this exception.

You determine how to handle an invalid EJB object. The example
TransferApplication creates a new Transfer EJB object if the one it is currently
using becomes invalid.

The code to create a new EJB object when the old one becomes invalid is the
same code used to create the original EJB object and is described in “Creating
and getting a reference to a bean’s EJB object” on page 79. For the example
TransferApplication client, this code is contained in the createTransfer method.

Figure 30 on page 85 shows the code used to create the new EJB object in the
getBalance method of the example TransferApplication. The getBalance

private Transfer createTransfer() {
TransferHome transferHome = null;
Transfer transfer = null;
// Get the initial context
...
// Look up the home interface using the JNDI name
...
// Create a new Transfer object to return
try {

transfer = transferHome.create();
} catch (Exception e) { // Error creating Transfer object

...
}
...
return transfer;

}

Figure 29. Code example: Creating the EJB object

84 WebSphere: Writing Enterprise Beans in WebSphere

method contains the local boolean variable sessionGood, which is used to
specify the validity of the EJB object referenced by the variable ivjTransfer. The
sessionGood variable is also used to determine when to break out of the
do-while loop.

The sessionGood variable is initialized to false because the ivjTransfer can
reference an invalid EJB object when the getBalance method is called. If the
ivjTransfer reference is valid, the TransferApplication invokes the Transfer
bean’s getBalance method and returns the balance. If the ivjTransfer reference
is invalid, the NoSuchObjectException is caught, the TransferApplication’s
createTransfer method is called to create a new Transfer EJB object reference,
and the sessionGood variable is set to false so that the do-while loop is
repeated with the new valid EJB object. To prevent an infinite loop, the
sessionGood variable is set to true when any other exception is thrown.

private float getBalance(long acctId) throws NumberFormatException, RemoteException,
FinderException {
// Assume that the reference to the Transfer session bean is no good
...
boolean sessionGood = false;
float balance = 0.0f;
do {

try {
// Attempt to get a balance for the specified account
balance = ivjTransfer.getBalance(acctId);
sessionGood = true;
...

} catch(NoSuchObjectException ex) {
createTransfer();
sessionGood = false;

} catch(RemoteException ex) {
// Server or connection problem
...

} catch(NumberFormatException ex) {
// Invalid account number
...

} catch(FinderException ex) {
// Invalid account number
...

}
} while(!sessionGood);
return balance;

}

Figure 30. Code example: Refreshing the EJB object reference for a session bean

Chapter 6. Developing EJB clients 85

Removing a bean’s EJB object

When an EJB client no longer needs a stateful session EJB object, the EJB client
should remove that object. Instances of stateful session beans have affinity to
specific clients. They will remain in the container until they are explicitly
removed by the client, or removed by the container when they time out.
Meanwhile, the container might need to passivate inactive stateful session
beans to disk. This requires overhead for the container and impacts
performance of the application. If the passivated session bean is subsequently
required by the application, the container activates it by restoring it from disk.
By explicitly removing stateful session beans when finished with them,
applications can decrease the need for passivation and minimize container
overhead.

You remove entity EJB objects only when you want to remove the information
in the data source with which the entity EJB object is associated.

To remove an EJB object, invoke the remove method on the object. As
discussed in “Creating and getting a reference to a bean’s EJB object” on
page 79, the TransferApplication contains only one reference to a Transfer EJB
object that is created when the application is initialized.

Figure 31 shows how the example Transfer EJB object is removed in the
TransferApplication in the killApp method. To parallel the creation of the
Transfer EJB object when the TransferApplication is initialized, the application
removes the final EJB object associated with ivjTransfer reference right before
closing the application’s GUI window. The killApp method closes the window
by invoking the dispose method on itself.

Managing transactions in an EJB client

In general, it is practical to design your enterprise beans so that all transaction
management is handled at the enterprise bean level. In a strict three-tier,
distributed application, this is not always possible or even desirable. However,
because the middle tier of an EJB application can include two
subcomponents—session beans and entity beans—it is much easier to design

...
private void killApp() {

try {
ivjTransfer.remove();
this.dispose();
System.exit(0); } catch (Throwable ivjExc) {
...

}
}

Figure 31. Code example: Removing a session EJB object

86 WebSphere: Writing Enterprise Beans in WebSphere

the transactional management completely within the application server tier. Of
course, the resource manager tier must also be designed to support
transactions.

Note: EJB clients that access entity beans with CMP that use Host
On-Demand (HOD) or the External Call Interface (ECI) for CICS or IMS
applications must begin a transaction before invoking a method on
these entity beans. This restriction is required because these types of
entity beans must use the Mandatory transaction attribute.

Nevertheless, it is still possible to program an EJB client (that is not an
enterprise bean) to participate in transactions for those specialized situations
that require it. To participate in a transaction, the EJB client must do the
following:
1. Obtain a reference to the javax.transaction.UserTransaction interface by

using JNDI as defined in the Java Transaction Application Programming
Interface (JTA).

2. Use the object reference to invoke any of the following methods:
v begin—Begins a transaction. This method takes no arguments and

returns void.
v commit—Attempts to commit a transaction; assuming that nothing

causes the transaction to be rolled back, successful completion of this
method commits the transaction. This method takes no arguments and
returns void.

v getStatus—Returns the status of the referenced transaction. This method
takes no arguments and returns int; if no transaction is associated with
the reference, STATUS_NO_TRANSACTION is returned. The following
are the valid return values for this method:
– STATUS_ACTIVE—Indicates that transaction processing is still in

progress.
– STATUS_COMMITTED—Indicates that a transaction has been

committed and the effects of the transaction have been made
permanent.

– STATUS_COMMITTING—Indicates that a transaction is in the
process of committing (that is, the transaction has started committing
but has not completed the process).

– STATUS_MARKED_ROLLBACK—Indicates that a transaction is
marked to be rolled back.

– STATUS_NO_TRANSACTION—Indicates that a transaction does not
exist in the current transaction context.

– STATUS_PREPARED—Indicates that a transaction has been prepared
but not completed.

Chapter 6. Developing EJB clients 87

– STATUS_PREPARING—Indicates that a transaction is in the process
of preparing (that is, the transaction has started preparing but has not
completed the process).

– STATUS_ROLLEDBACK—Indicates that a transaction has been rolled
back.

– STATUS_ROLLING_BACK—Indicates that a transaction is in the
process of rolling back (that is, the transaction has started rolling
back but has not completed the process).

– STATUS_UNKNOWN—Indicates that the status of a transaction is
unknown.

v rollback—Rolls back the referenced transaction. This method takes no
arguments and returns void.

v setRollbackOnly—Specifies that the only possible outcome of the
transaction is for it to be rolled back. This method takes no arguments
and returns void.

v setTransactionTimeout—Sets the timeout (in seconds) associated with
the transaction. If some transaction participant has not specifically set
this value, a default timeout is used. This method takes a number of
seconds (as type int) and returns void.

Figure 32 on page 89 provides an example of an EJB client creating a reference
to a UserTransaction object and then using that object to set the transaction
timeout, begin a transaction, and attempt to commit the transaction. (The
source code for this example is not available with the example code provided
with this document.) Notice that the client does a simple type cast of the
lookup result, rather than invoking a narrow method as required with other
JNDI lookups. In both EJB server environments, the JNDI name of the
UserTransaction interface is java:comp/UserTransaction.

88 WebSphere: Writing Enterprise Beans in WebSphere

...
import javax.transaction.*;
...
// Use JNDI to locate the UserTransaction object
Context initialContext = new InitialContext();
UserTransaction tranContext = (

UserTransaction)initialContext.lookup("java:comp/UserTransaction");
// Set the transaction timeout to 30 seconds
tranContext.setTransactionTimeout(30);
...
// Begin a transaction
tranContext.begin();
// Perform transaction work invoking methods on enterprise bean references
...
// Call for the transaction to commit
tranContext.commit();

Figure 32. Code example: Managing transactions in an EJB client

Chapter 6. Developing EJB clients 89

90 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 7. Developing servlets that use enterprise beans

A servlet is a Java application that enables users to access Web server
functionality. To use servlets, a Web server is required. The WebSphere
Application Server plugs into a number of commonly used Web servers. The
IBM HTTP Server with the Advanced Application Server. For more
information, consult the Advanced Edition InfoCenter.

Java servlets can be combined with enterprise beans to create powerful EJB
applications. This chapter describes how to use enterprise beans within a
servlet. The example CreateAccount servlet, which uses the example Account
bean, is used to illustrate the concepts discussed in this chapter. The example
servlet and enterprise bean discussed in this chapter are explained in
“Information about the examples described in the documentation” on
page 197.

An overview of standard servlet methods

Usually, a servlet is invoked from an HTML form on the user’s browser. The
first time the servlet is invoked, the servlet’s init method is run to perform
any initializations required at startup. For the first and all subsequent
invocations of the servlet, the doGet method (or, alternatively, the doPost
method) is run. Within the doGet method (or the doPost method), the servlet
gets the information provided by the user on the HTML form and uses that
information to perform work on the server and access server resources.

The servlet then prepares a response and sends the response back to the user.
After a servlet is loaded, it can handle multiple simultaneous user requests.
Multiple request threads can invoke the doGet (or doPost) method at the
same time, so the servlet needs to be made thread safe.

When a servlet shuts down, the destroy method of the servlet is run in order
to perform any needed shutdown processing.

Writing an HTML page that embeds a servlet

Figure 33 on page 92 shows the HTML file (named create.html) used to invoke
the CreateAccount servlet. The HTML form is used to specify the account
number for the new account, its type (checking or savings), and its initial
balance. The request is passed to the doGet method of the servlet, where the
servlet is identified with its full Java package name, as shown in the example.

© Copyright IBM Corp. 1999, 2001 91

The HTML response from the servlet is designed to produce a display
identical to create.html, enabling the user to continue creating new accounts.
Figure 34 on page 93 shows what create.html looks like on a browser.

<html>
<head>
<title>Create a new Account</title>
</head>
<body>
<h1 align="center">Create a new Account</h1>
<form method="get"
action="/servlet/com.ibm.ejs.doc.client.CreateAccount">
<table border align="center">
<!-- specify a new account number -->
<tr bgcolor="#cccccc">
<td align="right">Account Number:</td>
<td colspan="2"><input type="text" name="account" size="20"
maxlength="10">
</tr>
<!-- specify savings or checking account -->
...
<!-- specify account starting balance -->
...
<!-- submit information to servlet -->
...
<input type="submit" name ="submit" value="Create">
...
<!-- message area -->
...
</form>
</body>
</html>

Figure 33. Code example: Content of the create.html file used to access the CreateAccount servlet

92 WebSphere: Writing Enterprise Beans in WebSphere

Developing the servlet

This section discusses the basic code required by a servlet that interacts with
an enterprise bean. Figure 35 on page 94 shows the basic outline of the code
that makes up the CreateAccount servlet. As shown in the example, the
CreateAccount servlet extends the javax.servlet.http.HttpServlet class and
implements an init method and a doGet method.

Figure 34. The initial form and output of the CreateAccount servlet

Chapter 7. Developing servlets that use enterprise beans 93

The servlet’s instance variables
Figure 36 on page 95 shows the instance variables used in the CreateAccount
servlet. The nameService, accountName, and providerUrl variables are used to
specify the property values required during JNDI lookup. These values are
obtained from the ClientResourceBundle class as described in “Creating and
getting a reference to a bean’s EJB object” on page 79.

The CreateAccount class also initializes the string constants that are used to
create the HTML response sent back to the user. (Only three of these variables
are shown, but there are many of them). The init method in the
CreateAccount servlet provides a way to read strings from a resource bundle
to override these US English defaults in order to provide a response in a
different national language.

package com.ibm.ejs.doc.client;
// General enterprise bean code.
import java.rmi.RemoteException;
import javax.ejb.DuplicateKeyException;
// Enterprise bean code specific to this servlet.
import com.ibm.ejs.doc.account.AccountHome;
import com.ibm.ejs.doc.account.AccountKey;
import com.ibm.ejs.doc.account.Account;
// Servlet related.
import javax.servlet.*;
import javax.servlet.http.*;
// JNDI (naming).
import javax.naming.*; // for Context, InitialContext, NamingException
// Miscellaneous:
import java.util.*;
import java.io.*;
...
public class CreateAccount extends HttpServlet {

// Variables
...
public void init(ServletConfig config) throws ServletException {

...
}
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// --- Read and validate user input, initialize. ---
...
// --- If input parameters are good, try to create account. ---
...
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 35. Code example: The CreateAccount class

94 WebSphere: Writing Enterprise Beans in WebSphere

The instance variable accountHome is used by all client requests to create a
new Account bean instance. The accountHome variable is initialized in the init
method as shown in Figure 36.

The servlet’s init method
The init method of the CreateAccount servlet is shown in Figure 37 on
page 96. The init method is run once, the first time a request is processed by
the servlet, after the servlet is started. Typically, the init method is used to do
any one-time initializations for a servlet. For example, the default US English
strings used in preparing the HTML response can be replaced with another
national language.

The init method is also the best place to initialize the value of references to
the home interface of any enterprise beans used by the servlet. In the
CreateAccount’s init method, the accountHome variable is initialized to
reference the EJB home object of the Account bean.

As in other types of EJB clients, the properties required to do a JNDI lookup
are specific to the EJB implementation. Therefore, these properties are
externalized in a properties file or a resource bundle class. For more
information on these properties, see “Creating and getting a reference to a
bean’s EJB object” on page 79.

Note that in the CreateAccount servlet, a HashTable object is used to store the
properties required to do a JNDI lookup whereas a Properties object is used in

...
public class CreateAccount extends HttpServlet {

// Variables for finding the home
private String nameService = null;
private String accountName = null;
private String providerURL = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.ClientResourceBundle");
// Strings for HTML output - US English defaults shown.
static String title = "Create a new Account";
static String number = "Account Number:";
static String type = "Type:";
...
// Variable for accessing the enterprise bean.
private AccountHome accountHome = null;
...

}

Figure 36. Code example: The instance variables of the CreateAccount class

Chapter 7. Developing servlets that use enterprise beans 95

the TransferApplication. Both of these classes are valid for storing these
properties.

Note: Although the init method is a good place to obtain references to EJB
home objects, it is not a good place to create enterprise beans or access

// Variables for finding the EJB home object
private String nameService = null;
private String accountName = null;
private String providerURL = null;
private ResourceBundle bundle = ResourceBundle.getBundle(

"com.ibm.ejs.doc.client.TransferResourceBundle");
...
public void init(ServletConfig config) throws ServletException {

super.init(config);
...
try {

// Get NLS strings from an external resource bundle
...
createTitle = bundle.getString("createTitle");
number = bundle.getString("number");
type = bundle.getString("type");
...
//Get values for the naming factory and home name.
nameService = bundle.getString("nameService");
accountName = bundle.getString("accountName");
providerURL = bundle.getString("providerURL");

}
catch (Exception e) {

...
}
// Get home object for access to Account enterprise bean.
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, nameService);
try {

// Create the initial context.
Context ctx = new InitialContext(env);
// Get the home object.
Object homeObject = ctx.lookup(accountName);
// Get the AccountHome object.
accountHome = (AccountHome) javax.rmi.PortableRemoteObject.narrow(

homeObject, AccountHome.class);
}
// Determine cause of failure.
catch (NamingException e) {

...
}
catch (Exception e) {

...
}

}

Figure 37. Code example: The init method of the CreateAccount servlet

96 WebSphere: Writing Enterprise Beans in WebSphere

other beans that might be protected with WebSphere security.
Depending upon the authorization policy on the protected objects,
creating or accessing these objects from within the init method could
fail for authentication or authorization reasons because they were not
accessed with the proper security credentials.

Creating or accessing protected objects should be done after the init
method, in one of the servlet’s doXXX methods.

The servlet’s doGet method
The doGet method is invoked for every servlet request. In the CreateAccount
servlet, the method does the following tasks to manage user input. These
tasks are fairly standard for this method:
v Read the user input from the HTML form and decide if the input is

valid—for example, whether the user entered a valid number for an initial
balance.

v Perform the initializations required for each request.

Figure 38 on page 98 shows the parts of the doGet method that handle user
input. Note that the req variable is used to read the user input from the
HTML form. The req variable is a javax.servlet.http.HttpServletRequest object
passed as one of the arguments to the doGet method.

Chapter 7. Developing servlets that use enterprise beans 97

Creating an enterprise bean
If the user input is valid, the doGet method attempts to create a new account
based on the user input as shown in Figure 39 on page 99. Besides the

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize. ---
// Error flags.
boolean accountFlag = true;
boolean balanceFlag = true;
boolean inputFlag = false;
boolean createFlag = true;
boolean duplicateFlag = false;
// Datatypes used to create new account bean.
AccountKey key;
int typeAcct = 0;
String typeString = "0";
float initialBalance = 0;
// Read input parameters from HTML form.
String[] accountArray = req.getParameterValues("account");
String[] typeArray = req.getParameterValues("type");
String[] balanceArray = req.getParameterValues("balance");
// Convert input parameters to needed datatypes for new account.
// (account)
long accountLong = 0;
...
key = new AccountKey(accountLong);
// (type)
if (typeArray[0].equals("1")) {

typeAcct = 1; // Savings account.
typeString = "savings";

}
else if (typeArray[0].equals("2")) {

typeAcct = 2; // Checking account
typeString = "checking";

}
// (balance)
try {

initialBalance = (Float.valueOf(balanceArray[0])).floatValue();
} catch (Exception e) {

balanceFlag = false;
}
...
// --- If input parameters are good, try to create account bean. ---
...
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 38. Code example: The doGet method of the CreateAccount servlet

98 WebSphere: Writing Enterprise Beans in WebSphere

initialization of the home object reference in the init method, this is the only
other piece of code that is specific to the use of enterprise beans in a servlet.

Determining the content of the user response
Next, the doGet method prepares a response message to be sent to the user.
There are three possible responses:
v The user input was not valid.
v The user input was valid, but the account was not created for some reason.
v The account was created successfully. If the previous two errors do not

occur, this response is prepared.

Figure 40 on page 100 shows the code used by the servlet to determine which
response to send to the user. If no errors are encountered, then the response
indicates success.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize ---.
...
// --- If input parameters are good, try to create account bean. ---
if (accountFlag && balanceFlag) {

inputFlag = true;
try {

// Create the bean.
Account account = accountHome.create(key, typeAcct, initialBalance);

}
// Determine cause of failure.
catch (RemoteException e) {

...
}
catch (DuplicateKeyException e) {

...
}
catch (Exception e) {

...
}

}
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
...

}

Figure 39. Code example: Creating an enterprise bean in the doGet method

Chapter 7. Developing servlets that use enterprise beans 99

Sending the user response
With the type of response determined, the doGet method then prepares the
full HTML response and sends it to the user’s browser, incorporating the
appropriate message. Relevant parts of the full HTML response are shown in
Figure 41 on page 101.

The res variable is used to pass the response back to the user. This variable is
an HttpServletResponse object passed as an argument to the doGet method.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// --- Read and validate user input, initialize. ---
...
// --- If input parameters are good, try to create account bean. ---
...
// --- Prepare message to accompany response. ---
...

String messageLine = "";
if (inputFlag) {

// If you are here, the client input is good.
if (createFlag) {
// New account enterprise bean was created.
messageLine = createdaccount + " " + accountArray[0] + ", " +

createdtype + " " + typeString + ", " +
createdbalance + " " + balanceArray[0];

}
else if (duplicateFlag) {

// Account with same key already exists.
messageLine = failureexists + " " + accountArray[0];

}
else {
// Other reason for failure.

messageLine = failureinternal + " " + accountArray[0];
}

}
else {

// If you are here, something was wrong with the client input.
String separator = "";
if (!accountFlag) {

messageLine = failureaccount + " " + accountArray[0];
separator = ", ";

}
if (!balanceFlag) {

messageLine = messageLine + separator +
failurebalance + " " + balanceArray[0];

}
// --- Prepare and send HTML response. ---
...

}

Figure 40. Code example: Determining a user response in the doGet method

100 WebSphere: Writing Enterprise Beans in WebSphere

The response code shown here mixes both display (HTML) and content in one
servlet. You can separate the display and the content by using JavaServer
Pages (JSP). A JSP allows the display and content to be developed and
maintained separately.

Threading issues

Except for the instance variable required to get a reference to the Account
bean’s home interface and to support multiple languages (which remain
unchanged for all user requests), all other variables used in the CreateAccount
servlet are local to the doGet method. Each request thread has its own set of
local variables, so the servlet can handle simultaneous user requests.

As a result, the CreateAccount servlet is thread safe. By taking a similar
approach to servlet design, you can also make your servlets thread safe.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {
// --- Read and validate user input, initialize. ---
...
// --- If input parameters are good, try to create account bean. ---
...
// --- Prepare message to accompany response. ---
...
// --- Prepare and send HTML response. ---
// HTML returned looks like initial HTML that invoked this servlet.
// Message line says whether servlet was successful or not.
res.setContentType("text/html");
res.setHeader("Pragma", "no-cache");
res.setHeader("Cache-control", "no-cache");
PrintWriter out = res.getWriter();
out.println("<html>");
...
out.println("<title> " + createTitle + "</title>");
...
out.println(" </html>");

}

Figure 41. Code example: Responding to the user in the doGet method

Chapter 7. Developing servlets that use enterprise beans 101

102 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 8. More-advanced programming concepts for
enterprise beans

This chapter discusses some of the more advanced programming concepts
associated with developing and using enterprise beans. It includes
information on developing entity beans with bean-managed persistence
(BMP), writing the code required by a BMP bean to interact with a database,
and developing session beans that directly participate in transactions.

Developing entity beans with BMP

In an entity bean with container-managed persistence (CMP), the container
handles the interactions between the enterprise bean and the data source. In
an entity bean with bean-managed persistence (BMP), the enterprise bean
must contain all of the code required for the interactions between the
enterprise bean and the data source. For this reason, developing an entity
bean with CMP is simpler than developing an entity bean with BMP.
However, you must use BMP if any of the following is true about an entity
bean:
v The bean’s persistent data is stored in more than one data source.
v The bean’s persistent data is stored in a data source that is not supported

by the EJB server that you are using.

This section examines the development of entity beans with BMP. For
information on the tasks required to develop an entity bean with CMP, see
“Developing entity beans with CMP” on page 33.

Every entity bean must contain the following basic parts:
v The enterprise bean class. For more information, see “Writing the enterprise

bean class (entity with BMP)” on page 104.
v The enterprise bean’s home interface. For more information, see “Writing

the home interface (entity with BMP)” on page 114.
v The enterprise bean’s remote interface. For more information, see “Writing

the remote interface (entity with BMP)” on page 117.

In an entity bean with BMP, you can create your own primary key class or
use an existing class for the primary key. For more information, see “Writing
or selecting the primary key class (entity with BMP)” on page 118.

© Copyright IBM Corp. 1999, 2001 103

Writing the enterprise bean class (entity with BMP)
In an entity bean with BMP, the bean class defines and implements the
business methods of the enterprise bean, defines and implements the methods
used to create instances of the enterprise bean, and implements the methods
invoked by the container to move the bean through different stages in the
bean’s life cycle.

By convention, the enterprise bean class is named NameBean, where Name is
the name you assign to the enterprise bean. The enterprise bean class for the
example AccountBM enterprise bean is named AccountBMBean.

Every entity bean class with BMP must meet the following requirements:
v It must be public, it must not be abstract, and it must implement the

javax.ejb.EntityBean interface. For more information, see “Implementing the
EntityBean interface” on page 112.

v It must define instance variables that correspond to persistent data
associated with the enterprise bean. For more information, see “Defining
instance variables” on page 105.

v It must implement the business methods used to access and manipulate the
data associated with the enterprise bean. For more information, see
“Implementing the business methods” on page 107.

v It must contain code for getting connections to, interacting with, and
releasing connections to the data source (or sources) used to store the
persistent data. For more information, see “Using a database with a BMP
entity bean” on page 119.

v It must define and implement an ejbCreate method for each way in which
the enterprise bean can be instantiated. It can, but is not required to, define
and implement a corresponding ejbPostCreate method for each ejbCreate
method. For more information, see “Implementing the ejbCreate and
ejbPostCreate methods” on page 107.

v It must implement the ejbFindByPrimaryKey method that takes a primary
key and determines if it is valid and unique. It can also define and
implement additional finder methods as required. For more information,
see “Implementing the ejbFindByPrimaryKey and other ejbFind methods”
on page 109.

Note: The enterprise bean class can implement the enterprise bean’s remote
interface, but this is not recommended. If the enterprise bean class
implements the remote interface, it is possible to inadvertently pass the
this variable as a method argument.

Figure 42 on page 105 shows the import statements and class declaration for
the example AccountBM enterprise bean.

104 WebSphere: Writing Enterprise Beans in WebSphere

Defining instance variables
An entity bean class can contain both persistent and nonpersistent instance
variables; however, static variables are not supported in enterprise beans
unless they are also final (that is, they are constants). Persistent variables are
stored in a database. Unlike the persistent variables in a CMP entity bean
class, the persistent variables in a BMP entity bean class can be private.

Nonpersistent variables are not stored in a database and are temporary.
Nonpersistent variables must be used with caution and must not be used to
maintain the state of an EJB client between method invocations. This
restriction is necessary because nonpersistent variables cannot be relied on to
remain the same between method invocations outside of a transaction because
other EJB clients can change these variables or they can be lost when the
entity bean is passivated.

The AccountBMBean class contains three instance variables that represent
persistent data associated with the AccountBM enterprise bean:
v accountId, which identifies the account ID associated with an account
v type, which identifies the account type as either savings (1) or checking (2)
v balance, which identifies the current balance of the account

The AccountBMBean class contains several nonpersistent instance variables
including the following:
v entityContext, which identifies the entity context of each instance of an

AccountBM enterprise bean. The entity context can be used to get a
reference to the EJB object currently associated with the bean instance and
to get the primary key object associated with that EJB object.

v jdbcUrl, which encapsulates the database universal resource locator (URL)
used to connect to the data source. This variable must have the following
format: dbAPI:databaseType:databaseName. For example, to specify a database

...
import java.rmi.RemoteException;
import java.util.*;
import javax.ejb.*;
import java.lang.*;
import java.sql.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public class AccountBMBean implements EntityBean {

...
}

Figure 42. Code example: The AccountBMBean class

Chapter 8. More-advanced programming concepts for enterprise beans 105

named sample in an IBM DB2 database with the Java Database
Connectivity (JDBC) API, the argument is jdbc:db2:sample.

v driverName, which encapsulates the database driver class required to
connect to the database.

v DBLogin, which identifies the database user ID required to connect to the
database.

v DBPassword, which identifies password for the specified user ID (DBLogin)
required to connect to the database.

v tableName, which identifies the database table name in which the bean’s
persistent data is stored.

v jdbcConn, which encapsulates a Java Database Connectivity (JDBC)
connection to a data source within a java.sql.Connection object.

To make the AccountBM bean more portable between databases and database
drivers, the database-specific variables (jdbcUrl, driverName, DBLogin,
DBPassword, and tableName) are set by retrieving corresponding environment
variables contained in the enterprise bean. The values of these variables are
retrieved by the getEnvProps method, which is implemented in the
AccountBMBean class and invoked when the setEntityContext method is
called. For more information, see “Managing database connections in the EJB
server environment” on page 120.

Although Figure 43 shows database access compatible with version 1.0 of the
JDBC specification, you can also perform database accesses that are
compatible with version 2.0 of the JDBC specification. An administrator binds
a javax.sql.DataSource reference (which encapsulates the information that was

...
public class AccountBMBean implements EntityBean {

private EntityContext entityContext = null;
...
private static final String DBRULProp = "DBURL";
private static final String DriverNameProp = "DriverName";
private static final String DBLoginProp = "DBLogin";
private static final String DBPasswordProp = "DBPassword";
private static final String TableNameProp = "TableName";
private String jdbcUrl, driverName, DBLogin, DBPassword, tableName;
private long accountId = 0;
private int type = 1;
private float balance = 0.0f;

private Connection jdbcConn = null;
...

}

Figure 43. Code example: The instance variables of the AccountBMBean class

106 WebSphere: Writing Enterprise Beans in WebSphere

formerly stored in the jdbcURL and driverName variables) into the JNDI
namespace. The entity bean with BMP does the following to get a
java.sql.Connection:
DataSource ds = (dataSource)initialContext.lookup("java:comp/env/jdbc/MyDataSource");
Connection con = ds.getConnection();

where MyDataSource is the name the administrator assigned to the datasource.

Implementing the business methods
The business methods of an entity bean class define the ways in which the
data encapsulated in the class can be manipulated. The business methods
implemented in the enterprise bean class cannot be directly invoked by an EJB
client. Instead, the EJB client invokes the corresponding methods defined in
the enterprise bean’s remote interface by using an EJB object associated with
an instance of the enterprise bean, and the container invokes the
corresponding methods in the instance of the enterprise bean.

Therefore, for every business method implemented in the enterprise bean
class, a corresponding method must be defined in the enterprise bean’s
remote interface. The enterprise bean’s remote interface is implemented by the
container in the EJB object class when the enterprise bean is deployed.

There is no difference between the business methods defined in the
AccountBMBean bean class and those defined in the CMP bean class
AccountBean shown in Figure 10 on page 38.

Implementing the ejbCreate and ejbPostCreate methods
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created. For each
ejbCreate method, you can also define a corresponding ejbPostCreate method.
Each ejbCreate method must correspond to a create method in the EJB home
interface.

Like the business methods of the bean class, the ejbCreate and ejbPostCreate
methods cannot be invoked directly by the client. Instead, the client invokes
the create method of the enterprise bean’s home interface by using the EJB
home object, and the container invokes the ejbCreate method followed by the
ejbPostCreate method.

Unlike the method in an entity bean with CMP, the ejbCreate method in an
entity bean with BMP must contain all of the code required to insert the
bean’s persistent data into the data source. This requirement means that the
ejbCreate method must get a connection to the data source (if one is not
already available to the bean instance) and insert the values of the bean’s
variables into the appropriate fields in the data source.

Chapter 8. More-advanced programming concepts for enterprise beans 107

Each ejbCreate method in an entity bean with BMP must meet the following
requirements:
v It must be public and return the bean’s primary key class.
v Its arguments and return type must be valid for Java remote method

invocation (RMI).
v It must contain the code required to insert the values of the persistent

variables into the data source. For more information, see “Using a database
with a BMP entity bean” on page 119.

Each ejbPostCreate method must be public, return void, and have the same
arguments as the matching ejbCreate method.

If necessary, both the ejbCreate method and the ejbPostCreate method can
throw the java.rmi.RemoteException exception, the javax.ejb.CreateException
exception, the javax.ejb.DuplicateKeyException exception, and any
user-defined exceptions.

Figure 44 on page 109 shows the two ejbCreate methods required by the
example AccountBMBean bean class. No ejbPostCreate methods are required.

As in the AccountBean class, the first ejbCreate method calls the second
ejbCreate method; the latter handles all of the interaction with the data source.
The second method initializes the bean’s instance variables and then ensures
that it has a valid connection to the data source by invoking the
checkConnection method. The method then creates, prepares, and executes an
SQL INSERT call on the data source. If the INSERT call is executed correctly,
and only one row is inserted into the data source, the method returns an
object of the bean’s primary key class.

108 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the ejbFindByPrimaryKey and other ejbFind methods
At a minimum, each entity bean with BMP must define and implement the
ejbFindByPrimaryKey method that takes a primary key and determines if it is
valid and unique for an instance of an enterprise bean; if the primary key is
valid and unique, it returns the primary key. An entity bean can also define
and implement other finder methods to find enterprise bean instances. All
finder methods can throw the javax.ejb.FinderException exception to indicate
an application-level error. Finder methods designed to find a single bean can
also throw the javax.ejb.ObjectNotFoundException exception, a subclass of the
FinderException class. Finder methods designed to return multiple beans
should not use the ObjectNotFoundException to indicate that no suitable
beans were found; instead, such methods should return empty return values.
Throwing the java.rmi.RemoteException exception is deprecated; see
“Standard application exceptions for entity beans” on page 38 for more
information.

public AccountBMKey ejbCreate(AccountBMKey key) throws CreateException,
RemoteException {
return ejbCreate(key, 1, 0.0f);

}
...
public AccountBMKey ejbCreate(AccountBMKey key, int type, float balance)

throws CreateException, RemoteException
{

accountId = key.accountId;
this.type = type;
this.balance = balance;
checkConnection();
// INSERT into database
try {

String sqlString = "INSERT INTO " + tableName +
" (balance, type, accountid) VALUES (?,?,?)";

PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, balance);
sqlStatement.setInt(2, type);
sqlStatement.setLong(3, accountId);
// Execute query
int updateResults = sqlStatement.executeUpdate();
...

}
catch (Exception e) { // Error occurred during insert

...
}
return key;

}

Figure 44. Code example: The ejbCreate methods of the AccountBMBean class

Chapter 8. More-advanced programming concepts for enterprise beans 109

Like the business methods of the bean class, the ejbFind methods cannot be
invoked directly by the client. Instead, the client invokes a finder method on
the enterprise bean’s home interface by using the EJB home object, and the
container invokes the corresponding ejbFind method. The container invokes
an ejbFind method by using a generic instance of that entity bean in the
pooled state.

Because the container uses an instance of an entity bean in the pooled state to
invoke an ejbFind method, the method must do the following:
1. Get a connection to the data source (or sources).
2. Query the data source for records that match specifications of the finder

method.
3. Drop the connection to the data source (or sources).

For more information on these data source tasks, see “Using a database with a
BMP entity bean” on page 119.

Figure 45 on page 111 shows the ejbFindByPrimaryKey method of the example
AccountBMBean class. The ejbFindByPrimaryKey method gets a connection to
its data source by calling the makeConnection method shown in Figure 45 on
page 111. It then creates and invokes an SQL SELECT statement on the data
source by using the specified primary key.

If one and only one record is found, the method returns the primary key
passed to it in the argument. If no records are found or multiple records are
found, the method throws the FinderException. Before determining whether
to return the primary key or throw the FinderException, the method drops its
connection to the data source by calling the dropConnection method
described in “Using a database with a BMP entity bean” on page 119.

110 WebSphere: Writing Enterprise Beans in WebSphere

Figure 46 on page 112 shows the ejbFindLargeAccounts method of the example
AccountBMBean class. The ejbFindLargeAccounts method also gets a
connection to its data source by calling the makeConnection method and
drops the connection by using the dropConnection method. The SQL SELECT
statement is also very similar to that used by the ejbFindByPrimaryKey
method. (For more information on these data source tasks and methods, see
“Using a database with a BMP entity bean” on page 119.)

While the ejbFindByPrimaryKey method needs to return only one primary
key, the ejbFindLargeAccounts method can be expected to return zero or more

public AccountBMKey ejbFindByPrimaryKey (AccountBMKey key)
throws FinderException {

boolean wasFound = false;
boolean foundMultiples = false;
makeConnection();
try {

// SELECT from database
String sqlString = "SELECT balance, type, accountid FROM " + tableName

+ " WHERE accountid = ?";
PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
long keyValue = key.accountId;
sqlStatement.setLong(1, keyValue);

// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();

// Advance cursor (there should be only one item)
// wasFound will be true if there is one
wasFound = sqlResults.next();

// foundMultiples will be true if more than one is found.
foundMultiples = sqlResults.next();

}
catch (Exception e) { // DB error

...
}
dropConnection();
if (wasFound && !foundMultiples)
{

return key;
}
else
{

// Report finding no key or multiple keys
...
throw(new FinderException(foundStatus));

}
}

Figure 45. Code example: The ejbFindByPrimaryKey method of the AccountBMBean class

Chapter 8. More-advanced programming concepts for enterprise beans 111

primary keys in an Enumeration object. To return an enumeration of primary
keys, the ejbFindLargeAccounts method does the following:
1. It uses a while loop to examine the result set (sqlResults) returned by the

executeQuery method.
2. It inserts each primary key in the result set into a hash table named

resultTable by wrapping the returned account ID in a Long object and then
in an AccountBMKey object. (The Long object, memberId, is used as the
hash table’s index.)

3. It invokes the elements method on the hash table to obtain the
enumeration of primary keys, which it then returns.

Implementing the EntityBean interface
Each entity bean class must implement the methods inherited from the
javax.ejb.EntityBean interface. The container invokes these methods to move
the bean through different stages in the bean’s life cycle. Unlike an entity bean

public Enumeration ejbFindLargeAccounts(float amount) throws FinderException {
makeConnection();
Enumeration result;
try {

// SELECT from database
String sqlString = "SELECT accountid FROM " + tableName

+ " WHERE balance >= ?";
PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, amount);
// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();
// Set up Hashtable to contain list of primary keys
Hashtable resultTable = new Hashtable();
// Loop through result set until there are no more entries
// Insert each primary key into the resultTable
while(sqlResults.next() == true) {

long acctId = sqlResults.getLong(1);
Long memberId = new Long(acctId);
AccountBMKey key = new AccountBMKey(acctId);
resultTable.put(memberId, key);

}
// Return the resultTable as an Enumeration
result = resultTable.elements();
return result;

} catch (Exception e) {
...

} finally {
dropConnection();

}
}

Figure 46. Code example: The ejbFindLargeAccounts method of the AccountBMBean class

112 WebSphere: Writing Enterprise Beans in WebSphere

with CMP, in an entity bean with BMP, these methods must contain all of the
code for the required interaction with the data source (or sources) used by the
bean to store its persistent data.
v ejbActivate—This method is invoked by the container when the container

selects an entity bean instance from the instance pool and assigns that
instance to a specific existing EJB object. This method must contain the code
required to activate the enterprise bean instance by getting a connection to
the data source and using the bean’s javax.ejb.EntityContext class to obtain
the primary key in the corresponding EJB object.
In the example AccountBMBean class, the ejbActivate method obtains the
bean instance’s account ID, sets the value of the accountId variable, and
invokes the checkConnection method to ensure that it has a valid
connection to the data source.

v ejbLoad—This method is invoked by the container to synchronize an entity
bean’s persistent variables with the corresponding data in the data source.
(That is, the values of the fields in the data source are loaded into the
persistent variables in the corresponding enterprise bean instance.) This
method must contain the code required to load the values from the data
source and assign those values to the bean’s instance variables.
In the example AccountBMBean class, the ejbLoad method obtains the bean
instance’s account ID, sets the value of the accountId variable, invokes the
checkConnection method to ensure that it has a valid connection to the data
source, constructs and executes an SQL SELECT statement, and sets the
values of the type and balance variables to match the values retrieved from
the data source.

v ejbPassivate—This method is invoked by the container to disassociate an
entity bean instance from its EJB object and place the enterprise bean
instance in the instance pool. This method must contain the code required
to ″passivate″ or deactivate an enterprise bean instance. Usually, this
passivation simply means dropping the connection to the data source.
In the example AccountBMBean class, the ejbPassivate method invokes the
dropConnection method to drop the connection to the data source.

v ejbRemove—This method is invoked by the container when a client invokes
the remove method inherited by the enterprise bean’s home interface (from
the javax.ejb.EJBHome interface) or remote interface (from the
javax.ejb.EJBObject interface). This method must contain the code required
to remove an enterprise bean’s persistent data from the data source. This
method can throw the javax.ejb.RemoveException exception if removal of
an enterprise bean instance is not permitted. Usually, removal involves
deleting the bean instance’s data from the data source and then dropping
the bean instance’s connection to the data source.
In the example AccountBMBean class, the ejbRemove method invokes the
checkConnection method to ensure that it has a valid connection to the data

Chapter 8. More-advanced programming concepts for enterprise beans 113

source, constructs and executes an SQL DELETE statement, and invokes the
dropConnection method to drop the connection to the data source.

v setEntityContext—This method is invoked by the container to pass a
reference to the javax.ejb.EntityContext interface to an enterprise bean
instance. This method must contain any code required to store a reference
to a context.
In the example AccountBMBean class, the setEntityContext method sets the
value of the entityContext variable to the value passed to it by the container.

v ejbStore—This method is invoked by the container when the container
needs to synchronize the data in the data source with the values of the
persistent variables in an enterprise bean instance. (That is, the values of
the variables in the enterprise bean instance are copied to the data source,
overwriting the previous values.) This method must contain the code
required to overwrite the data in the data source with the corresponding
values in the enterprise bean instance.
In the example AccountBMBean class, the ejbStore method invokes the
checkConnection method to ensure that it has a valid connection to the data
source and constructs and executes an SQL UPDATE statement.

v unsetEntityContext—This method is invoked by the container, before an
enterprise bean instance is removed, to free up any resources associated
with the enterprise bean instance. This is the last method called prior to
removing an enterprise bean instance.
In the example AccountBMBean class, the unsetEntityContext method sets
the value of the entityContext variable to null.

Writing the home interface (entity with BMP)
An entity bean’s home interface defines the methods used by EJB clients to
create new instances of the bean, find and remove existing instances, and
obtain metadata about an instance. The home interface is defined by the
enterprise bean developer and implemented in the EJB home class created by
the container during enterprise bean deployment. The container makes the
home interface accessible to clients through the Java Naming and Directory
Interface (JNDI).

By convention, the home interface is named NameHome, where Name is the
name you assign to the enterprise bean. For example, the AccountBM
enterprise bean’s home interface is named AccountBMHome.

Every home interface for an entity bean with BMP must meet the following
requirements:
v It must extend the javax.ejb.EJBHome interface. The home interface inherits

several methods from the javax.ejb.EJBHome interface. See “The
javax.ejb.EJBHome interface” on page 65 for information on these methods.

114 WebSphere: Writing Enterprise Beans in WebSphere

v Each method in the interface must be either a create method, which
corresponds to an ejbCreate method (and possibly an ejbPostCreate
method) in the enterprise bean class, or a finder method, which
corresponds to an ejbFind method in the enterprise bean class. For more
information, see “Defining create methods” and “Defining finder methods”
on page 116.

v The parameters and return value of each method defined in the home
interface must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66. In addition,
each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 47 shows the relevant parts of the definition of the home interface
(AccountBMHome) for the example AccountBM bean. This interface defines
two abstract create methods: the first creates an AccountBM object by using
an associated AccountBMKey object, the second creates an AccountBM object
by using an associated AccountBMKey object and specifying an account type
and an initial balance. The interface defines the required findByPrimaryKey
method and the findLargeAccounts method.

Defining create methods
A create method is used by a client to create an enterprise bean instance and
insert the data associated with that instance into the data source. Each create
method must be named create and it must have the same number and types
of arguments as a corresponding ejbCreate method in the enterprise bean
class. (The ejbCreate method can itself have a corresponding ejbPostCreate
method.) The return types of the create method and its corresponding
ejbCreate method are always different.

...
import java.rmi.*;
import javax.ejb.*;
import java.util.*;
public interface AccountBMHome extends EJBHome {

...
AccountBM create(AccountBMKey key) throws CreateException,

RemoteException;
...
AccountBM create(AccountBMKey key, int type, float amount)

throws CreateException, RemoteException;
...
AccountBM findByPrimaryKey(AccountBMKey key)

throws FinderException, RemoteException;
...
Enumeration findLargeAccounts(float amount)

throws FinderException, RemoteException;
}

Figure 47. Code example: The AccountBMHome home interface

Chapter 8. More-advanced programming concepts for enterprise beans 115

Each create method must meet the following requirements:
v It must be named create.
v It must return the type of the enterprise bean’s remote interface. For

example, the return type for the create methods in the AccountBMHome
interface is AccountBM (as shown in Figure 13 on page 44).

v It must have a throws clause that includes the java.rmi.RemoteException
exception, the javax.ejb.CreateException exception, and all of the exceptions
defined in the throws clause of the corresponding ejbCreate and
ejbPostCreate methods.

Defining finder methods
A finder method is used to find one or more existing entity EJB objects. Each
finder method must be named findName, where Name further describes the
finder method’s purpose.

At a minimum, each home interface must define the findByPrimaryKey
method that enables a client to locate an EJB object by using the primary key
only. The findByPrimaryKey method has one argument, an object of the
bean’s primary key class, and returns the type of the bean’s remote interface.

Every other finder method must meet the following requirements:
v It must return the type of the enterprise bean’s remote interface, the

java.util.Enumeration interface, or the java.util.Collection interface (when a
finder method can return more than one EJB object or an EJB collection).

v It must have a throws clause that includes the java.rmi.RemoteException
and javax.ejb.FinderException exception classes.

Although every entity bean must contain only the default finder method, you
can write additional ones if needed. For example, the AccountBM bean’s
home interface defines the findLargeAccounts method to find objects that
encapsulate accounts with balances of more than a specified dollar amount, as
shown in Figure 47 on page 115. Because this finder method can be expected
to return a reference to more than one EJB object, its return type is
java.util.Enumeration.

Unlike the implementation in an entity bean with CMP, in an entity bean with
BMP, the bean developer must fully implement the ejbFindByPrimaryKey
method that corresponds to the findByPrimaryKey method. In addition, the
bean developer must write each additional ejbFind method corresponding to
the finder methods defined in the home interface. The implementation of the
ejbFind methods in the AccountBMBean class is discussed in “Implementing
the ejbFindByPrimaryKey and other ejbFind methods” on page 109.

116 WebSphere: Writing Enterprise Beans in WebSphere

Writing the remote interface (entity with BMP)
An entity bean’s remote interface provides access to the business methods
available in the bean class. It also provides methods to remove an EJB object
associated with a bean instance and to obtain the bean instance’s home
interface, object handle, and primary key. The remote interface is defined by
the EJB developer and implemented in the EJB object class created by the
container during enterprise bean deployment.

By convention, the remote interface is named Name, where Name is the name
you assign to the enterprise bean. For example, the AccountBM enterprise
bean’s remote interface is named AccountBM.

Every remote interface must meet the following requirements:
v It must extend the javax.ejb.EJBObject interface. The remote interface

inherits several methods from the javax.ejb.EJBObject interface. See
“Methods inherited from javax.ejb.EJBObject” on page 65 for information on
these methods.

v It must define a corresponding business method for every business method
implemented in the enterprise bean class.

v The parameters and return value of each method defined in the interface
must be valid for Java RMI. For more information, see “The
java.io.Serializable and java.rmi.Remote interfaces” on page 66.

v Each method’s throws clause must include the java.rmi.RemoteException
exception class.

Figure 48 on page 118 shows the relevant parts of the definition of the remote
interface (AccountBM) for the example AccountBM enterprise bean. This
interface defines four methods for displaying and manipulating the account
balance that exactly match the business methods implemented in the
AccountBMBean class.

All of the business methods throw the java.rmi.RemoteException exception
class. In addition, the subtract method must throw the user-defined exception
com.ibm.ejs.doc.account.InsufficientFundsException because the corresponding
method in the bean class throws this exception. Furthermore, any client that
calls this method must either handle the exception or pass it on by throwing
it.

Chapter 8. More-advanced programming concepts for enterprise beans 117

Writing or selecting the primary key class (entity with BMP)
Every entity EJB object has a unique identity within a container that is defined
by a combination of the object’s home interface name and its primary key, the
latter of which is assigned to the object at creation. If two EJB objects have the
same identity, they are considered identical.

The primary key class is used to encapsulate an EJB object’s primary key. In
an entity bean (with BMP or CMP), you can write a distinct primary key class
or you can use an existing class as the primary key class, as long as that class
is serializable. For more information, see “The java.io.Serializable and
java.rmi.Remote interfaces” on page 66.

The example AccountBM bean uses a primary key class that is identical to the
AccountKey class contained in the Account bean shown in Figure 16 on
page 49, with the exception that the key class is named AccountBMKey.

Note: The primary key class of an entity bean with BMP must implement the
hashCode and equals method. In addition, the variables that make up
the primary key must be public.

The java.lang.Long class is also a good candidate for a primary key class for
the AccountBM bean.

...
import java.rmi.*;
import javax.ejb.*;
import com.ibm.ejs.doc.account.InsufficientFundsException;
public interface AccountBM extends EJBObject {

...
float add(float amount) throws RemoteException;
...
float getBalance() throws RemoteException;
...
void setBalance(float amount) throws RemoteException;
...
float subtract(float amount) throws InsufficientFundsException,

RemoteException;
}

Figure 48. Code example: The AccountBM remote interface

118 WebSphere: Writing Enterprise Beans in WebSphere

Using a database with a BMP entity bean

In an entity bean with BMP, each ejbFind method and all of the life cycle
methods (ejbActivate, ejbCreate, ejbLoad, ejbPassivate, and ejbStore) must
interact with the data source (or sources) used by the bean to maintain its
persistent data. To interact with a supported database, the BMP entity bean
must contain the code to manage database connections and to manipulate the
data in the database.

The EJB server uses a set of specialized beans to encapsulate information
about databases and an IBM-specific interface to JDBC to allow entity bean
interaction with a connection manager. For more information, see “Managing
database connections in the EJB server environment” on page 120

In general, there are three approaches to getting and releasing connections to
databases:
v The bean can get a database connection in the setEntityContext method and

release it in the unsetEntityContext method. This approach is the easiest for
the enterprise bean developer to implement. However, without a connection
manager, this approach is not viable because under it bean instances hold
onto database connections even when they are not in use (that is, when the
bean instance is passivated). Even with a connection manager, this
approach does not scale well.

v The bean can get a database connection in the ejbActivate and ejbCreate
methods, get and release a database connection in each ejbFind method,
and release the database connection in the ejbPassivate and ejbRemove
methods. This approach is somewhat more difficult to implement, but it
ensures that only those bean instances that are activated have connections
to the database.

v The bean can get and release a database connection in each method that
requires a connection: ejbActivate, ejbCreate, ejbFind, ejbLoad, and ejbStore.
This approach is more difficult to implement than the first approach, but is
no more difficult than the second approach. This approach is the most
efficient in terms of connection use and also the most scalable.

The example AccountBM bean, uses the second approach described in the
preceding text. The AccountBMBean class contains two methods for making a
connection to the DB2 database, checkConnection and makeConnection, and
one method to drop connections: dropConnection.The code required to make
the AccountBM bean work with the connection manager is shown in
“Managing database connections in the EJB server environment” on page 120

The code required to manipulate data in a database is described in
“Manipulating data in a database” on page 123.

Chapter 8. More-advanced programming concepts for enterprise beans 119

Managing database connections in the EJB server environment
In the EJB server environment, the administrator creates a specialized set of
entity beans that encapsulate information about the database and the database
driver. These specialized entity beans are created by using the WebSphere
Administrative Console.

An entity bean that requires access to a database must use JNDI to create a
reference to an EJB object associated with the right database bean instance.
The entity bean can then use the IBM-specific interface (named
com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource) to get and release
connections to the database.

The DataSource interface enables the entity bean to transparently interact with
the connection manager of the EJB server. The connection manager creates a
pool of database connections, which are allocated and deallocated to
individual entity beans as needed.

Getting an EJB object reference to a data source bean instance
Before a BMP entity bean can get a connection to a database, the entity bean
must perform a JNDI lookup on the data source entity bean associated with
the database used to store the BMP entity bean’s persistent data. Figure 49 on
page 121 shows the code required to create an InitialContext object and then
get an EJB object reference to a database bean instance. The JNDI name of the
database bean is defined by the administrator; it is recommended that the
JNDI naming convention be followed when defining this name. The value of
the required database-specific variables are obtained by the getEnvProps
method, which accesses the corresponding environment variables from the
deployed enterprise bean.

Because the connection manager creates and drops the actual database
connections and simply allocates and deallocates these connections as
required, there is no need for the BMP entity bean to load and register the
database driver. Therefore, there is no need to define the driverName and
jdbcUrl variables discussed in “Defining instance variables” on page 105.

120 WebSphere: Writing Enterprise Beans in WebSphere

Allocating and deallocating a connection to a database
After creating an EJB object reference for the appropriate database bean
instance, that object reference is used to get and release connections to the
corresponding database. Unlike when using the DriverManager interface,
when using the DataSource interface, the BMP entity bean does not really
create and close data connections; instead, the connection manager allocates
and deallocates connections as required by the entity bean. Nevertheless, a
BMP entity bean must still contain code to send allocation and deallocation
requests to the connection manager.

In the AccountBMBean class, the checkConnection method is called within
other bean class methods that require a database connection, but for which it
can be assumed that a connection already exists. This method checks to make
sure that the connection is still available by checking if the jdbcConn variable
is set to null. If the variable is null, the makeConnection method is invoked to
get the connection (that is a connection allocation request is sent to the
connection manager).

The makeConnection method is invoked when a database connection is
required. It invokes the getConnection method on the data source object. The
getConnection method is overloaded: it can take either a user ID and
password or no arguments, in which case the user ID and password are
implicitly set to null (this version is used in Figure 50 on page 122).

...
import com.ibm.db2.jdbc.app.stdext.javax.sql.DataSource;
import javax.naming.*;
...
InitialContext initContext = null;
DataSource ds = null;
...

public void setEntityContext(EntityContext ctx)
throws EJBException {
entityContext = ctx;

try {
getEnvProps();
ds = initContext.lookup("jdbc/sample");

} catch (NamingException e) {
...

}
}

...

Figure 49. Code example: Getting an EJB object reference to a data source bean instance in the
setEntityContext method (rewritten to use DataSource)

Chapter 8. More-advanced programming concepts for enterprise beans 121

Entity beans with BMP must also release database connections when a
particular bean instance no longer requires it (that is, they must send a
deallocation request to the connection manager). The AccountBMBean class
contains a dropConnection method to handle this task. To release the database
connection, the dropConnection method does the following (as shown in
Figure 51):
1. Invokes the close method on the connection object to tell the connection

manager that the connection is no longer needed.
2. Sets the connection object reference to null.

Putting the close method inside a try/catch/finally block ensures that the
connection object reference is always set to null even if the close method fails
for some reason. Nothing is done in the catch block because the connection
manager must clean up idle connections; this is not the job of the enterprise
bean code.

private void checkConnection() throws EJBeException {
if (jdbcConn == null) {

makeConnection();
}
return;

}
...
private void makeConnection() throws EJBeException {

...
try {

// Open database connection
jdbcConn = ds.getConnection();

} catch(Exception e) { // Could not get database connection
...

}
}

Figure 50. Code example: The checkConnection and makeConnection methods of the
AccountBMBean class (rewritten to use DataSource)

private void dropConnection() {
try {

// Close the connection
jdbcConn.close();

catch (SQLException ex) {
// Do nothing

} finally {
jdbcConn = null;

}
}

Figure 51. Code example: The dropConnection method of the AccountBMBean class (rewritten to
use DataSource)

122 WebSphere: Writing Enterprise Beans in WebSphere

Manipulating data in a database
After an instance of a BMP entity bean obtains a connection to its database, it
can read and write data. The AccountBMBean class communicates with the
DB2 database by constructing and executing Java Structured Query Language
(JSQL) calls by using the java.sql.PreparedStatement interface.

As shown in Figure 52, the SQL call is created as a String (sqlString). The
String variable is passed to the java.sql.Connection.prepareStatement method;
and the values of each variable in the SQL call are set by using the various
setter methods of the PreparedStatement class. (The variables are substituted
for the question marks in the sqlString variable.) Invoking the
PreparedStatement.executeUpdate method executes the SQL call.

The executeUpdate method is called to insert or update data in a database;
the executeQuery method is called to get data from a database. When data is
retrieved from a database, the executeQuery method returns a
java.sql.ResultSet object, which must be examined and manipulated using the
methods of that class.

Note: To improve scalability and performance, you do not need to call
PreparedStatement for each database update. Instead, you can cache the
results of the first PreparedStatement call.

private void ejbCreate(AccountBMKey key, int type, float initialBalance)
throws CreateException, EJBException {
// Initialize persistent variables and check for good DB connection
...
// INSERT into database
try {

String sqlString = "INSERT INTO " + tableName +
" (balance, type, accountid) VALUES (?,?,?)";

PreparedStatement sqlStatement = jdbcConn.prepareStatement(sqlString);
sqlStatement.setFloat(1, balance);
sqlStatement.setInt(2, type);
sqlStatement.setLong(3, accountId);
// Execute query
int updateResults = sqlStatement.executeUpdate();
...

}
catch (Exception e) { // Error occurred during insert

...
}
...

}

Figure 52. Code example: Constructing and executing an SQL update call in an ejbCreate method

Chapter 8. More-advanced programming concepts for enterprise beans 123

Figure 53 provides an example of how the data in a ResultSet is manipulated
in the ejbLoad method of the AccountBMBean class.

Using bean-managed transactions

In most situations, an enterprise bean can depend on the container to manage
transactions within the bean. In these situations, all you need to do is set the
appropriate transactional properties in the deployment descriptor as described
in “Chapter 5. Enabling transactions and security in enterprise beans” on
page 69.

Under certain circumstances, however, it can be necessary to have an
enterprise bean participate directly in transactions. By setting the transaction
attribute in an enterprise bean’s deployment descriptor to BeanManaged, you
indicate to the container that the bean is an active participant in transactions.

Note: The value BeanManaged is not a valid value for the transaction
deployment descriptor attribute in entity beans. In other words, entity
beans cannot manage transactions.

When writing the code required by an enterprise bean to manage its own
transactions, remember the following basic rules:
v An instance of a stateless session bean cannot reuse the same transaction

context across multiple methods called by an EJB client. Therefore, it is
recommended that the transaction context be a local variable to each
method that requires a transaction context.

v An instance of a stateful session bean can reuse the same transaction
context across multiple methods called by an EJB client. Therefore, make

public void ejbLoad () throws EJBeException {
// Get data from database
try {

// SELECT from database
...
// Execute query
ResultSet sqlResults = sqlStatement.executeQuery();
// Advance cursor (there should be only one item)
sqlResults.next();
// Pull out results
balance = sqlResults.getFloat(1);
type = sqlResults.getInt(2);

} catch (Exception e) {
// Something happened while loading data.
...

}
}

Figure 53. Code example: Manipulating a ResultSet object in the ejbLoad method

124 WebSphere: Writing Enterprise Beans in WebSphere

the transaction context an instance variable or a local method variable at
your discretion. (When a transaction spans multiple methods, you can use
the javax.ejb.SessionSynchronization interface to synchronize the
conversational state with the transaction.)

Figure 54 on page 126 shows the standard code required to obtain an object
encapsulating the transaction context. There are three basics steps involved:
1. The enterprise bean class must set the value of the

javax.ejb.SessionContext object reference in the setSessionContext method.
2. A javax.transaction.UserTransaction object is created by calling the

getUserTransaction method on the SessionContext object reference.
3. The UserTransaction object is used to participate in the transaction by

calling transaction methods such as begin and commit as needed. If a
enterprise bean begins a transaction, it must also complete that transaction
either by invoking the commit method or the rollback method.

Note: In both EJB servers, the getUserTransaction method of the
javax.ejb.EJBContext interface (which is inherited by the
SessionContext interface) returns an object of type
javax.transaction.UserTransaction rather than type
javax.jts.UserTransaction. While this is a deviation from the 1.0
version of the EJB Specification, the 1.1 version of the EJB
Specification requires that the getUserTransaction method return an
object of type javax.transaction.UserTransaction and drops the
requirement to return objects of type javax.jts.UserTransaction.

Chapter 8. More-advanced programming concepts for enterprise beans 125

The following methods are available with the UserTransaction interface:
v begin—Begins a transaction. This method takes no arguments and returns

void.
v commit—Attempts to commit a transaction; assuming that nothing causes

the transaction to be rolled back, successful completion of this method
commits the transaction. This method takes no arguments and returns void.

v getStatus—Returns the status of the referenced transaction. This method
takes no arguments and returns int; if no transaction is associated with the
reference, STATUS_NO_TRANSACTION is returned. The following are the
valid return values for this method:
– STATUS_ACTIVE—Indicates that transaction processing is still in

progress.
– STATUS_COMMITTED—Indicates that a transaction has been committed

and the effects of the transaction have been made permanent.
– STATUS_COMMITTING—Indicates that a transaction is in the process of

committing (that is, the transaction has started committing but has not
completed the process).

– STATUS_MARKED_ROLLBACK—Indicates that a transaction is marked
to be rolled back.

– STATUS_NO_TRANSACTION—Indicates that a transaction does not
exist in the current transaction context.

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {

private SessionContext mySessionCtx = null;
...
public void setSessionContext(.SessionContext ctx) throws EJBException {

mySessionCtx = ctx;
}
...
public float doSomething(long arg1) throws FinderException, EJBException {

UserTransaction userTran = mySessionCtx.getUserTransaction();
...
// User userTran object to call transaction methods
userTran.begin();
// Do transactional work
...
userTran.commit();
...

}
...

}

Figure 54. Code example: Getting an object that encapsulates a transaction context

126 WebSphere: Writing Enterprise Beans in WebSphere

– STATUS_PREPARED—Indicates that a transaction has been prepared but
not completed.

– STATUS_PREPARING—Indicates that a transaction is in the process of
preparing (that is, the transaction has started preparing but has not
completed the process).

– STATUS_ROLLEDBACK—Indicates that a transaction has been rolled
back.

– STATUS_ROLLING_BACK—Indicates that a transaction is in the process
of rolling back (that is, the transaction has started rolling back but has
not completed the process).

– STATUS_UNKNOWN—Indicates that the status of a transaction is
unknown.

v rollback—Rolls back the referenced transaction. This method takes no
arguments and returns void.

v setRollbackOnly—Specifies that the only possible outcome of the
transaction is rollback. This method takes no arguments and returns void.

v setTransactionTimeout—Sets the timeout (in seconds) associated with the
transaction. If some transaction participant has not specifically set this
value, a default timeout is used. This method takes a number of seconds (as
type int) and returns void.

Chapter 8. More-advanced programming concepts for enterprise beans 127

128 WebSphere: Writing Enterprise Beans in WebSphere

Chapter 9. WebSphere Programming Model Extensions

This section discusses facilities that are provided as part of the Programming
Model Extensions in WebSphere Application Server:
v The exception-chaining package, which can be used by distributed

applications to capture a sequence of exceptions. For more information, see
“The distributed-exception package”.

v The command package, which can be used by distributed applications to
reduce the number of remote invocations they must make. For more
information, see “The command package” on page 140.

v The localizable-text package, which can be used by distributed applications
spanning locales to deliver output in a user-specified language. For more
information, see “The localizable-text package” on page 170.

The exception-chaining and command packages are available as part of
WebSphere Application Server Advanced Edition and Enterprise Edition; the
localizable-text package is available as part of WebSphere Application Server
Advanced Edition. All three packages are general-purpose utilities, designed
to provide common functions in a reusable way. Although these facilities are
described in the context of enterprise beans, they are available to any
WebSphere Application Server Java application. They are not restricted to use
with enterprise beans.

The distributed-exception package

Distributed applications require a strategy for exception handling. As
applications become more complex and are used by more participants,
handling exceptions becomes problematic. To capture the information
contained in every exception, methods have to rethrow every exception they
catch. If every method adopts this approach, the number of exceptions can
become unmanageable, and the code itself becomes less maintainable.
Furthermore, if a new method introduces a new exception, all existing
methods that call the new method have to be modified to handle the new
exception. Trying to explicitly manage every possible exception in a complex
application quickly becomes intractable.

In order to keep the number of exceptions manageable, some programmers
adopt a strategy in which methods catch all exceptions in a single clause and
throw one exception in response. This reduces the number of exceptions each
method must recognize, but it also means that the information about the
originating exception is lost. This loss of information can be desirable, for

© Copyright IBM Corp. 1999, 2001 129

example, when you wish to hide implementation details from end users.
However, this strategy can make applications much more difficult to debug.

The distributed-exception package provides a facility that allows you to build
chains of exceptions. An exception chain encapsulates the stack of previous
exceptions. With an exception chain, you can throw one exception in response
to another without discarding the previous exceptions, so you can manage the
number of exceptions without losing the information they carry. Exceptions
that support chaining are called distributed exceptions.

Distributed exceptions are packaged in the ras.jar file, which must be included
in the application’s CLASSPATH variable.

Overview
Support for chaining distributed exceptions is provided by the
com.ibm.websphere.exception Java package. The following classes and
interfaces make up this package:
v DistributedException—This class provides access to the methods on the

DistributedExceptionInfo object. It acts as the root class for exceptions in a
distributed application. For more information, see “The
DistributedException class”.

v DistributedExceptionEnabled—This interface allows exceptions that cannot
inherit from the DistributedException class to be used in exception chains,
so that exceptions based on predefined exceptions can be captured. For
more information, see “The DistributedExceptionEnabled interface” on
page 132 .

v DistributedExceptionInfo—This class encapsulates the work necessary for
distributed exceptions. An exception class that extends the
DistributedException class automatically gets access to this class. A class
that implements the DistributedExceptionEnabled interface must explicitly
declare a DistributedExceptionInfo attribute. For more information, see “The
DistributedExceptionInfo class” on page 133.

v ExceptionInstantiationException—This class defines the exception that is
thrown if an exception chain cannot be created. This exception is
instantiated internally, but you can catch and re-throw it.

This section provides a general description of the interfaces and classes in the
exception-chaining package.

The DistributedException class
The DistributedException class provides the root exception for exception
hierarchies defined by applications. With this class, you build chains of
exceptions by saving a caught exception and bundling it into the new
exception to be thrown. This way, the information about the old exception is
forwarded along with the new exception. The class declares six constructors;
Figure 55 on page 131 shows the signatures for these constructors. When your

130 WebSphere: Writing Enterprise Beans in WebSphere

exception is a subclass of the DistributedException class, you must provide
corresponding constructors in your exception class.

The class also provides methods for extracting exceptions from the chain and
querying the chain. These methods include:
v getMessage—This method returns the message string associated with the

current exception.
v getPreviousException—This method returns the preceding exception in a

chain as a Throwable object. If there are no previous exceptions, it returns
null.

v getOriginalException—This method returns the original exception in a chain
as a Throwable object. If there is no prior exception, it returns null.

v getException—This method returns the most recent instance of the named
exception from the chain as a Throwable object. If there are no instances
present, it returns null.

v getExceptionInfo—This method returns the DistributedExceptionInfo object
for the exception.

v printStackTrace—These methods print the stack trace for the current
exception, which includes the stack traces of all previous exceptions in the
chain.

...
public class DistributedException extends Exception
implements DistributedExceptionEnabled
{

// Constructors
public DistributedException() {...}
public DistributedException(String message) {...}
public DistributedException(Throwable exception) {...}
public DistributedException(String message,Throwable exception) {...}
public DistributedException(String resourceBundleName,

String resourceKey,
Object[] formatArguments,
String defaultText)

{...}
public DistributedException(String resourceBundleName,

String resourceKey,
Object[] formatArguments,
String defaultText,
Throwable exception)

{...}
// Other methods
...

}

Figure 55. Code example: Constructors for the DistributedException class

Chapter 9. WebSphere Programming Model Extensions 131

Localization support: Support for localized messages is provided by two of
the constructors for distributed exceptions. These constructors take arguments
representing a resource bundle, a resource key, a default message, and the set
of replacement strings for variables in the message. A resource bundle is a
collection of resources or resource names representing information associated
with a specific locale. Resource bundles are provided as either a subclass of
the ResourceBundle class or in a properties file. The resource key indicates
which resource in the bundle to retrieve. The default message is returned if
either the name of the resource bundle or the key is null or invalid.

The DistributedExceptionEnabled interface
Use the DistributedExceptionEnabled interface to create distributed exceptions
when your exception cannot extend the DistributedException class. Because
Java does not permit multiple inheritance, you cannot extend multiple
exception classes. If you are extending an existing exception class, for
example, javax.ejb.CreateException, you cannot also extend the
DistributedException class. To allow your new exception class to chain other
exceptions, you must implement the DistributedExceptionEnabled interface
instead.

The DistributedExceptionEnabled interface declares eight methods you must
implement in your exception class:
v getMessage—This method returns the message string associated with the

current exception.
v getPreviousException—This method returns the preceding exception in a

chain as a Throwable object. If there are no previous exceptions, it returns
null.

v getOriginalException—This method returns the original exception in a chain
as a Throwable object. If there is no prior exception, it returns null.

v getException—This method returns the most recent instance of the named
exception from the chain as a Throwable object. If there are no instances
present, it returns null.

v getExceptionInfo—This method returns the DistributedExceptionInfo object
for the exception.

v printStackTrace—These methods print the stack trace for the current
exception, which includes the stack traces of all previous exceptions in the
chain.

v printSuperStackTrace—This method is used by a DistributedExceptionInfo
object to retrieve and save the current stack trace.

When implementing the DistributedExceptionEnabled interface, you must
declare a DistributedExceptionInfo attribute. This attribute provides
implementations for most of these methods, so implementing them in your
exception class consists of calling the corresponding methods on the

132 WebSphere: Writing Enterprise Beans in WebSphere

DistributedExceptionInfo object. For more information, see “Implementing the
methods from the DistributedExceptionEnabled interface” on page 136.

The DistributedExceptionInfo class
The DistributedExceptionInfo class provides the functionality required for
distributed exceptions. It must be used by any exception that implements the
DistributedExceptionEnabled interface (which includes the
DistributedException class). A DistributedExceptionInfo object contains the
exception itself, and it provides constructors for creating exception chains and
methods for retrieving the information within those chains. It also provides
the underlying methods for managing chained exceptions.

Extending the DistributedException class
The DistributedException class provides the root exception for exception
hierarchies defined by applications. The class also provides methods for
extracting exceptions from the chain and querying the chain. You must
provide constructors corresponding to the constructors in the
DistributedException class (see Figure 55 on page 131). The constructors can
simply pass arguments to the constructor in the DistributedException class by
using super methods, as illustrated in Figure 56 on page 134.

Chapter 9. WebSphere Programming Model Extensions 133

Implementing the DistributedExceptionEnabled interface
Use the DistributedExceptionEnabled interface to create distributed exceptions
when your exception cannot extend the DistributedException class. To allow
your new exception class to be chained, you must implement the
DistributedExceptionEnabled interface instead. Figure 57 on page 135 shows
the structure of an exception class that extends the existing
javax.ejb.CreateException class and implements the
DistributedExceptionEnabled interface. The class also declares the required
DistributedExceptionInfo object.

...
import com.ibm.websphere.exception.*;
public class MyDistributedException extends DistributedException
{

// Constructors
public MyDistributedException() {

super();
}
public MyDistributedException(String message) {

super(message);
}
public MyDistributedException(Throwable exception) {

super(exception);
}
public MyDistributedException(String message, Throwable exception) {

super(message, exception);
}
public MyDistributedException(String resourceBundleName,

String resourceKey, Object[] formatArguments,
String defaultText)

{
super(resourceBundleName, resourceKey, formatArguments, defaultText);

}
public MyDistributedException(String resourceBundleName,

String resourceKey, Object[] formatArguments,
String defaultText, Throwable exception)

{
super(resourceBundleName, resourceKey, formatArguments, defaultText,

exception);
}

}

Figure 56. Code example: Constructors in an exception class that extends the DistributedException
class

134 WebSphere: Writing Enterprise Beans in WebSphere

Implementing the constructors for the exception class
The exception-chaining package supports six different ways of creating
instances of exception classes (see Figure 55 on page 131). When you write an
exception class by implementing the DistributedExceptionEnabled interface,
you must implement these constructors. In each one, you must use the
DistributedExceptionInfo object to capture the information for chaining the
exception. Figure 58 on page 136 shows standard implementations for the six
constructors.

...
import javax.ejb.*;
import com.ibm.websphere.exception.*;
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
...
// Methods from the DistributedExceptionEnabled interface
...

}

Figure 57. Code example: The structure of an exception class that implements the
DistributedExceptionEnabled interface

Chapter 9. WebSphere Programming Model Extensions 135

Implementing the methods from the DistributedExceptionEnabled
interface
The DistributedExceptionInfo object provides implementations for most of the
methods in the DistributedExceptionEnabled interface, so you can implement
the required methods in your exception class by calling the corresponding
methods on the DistributedExceptionInfo object. Figure 59 on page 138
illustrates this technique. The only two methods that do not involve calling a

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
AccountCreateException() {

super ();
exceptionInfo = new DistributedExceptionInfo(this);

}
AccountCreateException(String msg) {

super (msg);
exceptionInfo = new DistributedExceptionInfo(this);

}
AccountCreateException(Throwable e) {

super ();
exceptionInfo = new DistributedExceptionInfo(this, e);

}
AccountCreateException(String msg, Throwable e) {

super (msg);
exceptionInfo = new DistributedExceptionInfo(this, e);

}
AccountCreateException(String resourceBundleName, String resourceKey,

Object[] formatArguments, String defaultText)
{

super ();
exceptionInfo = new DistributedExceptionInfo(resourceBundleName,

resourceKey, formatArguments, defaultText, this);
}
AccountCreateException(String resourceBundleName, String resourceKey,

Object[] formatArguments, String defaultText,
Throwable exception)

{
super ();
exceptionInfo = new DistributedExceptionInfo(resourceBundleName,

resourceKey, formatArguments, defaultText, this, exception);
}
// Methods from the DistributedExceptionEnabled interface
...

}

Figure 58. Code example: Constructors for an exception class that implements the
DistributedExceptionEnabled interface

136 WebSphere: Writing Enterprise Beans in WebSphere

corresponding method on the DistributedExceptionInfo object are the
getExceptionInfo method, which returns the object, and the
printSuperStackTrace method, which calls the super.printStackTrace method.

Chapter 9. WebSphere Programming Model Extensions 137

...
public class AccountCreateException extends CreateException
implements DistributedExceptionEnabled
{

DistributedExceptionInfo exceptionInfo = null;
// Constructors
...
// Methods from the DistributedExceptionEnabled interface
String getMessage() {

if (exceptionInfo != null)
return exceptionInfo.getMessage();

else return null;
}
Throwable getPreviousException() {

if (exceptionInfo != null)
return exceptionInfo.getPreviousException();

else return null;
}
Throwable getOriginalException() {

if (exceptionInfo != null)
return exceptionInfo.getOriginalException();

else return null;
}
Throwable getException(String exceptionClassName) {

if (exceptionInfo != null)
return exceptionInfo.getException(exceptionClassName);

else return null;
}
DistributedExceptionInfo getExceptionInfo() {

if (exceptionInfo != null)
return exceptionInfo;

else return null;
}
void printStackTrace() {

if (exceptionInfo != null)
return exceptionInfo.printStackTrace();

else return null;
}
void printStackTrace(PrintWriter pw) {

if (exceptionInfo != null)
return exceptionInfo.printStackTrace(pw);

else return null;
}
void printSuperStackTrace(PrintWriter pw)

if (exceptionInfo != null)
return super.printStackTrace(pw);

else return null;
}

}

Figure 59. Code example: Implementations of the methods in the DistributedExceptionEnabled
interface

138 WebSphere: Writing Enterprise Beans in WebSphere

Using distributed exceptions
Defining a distributed exception gives you the ability to chain exceptions
together. The DistributedExceptionInfo class provides methods for adding
information to an exception chain and for extracting information from the
chain. This section illustrates the use of distributed exceptions.

Catching distributed exceptions
You can catch exceptions that extend the DistributedException class or
implement the DistributedExceptionEnabled interface separately. You can also
test a caught exception to see if it has implemented the
DistributedExceptionEnabled interface. If it has, you can treat it as any other
distributed exception. Figure 60 shows the use of the instanceof method to test
for exception chaining.

Adding an exception to a chain
To add an exception to a chain, you must call one of the constructors for your
distributed-exception class. This captures the previous exception information
and packages it with the new exception. Figure 61 shows the use of the
MyDistributedException(Throwable) constructor.

Retrieving information from a chain
Chained exceptions allow you to retrieve information about prior exceptions
in the chain. For example, the getPreviousException, getOriginalException,

....
try {

someMethod();
}
catch (Exception e) {

...
if (e instanceof DistributedExceptionEnabled) {

...
}

...

Figure 60. Code example: Testing for an exception that implements the
DistributedExceptionEnabled interface

void someMethod() throws MyDistributedException {
try {

someOtherMethod();
}
catch (DistributedExceptionEnabled e) {

throw new MyDistributedException(e);
}
...

}...

Figure 61. Code example: Adding an exception to a chain

Chapter 9. WebSphere Programming Model Extensions 139

and getException(String) methods allow you to retrieve specific exceptions
from the chain. You can retrieve the message associated with the current
exception by calling the getMessage method. You can also get information
about the entire chain by calling one of the printStackTrace methods. Figure 62
illustrates calling the getPreviousException and getOriginalException methods.

The command package

Distributed applications are defined by the ability to utilize remote resources
as if they were local, but this remote work affects the performance of
distributed applications. Distributed applications can improve performance by
using remote calls sparingly. For example, if a server does several tasks for a
client, the application can run more quickly if the client bundles requests

...
try {

someMethod();
}
catch (DistributedExceptionEnabled e) {

try {
Throwable prev = e.getPreviousException();

}
catch (ExceptionInstantiationException eie) {

DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
if (prevExInfo != null) {

String prevExName = prevExInfo.getClassName();
String prevExMsg = prevExInfo.getClassMessage();
...

}
}
try {

Throwable orig = e.getOriginalException();
}
catch (ExceptionInstantiationException eie) {

DistributedExceptionInfo origExInfo = null;
DistributedExceptionInfo prevExInfo = e.getPreviousExceptionInfo();
while (prevExInfo != null) {

origExInfo = prevExInfo;
prevExInfo = prevExInfo.getPreviousExceptionInfo();

}
if (origExInfo != null) {

String origExName = origExInfo.getClassName();
String origExMsg = origExInfo.getClassMessage();

...
}

}
}
...

Figure 62. Code example: Extracting exceptions from a chain

140 WebSphere: Writing Enterprise Beans in WebSphere

together, reducing the number of individual remote calls. The command
package provides a mechanism for collecting sets of requests to be submitted
as a unit.

In addition to giving you a way to reduce the number of remote invocations a
client makes, the command package provides a generic way of making
requests. A client instantiates the command, sets its input data, and tells it to
run. The command infrastructure determines the target server and passes a
copy of the command to it. The server runs the command, sets any output
data, and copies it back to the client. The package provides a common way to
issue a command, locally or remotely, and independently of the server’s
implementation. Any server (an enterprise bean, a Java Database Connectivity
(JDBC) server, a servlet, and so on) can be a target of a command if the server
supports Java access to its resources and provides a way to copy the
command between the client’s Java Virtual Machine (JVM) and its own JVM.

Overview
The command facility is implemented in the com.ibm.websphere.command
Java package. The classes and interfaces in the command package fall into
four general categories:
v Interfaces for creating commands. For more information, see “Facilities for

creating commands”.
v Classes and interfaces for implementing commands. For more information,

see “Facilities for implementing commands” on page 142.
v Classes and interfaces for determining where the command is run. For more

information, see “Facilities for setting and determining targets” on page 143.
v Classes defining package-specific exceptions. For more information, see

“Exceptions in the command package” on page 144.

This section provides a general description of the interfaces and classes in the
command package.

Facilities for creating commands
The Command interface specifies the most basic aspects of a command. This
interface is extended by both the TargetableCommand interface and the
CompensableCommand interface, which offer additional features. To create
commands for applications, you must:
v Define an interface that extends one or more of interfaces in the command

package.
v Provide an implementation class for your interface.

In practice, most commands implement the TargetableCommand interface,
which allows the command to be executed remotely. Figure 63 on page 142
shows the structure of a command interface for a targetable command.

Chapter 9. WebSphere Programming Model Extensions 141

The CompensableCommand interface allows the association of one command
with another that can undo the work of the first. Compensable commands
also typically implement the TargetableCommand interface. Figure 64 shows
the structure of a command interface for a targetable, compensable command.

Facilities for implementing commands
Commands are implemented by extending the class TargetableCommandImpl,
which implements the TargetableCommand interface. The
TargetableCommandImpl class is an abstract class that provides some
implementations for some of the methods in the TargetableCommand interface
(for example, setting return values) and declares additional methods that the
application itself must implement (for example, how to execute the
command).

You implement your command interface by writing a class that extends the
TargetableCommandImpl class and implements your command interface. This
class contains the code for the methods in your interface, the methods
inherited from extended interfaces (the TargetableCommand and
CompensableCommand interfaces), and the required (abstract) methods in the
TargetableCommandImpl class. You can also override the default
implementations of other methods provided in the TargetableCommandImpl
class. Figure 65 on page 143 shows the structure of an implementation class for
the interface in Figure 64.

...
import com.ibm.websphere.command.*;
public interface MySimpleCommand extends TargetableCommand {

// Declare application methods here
}

Figure 63. Code example: The structure of an interface for a targetable command

...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand, CompensableCommand {

// Declare application methods here
}

Figure 64. Code example: The structure of an interface for a targetable, compensable command

142 WebSphere: Writing Enterprise Beans in WebSphere

Facilities for setting and determining targets
The object that is the target of a TargetableCommand must implement the
CommandTarget interface. This object can be an actual server-side object, like
an entity bean, or it can be a client-side adapter for a server. The implementor
of the CommandTarget interface is responsible for ensuring the proper
execution of a command in the desired target server environment. This
typically requires the following steps:
1. Copying the command to the target server by using a server-specific

protocol.
2. Running the command in the server.
3. Copying the executed command from the target server to the client by

using a server-specific protocol.

Common ways to implement the CommandTarget interface include:
v A local target, which runs in the client’s JVM.
v A client-side adapter for a server. For an example that implements the

target as a client-side adapter, see “Writing a command target (client-side
adapter)” on page 166.

v An enterprise bean (either a session bean or an entity bean). Figure 66 on
page 144 shows the structure of the remote interface and enterprise bean
class for an entity bean that implements the CommandTarget interface. An
enterprise bean is provided with WebSphere that can be deployed and used
as a CommandTarget. See “Using the WebSphere EJBCommandTarget bean
as a command target” on page 157.

...
import java.lang.reflect.*;
import com.ibm.websphere.command.*;
public class MyCommandImpl extends TargetableCommandImpl
implements MyCommand {

// Set instance variables here
...
// Implement methods in the MyCommand interface
...
// Implement methods in the CompensableCommand interface
...
// Implement abstract methods in the TargetableCommandImpl class
...

}

Figure 65. Code example: The structure of an implementation class for a command interface

Chapter 9. WebSphere Programming Model Extensions 143

Since targetable commands can be run remotely in another JVM, the
command package provides mechanisms for determining where to run the
command. A target policy associates a command with a target and is specified
through the TargetPolicy interface. You can design customized target policies
by implementing this interface, or you can use the provided
TargetPolicyDefault class. For more information, see “Targets and target
policies” on page 161.

Exceptions in the command package
The command package defines a set of exception classes. The
CommandException class extends the DistributedException class and acts as
the base class for the additional command-related exceptions:
UnauthorizedAccessException, UnsetInputPropertiesException, and
UnavailableCompensableCommandException. Applications can extend the
CommandException class to define additional exceptions, as well.

Although the CommandException class extends the DistributedException
class, you do not have to import the distributed-exception package,
com.ibm.websphere.exception, unless you need to use the features of the
DistributedException class in your application. For more information on
distributed exceptions, see “The distributed-exception package” on page 129.

Writing command interfaces
To write a command interface, you extend one or more of the three interfaces
included in the command package. The base interface for all commands is the

...
import java.rmi.RemoteException;
import java.util.Properties;
import javax.ejb.*;
import com.ibm.websphere.command.*;
// Remote interface for the MyBean enterprise bean (also a command target)
public interface MyBean extends EJBObject, CommandTarget {

// Declare methods for the remote interface
...

}
// Entity bean class for the MyBean enterprise bean (also a command target)
public class MyBeanClass implements EntityBean, CommandTarget {

// Set instance variables here
...
// Implement methods in the remote interface
...
// Implement methods in the EntityBean interface
...
// Implement the method in the CommandTarget interface
...

}

Figure 66. Code example: The structure of a command-target entity bean

144 WebSphere: Writing Enterprise Beans in WebSphere

Command interface. This interface provides only the client-side interface for
generic commands and declares three basic methods:
v isReadyToCallExecute—This method is called on the client side before the

command is passed to the server for execution.
v execute—This method passes the command to the target and returns any

data.
v reset—This method reverts any output properties to the values they had

before the execute method was called so that the object can be reused.

The implementation class for your interface must contain implementations for
the isReadyToCallExecute and reset methods. The execute method is
implemented for you elsewhere; for more information, see “Implementing
command interfaces” on page 147. Most commands do not extend the
Command interface directly but use one of the provided extensions: the
TargetableCommand interface and the CompensableCommand interface.

The TargetableCommand interface
The TargetableCommand interface extends the Command interface and
provides for remote execution of commands. Most commands will be
targetable commands. The TargetableCommand interface declares several
additional methods:
v setCommandTarget—This method allows you to specify the target object to

a command.
v setCommandTargetName—This method allows you to specify the target by

name to a command.
v getCommandTarget—This method returns the target object of the command.
v getCommandTargetName—This method returns the name of the target

object of the command.
v hasOutputProperties—This method indicates whether or not the command

has output that must be copied back to the client. (The implementation
class also provides a method, setHasOutputProperties, for setting the
output of this method. By default, hasOutputProperties returns true.)

v setOutputProperties—This method saves output values from the command
for return to the client.

v performExecute—This method encapsulates the application-specific work. It
is called for you by the execute method declared in the Command interface.

With the exception of the performExecute method, which you must
implement, all of these methods are implemented in the
TargetableCommandImpl class. This class also implements the execute method
declared in the Command interface.

The CompensableCommand interface
The CompensableCommand interface also extends the Command interface. A
compensable command is one that has another command (a compensator)

Chapter 9. WebSphere Programming Model Extensions 145

associated with it, so that the work of the first can be undone by the
compensator. For example, a command that attempts to make an airline
reservation followed by a hotel reservation can offer a compensating
command that allows the user to cancel the airline reservation if the hotel
reservation cannot be made.

The CompensableCommand interface declares one method:
v getCompensatingCommand—This methods returns the command that can

be used to undo the effects of the original command.

To create a compensable command, you write an interface that extends the
CompensableCommand interface. Such interfaces typically extend the
TargetableCommand interface as well. You must implement the
getCompensatingCommand method in the implementation class for your
interface. You must also implement the compensating command.

The example application
The example used throughout the remainder of this discussion uses an entity
bean with container-managed persistence (CMP) called CheckingAccountBean,
which allows a client to deposit money, withdraw money, set a balance, get a
balance, and retrieve the name on the account. This entity bean also accepts
commands from the client. The code examples illustrate the command-related
programming. For a servlet-based example, see “Writing a command target
(client-side adapter)” on page 166.

Figure 67 shows the interface for the ModifyCheckingAccountCmd command.
This command is both targetable and compensable, so the interface extends
both TargetableCommand and CompensableCommand interfaces.

...
import com.ibm.websphere.exception.*;
import com.ibm.websphere.command.*;
public interface ModifyCheckingAccountCmd
extends TargetableCommand, CompensableCommand {

float getAmount();
float getBalance();
float getOldBalance(); // Used for compensating
float setBalance(float amount);
float setBalance(int amount);
CheckingAccount getCheckingAccount();
void setCheckingAccount(CheckingAccount newCheckingAccount);
TargetPolicy getCmdTargetPolicy();
...

}

Figure 67. Code example: The ModifyCheckingAccountCmd interface

146 WebSphere: Writing Enterprise Beans in WebSphere

Implementing command interfaces
The command package provides a class, TargetableCommandImpl, that
implements all of the methods in the TargetableCommand interface except the
performExecute method. It also implements the execute method from the
Command interface. To implement an application’s command interface, you
must write a class that extends the TargetableCommandImpl class and
implements your command interface. Figure 68 shows the structure of the
ModifyCheckingAccountCmdImpl class.

The class must declare any variables and implement these methods:
v Any methods you defined in your command interface.
v The isReadyToCallExecute and reset methods from the Command interface.
v The performExecute method from the TargetableCommand interface.
v The getCompensatingCommand method from the CompensableCommand

interface, if your command is compensable. You must also implement the
compensating command.

You can also override the nonfinal implementations provided in the
TargetableCommandImpl class. The most likely candidate for
reimplementation is the setOutputProperties method, since the default
implementation does not save final, transient, or static fields.

Defining instance and class variables
The ModifyCheckingAccountCmdImpl class declares the variables used by the
methods in the class, including the remote interface of the CheckingAccount
entity bean; the variables used to capture operations on the checking account
(balances and amounts); and a compensating command. Figure 69 on page 148
shows the variables used by the ModifyCheckingAccountCmd command.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Methods
...

}

Figure 68. Code example: The structure of the ModifyCheckingAccountCmdImpl class

Chapter 9. WebSphere Programming Model Extensions 147

Implementing command-specific methods
The ModifyCheckingAccountCmd interface defines several command-specific
methods in addition to extending other interfaces in the command package.
These command-specific methods are implemented in the
ModifyCheckingAccountCmdImpl class.

You must provide a way to instantiate the command. The command package
does not specify the mechanism, so you can choose the technique most
appropriate for your application. The fastest and most efficient technique is to
use constructors. The most flexible technique is to use a factory. Also, since
commands are implemented internally as JavaBeans components, you can use
the standard Beans.instantiate method. The ModifyCheckingAccountCmd
command uses constructors.

Figure 70 on page 149 shows the two constructors for the command. The
difference between them is that the first uses the default target policy for
determining the target of the command and the second allows you to specify
a custom policy. (For more information on targets and target policies, see
“Targets and target policies” on page 161.)

Both constructors take a CommandTarget object as an argument and cast it to
the CheckingAccount type. The CheckingAccount interface extends both the
CommandTarget interface and the EJBObject (see Figure 80 on page 160). The
resulting checkingAccount object routes the command to the desired server by
using the bean’s remote interface. (For more information on CommandTarget
objects, see “Writing a command target (server)” on page 159.)

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
public float balance;
public float amount;
public float oldBalance;
public CheckingAccount checkingAccount;
public ModifyCheckingAccountCompensatorCmd

modifyCheckingAccountCompensatorCmd;
...

}

Figure 69. Code example: The variables in the ModifyCheckingAccountCmdImpl class

148 WebSphere: Writing Enterprise Beans in WebSphere

Figure 71 on page 150 shows the implementation of the command-specific
methods:
v setBalance—This method sets the balance of the account.
v getAmount—This method returns the amount of a deposit or withdrawal.
v getOldBalance, getBalance—These methods capture the balance before and

after an operation.
v getCmdTargetPolicy—This method retrieves the current target policy.
v setCheckingAccount, getCheckingAccount—These methods set and retrieve

the current checking account.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Constructors
// First constructor: relies on the default target policy
public ModifyCheckingAccountCmdImpl(CommandTarget target,

float newAmount)
{

amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
// Second constructor: allows you to specify a custom target policy
public ModifyCheckingAccountCmdImpl(CommandTarget target,

float newAmount,
TargetPolicy targetPolicy)

{
setTargetPolicy(targetPolicy);
amount = newAmount;
checkingAccount = (CheckingAccount)target;
setCommandTarget(target);

}
...

}

Figure 70. Code example: Constructors in the ModifyCheckingAccountCmdImpl class

Chapter 9. WebSphere Programming Model Extensions 149

The ModifyCheckingAccountCmd command operates on a checking account.
Because commands are implemented as JavaBeans components, you manage
input and output properties of commands using the standard JavaBeans
techniques. For example, initialize input properties with set methods (like
setCheckingAccount) and retrieve output properties with get methods (like
getCheckingAccount). The get methods do not work until after the
command’s execute method has been called.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

// Variables
...
// Constructors
...
// Methods in ModifyCheckingAccountCmd interface
public float getAmount() {

return amount;
}
public float getBalance() {

return balance;
}
public float getOldBalance() {

return oldBalance;
}
public float setBalance(float amount) {

balance = balance + amount;
return balance;

}
public float setBalance(int amount) {

balance += amount ;
return balance;

}
public TargetPolicy getCmdTargetPolicy() {

return getTargetPolicy();
}
public void setCheckingAccount(CheckingAccount newCheckingAccount) {

if (checkingAccount == null) {
checkingAccount = newCheckingAccount;

}
else

System.out.println("Incorrect Checking Account (" +
newCheckingAccount + ") specified");

}
public CheckingAccount getCheckingAccount() {

return checkingAccount;
}
...

}

Figure 71. Code example: Command-specific methods in the ModifyCheckingAccountCmdImpl
class

150 WebSphere: Writing Enterprise Beans in WebSphere

Implementing methods from the Command interface
The Command interface declares two methods, isReadyToCallExecute and
reset, that must be implemented by the application programmer. Figure 72
shows the implementations for the ModifyCheckingAccountCmd command.
The implementation of the isReadyToCallExecute method ensures that the
checkingAccount variable is set. The reset method sets all of the variables
back to starting values.

Implementing methods from the TargetableCommand interface
The TargetableCommand interface declares one method, performExecute, that
must be implemented by the application programmer. Figure 73 on page 152
shows the implementation for the ModifyCheckingAccountCmd command.
The implementation of the performExecute method does the following:
v Saves the current balance (so the command can be undone by a

compensator command)
v Calculates the new balance
v Sets the current balance to the new balance
v Ensures that the hasOutputProperties method returns true so that the

values are returned to the client

In addition, the ModifyCheckingAccountCmdImpl class overrides the default
implementation of the setOutputProperties method.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Methods from the Command interface
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void reset() {

amount = 0;
balance = 0;
oldBalance = 0;
checkingAccount = null;
targetPolicy = new TargetPolicyDefault();

}
...

}

Figure 72. Code example: Methods from the Command interface in the
ModifyCheckingAccountCmdImpl class

Chapter 9. WebSphere Programming Model Extensions 151

Implementing the CompensableCommand interface
The CompensableCommand interface declares one method,
getCompensatingCommand, that must be implemented by the application
programmer. Figure 74 on page 153 shows the implementation for the
ModifyCheckingAccountCmd command. The implementation simply returns
an instance of the ModifyCheckingAccountCompensatorCmd command
associated with the current command.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Method from the TargetableCommand interface
public void performExecute() throws Exception {

CheckingAccount checkingAccount = getCheckingAccount();
oldBalance = checkingAccount.getBalance();
balance = oldBalance+amount;
checkingAccount.setBalance(balance);
setHasOutputProperties(true);

}
public void setOutputProperties(TargetableCommand fromCommand) {

try {
if (fromCommand != null) {

ModifyCheckingAccountCmd modifyCheckingAccountCmd =
(ModifyCheckingAccountCmd) fromCommand;

this.oldBalance = modifyCheckingAccountCmd.getOldBalance();
this.balance = modifyCheckingAccountCmd.getBalance();
this.checkingAccount =

modifyCheckingAccountCmd.getCheckingAccount();
this.amount = modifyCheckingAccountCmd.getAmount();

}
}
catch (Exception ex) {

System.out.println("Error in setOutputProperties.");
}

}
...

}

Figure 73. Code example: Methods from the TargetableCommand interface in the
ModifyCheckingAccountCmdImpl class

152 WebSphere: Writing Enterprise Beans in WebSphere

Writing the compensating command: An application that uses a
compensable command requires two separate commands: the primary
command (declared as a CompensableCommand) and the compensating
command. In the example application, the primary command is declared in
the ModifyCheckingAccountCmd interface and implemented in the
ModifyCheckingAccountCmdImpl class. Because this command is also a
compensable command, there is a second command associated with it that is
designed to undo its work. When you create a compensable command, you
also have to write the compensating command.

Writing a compensating command can require exactly the same steps as
writing the original command: writing the interface and providing an
implementation class. In some cases, it may be simpler. For example, the
command to compensate for the ModifyCheckingAccountCmd does not
require any methods beyond those defined for the original command, so it
does not need an interface. The compensating command, called
ModifyCheckingAccountCompensatorCmd, simply needs to be implemented
in a class that extends the TargetableCommandImpl class. This class must:
v Provide a way to instantiate the command; the example uses a constructor
v Implement the three required methods:

– isReadyToCallExecute and reset—both from the Command interface
– performExecute—from the TargetableCommand interface

Figure 75 on page 154 shows the structure of the implementation class, its
variables (references to the original command and to the relevant checking
account), and the constructor. The constructor simply instantiates the
references to the primary command and account.

...
public class ModifyCheckingAccountCmdImpl extends TargetableCommandImpl
implements ModifyCheckingAccountCmd
{

...
// Method from CompensableCommand interface
public Command getCompensatingCommand() throws CommandException {

modifyCheckingAccountCompensatorCmd =
new ModifyCheckingAccountCompensatorCmd(this);

return (Command)modifyCheckingAccountCompensatorCmd;
}

}

Figure 74. Code example: Method from the CompensableCommand interface in the
ModifyCheckingAccountCmdImpl class

Chapter 9. WebSphere Programming Model Extensions 153

Figure 76 on page 155 shows the implementation of the inherited methods.
The implementation of the isReadyToCallExecute method ensures that the
checkingAccount variable has been instantiated.

The performExecute method verifies that the actual checking-account balance
is consistent with what the original command returns. If so, it replaces the
current balance with the previously stored balance by using the
ModifyCheckingAccountCmd command. Finally, it saves the most-recent
balances in case the compensating command needs to be undone. The reset
method has no work to do.

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{

public ModifyCheckingAccountCmdImpl modifyCheckingAccountCmdImpl;
public CheckingAccount checkingAccount;

public ModifyCheckingAccountCompensatorCmd(
ModifyCheckingAccountCmdImpl originalCmd)

{
// Get an instance of the original command
modifyCheckingAccountCmdImpl = originalCmd;
// Get the relevant account
checkingAccount = originalCmd.getCheckingAccount();

}
// Methods from the Command and Targetable Command interfaces
....

}

Figure 75. Code example: Variables and constructor in the
ModifyCheckingAccountCompensatorCmd class

154 WebSphere: Writing Enterprise Beans in WebSphere

Using a command
To use a command, the client creates an instance of the command and calls
the command’s execute method. Depending on the command, calling other
methods can be necessary. The specifics will vary with the application.

In the example application, the server is the CheckingAccountBean, an entity
enterprise bean. In order to use this enterprise bean, the client gets a reference
to the bean’s home interface. The client then uses the reference to the home

...
public class ModifyCheckingAccountCompensatorCmd extends TargetableCommandImpl
{

// Variables and constructor
....
// Methods from the Command and TargetableCommand interfaces
public boolean isReadyToCallExecute() {

if (checkingAccount != null)
return true;

else
return false;

}
public void performExecute() throws CommandException
{

try {
ModifyCheckingAccountCmdImpl originalCmd =

modifyCheckingAccountCmdImpl;
// Retrieve the checking account modified by the original command
CheckingAccount checkingAccount = originalCmd.getCheckingAccount();
if (modifyCheckingAccountCmdImpl.balance ==

checkingAccount.getBalance()) {
// Reset the values on the original command
checkingAccount.setBalance(originalCmd.oldBalance);
float temp = modifyCheckingAccountCmdImpl.balance;
originalCmd.balance = originalCmd.oldBalance;
originalCmd.oldBalance = temp;

}
else {

// Balances are inconsistent, so we cannot compensate
throw new CommandException(

"Object modified since this command ran.");
}

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}
public void reset() {}

}

Figure 76. Code example: Methods in ModifyCheckingAccountCompensatorCmd class

Chapter 9. WebSphere Programming Model Extensions 155

interface and one of the bean’s finder methods to obtain a reference to the
bean’s remote interface. If there is no appropriate bean, the client can create
one using a create method on the home interface. All of this work is standard
enterprise bean programming covered elsewhere in this document.

Figure 77 illustrates the use of the ModifyCheckingAccountCmd command.
This work takes place after an appropriate CheckingAccount bean has been
found or created. The code instantiates a command, setting the input values
by using one of the constructors defined for the command. The null argument
indicates that the command should look up the server using the default target
policy, and 1000 is the amount the command attempts to add to the balance of
the checking account. (For more information on how the command package
uses defaults to determine the target of a command, see “The default target
policy” on page 162.) After the command is instantiated, the code calls the
setCheckingAccount method to identify the account to be modified. Finally,
the execute method on the command is called.

Using a compensating command
To use a compensating command, you must retrieve the compensator
associated with the primary command and call its execute method. Figure 78
on page 157 shows the code used to run the original command and to give
the user the option of undoing the work by running the compensating
command.

{
...
CheckingAccount checkingAccount
...
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();

}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 77. Code example: Using the ModifyCheckingAccountCmd command

156 WebSphere: Writing Enterprise Beans in WebSphere

Using the WebSphere EJBCommandTarget bean as a command target
WebSphere ships a CommandTarget enterprise bean to allow administrators to
execute a command in a designated server without providing their own
implementation of CommandTarget. The EJBCommandTarget class, along with
the EJBCommandTarget bean (CommandServerSessionBean), are located in the
EJBCommandTarget.jar file in the lib directory under the WebSphere
installation directory. This is a deployed jar file. You can use this JAR file in a
new application or add it into an existing application.

The EJBCommandTarget class serves as a wrapper for a CommandTarget
bean. CommandServerSessionBean is the WebSphere implementation of this
CommandTarget bean. A command developer can set this EJBCommandTarget
object into the Command. Figure 79 on page 158 shows an example.

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.execute();
...
System.out.println("Would you like to undo this work? Enter Y or N");
try {

// Retrieve and validate user's response
...

}
...
if (answer.equalsIgnoreCase(Y)) {

Command compensatingCommand = cmd.getCompensatingCommand();
compensatingCommand.execute();

}
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 78. Code example: Using the ModifyCheckingAccountCompensator command

Chapter 9. WebSphere Programming Model Extensions 157

In this example, the client creates a MyCommand object. It is then executed in
the application server. When the execute method is performed, the target
(EJBCommandTarget) looks up the CommandServerSessionHome from the
InitialContext and executes the executeCommand method on the
CommandServerSessionBean. The EJBCommandTarget object ensures that
there is only one CommandServerSessionBean per object to avoid extra
naming lookup.

An EJBCommandTarget object can be created using four different constructors:
v EJBCommandTarget(″MyNamingServerName″, ″PortNumber″,

″JNDIName″)
v EJBCommandTarget(InitialContext,″JNDIName″)
v EJBCommandTarget(″JNDIName″)
v EJBCommandTarget()

The first constructor allows the application to specify the naming server name
and the port. The JNDI name of the CommandServerSessionBean can also be
specified. The EJBCommandTarget constructs a provider URL of
″iiop://MyNamingServerName:PortNumber″ and looks up the
CommandServerSessionBean with the given JNDI name. If null values are
passed in for any of the parameters the WebSphere defaults for server and
port and a default JNDI name of CommandServerSession are used.

The second constructor allows the application to specify its own initial
context. The EJBCommandTarget object then uses this initial context to look
up the CommandServerSession bean with the specified JNDI name.

The third constructor allows the application to set up the naming server (the
provider URL) in property files.

The default constructor uses the default values for the provider URL and
default JNDI name for the CommandServerSession bean
(CommandServerSession).

You do not need to use the EJBCommandTarget class. You can instead create
your own custom target policy that uses the EJBCommandTarget bean

EJBCommandTarget target = new EJBCommandTarget();

MyCommand cmd = new MyCommandImpl(Arguments...);
cmd.setCommandTarget(target);
cmd.execute();

Figure 79. Code example: Using an EJBCommandTarget bean

158 WebSphere: Writing Enterprise Beans in WebSphere

(CommandServerSessionBean). The EJBCommandTarget object is a
convenience class and attempts to address most usage scenarios

Writing a command target (server)
In order to accept commands, a server must implement the CommandTarget
interface and its single method, executeCommand.

The example application implements the CommandTarget interface in an
enterprise bean. (For a servlet-based example, see “Writing a command target
(client-side adapter)” on page 166.) The target enterprise bean can be a session
bean or an entity bean. You can write a target enterprise bean that forwards
commands to a specific server, such as another entity bean. In this case, all
commands directed at a specific target go through the target enterprise bean.
You can also write a target enterprise bean that does the work of the
command locally.

Make an enterprise bean the target of a command by:
v Extending the CommandTarget interface when you define the bean’s remote

interface, which must also extend the EJBObject interface
v Implementing the CommandTarget interface when you implement the bean

class, which must also implement either the SessionBean or EntityBean
interface

The target of the example application is an enterprise bean called
CheckingAccountBean. This bean’s remote interface, CheckingAccount,
extends the CommandTarget interface in addition to the EJBObject interface.
The methods declared in the remote interface are independent of those used
by the command. The executeCommand is declared in neither the bean’s
home nor remote interfaces. Figure 80 on page 160 shows the
CheckingAccount interface.

Chapter 9. WebSphere Programming Model Extensions 159

The enterprise bean class, CheckingAccountBean, implements the EntityBean
interface as well as the CommandTarget interface. The class contains the
business logic for the methods in the remote interface, the necessary life-cycle
methods (ejbActivate, ejbStore, and so on), and the executeCommand declared
by the CommandTarget interface. The executeCommand method is the only
command-specific code in the enterprise bean class. It attempts to run the
performExecute method on the command and throws a CommandException if
an error occurs. If the performExecute method runs successfully, the
executeCommand method uses the hasOutputProperties method to determine
if there are output properties that must be returned. If the command has
output properties, the method returns the command object to the client.
Figure 81 on page 161 shows the relevant parts of the CheckingAccountBean
class.

...
import com.ibm.websphere.command.*;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface CheckingAccount extends CommandTarget, EJBObject {

float deposit (float amount) throws RemoteException;
float deposit (int amount) throws RemoteException;
String getAccountName() throws RemoteException;
float getBalance() throws RemoteException;
float setBalance(float amount) throws RemoteException;
float withdrawal (float amount) throws RemoteException, Exception;
float withdrawal (int amount) throws RemoteException, Exception;

}

Figure 80. Code example: The remote interface for the CheckingAccount entity bean, also a
command target

160 WebSphere: Writing Enterprise Beans in WebSphere

Targets and target policies
A targetable command extends the TargetableCommand interface, which
allows the client to direct a command to a particular server. The
TargetableCommand interface (and the TargetableCommandImpl class)
provide two ways for a client to specify a target: the setCommandTarget and
setCommandTargetName methods. (These methods were introduced in “The
TargetableCommand interface” on page 145.) The setCommandTarget methods
allows the client to set the target object directly on the command. The
setCommandTargetName method allows the client to refer to the server by
name; this approach is useful when the client is not directly aware of server
objects. A targetable command also has corresponding getCommandTarget
and getCommandTargetName methods.

The command package needs to be able to identify the target of a command.
Because there is more than one way to specify the target and because different

...
public class CheckingAccountBean implements EntityBean, CommandTarget {

// Bean variables
...
// Business methods from remote interface
...
// Life-cycle methods for CMP entity beans
...
// Method from the CommandTarget interface
public TargetableCommand executeCommand(TargetableCommand command)
throws RemoteException, CommandException
{

try {
command.performExecute();

}
catch (Exception ex) {

if (ex instanceof RemoteException) {
RemoveException remoteException = (RemoteException)ex;
if (remoteException.detail != null) {

throw new CommandException(remoteException.detail);
}
throw new CommandException(ex);

}
}
if (command.hasOutputProperties()) {

return command;
}
return null;

}
}

Figure 81. Code example: The bean class for the CheckingAccount entity bean, also a command
target

Chapter 9. WebSphere Programming Model Extensions 161

applications can have different requirements, the command package does not
specify a selection algorithm. Instead, it provides a TargetPolicy interface with
one method, getCommandTarget, and a default implementation. This allows
applications to devise custom algorithms for determining the target of a
command when appropriate.

The default target policy
The command package provides a default implementation of the TargetPolicy
interface in the TargetPolicyDefault class. If you use this default
implementation, the command determines the target by looking through an
ordered sequence of four options:
1. The CommandTarget value
2. The CommandTargetName value
3. A registered mapping of a target for a specific command
4. A defined default target

If it finds no target, it returns null.

The TargetPolicyDefault class provides methods for managing the assignment
of commands with targets (registerCommand, unregisterCommand, and
listMappings), and a method for setting a default name for the target
(setDefaultTargetName). The default target name is
com.ibm.websphere.command.LocalTarget, where LocalTarget is a class that
runs the command’s performExecute method locally. Figure 82 shows the
relevant variables and the methods in the TargetPolicyDefault class.

Setting the command target: The ModifyCheckingAccountImpl class
provides two command constructors (see Figure 70 on page 149). One of them
takes a command target as an argument and implicitly uses the default target

...
public class TargetPolicyDefault implements TargetPolicy, Serializable
{

...
protected String defaultTargetName = "com.ibm.websphere.command.LocalTarget";
public CommandTarget getCommandTarget(TargetableCommand command) {

... }
public Dictionary listMappings() {

... }
public void registerCommand(String commandName, String targetName) {

... }
public void unregisterCommand(String commandName) {

... }
public void seDefaultTargetName(String defaultTargetName) {

... }
}

Figure 82. Code example: The TargetPolicyDefault class

162 WebSphere: Writing Enterprise Beans in WebSphere

policy to locate the target. The constructor used in Figure 77 on page 156
passes a null target, so that the default target policy traverses its choices and
eventually finds the default target name, LocalTarget.

The example in Figure 83 uses the same constructor to set the target explicitly.
This example differs from Figure 77 on page 156 as follows:
v The command target is set to the checking account rather than null. The

default target policy starts to traverse its choices and finds the target in the
first place it looks.

v It does not have to call the setCheckingAccount method to indicate the
account on which the command should operate; the constructor uses the
target variable as both the target and the account.

Setting the command target name: If a client needs to set the target of the
command by name, it can use the command’s setCommandTargetName
method. Figure 84 on page 164 illustrates this technique. This example
compares with Figure 77 on page 156 as follows:
v Both explicitly set the command target in the constructor to null.
v Both use the setCheckingAccount method to indicate the account on which

the command should operate.
v This example sets the target name explicitly by using the

setCommandTargetName method. When the default target policy traverses
its choices, it finds a null for the first choice and a name for the second.

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(checkingAccount, 1000);

cmd.execute();
}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 83. Code example: Identifying a target with CommandTarget

Chapter 9. WebSphere Programming Model Extensions 163

Mapping the command to a target name: The default target policy also
permits commands to be registered with targets. Mapping a command to a
target is an administrative task that most appropriately done through a
configuration tool. The WebSphere Application Server administrative console
does not yet support the configuration of mappings between commands and
targets. Applications that require support for the registration of commands
with targets must supply the tools to manage the mappings. These tools can
be visual interfaces or command-line tools.

Figure 85 shows the registration of a command with a target. The names of
the command class and the target are explicit in the code, but in practice,
these values would come from fields in a user interface or arguments to a
command-line tool. If a program creates a command as shown in Figure 77 on
page 156, with a null for the target, when the default target policy traverses its
choices, it finds a null for the first and second choices and a mapping for the
third.

Customizing target policies
You can define custom target policies by implementing the TargetPolicy
interface and providing a getCommandTarget method appropriate for your

{
...
CheckingAccount checkingAccount
....
try {

ModifyCheckingAccountCmd cmd =
new ModifyCheckingAccountCmdImpl(null, 1000);

cmd.setCheckingAccount(checkingAccount);
cmd.setCommandTargetName("com.ibm.sfc.cmd.test.CheckingAccountBean");
cmd.execute();

}
catch (Exception e) {

System.out.println(e.getMessage());
}
...

}

Figure 84. Code example: Identifying a target with CommandTargetName

{
...
targetPolicy.registerCommand(

"com.ibm.sfc.cmd.test.ModifyCheckingAccountImpl",
"com.ibm.sfc.cmd.test.CheckingAccountBean");

...
}

Figure 85. Code example: Mapping a command to a target in an external application

164 WebSphere: Writing Enterprise Beans in WebSphere

application. The TargetableCommandImpl class provides setTargetPolicy and
getTargetPolicy methods for managing custom target policies.

So far, the target of all the commands has been a checking-account entity
bean. Suppose that someone introduces a session enterprise bean
(MySessionBean) that can also act as a command target. Figure 86 shows a
simple custom policy that sets the target of every command to
MySessionBean.

Since commands are implemented as JavaBeans components, using custom
target policies requires importing the java.beans package and writing some
elementary JavaBeans code. Also, your custom target-policy class must also
implement the java.io.Serializable interface.

Using a custom target policy: The ModifyCheckingAccountImpl class
provides two command constructors (see Figure 70 on page 149). One of them
implicitly uses the default target policy; the other takes a target policy object
as an argument, which allows you to use a custom target policy. The example
in Figure 87 on page 166 uses the second constructor, passing a null target and
a custom target policy, so that the custom policy is used to determine the
target. After the command is executed, the code uses the reset method to
return the target policy to the default.

...
import java.io.*;
import java.util.*;
import java.beans.*;
import com.ibm.websphere.command.*;
public class CustomTargetPolicy implements TargetPolicy, Serializable {

public CustomTargetPolicy {
super();

}
public CommandTarget getCommandTarget(TargetableCommand command) {

CommandTarget = null;
try {

target = (CommandTarget)Beans.instantiate(null,
"com.ibm.sfc.cmd.test.MySessionBean");

}
catch (Exception e) {

e.printStackTrace();
}

}
}

Figure 86. Code example: Creating a custom target policy

Chapter 9. WebSphere Programming Model Extensions 165

Writing a command target (client-side adapter)
Commands can be used with any Java application, but the means of sending
the command from the client to the server varies. The application described in
“The example application” on page 146 used enterprise beans. The example in
this section shows how you can send a command to a servlet over the HTTP
protocol.

In this example, the client implements the CommandTarget interface locally.
Figure 88 on page 167 shows the structure of the client-side class; it
implements the CommandTarget interface by implementing the
executeCommand method.

{
...
CheckingAccount checkingAccount
....
try {

CustomTargetPolicy customPolicy = new CustomTargetPolicy();
ModifyCheckingAccountCmd cmd =

new ModifyCheckingAccountCmdImpl(null, 1000, customPolicy);
cmd.setCheckingAccount(checkingAccount);
cmd.execute();
cmd.reset();

}
catch (Exception e) {

System.out.println(e.getMessage());
}

}

Figure 87. Code example: Using a custom target policy

166 WebSphere: Writing Enterprise Beans in WebSphere

The main method in the client-side adapter constructs and intializes the
CommandTarget object, as shown in Figure 89.

Implementing a client-side adapter
The CommandTarget interface declares one method, executeCommand, which
the client implements. The executeCommand method takes a
TargetableCommand object as input; it also returns a TargetableCommand.

...
import java.io.*;
import java.rmi.*;
import com.ibm.websphere.command.*;
public class ServletCommandTarget implements CommandTarget, Serializable
{

protected String hostName = "localhost";
public static void main(String args[]) throws Exception

{
....

}
public TargetableCommand executeCommand(TargetableCommand command)

throws CommandException
{

....
}

public static final byte[] serialize(Serializable serializable)
throws IOException {
... }

public String getHostName() {
... }

public void setHostName(String hostName) {
... }

private static void showHelp() {
... }

}

Figure 88. Code example: The structure of a client-side adapter for a target

public static void main(String args[]) throws Exception
{

String hostName = InetAddress.getLocalHost().getHostName();
String fileName = "MyServletCommandTarget.ser";
// Parse the command line
...
// Create and initialize the client-side CommandTarget adapter
ServletCommandTarget servletCommandTarget = new ServletCommandTarget();
servletCommandTarget.setHostName(hostName);
...
// Flush and close output streams
...

}

Figure 89. Code example: Instantiating the client-side adapter

Chapter 9. WebSphere Programming Model Extensions 167

Figure 90 shows the implementation of the method used in the client-side
adapter. This implementation does the following:
v Serializes the command it receives
v Creates an HTTP connection to the servlet
v Creates input and output streams, to handle the command as it is sent to

the server and returned
v Places the command on the output stream
v Sends the command to the server
v Retrieves the returned command from the input stream
v Returns the returned command to the caller of the executeCommand

method

public TargetableCommand executeCommand(TargetableCommand command)
throws CommandException

{
try {

// Serialize the command
byte[] array = serialize(command);
// Create a connection to the servlet
URL url = new URL

("http://" + hostName +
"/servlet/com.ibm.websphere.command.servlet.CommandServlet");

HttpURLConnection httpURLConnection =
(HttpURLConnection) url.openConnection();

// Set the properties of the connection
...
// Put the serialized command on the output stream
OutputStream outputStream = httpURLConnection.getOutputStream();
outputStream.write(array);
// Create a return stream
InputStream inputStream = httpURLConnection.getInputStream();
// Send the command to the servlet
httpURLConnection.connect();
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
// Retrieve the command returned from the servlet
Object object = objectInputStream.readObject();
if (object instanceof CommandException) {

throw ((CommandException) object);
}
// Pass the returned command back to the calling method
return (TargetableCommand) object;

}
// Handle exceptions
....

}

Figure 90. Code example: A client-side implementation of the executeCommand method

168 WebSphere: Writing Enterprise Beans in WebSphere

Running the command in the servlet
The servlet that runs the command is shown in Figure 91. The service method
retrieves the command from the input stream and runs the performExecute
method on the command. The resulting object, with any output properties
that must be returned to the client, is placed on the output stream and sent
back to the client.

...
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.ibm.websphere.command.*;
public class CommandServlet extends HttpServlet {

...
public void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException

{
try {

...
// Create input and output streams
InputStream inputStream = request.getInputStream();
OutputStream outputStream = response.getOutputStream();
// Retrieve the command from the input stream
ObjectInputStream objectInputStream =

new ObjectInputStream(inputStream);
TargetableCommand command = (TargetableCommand)

objectInputStream.readObject();
// Create the command for the return stream
Object returnObject = command;

// Try to run the command's performExecute method
try {

command.performExecute();
}
// Handle exceptions from the performExecute method
...

// Return the command with any output properties
ObjectOutputStream objectOutputStream =

new ObjectOutputStream(outputStream);
objectOutputStream.writeObject(returnObject);
// Flush and close output streams
...

}
catch (Exception ex) {

ex.printStackTrace();
}

}
}

Figure 91. Code example: Running the command in the servlet

Chapter 9. WebSphere Programming Model Extensions 169

In this example, the target invokes the performExecute method on the
command, but this is not always necessary. In some applications, it can be
preferable to implement the work of the command locally. For example, the
command can be used only to send input data, so that the target retrieves the
data from the command and runs a local database procedure based on the
input. You must decide the appropriate way to use commands in your
application.

The localizable-text package

Overview
Users of distributed applications can come from widely varying areas; they
can speak different languages, represent dates and times in regionally specific
ways, and use different currencies. An application intended to be used by
such an audience must either force them all to use the same interface (for
example, an English-based interface), or it can be written in such a way that it
can be configured to the linguistic conventions of the users, so
English-speaking users can use the English interface but French-speaking
users can interact with the application through a French interface.

An application that can present information to users in formats that abide by
the users’ linguistic conventions is said to be localizable: the application can be
configured to interact with users from different localities in linguistically
appropriate ways. In a localized application, a user in one region sees error
messages, output, and interface elements (like menu options) in the requested
language. Additionally, other elements that are not strictly linguistic, like date
and time formats and currencies, are presented in the appropriate style for
users in the specified region. A user in another region sees output in the
conventional language or format for that region.

Historically, the creation of localizable applications has been restricted to large
corporations writing complex systems. The strategies for writing localizable
code, collectively called internationalization techniques, have traditionally been
expensive and difficult to implement, so they have been applied only to major
development efforts. However, given the rise in distributed computing and in
use of the World Wide Web, application developers have been pressured to
make a much wider variety of applications localizable. This requires making
internationalization—the techniques for writing localizable programs—much
more accessible to application developers. The WebSphere localizable-text
package is a set of Java classes and interfaces that can be used by WebSphere
application developers to localize distributed WebSphere applications easily.
Language catalogs for distributed WebSphere applications can be stored
centrally, so the catalogs can be maintained and administered efficiently.

170 WebSphere: Writing Enterprise Beans in WebSphere

Writing localizable programs
In a nonlocalizable application, parts of the application that a user sees are
unalterably coded into the application. For example, a routine that prints an
error message simply prints a string, probably in English, to a file or the
console. A localizable program adds a layer of abstraction into the design.
Instead of going simply from error condition to output string, a localizable
program represents error messages with some language-neutral information;
in the simplest case, each error condition corresponds to a key. In order to
print a usable error string for the user, the application looks up the key in the
configured message catalog. A message catalog is a list of keys with
corresponding strings. Different message catalogs provide the strings in
different languages. The application looks up the key in the appropriate
catalog, retrieves the corresponding error message in the desired language,
and prints this string for the user.

The technique of localization can be used for far more than translating error
messages. For example, by using keys to represent each element—button,
label, menu item, and so forth—in a graphical user interface and by providing
a message catalog containing translations of the button names, labels, and
menu items, the graphical interface can be automatically translated into
multiple languages. In addition, extending support to additional languages
requires providing message catalogs for those languages; the application itself
requires no modification.

Localization of an application is driven by two variables, the time zone and
the locale. The time zone variable indicates how to compute the local time as
an offset from a standard time like Greenwich Mean Time. The locale is a
collection of information that indicates a geographic, political, or cultural
region. It provides information on language, currency, and the conventions for
presenting information like dates, and in a localizable program, the locale also
indicates the message catalog from which an application retrieves messages. A
time zone can cover many locales, and a single locale can span time zones.
With both time zone and locale, the date, time, currency, and language for
users in a specific region can be determined.

Identifying localizable text: To write a localizable application, an application
developer must determine which aspects of the application need to be
translatable. These are typically the parts of an application a user must read
and understand. Application developers must consider the parts of an
application with which all users directly interact, like the application’s
interface, and the parts serving more specialized purposes, like messages in
log files. Good candidates for localization include:
v Elements in graphical user interfaces

– Title bars for windows

Chapter 9. WebSphere Programming Model Extensions 171

– Menu names, and the items on the menus (for example, ″select File →
Open″)

– Labels on buttons (for example, ″click the OK button″)
– Instructions directing users to fill in fields (for example, ″enter the

account number″)
– Any other elements that users must read

v Prompts in command-line interfaces
v Output from the program

– Responses to user input
– Error messages
– Text returned when exceptions are thrown
– Other status messages (warnings, audit messages, and others)

After identifying each element of the application to be localized, application
developers must assign a unique key to each element and provide a message
catalog for each language to be supported. Each message catalog consists of
keys and the corresponding language-specific strings. The key, therefore, is the
link between the program and the message catalog; the program internally
refers to localizable elements by key and uses the message catalog to generate
the output seen by the user. Translated strings are generated by calling the
format method on a LocalizableTextFormatter object, which represents a key
and a resource bundle (a set of message catalogs). The locale setting of the
program determines the message catalog in which to search for the key.

Creating message catalogs: After identifying each element to be localized,
message catalogs must be created for each language to be supported. These
catalogs, which are implemented as Java resource bundles, can be created in
two ways, either as subclasses of the ResourceBundle class or as Java
properties files. Resource bundles have a variety of uses in Java; for message
catalogs, the properties-file approach is more common. If properties files are
used, support for languages to be added or removed without modifying the
application code, and catalogs can be prepared by people without
programming expertise.

A message catalog implemented in a properties file consists of a line for each
key, where a key identifies a localizable element. Each line in the file has the
following structure:
key = String corresponding to the key

For example, a grapical user interface for a banking system can have a
pull-down menu to be used for selecting a type of account, like savings or
checking. The label for the pull-down menu and the account types on the
menu are good choices for localization. There are three elements that require
keys: the label for the account menu and the two items on the menu. If the

172 WebSphere: Writing Enterprise Beans in WebSphere

keys are accountString, savingsString, and checkingString, the English
properties file associates each with an English string.

In the German properties files, each key is given a corresponding German
value.

Properties files can be added for any other needed languages, as well.

Naming the properties files: To enable resolution to a specific properties file,
Java specifies naming conventions for the properties files in a resource bundle:
resourceBundleName_localeID.properties

Each file takes a fixed extension, .properties. The set of files making up the
resource bundle is given a collective name; for a simple banking application,
an obvious name, like BankingResources, suffices for the resource bundle.
Each file is given the name of the resource bundle with a locale identifier; the
specific value of the locale ID varies with the locale. These are used internally
by the Java.util.ResourceBundle class to match files in a resource bundle to
combinations of locale and time-zone settings. The details of the algorithm
vary with the release of the JDK; see your Java documentation for information
specific to your installation.

In the banking application, typical files in the BankingResources resource
bundle include BankingResources_en.properties for the English message
catalog and BankingResources_de.properties for the German catalog.
Additionally, a default catalog, BankingResources.properties, is provided for
use when the requested catalog cannot be found. The default catalog is often
the English-language catalog.

Resource bundles containing message catalogs for use with localizable text
need to be installed only on the systems where the formatting of strings is

accountString = Accounts
savingsString = Savings
checkingString = Checking
...

Figure 92. Three elements in an English message catalog

accountString = Konten
savingsString = Sparkonto
checkingString = Girokonto
...

Figure 93. Three elements in a German message catalog

Chapter 9. WebSphere Programming Model Extensions 173

actually performed. The resource bundles are typically placed in an
application’s JAR file. See “WebSphere support” on page 175 for more
information.

Localization support in WebSphere and Java
The Java package com.ibm.websphere.i18n.localizabletext contains the classes
and interfaces constituting the localizable-text package. This package makes
extensive use of the internationalization and localization features of the Java
language; programmers using the WebSphere localizable-text package must
understand the underlying Java support, which are not documented in any
detail here.

Java support: The WebSphere localizable-text package relies primarily on the
following Java components:
v java.util.Locale
v java.util.TimeZone
v java.util.ResourceBundle
v java.text.MessageFormat

This list is not exhaustive. WebSphere and these Java classes can also use
related Java classes, but the related classes—for example,
java.util.Calendar—are typically special-purposes classes. This section briefly
describes only the primary classes.

Locale: A Locale object in Java encapsulates a language and a geographic
region, for example, the java.util.Locale.US object contains locale information
for the United States. An application that specifies a locale can then take
advantage of the locale-sensitive formatters built into the Java language. These
formatters, in the java.text package, handle the presentation of numbers,
currency values, dates, and times.

TimeZone: A TimeZone object in Java encapsulates a representation of the
time and provides methods for tasks like reporting the time and
accommodating seasonal time shifts. Applications use the time zone to
determine the local date and time.

ResourceBundle: A resource bundle is a named collection of
resources—information used by the application, for example, strings, fonts,
and images—used by a specific locale. The ResourceBundle class allows an
application to retrieve the named resource bundle appropriate to the locale.
Resource bundles are used to hold the messages catalogs, as described in
“Writing localizable programs” on page 171. Resource bundles can be
implemented in two ways, either as subclasses of the ResourceBundle class or
as Java properties files.

174 WebSphere: Writing Enterprise Beans in WebSphere

MessageFormat: The MessageFormat class can be used to construct strings
based on parameters. As a simple example, suppose a localized application
represents a particular error condition with a numeric key. When the
application reports the error condition, it uses a message formatter to convert
the numeric key into a meaningful string. The message formatter constructs
the output string by looking up the code (the parameter) in an appropriate
resource bundle and retrieving the corresponding string from the message
catalog. Additional parameters—for example, another key representing the
program module—can also be used in assembling the output message.

WebSphere support: The WebSphere localizable-text package wraps the Java
support and extends it for efficient and simple use in a distributed
environment. The primary class used by application programmers is the
LocalizableTextFormatter class. Objects of this class are created, typically in
server programs, but clients can also create them. LocalizableTextFormatter
objects are created for specific resource-bundle names and keys. Client
programs that receive LocalizableTextFormatter objects call the object’s format
method. This method uses the locale of the client application to retrieve the
appropriate resource bundle and assemble the locale-specific message based
on the key.

For example, suppose that a WebSphere client-server application supports
both French and English locales; the server is using an English locale and the
client, a French locale. The server creates two resource bundles, one for
English and one for French. When the client makes a request that triggers a
message, the server creates a LocalizableTextFormatter object containing the
name of the resource bundle and the key for the message, and passes the
object back to the client.

When the client receives the LocalizableTextFormatter object, it calls the
object’s format method, which returns the message corresponding to the key
from the French resource bundle. The format method retrieves the client’s
locale and, using the locale and name of the resource bundle, determines the
resource bundle corresponding to the locale. (If the client has set an English
locale, calling the format method results in the retrieval of an English
message.) The formatting of the message is transparent to the client.

In this simple client-server example, the resource bundles reside centrally with
the server. The client machine does not have to install them. Part of what the
WebSphere localizable-text package provides is the infrastructure to support
centralized catalogs. WebSphere uses an enterprise bean, a stateless session
bean provided with the localizable-text package, to access the message
catalogs. When the client calls the format method on the
LocalizableTextFormatter object, the following events occur internally:

Chapter 9. WebSphere Programming Model Extensions 175

1. The client application sets the time zone and locale values in the
LocalizableTextFormatter object, either by passing them explicitly or
through defaults.

2. A call, LocalizableTextFormatterEJBFinder, is made to retrieve a reference
to the formatting enterprise bean.

3. Information from the LocalizableTextFormatter object, including the client’s
time zone and locale, is sent to the formatting bean.

4. The formatting bean uses the name of the resource bundle, the message
key, the time zone, and the locale to assemble the language-specific
message.

5. The enterprise bean returns the formatted message to the client.
6. The formatted message is inserted into the LocalizableTextFormatter object

and returned by the format method.

A call to a LocalizableTextFormatter.format method requires at most one
remote invocation, to contact the formatting enterprise bean. However, the
LocalizableTextFormatter object can optionally cache formatted messages,
eliminating the formatting call for subsequent uses. It also allows the
application to set a fallback string; this means the application can still return a
readable string even if it cannot access a message catalog to retrieve the
language-specific string. Additionally, the resource bundles can be stored
locally. The localizable-text package provides a static variable that indicates
whether the bundles are stored locally (LocalizableConfiguration.LOCAL) or
remotely (LocalizableConfiguration.REMOTE), but the setting of this variable
applies to all applications running within a Java Virtual Machine (JVM).

The LocalizableTextFormatter class: The LocalizableTextFormatter class,
found in the package com.ibm.websphere.i18n.localizabletext, is the primary
programming interface for using the localizable-text package. Objects of this
class contain the information needed to create language-specific strings from
keys and resource bundles.

Location of message catalogs and the ApplicationName value: Applications written
with the WebSphere localizable-text package can store message catalogs
locally or remotely. In a distributed environment, the use of remote, centrally
stored catalogs is appropriate. All applications can use the same catalogs, and
administration and maintenance of the catalogs are simplified; each
component does not need to store and maintain copies of the message
catalogs. Local formatting is useful in test situations and appropriate under
some circumstances. In order to support both local and remote formatting, a
LocalizableTextFormatter object must indicate the name of the formatting
application. For example, when an application formats a message by using
remote, centrally stored catalogs, the message is actually formatted by a
simple enterprise bean (see “WebSphere support” on page 175 for more
information). Although the localizable-text package contains the code to

176 WebSphere: Writing Enterprise Beans in WebSphere

automate looking up the enterprise bean and issuing a call to it, the
application needs to know the name of the formatting enterprise bean. Several
methods in the LocalizableTextFormatter class use a value described as
application name; this refers to the name of the formatting application, which is
not necessarily the name of the application in which the value is set.

Caching messages: The LocalizableTextFomatter object can optionally cache
formatted messages so that they do not have to be reformatted when needed
again. By default, caching is not used, but the
LocalizableTextFormatter.setCacheSetting method can be used to enable
caching. When caching is enabled and the LocalizableTextFormatter.format
method is called, the method determines whether the message has already
been formatted. If so, the cached message is returned. If the message is not
found in the cache, the message is formatted and returned to the caller, and a
copy of the message is cached for future use.

If caching is disabled after messages have been cached, those messages remain
in the cache until the cache is cleared by a call to the
LocalizableTextFormatter.clearCache method. The cache can be cleared at any
time. The cache within a LocalizableTextFormatter object is automatically
cleared when any of the following methods are called on the object:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setArguments(Object[] args)
v setApplicationName(String appName)

Fallback information: Under some circumstances, it can be impossible to
format a message. The localizable-text package implements a fallback strategy,
making it possible to get some information even if a message cannot be
correctly formatted into the desired language. The LocalizableTextFomatter
object can optionally store a fallback value for a message string, the time zone,
and the locale. These can be ignored unless the LocalizableTextFormatter
object throws an exception.

Application-specific variables: The localizable-text package provides native
support for localization based on time zone and locale, but application
developers can construct messages on the basis of other values as well. The
localizable-text package provides an illustrative class,
LocalizableTextDateTimeArgument, which reports the date and time. The date
and time information is localized by using the locale and time-zone values,
but the class also uses additional variables to determine how the output is
presented. The date and time information can be requested in a variety of
styles, from the fully detailed to the terse. In this example, the construction of
message strings is driven by three variables: the locale, the time zone, and the

Chapter 9. WebSphere Programming Model Extensions 177

style. Applications can use any number of variables in addition to locale and
time zone for constructing messages. See “Using optional arguments” on
page 182 for more information.

Writing a localizable application
To develop a WebSphere application that uses localizable text, application
developers must do the following:
v Determine the parts of the application to be localized.

– Identify the application elements to be localized and assign each a key.
– Create message catalogs for each language by associating a string with

each key.

These tasks were described previously. See “Identifying localizable text” on
page 171 and “Creating message catalogs” on page 172 for more
information.

v Assemble language-specific strings from keys, resource bundles, and other
arguments.
– Create a LocalizableTextFormatter object.
– Set the values within the object for the key, the name of the resource

bundle, the name of the remote formatting application, and any optional
arguments.

– Call the format method on the LocalizableTextObject, which returns the
assembled string.

This section describes these tasks.

Creating a LocalizableTextFormatter object
Server programs typically create LocalizableTextFormatter objects, which are
sent to clients as the result of some operation; clients format the objects at the
appropriate time. Less typically, clients can create LocalizableTextFormatter
objects locally. To create a LocalizableTextFormatter object, applications use
one of the constructors in the LocalizableTextFormatter class:
v LocalizableTextFormatter()
v LocalizableTextFormatter(String resourceBundleName, String patternKey,

String appName)
v LocalizableTextFormatter(String resourceBundleName, String patternKey,

String appName, Object[] args)

The LocalizableTextFormatter object must have values set for the name of the
resource bundle, the key, the name of the formatting application, and for any
optional values so the object can be formatted. The LocalizableTextFormatter
object can be created and the values set in one step by using the constructor
that takes the necessary arguments, or the object can be created and the
values set in separate steps. Values are set by using methods on the

178 WebSphere: Writing Enterprise Beans in WebSphere

LocalizableTextFormatter object; for setting the values manually, rather than
by using a constructor, use these methods:
v setResourceBundleName(String resourceBundleName)
v setPatternKey(String patternKey)
v setApplicationName(String appName)
v setArguments(Object[] args)

Note: When values in the array of optional arguments are set within a
LocalizableTextFormatter object, they are copied into the object, not
referenced. If an array variable holding a value is changed after the
value has been copied into the LocalizableTextFormatter object, the
value in the LocalizableTextFormatter object will not reflect the change
unless it is also reset.

A LocalizableTextFormatter object also has methods that can be used to set
values that cannot be set when the object is created, for example:
v To toggle the cache setting for the LocalizableTextFormatter object, use the

setCacheSetting(boolean setting) method (See “Caching messages” on
page 177 for more information.)

v To clear the cache, use the clearLocalizableTextFormatter method
v To set fallback values, use these methods:

– setFallBackString
– setFallBackLocale
– setFallBackTimeZone

(See “Fallback information” on page 177 for more information.)

Each of these set methods also has a corresponding get method for retrieving
the value. The clearLocalizableTextFormatter method unsets all values,
returning the LocalizableTextFormatter object to a blank state. After clearing
the object, reuse the object by setting new values and calling the format
method again.

Figure 94 on page 180 creates a LocalizableTextFormatter object by using the
default constructor and uses methods on the new object to set values for the
key, name of the resource bundle, name of the formatting application, and
fallback string on the object.

Chapter 9. WebSphere Programming Model Extensions 179

Setting localization values
The application requesting a localized message can specify the locale and time
zone for which the message is to be formatted, or the application can use the
default values set for the JVM. For example, a graphical user interface can
allow users to select the language in which to display the menus. A default
value must be set, either in the environment or programmatically, so the
menus can be generated when the application first starts, but users can then
change the menu language to suit their needs. Figure 95 on page 181
illustrates how to change the locale used by the application based on the
selection of a menu item.

import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;
public void drawAccountNumberGUI(String accountType) {

...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
ltf.setPatternKey("accountNumber");
ltf.setResourceBundleName("BankingSample.BankingResources");
ltf.setApplicationName("BankingSample");
ltf.setFallBackString("Enter account number: ");
...

}

Figure 94. Code example: Creating a LocalizableTextFormatter object and setting values on it

180 WebSphere: Writing Enterprise Beans in WebSphere

When an application calls a format method, it can specify no arguments,
which causes the message to be formatted using the JVM’s default values for
locale and time zone, or a combination of locale and time zone can be
specified to override the JVM’s defaults. (See “Generating the localized text”
for more information on the arguments to the format methods.)

Generating the localized text
After the LocalizableTextFormatter object has been created and the
appropriate values set, the object can be formatted to generate the string
appropriate to the locale and time zone. The format methods in the
LocalizableTextFormatter class perform the work necessary to generate a
string from a set of message keys and resource bundles, based on locale and
time zone. The LocalizableTextFormatter class provides four format methods.
Each format method returns the formatted message string. The methods take
a combination of java.util.Locale and java.util.TimeZone objects and throw
LocalizableException objects:
v String format();
v String format(locale);
v String format(timeZone);
v String format(locale, timeZone);

The format method with no arguments uses the locale and time-zone values
set as defaults for the JVM. The other format methods can be used to override
either or both of these values.

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
...
import java.util.Locale;
public void actionPerformed(ActionEvent event) {

String action = event.getActionCommand();
...
if (action.equals("en_us")) {

applicationLocale = new Locale("en", "US");
...

}
else if (action.equals("de_de")) {

applicationLocale = new Locale("de", "DE");
...

}
else if (action.equals("fr_fr")) {

applicationLocale = new Locale("fr", "FR");
...

}
...

}

Figure 95. Code example: Setting the locale programmatically

Chapter 9. WebSphere Programming Model Extensions 181

Figure 96 shows the creation of a localized string for the
LocalizableTextFormatter object created in Figure 94 on page 180; formatting is
based on the locale set in Figure 95 on page 181. If the formatting fails, the
application retrieves and uses the fallback string instead of the localized
string.

Using optional arguments
The localizable-text package allows users to specify an array of optional
arguments in a LocalizableTextFormatter object. These optional arguments can
greatly enhance the kinds of localization done in WebSphere applications. This
section describes two ways in which applications can use the optional
arguments:
v To assemble and format complex strings with variable substrings
v To customize the formatting of strings, taking variables other than locale

and time zone into account

Assembling complex strings
All of the keys discussed so far have represented flat strings; during
localization, a string in the appropriate language is substituted for the key.
The localizable-text package also supports substitution into the strings, which
can include variables as placeholders. For example, an application that needs
to report that an operation on a specified account was successful must
provide a string like ″The operation on account number was successful″; the
variable number is to be replaced by the actual account number. Without
support for creating strings with variable pieces, each possible string would
need its own key, or the strings would have to be built phrase by phrase.

import com.ibm.websphere.i18n.localizabletext.LocalizableException;
import com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;
import java.util.Locale;
public void drawAccountNumberGUI(String accountType) {

...
LocalizableTextFormatter ltf = new LocalizableTextFormatter();
ltf.setPatternKey("accountNumber");
ltf.setResourceBundleName("BankingSample.BankingResources");
ltf.setApplicationName("BankingSample");
ltf.setFallBackString("Enter account number: ");
try {

msg = new Label (ltf.format(this.applicationLocale) , Label.CENTER);
}
catch (LocalizableException le) {

msg = new Label(ltf.getFallBackString(), Label.CENTER);
}
...

}

Figure 96. Code example: Formatting a LocalizableTextFormatter object

182 WebSphere: Writing Enterprise Beans in WebSphere

Both of these approaches quickly become intractable if a variable can take
many values or if a string has several variable components. Instead, the
localizable text package supports substitution of variables in strings with
optional arguments. A string in a message catalog uses integers in braces—for
example, {0} or {1}—to represent variable components. Figure 97 shows an
example from an English message catalog for a string with a single variable
substitution. (The same key in message catalogs for other languages has a
translation of this string with the variable in the appropriate location for the
language.)

The values that are substituted into the string come from an array of optional
arguments. One of the constructors for LocalizableTextFormatter objects takes
an array of objects as an argument, and such an array of objects can be set
within any LocalizableTextFormatter object. The array is used to hold values
for variable parts of a string. When a format method is called on the object,
the array is passed to the format method, which takes an element of the array
and substitutes it into a placeholder with the matching index in the string.
The value at index 0 in the array replaces the {0} variable in the string, the
value at index 1 replaces {1}, and so forth.

Figure 98 on page 184 shows the creation of a single-element argument array
and the creation and use of a LocalizableTextFormatter. The element in the
argument array is the account number entered by the user. The
LocalizableTextFormatter is created by using a constructor that takes the array
of optional arguments; this can also be set directly by using the setArguments
method on the LocalizableTextFormatter object. Later in the code, the
application calls the format method. The format method automatically
substitutes values from the array of arguments into the string returned from
the appropriate message catalog.

successfulTransaction = The operation on account {0} was successful.

Figure 97. A message-catalog entry with a variable substring

Chapter 9. WebSphere Programming Model Extensions 183

Nesting LocalizableTextFormatter objects: The ability to substitute variables
into the strings in message catalogs adds a level of flexibility to the
localizable-text package, but the additional flexibility is limited, at least in an
international environment, unless the substituted arguments themselves can
be localized. For example, if an application needs to report that an operation
on a specific account was successful, a string like ″The operation on account
number was successful″—where the only variable is an account number—can
be translated and used in message catalogs for multiple languages. A string in
which a variable is also a string, for example, ″The type operation on account
number was successful″—where the new type variable takes values like
″deposit″ and ″withdrawal″—cannot be as easily translated. The values
assumed by the type variable also need to be localized.

Figure 99 shows a message string in an English catalog with two variables,
one of which will be localized, and the keys for two possible values. (The
second variable in the string, the account number, is simply a number that
must be substituted into the string; it does not need to be localized.)

To support localization of substrings, the localizable-text package allows the
nesting of LocalizableTextFormatter objects. This is done simply by inserting a
LocalizableTextFormatter object into the array of arguments for another
LocalizableTextFormatter. When the format method does the variable
substitution, it formats any LocalizableTextFormatter objects as it substitutes
array elements for variables. This allows substrings to be formatted
independently of the string in which they are embedded.

public void updateAccount(String transactionType) {
...
Object[] arg = { new String(this.accountNumber)};
...
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter("BankingResources",
"successfulTransaction",
"BankingSample",
arg);

...
successLTF.format(this.applicationLocale);
...

}

Figure 98. Code example: Formatting a message with a variable substring

sucessfulTransaction = The {0} operation on account {1} was successful.
depositOpString = deposit
withdrawOpString = withdrawal

Figure 99. A message-catalog entry with two variable substrings

184 WebSphere: Writing Enterprise Beans in WebSphere

Figure 100 modifies the example in Figure 98 on page 184 to format a message
with a localizable substring. First, a LocalizableTextFormatter object for the
localizable substring (referring to a deposit operation) is created. This object is
inserted, along with the account-number information, into the array of
arguments. The array of arguments is then used in constructing the
LocalizableTextFormatter object for the complete string; when the format
method is called, the embedded LocalizableTextFormatter object is formatted
to replace the first variable, and the account number is substituted for the
second variable.

Customizing the behavior of a format method
The array of optional arguments can contain simple values, like an account
number to be substituted into a formatted string, and other
LocalizableTextFormatter objects, representing localizable substrings to be
substituted into a larger formatted string. These techniques are described in
“Assembling complex strings” on page 182. In addition, the optional-argument
array can contain objects of user-defined classes.

User-defined classes used as optional arguments provide application-specific
format methods, which programmers can use to perform localization on the
basis of any number of values, not just locale and time zone. These
user-defined classes need to be available only on the systems where they are
constructed and inserted into LocalizableTextFormatter objects and where the
actual formatting is done; client applications do not need to install these
classes.

The localizable-text package provides an example of such a user-defined class
in the LocalizableTextDateTimeArgument class. This class allows date and
time information to be selectively formatted according to the style values

public void updateAccount(String transactionType) {
...
// Successful Deposit.
LocalizableTextFormatter opLTF =

new LocalizableTextFormatter("BankingResources,
"depositOpString", "BankingSample");

Object[] args = {opLTF, new String(this.accountNumber)};
LocalizableTextFormatter successLTF =

new LocalizableTextFormatter("BankingResources",
"successfulTransaction",
"BankingSample",
args);

...
successLTF.format(this.applicationLocale);
...

}

Figure 100. Code example: Formatting a message with a localizable variable substring

Chapter 9. WebSphere Programming Model Extensions 185

defined in the java.text.DateFormat class and according to the constants
defined by the LocalizableTextDateTimeArgument class.

The DateFormat styles determine how information is reported about a date.
For example, when the DateFormat.FULL style is chosen, the twenty-second
day of February in 2000 is represented in English as Tuesday, February 22, 2000.
When the DateFormat.SHORT style is used, the same date is represented as
2/22/00. The valid values are:
v DateFormat.FULL
v DateFormat.LONG
v DateFormat.MEDIUM
v DateFormat.SHORT
v DateFormat.DEFAULT

The LocalizableTextDateTimeArgument class defines constants that can be
used to request only date or time information, or both, either in date-time
order or in time-date order. The defined values are:
v LocalizableTextDateTimeArgument.TIME
v LocalizableTextDateTimeArgument.DATE
v LocalizableTextDateTimeArgument.TIMEANDDATE
v LocalizableTextDateTimeArgument.DATEANDTIME

An object of a user-defined class like the LocalizableTextDateTimeArgument
class can be set in the optional-argument array of a LocalizableTextFormatter
object, and when the LocalizableTextFormatter object attempts to format the
user-defined object, it calls the format method on that object. That format
method, written by the application developer, can do whatever is appropriate
with the application-specific values. In the case of the
LocalizableTextDateTimeArgument class, the format method determines if
date, time, or both are required, formats them according to the DateFormat
value, and assembles them in the order requested in the
LocalizableTextDateTimeArgument style. The date and time information are
also affected by the locale and time-zone values, but the refinements in the
formatting are accomplished by the DateFormat class and the user-defined
values.

The string assembled from a user-defined class like the
LocalizableTextDateTimeArgument class can then be substituted into a larger
string, just as the return values of nested LocalizableTextFormatter objects can
be. When writing such user-defined classes, it is helpful to think of them as
specialized versions of the generic LocalizableTextFormatter class, and the
way in which the LocalizableTextFormatter class is written provides a model
for writing user-defined classes.

186 WebSphere: Writing Enterprise Beans in WebSphere

Structure of the LocalizableTextFormatter class: The
LocalizableTextFormatter class is a general-purpose class for localizable text. It
extends the java.lang.Object class and implements the java.io.Serializable
interface and four localizable-text interfaces:
v LocalizableTextLTZ
v LocalizableTextL
v LocalizableTextTZ
v LocalizableText

Each of the localizable-text interfaces implemented by the
LocalizableTextFormatter class implements the Localizable interface (which
simply extends the Serializable interface) and defines a single format method:
v The LocalizableTextLTZ interface defines format(locale, timezone).
v The LocalizableTextL defines format(locale).
v The LocalizableTextTZ defines format(timezone).
v The LocalizableText defines format().

Because the LocalizableTextFormatter class implements all four of these
interfaces, it must provide an implementation for each of these format
methods.

Writing a user-defined class: A user-defined class must implement at least
one of the localizable-text interfaces and its corresponding format method, as
well as the Serializable interface. If the class implements more than one of the
localizable-text interfaces and format methods, the order of evaluation of the
interfaces is:
1. LocalizableTextLTZ
2. LocalizableTextL
3. LocalizableTextTZ
4. LocalizableText

For example, the LocalizableTextDateTimeArgument class implements only
the LocalizableTextLTZ interface, as shown in Figure 101 on page 188.

Chapter 9. WebSphere Programming Model Extensions 187

A user-defined class must contain a constructor and an implementation of the
format methods as defined in the localizable-text interfaces that the class
implements. It can also contain other methods as needed. The
LocalizableTextDateTimeArgument class contains a constructor, a single
format method, an equality method, a hash-code generator, and a
string-conversion method.

package com.ibm.websphere.i18n.localizabletext;
import java.util.Locale;
import java.util.Date;
import java.text.DateFormat;
import java.util.TimeZone;
import java.io.Serializable;
public class LocalizableTextDateTimeArgument implements LocalizableTextLTZ,

Serializable
{

...
}

Figure 101. Code example: The structure of the LocalizableTextDateTimeArgument class

...
public class LocalizableTextDateTimeArgument implements LocalizableTextLTZ,

Serializable
{

public final static int DATE = 1;
public final static int TIME = 2;
public final static int DATEANDTIME = 3;
public final static int TIMEANDDATE = 4;
private Date date = null;
private dateTimeStyle = LocalizableTextDateTimeArgument.DATE;
private int dateFormatStyle = DateFormat.FULL;
...
public LocalizableTextDateTimeArgument(Date date, int dateTimeStyle,

int dateFormatStyle)
{ ... }
public boolean equals(Object param)
{ ... }
public format (Locale locale, TimeZone timeZone)

throws IllegalArgumentException
{ ... }

public int hashCode()
{ ... }

public String toString()
{ ... }

}

Figure 102. Code example: The methods in the LocalizableTextDateTimeArgument class

188 WebSphere: Writing Enterprise Beans in WebSphere

Each format method in the user-defined class can do whatever is appropriate
for the application. In the LocalizableTextDateTimeArgument class, the format
method (see Figure 103 on page 190 for the implementation) examines the
setting of the date-time style set within the object, for example,
DATEANDTIME. It then assembles the requested information in the requested
order, according to the date-format value.

Chapter 9. WebSphere Programming Model Extensions 189

An application can create a LocalizableTextDateTimeArgument object (or an
object of any other user-defined class) and place it in the optional-argument
array of a LocalizableTextFormatter object. When the LocalizableTextFormatter
object reaches the user-defined object, it will attempt to format it by calling

public format (Locale locale, TimeZone timeZone)
throws IllegalArgumentException

{
String returnString = null;

switch(dateTimeStyle) {
case LocalizableTextDateTimeArgument.DATE :
{

returnString = DateFormat.getDateInstance(dateFormatStyle,
locale).format(date);

break;
}
case LocalizableTextDateTimeArgument.TIME :
{

df = DateFormat.getTimeInstance(dateFormatStyle, locale);
df.setTimeZone(timeZone);
returnString = df.format(date);
break;

}
case LocalizableTextDateTimeArgument.DATEANDTIME :
{

dateString = DateFormat.getDateInstance(dateFormatStyle,
locale).format(date);

df = DateFormat.getTimeInstance(dateFormatStyle, locale);
df.setTimeZone(timeZone);
timeString = df.format(date);
returnString = dateString + " " + timeString;
break;

}
case LocalizableTextDateTimeArgument.TIMEANDDATE :
{

dateString = DateFormat.getDateInstance(dateFormatStyle,
locale).format(date);

df = DateFormat.getTimeInstance(dateFormatStyle, locale);
df.setTimeZone(timeZone);
returnString = timeString + " " + dateString;
break;

}
default :
{

throw new IllegalArgumentException();
}

}
return returnString;

}

Figure 103. Code example: The format method in the LocalizableTextDateTimeArgument class

190 WebSphere: Writing Enterprise Beans in WebSphere

the object’s format method. The returned string is then substituted for a
variable as the LocalizableTextFormatter processes each element in the array
of optional arguments.

Deploying the formatter enterprise bean
The LocalizableTextEJBDeploy tool is used by the application deployer to
create a deployed LocalizableText JAR file for the LocalizableText service. You
must deploy the enterprise bean for each server per application where the
service is to be run. There may be servers for which the LocalizableText
service does not need to be installed. The same deployed JAR file can be
included in several application Enterprise Archive (EAR) files, but additional
steps are required when the EAR file is deployed. The application deployer
must also make sure that the application resource bundles are added to the
application EAR file as files. The server’s CLASSPATH variable must be
adjusted to include the deployed location of the EAR file. This is so that the
resource bundles can be located on the host and server.

Setting up the tool
Before the LocalizableTextEJBDeploy tool can be used, the following
conditions must be met:
v A JAR file called ltext.jar must exist in the lib directory under the

WebSphere installation directory.
v A working directory has to exist for the tool to use. The location is passed

to the tool.

Using the LocalizableTextEJBDeploy Tool
After the prerequisites for the tool have been met, the tool can be used to
deploy formatting session beans. The tool requires values for five arguments:
LocalizableTextEJBDeploy -a <appName>

-h <hostName>
-i <installationDir>
-s <serverName>
-w <workingDir>

The required arguments, which can be specified in any order, follow:
v appName: The name of the formatting session bean. This name is used in

LocalizableTextFormatter objects to specify where the actual formatting
takes place. If a LocalizableTextFormatter object specifies a name that
cannot be resolved, an exception is thrown by the format method.

v hostName: The name of the machine on which the formatting session bean
is deployed. This value specified here is case sensitive on all platforms.

v installationDir: The location at which WebSphere Application Server is
installed on the machine.

v serverName: The name of the WebSphere Application Server. If this
argument is not specified, the value Default Server is used.

Chapter 9. WebSphere Programming Model Extensions 191

v workingDir: The name of the working directory for the tool to use.

After the tool is run, a deployed JAR file is located in the working directory
specified to the tool. This JAR file can be included in the application EAR or
WAR file.

Special considerations when deploying a LocalizableText enterprise bean:
When the application is being deployed onto a host and server, during the
deployment process you will be asked if you want to regenerate the
deployment code for the LocalizableText enterprise bean. Do not redeploy the
bean. If the bean is redeployed, the JNDI name will be wrong.

If more than one LocalizableText enterprise bean is deployed with an
application, there are two ways to handle the situation.
v Run the LocalizableTextEJBDeploy tool for each host/server combination.

The tool generates a unique JNDI name for each enterprise bean.
Otherwise, even though the bean has been deployed on multiple hosts and
servers, the JNDI name is not changed, and there is only one entry in the
naming service.

v During the deployment of the application, change the JNDI name for the
localizable-text bean should begin with
com/ibm/websphere/i18n/localizabletext/homes/. This should be followed
by the application and host names, the server name, and by the string
LocalizableTextEJBHome, all separated by two underscores, as follows:
<AppName>/<HostName>__<ServerName> __LocalizableTextEJBHome

192 WebSphere: Writing Enterprise Beans in WebSphere

Appendix A. Changes for version 1.1 of the EJB
specification

WebSphere Application Server supports version 1.1 of the EJB specification.
This appendix describes features that are new or have changed in version 1.1
and discusses migration issues for enterprise beans written to version 1.0 of
the EJB specification.

New and updated features

The following enterprise bean features are new or have changed for version
1.1.
v Environmental dependencies for enterprise beans are now specified using

entries in a JNDI naming context. An instance of an enterprise bean creates
a javax.naming.InitialContext object by invoking the constructor with no
arguments specified. It looks up the environment naming context by using
the InitialContext object under the name java:comp/env.

v Primary keys are handled differently in version 1.1 of the EJB specification.
Entity bean providers are not required to specify the primary key class for
entity beans with container-managed persistence (CMP), enabling the
deployer to select the primary key fields when the bean is deployed into a
container.

v The deployment descriptor has enhanced support for application assembly.

Migrating from version 1.0 to version 1.1

From the client’s perspective, enterprise beans written to version 1.1 of the
EJB specification appear nearly identical to enterprise beans written to version
1.0 of the specification. However, the following EJB 1.1 changes do affect
clients:
v Enterprise beans written to version 1.1 of the EJB specification are

registered in a different part of the JNDI namespace. For example, a client
can look up the initial context of a version 1.0 enterprise bean in JNDI by
using the initialContext.lookup method as follows:
initialContext.lookup("com/ibm/Hello")

The JNDI lookup for the equivalent version 1.1 enterprise bean is:
initialContext.lookup("java:comp/env/ejb/Hello")

v The UserTransaction object is obtained differently for enterprise beans
written to version 1.1 of the EJB specification. Under version 1.0, it was
obtained as:

© Copyright IBM Corp. 1999, 2001 193

initialContext.lookup("jta/UserTransaction")

Under version 1.1, it is obtained as:
initialContext.lookup("java:comp/UserTransaction")

v Because entity beans written to version 1.1 of the EJB specification now
support primitive primary keys (instead of having to encapsulate them in a
primary key class), the client needs to look up these primitive keys directly.
For example, a client can look up a primitive key of the type
java.lang.Integer as follows:
accountHome.findByPrimaryKey(new Integer(5))

Primary key classes are still supported, although their use for primitive
data types is deprecated.

From the application developer’s perspective, the following changes need to
be made to make enterprise beans written to version 1.0 of the EJB
specification compatible with version 1.1 of the specification.
v All deployment descriptors must be converted to the XML format specified

in version 1.1 of the EJB specification.
v In general, enterprise beans written to version 1.0 of the EJB specification

are compatible with version 1.1. However, you need to modify or recompile
enterprise bean code in the following cases:
– The return value of the ejbCreate method must be modified for all entity

beans with CMP. The ejbCreate method is now required to return the
same type as the primary key; the actual value returned must be null.
These beans also must be recompiled. For more information, see
“Implementing the ejbCreate and ejbPostCreate methods” on page 39

– If the javax.jts.UserTransaction interface is used. This interface has been
renamed to javax.transaction.UserTransaction. Enterprise beans that use
this interface must be modified to use the new interface name. There
have also been minor changes to the exceptions thrown by this interface.

– If the getCallerIdentity or isCallerInRole methods of the
javax.ejb.EJBContext interface are used. These methods were deprecated
because the javax.security.Identity class is deprecated under the Java 2
platform.

– If an entity bean uses the UserTransaction interface, which is not
permitted under version 1.1 of the EJB specification.

– If an entity bean whose finder methods do not define the
FinderException in the methods’ throws classes. Under version 1.1, the
finder methods of entity beans must define this exception.

194 WebSphere: Writing Enterprise Beans in WebSphere

– If an entity bean uses the UserTransaction interface and implements the
SessionSynchronization interface. Entity beans can neither use the
UserTransaction interface nor implement the SessionSynchronization
interface under version 1.1.

– If a stateless session bean implements the SessionSynchronization
interface. Stateless session beans should not implement the
SessionSynchronization interface under version 1.1.

– If an enterprise bean violates any of the new semantic restrictions
defined in version 1.1 of the EJB specification.

– Throwing the javax.ejb.RemoteException exception from the bean
implementations is deprecated in version 1.1. This exception should be
replaced by the javax.ejb.EJBException or a more specific exception such
as the javax.ejb.CreateException. The javax.ejb.EJBException inherits from
the javax.ejb.RuntimeException and does not need to be explicitly
declared in throws clauses.
Declare the javax.ejb.RemoteException exception in the remote and home
interfaces, as required by RMI. Throwing this exception directly by the
bean implementation is deprecated. However, it can be thrown by the
container due to a system exception or by mapping an exception thrown
by the bean implementation.

Appendix A. Changes for version 1.1 of the EJB specification 195

196 WebSphere: Writing Enterprise Beans in WebSphere

Appendix B. Example code provided with WebSphere
Application Server

This appendix contains information on the example code provided with the
WebSphere Application Server.

Information about the examples described in the documentation

The example code discussed throughout this document is taken from a set of
examples provided with the product. This set of examples is composed of the
following main components:
v The Account entity bean, which models either a checking or savings bank

account and maintains the balance in each account. An account ID is used
to uniquely identify each instance of the bean class and to act as the
primary key. The persistent data in this bean is container managed and
consists of the following variables:
– accountId—The account ID that uniquely identifies the account. This

variable is of type long.
– type—An integer that identifies the account as either a savings account

(1) or a checking account (2). This variable is of type int.
– balance—The current balance of the account. This variable is of type float.

The major components of this bean are discussed in “Developing entity
beans with CMP” on page 33.

v The AccountBM entity bean, which is nearly identical to the Account entity
bean; however, the AccountBM bean implements bean-managed persistence.
This bean is not used by any other enterprise bean, application, or servlet
contained in the documentation example set. The major components of this
bean are discussed in “Developing entity beans with BMP” on page 103.

v The Transfer session bean, which models a funds transfer session that
involves moving a specified amount between two instances of an Account
bean. The bean contains two methods: the transferFunds method transfers
funds between two accounts, the getBalance method retrieves the balance
for a specified account. The bean is stateless. The major components of this
bean are discussed in “Developing session beans” on page 50.

v The CreateAccount servlet, which can be used to easily create new bank
accounts (and corresponding Account bean instances) with the specified
account ID, account type, and initial balance. Although this servlet is
designed to make it easy for you to create accounts and demonstrate the
other components in the example set, it also illustrates servlet interaction

© Copyright IBM Corp. 1999, 2001 197

with an entity bean. This servlet is discussed in “Chapter 7. Developing
servlets that use enterprise beans” on page 91.

v The TransferApplication Java application, which provides a graphical user
interface that was built with the abstract windowing toolkit (AWT). The
application creates an instance of the Transfer session bean, which is then
manipulated to transfer funds between two selected accounts or to get the
balance for a specified account. The TransferApplication code implements
many of the requirements for using enterprise beans in an EJB client. The
parts of this application that are relevant to interacting with an enterprise
bean are discussed in “Chapter 6. Developing EJB clients” on page 77.

v The TransferFunds servlet, which is a servlet version of the
TransferApplication Java application. This servlet is provided so that you
can compare the use of enterprise beans between a Java application and a
Java servlet that basically are doing the same tasks. This document does not
discuss this servlet in any detail.

Note: The example code in the documentation was written to be as simple as
possible. The goal of these examples is to provide code that teaches the
fundamental concepts of enterprise bean and EJB client development. It
is not meant to provide an example of how a bank (or any similar
company) possibly approaches the creation of a banking application.
For example, the Account bean contains a balance variable that has a
type of float. In a real banking application, you must not use a float
type to keep records of money; however, using a class like
java.math.BigDecimal or a currency-handling class within the examples
would complicate them unnecessarily. Remember this as you examine
these examples.

Information about other examples

Table 3 provides a summary of the enterprise bean-specific examples provided
with the EJB server

Table 3. Examples available with the EJB server

Name Bean types EJB client types Additional information

Hello Stateless session Java servlet Very simple example of a
session bean.

Increment CMP entity Java servlet Very simple example of an
entity bean.

198 WebSphere: Writing Enterprise Beans in WebSphere

Appendix C. Extensions to the EJB Specification

This appendix briefly discusses functional extensions to the EJB Specification
that are available in the EJB server environments contained in WebSphere
Application Server. These extensions are specific to WebSphere Application
Server and use of these features is supported only with VisualAge for Java,
Enterprise Edition. For information on implementing these features, consult
your VisualAge for Java documentation.

Access beans

Access beans are Java components that adhere to the Sun Microsystems
JavaBeans™ Specification and are meant to simplify development of EJB
clients. An access bean adapts an enterprise bean to the JavaBeans
programming model by hiding the home and remote interfaces from the
access bean user (that is, an EJB client developer).

There are three types of access beans, which are listed in ascending order of
complexity:
v Java bean wrapper—Of the three types of access beans, a Java bean

wrapper is the simplest to create. It is designed to allow either a session or
entity enterprise bean to be used like a standard Java bean and it hides the
enterprise bean home and remote interfaces from you. Each Java bean
wrapper that you create extends the com.ibm.ivj.ejb.access.AccessBean class.

v Copy helper—A copy helper access bean has all of the characteristics of a
Java bean wrapper, but it also incorporates a single copy helper object that
contains a local copy of attributes from a remote entity bean. A user
program can retrieve the entity bean attributes from the local copy helper
object that resides in the access bean, which eliminates the need to access
the attributes from the remote entity bean.

v Rowset—A rowset access bean has all of characteristics of both the Java
bean wrapper and copy helper access beans. However, instead of a single
copy helper object, it contains multiple copy helper objects. Each copy
helper object corresponds to a single enterprise bean instance.

VisualAge for Java provides a SmartGuide to assist you in creating or editing
access beans.

© Copyright IBM Corp. 1999, 2001 199

Associations between enterprise beans

In the EJB server environment, an association is a relationship that exists
between two CMP entity beans. There are three types of associations:
one-to-one and one-to-many. In a one-to-one association, a CMP entity bean is
associated with a single instance of another CMP entity bean. For example, an
Employee bean could be associated with only a single instance of a
Department bean, because an employee generally belongs only to a single
department.

In a one-to-many association, a CMP entity bean is associated with multiple
instances of another CMP entity bean. For example, a Department bean could
be associated with multiple instances of an Employee bean, because most
departments are made up of multiple employees.

The Association Editor is used to create or edit associations between CMP
entity beans in VisualAge for Java.

Inheritance in enterprise beans

In Java, inheritance is the creation of a new class from an existing class or a
new interface from an existing interface. The EJB server environment permits
two forms of inheritance: standard class inheritance and EJB inheritance. In
standard class inheritance, the home interface, remote interface, or enterprise
bean class inherits properties and methods from base classes that are not
themselves enterprise bean classes or interfaces.

In enterprise bean inheritance, by comparison, an enterprise bean inherits
properties (such as CMP fields and association ends), methods, and
method-level control descriptor attributes from another enterprise bean that
resides in the same group.

VisualAge for Java provides a SmartGuide to assist you in implementing
inheritance in enterprise beans.

200 WebSphere: Writing Enterprise Beans in WebSphere

Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 1999, 2001 201

be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

For TXSeries:
IBM Corporation
ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

202 WebSphere: Writing Enterprise Beans in WebSphere

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS
AIX
APPN
AS/400
CICS
CICS OS/2
CICS/400
CICS/6000
CICS/ESA
CICS/MVS
CICS/VSE
CICSPlex
DB2
DCE Encina Lightweight Client
DFS
Encina
IBM
IBM System Application Architecture
IMS
IMS/ESA
Language Environment
MQSeries

MVS/ESA
NetView
Open Class
OS/2
OS/390
OS/400
Parallel Sysplex
PowerPC
RACF
RAMAO
RMF
RISC System/6000
RS/6000
S/390
SAA
SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Notices 203

Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.
Copyright 1995, 1996 Groupe Bull
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 Ing. C. Olivetti &C.Sp
Copyright 1997 International Computers Limited
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1995, 1996 Itasca Systems, Inc.
Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited
Copyright 1995, 1996 Novell USG
Copyright 1995, 1996 02 Technolgies
Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.
Copyright 1995, 1996 Oracle Corporation
Copyright 1995, 1996 Persistence Software

204 WebSphere: Writing Enterprise Beans in WebSphere

Copyright 1995, 1996 Servio, Corp.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1996 Taligent, Inc.
Copyright 1995, 1996 Tandem Computers, Inc.
Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.
Copyright 1995, 1996 Transarc Corporation
Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.
Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

This software contains RSA encryption code.

TM

®

�

Java Compatible
Enterprise Edition

®

™

Other company, product, and service names may be trademarks or service
marks of others.

Notices 205

206 WebSphere: Writing Enterprise Beans in WebSphere

Index

A
ACID properties 6
administering

WebSphere Application
Server 11

workload management service 5
afterBegin method 24
afterCompletion method 24
Application Assembly Tool 28, 30
atomicity 6
authentication 3
authorization 4

B
bean class

entity beans (BMP) 14, 104
entity beans (CMP) 14, 34
session beans 15
variables (entity with BMP) 105
variables (entity with CMP) 35

bean-managed persistence 5, 15,
103

beforeCompletion method 24
business methods

entity beans (BMP) 107
entity beans (CMP) 36
session beans 53

C
CDS (DCE) 6
CICS 9
CLASSPATH environment variable

EJB server 29
clearLocalizableTextFormatter

method 179
com.ibm.websphere.i18n.localizabletext

package 174, 175
Command interface 141, 144, 151
CommandException class 144, 160
commands 140

Command interface 141, 144,
151

CommandException class 144,
160

CommandTarget interface 143,
159, 160, 166, 167

CompensableCommand
interface 141, 145, 152

DistributedException class 144

commands (continued)
exception classes 144
execute method 144
executeCommand method 159,

160, 166, 167
getCommandTarget

method 145, 161, 164
getCommandTargetName

method 145, 161
getCompensatingCommand

method 145, 152
getTargetPolicy method 164
hasOutputProperties

method 145, 160
isReadyToCallExecute

method 144, 151
listMappings method 162
LocalTarget class 162
performExecute method 145,

151, 160, 169
registerCommand method 162,

164
reset method 144, 151
setCommandTarget method 145,

161
setCommandTargetName

method 145, 161
setDefaultTargetName

method 162, 163
setHasOutputProperties

method 145
setOutputProperties

method 145, 147, 151
setTargetPolicy method 164
target 143, 159, 161, 166, 167,

169
target (enterprise bean) 159
target (servlet) 166, 167, 169
target policy 143, 144, 161, 162,

163, 164, 165
TargetableCommand

interface 141, 142, 143, 145,
147, 151, 161, 167

TargetableCommandImpl
class 142, 147, 148, 164

TargetPolicy interface 144, 162,
164

TargetPolicyDefault class 144,
162

commands (continued)
UnauthorizedAccessException

class 144
unregisterCommand

method 162, 164
UnsetInputPropertiesException

class 144
user-defined exception

classes 144
CommandTarget interface 143, 159,

160, 166, 167
committing

transactions 7, 88, 124
CompensableCommand

interface 141, 145, 152
components

EJB server 1
entity beans 14
entity beans (BMP) 103
entity beans (CMP) 33
session beans 15, 51

connection manager 120
connections (database)

allocating 121
deallocating 122
entity beans (BMP) 119
managing in EJB server 120

consistency 6
container-managed persistence 5,

15, 33
coordinators 8
create method

entity beans 26
entity beans (BMP) 107, 114, 115
entity beans (CMP) 39, 43, 44
session beans 23, 56, 62, 63

CreateException class 38, 40, 44, 63,
108, 115

creating
deployment descriptors 30
EJB home objects in EJB

clients 82
EJB modules 30, 67
EJB objects in EJB clients 79
enterprise beans in servlets 95,

98
creation state

entity beans 25
session beans 23

© Copyright IBM Corp. 1999, 2001 207

Current interface (CORBA) 74

D
data sources 9
databases 9

allocating connections 121
deallocating connections 122
EJB object references 120
EJB server 31
getting connections 119
manipulating data 123

DataSource interface 120, 122
DB2 database 9
DCE CDS 6
deploying

enterprise beans 19, 27, 28, 66
deployment descriptors 17

creating 30
entity bean attributes 17
environment variable

attributes 56, 58
security attributes 17, 69, 74
session bean attributes 17
transaction attributes 17, 69, 70,

72
destroy method (servlets) 91
developing

EJB applications 20
EJB clients 77, 91
enterprise beans 27, 28, 33
entity beans (BMP) 103
entity beans (CMP) 33
servlets with enterprise

beans 91
session beans 50, 51

distributed exceptions 129
DistributedException class 130
DistributedExceptionEnabled

interface 130, 132
DistributedExceptionInfo

class 130, 133
ExceptionInstantiationException

class 130
getException method 131, 132
getExceptionInfo method 131,

132
getMessage method 131, 132
getOriginalException

method 131, 132
getPreviousException

method 131, 132
localization 132
printStackTrace method 131, 132
printSuperStackTrace

method 132

distributed exceptions (continued)
user-defined 133, 134, 135, 136,

139
distributed transactions 7
DistributedException class 130, 144
DistributedExceptionEnabled

interface 130, 132
DistributedExceptionInfo class 130,

133
DNS 6
doGet method (servlets) 91, 97, 98,

99, 100
doPost method (servlets) 91
DuplicateKeyException 38
DuplicateKeyException class 40,

108
durability 6

E
EJB applications

developing 20
examples 21

EJB clients 9
creating EJB object home

objects 82
creating EJB objects 79
developing 77, 91
managing transactions 86
naming and communications 9
removing EJB objects 86
required Java packages 78
security 9
threads 9
transactions 9

EJB home class 14, 15, 19, 43
EJB home objects 15, 19, 114

creating in EJB clients 82
EJB JAR files 17
EJB modules 17

creating 30, 67
deployment descriptors 17

EJB object class 14, 15, 19, 63
EJB objects 15, 19

creating in EJB clients 79
invalid 84
references to databases 120
removing in EJB clients 86

EJB server 2
CLASSPATH environment

variable 29
components 1
databases 31
example code 198
finder helper interface 30

EJB server (continued)
managing database

connections 120
prerequisite software 28
services 2
tools 2, 27, 28

ejbActivate method
entity beans 26
entity beans (BMP) 112
entity beans (CMP) 41
session beans 24, 61

ejbCreate method
entity beans 26
entity beans (BMP) 104, 107,

114, 115
entity beans (CMP) 34, 39, 43,

44
session beans 23, 51, 52, 56, 62,

63
EJBException class 38, 40, 41, 51,

54, 56
ejbFindByPrimaryKey method

entity beans (BMP) 109
entity beans (CMP) 45
primary key 45

EJBHome interface 43, 62, 65, 114
ejbLoad method 26

entity beans (BMP) 112
entity beans (CMP) 41

EJBObject interface 46, 64, 65, 117
ejbPassivate method

entity beans 26
entity beans (BMP) 112
entity beans (CMP) 41
session beans 24, 61

ejbPostCreate method 26
entity beans (BMP) 104, 107,

114, 115
entity beans (CMP) 34, 39, 43,

44
ejbRemove method

entity beans (BMP) 112
entity beans (CMP) 41
session beans 25, 61

ejbStore method 26
entity beans (BMP) 112
entity beans (CMP) 41

enterprise beans 13
creating in servlets 95, 98
deploying 19, 27, 28, 66
developing 27, 28, 33
EJB module 17
life cycle 23
managing transactions 124

208 WebSphere: Writing Enterprise Beans in WebSphere

enterprise beans (continued)
obtaining variable values 106,

120
packages (Java) 67
packaging 17
reentrancy 66
threads 66
using in servlets 91, 93

entity beans 13
bean class (BMP) 104
bean class (CMP) 34
business methods (BMP) 107
business methods (CMP) 36
components 14
components (BMP) 103
components (CMP) 33
creation state 25
deployment descriptor

attributes 17
developing (BMP) 103
developing (CMP) 33
home interface (BMP) 114
home interface (CMP) 43
instance variables (BMP) 105
instance variables (CMP) 35
life cycle 25
pooled state 25
primary key class (BMP) 118
primary key class (CMP) 47
ready state 26
remote interface (BMP) 117
remote interface (CMP) 46
removal state 26

EntityBean interface 34, 41, 104, 112
Enumeration interface 45, 116
environment 60
environment naming context 60
environment variables

deployment descriptor
attributes 56, 58

ephemeral processes 8
equals method 48
examples

documentation code 197
EJB applications 21
provided with EJB server 198

exception classes
CommandException 144, 160
CreateException 38, 40, 44, 63,

108, 115
DistributedException 144
DuplicateKeyException 38, 40,

108
EJBException 38, 40, 41, 51, 54,

56

exception classes (continued)
ExceptionInstantiationException 130
FinderException 38, 45, 54, 109,

110, 116
NoSuchObjectException 25, 85
ObjectNotFoundException 38,

109
RemoteException 40, 41, 43, 44,

45, 46, 54, 62, 63, 64, 108, 112,
114, 115, 116, 117

RemoveException 25, 38, 41, 112
RuntimeException 51
TransactionRequiredException 70
UnauthorizedAccessException 144
UnsetInputPropertiesException 144
user-defined 37, 47, 79, 117, 133,

134, 144
ExceptionInstantiationException

class 130
exceptions

chaining 129
distributed 129

execute method 144
executeCommand method 159, 160,

166, 167

F
findByPrimaryKey method 45, 54,

116
entity beans (BMP) 114
entity beans (CMP) 43

finder helper interface 30
finder methods

entity beans (BMP) 109, 116
entity beans (CMP) 45

FinderException 38
FinderException class 45, 54, 109,

110, 116

G
getCommandTarget method 145,

161, 164
getCommandTargetName

method 145, 161
getCompensatingCommand

method 145, 152
getEJBHome method 65
getEJBMetaData method 65
getException method 131, 132
getExceptionInfo method 131, 132
getHandle method 65
getInitialContext method 56
getMessage method 131, 132
getOriginalException method 131,

132

getPreviousException method 131,
132

getPrimaryKey method 65
getTargetPolicy method 164

H
hashCode method 48
hasOutputProperties method 145,

160
home interface

entity beans (BMP) 14, 114
entity beans (CMP) 14, 43
finding with JNDI 81
session beans 15, 62

HTML
embedding servlets 91, 100

HTTP 9
HttpServlet class 93

I
IIOP 9
IMS 9
init method (servlets) 91, 95
INITIAL_CONTEXT_FACTORY

property 56, 80
InitialContext interface 56, 81
initializing

servlets 95
instance variables

entity beans with BMP 105
entity beans with CMP 35
servlets 94
session beans 52

internationalization
techniques 171

isIdentical method 65
isolation 6, 72
isReadyToCallExecute method 144,

151

J
jar command 28
java.io package 66
java.jts package 70
java.lang package 51
java.rmi package 25, 40, 41, 43, 44,

45, 46, 54, 62, 63, 64, 66, 78, 85, 108,
112, 114, 115, 116, 117

java.sql package 119, 123
java.text.MessageFormat class 174,

175
java.util.Locale class 174
java.util package 45, 78, 116
java.util.ResourceBundle class 174
java.util.TimeZone class 174
javac command 28, 30

Index 209

javax.ejb package 25, 34, 38, 40, 41,
43, 44, 45, 46, 51, 54, 56, 61, 62, 63,
64, 65, 78, 104, 108, 109, 110, 112,
114, 115, 116, 117

javax.naming package 56, 78, 80, 81
javax.rmi.PortableRemoteObject.narrow

method 59, 83
javax.servlet.http package 93
javax.servlet package 93
javax.transaction package 8, 87, 125
JDBC 5, 119, 123
JNDI 6, 59, 80, 87

finding home interfaces 81
INITIAL_CONTEXT_FACTORY

property 80
PROVIDER_URL property 80

JSP 11, 100
JSQL 123
JTA 5, 87

L
LDAP 6
life cycle

creation state (entity) 25
creation state (session) 23
enterprise beans 23
entity beans 25
pooled state (entity) 25
pooled state (session) 24
ready state (entity) 26
ready state (session) 24
removal state (entity) 26
removal state (session) 25
session beans 23

listMappings method 162
localizable text 170

application analysis 171
application-specific

arguments 177
assembling complex strings 182
caching messages 177
customized formatting 182, 185
deploying formatter bean 191
fallback information 177
format methods 175, 176
formatting application 176
formatting details 175
Java support 174
java.text.MessageFormat

class 174, 175
java.util.Locale class 174
java.util.ResourceBundle

class 174
java.util.TimeZone class 174

localizable text (continued)
LocalizableConfiguration

class 176
LocalizableTextDateTimeArgument

class 185
LocalizableTextEJBDeploy

tool 191
LocalizableTextFormatter

class 175, 176
locating message catalogs 173,

176
message catalogs 172
naming message catalogs 173
nested formatting 184
optional arguments 182, 184,

185
rationale 170
resource bundles 172
tasks 178
techniques 171
user-defined formatting 185
variable substrings 182, 185
variable substrings

(localized) 184
WebSphere support 174, 175

LocalizableConfiguration class 176
LocalizableException class 181
LocalizableText interface 187

format method 187
user-defined

implementations 187
LocalizableTextDateTimeArgument

class 185
LocalizableTextEJBDeploy tool 191

prerequisites 191
syntax 191
usage 191

LocalizableTextFormatter class 175,
176

application-specific
arguments 177

caching messages 177
clearLocalizableTextFormatter

method 179
constructors 178
fallback information 177, 181
format methods 175, 176, 181,

187
locale 181
setApplicationName

method 177, 179
setArguments method 177, 179
setCacheSetting method 179
setFallBackLocale method 179
setFallBackString method 179

LocalizableTextFormatter class
(continued)

setFallBackTimeZone
method 179

setPatternKey method 177, 179
setResourceBundleName

method 177, 179
setting values 179, 180
time zone 181

LocalizableTextLT interface 187
format method 187
user-defined

implementations 187
LocalizableTextLTZ interface 187

format method 187
LocalizableTextDateTimeArgument

class 187
user-defined

implementations 187
LocalizableTextZ interface 187

format method 187
user-defined

implementations 187
localization 170

application analysis 171
rationale 170
techniques 171

LocalTarget class 162
lookup method 59

M
managing

database connections in EJB
server 120

transactions in EJB clients 86
transactions in enterprise

beans 124
message catalogs 172

location 173
naming 173

MQSeries 9

N
naming service 6
NoSuchObjectException class 25, 85

O
ObjectNotFoundException 38
ObjectNotFoundException class 109
Oracle database 9

P
packages (Java)

enterprise beans 67
required for EJB clients 78

210 WebSphere: Writing Enterprise Beans in WebSphere

packaging
enterprise beans 17

performExecute method 145, 151,
160, 169

persistence 15
persistence management service 5
pooled state

entity beans 25
session beans 24

prepare phase 8
PreparedStatement interface 123
primary key 14

and remove method 65
specifying at deployment 47
unknown 49

primary key class 14
entity beans (BMP) 118
entity beans (CMP) 47

principal contexts 74
printStackTrace method 131, 132
printSuperStackTrace method 132
Programming Model

Extensions 129
command package 140
distributed-exception

package 129
localizable-text package 170

PROVIDER_URL property 56, 80

R
ready state

entity beans 26
session beans 24

recoverable processes 8
reentrancy

in enterprise beans 66
refreshing

EJB objects for session beans 84
registerCommand method 162, 164
remote interface 47

entity beans (BMP) 14, 117
entity beans (CMP) 14, 46
session beans 15, 63

RemoteException class 40, 41, 43,
44, 45, 46, 54, 62, 63, 64, 66, 108,
112, 114, 115, 116, 117

removal state
entity beans 26
session beans 25

remove method 65
entity beans 26
invoking in EJB clients 86
session beans 25, 61

RemoveException 38
RemoveException class 25, 41, 112

removing
EJB objects in EJB clients 86

reset method 144, 151
resolution phase 8
resource bundles

in EJB JAR files 67
location 173
naming 173
obtaining variable values 36, 37,

80, 81, 94
ResultSet interface 123
RMI 9

valid parameters 66
rolling back

transactions 7, 88, 124
RuntimeException class 51

S
security 9

deployment descriptor
attributes 17, 69, 74

security service 3
Serializable interface 66
services

naming 6
persistence 5
security 3
transaction 6
workload management 5

servlets
compared to JSP 100
creating enterprise beans 95, 98
embedding in HTML 91, 100
initializing 95
instance variables 94
making thread safe 101
processing user input 97, 99,

100
standard methods 91
using enterprise beans 91, 93
Web server requirements 11, 91

session beans 13
components 15, 51
creation state 23
deployment descriptor

attributes 17
developing 50, 51
home interface 62
instance variables 52
life cycle 23
pooled state 24
ready state 24
remote interface 63
removal state 25
stateful 16, 52, 56, 62, 63, 124

session beans (continued)
stateless 16, 52, 56, 62, 63, 83,

124
SessionBean interface 51, 61
SessionSynchronization interface 52
setApplicationName method 177,

179
setArguments method 177, 179
setCacheSetting method 179
setCommandTarget method 145,

161
setCommandTargetName

method 145, 161
setDefaultTargetName method 162,

163
setEntityContext method 25

entity beans (BMP) 112
entity beans (CMP) 41, 43

setFallBackLocale method 179
setFallBackString method 179
setFallBackTimeZone method 179
setHasOutputProperties

method 145
setOutputProperties method 145,

147, 151
setPatternKey method 177, 179
setResourceBundleName

method 177, 179
setSessionContext method 23, 61,

62
setTargetPolicy method 164
SQL Server 9
stateful session beans 16, 52, 56, 62,

63, 124
stateless session beans 16, 52, 56,

62, 63, 83, 124
static variables (restrictions) 35, 52,

105

T
target policy 143, 161, 162, 163, 164,

165
custom 164, 165
default 143, 161, 162, 163, 164

TargetableCommand interface 141,
142, 143, 145, 147, 151, 161, 167

TargetableCommandImpl class 142,
147, 148, 164

TargetPolicy interface 144, 162, 164
TargetPolicyDefault class 144, 162
threads 9

in enterprise beans 66
in servlets 101

tools
Application Assembly Tool 28

Index 211

tools (continued)
EJB server 27, 28
VisualAge for Java 27

transaction service 6
TransactionRequiredException

class 70
transactions 6, 9

bean managed 124
committing 7, 88, 124
coordinators 8
deployment descriptor

attributes 17, 69, 70, 72
distributed 7
managing in EJB clients 86
managing in enterprise

beans 124
prepare phase 8
resolution phase 8
rolling back 7, 88, 124
two-phase commit 8

two-phase commit 8

U
UnauthorizedAccessException

class 144

unregisterCommand method 162,
164

unsetEntityContext method 26
entity beans (BMP) 112
entity beans (CMP) 41, 43

UnsetInputPropertiesException
class 144

user contexts 74
user-defined exception classes 37,

47, 79, 117, 144
distributed exceptions 133, 134,

135, 136, 139
user-defined exceptions

in EJB JAR files 67
UserTransaction interface 8, 87, 125

V
variables

bean class (entity with
BMP) 105

bean class (entity with CMP) 35
in servlets 94
obtaining values from enterprise

beans 106, 120

variables (continued)
obtaining values from resource

bundles 36, 37, 80, 81, 94
static (restrictions) 35, 52, 105

VisualAge for Java 27

W
Web servers

servlets and JSP 11, 91
WebSphere Administrative

Console 11, 28, 31
WebSphere Application Server

administering 11
example code 197

WebSphere Programming Model
Extensions 129

command package 140
distributed-exception

package 129
localizable-text package 170

workload management service 5
administering 5

212 WebSphere: Writing Enterprise Beans in WebSphere

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Document organization
	Related information
	Conventions used in this book
	How to send your comments

	Chapter 1. An architectural overview of the EJB programming environment
	Components of the EJB environment
	The EJB server
	The security service
	Authentication and authorization
	Using the security server

	The workload management service
	The persistence service
	The naming service
	The transaction service
	Distributed transactions and the two-phase commit process
	Using transactions in the EJB server environment

	The data source
	The EJB clients
	The Web server
	The administration interface

	Chapter 2. An introduction to enterprise beans
	Bean basics
	Entity beans
	Basic components of an entity bean
	Data persistence

	Session beans
	Basic components of a session bean
	Stateless versus stateful session beans

	Creating an EJB module
	The EJB module
	The deployment descriptor

	Deploying an EJB module
	Developing EJB applications
	An example: enterprise beans for a bank
	Using the banking beans to develop EJB banking applications

	Life cycles of enterprise bean instances
	Session bean life cycle
	Creation state
	Ready state
	Pooled state
	Removal state

	Entity bean life cycle
	Creation State
	Pooled State
	Ready State
	Removal State

	Chapter 3. Tools for developing and deploying enterprise beans
	Using VisualAge for Java
	Developing and deploying enterprise beans
	Installing and configuring the software for the EJB server
	Setting the CLASSPATH environment variable in the EJB server environment
	Creating the components of an enterprise bean
	Creating finder logic in the EJB server
	Creating an EJB module
	Using the Application Assembly Tool

	Creating a database for use by entity beans

	Chapter 4. Developing enterprise beans
	Developing entity beans with CMP
	Writing the enterprise bean class (entity with CMP)
	Defining variables
	Implementing the business methods
	Standard application exceptions for entity beans
	Implementing the ejbCreate and ejbPostCreate methods
	Implementing the EntityBean interface

	Writing the home interface (entity with CMP)
	Defining create methods
	Defining finder methods

	Writing the remote interface (entity with CMP)
	Writing the primary key class (entity with CMP)
	Interacting with databases

	Developing session beans
	Writing the enterprise bean class (session)
	Implementing the business methods
	Implementing the ejbCreate methods
	Implementing the SessionBean interface

	Writing the home interface (session)
	Writing the remote interface (session)

	Implementing interfaces common to multiple types of enterprise beans
	Methods inherited from javax.ejb.EJBObject
	The javax.ejb.EJBHome interface
	The java.io.Serializable and java.rmi.Remote interfaces

	Using threads and reentrancy in enterprise beans
	Creating an EJB module for enterprise beans
	Making bean components part of a Java package
	Creating an EJB module and deployment descriptor

	Chapter 5. Enabling transactions and security in enterprise beans
	Setting transactional attributes in the deployment descriptor
	Setting the transaction attribute
	Setting the transaction isolation level attribute

	Setting the security attribute in the deployment descriptor

	Chapter 6. Developing EJB clients
	Importing required Java packages
	Creating and getting a reference to a bean's EJB object
	Locating and creating an EJB home object
	Creating an InitialContext object
	Creating EJB home object

	Creating an EJB object

	Handling an invalid EJB object for a session bean
	Removing a bean's EJB object
	Managing transactions in an EJB client

	Chapter 7. Developing servlets that use enterprise beans
	An overview of standard servlet methods
	Writing an HTML page that embeds a servlet
	Developing the servlet
	The servlet's instance variables
	The servlet's init method
	The servlet's doGet method
	Creating an enterprise bean
	Determining the content of the user response
	Sending the user response

	Threading issues

	Chapter 8. More-advanced programming concepts for enterprise beans
	Developing entity beans with BMP
	Writing the enterprise bean class (entity with BMP)
	Defining instance variables
	Implementing the business methods
	Implementing the ejbCreate and ejbPostCreate methods
	Implementing the ejbFindByPrimaryKey and other ejbFind methods
	Implementing the EntityBean interface

	Writing the home interface (entity with BMP)
	Defining create methods
	Defining finder methods

	Writing the remote interface (entity with BMP)
	Writing or selecting the primary key class (entity with BMP)

	Using a database with a BMP entity bean
	Managing database connections in the EJB server environment
	Getting an EJB object reference to a data source bean instance
	Allocating and deallocating a connection to a database

	Manipulating data in a database

	Using bean-managed transactions

	Chapter 9. WebSphere Programming Model Extensions
	The distributed-exception package
	Overview
	The DistributedException class
	The DistributedExceptionEnabled interface
	The DistributedExceptionInfo class

	Extending the DistributedException class
	Implementing the DistributedExceptionEnabled interface
	Implementing the constructors for the exception class
	Implementing the methods from the DistributedExceptionEnabled interface

	Using distributed exceptions
	Catching distributed exceptions
	Adding an exception to a chain
	Retrieving information from a chain

	The command package
	Overview
	Facilities for creating commands
	Facilities for implementing commands
	Facilities for setting and determining targets
	Exceptions in the command package

	Writing command interfaces
	The TargetableCommand interface
	The CompensableCommand interface
	The example application

	Implementing command interfaces
	Defining instance and class variables
	Implementing command-specific methods
	Implementing methods from the Command interface
	Implementing methods from the TargetableCommand interface
	Implementing the CompensableCommand interface

	Using a command
	Using a compensating command

	Using the WebSphere EJBCommandTarget bean as a command target
	Writing a command target (server)
	Targets and target policies
	The default target policy
	Customizing target policies

	Writing a command target (client-side adapter)
	Implementing a client-side adapter
	Running the command in the servlet

	The localizable-text package
	Overview
	Writing localizable programs
	Localization support in WebSphere and Java

	Writing a localizable application
	Creating a LocalizableTextFormatter object
	Setting localization values
	Generating the localized text

	Using optional arguments
	Assembling complex strings
	Customizing the behavior of a format method

	Deploying the formatter enterprise bean
	Setting up the tool
	Using the LocalizableTextEJBDeploy Tool

	Appendix A. Changes for version 1.1 of the EJB specification
	New and updated features
	Migrating from version 1.0 to version 1.1

	Appendix B. Example code provided with WebSphere Application Server
	Information about the examples described in the documentation
	Information about other examples

	Appendix C. Extensions to the EJB Specification
	Access beans
	Associations between enterprise beans
	Inheritance in enterprise beans

	Notices
	Trademarks and service marks

	Index

