
WebSphere® Application Server V4.0.1 for z/OS and

OS/390

Assembling Java™ 2 Platform,

Enterprise Edition (J2EE™)

Applications

SA22-7836-06

���

WebSphere® Application Server V4.0.1 for z/OS and

OS/390

Assembling Java™ 2 Platform,

Enterprise Edition (J2EE™)

Applications

SA22-7836-06

���

Note

Before using this information and the product it supports, be sure to read the general information under Appendix E,

“Notices,” on page 401.

Seventh Edition (June 2003)

This is a major revision of SA22–7836–05.

This edition applies to WebSphere Application Server V4.0.1 for z/OS and OS/390 (5655-F31), and to all subsequent

releases and modifications until otherwise indicated in new editions.

The most current versions of the WebSphere Application Server V4.0.1 for z/OS and OS/390 publications are at this

Web site: http://www.ibm.com/software/webservers/appserv/zos_os390/

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi

Who should read this book xi

Where to find related information, tools, and

supplements xi

How to send your comments xii

Summary of changes xv

Part 1. Introducing the WebSphere

for z/OS J2EE server 1

Chapter 1. Overview of the WebSphere

for z/OS J2EE server 3

Chapter 2. Overview of application

development and tools 9

Chapter 3. Overview of J2EE server

definition and activation 13

Chapter 4. A closer look at the J2EE

server 19

Security 19

Authentication services for J2EE clients and

servers 19

Authorization controls for J2EE clients and

servers 21

Authorization controls for J2EE application

components 25

Overview of SQLID for managed datasources . . 34

Web Security 36

Naming 42

Application programming interfaces 43

Java Naming and Directory Interface™ (JNDI) . . 43

Java™ Message Service 45

JavaMail™ 49

IBM Extensions 53

Connectors 64

Deciding which connector to use 66

Datasource lookup with backwards compatibility

with Version 3.5 67

Guidelines for accessing legacy programs . . . 68

Coding connector lookups 68

Connector transaction processing 70

Exploiting connection management support . . 71

Determining the user ID for resource

authentication 73

Running applications developed in WebSphere

Studio Application Developer Integration Edition . 76

Checklist for application components that use

connectors 77

The WebSphere for z/OS environment for Web

applications 80

Using the HTTP Transport Handler configuration 81

Setting up the HTTP/HTTPS Transport Handler 83

Resolving requests to a specific Web application 84

HTTP session support 87

WebSphere plug-ins for Web servers support . . 92

Trust association interceptor support 95

Using a custom user registry with WebSphere for

z/OS 96

Batch compiling JSPs 101

Dynamic fragment caching 102

Web services 105

Considerations for test and production

environments 105

Part 2. Creating, assembling and

deploying J2EE server

applications 107

Chapter 5. Setting up the application

development environment 109

Steps for setting up your workstation 109

Steps for setting up z/OS or OS/390 113

Chapter 6. Creating new application

components to be installed in a J2EE

server 115

Creating Enterprise beans 115

Checklist for developing Enterprise beans . . . 116

Developing Enterprise beans 117

Creating Web applications 118

Developing Web components 119

Preparing applications for assembly and

installation 120

Overview of WebSphere for z/OS classloader

operation 120

Guidelines for setting classloader mode and

application packaging 131

Steps for setting trace options for classloader

operation 133

Chapter 7. Assembling a J2EE

application 135

Steps for installing the Application Assembly tool 136

Steps for assembling a new J2EE application . . . 137

Direct Deployment Tool/390fy 141

© Copyright IBM Corp. 2000, 2003 iii

|
||

 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 | |
 | |

Chapter 8. Creating a J2EE server

run-time environment 143

Steps for completing manual z/OS or OS/390 tasks 144

Steps for creating JCL procedures for the control

and server regions 146

Steps for setting properties for the JVM 147

Steps for enabling J2EE server support for Web

applications (optional) 147

Defining the server configuration 149

Steps for starting the Administration application 150

Steps for starting a conversation 151

Steps for adding the J2SERV server 151

Steps for adding the J2SERV1 server instance 153

Steps for adding a J2EE resource 153

Steps for adding the J2EE resource instance . . 153

Steps for installing a J2EE application 154

Steps for validating the new conversation model 156

Steps for committing the conversation 157

Steps for marking z/OS or OS/390 tasks as

completed 157

Steps for activating the server configuration . . 157

Steps for configuring the Web container 158

Steps for configuring HTTP Session Support . . . 160

Configuring cookies 161

Configuring URL rewriting 162

Configuring WebSphere for z/OS to maintain

session data in a DB2 database instead of

in-memory. 163

Configuring session data to be stored

in-memory 169

Configuring session affinity across multiple

WebSphere for z/OS J2EE server instances . . 169

Configuring session data sharing within a J2EE

application 170

Steps for setting up WebSphere plug-ins for Web

servers for use with WebSphere for z/OS 171

Setting up the WebSphere HTTP Plug-in for

z/OS 171

Setting up the Web server plug-in for a

non-z/OS Web server 175

Installing a Web server plug-in on a Microsoft

Internet Information Server (IIS) 183

Properties of WebSphere plug-ins for Web

servers 183

Steps for enabling a custom user registry 193

Creating the XML file that defines the location of a

Web application’s authorization table 194

Creating XML files containing authorization tables 196

Implementing the CustomRegistry interface . . . 199

Steps for pre-compiling JSPs 200

Steps for configuring trust association 202

Steps for enabling dynamic fragment caching . . 204

Using cache variables 209

Summary of the elements in a servletcache.xml

file 212

Dynamic fragment cache XML examples . . . 213

Using HttpSession and request attributes . . . 214

Caching personalized pages 215

Building a custom ID generator 216

Chapter 9. Creating and running

WebSphere for z/OS client

applications 217

Application clients that run on non-z/OS platforms 217

Steps for running application clients on

Windows NT or Windows 2000 218

Java clients running in WebSphere Application

Server Standard Edition for z/OS or OS/390 . . . 220

Native z/OS or OS/390 Java clients 222

Part 3. Programming and

deployment scenarios for J2EE

applications 225

Chapter 10. Using JNDI look-ups . . . 227

Example: Using the JNDI subcontext to look up a

resource 227

Steps for preparing the Enterprise bean . . . 227

Setting up the J2EE server and DB2 datasource 228

Example: Modifying JNDI caching behavior . . . 229

Chapter 11. Using security roles and

RunAs identities with Enterprise

beans 231

Steps for assembling beans with security roles and

method permissions 231

Steps for configuring the run-time environment for

security roles and identities 233

Chapter 12. Using the Java Message

Service API in J2EE application

components 237

Steps for preparing J2EE applications that use the

JMS API 237

Steps for configuring JMS resources for the J2EE

server 238

Chapter 13. Using the JavaMail API in

J2EE application components 241

Steps for preparing J2EE applications that use the

JavaMail API 241

Steps for configuring mail sessions for the J2EE

server 242

Chapter 14. Steps for configuring Web

security 247

Chapter 15. Creating and deploying

Web Services 249

Deploying an Enterprise application as a

SOAP-accessible Web Service 250

Specifying the EJB Deployment Descriptor . . 252

Using the SoapEarEnabler Tool 252

Creating a SOAP client 254

Using XML-SOAP for Remote Procedure Calls . . 255

Securing SOAP Services 255

iv WebSphere for z/OS: Assembling J2EE Applications

|
||

|
||

|
||
|
||
||
|
||
||
||

Using HTTP basic authentication 255

Using SSL Connections 256

Chapter 16. Using Type 4 JDBC

Connectors with WebSphere for z/OS . 257

Steps for adding an XML Definition for a Type 4

JDBC Connector to WebSphere for z/OS 258

Steps for creating a Resource Factory for the Type

4 JDBC Connector 261

Steps for developing and deploying applications 262

Sample Datasource XML Template 264

Sample NLS Properties File 271

Sample Type 4 JDBC Connector Application . . . 272

Sample Resource Factory Class 274

Part 4. Working with J2EE

applications in the run-time

environment 277

Chapter 17. Installing applications in a

WebSphere for z/OS server 279

Steps for using the export/import process through

the Administration application 279

Installing applications using scripts 280

Chapter 18. Collecting data about

J2EE application activity 281

Collecting J2EE application information through

SMF records 281

Debugging and tracing distributed applications 281

Steps for starting the Debugger and OLT on

your workstation 282

Steps for preparing the Debugger and OLT for

Windows Java clients 283

Step for preparing z/OS or OS/390 Java clients 283

Steps for preparing J2EE application

components in a WebSphere for z/OS J2EE

server 283

Logging messages and trace data for Java

applications 284

Background on issuing application messages to

the z/OS or OS/390 master console 286

Background on issuing trace requests for your

application 287

Steps for coding your Java application to issue

messages and trace requests 289

Steps for preparing the z/OS or OS/390

environment for logging Java application

messages and trace requests 294

Background on viewing messages and trace

data 296

Appendix A. Environment and JVM

properties files 299

Environment files and environment variables . . . 299

How WebSphere for z/OS manages server

environment variables and environment files . . 299

How run-time server start procedures point to

their environment files 300

Environment variables for z/OS or OS/390

clients 301

Note on using substitution variables 301

Environment variable syntax 301

Environment variable use 302

Environment variable descriptions 310

JVM properties and properties files 339

How to manage JVM properties 340

JVM property use 340

Properties descriptions 341

Appendix B. Default

webcontainer.conf file 351

Appendix C. Using the Alternate

Configuration Option 365

Setting up the Alternate Configuration 366

Steps for setting up an HTTP server 368

Steps for configuring the V3.5 run-time

provided with WebSphere for z/OS 371

Creating a customized JVM properties file for

the Local Redirector Plug-in 373

Resolving requests to a specific servlet using the

HTTP Server 374

Template for the WebSphere for z/OS plug-in

was.conf file 376

default_global.properties 395

Appendix D. Running the SOAP

Installation Verification Program . . . 399

Appendix E. Notices 401

Examples in this book 402

Programming interface information 403

Trademarks 403

Glossary 405

Index 407

Contents v

 |
 | |

vi WebSphere for z/OS: Assembling J2EE Applications

Figures

 1. Potential clients of application components

installed in the J2EE server 4

 2. The WebSphere for z/OS server configuration

in a monoplex 6

 3. Tools and output for developing, assembling,

and installing components in a J2EE server . . 10

 4. Supported J2EE application components 11

 5. Model of a J2EE server 14

 6. Installing a J2EE application in a J2EE server 15

 7. An active J2EE application server 16

 8. Client identification and authentication 20

 9. Authorization controls in the WebSphere for

z/OS environment 22

10. Deploying an Enterprise bean that uses

security roles as authorization controls . . . 28

11. Sample JMS configurations for WebSphere for

z/OS 46

12. Linking JMS connection factories and

destinations to a WebSphere for z/OS

configuration 49

13. JavaMail and its supported elements in

WebSphere for z/OS 50

14. A closer look at the WebSphere for z/OS

JavaMail package 51

15. Enabling JavaMail for Web applications in

WebSphere for z/OS 52

16. Possible configuration of the Web-serving

environment on z/OS or OS/390 81

17. Files required when using the HTTP and/or

HTTPS Transport Handlers 82

18. Sample goals for using virtual hosts 85

19. Resolving requests to a specific servlet in a

Web application 86

20. WebSphere for z/OS default classloader

mode, types, and search order 122

21. WebSphere for z/OS classloader ″family tree″

with alternative modes 124

22. WebSphere for z/OS classloader mode for

J2EE 1.3 compliance: ″family tree″ 125

23. Settings for changing the search order

(delegation) for application mode 127

24. Settings for changing the search order

(delegation) for compatibility mode 128

25. Settings for changing the search order

(delegation) for server mode 129

26. Settings for changing the search order

(delegation) for module mode 130

27. Settings for changing the search order

(delegation) for J2EE Application mode . . . 131

28. Alternative: Using an HTTP Server as the

protocol catcher 366

29. Using Alternate Configuration Option 367

30. Files required for configuring the Alternate

Configuration Option 367

31. Routing an inbound request to the V3.5

run-time environment 375

© Copyright IBM Corp. 2000, 2003 vii

|
||

 |
 | |
 | |
 |
 | |

viii WebSphere for z/OS: Assembling J2EE Applications

Tables

 1. Current WebSphere for z/OS support for J2EE

technologies 3

 2. Alphabetical summary of authorization

controls for the WebSphere for z/OS

environment 24

 3. Summary of RunAs and OS thread settings

and behavior 32

 4. Assembly and configuration tasks for

programmatic security controls 33

 5. Summary of the two Versions of the Web

container security collaborator 40

 6. Types of J2EE resources for JMS and their

behaviors 48

 7. Summary of IBM deployment descriptor

extensions 54

 8. Activate/Load combinations for entity beans 55

 9. Deciding which concurrency control approach

to use for CMP beans 58

10. Deciding which connector to use 66

11. Assembly and configuration tasks for setting

the identity for a J2EE resource connection . . 74

12. Checklist for application components that use

connectors 77

13. WebSphere plug-ins for non-z/OS Web servers

provided with WebSphere for z/OS 93

14. Permissions summary 97

15. Summary of the methods used to define user

registries and the resulting mechanism for

defining permissions 98

16. Software requirements for Java 2 Enterprise

Edition application components 110

17. References for installation or migration

information for application development

software 111

18. References for installation or migration

information for assembly and deployment

software 112

19. Checklist for developing Enterprise beans 116

20. Deciding which classloader mode to use 131

21. Deciding how to configure the environment

for Web applications 148

22. Location of WebSphere plug-ins for Web

servers executables 176

23. Location of Gskit install image 178

24. Trace setting property types and their

corresponding JRas trace types 294

25. Where to use environment variables 303

26. Where to use JVM properties 340

© Copyright IBM Corp. 2000, 2003 ix

|
||

 | |
 |
 |
 | |

 |
 | |

x WebSphere for z/OS: Assembling J2EE Applications

About this book

WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE

Applications, SA22-7836 describes how to create, assemble, and install Java 2

Enterprise Edition (J2EE) applications to run in the WebSphere V4.0.1 for z/OS and

OS/390 environment. These J2EE applications may consist of Enterprise Java

beans, Java servlets and JavaServer Pages (JSPs). WebSphere for z/OS J2EE servers

provide an application environment that allows these applications to be highly

managed and integrated with databases and transactional systems on z/OS or

OS/390.

Note: The full product name is WebSphere Application Server V4.0.1 for z/OS and

OS/390, referred to in this text as WebSphere for z/OS.

For information about migrating J2EE applications from one of the following, see

WebSphere Application Server V4.0.1 for z/OS and OS/390: Migration, GA22-7860:

v Previous releases of WebSphere for z/OS,

v Previous versions of WebSphere Application Server for z/OS and OS/390, or

v WebSphere Application Server products for distributed platforms (such as

Windows NT).

Who should read this book

This book is intended primarily for programmers who fulfill the tasks defined in

the Sun Microsystems Java 2 Enterprise Edition Specification V1.2 for the roles of

Application Component Provider, Application Assembler, and Deployer. For details

about those roles and associated responsibilities, as well as additional overview

information about J2EE, refer to the Sun Microsystems J2EE specification, which is

available at:

http://java.sun.com/

Where to find related information, tools, and supplements

This is a list of books that are in the WebSphere for z/OS library. They can be

found by accessing the following Web site:

http://www.ibm.com/software/webservers/appserv/zos_os390/library/

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Program Directory,

GI10-0680, describes the elements of and the installation instructions for

WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: License Information,

LA22-7855, describes the license information for WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834, describes the planning, installation, and customization

tasks and guidelines for WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages and Diagnosis,

GA22-7837, provides diagnosis information and describes messages and codes

associated with WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Operations and

Administration, SA22-7835, describes system operations and administration tasks.

© Copyright IBM Corp. 2000, 2003 xi

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE

Applications, SA22-7836, describes how to develop, assemble, and install J2EE

applications in a WebSphere for z/OS J2EE server.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling CORBA

Applications, SA22-7848, describes how to develop, assemble, and deploy CORBA

applications in a WebSphere for z/OS (MOFW) server.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: System Management User

Interface, SA22-7838, describes the system administration and operations tasks as

provided in the Systems Management User Interface.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: System Management

Scripting API, SA22-7839, describes the functionality of the WebSphere for z/OS

Systems Management Scripting API product.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Migration, GA22-7860,

describes migration procedures for WebSphere for z/OS.

Here are some other WebSphere Application Server books on that Web site that

you might find particularly helpful:

v WebSphere Application Server for OS/390 V3.5 Standard Edition Planning, Installing,

and Using, GC34-4835, provides information about running the Version 3.5

runtime shipped with the V4.0.1 product within the HTTP Server address space.

You can use this configuration if you want to continue running

non-J2EE-compliant Web applications in the V3.5 runtime within the HTTP

Server address space while migrating to the full WebSphere for z/OS run time.

v Building Business Solutions with WebSphere, SC09-4432

The integrated WebSphere Application Server Advanced Edition and WebSphere

Application Server Enterprise Edition InfoCenter includes CORBA (MOFW)

information you need to code CORBA (MOFW) components. Go to:

http://www.ibm.com/software/webservers/appserv/infocenter.html

For additional WebSphere for z/OS tools and supplements, go to the following

Web site and select the download link:

http://www.ibm.com/software/webservers/appserv/zos_os390/

You might also need to refer to information about other z/OS or OS/390 elements

and products. All of this information is available through links at the following

Internet locations:

http://www.ibm.com/servers/eserver/zseries/zos/

http://www.ibm.com/servers/s390/os390/

How to send your comments

Your feedback is important in helping to provide the most accurate and highest

quality information. You can e-mail your comments to:

wasdoc@us.ibm.com

or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application

Server version, and, if applicable, the specific page, table, or figure number on

which you are commenting.

xii WebSphere for z/OS: Assembling J2EE Applications

When you send information to IBM, you grant IBM a nonexclusive right to use or

distribute the information in any way it believes appropriate without incurring any

obligation to you.

About this book xiii

xiv WebSphere for z/OS: Assembling J2EE Applications

Summary of changes

Summary of changes

for SA22-7836-06

WebSphere for z/OS V4.0.1

as updated, July 2003

service level W401508

 This book contains information previously presented in SA22-7836-05, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v Information about setting access intent for custom finders (APAR PQ69991) has

been updated in:

– “Checklist for using pessimistic concurrency control” on page 58, and

– “Developing Enterprise beans” on page 117
v Information about setting RunAs identity in “Determining the user ID for

resource authentication” on page 73 has been updated (APAR PQ71760).

v Information about setting file permissions in “Steps for creating JCL procedures

for the control and server regions” on page 146 has been updated (APAR

PQ67872 PTF UQ74000, service level W401500).

v Information about required software in “Application clients that run on

non-z/OS platforms” on page 217 has been updated (APAR PQ67662, PTF

UQ72838, service level W401407).

v Appendix A, “Environment and JVM properties files,” on page 299 contains new

or changed descriptions of the following environment variables and JVM

properties:

– com.ibm.ejs.EJBCache.size (APAR PQ70308)

– com.ibm.websphere.cmp.cache.maxLevels (APAR PQ69293)

– com.ibm.websphere.cmp.cache.printlevels (APAR PQ69293)

– com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

(APAR PQ69991)

– com.ibm.websphere.preconfiguredCustomServices

– IBM_JVM_ST_VERBOSEGC_LOG (APAR PQ69792)

– service.debug.enabled (APAR PQ70287)

– invocationCacheSize (APAR PQ71648)

– RECYCLE_J2EE_SERVERS (APAR PQ68957)
v WebSphere HTTP Plug-in for z/OS information has been added to Chapter 4, “A

closer look at the J2EE server,” on page 19 and Chapter 8, “Creating a J2EE

server run-time environment,” on page 143 (APAR PQ68250).

v Custom user registry information has been added to Chapter 4, “A closer look at

the J2EE server,” on page 19 and Chapter 8, “Creating a J2EE server run-time

environment,” on page 143 (PTF UQ71162).

v A description of the new jdbcconnpool.<pool-name>.provider was.conf file

property, that can be used to specify the JDBC database management system

(DBMS) that is hosting the Application Server connection pools, was added to

Appendix C, “Using the Alternate Configuration Option,” on page 365.

v A description of the code change that might need to be made to a Web service

ported from a WebSphere Application Server for distributed platforms product

© Copyright IBM Corp. 2000, 2003 xv

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|

|

|

|
|

|

|

|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

in order to use the externalConfigURL tag to pass initialization parameters has

been added to Chapter 15, “Creating and deploying Web Services,” on page 249

(APAR PQ73188).

v Additional information has been included in the first two notes contained in

Figure 5. These notes describe how to enable Form-Based authentication or

single sign-on capability.

v The description of how to run the JspBatchCompiler.sh script has been updated.

v The session.enable property has been removed from Appendix B, “Default

webcontainer.conf file,” on page 351 because it is no longer supported. Session

must always be enabled.

v Two new sections, “Properties of WebSphere plug-ins for Web servers” on page

183 and “Installing a Web server plug-in on a Microsoft Internet Information

Server (IIS)” on page 183, were added to Chapter 8.

v A description of how to host an application containing a Java AWT class has

been added to Chapter 2, “Overview of application development and tools,” on

page 9 (APAR PQ69795).

v A description of the code changes you may have to make to a Web service you

are porting from the distributed platform version of the product to the z/OS

version has been added to “Deploying an Enterprise application as a

SOAP-accessible Web Service” on page 250.

Technical changes or additions to the text and illustrations are indicated by a

vertical line to the left of the change.

Summary of changes

for SA22-7836-05

WebSphere for z/OS V4.0.1

as updated, September 2002

service level W401400

 This book contains information previously presented in SA22-7836-04, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v Information has been added to Chapters 4 and 8 to describe the new functions

provided in PTFs UQ70037, UQ90051 and UQ90052. Updates include

descriptions of how to:

– Maintain session data in-memory across multiple server instances.

– Use Version 2 of DB2 Session Persistence.

– Use dynamic fragment caching.

– Use the WebSphere plug-ins for Web servers.

– Set up client certificates for use with the HTTP Transport Handler.

– Pre-compile JSPs.

The information about maintaining session data in memory across server

instances was previously presented in WebSphere Application Server V4.0.1 for

z/OS and OS/390: Maintaining Session Affinity Across Multiple Server Instances.

v Additional information on Form-based Login was added to “Authenticating Web

Clients” on page 37.

v A new topic, “Overview of SQLID for managed datasources” on page 34, has

been added to Chapter 4, “A closer look at the J2EE server,” on page 19 to

describe WebSphere for z/OS support for DB2 secondary authorization IDs to

control the use of unqualified table references in container-managed (CMP) and

bean-managed (BMP) Enterprise beans (APARs PQ65206, PQ65207, and

PQ66463; PTFs UQ70037, UQ90051 and UQ90052; Service level W401400).

xvi WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|
|

|
|
|
|

|
|

|

v A new section, “Running applications developed in WebSphere Studio

Application Developer Integration Edition” on page 76, has been added for the

WebSphere Studio Application Developer Integration Edition for z/OS

Connectors (APARs PQ65206, PQ65207, and PQ66463; PTFs UQ70037, UQ90051

and UQ90052; Service level W401400). In addition, throughout the book, many

of the references to VisualAge for Java have been either replaced with, or

modified with the addition of a more current development tool: WebSphere

Studio Application Developer Integration Edition.

v The following restriction has been removed from the section ″Creating Enterprise

beans″ in Chapter 6 because this support is now available if PTFs UQ70037,

UQ90051 and UQ90052 have been applied to your system:

 The function which allows JNDI lookups from auto-started servlets does not

support the use of transactions from within servlet init() methods. The use of

any EJB which requires a transaction environment, such as TX_REQUIRED or

TX_MANDATORY, is not supported when the EJB is driven from within a

servlet init() method.

v A new topic, “Preparing applications for assembly and installation” on page 120,

describes WebSphere for z/OS class loaders and their operation, and how that

operation might affect application packaging (APARs PQ65206, PQ65207, and

PQ66463; PTFs UQ70037, UQ90051 and UQ90052; Service level W401400). It also

contains guidelines for selecting a classloader mode, packaging applications, and

collecting trace data about classloader operation. This information replaces the

guidelines previously published in topics entitled Packaging beans in JAR files,

and Packaging Web components in WAR files.

v A new section, “Direct Deployment Tool/390fy” on page 141, has been added

for the Direct Deployment Tool/390fy (APARs PQ65206, PQ65207, and PQ66463;

PTFs UQ70037, UQ90051 and UQ90052; Service level W401400).

v Two topics related to defining a J2EE server have been updated with instructions

for setting permission bits for files created by applications (APAR PQ60198):

– “Steps for completing manual z/OS or OS/390 tasks” on page 144, and

– “Steps for creating JCL procedures for the control and server regions” on page

146..
v Appendix A, “Environment and JVM properties files,” on page 299 contains

updated information about managing JVM properties, which includes

information previously presented in Washington Systems Center FAQ FQ101947.

v Appendix A, “Environment and JVM properties files,” on page 299 contains

descriptions of the following new environment variables and JVM properties:

– APP_EXT_DIR

– BBOC_HTTP_MODE

– BBOC_HTTP_SSL_CBIND

– BBOC_HTTP_SSL_MODE

– BBOC_HTTPALL_NETWORK_QOS

– BBOC_HTTPALL_TCLASS_FILE

– BBOO_ACCEPT_HTTP_WORK_AFTER_N_SECS (APAR PQ63711)

– BBOO_ACCEPT_HTTP_WORK_AFTER_N_SRS (APAR PQ63711)

– CLONEID

– com.ibm.websphere.cmp.connection.policy

– com.ibm.websphere.cmp.Location Name.connection.timeout

– com.ibm.websphere.cmp.Location Name.preparedStatement.poolsize

– com.ibm.websphere.cmp.Location Name.connection.maxTrans

– com.ibm.websphere.preconfiguredCustomServices

Summary of changes xvii

– com.ibm.websphere.sendredirect.compliance

– com.ibm.ws.classloader.ejbDelegationMode

– com.ibm.ws.classloader.J2EEApplicationMode

– com.ibm.ws.classloader.warDelegationMode

– com.ibm.ws390.wc.config.dynxmlfilename

– com.ibm.ws390.wc.config.dynsrvxmlfilename

– IIOP_SERVER_SESSION_KEEPALIVE (APAR PQ62464)

– TRACESPECIFIC

v Many of the references to the WebSphere for z/OS Application Assembly tool

have been changed to “a WebSphere application assembly tool”, now that you

are no longer required to use the z/OS edition of the tool except when you are

developing applications that use certain IBM extensions (APARs PQ65206,

PQ65207, and PQ66463; PTFs UQ70037, UQ90051 and UQ90052; Service level

W401400). “A WebSphere application assembly tool” means either the z/OS

edition of the Application Assembly tool, the WebSphere Studio Application

Developer tool, the WebSphere Studio Application Developer Integration Edition

tool, or Direct Deployment Tool/390fy.

Summary of changes

for SA22-7836-04

WebSphere for z/OS V4.0.1

as updated, July 2002

service level W401082

 This book contains information previously presented in SA22-7836-03, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v Information in “Connectors” on page 64 has been clarified.

v Information has been added to describe the new support for trust associations

between third party servers and WebSphere for z/OS (APAR PQ55181, PTF

UQ90049, Service Level 11). Updates include:

– A description of the trust association interceptor support in “Web Security”

on page 36 and “The WebSphere for z/OS environment for Web applications”

on page 80.

– The procedure to enable the trust association interceptor support in “Steps for

configuring trust association” on page 202.

– The new JVM property that enables Web security in Appendix A,

“Environment and JVM properties files,” on page 299.

– The new webcontainer.conf file properties that define a trust association

interceptor to WebSphere for z/OS in Appendix B, “Default webcontainer.conf

file,” on page 351.

This information was previously presented in WebSphere Application Server V4.0.1

for z/OS and OS/390: Trust Association Interceptor Support.

v Information about the WebSphere for z/OS server configuration has been

updated to include the new HTTPS Transport Handler (APAR PQ59911, PTF

UQ90049, Service Level 11). Updates appear in:

– Chapter 1, “Overview of the WebSphere for z/OS J2EE server,” on page 3.

– “The WebSphere for z/OS environment for Web applications” on page 80.

– “Steps for adding the J2SERV server” on page 151.

– Appendix B, “Default webcontainer.conf file,” on page 351.

xviii WebSphere for z/OS: Assembling J2EE Applications

This information was previously presented in WebSphere Application Server V4.0.1

for z/OS and OS/390: HTTPS Transport Handler.

v A new chapter has been added to provide information about the new support

for Type 4 JDBC Connectors (APAR PQ61755, PTF UQ90050, Service Level

W401076). This information includes:

– Procedures for defining a Type 4 JDBC Connector to WebSphere for z/OS.

– A procedure for developing and deploying WebSphere for z/OS applications

that use Type 4 JDBC connectors.

– A sample application and other supporting files for using Type 4 JDBC

connectors.

This new information, which appears in Chapter 16, “Using Type 4 JDBC

Connectors with WebSphere for z/OS,” on page 257, was previously presented

in Using Type 4 JDBC Connectors.

v Appendix A, “Environment and JVM properties files,” on page 299 contains new

environment variables and JVM properties, including:

com.ibm.websphere.preconfiguredCustomServices

Specifies customer-provided services to be installed in the Java virtual

machine that runs under the J2EE server (APAR PQ55873, PTF UQ99329,

service level W401030). For information about custom services, see the topic

about developing custom services in the InfoCenter for WebSphere

Application Server Advanced Edition Version 4.0. The InfoCenter is available

at http://www.ibm.com/software/webservers/appserv/

Technical changes or additions to the text and illustrations are indicated by a

vertical line to the left of the change.

Summary of changes

for SA22-7836-03

WebSphere for z/OS V4.0.1

as updated, March 2002

service level W401038

 This book contains information previously presented in SA22-7836-02, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v Information about the new HTTP Session Affinity support (APAR PQ57888, PTF

UQ64031, service level L00PTF06), and other changes related to the Web

application environment, has been added. These additions and changes include:

– The HTTP Transport Handler is now presented as your primary HTTP

protocol catcher in the concepts in Chapter 1, “Overview of the WebSphere

for z/OS J2EE server,” on page 3 and “The WebSphere for z/OS environment

for Web applications” on page 80.

– Concepts and instructions for storing session data in-memory now appear in

“HTTP session support” on page 87 and “Steps for configuring HTTP Session

Support” on page 160, respectively.

– Changes to properties and other reference material appear in Appendix B,

“Default webcontainer.conf file,” on page 351:

- The session.cookie.path property is no longer configurable, and has been

deleted from the description of the default webcontainer.conf file. The

cookie path is automatically set to the context root of the Web application.

- The session.datasourcename property is no longer configurable, and has

been deleted from the description of the default webcontainer.conf file. The

HTTP session datasource is now defined as a J2EE Resource using the

WebSphere for z/OS Administration application.

Summary of changes xix

- The default value for the session.cookie.name property has changed to

JSESSIONID.
– Appendix C, “Using the Alternate Configuration Option,” on page 365

consolidates information on how to set up an IBM HTTP Server and the V3.5

runtime provided with the V4.0.1 product (instructions formerly in Chapter 8,

“Creating a J2EE server run-time environment,” on page 143), to host Web

applications that were previously run on the V3.5 Standard Edition product.

This appendix previously documented only the default V4.0.1 was.conf file.
v Information about WebSphere for z/OS-supported connectors (APAR PQ55873,

PTF UQ99329, service level W401030), which was previously presented in

WebSphere Application Server V4.0.1 for z/OS and OS/390: WebSphere for

z/OS-Supported Connectors, has been added to this book. This information, in

“Connectors” on page 64, includes application assembly and deployment

instructions, and guidelines for the use of connectors and connection

management policies.

v Information previously presented in WebSphere Application Server V4.0.1 for z/OS

and OS/390: Concurrency Control Management (APAR PQ55873, PTF UQ99329,

service level W401030), has been added to this book. This information, which

appears in “IBM Extensions” on page 53, includes:

– A new section to help application assemblers decide which approach to use

for concurrency control, pessimistic or optimistic, for Enterprise beans that

use container-managed persistence (CMP beans).

– A new section to describe the IBM deployment descriptor extension, isolation

level, which is a setting related to concurrency control.
v A new section, “Considerations for test and production environments” on page

105,, provides a brief introduction to test and production systems (APAR

PQ55866, PTF UQ99328, service level W401014).

v Information about JNDI caching behavior has been clarified in:

– “Java Naming and Directory Interface™ (JNDI)” on page 43, and

– Chapter 10, “Using JNDI look-ups,” on page 227.

WebSphere for z/OS uses JNDI caching by default, but its behavior may be

modified by Java client programs only. Your installation cannot modify JNDI

caching behavior on a J2EE server level.

v Chapter 15, “Creating and deploying Web Services,” on page 249 contains

updated software requirements, and minor updates to examples and

terminology.

v Appendix A, “Environment and JVM properties files,” on page 299 contains new

environment variables and JVM properties, including:

com.ibm.CORBA.iiop.noLocalCopies

Determines whether objects passed between Enterprise beans running in the

same JVM are passed by reference instead of by value. (APAR PQ57189,

Service Level W401019)

com.ibm.ws390.wc.serverCheckInterval

Indicates how frequently, in minutes, the WebSphere for z/OS V3.5 runtime

should check the list of servers specified on the

com.ibm.ws390.wc.includeWebContainers JVM property to determine if new

servers have been added with which is is now authorized to communicate.

(PTF UQ61610, service level L00PTF03)

com.ibm.ws390.wc.includeWebContainers

Specifies the installed J2EE Servers with which the WebSphere for z/OS V3.5

runtime can communicate. (PTF UQ61610, service level L00PTF03)

xx WebSphere for z/OS: Assembling J2EE Applications

com.ibm.ws390.server.classloadermode

Specifies the visibility mode to use for the J2EE server. (PTF UQ61610,

service level L00PTF03)

WS_EXT_DIRS

Specifies the common JAR files and directories that can be accessed by

multiple applications running in the same J2EE server instance. (PTF

UQ63580, service level L00PTF05)
v References to VisualAge for Java and WebSphere Studio as recommended

application development tools have been changed to the new IBM WebSphere

Studio Application Developer product, which can be used to develop both

Enterprise beans and Web applications.

Summary of changes

for SA22-7836-02

WebSphere for z/OS V4.0.1

as updated, October 2001

 This book contains information previously presented in SA22-7836-01, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v The information about migrating applications has been removed from this book.

Information about migrating applications now appears in WebSphere Application

Server V4.0.1 for z/OS and OS/390: Migration, GA22-7860.

v Chapter 1, “Overview of the WebSphere for z/OS J2EE server,” on page 3 lists

updated versions or specification levels of Java 2™, Enterprise Edition (J2EE™)

technologies and application programming interfaces (APIs) that are supported

by WebSphere for z/OS.

v A new section, Chapter 4, “A closer look at the J2EE server,” on page 19, has

been added to highlight some of the J2EE technologies and APIs that WebSphere

for z/OS supports, and to explain key concepts, terminology, and procedures.

v “Security” on page 19 presents an introduction to security mechanisms available

in the WebSphere for z/OS environment (including updates introduced through

APAR PQ53621, service level W401004).

v Procedures for setting up the WebSphere for z/OS environment for Web

applications have been updated. These step-by-step instructions appear in “Steps

for enabling J2EE server support for Web applications (optional)” on page 147.

v A new section, Part 3, “Programming and deployment scenarios for J2EE

applications,” on page 225, has been added to illustrate how to exploit some of

the J2EE technologies and APIs that WebSphere for z/OS supports. Some of

these topics or scenarios span the coding, assembly, and installation tasks that

application assemblers, deployers, and system administrators perform in the

WebSphere for z/OS environment.

 These new topics or scenarios include:

– Chapter 11, “Using security roles and RunAs identities with Enterprise

beans,” on page 231

– Chapter 15, “Creating and deploying Web Services,” on page 249
v “Debugging and tracing distributed applications” on page 281 describes how to

use the IBM Distributed Debugger and Object Level Trace, which provides

debugging and tracing capabilities for J2EE application components and their

Java clients, which may reside on platforms other than z/OS or OS/390.

Summary of changes

for SA22-7836-01

Summary of changes xxi

WebSphere for z/OS

as updated, June 2001

service level W400018

 This book contains information previously presented in SA22–7836-00, which

supports WebSphere for z/OS. The following is a summary of changes to this

information:

v In various topics in Part 2, “Creating, assembling and deploying J2EE server

applications,” on page 107, the maximum length of security role names has been

corrected. The maximum length is 246 characters.

v The topic “Steps for installing a J2EE application” on page 154 has been updated

to include instructions for replacing the resource reference

ws390rt/cmp/jdbc/CMPDS with a valid datasource for backing entity beans that

use container-managed persistence (CMP).

v The following sections contain information that was previously available

through the document WebSphere V4.0 for z/OS or OS/390: Enabling Web

Applications on a J2EE server:

– “Steps for enabling J2EE server support for Web applications (optional)” on

page 147

– Appendix B, “Default webcontainer.conf file,” on page 351
v The information in Chapter 9, “Creating and running WebSphere for z/OS client

applications,” on page 217 has been clarified, including updates introduced

through APAR PQ49461 (PTF UQ54982, service level W400017):

– The initial JNDI context factory property setting is now

com.ibm.websphere.naming.WsnInitialContextFactory

– J2EE application clients must specify the javax.naming.provider.url property

to access the WebSphere for z/OS naming service on another sysplex, or to

access the JNDI on an Advanced Edition WebSphere running on a

workstation platform.
v The information in “Logging messages and trace data for Java applications” on

page 284 has been changed to reflect the following behavior, introduced through

APAR PQ47682 (PTF UQ53715, service level W400010):

 All messages that your application issues will appear in the CTRACE data set

for WebSphere for z/OS. Some messages also will appear on the master console

or in the error log, depending on the message type:

– TYPE_INFORMATION (or TYPE_INFO) will appear on the master console.

– TYPE_ERROR (or TYPE_ERR) will appear in the error log.

Note that comments in the sample code in section “Steps for coding your Java

application to issue messages and trace requests” on page 289 also have changed

to reflect the changed destinations for messages.

xxii WebSphere for z/OS: Assembling J2EE Applications

Part 1. Introducing the WebSphere for z/OS J2EE server

© Copyright IBM Corp. 2000, 2003 1

2 WebSphere for z/OS: Assembling J2EE Applications

Chapter 1. Overview of the WebSphere for z/OS J2EE server

WebSphere Application Server for z/OS and OS/390 provides a highly available,

secure, reliable, and scalable run-time environment for Java 2 Enterprise Edition

(J2EE) applications. This WebSphere for z/OS run-time includes servers for both

J2EE and CORBA applications, through its J2EE server and managed-object

framework (MOFW) servers, respectively.

The primary focus for WebSphere for z/OS, however, is its J2EE server, which

supports both Enterprise JavaBeans and Web components that conform to the J2EE

specifications and packaging standards published by Sun Microsystems. These two

types of J2EE application components run in a WebSphere for z/OS J2EE server,

and can use both:

v The application programming interfaces (APIs) and services that the Java 2

Standard Edition (J2SE) Software Development Kit (SDK) V1.3 provides, and

v Enterprise services such as Java Database Connectivity (JDBC), Java Naming and

Directory Interface (JNDI), and the Java Transaction Service (JTS) and API (JTA).

The J2EE specifications dictate which APIs and services each type of application

component may use, and the environment in which they must run. Although both

Enterprise beans and Web applications may run in a single WebSphere for z/OS

J2EE server, each component actually runs in a separate type of container within

the J2EE server. Enterprise beans run in the EJB container, and Web applications

run in a Web container. These two containers in the WebSphere for z/OS J2EE

server conform to the J2EE specifications for run-time environments.

Current WebSphere for z/OS support for J2EE application components includes the

J2EE technologies and APIs listed in Table 1.

 Table 1. Current WebSphere for z/OS support for J2EE technologies

J2EE technology Support in WebSphere for

z/OS J2EE server

Supported for this type of J2EE

application component:

Web

component

Enterprise

bean

Java 2 Standard Edition

(J2SE) Software

Development Kit (SDK)

V1.3 Yes Yes

Enterprise JavaBeans V1.1 (but also supports V1.0

specification)

EJB client API

only

Yes

Java servlets V2.2 specification Yes No

JavaServer Pages (JSPs) V1.1 specification Yes No

Java Transaction Service

(JTS) and API (JTA)

JTS V1.0 and JTA V1.0.1

supported with distributed

transactions

Yes Yes

Java Database

Connectivity (JDBC)

JDBC V2.1 and JDBC Standard

Extensions V2.0 (JDBC V1.x is

supported for compatibility)

Yes Yes

Java Naming and

Directory Interface

(JNDI)

V1.2.2 Yes Yes

© Copyright IBM Corp. 2000, 2003 3

|
|
|
|
|
|
|

||
|
|
|
|

|

|
|
|

|||

Table 1. Current WebSphere for z/OS support for J2EE technologies (continued)

J2EE technology Support in WebSphere for

z/OS J2EE server

Supported for this type of J2EE

application component:

Web

component

Enterprise

bean

Java Remote Method

Invocation (RMI)

V1.0 Yes Yes

RMI/IIOP V1.2.2 Yes Yes

Java IDL Supported

Java Message Service

(JMS)

V1.1 Yes Yes

JavaBeans Activation

Framework (JAF)

V1.0.1 Yes Yes

JavaMail V1.0.1 Yes Yes

 The WebSphere for z/OS J2EE server supports a variety of client applications that

use Enterprise beans to access system resources on z/OS or OS/390. These client

applications may run in different environments, as shown in Figure 1.

 1. Web components, also known as Web applications, can run in the following

environments:

v The WebSphere for z/OS J2EE server’s Web container.

Figure 1. Potential clients of application components installed in the J2EE server

4 WebSphere for z/OS: Assembling J2EE Applications

||||

|
|
|||

|
|
|||

||||

|
|
|

|
|

|

v The WebSphere for z/OS V3.5 run-time environment (hereafter referred to as

the V3.5 run-time).

Web applications that currently run in the WebSphere Application Server

Standard Edition V3.5 environment and are J2EE compliant can be migrated to

run in the WebSphere for z/OS Web container.

2. J2EE application clients that run on platforms other than z/OS and OS/390 are

also potential clients. These applications are considered remote clients because

they do not reside on the same z/OS or OS/390 image as the Enterprise beans

they use.

 The supported platforms— Windows NT or 2000, AIX, HP-UX, Linux, Netware,

OS/2, OS/400, and Solaris— are also known as distributed, or workstation,

platforms. WebSphere products run on these platforms, but are not necessarily

required for remote J2EE application clients to access J2EE application

components in a WebSphere for z/OS J2EE server.

3. Another set of potential clients is native Java applications, which are programs

that run in the z/OS UNIX System Services environment, or in other

subsystems, on either z/OS or OS/390. These applications can be either local or

remote clients, depending on whether or not they reside on the same z/OS or

OS/390 image as the Enterprise beans they use.

Enterprise beans and Web applications that run in a WebSphere for z/OS J2EE

server may also be clients of application components in another WebSphere for

z/OS J2EE server. These clients can be either local or remote clients, depending on

whether or not they reside on the same z/OS or OS/390 image as the Enterprise

beans they use.

Figure 2 on page 6 illustrates the components that comprise the WebSphere for

z/OS run-time environment, including the z/OS or OS/390 functions that

WebSphere for z/OS uses to provide a robust, reliable, and scalable environment

for J2EE applications. This diagram represents how the WebSphere for z/OS

product is initially configured in a monoplex on z/OS or OS/390. The names of

individual WebSphere for z/OS components match the names your installation’s

system programmers are instructed to use when first installing the WebSphere for

z/OS product.

The run-time servers are labelled with the term “server instance”. In WebSphere

for z/OS, the functional component on which applications run is called a server

instance. Server instances comprise address spaces that actually run code.

A “server”, on the other hand, is a logical grouping of replicated server instances.

Servers allow you to partition workloads into separate server instances, but still

refer to them as a single unit. This is particularly important in sysplex

environments, where each system in the sysplex might be running a replicated

server instance, but clients outside the sysplex address them as a single server. The

client does not know which server instance is actually doing work on its behalf; in

fact, a subsequent work request from the client may, due to workload balancing, be

served by a different server instance in the sysplex.

Chapter 1. Overview of the WebSphere for z/OS J2EE server 5

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

The following numbered items correspond to the numbers in Figure 2:

1. A full WebSphere for z/OS run-time environment includes several servers: the

Daemon, System Management, Naming, and Interface Repository server

instances. Though not directly part of WebSphere for z/OS, the run time

requires a Lightweight Directory Access Protocol (LDAP) server.

2. WebSphere for z/OS provides a J2EE server instance for J2EE application

components: Enterprise beans and Web applications. J2EE servers contain at

least one EJB container and one Web container. The EJB container manages

Enterprise beans, while the Web container manages Web applications (servlets

and JavaServer Pages). The WebSphere for z/OS run time also includes a V3.5

run-time that runs in the HTTP server address space.

 Clients can access Web applications in the following ways:

v By configuring an HTTP or HTTPS Transport Handler for each J2EE server to

receive HTTP or HTTPS requests directly into the control region for that

server. Using this option removes the requirement to have an IBM HTTP

Server for z/OS configured with the Local Redirector plug-in to route

requests to the Web container. IBM recommends using the HTTP/HTTPS

Transport Handlers if their capabilities meet your needs.

v By using the IBM HTTP Server for z/OS in conjunction with the Local

Redirector plug-in. Using this transport allows the IBM HTTP Server for

WebSphere
for z/OS

or OS/390
run-time

z/OS or OS/390 monoplex

Naming server instanceInterface repository
server instance

System management
server instance
(SYSMGT01)

J2EE server instance
(BBOASR2A)

EJB containerEJB container

Enterprise
bean

Web containerWeb container
Servlet

Server regions

Control region

Daemon server
instance
(DAEMON01)

Control region

MOFW server instance

1

2

4

3

LDAP
server

DB2

TCP/IP

WLM

RRS

RACF

HTTP
server

WebSphere for z/OS
local redirector

plug-in

WebSphere for z/OS
local redirector

plug-in

HTTPS
Transport
Handler

HTTP
Transport
Handler

Figure 2. The WebSphere for z/OS server configuration in a monoplex

6 WebSphere for z/OS: Assembling J2EE Applications

z/OS to serve as the entry point for HTTP requests into the Sysplex. The

plug-in routine then forwards the requests to the Web container for

processing.
3. WebSphere for z/OS also provides a Managed Object Framework (MOFW)

server instance, which provides a run-time environment for CORBA-compliant

components.

Notes:

a. Servlets can drive CORBA-based Java business objects in a MOFW server.

b. Enterprise beans and Java business objects can interoperate.

c. C++ business objects in a MOFW server, however, cannot access application

components in a J2EE server.
4. The run-time server instances use other z/OS or OS/390 functions, such as

z/OS UNIX, and TCP/IP. Part of installing WebSphere for z/OS includes

configuring these functions for use by the run-time. Details about installing,

customizing, and configuring the WebSphere for z/OS run-time components

appears in WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation

and Customization, GA22-7834.

Chapter 1. Overview of the WebSphere for z/OS J2EE server 7

8 WebSphere for z/OS: Assembling J2EE Applications

Chapter 2. Overview of application development and tools

Because Enterprise beans and Web applications must conform to J2EE packaging

standards, WebSphere for z/OS supplies tools to help you prepare J2EE

applications for installation in a WebSphere for z/OS J2EE server. The following

topics briefly review how to:

v Create, assemble and install (or deploy) J2EE applications in a WebSphere for

z/OS J2EE server. The assembly stage requires the use of WebSphere Studio

Application Developer and 390fy, which is the preferred method of deploying

the applications, or the WebSphere for z/OS Application Assembly tool, which is

discussed in this chapter.

v Define and activate a WebSphere for z/OS J2EE server. This process requires the

use of the WebSphere for z/OS Administration application. The Administration

application is also known as the Systems Management End-User Interface (SM

EUI).

 If you have used the WebSphere Enterprise Edition for OS/390 product, you will

notice some differences when you use the Administration application. See

Chapter 3, “Overview of J2EE server definition and activation,” on page 13.

To understand the process description in this chapter, you might need to review

some J2EE terminology: a Java 2 Enterprise Edition (J2EE) application is comprised

of J2EE modules, which, in turn, are comprised of J2EE components:

v Enterprise beans

v Web components; that is, servlets or JavaServer Pages (JSPs)

v Application clients

v Applets

A J2EE module may contain one or more of the same type of component. J2EE

modules are archives: Java archive (JAR) files or Web application archive (WAR)

files. J2EE applications, collections of J2EE modules, are packaged in Enterprise

archive (EAR) files. You can install J2EE applications in WebSphere for z/OS only

when they are packaged in EAR files.

The J2EE application components that WebSphere for z/OS currently supports in

its J2EE server are Enterprise beans and Web components. The J2EE server

supports Enterprise beans through its EJB container, and supports servlets and JSPs

through its Web container.

To create the supported components for a J2EE application, you need to be familiar

with the Sun Microsystems specifications for each type of component— Enterprise

bean, servlet, or JSP— and the specification levels that WebSphere for z/OS

supports. With that knowledge, you may begin the development and deployment

process, as illustrated in Figure 3 on page 10:

© Copyright IBM Corp. 2000, 2003 9

1. According to your business goals, define and implement application

components and the associated classes or files that each component requires. To

develop application components, you may use a tool like IBM’s WebSphere

Studio Application Developer or Application Developer Integration Edition,

orVisualAge for Java.

 As part of the component development process, the tools you use create a

deployment descriptor, which contains attribute and environment settings that

you select to define how a J2EE server is to manage each application

component’s lifecycle and resources. You may test these definitions in the

workstation development environment, because they are platform-independent

specifications.

 When you have completed this stage of the process, you have one or more of

the following artifacts, as illustrated in Figure 4 on page 11:

v Enterprise beans, their classes and deployment descriptor packaged in Java

archive (JAR) files or Enterprise archive (EAR) files

v Web applications, consisting of any combination of servlets, their classes and

descriptors, JSPs, or static files, such as HTML or GIFs, packaged in Web

application archive (WAR) files or EAR files

Notes:

a. Each JAR file may contain one or more Enterprise beans; similarly, each

WAR file may contain multiple servlets or JSPs. EAR files may contain one

or more Enterprise beans, one or more Web applications, or both Enterprise

beans and Web application components. These files become input for the

next stage of the process: assembly and deployment.

b. Initial JAR, WAR and EAR file assembly can be accomplished using

WebSphere development tools; these files then can be further decorated and

deployed using a WebSphere for z/OS application assembly tool. “A

WebSphere application assembly tool” means either the z/OS edition of the

Application Assembly tool, the WebSphere Studio Application Developer

tool, the WebSphere Studio Application Developer Integration Edition tool,

or Direct Deployment Tool/390fy.

c. Java AWT classes are supported but an application containing a Java AWT

class must be hosted in the Local Redirector Plug-in. If you want to use Java

AWT classes, you must make the following changes to the HTTP Server’s

httpd.envvars file:

v Set the DISPLAY environment variable to x.xx.xx.xx:0.0, where

x.xx.xx.xx:0.0 is the XWindows environment variable stating the IP

address of the XTerminal.

Figure 3. Tools and output for developing, assembling, and installing components in a J2EE server

10 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|

v Set the LANG and LC_ALL environment variables to C.

v Add /usr/lib to the LIBPATH. This enables you to pick up Xm.dll and

X11.dll.

More information about using AWT classes is available at URL:

http://java.sun.com/products/jdk/awt/

2. Assemble and deploy J2EE application components

 During application assembly and deployment, you need to assemble these

modules into an Enterprise archive (EAR) file, which is the only type of file

that WebSphere for z/OS accepts for installation in a J2EE server.

 The preferred method of deploying applications is to use WebSphere Studio

Application Developer and Direct Deployment Tool/390fy, but you may use the

WebSphere for z/OS Application Assembly tool instead.

 During the assembly and deployment process, these tools:

v Generate code for z/OS or OS/390, including remote interfaces, home

interfaces, ties and stubs, keys, handles, finder helpers, and code related to

persistence.

v Convert the deployment descriptors for V1.0 Enterprise beans to match the

V1.1 specification level. This capability enables WebSphere for z/OS to

support V1.0 beans.
3. Install the J2EE application

 The preferred method of installing applications is to use Direct Deployment

Tool/390fy, but you may use the WebSphere for z/OS Administration

application instead.

 Through the installation process, deployment descriptors are customized for the

WebSphere for z/OS environment, and application components are loaded into

the WebSphere for z/OS J2EE server. Specifically:

v Application artifacts (including EAR, JAR and WAR files) are transferred

from the workstation to z/OS or OS/390.

Figure 4. Supported J2EE application components

Chapter 2. Overview of application development and tools 11

|

|
|
|

|

|
|

|

|

v Application metadata is stored so that WebSphere for z/OS can access and

manage J2EE application components.

v Bean and servlet resources and references are resolved through the use of the

Java Naming and Directory Interface (JNDI).

v The container parameters for the J2EE server are configured through the

deployment descriptors for installed applications, modules, components, and

methods.

v Web applications are provided with a fully qualified URI that enables the

WAR files and the EJB JAR files to be accessed through HTTP protocol when

requested by a client.

12 WebSphere for z/OS: Assembling J2EE Applications

Chapter 3. Overview of J2EE server definition and activation

Once you have developed and assembled an executable J2EE application, you need

to install the application in an appropriate run-time environment. For the z/OS or

OS/390 platform, the run-time environment is a WebSphere for z/OS application

server (J2EE server). Depending on your installation’s policies, a J2EE server might

be already available for you to use for testing applications. If not, you need to

create a new J2EE server. Creating a new server involves completing a combination

of tasks by hand or through the WebSphere for z/OS Administration application.

The Administration application is also known as the Systems Management

End-User Interface (SM EUI).

Because the manual tasks require some expertise with the z/OS or OS/390

operating system, each task is typically performed by a system programmer,

database administrator, or security administrator. IBM provides samples that can

help you complete these tasks, even if you are not very familiar with z/OS or

OS/390, but you should consult with experts at your installation, if necessary.

The tasks you accomplish through the Administration application do not

necessarily require familiarity with z/OS or OS/390. You might, however, find the

tasks easier if you understand that you start by defining a model run-time

environment for your application, and complete the process by activating the

model into a working z/OS or OS/390 application.

This chapter provides an overview of how you gradually build this server model

and turn it into a run-time environment that exploits traditional strengths of the

z/OS or OS/390 operating system. To accomplish these tasks, you must make sure

the Administration application has a connection to a properly configured and

active WebSphere for z/OS installation. Detailed instructions for creating a server

and installing your applications appear in Part 2, “Creating, assembling and

deploying J2EE server applications,” on page 107.

1. Define the J2EE server, J2EE server instance, and J2EE resources

 When you use the Administration application to define a J2EE server, you

create a model that includes the elements illustrated in Figure 5 on page 14.

© Copyright IBM Corp. 2000, 2003 13

The model includes additional elements, such as system and sysplex, that

define how the J2EE server fits into a z/OS or OS/390 configuration for test or

production. For the purpose of defining a run-time environment for your

application, however, you may concentrate on these model elements:

v A server that represents the application environment. A server is an entity

that is responsible for a certain type of work that runs on z/OS or OS/390.

 A server also is a logical grouping of replicated server instances. Servers

allow you to partition workloads into separate server instances, but still refer

to them as a single unit. Servers are generic to a sysplex.

v A server instance in which your application will run.

 A server instance is a collection of address spaces that work together to

receive requests for your application’s components, and to run and manage

your application’s code. The server instance is responsible for running and

managing your application components through an EJB container for

Enterprise beans, or a Web container for servlets and JSPs. Server instances

are specific to only one z/OS or OS/390 system.

v A J2EE resource and J2EE resource instance. They represent, respectively,

generic types of system resources and the specific subsystems that manage

those types. For example, DB2 is a type of z/OS or OS/390 system resource,

and a specific DB2 subsystem might manage all of the DB2 databases and

tables on that system.
2. Install Enterprise archive (EAR) files containing your J2EE applications

 Your J2EE applications also become part of the server model. As part of the

installation process:

v Application artifacts (including EAR, JAR and WAR files) are transferred

from the workstation to z/OS or OS/390.

v Application metadata is stored so that WebSphere for z/OS can access and

manage J2EE application components.

v Bean and servlet resources and references are resolved through the use of the

Java Naming and Directory Interface (JNDI).

v The container parameters for the J2EE server are configured through the

deployment descriptors for installed applications, modules, components, and

methods.

Figure 5. Model of a J2EE server

14 WebSphere for z/OS: Assembling J2EE Applications

v Web applications are provided with a fully qualified URI that enables the

WAR files and the EJB JAR files to be accessed through HTTP protocol when

requested by a client.

Figure 6 illustrates the result of the server definition and application installation

process: a model of the application server instance with:

v An EJB container (for Enterprise beans), and possibly a Web container (for

servlets and JSPs).

v Connections to the J2EE resources, which WebSphere for z/OS creates as part

of the application installation

Note: Currently, if you are installing a J2EE application containing servlets or

JSPs, you must complete some additional tasks to configure a Web

container for the J2EE server. Then you may use the Administration

application to install your application. Details appear later in this book,

in the step-by-step instructions for creating a J2EE server.

3. Convert the conversation model into an active J2EE server run-time

environment

 Once you have a model of the run-time environment for your sample

application, you start the last phase of this process: converting the model into

an active run-time environment on z/OS or OS/390.

 First, you use the Administration application to commit the server model,

which is analogous to permanently saving the definition.

 Then you use the Administration application to activate the server. Figure 7 on

page 16 illustrates how the model elements correspond to active elements in

the z/OS or OS/390 system.

Figure 6. Installing a J2EE application in a J2EE server

Chapter 3. Overview of J2EE server definition and activation 15

In particular, note the following elements:

v A server instance consists of:

– A control region that receives and queues client requests to the z/OS or

OS/390 workload manager (WLM).

– One or more server regions (z/OS or OS/390 address spaces). A server

region consists of several functions that work together to run and manage

your application’s code. A Java virtual machine (JVM) runs in a server

region address space; your application components will run in this JVM.

 WLM starts additional server regions depending on the volume of

incoming requests.
v The server region containers manage the lifecycle of application components

installed in this server. Each server region can find the executable application

code that was installed in the HFS.

v A J2EE resource instance is equivalent to one subsystem managing one type

of resource. Each server instance may be connected to one or more J2EE

resource types and subsystems.

After you activate a server model, you can start a J2EE server instance that is

ready to handle client requests. The sequence of events happens like this:

1. The control region receives client requests through TCP/IP, and sends them to

WLM.

2. WLM balances the workload of client requests among server regions, starting

additional server regions as necessary.

3. When a server region receives a client request to process, it determines whether

the request is for an Enterprise bean or a Web component, and directs the

Figure 7. An active J2EE application server

16 WebSphere for z/OS: Assembling J2EE Applications

request to either the EJB container or Web container. The container then locates

the code for the referenced application component, and processing for the client

request begins.

4. If the use of J2EE resource is necessary to complete processing on behalf of the

client, the server region connects to an actual z/OS or OS/390 subsystem, such

as DB2. The server region may connect to any subsystem that is defined to the

server instance as a J2EE resource.

Chapter 3. Overview of J2EE server definition and activation 17

18 WebSphere for z/OS: Assembling J2EE Applications

Chapter 4. A closer look at the J2EE server

The following table lists the topics in this chapter, which describe how WebSphere

for z/OS satisfies or implements Java 2 Platform, Enterprise Edition (J2EE)

requirements. Reading these topics can help you understand how to exploit the

WebSphere for z/OS environment so that your J2EE applications benefit from

traditional z/OS and OS/390 security, scalability, and reliability.

 Understanding... Associated information (See . . .)

WebSphere for z/OS

implementations

v “Security”

v “Naming” on page 42

v “Application programming interfaces” on page 43

v “Connectors” on page 64

How to exploit the

WebSphere for z/OS

environment and

services

v “The WebSphere for z/OS environment for Web applications”

on page 80

v “Web services” on page 105

Security

WebSphere for z/OS provides a variety of security services that allow you to

control access to application components running in a J2EE server and, in turn, the

z/OS or OS/390 system resources that those components use. These security

services address client and server authentication in a distributed network, and

authorization to use specific resources. At your installation, system programmers

and security administrators have already selected which security mechanisms are

appropriate for systems, based on their knowledge of the installation and its

resources. While you might not be directly involved in setting up security,

knowing which mechanisms are in use can help you determine what additional

controls, if any, are required for new application components that you plan to

assemble, deploy, and install in a WebSphere for z/OS J2EE server.

For example, if you plan to deploy an application that does not have any security

checking in its logic, you might need to know how you can use z/OS or OS/390

security mechanisms to protect your application’s methods and data, to

authenticate clients, to propagate client identities, or to encrypt confidential data

that might flow on the network.

The following topics summarize WebSphere for z/OS support for security:

v Network and system security mechanisms for authentication and authorization,

which are discussed in detail in WebSphere Application Server V4.0.1 for z/OS and

OS/390: Installation and Customization, GA22-7834, and

v Security-related application programming interfaces and definitions for

controlling access to Enterprise beans or specific bean methods.

v Security-related application programming interfaces and definitions for

controlling access to Web application components.

Authentication services for J2EE clients and servers

Proper security for any system requires that users or programs prove their identity;

that is, authenticate themselves. Figure 8 on page 20 lists the user identification

© Copyright IBM Corp. 2000, 2003 19

and authentication services that are available for identifying J2EE clients,

depending on where they reside in relation to the J2EE application components

they want to use. Authentication mechanisms are negotiated separately for each

combination of client and server.

Keep in mind that application components in a WebSphere for z/OS J2EE server

also can be clients of application components in other WebSphere for z/OS J2EE

servers. In other words, clients might request a service that requires a server to

forward the request to another server. In such cases, the system must handle

delegation, the availability of the client identity for use by intermediate servers and

target servers.

The following list corresponds with the numbered items in Figure 8:

1. Local clients and servers, which run in the same z/OS or OS/390 system, use

their user IDs to identify themselves when requesting a service. Just like other

z/OS or OS/390 applications, WebSphere for z/OS uses the operating system

to keep track of the user identities and makes calls to the security service

during the execution of a piece of work.

Figure 8. Client identification and authentication

20 WebSphere for z/OS: Assembling J2EE Applications

2. Clients and servers that run on non-z/OS or non-OS/390 platforms can be

authenticated using several security mechanisms:

v Configure J2EE servers to accept unauthenticated clients, which provides no

protection from tampering. In this case, the server establishes a default

identity for every unauthenticated request received.

v Use Secure Sockets Layer (SSL) security, which provides encryption and

authentication services. Encryption ensures the integrity of messages in a

network.

 WebSphere for z/OS security provides several types of client authentication

that take advantage of SSL:

– Basic authentication, in which the server proves its identity by passing a

digital certificate to the client, which passes back an encrypted user ID

and password known by the server.

– Client certificate support, in which both the server and client supply

digital certificates to prove their identities to each other.
v Use Distributed Computing Environment (DCE), which uses a third-party

verification technique that verifies that clients are communicating with the

correct servers, and servers are communicating with the correct clients. DCE

also allows you to encrypt messages and check for tampering.
3. Clients and servers that run on other z/OS or OS/390 systems in the same

sysplex can be authenticated using any of the mechanisms for network cases

listed in the previous item (item 2). All network protocols are supported

between clients and servers within the sysplex.

 Clients and servers in the same sysplex also may use the following

mechanisms:

v PassTickets, in which the client’s user ID is used for identification and a

PassTicket for authentication. A PassTicket is a one-time-use password that is

dynamically generated.

v Kerberos over SSL, in which Kerberos client authentication is used together

with SSL to provide a complete authentication mechanism. SSL serves as the

transport layer, providing message encryption and initial authentication,

while Kerberos provides the ability to securely exchange data between client

and server.

v SSL identity assertion, or trusted association, in which an intermediate server

sends already verified client identities to a target server. Once the target

server recognizes the intermediate server as trusted, the target server can

avoid the process of authenticating client requests received from the

intermediate server.

Note: Only the following mechanisms allow you to propagate client identity in

server-to-server interactions:

v Within the same z/OS or OS/390 system: WebSphere for z/OS uses the

operating system’s control data to propagate client identity.

v Within a sysplex:

– Passtickets

– Kerberos over SSL

– SSL identity assertion

Authorization controls for J2EE clients and servers

In addition to supporting various authentication mechanisms, WebSphere for z/OS

also supports various authorization controls to prevent inadvertant or malicious

destruction of resources. Once your installation has determined how to

authenticate clients and servers in a distributed environment, security

Chapter 4. A closer look at the J2EE server 21

administrators need to determine whether these clients and servers require

authorization to use specific WebSphere for z/OS, z/OS, or OS/390 resources.

When a request flows from a client to a server, or from a server to another server,

WebSphere for z/OS may check the user ID associated with a request to determine

whether this user has the authority to make such a request.

WebSphere for z/OS requires a subset of possible authority checks, and the

authorization mechanisms for those checks are set up when your installation’s

system programmers customize WebSphere for z/OS, before they can run the

installation verification programs (IVPs). Depending on your installation’s security

policies, you might have to work with a security administrator to modify these

authorization mechanisms, or set up additional mechanisms tailored to the

processing of the J2EE applications you plan to install.

Figure 9 illustrates the system resources that you might need to protect through

authorization controls. The characteristics of the J2EE application components you

are using, along with your installation’s security policies, determine which controls

are required.

The following list corresponds with the numbered items in Figure 9, and highlights

the authorization mechanism that your installation uses to protect each resource:

1. For WebSphere for z/OS, the LDAP component of the z/OS or OS/390 Security

Server provides the directory services for the Java Naming and Directory

Interface (JNDI) naming and interface repository services. The contents of the

directory are stored in DB2 tables. Your installation can set up LDAP access

control lists (ACLs) to protect its objects.

2. WebSphere for z/OS uses specific directories in the hierarchical file system

(HFS) for configuration data. During installation and customization, your

system programmers check to make sure the appropriate run-time servers are

assigned ownership of or permission to access specific files.

3. Each WebSphere for z/OS J2EE server is comprised of one control region and

one or more server regions. Control regions run only authorized programs that

Figure 9. Authorization controls in the WebSphere for z/OS environment

22 WebSphere for z/OS: Assembling J2EE Applications

are loaded from Authorized Program Facility (APF) libraries. Server regions, on

the other hand, contain application code that usually runs unauthorized.

Because of this fact, all server regions require authorization to profiles in the

SERVER class, which controls access to authorized routines in the control

region.

 Additionally, your installation can use the CBIND class to restrict a client’s

ability to access servers, or may deactivate the class if this kind of access

control is not required.

Note: On z/OS or OS/390, each control region, server region, and client has a

user ID associated with it.

4. J2EE application components can be deployed to set identities that:

v Control access to individual components or their methods.

 Application developers or assemblers can deploy J2EE application

components to use security roles, which identity callers with authorization to

invoke the component or its methods. For security roles to work, the

deployer or z/OS or OS/390 security administrator must define the security

roles to the SecureWay Security Server for z/OS and OS/390 (RACF) in the

EJBROLE class.

v Control access to any J2EE resources or z/OS or OS/390 system resources,

during execution of a J2EE application component or individual method.

 By default, during the execution of an Enterprise bean or a Web application,

WebSphere for z/OS uses:

– Caller identity on downstream processing requests for J2EE resources

(such as other beans).

– Server identity on downstream processing requests for z/OS or OS/390

system resources or resource managers (such as DB2).

Application assemblers or deployers can change this default behavior by

deploying a J2EE application component or its methods with RunAs or

synchronization settings. Depending on the values used for these settings,

the deployer or z/OS or OS/390 security administrator might need to define

RACF profiles for the EJBROLE class, and the deployer also might need to

enable synchronization in the WebSphere for z/OS J2EE server.
5. Resource managers such as DB2, CICS, and IMS have implemented their own

resource controls to protect subsystems, programs, and data. If your installation

uses any of these controls, the appropriate profiles must be defined in the

security product in use on z/OS or OS/390.

Table 2 on page 24 provides a summary of all authorization controls, and indicates

whether they are required or optional.

Chapter 4. A closer look at the J2EE server 23

Table 2. Alphabetical summary of authorization controls for the WebSphere for z/OS environment

Method of access

control

Protected resource Required/optional for J2EE server Required/optional for J2EE

client1

CBIND class2 Through profile

CB.BIND.srvname:

WebSphere for z/OS

J2EE servers

Optional. If your installation uses

this CBIND class profile, the

WebSphere for z/OS Systems

Management user IDs require read

access to this profile for each new

J2EE server you create for your

applications.

Optional. If your installation uses

this CBIND class profile, J2EE

clients require access to the J2EE

servers that contain application

components that the client will

use.

Through profile

CB.srvname: J2EE

application

components installed

in the server

Optional. If your installation uses

this CBIND class profile, the

WebSphere for z/OS Systems

Management user IDs require read

access to this profile for each new

J2EE server you create for your

applications.

Optional. If your installation uses

this CBIND class profile, J2EE

clients require access to the J2EE

servers that contain application

components that the client will

use.

DB2 GRANT

statements

Alternative: Use the

DSNR class.

DB2 databases and

tables

Optional. If your installation is

using DB2 access controls for DB2

databases, grant access for all

control regions and server regions.

Optional. Use only for J2EE

application components or

connectors that use an operating

system identity other than the

J2EE server identity.

DB2 secondary

authorization IDs

DB2 databases and

tables

Optional. If applications installed

in the J2EE server contain

container-managed (CMP) and

bean-managed (BMP) Enterprise

beans that use unqualified table

references, define an SQL ID for

the DB2 datasource associated

with the server. For further

information about using SQL IDs

for datasources, see “Overview of

SQLID for managed datasources”

on page 34.

Not applicable.

DSNR class

Alternative: Use

DB2 GRANT

statements.

DB2 subsystem Optional. If your installation is

using DB2 access controls for DB2

databases, grant access for all

control regions and server regions.

Optional. Use only for J2EE

application components or

connectors that use an operating

system identity other than the

J2EE server identity.

EJBROLE or

GEJBROLE class3

If J2EE applications

using security roles

are installed,

EJBROLE class is

required;

GEJBROLE is

optional.

J2EE application

components installed

in a J2EE server

Optional. If J2EE applications

using method permissions are

deployed in a J2EE server with the

default RunAs server setting,

either:

v Permit the server region

identity to the defined security

roles, or

v Redeploy the application with a

new security role defined for

server use.

If J2EE applications using security

roles are deployed in a J2EE

server with the RunAs caller or

role setting, permit the J2EE client

or role identity to the EJBROLE

class.

FACILITY class

(IMSXCF

.OTMACI)

IMS subsystem and

resources

Optional. Use only for J2EE

servers that delegate client

requests to IMS through OTMA,

passing the server identity.

Optional. Use only for J2EE

application components or

connectors that use an operating

system identity other than the

J2EE server identity.

24 WebSphere for z/OS: Assembling J2EE Applications

Table 2. Alphabetical summary of authorization controls for the WebSphere for z/OS environment (continued)

Method of access

control

Protected resource Required/optional for J2EE server Required/optional for J2EE

client1

HFS file

permissions

HFS files Required. Specific permissions are

set for J2EE server configuration

files; see WebSphere Application

Server V4.0.1 for z/OS and OS/390:

Installation and Customization,

GA22-7834 for further details.

Required only if the J2EE server

property Enable Setting OS

Thread Identity to RunAs

Identity is set, and the RunAs

identity is caller or security role.

LDAP server access

control lists (ACLs)

LDAP objects (related

to Naming services)

Optional. Typically, installations

use a general ANYBODY user ID

with read access to the LDAP

name space, which allows both

servers and clients to access

naming services. If necessary, see

WebSphere Application Server V4.0.1

for z/OS and OS/390: Installation

and Customization, GA22-7834 for

further details.

Not applicable.

SERVER class WebSphere for z/OS

control regions

Required. Server regions must

have read access to profiles in the

SERVER class.

Not applicable.

SURROGAT class

(*.DFHEXCI)

CICS subsystem and

resources

Optional. Use only for J2EE

servers that delegate client

requests to CICS through EXCI,

passing the server identity.

Optional. Use only for J2EE

application components or

connectors that use an operating

system identity other than the

J2EE server identity.

J2EE server

property Enable

Setting OS Thread

Identity to RunAs

Identity

The operating system

identity on the thread

of execution

Optional. Use only if you want to

enable J2EE application

components or connectors to

change the execution identity for

non-J2EE resources.

Not applicable.

1. This column applies to the J2EE identity that might request access to a protected resource. By default, the J2EE

identity is that of the client initiating the request. Because this identity is modifiable by RunAs settings, however,

the J2EE identity might be the J2EE server region ID or the user ID associated with a security role.

2. These two profiles use the variable srvname which is the name of the J2EE server.

3. For further details about using security roles, security identities, and the EJBROLE and GEJBROLE classes, see

“Authorization controls for J2EE application components.”

In other topics in this book, step-by-step procedures for setting up J2EE servers

and clients list which security controls might need to be in place. Most of these

authorization controls are discussed in more detail in WebSphere Application Server

V4.0.1 for z/OS and OS/390: Installation and Customization, GA22-7834.

Authorization controls for J2EE application components

In addition to supporting authorization controls to protect J2EE servers and the

application components that run in them, WebSphere for z/OS also supports two

distinct forms of authorization controls:

v Declarative forms of authorization, in which application assemblers specify

access to a J2EE application component at the method level, and

v Application programming interfaces (APIs), which application programmers or

bean providers use in the logic of their components.

Chapter 4. A closer look at the J2EE server 25

These controls provide authorization checking on a more granular level than

client-to-server interaction.

Suppose your installation uses a banking application containing an Enterprise bean

that manages all activities for individual bank accounts. Your installation might

want, for example, to allow all bank tellers to invoke this bean for deposits and

withdrawals, but to allow only bank managers to use this bean for closing

accounts. In this case, all bank tellers and managers require access to the Enterprise

bean, but only managers should be authorized to use the bean’s closeAccount

method. Your installation can accomplish these authorization checks using security

roles and method permissions.

These authorization checks are part of the security management model defined in

the Sun Microsystems J2EE and EJB specifications. Using this security model:

1. The bean provider (also known as the application developer) codes beans that

are intended to be portable across all J2EE platforms. With this goal in mind,

bean providers might not suggest any security policies for individual J2EE

application components, but they have the option of doing so by defining

security-role-reference elements in a component’s deployment descriptor. These

elements identify types of users that should have authority to invoke a

component or its methods. Bean providers also can use security application

programming interfaces (APIs) to perform authorization checks on a

component or method level. These APIs are:

v The getCallerPrincipal method, which allows bean methods to obtain the

current caller’s security context.

v The isCallerInRole method, which allows bean providers to code security

checks that cannot be achieved through the use of method permissions

defined in a deployment descriptor.

These interfaces are platform-independent; knowledge of the component’s

potential run-time environments is not required to use these mechanisms.

2. Application assemblers combine Enterprise beans and other components into

J2EE applications that address a business problem or implement a business

process. These components may come from diverse sources, so part of the

application assembler’s job is to integrate these components so that they fit into

the customer installation’s security implementation. To do so, application

assemblers define a security view for J2EE application components, which

consists of:

v Security roles, which denote logical permissions or general types of users,

rather than actual users and user groups in a security implementation.

Security roles may be defined at the bean or application level. If the bean

provider used any security role references, which are defined at the method

level, the application assembler must link those references to one of the

security roles.

v Method permissions, which indicate the security role that may invoke a

specific bean home or remote interface method.

This logical view maps to the actual security implementation on a particular

platform. Knowledge of security policies— not security implementation— is

required to define this application security view. Application assemblers and

deployers work with security administrators to understand installation security

policies.

 Application assemblers must use a WebSphere application assembly tool to

define the security view. “A WebSphere application assembly tool” means

26 WebSphere for z/OS: Assembling J2EE Applications

either the z/OS edition of the Application Assembly tool, the WebSphere Studio

Application Developer tool, the WebSphere Studio Application Developer

Integration Edition tool, or Direct Deployment Tool/390fy.

3. Security administrators work with application assemblers and deployers to set

or communicate installation security policies. If adjustments to the installation’s

security implementation are required for particular J2EE applications, the

security administrator completes this work.

 To support application security controls in the WebSphere for z/OS

environment, security administrators need to define or update RACF profiles

for the EJBROLE class. The EJBROLE class is required for applications that use

security roles for method permissions, or use the isCallerInRole method. The

GEJBROLE class, a grouping class, is also an option that might decrease the

number of required RACF definitions to support applications that use security

roles or method permissions.

For further details, read “Security roles and method permissions,” which uses the

banking application example to illustrate how to set up and use security roles to

control access on a method level.

Security roles and method permissions

To understand how security roles and method permissions work in the WebSphere

for z/OS environment, consider the procedure illustrated in Figure 10 on page 28,

which highlights key steps for deploying an Account Enterprise bean in a

WebSphere for z/OS J2EE server. Through this example, the list following the

diagram explains the required authorization controls and process for deploying an

Enterprise bean that uses programmatic security checks. To make these security

checks function properly during bean execution, the WebSphere for z/OS security

domain (RACF) must have user profiles defined for the EJBROLE class.

Assume that the sample Enterprise bean is one component of a banking

application, and that the bean itself is designed to manage activities for a banking

account, such as withdrawals, deposits, and so on. Specifically, the remote interface

includes deposit, withdraw, getBalance, setBalance and closeAccount methods.

The home interface includes a number of methods, such as findByPrimaryKey, for

creating, removing and finding instances of the Account bean.

Chapter 4. A closer look at the J2EE server 27

The following list corresponds with the numbered items in Figure 10:

1. The sample Account bean uses the isCallerInRole interface to perform

authorization checks for specific operations. For the isCallerInRole checks, the

bean provider uses the role name supervisor for activities that might require

authorization controls.

 Example: The code fragment illustrates a method for processing a deposit into

the account. While several classes of user may invoke the deposit method,

supervisor authority is necessary to deposit more than $10,000.

public int deposit(int amount) throws java.rmi.RemoteException {

 if (amount > 10000) {

 if (!ejbContext.isCallerInRole("supervisor"))) {

 throw new SecurityException("Only a supervisor may process

 deposits of this amount");

 }

 }

 setBalance(Balance+amount);

 return Balance;

}

 Bean providers must include security-role-reference elements when the

isCallerInRole method is used in the component code. In the deployment

descriptor, security role references may be defined on a component or method

level.

2. The application assembler defines a security view for the banking application,

with the help of the z/OS or OS/390 security administrator. For this sample,

assume that the application assembler and security administrator decide that

three RACF profiles are required for use with the Account bean: customer,

teller, and manager.

Figure 10. Deploying an Enterprise bean that uses security roles as authorization controls

28 WebSphere for z/OS: Assembling J2EE Applications

Using the WebSphere for z/OS Application Assembly tool, the application

assembler:

a. Adds one security role for each of the three z/OS or OS/390 (RACF)

profiles, using role names that exactly match the profile names: customer,

teller, and manager.

b. Links the bean’s security role reference, supervisor, to the RACF profile,

manager, which most closely matches the intent of the bean developer.

c. Defines method permissions for each of the bean methods. For example,

you might define permissions as follows:

v The customer, teller, and manager security roles may access the deposit

method.

v Only the manager role may access the closeAccount method.

Part of the resulting application deployment descriptor is shown in Figure 10

on page 28.

Note: The application assembler also has the option of explicitly defining the

security identity under which individual methods or beans should run.

Methods or beans may be run as client, server, or security role. For

further information, see “RunAs identities” on page 30.

3. The z/OS or OS/390 security administrator needs to link the application

assembler’s security roles to actual users or user groups on z/OS or OS/390.

For this sample, the security administrator:

a. Activates the EJBROLE class and allows z/OS or OS/390 systems to share

the generic profiles for this class.

b. Defines the customer, teller, and manager profiles associated with the

EJBROLE class, with universal access authority for each profile set to NONE.

c. Permits access to each EJBROLE class profile to specific user IDs or groups,

with READ access.

d. Refreshes the EJBROLE class profile information stored in the RACF

database.

Example:

SETROPTS CLASSACT(EJBROLE)

SETROPTS RACLIST(EJBROLE) GENERIC(EJBROLE)

/***/

/* Defining EJBROLE profiles */

/***/

RDEFINE EJBROLE customer UACC(NONE)

RDEFINE EJBROLE teller UACC(NONE)

RDEFINE EJBROLE manager UACC(NONE)

/***/

/* Permitting EJBROLE class access. */

/***/

PERMIT customer CLASS(EJBROLE) ID(PUBGRP) ACC(READ)

PERMIT teller CLASS(EJBROLE) ID(TELLRGRP) ACC(READ)

PERMIT manager CLASS(EJBROLE) ID(MGRGRP) ACC(READ)

SETROPTS RACLIST(EJBROLE) GENERIC(EJBROLE) REFRESH

When the sample application is installed in the WebSphere for z/OS J2EE server,

and a client request drives the Account bean’s closeAccount method, the J2EE

server performs an authorization check on the caller’s identity. If the client user ID

is defined to the RACF group MGRGRP, this caller has RACF authority to the

EJBROLE profile, and passes the authority check. WebSphere for z/OS will process

the method request.

Chapter 4. A closer look at the J2EE server 29

Alternative: To save some effort, especially in a more elaborate application than

this one, the security administrator could group logical security roles in a RACF

GEJBROLE profile. For example, the administrator could define a GEJBROLE

profile authorizedPersonnel and allow certain methods, such as deposit to be

accessed by the authorizedPersonnel security role. Then the administrator could

add teller and manager as members of the authorizedPersonnel profile. Sample

RACF commands for this alternative are as follows.

Example:

/***/

/* Defining GEJBROLE profiles */

/***/

SERTOPTS CLASSACT(GEJBROLE)

RDEFINE GEJBROLE authorizedPersonnel UACC(NONE) ADDMEM(teller manager)

For detailed instructions on deploying Enterprise beans that use security roles, see

Chapter 11, “Using security roles and RunAs identities with Enterprise beans,” on

page 231.

RunAs identities

WebSphere for z/OS provides support for the use of “RunAs” identities, which is

similar to the RunAs support defined in the Sun Microsystems EJB 2.0

specification. The WebSphere for z/OS RunAs support allows application

assemblers to explicitly define the security identity under which individual

methods should run. Methods may be run as caller, server, or security role. These

identity settings control access to any required J2EE resources during execution of

a J2EE application component or individual method. By default, during the

execution of an Enterprise bean, WebSphere for z/OS uses the caller identity on

downstream processing requests for J2EE resources. Downstream processing

includes outbound calls to other J2EE servers (if the bean becomes a client of a

bean residing in another server).

Using RunAs server or security role might simplify the set-up required to

implement security for J2EE applications on the z/OS or OS/390 platform, but

might not satisfy the needs of your J2EE application. For example, using the server

region identity might be advantageous if your installation has a small number of

WebSphere for z/OS J2EE servers handling requests from hundreds or thousands

of different J2EE clients. In this case, your installation could grant authorization to

only its server region user IDs, rather than granting authorization to all potential

J2EE clients. On the other hand, your installation might want to track the use of

system resources by specific clients or groups. In such a case, for accounting

purposes, your installation might want to associate client user IDs or security roles

with application processing.

 To modify the default RunAs caller identity setting:

1. Use a WebSphere application assembly tool to modify the RunAs permission

for a specific method, from caller to either server or security role. “A

WebSphere application assembly tool” means either the z/OS edition of the

Application Assembly tool, the WebSphere Studio Application Developer tool,

the WebSphere Studio Application Developer Integration Edition tool, or Direct

Deployment Tool/390fy.

2. Make sure that appropriate RACF profiles are in place for the server identity or

security role identity to be authorized to perform downstream processing.

 For RunAs support, the security administrator defines profiles associated with

the EJBROLE class, specifying application data, which is set to the actual user

ID that WebSphere for z/OS is to use for the RunAs identity. For example, if

30 WebSphere for z/OS: Assembling J2EE Applications

you wanted to use RunAs identities for those bean methods that require

management authority in the banking example described in “Security roles and

method permissions” on page 27, you would change the RACF commands to

include the highlighted APPLDATA parameter:

SETROPTS CLASSACT(EJBROLE)

SETROPTS RACLIST(EJBROLE) GENERIC(EJBROLE)

/***/

/* Defining EJBROLE profiles */

/***/

RDEFINE EJBROLE customer UACC(NONE)

RDEFINE EJBROLE teller UACC(NONE)

RDEFINE EJBROLE manager UACC(NONE) APPLDATA(’BANKMGR’)

/***/

/* Permitting EJBROLE class access. */

/***/

PERMIT customer CLASS(EJBROLE) ID(PUBGRP) ACC(READ)

PERMIT teller CLASS(EJBROLE) ID(TELLRGRP) ACC(READ)

PERMIT manager CLASS(EJBROLE) ID(MGRGRP) ACC(READ)

SETROPTS RACLIST(EJBROLE) GENERIC(EJBROLE) REFRESH

3. Use the WebSphere for z/OS Administration application to install the

application, and activate the J2EE server.

Chapter 11, “Using security roles and RunAs identities with Enterprise beans,” on

page 231 contains detailed instructions for deploying Enterprise beans that use

RunAs identities.

Synchronizing operating system thread identity to RunAs identity: WebSphere

for z/OS additionally allows application assemblers and deployers to associate the

RunAs identity with the operating system thread, by setting the Set OS thread

identity to RunAs identity for specific bean methods. This association means

that the caller or security role identity— rather than the server region identity— is

used for z/OS or OS/390 system service requests, such as access to files and

database management systems. Note that the WebSphere for z/OS J2EE server may

be configured to enable or disable this association (or synchronization). The default

setting disables the ability to modify the identity on the operating system thread,

regardless of the Set OS thread identity to RunAs identity setting in the

installed application’s deployment descriptor. If the application installer does not

enable synchronization, any method that sets the RunAs identity to the operating

system thread will fail with a no_permission error.

To force WebSphere for z/OS to use the RunAs identity on the operating system

thread:

1. Use the WebSphere for z/OS Application Assembly tool to set the Set OS

thread identity to RunAs identity property for a specific method. (Clicking

on the IBM +ThreadID tab opens a display window that lists each method in

the bean, with checkboxes to the left of each method name. Clicking on the

checkbox selects the method for synchronizing to the operating system thread.)

2. Make sure that appropriate RACF profiles are in place for the server identity or

security role identity to be authorized to access z/OS or OS/390 system

resources.

3. Use the WebSphere for z/OS Administration application to:

a. Configure the J2EE server to enable setting the operating system thread to

the RunAs identity.

b. Install the application.

c. Activate the new or modified J2EE server configuration.

Chapter 4. A closer look at the J2EE server 31

Summary of RunAs and operating system thread settings and behavior: Table 3

illustrates how various combinations of RunAs and operating system thread

settings in an application and J2EE server affect run-time processing.

 Table 3. Summary of RunAs and OS thread settings and behavior

Deployment descriptor contents Setting for J2EE server property ″Enable Setting OS Thread ID to

RunAs ID″

RunAs setting

Set OS thread

identity to RunAs

identity setting

Disabled (default) Enabled

RunAs server Not selected

Authorization checks:

Use J2EE server region identity

Method execution and downstream

calls:

Use J2EE server region identity

System services:

Use J2EE server region identity

Same behavior as listed for

disabled (default) setting for

J2EE server property.

Selected No_permission failure when method is

invoked

Same behavior as listed for

disabled (default) setting for

J2EE server property.

RunAs caller (or no

explicit RunAs

setting)

Not selected

Authorization checks:

Use caller’s user ID (usually client

user ID)

Method execution and downstream

calls:

Use J2EE server region identity

System services:

Use J2EE server region identity

Same behavior as listed for

disabled (default) setting.

Selected No_permission failure when method is

invoked

All processing uses caller’s

user ID.

RunAs security role Not selected

Authorization checks:

Use RACF ID that is mapped to

specified security role

Method execution and downstream

calls:

Use J2EE server region identity

System services:

Use J2EE server region identity

Same behavior as listed for

disabled (default) setting.

Selected

Authorization checks:

Use RACF ID that is mapped to

specified security role

Method execution and downstream

calls:

Use RACF ID that is mapped to

specified security role

System services:

Use J2EE server region identity

All processing, including

system services, uses RACF

ID that is mapped to

specified security role.

32 WebSphere for z/OS: Assembling J2EE Applications

Given the information presented in Table 3 on page 32, you can determine what

security mechanisms you need to have in place for Enterprise beans that use

security roles or identities. See “Summary of requirements for using security roles

and identities” for further details.

Summary of requirements for using security roles and identities

Table 4 briefly reviews the assembly and run-time configuration requirements for

deploying Enterprise beans that use programmatic security controls. For detailed

instructions for deploying such beans, see Chapter 11, “Using security roles and

RunAs identities with Enterprise beans,” on page 231.

 Table 4. Assembly and configuration tasks for programmatic security controls

If your application uses. . . Then complete these application

assembly tasks. . .

And complete these run-time

configuration tasks. . .

isCallerInRole method 1. Define security roles

2. Link security role references to the

defined roles

3. Modify method permissions by

selecting appropriate roles

1. Define EJBROLE classes and

profiles using RACF

2. (Optional) Define GEJBROLE

classes

Note: During run-time, the

isCallerInRole method always returns

true if the EJBROLE class has not been

activated.

Security roles and method

permissions

1. Define security roles

2. Modify method permissions by

selecting appropriate roles

1. Define EJBROLE classes and

profiles using RACF

2. (Optional) Define GEJBROLE

classes

Note: During run-time, method

permission checks always return true

if the EJBROLE class has not been

activated.

Chapter 4. A closer look at the J2EE server 33

Table 4. Assembly and configuration tasks for programmatic security controls (continued)

If your application uses. . . Then complete these application

assembly tasks. . .

And complete these run-time

configuration tasks. . .

RunAs settings server No assembly tasks are required,

beyond setting the RunAs setting.

Make sure that the J2EE server region

user ID has authorization to use

system resources that the bean

requires. For example, check:

v CB.srvname profile for the CBIND

class

v Authentication credentials for

communicating with remote servers.

caller (or no

explicit setting)

No assembly tasks are required Make sure that the J2EE client’s user

ID has authorization to use system

resources that the bean requires. For

example, check:

v DB2 GRANT statements or DSNR

class profile

v Authentication credentials for

communicating with remote servers.

security role 1. Define security roles

2. Modify RunAs settings by selecting

appropriate roles (assign user ID

for method execution)

Make sure that the RACF ID that is

mapped to the security role has

authorization to use system resources

that the bean requires. For example,

check:

v DB2 GRANT statements or DSNR

class profile

v Authentication credentials for

communicating with remote servers.

Set OS thread identity to RunAs

identity

No assembly tasks are required,

beyond setting the Set OS thread

identity to RunAs identity property.

1. Make sure that the identity used on

the thread has authorization to use

any system resources.

2. Configure the J2EE server to enable

synchronizing on the operating

system thread.

Overview of SQLID for managed datasources

SQLID for managed datasources is the WebSphere for z/OS equivalent of

userid/password for controlling the use of unqualified table references in

container-managed (CMP) and bean-managed (BMP) Enterprise beans.

WebSphere for z/OS applications that access relational data are frequently

implemented with SQL statements containing unqualified table references. These

unqualified table references must be resolved at runtime. CMP entity beans and

J2EE components that perform direct JDBC access may be constructed with

unqualified table references. The use of unqualified table references promotes

application portability by not constraining the implementation to the name space

conventions of a particular database environment.

WebSphere Application Server enables an application deployer to control the table

qualifier used by the database at runtime. This resolves unqualified table references

by defining a qualifier as part of a managed datasource definition through the

Administration application. This qualifier is specified as a userid/password pair as

34 WebSphere for z/OS: Assembling J2EE Applications

part of a datasource definition on all WebSphere platforms except z/OS and

OS/390. On z/OS and OS/390, the qualifier is specified as an SQLID.

SQLID for managed datasources is a technique used to control effective qualifier

references in DB2 unqualified database table references. These references take the

form of <qualifier>.<tablename> where the <qualifier> exists so that tables with

the same name can exist in the same database.

Example: Here are two examples of database table references:

v test.customer

v prod.customer

The full SQLID statement would therefore take the following form:

SELECT * FROM [qualifier].ATABLE

The technique, which is based on the SQL SET CURRENT SQLID statement, was

developed as an alternative to the WebSphere Application Server Advanced

Edition userid/password function.

Note: See WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834 for more information.

Qualified and unqualified table references

SQL statements are written with either qualified or unqualified table references. If

the table reference is qualified, it is absolute. If unqualified, the database applies a

set of rules (see below) to determine the qualifier.

Rules for CMP: These rules determine the SQL statement qualifier in an

unqualified database table reference for CMP. Going down the list, the first one

that you have will determine your SQL statement qualifier:

v SQLID specified on a datasource definition.

v The userid associated with the current environment (e.g. address space identity).

Rules for BMP: These rules determine the SQL statement qualifier in an

unqualified database table reference for BMP. Going down the list, the first one

that you have will determine your SQL statement qualifier:

v The userid established at connection when the connection is obtained with a

userid and password.

v SQLID specified on a datasource definition.

v The userid associated with the current environment (e.g. address space identity).

Note: See DB2 Application Programming and SQL Guide, SC26-9933 for more

information.

Application Developer Integration Edition schema mapping editor

The WebSphere Studio Application Developer Integration Edition schema mapping

editor makes it possible to assign either unqualified table references in the SQL

statements (which are generated to support the persistence of the CMP entity bean)

or a single, statically-bound qualifier.

Note: If you are doing direct JDBC programming in a component, you get to

decide whether you want to use qualified or unqualified table references.

Chapter 4. A closer look at the J2EE server 35

Web Security

As a component of the Secure Way Security Server for z/OS and OS/390, RACF

provides the functions of authentication and access control for z/OS and OS/390

resources and data (see z/OS Security Server RACF Security Administrator’s Guide,

SA22-7683). In addition, WebSphere for z/OS provides Web security for

applications running under its control. This application security is administered

using a WebSphere application assembly tool. “A WebSphere application assembly

tool” means either the z/OS edition of the Application Assembly tool, the

WebSphere Studio Application Developer tool, the WebSphere Studio Application

Developer Integration Edition tool, or Direct Deployment Tool/390fy.

Similar to EJB access, access to Web applications is controlled by associating the

applications with roles, for which security has been defined. As with EJB security,

Application Assemblers use the Application Assembly tool for z/OS to specify the

security policy to be applied to a Web application. Specifically, when installing a

Web application into a Web container, they specify what roles are allowed to access

a particular URL by specifying security-constraints in the Web application’s

deployment descriptors.

The following example shows a web.xml file, containing security constraints, that

was generated when roles were specified:

<!DOCTYPE web-app (View Source for full doctype...)>

<web-app>

 <display-name>SecureBasic</display-name>

 <description>SecureBasic Webapp</description>

 <servlet>

 <servlet-name>HelloWorldSecureBasicServlet</servlet-name>

 <display-name>Hello World Secure Basic Servlet</display-name>

 <description>Hello World Secure Basic Servlet</description>

 <servlet-class>HelloWorldSecureBasicServlet</servlet-class>

 <security-role-ref>

 <role-name>manager</role-name>

 <role-link>manager</role-link>

 </security-role-ref>

 </servlet>

 <servlet>

 <servlet-name>HelloSecureBasicSessionServlet</servlet-name>

 <display-name>HelloSecureBasicSessionServlet</display-name>

 <description>HelloSecureBasicSessionServlet</description>

 <servlet-class>HelloSecureBasicSessionServlet</servlet-class>

 <security-role-ref>

 <role-name>manager</role-name>

 <role-link>manager</role-link>

 </security-role-ref>

 </servlet>

 <servlet-mapping>

 <servlet-name>HelloSecureBasicSessionServlet</servlet-name>

 <url-pattern>/helloSBsession</url-pattern>

 </servlet-mapping>

 <servlet-mapping>

 <servlet-name>HelloWorldSecureBasicServlet</servlet-name>

 <url-pattern>/helloSBworld</url-pattern>

 </servlet-mapping>

 <welcome-file-list>

 <welcome-file>index.html</welcome-file>

 </welcome-file-list>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>SecureBasicResourceCollection</web-resource-name>

 <description>SecureBasic Webapp Resource Collection</description>

 <url-pattern>/helloSBsession</url-pattern>

 <url-pattern>/helloSBworld</url-pattern>

36 WebSphere for z/OS: Assembling J2EE Applications

<http-method>GET</http-method>

 <http-method>PUT</http-method>

 </web-resource-collection>

 <auth-constraint>

 <description />

 <role-name>manager</role-name>

 </auth-constraint>

</security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>SecureBasicWebappRealm</realm-name>

 </login-config>

 <security-role>

 <description />

 <role-name>manager</role-name>

 </security-role>

 <security-role>

 <description />

 <role-name>employee</role-name>

 </security-role>

 <security-role>

 <description>Big Boss</description>

 <role-name>bigboss</role-name>

 </security-role>

</web-app>

For complete information on specifying security constraints in a Web application,

see the JAVA Servlet Specification v2.2, available at:

http://java.sun.com

When processing a request, the Web container understands what roles, if any, are

required to access the component represented by the input URL. The container will

then validate that the requestor has been authenticated and that the authenticated

user has been granted permission to the required roles. The Web container makes

use of the same SAF based User registry and EJB role profiles as the EJB cntainer

to perform this validation. Therefore, you can use the same User Registry and role

profiles for administering Web applications as you use for Enterprise Beans and

J2EE Services.

Authenticating Web Clients

The main difference between setting up EJB security and setting up Web security is

the challenge mechanism used to acquire authentication data from a requestor. The

authentication data for requestor of a Web application can be specified within the

deployment descriptors of that Web application. The Application Assembler and

System Administrator can use a WebSphere application assembly tool to provide

these deployment descriptors during the assembly process. “A WebSphere

application assembly tool” means either the z/OS edition of the Application

Assembly tool, the WebSphere Studio Application Developer tool, the WebSphere

Studio Application Developer Integration Edition tool, or Direct Deployment

Tool/390fy.

The following challenge mechanisms are suppported:

HTTP Basic Authentication

If this is specified, WebSphere for z/OS will challenge the requestor for a

userid and password using HTTP Basic Authentication. This is similar to

the function provided in Web servers, such as Apache and IBM HTTP

Server. HTTP Basic Authentication does not address the issue of securing

the transport of the userid and password between the server and client. As

with all other servers, it is the responsibility of the application provider

Chapter 4. A closer look at the J2EE server 37

and the administrator to structure the application so that basic

authentication is only performed over a secure connection such as HTTPs

and SSL.

Client Certificate

If this is specified, access to a resource requires a user provided client

certificate. WebSphere for z/OS will ensure that the request is being made

over a mutually authenticated SSL connection. If the mutual authentication

is successfully completed between the server and the HTTP client,

WebSphere for z/OS will consider the certificate to be authentic.

Custom Form

If this is specified, a custom login page must be provided with the

application. When WebSphere for z/OS determines that it needs to

authenticate a user, it will present the custom form to the user’s browser to

prompt for a userid and password.

 This challenge mechanism adheres to the JAVA Servlet Specification V2.2

requirement that Web containers support the capability to manage a

Form-based Login. This specification describes how to provide the form

and how to include it in the deployment descriptor of the Web application.

 When a user is authenticated to an application via a Form-Based Login, the

Web container creates a secure Login Token that is valid for a configurable

period of time (see Chapter 14, “Steps for configuring Web security,” on

page 247). The login is valid on any requests to this Web application on

any J2EE server within the same z/OS or OS/390 sysplex. The Login

Token is communicated to the browser via HTTP Cookies. The cookie

containing the Login Token is sent by the browser on subsequent requests

to this Web application. The Web container uses the Login Token on each

request to determine if the login is still valid or if the user needs to be

re-authenticated.

 Login Tokens do not contain sensitive authentication data such as

passwords. The Tokens are encrypted using private keys that are

maintained in a Server Key ring that can be configured by the

administrator to only be accessible by specific WebSphere Application

Server instances. In addition, the administrator has the ability to specify

that Login Tokens are only to be communicated via a secure transport.

When this option is requested, the Web container will ensure that the

response is being sent over a secure communication channel such as SSL,

before including the cookie containing the Login Token in the output

stream. In addition, the Web container will set the secure bit in the cookie

which indicates to the browser to only send the cookie on subsequent

requests that are made over an SSL connection. Cookies containing Login

Tokens are created in a manner that instructs the browsers only to

maintain them in its session cache and to not save them on disk.

 For example, in a normal situtation, when the LoginTokenEncrypt

environment variable is set to true, the following series of events would

occur:

1. The client issues an HTTP request for which Form-based authentication

is required.

2. The Web container saves the original request in an original request

cookie (jwwwrequest cookie), gets the Form-based Login page, and

serves the Form-based Login page to the requesting client.

3. The Form-based Login page is displayed on the client’s browser.

4. The client enters a user ID and password.

38 WebSphere for z/OS: Assembling J2EE Applications

5. If the user ID and password are valid, the Web container creates a

Login Token cookie ((jwwwcontent cookie), in which the client’s user

ID is encrypted. It then retrieves the original request and sends the

original request and the Login Token cookie to the J2EE server for

processing.

6. The J2EE server decrypts the client’s user ID, does a surrogate login for

the user with the identity of the address space, and serves the original

requested page.

7. The Login Token cookie is attached to any subsequent request from the

same client, thereby eliminating the need for the client to re-enter his

user ID and password.

Note: If you are using an IBM HTTP Server, along with the Local

Redirector Plug-in to handle HTTP requests, (i.e., the

WEB_SECURITY_VERSION property in the jvm.properties file is set

to 1 or the property is absent), some of the actions noted above as

being performed by the Web container, are performed by the Local

Redirector Plug-in.

Digest Authentication

WebSphere does not support this method of authentication on any

platform at this time.

Single sign-On

A Login Token can be used for multiple applications existing on different

WebSphere Application Server’s serving as virtual hosts, provided these virtual

hosts reside in the same sysplex within the domain specified in the

webcontainer.conf file (see Chapter 14, “Steps for configuring Web security,” on

page 247). The name of this domain is used when HTTP cookies are created for the

single sign-on, and determines the scope to which a single sign-on applies.

Note: Cross-domain Single Sign-On is not supported.

Selecting a Web container security collaborator level

The security functions the Web container can provide is determined by the version

of the Web container security collaborator that is specified in the jvm.properties

file:

v Version 1 of the Web container security collaborator uses a SAF user registry and

only provides the following security functions for requests received by the IBM

HTTP Server for z/OS and forwarded to the Web container via the WebSphere

for z/OS Local Redirector plug-in. None of these functions were available for

requests received by the HTTP or HTTPS Transport Handlers:

– Basic authentication

– Form-Based authentication

– Client Certificates

– Single Sign-On across WebSphere/390 Servers
v Version 2 of the Web container security collaborator enables the Web container to

provide most of these security functions for requests that are received by the

HTTP or HTTPS Transport Handler as well as for requests received by the IBM

HTTP Server for z/OS. This version of the collaborator also enables you to use a

trust association interceptor with WebSphere for z/OS.

The following table summarizes the capability and configuration requirements for

the version 1 and Version 2 web security collaborators.

Chapter 4. A closer look at the J2EE server 39

Table 5. Summary of the two Versions of the Web container security collaborator

Version 1 Version 2

Security functions supported v Basic authentication

v Form-Based authentication1

v Client certificate authentication

v Single sign-on authentication

across IBM HTTP Servers for

z/OS1

v Basic authentication

v Form-Based authentication2

v Single sign-on across IBM HTTP

Servers for z/OS2

v Trust asssociation interceptor3

Security is applied to requests

received via

IBM HTTP Server for z/OS and

forwarded to the Web container via

the WebSphere for z/OS Local

Redirector plug-in.

v HTTPTransport Handler

v HTTPS Transport Handler

v IBM HTTP Server for z/OS and

forwarded to the Web container via

the WebSphere for z/OS Local

Redirector plug-in.

Enabled by Specifying

WEB_SECURITY_VERSION=1 in the

JVM properties file or by not

including a

WEB_SECURITY_VERSION property

in the JVM properties file (1 is the

default value).

Specifying

WEB_SECURITY_VERSION=2 in the

JVM properties file.

40 WebSphere for z/OS: Assembling J2EE Applications

Table 5. Summary of the two Versions of the Web container security collaborator (continued)

Notes:

1. To enable Form-Based authentication or single sign-on capability for Web applications being received by the IBM

HTTP Server for z/OS, working in conjunction with the WebSphere for z/OS Local Redirector Plugin, you must:

v Set the WebAuth.LoginToken.Encrypt property in the webcontainer.conf file to true.

v Create a profile of the form BPX.SRV.<userid> in the SURROGAT class for each userid that should be able to

login using Form-Based authentication. (The profile BPX.SRV.* may be used if all users should be able to

login.)

v Grant the IBM HTTP Server’s userid read access to this profile.

v Set the JAVA_PROPAGATE variable In the IBM HTTP Server for z/OS’s httpd.envvars file to NO.

Additionally, if you are going to be using ICSF, you must:

v Create ICSF keys and grant the IBM HTTP Server for z/OS’s address space access to them.

v Set the WebAuth.EncryptionKeyLabel property in the webcontainer.conf file to label of the cryptographic key

that is to be used for Web application security.

If you are not going to be using ICSF, you must:

v Set the WEB_SECURITY_VERSION property in the jvm.properties file to 1.

v Set the following properties in the webcontainer.conf file:

– The WebAuth.UnauthenticatedUserSurrogate property must be set to the identity under which the HTTP

Server runs.

– The WebAuth.SingleSignOn.Enabled property must be set to false.

– The WebAuth.LoginToken.Encrypt property must be set to false.

2. To enable Form-Based authentication or single sign-on capability for Web applications being received by the

HTTP or HTTPS Transport Handler, you must:

v Set the following properties in the webcontainer.conf file:

– The WebAuth.EncryptionKeyLabel property must specify the label of the cryptographic key that is to be

used for Web application security.

– The WebAuth.LoginToken.Encrypt property must be set to true.

v Add the WEB_SECURITY_VERSION property to the jvm.properties file and set it to 2.

v Create ICSF keys and make them available to the server region.

v Permit the server region user ID to the CSFSERV general resource class.

v Add the ENABLE_TRUSTED_APPLICATIONS environment variable to your J2EE server’s current.env. file,

and set it to 1.

3. To enable trust association interceptor support, you must:

v Make the following changes to your J2EE server’s current.env file:

– Add the ENABLE_TRUSTED_APPLICATIONS environment variable to your J2EE server’s current.env.

file, and set it to 1.

– Add the ENABLE_TRUSTED_APPLICATIONSTrustAssociationInterceptor class to the CLASSPATH

environment variable.

v Add the following properties to the WebSphere for z/OS webcontainer.conf configuration file:

– WebAuth.TrustAssociationInterceptor.<value>.ImplClass=<classname>

– WebAuth.TrustAssociationInterceptor.<value>.Properties=<filename>

v Add the WEB_SECURITY_VERSION property to the jvm.properties file and set it to 2.

Chapter 4. A closer look at the J2EE server 41

|
|

|

|
|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

Naming

WebSphere for z/OS uses the LDAP component of the z/OS or OS/390 Security

Server to provide naming and directory services. When your system programmers

install and customize WebSphere for z/OS, they set up an LDAP server that uses

DB2 tables to store name and directory information.

Within the WebSphere for z/OS naming system, there are two namespaces:

v The global namespace, which initially contains home and object references for

J2EE application components that are installed in J2EE servers.

 Your installation may use LDAP access control lists (ACLs) to control access to

the global namespace by J2EE servers, application components and clients. The

global namespace is accessible by a program in any Java Virtual Machine (JVM),

z/OS or OS/390 system, or J2EE server region as long as the program has

appropriate authorization.

v The local namespace, which contains naming subcontexts represented through

java:comp. The local namespace is accessible only by the Java programs running

within a single JVM. In other words:

– All J2EE application components that run in the same J2EE server region may

access the same local namespace.

– A single Java client running on z/OS or OS/390 may access its local

namespace.

WebSphere for z/OS uses caching to increase the performance of JNDI lookup

operations related to both the global and local namespaces. To speed up

subsequent lookups, WebSphere for z/OS caches JNDI context object as they are

bound or initially looked up.

A Java client running on z/OS or OS/390 may change the caching behavior related

to only the global namespace, using one of the following:

v An environment Hashtable in the client code.

v A jndi.properties resource file.

Note: Because a default JNDI properties file is shipped with WebSphere for

z/OS, Java clients must ensure that their own JNDI properties file appears

in the CLASSPATH before the default file. In other words, the client’s

properties file must precede any WebSphere for z/OS JAR files that the

client uses (for example: ws390crt.jar).

v The java command line, using the -D switch.

Before changing JNDI caching, however, you should understand the default

caching behavior in more detail. The following information describes only the

JNDI caching behavior related to the global namespace. WebSphere for z/OS

naming services associates a cache with the initial context (when a

javax.naming.InitialContext object is instantiated), and searches the environment

properties for a cache name. The default cache name is either the provider URL, or

iiop:/// if no provider URL is defined.

Also by default, each cache and its entries have a maximum life that is limited to

the life of a JVM process (that is, the life of a J2EE server region or Java client). You

may, however, use a caching property to clear cache entries before the maximum

life of either the cache or the cache entries is reached.

42 WebSphere for z/OS: Assembling J2EE Applications

Notes:

1. WebSphere for z/OS evaluates cache properties whenever an InitialContext

instance is created.

2. All instances of InitialContext that use the same cache name within a particular

JVM share the same cache instance.

3. After an association between an InitialContext instance and cache is established,

the association does not change. A javax.naming.Context object returned from a

lookup operation inherits the cache association of the Context object on which

the lookup was performed.

4. Changing cache property values with the Context.addToEnvironment or

Context.removeFromEnvironment method does not affect cache behavior.

Properties affecting a given cache instance, however, may be changed with each

InitialContext instantiation.

Further information related to WebSphere for z/OS naming services appears in the

following places:

v “Java Naming and Directory Interface™ (JNDI)” describes JNDI programming

considerations and JNDI properties related to caching behavior.

v Chapter 10, “Using JNDI look-ups,” on page 227 provides programming

examples using JNDI calls.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834 contains recommendations and instructions for

configuring the global namespace, and for configuring an LDAP server and DB2

for use with WebSphere for z/OS J2EE servers.

Application programming interfaces

The following topics briefly describe the technologies and associated application

programming interfaces, in the context of using them in the WebSphere for z/OS

environment. If you are unfamiliar with the concepts and terms in these topics,

consider reading the tutorials, specifications, and other general documentation

which is available at the Sun Microsystems Web site (http://java.sun.com).

Java Naming and Directory Interface™ (JNDI)

To access WebSphere for z/OS naming services, J2EE application components and

clients set the java.naming.factory.initial property to the

com.ibm.websphere.naming.WsnInitialContextFactory value, and then use JNDI

calls to use naming services.

A Java client running on z/OS or OS/390 may change the caching behavior related

to only the global namespace, using one of the following:

v An environment Hashtable in the client code.

v A jndi.properties resource file.

v The java command line, using the -D switch.

To change cache behavior in a Java client running on z/OS or OS/390, use the

following JNDI caching properties. Keep in mind that these properties modify

caching behavior for the individual J2EE application, not for all applications

running in a WebSphere for z/OS J2EE server.

com.ibm.websphere.naming.jndicache.cachename=providerURL

Specifies the name of the cache that a J2EE server uses for Java Naming and

Directory Interface (JNDI) lookups for the global namespace. Use this property

Chapter 4. A closer look at the J2EE server 43

only if you want to assign a cache name other than the default value of the

provider URL. Valid options for cache names are:

providerURL

Specifies the default cache name, which is the same as the value for the

java.naming.provider.url property. URLs are normalized by stripping off

everything after the port. For example, iiop://server1:900 and

iiop://server1:900/com/ibm/initCtx are normalized to the same cache

name.

 If no value is supplied for the java.naming.provider.url property, the

J2EE server uses the value iiop:/// as the default cache name.

any string

Specifies a string as the cache name. Any arbitrary string may be used as a

cache name.

Note: Whenever an InitialContext instance is created, WebSphere for z/OS

evaluates all JVM properties related to JNDI caching.

com.ibm.websphere.naming.jndicache.cacheobject=populated

Specifies whether a J2EE server uses caching for Java Naming and Directory

Interface (JNDI) lookups for the global namespace, or specifies when to clear

an existing cache. Valid values for this property are:

populated

Specifies that JNDI caching should occur and, if a JNDI cache with the

same name already exists, any existing cache entries should be left in the

cache. If a JNDI cache with the same name does not yet exist, the J2EE

server creates a new cache.

cleared

Specifies that JNDI caching should occur and, if a JNDI cache with the

same name already exists, any existing cache entries should be removed

from the cache. If a JNDI cache with the same name does not yet exist, the

J2EE server creates a new cache.

none

Turns off JNDI caching. If this option is specified, the cache name is

irrelevant. Therefore, this option will not disable a cache that is already

associated with other InitialContext instances. The InitialContext being

instantiated will not be associated with any cache.

Note: Whenever an InitialContext instance is created, WebSphere for z/OS

evaluates all JVM properties related to JNDI caching.

com.ibm.websphere.naming.jndicache.maxcachelife=0

Sets the maximum lifetime of a cache for Java Naming and Directory Interface

(JNDI) lookups for the global namespace. Valid values are:

0 Sets the maximum lifetime of the JNDI cache to the life of the JVM process

(that is, the life of a J2EE server region or Java client). Cached objects

remain in the cache either until the process ends, or until WebSphere for

z/OS evaluates the property setting

com.ibm.websphere.naming.jndicache.cacheobject=cleared for this cache.

Positive integer

Sets the maximum lifetime of the cache, in minutes, to the specified value.

When the maximum cache lifetime is reached, WebSphere for z/OS clears

the cache before performing another cache operation. The cache is

repopulated as bind, rebind, and lookup operations are executed.

44 WebSphere for z/OS: Assembling J2EE Applications

Note: Whenever an InitialContext instance is created, WebSphere for z/OS

evaluates all JVM properties related to JNDI caching.

com.ibm.websphere.naming.jndicache.maxentrylife=0

Set the maximum lifetime of individual cache entries in a cache for Java

Naming and Directory Interface (JNDI) lookups for the global namespace.

Valid values are:

0 Sets the maximum lifetime of JNDI cache entries to the life of the JVM

process (that is, the life of a J2EE server region or Java client). Cached

objects remain in the cache either until the process ends, or until

WebSphere for z/OS evaluates the property setting

com.ibm.websphere.naming.jndicache.cacheobject=cleared for this cache.

Positive integer

Sets the maximum lifetime of individual cache entries, in minutes, to the

specified value. When the maximum lifetime for an entry is reached, the

next attempt to read the entry from the cache will cause the entry to be

refreshed.

Note: Whenever an InitialContext instance is created, WebSphere for z/OS

evaluates all JVM properties related to JNDI caching.

Further information related to WebSphere for z/OS naming services appears in the

following places:

v “Naming” on page 42 describes default JNDI caching behavior.

v Chapter 10, “Using JNDI look-ups,” on page 227 provides instructions and

programming examples related to using JNDI.

Java™ Message Service

The Java Message Service (JMS) provides a framework for developing and

supporting Java software components that communicate by creating, sending, and

receiving messages. This method of communication, known as messaging, allows

components to interact asynchronously and reliably, without knowing more about

their communication partners than message formats and destinations.

The Sun Microsystems J2EE specification defines basic JMS API concepts, which

include the following:

v Two messaging domains: Point-to-point and publish/subscribe.

– In the point-to-point domain, one message producer creates and sends

messages to a queue, from which one message consumer retrieves the

messages.

– In the publish/subscribe domain, one message producer creates and sends

messages to a topic, from which many message consumers retrieve the

messages.

WebSphere for z/OS supports both messaging domains.

v The JMS API architecture, which is composed of the following:

– JMS clients, which are Java-language programs or components that produce

and consume messages. In the WebSphere for z/OS environment, JMS clients

may be any application components that run in the J2EE server.

– A JMS provider, which implements the JMS interfaces and provides

administrative and control features. WebSphere for z/OS uses IBM’s

MQSeries as a JMS provider.

– Messages and administered objects, which are connection factories and

message destinations. With WebSphere for z/OS, connection factories and

Chapter 4. A closer look at the J2EE server 45

destinations are part of the configuration for a J2EE server. They represent

MQSeries resources; that is, they enable JMS clients to access and use

MQSeries services, queues and topics.
v The JMS API programming model, which describes the following components of

a JMS application and how they work together:

– Administered objects

– Connections

– Sessions

– Message producers and consumers

Application components running in a WebSphere for z/OS J2EE server follow

the JMS API programming model, using the classes, interfaces and methods

documented in MQSeries Using Java, SC34-5456.

Figure 11 illustrates sample WebSphere for z/OS configurations for JMS:

1. A point-to-point messaging domain, using MQSeries on z/OS or OS/390.

2. A publish/subscribe domain, which requires a message broker. You may use an

off-platform message broker.

 Limitation: This domain requires MQSeries function that is not currently

available in the MQSeries for OS/390 product. To participate in the

publish/subscribe domain, the J2EE server’s connection factory and destination

resources must point to a local MQSeries on z/OS or OS/390, which, in turn,

must be able to communicate with a queue manager that is hosting the

message broker (in other words, an MQSeries on a non-z/OS or non-OS/390

platform).

Regardless of the type of domain in use, JMS messaging interactions follow this

pattern:

1. A JMS client uses a JNDI lookup to find a connection factory. Through the

returned reference, the client establishes access to the JMS provider.

Figure 11. Sample JMS configurations for WebSphere for z/OS

46 WebSphere for z/OS: Assembling J2EE Applications

2. The JMS client then uses a JNDI lookup for a destination; this action defines

the target to which the client will direct its messages (or from which the client

will retrieve messages). The client may define one or more target destinations.

3. Using the connection to the JMS provider, the JMS client creates one or more

sessions to logically group its messaging activity.

4. With the connection, destination, and session references established, the JMS

client creates and uses sessions to send or retrieve messages.

Three factors determine how WebSphere for z/OS manages the JMS client’s

sessions:

v The type of J2EE resources for JMS used in the WebSphere for z/OS J2EE server

configuration,

v The transactional environment when the JMS client uses a session, and

v The transacted and acknowledge arguments specified on the

createQueueSession or createTopicSession method in the JMS client code.

Selecting the type of ConnectionFactory to use for JMS

WebSphere for z/OS supports two types of ConnectionFactory for JMS:

RRS-enabled and base. With the RRS-enabled type, WebSphere for z/OS treats

sessions as protected resources, and participates in two-phase commit operations

that can prevent the loss or corruption of data when system or application failures

occur. WebSphere for z/OS can participate in such operations because of its

resource recovery services (RRS) component. Generally speaking, using the

RRS-enabled ConnectionFactory will result in behavior that most closely matches

the intent of the application programmer who coded the JMS client, so most

WebSphere for z/OS J2EE server configurations should use this RRS-enabled type.

Table 6 on page 48 summarizes the two types of ConnectionFactory and how they

handle sessions, based on the JMS client’s transactional context and the sttributes

specified on the create...Session method in the client code.

Chapter 4. A closer look at the J2EE server 47

Table 6. Types of J2EE resources for JMS and their behaviors

Type of

Connection

Factory

Transactional

environment

when JMS

client uses

session

Attributes on

create...Session method

Behavior

RRS-enabled A global

transaction is in

progress

Both transacted attribute and

acknowledge mode are ignored

Messages issued or retrieved during a session

are not sent or delivered until the global

transaction is committed (if the global

transaction is rolled back, messages are not sent

at all)

No global

transaction is in

progress

transacted

attribute is

true

acknowledge

mode is

ignored

Behavior is the same as listed below for the base

type, for each combination of attributes, with the

following exception: WebSphere for z/OS will

check transaction boundaries. For example, an

Enterprise bean that manages its own

transactions (a BMT bean) might try to do the

following:

1. Send several messages under a local

transaction

2. Start a global transaction for a sequence of

operations

In such a case, WebSphere for z/OS will not

allow the BMT bean to start the global

transaction because of the incomplete messaging

interactions issued under the local transaction. In

other words, the BMT bean cannot start a global

transaction because it did not explicitly commit

the local transaction that was pending on the

session.

transacted

attribute is

false

acknowledge

mode

determines

behavior

Base Ignored; only

the session’s

attributes affect

behavior

transacted

attribute is

true

acknowledge

mode is

ignored

Messages issued or retrieved during a session

are not sent or delivered until the session is

committed. If the session is rolled back,

messages are not sent at all.

transacted

attribute is

false

acknowledge

mode

determines

behavior

Messages are issued or retrieved immediately for

the AUTO_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE

modes. For CLIENT_ACKNOWLEDGE mode, messages

are delivered immediately after their

acknowledge method is driven.

Linking JMS resource references to a WebSphere for z/OS

configuration

To enable the use of the JMS API for application components running in

WebSphere for z/OS, you need to link the WebSphere for z/OS connection

factories and destinations to the equivalent JMS resource references that your

application’s components use. Figure 12 on page 49 provides an overview of the

steps required to complete this link; step-by-step instructions appear in Chapter 12,

“Using the Java Message Service API in J2EE application components,” on page

237..

48 WebSphere for z/OS: Assembling J2EE Applications

The following list corresponds with the numbered items in Figure 12:

1. An application component’s source code contains JNDI look-ups to find a JMS

connection factory and destination. In the application component’s deployment

descriptor, the resource references in these JNDI look-ups are linked to specific

resource types.

2. When you define the WebSphere for z/OS run-time environment for the

application, you use the Administration application to:

a. Define an RRS-enabled JMS ConnectionFactory and a JMS destination

(queue) as J2EE resources associated with the J2EE server in which the

application will run. By specifying properties for these resources, you link

the logical name to MQSeries and a queue on z/OS or OS/390.

b. Install the application that uses JMS, which includes resolving any resource

references in the application’s deployment descriptor. You resolve these

resource references by mapping them to a JMS ConnectionFactory and

destination that are defined to the J2EE server.

JavaMail™

JavaMail provides a framework for developing and supporting Java applications

that send, store, and receive mail. According to the Sun Microsystems J2EE

specification, a JavaMail configuration consists of the following:

Figure 12. Linking JMS connection factories and destinations to a WebSphere for z/OS configuration

Chapter 4. A closer look at the J2EE server 49

v The JavaMail API implementation, which provides general facilities for reading

and sending e-mail.

v The JavaBeans Activation Framework (JAF), another Java API that handles mail

in forms that are more elaborate than plain text (in other words, MIMEs, URL

pages, file attachments, and so on).

v Service providers, which implement protocols for mail transport and storage. In

other words, these service providers allow applications to send mail through

mail servers and to access stored mail. JavaMail currently includes three

protocols:

– Simple Mail Transfer Protocol (SMTP)

– Internet Message Access Protocol (IMAP)

– Post Office Protocol Version 3 (POP3)

Figure 13 illustrates a JavaMail configuration on z/OS or OS/390, with WebSphere

for z/OS supporting almost all of the JavaMail elements enclosed in the bold

rectangle. To have a functional mail system on z/OS or OS/390, your installation

also needs to have the appropriate mail servers and mail stores installed.

 The WebSphere for z/OS JavaMail package supports the use of the JavaMail API

by all types of application components: Servlets, JavaServer Pages (JSPs),

Enterprise JavaBeans, and application clients. This package contains:

v The JavaMail API implementation

v The JAF API

v Two service providers: An SMTP service provider and an IMAP service provider

Figure 14 on page 51 gives you a closer look at how these JavaMail elements are

packaged in the WebSphere for z/OS run-time environment, for use by J2EE

application components that are installed in a J2EE server. For installed

Figure 13. JavaMail and its supported elements in WebSphere for z/OS

50 WebSphere for z/OS: Assembling J2EE Applications

applications to successfully use the JavaMail API, the J2EE server in which they

run must have a JavaMail session defined as one of its J2EE resources.

 To enable a JavaMail system with WebSphere for z/OS, you need to link the J2EE

server’s mail session resource to the mail resource references that your

application’s components use. Figure 15 on page 52 provides an overview of the

steps required to complete this link; step-by-step instructions appear in Chapter 13,

“Using the JavaMail API in J2EE application components,” on page 241.

Figure 14. A closer look at the WebSphere for z/OS JavaMail package

Chapter 4. A closer look at the J2EE server 51

The following list corresponds with the numbered items in Figure 15:

1. In its source code, an application component uses a JNDI look-up to find a

specific JavaMail session.

 Example:

Session session = (Session) ctx.lookup("java:comp/env/mail/MailSession");

2. In the application component’s deployment descriptor, the mail resource

reference in the application code is linked to a specific resource type.

 Example:

<resource-ref>

<description>description</description>

<res-ref-name>mail/MailSession</res-ref-name>

<res-type>javax.mail.Session</res-type>

<res-auth>Container</res-auth>

</resource-ref>

3. In the J2EE server configuration, a JavaMail session is defined as a J2EE

resource. When you install the application, you map the resource type in the

application’s deployment descriptor to the JavaMail session.

4. Once you activate the J2EE server, the application can then use this session to

access the JavaMail implementation that WebSphere for z/OS provides. As long

Figure 15. Enabling JavaMail for Web applications in WebSphere for z/OS

52 WebSphere for z/OS: Assembling J2EE Applications

as the z/OS or OS/390 system has a mail server and mail store installed, your

application can create messages and to get store access.

WebSphere for z/OS also supports JavaMail’s debugging capability, which allows

you to collect diagnostic data for your application. If debugging is enabled for the

J2EE server, this data appears in the stdout.log and stderr.log files. Debugging data

looks like this:

DEBUG: getProvider() returning javax.mail.Provider[TRANSPORT,smtp]

DEBUG SMTP: useEhlo true, useAuth false

DEBUG: SMTPTransport trying to connect to host "smtp3.eseller.com", port 25

DEBUG SMTP RCVD: 220 relay14.eseller.com ESMTP Sendmail; Tue, 19 Dec 2000

15:08:42 -0700

DEBUG: SMTPTransport connected to host "smtp3.eseller.com", port: 25

DEBUG SMTP SENT: EHLO y2001

DEBUG SMTP RCVD: 250-relay14.eseller.com Hello testpc.eseller.com,

 pleased to meet you

250-8BITMIME

250-SIZE 20000000

250-DSN

250-ONEX

250-ETRN 250-XUSR

250 HELP

DEBUG SMTP SENT: MAIL FROM:<user1@mail.company.com>

DEBUG SMTP RCVD: 250 <user1@mail.company.com>... Sender ok

DEBUG SMTP SENT: RCPT TO:<user2@othermail.net>

DEBUG SMTP RCVD: 250 <user2@othermail.net>... Recipient ok

Verified Addresses user2@othermail.net

DEBUG SMTP SENT: DATA

DEBUG SMTP RCVD: 354 Enter mail, end with "." on a line by itself

DEBUG SMTP SENT:

.

DEBUG SMTP RCVD: 250 PAA125654 Message accepted for delivery

DEBUG SMTP SENT: QUIT

For instructions for enabling JavaMail debugging, use both procedures in

Chapter 13, “Using the JavaMail API in J2EE application components,” on page

241..

IBM Extensions

The IBM deployment descriptor extensions provide additional, proprietary, policy

meta-data for J2EE application components to be deployed on WebSphere servers.

This extended policy meta-data allows you to exploit WebSphere qualities of

service that are not addressed in the Sun Microsystem’s J2EE specification for J2EE

applications, Web applications, and enterprise beans. If you use these IBM

extensions, you can still port the application components between WebSphere and

non-WebSphere platforms, because the extensions do not change the semantic

behavior of a J2EE application component.

To use the IBM extensions, add your J2EE application component to the

WebSphere for z/OS Application Assembly tool. Then highlight the component,

and click on one of the IBM Extensions tabs in the right side of the window. The

following labels identify IBM Extensions tabs:

v RunAs

v ThreadID

Chapter 4. A closer look at the J2EE server 53

v Isolation

v ReadOnly

v Policy

v Extensions

Table 7 lists only the extensions that introduce WebSphere for z/OS-specific

considerations. If you plan to deploy an application component in a WebSphere for

z/OS J2EE server, review the following summary for extensions that you can use,

and read the associated information for each extension. Descriptions of all

applicable IBM extensions are available in the help information for the Application

Assembly tool.

 Table 7. Summary of IBM deployment descriptor extensions

IBM extension Applies for this type of J2EE application

component:

Associated information

Session bean CMP entity

bean

BMP entity

bean

Activate and

Load

Activate only

for stateful

session beans

Yes Yes “Altering commit-time

options”

Bean pool size Yes Yes Yes “Setting the size of a bean

pool” on page 55

ReadOnly No Yes No “Optimizing

end-of-transaction

processing” on page 56

Isolation level Yes Yes Yes “Isolating transactions that

access persistent data” on

page 56

Pessimistic /

Optimistic

concurrency

control

No Yes No “Controlling concurrent

access to persistent data”

on page 57

Altering commit-time options

The IBM deployment descriptor extensions Activate and Load allow you to tailor

EJB container behavior regarding commit time options that are defined in the EJB

1.1 specification. To alter these options, add your J2EE application component to

the WebSphere for z/OS Application Assembly tool. Then highlight the

component, and click on the +Policy tab in the right side of the window.

You may specify a combination of activate and load policy values for entity beans,

but only activate policy values apply for stateful session beans.

Activate policy values:

Once

Specifies that a bean is activated only once in a given server region.

Note: When you select this value, WebSphere for z/OS attempts to honor

the policy but, in accordance with the EJB specification, may

passivate the bean if run-time conditions make it necessary to do so.

This behavior means that selecting the activate once policy is only a

performance optimization to reduce activation/passivation costs.

Therefore, you must write appropriate logic for both ejbActivate

and ejbPassivate.

54 WebSphere for z/OS: Assembling J2EE Applications

AtTran

Specifies that a bean is activated at the start of each transaction, regardless

of the transaction type (global or local).

Load policy values:

AtActivation

Specifies that a bean’s essential state is loaded at the same time the bean is

activated. This behavior applies for both CMP and BMP beans.

AtTran

Specifies that a bean’s essential state is loaded at the start of each

transaction, regardless of the transaction type (global or local).

 Table 8. Activate/Load combinations for entity beans

Container behavior for corresponding commit time

option from EJB 1.1 specification

Activate value

for entity

bean

Load value for

entity bean

Option A:

v Instance state is written to database.

v Instance stays ready.

v Instance has exclusive access to object state, so instance

state remains valid.

Note: “Exclusive access to object state” is the

responsibility of the application provider; the WebSphere

for z/OS J2EE server does not guarantee this condition.

Once AtActivation

Option B:

v Instance state is written to database.

v Instance stays ready.

v Instance does not have exclusive access to object state.

Because instance state might not remain valid, the EJB

container synchronizes instance state with persistent

state at the beginning of each transaction.

Once AtTran

Option C:

v Instance state is written to database.

v Instance does not stay ready; the EJB container returns

the instance to the pool of available instances after the

transaction completes.

v Validity of instance state does not apply because

instance does not stay ready.

AtTran AtActivation

or AtTran

Setting the size of a bean pool

The IBM deployment descriptor extension Bean Pool Size allows you to set, per

Enterprise bean, the minimum and maximum sizes of the bean pool that the

container will use for each bean type. To alter these options, add your J2EE

application component to the WebSphere for z/OS Application Assembly tool.

Then highlight the component, and click on the +Extensions tab in the right side of

the window.

Each bean type (class) has a separately managed pool. The minimum pool size

specifies the minimum number of beans to be left in the pool following an eviction

cycle. The max pool size specifies the maximum number of beans allowed in the

pool before the EJB container begins evicting beans from the pool.

Default values: Minimum size is 10; maximum is 250.

Note: Bean pool size is not relevant for activate-once, load-once beans. Such

beans have exactly one instance and no more.

Chapter 4. A closer look at the J2EE server 55

Optimizing end-of-transaction processing

The IBM deployment descriptor extension ReadOnly allows you to reduce the

processing overhead at the end of a transaction. During the course of a transaction,

if the only bean methods invoked are read-only methods, then the EJB container

avoids the overhead of storing the bean’s essential state back to the database. To

achieve this optimization, specify the ReadOnly extension per method within a

container-managed entity (CMP) bean.

Isolating transactions that access persistent data

The IBM deployment descriptor extension Isolation level allows you to set, per

method defined on Enterprise bean remote or home interfaces, the type of locking

that DB2 uses to protect data. Valid values are:

v TRANSACTION_NONE allows application assemblers to indicate that they do not

want a specific JDBC isolation level to be enforced on connections acquired

directly by the bean itself.

v TRANSACTION_READ_UNCOMMITTED allows methods within a transaction to read

uncommitted changes made as part of a different transaction, before those

changes are committed.

v TRANSACTION_READ_COMMITTED allows methods within a transaction to read only

committed changes made as part of a different transaction. In other words, this

isolation level prohibits “dirty reads.”

v TRANSACTION_REPEATABLE_READ provides the same isolation as

TRANSACTION_READ_COMMITTED, but also ensures that reading the same data

multiple times returns the same value, even if other transactions modify the

data. In other words, this isolation level prohibits “dirty reads” and

“nonrepeatable reads.”

v TRANSACTION_SERIALIZABLE provides the same isolation as

TRANSACTION_REPEATABLE_READ, but also ensures that if a query retrieves a result

set based on a predicate condition and another transaction inserts data that

satisfies the predicate condition, rerunning the query returns the same JDBC

result set. In other words, this isolation level prohibits “dirty reads,”

“nonrepeatable reads,” and “phantom reads.”

Rule: All methods that run under the same transaction must have the same

isolation level (or the TRANSACTION_NONE default); otherwise, the EJB container

throws IsolationLevelChangeException.

Default value: TRANSACTION_NONE

Note: For beans assembled and deployed with the default descriptor value

TRANSACTION_NONE, WebSphere for z/OS actually uses the JDBC isolation

level TRANSACTION_REPEATABLE_READ on connections that the EJB container

acquires and uses to manage CMP persistent state in DB2.

WebSphere for z/OS uses the transaction isolation level as follows:

v For session beans and entity beans that use bean-managed persistence (BMP

beans), the EJB container sets the isolation level when the bean requests a

connection. If the bean explicitly sets the isolation level on the database

connection, however, the container will cease to manage the isolation level

setting on that connection. In other words, the connection isolation level

becomes bean managed.

v For entity beans that use container-managed persistence (CMP beans), the

container generates database access code that implements the specified isolation

level. For beans assembled and deployed with the default descriptor value

TRANSACTION_NONE, however, WebSphere for z/OS uses the JDBC isolation level

56 WebSphere for z/OS: Assembling J2EE Applications

TRANSACTION_REPEATABLE_READ on connections that the EJB container acquires

and uses to manage CMP persistent state in DB2.

 For additional information about isolation level for CMP beans, see “Controlling

concurrent access to persistent data.”

Note: If you are porting BMP beans from WebSphere servers on the workstation to

a WebSphere for z/OS J2EE server, you may need to change the SELECT ...

FOR UPDATE statement to prevent DB2 from demoting update (U) locks to

share (S) locks when the resultset returned by executing the SELECT

statement is closed. Changes are required only for specific isolation levels, as

follows:

 If the BMP bean uses this

isolation level:

Change the SELECT ... FOR UPDATE statement to:

TRANSACTION_REPEATABLE_READ SELECT ... FOR UPDATE WITH RS KEEP UPDATE LOCKS

TRANSACTION_SERIALIZABLE SELECT ... FOR UPDATE WITH RR KEEP UPDATE LOCKS

Controlling concurrent access to persistent data

For each Enterprise bean that uses container-managed persistence (CMP bean), you

can use the IBM extension for concurrency control to determine how the

WebSphere Application Server and relational database resource managers work

together to handle multiple read or update access requests for the same data. For

CMP beans that run in a WebSphere for z/OS J2EE server, the EJB container and

DB2 are responsible for managing persistent data, and you can influence their

behavior by selecting one of two commonly used approaches to concurrency

control:

Pessimistic

This approach delegates all responsibility to the resource manager, DB2, which

uses locking to provide concurrency control. The combination of two

additional IBM deployment descriptor extensions, isolation level and

ReadOnly method permission, determines which type of locking DB2 uses for

each CMP bean method. The ReadOnly method permission identifies the access

intent (read or update) for a specific method.

Optimistic

This approach requires the application to share responsibility for concurrency

control, by using a programming technique that minimizes contention for

database locks, and allows WebSphere for z/OS to check the consistency of

data and determine whether to make the requested updates.

 As for pessimistic concurrency control, the ReadOnly method permission

identifies the access intent (read or update) for a specific method. In other

words, the same end-of-transaction performance optimization is possible

regardless of the concurrency model.

Each approach has advantages and disadvantages, so you need to understand your

application’s characteristics and requirements before you can determine the

appropriate approach for each CMP bean. Base your choice for concurrency control

on the information in Table 9 on page 58, which presents a summary of

determining factors for each approach, along with recommendations and other

notes. After you have decided which approach is appropriate for your application,

use the WebSphere for z/OS Application Assembly tool to assemble the CMP

beans. To make sure you understand the implications or your choice, and that you

complete all of the appropriate assembly steps, read the following topics:

v “Checklist for using pessimistic concurrency control” on page 58

Chapter 4. A closer look at the J2EE server 57

v “Checklist for using optimistic concurrency control” on page 61

If you also need general instructions for installing or using the WebSphere for

z/OS Application Assembly tool, see Chapter 7, “Assembling a J2EE application,”

on page 135.

 Table 9. Deciding which concurrency control approach to use for CMP beans

If your application. . . Then. . . Notes . . .

Contains cmp-fields

that map to only

primary key and the

following column

types:

v Binary large object

(BLOB)

v Character large

object (CLOB)

v VARCHAR with length

greater than 255

v LONG VARCHAR

v float or double

Use pessimistic

concurrency

control.

In this case,

using the

optimistic

approach can

result in

updates being

lost.

Notes:

1. Alternative: In this case, you can use

optimistic concurrency control safely only if

you can add an eligible column type to the

CMP mapping. For example, you could add

an update counter to the mapping (and to the

underlying database table) to increment each

time an optimistic update is made.

2. Restriction: You cannot use optimistic

concurrency control for Enterprise beans that

have CMP fields of type float or double

because there is a loss of precision when

storing these fields into a DB2 database. This

loss causes optimistic updates to fail.

Uses an access pattern

that is predominantly

read access

Use optimistic

concurrency

control.

In this case, using the optimistic approach can

improve concurrency and throughput.

Uses an access pattern

that is predominantly

update access

Use pessimistic

concurrency

control.

In this case, the pessimistic approach might offer

some advantage because update failures, if any,

occur before processing begins for a given CMP

bean. When failures occur before processing

begins, the cost of recovery is relatively low.

On the other hand, the optimistic approach also

can be advantageous if concurrent updates to not

collide.

Does not use a

predominant access

pattern

Consider the

relative cost of

recovering from

an update

failure.

With the pessimistic approach, update failures

occur when locks cannot be obtained quickly

enough (in other words, the failure occurs due to

deadlock at time of read).

With the optimistic approach, update failures

occur when the underlying data changes after

being read (in other words, the failure occurs at

time of update). Because failures occur during,

rather than before, processing begins for a CMP

bean, these failures might require more difficult

and costly recovery processing on the part of

your application.

Checklist for using pessimistic concurrency control: Pessimistic concurrency

control delegates all responsibility to the resource manager, DB2, which uses

locking to provide concurrency control. The combination of two additional IBM

deployment descriptor extensions, isolation level and ReadOnly method

permission, determines which type of locking DB2 uses for each CMP transaction.

Depending on the type of locking that DB2 uses, and the number and type of

concurrent access requests, applications might have to wait for other processing to

complete before their read or update operations can be made. Under these

58 WebSphere for z/OS: Assembling J2EE Applications

circumstances, applications might be affected not only by slower performance, but

also by timing failures (that is, lock time-outs). Although your applications might

be somewhat slower or possibly encounter more timing failures, pessimistic

concurrency control is the better choice for applications with a relatively high

number of update collisions (that is, transactions that update the same data fields).

With pessimistic concurrency control, WebSphere for z/OS also provides an

integrity monitoring function through which it can detect the potential for either a

deadlock or lost-update condition. For either condition, WebSphere for z/OS issues

an informational message, only once per condition for each unique CMP bean

running in a given J2EE server instance. These messages enable you to identify the

following potential problems:

v Update transactions that start with a method marked with ReadOnly permission,

and

v Update transactions that use an insufficient isolation level setting.

Unless you make other selections through the Application Assembly tool, CMP

beans are assembled and deployed with the default isolation level of

TRANSACTION_NONE, and the default method permission setting (which is equivalent

to an access intent of update). If these defaults are appropriate for your

application, you might not have to complete all of the assembly steps in the

following checklist:

 U Item

h Add your CMP bean and other application components, if any, to the latest version

of the WebSphere for z/OS Application Assembly tool.

h Highlight the CMP bean, and click on the +Extensions tab in the right side of the

window. Select pessimistic concurrency control.

Chapter 4. A closer look at the J2EE server 59

U Item

h Verify the access intent for methods defined on the CMP bean’s remote and home

interfaces. The default access intent is update; if you need to change this default

setting, select the ReadOnly method permission property. The setting for this

property governs whether or not the SQL SELECT statement includes the FOR UPDATE

clause for the first method in a transaction. (The first method in a transaction

causes an entity bean’s essential state to be loaded from the underlying resource

manager.)

v The ReadOnly setting is appropriate for methods that do not update the CMP

bean’s persistent state. In this case, the FOR UPDATE clause is not added to the

SELECT operation, and DB2 will not obtain update locks.

v The default setting (equivalent to update access intent) is appropriate for

methods that update the CMP bean’s persistent state. In this case, the FOR UPDATE

clause is on the SELECT operation, and DB2 obtains update locks for entity beans

configured for commit-time options B and C only. Entity beans configured for

commit-time option A are assumed to have exclusive access to the database, so

locking is not required.

 For additional information about commit-time options, see “Altering

commit-time options” on page 54.

Rule: Some applications use custom finders that contain the FOR UPDATE clause, or

keywords ORDER BY and DISTINCT, on the SELECT operation. In these cases, you must

use one of the following settings to avoid encountering an SQL error (SQLCODE -126)

when the J2EE server attempts to run the CMP bean:

v Specify the ReadOnly setting on the method level;

v Specify env-entry

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent as

true in the bean’s standard deployment descriptor (ejb-jar.xml); or

v Specify the property

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent=1

in the JVM properties file for the J2EE server. Using this property in the J2EE

server’s JVM property file sets the same access intent for all CMP beans that run

in the server. For additional information about this JVM property, see “JVM

properties and properties files” on page 339.

Default: update

60 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|

|
|
|

|
|
|
|
|
|

U Item

h On a method level, highlight the CMP entity bean and select the +Isolation tab. If

appropriate, modify the JDBC isolation level for methods defined on the CMP

bean’s remote and home interfaces. This IBM extension controls the type of locking

that DB2 uses. Valid values are:

v TRANSACTION_NONE

v TRANSACTION_READ_UNCOMMITTED

v TRANSACTION_READ_COMMITTED

v TRANSACTION_REPEATABLE_READ

v TRANSACTION_SERIALIZABLE

For additional information about isolation level values, see “Isolating transactions

that access persistent data” on page 56.

Default: TRANSACTION_NONE

Note: For beans assembled and deployed with the default descriptor value

TRANSACTION_NONE, WebSphere for z/OS uses the JDBC isolation level

TRANSACTION_REPEATABLE_READ on DB2 connections.

Rule: You cannot specify different isolation levels for methods in the same

transaction. If you do so, the EJB container throws an

IsolationLevelChangeException.

Recommendation: Unless the method is composed entirely of read operations, use

an isolation level of TRANSACTION_REPEATABLE_READ or TRANSACTION_SERIALIZABLE.

TRANSACTION_REPEATABLE_READ is recommended, whether the first method in the

transaction is marked ReadOnly or not, because TRANSACTION_REPEATABLE_READ is the

minimum level required for DB2 to hold locks across the load and store operations

for an entity bean.

If you choose a lower level of isolation for transactions that include update

methods, you run the risk of potential lost updates. If a transaction starts with a

ReadOnly method, but subsequently includes an update method, that transaction is

exposed to a potential deadlock condition, if DB2 cannot obtain update locks

because other transactions hold read locks on the same data. Data integrity is

ensured, however, because WebSphere for z/OS rolls back the transaction.

h After completing property changes for your CMP bean, save your changes. If your

application contains more than one CMP bean, make sure you check the IBM

Extensions properties, as described above, for each of the remaining beans.

h Select the application in the tree view in the left pane, then select Validate to

validate the contents of the application.

h After validation, select Deploy to deploy the application.

h After deployment, select Export to export the application.

 Now you are ready to use the WebSphere for z/OS Administration application to

install the application in a J2EE server.

Checklist for using optimistic concurrency control: Optimistic concurrency

control requires the application to share responsibility for concurrency control, by

using a programming technique that minimizes contention for database locks.

Specifically, the application uses “over-qualified updates,” which are update query

predicates that compare previously saved values to current values, and perform

updates based on the results of the comparison. This programming technique

enables update and read operations to occur almost simultaneously, which results

in improved transactional performance compared to the pessimistic approach to

concurrency control. So optimistic concurrency control is the appropriate choice for

Chapter 4. A closer look at the J2EE server 61

applications for which performance is more important than avoiding update

failures, and when the cost of recovering from update failures is relatively low.

To use over-qualified updates, your application performs as follows:

1. The application reads a number of table columns, in addition to the primary

key, and saves the initial values for later comparison.

2. The application uses an SQL UPDATE that includes an SQL WHERE clause, using

the saved values of the previously read table columns.

 For CMP beans, this type of update allows WebSphere for z/OS to check the

consistency of data on behalf of the application, and determine whether to

make the requested updates. WebSphere for z/OS creates a fully qualified

update by forming a WHERE clause out of all eligible table columns, using

only the following:

v Fields defined on cmp-field elements within the CMP bean’s deployment

descriptor.

v Column types. WebSphere for z/OS does not use the following column

types:

– Binary large object (BLOB)

– Character large object (CLOB)

– VARCHAR with length greater than 255

– LONG VARCHAR

If your application depends on ineligible column types in the WHERE clause,

using the optimistic approach can result in updates being lost, unless you

can use the alternative described in Table 9 on page 58.

 Restriction: You cannot use optimistic concurrency control for Enterprise

beans that have CMP fields of type float or double because there is a loss of

precision when storing these fields into a DB2 database. The loss of precision

occurs because Java floating point is IEEE format, whereas DB2 stores only

zSeries Hex floating point. While DB2 performs conversions to or from IEEE

and Hex floating point format during database load or store operations, an

inherent round-off error occurs. The resulting change in precision interferes

with the correct operation of the “over-qualified update” programming

technique used for optimistic concurrency control.

 Recommendation: Use decimal types instead of floating point, whenever

possible.

If WebSphere for z/OS detects that the values have changed since the

application last read and saved the values, it does not perform the update;

instead, the query results in an “optimistic update failure” and WebSphere for

z/OS rolls back the transaction.

3. The application is designed to recover from optimistic update failures. In such

cases, WebSphere for z/OS returns the following exceptions:

v For container-managed transactions, the application client receives a

RemoteException.

v For bean-managed transactions, the application client receives a

TransactionRolledBackException.

Unless you make other selections through the Application Assembly tool, CMP

beans are assembled and deployed with the default isolation level of

TRANSACTION_NONE, and the default method permission setting (which is equivalent

to an access intent of update). To modify these defaults and correctly use optimistic

62 WebSphere for z/OS: Assembling J2EE Applications

concurrency control, complete the steps in the following checklist:

 U Item

h Make sure that your application is designed to use “over-qualified updates,” as

described above.

h Add your CMP bean and other application components, if any, to the latest version

of the WebSphere for z/OS Application Assembly tool.

h Highlight the CMP bean, and click on the +Extensions tab in the right side of the

window. Select optimistic concurrency control.

Rule: You cannot use optimistic concurrency control with commit-time option A.

For additional information about commit-time options, see “Altering commit-time

options” on page 54.

h Verify the access intent for methods defined on the CMP bean’s remote and home

interfaces. The default access intent is update; if you need to change this default

setting, select the ReadOnly method permission property. In contrast to pessimistic

concurrency control, access intent for optimistic control does not determine whether

the FOR UPDATE clause is added to the SQL SELECT for the first method in a

transaction. For CMP beans using optimistic control, the SQL SELECT statement

never contains a FOR UPDATE clause.

v The ReadOnly setting is appropriate for methods that do not update the CMP

bean’s persistent state.

v The default setting (equivalent to update access intent) is appropriate for

methods that update the CMP bean’s persistent state.

Default: update

h On a method level, highlight the CMP entity bean and select the +Isolation tab. If

appropriate, modify the JDBC isolation level for methods defined on the CMP

bean’s remote and home interfaces. This IBM extension controls the type of locking

that DB2 uses. Valid values are:

v TRANSACTION_NONE

v TRANSACTION_READ_UNCOMMITTED

v TRANSACTION_READ_COMMITTED

v TRANSACTION_REPEATABLE_READ

v TRANSACTION_SERIALIZABLE

For additional information about isolation level values, see “Isolating transactions

that access persistent data” on page 56.

Default: TRANSACTION_NONE

Rule: You cannot specify different isolation levels for methods in the same

transaction. If you do so, the EJB container throws an

IsolationLevelChangeException.

Recommendation: Use an isolation level of TRANSACTION_READ_COMMITTED, for which

DB2 will hold locks only during READ and UPDATE operations themselves, rather

than across the READ/UPDATE period. You should not use

TRANSACTION_REPEATABLE_READ or TRANSACTION_SERIALIZABLE because DB2 will

acquire and hold locks for the life of the transaction, which defeats the purpose of

using optimistic concurrency control.

You may use lower isolation levels only for transactions that contain READ

operations.

h After completing property changes for your CMP bean, save your changes. If your

application contains more than one CMP bean, make sure you check the IBM

Extensions properties, as described above, for each of the remaining beans.

h Select the application in the tree view in the left pane, then select Validate to

validate the contents of the application.

Chapter 4. A closer look at the J2EE server 63

U Item

h After validation, select Deploy to deploy the application.

h After deployment, select Export to export the application.

 Now you are ready to use the WebSphere for z/OS Administration application to

install the application in a J2EE server.

Connectors

If you want to develop J2EE application components that access legacy transactions

and data under CICS or IMS, you may use one or more of the CICS and IMS

connectors that WebSphere for z/OS currently supports.

WebSphere for z/OS supports the following CICS or IMS connectors, which are

designed to use the Sun Microsystems Corporation’s Java 2 Platform, Enterprise

Edition (J2EE) Connector Architecture:

v CICS Transaction Gateway External Call Interface (ECI) Connector

v IMS Connector for Java

v IMS JDBC Connector

These connectors, which are also known as resource adaptors, not only implement

the J2EE connector interfaces but also are RRS-compliant; in other words, they are

designed specifically to work with the resource recovery services (RRS) component

of z/OS or OS/390. Resource recovery consists of the protocols and program

interfaces that allow WebSphere for z/OS, the RRS component of z/OS or OS/390,

and CICS or IMS to work together to make consistent changes to multiple

protected resources. Protected resources are considered so critical to a company’s

work that the integrity of these resources must be guaranteed.

Because of their design, WebSphere for z/OS, the RRS component of z/OS or

OS/390, CICS or IMS subsystems and these RRS-compliant connectors can

participate in two-phase commit processing, which enables z/OS or OS/390 to

restore critical resources to their original state if they become corrupted because of

a hardware or software failure, human error, or a catastrophe. These J2EE

connectors are shipped as part of separate CICS or IMS products, and are

considered the strategic connectors for connecting to CICS and IMS.

For its supported connectors, WebSphere for z/OS also provides additional

advantages:

v The ability for system administrators to define connection management at a

sysplex level, so that all WebSphere for z/OS J2EE servers benefit from efficient

use of the system resources associated with connections. Connection

management support is a configuration extension available through the

WebSphere for z/OS Administration application.

v The ability for application assemblers to specify:

– Connection management policy, which is a quality of service issue for

applications using connectors. This ability allows finer control of the

management of valuable back-end resources, which is especially useful to

prevent a misbehaving application from tying up system-wide resources,

thereby making the system unusable.

– Resource authentication for applications using connectors. This ability

determines which user identities WebSphere for z/OS will pass to back-end

products (such as CICS and IMS) through connectors.

64 WebSphere for z/OS: Assembling J2EE Applications

Connection management policies and resource authorization are set through the

WebSphere for z/OS Application Assembly tool.

These configuration and application extensions are functions that WebSphere for

z/OS provides in addition to the implementation of the J2EE interfaces. Use of

these extensions does not cause any loss of function provided for J2EE compliance

at the current level.

WebSphere for z/OS also extends its connection management capabilities to its

JDBC resources, so J2EE application components that use JDBC to access DB2 also

benefit from additional qualities of service. Although WebSphere for z/OS treats

DB2 JDBC datasources as managed connections, it does not treat DB2 JDBC

connections exactly the same as CICS and IMS managed connections. For example,

WebSphere for z/OS enforces resource authentication and connection reuse for

DB2 JDBC connections, even when connection management support is not

explicitly selected through the WebSphere for z/OS Administration application.

When these differences affect how your installation uses a specific connector,

further details are provided in the appropriate procedures.

WebSphere Application Server V4.0.1 for z/OS and OS/390 also provides “beta”

CICSEXCI and IMSAPPC connectors, which are available as a download at:

http://www.ibm.com/software/webservers/appserv/zos_os390/support.html

WebSphere for z/OS also treats these connectors as managed connections; these

connectors also are J2EE-compliant and RRS-compliant.

WebSphere for z/OS also supports the use of Common Connector Framework

(CCF) connectors by Web components (servlets) only. This support is equivalent to

the same level of support provided with previous versions of WebSphere for z/OS,

and is intended as a migration aid for existing Standard Edition customers. IBM

recommends moving to WebSphere for z/OS-supported connectors that are

designed to implement the Sun Microsystems Corporation’s J2EE Connector

Architecture.

As specified by the J2EE Connector Architecture:

v A connector is responsible for sending and receiving data to and from a

back-end resource, such as CICS or IMS.

v The application server is responsible for managing physical connections, or

ManagedConnections, to a back-end resource, and for providing qualities of

service related to the use of connectors. These qualities of service include

connection pooling, transaction management, and security management. In a

WebSphere for z/OS J2EE server configuration, these ManagedConnections are

known as J2EE resources.

Given this specification, J2EE application components do not require knowledge of

specific connector implementations; components deal only with application-level

handles (known as Connections) to the J2EE server resources. Before installing J2EE

application components, however, application assemblers and deployers might

want to make some changes to deployment descriptors, to exploit the qualities of

service available through a WebSphere for z/OS J2EE server and its supported

connectors.

The following topics describe topics to review before you start using the

WebSphere for z/OS connectors. The topics include assembly and deployment

considerations for J2EE application components (Enterprise beans, servlets and

JavaServer Pages) that you plan to install in a WebSphere for z/OS J2EE server.

Chapter 4. A closer look at the J2EE server 65

Topic or subtask Associated information (See . . .)

Deciding which connector to use “Deciding which connector to use”

Guidelines for using connectors v “Guidelines for accessing legacy

programs” on page 68

v “Coding connector lookups” on page 68

v “Connector transaction processing” on

page 70

Using connection management for more

efficient use of connection resources

“Exploiting connection management

support” on page 71

Determining the user ID that WebSphere for

z/OS uses to check authority to access a

connector

“Determining the user ID for resource

authentication” on page 73

Checklist for creating an application

component that uses connections

“Checklist for application components that

use connectors” on page 77

Configuring the J2EE server, connector, and

subsystem for back-end resources, and

installing application components

“Configuring the WebSphere for

z/OS-supported connectors” in WebSphere

Application Server V4.0.1 for z/OS and OS/390:

Installation and Customization, GA22-7834

Deciding which connector to use

Table 10 lists the J2EE connectors that you may use to access CICS or IMS

resources. Your installation must adhere to the configuration requirements stated in

WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834; any attempt to use these connectors in alternative

configurations is not supported.

Note: WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834 contains additional information about determining

which connector to use, based on the requirements of your J2EE application

components or the network configuration at your installation.

 Table 10. Deciding which connector to use

For these

application

requirements:

Use the

following

connector:

Guidelines and notes:

Access to CICS

CommArea-
based

transaction

programs

CICS

Transaction

Gateway ECI

Connector

To use the CICS Transaction Gateway ECI Connector,

CICS, CICS Transaction Gateway, and the WebSphere for

z/OS J2EE server in which your component is installed

must all run on the same z/OS or OS/390 system.

If you currently are using the CICS Common Connector

Framework (CCF) connector, which is not a J2EE

connector, you should rework your application

components to use this new CICS ECI connector, as soon

as you can.

66 WebSphere for z/OS: Assembling J2EE Applications

Table 10. Deciding which connector to use (continued)

For these

application

requirements:

Use the

following

connector:

Guidelines and notes:

Access to IMS

transaction

programs

IMS Connector

for Java

To use the IMS Connector for Java and exploit the benefits

of resource recovery processing, IMS, IMS Connect, and

the WebSphere for z/OS J2EE server in which your

component is installed must all run on the same z/OS or

OS/390 system. If your application requires access to IMS

resources on a remote z/OS or OS/390 system, you may

use either the “beta” IMSAPPC connector (to exploit

resource recovery processing) or the remote TCP/IP

configuration for the IMS Connector for Java. In the

remote TCP/IP configuration, the IMS Connector for Java

runs as a non-transactional connector and, as such, does

not provide resource recovery protection for your

applications or data.

If you currently are using the IMS Common Connector

Framework (CCF) connector, which is not a J2EE

connector, you should rework your application

components to use this new IMS connector, as soon as you

can.

The “beta”

IMSAPPC

connector

If you require access to IMS resources on a remote z/OS or

OS/390 system, you may use the IMSAPPC connector,

which implements the J2EE Connector Architecture. APPC

is another z/OS or OS/390 component that is designed to

work with RRS using the two-phase commit protocol, so

using this connector provides support for resource

recovery that is equivalent to the support provided

through the strategic connectors.

For configuration requirements and procedures, see the

documentation for the “beta” connectors, which is

available through the WebSphere Application Server Web

page:

http://www.ibm.com/software/webservers/appserv/

Alternative: If you require access to IMS resources on a

remote z/OS or OS/390 system and you must use the

TCP/IP protocol rather than APPC, you may use the IMS

Connector for Java to access IMS on remote systems. Note,

however, that this connector configuration does not

provide resource recovery protection.

Access to IMS

databases

IMS JDBC

Connector

On z/OS or OS/390, using JDBC

Datasource lookup with backwards compatibility with Version

3.5

In order to provide compatability for servlets developed to run in a WebSphere

Application Server Standard Edition Version 3.5 environment, V4.01 allows you to

use the Version 3.5 programming model to look up a datasource in JNDI. In

contrast to the V4.0.1 programming model that uses a J2EE style of looking up

resources within an application-specific JNDI namespace, the Version 3.5

programming model features a pre-J2EE style of datasource lookup in a global

JNDI namespace.

Chapter 4. A closer look at the J2EE server 67

|

|

|
|
|
|
|
|
|

The Version 3.5 pre-J2EE style code looks like the following:

Context ctx = ...;

DataSource ds =(DataSource)ctx.lookup("jdbc/myDataSource");

The Version 4.0.1 J2EE style code looks like the following:

Context ctx = ...;

DataSource ds =(DataSource)ctx.lookup("java:comp/env/jdbc/myDataSource");

Furthermore, a Version 4.0.1 application is assembled along with a resource

reference deployment descriptor, which is resolved in the adminstrative console by

binding this resource reference to a physical datasource definition. The Version 3.5

application is not assembled with a datasource resource reference.

In a Version 4.0.1 environment, the Version 3.5 pre-J2EE style datasource lookup

works with the following limitations:

v The DB2 datasource resource must be defined in the adminstrative console with

a resource name that matches the string used in the application JNDI lookup

invocation (minus the ″jdbc/″ prefix).

 For example, if the application code does a ctx.lookup(″jdbc/myDataSource″),

then a resource of J2EE Resource Type ″DB2datasource″ must be defined in the

adminstrative console with the Resource Name of myDataSource. (Note that it is

not the Resource Instance name that is important.)

v The datasource will be managed by WebSphere Application Server Connection

Management as if it was defined with a ″Connection Management Policy″

setting of ″Normal″ and a ″Resource Authentication″ setting of ″Application″.

Because no resource reference is created for the application’s datasource, the

assembler does not have an opportunity to choose the previous two settings.

DB2 resource interactions initiated using a Version 3.5 pre-J2EE style datasource

lookup will still be able to fully participate in global transactions.

Guidelines for accessing legacy programs

IBM recommends using a stateless session Enterprise bean to represent the legacy

CICS or IMS program (in other words, use the bean as a wrapper for the target

CICS or IMS program). This approach offers the following advantages:

v Enterprise beans have policy attributes that can be set during assembly and

deployment; these attributes enable application assemblers and deployers to

have more control over how WebSphere for z/OS processes requests driven to

the stateless session bean.

v Enterprise beans are reusable. Client business applications on remote systems

and J2EE application components installed in WebSphere for z/OS J2EE servers

can drive requests through the stateless session bean to connect to back-end

CICS and IMS processing.

Note: In WebSphere for z/OS, servlets and JSPs are dispatched under a stateless

session Enterprise bean, so you can design them to use a connector to access

applications and data under CICS and IMS. Although this design is possible,

IBM recommends using an Enterprise bean to connect to back-end IMS and

CICS processing, rather than designing servlets to obtain direct connections,

because of the advantages listed above.

Coding connector lookups

Because WebSphere for z/OS uses the Java Naming and Directory Interface (JNDI)

for lookup processing, J2EE application components can be designed to:

68 WebSphere for z/OS: Assembling J2EE Applications

|

|
|

|

|
|

|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|

v Associate a logical name with a ConnectionFactory of a particular type (for

example, MyConnectionFactory), and

v Use that logical name to do a lookup of the factory in the java:comp/env name

space associated with the application component.

At run-time under a WebSphere for z/OS J2EE server, when the application

invokes JNDI lookup processing to locate the ConnectionFactory it needs, the

lookup request returns a ConnectionFactory associated with a specific Enterprise

Information System (EIS) configuration (for example, a specific IMS subsystem and

connector defined in the J2EE server configuration).

To use this lookup support:

1. The application component provider writes code to do a lookup of a

ConnectionFactory.

 Example:

// Obtain the initial JNDI context

Context initctx = new InitialContext();

// Perform JNDI lookup to obtain connection factory

 javax.resource.cci.ConnectionFactory cf =

 (javax.resource.cci.ConnectionFactory) initctx.lookup("java:comp/

 env/MyCICSECIConnectionFactory");

2. Application assemblers must ensure that a ConnectionFactory reference name

and type are included in the list of resources the application component uses.

For example, to access CICS resources, you use a name like

MyCICSECIConnectionFactory and the type

javax.resource.cci.ConnectionFactory. Application assemblers usea

WebSphere application assembly tool to identify these reference names and

types. “A WebSphere application assembly tool” means either the z/OS edition

of the Application Assembly tool, the WebSphere Studio Application Developer

tool, the WebSphere Studio Application Developer Integration Edition tool, or

the Direct Deployment Tool/390fy.

3. Application installers must associate the reference name and type used in the

application component to a specific J2EE resource defined in the J2EE server

configuration. For example, using the WebSphere for z/OS Administration

application, the installer:

a. Defines a J2EE resource for a CICS subsystem, specifying

CICS_ECIConnectionFactory as the type of resource, along with other

properties that identify the CICS subsystem.

b. Installs the application component. During this process, the installer

matches the component’s resource reference, MyCICSECIConnectionFactory,

and its generic type, javax.resource.cci.ConnectionFactory, to the name

of the J2EE resource defined as type CICS_ECIConnectionFactory.

At the end of this installation process, after the J2EE server is activated, the

logical name MyCICSECIConnectionFactory is added to the java:comp/env name

space, and the ConnectionFactory is configured to a specific instance of the

CICS subsystem and connector.

If an Enterprise bean does the lookup for a ConnectionFactory itself, lookup

processing should be performed as shown in the above example. On the other

hand, if a command bean is used by an Enterprise bean to encapsulate the

connector support, the command bean will do the lookup. Likewise, when you are

Chapter 4. A closer look at the J2EE server 69

using WebSphere Studio Application Developer Integration Edition to develop an

application, the connector lookup also will be encapsulated by the tooling and will

not need to be coded by the developer.

Note: All instances of a given Enterprise bean class that do a lookup for the same

ConnectionFactory may be returned the same ConnectionFactory instance. In

this case, the ConnectionFactory may be a shared resource. Because of this

possibility, IBM recommends that the ConnectionFactory not be modified

during the course of processing by instances of the same Enterprise bean

class.

Connector transaction processing

WebSphere for z/OS supports only two types of connectors: non-transactional and

RRS-transactional. Connector transaction processing varies for each type, as

described below.

Restriction: WebSphere for z/OS does not support XA transaction support or local

transaction support defined by the J2EE Connector Architecture.

RRS-transactional

This type of connector is configured to work with the resource recovery

services (RRS) component of z/OS or OS/390 to participate in two-phase

commit processing. For RRS-transactional connectors, the type transaction

processing performed is determined at the time an interaction is executed on a

connection to send a request to the target Enterprise Information System (EIS).

There are two ways a given interaction may be handled:

1. If processing under the current thread is running under a global

transaction, WebSphere for z/OS propagates the current transaction context

across the interface to the back-end EIS, and two-phase commit processing

or rollback processing of the transaction will be coordinated using z/OS or

OS/390 resource recovery services (RRS).

2. If processing under the current thread is not running under a global

transaction, WebSphere for z/OS sends the request to the back-end EIS,

indicating that processing performed for the request should be committed

before returning (this type of processing is known as sync-on-return).

The transaction policy of the Enterprise bean (under which the connector

support runs) dictates whether or not processing is running under a global

transaction. If the transaction policy dictates processing under a global

transaction, then any connector processing will also do global transaction

processing. Similarly, if the transaction policy dictates processing without a

transaction, then any connector processing will be performed as a

sync-on-return request.

 For example, suppose you use a stateless session Enterprise bean to represent a

CICS program, and drive requests to the bean to get a connection to CICS and

access the program. If you deploy the bean with a transaction policy of

TX_REQUIRED, all processing for the bean runs under a global transaction. On

the other hand, if you deploy the bean with a transaction policy of

TX_SUPPORTS, bean processing runs under the transaction state of its caller.

In this case, processing could be done under a global transaction for one caller,

and processing for a different caller could be performed as a sync-on-return

request.

Non-transactional

In the case of a connector that has been configured as a non-transactional

70 WebSphere for z/OS: Assembling J2EE Applications

connector, all requests to the back-end EIS (for example, a CICS or IMS

subsystem) are performed as sync-on-return requests. In other words, any

changes made by the EIS are committed by the time control is returned to the

Enterprise bean that made the request.

 Sync-on-return processing is performed regardless of the transaction policy

specified by the Enterprise bean.

Exploiting connection management support

WebSphere for z/OS provides connection management policies that define how the

J2EE server manages the connection resources that J2EE application components

acquire when using a J2EE connector. To exploit connection management support,

connection management must be selected using the WebSphere for z/OS

Administration application.

Application assemblers or deployers set specific policy values through the J2EE

application components’ deployment descriptor, using the WebSphere for z/OS

Application Assembly tool. From the policy set in the deployment descriptor, the

WebSphere for z/OS J2EE server assigns a policy value to resources obtained from

a connection factory. The J2EE server uses this policy for all connections.

The following topics describe the connection management policy values, their

meaning, and the qualities of service that the WebSphere for z/OS J2EE server can

provide as part of its connection management support.

Connection management policies

Using the WebSphere for z/OS Application Assembly tool, the application

assembler may define one of the following connection management policy values

in the deployment descriptor for a J2EE application component. The policy value

dictates how the J2EE server in which the component is installed will manage

connections:

Normal

The J2EE server polices the J2EE application component’s usage of

connections, and when component instances are removed from the J2EE

server cache, any connections owned by that component are reclaimed by

the J2EE server.

Aggressive

The J2EE server polices the J2EE application component’s usage of

connections, and is used as a trigger for component instance cache

management. Components that cache connections from connection factories

configured with an aggressive management policy may be evicted from the

server’s active cache. During the eviction process, the component is driven

through the component framework methods (for example,

unsetEntityContext) and allows the component to return the aggressively

managed resource. After the eviction, the J2EE server reclaims any

connection that has not been returned.

Default

The J2EE server assigns a default to connection factories based on

platform-specific issues. In particular, the WebSphere for z/OS J2EE server

assigns a default policy of aggressive for JDBC connection factories, and a

default policy of normal for all other connection factories.

The decision to select aggressive instead of normal policy means that limiting the

number of critical resources the J2EE server allows components to consume is

Chapter 4. A closer look at the J2EE server 71

more important than cache efficiency. The enforcement of this policy is invisible to

the programming model of the J2EE application components; however, J2EE server

performance might be affected.

Connection processing models

Based on the Java Connector Architecture, Enterprise beans may use J2EE

connectors in two ways:

1. One way is to get a connection, use it, and then close it within the lifecycle of a

transaction. This way is referred to as the Get/Use/Close model.

2. The second way is for a stateful Enterprise bean to get a connection when it is

initially created, and then save the connection for use by subsequent method

invocations. This way is referred to as the Caching model.

WebSphere for z/OS connection management supports the Get/Use/Close model.

The Caching model, however, is not supported in that each time a method is

invoked, WebSphere for z/OS does not reassociate the cached connection handle

with a ManagedConnection that has the new caller’s security credentials. Instead,

the cached connection is always associated with the ManagedConnection for the

user under which the connection was obtained.

Installations that wish to implement Enterprise beans that use a cached connection

may do so, but should be aware that the user that the connection is associated

with may change in the future when WebSphere for z/OS supports the use of the

ManagedConnection associateConnection() interface to reassociate a connection

handle.

Connection sharing

WebSphere for z/OS does not support connection sharing. This restriction means

that different Enterprise beans cannot share the same connection; for example,

suppose:

v Enterprise bean A gets a connection.

v While running under the same transaction, Bean A invokes Enterprise bean B.

v Bean B also gets a connection.

In the above example, the connection obtained by Bean B is associated with a new

ManagedConnection, rather than sharing the same ManagedConnection with

which Bean A’s connection is associated.

Connection pooling and reuse

To minimize the processing required each time a J2EE application component

requests a connection, WebSphere for z/OS uses a connection pool for resources

that the J2EE server needs to manage a connection. These resources include objects

that the components use to refer to the connection, objects that the server uses to

maintain information about the managed connection, and physical connections to

subsystems such as DB2.

You can further reduce overhead, and avoid potential problems with limited

system resources, by enabling connection reuse. To do so, set the JVM property

com.ibm.ws390.ConnectionUsageScopeDefault for the J2EE server.

Recommendation: Setting this JVM property is particularly useful for J2EE

application components that, within a single global transaction, repeatedly get, use,

and close a DB2 JDBC connection. The default behavior for the J2EE server is to

use a new physical connection until the global transaction is committed or rolled

back, so these repeated get/use/close operations might exhaust the limited supply

72 WebSphere for z/OS: Assembling J2EE Applications

of physical DB2 connections. When you set the JVM property to the value

SeriallyReusable, however, the J2EE server creates a connection pool that is

associated with the global transaction, and returns connections to the pool

whenever the J2EE application component closes the connection. The returned

connection is then available for reuse within the transaction.

When you set the JVM property com.ibm.ws390.ConnectionUsageScopeDefault to

the value to SeriallyReusable, the J2EE server can reuse connections to any J2EE

connector that is defined to the server configuration. For instructions on setting the

JVM property, see “JVM properties and properties files” on page 339.

Note: Connection pooling and reuse support works for DB2 JDBC connections

even when connection management is not selected for J2EE servers, through

the WebSphere for z/OS Administration application.

Connection monitoring and clean-up

WebSphere for z/OS does not allow resources to be retained after the passivation

or removal of an Enterprise bean. If an Enterprise bean gets a connection but fails

to close the connection across lifecycle boundaries, the J2EE server reclaims the

connection during post-invoke processing for the Enterprise bean.

Determining the user ID for resource authentication

The J2EE Connector Architecture specifies that either the container or a J2EE

application component can control the identity that a J2EE server uses to

authenticate requests for a J2EE resource. A combination of application code,

deployment descriptor values, and run-time environment settings determines

which user identity is associated with the connection to a J2EE resource; this user

ID then may be used for resource authentication. The following list briefly

summarizes the values and settings that determine the user ID to be associated

with a connection that is explicitly obtained through the getConnection method in

the application component’s code:

v Application programmers may specify a particular user identity and password

on the getConnection method. These method parameters are optional, however,

so values do not have to be set in the application component’s code.

v Application assemblers or deployers use the res-auth deployment descriptor

element to specify whether the container or application component will

determine the user ID. They also may set or alter the user ID through the RunAs

deployment descriptor element.

 Application assemblers use the WebSphere for z/OS Application Assembly tool

to set this element in the deployment descriptor.

v Application installers can configure a WebSphere for z/OS J2EE server to honor

an application’s deployment descriptor settings for RunAs and for

container-managed authentication. To do so, they use the Administration

application to select the Enable Setting OS thread ID to RunAs ID property.

To correctly establish a specific user ID to be associated with a connection, use

Table 11 on page 74 to select the desired outcome and learn which assembly and

configuration tasks are required for each option. This information is based on the

assumption that you cannot or do not want to alter application source code (that

is, you do not want to add or remove specific user ID values on the getConnection

method).

Notes:

1. The information in this table applies only to connections that are explicitly

obtained through the getConnection method in the application component’s

Chapter 4. A closer look at the J2EE server 73

|

|
|

code. The identity used for connections that WebSphere for z/OS obtains for its

own use (to manage persistent state for a CMP bean, for example) are

determined as follows:

v If the application component is assembled with RunAs set to caller, and the

J2EE server is configured with Enable setting OS thread ID to RunAs ID

selected, WebSphere for z/OS associates the connection with the caller’s user

ID.

v Otherwise, WebSphere for z/OS associates the connection with the user ID of

the J2EE server region.
2. For further information about run-time configuration tasks, see the following

topics:

v To determine what authority is required for the user ID associated with a

connection, based on the resource to be accessed, see Table 2 on page 24.

v For step-by-step instructions for defining connectors as J2EE resources

associated with a J2EE server, see WebSphere Application Server V4.0.1 for z/OS

and OS/390: Installation and Customization, GA22-7834.

 Table 11. Assembly and configuration tasks for setting the identity for a J2EE resource connection

If you want this user ID

associated with a

connection:

Complete these application assembly and run-time configuration tasks:

User ID and password

values specified on the

getConnection method

Assembly: Select the appropriate value for the res-auth element in the deployment

descriptor:

v Application for Enterprise beans

v Servlet for servlets

Note: WebSphere for z/OS ignores the settings for the RunAs and Set OS thread

identity to RunAs identity deployment descriptor elements.

Configuration: Make sure that the getConnection user ID has appropriate

authorization for the resource.

74 WebSphere for z/OS: Assembling J2EE Applications

|

Table 11. Assembly and configuration tasks for setting the identity for a J2EE resource connection (continued)

If you want this user ID

associated with a

connection:

Complete these application assembly and run-time configuration tasks:

User ID

of the

J2EE

server

region

If the

getConnection

method does not

specify a user ID

Assembly: Select one of the following options:

1. Select the value container for the res-auth element, and select the value server for

the RunAs element.

Note: If you choose this option, you do not have to select the Set OS thread

identity to RunAs identity element in the deployment descriptor. If you do select

the Set OS thread identity to RunAs identity, however, you must also select the

J2EE server property Enable Setting OS thread ID to RunAs ID during

configuration. Otherwise, the getConnection method will return a No_permission

failure during run-time.

2. Select the value application for the res-auth element.

Configuration:

1. Make sure that the server region ID has appropriate authorization for the resource.

2. If you are using the CICS Transaction Gateway ECI connector or the IMS

Connector for Java, specify the server region user ID and password when you

define the connector as a J2EE resource instance.

Note: The server region user ID and password are implicit defaults for the DB2

JDBC and “beta” IMSAPPC connections.

If the

getConnection

method does

specify a user

ID, override that

value

Assembly: Select the value container for the res-auth element, and select the value

server for the RunAs element.

Note: In this case, you do not have to select the Set OS thread identity to RunAs

identity element in the deployment descriptor. If you do select the Set OS thread

identity to RunAs identity, however, you must also select the J2EE server property

Enable Setting OS thread ID to RunAs ID during configuration. Otherwise, the

getConnection method will return a No_permission failure during run-time.

Configuration: Make sure that the server region ID has appropriate authorization for

the resource.

User ID of the caller Assembly:

1. Select the value container for the res-auth element in the deployment descriptor

2. Select the value caller for the RunAs element (which is the same as no explicit

setting for RunAs)

Note: If you choose this option, you do not have to select the Set OS thread

identity to RunAs identity element in the deployment descriptor. If you do select

the Set OS thread identity to RunAs identity, however, you must also select the

J2EE server property Enable Setting OS thread ID to RunAs ID during

configuration. Otherwise, the getConnection method will return a No_permission

failure during run-time.

Configuration:

1. Make sure that the caller’s user ID has appropriate authorization for the resource.

2. If your application is requesting a DB2 JDBC connection, you must make sure that

the J2EE server property Enable Setting OS thread ID to RunAs ID is selected.

Otherwise, the DB2 connections will be associated with the user ID of the J2EE

server region.

 For connections to other J2EE resources such as CICS and IMS, WebSphere for

z/OS uses the RunAs user ID currently associated with the thread, regardless of

the J2EE server property setting.

Chapter 4. A closer look at the J2EE server 75

|
|
|
|
|
|

Table 11. Assembly and configuration tasks for setting the identity for a J2EE resource connection (continued)

If you want this user ID

associated with a

connection:

Complete these application assembly and run-time configuration tasks:

RACF user ID mapped to a

security role

Assembly:

1. Select the value container for the res-auth element in the deployment descriptor

2. Specify the security role name as the value for the RunAs element

Note: If you choose this option, you do not have to select the Set OS thread

identity to RunAs identity element in the deployment descriptor. If you do select

the Set OS thread identity to RunAs identity, however, you must also select the

J2EE server property Enable Setting OS thread ID to RunAs ID during

configuration. Otherwise, the getConnection method will return a No_permission

failure during run-time.

Configuration:

1. Make sure that the RACF user ID has appropriate authorization for the resource.

2. If your application is requesting a DB2 JDBC connection, you must make sure that

the J2EE server property Enable Setting OS thread ID to RunAs ID is selected.

Otherwise, the DB2 connections will be associated with the user ID of the J2EE

server region.

 For connections to other J2EE resources such as CICS and IMS, WebSphere for

z/OS uses the RACF user ID mapped to the specified security role, regardless of

the J2EE server property setting.

Running applications developed in WebSphere Studio

Application Developer Integration Edition

The WebSphere Studio Application Developer Integration Edition tool can be used

to develop applications (EJBs/servlets) which use connectors that are supported

under WebSphere for z/OS and these applications can then be deployed and

executed under a WebSphere for z/OS server. To support these applications, the

WebSphere for z/OS server runtime includes the necessary jar files that are

required to permit the execution of connector applications developed under

WebSphere Studio Application Developer Integration Edition. Because of this,

WebSphere Studio Application Developer Integration Edition developed

applications which use connectors should not include any of the jar files that are

required as a result of using the WebSphere Studio Application Developer

Integration Edition tooling.

For more information on developing a J2EE application using one of the

WebSphere for z/OS connectors, see WebSphere Studio Application Developer

Integration Edition Help. See the section ″Samples-> IMS resource adapter″ for step

by step instructions to create an application for WebSphere for z/OS connectors.

The jar files that are provided under the server in order to support WebSphere

Studio Application Developer Integration Edition developed applications are as

follows:

v Shipped in <install_path>lib where install_path/lib is the directory where you

installed WebSphere Studio Application Developer Integration Edition.

– jdom.jar

– marshall.jar

– physicalrep.jar

– waswebc.jar

– wsatlib.jar

76 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|

– wsif.jar

– wsdl4j.jar

– xerces.jar
v Shipped in <install_path> where install_path is the directory where you installed

WebSphere Studio Application Developer Integration Edition.

– soap.jar

– xalan.jar

Notes:

1. When you configure a client that will invoke a connector application which

was developed using WebSphere Studio Application Developer Integration

Edition, you may need to include some or all of the above jars in the client’s

CLASSPATH.

2. Even though the wsif.jar is included to allow WebSphere Studio Application

Developer Integration Edition developed connector applications to run under

WebSphere for z/OS, composite service flows are not supported. Flow support

is limited strictly to a simple flow to send a request to a single target resource

manager.

Checklist for application components that use connectors

 Table 12. Checklist for application components that use connectors

Check when

completed:

Task:

Development tasks:

h Use an appropriate development tool to create your J2EE application

components. For example, use IBM’s WebSphere Studio Application

Developer Integration Edition or VisualAge for Java 4.0 to develop an

Enterprise bean that uses connectors.

For information about tools, see Chapter 5. Setting up the application development

environment.

h Develop the application component.

Notes:

1. For general information about developing components, see Creating new

application components to be installed in a J2EE server.

2. If you are using WebSphere Studio Application Developer Integration

Edition for application development, the tooling will handle the remaining

development tasks listed in the following rows. Go to the “Assembly

tasks” section of this checklist.

3. If you are using development tools other than Application Developer

Integration Edition, you can find information about developing

components to access CICS or IMS programs in the sample application

instructions in the documentation for the WebSphere for z/OS-supplied

CICSEXCI and IMSAPPC connectors. This documentation is available

through download at theWebSphere Application Server Web page:

http://www.ibm.com/software/webservers/appserv/

zos_os390/support.html

Chapter 4. A closer look at the J2EE server 77

Table 12. Checklist for application components that use connectors (continued)

Check when

completed:

Task:

h Decide whether you want to implement access to a back-end resource by

using a stateless session bean, or by integrating the function into the

application business logic.

Recommendation: For greater flexibility and reuse, isolate access to the

back-end resource by using a stateless session bean.

h Choose a meaningful logical name to refer to the ConnectionFactory or

DataSource you application will use.

h Use a JNDI lookup in java:comp/env for the ConnectionFactory or

DataSource, using the logical name you chose as the reference name.

h When your application needs to use a connection factory, decide which type

of connection is required for the back-end resource you want to access, and

on the configuration used at your installation.

Rules: In your application:

v Use the appropriate ConnectionFactory reference types:

– For the CICS Transaction Gateway ECI connector and IMS Connector for

Java, use javax.resource.cci.ConnectionFactory

– For DB2 JDBC and the IMS JDBC Connector, use javax.sql.DataSource
v Use the appropriate interaction specs:

– For the CICS Transaction Gateway ECI connector, use

com.ibm.connector2.cics.ECIInteractionSpec

– For the IMS Connector for Java, use

com.ibm.connector2.ims.ico.IMSInteractionSpec

For information about possible connector configurations, see Overview of

configuring the WebSphere for z/OS-supported connectors in WebSphere Application

Server V4.0.1 for z/OS and OS/390: Installation and Customization, GA22-7834.

h Decide whether you want the application to provide the user ID and

password to be associated with the connections that your application obtains.

If so, indicate that the application is to be assembled with the res-auth

deployment descriptor set to the appropriate value:

v Application for Enterprise beans

v Servlet for servlets

For information about determining the user ID for resource authentication, see

“Determining the user ID for resource authentication” on page 73.

h Decide whether you can safely cache a connection for later reuse, or whether

you prefer to get, use, and then close the connection.

Recommendation: Use the Get/Use/Close model for connection processing.

h Make sure you properly close connections so that you do not unnecessarily

use up system resources.

Tip: Keep in mind that resources like connections cannot be retained across

end-of-life cycles for a bean (for example, across bean passivation and bean

removal).

h Generate deployed code and package the components in the appropriate

archive file (JAR or WAR files).

h Test the application components.

Assembly tasks:

78 WebSphere for z/OS: Assembling J2EE Applications

Table 12. Checklist for application components that use connectors (continued)

Check when

completed:

Task:

h Import tested components into a WebSphere application assembly tool.“A

WebSphere application assembly tool” means either the z/OS edition of the

Application Assembly tool, the WebSphere Studio Application Developer tool,

the WebSphere Studio Application Developer Integration Edition tool, or the

Direct Deployment Tool/390fy

h Check the following deployment descriptor elements and extensions:

v Transaction attribute

v Connection management policy

v RunAs identity and Set OS thread identity to RunAs identity

v Resource authentication

v ConnectionFactory reference types:

– For the CICS Transaction Gateway ECI connector and IMS Connector for

Java, use javax.resource.cci.ConnectionFactory

– For DB2 JDBC and the IMS JDBC Connector, use javax.sql.DataSource

h Validate and deploy the application.

h Export the deployed application in an EAR file.

Configuration and installation tasks:

h Configure the appropriate subsystems and connectors on z/OS or OS/390.

For information about configuring subsystems and connectors, see Configuring

the WebSphere for z/OS-supported connectors in WebSphere Application Server

V4.0.1 for z/OS and OS/390: Installation and Customization, GA22-7834.

h Define a new or modify an existing J2EE server, using the WebSphere for

z/OS Administration application.

Tips:

v Under the following circumstances, make sure that connection management

is configured into the sysplex:

– If you plan to use J2EE connectors other than the DB2 JDBC datasource

type

– If you want to use connection management support, to better control

DB2 JDBC connections and the consumption of DB2 resources
v If you want to enable the J2EE server to reuse connections explicitly

obtained in your application’s code, make sure the JVM properties file for

the server sets the com.ibm.ws390.ConnectionUsageScopeDefault property.

For instructions for defining a J2EE server and connectors, see Configuring the

WebSphere for z/OS-supported connectors in WebSphere Application Server V4.0.1

for z/OS and OS/390: Installation and Customization, GA22-7834.

Chapter 4. A closer look at the J2EE server 79

Table 12. Checklist for application components that use connectors (continued)

Check when

completed:

Task:

h Add the connector to the J2EE server definition as a J2EE resource and

resource instance, using the WebSphere for z/OS Administration application.

Rules:

v For the CICS Transaction Gateway ECI connector, use the

CICS_ECIConnectionFactory type and appropriate J2EE resource instance

properties.

v For the IMS Connector for Java, use the IMSConnectionFactory type and

appropriate J2EE resource instance properties.

v For the IMS JDBC Connector, use the IMSJDBCDataSource type and

appropriate J2EE resource instance properties.

v To access DB2 through JDBC, use the DB2datasource type and appropriate

J2EE resource instance properties.

For instructions for defining J2EE resources, see the following topics in

WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834:

v For the CICS and IMS connectors, see Configuring the WebSphere for

z/OS-supported connectors.

v For access to DB2 through JDBC, see the procedure for defining a J2EE

resource in Defining the BBOASR2 J2EE server.

h Install the application, using the WebSphere for z/OS Administration

application. During this process, associate the application component’s

resource references with the appropriate J2EE resource you defined for the

connector.

h Validate and commit the J2EE server definition, and activate the J2EE server.

The WebSphere for z/OS environment for Web applications

Web components, which are known as Web applications, may consist of any

combination of the following parts:

v One or more Java servlets

v Any other Java classes that act as utility classes in support of the servlets

v Static files such as HTML pages and GIF or JPEG images

v JavaServer Pages (JSPs) that format dynamic output

To enable Web applications for use, your Web-serving environment requires an

HTTP handler, to receives HTTP requests from a network of browsers using the

HTTP access protocol, and an execution environment, which interprets the inbound

request and runs the appropriate servlet, based on the contents of the inbound

request. The WebSphere for z/OS J2EE server includes a choice of two HTTP

handlers and execution environments:

1. The HTTP and/or HTTPS Transport Handlers in combination with the Web

container in the J2EE server, or

2. The IBM HTTP Server for z/OS in combination with the WebSphere for z/OS

Local Redirector plug-in shipped with the WebSphere for z/OS product,

and/or Web container in the J2EE server.

80 WebSphere for z/OS: Assembling J2EE Applications

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

Web applications running in the Web container have direct access to resources on

z/OS or OS/390, or can access them through Enterprise beans running in any

WebSphere for z/OS J2EE server. Web applications use the RMI/IIOP protocol to

access Enterprise beans running in J2EE servers on the same or different z/OS or

OS/390 images.

Using the HTTP Transport Handler configuration

WebSphere for z/OS provides a J2EE server instance for J2EE application

components: Enterprise beans and Web applications. A J2EE server should be

configured to contain at least one EJB container and one Web container. The EJB

container manages Enterprise beans, while the Web Container manages Web

Applications.

The control region contains an IIOP Transport Handler that is able to receive IIOP

requests and present them to the EJB container for processing. The IIOP Transport

Handler is able to be configured via the System Management EUI.

The control region also contains an HTTP Transport Handler and an HTTPS

Transport Handler that are able to receive HTTP(S) requests and present them to

the Web container for processing. The HTTP and HTTPS Transport Handlers can

be configured by placing BBOC_HTTP and BBOC_HTTPS environment variables in

the WebSphere for z/OS current.env file.

HTTP client programs (such as browsers) can access Web Applications by sending

requests to the HTTP or HTTPS Transport Handler. These Handlers route requests

directly to the Web container for processing.

The configuration illustrated in Figure 16 uses the HTTP or HTTPS Transport

Handler to handle inbound requests. The HTTP or HTTPS Transport Handler then

passes the request to the J2EE server’s Web container for processing. In this

configuration, servlets run in the Web container, and can access Enterprise beans in

the J2EE server’s EJB container. This figure shows this connection between servlet

and bean within the same J2EE server, but this connection can occur between

different J2EE servers on the same or different z/OS or OS/390 images.

To correctly process a request:

Figure 16. Possible configuration of the Web-serving environment on z/OS or OS/390

Chapter 4. A closer look at the J2EE server 81

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

v The appropriate properties must be set in the webcontainer.conf file when the

Web container is defined within the J2EE server.

v The HTTP and/or HTTPS Transport Handler control region environment

variables must be set in the current.env file during the WebSphere for z/OS

customization process. See “Steps for enabling J2EE server support for Web

applications (optional)” on page 147 for a description of these environment

variables.

v The EAR file containing the requested application must be installed in the J2EE

server.

These files are illustrated in Figure 17. The following list summarizes, in general

terms, the contents of those required configuration files and how they relate to the

processing of inbound requests. More details are provided through an example in

“Resolving requests to a specific Web application” on page 84.

v The current.env file contains the environment variables defining the HTTP

and/or HTTPS Transport Handlers. See “Steps for enabling J2EE server support

for Web applications (optional)” on page 147 for a description of these variables

and their default settings.

v The webcontainer.conf file contains definitions that enable the J2EE server’s Web

container to isolate Web applications, using constructs called virtual hosts and

context roots:

Virtual hosts

Virtual hosts are named constructs, or aliases, that are equated with one or

more internet hosts. These aliases enable the Web container to logically

separate one or more Web applications from others installed in the same

container. Each virtual host may be equated to multiple internet hosts.

Note: If you are using the IBM HTTP Server for z/OS as your HTTP

handler, you must make sure that the values specified for the

Figure 17. Files required when using the HTTP and/or HTTPS Transport Handlers

82 WebSphere for z/OS: Assembling J2EE Applications

|

|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|

|
|

host.<virtual-hostname>.alias properties in the V4.0.1 was.conf file

match values specified on the host.default_host.alias property in the

webcontainer.conf file. In the V4.0.1 was.conf file, this property is

initially set to localhost.

Context roots

Context roots are qualifiers in an inbound request (URL) that bind a Web

application to a specific virtual host. This binding means that an inbound

request for a servlet is executed only when the inbound URL contains a

context root associated with the servlet and its virtual host.

The jvm.properties file, which is associated with a specific J2EE server instance,

contains a pointer to the webcontainer.conf file.

v The .xml files related to the Web application. As described in Chapter 2,

“Overview of application development and tools,” on page 9, you need to

package a Web application in a Web Archive (WAR) file, and then package this

WAR file in an Enterprise Archive (EAR) file, perhaps along with the Enterprise

beans (and their JAR files) that your Web application uses. Both WAR and EAR

files contain Extensible Markup Language (XML) files that describe each

component in the application. These XML files enable the WebSphere for z/OS

J2EE server to provide the correct execution environment for the application

components.

 The content of the XML files is something that you supply when you code and

package the application, but the files themselves are generated for you.

Setting up the HTTP/HTTPS Transport Handler

If you are using the WebSphere for z/OS HTTP and/or HTTPS Transport Handler

to receive inbound servlet requests for Web applications to be installed in this J2EE

server, you must use the WebSphere for z/OS Administration application to

include one or both of the following sets of environment variables in your

current.env file. These environment variables are described in Appendix A,

“Environment and JVM properties files,” on page 299:

v The following BBOC_HTTP variables are required for the HTTP Transport

Handler, which handles non-SSL requests:

– BBOC_HTTP_IDENTITY

– BBOC_HTTP_INPUT_TIMEOUT

– BBOC_HTTP_LISTEN_IP_ADDRESS

– BBOC_HTTP_MAX_PERSIST_REQUESTS

– BBOC_HTTP_OUTPUT_TIMEOUT

– BBOC_HTTP_PERSISTENT_SESSION_TIMEOUT

– BBOC_HTTP_PORT

– BBOC_HTTP_TRANSACTION_CLASS

The following BBOC_HTTPS environment variables are required for the HTTPS

Transport Handler, which handles SSL requests:

– BBOC_HTTP_SSL_IDENTITY

– BBOC_HTTP_SSL_INPUT_TIMEOUT

– BBOC_HTTP_SSL_LISTEN_IP_ADDRESS

– BBOC_HTTP_SSL_MAX_PERSIST_REQUESTS

– BBOC_HTTP_SSL_OUTPUT_TIMEOUT

– BBOC_HTTP_SSL_PERSISTENT_SESSION_TIMEOUT

Chapter 4. A closer look at the J2EE server 83

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|
|

|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

– BBOC_HTTP_SSL_PORT

– BBOC_HTTP_SSL_TRANSACTION_CLASS

If the HTTPS Transport Handler is going to be used, configure your J2EE server for

SSL support. See WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation

and Customization for a description of how to configure your J2EE server for SSL

support.

Optionally, you can also include one or more of the following environment

variables, depending on the needs of your installation. These environment

variables are also described in Appendix A, “Environment and JVM properties

files,” on page 299:

v BBOC_HTTPALL_NETWORK_QOS and BBOC_HTTPALL_TCLASS_FILE, if you want to

classify outbound data that is delivered in response to HTTP and HTTPS

requests. Setting up these environment variables enables outbound data to be

sent according to specified Quality of Service (QOS) TCP/IP packet

prioritization.

Note: This environment variable is only effective if you are running WebSphere

for z/OS on z/OS Version 1 Release 2 or higher. It will be ignored for

lower releases.

v BBOC_HTTP_SSL_CBIND=ON, if you want to require that all SSL connections, from a

Web server with a Web server plug-in installed, include a specific client

certificate in order for WebSphere for z/OS to accept that connection. WebSphere

for z/OS will validate this client certificate against the RACF CBIND class.

 Setting up this requirement allows the establishment of a trusted and fully

encrypted proxy relationship between the Web server and a WebSphere for z/OS

J2EE server. This relationship makes it possible for sensitive information, such as

the ″real″ client certificate contained in an AE Private Header, to be redirected

from a browser to a WebSphere for z/OS J2EE server.

v BBOC_HTTP_MODE=INTERNAL or BBOC_HTTP_SSL_MODE=INTERNAL, if you want private

headers received from a Web server plug-in, over the port specified on the

BBOC_HTTP_PORT environment variable, to be trusted. See “WebSphere plug-ins

for Web servers support” on page 92 for more information about this function.

Resolving requests to a specific Web application

To understand how the HTTP(S) Transport Handler and the Web container work

together, and use information in configuration files to satisfy a Web application

request, consider the following example illustrated in Figure 18 on page 85.

Suppose that your installation wants to do the following:

v Set up a Web site for the state of Maryland police, fire, and tax authorities.

 Each of the three authorities will have its own Web page and supporting Web

applications. The left side of the figure depicts the three Maryland state Web

pages: one for the fire authority, one for the police, and one for the tax authority.

Under each is the URL that will appear on inbound servlet requests; the URL

contains the domain name for each state authority page (the domain names are

underlined in the figure). The URL also contains information that identifies the

servlet to be run (this information is shaded in the figure).

v Host these different Web applications on the same z/OS or OS/390 system.

 Although these Web applications will be installed in the same Web container,

your installation wants to keep the applications isolated, or logically grouped, by

each state authority. The right side of the figure depicts the logical configuration

that your installation wants to achieve. In this configuration, the Web container

84 WebSphere for z/OS: Assembling J2EE Applications

|

|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|

|

|
|
|
|

has three logical partitions that correlate with the domain names for each Web

page: One for the fire authority, one for the police, and one for the tax authority.

These partitions are virtual hosts, which separate each authority’s Web

applications from any other Web applications defined to this Web container.

These virtual hosts also ensure that each authority’s servlets are run only in

response to requests that contain the appropriate domain name.

v Use the HTTPS Transport Handler to handle requests for these applications.

 The key to accomplishing these goals is correctly defining virtual hosts and context

roots for each of the three authorities. Using the Maryland state tax authority Web

page as a model, suppose that this tax authority page allows users to request

information about income taxes, property taxes, or automobile taxes. In other

words, inbound requests from the tax authority page, with domain name

taxes.state.md.us, drive the IncomeTax servlet, the PropertyTax servlet, or the

AutoTax servlet, as illustrated in Figure 18. In this case, your installation needs to

include statements in the webcontainer.conf configuration file:

v Define a virtual host that correlates the taxes.state.md.us domain name on

inbound requests, using a host alias property:

host.taxes.alias=taxes.state.md.us

 This statement defines a virtual host named taxes in the Web container.

v Define the context roots for all Web applications that are associated with the tax

authority domain. To do this, you use the host context-roots property:

host.taxes.contextroots=/auto, /property, /income

 These context roots bind particular servlets to the taxes virtual host.

With these two property definitions in your Web container configuration file, you

now have Web container constructs that match key elements of the URL in

inbound servlet requests from the tax authority Web page:

v The virtual host taxes matches the underlined domain name taxes.state.md.us

in the figure

v The context roots /auto, /property, and /income match the shaded information

in the figure.

Figure 18. Sample goals for using virtual hosts

Chapter 4. A closer look at the J2EE server 85

|

|
|
|

|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

The virtual hosts and context roots definitions show you how the Web container

handles inbound requests, but the HTTPS Transport Handler also needs to be

configured so it knows what port to listen on for inbound requests to the Web

container. The following environment variables need to be set in the current.env

file:

v BBOC_HTTP_SSL_LISTEN_IP_ADDRESS=nn.x.y.z.

v BBOC_HTTP_SSL_PORT=8090

 Figure 19, and the following list illustrate the additional configuration information

required to process an inbound request from the Maryland state tax page.

Numbers in the list correspond to the numbers in the figure.

1. A user browses the Web site for the Maryland state tax authority, and submits a

request for information about automobile taxes. The inbound request (URL)

is:http://taxes.state.md.us/auto/tax_filing

 The Domain Name Server directs the request to the appropriate computer

system: The Domain Name Server finds a DNS entry for taxes.state.md.us,

and passes the request to IP address nn.x.y.z., which is the adapter of the

z/Series machine you want to use for Web-serving.

2. The HTTPS Transport Handler recognizes the inbound request and passes it to

the Web container for execution.

 The HTTPS Transport Handler at IP address nn.x.y.z. listens at port 8090 and

catches the inbound request. The HTTPS Transport Handler uses the following

two properties in the webcontainer.conf file to match the domain name on the

inbound request to a virtual host defined to the Web container:

v The host.taxes.alias statement, which equates the name of a virtual host to

the URL host name on an inbound request (taxes.state.md.us), and

v The host.taxes.contextroots statement, which binds specific servlets to this

virtual host.

Figure 19. Resolving requests to a specific servlet in a Web application

86 WebSphere for z/OS: Assembling J2EE Applications

|

|
|
|

|
|
|
|
|

|

|

|

|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

At this point, the HTTPS Transport Handler knows the inbound request is valid

for this execution environment, because the domain name and application

context in the request match a defined virtual host and its associated context

roots, respectively. The HTTPS Transport Handler passes the request to the Web

container in the J2EE server.

3. The Web container in the J2EE server finds the actual Web application to run in

response to the inbound request.

 The Web container uses the context root on the inbound request to find the

servlet to run. It scans the XML files of applications installed in the J2EE server

to find a matching context root value. The application XML file identifies

individual modules in each installed Web application, including context root

definitions for each module. The Web container finds the context root/auto in

the XML for the servlet AutoTax; this context root matches the root specified on

the inbound request. The Web container now has access to the AutoTax servlet’s

code, and can dispatch the servlet for execution.

HTTP session support

WebSphere for z/OS provides facilities under the heading Session Manager that

support the javax.servlet.http.HttpSession interface described in the Servlet API

specification. A session is a series of requests originating from the same user, at the

same browser, that require access to a set of application-defined state data.

WebSphere for z/OS:

v Fully supports the HTTP Session state semantic proposed by the Java Servlet

Specification V2.2. It ensures that requests that are part of the same HTTP

Session are not allowed concurrent access to session data in multiple server

regions. If two requests that are part of the same session arrive at two different

server regions, WebSphere for z/OS will serialize access to this session data

across these server regions.

v Allows multiple requests for the same session data to execute concurrently

within the same server region. It is the responsibility of the application

components (servlets, JSPs, etc.) to serialize their access to the HTTP Session

object within a server region. WebSphere for z/OS maintains the responsibility

of providing the serialization among multiple server regions.

v Supports persisting HTTP session state data in a DB2 database. Depending on

the needs of your installation, the WebSphere for z/OS administrator can use

either DB2 Session Persistence Version 1 or Version 2 to manage how your

installation’s session data will be maintained in this database. (See “Using

Persistent sessions” on page 88 for more information about these two versions.)

v Supports maintaining HTTP session state data in-memory. However, if the local

redirector plug-in, provided with WebSphere for z/OS, is handling application

requests, the session data can only be maintained within a single J2EE server

instance environment, and only one server region can be defined for that sever

instance. If an HTTP(S) Transport Handler is handling application requests, the

session data can be maintained in a multiple J2EE server instances environment

with multiple server regions defined for each server instance. (See “Maintaining

session data In-memory” on page 89 for more information about maintaining

session data in-memory.)

v Defines the notion of a session transaction. A session transaction begins when a

servlet calls javax.servlet.http.HttpServletRequest.getSession(boolean). It ends

with the completion of that servlet’s

javax.servlet.http.HttpServlet.service(request, response) method.

v Supports the use of a sessionshare.xml file to enable session data to be shared by

Web modules within a J2EE application. This support is an IBM extension to the

Chapter 4. A closer look at the J2EE server 87

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

Servlet 2.2 API Specification. Session data can not be shared across multiple J2EE

applications. (See “Configuring session data sharing within a J2EE application”

on page 170 for a description of this file.)

Note: In order to use this support, you must either be maintaining session data

in memory or using DB2 Session Persistence Version 2 to manage your

session data in a DB2 database.

The ability to constrain the number of run-time instances of a J2EE server is

controlled by OS/390 Workload Manager policy.

For a description of how to configure HTTP Session State see “Steps for

configuring HTTP Session Support” on page 160.

Using Persistent sessions

Persistent sessions use a DB2 database to maintain session data. WebSphere for

z/OS provides two versions of session persistence:

v Version 1 uses a DB2 database as the mechanism for serializing access to and

sharing HTTP session data. It uses the same DB2 database, tablespace, and table

format as Versions 3.02, 3.5, 4.0 and 4.0.1 without Service Level 401401 installed.

Therefore, the DB2 administrator is not required to create a new database for

Version 4.0.1 if this version of DB2 session persistence is used. This version

should only be used if you require applications running on Versions 4.0.1, 4.0,

3.5 and/or 3.02 of the WebSphere Application Server for z/OS and OS/390 to

concurrently utilize the same database in their processing.

v Version 2 stores HTTP session data in an in-memory cache. It uses a DB2

database as the mechanism for:

– Backing up the session data being maintained in this cache in case of a server

region failure.

– Preserving session data when the in-memory cache is full. (When the

in-memory cache becomes full, the least recently used session data will be

removed from the cache, leaving the copy of that data that is being

maintained in the DB2 database as the copy that will be retrieved if it is

needed.)

 It uses the same DB2 database format as WebSphere Application Server for

Distributed Platforms V4.0 and higher, and provides improved performance

and added functionality over Version 1. It requires that:

- An HTTP(S) Transport Handler be used to handle J2EE application

requests.

- New DB2 session database, tablespace, and table be defined. (The name of

the new table must be specified on the webcontainer.conf

session.dbtablename property.)

If you want to maintain session data across multiple J2EE server instances,

you must also either:

- Install a Version 5.3 IBM HTTP Server on a z/OS or OS/390 system and

use FTP or another file transfer mechanism to download the WebSphere

HTTP Plug-in for z/OS from your WebSphere for z/OS system to that

HTTP Server, or

- Install a WebSphere plug-in for Web servers on a supported non-z/OS Web

server running on a distributed platform workstation.

Then configure the Web server and the plug-in to communicate with the

appropriate WebSphere for z/OS J2EE server instances.

88 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

You should be aware of the following caveats regarding how session

management works within a multiple server region persistent session

environment:

– During the processing of a session transaction, if the server region fails, the

update to the DB2 database may not occur. Any changes made to the session

which cannot be completed are rolled back and the session reverts to its state

prior to the start of the transaction. Once the transaction is completed, the

session is still accessible regardless of the server region failure.

– If you add an object to a session that does not implement the serializable

interface, there is no way to persist the object along with a given session.

Consequently, the object will not be sent to and from the database when

session updates are made. To make your applications portable to a multiple

server region environment with persistent sessions, you must make objects

placed in a session serializable.

– When HttpSessionBindingListener and HttpSessionBindingEvent are used in a

multiple server region environment, the event will be fired in the server

region where the session is currently being processed. This will occur when:

- The servlet explicitly invalidates the session.

- The session times out.

- A listener is removed from a session.
– Any changes to the database parameters require a restart of all of the

associated Session Managers

See “Steps for configuring HTTP Session Support” on page 160 for a description of

how to configure DB2 session persistence.

Maintaining session data In-memory

If the local redirector plug-in is handling application requests, WebSphere for z/OS

can only maintain session data for an environment consisting of a single J2EE

server instance for which a single server region has been defined. In a multiple

server region environment, the local redirector plug-in may not route requests for a

specific HTTP session back to the server region that is maintaining the data for

that session. It merely routes the request to the next available server region, which

may or may not be the correct one.

If an HTTP(S) Transport Handler is handling application requests, WebSphere for

z/OS can maintained session data for an environment consisting of multiple J2EE

server instances, as well as multiple server regions within each server instance.

Therefore, it is recommended that an HTTP(S) Transport Handler be used to

handle requests for applications requiring session data to be store in-memory.

When an HTTP(S) Transport Handler is being used to handle application requests

in a single J2EE server instance environment, WebSphere for z/OS can route

requests for a specific HTTP session back to the server region maintaining the data

for that session, even if multiple server regions have been defined for that server

instance. In order for WebSphere for z/OS to maintain session data for an

environment consisting of multiple J2EE server instances, you must do one of the

following:

v Install a Version 5.3 IBM HTTP Server on a z/OS or OS/390 system and use FTP

or another file transfer mechanism to download the WebSphere HTTP Plug-in

for z/OS from your WebSphere for z/OS system to that HTTP Server, or

v Install a WebSphere plug-ins for Web servers (also referred to simply as a Web

server plug-in) on a supported Web server running on a distributed platform

workstation.

Chapter 4. A closer look at the J2EE server 89

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|

SeeTable 13 on page 93 for a list of supported non-z/OS Web servers and Web

server plug-ins.

Once the Web server and plug-in are properly installed and configured, you can

route requests from your browser, through the Web server and plug-in, to one of

the WebSphere for z/OS J2EE server instances defined by a ServerGroup element

in the plug-in’s plugin-cfg.xml file. (See “Steps for configuring HTTP Session

Support” on page 160 for a description of this file.) New requests will be randomly

sprayed across the defined WebSphere for z/OS J2EE server instances.

Whenever a session is established, the WebSphere for z/OS Web container assigns

a CloneID to that session, using either the default of

<ServerName.ServerInstanceName> or the value set in the CLONEID property in

the webcontainer.conf file. This CloneID will be used to ensure that future requests

that occur during the same session will be routed back to the correct server

instance, where the HTTP Transport Handler will route each request to the correct

server region within that server instance.

Note: If your installation exploits HTTP Session Affinity (i.e., Session-in-memory

using cookies over the HTTP(S) Transport Handler), you must disable the Server

Region Recycle Function by either:

v Setting the Server Region Recycle Limit to 0 (zero) or

v Opening a new conversation for the J2EE server in the WebSphere for z/OS

Administration application and uncheck ″Allow server region recycling″.

Use of the z/OS WLM operator command V

WLM,APPLENV=<generic_server_name>,REFRESH is discouraged because

existing server regions may NEVER terminate.

Session security

Maintaining the security of individual sessions is part of the function of the overall

security structure built into WebSphere for z/OS. When creating a session as part

of request processing, WebSphere for z/OS uses the value returned by the

getRemoteUser method on the HTTP Request object as the user name associated

with a session. If the getRemoteUser method returns null (which it will if a request

does not require authentication) WebSphere for z/OS uses a value of ″anonymous″

to denote the user. When processing a getSession() request on behalf of a Servlet,

WebSphere for z/OS validates that the user name associated with the current

request matches the user name associated with the session. If the names do not

match, the getSession method will throw an exception of

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException.

User authentication is performed by the Web server prior to invoking WebSphere

for z/OS. The following table illustrates the different scenarios that may occur

depending on whether the HTTP Request was authenticated and whether a valid

session ID and user name were detected by the Session Manager.

90 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

No session ID was

passed in for this

request, or an ID

is passed in for a

session that is no

longer valid.

A session ID for a

valid session is

passed in. The

current session

user name is

″anonymous″.

A Session ID for a valid

session is passed in. The

current session user

name is ″FRED″.

A Session ID for a valid

session is passed in. The

current session user

name is ″BOB″.

Unauthenticated

HTTP request used

to retrieve a

session.

A new session is

created and the

user name is

marked as

″anonymous″.

The session is

returned.

The session is not

returned;

UnauthorizedSession

RequestException is

thrown.

The session is not

returned;

UnauthorizedSession

RequestException is

thrown.

HTTP request

authenticated, with

an identity of

″FRED″ used to

retrieve a session.

A new session is

created and the

user name is

marked as ″FRED″.

The session is

returned and the

user name is

changed by the

Session Manager to

″FRED″.

The session is returned. The session is not

returned;

UnauthorizedSession

RequestException is

thrown.

Using cookies for session tracking

If cookies are enabled, the Session Manager will use a unique session ID to match

user requests with their HttpSession objects on the server. When the user first

makes a request and the HttpSession object is created, the session ID is sent to the

browser as a cookie. On subsequent requests, the browser sends the session ID

back as a cookie and the Session Manager uses it to find the HttpSession

associated with this user.

Using URL rewriting instead of cookies

There are situations in which cookies will not work. Some browsers do not support

cookies. Other browsers allow the user to disable cookie support. In such cases, the

Session Manager must resort to a second method, URL rewriting, to manage the

user session. With URL rewriting, all links that you return to the browser or

redirect have the session ID appended to them.

Note: If you have APAR PQ67436 installed on your system, URL rewriting can be

used even if you are:

v Maintaining session data in memory across multiple server regions within

a single J2EE server instance.

v Maintaining session data in memory across multiple J2EE server instances,

provided you are using one of the following WebSphere plug-ins for Web

servers:

– The WebSphere HTTP Plug-in for z/OS that is used with the Version

5.3 IBM HTTP Server for z/OS and OS/390. (This plug-in is provided

in WebSphere for z/OS Service Level W401500.) This plug-in

(ihs390WASPlugin_http.so) should not be confused with the Local

Redirector plug-in (was400plugin.so) that is shipped with the

WebSphere for z/OS product to provide an IIOP connection from an

IBM HTTP Server for z/OS and OS/390 to a WebSphere for z/OS Web

container.

– One of the WebSphere plug-ins for Web servers that run on a

non-z/OS Web server that is shipped with WebSphere for z/OS and

with the WebSphere Application Server Advanced Edition Version 4.0.5

or higher product. See Table 22 on page 176 for a list of these plug-ins.

The following example shows how Java code may be embedded within a JSP:

Chapter 4. A closer look at the J2EE server 91

|||
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

<%

response.encodeURL ("/store/catalog") ;

%>

 To maintain state using URL rewriting, every page that the user requests during

the session must have code that can be understood by the Java interpreter. If your

J2EE application and portions of the site that the user might access during the

session contain plain HTML files, these files must be converted to JSPs. This will

impact the application writer because, unlike maintaining sessions with cookies,

maintaining sessions with URL rewriting requires that each servlet in the

application use URL encoding for every HREF attribute on tags. Sessions will be

lost if one or more servlets in an application do not call the encodeURL(String url)

or encodeRedirectURL(String url) methods.

To rewrite the URLs that are returning to the browser, the servlet must call the

encodeURL() method before sending the URL to the output stream. For example, if

a servlet that does not use URL rewriting contains the code:

out.println("catalog");

then this code must be replaced with:

out.println("");

out.println(response.encodeURL ("/store/catalog"));

out.println("/">catalog");

To rewrite URLs that are redirecting, a servlet must call the encodeRedirectURL()

method. For example, if a servlet contains the following code:

response.sendRedirect ("http://myhost/store/catalog");

then this code must be replaced with:

response.sendRedirect

 (response.encodeRedirectURL("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the

HttpServletResponse object. In both cases, these calls check to see if URL rewriting

is configured before encoding the URL. If it is not configured, it returns the

original URL. Also, unlike previous releases, WebSphere for z/OS no longer makes

any checks to see if the browser making an HTTP request has processed cookies,

and thus halts encoding of the URL. If URL encoding is configured and

response.encodeURL or encodeRedirectURL are called, the URL will be encoded.

WebSphere plug-ins for Web servers support

WebSphere for z/OS includes plug-ins to allow connections via the HTTP(S)

Transport Handler between a WebSphere for z/OS Web container and either:

v A Version 5.3 IBM HTTP Server for z/OS and OS/390, or

v A supported Web server running on a non-390 workstation platform. (Table 13

on page 93 lists the supported Web servers.)

These plug-ins are referred to as IBM WebSphere plug-ins for Web servers, or Web

server plug-ins. The WebSphere HTTP Plug-in for z/OS is only available with the

WebSphere for z/OS product. The plug-ins that are used with Web servers running

on non-390 workstation platforms are provided with both WebSphere for z/OS and

the AE version of the WebSphere Application Server for Distributed Platform

product.

Note: If you use one of these plug-ins shipped with the WebSphere Application

Server Advanced Edition Version 4.2 or higher, just follow the set-up

92 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|
|

|
|
|
|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|

|
|

instructions provided in “Steps for setting up WebSphere plug-ins for Web

servers for use with WebSphere for z/OS” on page 171. You do not have to

set-up the rest of the Advanced Edition product.

Once one of these plug-ins is installed on the appropriate Web server, servlet and

JSP requests from that Web server can be redirected, via a WebSphere for z/OS

HTTP(S) Transport Handler to WebSphere for z/OS where J2EE Web container

functions are supported.

The WebSphere HTTP Plug-in for z/OS is located in the

/usr/lpp/WebSphere/WebServerPlugIn/bin directory. “Setting up the WebSphere

HTTP Plug-in for z/OS” on page 171 describes how to set up this plug-in to

communicate with the HTTP(S) Transport Handler. This plug-in

(ihs390WASPlugin_http.so) should not be confused with the previously existing

Local Redirector plug-in (was400plugin.so) that is shipped with the WebSphere for

z/OS product to provide an IIOP connection from an IBM HTTP Server for z/OS

and OS/390 to a WebSphere for z/OS Web container.

Each of the non-z/OS Web server plug-ins that are supported in this configuration

run on a number of operating system platforms. The plug-in files for each

platform/Web server combination are stored in a separate WebSphere for z/OS

subdirectory. The following table lists the non-z/OS Web server and platform

configurations supported by these plug-ins, as well as the subdirectory where they

are located within the WebSphere for z/OS product. “Setting up the Web server

plug-in for a non-z/OS Web server” on page 175 describes how to set up these

plug-ins to communicate with the HTTP(S) Transport Handler.

 Table 13. WebSphere plug-ins for non-z/OS Web servers provided with WebSphere for

z/OS

Operating system Web server Subdirectory

Windows 2000/NT IBM HTTP Server (IHS) /usr/lpp/WebSphere/

Download

Plugins/Win32/IHS

Lotus Domino /usr/lpp/WebSphere/

Download Plugins/Win32/

Domino

Apache /usr/lpp/WebSphere

/Download Plugins/Win32/

Apache

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/Win32/

iPlanet

Microsoft Internet

Information Server (IIS)

/usr/lpp/WebSphere/

DownloadPlugins/Win32/IIS

IBM AIX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/AIX/IHS

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/AIX/

Domino

Apache /usr/lpp/WebSphere/

DownloadPlugins/AIX/

Apache

Chapter 4. A closer look at the J2EE server 93

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

||
|

|||

|||
|
|

|||
|
|

|||
|
|

|||
|
|

||
|
|
|

|||
|

|||
|
|

|||
|
|

Table 13. WebSphere plug-ins for non-z/OS Web servers provided with WebSphere for

z/OS (continued)

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/AIX/

iPlanet

HPUX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

IHS

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

Domino

Apache /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

Apache

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

iPlanet

Sun Solaris IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

IHS

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

Domino

Apache /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

Apache

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

iPlanet

LINUX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/LINUX/

IHS

Apache /usr/lpp/WebSphere/

DownloadPlugins/LINUX/

Apache

 Once you are set up to use a WebSphere plug-in for Web servers, in addition to

regular plug-in functions, you can use private headers as a mechanism for

forwarding proxy information from these plug-ins to WebSphere for z/OS, which

would not otherwise be included with the HTTP requests. Private headers are

implemented as a set of HTTP request header name/value pairs that the plug-ins

add to the HTTP request header as it is forwarded by the Web server. The

WebSphere for z/OS Web container removes this information from the header, and

processes it. The private headers can include such information as the remote

(client) user, the remote (client) host name, or an SSL client certificate. They

conform to a naming standard so that there is no namespace collision with the

architected HTTP header fields (hence the name ″private″).

For example, authentication information such as a client certificate, is normally

requested by the Web server once during the establishment of an HTTP session,

and then is not required again for individual requests within that session.

94 WebSphere for z/OS: Assembling J2EE Applications

|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|

|||
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

However, when these requests are forwarded to WebSphere for z/OS, the client

certificate needs to be forwarded with each request, so that WebSphere for z/OS

can use it as needed.

Similarly, the Web server examines the TCP/IP socket connection for information

about the host address of the client. WebSphere for z/OS cannot do this because

it’s socket connection is with the plug-in, not the actual client. Therefore, another

one of the private headers is the host address of the actual client.

See “Steps for setting up WebSphere plug-ins for Web servers for use with

WebSphere for z/OS” on page 171 for additional information.

Trust association interceptor support

WebSphere for z/OS is capable of performing both the authentication of Web

clients and the validation that these requestors have been granted access to the

appropriate role before allowing access to the requested URL. This processing,

which is handled by the Web container in the J2EE server, is based on the security

constraints specified by the deployment descriptor contained in the the target Web

application’s web.xml file.

In addition to the authentication and authorization processing the Web container

provides, your installation might want to use an external security product to

perform authentication. WebSphere for z/OS enables the use of this type of

external product through its trust association interceptor (TAI) support.

A trust association interceptor is Java code that can be configured for use by

WebSphere for z/OS at run time. When WebSphere for z/OS determines that it

needs to perform authentication processing, it sends the input request to a

configured trust association interceptor. The interceptor examines the content of the

request and returns a string, containing the name of a user within the configured

user registry. WebSphere for z/OS then treats the user as authenticated and makes

that user name the principal of the current request. Any necessary access checks

will be performed based on the permissions that have been granted to the

authenticated user in this environment. If a trust interceptor does not indicate it

has authenticated a user, WebSphere for z/OS will perform authentication

according to the rules specified by the deployment descriptor in the web.xml file

for the requested application.

Your installation might want to use a trust association interceptor if it has a third

party security product acting as a reverse proxy in a DMZ. This third party

product performs authentication of the Web clients within the DMZ and then

forwards the request to WebSphere for z/OS for processing. The trust association

interceptor that the third party security product provides must implement the

TrustAssociationInterceptor class required by WebSphere for z/OS. This class,

which is located in the Java package com.ibm.websphere.security, enables the third

party product to indicate to WebSphere for z/OS that authentication processing

has already been performed and to identify the authenticated user to WebSphere

for z/OS. This prevents WebSphere for z/OS from redundantly trying to

authenticate the client.

WebSphere for z/OS does not know how the interceptor authenticates a user. It

also doesn’t know how the trust association interceptor determines that the request

has been forwarded by a trusted proxy server. The method by which the trust

association interceptor determines that the request has been forwarded by a trusted

proxy server is determined by the trust association interceptor provider.

Chapter 4. A closer look at the J2EE server 95

|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

Trust association interceptors are defined to the WebSphere for z/OS run-time

environment using properties in the webcontainer.conf file. Multiple versions of

these properties can be included in the webcontainer.conf file if you need to define

multiple interceptors to the WebSphere for z/OS run-time environment. This

capability makes it possible to set up configurations with multiple reverse proxy

vendors that can all forward requests to the same WebSphere for z/OS instance for

processing. When multiple interceptors are configured, WebSphere for z/OS calls

them in the order in which they are defined. Once an interceptor indicates that it

has authenticated a client, WebSphere for z/OS will not call any subsequent

interceptors.

The implementation class for the trust association interceptor must be be defined

to WebSphere for z/OS before it can be utilized at run time. Consult with the

provider of your trust association interceptor for any special instructions for setting

up or configuring their interceptor within a WebSphere for Z/OS run-time

environment. (See the TrustAssociationInterceptor class contained in the Java

package com.ibm.websphere.security for information on how to implement a Trust

Association Interceptor.

Using a custom user registry with WebSphere for z/OS

WebSphere for z/OS provides a built-in authentication and authorization

mechanism for Web clients. This mechanism, WAS390WebAuthMechanism,

provides support for:

v Challenging Web clients for inputs according to the rules described by the J2EE

v1.2 and the Servlet v2.2 specifications.

v Enabling single sign-on support to be provided among WebSphere v4.0.1 for

z/OS or higher Application Servers, which are configured to use the same user

registry and SSO values.

v Delegating authentication and authorization support to a third party

authentication and authorization server that is able to provide a Trust

Association Interceptor for use at runtime.

WebSphere for z/OS J2EE servers that are to service requests from Web clients can

be configured as follows:

1. SAF based configuration

 This is the default configuration in which WebSphere authenticates users and

groups to a SAF (RACF) security system. J2EE permissions are described via

SAF EJBROLE resource profiles within the SAF system. Optimized access to

z/OS Resource Managers, (including container managed client level access

authority, is available with this configuration.

2. Custom user registry configuration

 This configuration option allows a third party user registry to be provided for

use with WebSphere for z/OS. In this configuration, J2EE permissions are not

configured within the SAF system. Instead they are configured using an

authorization table. This table is contained in an XML file that is pointed to by

the following set of tags contained in the XML file specified on the

WebAuth.CustomRegistry.authorizationTableXML=filename.xml property in the

webcontainer.conf file:

<Application>

 <name>application_name</name>

 <permission-file-name>fully_qualified_filename

 </permission-file-name>

</Application>

96 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|
|
|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

Note: There should be a set of these tags for each application installed on the

J2EE server for which the custom user registry is being used.

 When using a custom user registry in a WebSphere for z/OS environment, you

should be aware of the following:

a. Authenticating remote EJB clients using a custom user registry is not

supported. However, EJBs that are accessed from a Web application that is

deployed in the same J2EE server as these EJBs can be administered within

the domain of a custom user registry.

b. It is recommended that EJBs not be exposed to remote clients from a J2EE

server which is configured to make use of a non-SAF registry.

c. When using single sign-on capability for an application, it is the

responsibility of the administrator to ensure that all WebSphere for z/OS

J2EE servers that are part of the sign-on domain are using the same registry

(i.e., the same SAF User Registry or the same custom user registry).

d. Identities associated as a result of the EJB methods runAs server and runAs

RoleName will not support custom user registry identities. Instead, they

will use a SAF identity and subsequent authorizations will be done using

the SAF EJBROLE profile.

The following table summarizes how permissions are obtained using SAF and

using a custom user registry:

 Table 14. Permissions summary

SAF Custom user registry

Users and groups defined in RACF. Users and groups are defined in a custom

registry.

Roles are set up by defining profiles in

RACF

Users and groups are defined in an

authorization table.

Users and groups are permitted to roles by

having access to the RACF profile. Use the

RACF PERMIT command to grant additional

roles permission to the EJBROLE profile.

Users and groups are permitted to roles

through the authorization table. Edit the

XML file containing the authorization table

to authorize additional roles.

Methods used to define user registries

The following table summarizes the methods used to define user registries and the

resulting mechanism for defining permissions.

Chapter 4. A closer look at the J2EE server 97

|
|

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

||

||

||
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

Table 15. Summary of the methods used to define user registries and the resulting mechanism for defining

permissions

Web clients User registry J2EE permissions Resource adapter

WAS390Web

AuthMechanism is used as

a mechanism for client

authentication and

authorization, and for

managing Web clients

logins to WebSphere for

z/OS J2EE servers.

When a protected URL (as

defined by security

constraint in web.xml

deployment descriptor) is

to be accessed by a web

client, Web Container will

validate that the requestor

has the required

permissions (i.e. access to

role).

If necessary, clients are

challenged for

authentication data via the

policy in web.xml

deployment descriptor. The

following challenge types

are available:

v User ID/password via

HTTP Basic

authentication

v User ID/password via

Form-Based Login.

In addition, the Web

container will consult with

any configured Trust

Association Interceptors

prior to performing a

challenge. Trust Association

Interceptors can inform the

Web container if a client is

to be considered a current,

authenticated principal. The

Web container will also

allow for any authenticated

client to be delegated to the

WebSphere for z/OS J2EE

server by a Trusted Proxy

Server such as Tivoli

WebSeal.

SAF

v When user ID/password

is acquired via a Basic

authentication or

Form-Based login, it is

validated against SAF.

v When a client certificate

is provided, the

certificate is passed to

SAF and resolved via

Certificate Mapping

Filters that are

configured in the SAF

system. The resultant

SAF principal from the

certificate mapping

operation is considered

the current principal.

v When a user ID string is

returned from a Trust

Association Interceptor,

the client is considered to

be a valid user within

the SAF system.

When using SAF as the

user registry, J2EE

permissions are defined via

SAF EJBROLE resource

profiles within the SAF

system that contains the

user registry.

Users and groups are

allowed permission to the

J2EE server’s resources

when the J2EE server

administrator grants the

users/groups access to the

resource profiles

representing the ROLE.

This is accomplished using

SAF facilities.

SAF based resource

adapters use the value

specified on on a resource’s

deployment descriptor

res-auth attribute to

determine how

authorization is to be

handled:

v For resources that were

deployed with a

deployment descriptor

containing the attribute

res-auth=application an

application must include

a user ID and password

whenever it invokes the

getConnection API.

v For resources that were

deployed with a

deployment descriptor

containing the attribute

res-auth=CONTAINER, the

Web container, in

conjunction with the

resource adapter, will

establish the connection

with a primary

authorization ID equal to

the ID of the SAF user

that is the current

principal.

This attribute is configured

on a per J2EE server basis.

98 WebSphere for z/OS: Assembling J2EE Applications

||
|

||||

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 15. Summary of the methods used to define user registries and the resulting mechanism for defining

permissions (continued)

Third parties or

installations may use a

custom user registry by

providing an

implementation of the

com.ibm.websphere.security.

CustomRegistry interface.

v When a user

ID/password is acquired

via Basic authentication

or Form-Based login, it is

validated against the

custom user registry. The

name returned via the

checkPassword method

of the custom user

registry implementation

is the name assigned to

the current principal.

v When a user ID string is

returned from a Trust

Association Interceptor,

the client is considered to

be a valid user within

the custom user registry.

This will be validated via

a call by the runtime to

the isValidUser() method.

When a custom user

registry has been

configured for use with

WebSphere for z/OS, J2EE

permissions are required to

be defined to the J2EE

server in an XML file

containing an authorization

table. This XML file allows

the J2EE administrator to

grant permission to J2EE

roles on the basis of a user,

a group, and the

application which is being

accessed.

The res-auth deployment

descriptor attribute

specified when a resource

is deployed determines

how authorization is to be

handled:

v Resources that are

deployed with a

deployment descriptor

containing the attribute

res-auth=application

require an application to

provide a user ID and

password on input of

getConnection API.

v Resources that are

deployed with a

deployment descriptor

containing the attribute

res-auth=CONTAINER

require the Web

container, in conjunction

with the resource

adapter, to establish the

connection using the SAF

ID specified on the

WebAuth.CustomRegistry.

SAFPrincipal property in

the webcontainer.conf

file.

 The res-auth=CONTAINER

attribute is configured on

a per J2EE server basis.

Defining J2EE Permissions for J2EE servers that are configured

for a non-SAF based user registry

When a WebSphere for z/OS J2EE server has been configured to make use of a

custom user registry for authentication and authorization processing, the

permissions that are granted to users and groups within that J2EE server are

provided by the administrator via an XML file that contains an authorization table.

This file describes the authorization rules that WebSphere for z/OS is to use at

runtime. You can not use EJBROLE profiles defined in a SAF system if users and

groups are defined in a non-SAF based registry.

The syntax of the XML file containing the authorization table allows the

administrator to grant users and groups access to J2EE resources on a per

application basis. It also allows the administrator to define a global set of

permissions that are used for applications that do not have an application specific

definition. At runtime, WebSphere for z/OS determines the roles that are required

to access a J2EE resource. If the current user, or a group in which that user is a

member, has been granted access to one of the required roles, then that user is

permitted access to the J2EE resource.

Users and groups are permitted access by mapping them to the appropriate roles

defined in an application’s deployment descriptors. <role roleName> tag sets

Chapter 4. A closer look at the J2EE server 99

|
|

||
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

within the authorization table XML file are used to define these mappings. (See

“Creating XML files containing authorization tables” on page 196.) Two special

values that can be specified within this tag set are:

v <user userName="AllAuthenticatedUsers"/>, if you want to associate all

authenticated clients with a role. When this value is specified, any successfully

authenticated client will be mapped to that role.

v <user userName="Everyone"/> if you want to associate every client with a role.

Clients do not have to be authenticated in order to get mapped to this role.

When this value is specified, WebSphere for z/OS acts as though any application

associated with this role is unprotected.

When determining a match for authorization rules, WebSphere for z/OS will first

look for an exact match on a specific application name. If no application specific

definition is provided, WebSphere for z/OS will look for a global permission

definition defined by the wildcard ″*″ application name. There is no support

provided for partial matches on application names.

If a matching application is not found, via an explicit match or a wildcard match,

or if the role has not been provided within the matching application stanza,

WebSphere for z/OS will assume that the permission has not been granted and

will deny access to the resource.

The XML file containing the list of XML files containing authorization tables is

defined to the WebSphere for z/OS J2EE server using a webcontainer.conf file

property. Each server region within a J2EE server instance reads this file as part of

its initialization. The J2EE server administrator is responsible for controlling access

to this file. It is recommended that this file be allowed to be written and update by

an administrator, and able to be accessed in read-only mode by the server region

process at runtime. This is similar to existing recommendations for the was.conf

file and the httpd.conf file.

Implications of accessing z/OS Resource Managers

WebSphere for z/OS provides support for optimized access to existing z/OS

Resource Managers and subsystems such as CICS, IMS, and DB2/ESA. This

support is provided in the form of configurable resource adapters that applications

access through Standard J2EE programming APIs.

J2EE specifications allow the security policy, that is used when connecting to a

resource manager, to be configurable. The security policy is determined by the

setting specified on the res-auth attribute of a deployment descriptor for a Web

application or EJB that needs to access the requested resource.

v When res-auth=APPLICATION is specified, the Web container and the EJB

container expect the application include a user ID/password in the connection

API. The resource adapter uses this user ID/password to verify that the

application has permission to access the requested resource.

v When res-auth=CONTAINER is specified, the Web container and the EJB container,

working in conjunction with the z/OS Resource Managers, establish a SAF

principal as the primary authorization ID. The resource adapter uses this ID to

obtain a connection to the requested resource. By default, when running in a

J2EE server that is configured to make use of a custom user registry, the

containers will work with the Resource Manager to establish the connection

using the identity of server region hosting the application. This ID is also used

when accessing EJBs that are not part of the same enterprise application but are

deployed in the same J2EE server.

100 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

If you don’t want to use the server region ID, you can update the

WebAuth.CustomRegistry.SAFPrincipal property in the webcontainer.conf file to

specify a valid MVS user ID that you want to used for establishing resource

connections.

Using the CustomRegistry interface

The CustomRegistry interface, which is described in “Implementing the

CustomRegistry interface” on page 199, defines a set of very general methods that

are called to perform security operations for applications configured to use a

custom user registry. When implementing the methods in the interface, an

application developer must decide how to map the information manipulated by

the CustomRegistry interface to the information in the custom user registry. The

methods in the CustomRegistry interface operate on the following user

information:

User name

This is the name by which a user is authenticated using a checkpw call.

The string returned from this call is used as the user name for subsequent

authorization checks. The CustomRegistry interface requires user names to

be unique. For most registries, the user name logically maps to an

identifier that is meaningful to the user; some common terms for this

identifier include login name, account name, user name, and principal.

Unique identifier

The CustomRegistry interface requires this identifier to be unique. For

most registries, the unique identifier logically maps to a numeric

counterpart of a user name. WebSphere for z/OS automatically assigns a

user ID (UID) to each user name.

The CustomRegistry interface also operates on parallel information for groups

Group name

An identifier for a group. As with the user name, the CustomRegistry

interface requires group names to be unique. For most registries, user

names logically map to one or more groups. This enables either a user

name or a group name to be used to authorize access to one or more roles.

Unique identifier

A unique identifier for a group.

See “Steps for enabling a custom user registry” on page 193 for a description of

how to enable a custom user registry within a J2EE server environment.

Batch compiling JSPs

As an IBM enhancement to JSP support, WebSphere for z/OS provides a batch JSP

compiler tool called the JspBatchCompiler tool. This tool, which you initiate from

an OMVS command line prompt, should be run when the J2EE server instance,

specified on the server.name parameter is offline. Running this script while the

server instance is running will impact application response time.

Batch compiling JSP files makes the J2EE server instance’s response to the first

request for a JSP much faster because the JSP has already been translated and

compiled into a servlet before any request is received. Batch compiling is also

useful as a fast way to resynchronize all of the JSP files for an application.

Chapter 4. A closer look at the J2EE server 101

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|

|

|
|
|
|
|

|
|
|
|

Dynamic fragment caching

A WebSphere for z/OS performance enhancement is the ability to cache the output

of dynamic servlets and JSP files within a single server region. Working within an

application server’s Java Virtual Machine (JVM), this technology intercepts calls to

a servlet’s service method, and checks whether the invocation can be served from a

cache. Because J2EE applications have such high read-write ratios and can tolerate

a small degree of latency in the freshness of their data, fragment caching creates an

opportunity for significant gains in server response time, throughput, and

scalability, thus improving overall performance.

After a servlet is invoked once (generating the output that will be cached), a cache

entry is created containing not only the output, but also side effects of the

invocation, such as calls to other servlets or JSP files, as well as meta data about

the entry including timeout and entry priority information. Unique entries are

distinguished by an ID string generated from the HttpServletRequest object for

each invocation of the servlet. Servlet caching can then be based on:

v Request parameters and attributes

v The URI used to invoke the servlet

v Session information

v Other options, including cookies

Since WebSphere for z/OS compiles JSP files into servlets, the dynamic cache

function treats them the same.

Each server region has its own cache. Therefore, when a server region is recycled,

the cache is cleared.

Note: If you are porting Web applications from a WebSphere Application Server

for Distributed Platforms system that use dynamic fragment caching, you

should be aware that:

v There is one restriction: the Servlet Cache Monitor application can only be

used in a a J2EE server instance environment with a single server region

defined.

 WebSphere for z/OS provides the Servlet Cache Monitor application as a

tool for verifying that your servlets and JSPs are being properly cached.

This tool enables you to inspect the contents and behavior of the fragment

cache. However, if this tool is used in an environment that has more more

than one server region configured (using MIN_SRS=nn) for a J2EE server

instance, it may provide invalid results.

v The dynacache.xml file can not be configured using the WebSphere for

z/OS Administration application.

v The same dynacache.xml and servletcache.xml files can be used with both

the WebSphere Application Server for Distributed Platforms and the

WebSphere for z/OS products.

External caching

WebSphere for z/OS’s dynamic cache has the ability to control external caches on

Web servers that are being used to perform external caching of servlets and JSP

files.

When external caching is enabled, the cache matches pages with their URIs and

pushes matching pages to the external cache. The entries can then be served from

the external cache instead of the application server. This creates a significant

savings in performance.

102 WebSphere for z/OS: Assembling J2EE Applications

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|

|

|

|
|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

Only certain fragments are eligible for external caching. Since the external cache

must use the full URI as a cache id, the servlet being externally cached uses that

URI as its internal cache id as well. Also, because the the cache automatically uses

the URI to build cache ids, it is illegal to define cache variables (for example,

request, session, and cookie variables) in an externally cacheable servlet.

Only full pages are pushed out to external caches, so only externally accessible

servlets should be defined as externally cacheable. For example, if page1.jsp

includes page2.jsp and page3.jsp, then only page1.jsp should be declared externally

cacheable. If page3.jsp is invalidated, then the cache also invalidates the external

entry for page1.jsp. Therefore the next request for page1.jsp is sent to WebSphere

Application Server.

Servlet and JSP file content that is private, requires authentication, or uses SSL

should not be cached externally. The authentication required for those servlet or

JSP file fragments cannot be performed on the edge. A suitable timeout value

should be specified if the content is likely to become stale.

At this time, there are no products that implement an external cache adapter for

the dynamic fragment caching support for WebSphere for z/OS.

Monitoring dynamic fragment caching

WebSphere for z/OS provides the Servlet Cache Monitor application for inspecting

the contents and behavior of the fragment cache. (“Steps for enabling dynamic

fragment caching” on page 204 describes how to set up this application.). Once

you have the monitor running, you can view the statistics page which describes

the following properties:

v Cache Size - The maximum number of cache entries, as defined in the

dynacache.xml file.

v Used Entries - The number of entries currently contained in the cache. The cache

is considered full even if this number is less than the number specified for

Cache Size because the cache tries to keep 20% of the entries in reserve.

v Cache Hits - The number of servlet/JSP requests, both external (from a browser)

and internal (included/forwarded from another servlet/JSP) that have been

served from the cache since startup.

v Cache Misses - The number of requests for cacheable servlets or JSPs, that were

not served from the cache, i.e. resulted in executing the fragment and storing the

result in the cache.

v LRU Evictions - The number of entries that have been removed from the cache

by the LRU algorithm when the cache was full and new entries needed to be

added.

v Explicit Removals - The number of entries removed from the cache through

cache policy rules, or through the cache monitor.

v Default Priority - The default value for a cache entry’s priority as defined in the

dynacache.xml file. (See “Custom ID and MetaData generators” on page 104 for

more information about priority.)

You can click on Contents to view the Current Cache Contents page and see a list

of cache entries. For each cache entry listed you can:

v Click on an entry listed under the Template keyword to display a list of cache

entries that have the same template. From this view, you can:

1. Invalidate the entries for that template.

2. Click on the dataIds field for the entry to display a list of cache entries that

have the same dataId. From the dataIds view, you can invalidate the entries

Chapter 4. A closer look at the J2EE server 103

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|
|

with that dataId or click on an entry listed under the cacheEntry ID keyword

to display a detailed description of that entry.

3. Click on the cacheEntry ID to display a detailed description of that entry.
v Click on an entry listed under the Cache ID keyword to display a detailed

description of that entry.

v Click on an entry listed under the Data IDs keyword to display a list of cache

entries that have the same dataId. From this view, you can invalidate the entries

with that dataId or click on an entry listed under the cacheEntry ID keyword to

display a detailed description of that entry.

From the detailed description view, you can invalidate the entry, reset its position

in the LRU algorithm (mimicking a cache hit on that entry), or return to the main

list of entries.

You can click on Clear Cache from any view to remove every entry currently in the

cache.

Custom ID and MetaData generators

WebSphere for z/OS’s dynamic cache technology allows users to replace the

standard configuration functions with their own custom configuration classes. The

configuration duties managed by the cache fall into two categories:

v Generating cache and group IDs

v Defining meta data such as timeout, priority, and external caching

Application developers can supply classes to handle either or both of these sets of

responsibilities, by implementing

com.ibm.websphere.servlet.cache.IdGenerator

and

com.ibm.websphere.servlet.cache.MetaDataGenerator

Overriding the default MetaDataGenerator allows users to access configuration

information from some other source, or makes timeout, priority, or external cache

group a function of a variable rather than a constant. A new IdGenerator gives

users the ability to determine cache entry ids and their group ids. Both classes can

still use the cache policy attributes defined for a servlet (<timeout>, <priority>,

<request>, and others) to relay data to their generators using the

com.ibm.websphere.servlet.cache.CacheConfig class.

Each servlet class has individual IdGenerator and MetaDataGenerator objects

associated with it. So if the same servlet is being executed by WebSphere

Application Server in different threads, all threads will use the same pair of

generator objects. Several dynamic caching classes are not described in detail here.

For a full description of the com.ibm.websphere.servlet.cache API package,

including the classes and interfaces used by the cache function, see the description

of this API package at URL:

http://www.ibm.com/software/webservers/appserv/doc/v40/aee/wasa_common/apidocs/index.html

To configure the cache to use a custom ID generator, include a <idgenerator> tag

in the servletcache.xml file to specify the IdGenerator.

<servlet>

 <timeout seconds="0"/>

 <path uri="/servlet/CommandProcessor" />

 <idgenerator class="SampleIdGeneratorImpl" />

</servlet>

104 WebSphere for z/OS: Assembling J2EE Applications

|
|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|
|

|

|

|
|

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

|
|

|
|
|
|
|

See “Building a custom ID generator” on page 216 for additional information.

Web services

WebSphere for z/OS uses SOAP (Simple Object Access Protocol) as its framework

for supporting the creation and deployment of Web Services. Its SOAP

implementation includes V2.2 of the Apache SOAP implementation, which is a

Java-based implementation of the SOAP 1.1 specification. This implementation:

v Gives applications a simple way to take advantage of an increasing number of

information sources that are becoming available over the Web by enabling them

to open up an HTTP connection, invoke a remote method, and receive the

resulting response.

v Enables you to expose EJBs as SOAP Services.

v Includes an implementation of the Security extensions for SOAP, which enables

secure connections (see “Securing SOAP Services” on page 255).

This implementation of SOAP uses a set of XML tags to indicate the roles of

different pieces of information being sent over the Web using the HTTP transport

protocol. With SOAP, typically:

1. Your program passes the name of the remote method it wants to invoke, along

with any required parameters, to your client library.

2. The library assembles the appropriate XML document, called a SOAP request,

which includes a description of the method to be invoked and the required

parameters.

3. The library passes this XML document to the SOAP server identified by a

SOAP endpoint URL. (A SOAP endpoint URL is used, much the same way as

when you point a browser at a Web server address by specifying the server’s

URL.)

4. The SOAP server attempts to execute the method.

5. It then assembles a SOAP response XML document around the result of the

execution and passes it back to the SOAP client. (The response is either the

result of the execution or the appropriate error message.)

6. Upon receiving the SOAP response, the client library parses the XML document

to get the result of the method invocation and passes this result to the program

using the library.

See Chapter 15, “Creating and deploying Web Services,” on page 249 for a

description of how to set up your Web services.

If you require a SOAP client, there are SOAP clients for most programming

languages available for downloading from the internet.

Considerations for test and production environments

Before you put an application into production on z/OS or OS/390, it is important

that you run the code in a WebSphere for z/OS server for testing. You may bring

up the application and simulate a real load on the application. To do this, you

need to define an additional test server and install the application into it. It is

possible to have different levels of the application installed within the same

sysplex inside different test and production servers.

Because WebSphere for z/OS is designed and built to take advantage of the

sysplex environment, which includes such shared facilities as datasharing,

intelligent workload balancing, and shared transaction management, there are

Chapter 4. A closer look at the J2EE server 105

|

opportunities and challenges for software testing due to this shared resource

design. When choosing a test and production configuration, weigh the risks

involved according to the resources shared between test and production systems.

WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834, explains possible test and production system

configurations and the risks involved for each.

106 WebSphere for z/OS: Assembling J2EE Applications

Part 2. Creating, assembling and deploying J2EE server

applications

© Copyright IBM Corp. 2000, 2003 107

108 WebSphere for z/OS: Assembling J2EE Applications

Chapter 5. Setting up the application development

environment

All of the tools you use to develop, assemble, and install J2EE application

components are workstation tools. Because documentation for installing and using

these tools is available already, the following procedure provides only a summary

of the installation steps, with references to resources with further instructions. Use

this procedure as a checklist to make sure you have the correct tools and

information sources on hand, before you begin to develop J2EE application

components.

Steps for setting up your workstation

Perform the following steps to set up your workstation for developing, assembling,

and installing Java 2 Enterprise Edition (J2EE) applications:

1. Decide which application development tools and other software you will need

to develop your application. Use the following table to help you determine

which software is necessary.

© Copyright IBM Corp. 2000, 2003 109

Table 16. Software requirements for Java 2 Enterprise Edition application components

J2EE

application

component

Software to use

Enterprise

beans

For development: One of the following:

v WebSphere Studio Application Developer and 390fy, which is the

preferred method of deploying applications.

v The WebSphere for z/OS Application Assembly tool (read the

recommendations following this table for further information about

using the Application Assembly tool).

v The IBM WebSphere Studio Application Developer V4.0x

v WebSphere Studio Application Developer Integration Edition

v Non-IBM tools, such as JBuilder or Visual Cafe, for application

development. Use the documentation for those products to determine

hardware and software requirements.

For testing: One of the following:

v IBM WebSphere Studio Application Developer V4.0x

v WebSphere Studio Application Developer Integration Edition

environment

v This combination of products:

– IBM or Sun Microsystems Java 2 Standard Edition (J2SE) Software

Development Kit (SDK) V1.3

– WebSphere Application Server Advanced Edition, V3.5, or Advanced

Single Server Edition, V4.0

(Optional) DB2 Universal Database Version 7.1, required only for testing

beans that require the use of a persistent datastore.

For assembly: One of the following:

v The WebSphere for z/OS Application Assembly tool (read the

recommendations following this table for further information about

using the Application Assembly tool)

v The IBM WebSphere Studio Application Developer V4.0x

For installation in a J2EE server:

v The WebSphere for z/OS Administration application

Servlets and

JavaServer

Pages (JSPs)

For development and testing: One of the following:

v WebSphere Studio Application Developer and 390fy, which is the

preferred method of deploying applications.

v The WebSphere for z/OS Application Assembly tool (read the

recommendations following this table for further information about

using the Application Assembly tool).

v The IBM WebSphere Studio Application Developer V4.0x

v IBM or Sun Microsystems Java 2 Standard Edition (J2SE) Software

Development Kit (SDK) V1.3

For assembly: One of the following:

v The WebSphere for z/OS Application Assembly tool (read the

recommendations following this table for further information about

using the Application Assembly tool)

v The IBM WebSphere Studio Application Developer V4.0x

For installation in a J2EE server: The WebSphere for z/OS Administration

application

 Recommendations:

110 WebSphere for z/OS: Assembling J2EE Applications

v The preferred method of deploying applications is to use WebSphere Studio

Application Developer and 390fy. If you are using the following two IBM

extensions, however, you still need to use the Application Assembly tool:

– SyncToOSThread: See “Synchronizing operating system thread identity to

RunAs identity” on page 31 for more information on this extension.

– Connection Management Policy: See “Exploiting connection management

support” on page 71 for more information on the Connection Management

Policy extension.
v Use the IBM WebSphere Studio Application Developer to develop and test

beans, servlets, and JSPs. This product enables developers to fully test entity

and session beans, including JNDI lookups, remote method calls, and

method calls on the home interface. It also has a servlet engine, so that

servlets and JSPs can be served up to a Web browser as if they were going

through an HTTP and Application Server.

 Additionally, WebSphere Studio Application Developer enables you to

automatically package servlets or JSPs into Web application archive (WAR)

files. (If you use other tools, you might have to create the WAR files

manually.)

v If you are using the WebSphere for z/OS Application Assembly tool,

download the latest copy from the WebSphere Application Server web site

(go to

http://www.ibm.com/software/webservers/appserv/

zos_os390/support.html

and click Download on the left frame).

2. If necessary, install or upgrade the appropriate application development

software on your workstation. For installation or migration instructions, see the

following references:

 Table 17. References for installation or migration information for application development

software

Software: Source of installation or migration information:

v IBM WebSphere Studio

Application Developer

v WebSphere Advanced

Edition for distributed

platforms

For hardware requirements and installation instructions, for

IBM WebSphere Studio Application Developer, use a browser to

view the Web page at:

http://www.ibm.com/software/ad/studioappdev/

For hardware requirements and installation instructions, for

WebSphere Advanced Edition for distributed platforms, use a

browser to view the Web page at:

http://www.ibm.com/software/webservers/appserv/library.html

From this web page, click on the following links:

v Supported hardware, software, and APIs for WebSphere V3.5

or V4.0 (all editions for distributed platforms), for a complete

listing of hardware and software.

v The InfoCenter for WebSphere V4.0 for distributed

platforms, for information about or links to planning and

installation instructions.

Non-IBM tools, such as

JBuilder or Visual Cafe

Use the documentation for those products for installation and

migration instructions.

Chapter 5. Setting up the application development environment 111

Table 17. References for installation or migration information for application development

software (continued)

Software: Source of installation or migration information:

DB2 Universal Database

Version 7.1

For more information about setting up DB2 and the

implications for application programs, start with the DB2

Universal Database... Quick Beginnings book for your workstation

platform.

3. Recommendation: If you are using VisualAge for Java, back up the workspace

after you finish installing or upgrading VisualAge for Java. To do so, back up

the ide.icx and ide.ini files.

4. Install or upgrade the appropriate assembly and deployment software on your

workstation. For installation or migration instructions, see the following

references:

 Table 18. References for installation or migration information for assembly and deployment

software

Software: Source of installation or migration information:

WebSphere for z/OS

Application Assembly tool

For workstation requirements and installation instructions, see

“Steps for installing the Application Assembly tool” on page

136..

WebSphere for z/OS

Administration application

For workstation requirements and installation instructions, see

the topic on installing the Administration and Operations

applications in WebSphere Application Server V4.0.1 for z/OS and

OS/390: Installation and Customization, GA22-7834.

5. Make sure your workstation’s environment variables are set correctly. The

variables to check include CLASSPATH, JAVA_HOME, LIBPATH, and PATH.

Depending on the products you installed, refer to the installation

documentation for each product to determine whether these variables might be

set automatically, or how to set them correctly.

6. If you are using the IBM WebSphere Test Environment feature of VisualAge for

Java to run and test beans that require a persistent data store, make sure you

specify the correct DB2 JDBC driver. JDBC V2.1 might not be the default for the

DB2 product installation. Refer to the DB2 installation documentation for

further details.

7. If you are using WebSphere Studio, make sure you complete the following

steps after installing this tool:

a. Start WebSphere Studio and complete the following steps:

1) Select File → New Project, and name your project.

2) Select Project → VisualAge for Java → Install Studio Tools in

VisualAge

3) Select Project → Customize Publishing Stages.

 In the dialog box that appears, enter VAJ for Stage Name, and click Add

and then OK.

4) Right-click on the VAJ stage icon in the right-hand pane, then select

Insert and insert a server with the name localhost:8080

112 WebSphere for z/OS: Assembling J2EE Applications

Result: A server icon appears for the default server. All the publishable

resources in the project are automatically added to this server.

5) In the Publishing view, right-click on the http://localhost:8080 server,

select Properties, and click on Define Publishing Targets. Then set the

paths to the WebSphere Test Environment document and servlets

directories as follows:

html=D:\Program Files\IBM\VisualAge for Java\ide\

 project_resources\IBM WebSphere Test Environment\hosts\

 default_host\default_app\web

servlet=D:\Program Files\IBM\VisualAge for Java\ide\

 project_resources\IBM WebSphere Test Environment\hosts\

 default_host\default_app\servlets

b. Start VisualAge for Java and complete the following steps:

v Select Window → Options→ Remote Access To Tool API.

v Select the Remote Access To Tool API checkbox to activate remote access

on VisualAge start-up.

v If remote access is not currently running, click on Start Remote Access

To Tool API to start it.

v Select Window → Options→ Resources. Then add the following to the

Workspace Classpath:

D:\Program Files\IBM\VisualAge for Java\ide\

 project_resources\IBM WebSphere Test Environment\hosts\

 default_host\default_app\servlets

c. Search for the SERunner.properties file. Open this properties file and make

sure the docRoot and serverRoot paths are correct:

docRoot=D:\\Program Files\\IBM\VisualAge for Java\\ide\\

 project_resources\\IBM WebSphere Test Environment\\hosts\\

 default_host\\default_app\\web

serverRoot=D:\\Program Files\\IBM\VisualAge for Java\\ide\\

 project_resources\\IBM WebSphere Test Environment

8. If you are developing beans that require a persistent data store, create the DB2

tables that they will need. For more information about setting up DB2 tables,

start with the DB2 Universal Database... Quick Beginnings book for your

workstation platform.

9. If you plan to use the IBM Distributed Debugger and Object Level Trace to

debug and trace your applications, see“Debugging and tracing distributed

applications” on page 281 for more information.

Steps for setting up z/OS or OS/390

Almost all application development, assembly, and installation tasks take place on

the workstation, but some tasks require a connection to the z/OS or OS/390

system on which you plan to deploy your J2EE application. When system

programmers at your site install WebSphere for z/OS, they have the option of

setting up the UNIX application development environment on z/OS or OS/390.

The instructions here list minimum requirements, so you may verify the correct

environment yourself. If necessary, see additional references for further details:

v See z/OS UNIX System Services Planning, GA22-7800 for information about setting

up the UNIX environment.

Chapter 5. Setting up the application development environment 113

v See z/OS Communications Server: IP Configuration Guide, SC31-8775 for

information about setting up an FTP server. Use the same user ID and password

that you will later use for the WebSphere for z/OS Administration application.

(If necessary, see WebSphere Application Server V4.0.1 for z/OS and OS/390: System

Management User Interface, SA22-7838.)

Perform the following steps to set up z/OS or OS/390:

1. Make sure you have TCP/IP connectivity between your workstation and the

z/OS or OS/390 system on which WebSphere for z/OS resides. One way to

check is to open a command prompt window and enter the ping command,

specifying the TCP/IP host name.

2. On z/OS or OS/390 UNIX, check each application developer’s region size

(MAXASSIZE in BPXPRMxx or ASSIZEMAX on the RACF ADDUSER or

ALTUSER commands). The rule of thumb is to run with the largest region size

possible, but start with a minimum size of 256 MB. The size can be limited by

the IEFUSI exit, JES2 EXIT06, JES3 IATUX03, or TSO segment defaults. If the

compiler runs out of memory, you may need to increase the application

developer’s region size.

3. On z/OS or OS/390, set up an FTP server that has write access to the HFS.

114 WebSphere for z/OS: Assembling J2EE Applications

Chapter 6. Creating new application components to be

installed in a J2EE server

Once you have installed or upgraded the appropriate workstation software, as

noted in Chapter 5, “Setting up the application development environment,” on

page 109, you are ready to create J2EE application components. Because

documentation for developing J2EE application components is available through

other WebSphere, Sun Microsystems, and third-party documents, the following

topics list only the rules or guidelines to keep in mind while you are coding

application components for installation in an EJB container or Web container in a

WebSphere for z/OS J2EE server.

When you develop an Enterprise bean or Web component, you may concentrate

solely on the business and application logic for each component. The J2EE server’s

Web and EJB containers are designed to handle transactions, security, and

scalability related to access to any Enterprise Information Systems (for example,

DB2 databases; Enterprise Resource Planning systems; mainframe systems such as

CICS and IMS; RDBMs; and legacy applications).

This topic addresses the guidelines for developing and testing only the types of

components that may be installed in the J2EE server:

v Enterprise beans written to the Sun Microsystems Enterprise JavaBeans (EJB) 1.1

and 1.0 specifications, and

v Web applications written to the Sun Microsystems Java Servlet Specification,

V2.2.

For information about developing J2EE application clients, see Chapter 9, “Creating

and running WebSphere for z/OS client applications,” on page 217.

Creating Enterprise beans

The WebSphere for z/OS J2EE server supports all types of Enterprise JavaBeans:

v Stateless session

v Stateful session

v Container-managed (CMP) entity

v Bean-managed (BMP) entity

If you are not familiar with these terms, or with the concepts and requirements for

coding Enterprise beans to the Sun Microsystems EJB specifications, you may use

either IBM or non-IBM resources for information about the bean programming

model, application programming interfaces, and services that you may use. Make

sure that you also note the temporary limitations that are specific to z/OS and

OS/390, which are covered in “Developing Enterprise beans” on page 117.

Perhaps the easiest approach to developing beans is to use the IBM WebSphere

Studio Application Developer product, which is an easy-to-use, integrated

development environment for building, testing, and deploying J2EE™ applications

with HTML pages, servlets, JavaServer™ Page (JSP), and Enterprise JavaBean™

(EJB™) components. This product enables developers to fully test entity and session

beans, including JNDI lookups, remote method calls, and method calls on the

home interface.

© Copyright IBM Corp. 2000, 2003 115

Recommendation: Although you can test Enterprise beans on the workstation, you

also should test them on the z/OS or OS/390 platform as well, because there may

be subtle differences in the run-time environment. For example, if your beans use

DB2, differences between DB2 support on the workstation and on z/OS or OS/390

might become evident. Use the guidelines in this chapter to identify potential

differences between the workstation and z/OS or OS/390 run-time environments.

Checklist for developing Enterprise beans

Use the following checklist to make sure you have completed all of the necessary

tasks related to creating an Enterprise bean.

Before you begin:

v For further details about this development process, use the following resources:

– The Preventive Service Planning (PSP) bucket for WebSphere for z/OS.

– The Sun Microsystems EJB 1.1 or 1.0 specification document, or an equivalent

information source.

– Instructions for using the application development tools you have selected.

These instructions appear in product documentation, which is available

through the IBM home page (www.ibm.com) by clicking on the links for

software products. For example, to find the documentation for using the IBM

WebSphere Studio Application Developer product, follow these steps after the

IBM home page loads into your browser:

1. Click on the following links: Products → Software → WebSphere → Products

→ Application development.

2. Using the Select a Product drop-down, select WebSphere Studio

Application Developer.

3. Click on library for links to all of the product documentation.

 Table 19. Checklist for developing Enterprise beans

Check when

completed:

Task:

h Add a new project and package for the beans you are creating

Note: A project is a concept used in WebSphere Studio Application

Developer..

h Add an Enterprise bean, specifying a name and type

h Define the bean class attributes and interfaces

h Add import statements as necessary (for example, associated bean classes and

Java classes for specific functions)

h Code business logic methods for bean classes

h Tips for creating CMP beans:

v Allow the tool to generate finder helper interface to support finder methods

v Define which bean attributes require container-managed persistence

v Import classes required for data access (for example, db2long JDBC classes)

v Import a database schema, specifying the connection type and data source

v Generate a map for the appropriate table from the database schema

v Map bean attributes to the associated column name in table maps

h Tips for creating BMP beans:

v Code the methods that manage the bean’s lifecycle

v If you are using dynamic SQL, make sure that #sql statements include the

high-level qualifier that matches the one used when creating db2long tables

h Add properties, including:

v The JNDI name for the BeanHome

v Transaction attribute

116 WebSphere for z/OS: Assembling J2EE Applications

Table 19. Checklist for developing Enterprise beans (continued)

Check when

completed:

Task:

h Generate deployed code for the bean

Note: For CMP beans, you need to generate stubs, ties, and persisters.

h Test application components

h Package the beans in JAR files

Tip: See “Preparing applications for assembly and installation” on page 120

Developing Enterprise beans

As you develop Enterprise beans to install in a WebSphere for z/OS J2EE server,

keep the following points in mind:

Rules:

v If your bean manages transactions (in other words, has a “bean-managed

transactions” attribute), you need to be aware these rules and ways in which

WebSphere for z/OS resolves uncommitted transactions:

– Your bean cannot start a global transaction until it resolves any

uncommitted local transactions or resources that it may have.

– In a global transaction, if the bean finishes its processing without first

resolving its transaction, WebSphere for z/OS will roll back the bean’s

transaction.

– If the bean finishes its processing without first resolving any

resource-manager local transactions, WebSphere for z/OS will roll back

those transactions.
v WebSphere for z/OS supports role-based security for Enterprise beans. You

may use the isCallerInRole and getCallerPrincipal methods if you want

to code beans to perform security checks.

 A role name cannot contain blanks, and cannot exceed 246 characters. Role

names, however, may be in mixed case.

Limitation:

WebSphere for z/OS rejects inbound or outbound requests (GIOP messages)

that exceed 10 megabytes in size. If you design an application component to

send any type of GIOP message, you need to do the following:

v Calculate the size of the entire message, including headers and other

parameters that you intend to pass. The entire size of a transmitted message

cannot exceed 10MB.

v Decide how to handle the CORBA::NO_MEMORY exception that WebSphere for

z/OS issues when it detects messages that exceed the 10MB size limitation.

One possibility is logging the error.

Note: This 10MB limit is the result of WebSphere for z/OS implementation; it

is not an architected or programming model restriction.

Guidelines:

v You may code your beans to use the JDBC application programming

interface (API) to access db2long data. For additional information, see:

– DB2 Application Programming and SQL Guide, SC26-9933 for instructions on

using the db2long for z/OS or OS/390 JDBC driver.

Chapter 6. Creating new application components to be installed in a J2EE server 117

– http://java.sun.com/products.jdbc for detailed information about the

JDBC API.
v If the beans you code require db2long to store persistent data, you need to

use the type 2 JDBC driver that ships with DB2 Universal Database for z/OS

and OS/390 Version 7.1. Given the use of this driver, you may design your

bean to:

– Participate in either global or local transactions.

– Have multiple connections with db2long. (Note, however, that

performance is better with only one connection.)

– Assign a different outcome for each db2long connection, when the bean

does not run under a global transaction.

– If the beans you code are Stateful Session EJBs, and, based on WebSphere

for z/OS extended deployment descriptors, require the session data to be

stored in memory, you must disable the Server Region Recycle Function

by setting the Server Region Recycle Limit to 0 (zero). Further, use of the

z/OS WLM operator command V WLM,APPLENV=<generic server

name>,REFRESH is discouraged because existing server regions may

never terminate.
v If you supply a custom finder for a bean that uses container-managed

persistence (CMP bean), check the SQL SELECT statement in the custom

finder. If the SELECT statement contains the FOR UPDATE clause, or the

keyword ORDER BY or DISTINCT, you must use one of the following settings

to avoid encountering an SQL error (SQLCODE -126) when the J2EE server

attempts to run the CMP bean:

– Specify the ReadOnly setting on the method level, through the appropriate

application development or assembly tool;

– Specify env-entry

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

as true in the bean’s standard deployment descriptor (ejb-jar.xml); or

– Specify the property

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent=1

in the JVM properties file for the J2EE server. Using this property in the

J2EE server’s JVM property file sets the same access intent for all CMP

beans that run in the server.

For additional information, see

– “Isolating transactions that access persistent data” on page 56 and

“Controlling concurrent access to persistent data” on page 57 for IBM

extensions related to access intent for CMP beans.

– “JVM properties and properties files” on page 339 for the

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent

property.

Creating Web applications

A Web application can include one or more of any of the following Web

components:

v Servlets

v JavaServer Pages (JSPs)

v Utility classes

v Static documents

118 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|

|
|
|

|
|
|

The roles each Web component should play in a Web application are defined in the

Java™ Servlet Specification, V2.2, which is available at:

http://www.javasoft.com

Developing Web components

An instance of a Web application exists within a single WebSphere for z/OS J2EE

server. It uses servlet context to obtain references to other local objects and to share

data with other applications. A servlet can be replicated if it is marked

distributable. In this case, however, you must ensure that one of the following

conditions is true:

v Either the servlet is not written to leave objects around for later processing, or

v The servlet is installed in a J2EE server that cannot be replicated within a

sysplex.

Before a Web application can be installed on a J2EE server:

1. All of the components of the Web application must be packaged into a Web

application archive (WAR) file. This file has a file extension of .war, and must

include a web.xml file. (The web.xml file indicates how the application will be

served when requested by a client.) If you use WebSphere Studio Application

Developer to develop your Web application, you can also use it to package all

of the components into a JAR file.

2. This WAR file must then be packaged as part of an Enterprise archive (EAR)

file. (See “Steps for assembling a new J2EE application” on page 137 for

information on how to perform this packaging.) An EAR file is an archive file

similar to a JAR file, with a specific directory structure and format and has an

extension of .ear. It includes an application.xml file which contains the

descriptive meta information which ties together all of the WAR or EJB JAR

files packaged in the EAR file.

It is the responsibility of the Application Component Provider to write the business

and application logic for his application. An Application Component Provider can

rely on the Web and EJB containers to handle transactions, security, and scalability

related to Enterprise Information Systems (EIS) access. (EISs include DB2

databases, Enterprise Resource Planning systems, mainframe systems such as CICS

and IMS, RDBMS, and legacy applications.)

Limitation: If your Web application uses RMI/IIOP for communication with other

components in a J2EE server, you need to be aware that WebSphere for z/OS

rejects inbound or outbound requests (GIOP messages) that exceed 10 megabytes

in size. If you design an application component to send any type of GIOP message,

you need to do the following:

v Calculate the size of the entire message, including headers and other parameters

that you intend to pass. The entire size of a transmitted message cannot exceed

10MB.

v Decide how to handle the CORBA::NO_MEMORY exception that WebSphere for z/OS

issues when it detects messages that exceed the 10MB size limitation. One

possibility is logging the error.

Note: This 10MB limit is the result of WebSphere for z/OS implementation; it is

not an architected or programming model restriction.

Guideline: WebSphere for z/OS supports role-based security for servlets. You may

use the isCallerInRole and getCallerPrincipal methods if you want to code

Chapter 6. Creating new application components to be installed in a J2EE server 119

servlets to perform security checks. Rule: A role name cannot contain blanks, and

cannot exceed 246 characters. Role names, however, may be in mixed case.

Preparing applications for assembly and installation

Before you can install a J2EE application in a WebSphere for z/OS J2EE server, you

need to package the JAR or WAR files for individual components together into an

Enterprise archive (EAR) file. An EAR file is an archive file similar to a JAR file,

with a specific directory structure and format, and has an extension of .ear. To

create an EAR file for your application, you may use one of the IBM WebSphere

Studio Application Developer editions or the WebSphere for z/OS Application

Assembly tool.

During this assembly process, you not only define the individual components of a

single application, but also deploy those components for the WebSphere for z/OS

environment. WebSphere Studio Application Developer and the Application

Assembly tool both generate an application.xml file (part of the EAR file contents),

which contains the descriptive meta-information that ties together all of the JAR or

WAR files that you might package in a single application. This metadata enables

the J2EE server to understand the content and individual component requirements

of an installed J2EE application.

Also as part of the development and assembly processes, you can define classpaths

for application components. For example, you can use the Application Assembly

tool to set or modify the Manifest classpath for both Enterprise beans and Web

components. When your application is installed in a J2EE server, WebSphere for

z/OS class loaders use these classpaths to find and load application classes for

execution. WebSphere for z/OS uses several different class loaders to install

different application components in a J2EE server. The interaction of these class

loaders can affect the packaging scheme you use, as well as affect the successful

execution of your applications in the WebSphere for z/OS run-time environment.

You can successfully use WebSphere for z/OS classloader defaults for most

applications. If you encounter classloader errors, however, you might need to alter

classloader operation or repackage application components. To do so, you need to

understand how the class loaders interact, and how their operation can be altered.

The following table shows the associated information for preparing application

components for assembly and installation:

 If you want to... Associated information (See . . .)

Learn about WebSphere for z/OS classloader

operation and how to change it

v “Overview of WebSphere for z/OS

classloader operation”

v “Guidelines for setting classloader mode

and application packaging” on page 131

v “Steps for setting trace options for

classloader operation” on page 133

To assemble and deploy applications Topics in Chapter 7, “Assembling a J2EE

application,” on page 135

Overview of WebSphere for z/OS classloader operation

When WebSphere for z/OS receives requests for an Enterprise bean or servlet

installed in a J2EE server, WebSphere for z/OS calls on its class loaders to find and

load the appropriate application classes for execution. The types of class loaders

120 WebSphere for z/OS: Assembling J2EE Applications

WebSphere for z/OS uses depend on the classloader mode in effect for the J2EE

server. WebSphere for z/OS supports the following classloader modes (which are

also known as “visibility modes”):

v Application mode (which is the default classloader mode)

v Compatibility mode

v Server mode

v Module mode

v J2EE Application mode

You can successfully use WebSphere for z/OS classloader defaults for most

applications. You might, however, encounter classloader errors in the run-time

environment because the interaction of these class loaders can affect the successful

execution of your applications. If you do encounter errors, you might need to alter

classloader operation or repackage application components.

Recommendations:

v IBM recommends using the default classloader mode (application mode) for

most applications.

v If you plan to change the classloader mode, consider testing your applications in

a test server with the new classloader setting. To more easily diagnose

classloader operation, enable tracing for the J2EE server as instructed in “Steps

for setting trace options for classloader operation” on page 133.

v If you encounter classloader errors that you cannot resolve with the suggested

diagnostic procedures, consider reviewing Table 20 in “Guidelines for setting

classloader mode and application packaging” on page 131 to determine whether

a different classloader mode is appropriate for your application.

v Consider testing your applications in a J2EE server that has its classloader mode

set to J2EE Application mode. This mode complies with the Sun Microsystems

J2EE 1.3 specification for classloader operation.
A class loader is a class that performs the function of loading a named class or

interface. When an application client requests an Enterprise bean, for example, the

WebSphere for z/OS run-time creates a class loader to find and load the classes

from the appropriate JAR module. Each of the WebSphere for z/OS class loaders

share the following common features, but each has different values that define the

class loader and its behavior:

Context classpath

Each class loader has an associated classpath that is defined for the specific

type of class loader, and for the module (JAR or WAR) associated with that

class loader. The classpath defines the part of the HFS file system that the class

loader searches to locate a requested class.

Delegation mode

Each class loader has an associated parent class loader and a delegation mode.

The delegation mode determines when the class loader will delegate a load

request to its parent; the class loader may delegate to its parent either before or

after searching its own classpath.

To understand these concepts more fully, look at Figure 20 on page 122, which

illustrates the default classloader mode for WebSphere for z/OS. In the illustration,

the lightly outlined boxes (at the top) indicate the class loaders that are always part

of the classloader hierarchy, or family tree, regardless of the classloader mode in

effect. It is important to note that parent class loaders cannot “see” the classes in

the classpaths of child class loaders.

Chapter 6. Creating new application components to be installed in a J2EE server 121

As shown in Figure 20, application mode dictates the following conditions:

v WebSphere for z/OS creates one application class loader for each application

installed in the J2EE server. These class loaders are shown in the heavily

outlined box at the bottom of the illustration. The classpath for a given class

loader includes the module paths for all WAR or JAR files within the

application.

v With all defaults in effect, the search for a particular class begins with the

application class loader associated with the application containing that class. If

the class is not found in that application’s modules, the application class loader

passes the search request to its parent. The search request progresses up the

family tree until the class is found. The search order is illustrated by arrows at

the bottom left and on the right of the illustration.

 The delegation mode for these application class loaders may be altered, as

shown in Figure 23 in “Changing the default search order for classes” on page

126..

v The Application extensions class loader is the parent of all application class

loaders. The classpath for the Application extensions class loader consists of the

path specified on the APP_EXT_DIR environment variable for the J2EE server. This

variable is intended for classes that can be shared by all applications installed in

the J2EE server. The default value for this variable is:

1

Classpath
search
starts

here

WS_EXT_DIRS

Web container runtime

Service classpath

Web Container
runtime

class loader

System
classloader

APP_EXT_DIR

Application extensions
class loader

parent

Application mode

family tree and
default search order

Application mode

children

1
Application
class loader

n

1
Application
class loader

1

1
Application
class loader

2

1
Application
class loader

3

...

3

4

2

Figure 20. WebSphere for z/OS default classloader mode, types, and search order

122 WebSphere for z/OS: Assembling J2EE Applications

CBCONFIG/apps/SRVNAME/app

 where

CBCONFIG

Is a read/write directory that you specify at installation time as the directory

into which WebSphere for z/OS is to write configuration data and

environment files. The default is /WebSphere390/CB390.

SRVNAME

Is the generic server name.

 The delegation mode for the Application extensions class loader cannot be

changed; this class loader always searches its own classpath before delegating to

its parent.

v The Web Container run-time class loader is the parent of the Application

extensions class loader. The classpath for the Web Container run-time class

loader contains three parts:

– The Service classpath, which is defined by the JVM property

com.ibm.ws390.wc.SERVICE.classpath for the J2EE server. This property is

reserved for service.

– The Web Container run-time classpath, which is built by WebSphere for z/OS

based on a list of JAR files, each of which is concatenated with the Web

Container install root directory.

– The WebSphere extensions classpath, which is defined by the WS_EXT_DIRS

environment variable for the J2EE server. This variable is intended for classes

that extend the function of the J2EE server.

The delegation mode for the Web Container run-time class loader cannot be

changed; this class loader always searches its own classpaths before delegating

to its parent. The Web Container run-time class loader begins its search for a

particular class with the Service classpath, then the Web Container run-time

classpath, and finally the WS_EXT_DIRS classpath. This search sequence cannot be

changed.

v The System class loader is the parent of the Web Container run-time class loader.

After searching its own classpath, the System class loader may pass the search

request to another class loader, depending on the delegation mode in effect. For

an example of this delegation with application mode, see Figure 23 on page 127.

Setting alternative classloader modes

As noted in the description of application mode, the lightly outlined boxes at the

top of Figure 20 on page 122 indicate the class loaders that are always part of the

classloader family tree, regardless of the classloader mode in effect. When you

change the classloader mode, however, you alter the classloaders in the heavily

lined box. In other words, you replace the application class loaders with other

types. WebSphere for z/OS supports five classloader modes:

v The default mode and three alternatives, which are set through environment

variable com.ibm.ws390.server.classloadermode. These modes are shown in

Figure 21 on page 124.

v A classloader mode designed for compliance with the J2EE 1.3 specification. This

mode is set through the JVM property

com.ibm.ws.classloader.J2EEApplicationMode, and illustrated in Figure 22 on

page 125.

Recommendation: Use the WebSphere for z/OS Administration application to set

com.ibm.ws390.server.classloadermode by specifying its value on the properties

form for a J2EE server. This setting is stored in the current.env file for the J2EE

Chapter 6. Creating new application components to be installed in a J2EE server 123

server, which means the value applies for all instances of the J2EE server. You can

override the value for only a given server instance by setting

com.ibm.ws390.server.classloadermode in a JVM properties file.

Reviewing Table 20 in “Guidelines for setting classloader mode and application

packaging” on page 131 can help you determine which classloader mode is

appropriate for your application.

Global
classloader

com.ibm.ws390.server.classloadermode=number

1 3[default]2

System
class loader

Application extensions
class loader

parent

Web Container
runtime

class loader

children

1
n

1
1 ...

Application
class loaders

1
n

1
1 ...

WAR
class loaders

children

Global EJB
classloader

parent

Module mode

0

Application mode Server mode

1
n

1
1 ...

EJB
class loaders 1

n
1

1 ...

WAR
class loaders

Compatibility mode

WebSphere for z/OS
class loaders

Figure 21. WebSphere for z/OS classloader ″family tree″ with alternative modes

124 WebSphere for z/OS: Assembling J2EE Applications

The alternative classloader modes illustrated in Figure 21 on page 124 and

Figure 22 introduce the following additional classloader types:

v EJB class loaders, one for each EJB module within a given application installed

in the J2EE server. The classpath for an EJB class loader consists of two parts:

– EJB JAR file (the class loader searches the JAR file that contains the EJB

classes for the Enterprise bean module)

– MANIFEST classpath, if the JAR file includes a classpath specification with

references to JAR files or directories that contain bare class files or resource

files, or both. All such references should be specified using paths that are

relative to the directory of the given application.
v Global EJB class loader, which has the same classpath as an EJB class loader, but

has a server-wide scope. In other words, only one Global EJB class loader

handles requests for all of the Enterprise bean modules in all applications

installed in the J2EE server.

v WAR class loaders, one for each WAR module within a given application

installed in the J2EE server. The classpath for a WAR class loader consists of two

parts:

– WEB-INF/classes, the directory within the WAR module that contains bare

classes.

– WEB-INF/lib, the directory within the WAR module that contains JAR files

that provide classes used by the servlets packaged within the WAR module.

J2EE application mode

com.ibm.ws.classloader.J2EEApplicationMode=true

System
class loader

Application extensions
class loader

parent

Web Container
runtime

class loader

1
n

1
1 ...

WAR
class loaders 1

n
1

1 ...

WAR
class loaders

1
n

1
1 ...

EJB
class loaders

children

children

parent

family tree

J2EE Application mode

Figure 22. WebSphere for z/OS classloader mode for J2EE 1.3 compliance: ″family tree″

Chapter 6. Creating new application components to be installed in a J2EE server 125

– MANIFEST classpath, if the JAR file includes a classpath specification with

references to JAR files or directories that contain bare class files or resource

files, or both. All such references should be specified using paths that are

relative to the directory of the given application.
v Global class loader, which handles all types of application modules, for all

applications installed in the J2EE server.

For the alternative classloader modes, one or more JVM property values determine

the default delegation for particular class loaders. The default delegation for each

classloader mode may be altered, as described in “Changing the default search

order for classes.”

Changing the default search order for classes

The following series of figures illustrates each classloader mode hierarchy, along

with the JVM properties you may use to alter the default search path.

Figure 23 on page 127 illustrates the classloader hierarchy with application mode.

With application mode, the value of JVM property

com.ibm.ws.classloader.warDelegationMode controls the delegation behavior for

the application class loaders. When it receives a search request for a specific class,

WebSphere for z/OS passes the request to the appropriate application class loader.

Depending on the delegation mode, the application class loader behaves in one of

two ways:

v With com.ibm.ws.classloader.warDelegationMode set to false (the default), the

application class loader searches its own classpath for the class. If it does not

find the class, the class loader passes the search request to its parent.

v With com.ibm.ws.classloader.warDelegationMode set to true, the application

class loader immediately delegates the search request to its parent class loader.

So the parent class loader’s classpath is the first one searched for the requested

class. The search request progresses up the family tree until the class is found. If

the requested class is not found by any class loader in the hierarchy, the System

class loader passes the request to the application class loader; only at this point

is the application class loader’s classpath searched for the requested class.

The rest of the information for this figure, such as the class loaders in the family

tree, is the same as discussed for Figure 20 on page 122.

126 WebSphere for z/OS: Assembling J2EE Applications

Figure 24 on page 128 illustrates the classloader hierarchy with compatibility mode.

With compatibility mode:

v There are zero or more WAR class loaders, depending on the number of WAR

modules in the applications installed in the J2EE server. Each class loader

handles a single WAR module. With compatibility mode, the value of JVM

property com.ibm.ws.classloader.warDelegationMode controls the delegation

behavior for the WAR class loaders; the default delegation is false (search own

classpath before delegating to parent).

v The Global EJB class loader is the parent of all of the WAR class loaders. With

compatibility mode, the value of JVM property

com.ibm.ws.classloader.ejbDelegationMode controls the delegation behavior for

the Global EJB class loader; the default delegation is true (immediately delegate

to parent).

v The Application extensions class loader (abbreviated as “App ext” in the figure)

is the parent of the Global EJB class loader.

v The remainder of the class loader hierarchy is the same as described for

Figure 20 on page 122.

com.ibm.ws.classloader.warDelegationMode=[false | true]
com.ibm.ws390.server.classloadermode=2 (default)

Web Container

System

App ext

1
n

1
1 ...

Application
class loaders

Application mode

Appl

Appl

Web Container

System

App ext

Classpath
search
starts

here

Immediately
delegates
to parent

family tree and
search order controls

Application mode

WAR delegation mode is false (default) WAR delegation mode is true

Appl

Web Container

System

App extClasspath
search
starts

here

Figure 23. Settings for changing the search order (delegation) for application mode

Chapter 6. Creating new application components to be installed in a J2EE server 127

Figure 25 on page 129 illustrates the classloader hierarchy with server mode. With

server mode:

1
n

1
1 ...

WAR
class loaders

children

Global EJB
classloader

parent

Web Container

System

App ext

Compatibility mode

family tree and
search order controls

Compatibility mode
com.ibm.ws.classloader.warDelegationMode=[false | true]

com.ibm.ws.classloader.ejbDelegationMode=[false | true]

com.ibm.ws390.server.classloadermode=1

WAR WAR

Web Container Web Container

System System

Global EJB Global EJB

App ext App ext

Global EJB Global EJB

Immediately delegates
to parent

Immediately
delegates
to parent

Immediately
delegates
to parent

WAR delegation mode is false (default)
EJB delegation is true (default)

WAR delegation mode is true
EJB delegation is true (default)

Classpath
search starts

here

Classpath
search starts

here

WAR
WAR

WAR

Web Container Web Container

System System

Global EJB Global EJB

App ext App ext

Immediately
delegates
to parent

WAR delegation mode is false (default)
EJB delegation is false

WAR delegation mode is true
EJB delegation is false

Classpath
search starts

here

Classpath
search starts

here

WAR

Figure 24. Settings for changing the search order (delegation) for compatibility mode

128 WebSphere for z/OS: Assembling J2EE Applications

v The Global class loader handles both WAR and EJB modules. The one class

loader handles all modules for all applications installed in the J2EE server. With

server mode, the value of JVM property

com.ibm.ws.classloader.warDelegationMode controls the delegation behavior for

the Global class loader; the default delegation is false (search own classpath

before delegating to parent).

v The Application extensions class loader (abbreviated as “App ext” in the figure)

is the parent of the Global class loader.

v The remainder of the class loader hierarchy is the same as described for

Figure 20 on page 122.

Figure 26 on page 130 illustrates the classloader hierarchy with module mode. With

module mode:

v There are zero or more WAR class loaders, depending on the number of WAR

modules in the applications installed in the J2EE server. Each class loader

handles a single WAR module. With module mode, the value of JVM property

com.ibm.ws.classloader.warDelegationMode controls the delegation behavior for

the WAR class loaders; the default delegation is false (search own classpath

before delegating to parent).

v There are zero or more EJB class loaders, depending on the number of EJB

modules in the applications installed in the J2EE server. Each class loader

handles a single EJB module. With module mode, the value of JVM property

com.ibm.ws.classloader.ejbDelegationMode controls the delegation behavior for

the EJB class loaders; the default delegation is true (immediately delegate to

parent).

v The Application extensions class loader (abbreviated as “App ext” in the figure)

is the parent of all of the WAR and EJB class loaders.

v The remainder of the class loader hierarchy is the same as described for

Figure 20 on page 122.

com.ibm.ws390.server.classloadermode=3
com.ibm.ws.classloader.warDelegationMode=[false | true]

Web Container

System

App ext

Global

Web Container

System

App ext

Global

Web Container

System

App ext

Global
classloader

Server mode

family tree and
search order controls

Server mode

Global
Immediately

delegates
to parent

WAR delegation mode is false (default) WAR delegation mode is true

Classpath
search starts

here

Classpath
search starts

here

Figure 25. Settings for changing the search order (delegation) for server mode

Chapter 6. Creating new application components to be installed in a J2EE server 129

Recommendation: If you are currently using module mode, which is a deprecated

value for com.ibm.ws390.server.classloadermode, IBM recommends changing this

setting to 2 (application mode), which is the default mode.

 Figure 27 on page 131 illustrates the classloader hierarchy with J2EE Application

mode. With J2EE Application mode:

v There are zero or more WAR class loaders, depending on the number of WAR

modules in the applications installed in the J2EE server. Each class loader

handles a single WAR module. With J2EE Application mode, the value of JVM

property com.ibm.ws.classloader.warDelegationMode controls the delegation

behavior for the WAR class loaders; the default delegation is true (immediately

delegate to parent).

v There is one EJB class loader for each application installed in the J2EE server.

Each EJB class loader is the parent of the WAR class loaders associated with the

WAR modules within a single application. With J2EE Application mode, the

value of JVM property com.ibm.ws.classloader.warDelegationMode controls the

delegation behavior for the EJB class loaders; the default delegation is true

(immediately delegate to parent).

v The Application extensions class loader (abbreviated as “App ext” in the figure)

is the parent of all of the application class loaders.

v The remainder of the class loader hierarchy is the same as described for

Figure 20 on page 122.

Web Container

System

App ext

WAR or EJB WAR or EJB

Web Container

System

App ext

WAR or EJB

Web Container

System

App ext

1
n

1
1 ...

EJB
class loaders 1

n
1

1 ...

WAR
class loaders

Module mode

com.ibm.ws390.server.classloadermode=0
com.ibm.ws.classloader.warDelegationMode=[false | true]
com.ibm.ws.classloader.ejbDelegationMode=[false | true]family tree and

search order controls

Module mode

Immediately
delegates
to parent

WAR or EJB delegation mode is false WAR or EJB delegation mode is true

Classpath
search starts

here

Classpath
search starts

here

Figure 26. Settings for changing the search order (delegation) for module mode

130 WebSphere for z/OS: Assembling J2EE Applications

Guidelines for setting classloader mode and application

packaging

Although IBM recommends using the default classloader mode (application mode),

you may alter the mode if the needs of your application warrant a change in

classloader behavior. Base your choice of classloader mode on the information

presented in Table 20.

 Table 20. Deciding which classloader mode to use

If your application: Then use this

classloader mode:

Notes

Is composed of a number of modules packaged

in only one EAR file per application, and those

modules within an application need to work

together. In other words, each application is

complete and independent of other applications.

Application Review the

hierarchy, default

search order, and

controls in Figure 23

on page 127

WAR

EJB

Runtime

System

App ext

WAR

EJB

EJB

Runtime

System

App ext
1

n
1

1 ...

WAR
class loaders 1

n
1

1 ...

WAR
class loaders

1
n

1
1 ...

EJB
class loaders

children

children

parent

Runtime

System

App ext

J2EE application mode

com.ibm.ws.classloader.warDelegationMode=[false | true]
com.ibm.ws.classloader.J2EEApplicationMode=true

family tree and search order controls

J2EE Application mode

WAR delegation mode is false WAR delegation mode is true
(default)

Classpath
search
starts

here

Classpath
search
starts

here

Immediately
delegates
to parent

Immediately
delegates
to parent

WAR

Figure 27. Settings for changing the search order (delegation) for J2EE Application mode

Chapter 6. Creating new application components to be installed in a J2EE server 131

Table 20. Deciding which classloader mode to use (continued)

If your application: Then use this

classloader mode:

Notes

Is composed of a number of modules packaged

in more than one EAR file, and those modules

need to work together

Server Review the

hierarchy, default

search order, and

controls in Figure 25

on page 129

Needs to be moved from WebSphere for z/OS

Standard Edition V3.5 to WebSphere for z/OS

V4.0.1

Compatibility Review the

hierarchy, default

search order, and

controls in Figure 24

on page 128

Is composed of multiple modules, each of

which may have a distinct version of some

shared code segment, and thus must be kept

isolated

Module Review the

hierarchy, default

search order, and

controls in Figure 26

on page 130

Recommendation: If

you are currently

using module mode,

which is a

deprecated value,

IBM recommends

changing to

application mode.

Requires classloader behavior that is compliant

with the J2EE 1.3 specification

J2EE Application Review the

hierarchy, default

search order, and

controls in Figure 27

on page 131

 Notes on class packaging for specific classloader modes:

v For all classloader modes, parent class loaders cannot see the classes handled by

child class loaders.

v If your application modules use a MANIFEST classpath, that classpath overrides

the following default classloader operation:

– Module mode: All module class loaders in an application are visible to each

other, and all utility JAR files in the application are visible to all module class

loaders in the application.

– Compatibility mode: Utility JAR files are visible to all module class loaders

in all active applications.
v Package EJB JAR and WAR modules that make up an application in the same

EAR module.

v For module mode: If a WAR module needs to access an EJB JAR module, use a

MANIFEST classpath entry in the WAR module to document the dependency.

v Common classes used by EJB JAR and WAR modules should be put in a JAR

that is added to the EAR file, and referenced in the MANIFEST classpaths of the

modules.

 Alternative: You can specify shared classes on the APP_EXT_DIR environment

variable for the J2EE server.

v Class library JAR files to be used only by WAR modules should be added to the

WEB-INF/lib directory of the WAR module.

132 WebSphere for z/OS: Assembling J2EE Applications

Steps for setting trace options for classloader operation

If you encounter classloader errors on WebSphere for z/OS, you might need to

alter classloader operation or repackage application components. To help you

diagnose and correct errors related to class loaders and application packaging,

WebSphere for z/OS provides tracing capabilities and issues error or warning

messages for reporting specific conditions related to loading application classes.

The following procedure tells you how to set tracing options for classloader

operation.

Recommendation: Consider setting these trace options and working with your

applications in a test J2EE server to determine whether the classloader mode or

application packaging produce the results you expect in a production environment.

Then you can confidently move your applications to a production environment

that does not have tracing enabled.

Perform the following steps to set tracing options to collect data about classloader

operation:

1. On z/OS or OS/390, create a trace settings file for the J2EE server in which you

will install your application, and add the following trace settings:

v com.ibm.ws.classloader.*=all=enabled

v com.ibm.ws390.csi.WS390ApplicationManager=all=enabled

v com.ibm.ws390.csi.WS390ContainerManager=all=enabled

v com.ibm.ws.runtime.Server=all=enabled

Tip: You may use a separate line for each setting, as shown above, or may

specify all on a single line, separating each with a single colon (:) to distinguish

each trace setting.

2. Create a new or edit an existing JVM properties file for the J2EE server. In the

properties file, add the following environment variables:

v com.ibm.ws390.trace.settings, which points to the location of the trace data

file you just created. For the value of this variable, specify the fully qualified

directory path and file name for your trace settings file.

v com.ibm.ws.classloader.debug, which sets the level of tracing detail for

WebSphere for z/OS to collect. For the value of this variable, specify the

numeral 3.

Rule: The JVM properties file must reside in the same HFS subdirectory as the

current.env file for the J2EE server. See Appendix A, “Environment and JVM

properties files,” on page 299 information about the location of these files.

3. Use the WebSphere for z/OS Administration application to complete the

following:

a. Define a new or modify an existing J2EE server. Check the environment

variable settings to make sure the TRACEBUFFLOC variable includes the value

SYSPRINT.

b. Install your applications.

c. Start the J2EE server.

If necessary, see the topic on defining a server configuration in “Defining the

server configuration” on page 149, for more specific instructions for installing

applications and starting the J2EE server.

Chapter 6. Creating new application components to be installed in a J2EE server 133

134 WebSphere for z/OS: Assembling J2EE Applications

Chapter 7. Assembling a J2EE application

Before you can install a J2EE application in a WebSphere for z/OS J2EE server, you

need to prepare the application for installation. In other words, you need to

package the JAR or WAR files for individual components together into an

Enterprise archive (EAR) file, and ensure that all component references can be

resolved. An EAR file is an archive file similar to a JAR file, with a specific

directory structure and format, and has an extension of .ear. To create an EAR file

for your application, use a WebSphere application assembly tool. “A WebSphere

application assembly tool” means either the z/OS edition of the Application

Assembly tool, the WebSphere Studio Application Developer tool, the WebSphere

Studio Application Developer Integration Edition tool, or the Direct Deployment

Tool/390fy.

During this assembly process, you not only define the individual components of a

single application, but also deploy those components for the WebSphere for z/OS

environment.Various WebSphere development and assembly tools generate an

application.xml file (part of the EAR file contents), which contains the descriptive

meta-information that ties together all of the JAR or WAR files that you might

package in a single application. This metadata enables the J2EE server to

understand the content and individual component requirements of an installed

J2EE application.

The preferred method of deploying applications is to use WebSphere Studio

Application Developer and Direct Deployment Tool/390fy. If you are using the

following two IBM extensions you still need to use the WebSphere for z/OS

Application Assembly tool:

v SyncToOSThread: See “Synchronizing operating system thread identity to

RunAs identity” on page 31 for more information on this extension.

v Connection Management Policy: See “Exploiting connection management

support” on page 71 for more information on this extension.

The following table shows the subtasks and associated procedures for using the

Application Assembly tool to assemble a J2EE application:

 Subtask Associated procedure (See . . .)

Learn about WebSphere for z/OS

classloader operation and how to it

might affect how you package and

deploy applications

“Preparing applications for assembly and installation”

on page 120

Use the WebSphere for z/OS

Application Assembly tool to

assemble a new J2EE application

v “Steps for installing the Application Assembly tool”

on page 136

v “Steps for assembling a new J2EE application” on

page 137

Learn about the WebSphere for

z/OS Direct Deployment

Tool/390fy, which you can use to

assemble and deploy a new J2EE

application

“Direct Deployment Tool/390fy” on page 141

© Copyright IBM Corp. 2000, 2003 135

Steps for installing the Application Assembly tool

Before you begin:

v Download the latest copy of the Application Assembly tool, which IBM delivers

through its WebSphere Application Server web site:

http://www.ibm.com/software/webservers/appserv/zos_os390/support.html

From that site, click on Download in the left frame to access the Application

Assembly tool.

v Make sure you review the Readme file for the Application Assembly tool, so that

you understand any temporary limitations or instructions that might apply for

the latest code.

v If you already have a copy of the WebSphere for z/OS Application Assembly

tool installed on your workstation, remove it before installing the latest version.

Perform the following steps to install the Application Assembly tool on your

workstation:

1. Download or copy the code for the Application Assembly tool to a temporary

directory on your workstation.

2. In the temporary directory on your workstation, locate and select the

aatxxxx.exe file for the Application Assembly tool, then double-click with the

left mouse button.

 Result: The InstallShield Wizard displays the setup language window.

3. Select the default setup language (English) by clicking OK.

 Result: After some initial preparation, the ″Welcome″ window appears on the

screen.

4. From the ″Welcome″ window for the tool, click Next.

 Result: The license agreement window appears.

5. Accept the terms of the license agreement by selecting the appropriate radio

button, and click Next.

 Result: The customer information window appears.

6. Accept the default user name (IBM user), select the radio button to install the

tool only for yourself, and click Next.

 Result: The setup type window appears.

7. Select the radio button to install the complete tool, and click Next.

 Result: The ″Ready to install″ window appears.

8. Click on the Install button.

 Result: A progress bar indicates status until the ″InstallShield Wizard

Completed″ window appears.

9. Click the Finish button.

 Result: The InstallShield Wizard window closes.

136 WebSphere for z/OS: Assembling J2EE Applications

You should now see a subdirectory called WebSphere for z/OS Application

Assembly under C:\Programs\IBM.

Steps for assembling a new J2EE application

Before you can install a new Java 2 Enterprise Edition (J2EE) application in a J2EE

server, you need to prepare the application for installation. This preparation

includes using the Application Assembly tool to:

1. Import J2EE application components that you created through an appropriate

application development tool, and package them together in an application.

2. Define, verify, or correct attributes in the deployment descriptor for each

application component or for the application itself.

3. Export your application, which causes the Application Assembly tool to create

an Enterprise archive (EAR) file, which is the input format that the

Administration application requires for installing applications. An EAR file

packages together all of the component code (JAR and WAR files) and the

deployment descriptor for the J2EE application.

The following instructions assume that this is your first time using the Application

Assembly tool. The instructions guide you through the major tasks for importing

and deploying a new application. To become familiar with the tool, you may use

the help information for the Application Assembly tool, by selecting Help →

Contents and view the “Quick Start” topic.

When you begin to use the tool for assembling your own components, make sure

that you have used the recommended tools and specification levels for component

development, which are described in:

v Chapter 5, “Setting up the application development environment,” on page 109,

and

v Chapter 6, “Creating new application components to be installed in a J2EE

server,” on page 115.

When you first start the tool, the left frame of the window contains only a folder

named Applications. After you begin defining application names and importing

J2EE application components, the left frame displays those applications and

components in a hierarchical tree structure. To perform any tasks related to those

components, you may select components and tasks using either one of the

following methods:

v Use the left mouse button to select an application or component label in the left

frame, and then use the right mouse button to display a pop-up menu of tasks.

 Tip: As an alternative, you may use the right mouse button to click the object,

which automatically selects the object and displays the pop-up menu.

v Use the left mouse button to select an application or component label in the left

frame, and then use the left button to click a pull-down menu label or toolbar

icon.

Before you begin:

v Make sure you have the correctly updated your workstation environment and

installed the Application Assembly tool, as instructed in “Steps for installing the

Application Assembly tool” on page 136.

Chapter 7. Assembling a J2EE application 137

v Review the Readme file for the Application Assembly tool, so that you

understand any temporary limitations or instructions that might apply for the

latest code.

v Consider having a copy of the appropriate Sun Microsystems specification (or an

equivalent reference), in case you need to look up bean or servlet attributes or

other information. The help information for the Application Assembly tool

includes this type of information, so you might not need an additional reference.

Perform the following steps to assemble a new J2EE application for installation in a

J2EE server:

 1. To start the Application Assembly tool, click Start → Programs → IBM WebSphere

for z/OS → Application Assembly

 Result: The Application Assembly tool window appears, with the

Applications folder selected.

 Tip: By default, the Application Assembly tool has a maximum Java heap size

of 512M, which may not provide a large enough heap if you are assembling

applications over 20M in size. If you are going to work with such large

applications, consider:

v Specifying a larger Java heap size by setting a higher value on the

AAT_MAX_HEAP_SIZE environment variable. For further details, use the

Application Assembly tool help information by selecting Help → Environment

v Packing the application in several smaller EAR files instead of one EAR file.

 2. To define a new application, click Selected → Add. In the right frame, enter

values for the following information:

a. Application display name, which is the name of the folder that will appear

in the left frame.

b. (Optional) Application description, which is any text to briefly describe

this new application

Rules for application display name:

v The name can be up to 255 characters long.

v For portability, use only the following characters:

– Uppercase or lowercase A through Z

– Numbers 0 through 9

– Period (.)

– Underscore (_)

– Hyphen (-)
v Do not include any nulls or slash characters in a filename.

v Do not use doublebyte characters in filenames.

v Filenames are case-sensitive, so FILE1 is not the same as file1.

 3. Click the diskette icon to save these values. Under the Applications folder, a

new node appears with a label matching the application display name you

just entered.

 4. Expand the application node to display folders for the types of application

components you may import.

 5. To import application components, highlight the folder for the type of

application component you want to import, and select Import. From the

Import dialog:

138 WebSphere for z/OS: Assembling J2EE Applications

a. Click the Choose button and select the JAR or WAR file you want to

import into this application.

b. Click Select to enter the full path name for JAR or WAR file.

c. Click OK to start the import process.

Guidelines: Some application components might require additional files to be

packaged in the EAR file. The following guidelines identify potential

additions to the EAR file, with suggestions for limiting the number of

application parts or avoiding duplication of files. You may import these

additional files using the Import button on the Files property.

v For Web components, make sure you import the web.inf file.

v For CMP beans with finder helpers, include the associated vaprt.jar file.

v For all CMP beans, include the ivjejb35.jar file.

v For any components that require specific utilities or functions, include the

JAR files for those functions. If application components or their z/OS or

OS/390 clients share the same utilities or functions, consider excluding

those JAR files from the EAR file. Instead, you can transfer those JAR files

to z/OS or OS/390, and include them on the CLASSPATH variable for:

– Any z/OS or OS/390 client that needs those functions, and

– Any J2EE server in which the application components are installed.

 6. Expand the view to list the components in the JAR or WAR file you just

imported.

 As the application tree expands to display a component in an imported file,

the Application Assembly tool displays a message if it detects errors in any

deployment descriptors.

 Tip: To display more detailed information about these errors, either select File

→ Message log, or click the message log toolbar icon. Then you can use the

message log as a checklist for the errors you must correct.

 Recommendation: Although you can correct errors in components, JAR, or

WAR files using the Application Assembly tool, you should make corrections

using the application development tool (such as WebSphere Studio

Application Developer and Application Developer Integration Edition, or

VisualAge for Java) that you used to create the application component.

 7. Change or update the properties associated with each application component,

using the following process. These properties are the attributes that appear in

the deployment descriptor for each application component.

 Repeat this process for each component that comprises your J2EE application.

If you need help for any of the component properties, click the right mouse

button to select the property, and then select Help from the pop-up menu.

a. Click Selected → Modify for an application component you want to change.

The component’s properties are displayed in the right frame of the

Application Assembly tool window.

b. Use the tabs in the right frame of the window to navigate through the

various properties. Most of these component properties correspond to the

appropriate Sun Microsystems specification; other properties are IBM

extensions to the specification.

c. After completing changes to a selected application component, save your

changes. When you save your changes, the Application Assembly tool

Chapter 7. Assembling a J2EE application 139

detects any errors in the changed property values, and displays more

detailed information in the message log.

 Rules:

v You cannot select another component until you have either saved or

cancelled changes for the currently selected component.

v You must correct any errors that the Application Assembly tool detects,

or runtime results will be unpredictable.

 Guidelines: If the Application Assembly tool did not detect any errors when

you imported an application or component, you are not required to modify

any of the application or component properties for applications to be installed

in a J2EE server. You might, however, want to do the following:

v Rename applications or components to match any naming conventions your

installation might recommend for applications installed on z/OS or OS/390.

 Rule: Bean names must be unique, within a given JAR file.

v Decide whether the application requires the following:

– Container-transaction elements

– Security roles and method permissions

 If you want to use security roles for Enterprise beans or servlets, define

role names in the deployment descriptor for either individual

components or for the J2EE application. Application-level roles override

component-level roles. For additional instructions, see Chapter 11, “Using

security roles and RunAs identities with Enterprise beans,” on page 231.

 8. Repeat steps 5 through 7 for all of the components that you want to assemble

into a single J2EE application.

 9. To validate the contents of an application, select the application in the tree,

then select Validate.

 Tip: Validating each component individually, after finishing the steps in 5

through 7, might be faster than validating the entire application.

10. To deploy an application, select the application in the tree, then select Deploy.

Message BBO94009I appears in the status bar when the deployment process is

complete.

11. To export a deployed application, select the application in the tree, then select

Export. The Export application window opens.

12. In the Export application window, you may enter the full path name for a

new or existing EAR file, or click Choose to browse for an existing EAR file or

an appropriate location for a new EAR file.

 Recommendation: When exporting your own applications, consider setting up

and using a specific folder or subdirectory where you can easily find

applications that are ready for installation in the J2EE server on z/OS or

OS/390.

 Result: The Application Assembly tool creates new or updates existing XML

files for your application, and for each of the JAR or WAR files for the

components. These XML files contain the values you entered (if any) for the

140 WebSphere for z/OS: Assembling J2EE Applications

components’ properties, and enable the J2EE server to understand the content

of and correctly manage an installed J2EE application.

 Samples:

v EAR file contents for an application containing two WAR files and one EJB

JAR file:

/usr/MyApp

 EJB123.jar

 webappABC.war

 myItems.war

 /meta-inf

 application.xml

 manifest.mf

v application.xml file contents for the same EAR file:

<?xml version="1.0 encoding="ISO-8859-1"?>

<application>

<display-name>MyApp</display-name>

>module>

 <web>

 <web-uri>webappABC.war</web-uri>

 <context-root>/Payroll</context-root>

 </web>

</module>

<module>

 <web>

 <web-uri>myItems.war</web-uri>

 <context-root>/MyTools</context-root>

 </web>

</module>

<module>

 <ejb>EJB123.jar</ejb>

</module>

</application>

You know you are done when message BBO94010I appears in the status bar,

indicating that your application prodfamily exported to the EAR file.

Direct Deployment Tool/390fy

Direct Deployment Tool/390fy is a command line processor that allows you to do

reference and resource resolution and assign JNDI names (mapping). This

functionality will allow the users who are starting to move their development

environment from Visual Age Java and WebSphere Studio to a new integrated J2EE

development environment tooling, WSAD (WebSphere Application Developer).

This new tooling will enable a user to directly import and deploy their J2EE

applications (EAR files) without requiring a trip through an application assembly

tool. As WSAD starts to dominate developers’ popularity in building and testing

J2EE applications, the need for separate application assembly will slowly be

diminishing. It is designed to close the gap between the WebSphere for Distributed

and WebSphere Application Server V4.0.1 for z/OS and OS/390.

Chapter 7. Assembling a J2EE application 141

Direct Deployment Tool is also meant to provide a command line utility tool which

can be used to allow advanced deployers to scriptify their deployment process

without requiring a GUI based deployment tool, WebSphere for z/OS

Administration application, for resolving their J2EE applications. This function will

allow users to take a J2EE compliant EAR file and directly feed it into their

customized scripts to resolve and deploy them onto WebSphere for z/OS and

OS/390 directly. The new command line direct deployment tool, called 390fy, can

be called on the input ear file to generate or replace the input ear file, and the

resulting ear file can then be fed into the SM Scripting API’s earfile processing call

for deployment onto a selected target J2EE server.

If you use the Administration and Operations Applications to deploy your

applications, the Administration and Operations Applications automatically run the

390fy program to resolve your ear files. In this situation you have no need to run

the 390fy command. However, if you deploy your applications through some other

method, typically through the System Management Scripting API, you must run

the 390fy command to resolve your ear files for use on z/OS and OS/390.

The same 390fy command ships with both the Administration and Operations

applications and the WebSphere Application Server for z/OS and OS/390 runtime.

For a description of the new command line utility for direct deployment, 390fy,

and instructions for using it to deploy J2EE enterprise applications, see WebSphere

Application Server V4.0.1 for z/OS and OS/390: System Management Scripting API,

SA22-7839.

Note: The preferred method of deploying applications is to use WebSphere Studio

Application Developer and 390fy. If you are using the following two IBM

extensions you still need to use the Application Assembly tool:

v SyncToOSThread: See the section “RunAs identities” on page 30 for more

information on this extension.

v Connection Management Policy: See the following for more information

on the Connection Management Policy extension:

– “Exploiting connection management support” on page 71

– The Application Assembly tool’s built-in Help

– The Beta Connector Guide located at:

http://www.ibm.com/software/webservers/appserv/download_v4z.html

142 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|

|

Chapter 8. Creating a J2EE server run-time environment

Now that you have created an EAR file for your J2EE application, you are ready to

install and run your application in an existing or a new WebSphere for z/OS J2EE

server. This chapter provides step-by-step instructions for creating a new J2EE

server for your application.

As shown in Figure 2 on page 6, a J2EE server is only one component of the

WebSphere for z/OS run-time, which also contains the System management server,

Naming server, as well as servers in which your applications run. This complete

run-time must be in place before you may create a J2EE server. Ordinarily, during

the WebSphere for z/OS installation and customization process, your system

programmers set up a complete run-time that includes the BBOASR2 J2EE server,

which they use to run installation verification programs. You may model your new

J2EE server on BBOASR2 or on another existing J2EE server.

The J2EE server, or run-time environment, consists of the following elements:

v A generic J2EE server that represents the application environment. A server is an

entity that is responsible for a certain type of work.

v A J2EE server instance in which your application will run. A server instance

consists of one control region, and at least one server region. The control region

accepts work requests, and the server region is the actual run-time environment

for the application, which includes a Java virtual machine (JVM), an EJB

container, and possibly a Web container. (If you are installing a J2EE application

containing servlets or JSPs, you must complete some additional tasks to

configure a Web container for the J2EE server.)

v A J2EE resource and J2EE resource instance, which identify a generic type of

data management subsystem and a specific data management subsystem,

respectively. This resource might be, for example, the subsystem that manages a

persistent data store for components installed in the J2EE server.

v A J2EE resource connection that enables the components in the J2EE server to

access the resource. The Administration application automatically creates this

connection when you install your J2EE application.

The following instructions for creating a J2EE server include sample names to use

for these elements:

v J2SERV for the generic J2EE server

v J2SERV1 for the J2EE server instance

You do not have to use the sample names; however, if you choose different names,

you must follow the rules listed in “Steps for completing manual z/OS or OS/390

tasks” on page 144 to set up your application environment correctly.

The instructions also tell you where to find sample files that you may copy and

modify to create z/OS or OS/390 artifacts for a J2EE server.

The following table shows the subtasks and associated procedures for creating a

J2EE server for your application:

 Subtask Associated procedure (See . . .)

Completing manual z/OS or

OS/390 tasks

“Steps for completing manual z/OS or OS/390 tasks”

on page 144

© Copyright IBM Corp. 2000, 2003 143

Subtask Associated procedure (See . . .)

Creating JCL procedures “Steps for creating JCL procedures for the control and

server regions” on page 146

Setting JVM properties “Steps for setting properties for the JVM” on page 147

Enabling the J2EE server to host

Web applications (optional)

“Steps for enabling J2EE server support for Web

applications (optional)” on page 147:

1. “Steps for setting up an HTTP server” on page 368

2. “Steps for configuring the Web container” on page

158

3. “Steps for adding the J2SERV server” on page 151,

if you are using the HTTP Transport Handler to

handle HTTP protocol requests.

4. “Steps for configuring the V3.5 run-time provided

with WebSphere for z/OS” on page 371, if you are

using the HTTP Server to handle HTTP protocol

requests.

Defining and activating the J2EE

server through the Administration

application

“Defining the server configuration” on page 149

Steps for completing manual z/OS or OS/390 tasks

Depending on your installation’s conventions, many of these manual tasks might

have been completed already, as part of either installing and verifying the

WebSphere Application Server product itself, or setting up WebSphere Application

Server test or production environments. Because documentation for these manual

tasks is available already, the following procedure provides only a summary of the

tasks, with references to resources with further instructions. Use this procedure as

a checklist to make sure you have the correct environment set up, before you begin

to define a new J2EE server for testing application components.

Perform the following steps to complete the manual z/OS or OS/390 tasks related

to defining a new J2EE server:

1. Decide on naming conventions for J2EE application components, J2EE server

elements, and z/OS or OS/390 subsystems, such as DB2. The following

instructions for creating a J2EE server include sample names to use for these

elements, but you should replace them with names that your installation either

has set up or prefers to use.

 For recommendations for naming conventions, see the appendix in WebSphere

Application Server V4.0.1 for z/OS and OS/390: Operations and Administration,

SA22-7835.

2. Define the workload manager (WLM) application environment, service class,

and classification rules for the new J2EE server and the applications it will host.

To define the application environment (that is, to define the J2EE server to

WLM), use the IWMARIN0 dialog to fill in the following values:

 Field in IWMARIN0 dialog: Value to use:

Run-time server Use a short description of the J2EE server, such as

EJB-DB2 application server

Application environment name J2SERV

Subsystem type CB

144 WebSphere for z/OS: Assembling J2EE Applications

Field in IWMARIN0 dialog: Value to use:

Procedure name J2SERV1

Start parameter IWMSSNM=&IWMSSNM

Limit on starting server address

space for a subsystem instance

No limit

 For further details about using the IWMARIN0 dialog, and defining service

classes and classification rules, see z/OS MVS Planning: Workload Management,

SA22-7602.

3. Set up the database resources or connectors for data access. Your system

programmer or database administrator has probably installed and configured

the required z/OS or OS/390 subsystems, such as DB2, and might already have

created the databases or tables that your application will use. So the only tasks

you might need to do are these:

v Find out what DB2 subsystem name you need to specify when you define

the J2EE server.

v Create any database tables that your J2EE application components need to

use.

 If necessary, see DB2 Administration Guide, SC26-9931 for instructions on

creating database tables.

4. Define security profiles and permissions, using your installation’s security

product. You might need to work with your installation’s security administrator

to accomplish this task. The security profiles and permissions depend, to some

degree, on your installation’s guidelines for test or production systems. For

example, in a test environment, you might allow J2EE application clients to

access test systems and data without using any security mechanism. This

approach might be especially suitable when client programs run on the same

z/OS or OS/390 system as the J2EE server.

 Guidelines:

v Regardless of the security you set up for client access to resources, certain

authorizations are required for the J2EE server. For example, if your J2EE

application requires the use of DB2, the J2EE server needs to be granted

access to the DB2 plan DSNJDBC. For recommendations and instructions for

setting up security for J2EE servers and J2EE application clients, see

WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization.

v To enable WebSphere for z/OS to delete temporary, application-created files

when an application is uninstalled from a J2EE server, you need to define

both of the following to the same RACF group:

– The server region identity that you specify when you create the J2EE

server; this identity is the user ID under which the server region runs.

This user ID must match an entry in the RACF STARTED class and have

appropriate RACF authorizations for a server region.

– Any systems management user IDs (for example, CBADMIN) that might

be used to start the WebSphere for z/OS Administration application to

uninstall applications from this J2EE server.

Chapter 8. Creating a J2EE server run-time environment 145

You also must change the default umask value that sets permission bits for

application-created files, as instructed in “Steps for creating JCL procedures

for the control and server regions.”

 For further information about RACF authorizations for server regions,

systems management user IDs, and file permissions, see the section on

setting up security in Chapter 2 of WebSphere Application Server V4.0.1 for

z/OS and OS/390: Installation and Customization.

v If you want to install a J2EE application that requires role-based security, you

need to define profiles in the EJBROLE or GEJBROLE class, and then allow

users or groups to have read access to those profiles.

 Rules:

– Profiles specified in the EJBROLE or GEJBROLE class follow this format:

role_name

where role_name matches the security role attribute specified in either:

- The J2EE application deployment descriptor, or

- The deployment descriptor of an individual application component.
– A role name cannot contain blanks, and cannot exceed 246 characters. Role

names, however, may be in mixed case.

If your installation uses the z/OS or OS/390 SecureWay Security Server

(RACF), see z/OS Security Server RACF Command Language Reference,

SA22-7687 for information about using:

– The RDEFINE command to define profiles to the EJBROLE or GEJBROLE

class.

– The PERMIT command to grant users read access to these profiles.

Steps for creating JCL procedures for the control and server regions

In TSO, perform the following steps to set environment variables and create JCL

procedures for the application control region and server region:

1. In your working PROCLIB data set, create a new member named J2SERV (the

generic server name). Copy the BBOASR2 sample member from BBO.SBBOJCL

into this new member, and make appropriate updates according to comments

in the file. Modify the PROC statement to use the server instance name you

will specify in the WebSphere for z/OS Administration application. For

example, the PROC statement should state something like this:

//J2SERV PROC SRVNAME=’J2SERV1’

2. Also in your PROCLIB, create a new member named J2SERV1 (the JCL

procedure name you will later specify to WLM). Copy the BBOASR2S sample

member from BBO.SBBOJCL into this new member, and make appropriate

updates according to comments in the file. For example:

v Edit the IWMSSNM parameter to use the server instance name you will

specify in the WebSphere for z/OS Administration application:

IWMSSNM=’J2SERV1’

v Change the default umask value so that the user IDs for the server region

and systems management user IDs (such as CBADMIN) have write

permission to remove temporary, application-created files when the

application is uninstalled from the J2EE server. On the JCL EXEC statement,

specify the following:

146 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|

PARM=’ENVAR("_EDC_UMASK_DFLT=00x")

")

 where 00x is the umask value to use. The default value is 002.

 Recommendation: A umask value of 002 will cause files to be created with

permission bits set to 775. This is the IBM recommended value.

 For further information about RACF authorizations for server regions,

systems management user IDs, and file permissions, see the section on

setting up security in Chapter 2 of WebSphere Application Server V4.0.1 for

z/OS and OS/390: Installation and Customization.

Steps for setting properties for the JVM

Use the following procedure only if you want to change the default settings that

WebSphere Application Server uses for the Java virtual machine (JVM) that runs in

the J2EE server. To change the defaults, create a JVM properties file, specifying the

properties and values that you want to use.

Before you begin:

v Review the supported JVM properties listed in “JVM properties and properties

files” on page 339, which also contains information about the placement and

content of a JVM properties file.

v You might need special authorization to edit an existing JVM properties file, or

store a new file in the appropriate directory. Check with the system programmer

who installed WebSphere Application Server on your test system.

Perform the following steps to set up a JVM properties file:

1. Edit an existing or create your own JVM properties file, and place it in the

same HFS directory in which WebSphere Application Server places the

current.env file containing environment variables for this J2EE server.

 Rule: This JVM properties file must be named jvm.properties

2. Edit the JVM properties file to add or set the property keys and values that you

want to use.

3. Save your changes to the JVM properties file.

If WebSphere Application Server cannot find or use the property file you provide,

it continues the process of activating the server, using default JVM property values.

Steps for enabling J2EE server support for Web applications (optional)

If you are installing a J2EE application that contains only Enterprise beans, you do

not have to perform any of the steps in this section. In this case, skip to “Defining

the server configuration” on page 149. If your application contains servlets or JSPs,

however, you must complete some additional tasks to set up the J2EE server

configuration.

Before you begin: You need to:

v Read “The WebSphere for z/OS environment for Web applications” on page 80,

which introduces terms and concepts that you need to understand before

completing any of the related subtasks and procedures.

Chapter 8. Creating a J2EE server run-time environment 147

|
|
|
|
|
|
|
|
|

|

|
|
|

v Decide which servlet execution environment you want to use, and how to

receive and direct inbound servlet requests. The following table lists the options:

 Table 21. Deciding how to configure the environment for Web applications

If your Web

applications

will run in

this execution

environment:

Then you need to

configure the

following to

receive inbound

requests:

Notes on configuration instructions:

The

WebSphere

for z/OS J2EE

server

One or more of

the following:

v A WebSphere

for z/OS HTTP

Transport

Handler1

v An IBM HTTP

Server and the

V3.5 runtime

provided with

the V4.0.1

product

v To set up the WebSphere for z/OS HTTP Transport

Handler, follow these instructions:

1. Define the BBOC_HTTP_xxx environment variables

as part of completing the instructions in“Steps for

adding the J2SERV server” on page 151, and

2. Follow the instructions in “Steps for configuring

the Web container” on page 158

v To set up the IBM HTTP Server and the V3.5 runtime,

follow these instructions:

1. “Steps for setting up an HTTP server” on page

368

2. “Steps for configuring the V3.5 run-time provided

with WebSphere for z/OS” on page 371

3. “Steps for configuring the Web container” on page

158

The V3.5

runtime in an

HTTP Server

address space

The IBM HTTP

Server

Follow these instructions:

1. “Steps for setting up an HTTP server” on page 368

2. “Steps for configuring the V3.5 run-time provided

with WebSphere for z/OS” on page 371

3. “Steps for configuring the Web container” on page

158

1. The HTTP Transport Handler currently does not support the following:

v The authentication policy specified in your Web application’s deployment descriptor.

As an alternative, your security administrator can define a surrogate user ID under

which all requests received will execute.

v HTTPS. This limitation means that your installation cannot use SSL connections for

inbound servlet requests.

v If you are running Web applications in both the V3.5 runtime and the J2EE

server, decide whether you must use the default was.conf configuration file

provided with the V4.0.1 product to configure the V3.5 runtime. You can copy

properties you want to continue using (such as webapp and deployedwebapp

properties) from your Standard Edition V3.5 was.conf configuration file to this

default was.conf file.

 The default was.conf file already includes the webapp and deployedwebapp

properties for the sample Web application used for installation verification. If

you use the default file without changing it, any requests for your own Web

applications (i.e., Web applications for which there are no webapp and

deployedwebapp properties) will be routed to the J2EE server. If these Web

applications are being hosted by the V3.5 runtime instead of the Web container,

you will receive an error message that the application could not be found.

 If you want to run some of your applications Standard Edition V3.5 Web

applitionsin the V3.5 runtime, you must copy the webapp and deployedwebapp

148 WebSphere for z/OS: Assembling J2EE Applications

|
|

||

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

properties for these applications from your existing Standard Edition

V3.5was.conf file into the V4.0.1 default was.conf file.

v Decide which names to use for Web container virtual hosts and context root

definitions. This decision requires knowledge of the domain names through

which inbound servlet requests will arrive, and knowledge of individual Web

application modules. For background information about virtual hosts and

context roots, see “Resolving requests to a specific servlet using the HTTP

Server” on page 374.

The following table shows the subtasks and associated procedures for enabling

support for Web applications installed in a WebSphere Application Server J2EE

server:

 Subtask: Associated procedure (See ...)

Setting up the HTTP Transport Handler to

establish communication between the J2EE

server and a Web browser

“Steps for adding the J2SERV server” on page

151

Configuring a Web container in the J2EE

server to run servlets and JSPs

“Steps for configuring the Web container” on

page 158

Setting up an HTTP server to establish

communication between the J2EE server and

a Web browser

1. “Steps for setting up an HTTP server” on

page 368

2. “Steps for configuring the V3.5 run-time

provided with WebSphere for z/OS” on

page 371

Defining the server configuration

Use the WebSphere Application Server Administration application, also known as

the System Management End-User Interface (SM EUI), to define the run-time

environment for your application. Defining this run-time environment, or server

configuration includes defining a J2EE server, server instance, datasource; and

installing the EAR file for your J2EE application.

Recommendation: Define the environment variable settings at the server level.

When you do so, these settings apply for all server instances.

Before you begin: You should know:

v Where to find additional help with using the Administration application: Help is

available in the Administration application itself, and in WebSphere Application

Server V4.0.1 for z/OS and OS/390: System Management User Interface, SA22-7838.

v Which environment variables that you need to set for the run-time environment.

See Appendix A, “Environment and JVM properties files,” on page 299 for a

complete list of run-time variables and the values you can set during this

process.

The following table shows the subtasks and associated procedures for defining a

J2EE server configuration, using the WebSphere Application Server Administration

application:

 Subtask: Associated procedure (See ...)

Starting the Administration

application

“Steps for starting the Administration application” on

page 150

Starting a new conversation “Steps for starting a conversation” on page 151

Chapter 8. Creating a J2EE server run-time environment 149

|
|

|
|
|
|
|
|

|

Subtask: Associated procedure (See ...)

Adding the server “Steps for adding the J2SERV server” on page 151

Adding the server instance “Steps for adding the J2SERV1 server instance” on

page 153

Adding the J2EE resource “Steps for adding a J2EE resource” on page 153

Adding the J2EE resource instance “Steps for adding the J2EE resource instance” on page

153

Installing the J2EE application “Steps for installing a J2EE application” on page 154

Validating the new conversation “Steps for validating the new conversation model” on

page 156

Committing the conversation “Steps for committing the conversation” on page 157

Marking manual tasks as completed “Steps for marking z/OS or OS/390 tasks as

completed” on page 157

Activating the new conversation “Steps for activating the server configuration” on page

157

Steps for starting the Administration application

When you login to the WebSphere for z/OS Administration application, you will

be able to view only your own conversations and the current active conversation,

even if you have the same security authorities of other administrator user IDs.

Recommendation: If your installation has multiple administrators, they are able to

login to the Administration application using the same user ID, but should not

login simultaneously.

Before you begin:

v You need to know the naming server IP name and port number for the machine

running WebSphere Application Server. The naming server IP name is set either

in your domain name server (DNS) or workstation HOSTS file; the default port

number is 900.

v You might need to increase the heap size associated with the Administration

application, if you want to avoid delays when installing very large Enterprise

Archive (EAR) files. To increase the heap size on Windows 2000, for example,

complete the following steps:

1. Select Start → Programs → IBM WebSphere for z/OS

2. Right-click on Administration and select Properties

3. On the Shortcut tab, specify the following for the Target field:

"D:\Program Files\Ibm\WebSphere Application Server for zOS and OS390\

 bin\smdrv.exe" "-J-mx128m"

Perform these steps to start the Administration application:

1. On your workstation, Start → Programs → IBM WebSphere for z/OS →

Administration

2. Fill in the dialog with the naming server IP name, port 900, the user ID

CBADMIN, and password cbadmin. Click OK. Wait for the message that indicates

initialization is complete.

You know you are done when the main dialog window appears.

150 WebSphere for z/OS: Assembling J2EE Applications

Steps for starting a conversation

Perform these steps to start a new conversation:

1. Select the Conversations folder with the left mouse button. Then, using the

right mouse button, click on the Conversations folder, then select Add.

2. In the properties form (the panel on the right), enter a name for the new

conversation.

3. Click on the save (diskette) icon. The words ″Adding... Conversation″ appear in

the tree.

You know you are done when message BBON0515I appears in the status bar (at

the bottom of the dialog window), indicating that the new conversation was

added.

Steps for adding the J2SERV server

Perform these steps to add the new server:

1. Expand your new conversation tree by clicking on the node to the left of the

conversation name.

2. Expand Sysplexes, then your sysplex.

3. Select the J2EE server folder with the left mouse button. Then, using the right

mouse button, click on the J2EE server folder, then select Add.

4. In the properties form, enter values or make selections as appropriate for your

installation.

 Usually, you can use default values for most of the properties; however, make

sure you check at least the properties listed in the following table. For a

complete list and explanation of server properties, use the help available

through the Administration application, or see WebSphere Application Server

V4.0.1 for z/OS and OS/390: System Management User Interface, SA22-7838.

 Server name J2SERV

Control region identity The user ID under which the control region runs. This user ID must match an entity in

the RACF STARTED class and have appropriate RACF authorizations for a control

region.

Server region identity The user ID under which the server region runs. This user ID must match an entity in

the RACF STARTED class and have appropriate RACF authorizations for a server region.

Local identity Use only if you want to allow non-authenticated clients

Remote identity Use only if you want to allow non-authenticated clients

Control region start

procedure name

J2SERV

Notes:

a. Also in the properties form, provide values for the following key

environment variables for the application server. Make sure you set all

required environment variables for the run-time environment. See

Appendix A, “Environment and JVM properties files,” on page 299 for a

Chapter 8. Creating a J2EE server run-time environment 151

complete list of application server run-time variables and their values. For

more information about how to add or modify environment variables, use

the help system in the Administration application or see WebSphere

Application Server V4.0.1 for z/OS and OS/390: System Management User

Interface, SA22-7838.

v LIBPATH. The LIBPATH variable specifies the DLL search paths for Java

and JDBC in the hierarchical file system (HFS). Specify system,

WebSphere Application Server, Java, and DB2 JDBC DLLs.

 Example:

LIBPATH=/db2_install_path/lib

:/usr/lpp/java/IBM/J1.3/bin

:/usr/lpp/java/IBM/J1.3/bin/classic

:/usr/lpp/WebSphere/

where db2_install_path is the HFS where you installed DB2 Universal

Database for z/OS and OS/390.

v CLASSPATH. The CLASSPATH statement specifies Java class files (JAR

files and classes.zip) for use by Java applications in server regions.

 If the CLASSPATH variable does not already contain a value, copy the

value set for the sysplex in this conversation, and append any necessary

files. If your application components access DB2 data, add the full path to

the zip file for the JDBC driver.

 Rule: The entire CLASSPATH contents must fit on one line.

 Example:

CLASSPATH=:/usr/lpp/ldap/lib/ibmjndi.jar

:/db2_install_path/classes/db2j2classes.zip

Notes:

1) Application classes should not be manually added to this classpath. If

you have added application classes to this classpath, they should be

removed and specified on the APP_EXT_DIR environment variable.

Leaving application classes on the system classpath could have

unpredictable results.

2) After activation of this conversation, WebSphere Application Server

automatically prepends the following files to the J2EE server

CLASSPATH for you:

– ws390srt.jar

– waswebc.jar

– xerces.jar

b. (Optional) Set up the WebSphere for z/OS HTTP or HTTPS Transport

Handler to receive inbound servlet requests for Web applications installed

in this J2EE server. See“Setting up the HTTP/HTTPS Transport Handler” on

page 83 for a description of how to set up the HTTP and HTTPS Transport

Handlers.

5. Click on the save (diskette) icon. The words ″Adding... J2EE server″ appear in

the tree.

You know you are done when message BBON0515I appears in the status bar,

indicating that the new server definition was added.

152 WebSphere for z/OS: Assembling J2EE Applications

Steps for adding the J2SERV1 server instance

Perform these steps to add the server instance:

1. If necessary, expand the J2SERV folder by clicking on the node to the left of the

folder icon.

2. Select Server Instances with the left mouse button. Then, using the right mouse

button, click on Server Instances, then select Add.

3. In the properties form, enter J2SERV1 as the server instance name.

4. Optionally, enter a server instance description.

5. Optionally, supply a log stream name. If you do not supply one, the default is

the log stream name you chose for the J2SERV server.

6. Click on the save (diskette) icon. The words ″Adding... Server Instance″ appear

in the tree.

You know you are done when message BBON0515I appears in the status bar,

indicating that the new server instance was added.

Steps for adding a J2EE resource

Perform these steps to add a J2EE resource:

1. Select J2EE Resource with the left mouse button. Then, using the right mouse

button, select Add.

2. In the properties form, enter a name for the J2EE resource.

3. Optionally, enter a description of the J2EE resource.

4. Find the property labelled Datasource type, and select DB2.

 The Administration application fills in the fields above with the information

that is appropriate for a DB2 datasource.

5. Click on the save (diskette) icon. The words ″Adding... J2EE resource″ appear

in the tree.

You know you are done when message BBON0515I appears in the status bar,

indicating that the J2EE resource was added.

Steps for adding the J2EE resource instance

Perform these steps to add the datasource instance:

1. If necessary, expand the tree for the newly created J2EE resource by clicking on

the node to the left of the resource name.

Chapter 8. Creating a J2EE server run-time environment 153

2. Select J2EE resource instance with the left mouse button. Then, using the right

mouse button, click on J2EE resource instance, then select Add.

3. In the properties form, enter the appropriate values for the following:

v J2EE resource instance name

v J2EE resource instance description

v Location name (for example: supply the DB2 Universal Database for z/OS

and OS/390 location name)

Note: If you are using DB2 as a backing datasource, you may also supply an

SQL ID to control the use of unqualified table references in your

application components. For additional information about SQL IDs,

see “Overview of SQLID for managed datasources” on page 34.

4. Click on the save (diskette) icon. The words ″Adding... J2EE resource instance″

appear in the tree.

You know you are done when message BBON0515I appears in the status bar,

indicating that the J2EE resource instance was added.

Steps for installing a J2EE application

Before you begin: Make sure that the ftp server on z/OS or OS/390 is running.

Note: The container implicitly assigns the NotSupported transaction attribute to

each container-managed transaction bean method to which no transaction

attribute has been assigned. If you do not want the container to assign the

NotSupported transaction attribute, transaction attributes can be assigned in

an application assembly tool prior to installing the J2EE application.

Perform the following steps to install the EAR file for your application, using the

Administration application:

1. In the tree, select the J2EE server in which you want to install your application.

2. Choose Install J2EE Application... from the Selected menu bar. The Install J2EE

Application dialog box appears.

3. In the dialog box, enter the following values:

v The fully qualified path name of the EAR file that contains your J2EE

application.

v The name of the FTP server for the sysplex in which you want to install your

application. Usually, this is the server IP name you specified as instructed in

“Steps for starting the Administration application” on page 150.

v Click OK.

 Result: The Reference and Resource Resolution window appears, and

displays the application content in the EAR file.

4. For each Enterprise bean listed in the Reference and Resource Resolution

window, click on the bean name to display the details for that bean on the right

side of the window.

154 WebSphere for z/OS: Assembling J2EE Applications

Complete the following steps, as necessary, for each bean. Tab names on the

right side of the window indicate whether you need to complete specific steps;

tab names with a checkmark do not require any actions on your part.

a. Click on the EJB tab, and then click on the Set Default JNDI Name button.

b. Click on the Reference tab to list any beans that this bean references. Under

the label JNDI Name, click on the ↓ symbol to display a list of possible

JNDI names for each referenced bean, and select the appropriate JNDI

name.

 Repeat this step for each bean in the Reference list.

Note: The Link column contains checkboxes with checkmarks for all those

bean references that have been statically bound to another bean

within the application, using the ejb-link element. If you used the

Application Assembly tool to generate such links, you cannot change

them now. You can, however, generate additional links by resolving a

reference to a bean that resides within the application you are

currently installing.

c. Click on the Resource tab to display the datasources for this bean. Under

the label Datasource, click on the ↓ symbol to display a list of possible JNDI

names for the datasource, and select the appropriate JNDI name. Usually,

this name is db2os390:ssn, where ssn is the DB2 Universal Database for

z/OS and OS/390 subsystem name that you specified when adding the

datasource instance.

 If this bean is an entity bean that uses container-managed persistence

(CMP), the ws390rt/cmp/jdbc/CMPDS resource reference appears under the

Resource tab for this CMP bean. This resource reference was added to your

application’s deployment descriptor during assembly of the application, to

allow you to select the datasource that WebSphere Application Server will

use to back CMP beans.

 Rule: When you install the application, you must select a datasource to back

any CMP beans.

Tip: Data from the Reference and Resource Resolution window is saved in a

new copy of the EAR file named application_name_resolved.ear before it is

transferred to the server for deployment. If you reopen that copy of the file

later, you do not have to re-enter the information a second time.

5. Repeat the JNDI selection process for any remaining beans. You will know you

have finished this process for each bean, when the bean symbol to the left of

the bean name has a checkmark over it.

6. For each servlet listed in the Reference and Resource Resolution window, click

on the servlet name to display the details for that servlet on the right side of

the window. Then complete the following steps, as necessary, for each servlet:

a. Set default JNDI names any referenced components.

b. Set JNDI names for any J2EE resources that the servlet requires.

7. Repeat the JNDI selection process for any remaining servlets. You will know

you have finished this process for each servlet, when the symbol to the left of

the servlet name has a checkmark over it.

Chapter 8. Creating a J2EE server run-time environment 155

8. When the JNDI selection process is complete for all application components,

the OK button becomes selectable. Click OK.

 Result: This action starts the automatic ftp transfer of the EAR file contents

from your workstation to z/OS or OS/390. The message Deploying...

application_name appears on the screen. The ftp transfer proceeds through the

following stages:

 Stage Description

1 When the ear file is imported, the system transfers it to

targetdir/sysplex/temp/administrator_ID/application_name.ear

targetdir is the mount point, sysplex is the name of the sysplex, and

administrator_ID is the user ID of the administrator (usually CBADMIN).

2 The ear file is copied to

targetdir/apps/J2SERV/Ln/application_name.ear

n is the level number.

3 The ear file is processed. During ear file processing, the ear file is exploded into

directory

targetdir/apps/J2SERV/Ln/app_name/

app_name is the name of the application (not necessarily equal to the ear file

name).

4 A scaffolding directory

targetdir/apps/J2SERV/Ln/A/

is created under which all the deployment information is stored.

Note: Upon activation of the conversation, everything beneath

targetdir/apps/J2SERV/Ln/

is moved one level up to

targetdir/apps/J2SERV/

 Also during this deployment process for your application:

v Appropriate ownership and file permissions are set for your application files.

v If the application contains any servlets or JSPs, these Web applications are

provided with a fully qualified URI that enables the WAR files and the EJB

JAR files to be accessed through HTTP protocol when requested by a client.

(See “Steps for configuring the V3.5 run-time provided with WebSphere for

z/OS” on page 371 for more information on invoking a Web application

from a browser.)

You know you are done when message BBON0470I appears in the status bar,

indicating that the application_name_resolved.ear file has been successfully

installed.

Steps for validating the new conversation model

Perform these steps to validate the conversation:

1. If necessary, scroll up the tree to the conversation you have defined.

156 WebSphere for z/OS: Assembling J2EE Applications

2. Select the conversation with the left mouse button. Then, using the right mouse

button, click on the conversation, then select Validate.

You know you are done when message BBON0442I appears in the status bar,

indicating that the new conversation is valid.

Steps for committing the conversation

Perform these steps to commit the conversation:

1. If necessary, scroll up the tree to the conversation you have validated.

2. Select the conversation with the left mouse button. Then, using the right mouse

button, click on the conversation, then select Commit. Answer Yes to the

question: ″Do you still want to commit?″ The words ″Committing...

conversation_name″ appear in the tree.

You know you are done when message BBON0444I appears in the status bar,

indicating that the new conversation and J2EE server definition was committed.

Steps for marking z/OS or OS/390 tasks as completed

1. Select the new conversation with the left mouse button. Then, using the right

mouse button, click on the conversation, then select Instructions.

2. Double-check the instructions provided by the Administration application to

determine whether you have completed all of the required z/OS or OS/390

tasks, which include defining workloads and setting up security. A checklist for

these required z/OS or OS/390 tasks appears in “Steps for completing manual

z/OS or OS/390 tasks” on page 144.

3. When you have verified or finished the z/OS or OS/390 tasks, mark all tasks

complete in the administration application by following these steps:

a. Select the conversation with the left mouse button. Then, with the right

mouse button, click on the conversation, select Complete, then All tasks.

b. Answer Yes to the question: ″Are you sure that all tasks have been

completed?″

You know you are done when message BBON0484I appears in the status bar,

indicating that all tasks are complete.

Steps for activating the server configuration

1. Select the conversation with the left mouse button. Then, with the right mouse

button, click on the conversation, then select Activate.

2. Answer Yes to the question: ″Do you want to activate conversation

conversation_name?″ At the bottom of the dialog, a message indicates when the

server definition has been activated.

Chapter 8. Creating a J2EE server run-time environment 157

You know you are done when message BBON0449I appears in the status bar,

indicating that the new conversation was activated. Now the J2EE server you just

activated is ready to host the applications you installed.

Steps for configuring the Web container

 The WebSphere Application Server J2EE server is a servlet execution environment.

Servlets run in the J2EE server’s Web container, and use the RMI/IIOP protocol to

access Enterprise beans in the J2EE server’s EJB container. Configuring the Web

container is optional; it is required only if you are enabling J2EE server support for

Web applications (see “Steps for enabling J2EE server support for Web applications

(optional)” on page 147), and plan to or have already installed Web applications in

the J2EE server.

A Web container is created as part of the J2EE server set up process. It’s

configuration settings are specified in a webcontainer.conf file provided with the

product. You can update the webcontainer.conf file to:

v Configure one or more virtual hosts within a Web container. Virtual hosting

allows a single Web container to handle processing for more than one internet

host. For example, the same Web container may service requests for hosts

www.mycompany.com and www.MyOtherCompany.com.

 You can deploy one or more Web applications into a virtual host. This capability

allows the Web container configuration to be partitioned according to the hosts

for which it is servicing requests. The Web container uses the host. properties to

determine to which virtual host an application request is to be routed. It checks

the URL used to initiate an input request and routes the request to the specified

virtual host.

v Specify whether or not you want to collect session data. If you want to collect

session data, you can also specify other settings, such as the name of the DB2

table that will be used to store session data. “HTTP session support” on page 87

provides more information about collecting session data and the options that can

be set in the webcontainer.conf file.

Note: This database table can be shared between V3.5 and V4 WebSphere

Application Servers.

After editing the webcontainer.conf file, you must refresh the J2EE server to

activate the changes you made.

Perform the following steps to configure the J2EE server’s Web container:

1. Create a webcontainer.conf file by copying the default file shipped in

/usr/lpp/WebSphere/bin directory.

2. Edit the webcontainer.conf file and update the following properties to define

the virtual host and context roots. When the Web container is initially

configured, at least one virtual host (the default virtual host that is provided

with the product) is already associated with it. The following properties are

used to configure a virtual host:

v host.<virtual-hostname>.alias=<hostname>

 Use this property to specify the hostname alias to be associated with this

virtual host name. It provides a binding between the host names understood

by the HTTP Transport Handler or the HTTP Server, and the virtual host

158 WebSphere for z/OS: Assembling J2EE Applications

definitions in the Web container. The alias can be the name by which this

virtual host is known to clients and applications.

v host.<virtual-hostname>.mimetypefile

 Use this property to specify the fully qualified name of a file containing

definitions for MIME types that describe the content that can be included in

HTTP responses served from this virtual host. If this property is not

specified, the Web container uses the standard MIME type definitions

provided in the default_mimetype.properties file.

v host.<virtual-hostname>.contextroots

 Use this property to bind installed Web applications into a specific virtual

host. The specified context root corresponds to the context root assigned to

the Web application during application deployment. The Web container’s

default configuration includes a predefined virtual host, named default_host,

and a contextroot property that binds all installed Web applications to the

default_host virtual host.

 If you are defining only one virtual host per J2EE server, you can use the

default context root binding property. All subsequently installed applications

will be bound to this virtual host.

See Appendix B, “Default webcontainer.conf file,” on page 351 for more a more

detailed descriptions of these properties.

 Guidelines:

v The easiest way to configure the Web container is to use a single virtual host

and a universal context root; these definitions are probably sufficient if you

are testing Web applications, and familiarizing yourself with using the Web

container as the servlet execution environment. For this simple configuration,

you can use the following definitions:

host.default_host.alias=host_name_of_HTTP_server ...
host.default_host.contextroots=/

 With this context roots definition, the single forward slash provides a

universal catch-all for applications being bound to the default virtual host.

Every application, regardless of the context root definition in the

application.xml file, will bind to this virtual host.

 Rule: Do not define the same context root (which includes the universal /

value) for more than one virtual host definition. Results will be

unpredictable.

v When you want to have multiple host names routed to the same z/OS or

OS/390 system, see:

– “Resolving requests to a specific servlet using the HTTP Server” on page

374 for an overview of using virtual hosts and context roots, and

– Appendix B, “Default webcontainer.conf file,” on page 351 for more details

about each of the properties you can use in the webcontainer.conf file.

Note: A virtual host can have more than one alias, and each alias definition

may contain both a host name and a port number. All of the host’s alias

names must be specified on a single line separated by a comma and a

space.

 See Appendix B, “Default webcontainer.conf file,” on page 351 for a complete

description of the webcontainer.conf properties that are applicable to defining a

virtual host.

Chapter 8. Creating a J2EE server run-time environment 159

3. Edit an existing or create a new Java virtual machine (JVM) properties file for

the J2EE server in which your Web applications will be installed. This

properties file include the following property, which identifies the location of

the Web container configuration file, usually named webcontainer.conf:

com.ibm.ws390.wc.config.filename=/path/your_webcontainer.conf_filename

 If this property is not added to the JVM properties file, the Web container uses

the default file, applicationserver_root/bin/webcontainer.conf.

Note: Even though the file system location of the webcontainer.conf file is

optional, you might want to place the webcontainer.conf file in the same

directory as the other configuration files associated with this J2EE server.
“JVM properties and properties files” on page 339 contains further instructions

for creating this properties file, including location and access requirements.

 Tips:

v Make sure you double-check the property name, path, and file names you

specify. Any misspellings or mistakes will cause the J2EE server to assume

your file does not exist, and the J2EE server will use default JVM values

instead. These default values do not identify a Web container configuration

file. Without a Web container configuration file, the WebSphere for z/OS

plug-in will not be able to verify any inbound servlet requests as valid.

v Do not try to copy an existing was.conf file and edit it for use as a

webcontainer.conf file. At first glance, these files might look similar, but they

are not. You will not save any time or effort trying to reuse a was.conf file.

Instead, you may use the model in Appendix B, “Default webcontainer.conf

file,” on page 351.

4. Refresh the J2EE server to pick up the changes to the webcontainer.conf file,

and any changes to the optional JVM properties file.

Steps for configuring HTTP Session Support

Before you begin: Configure an HTTP(S) Transport Handler to handle HTTP(S)

requests to the Web container, or have an HTTP Server set up on your sysplex to

perform this function. (If you are using DB2 Session Persistence Version 2 to

maintain your session data in a DB2 database, you must use an HTTP(S) Transport

Handler.)

You need to know that the WebSphere for z/OS Web container contains a single

Session Manager. The Session Manager supports the javax.servlet.http.HttpSession

interface described in the Java Servlet API 2.2 specification. It also supports two

versions of DB2 session persistence. The Session Manager is initially configured

such that:

v Sessions are enabled.

v Cookies, for conveying session IDs to servlets, are enabled.

v Session objects are stored in-memory rather than in a DB2 database.

v Cookies can be exchanged in both HTTPS and HTTP sessions.

v The ability to add session IDs to URLs in transition from HTTP to HTTPS and

back (protocol switch rewriting) is disabled.

v URL rewriting, for conveying session IDs to servlets, is disabled.

160 WebSphere for z/OS: Assembling J2EE Applications

The following sections describe how to change these session settings to better fit

your installation’s requirements.

You can also update the other session properties in the webcontainer.conf file to

change such session settings as the size of the session table used to maintain

session objects within the Web container, and the amount of time in, milliseconds,

that a session is allowed to go unused before it is no longer considered valid.

Detailed descriptions of all of the session properties are provided in the copy of

the default webcontainer.conf file that is provide in Appendix B. Default

webcontainer.conf file of Assembling Java™2 Platform, Enterprise Edition (J2EE™)

Applications.

Note: If you make any changes to the session configuration settings, you must

stop and start the affected J2EE server instance again before any of these

changes take affect.

Configuring cookies

If cookies are to be used with session tracking, the following changes might need

to be made to one or more of the following webcontainer.conf file properties:

1. Set the session.cookies.enable property to true to enable cookies.

2. (Optional) Specify the name of the cookie on the session.cookie.name property

if you can not use the default cookie name JSESSIONID.

Notes:

a. IBM recommends that you DO NOT change the default cookie name

(JSESSIONID) unless it is absolutely necessary to do so.

b. If you are using a non-z/OS WebSphere plug-in for Web servers that is at a

V4.0.2, V4.0.3, or V4.0.4 level to provide session affinity across multiple J2EE

server instances, you MUST NOT change the default cookie name

(JSESSIONID). These plug-ins, by default, look for affinity data in a cookie

named JSESSIONID.

c. If you are using the WebSphere HTTP Plug-in for z/OS or a non-z/OS

WebSphere plug-in for Web servers that is at a V4.0.5 level or above to

provide session affinity across multiple J2EE server instances, you can

change the cookie name, for a J2EE server but if you do, you MUST also:

1) Use the WebSphere for z/OS Administration application to add the

SESSION_COOKIE_NAME environment variable to the current.env file. The

value specified for this variable must exactly match the value specified

on the session.cookie.name property in the webcontainer.conf file. (This

value is case sensitive.)

2) Edit the plugin-cfg.xml file for the Web server plug-in, and add the

affinityCookie=″new_cookie_name″ parameter to all of the <Uri name>

elements contained within the <UriGroup>tag for that J2EE server. The

same value MUST be specified for new_cookie_name for all of the URIs

contained in this URI group.

 Example: If the cookie name, MyCookie, was specified on the

SESSION_COOKIE_NAME environment variable to the current.env file, and

on the session.cookie.name property in the webcontainer.conf file, you

must specify this same value on the affinityCookie parameter for each

of the <Uri name> elements contained within the <UriGroup> tag for that

J2EE server:

Chapter 8. Creating a J2EE server run-time environment 161

|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

<UriGroup name="Uris">

 <Uri name = "/servlet/snoop" affinityCookie="mycookie"/>

 <Uri name = "/webapp/*" affinityCookie="mycookie"/>

 <Uri name = "*.jsp" affinityCookie="mycookie"/>

</UriGroup>

If the value specified for the SESSION_COOKIE_NAME environment variable, the

session.cookie.name webcontainer.conf file property, and the <CloneID=>

element in the plugin-cfg.xml file do not all match exactly, session affinity

will not work for this J2EE server instance.

3. Set the session.cookie.maxage property to a specific time interval. This change

is only needed if you want the cookie to persist for a set length of time instead

of for the full duration of the invocation of a browser. (The value specified

must be an integer value that indicates, in milliseconds, the amount of time the

cookie is to remain valid.)

4. Set the session.cookie.domain property to a specific name if you want to limit

the domain for which a cookie is valid.

5. Add a session.cookie.comment property if you want to include a comment

about the cookie.

6. Set the session.cookie.secure property to true if you want to restrict the

exchange of cookies to only HTTPS sessions.

Configuring URL rewriting

If you need to use URL rewriting instead of cookies, you must make the following

changes to webcontainer.conf file properties:

1. Set the session.urlrewriting.enable to true to enable URL rewriting in the

Session Manager.

2. Set the session.protocolswitchrewriting.enable property to true to enable

the session ID to be added to a URL when the URL requires a switch from

HTTP to HTTPS, or HTTPS to HTTP.

3. Set the session.cookies.enable property to false to disable the use of cookies

as a way to manage sessions. (If both cookies and URL rewriting are enabled,

the Session Manager will attempt to use cookies to manage sessions and ignore

the fact that URL rewriting is enabled.

Notes:

1. If you have APAR PQ67436 installed, you can use URL rewriting even if you

are:

v Maintaining session data in memory across multiple server regions within a

single J2EE server instance.

v Maintaining session data in memory across multiple J2EE server instances,

provided you are using one of the following WebSphere plug-ins for Web

servers:

– The WebSphere HTTP Plug-in for z/OS that is used with the Version 5.3

IBM HTTP Server for z/OS and OS/390. (This plug-in is provided in

WebSphere for z/OS Service Level W401500.) This plug-in

162 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|
|
|

(ihs390WASPlugin_http.so) should not be confused with the Local

Redirector plug-in (was400plugin.so) that is shipped with the WebSphere

for z/OS product to provide an IIOP connection from an IBM HTTP

Server for z/OS and OS/390 to a WebSphere for z/OS Web container.

– One of the WebSphere plug-ins for Web servers that run on a non-z/OS

Web server that is shipped with WebSphere for z/OS and with the

WebSphere Application Server Advanced Edition Version 4.0.5 or higher

product. See Table 22 on page 176 for a list of these plug-ins.
2. If you need to use URL rewriting to maintain session state, do not include links

to parts of your Web applications in plain HTML files (i.e., files with .html or

.htm extensions). This restriction is necessary because URL encoding cannot be

used in plain HTML files.

Configuring WebSphere for z/OS to maintain session data in a

DB2 database instead of in-memory.

WebSphere for z/OS can be configured to maintain session data in a DB2 database

instead of in-memory. Using a DB2 database, session data can be maintained

within the same or across multiple WebSphere for z/OS server regions or J2EE

server instances. Therefore, maintaining session data in a DB2 database provides

session failover support since another server region/server instance can take over

in the event of a catastrophic failure in the initial server region/server instance.

There are two versions of DB2 session persistence that can be used with

WebSphere for z/OS:

v Session Persistence Version 1 is the version that was shipped with versions 3.5

and 4.0, and initially shipped with version 4.0.1. You should continue to use

Version 1 if:

1. Your installation needs to share the data stored in the DB2 database amongst

WebSphere for z/OS instances and Version 3.5 Application Servers executing

on a z/OS or OS/390 image that are able to access this central database, or

2. Your installation must use the WebSphere for z/OS local redirector plug-in

and a Web server to handle HTTP(S) requests.
v Session Persistence Version 2 was added to Version 4.0.1 with PTFs UQ90051

and UQ90052. It provides improved performance and added functionality over

Version 1, and should be used if Version 1 is not required for either of the

reasons specified in the previous bullets.

To set up DB2 Session Persistence Version 1:

1. Use the WebSphere for z/OS Administration application to modify the instance

definition of the IBMHttpSession J2EE Resource. Make sure you include the

DB2 Location Name in the instance definition. The resulting datasource

definition is used to get connections to the DB2 database containing the session

table.

2. Have your DB2 Administrator create a DB2 database table for storing session

data. (For more information about creating DB2 databases see the DB2

Administration Guide for the version of DB2 you are using.)

 The table space in which the database table will be created must be defined

with row level locking (LOCKSIZE ROW). It should also have a page size that

is large enough for the objects that will be stored in the table during a session.

Following is an example of a table space definition with row level locking

specified and a buffer pool page size of 32K:

Chapter 8. Creating a J2EE server run-time environment 163

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|
|
|
|
|
|

|
|

|
|
|

|
|
|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

CREATE TABLESPACE <tablespace_name>

 IN <database_name>

 USING STOGROUP <group_name>

 PRIQTY 52

 SECQTY 2

 ERASE NO

 LOCKSIZE ROW

 BUFFERPOOL BP32K

 CLOSE YES;

 The DB2 table defined within this table space, that the Session Manager will

use to process the session data must have the following format:

CREATE TABLE <database_name>.<table_name>

 (ID VARCHAR(24) NOT NULL,

 PROPID VARCHAR(24) NOT NULL,

 APPNAME VARCHAR(32),

 LISTENERCNT SMALLINT,

 EXPIRES TIMESTAMP,

 LASTACCESS TIMESTAMP,

 CREATIONTIME TIMESTAMP,

 MAXINACTIVETIME INTEGER,

 USERNAME VARCHAR(256),

 SMALL VARCHAR(3595) FOR BIT DATA,

 MEDIUM LONG VARCHAR FOR BIT DATA

)

IN <database_name>.<tablespace_name>;

Note: The length attributes specified for VARCHAR in this example are not

necessarily the values your DB2 Administrator should use for the DB2

table he is creating. See the DB2 SQL Reference for the version of DB2

you will be using for guidance in determining appropriate values for

these length attributes for your installation.

 The DB2 Administrator must also create a type 2 unique index on the ID and

PROPID columns of this table. The following is an example of the index

definition:

CREATE TYPE 2 UNIQUE INDEX <database_name>.<index_name>

 ON <database_name>.<table_name>

 (ID , PROPID)

 USING STOGROUP <group_name>

 ERASE NO

 BUFFERPOOL BP0

 CLOSE YES;

Notes:

a. At run time, the Session Manager will access the target table using the

identity of the J2EE server in which the owning Web application is

deployed. Any Web container that is configured to use persistent sessions

should be granted both read and update access to the subject database

table.

b. HTTP session processing uses the index defined using the CREATE INDEX

statement to avoid database deadlocks. In some situations, such as when the

a relatively small table size is defined for the database, DB2 may decide not

to use this index. When the index isn’t used, database deadlocks can occur.

If this situation occurs, see the DB2 Administration Guide for the version of

DB2 you are using for recommendations on how to calculate the space

required for an index, and adjust the size of the tables you are using

accordingly.

c. It may be necessary to tune DB2 in order to make efficient use of the

sessions database table and to avoid deadlocks when accessing it. Your DB2

164 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

Administrator should refer to the DB2 Administration Guide for specific

information about tuning the version of DB2 you are using.

3. Make sure that the following property settings are specified in the

webcontainer.conf file to enable DB2 Session Persistence Version 1 and to

specify how you want the Session Manager handle the maintenance of the

session data. If the session.persistenceversion property is not included in the

webcontainer.conf file, DB2 Session Persistence Version 1 will be used, since 1 is

the default value for this property.

session.enable=true

session.invalidationtime=<milliseconds>

session.dbenable=true

session.persistenceversion=1

session.dbtablename=<database_name.table_name>

 <milliseconds> is the amount of time in, milliseconds, that a session is allowed

to go unused before it is considered invalid.

 <database_name.table_name> is the name of the database and DB2 table that is to

be used by session services.

Note: The HTTP session timeout settings specified in the webcontainer.conf file

can be overridden for a particular Web application by adding the

following tags to the the web.xml file for that application:

<session-config>

 <session-timeout>x</session-timeout>

<session-config>

where x is the timeout value, in minutes, for that application. You can

also override the webcontainer.conf file setting by specifying the new

value in the ″Session timeout″ field on the ″General″ tab for the Web

application when you use the WebSphere for z/OS AAT to deploy the

Web application on your WebSphere for z/OS system.

 In addition, one of the following properties needs to be specified:

 session.cookies.enable=true

 or

 session.urlrewriting.enable=true

To set up DB2 Session Persistence Version 2:

1. Use the WebSphere for z/OS Administration application to modify the instance

definition of the IBMHttpSession J2EE Resource. Make sure you include the

DB2 Location Name in the instance definition. The resulting datasource

definition is used to get connections to the DB2 database containing the session

table.

2. Have your DB2 Administrator create a DB2 database table for storing session

data. (For more information about creating DB2 databases see the DB2

Administration Guide for the version of DB2 you are using.)

 The table space in which the database table is created must be defined with

row level locking (LOCKSIZE ROW). It should also have a page size that is

large enough for the objects that will be stored in the table during a session.

Following is an example of a table space definition with row level locking

specified and a buffer pool page size of 32K:

Chapter 8. Creating a J2EE server run-time environment 165

|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|

CREATE DATABASE <database_name>

 STOGROUP SYSDEFLT

 CCSID EBCDIC;

CREATE TABLESPACE <tablespace_name> IN <database_name>

 USING STOGROUP <group_name>

 PRIQTY 512

 SECQTY 1024

 LOCKSIZE ROW

 BUFFERPOOL BP32K;

 The Session Manager will use the DB2 table defined within this table space to

process the session data. This table must have the following format:

CREATE TABLE <database_name>.<table_name> (

 ID VARCHAR(95) NOT NULL ,

 PROPID VARCHAR(95) NOT NULL ,

 APPNAME VARCHAR(64) ,

 LISTENERCNT SMALLINT ,

 LASTACCESS DECIMAL(19,0),

 CREATIONTIME DECIMAL(19,0),

 MAXINACTIVETIME INTEGER ,

 USERNAME VARCHAR(256) ,

 SMALL VARCHAR(3122) FOR BIT DATA ,

 MEDIUM VARCHAR(28869) FOR BIT DATA ,

 LARGE BLOB(2097152),

 SESSROW ROWID NOT NULL GENERATED ALWAYS

)

 IN <database_name>.<tablespace_name>;

Note: The length attributes specified for VARCHAR in this example are not

necessarily the values your DB2 Administrator should use for the DB2

table he is creating. See the DB2 SQL Reference for the version of DB2

you will be using for guidance in determining appropriate values for

these length attributes for your installation.

 A unique index must be created on the ID and PROPID columns of this table.

The following is an example of the index definition:

CREATE UNIQUE INDEX <database_name>.<index_name>.

 <database_name>.<table_name>

 (ID ASC,

 PROPID ASC,

 APPNAME ASC);

Notes:

a. At run time, the Session Manager will access the target table using the

identity of the J2EE server in which the owning Web application is

deployed. Any Web container that is configured to use persistent sessions

should be granted both read and update access to the subject database

table.

b. HTTP session processing uses the index defined using the CREATE INDEX

statement to avoid database deadlocks. In some situations, such as when the

a relatively small table size is defined for the database, DB2 may decide not

to use this index. When the index isn’t used, database deadlocks can occur.

If this situation occurs, see the DB2 Administration Guide for the version of

DB2 you are using for recommendations on how to calculate the space

required for an index, and adjust the size of the tables you are using

accordingly.

c. It may be necessary to tune DB2 in order to make efficient use of the

sessions database table and to avoid deadlocks when accessing it. Your DB2

Administrator should refer to the DB2 Administration Guide for specific

information about tuning the version of DB2 you are using.

166 WebSphere for z/OS: Assembling J2EE Applications

A large object (LOB) table space must be defined and an auxiliary table must

be defined within that table space. The following is an example of the LOB

table space definition:

CREATE LOB TABLESPACE <LOB_tablespace_name> IN <database_name>

 BUFFERPOOL BP32K

 USING STOGROUP <group_name>

 PRIQTY 512

 SECQTY 1024

 LOCKSIZE LOB;

CREATE AUX TABLE <database_name>.<aux_table_name>

 IN <database_name>.<LOB_tablespace_name>

 STORES <database_name>.<table_name>

 COLUMN LARGE;

 An index must be created for this auxiliary table. The following is an example

of the index definition:

CREATE INDEX <database_name>.<aux_index_name> ON

 <database_name>.<aux_table_name>;

 Finally, your DB2 Administrator must grant the appropriate server regions

access to these DB2 tables. The following is an example of the command used

to grant server region CBASRU1 access to the tables you just created:

GRANT ALL ON <database_name>.<table_name> TO CBASRU1;

3. Make the following changes to the webcontainer.conf file session properties:

v Set the session.dbenable property in the webcontainer.conf file to true to

enable DB2, and the session.persistenceversion property to 2 to enable the

use of the new DB2 table format (required). If the

session.persistenceversion property is not included in the

webcontainer.conf file, WebSphere for z/OS will attempt to use DB2 Session

Persistence Version 1, since 1 is the default value for this property. This will

cause session-related errors to occur during application processing.

v Specify one of the following properties (required):

session.cookies.enable=true

 or

session.urlrewriting.enable=true

v Change the following webcontainer.conf file properties, if necessary, to fit

your installation’s requirements (optional):

– Set the session.reaperinterval property to the time interval, in seconds,

at which you want the reaper (i.e., invalidator) to run. If this property is

not specified, or if the specified value is less than 30, WebSphere for z/OS

will calculate an appropriate interval.

– Set the session.timebasedwrite property to true if you want updates to

the DB2 database to be done on a separate thread, and set the

session.timebasedwriteinterval property to the time interval, in seconds,

at which you want this thread to write session updates to the DB2

database. (If no value is specified for the session.timebasedwriteinterval

property, the default value of 120 seconds is used.) Setting this property to

true should result in improved performance but leaves a larger window

for data loss if a failure occurs. (This property can be left at its default

value of false if retention of data is more important than performance.)

– Set the session.dbconnections property to the number of DB2 database

connections you want the Session Manager to hold for its exclusive use.

Holding connections will improve performance. By default, each JVM runs

three threads, in which case, setting this property to 3 DB2 connections is

Chapter 8. Creating a J2EE server run-time environment 167

optimal. If no value is specified for this property, no connections will be

held for the Session Manager’s exclusive use.

– Set the session.usingmultirow property to true, if you want each session

attribute written in a separate row, or to false, if you want all session

attributes written in a single row. If your session is used only for a few

small attributes, specifying false will most likely result in better

performance. If no value is specified, the default value of true is used.

– Set the session.writeallproperties property to true if you want to write

all properties to the DB2 database even if they have not been changed by

a call to setAttribute. If you only want the properties written if they have

been changed, leave this property set to the default value of false, which

should result in improved performance.

– Set the session.scheduledinvalidation property to true if you want to

invalidate sessions at two specific hours of the day and then use the

session.scheduledhour1 and session.scheduledhour2 properties to specify

these two hours. This minimizes database access for invalidations, and

effectively means that sessions will not timeout when the time limit

specified on the session.MaxInactiveInterval property is reached.

Specifying true should result in improved performance.

Note: If you use this property, IBM recommends setting the

session.reaperinterval property to 3600 seconds (1 hour). This

will enable session invalidation to occur sometime during the hours

specified on the session.scheduledhour1 and

session.scheduledhour2 properties. (This invalidation will not

necessarily occur right on the hour.)

Note: Values specified for these properties will be ignored if the

session.persistenceversion property is set to 1 or is not included in

the webcontainer.conf file.

4. If you want to maintain session data in an environment with multiple server

instances, either:

v Install a Version 5.3 IBM HTTP Server on a z/OS or OS/390 system and use

FTP or another file transfer mechanism to download the WebSphere HTTP

Plug-in for z/OS from your WebSphere for z/OS system to that HTTP

Server, or

v Install a WebSphere plug-in for Web servers on a supported non-z/OS Web

server running on a distributed platform workstation.

Then configure the Web server and the plug-in to communicate with the

appropriate WebSphere for z/OS J2EE server instances. (See “Configuring

session affinity across multiple WebSphere for z/OS J2EE server instances” on

page 169 for a description of how to complete this step.)

Note: Session affinity CAN NOT be maintained across multiple WebSphere for

z/OS J2EE server instances if the TCPIP port on which the HTTP(S)

Transport Handler is listening is configured as a SHAREPORT.

168 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|
|
|

|
|

|
|
|
|

|
|
|

Configuring session data to be stored in-memory

HTTP session support is initially configured to maintain session data in-memory. If

you changed these initial settings in order to maintain session data in a DB2

database, to return to the initial settings make the following updates to the

webcontainer.conf file:

v Set the session.dbenable property to false.

v Make sure session is set up to use either cookies (see “Configuring cookies” on

page 161) or URL rewriting (see “Configuring URL rewriting” on page 162).

v Set the session.tableoverflowenable property to true if you want HTTP session

data to continue to be stored as long as there is memory available. Setting this

property to true can potentially exhaust system memory and even allow for

system sabotage. Somebody could write a malicious program that continually

hits your site and creates HTTP sessions, but ignores any cookies or encoded

URLs and never utilizes the same HTTP session from one HTTP request to the

next.

 When overflow is not allowed (the property is set to false), the Session Manager

will still return an HTTP session with the HttpServletRequest’s getSession(true)

method if the memory limit has currently been reached, but the HTTP session

will not be saved. Therefore, a new session will have to initiated each time a

request is made until enough memory becomes available to begin saving session

data again.

 If you are concerned about HTTP sessions not being saved, include the

isOverflow() method of the WebSphere extension to HttpSession,

com.ibm.websphere.servlet.session.IBMSession, in your application to check for

this situation and react accordingly.

v Set the session.tablesize to the number of in-memory HTTP sessions that you

want to be maintained. (The default number is 1000 session objects.) Once this

number is surpassed, HTTP session data is no longer stored unless the

session.tableoverflowenable property is set to true.

 General memory requirements for your hardware system, as well as your site’s

usage characteristics, should be considered before changing the default value

specified for this property. If you specify a larger number, you may need to

increase the heap sizes of the Java processes for WebSphere for z/OS instances.

Configuring session affinity across multiple WebSphere for

z/OS J2EE server instances

If you are maintaining session data in a DB2 database and using DB2 Session

Persistence Version 1, session affinity is not necessary. However, if you are

maintaining session data in-memory, or are using DB2 Session Persistence Version

2, you must perform the following steps to provide session affinity support across

multiple WebSphere for z/OS J2EE server instances.

Note: Session affinity CAN NOT be maintained across multiple WebSphere for

z/OS J2EE server instances if the TCPIP port on which the HTTP(S)

Transport Handler is listening is configured as a SHAREPORT.

1. Either:

v Install a Version 5.3 IBM HTTP Server for z/OS or OS/390 and the

WebSphere HTTP Plug-in for z/OS on the same z/OS or OS/390 on which

you are running WebSphere for z/OS, or

Chapter 8. Creating a J2EE server run-time environment 169

|
|

|

|

|
|
|

v Install a non-z/OS WebSphere plug-in for Web servers on a supported

non-z/OS Web server running on a distributed platform workstation.

Then configure the Web server and Web server plug-in to communicate with an

HTTP(S) Transport Handler on your WebSphere for z/OS system. See “Steps

for setting up WebSphere plug-ins for Web servers for use with WebSphere for

z/OS” on page 171 for a description of how to install and configure supported

Web servers and Web server plug-ins.

 You must stop and start the Web server again before any configuration changes

you make will take affect.

2. For each WebSphere for z/OS J2EE server instance to which requests will be

redirected, make the following changes to the webcontainer.conf file:

v Add the hostname and port where your Web server is running to the

host.<virtual_hostname>.alias property. For example, if your Web server is

running on affinity.raleigh.ibm.com port 80, you would add

www.mycompany.com:8220, and www.mycompany.com to the list of aliases

included on this property.

v Make sure session is set up to use either cookies (“Configuring cookies” on

page 161) or URL rewriting (“Configuring URL rewriting” on page 162).

Configuring session data sharing within a J2EE application

If you have an J2EE application that requires session data to be shared cross all of

the Web modules in that application, you must perform the following steps to

activate this support in a WebSphere for z/OS environment:

1. Create a file called sessionshare.xml file that contains the following tags:

<sessionsharing>

 <EnterpriseAppnames> Appname1,Appname2,Appname3,...

 </EnterpriseAppnames>

</sessionsharing>

 The names of the J2EE applications requiring the sharing of session data within

their Web modules are listed on the <EnterpriseAppnames> tag name,

separated by commas. Session data cannot be shared across J2EE applications.

Note: This file must be in ASCII format.

2. Place the sessionshare.xml file in a directory that is readable by WebSphere for

z/OS. (The file must also be readable by the identity under which the J2EE

server is running.)

3. Use the Administration application to add the path for that directory to the

CLASSPATH setting for this J2EE server or server instance. For example, if you

added the sessionshare.xml file to the directory /u/websphere/data/, you

would add that directory path to the CLASSPATH setting.

Note: You MUST include the trailing slash when you specify the directory

path.

4. If you are using a DB2 database to maintain your session data, ensure

WebSphere for z/OS is configured to use DB2 Session Persistence Version 2.

170 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|
|
|
|

|
|

|

|
|

|
|
|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|

|

|

|
|
|

|

|
|
|
|

|
|

|

|
|

(See “Configuring WebSphere for z/OS to maintain session data in a DB2

database instead of in-memory.” on page 163 for a description of how to

configure DB2 Session Persistence Version 2.)

5. Restart the application server. The Session Manager will read the

sessionshare.xml file by default and enable the session sharing feature for the

J2EE applications listed in this file.

Steps for setting up WebSphere plug-ins for Web servers for use with

WebSphere for z/OS

WebSphere plug-ins for Web servers are shipped as part of the WebSphere for

z/OS product. However, only the WebSphere HTTP Plug-in for z/OS, which is

used with the IBM HTTP Server for z/OS and OS/390 can be run on a z/OS

system. The other Web server plug-ins must be run on a non-z/OS system. You

must download these non-z/OS plug-ins to a Web server that is already installed

on a workstation and then configure the plug-in for that Web server. Use Table 22

on page 176 to determine the correct plug-in for your platform.

Once you have WebSphere for z/OS and your Web server and plug-in properly

configured, you can route requests from your browser, through the Web server and

plug-in, to one of the WebSphere for z/OS J2EE server instances defined in the

ServerGroup element in the plugin-cfg.xml file. New requests will get sprayed

across these server instances, but once a session is established, requests will get

routed back to the correct HTTP(S) Transport Handler based on the CloneID the

WebSphere for z/OS Web container assigned to the original request.

For example, a WebSphere for z/OS Web container might assign a CloneID of A to

a request that was received on port 8083 and a CloneID of B to a request that was

received on port 8084. During the same session, the Web server plug-in will then

use these CloneIDs to redirect future requests back to the correct J2EE server

instance. The HTTP(S) Transport Handler then routes the requests to the correct

server region following normal processing procedures.

Setting up the WebSphere HTTP Plug-in for z/OS

To enable WebSphere for z/OS to use theWebSphere HTTP Plug-in for z/OS with

an IBM HTTP Server for z/OS and OS/390, perform the following steps:

1. Make sure a Version 5.3 IBM HTTP Server for z/OS and OS/390 is installed on

a z/OS or OS/390 system.

2. Add ServerInit, Service, and ServerTerm directives to the Web server’s

httpd.conf configuration file:

v The following ServerInit and ServerTerm directives to indicate the entry

points to the plugin’s initialization and exit routines. These routines exist as

entry points init_exit, and term_exit, respectively, within the

ihs390WASPlugin_http.so DLL.

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin

 ihs390WASPlugin_http.so:init_exit <fully_qualified_path>

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/

 ihs390WASPlugin_http.so:term_exit

where <fully_qualified_path> is the fully qualified path to the plugin-cfg.xml

file.

v The following Service directive for each application that will be using the

WebSphere HTTP Plug-in for z/OS. This directive indicates the entry point

Chapter 8. Creating a J2EE server run-time environment 171

|
|
|

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

|
|

|
|

to the plug-in’s request routine. The request routine exists as the entry point

service_exit within the ihs390WASPlugin_http.so DLL.

Service /<webapp_contextroot>/* /usr/lpp/WebSphere/WebServerPlugIn/bin/

 ihs390WASPlugin_http.so:service_exit

where <webapp_contextroot> is the context root of the Web application.

Notes:

a. In this discussion, the ServerInit and Service directives are split for printing

purposes. In the actual httpd.conf file, each of these directives should be

entered on a single line.

b. The Web server interprets a blank in a directive specification as a delimiter

and a number sign (#) as the beginning of a comment that should be

ignored. Therefore, if you need to use a blank or number sign in a directive,

you must include a backslash (\) before the blank or number sign to enable

the Web server to correctly process the directive.

c. The ihs390WASPlugin_http.so DLL is found in the

/usr/lpp/WebSphere/WebServerPlugIn/bin directory.

d. If a servlet sets an HTTP response code by any means, such as using

methods lastModified() or setStatus(), and the client does not receive the

expected response code, if APAR PQ58541is applied to your HTTP Server,

add the following directive to the httpd.conf file:

ServiceSync On

3. If you want to use SSL, configure the HTTP Server for SSL and set the

SSLClientAuth directive to PASSTHRU.

 The WebSphere HTTP Plug-in for z/OS’ SSL connection to the J2EE server uses

the SSL session established by the HTTP Server. (See z/OS HTTP Server

Planning, Installing, and Using, Version 5.3 IBM , SC34–4826, or OS/390 HTTP

Server Planning, Installing, and Using, Version 5.3 IBM , SC31–8690, for a

description of how to configure the HTTP Server for SSL.)

 Setting the SSLClientAuth directive to PASSTHRU enables the HTTP Server to

request certificates from clients but keeps the HTTP Server from doing any

validity checking. The HTTP Transport Handler will perform the validity

checking when it receives the certificate.

4. (Optional) If you want incoming requests to be selectively authorized and

refused, set the WEB_SECURITY_VERSION property in the jvm.properties file

to 2.

5. Use the WebSphere for z/OS Administration application to add the following

environment variables to the current.env file of each WebSphere for z/OS J2EE

server instance to which requests will be redirected:

v BBOC_HTTP_PORT and/or BBOC_HTTP_SSL_PORT

 These environment variables must specify the WebSphere for z/OS ports to

which the WebSphere HTTP Plug-in for z/OS should redirect these requests.

These same ports must be specified on a <Transport Hostname> element in

the HTTP Plug-in for z/OS’ plugin-cfg.xml file.

v BBOC_HTTP_MODE=INTERNAL and/or BBOC_HTTP_SSL_MODE=INTERNAL

 These environment variables enable the HTTP(S) Transport Handler to trust

private headers received from the HTTP Server’s plug-in, over the port

specified on the BBOC_HTTP_PORT and/or BBOC_HTTP_SSL_PORT environment

variables.

172 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|

|

|

|
|
|

|
|
|
|
|

|
|

|
|
|
|

|

|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|
|
|

|

|
|
|
|

Note: If you add these environment variables to the current.env file, the

HTTP(S) Transport Handler will trust all private headers it receives.

Therefore, you must ensure that there are no untrusted paths to the

HTTP(S) Transport Handler.

6. Add a host.default_host.alias property to the webcontainer.conf file that

specifies the hostname and port number for the hosting V5.3 HTTP Server. This

value must match the value specified for this Web server on the <Virtual

Hostname> element in the plugin-cfg.xml file for the WebSphere HTTP Plug-in

for z/OS.

7. If your V5.3 HTTP Server is located on a different z/OS system than your

WebSphere Application Server:

a. Use FTP or another file transfer mechanism, to download, in binary format,

the WebSphere Plug-in for z/OS from the WebSphere for z/OS

/usr/lpp/WebSphere/WebServerPlugIn/bin directory to the hosting V5.3

HTTP Server.

b. Using an authorized z/OS user ID, issue the following commands from an

OMVS command line prompt to turn on the ″p″ bit in the HFS where the

WebSphere HTTP Plug-in for z/OS is now located:

chmod 777 ihs390WASPlugin_http.so

extattr +p ihs390WASPlugin_http.so

8. Configure the plug-in. The WebSphere HTTP Plug-in for z/OS is configured

using a plugin-cfg.xml file. This file MUST be in EBCDIC format.

 Following is a copy of the plugin-cfg.xml file template that is provided with the

WebSphere for z/OS product.

 This template contains the following configuration specifications:

v LogLevel, which can be set to ″Warn″, ″Error″, or ″Trace″. ″Trace″ should

only be used for debugging purposes.

v ServerGroup, which is a name by which you can group multiple servers.

 For each server within a ServerGroup, you can specify a CloneID attribute.

By default, the Web container assigns a CloneID of

<ServerName.ServerInstanceName>.

 If you prefer a different CloneID, you can use the WebSphere for z/OS

Administration application to set the CLONEID environment variable in the

current.env file. The value specified on this environment variable overrides

the default value.

 If you specify a value on the CLONEID environment variable, you must also

change the value specified for a Server element in the Web server plug-in’s

plugin-cfg.xml file to match this value.

v VirtualHostGroup provides a logical grouping of a set of host definitions.

The virtual host name specified in this set of tags must match the host name

and port on which the HTTP server is listening for HTTP/HTTPS requests.

v UriGroup provides a logical grouping of a set of URIs.

v Route links the ServerGroup, UriGroup, and VirtualHostGroup definitions

together.

Notes:

a. If you already have a plugin-cfg.xml file you are using with a different

plug-in, you can make a copy to use with your WebSphere HTTP Plug-in

for z/OS. If you use such a copy, you should be aware that:

Chapter 8. Creating a J2EE server run-time environment 173

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|

|

|
|

|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|

|
|
|

1) The values specified for such elements as ServerGroup Name and

VirtualHostGroup might need to be updated to reflect your WebSphere

for z/OS environment.

2) The Property name=keyring and the Property name=stashfile elements

will be ignored if they are left in the plugin-cfg.xml file. The WebSphere

HTTP Plug-in for z/OS uses the SSL setup specified in the HTTP

server’s httpd.conf file and does not look for these elements in the

plugin-cfg.xml file.
b. If you want to use a third party load balancer in between the plug-in and

the application server, add a ClusterAddress attribute to each ServerCluster

element in the plugin-cfg.xml file. The ClusterAddress attribute must

specify the IP address of the load balancer you want to use. If this attribute

is not included or if a value of 0 is specified, the plug-in will handle load

balancing.

c. Additional elements and attributes that can be included in a plugin-cfg.xml

file are described in “Properties of WebSphere plug-ins for Web servers” on

page 183.

Note:

 The template is located in the following directory:

/usr/lpp/WebSphere/WebServerPlugIn/bin/

<?xml version="1.0"?>

<Config>

 <!-- The LogLevel controls the amount of information that gets written to

 the plugin log file. Possible values are Error, Warn, and Trace.

 It also specifies the location of the log file. The time the

 information was written to the log file and the process ID will be

 appended to the file name.-->

 <Log LogLevel="Trace" Name="/directory/plugin.log">

 <!-- Server groups provide a mechanism of grouping servers together. -->

 <ServerGroup Name="my_servers_group">

 <Server Name="myserver_server1">

 <!-- The transport defines the hostname and port value that the

 Web server plug-in will use to communicate with the application

 server. In the following example, the IBM HTTP Server for z/OS

 is listening on port 8220 and the internal transport for the

 application server is listening on port 9080.-->

 <Transport Hostname="www.mycompany-1.com" Port="9080" Protocol="http"/>

 </Server>

 </ServerGroup>

 <!-- Virtual host groups provide a mechanism of grouping virtual

 hosts together. -->

 <VirtualHostGroup Name="my_server_vhosts">

 <VirtualHost Name="www.mycompany.com:8220"/>

 </VirtualHostGroup>

 <!-- URI groups provide a mechanism of grouping URIs together. Only

 the context root of a web application needs to be specified unless

 you want to restrict the request URIs that get passed to the application

 server. -->

 <UriGroup Name="my_application_URIs">

 <Uri Name="/myapp/*"/>

 </UriGroup>

 <!-- A route ties together each of the above components. "/myapp/*" is

 the context root of the application "myapp" installed in the

 application server.-->

174 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<Route ServerGroup="my_servers_group" UriGroup="my_application_URIs"

 VirtualHostGroup="my_server_vhosts"/>

</Config>

 For more information about creating your plugin-cfg.xml file, see the

instructions provided in the section ″Properties of WebSphere plug-ins for Web

servers″ in the WebSphere Application Server Advanced Edition InfoCenter. An

online version of this InfoCenter is available at URL:

http://www.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/index.html

9. Stop WebSphere for z/OS and the HTTP Server and and start them again.

 The configuration is complete. In order to activate the configuration, stop and

restart both the Web server and the application server. If the Web server plug-in

for Version 5.3 of the IBM HTTP Server for z/OS and OS/390 sucessfully

initializes when the HTTP Server is started again, you will receive the

following message:

EJS3090I WebSphere HTTP Plug-in for z/OS and OS/390 Version 4.00 Service

 Level 1 is starting

EJS3091I WebSphere HTTP Plug-in for z/OS and OS/390 initializing with

 configuration file : /u/ws4.0/ga/plugin/conf/plugin-cfg.xml

EJS3093I WebSphere HTTP Plug-in for z/OS and OS/390 initialization went OK

:-)

Setting up the Web server plug-in for a non-z/OS Web server

To enable WebSphere for z/OS to use a Web server plug-in, perform the following

steps:

1. Make sure a supported Web server is installed on your workstation. (See

Table 13 on page 93 for a list of supported Web servers for each platform.) If

you need to install a Web server, follow the instructions provided with that

Web server.

Note: If you are using WebSphere Application Server Advanced Edition V4.0.2

or higher for Distributed Platforms on your workstation, you can use the

IBM HTTP Server that is provided with that product, along with the

Web server plug-in that is appropriate for that Web server.

2. Using Table 13 on page 93, determine which plug-in to download based on the

platform you are running on and the Web server that is installed on that

platform.

3. Using FTP or another file transfer mechanism, download, in binary format, the

appropriate Web server plug-in from the WebSphere for z/OS

/usr/lpp/WebSphere/DownloadPlugins directory.

Note: If you are using WebSphere Application Server Advanced Edition V4.0.2

or higher for Distributed Platforms on your workstation, the appropriate

Web sever plug-in is automatically installed as part of the product

installation process. However, if you are using a Microsoft™ Internet

Information Server, see “Installing a Web server plug-in on a Microsoft

Internet Information Server (IIS)” on page 183 for additional installation

information.

 At least two files must be downloaded for each Web server plug-in, :

v The plugin-cfg.xml containing the default plug-in configuration file common

to all of the WebSphere plug-ins for Web servers.

v The plug-in executable for a specific platform and Web server. This file can

be found in the directory indicated in the following table.

Chapter 8. Creating a J2EE server run-time environment 175

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|

|

Directory /usr/lpp/WebSphere/DownloadPlugins/plugin-cfg.xml contains the

default plug-in configuration files, commonly used among all of the Web server

plug-ins. These files are equivalent to the Web server plug-in files shipped with

V4.0.2 of the WebSphere Application Server Advanced Edition for Distributed

Platforms product.

 Table 22. Location of WebSphere plug-ins for Web servers executables

Operating system Web server Plug-in executable file

Windows 2000/NT IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/

Win32/IHS/mod_ibm_

app_server_http.dll_bin

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/

Win32/Domino/

libdomino5_http.dll_bin

Apache /usr/lpp/WebSphere/

DownloadPlugins/

Win32/Apache/mod_

app_server_http.dll_bin

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/

Win32/iPlanet/

libns41_http.dll_bin

Microsoft Internet

Information Server (IIS)

/usr/lpp/WebSphere/

DownloadPlugins/Win32/

IIS/iisWASPlugin

_http.dll_bin

IBM AIX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/AIX/

IHS/mod_ibm_app_

server_http.so_bin

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/AIX/

Domino/libdomino5_

http.a_bin

Apache /usr/lpp/WebSphere/

DownloadPlugins/AIX/

Apache/mod_app_

server_http.so_bin

iPlanet (Netscape) /usr/lpp/WebSphere/

Download lugins/AIX/

iPlanet/libns41_http.so_bin

HPUX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

IHS/mod_ibm_app_

server_http.sl_bin

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

Domino/libdomino5 _

http.sl_bin

Apache /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

Apache/mod_app_

server_http.sl_bin

176 WebSphere for z/OS: Assembling J2EE Applications

Table 22. Location of WebSphere plug-ins for Web servers executables (continued)

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

iPlanet/libns41_http.sl_bin

Sun Solaris IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

IHS/mod_ibm_app_

server_http.so_bin

Lotus Domino /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

Domino/libdomino5 _

http.a_bin

Apache /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

Apache/mod_app_

server_http.so_bin

iPlanet (Netscape) /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

iPlanet/libns41_ http.so_bin

LINUX IBM HTTP Server (IHS) /usr/lpp/WebSphere/

DownloadPlugins/LINUX/

IHS/mod_ibm_app_

server_http.so_bin

Apache /usr/lpp/WebSphere/

DownloadPlugins/LINUX/

Apache/mod_app_

server_http.so_bin

 For the Windows platform, you must also download the plugin_common.dll

file from the /usr/lpp/WebSphere/DownloadPlugins/WIN32 directory.

Note: When downloading these plug-ins, remove the ″_bin″ suffix from the file

name. It is included as a reminder that the plug-ins are in binary format.

For example, when downloading the mod_ibm_ app_server_http.dll_bin

plug-in for use with an IBM HTTP Server on Windows 2000/NT, use

mod_ibm_ app_server_http.dll as the file name.

4. Configuring the Web server.

 Once the appropriate plug-in files are downloaded to the Web server, update

the Web server’s configuration file with the location of the plug-in and

plug-in’s configuration file. In addition, for Windows 2000/NT, the location of

the common file, plugin_common.dll, must be added to the PATH statement.

 Instructions for configuring plug-ins within the Web server configuration file

are contained in the Web server’s documentation. An example can also be

found in section 6.6.45.0.1 of the WebSphere Application Server Advanced

Edition for Distributed Platforms’ InfoCenter, ″Modifications to Web server

configuration files during product installation″.

 Since the plug-in files are manually downloaded, any changes to the Web

server configuration file must be done manually. The changes will look like

those listed in the WebSphere Application Server Advanced Edition InfoCenter.

For example, for the IBM HTTP Server on Windows 2000/NT, the following

changes must be made to the httpd.conf file:

Chapter 8. Creating a J2EE server run-time environment 177

LoadModule ibm_app_server_module <download directory>\mod_app_server_http.dll

WebSpherePluginConfig C:\WebSphere\AppServer\config\plugin-cfg.xml

 The LoadModule statement tells the Web server where to find the plug-in code.

The WebSpherePluginConfig statement is used by the plug-in upon start-up to

find its own configuration file. For exact syntax and placement within the Web

server configuration file, see your Web server documentation.

5. Use the WebSphere for z/OS Administration application to add BBOC_HTTP_PORT

and/or BBOC_HTTP_SSL_PORT environment variables to the current.env file for

each WebSphere for z/OS J2EE server instance to which requests will be

redirected. These environment variables must specify the WebSphere for z/OS

ports to which the Web server plug-in should redirect these requests. These

same ports must be specified on a <Transport Hostname> element in the

plug-in’s plugin-cfg.xml file.

6. (Optional.) Download GSkit if you want to use SSL with this configuration.

 In addition to the plug-in files, there is another software package provided with

WebSphere for z/OS that helps connect distributed platform Web servers to

WebSphere for z/OS. This package is required if the Secure Socket Layer (SSL)

Transport (also known as HTTPS) is used. This package is called the Global

Security Kit, or GSkit. There is one GSkit install image per platform. GSkit is

the same for all Web servers running on a platform. The following table

identifies where the GSkit install image resides for each platform:

 Table 23. Location of Gskit install image

Operating system Install image file

Windows 2000/NT /usr/lpp/WebSphere/ DownloadPlugins/

Win32gsk5bas.exe_bin

AIX /usr/lpp/WebSphere/

DownloadPlugins/AIX/ gsk/gskkm.rte_bin

HPUX /usr/lpp/WebSphere/

DownloadPlugins/HPUX/

gsk/gsk5bas.tar.Z_bin

Sun Solaris /usr/lpp/WebSphere/

DownloadPlugins/Solaris/

gsk/gsk5bas.tar.Z_bin

LINUX /usr/lpp/WebSphere/

DownloadPlugins/LINUX/

gsk/gsk5bas-5.0-4.79. i386.rpm_bin

Notes:

a. The appropriate GSkit install image file should be downloaded from

WebSphere for z/OS to the Web server and installed using the native install

process on that platform. For example, DSMIT should be run on AIX, or the

gsk5bas.exe, which invokes InstallShield, should be run on Windows.

b. The GSkit install directory on the Web server must be added to the PATH

statement.

c. When downloading these files, remove the ″_bin″ suffix from the file name.

It is included as a reminder that these files are in binary format. For

example, when downloading the gskkm.rte_bin file for the AIX Gskit install

image residing on AIX, use gskkm.rte as the file name.

d. If you intend to use SSL, you must also make sure that:

v Your Web server is configured for this support. (See your Web server

documentation for a description of how to configure SSL for your specific

Web server if it has not already been configured for this support.)

178 WebSphere for z/OS: Assembling J2EE Applications

If you are using an IBM HTTP Server, you must add the following lines

to the bottom of your Web server’s httpd.conf file:

LoadModule ibm_ssl_module modules/IBMModuleSSL128.dll

Listen port_number

Keyfile C:\ssl\http_session\plug-inKeys.kdb

<VirtualHost virtual_host_name:port_number>

 ServerName virtual_host_name

 SSLEnable

 SSLClientAuth none

</VirtualHost<

These lines causes the Web server to listen on the specified port.

 The ″SSLClientAuth none″ element indicates that you do not want to

enable client authentication. If you want to use client authentication,

change this line to:

SSLClientAuth enable

This will cause the HTTP Server to send a request for a certificate to the

browser. Your browser may prompt you to choose a certificate to send to

the Web server in order to perform client authentication.

v You have configured an HTTPS Transport Handler and the

BBOC_HTTP_SSL_PORT environment variable for that Transport Handler

specifies the port the Web server plug-in will be using to redirect requests

to the WebSphere for z/OS Web container. This same port must be

specified on a <Transport Hostname> element in the plug-in’s

plugin-cfg.xml file. (You can use the Administration application to verify

that an HTTPS Transport Handler has been properly configured.)

v You have configured your Web server plug-in for SSL by:

1) Creating an SSL key file for the Web server plug-in.

 The contents of this file depend on whom you want to allow to

communicate directly with WebSphere for z/OS over the port number

specified for the HTTPS Transport Handler (in other words, you are

defining the HTTPS server security policy). The following procedure

describes how to create an SSL key file with a restrictive security

policy, in which only a well-defined set of clients (the WebSphere

plug-ins for the Web server) are allowed to connect to the WebSphere

for z/OS HTTPS Transport Handler:

a) Create an SSL key file without the default signer certificates.

i. Start IKeyMan.

 On Windows, start IKeyMan from the WebSphere Application

Server entry on the Windows Start menu.

ii. Create a new key database file.

 Click Key Database File and select New. Then specify settings:

– Key database type: JKS

– File Name: appServerKeys.jks

– Location: your myKeys directory, such as

install_root/myKeys

Click OK.

iii. Enter a password (twice for confirmation) and click OK.

iv. Delete all of the signer certificates.

v. Click Signer Certificates and select Personal Certificates.

Chapter 8. Creating a J2EE server run-time environment 179

vi. Add a new self-signed certificate.

 Click New Self-Signed to add a self-signed certificate. Then

specify settings:

– Key Label: appServerTest

– Organization: IBM

Click OK.

vii. Extract the certificate from this self-signed certificate so that it

can be imported into the plug-in’s SSL key file.

 Click Extract Certificate. Then specify settings:

– Data Type: Base64-encoded ASCII data

– Certificate file name: appServer.arm

– Location: the path to your myKeys directory

Click OK.

viii. Import the plug-in’s certificate.

 Click Personal Certificates. Select Signer Certificates. Click

Add. Then specify settings:

– Data Type: Base64-encoded ASCII data

– Certificate file name: appServer.arm

– Location: the path to your myKeys directory

Click OK.

ix. Enter ″plug-in″ for the label and click OK.

x. Click Key Database File, and select Exit.
b) Add the WebSphere for z/OS signer certificate to the plug-in’s

SSL key file.

i. Start the key management utility.

ii. Click the Key Database File menu and select Open.

iii. Select the file install_root/myKeys/plug-inKeys.kdb.

 The plug-inKeys.kdb file is the key database file, created using

the z/OS System SSL gskkyman utility, that contains the

public keys, private keys, trusted CAs, and certificates for the

Web server plug-ins.

iv. Enter the associated password and click OK.

v. Click Personal Certificates and select Signer Certificates.

vi. Click Add. Then specify settings:

– Data Type: Base64-encoded ASCII data

– Certificate File Name: appServer.arm

– Location: the path to your myKeys directory
vii. Click OK.

viii. Click Key Database File and select Exit.
c) Reference the key file in the WebSphere for z/OS Administration

application.

 Reference the appropriate SSL key file in the default SSL settings

configuration panel or in the HTTPS SSL settings configuration

panel. Using the default SSL settings panel, you would:

i. Start the administrative console.

180 WebSphere for z/OS: Assembling J2EE Applications

ii. Open the Security Center.

iii. Specify settings in the default SSL configuration:

– Key File Name: install_root/myKeys/appServer.jks

– Key File Password: enter your password

– Key File Format: JKS

– Trust File Name: (empty)

– Trust File Password: (empty)

– Client Authentication: selected
iv. Save your changes.

2) Modifying the Web server plug-in’s configuration file to indicate that

you are using an HTTPS Transport Handler and to add the keyring

and stashfile properties to the definition of this Transport Handler.

 Example: The Server Group definition for J2EE server BBS1122, with

server instances BBS1122A and BBS1122B defined, would look like the

following:

<ServerGroup Name="Default Host/Default Server">

 <Server CloneID="BBS1122.BBS1122A" Name="INSTANCE_A">

 <Transport Hostname="websphere1.ibm.com" Port="8083"

 Protocol="https"/>

 <Property name="keyring" value="C:\ssl\http_session

 \plug-inKeys.kdb">

 <Property name="stashfile" value="C:\ssl\

 http_session\plug-inpw.sth">

 </Transport>

 </Server>

 <Server CloneID="BBS1122.BBS1122B" Name="INSTANCE_B">

 <Transport Hostname="websphere1.ibm.com" Port="8084"

 Protocol="https"/>

 <Property name="keyring" value="C:\ssl

 \http_session\plug-inKeys.kdb">

 <Property name="stashfile" value="C:\ssl

 \http_session \plug-inpw.sth">

 </Transport>

 </Server>

</ServerGroup>

 where:

– plug-inKeys.kdb is the key database file, created using the z/OS

System SSL gskkyman utility, that contains the public keys, private

keys, trusted CAs, and certificates for the Web server plug-ins.file

containing the keys for the plug-ins, and

– plug-inpw.sth is the stash file in which the z/OS System SSL

gskkyman utility stored the encrypted database password for these

certificates.

See your Web server documentation for more information about these

files.
7. Configure the plug-in.

 The WebSphere plug-ins for Web servers are configured using a plugin-cfg.xml

file. Following is an example of a plugin-cfg.xml file. This sample

plugin-cfg.xml file contains the following configuration specifications:

v LogLevel, which can be set to ″Warn″, ″Error″, or ″Trace″. ″Trace″ should

only be used for debugging purposes. The Name attribute on the LogLevel

element specifies the location of the log file.

v VirtualHostGroup provides a logical grouping of a set of host definitions.

Chapter 8. Creating a J2EE server run-time environment 181

v Server CloneID is the key for maintaining session affinity. By default, the

Web container assigns a CloneID of <ServerName.ServerInstanceName>.

 If you prefer a different CloneID, you can use the WebSphere for z/OS

Administration application to set the CLONEID environment variable in the

current.env file. The value specified on this environment variable overrides

the default value.

 If you specify a value on the CLONEID environment variable, you must also

change the value specified for a Server element in the Web server plug-in’s

plugin-cfg.xml file to match this value.

v UriGroup provides a logical grouping of a set of URIs.

v Route links the ServerGroup, UriGroup, and VirtualHostGroup definitions

together.

On a Windows 2000 system, the default location for this file is

C:\WebSphere\AppServer\config\plugin-cfg.xml

<?xml version="1.0" encoding="UTF-8" ?>

<Config>

 <Log LogLevel="Warn" Name="C:\WebSphere\AppServer\logs\plugin.log"/>

 <VirtualHostGroup Name="default_host">

 <VirtualHost Name="*:80"/>

 <VirtualHost Name="*:9080"/>

 </VirtualHostGroup>

 <ServerGroup Name="Default Host/Default Server">

 <Server CloneID="BBS1122.BBS1122A" Name="INSTANCE_A">

 <Transport Hostname="websphere1.ibm.com" Port="8083"

 Protocol="http"/>

 </Server>

 <Server CloneID="BBS1122.BBS1122B" Name="INSTANCE_B">

 <Transport Hostname="websphere1.ibm.com" Port="8084"

 Protocol="http"/>

 </Server>

 </ServerGroup>

 <UriGroup Name="test_uri_group">

 <Uri Name="/webapp"/>

 <Uri Name="/IntPlusThreeCR/IntPlusThree"/>

 <Uri Name="/catcher/servlet/HelloSessionServlet"/>

 </UriGroup>

 <Route ServerGroup="Default Host/Default Server"

 UriGroup="test_uri_group" VirtualHostGroup="default_host"/>

</Config>

 Additional elements and attributes that can be included in a plugin-cfg.xml file

are described in “Properties of WebSphere plug-ins for Web servers” on page

183..

8. (Required only if you intend to use private headers.) Using the Administration

application, add the BBOC_HTTP_MODE=INTERNAL and/or

BBOC_HTTP_SSL_MODE=INTERNAL environment variables to the current.env file for

a specific J2EE server instance. These environment variables enable the HTTP

Transport Handler to trust private headers received from the Web server’s

plug-in, over the port specified on the BBOC_HTTP_PORT and/or

BBOC_HTTP_SSL_PORT environment variables.

Notes:

a. If you try to use private headers without adding this variables to the

current.env file, private headers will be ignored. If the private headers are

ignored, WebSphere for z/OS might not be able to locate the requested

application.

182 WebSphere for z/OS: Assembling J2EE Applications

b. If you add these environment variable to the current.env file, the HTTP

Transport Handler will trust all private headers it receives. Therefore, you

must ensure that there are no untrusted paths to the HTTP Transport

Handler.

9. Stop WebSphere for z/OS and the Web server and and start them again.

 The configuration is complete. In order to activate the configuration, stop and

restart both the Web server and the application server.

Installing a Web server plug-in on a Microsoft Internet

Information Server (IIS)

The following additional steps must be performed when installing a Web server

plug-in on a Microsoft Internet Information Server (IIS) Version 4.0 or 5.0:

1. Start the Internet Service Manager application.

2. Create a new Virtual Directory for the Web site instance you want to work with

WebSphere Application Server. To do this with a default installation:

a. Expand the tree on the left until you see ″Default Web Site″. Right click on

″Default Web Site″ and select ″’New″->″Virtual Directory″. This will bring

up the wizard for adding a virtual directory.

b. In the space provided for ″Alias to be used to Access Virtual Directory″,

type ’sePlugins’.

c. In the space provided for ″Enter the physical path of the directory

containing the content you want to publish″, browse into the WebSphere bin

directory.

d. For ″What access permissions do you want to set for this directory″, check

″Allow Execute Access″.

e. Click finish. A virtual directory, titled ″sePlugins″, should be added to you

default Web site.
3. Add the ISAPI filter into the IIS configuration.

a. Right click on the hostname in the tree on the left and select Properties.

b. On the Internet Information Services tab, select WWW Service in the

Master Properties drop down box and click on the Edit button. The WWW

Service Master Properties window should pop up.

c. Click on the ISAPI Filters tab.

d. Click on the Add button. This should bring up the Filter Properties

window.

e. In the space provided next to Filter Name:, type iisWASPlugin.

f. In the space provided next to Executable, click the browse button and go

into the usr//lpp/WebSphere/ DownloadPlugins/Win32/ IIS/iisWASPlugin

_http.dll_bin directory and select iisWASPlugin_http.dll.

g. Click the OK button until all open windows are closed.
4. Add the variable Plugin Config to the registry under the path

HKEY_LOCAL_MACHINE -> SOFTWARE -> IBM -> WebSphere Application

Server -> 4.0. Set the value for this variable to the location of the

plugin-cfg.xml file.

Properties of WebSphere plug-ins for Web servers

The plugin-cfg.xmlfile includes the following elements and attributes:

Chapter 8. Creating a J2EE server run-time environment 183

|

|

|
|

|

|
|

|
|
|

|
|

|
|
|

|
|

|
|

|

|

|
|
|

|

|
|

|

|
|
|

|

|
|
|
|

|

|

Config (exactly one)

This element starts the WebSphere HTTP plug-in configuration file. It contains all

other elements and attributes of the configuration.

This section resembles the following in the file:

<Config IgnoreDNSFailures="true" RefreshInterval="240">

IgnoreDNSFailures (zero or one attribute for each Config)

Specifies whether the plug-in ignores DNS failures within a configuration

when starting. When set to true, the plug-in ignores DNS failures within a

configuration and starts successfully if at least one server in each

ServerCluster is able to resolve the host name. The server is marked

unavailable for the life of the configuration. No attempts to resolve the

host name are made later on during the routing of requests. If a DNS

failure occurs, a log message is written to the plug-in log file and the

plug-in initialization continues rather than causing the Web server not to

start. The default value is false, meaning DNS failures cause the Web

server not to start.

Refresh interval (zero or one attribute for each Config)

The time interval (in seconds) at which the plug-in should check the

configuration file to see if updates or changes have occured. The plug-in

checks the file for any modifications that have occurred since the last time

the plug-in configuration was loaded.

 In a development environment in which changes are frequent, a lower

setting than the default setting of 60 is preferable. In production, a higher

value then the default is preferable because updates to the configuration

will not occur so often. If the plug-in reload fails for some reason, a

message is written to the plug-in log file and the previous configuration is

used until the plug-in config reloads successfully. If you are not seeing the

changes you made to your plug-in configuration, check the plug-in log file

for indications of the problem.

ASDisableNagle (zero or one attribute for each Config)

Specifies whether the user wants to disable nagle algorithm for the

connection between the plug-in and the application server. By default,

nagle algorithm is enabled.

 The value can be true or false.

IISDisableNagle (zero or one attribute for each Config)

he nagle algorithm is enabled by default on Microsoft Internet Infomations

Services (IIS). This attribute can be used to disable the nagle algorithm.

 The value can be true or false.

ResponseChunkSize (zero or one attribute for each Config)

The plug-in reads the response body in 64k chunks until all of the response

data is read. This causes a performance problem for requests whose

response body contains large amounts of data.

 The ResponseChunkSize attribute allows the users to specify the maximum

chunk size to use when reading the response body. For example, <Config

ResponseChunkSize=″N″>, where N equals the chunk size in kilobytes.

 If the content length of the response body is unknown, a buffer size of N

kilobytes is allocated and the body is read in N kilobyte size chunks, until

the entire body is read. If the content length is known, then a buffer size of

either content length or N (whichever is less) is used to read the response

body.

184 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

|

|
|
|
|

|
|
|

|
|
|
|
|

The default chunk size is 64k.

Log (zero or one element for each Config)

The log describes the location and level of log messages that are written by

the plug-in. If a log is not specified within the config, then, in some cases,

log messages are written to the Web server error log.

 This section resembles the following in the file:

<Log LogLevel="Error" Name="log_directory/filename"/>

Name (exactly one attribute for each Log)

The level of detail of the log messages that the plug-in should

write to the log. Values for this attribute are one of the following:

v Trace

v Warn

v Error

If a LogLevel is not specified with the Log, then the default value

is Error.

 Trace allows you to see the steps in the request process in detail.

Warn and Error means that only information about abnormal

request processing will be logged.

 Be careful when setting the level to Trace. A lot of error messages

are logged at this level which can cause the file system to fill up

very quickly. A Trace setting should never be used in a normally

functioning environment as it affects performance.

ServerCluster (one or more elements for each Config)

A group of servers that are generally configured to service the same types

of requests.

 In the simplest case, the cluster contains only one server definition. In the

case in which more than one server is defined, the plug-in will load

balance across the defined servers using either a Round Robin or a

Random algorithm. The default is Round Robin.

 This section resembles the following in the file:

<ServerCluster Name="Servers">

<ClusterAddress Name="ClusterAddr">

<Transport Hostname="192.168.1.2" Port="9080" Protocol="HTTP"/>

<Transport Hostname="192.168.1.2" Port="9443" Protocol="HTTPS">

<Property Name="Keyring" value="c:/WebSphere/AppServer/keys/keyring.kdb"/>

<Property Name="Stashfile" value="c:/WebSphere/AppServer/keys/keyring.sth"/>

</ClusterAddress>

<Server Name="Server1">

<Transport Hostname="192.168.1.3" Port="9080" Protocol="HTTP"/>

<Transport Hostname="192.168.1.3" Port="9443" Protocol="HTTPS">

<Property Name="Keyring" value="c:/WebSphere/AppServer/keys/keyring.kdb"/>

<Property Name="Stashfile" value="c:/WebSphere/AppServer/keys/keyring.sth"/>

</Server>

<Server Name="Server2">

<Transport Hostname="192.168.1.4" Port="9080" Protocol="HTTP"/>

<Transport Hostname="192.168.1.4" Port="9443" Protocol="HTTPS">

<Property Name="Keyring" value="c:/WebSphere/AppServer/keys/keyring.kdb"/>

<Property Name="Stashfile" value="c:/WebSphere/AppServer/keys/keyring.sth"/>

</Server>

<Server Name="Server3">

<Transport Hostname="192.168.1.5" Port="9080" Protocol="HTTP"/>

<Transport Hostname="192.168.1.5" Port="9443" Protocol="HTTPS">

<Property Name="Keyring" value="c:/WebSphere/AppServer/keys/keyring.kdb"/>

Chapter 8. Creating a J2EE server run-time environment 185

|

|
|
|
|

|

|

|
|
|

|

|

|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<Property Name="Stashfile" value="c:/WebSphere/AppServer/keys/keyring.sth"/>

</Server>

<PrimaryServers>

<Server Name="Server1"/>

<Server Name="Server2"/>

</PrimaryServers>

<BackupServers>

<Server Name="Server3"/>

</BackupServers>

</ServerCluster>

Note: If you are using the WebSphere HTTP Plug-in for z/OS, the

Property Name=keyring and the Property Name=stashfile elements

included here will be ignored if they are included in the

plugin-cfg.xml file for that plug-in. The WebSphere HTTP Plug-in

for z/OS uses the SSL setup specified in the hosting HTTP Server’s

httpd.conf file and does not look for these elements in the

plugin-cfg.xml file.

Name (exactly one attribute for each ServerCluster)

The logical or administrative name to be used for this group of

servers.

LoadBalance (zero or one attribute for each ServerCluster)

The default load balancing type is Round Robin.

 The Round Robin implementation has a random starting point.

This means that the first server picked will be done so randomly

and then round robin will be used from that point forward. This is

so that in multiple process based Web servers all of the processes

don’t start up by sending the first request to the same application

server.

RetryInterval (zero or one attribute for each ServerCluster)

An integer specifying the length of time that should elapse from

the time that a server is marked down to the time that the plug-in

will retry a connection. The default is 60 seconds.

RemoveSpecialHeaders (zero or one attribute for each ServerCluster)

The plug-in adds special headers to the request before it is

forwarded to the application server. These headers store

information about the request that will need to be used by the

application. By default the plug-in will remove these headers from

incoming requests before adding the headers it is supposed to add.

 The value can be true or false. Setting the attribute to false

introduces a potential security exposure by not removing headers

from incoming requests.

CloneSeparatorChange (zero or one attribute for each ServerCluster

Some pervasive devices cannot handle the colon character (:) used

to separate clone IDs in conjunction with session affinity. This

attribute for the server group tells the plug-in to expect the plus

character (+) as the clone separator. You must change application

server configurations so that an application server separates clone

IDs with the plus character as well.

 The value can be true or false.

PostSizeLimit (zero or one attribute for each ServerCluster)

The maximum number of bytes of request content allowed in order

for the plug-in to attempt to send the request to an application

186 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|

server. If a request is received that is greater than this size, the

plug-in fails the request. The default value is 10 million bytes.

Server (one or more elements for each ServerCluster)

A WebSphere Application Server instance that is configured to

handle requests routed to it given the routing rules of the plug-in

configuration. The Server should correspond to an application

server running on either the local machine or a remote machine.

Name (exactly one attribute for each Server)

The administrative or logical name for the server.

CloneID (zero or one attribute for each Server)

f this unique ID is present in the HTTP Cookie header of a

request (or the URL if using URL rewriting), the plug-in

routes the request to this particular server, provided all

other routing rules are met. If a CloneID is not specified in

the Server, then session affinity is not enabled for this

server.

 This attribute is used in conjunction with session affinity.

When this attribute is set, the plug-in checks the incoming

cookie header or URL for JSESSIONID. If JSESSIONID is

found then the plug-in looks for one or more clone IDs. If

clone IDs are found and a match is made to this attribute

then the request is sent to this server rather than load

balanced across the cluster.

 If you are not using session affinity then it is best to

remove these clone IDs from the configuration because

there is added request processing in the plug-in when

these are set. If clone IDs are not in the plug-in then it is

assumed that session affinity is not on and the request is

load balanced across the cluster.

WaitForContinue (zero or one attribute for each Server)

Specifies whether to use the HTTP 1.1 100 Continue

support before sending the request content to the

application server. Possible attribute values are true or

false. The default value is false; the plug-in does not wait

for the 100 Continue response from the application server

before sending the request content because it is a

performance hit.

 Enable this function (set to true) when configuring the

plug-in to work with certain types of proxy firewalls.

LoadBalanceWeight (zero or one attribute for each Server)

The weight associated with this server when the plug-in

does weighted round robin load balancing. The algorithm

for this attribute decrements all weights within the server

cluster until all weights reach zero. Once a particular

server’s weight reaches zero, no more requests are routed

to that server until all servers in the cluster have a weight

of zero. After all servers reach zero, the weights for all

servers in the cluster are reset and the algorithm starts

over.

ConnectTimeout (zero or one attribute for each Server)

The ConnectTimeout attribute of a Server element enables

Chapter 8. Creating a J2EE server run-time environment 187

|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

the plug-in to perform non-blocking connections with the

application server. Non-blocking connections are beneficial

when the plug-in is unable to contact the destination to

determine if the port is available or unavailable.

 If no ConnectTimeout value is specified, the plug-in

performs a blocking connect in which the plug-in sits until

an operating system times out (as long as 2 minutes

depending on the platform) and allows the plug-in to mark

the server unavailable. A value of 0 causes the plug-in to

perform a blocking connect. A value greater than 0

specifies the number of seconds you want the plug-in to

wait for a sucessful connection. If a connection does not

occur after that time interval, the plug-in marks the server

unavailable and fails over to one of the other servers

defined in the cluster.

ExtendedHandshake (zero or one attribute for each Server)

The ExtendedHandshake attribute is used when a proxy

firewall is between the plug-in and the application server.

In such a case, the plug-in is not failing over, as expected.

 The plug-in marks a server as down when the connect()

fails. However, when a proxy firewall is in between the

plug-in and the application server, the connect() will

succeed, even though the back end application server is

down. This causes the plug-in to not failover correctly to

other application servers.

 The plug-in performs some handshaking with the

application server to ensure that it is started before sending

the request. This enables the plug-in to failover in the

event the application server is down.

 The value can be true or false.

Transport (one or more elements for each Server)

The transport for reading and writing requests to a

particular WebSphere Application Server instance. The

transport provides the information needed to determine

the location of the application server to which the request

will be sent. If the Server has multiple transports defined

to use the same protocol, the first one will be used.

 It is possible to configure the Server to have one

non-secure transport and one that uses SSL. In this

configuration, a match of the incoming request protocol

will be performed to determine the appropriate transport

to use to send the request to the application server.

Hostname (exactly one attribute for each Transport)

The host name or IP address of the machine on which the

WebSphere application server instance is running.

 By default, the MaxConnections is set to zero. If the value

is zero, then, there is no limit to the number of pending

connections to the application servers.

Port (exactly one attribute for each Transport)

The port on which the WebSphere application server

instance is listening.

188 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

Protocol (exactly one attribute for each Transport)

The protocol to use when communicating over this

transport -- either HTTP or HTTPS.

Property (zero, one, or more elements for each Transport)

When the Protocol of the Transport is set to HTTPS, use this

element to supply the various initialization parameters, such as

password, keyring and stashfile.

Name (exactly one attribute for each Property)

The name of the Property being defined. Supported names

recognized by the transport are keyring, stashfile, and

password.

Note: password is the only name that can be specified for

the WebSphere HTTP Plug-in for z/OS. keyring, and

stashfile, if specified, will be ignored.

Value (exactly one attribute for each Property)

The value of the Property being defined.

ClusterAddress (zero or one element for each ServerCluster)

A ClusterAddress is like a Server element in that you can specify

the same attributes and elements as for a Server element. The

difference is that you can only define one of them within a

ServerCluster. Use a ClusterAddress when you do not want the

plug-in to perform any type of load balancing because you already

have some type of load balancer in between the plug-in and the

application server.

 If a request comes in that does not have affinity established, the

plug-in routes it to the ClusterAddress, if defined. If affinity has

been established, then the plug-in routes the request directly to the

clone, bypassing the ClusterAddress entirely. If no ClusterAddress

is defined for the ServerCluster, then the plug-in load balances

across the PrimaryServers list.

PrimaryServers (zero or one element for each ServerCluster)

Lists defined servers to which the plug-in routes requests for this

cluster. If a list of PrimaryServers is not specified, the plug-in

routes requests to servers defined for the ServerCluster.

BackupServers (zero or one element for each ServerCluster)

Lists servers to which requests should be sent to if all servers

specified in the PrimaryServers list are unavailable. The plug-in

does not load balance across the BackupServers list but traverses

the list in order until no servers are left in the list or until a request

is successfully sent and a response received from an application

server.

VirtualHostGroup (zero, one, or more elements for each Config)

A group of virtual host names that will be specified in the HTTP Host

header. Enables you to group virtual host definitions together that are

configured to handle similar types of requests.

 This section resembles the following in the file:

<VirtualHostGroup Name="Hosts">

<VirtualHost Name="www.x.com"/>

<VirtualHost Name="www.x.com:443"/>

Chapter 8. Creating a J2EE server run-time environment 189

|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

<VirtualHost Name="*:8080"/>

<VirtualHost Name="www.x.com:*"/>

<VirtualHost Name="*:*"/>

</VirtualHostGroup>

Name (exactly one attribute for each VirtualHostGroup)

The logical or administrative name to be used for this group of

virtual hosts.

VirtualHost (one or more elements for each VirtualHost)

The name used for a virtual or real machine used to determine if

incoming requests should be handled by WebSphere Application

Server or not. Use this element to specify host names that will be

in the HTTP Host header which should be seen for requests that

need to be handled by the application server. You can specify

specific host names and ports that incoming requests will have or

specify an * for either the host name, port, or both.

Name (exactly one attribute for each VirtualHost)

The actual name that should be specified in the HTTP Host header

in order to match successfully with this VirtualHost.

 The value is a host name or IP address and port combination,

separated by a colon.

 You can configure the plug-in to route requests to the application

server based on the incoming HTTP Host header and port for the

request. The Name attribute specifies what those combinations are.

 You can use a wildcard for this attribute. The only acceptable

solutions are either an * for the host name, an * for the port, or an

* for both. An * for both means that any request will match this

rule. If no port is specified in the definition the default HTTP port

of 80 is assumed.

UriGroup (zero, one or more elements for each Config)

A group of URIs that will be specified on the HTTP request line. The same

application server must be able to handle the URIs. The route will compare

the incoming URI with the URIs in the group to determine if the

application server will handle the request.

 This section resembles the following in the file:

<UriGroup Name="Uris">

<Uri Name="/servlet/snoop"/>

<Uri Name="/webapp/*"/>

<Uri Name="*.jsp"/>

</UriGroup>

Name (exactly one attribute for each UriGroup)

The logical or administrative name for this group of URIs.

Uri (one or more elements for each UriGroup)

The virtual path to the resource that will be serviced by WebSphere

Application Server. Each URI specifies the incoming URLs that

need to be handled by the application server. You can use a

wildcard in specify these definitions.

Name (exactly one attribute for each Uri)

The actual string that should be specified in the HTTP request line

in order to match successfully with this URI. You can use a

wildcard within the URI definition. You can specify rules such as

.jsp or /servlet/ to be handled by WebSphere Application Server.

When you assemble your application, if you specify File Serving

190 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|
|

Enabled then only a wildcard URI is generated for the Web

application, regardless of any explicit servlet mappings. If you

specify Serve servlets by classname then a URI having <Uri

Name=″Web_application_URI/servlet/*″> is generated.

AffinityCookie (zero or one attribute for each Uri)

The name of the cookie the plug-in should use when trying to

determine if the inbound request has session affinity. (See the

description of the CloneID attribute for additional session affinity

information.)

Route (one or more elements for each Config)

A request routing rule by which the plug-in will determine if an incoming

request should be handled by a WebSphere application server.

 The route definition is the central element of the plug-in configuration. It

specifies how the plug-in will handle requests based on certain

characteristics of the request. The route definition contains the other main

elements: a required ServerCluster, and either a VirtualHostGroup,

UriGroup, or both.

 Using the information that is defined in the VirtualHostGroup and the

UriGroup for the route, the plug-in determines if the incoming request to

the Web server should be sent on to the ServerCluster defined in this

route.

 This section resembles the following in the file:

<Route VirtualHostGroup="Hosts" UriGroup="Uris" ServerCluster="servers/>

VirtualHostGroup (zero or one attribute for each Route)

The group of virtual hosts that should be used in route

determination. The incoming host header and server port are

matched to determine if this request should be handled by the

application server.

 It is possible to omit this from the route definition. If it is not

present then every request will match during the virtual host

match portion of route determination.

UriGroup (zero or one attribute for each Route)

The group of URIs to use for determining the route. The incoming

URI for the request is matched to the defined URIs in this group to

determine if this request should be handled by the application

server.

 It is possible to omit this from the route definition. If it is not

present than every request will match during the URI match

portion of route determination.

ServerCluster (exactly one attribute for each Route)

The cluster to which to send request that successfully match the

route.

 The cluster that should be used to handle this request. If both the

URI and the virtual host matching is successful for this route then

the request is sent to one of the servers defined within this cluster.

RequestMetrics (zero or one element for each Config)

This element is used to determine if request metrics is enabled, and how to

filter the requests based on the Intenet protocol (IP) and Uniform Resource

Identifiers (URI) filters when request metrics is enabled.

Chapter 8. Creating a J2EE server run-time environment 191

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|

This section resembles the following in the file:

<RequestMetrics armEnabled="false" newBehavior="false"

 rmEnabled="false" traceLevel="PERF_DEBUG">

armEnabled (zero or one attribute for RequestMetrics)

This attribute is currently ignored by the plug-in. It is for the

future usage.

newBehavior (zero or one attribute for RequestMetrics)

This attribute is currently ignored by the plug-in. It is for the

future usage.

rmEnabled (exactly one attribute for RequestMetrics)

This attribute indicates whether or not the request metrics is

enabled in the plug-in. When it is true, the plug-in request metrics

will look at the filters and log the request trace record in the

plug-in log file. This is performed if a request passes the filters.

traceLevel (exactly one attribute for RequestMetrics)

When rmEnabled is true, this attribute indicates how much

information is logged. When it is NONE, there is no request

logging. When it is not NONE, the request response time (and

other request information) is logged when the request is done.

filters (zero, one, or two attributes for RequestMetrics)

When rmEnabled is true, the filters control which requests are

traced.

enable (exactly one attribute for each filter)

When enable is true, the type of filter is on and requests must pass

the filter.

type (exactly one attribute for each filter)

There are two types of filters: SOURCE_IP (for example., client IP

address) and URI. For the SOURCE_IP filter type, requests are

filtered based on a known IP address. You can specify a mask for

an IP address using the asterisk (*). If the asterisk is used, the

asterisk must always be the last character of the mask, for example

127.0.0.*, 127.0.*, 127*. For performance reasons, the pattern

matches character by character, until either an asterisk is found in

the filter, a mismatch occurs, or the filters are found as an exact

match.

 For the URI filter type, requests are filtered based on the URI of

the incoming HTTP request. The rules for pattern matching are the

same as matching SOURCE_IP address filters.

 If both URI and client IP address filters are enabled, Request

Metrics requires a match for both filter types. If neither is enabled,

all requests are considered a match.

filterValues (one or multiple attribute for each filter)

The filterValues show the detailed filter information.

value (exactly one attribute for each filterValue)

Specifies the filter value for the corresponding filter type. This

could be either a client IP address or a URI.

192 WebSphere for z/OS: Assembling J2EE Applications

|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|

Steps for enabling a custom user registry

A custom user registry is enabled on a J2EE server environment basis. For each

J2EE server environment in which you want to use a custom user registry, perform

the following steps :

1. Make sure the WebSphere CustomRegistry interface was used to encapsulate

the custom user registries you will be using. Because the WebSphere

CustomRegistry interface is identical across all IBM WebSphere Application

Server platforms, if you used the same registries on another IBM WebSphere

Application Server platform, they should already be properly encapsulated, and

you can go to Step 2. Otherwise, see “Implementing the CustomRegistry

interface” on page 199 for a description of how to encapsulate your registries.

2. Make the following changes to the webcontainer.conf configuration file:

v Add the WebAuth.CustomRegistry.ImplClass=

com.company_name.implementation_class_name property to enable the

CustomRegistry interface.

v Add the WebAuth.CustomRegistry.Properties=filename.properties property

to specify the name of the custom registry properties file. filename is the fully

qualified name of this properties file.

v Add the WebAuth.CustomRegistry.authorizationTableXML=filename.xml

property to specify the name of the XML file containing a list of the XML

files containing authorization tables that the J2EE server will use to

authenticate and authorize users and groups. filename is the fully qualified

name of this file. See “Creating the XML file that defines the location of a

Web application’s authorization table” on page 194 for an example of this

file.

v Add the WebAuth.CustomRegistry.SAFPrincipal=validMVSUserid property to

specify the MVS user ID under which requests from custom registry clients

are processed. (For example, this ID will be used when processing EJB

requests or to access an MVS resource that has a deployment descriptor

containing the attribute res-auth=container.) This property is only required if

you do not want to use the J2EE server’s ID to establish these connections.

v Update the WebAuth.UnauthenticatedUserSurrogate= property with the

CustomUserRegistry user ID under which unauthenticated clients are to be

executed.

v Make sure the following properties are set if your custom user registry is

going to be using single sign-on support:

– Make sure the WebAuth.SingleSignOn.Enabled property is set to true.

– Make sure the WebAuth.SingleSignOn.Domain property is set to NULL.
v Make sure the following properties are set if your custom user registry is

going to be using Form-Based logon support:

– Make sure the WebAuth.LoginToken.Encrypt property is set to true.

– Make sure the WebAuth.LoginToken.EncryptionKeyLabel property is set to

the appropriate ICSF key label.

– Make sure the WebAuth.LoginToken.LimitToSecureConnections property is

set to true.

These properties are described in more detail in Appendix B, “Default

webcontainer.conf file,” on page 351.

Chapter 8. Creating a J2EE server run-time environment 193

|

|
|
|

|
|
|
|
|
|
|

|

|

|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

|

3. Use the Administration application to make the following changes to the J2EE

server’s environment variables:

v Add the custom user registry implementation class to the WS_EXT_DIRS

environment variable.

v (Optional.) Add the ENABLE_TRUSTED_APPLICATIONS environment variable to

your current.env file and set it to 1. This property is only required if the

WebAuth.CustomRegistry.SAFPrincipal= webcontainer.conf file property is set

to an MVS ID other than the ID of the J2EE server.

 When this variable is set to 1, RACF checks if the client is authorized, and if

the client is authorized, the call is successful. If the

WebAuth.CustomRegistry.SAFPrincipal= property is set to an MVS ID other

than the ID of the J2EE server, and the ENABLE_TRUSTED_APPLICATIONS

environment variable is not set to 1, the client will get an exception.

4. Make the following changes to the JVM properties files:

v Set the WEB_SECURITY_VERSION property to 2 to enable Web Security

Collaborator Version 2. When Version 2 is enabled, incoming requests can be

selectively authorized and refused.

v Add the com.ibm.websphere.security.AuthorizationTable property and use

it to specify the class for the authorization table implementation. The default

implementation class provided with the product is:

com.ibm.ws390.wc.security.AuthorizationTableImpl

5. Add the XML file specified on the

WebAuth.CustomRegistry.authorizationTableXML=filename.xml property to the

system on which WebSphere for z/OS is running. (See “Creating the XML file

that defines the location of a Web application’s authorization table” for an

example of this file.) This files must be in ASCII format.

6. Add the XML files containing the authorization tables to the system on which

WebSphere for z/OS is running. These XML files define the roles that are

authorized to use specific applications. (See “Creating XML files containing

authorization tables” on page 196 for an example of this file.) This files must be

in ASCII format.

7. Stop the J2EE server and start it again.

Creating the XML file that defines the location of a Web application’s

authorization table

The XML file defining the location of the authorization tables for Web applications

can be placed in any directory on your WebSphere for z/OS system. However, you

must include the fully qualified name of this file on the

WebAuth.CustomRegistry.authorizationTableXML property in the webcontainer.conf

file. When creating this file, you must:

v Encode it in ASCII format.

v Start it with a <AuthTableList> tag and end it with a </AuthTableList> tag.

v Include the following tag set for every application installed on the J2EE server

for which the custom user registry will be used to authenticate and authorize

clients:

194 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|

|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|

|

|

|
|
|
|
|

|

|

|
|
|

<Application>

 <name>application_name</name>

 <permission-file-name>fully_qualified_file_name

 </permission-file-name>

</Application>

Notes:

1. The value specified on the <name> tag is case sensitive. Therefore any name

specified on this tag must exactly match the name of a Web application

installed on the J2EE server as it appear on the Administration application

panel.

2. The value specified on the <permission-file-name> tag is also case sensitive.

If the XML file specified on a <permission-file-name> tag for an application

is not found or is misspelled, the application request will not be processed

unless you set up a default authorization table to handle these situations. To

set up a default authorization table, include the following tags to point to the

XML file containing that table:

<Application>

 <name>*</name>

 <permission-file-name>file_name</permission-file-name>

</Application>

 and then include ″*″ on an <application appName> tag in that XML file.

Following is an example of an XML file that defines where the authorization table

for each of the four applications installed on a J2EE sever resides. In this example:

v The authorization information for the applications SecureFormWebapp,

SecureBasicWebapp1, and SecureBasicWebapp2 is contained in the file

authTable3.xml.

v The authorization information for the applications PayrollWebapp and

EmployeeDirectory is contained in the file PayrollTable.xml.

v The default authorization table is contained in the file authTable3.xml.
<AuthTableList>

 <Application>

 <name>SecureFormWebapp</name>

 <permission-file-name>/webapps/apps0806/authTable3.xml

 </permission-file-name>

 </Application>

 <Application>

 <name>SecureBasicWebapp1</name>

 <permission-file-name>/webapps/apps0806/authTable3.xml

 </permission-file-name>

 </Application>

 <Application>

 <name>SecureBasicWebapp2</name>

 <permission-file-name>/webapps/apps0806/authTable3.xml

 </permission-file-name>

 </Application>

 <Application>

 <name>PayrollWebapp</name>

 <permission-file-name>/webapps/apps0806/payrollInfo.xml

 </permission-file-name>

 </Application>

 <Application>

 <name>EmployeeDirectory</name>

 <permission-file-name>/webapps/apps0806/payrollInfo.xml

 </permission-file-name>

 </Application>

 <Application>

Chapter 8. Creating a J2EE server run-time environment 195

|
|
|
|
|

|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<name>*</name>

 <permission-file-name>/webapps/apps0806/authTable3.xml

 </permission-file-name>

</Application></AuthTableList>

 Whenever the J2EE server using this file cannot find an XML file containing the

authorization table for a particular application, it will use the role mappings

defined in the authorization table for application ″*″ that is contained in the file

authTable3.xml. (The section “Creating XML files containing authorization tables”

includes an example of role mappings that might exist in files authTable3.xml and

PayrollInfo.xml. The example of file authTable3.xml includes a default

authorization table.)

Creating XML files containing authorization tables

XML files containing the authorization tables the J2EE server will use to

authenticate and authorize clients can be placed in any directory on your

WebSphere for z/OS system. However, you must be sure to include the fully

qualified name of the files within the appropriate <application> tags in the XML

file specified on the WebAuth.CustomRegistry.authorizationTableXML property in

the webcontainer.conf file. When creating these files you must:

v Encode them in ASCII format.

v Start them with an <authorizationTable> tag and end them with an

</authorizationTable> tag.

v Include the following tag set for each application for which authorization

information is being included in one of these files:

<application>

 <authorizations>

 <role roleName="role_name">

 <group groupName= "group_name"/>

 <user userName="user_name"/>

 </role>

 </authorizations>

</application>

<application appName>

This tag is used to specify the name of the enterprise applications for

which the authorizations that follow apply.

Notes:

1. If the same users and groups are authorized to use multiple

enterprise applications, you can list all of these applications on a

single tag. As illustrated in the following example, the names of the

Web applications must be separated with a comma and a blank

space:

<application appName="SecureBasicWebapp1, SecureBasicWebapp2">

2. The names specified on this tag must exactly match the names of

Web applications installed on the J2EE server as they appear on the

Administration application panel. The values specified on this tag are

case sensitive.

<role roleName>

This tag is used to define the J2EE security role to which the user and

group mappings that follow apply. The roles specified on this tag must

match the roles defined in the application’s deployment descriptors.

Note: The value specified on this tag is case sensitive. Include multiple

versions of this tag if you want to define multiple security roles

for the same application.

196 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|

|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

<group groupName>

This tag is used to specify a user group, any member of which will be

mapped to the role specified on the corresponding <role roleName> tag.

The group name specified on this tag must exactly match a name

defined in the custom user registry.

Note: The value specified on this tag is case sensitive. Include multiple

versions of this tag if you want to give multiple groups access to

the same application.

<user userName>

This tag is used to specify a specific user ID that will be mapped to the

role specified on the corresponding <role roleName> tag. The user name

must exactly match a name defined in the custom user registry. The

value specified on this tag is case sensitive.

Notes:

1. Include multiple versions of this tag if you want to give multiple

users access to the same application.

2. For applications that can be accessed by any successfully

authenticated client, you can specify the following <role roleName>

tag set in the authorization table for those applications:

<role roleName="AuthenticatedUsers">

 <user userName="AllAuthenticatedUsers"/>

</role>

3. For applications that can be accessed by any client, you can specify

the following <role roleName> tag set in the authorization table for

those applications:

<role roleName="AllUsers">

 <user userName="Everyone"/>

</role>

 Multiple <role> tag sets can be included for each application.

Note: If you need to FTP any of these files between J2EE servers, the FTP must be

performed in binary format.

Following is an example of the two XML files, authTable3.xml file and

payrollInfo.xml that were defined in the example contained in the section,

“Creating the XML file that defines the location of a Web application’s

authorization table” on page 194.

Example of the authTable3.xml file: In this example, authTable3.xml file includes a

default authorization table (<application appName=″*″>) that the J2EE server will

use to authenticate and authorize a client if it can not locate the authorization table

for a requested application. Also, since the roles defined for application

SecureBasicWebapp1 are the same as the roles defined for application

SecureBasicWebapp2, both applications are listed on the same <application> tag.

<authorizationTable>

<application appName="SecureFormWebapp">

 <authorizations>

 <role roleName="manager">

 <group groupName= "manager"/>

 <group groupName= "super_manager"/>

 <user userName="SP"/>

 </role>

 <role roleName="employee">

 <group groupName= "employee"/>

Chapter 8. Creating a J2EE server run-time environment 197

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

<user userName="Everyone"/>

 </role>

 <role roleName="bigboss">

 <user userName="SP"/>

 </role>

 </authorizations>

</application>

<application appName="SecureBasicWebapp1, SecureBasicWebapp2">

 <authorizations>

 <role roleName="manager">

 <group groupName="App1manager"/>

 <group groupName="App1super_manager"/>

 <user userName="App1SP"/>

 </role>

 <role roleName="employee">

 <group groupName="App1employee"/>

 <user userName="Everyone"/>

 </role>

 <role roleName="bigboss">

 <user userName="App1SP"/>

 </role>

 </authorizations>

</application>

<application appName="*">

 <authorizations>

 <role roleName="manager">

 <group groupName="App1super_manager"/>

 <user userName="App1SP"/>

 </role>

 <role roleName="bigboss">

 <user userName="App1SP"/>

 </role>

 </authorizations>

</application>

</authorizationTable>

example of the payrollInfo.xml file: In this example, the authorization information

for application EmployeeDirectory indicates that a client does not have to be

authenticated in order to access this application. Similarly, the authorization

information for application PayrollWebapp indicates that any authorized client can

access this application.

<authorizationTable>

<application appName="EmployeeDirectory">

 <authorizations>

 <role roleName="Public">

 <user userName="Everyone"/>

 </role>

 </authorizations>

</application>

<application appName="PayrollWebapp>

 <authorizations>

 <role roleName="Employee">

 <user userName="AllAuthenticatedUsers"/>

 </role>

 </authorizations>

</application>

</authorizationTable>

198 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Implementing the CustomRegistry interface

Use the Administration application to add the implementation class for the

CustomRegistry interface to the classpath environment variable in the current.env

file. Remember the entire classpath must be entered on the same line.

After you add the name of this file to the current.env classpath, when you activate

a conversation or prepare for a cold start, WebSphere for z/OS will write the

environment data to an HFS file for each server instance.

The CustomRegistry interface is located in the Java package

com.ibm.websphere.security. A description of this interface is available at URL:

http://www.ibm.com/software/webservers/appserv/doc/v40/ae/apidocs/index.html

Most of the methods in this interface return either strings or lists. When you

implement these methods, indicate failure to retrieve the desired information by

returning null strings or null lists.

Following is the structure of the CustomRegistry interface:

package com.ibm.websphere.security;

import java.util.*;

public interface CustomRegistry

{

// General methods

public void initialize(java.util.Properties props)

throws CustomRegistryException;

public String getRealm()

throws CustomRegistryException;

// User-related methods

public boolean isValidUser(String userName)

throws CustomRegistryException;

public List getUsers()

throws CustomRegistryException;

public List getUsers(String pattern)

throws CustomRegistryException;

public String getUniqueUserId(String userName)

throws CustomRegistryException,

EntryNotFoundException;

public String getUserSecurityName(String uniqueUserId)

throws CustomRegistryException,

EntryNotFoundException;

public String getUserDisplayName(String securityName)

throws CustomRegistryException,

EntryNotFoundException;

public List getUsersForGroup(String groupName)

throws CustomRegistryException,

EntryNotFoundException;

public List getUniqueUserIds(String uniqueGroupId)

throws CustomRegistryException,

EntryNotFoundException;

Chapter 8. Creating a J2EE server run-time environment 199

|
|

|
|
|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// Group-related methods

public boolean isValidGroup(String groupName)

throws CustomRegistryException;

public List getGroups()

throws CustomRegistryException;

public List getGroups(String pattern)

throws CustomRegistryException;

public String getUniqueGroupId(String groupName)

throws CustomRegistryException,

EntryNotFoundException;

public String getGroupSecurityName(String uniqueGroupId)

throws CustomRegistryException,

EntryNotFoundException;

public String getGroupDisplayName(String groupName)

throws CustomRegistryException,

EntryNotFoundException;

public List getGroupsForUser(String userName)

throws CustomRegistryException,

EntryNotFoundException;

public List getUniqueGroupIds(String uniqueUserId)

throws CustomRegistryException,

EntryNotFoundException;

// Authentication methods

public String checkPassword(String userId, String password)

throws PasswordCheckFailedException,

CustomRegistryException;

}

Steps for pre-compiling JSPs

You can use the IBM provided JspBatchCompiler.sh script to pre-compile JSPs

before they are requested, thus improving performance. This tool is located in the

usr/lpp/WebSphere/bin directory. To use this tool:

1. Define an MVS user ID which can be used to execute the JSP precompile script.

This user ID should be defined with an OMVS segment which specifies the

same UID and GID as the user ID used to start the server regions in which the

compiled JSPs will be used.

 Defining a separate user ID under which to run the JspBatchCompiler.sh script

provides better audit and control of this function, independent of the user ID

which is used to start the server regions. Two or more accounts can share the

same OMVS UID.

 The UMASK value for this user ID must match the value specified for the J2EE

server that is going to reference the pre-compiled JSPs. To set this value issue

the following command:

export _EDC_UMASK_DFLT=xxx

where xxx is the umask value to use.

 See “Steps for creating JCL procedures for the control and server regions” on

page 146 for a description of how the UMASK value is established for a J2EE

server.

200 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2. Add the com.ibm.ws390.install.root=install_root property to the

jvm.properties file, if is not already there. If it is already there, make sure

install_root specifies the fully qualified directory path and file name for the HFS

on which WebSphere for z/OS is installed.

Note: If you want additional debugging and tracing information, such as

classpath, time to compile the source, and the version of the compiler,

generated during the compile, set the service.debug.enabled property in

the jvm.properties file to true. The resulting debugging and tracing

information will be added to the log file.

3. At an OMVS command prompt, enter the following commands to make sure

JAVA_HOME, WAS_HOME and WAS_CONFIG_ROOT are set to the correct

values:

echo $JAVA_HOME

echo $WAS_HOME

echo $WAS_CONFIG_ROOT

 JAVA_HOME must be set to the exact location of the required level of the

Software Development Kit (SDK) on your system. If it is not set to the correct

location, enter the following command to change its value:

export JAVA_HOME=SDK_install_root

 WAS_HOME must be set to your WebSphere for z/OS install-root. If

WAS_HOME is not set to the correct value, enter the following command to

change its value:

export WAS_HOME=install_root

 WAS_CONFIG_ROOT must be set to the root directory for your WebSphere for

z/OS Application Server configuration files. If WAS_CONFIG_ROOT is not set

to the correct value, enter the following command to change its value:

export WAS_CONFIG_ROOT=configuration_root

4. Enter the following command, on a single line, at an OMVS command prompt

to set the DB2LIB variable to the classpath for the DB2 class files:

export DB2LIB=db2_install_directory/classes/db2j2classes.zip:

 db2_install_directory/classes/db2jdbcclasses.zip:

 db2_install_directory/classes/db2sqljclasses.zip

 db2_install_directory is the directory where DB2 is installed on your z/OS or

OS/390 system.

 Optionally, these DB2 class files can be added to the CLASSPATH environment

variable.

5. Enter the following command on a single line at an OMVS command prompt

to invoke the JspBatchCompiler.sh script:

JspBatchCompiler.sh -node.name <sysplex_name>

 -server.name <server_name>:<server_instance_name>

 [-enterpriseapp.name <name>]

 [-webmodule.name <name>]

 [-filename <jsp name>]

 [-keepgenerated <true|false>]

 where:

node.name

Specifies the name of the sysplex in which the application is deployed. A

value MUST be specified for this parameter.

Chapter 8. Creating a J2EE server run-time environment 201

|
|
|
|
|

|
|

|
|
|
|
|
|
|

server.name

Specifies the name of the J2EE server and J2EE server instance in which the

application is deployed, (i.e, BBS1121:BBS1121A). A value MUST be

specified for this parameter.

enterpriseapp.name

Specifies the name of the enterprise application you want to compile. If this

parameter is omitted, all enterprise applications residing on the J2EE server

instance specified on the server.name parameter will be compiled.

webmodule.name

Is the name of the specific WAR file that you want to compile. If this

parameter is omitted, all WAR files for the enterprise application specified

on the enterpriseapp.name parameter will be compiled.

filename

Is the name of a single JSP file that you want to compile. If this argument is

not set, all files in the WAR file specified on the webmodule.name parameter

will be compiled.

keepgenerated

Is the option to save or erase the generated files. If set to true, WebSphere

Application Server saves the generated .java files used for compilation on

your server. By default, this is set to false and the .java files are erased after

the class files have compiled.

Notes:

a. If you include a parameter, you MUST specify a value for that parameter.

b. If the names specified for these arguments are comprised of two or more

words separated by spaces, you must add quotation marks around the

names.

Steps for configuring trust association

To provide a trust association interceptor (TAI) implementation for use by

WebSphere for z/OS, you must perform the following steps:

1. Ensure that your WebSphere for z/OS system is at the appropriate service

level. Trust association interceptors support is provided in APAR PQ55181,

which is included in PTF UQ90049, Service Level 11. This PTF must be installed

on your WebSphere for z/OS system in order for you to use trust association

interceptors with WebSphere for z/OS.

2. Add the following property to your J2EE server’s jvm.properties file to enable

Version 2 of the Web Security Collaborator:

WEB_SECURITY_VERSION=2

 Version 2 of the Web Security Collaborator contains support for utilizing trust

association interceptors as part of the authentication process. If this property is

not included in the jvm.properties file or a value other than 2 is specified,

WebSphere for z/OS will not perform trust association interceptor processing.

3. Add the following environment variable to your J2EE server’s current.env file:

 ENABLE_TRUSTED_APPLICATIONS=1

 This variable Indicates that applications loaded in this address space are to be

trusted.

202 WebSphere for z/OS: Assembling J2EE Applications

In order to perform trust interceptor processing, WebSphere for z/OS makes

use of native APIs that allow for establishing a security context without

providing authentication data, such as a password. These are non-public,

guarded interfaces, and you must indicate to WebSphere for z/OS that you

trust these applications not to be malicious and not to attempt to discover or

make use of these native APIs.

 If this variable is not set to 1, WebSphere for z/OS will not make use of the

trust association interceptors during application processing.

4. Add the following properties to the WebSphere for z/OS webcontainer.conf

configuration file:

WebAuth.TrustAssociationInterceptor.<value>.ImplClass=<classname>

 This property enables the trust association interceptor support.

classname

is the fully qualified name of the class containing the trust association

interceptor implementation

value

is a unique string of alphanumeric characters that is used to correlate a TAI

with its property file. Even if a property file is not being using, a character

string, such as TA1, must be included as a place holder.

, and <filename> is the name of the properties file for that TAI.

WebAuth.TrustAssociationInterceptor.<value>.Properties=<filename>

 This property is only required if you are using a TAI properties file to provide

property settings to the trust association interceptor implementation class.

filename

is the name of the trust association interceptor properties file.

value

is a unique string of alphanumeric characters that is used to correlate this

property file to a TAI. This value must match the value specified on a

WebAuth.TrustAssociationInterceptor.<value>.ImplClass property in the

webcontainer.conf file.

Note: If you are using multiple TAIs, you must add a

WebAuth.TrustAssociationInterceptor.<value>.ImplClass property and,

optionally, a WebAuth.TrustAssociationInterceptor.<value>.Properties

property to the webcontainer.conf file for each TAI you are using.

<value>must be a unique string for each TAI. For example, if you have

three TAIs, two that use a properties file and one that doesn’t, you might

add the following five properties to the webcontainer.conf file:

WebAuth.TrustAssociationInterceptor.TA1.ImplClass=class1>

WebAuth.TrustAssociationInterceptor.TA1.Properties=ta1props

WebAuth.TrustAssociationInterceptor.TA2.ImplClass=class2

WebAuth.TrustAssociationInterceptor.TA2.Properties=ta2props

WebAuth.TrustAssociationInterceptor.TA3.ImplClass=class3

 These properties are described in more detail in Appendix B, “Default

webcontainer.conf file,” on page 351.

Chapter 8. Creating a J2EE server run-time environment 203

Steps for enabling dynamic fragment caching

To enable dynamic fragment caching with XML:

1. Create a global configuration file called dynacache.xml file.

a. In the /usr/lpp/WebSphere/bin directory, locate the dynacache.sample.xml

file. This sample file is a valid cache configuration file that enables and

configures dynamic fragment caching (also known as servlet caching) with

default values.

b. Make a copy of the dynacache.sample.xml file, name it dynacache.xml, and

place it in the directory specified on the

com.ibm.ws390.wc.config.dynxmlfilename JVM property.

Note: If you are migrating a dynacache.xml file from a WebSphere

Application Server for Distributed Platforms environment, instead of

making a copy of the dynacache.sample.xml file provided with

WebSphere for z/OS, you can use a copy of the dynacache.xml file

you used in the Distributed Platforms environment.

c. Configure the overall operation of the cache, such as its size, and register

the external caches that are used by the application.

Note: The DTD for the dynacache.xml file is specified in the dynacache.dtd

file, which is located in the /usr/lpp/WebSphere/dtd directory. The

dyncache.dtd file defines the root element, <cacheUnit>, and should

be included in the dynacache.xml file through the DOCTYPE

declaration. The beginning of the dynacache.xml must include the

following processing instructions:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE cacheUnit SYSTEM "dynacache.dtd">

If caching is enabled, but a dynacache.xml file is not found in the directory you

specified on the com.ibm.ws390.wc.config.dynxmlfilename JVM property, the

Web container processes servlets in the usual manner. If this file is found,

dynamic fragment caching is enabled.

Note: The dynacache.xml file is read only once, at WebSphere for z/OS

startup. If changes are made to the file after startup, WebSphere for

z/OS must be stopped and started again before the changes will take

effect.

2. Create a servlet configuration file.

a. In the /usr/lpp/WebSphere/bin directory, locate the

servletcache.sample.xml file. This sample file includes the servlet definition

for WebSphere for z/OS’s default server’s Snoop servlet.

b. Make a copy of the servletcache.sample.xml file, rename it servletcache.xml,

and place it in the directory you specified on the

com.ibm.ws390.wc.config.dynsrvxmlfilename JVM property .

Note: If you are migrating a servletcache.xml file from a WebSphere for

Distributed Platforms environment, instead of making a copy of the

dynacache.sample.xml file provided with WebSphere for z/OS, you

can use a copy of the servletcache.xml file you used in the

204 WebSphere for z/OS: Assembling J2EE Applications

Distributed Platforms environment. Just place it in the directory you

specified on the com.ibm.ws390.wc.config.dynsrvxmlfilename JVM

property.

With caching enabled, WebSphere for z/OS will look in the directory specified

on the com.ibm.ws390.wc.config.dynsrvxmlfilename JVM property for the

servlet configuration file that declares which servlets should be cached.

3. Add the following properties to the jvm.properties file:

v com.ibm.ws390.wc.config.dynxmlfilename=path.dynacache.xml

v com.ibm.ws390.wc.config.dynsrvxmlfilename=path/servletcache.xml

4. Stop and restart WebSphere for z/OS.

5. Install the WebSphereSampleApp.ear in the directory

/usr/lpp/WebSphere/samples if it is not already installed.

6. Verify the cacheable page.

 Using a Web browser, access the following URI to view the Snoop servlet in the

default application:

/servlet/snoop

 Invoking and reloading the URI several times should return the same output

for the Snoop servlet. If this page is not being cached, the Snoop servlet will

display different information every time it is requested.

7. Update the servletcache.xml file.

 The root element of the servletcache.xml file is <servletCache> and contains a

<servlet> element for each servlet that is going to be dynamically cached.

Within the <servlet> element, you must specify parameters that:

v Identify the servlets to be cached.

 The cache will parse the servletcache.xml file on startup, and extract from

each <servlet> element a set of configuration parameters. Then, every time a

new servlet is initialized, the cache attempts to match that servlet to a servlet

element in this file to determine the configuration information for that

servlet. You can specify which servlets to cache in two ways:

– By specifying the class name of the servlet, or

– By using the servlet’s full URI, beginning after the host name/IP address.

To cache a servlet class, use the <servletimpl> tag:

<servletimpl class="ClassName" />

 where ClassName is the name of the class to be cached. This class must

extend HttpServlet. Whenever a servlet of the specified class is initialized,

the dynamic caching function will match that servlet with the element

configuration.

Note: This comparison is done by matching strings; subclasses of the

specified servlet implementation will not match this declaration.

 To specify a Web path for your servlets, use the <path> tag.

<path uri="web_path" />

Chapter 8. Creating a J2EE server run-time environment 205

where web_path is the full URI of the servlet, from the hostname to the CGI

variable, but not including the CGI variable. The Web application’s Web path

must be a part of this parameter. So if you access a cacheable servlet with the

URL

http://servername.ibm.com/webappname/servlet/MyServlet?arg1=1&....

then that servlet’s path element should read:

path uri="/webappname/servlet/MyServlet" /

 You can specify different path elements referring to the same servlet. Also,

the same path can appear in two different <servlet> elements, but when

configuring a servlet invoked from that path, dynacache will use the

configuration from the first valid <servlet> element that matches. For

example, if your servletcache.xml file contained the following tags:

<servlet>

 <servletImpl class="CalcServlet" />

 :

(other config info)

 :

</servlet>

 WebSphere for z/OS will cache every servlet of class ″CalcServlet″ across the

entire server, regardless of the URI. This is referred to as a general

configuration. It is limited in that if there is a class, such as

″ScientificCalculatorServlet″, that extends ″CalcServlet″,

″ScientificCalculatorServlets″ will not match the ″CalcServlet″ element.

 If your servletcache.xml file contained the following tags:

<servlet>

 <path uri="/tools/Calc" />

 <path uri="/tools/servlet/CalcServlet" />

 <path uri="/tools/Calculator.jsp" />

 :

(other config info)

 :

</servlet>

 The results would be slightly different. This is an example of a specific setup,

which will cache the defined servlet Calc (which may or may not be of the

CalcServlet class), and will only cache CalcServlets if they are specifically

invoked. In this example, if this servlet was running within a hypothetical

tools Web application:

– The first path will catch any request for the /tools/Calc URI, regardless of

that servlet’s class

– The second path will catch any calls to the Invoker Servlet for the

CalcServlet class.

– The third path allows you to cache on a JSP implementation of the

calculator.
v Govern the creation of entry IDs for servlets.

 After you declare which servlets to cache, you must define how to cache

each servlet. To define how to cache each servlet, you must:

– Build unique entries for different requests, and

– Remove these entries at the appropriate time.

You can do this using the servletcache.xml file, or by writing your own class

to handle invalidation. The cache removes entries in the following

circumstances:

a. One of the cache’s invalidation methods (see

com.ibm.websphere.servlet.cache.Cache in Javadoc) was called directly,

206 WebSphere for z/OS: Assembling J2EE Applications

inside the servlet code. This case is not relevant in this context, as it is

done programmatically inside an application.

b. Running a servlet triggered a rule based invalidation. This case results

from the ″invalidate″ attribute used with a cache variable

c. The timeout for the entry expired or the cache was full and a new entry

replaced an old These cases are configured using the <timeout> and

<priority>tags:

<timeout seconds="time_in_cache" />

 time_in_cache is the length of time, in seconds, after creation of an entry,

that it should be removed from the cache. This value is required. If this

value is zero or negative, the entry will not timeout, and can only be

removed when the cache is full or programmatically from within an

application. If the <timeout>element is not present, then the <servlet>

element in which it is contained will be invalidated, and will not be

cached. When entries with a positive timeout are created, the timeout is

added to the current time to determine when the entry will be

invalidated. When that time is reached, if the entry remains in the cache,

the cache will force its invalidation.

 <priority val="priority" />

 priority is either zero or a positive integer. It is used to initialize a

″current priority″ when a cache entry is created, and every time that that

entry is referenced. If this element is not present, then the default value,

defined in the dynacache.xml file, will be used.

 Servlets are initially loaded into a group with other servlets that have the

same ″current priority″. When the cache is full, the LRU algorithm will

initially only be applied to the priority group with a value of zero. If

there are no entries in this group, the ″current priority″ of all groups is

decremented by one until there is a group with a priority of zero that has

at least one entry that can be invalidated. Therefore, a servlet that is given

a higher priority, or that is frequently requested, is more likely to stay in

the cache than one with a lower priority, or that is infrequently requested.

Note: Because the length of time specified on the <timeout> tag applies

to all entries in the cache, (whether or not the cache is full) servlets

will be removed from the cache when their timeout expires even if

they have a high priority or are frequently requested.

In a high volume application where space in the cache is at a premium,

designers should consider increasing the priority of a servlet or JSP if

calculating its output is significantly harder than average, or if it will be

executed much more often than average.

Note: Priority values should be kept low, as higher values will not yield a

relative improvement, but will use extra LRU cycles. Declaring a

servlet with priority 3 and another with priority 4 will generate the

same invalidation behavior as servlets with priority 1 and 2, only

marginally slower. When dealing with caches in the thousands of

entries and greater, that slowdown becomes significant.

 Use the timeout variable to guarantee the validity of an entry. Use priority to

rank the relative importance of that entry. Giving all elements equal priority

results in a standard LRU cache that increases performance significantly, but

you can tailor the cache’s operation to the application with careful use of the

priority variable.

Chapter 8. Creating a J2EE server run-time environment 207

Other tags used to configure caching are <Externalcache>, <IdGenerator>,

and <MetaDataGenerator>:

<externalcache id="group_name" />

 group_name is the name of an external cache group defined in the global

configuration of the cache. When this page is cached, a copy of it will now

be pushed to this external cache group. See “External caching” on page 102

for more information about external caching.

<idgenerator class="class_name" />

 class_name is the full package and class name of a class extending

com.ibm.servlet.dynacache.IdGenerator. See “Custom ID and MetaData

generators” on page 104 for more information.

<metadatagenerator class="class_name" />

 class_name is the full package and class name of a class extending

com.ibm.servlet.dynacache.MetaDataGenerator. See “Custom ID and

MetaData generators” on page 104 for more information.

v Specify how to cache

 Each time a servlet is called and WebSphere for z/OS generates a

corresponding HttpServletRequest object, the cache uses information in that

object to build an ID string to represent the call. A servlet’s cache policy

contains the rules that determine which pieces of information are used in

that ID string. It always contains certain default information, such as the URI

of the requested fragment and its character encoding. The rules give extra

information about what variables should be used in the ID, and how they

should be treated.

Just like the dynacache.xml file, the servletcache.xml file is read only once,

when WebSphere for z/OS is first started. So if changes are made to the file,

WebSphere for z/OS must be restarted before the changes will take effect.

 The DTD for the servletcache.xml file is specified in the servletcache.dtd file,

which is located in directory /usr/lpp/WebSphere/dtd. The servletcache.dtd

file defines the root element <servletCache>. It is included in the

servletcache.xml file through the DOCTYPE declaration.

 The beginning of the servletcache.xml should have the following processing

instructions:

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE servletCache SYSTEM "servletcache.dtd">

8. Set up the Dynamic fragment caching monitor .

 WebSphere for z/OS provides the Servlet Cache Monitor application for

inspecting the contents and behavior of the fragment cache. To set up the

Servlet Cache Monitor application:

a. Install the ServletCacheMonitor.ear file on each WebSphere for z/OS J2EE

server that uses the dynamic fragment cache function. This file is located in

the /usr/lpp/WebSphere/samples directory. This EAR file can then be

accessed by each J2EE server instance associated with any of these J2EE

servers.

Note: Remember that only one server region can be defined for any server

instance that you want to monitor.

b. Configure the HTTP Transport Handler to monitor different WebSphere for

z/OS J2EE server instances in the same sysplex, by specifying a different

208 WebSphere for z/OS: Assembling J2EE Applications

port for each J2EE server instance. This allows you to use different URIs to

access the different server instances’ cache monitors.

Note: Remember that only one server region can be defined for any of

these server instances.

c. Access the Servlet Cache Monitor through the /servletcache URIs for the

J2EE server instances you want to monitor.

Using cache variables

A cache variable is a generic term for a variable whose data should be used in

caching a fragment. The four types of cache variables that correspond to the main

sources of input for a fragment are:

v request parameters

v request attributes

v session attributes

v cookies

A client browser can set request parameters with CGI when submitting a form,

while a servlet can set attributes on an HttpServletRequest object, then forward or

include that request to another servlet. WebSphere for z/OS can maintain session

attributes that a servlet might want to access, and set cookies for later servlets to

process.

In addition to building cache IDs, these variables are used to control the following:

v Grouping of cache entries

v The invalidation of other groups

v Determining whether to cache a servlet based on that variable’s value

The cache can decide whether or not to cache an invocation depending on the

value of its input variables using the <exclude> tag. Groups are handled by data

IDs, which consist of strings specified in the cache variable combined with the

variable’s value. Using the data_id attribute builds a group name and adds a

servlet’s cache entries to that group. The invalidate attribute causes the eviction of

a group from the cache. It is possible to have an entry that does no caching, and

only invalidates groups. The <invalidateonly> tag is provided to save processing

time for this case.

The syntax for the various attributes follow:

<request>

 <parameter id="parameter_name"

 data_id="group_identifier"

 invalidate="group_identifier"

 ignorevalue="true|false"

 required="true|false">

 <exclude value="exclude_value"/>

 </parameter>

 <attribute id="attribute_name"

 method="method_name"

 data_id="group_identifier"

 invalidate="group_identifier"

 ignorevalue="true|false"

 required="true|false" >

 <exclude value="exclude_value"/>

 </attribute>

</request>

Chapter 8. Creating a J2EE server run-time environment 209

where:

parameter_name

Specifies the name of a request parameter, the value of which will be used to

generate cache entry IDs.

attribute_name

Specifies the name of a request attribute. The output of one or more of this

object’s methods will be used to generate cache entry IDs.

method

Specifies the name of a method in this request attribute. The output of this

method will be used to generate cache entry IDs. If a method is specified,

parenthesis should not be included in the method name. If no method is

specified, ″toString″ is assumed.

group_identifier

Is a string that, when combined with the value of this request variable,

generates a group name for this cache entry. If used by a ″data_id″ attribute,

this cache entry will be placed in that group. If used in an ″invalidate″ entry,

then that group will be invalidated, and this entry will then be placed in the

cache. If this variable is not present, the group ID will not be used, and neither

action will occur.

ignorevalue

Indicates whether this variable’s value is relevant to the cache ID, or whether

only the variable’s presence is important. If true, the cache ID will reflect that

the variable was present, but its value will not be used. This value defaults to

false when not set.

required

Indicates whether this value must be present in the request. If this is set to true

and either the parameter/attribute is not present or (when defining an

attribute) does not contain the specified method, then this request will not be

cached. This value defaults to false when not set.

You can define unlimited parameter and attribute objects within a <request>

element, but you should only define one <request> element per <servlet> element.

The cache’s handling of session attributes is identical to its handling of request

attributes.

<session id="session_attribute_name"

 method="method_name"

 data_id="group_identifier"

 invalidate="group_identifier"

 ignorevalue="true|false"

 required="true|false" >

 <exclude value="exclude_value"/>

</session>

 where:

session_attribute_name

Is the name of a session attribute, the value of which will be used to generate

cache entry IDs.

method

Is the name of a method in this session attribute. The output of this method is

used to generate cache entry IDs. If this value is not specified ″toString″ is

assumed. This method may not take any arguments, and parenthesis should

not be included in the method.

210 WebSphere for z/OS: Assembling J2EE Applications

group_identifier

Is a string that, when combined with the value of this request variable,

generates a group name for this cache entry. If used by a ″data_id″ attribute,

this cache entry will be placed in that group. If used in an ″invalidate″ entry,

then that group will be invalidated, and this entry will then be placed in the

cache. If this variable is not present, the group ID will not be used, and neither

action will occur.

ignorevalue

Indicates whether this variable’s value is relevant to the cache id, or if only the

variable’s presence is important. If true, the cache id will reflect that the

variable was present, but its value will not be used. This value defaults to false

when not set.

required

Indicates whether this value must be present in the session. If this is set to true

and either the session parameter is not present or does not contain the

specified method, then this request is not cached. This value defaults to false

when not set.

As with request parameters/attributes, there can be any number of session

attributes declared in a servlet.

Notes:

1. If the <invalidateonly> tag is used, no caching is performed for this servlet,

though invalidations triggered by it will take effect.

2. If you attach an <exclude> tag to a cache variable (<exclude_value>), it will

keep a servlet from being cached when that variable is present on the request.

The <exclude> tag can only be applied for certain values, or for all values of a

cache variable. When the exclude tag is used without its ″value″ attribute, no

caching is performed for this servlet when the variable is present. Alternatively,

users can repeat the <exclude> tag with the ″value″ attribute defined several

times to specify a set of values that keep the servlet from being cached. This

helps prevent caching of control servlets.

For example, the following setup indicates that whenever the request parameter

″nocache″ is present, the servlet should not be cached:

<servlet>

 <path uri="/myServlet"/>

 <timeout seconds="-1" />

 <request>

 <parameter id="nocache" >

 <exclude/>

 </parameter>

 </request>

</servlet>

In this example, the servlet will be cached unless the request parameter ″cache″ is

present and its value equals ″no″ or ″false″:

<servlet>

 <path uri="/myServlet" />

 <timeout seconds="-1" />

 <request>

 <parameter id="cache" >

 <exclude value="no"/>

 <exclude value="false"/>

 </parameter>

 </request>

</servlet>

Chapter 8. Creating a J2EE server run-time environment 211

Exclude tags can be applied to any cache variable.

Notes:

1. Invalidating has a higher performance cost than caching. Avoid using the same

variable to invalidate a group and to group an entry. You will see less

performance benefit than when just using the variable to define a group id.

2. Data_id and invalidate tags that are within the same <servlet> element should

have different values, usually. If they have the same value, the group is

invalidated, and the entry for the current servlet is put into that group. The

invalidate tag that corresponds to a data_id will occur in different <servlet>

elements.

Summary of the elements in a servletcache.xml file

Following is a summary of the elements in a servletcache.xml file:

1. <?xml version="1.0" encoding="UTF-8" ?>

2. <!DOCTYPE cacheUnit SYSTEM "dynacache.dtd">

3. <servletCache>

4, <servlet>

5. <invalidateonly/>

 <servletimpl class="some.package.SomeClass"/> OR

 <path uri="MyServlet" /><path uri="servlet/SomeClass"/> OR

 <metadatagenerator class="package.GeneratorClass" />

6. <timeout seconds= "timeout value" />

 <priority value="priority value" />

7. <externalcache id="external cache group name">

8. OR

9. <request>

10. <parameter id="parameter name"

 data_id="group identifier 1"

 invalidate="group identifier 2"

 ignorevalue="true|false"

 required="true|false">

 <exclude value="exclude value"/>

 </parameter>

11. <attribute id ="attribute name"

 method= "aMethodName"

 data_id="group identifier 1"

 invalidate="group identifier 2"

 ignorevalue="true|false"

 required="true|false" />

12. </request>

13. <session id="session attribute name"

 method="aMethodName"

 data_id="group identifier 1"

 invalidate="group identifier 2"

 ignorevalue="true|false"

 required="true|false" />

14. <cookie id="cookie name"

 method="aMethodName"

 data_id="group identifier 1"

 invalidate="group identifier 2"

 ignorevalue="true|false"

 required="true|false" />

15. <idgenerator class="package.IdGeneratorClass" />

16. <metadatagenerator class="package.MetaDataGeneratorClass"/>

17. </servlet>

18. </servletCache>

Notes:

1. Line 6: Timeout <1 implies the value will not time out. Required.

2. Line 8: OR applies to lines 10-15

212 WebSphere for z/OS: Assembling J2EE Applications

3. Line 10: The method, called from the request parameter, defaults to toString,

and required defaults to false.

4. Line 10: The exclude tag can be used in any of the four cache variable types.

5. Line 10: The method called on the request attribute defaults to toString, and

required defaults to false.

6. Line 13: The method called on the session attribute defaults to toString, and

required defaults to false.

7. Line 14: The method called on the cookie defaults to toString, and required

defaults to false.

Dynamic fragment cache XML examples

In this example, Calculator Servlet is defined inside a ’tools’ Web application. It

takes an operation ’operation’ and two arguments, ’arg1’ and ’arg2’. The values for

these variables are received in the query string from an external user, that is,

request parameters from a browser or applet. You invoke the servlet to calculate

2+3 to get the answer 5, with the URI:

/tools/Calc?arg1="2"&arg2="3"&operation="+"

To cache the output of this servlet, you distinguish results using the request

parameters, so that 2,3,+ has a different cache entry than 4,5,*. For this example,

you would define the following <servlet> element:

v <servlet>

v <path uri=″/tools/Calc″ />

v <request>

v <parameter id=″arg1″ required=″true″ />

v <parameter id=″arg2″ required=″true″ />

v <parameter id=″operation″ required=″true″ />

v </request>

v <timeout seconds=″-1″ />

v </servlet>

In a second example, the news servlet of class CoastalNewsServlet displays either

west coast news or east coast news, depending on a user’s location. This servlet

has a session object named ’location’ of class ’LocationBean’ with a method

getCoast() that returns ″east″ or ″west″. If this object is not present on the session,

then the servlet returns the news for both coasts, which you also want to cache. So

whether or not the location is present on the session, you want to cache the output

of the servlet, and you do not want the entries to time out:

<servlet>

<servletimpl class="CoastalNewsServlet" />

<session id="location" method="getCoast" />

<timeout seconds="-1" />

</servlet>

To group cache entries based on the coast, or to invalidate the cache entries for a

coast whenever the location bean gets updated by a control servlet, you must

consider the design of the application. If a variable is not available to a servlet at

execution (that is, the request/session variable has not been set), then, even if the

servlet is cacheable, no group id will be generated based on that variable. In the

CoastalNewsServlet example, a missing session parameter causes the servlet to

display the news for both coasts. Naturally, in this case, you want the cache entry

to belong to both the east and west coast groups. However, because the cache does

not handle data ids when variables are missing, this is not possible. The simplest

Chapter 8. Creating a J2EE server run-time environment 213

solution to this problem marks the location bean as a required variable for caching.

This means the output of the news servlet will not be cached if location is

undefined. Therefore, you can now do all the grouping knowing that the location

bean will be present to place entries into the correct groups. Servletcache.xml needs

two sets of changes to finish configuring groups:

1. The CoastalNewsServlet entry must be modified to put entries into groups, and

2. A new entry for the control servlet that updates the location bean must be

added to allow invalidation of these groups.
<servlet>

<servletimpl class="CoastalNewsServlet" />

<session id="location" method="getCoast" data_id="coast" required="true" />

<timeout seconds="-1" />

</servlet>

<servlet>

<invalidateonly/>

<servletimpl class="LocationUpdateServlet" />

<request>

<attribute id="new_coast" invalidate="coast" />

</request>

</servlet>

Now, when the news servlet is invoked, the cache will take the data_id ″coast″ and

append ″=″ and the value of location.getCoast() to create a group name to identify

that entry. In the update servlet, a new_coast string is expected as a request

attribute, and will be used in the same fashion to build group names for removal

from the cache.

Using HttpSession and request attributes

The dynamic cache can use objects stored in an HttpSession or request attribute in

caching requests. The Servlet specification allows the Servlet or JSP programmer to

put any number of objects into the session or request, and index these values with

a String key name. Possible uses range from the storage of minimal data and

simple types (for example, String, Integer, Boolean) to very complex and large

(Vectors and Hashtables of complex User Objects). Given this background, this is

what the WebSphere for z/OS Servlet/JSP cache supports:

v When building cache policies the user can specify: A key name for a

session/request attribute value and

v An [optional] method name used for retrieving a value from the stored object.

In the case where the method name is not specified, the default method toString()

is used to transform the object into a String for use in the cache ID.

Consider the following object:

class User {

public String getName() {...};

public String getPrimaryGroup() {...};

 }

If an instance of this object is stored in the session using the key ″user″, you might

specify the following cache policy: (in this example, imagine that different user

groups view a different home page):

<servlet>

<path uri="/index.jsp" />

<session id="user" method="getPrimaryGroup" />

<servlet>

214 WebSphere for z/OS: Assembling J2EE Applications

Caching personalized pages

If you want a fragment of a personalized page, such as a stock list owned by an

user, the fragment would have two servlets:

1. The first obtains the stock list from the database and forwards the list of stock

symbols to the second servlet

2. The second servlet gets quotes for the stocks from the back end.

Depending on exactly how this stock list is generated, caching will have varying

effectiveness, but it will provide a benefit. When determining how to cache this

page, you need to apply a key concept in servlet caching. The biggest performance

wins come from caching servlets that obtain information from outside WebSphere

for z/OS. This means that while caching a simple presentation JSP file will give

moderate performance gains, caching servlets that request information from

Enterprise Java Beans or databases, saves WebSphere for z/OS processing power

and decreases load on the back end.

In this example, both sets of actions can be cached (since they are both reads from

the database). The first servlet is a classic example of a cacheable servlet. It is a

simple database lookup, using one value as input (a user ID), and producing the

list as output. The interesting case (an example of designing an application with

caching in mind) is how the servlets go from a list of symbols to actually looking

up the quotes.

The simple design involves one servlet that does all the work and a presentation

JSP. The servlet gets a list of stock symbols for a user from the database

(presumably that user’s database record holds the symbols in their portfolio), then

immediately goes back to the database and looks up current quotes for those

symbols. It builds a list of quotes and forwards them to a presentation JSP.

This design can be cached. You base everything off the user ID, and cache the

current quotes for that user. There are missed opportunities here, though. First,

since everything is based off of an individual user, you cannot reuse the stock

quotes gathered for other users who own the same stocks. The usefulness of this

cache entry is limited to one user. Second, whenever one of the quotes, or the list

of symbols changes, the whole page changes. This entry is unstable, and will not

be correct very long.

A better design fragments the data requests into 3 different servlets/JSP files,

separating each of the two database reads into its own servlet/JSP file. The first

servlet would use the user id to get the list of symbols. It would forward the list to

a presentation JSP that would format the list, and get individual quotes from a

third servlet that takes a symbol as input.

All three of these servlets/JSP files can be cached individually. The first servlet is

caching the user specific list of symbols only. Changes to a user’s portfolio will not

affect the cache entries for the stock quotes. The presentation JSP file only changes

the list of symbols supplied to it. Caching in this example is as useful as caching

the first servlet, and could be even more useful if different users have the same list

of stocks. The quotes are cached with the last servlet, which will have a different

entry for each stock. If one stock quote changes, then the request for that

individual stock will have to be reinvoked from the application server. The rest of

the requests can all be served from the cache. Most importantly, these quotes are

reusable in any request for a customer’s portfolio. By narrowing the responsibility

of individual pieces of the application, you can provide selective caching, and

achieve bigger performance gains.

Chapter 8. Creating a J2EE server run-time environment 215

Building a custom ID generator

You can build your own ID generator, but it must implement the

com.ibm.websphere.servlet.cache.IdGenerator interface. There are three methods in

this interface:

v public void initialize(CacheConfig cc);

v public String getId(ServletCacheRequest request);

v public int getSharingPolicy(ServletCacheRequest request);

The initialize method is called during startup. Normally, the cache processes a

servlet’s XML configuration and builds a CacheConfig object that is made available

to the IdGenerator. The initialize method then builds a list of request and session

variables that must be included in the cache ids for the servlet. Since the

″plugged-in″ IdGenerator is created with a specific servlet’s behavior in mind,

working with the CacheConfig is unnecessary; just hard code the configuration

into the getId method.

The getId method returns the unique String cache id when the servlet is invoked.

If the servlet is cached, the getId method returns null. Typically, an Id will

incorporate the following:

v The URI of the servlet

v The character encoding of the request (when the result is not null)

v The names and values of the input variables that determine the servlet’s output

The getSharingPolicy method should return EntryInfo.NOT_SHARED.

216 WebSphere for z/OS: Assembling J2EE Applications

Chapter 9. Creating and running WebSphere for z/OS client

applications

Once you have installed application components in a J2EE server, you are ready to

create WebSphere for z/OS client applications that use those components. Figure 1

on page 4 illustrates the most likely types of client applications for components

that run in a J2EE server:

v Application clients that run only on non-z/OS or non-OS/390 platforms, such as

Windows 2000. These application clients are specific module types defined in the

Sun Microsystems J2EE specification:

– J2EE application clients, which access Enterprise beans, JDBC databases and

other resources, and depend on an application client run-time to configure its

execution environment.

– Java thin application clients, which use a light-weight Java client

programming model. This type of client is best suited for use in situations

where a Java client application exists but the application must be enhanced to

make use of Enterprise beans, or where the client application requires a

thinner, more light-weight environment than the one offered by the J2EE

application client.
v RMI clients that run on z/OS or OS/390. These Java programs have full access

to J2EE application components installed in WebSphere for z/OS J2EE servers,

but lack access to the java:comp JNDI namespace.

The following table lists types of client applications, and where to find information

about creating and running them.

 For this type of client: See the following information sources:

Application clients running on

non-z/OS or non-OS/390 platforms

“Application clients that run on non-z/OS platforms”

Clients running in WebSphere

Standard Edition on z/OS or

OS/390

“Java clients running in WebSphere Application Server

Standard Edition for z/OS or OS/390” on page 220

Clients running on z/OS or OS/390 “Native z/OS or OS/390 Java clients” on page 222

Application clients that run on non-z/OS platforms

Application clients that run on non-z/OS and non-OS/390 platforms can be the

following specific module types defined in the Sun Microsystems J2EE

specification:

v J2EE application clients

v Java thin application clients

Although these clients cannot run on the z/OS or OS/390 platform, they can

access J2EE application components (Enterprise beans or Web applications) that

run in a WebSphere for z/OS J2EE server.

Depending on the platform on which you plan to run J2EE application clients, you

need the following software:

© Copyright IBM Corp. 2000, 2003 217

|
|

|
|
|
|
|
|

|
|

|

If your application clients

will run on this type of

workstation:

Then you need this additional software:

Windows NT or Windows

2000

You need to download one of the following z/OS packages:

v WebSphere J2EE Client for NT

v WebSphere Java Technology Client

See “Steps for running application clients on Windows NT

or Windows 2000” for instructions.

Any other workstation

platform supported by

WebSphere Application

Server, such as AIX and

Solaris

You must deploy the J2EE application clients in the

WebSphere Application Server Advanced Edition Version 4.0

run-time environment. See the InfoCenter information for

installing and using WebSphere Application Server

Advanced Edition Version 4.0. The InfoCenter is available at

http://www.ibm.com/software/webservers/appserv/

Rules:

v Clients must include the following on their CLASSPATH: the location and name

of JAR files for any Enterprise bean that the client uses

v To access the WebSphere for z/OS naming service, clients must set the property:

java.naming.provider.url=“iiop://x.x.x.x:ppp”

where x.x.x.x:ppp is the IP address and port of the WebSphere for z/OS systems

management server.

Guidelines:

v To develop application clients, you can use any Java application development

tools.

v To assemble application clients, you can use either the WebSphere for z/OS

Application Assembly tool or the WebSphere Application Server Advanced

Edition Application Assembly tool.

v Make sure you consider security requirements. Review the considerations in

“Security” on page 19 and consult with your security administrator.

For further information about designing and coding client applications to run on

platforms other than z/OS and OS/390, see the InfoCenter information for the

WebSphere Application Server Advanced Edition Version 4.0, which is available at

http://www.ibm.com/software/webservers/appserv/

Steps for running application clients on Windows NT or

Windows 2000

Before you begin: You need to:

v Decide whether you are using the WebSphere for z/OS Application Assembly

tool or the WebSphere Application Server Advanced Edition Application

Assembly tool. If you are using the WebSphere for z/OS Application Assembly

tool, download the latest copy. For additional details, see “Steps for installing

the Application Assembly tool” on page 136.

v Make sure the J2EE application components that your client uses are installed on

the WebSphere for z/OS J2EE server, and that the J2EE server is active.

Perform the following steps to prepare and run an application client on Windows:

218 WebSphere for z/OS: Assembling J2EE Applications

|

|

|

1. Install the appropriate client package by downloading the following files from

the WebSphere for z/OS HFS into a working directory on your workstation:

v For J2EE application clients, download the WebSphere J2EE Client for NT

(J2EEClient_NT.zip). Unzip the file on your workstation.

v For Java thin application clients, download the WebSphere for z/OS Java

Technology Client (JavaTechnologyClient_setup.exe)

 The default HFS location for these files is /usr/lpp/WebSphere/bin/

 Once the files are on your workstation, run the setup.exe file.

 Tip: Always make sure you have the latest service for these WebSphere for

z/OS packages by checking the Support Web site

http://www.ibm.com/software/webservers/appserv/support.html

2. Create Java main, using the Java application development tool of your choice.

 Rules:

v Clients must include the following on their CLASSPATH: the location and

name of JAR files for any Enterprise bean that the client uses

v To access the WebSphere for z/OS naming service, clients must set the

property:

java.naming.provider.url=“iiop://x.x.x.x:ppp”

where x.x.x.x:ppp is the IP address and port of the WebSphere for z/OS

systems management server.

3. Use a WebSphere application assembly tool to package the application client.

For example, using the WebSphere for z/OS Application Assembly tool:

a. Create an application with the application client module (the Java main).

b. Define the following:

v Enterprise bean references (ejb-ref elements) and their full JNDI look-up

names.

v Resource references (res-ref elements) and their full JNDI look-up

names.

v Any environment variable references (env-vars), such as time-out values

or SQL query strings.
c. Export the application in an Enterprise Archive (EAR) file.

4. Use the Application Client Resource Configuration tool to define local resources

for your Java main. To start the tool, enter clientConfig from a Windows

command prompt.

 If you need further details for using this tool to define local resources, see the

InfoCenter for WebSphere Application Server Advanced Edition Version 4.0,

which is available at http://www.ibm.com/software/webservers/appserv/

5. To start the application client, enter launchClient from a Windows command

prompt.

Chapter 9. Creating and running WebSphere for z/OS client applications 219

|
|

|
|

|
|

|

|

|
|
|

|

If you need further details for using this tool to start the client, see the

InfoCenter for WebSphere Application Server Advanced Edition Version 4.0,

which is available at http://www.ibm.com/software/webservers/appserv/

Java clients running in WebSphere Application Server Standard

Edition for z/OS or OS/390

Figure 28 on page 366 depicts possible configurations for WebSphere Application

Server Standard Edition V3.5 Web applications. The following information applies

only to the case in which Web applications run in the V3.5 Standard Edition

environment and drive Enterprise beans that run in a WebSphere for z/OS J2EE

server, when both the V3.5 product and the WebSphere for z/OS J2EE server reside

on the same z/OS or OS/390 system. For information about installing both

products on the same system, see WebSphere Application Server V4.0.1 for z/OS and

OS/390: Installation and Customization, GA22-7834.

Because documentation for developing and running this type of J2EE application

client is available in WebSphere Application Server for OS/390 V3.5 Standard Edition

Planning, Installing, and Using, GC34-4835, the following procedure provides only a

summary of the development and installation process, with references to resources

with further instructions. Use this procedure as a checklist to make sure you have

the correct tools and information sources on hand, as you begin to develop and

run these clients.

Before you begin:

v You must have the WebSphere Application Server Standard Edition Version 3.5

for z/OS or OS/390 installed and customized. Because this task is typically

performed by system programmers, you might need the help of such experts to

complete this task at your installation. If necessary, see one or both of the

following information sources:

– WebSphere Application Server for z/OS or OS/390 Version 3.5 Standard Edition

Program Directory, which is shipped with the Standard Edition product

– WebSphere Application Server for OS/390 V3.5 Standard Edition Planning,

Installing, and Using, GC34–4835, which is available at the following Web site:

http://www.ibm.com/software/webservers/appserv/

v Make sure you consider security requirements. Review the considerations in

“Security” on page 19 and consult with your security administrator.

Perform the following steps to create and run clients in WebSphere Application

Server Standard Edition:

1. Make sure you have installed the appropriate application development

software, and have the associated documentation for those tools on hand. For

further details, see Chapter 5, “Setting up the application development

environment,” on page 109.

 Recommendations:

v Use an application development environment such as WebSphere Studio

Application Developer, Application Developer Integration Edition, or

VisualAge for Java to develop and test servlets and JSPs. These environments

enable you to test your application clients without having to install a

WebSphere Application Server environment on the workstation.

220 WebSphere for z/OS: Assembling J2EE Applications

v Make sure you check the latest edition of the following book for any

additional application development tooling considerations: WebSphere

Application Server for OS/390 V3.5 Standard Edition Planning, Installing, and

Using, GC34–4835

2. Code and test the servlet and JSP components of your J2EE application.

 Rule: J2EE application clients must set the Java property

java.naming.factory.initial to

com.ibm.websphere.naming.WsnInitialContextFactory.

 Recommendation: Make sure you check the latest edition of WebSphere

Application Server for OS/390 V3.5 Standard Edition Planning, Installing, and Using

for any programming model restrictions that might affect the design of your

application clients.

3. When you are satisfied with the unit test results for these components, transfer

the component artifacts (JAR files, and so on) to a working directory in the

hierarchical file system (HFS) on z/OS or OS/390.

 Recommendation: Use the following naming convention for your working

directory: /webapp/servlet_or_JSP_name/

Note: When you transfer the files from the workstation (an ASCII-based

system) to z/OS or OS/390 (an EBCDIC-based system), you must

perform the necessary conversions as part of transferring the files.

4. To the WebSphere Application Server directives section in the HTTP server

configuration file (called httpd.conf), add the following Service directive for

the webapp/servlet_or_JSP_name relative directory:

Service /webapp/servlet_or_JSP_name/*

 /usr/lpp/WebSphere/AppServer/bin/was400plugin.so:service_exit

 The httpd.conf file is usually in the /etc directory.

5. Configure the WebSphere Application Server by changing settings in the

was.conf file as follows:

appserver.libpath=/usr/lpp/WebSphere/lib

appserver.classpath=path/ws390crt.jar

Note: The ws390crt.jar file is shipped with the WebSphere for z/OS product,

so you must copy it into the HFS for the Standard Edition V3.5 product.

The JAR file is in /usr/lpp/WebSphere/lib/ (if your installation uses the

default path /usr/lpp/WebSphere when installing the WebSphere for

z/OS product). For the appserver.classpath setting, substitute path with

the Standard Edition V3.5 HFS directory into which you copied the

ws390crt.jar file.

 The was.conf file is usually in the /usr/lpp/WebSphere/AppServer/properties

directory. WebSphere Application Server for OS/390 V3.5 Standard Edition Planning,

Installing, and Using describes all of the application server properties that you

can set through this file.

6. Define your J2EE application clients to the WebSphere Application Server by

setting Web application properties in the was.conf file.

Chapter 9. Creating and running WebSphere for z/OS client applications 221

Rule: The following property settings are required for both servlets and JSPs:

v deployedwebapp.<webapp_name>.classpath=

/usr/lpp/WebSphere/lib/ws390crt.jar plus the location and name of JAR

files for any Enterprise bean that the client uses

v deployedwebapp.<webapp_name>.java.naming.factory.initial=

com.ibm.websphere.naming.WsnInitialContextFactory

v deployedwebapp.<webapp_name>.javax.naming.provider.url=

“iiop://x.x.x.x:ppp where x.x.x.x:ppp is the IP address and port of the

WebSphere for z/OS systems management server.

 You must specify a value for this property to access the WebSphere for z/OS

naming service on another sysplex, or to access the JNDI on an Advanced

Edition WebSphere Application Server running on a workstation platform.

Recommendation: Make sure you check WebSphere Application Server for OS/390

V3.5 Standard Edition Planning, Installing, and Using to determine whether you

need to set any additional Web application properties through the was.conf

file.

7. Stop and restart the HTTP server.

8. Access your J2EE application client from a Web browser by setting the location

to http://<host>/webapp/<webapp_name> Web site, where <host> is the

application client host system.

Native z/OS or OS/390 Java clients

When your installation’s system programmers installed and customized WebSphere

for z/OS, they ran sample applications (which are shipped as part of the product)

to verify that the installation was successful. You can use the same applications to

see how to drive J2EE application components on z/OS or OS/390 from a Java

client running on z/OS or OS/390. WebSphere Application Server V4.0.1 for z/OS and

OS/390: Installation and Customization, GA22-7834 contains a procedure for running

the WebSphere for z/OS installation verification programs (IVPs). Use this

procedure and the associated files as models for running your own z/OS or

OS/390 clients, which may include any Java processes running in the UNIX

System Services (USS) environment. Pay particular attention to the content and

instructions in the ejbivp.sh file, which is a USS shell script that runs the sample

PolicyClient to drive the Policy Enterprise bean IVP. This shell script is available in

the /samples/PolicyIVP/ejb subdirectory of the HFS location in which WebSphere

for z/OS is installed.

For information about designing and coding Java clients that run on z/OS or

OS/390, start with z/OS UNIX System Services User’s Guide, SA22-7801, and the

following rules and guidelines:

v Rules:

– Clients must include the following on their CLASSPATH:

/usr/lpp/WebSphere/lib/ws390crt.jar plus the location and name of JAR

files for any Enterprise bean that the client uses

– Clients must use explicit names for Enterprise beans and homes. In other

words, clients cannot use JNDI look-ups for java:comp names.

– To access the WebSphere for z/OS naming service, clients must set the

property:

222 WebSphere for z/OS: Assembling J2EE Applications

java.naming.provider.url=“iiop://x.x.x.x:ppp”

where x.x.x.x:ppp is the IP address and port of the WebSphere for z/OS

systems management server.

 You must specify a value for this property to access the WebSphere for z/OS

naming service on another sysplex, or to access the JNDI on an Advanced

Edition WebSphere Application Server running on a workstation platform.
v Guideline: Make sure you consider security requirements. For z/OS or OS/390

clients, your installation might not require any security mechanisms even if you

are running these clients in a production system. Review the considerations in

“Security” on page 19 and consult with your security administrator.

Chapter 9. Creating and running WebSphere for z/OS client applications 223

224 WebSphere for z/OS: Assembling J2EE Applications

Part 3. Programming and deployment scenarios for J2EE

applications

Each of the following topics illustrate how to exploit some of the J2EE technologies

and APIs that WebSphere for z/OS supports. Some of these scenarios span the

coding, assembly, and installation tasks that application assemblers, deployers, and

system administrators perform in the WebSphere for z/OS environment.

The instructions in these scenarios assume that you are using the WebSphere for

z/OS Application Assembly tool and Administration application for application

assembly, deployment and installation tasks. You may, however, achieve the same

results using other WebSphere-supported application assembly tools. In fact, the

preferred method of deploying applications is to use WebSphere Studio

Application Developer and Direct Deployment Tool/390fy. If you are using the

following two IBM extensions, however, you still need to use the WebSphere for

z/OS Application Assembly tool:

v SyncToOSThread: See “Synchronizing operating system thread identity to

RunAs identity” on page 31 for more information on this extension.

v Connection Management Policy: See “Exploiting connection management

support” on page 71 for more information on this extension.

 If you want to: Then use this topic as a model procedure:

Code and deploy application components

that use Java Naming and Directory Interface

calls

Chapter 10, “Using JNDI look-ups,” on page

227

Use declarative and programmatic security

mechanisms to set authorization controls for

Enterprise beans or their methods

Chapter 11, “Using security roles and RunAs

identities with Enterprise beans,” on page

231

Code and deploy application components

that use Java Message Services

Chapter 12, “Using the Java Message Service

API in J2EE application components,” on

page 237

Code and deploy application components

that use JavaMail APIs

Chapter 13, “Using the JavaMail API in J2EE

application components,” on page 241

Use HTTP session support “HTTP session support” on page 87

Enable security mechanisms for Web

applications

Chapter 14, “Steps for configuring Web

security,” on page 247

Develop, deploy, register, and enable your

own Web services for use

Chapter 15, “Creating and deploying Web

Services,” on page 249

Configure Type 4 JDBC connectors for use by

Enterprise beans and servlets

Chapter 16, “Using Type 4 JDBC Connectors

with WebSphere for z/OS,” on page 257

© Copyright IBM Corp. 2000, 2003 225

|
|
|
|

|
|
|
|
|
|
|
|

|
|

|
|

|||

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

||

|
|
|
|

|
|
|
|

|
|
|
|
|

226 WebSphere for z/OS: Assembling J2EE Applications

Chapter 10. Using JNDI look-ups

 Subtask Associated information (See . . .)

Understanding the concepts related to JNDI

and the WebSphere for z/OS run-time

environment

v “Naming” on page 42

v “Java Naming and Directory Interface™

(JNDI)” on page 43

Correctly using java:comp to look up a

database resource

“Example: Using the JNDI subcontext to

look up a resource”

Setting JNDI caching properties for a J2EE

server or client

“Example: Modifying JNDI caching

behavior” on page 229

Example: Using the JNDI subcontext to look up a resource

The following sample illustrates how an Enterprise bean, using bean-managed

persistence, can use the JNDI subcontext (java:comp) to refer to its datasource. The

bean is part of the PolicyIVP program that your system programmers use to verify

the installation of the WebSphere for z/OS product. In this sample, the BMP bean’s

datasource is a DB2 database on z/OS or OS/390.

The following topics cover the coding, assembly, and deployment tasks that need

to be completed to successfully run the bean in a J2EE server:

v “Steps for preparing the Enterprise bean”

v “Setting up the J2EE server and DB2 datasource” on page 228

Steps for preparing the Enterprise bean

1. Using an appropriate workstation development tool, code the BMP bean

implementation like this:

 Example:

...
 // obtain the initial JNDI context

 Context initCtx = new InitialContext();

 // perform JNDI lookup to obtain resource manager

 // connection factory

 javax.sql.DataSource ds = (javax.sql.DataSource)

 initCtx.lookup("java:comp/env/jdbc/EJB_IVP_DS");

 // Invoke factory to obtain a connection. The security

 // principal is not given, and therefore

 // it will be configured by the Deployer.

 java.sql.Connection con = ds.getConnection();

 ...
 Result: Exporting this BMP bean generates a deployment descriptor that

contains the following resource reference for the datasource:

<resource-ref>

<description>A data source for WAS 390 PolicyIVP BMP

</description>

<res-ref-name>jdbc/EJB_IVP_DS</res-ref-name>

<res-type>javax.sql.DataSource</res-type>

<res-auth<Container></res-auth>

</resource-ref>

© Copyright IBM Corp. 2000, 2003 227

|

Note: Note that the java:comp/env/ prefix is not included in the resource

reference element. Because this JNDI subcontext for the BMP bean is

implicit, the EJB container in the J2EE server automatically uses the

prefix at run-time.

2. Use the Application Assembly tool to package the BMP bean in an Enterprise

Archive (EAR) file. If you need further details, see “Steps for assembling a new

J2EE application” on page 137.

After the bean is packaged in an EAR file, you are ready to install the BMP bean in

a J2EE server that is configured to access a DB2 datasource.

Setting up the J2EE server and DB2 datasource

1. Set up the database resources that the BMP bean uses. Your system

programmer or database administrator has probably installed and configured

the required DB2 subsystem, and might already have created the databases or

tables that your application will use. So the only tasks you might need to do

are these:

v Find out what DB2 subsystem name you need to specify when you configure

the J2EE server.

v Find out what security controls, if any, your installation requires for access to

the DB2 subsystem and its resources, and use the appropriate security

definitions.

v Create any database tables that the BMP bean needs to use.

 If necessary, see:

v “Security” on page 19 for security controls that you might need to use.

v DB2 Administration Guide, SC26-9931 for instructions on creating database

tables.

2. Use the Administration application to define a J2EE resource. Add this

definition under the J2EE Resources folder, specifying a name and type in the

properties form.

3. Use the Administration application to define a J2EE resource instance that

represents the DB2 subsystem on z/OS or OS/390. Add this definition under

the J2EE Resources folder, specifying the appropriate values in the properties

form.

 For example, the instructions for setting up the DB2 datasource for the

PolicyIVP tell your system programmer to enter the following values:

v J2EE resource instance name.

 Example: BBOASR2_EJB_IVP_RESOURCE_system, where system is the name

of the z/OS or OS/390 system on which the J2EE server will run.

v Location Name: Supply the the DB2 location name.

4. Use the Administration application to install the BMP bean:

228 WebSphere for z/OS: Assembling J2EE Applications

a. Choose Install J2EE Application... from the Selected menu bar. The

Install J2EE Application dialog box appears.

b. In the dialog box, enter the fully qualified path name of the EAR file that

contains your BMP bean, and the name of the FTP server for the sysplex in

which you want to install the bean.

c. Click OK, and the Administration application displays the application

content in the EAR file.

d. For BMP bean, use the following steps to resolve the datasource references:

1) Expand the EJB Jars folder to display the BMP bean. When you select

the bean, the Administration application displays information from the

deployment descriptor.

2) Using the Reference and Resource Resolution window, select the J2EE

resource you defined earlier in this procedure, to link the DB2

subsystem to the bean’s resource reference name.
e. Click OK to start the application installation process.

If you need additional details about installing applications, see “Steps for

installing a J2EE application” on page 154.

5. Validate the conversation that you have modified or just created. Message

BBON0442I appears in the status bar, indicating that the new conversation is

valid.

6. Commit the validated conversation. Message BBON0444I appears in the status

bar when the new conversation and J2EE server definition are committed.

When you activate this conversation, the BMP bean that you installed may use the

tables in the DB2 database.

Example: Modifying JNDI caching behavior

WebSphere for z/OS uses caching to increase the performance of JNDI lookup

operations related to both the global and local namespaces. You may change JNDI

caching behavior only for the global namespace, not for java:comp lookups.

To change cache behavior in a Java client running on z/OS or OS/390, set the

JNDI caching properties described in “Java Naming and Directory Interface™

(JNDI)” on page 43, using one of the following:

v An environment Hashtable in the client code.

v A jndi.properties resource file.

Note: Because a default JNDI properties file is shipped with WebSphere for

z/OS, Java clients must ensure that their own JNDI properties file appears

in the CLASSPATH before the default file. In other words, the client’s

properties file must precede any WebSphere for z/OS JAR files that the

client uses (for example: ws390crt.jar).

v The java command line, using the -D switch.

 Example:

java -Dcom.ibm.websphere.naming.jndicache.cacheobject=cleared

com.ibm.ivj.samples.policy.PolicyClient

Chapter 10. Using JNDI look-ups 229

Recommendation: Set caching properties by passing them as a Hashtable or

Properties object to the InitialContext constructor. This way there is less confusion

about which contexts implement caching and which do not.

The following code sample illustrates how a J2EE application client, running on

z/OS or OS/390, may change the default JNDI caching behavior that WebSphere

for z/OS uses. You might want to change the default JNDI caching, for example,

when your application component works with two types of object references:

Those that are stable, and others that are volatile. The sample illustrates how you

can use one context that uses caching to lookup the stable objects, and another

context that does not use caching to look up the volatile objects.

import java.util.Hashtable;

import javax.naming.InitialContext;

import javax.naming.Context;

/*****

Caching discussed in this section pertains only to the WebSphere for z/OS

initial context factory. Assume the property, java.naming.factory.initial,

is set to com.ibm.websphere.naming.WsnInitialContextFactory

as a java.lang.System property.

*****/

Hashtable env;

Context ctx;

// To clear a cache:

env = new Hashtable();

env.put("com.ibm.websphere.naming.jndicache.cacheobject", "cleared");

ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();

env.put("com.ibm.websphere.naming.jndicache.maxcachelife", "60");

ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();

env.put("com.ibm.websphere.naming.jndicache.cacheobject", "none");

ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();

env.put("com.ibm.websphere.naming.jndicache.cacheobject", "populated");

ctx = new InitialContext(env);

env.put("com.ibm.websphere.naming.jndicache.cacheobject", "none");

Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should rarely change.

o = ctx.lookup("com/mycom/MyEJBHome");

// Narrow, etc. ...

// Do not use cache if data is volatile.

o = noCacheCtx.lookup("com/mycom/VolatileObject");

// ...

230 WebSphere for z/OS: Assembling J2EE Applications

Chapter 11. Using security roles and RunAs identities with

Enterprise beans

WebSphere for z/OS supports programmatic authorization controls that can

provide authorization checking on a more granular level than your installation’s

network and system-level authorization controls. These programmatic

authorization controls include:

v Security roles, which are logical representations of types of users, to prevent

unauthorized use of individual J2EE application components or their methods.

v Security identities that are specified for the execution of a particular method and

any downstream processes, or for the execution of an individual application

component. (This type of authorization control is similar to the RunAs support

defined in the Sun Microsystem’s EJB 2.0 specification.)

The following table shows the subtasks and associated information for using

security roles and identities in the WebSphere for z/OS environment:

 Subtask Associated information (See . . .)

Understanding the concepts related to

programmatic authorization controls

“Authorization controls for J2EE application

components” on page 25

Completing coding, assembly, and

deployment tasks to define security roles and

method permissions in Enterprise beans

“Steps for assembling beans with security

roles and method permissions”

Configuring the run-time environment to

support the use of security roles or identities

“Steps for configuring the run-time

environment for security roles and

identities” on page 233

Steps for assembling beans with security roles and method

permissions

 Application assemblers combine Enterprise beans and other components into J2EE

applications that address a business problem or implement a business process.

These components may come from diverse sources, so part of the application

assembler’s job is to integrate these components so that they fit into the customer

installation’s security domain. Using the WebSphere for z/OS Application

Assembly tool, the application assembler defines security roles to control access to

bean methods. These roles map to actual user identities or user groups defined to

the Security Server (RACF) on the z/OS or OS/390 platform, through the

EJBROLE class. Setting up these corresponding RACF class definitions is part of

the next procedure, “Steps for configuring the run-time environment for security

roles and identities” on page 233.

Before you begin:

v Because security roles in an Enterprise bean’s deployment descriptor must be

mapped to actual users or user groups on z/OS or OS/390, work with the z/OS

or OS/390 security administrator to determine whether currently defined user or

group profiles are appropriate, or whether new profiles are required. You will

need to use the profile names as names for the security roles you define for the

bean.

© Copyright IBM Corp. 2000, 2003 231

v Download the latest copy of the Application Assembly tool. For additional

details, see “Steps for installing the Application Assembly tool” on page 136.

Perform the following steps to assemble beans with security roles and method

permissions, using the WebSphere for z/OS Application Assembly tool:

1. If necessary, define a new application and import the Enterprise bean. If you

are modifying a bean that was already imported into an existing application,

skip to the next step.

2. At the application or bean level, define one security role for each RACF profile

that the z/OS or OS/390 security administrator will use for the EJBROLE class.

For example, at the application level:

a. Highlight the application name and click the right mouse button.

b. Click on Modify, then highlight the Security tab in the right pane.

c. Select Add... to open a dialog box where you may type in the security role

name and an optional description.

d. Click OK, and define as many other security roles as necessary.

e. Click on the diskette icon to save the definitions.

Rule: The security role name must exactly match the profile name. Profile

names are limited to 245 characters. Blanks are not allowed in the profile name.

3. At the bean level, define method permissions for any methods that should have

restricted access:

a. Highlight the bean name and click the right mouse button.

b. Click on Modify, then highlight the Permissions tab in the right pane.

c. Select the security role name, and then scroll through the list of bean

methods, clicking on the checkbox to the left of the methods to which you

want to restrict access.

d. Repeat the process with a different security role, as necessary.

e. Click on the diskette icon to save the definitions.

4. If the bean code includes the isCallerInRole method, you must link the

security role reference in the code to one of the security roles you just defined.

Otherwise, skip to the next step.

a. Highlight the bean name and click the right mouse button.

b. Click on Modify, then highlight the Security tab in the right pane.

c. Select the security role name (which is the reference used in the bean code)

and click the Modify... button at the bottom of the right pane.

 Tip: If you are working with an Enterprise bean written to the 1.1

specification level, these references will appear automatically under the Role

Name column.

d. Click on the down arrow in the Link box to display the security roles you

just defined, and select the appropriate role to be linked with this role

reference.

e. Repeat the linking process for additional security role references, if any.

f. Click on the diskette icon to save the definitions.

232 WebSphere for z/OS: Assembling J2EE Applications

5. (Optional) If you want to define a security identity for WebSphere for z/OS to

propagate during the execution of a bean method, modify the RunAs setting

for each method. RunAs options are: Caller, server (the default), or security role

(any of the roles you have defined).

a. Highlight the bean name and click the right mouse button.

b. Click on Modify, then highlight the IBM RunAs tab in the right pane.

c. Select the bean method and click the Modify... button at the bottom of the

right pane.

d. Click on the down arrow in the Type box to select caller, server, or role.

e. If you selected role for the type, click on the down arrow in the Role box to

display the security roles you just defined, and select the appropriate role to

be used for the RunAs identity.

f. Repeat this modification process for additional methods, if any, for which

you want to specify a security identity.

g. Click on the diskette icon to save the definitions.

6. (Optional) If you want to specify that the RunAs identity be used on the

operating system thread during method processing:

a. Highlight the bean name and click the right mouse button.

b. Click on Modify, then highlight the IBM +ThreadID tab in the right pane.

c. Scroll through the list of bean methods, clicking on the checkbox to the left

of the methods for which you want to use the RunAs identity on the

operating system thread.

d. Click on the diskette icon to save the definitions.

7. Package the bean and other J2EE application components, if any, in an

Enterprise Archive (EAR) file. If you need further details, see “Steps for

assembling a new J2EE application” on page 137.

When message BBO94010I appears in the status bar, your application is ready to be

installed in a WebSphere for z/OS J2EE server, which is one step in the following

procedure, “Steps for configuring the run-time environment for security roles and

identities.”

Steps for configuring the run-time environment for security roles and

identities

 If you are installing Enterprise beans for which you want to use security roles,

RunAs identities, or a specific RunAs identity on the operating system thread, you

need to configure the run-time environment to support these authorization checks.

Specifically, you might have to do one or more of the following:

v If the application’s deployment descriptor defines security roles, these roles must

be mapped to actual users or user groups on z/OS or OS/390, through the

RACF EJBROLE class.

v If the Enterprise beans use RunAs settings to control access to J2EE resources,

additional RACF class definitions might be required.

v If bean methods require a specific RunAs setting to be used on the operating

system thread, the J2EE server property Enable Setting OS Thread to RunAs

Identity must be set.

Chapter 11. Using security roles and RunAs identities with Enterprise beans 233

Perform the following steps to configure the run-time environment for using

security roles or identities. If you do not have authorization to use RACF

commands, you will need the help of the z/OS or OS/390 security administrator

to complete some of the following steps:

1. Using RACF commands, complete the following tasks:

a. Activate the EJBROLE class and allows z/OS or OS/390 systems to share

the generic profiles for this class, using the SETROPTS CLASSACT

command.

b. Define the necessary profiles associated with the EJBROLE class, with

universal access authority for each profile set to NONE, using the RDEFINE

command.

 Rule: If the Enterprise bean contains RunAs permissions set to a security

role, specify application data through the APPLDATA parameter, which is

set to the actual user ID that WebSphere for z/OS is to use for the security

role.

c. Permit read access to each EJBROLE class profile to specific user IDs or

groups, using the PERMIT command.

d. Refresh the EJBROLE class profile information stored in the RACF database,

using the SETROPTS REFRESH command.

Tips:

v You may use the GEJBROLE class to group security-role profiles.

v z/OS Security Server RACF Command Language Reference, SA22-7687 explains

how to submit RACF commands and defines the command syntax and

parameters.

2. Make sure that the appropriate user ID (caller, J2EE server region, or security

role user ID) has authorization to use system resources that the bean requires,

based on the RunAs settings used for the Enterprise bean. To determine what

additional authorities might be necessary, review the information in Table 4 on

page 33.

3. Using the WebSphere for z/OS Administration application, complete the

following tasks to create a new or modify an existing J2EE server configuration:

a. (Optional) If the application assembler used the Set OS thread identity to

RunAs identity property, configure the J2EE server to enable setting the

operating system thread to the RunAs identity. To do so, highlight the

server name and scroll through the properties form until you find the

checkbox labelled Enable Setting OS Thread to RunAs Identity. Then click

on the checkbox.

b. Install the J2EE applications that use security roles or identities:

1) Choose Install J2EE Application... from the Selected menu bar. The

Install J2EE Application dialog box appears.

2) In the dialog box, enter the fully qualified path name of the EAR file

that contains your J2EE application, and the name of the FTP server for

the sysplex in which you want to install your application.

3) Click OK, and the Administration application displays the application

content in the EAR file.

4) Resolve the bean’s resource references, if any.

234 WebSphere for z/OS: Assembling J2EE Applications

5) After resolving any additional references or resources that this

application requires, click OK to start the application installation

process.

If you need additional details about installing applications, see “Steps for

installing a J2EE application” on page 154.

c. Validate the conversation (that is, the J2EE server configuration) that you

have modified or just created. Message BBON0442I appears in the status

bar, indicating that the new conversation is valid.

d. Commit the validated conversation. Message BBON0444I appears in the

status bar when the new conversation and J2EE server definition are

committed.

When you activate this conversation, the J2EE server can successfully perform

security checks for bean methods, and use the appropriate security identity during

method processing.

Chapter 11. Using security roles and RunAs identities with Enterprise beans 235

236 WebSphere for z/OS: Assembling J2EE Applications

Chapter 12. Using the Java Message Service API in J2EE

application components

The Java Message Service (JMS) provides a framework for developing and

supporting Java software components that communicate by creating, sending, and

receiving messages. This method of communication, known as messaging, allows

components to interact asynchronously and reliably, without knowing more about

their communication partners than message formats and destinations.

WebSphere for z/OS supports the use of the JMS API by the following types of

J2EE application components: Servlets, JavaServer Pages (JSPs), and Enterprise

JavaBeans.

The following table shows the subtasks and associated information for using the

JMS API in the WebSphere for z/OS environment.

 Subtask Associated information (See . . .)

Understanding the concepts related to JMS

and the WebSphere for z/OS run-time

environment

“Java™ Message Service” on page 45

Completing coding, assembly, and

deployment tasks for J2EE applications that

use JMS

“Steps for preparing J2EE applications that

use the JMS API”

Setting up a J2EE server configuration to

support J2EE applications that use JMS

“Steps for configuring JMS resources for the

J2EE server” on page 238

Steps for preparing J2EE applications that use the JMS API

Before you can install J2EE applications that use the JMS API into a J2EE server,

you need to correctly assemble and deploy the application components. To do so,

you need to use the WebSphere for z/OS Application Assembly tool to define

WebSphere for z/OS resource types for JMS connection factories and destinations.

Before you begin:

v Note that the following instructions assume that the J2EE applications to be

installed have been designed and coded in accordance with the JMS API

programming model, as documented in MQSeries Using Java, SC34–5456.

v Download the latest copy of the Application Assembly tool. For additional

details, see “Steps for installing the Application Assembly tool” on page 136.

v You might want to try the JMS sample that is shipped with WebSphere for

z/OS; instructions for setting up and running the sample appear in the

accompanying README file. The sample and its README file are in the HFS

directory /usr/lpp/WebSphere/samples/jms

Perform the following steps to prepare JMS applications for installation in a J2EE

server:

1. Use the Application Assembly tool to make sure that the application

deployment descriptor correctly defines a resource reference type for all

connection factories and destinations that the application uses.

 Example:

© Copyright IBM Corp. 2000, 2003 237

<resource-ref>

<description>description</description>

<res-ref-name>jms/TwoPhaseQCF</res-ref-name>

<res-type>javax.jms.QueueConnectionFactory</res-type>

<res-auth>Container</res-auth>

</resource-ref>

2. Use the Application Assembly tool to package the J2EE application components

in an Enterprise Archive (EAR) file. If you need further details, see “Steps for

assembling a new J2EE application” on page 137.

Steps for configuring JMS resources for the J2EE server

If you are installing J2EE applications that use the JMS API, you need to configure

their run-time environment (that is, the J2EE server) to include connection factories

and destinations. To do so, you need to use the WebSphere for z/OS

Administration application to define these connection factories and destinations as

J2EE resources for the J2EE server.

If necessary, see WebSphere Application Server V4.0.1 for z/OS and OS/390: System

Management User Interface, SA22-7838 for more information on how to use the

Administration application.

Before you begin: You need to make the following decisions:

v Decide whether to install these J2EE applications in an existing or a new server.

The procedure below assumes you are installing the J2EE applications in an

existing application server. If you are creating a new server, use the instructions

in Chapter 8, “Creating a J2EE server run-time environment,” on page 143 along

with the information in the following procedure.

v Decide whether you want to enable tracing for MQSeries-related activity. To do

so, set the appropriate trace properties in the JVM properties file for the J2EE

server. For further information, see:

– “JVM properties and properties files” on page 339 for instructions about

setting up and using a JVM properties file for a J2EE server.

– MQSeries Using Java, SC34–5456, for descriptions of the trace properties you

can use for MQSeries.

Perform the following steps to configure JMS connection factories and destinations

for an existing J2EE server:

1. Set up MQSeries to work with the WebSphere for z/OS run-time to implement

JMS interfaces and to provide administrative and control features.

 Tips:

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834 documents the MQSeries software requirements for

use with WebSphere for z/OS.

v MQSeries Using Java, SC34–5456, contains installation instructions for the

MQSeries classes for Java and for Java Message Service.

2. Use the Administration application to add MQSeries Java class files to the J2EE

server’s environment variables:

v Add the following files to the CLASSPATH environment variable:

– mq_install_path/com.ibm.mqjms.jar

– mq_install_path/com.ibm.mq.jar

238 WebSphere for z/OS: Assembling J2EE Applications

– mq_install_path

v Add the following to the LIBPATH environment variable: mq_install_path

mq_install_path is the HFS where you installed MQSeries; for example:

/usr/lpp/mqm/java/lib

3. Use the Administration application to define at least one connection factory and

destination as J2EE resources. Add these definitions under the J2EE Resources

folder, specifying a name and type for each in the properties form.

 Guidelines:

 Use this resource type: If you want:

MQRRSQueueConnectionFactory

MQRRSTopicConnectionFactory

Behavior to be determined by the transactional

environment when the JMS client uses the session:

v When a global transaction is active, the messaging

done in the scope of that transaction becomes part

of the logical unit of work.

v When a global transaction is not in effect, the

session behaves as directed by the specified

transacted and acknowledge modes.

MQQueueConnectionFactory

MQTopicConnectionFactory

Behavior to be determined by only the session’s

attributes. In this case, the J2EE server ignores the

transactional environment in effect when JMS client

uses the session.

4. Use the Administration application to define connection factory and destination

instances. Add these definitions under the J2EE Resource Instances folder.

 For each resource instance, fill in the appropriate property values. For

properties other than those listed in the table below, you may use the default

values.

 Resource

instance:

Property name: Instructions for supplying a value:

Queue

Connection

Factory

Client ID Fill in the name of the JMS client (J2EE

application) that you will install in this J2EE

server.

Queue Manager

Name

Fill in the name of the local MQSeries queue

manager to which the JMS client will connect.

Queue MQ Queue Name Fill in the name of an MQSeries queue that the

JMS client will use.

Queue Manager

Name

Fill in the name of the queue manager that will

host this queue. Generally, this value is the same

as the one you specify for Queue Manager Name

for the Queue ConnectionFactory.

Topic Connection

Factory

Client ID Fill in the name of the JMS client (J2EE

application) that you will install in this J2EE

server.

Queue Manager

Name

Fill in the name of the local queue manager that is

either hosting the message broker or that has

channels defined to and from the message broker

queue manager.

Broker Queue

Manager

Fill in the name of the queue manager that is

hosting the message broker.

Chapter 12. Using the Java Message Service API in J2EE application components 239

Resource

instance:

Property name: Instructions for supplying a value:

Topic MQ Topic Name Fill in the name of an MQSeries topic that the JMS

client will use.

Note: Unlike queues, topics are created

dynamically.

5. Use the Administration application to install the J2EE applications that use JMS:

a. Choose Install J2EE Application... from the Selected menu bar. The

Install J2EE Application dialog box appears.

b. In the dialog box, enter the fully qualified path name of the EAR file that

contains your J2EE application, and the name of the FTP server for the

sysplex in which you want to install your application.

c. Click OK, and the Administration application displays the application

content in the EAR file.

d. For each application component that uses the JMS API, use the following

steps to resolve the connection factory and destination resource references:

1) Expand the appropriate folder (EJB Jars or Web Apps) to display the

components. When you select a specific component, the Administration

application displays information from the deployment descriptor.

2) Using the Reference and Resource Resolution window, select the J2EE

resources you defined earlier in this procedure.
e. After resolving any additional references or resources that this application

requires, click OK to start the application installation process.

If you need additional details about installing applications, see “Steps for

installing a J2EE application” on page 154.

6. Validate the conversation that you have modified or just created. Message

BBON0442I appears in the status bar, indicating that the new conversation is

valid.

7. Commit the validated conversation. Message BBON0444I appears in the status

bar when the new conversation and J2EE server definition are committed.

When you activate this new conversation, your installed J2EE application may use

the connection factories and destinations to send or retrieve messages.

240 WebSphere for z/OS: Assembling J2EE Applications

Chapter 13. Using the JavaMail API in J2EE application

components

JavaMail provides a framework for developing and supporting Java applications

that send, store, and receive mail. Java application components use the JavaMail

application programming interface (API) to send and receive mail. The WebSphere

for z/OS JavaMail package supports the use of the JavaMail API by the following

types of J2EE application components: Servlets, JavaServer Pages (JSPs), and

Enterprise JavaBeans.

The following table shows the subtasks and associated information for using

JavaMail with WebSphere for z/OS.

 Subtask Associated information (See . . .)

Understanding the concepts related to

JavaMail and the WebSphere for z/OS

run-time environment

“JavaMail™” on page 49

Completing coding, assembly, and

deployment tasks for J2EE applications that

use JavaMail

“Steps for preparing J2EE applications that

use the JavaMail API”

Setting up a J2EE server configuration to

support J2EE applications that use JavaMail

“Steps for configuring mail sessions for the

J2EE server” on page 242

Steps for preparing J2EE applications that use the JavaMail API

Before you can install J2EE applications that use the JavaMail application

programming interface (API) into a J2EE server, you need to correctly assemble

and deploy the application components. To do so, you need to use the WebSphere

for z/OS Application Assembly tool to define mail session resources.

Before you begin: Download the latest copy of the Application Assembly tool. For

additional details, see “Steps for installing the Application Assembly tool” on page

136..

Perform the following steps to prepare JavaMail applications for installation in a

J2EE server:

1. If you have access to the application source code, check to make sure the J2EE

application component correctly uses the JavaMail API. For additional

information about the JavaMail API, use the reference documentation available

through the Sun Microsystems Web site (http://java.sun.com/)

 Example: The following code segment shows how the application sends a

message and saves it into the mail account’s “Sent” folder:

javax.mail.Session mail_session = null;

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

mail_session = (javax.mail.Session)

 ctx.lookup("java:comp/env/mail/MailSession");

MimeMessage msg = new MimeMessage(mail_session);

msg.setRecipients(Message.RecipientType.TO,

 InternetAddress.parse("bob@examplemail.net"));

msg.setFrom(new InternetAddress("alice@mail.eSeller.com"));

msg.setSubject("Important message from eSeller.com");

© Copyright IBM Corp. 2000, 2003 241

msg.setText(msg_text);

Transport.send(msg);

Store store = mail_session.getStore();

store.connect();

Folder f = store.getFolder("Sent");

if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);

f.appendMessages(new Message[] {msg});

2. (Optional) If you have access to the application source code, check to see

whether the application uses the setDebug method to debug JavaMail

processing. If not, you may add the method if you want to enable debugging

capabilities through the application.

 Example:

javax.naming.InitialContext ctx = new javax.naming.InitialContext();

mail_session = (javax.mail.Session)

 ctx.lookup("java:comp/env/mail/MailSession");

mail_session.setDebug(true);

...

 Rule: If you add the setDebug method to the application, you need to

recompile.

 Tip: Even if the application contains the setDebug method, you cannot collect

diagnostic data through JavaMail’s debugging capability unless the J2EE

application’s run-time environment is set to enable debugging. For instructions

on configuring a J2EE server to enable debugging, see “Steps for configuring

mail sessions for the J2EE server.”

3. Use the Application Assembly tool to make sure that the application

deployment descriptor correctly defines a resource reference for the mail

session, as follows:

<resource-ref>

<description>description</description>

<res-ref-name>mail/MailSession</res-ref-name>

<res-type>javax.mail.Session</res-type>

res-auth<Container></res-auth>

</resource-ref>

4. Use the Application Assembly tool to package the J2EE application components

in an Enterprise Archive (EAR) file. If you need further details, see “Steps for

assembling a new J2EE application” on page 137.

Steps for configuring mail sessions for the J2EE server

If you are installing J2EE applications that use JavaMail, you need to configure

their run-time environment (that is, the J2EE server) to include mail sessions. To do

so, you need to use the WebSphere for z/OS Administration application to define

mail sessions as J2EE resources for the J2EE server.

If necessary, see WebSphere Application Server V4.0.1 for z/OS and OS/390: System

Management User Interface, SA22-7838 for more information on how to use the

Administration application.

Before you begin: You need to make the following decisions:

v Decide whether you are going to use the default transport protocol, or a

different one. The default transport protocol is SMTP.

242 WebSphere for z/OS: Assembling J2EE Applications

v Decide whether to allow J2EE applications to access stored messages. If so, you

must complete the optional step (in the procedure below) for setting up IMAP

mail accounts. If your Web applications need only to send messages, you do not

need to set up an IMAP account.

v Decide whether to install these J2EE applications in an existing or a new server.

The procedure below assumes you are installing the J2EE applications in an

existing application server. If you are creating a new server, use the instructions

in Chapter 8, “Creating a J2EE server run-time environment,” on page 143 along

with the information in the following procedure.

Perform the following steps to configure mail sessions for an existing J2EE server:

1. Set up an out-going mail server that uses the appropriate transport protocol.

Note the server name (a fully qualified Internet host name) to use later in this

procedure.

 If you are using the default SMTP protocol, set up an SMTP server.

2. (Optional) If the J2EE applications that you are installing need access to stored

messages, set up an appropriate server and mail accounts. Each mail account

must consist of three elements: A host name, a user ID, and a password. Note

these elements to use later in this procedure.

 If you are using the default IMAP protocol, set up an IMAP server and mail

accounts.

3. (Optional) If you want to enable JavaMail’s debugging capabilities, edit an

existing or create a new JVM properties file for the J2EE server, and specify the

JVM property mail.debug=true

 For additional details about this property, see “JVM properties and properties

files” on page 339, which also contains information about the placement and

content of a JVM properties file.

4. Use the Administration application to define a mail session as a J2EE resource.

Add this definition under the J2EE Resources folder, specifying a name and

type in the properties form.

5. Use the Administration application to define a mail session instance for an

existing or new J2EE server. Add this definition under the J2EE Resource

Instances folder. The resource instance properties can be divided into two

groups: One for mail sending (transport), and the other for mail store access.

 Rule: You must always specify the mail sending (transport) properties mail

transport host and mail originator. The mail store properties are required

only if your J2EE applications need to access stored mail.

 Property name: Instructions for supplying a value:

Mail transport protocol WebSphere for z/OS sets this property to the default

value, SMTP. If you decided to use a different protocol

and have installed the required service provider, replace

the default with the appropriate protocol name.

Mail transport host This mail transport property defines the name of your

mail server. If you are using the default transport

protocol, this is also known as the SMTP server. Enter its

fully qualified Internet host name.

Chapter 13. Using the JavaMail API in J2EE application components 243

Property name: Instructions for supplying a value:

Mail originator This mail transport property is an Internet e-mail address

that by default will appear in the received message as

either the “From” field or the “Reply-To”. This is the

address to which the recipient’s reply will be directed.

This default can be overridden for individual messages in

your application, using the method Message.setFrom().

Mail transport user and Mail

transport password

These properties are rarely used for the default SMTP

protocol. You may leave them blank. However, if you use

a transport protocol that requires username/password,

use these properties to enter the required values.

Mail store protocol WebSphere for z/OS sets this property to the default

value, IMAP. If you decided to use a different protocol

(such as POP3) and have installed the required service

provider, replace the default with the appropriate protocol

name.

Mail store host This property value, along with mail store user and

password values, represents a valid mail account.

Example: If the mail account is

john_william@foo.bar.com, enter foo.bar.com for mail

store host.

Mail store user and Mail store

password

These property values, along with mail store host,

represent a valid mail account.

Example: If the mail account is

john_william@foo.bar.com, enter john_william for mail

store user, and the password required to access the given

mail account.

6. Use the Administration application to install the J2EE applications that use

JavaMail:

a. Choose Install J2EE Application... from the Selected menu bar. The

Install J2EE Application dialog box appears.

b. In the dialog box, enter the fully qualified path name of the EAR file that

contains your J2EE application, and the name of the FTP server for the

sysplex in which you want to install your application.

c. Click OK, and the Administration application displays the application

content in the EAR file.

d. For each application component that uses the JavaMail API, use the

following steps to resolve the mail session resource references:

1) Expand the appropriate folder (EJB Jars or Web Apps) to display the

components. When you select a specific component, the Administration

application displays information from the deployment descriptor.

2) Using the Reference and Resource Resolution window, select the J2EE

resource you defined earlier in this procedure.
e. After resolving any additional references or resources that this application

requires, click OK to start the application installation process.

If you need additional details about installing applications, see “Steps for

installing a J2EE application” on page 154.

244 WebSphere for z/OS: Assembling J2EE Applications

7. Validate the conversation that you have modified or just created. Message

BBON0442I appears in the status bar, indicating that the new conversation is

valid.

8. Commit the validated conversation. Message BBON0444I appears in the status

bar when the new conversation and J2EE server definition are committed.

When you activate this conversation, your installed J2EE application may use the

mail session to create and send messages, and to access a message store if you

have defined mail store properties for this J2EE resource.

Chapter 13. Using the JavaMail API in J2EE application components 245

246 WebSphere for z/OS: Assembling J2EE Applications

Chapter 14. Steps for configuring Web security

Before you begin: You need to understand how Web security is different from EJB

security. See “Web Security” on page 36 for a description of these differences.

Because of these differences, in addition to using the Application Assembly tool to

set up security roles, you must define how you want your Web security

implemented by setting properties in the webcontainer.conf file in See Appendix B,

“Default webcontainer.conf file,” on page 351 for more information about the

webcontainer.conf file properties you will be changing.

Perform the following steps to configure Web security:

1. Update the WebAuth.UnauthenticatedUserSurrogate property in the

webcontainer.conf file with the SAF UserID under which unauthenticated

clients are to execute.

2. Update the WebAuth.LoginToken.Expiration property in the webcontainer.conf

file with the number of minutes for which a login is to be valid. When the

token expiration period is reached, the user will be forced to authenticate again.

3. Set the WebAuth.LoginToken.LimitToSecureConnections property in the

webcontainer.conf file to true if you want a transport constraint to be used for

requests that require use of a login token. When this property is set to true,

WebSphere for z/OS will only return the cookie over a secure connection. It

will also set the ″secure″ bit in the cookie containing the Login Token. Setting

the ″secure″ bit in the cookie instructs HTTP Clients, such as a browser, to only

send the cookie on requests that are being sent on a secure transport.

4. Set the WebAuth.LoginToken.Encrypt property in the webcontainer.conf file to

true if you want the Login Token is to be encrypted.

5. Set the WebAuth.SingleSignOn.Enabled property in the webcontainer.conf file

to true if you want a Login Token to be used for multiple applications existing

on different WebSphere Application Servers serving as virtual hosts. These

virtual hosts must reside within the domain you specified on the

WebAuth.FormBasedLogin.SingleSignOnDomain property in the

webcontainer.conf file.

6. Update the WebAuth.SingleSignOn.Domain property in the webcontainer.conf

file with the name of the domain to which a single sign-on is restricted. This

domain name will be used when creating HTTP cookies for single sign-on, and

determines the scope to which single sign-on applies. For example, a value of

austin.ibm.com would allow single sign-on to work between WebSphere

Application Server A with virtual host of serverA.austin.ibm.com and

WebSphere Application Server B with virtual host of serverB.austin.ibm.com.

Note: Cross-domain Single Sign On is not supported. A server at

austin.lotus.com, and another at austin.ibm.com cannot partipicate in

single sign-on

© Copyright IBM Corp. 2000, 2003 247

|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

248 WebSphere for z/OS: Assembling J2EE Applications

Chapter 15. Creating and deploying Web Services

WebSphere for z/OS v4.0.1 provides initial support for Web Services. This support

enables J2EE components to be exposed as Web Services via Simple Object Access

Protocol (SOAP) messages being sent to the server as HTTP or HTTPS requests.

WebSphere for z/OS uses existing mechanisms for receiving the HTTP and HTTPS

requests. Therefore, you can apply policy such as security and workload

management to Web Services in the same manner as you do for existing

Websphere J2EE components.

WebSphere for z/OS uses the Apache v2.2 SOAP processor in its current

implementation. The SOAP processor is responsible for interpretting the content of

a SOAP message and for dispatching the request to a particular component within

the J2EE server for handling. The SOAP Processor is able to process messages that

comply with the SOAP v1.1 protocol. For more information on the SOAP v1.1

specification, go to URL:

http://www.w3.org

For more information on the Apache SOAP Processor, go to URL:

http://www.apache.org

HTTP is a stateless protocol. Therefore, SOAP-style Web Services requests from a

client to a Service provider over HTTP must be communicated as independent,

stateless, request/response interactions. From this, it follows that the type of

artifact best suited to provide the implementation of a Web Service is itself a

stateless entity. WebSphere for z/OS is a J2EE component server which is able to

manage J2EE components in a robust, secure, and scalable manner. In order to

provide Web Services that are able to be accessed flexibility and consistently by

clients and are able to be managed efficiently by the server, it is suggested that you

use Stateless Session EJBs to implement a Web Service. Stateless Session EJBs are

able to be managed efficiently by the runtime while providing the semantic that

most closely matches the client programming model for Web Service invokers.

WebSphere for z/OS allows many types of artifacts to be exposed as Web Services.

Specifically, handlers are provided which allow Enterprise Java Beans - both

Session and Entity beans, Java Programs, Bean Scripting Framework (BSF) Scripts,

and standard Java Programs to be exposed as services via SOAP over HTTP. With

the exception of the Stateless Session Enterprise Bean Handler, these handlers are

being deprecated. This means that these handlers will continue to exist in the

runtime for compatibility and migration purposes. Support for these handlers will

be removed from the product in a future release. It is recommended that any new

Web Services be provided as WebSphere Stateless Session EJBs.

Note: WebSphere Application Server for z/OS does not support the

dynamic-properties elements in the XML file that defines acustom service.

These elements are supported by WebSphere Application Server for

distributed platforms. Therefore, if you are porting a Web service from the

distributed platform version of the product to the z/OS version, you may

need to make the following code change in order to use the

externalConfigURL tag to pass initialization parameters to your Web service:

1. Create a separate XML file that contains the dynamic-properties

elements.

© Copyright IBM Corp. 2000, 2003 249

|
|
|
|
|
|
|

|
|

2. Specify the fully qualified name of this file for the externalConfigURL

object when you import the Web service application into an Application

Server configuration. The resulting XML file for the Web Service will be

similar to the following:

<applicationserver

 version="2.0"

 xmi=""

 applicationserver="applicationserver.xmi"

 server="server.xmi"

 id="">

 <nodes

 id="">

 <servers

 type="ApplicationServer">

 <customServices

 description="Service1-st2tst"

 displayName="str2tst"

 classname="str2tst"

 externalConfigURL="fully_qualified_file_name"

 enable="true"

 />

 </servers>

 </nodes>

</applicationserver>

3. Change the custom service initialization routine to read from this new

file.

This code change causes the

com.ibm.websphere.runtime.CustomService.externalConfigURLKey

property to set the value of the externalConfigURL tag in the Custom

Service implementation. This property, which is set to one of the following

values, is then passed to the CustomService initialize method:

1. null, if nothing is specified in the externalConfigURL tag in the custom

service XML file. . 2. The

com.ibm.websphere.runtime.CustomService.externalConfigURLKey

property, which is set to the value of the externalConfigURL tag in the

Custom Service implementation.

In either case, this information should show up during tracing if orb tracing

is turned on.

This changed Web service can be used on all WebSphere Application Server

platforms.

Deploying an Enterprise application as a SOAP-accessible Web

Service

To deploy a resource as a SOAP-accessible Web Service, you must:

1. Create/locate the software resource to be exposed as a service.

2. Use the Application Assembly Tool (AAT) to package the resource code into an

Enterprise Archive (EAR) file.

3. Create the SOAP Deployment Descriptor for the service. In order to deploy an

artifact as a Web Service, you need to create a Deployment Descriptor which

describes the service you are creating. The information contained within the

Deployment Descriptor is dependent upon the type of artifact you are

exposing, and might include such information as which methods from a Java

class you are exposing, connection information for a DB2 database, or a

250 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

JavaScript implementation of a service. (See “Specifying the EJB Deployment

Descriptor” on page 252 for more information about how to specify

Deployment Descriptor information.)

4. Execute the SoapEarEnabler tool to enable your Web Service. This tool adds all

of the parts necessary to deploy the service. (See “Using the SoapEarEnabler

Tool” on page 252 for more information about this tool.)

5. Install the service-enabled EAR file as you would install any other Enterprise

application into the J2EE server.

Note: WebSphere Application Server for z/OS does not support the

dynamic-properties elements in the XML file that defines a custom service.

These elements are supported by WebSphere Application Server for

distributed platforms. Therefore, if you are porting a Web service from the

distributed platform version of the product to the z/OS version you may

need to make the following code change to use the externalConfigURL tag

to pass initialization parameters to your Web service:

1. Create a separate XML file that contains the dynamic-properties

elements.

2. Specify the fully qualified name of this file for the externalConfigURL

object when you import the Web service application into an Application

Server configuration. The resulting XML file for the Web Service will be

similar to the following:

<applicationserver

 version="2.0"

 xmi=""

 applicationserver="applicationserver.xmi"

 server="server.xmi"

 id="">

 <nodes

 id="">

 <servers

 type="ApplicationServer">

 <customServices

 description="Service1-str2tst"

 displayName="str2tst"

 classname="str2tst"

 externalConfigURL="fully_qualified_file_name"

 enable="true"

 />

 </servers>

 </nodes>

 </applicationserver>

3. Change the custom service initialization routine to read from this new

file.

This code change causes the property

com.ibm.websphere.runtime.CustomService.externalConfigURLKey to set

the value of the externalConfigURL tag in the Custom Service

implementation. This property, which is set to one of the following values, is

then passed to the CustomService initialize method:

v null, if nothing is specified in the externalConfigURL tag in the custom

service XML file.

v The property

com.ibm.websphere.runtime.CustomService.externalConfigURLKey,

which is set to the value of the externalConfigURL tag in the Custom

Service implementation.

Chapter 15. Creating and deploying Web Services 251

|
|
|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|
|

In either case, this information should show up during tracing if orb tracing

is turned on.

This changed Web service can be used on all WebSphere Application Server

platforms.

Specifying the EJB Deployment Descriptor

SOAP Deployment Descriptors provide information to the SOAP Processor about

the services that are to be made available to clients. The exact content of a

Deployment Descriptor depends on the type of resource that is being exposed. We

recommend that you only use Stateless Session beans to implement a service. Then

use the EJB Deployment Descriptor to expose this service. This Deployment

Descriptor contains the following tags:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"

 id="urn:ejbadder">

 <isd:provider type="com.ibm.soap.providers.WASStatelessEJBProvider"

 scope="Application"

 methods="create add">

 <isd:option key="JNDIName" value="samples/AdderService"/>

 <isd:option key="FullHomeInterfaceName" value="samples/AdderServiceHome"/>

 <isd:option key="ContextProviderURL" value="iiop://localhost:900"/>

 <isd:option key="FullContextFactoryName"

 value="com.ibm.ejs.ns.jndi.CNInitialContextFactory"/>

 </isd:provider>

 <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>

</isd:service>

service-urn is the URN that you want to give to a service. All services deployed

within a single EAR file must have URNs which are unique within that EAR.

exposed-methods is a space separated list of methods which you wish to expose.

provider-class is com.ibm.soap.providers.WASStatelessEJBProvider

jndi-name is the registered JNDI name of the EJB

home-name is the fully qualified class name of the EJB’s home.

Using the SoapEarEnabler Tool

The SoapEarEnabler tool is a Java application which is used to enable a set of

SOAP services within an Enterprise Application Archive (EAR). Once these

services have been enabled, the EAR can be installed into WebSphere Application

Server 4.0.1 so that these web services are available. The SoapEarEnabler will guide

you through the steps to enable one or more services within an application. Once

you have enabled the Web Services, the EAR will need to be installed into the J2EE

server.

The SoapEarEnabler tool is contained in the SoapEnabler.jar file, which is located

in the <installroot/wc/lib directory. There are two modes of operation for using this

tool: interactive or silent. Before invoking the SoapEarEnabler tool in either mode,

make sure that a SOAP Deployment Descriptor has been created for each service to

be enabled (see “Specifying the EJB Deployment Descriptor”).

Invoking the SoapEarEnabler tool in interactive mode

To invoke the SoapEarEnabler tool in interactive mode, issue the following

command from the command line to change the directory you are pointing to:

cd <install_root>/wc/lib

252 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|

Then invoke the SoapEarEnabler from the command line without any arguments.

As illustrated in the following example, the tool will prompt you for all required

information:

SoapEarEnabler.sh

Please enter the name of your ear file: ../work/stockquote.ear

How many services would you like your application to contain (1...n)? 1

Now prompting for info for service #1:

Please enter the file name of the Deployment Descriptor xml file: ../work/StockQuoteDD.xml

Is this service an EJB (y/n)? n

How many additional classpath entries are required (0...n)? 0

Should this service be secured (y/n)? n

Please enter a context root for your non-secured services (e.g. /soap): /soap

Invoking the SoapEarEnabler tool in silent mode

Using silent mode, when you invoke the SoapEarEnabler, you issue the

SoapEarEnabler command; followed by the number of arguments you are going to

be including; followed by the actual arguments:

soapenabler number-of-arguments argument1 argument2 ...

The arguments you include must be placed on the command line in the following

order:

1. <ear-file-name>

2. <number-of-services>

3. The following pair of arguments for each service included in the preceding

argument:

 <deployment-descriptor-file-name > <service-is-an-ejb-(y/n)>

 For any service that is an EJB service, you must immediately follow the

<service-is-an-ejb-(y/n)> argument with the <ejb-jar-file-uri-(already-in-ear)>

argument.

4. <number-of-additional-classpath-entries (0, 1, 2...)>

5. For each additional classpath entry specified in the preceding argument, you

must include the following argument:

 <classpath-entry-uri-(already-in-ear)>

6. <secure-this-service-(y/n)>

 If you specify ″n″ on this argument, you must also include the following

argument:

 <context-root-for-non-secured-services, ex: /soap>

 If you specify ″y″ on this argument, you must also include the following

argument:

 <context-root-for-secured-services, ex: /soapsec>

The following is an example of the command line for deploying one EJB as a

non-secured service, using silent mode (the line is split here for printing purposes):

SoapEarEnabler soap.ear 1d:\junk\xml-soap\java\samples\ejbadder\

 deploymentdescriptor.xml y adderservice-ejb.jar 1 samples.jar n /soap

The following is an example of the command line for deploying one EJB as a

non-secured service, and one java class as a secured service, using silent mode (the

line is split here for printing purposes)

SoapEarEnabler soap.ear 2 d:\junk\xml-soap\java\samples\ejbadder\

 deploymentdescriptor.xml y adderservice-ejb.jar 1 samples.jar n d:\

 junk\xml-soap\java\samples\stockquote\

 deploymentdescriptor.xml n 1 samples.jar y /soap /soap-sec

Chapter 15. Creating and deploying Web Services 253

The following is an example of the command line for deploying 2 java classes as

non-secured services, using silent mode (the line is split here for printing

purposes):

SoapEarEnabler soap.ear 2 d:\junk\xml-soap\java\samples\stockquote\

 deploymentdescriptor.xml n 1 samples.jar n d:\junk\xml-soap\

 java\samples\addressbook\deploymentdescriptor.xml n 1 samples.jar n

/soap

Creating a SOAP client

You can use the client API provided with WebSphere for z/OS to create SOAP

clients to access SOAP services, which have been deployed on an OS/390 J2EE

server. For a description of all of the SOAP classes and packages that are currently

available, see:

http://xml.apache.org/soap/docs/index.html

The basic steps for creating a client which interacts with a SOAP service are as

follows:

1. Obtain the interface description of the SOAP service, so you know what the

signatures of the methods that you wish to invoke are. You can either look at a

WSDL file for the service, or directly at its implementation.

2. Create the Call object The SOAP Call object is the main interface to the

underlying SOAP RPC code.

3. Set the target URI into the Call object using setTargetObjectURI() Pass in the

URN that the service used to identify itself in its Deployment Descriptor.

4. Set the method name that you wish to invoke into the Call object using

setMethodName(). This must be one of the methods exposed by the service at

the URN given in the previous step.

5. Create any Parameter objects necessary for the RPC call and set them into the

Call object using setParams(). Make sure that you have the same number of

parameters with the same types as the service is expecting.

6. Execute the Call object’s invoke() method and retrieve the Response object.

Remember that the RPC call is synchronous, and so may take a while to

complete.

7. Check the response for a fault using getFault(), then extract any result or

returned parameters.

While most of the providers only return a result, the DB2 stored procedure

provider can also return an SQL ResultSet.

Interacting with a SOAP service which is document-oriented requires that you use

lower-level Apache SOAP API calls. You must construct an envelope object which

contains the contents of the message (including the body and any headers) that

you wish to send, and then create a Message object upon which you invoke the

send() method to perform the actual transmission.

Note: Because SOAP is a standard, you should be able to use the clients you create

with the Apache SOAP API to access services running on any other

implementation that adheres to this standard, and vice versa.

254 WebSphere for z/OS: Assembling J2EE Applications

Using XML-SOAP for Remote Procedure Calls

The org.apache.soap.rpc package supports performing RPC over SOAP. The

XML-SOAP model is as follows:

v The URI of the method call element is used as the object ID on the remote side.

v The client side API has a ″Call″ object (org.apache.soap.rpc.Call) that is filled in

with the method name, object ID and parameters.

v The marshalling/unmarshalling of Java datatypes to/from XML is supported by

a type mapping registry (see org.apache.soap.encoding.SOAPMappingRegistry),

and serialization (org.apache.soap.util.xml.Serializer) and deserialization

(org.apache.soap.util.xml.Deserialization) interfaces that marshallers and

unmarshallers, respectively, must implement. The built-in encoders/decoders are

simply implementations of these interfaces that are preregistered in the

SOAPMappingRegistry.

Once a Call object is set up, its invoke (URL, string) method can be used to call the

method using the URL as the SOAP endpoint to deliver to. The string argument is

the value of the SOAPAction header. This method returns a Response object

(org.apache.soap.rpc.Response) containing the actual response (if any) or an error

message if an error occurred during processing.

Securing SOAP Services

For many applications, in order for SOAP to be a viable enterprise level solution,

there needs to be a way to secure SOAP transmissions. WebSphere for z/OS

includes three options for providing security for SOAP services when using HTTP

as the transport:

v HTTP basic authentication

v SSL (HTTPS) connections

v Web Services W3C Digital Signature Support

Since these security options function independently of each other, they can be

combined according to the security requirements for each specific service.

Note: The Web Services W3C Digital Signature Support requires JSSE level 1.0.2,

and JCE level 1.2.1. This support will be provided SDK PTF UQ61198.

Using HTTP basic authentication

Your IBM HTTP Server documentation describes how to set up HTTP basic

authentication. The Apache SOAP implementation includes a method in the

org.apache.soap.transport.http.SOAPHTTPConnection class that can be used to set

the password for HTTP Basic authentication. See the following Web site for more

information about this method:

http://xml.apache.org/soap/docs/index.html

When setting up this type of security, remember that each service that requires a

different access control policy should be deployed as a separate servlet

(RPCRouterServlet). For example, if you have an inventory application for which

there are the following two SOAP service entries:

https://foo.com/inventory/inquiry

https://foo.com/inventory/update

Each service should be deployed as a separate servlet (RPCRouterServlet), so that

anyone can inquire about the inventory while only the inventory clerks can update

Chapter 15. Creating and deploying Web Services 255

the contents. The ’update’ application does not have to know the identity of the

requester. It only needs to know that access is granted.

For this example, the IBM HTTP Server should be configured so that the ’inquiry’

servlet is accessible to anyone, while the ’update’ servlet requires authentication

based on the HTTP basic authentication (userid/password).

Using SSL Connections

Using SOAP-SEC over SSL for security enables:

v Data in transit to be protected from eavesdropping or forgery by SSL.

v The server identity to be guaranteed by SSL server authentication.

v The client identity to be authenticated through userid and password, which are

encrypted by the SSL transport.

To use SOAP-SEC over SSL, you must setup the SSL connections for the IBM

HTTP Server. See your IBM HTTP Server Documentation for details of how to

setup the SSL server. You will need to use the Key Management Utility to import

the following three certificates into your key database:

v The ″soapclient″ certificate

v The ″soapserver″ certificate

v The soapsec.p12 file as your SSL server’s certificate:

These are all X.509 certificates, and are located in the ’key’ subdirectory of the

soapsec.war directory that is set up when the soapsamples.ear file is installed on a

J2EE server.

256 WebSphere for z/OS: Assembling J2EE Applications

Chapter 16. Using Type 4 JDBC Connectors with WebSphere

for z/OS

This chapter describes how to define datasources for WebSphere for z/OS that

map to Type 4 JDBC connectors provided by software vendors. WebSphere for

z/OS provides runtime support to allow Type 4 JDBC connectors to be configured

for Enterprise bean or servlet use. Sample code that demonstrates how to use this

support to connect to an Oracle9i database through a Type 4 JDBC connector

driver is provided beginning with the section, “Sample Datasource XML Template”

on page 264.

Type 4 JDBC drivers are direct-to-database pure Java drivers (″thin″ drivers). A

Type 4 driver takes JDBC calls and translates them into the network protocol

(proprietary protocol) used directly by the DBMS. Thus, client machines or

application servers can make direct calls to the DBMS server.

The Type 4 JDBC connector support described in this guide allows an installation

to do the following:

1. Define the XML needed to identify a Type 4 JDBC Connector to the WebSphere

for z/OS Administration application so the given Type 4 Connector can be

configured for application use

2. Define a JDBC Resource Factory that can be invoked to instantiate and return a

datasource for the Type 4 JDBC Connector when an application does a Lookup

for that particular type of JDBC datasource.

The support does not in any way enable the Type 4 JDBC Connectors to participate

in global WebSphere for z/OS transactions like the JDBC connectors that IBM

supports can (i.e. DB2 JDBC, IMS JDBC). Therefore, two-phase commit capability is

not supported and a rollback of the global transaction does not occur in the case of

an error during an operation on a database supported by these vendor-provided

connectors. Also, these Type 4 JDBC connectors cannot take advantage of the

connection management provided in the connector support on WebSphere

Application Server V4.0.1 for z/OS and OS/390, and thus do not gain the resource

authentication or connection pooling that comes with this support.

This section does not describe how to install or configure JDBC connectors

provided by software vendors. Refer to the product documentation for the specific

connector products for information regarding the installation and configuration of

those products on the WebSphere Application Server V4.0.1 for z/OS and OS/390

platform.

Be advised that with the J2EE 1.3 support upcoming in the next release of

WebSphere for z/OS, applications using the Type 4 JDBC connector support are

expected to require a manual redeployment when upgrading from WebSphere for

z/OS V4.0.1 to the J2EE 1.3 level of WebSphere for z/OS.

The following table shows the subtasks and associated information for using Type

4 JDBC Connectors with WebSphere for z/OS.

© Copyright IBM Corp. 2000, 2003 257

Subtask Associated information (See . . .)

Understanding the concepts related to using

Type 4 JDBC Connectors with WebSphere for

z/OS

Refer to the product documentation

associated with the specific Type 4 JDBC

connector you plan to use.

v Creating the datasource XML template

v customizing the datasource XML template

v creating the datasource NLS properties file

“Steps for adding an XML Definition for a

Type 4 JDBC Connector to WebSphere for

z/OS”

v Creating a a resource factory

“Steps for creating a Resource Factory for

the Type 4 JDBC Connector” on page 261

v Developing the application to do a

″lookup″ in the JNDI namespace to obtain

an instance of the datasource

v Specifying a JDBC resource reference name

for your Type 4 JDBC connector datasource

using the WebSphere for z/OS Application

Assembly tool

v Defining a Type 4 JDBC datasource with

the Administration application, and

v Updating the server region CLASSPATH.

“Steps for developing and deploying

applications” on page 262

Creating a XML file containing entries for

defining a DataDirect Connect JDBC Oracle9i

datasource

“Sample Datasource XML Template” on

page 264

Creating a datasource NLS properties file for

DataDirect Connect JDBC Oracle9i

“Sample NLS Properties File” on page 271

Creating a sample JNDI Lookup Program for

DataDirect Connect JDBC Oracle9i

“Sample Type 4 JDBC Connector

Application” on page 272

Creating a sample Resource Factory class for

DataDirect Connect JDBC Oracle9i

“Sample Resource Factory Class” on page

274

Steps for adding an XML Definition for a Type 4 JDBC Connector to

WebSphere for z/OS

Perform the following steps to add an an XML definition for a Type 4 JDBC

Connector to WebSphere for z/OS so that the Administration application can then

be used to configure the connector:

1. Create the datasource XML template

 To correctly define a Type 4 JDBC connector J2EE resource with the WebSphere

for z/OS Administration application, you must provide a datasource template

so that the Administration application recognizes the J2EE resource type. For

Type 4 JDBC connectors, WebSphere for z/OS PTF UQ90050 provides the file

ModelJdbcDataSource.xml which you can use as a model to create a J2EE

resource template. The ModelJdbcDataSource.xml file can be found in the

following HFS directory on the system which is running WebSphere for z/OS:

WS390 INSTALL ROOT/samples

 If you choose the default directory at installation time, this directory is:

/usr/lpp/WebSphere/samples

 To create an xml file for the Type 4 JDBC Connector you want to use, copy the

ModelJdbcDataSource.xml file to a new xml file and give the new file a

meaningful name that is descriptive of the Type 4 JDBC Connector. It is

suggested that you use the following naming format: xxxxxJdbcDataSource

where xxxxx identifies the vendor and particular type of data base the

258 WebSphere for z/OS: Assembling J2EE Applications

connector accesses. For example, if the Type 4 JDBC connector you are planning

to use is DataDirect’s Connect JDBC for accessing an Oracle database, name the

file DataDirectOracleJdbcDataSource.xml. Once you have created the xml file

for the connector you must then customize it as described in 2 below. When

doing the customization, it’s suggested that when you give the JDBC

DataSource connector a name in the XML, you should use the same JDBC

DataSource naming convention that you used to name your XML file.

2. Customize the datasource XML template

 The ModelJdbcDataSource.xml prolog clearly describes the steps you must

follow to modify a copy of the model to create a JDBC datasource XML file for

the Type 4 JDBC driver you intend to use. In the model, the following XML

tags are used to describe a Type 4 JDBC connector J2EE resource to the

Administration application (see “Sample Datasource XML Template” on page

264 for an example of a datasource XML template).

v XML tags for defining the datasource

 The following XML tags are used to define the Type 4 JDBC resource and

resource instance:

<resource>

An XML tag marking the beginning of a resource definition section.

<resource_id>

An XML tag marking the beginning of a resource identifier

definition.

<name>

This <resource_id> subtag specifies the datasource type. The name

you specify on this tag appears in the drop down list of J2EE types

on the Administration application.

<description>

This <resource_id> subtag provides a description of the resource.
v XML tags for defining the resource instance

 The following XML tags are included under the <resource_information>

section in the datasource XML template:

<resource_instance_name>

This tag provides a field on the Administration application to specify

the resource instance name.

<descriptive_name>

Provides a field on the Administration application for specifying the

Type 4 JDBC J2EE resource instance name.

<resource_instance_description>

Provides a description of the resource instance.

<resource_instance_parent>

Identifies the name of the J2EE Resource this resource instance is

associated with.

<system>

Identifies the name of the z/OS system that the resource instance is

associated with.
v XML tags for defining resource attributes

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 259

In the XML at the comment box ″Start of DataSource Properties″, use the

following XML tag and its related sublevel tags to provide Administration

application fields for specifying the properties of a Type 4 JDBC datasource:

<resource_attribute id=″id″

This tag in conjunction with its sublevel tags identifies a property of

the Type 4 JDBC DataSource that the server administrator must

specify on the Administration application when defining a J2EE

resource. This tag and its related sublevel tags must be repeated for

each property required by the Type 4 JDBC Connector being defined

to the Administration application.
v Additional <resource_information> tags pertaining to the resource instance:

<factory_class_name>

The fully-qualified Java class name of the Type 4 JDBC resource

factory that you will create. See Procedure To Create Resource

Factory Class for details about creating a resource factory class for a

Type 4 JDBC connector.

<connector_class_name>

The fully-qualified JDBC datasource class name of the Type 4 JDBC

driver you intend to use. Refer to the software vendor’s

documentation for more information.

<connector_interface_class_name>

The name of the Java interface that supports the J2EE resource.

Always set this value to javax.sql.Datasource.

3. Create the datasource NLS properties file

 Each J2EE resource supported by the WebSphere for z/OS Administration

application requires a datasource NLS properties file. This file is a companion

to the datasource XML template and is read during Administration application

initialization. It provides NLS translation for the fields displayed on the

Administration application for a particular datasource. The file is organized as

a set of key value pairs with each key representing a field specified in the

datasource XML template and its corresponding translation (the value). This

properties file ensures that Administration application fields defined for a

particular J2EE resource are translated to the correct language.

 The naming convention for the NLS properties file should be created with the

same name as the XML template and the file type should be ″properties″ (such

as; xxxxxJdbcDataSource.properties, where xxxxx is the vendor name

concatenated with the database name).

 The datasource NLS properties file must be saved in ASCII format in the

following HFS directory:

CBCONFIG/SYSPLEX/resources/templates/

 In order for system’s management to properly read the NLS properties file the

permission bits need to be set to -rw-r--r-- (644).

 An example of a datasource NLS properties file is shown in “Sample NLS

Properties File” on page 271.

Note: If a properties file is not provided, the Administration application when

initialized will put out informational message BBON0517I in the message

log indicating no properties file was specified and that, by default,

English is used. In the case of installations that wish to only use the

English translation of the XML, it is therefore an option to skip creating

the properties file and let the processing default to English.

260 WebSphere for z/OS: Assembling J2EE Applications

Steps for creating a Resource Factory for the Type 4 JDBC Connector

In order to perform a JNDI lookup on a Type 4 JDBC datasource, you must create

a resource factory Java class, compile it, and ensure that it is referenced during

runtime. In the datasource XML template, you specified a factory class on the

<factory_class_name> tag. During deployment, the Administration application

registers this factory class with WebSphere for z/OS. Thus, when an application

performs a JNDI lookup on a Type 4 JDBC datasource, this resource factory class is

invoked during the lookup process to locate the datasource and pass a reference to

it back to the application.

The GenericJdbcResourceFactory.java source file that is shipped with PTF UQ90050

is a model resource factory that you must copy and customize for the particular

Type 4 JDBC datasource driver that you are using. “Sample Resource Factory

Class” on page 274 shows an example of a customized factory class for the

DataDirect Connect JDBC Oracle9i datasource.

To create and install a resource factory class for your Type 4 JDBC datasource:

1. Locate the file GenericJdbcResourceFactory.java within the following HFS

directory on the system which is running WebSphere for z/OS:

WS390 INSTALL ROOT/samples

If you chose the default directory at installation time this directory is:

/usr/lpp/WebSphere/samples

2. Copy the GenericJdbcResourceFactory.java source file to an HFS working

directory so that you can rename it to aaaaaaJdbcResourceFactory, where aaaaaa

represents a set of characters that uniquely describe the Type 4 JDBC

datasource you are using. It is suggested that for aaaaaa you use the Type 4

JDBC Connector vendor name concatenated with the type of database (for

example, DataDirectOracle).

3. Edit this file and update the following lines of code:

a. Change the package name to a name of your choice.

b. Change the class GenericJdbcResourceFactory to

aaaaaaJdbcResourceFactory.

c. Rename the constructor public aaaaaaJdbcResourceFactory.
4. Compile the new JDBC factory java file.

a. Since you must add the ws390srt.jar file to the CLASSPATH of your java

compile, the first step is to locate the copy of this file that was installed

along with the WebSphere for z/OS installation. This file will be found in

the directory WS390 INSTALL ROOT/lib, which, if you use the default

installation directory, is /usr/lpp/WebSphere/lib. This jar file contains

WebSphere for z/OS classes that are referenced in

GenericJdbcResourceFactory.java and which are needed to complete the

datasource lookup processing.

b. Add the local copy of ws390srt.jar to the compile-time CLASSPATH and

perform the compile using whatever Java development tool you are

working with (such as WebSphere Studio or the javac compiler which ships

with the JDK).
5. Create a jar file that contains the new JDBC factory class.

6. Copy the jar file to an HFS directory available to the Server where you intend

to use the Type 4 JDBC Connector.

7. Set the permission bits to -rwxr-xr-x (755) in order for the application server

region to have proper access to the jar files.

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 261

8. Use the WS_EXT_DIRS environment variable to define the work directory

containing the JDBC resource factory jar file to the appropriate WebSphere for

z/OS application server. You can add the WS_EXT_DIRS environment

definition to the server using the Administration application when you define

your J2EE server and server instance. (See the WebSphere Application Server

V4.0.1 for z/OS and OS/390: Assembling J2EE Applications manual for information

about updating environment variables.)

Steps for developing and deploying applications

Before you begin: You need to make the following decisions:

v Ensure the Type 4 JDBC Connector has been installed according to the vendor’s

installation instructions

v Ensure your installation has created the required XML that is needed by the

Administration application so an instance of the Type 4 JDBC Connector can be

configured

v Ensure your installation has created a JDBC Resource Factory for the Type 4

JDBC Connector so an application can do a JNDI lookup for a datasource that is

supported by that particular type of connector

v Ensure a current copy of the WebSphere for z/OS Application Assembly tool has

been down loaded and is available for use in your installation.

v Decide whether to install these J2EE applications in an existing or a new server.

The procedure below assumes you are installing the J2EE applications in an

existing application server. If you are creating a new server, use the instructions

in WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE

Applications, SA22-7836 along with the information in the following procedure.
1. Develop your application to do a ″lookup″ in the JNDI namespace to obtain

an instance of the datasource

 The XML support previously discussed enables Type 4 JDBC connector J2EE

resources that are configured to WebSphere for z/OS to be registered in the

JNDI namespace as datasources. Applications that wish to use Type 4 JDBC

connectors thus need to do a ″lookup″ in the JNDI namespace to obtain an

instance of the datasource provide by the Type 4 JDBC connector driver. Once

the datasource is obtained, the application can then access it to get a connection

to the target database manager.

 To locate a Type 4 JDBC connector J2EE resource, an application should code

the lookup the datasource by using the following code:

ctx.lookup("java:comp/env/jdbc/datasource_name");

where datasource_name is an arbitrary name you assign to the Type 4 JDBC

connector J2EE resource. The datasource_name must be specified as resource on

the WebSphere for z/OS Application Assembly tool, together with the ″jdbc″

prefix like this; jdbc/datasource_name. During server definition and application

deployment, the Administration application binds the datasource_name to the

real J2EE datasource definition that is configured

 The following code segment, shows an example of the technique for looking up

an Oracle9i datasource supported by the DataDirect Connect JDBC connector. A

complete code sample is included in “Sample Type 4 JDBC Connector

Application” on page 272. Sample JNDI Lookup Program: example of

 Example:

262 WebSphere for z/OS: Assembling J2EE Applications

public void performTest(javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)

throws java.io.IOException {

OracleDataSource ds = null;

Context ctx = null;

try

 {

 // Obtain an initialContext object and create a datasource

 ctx = new InitialContext();

 ds = (OracleDataSource) ctx.lookup("java:comp/env/jdbc/DataDirectOracleJDBCDataSource");

 // Proceed to get a connection from the datasource

 }

}

2. Specify a JDBC resource reference name for your Type 4 JDBC connector

datasource using the WebSphere for z/OS Application Assembly tool

 Using the WebSphere for z/OS Application Assembly tool, a resource reference

name associated with a Type 4 JDBC connector datasource must be specified on

the Resources tab of the servlet or EJB doing the JNDI lookup of datasource.

Refer to WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling

J2EE Applications for details on how to create a resource reference. Following

are some of the Application Assembly tool Reference tab field specifications

that need to be completed:

Reference name

This is the name used to lookup the J2EE resource in the JNDI

namespace. Note that the ’jdbc’ prefix is required. In our sample

application the reference name to be created in the Application

Assembly tool would be jdbc/DataDirectOracleJDBCDataSource

Type The J2EE type used by Type 4 JDBC connector. Set this field to

javax.sql.Datasource.

Authentication

This field is not applicable for Type 4 JDBC connectors; but, you should

leave the value set to CONTAINER.

3. Define a Type 4 JDBC datasource with the Administration application

 A JDBC datasource must be defined with the Administration application for

Type 4 JDBC connectors to be configured.

 The following Administration application steps need to be done in order to

define a new datasource:

v Create a new conversation.

v Add a J2EE resource. This is where your datasource created in previous steps

should be selected.

v Add a resource instance.

For more information on these, see WebSphere Application Server V4.0.1 for z/OS

and OS/390: Assembling J2EE Applications.

 Following are some of the Administration application datasource fields that

need to be completed in the Resource instance:

Resource name

This is the name you assign to the datasource.

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 263

Resource instance name

This name identifies an instance of the datasource.

Resource Attributes

The resource attributes that you specified in the datasource XML

template are displayed as fields on the resource instance display. If you

specified default values in the XML template, then those values are

displayed as well. You can override these values by typing the new

value in the appropriate field.

 For example, in the XML template for a DataDirect Connect JDBC Oracle9i

datasource, the following fields are defined with <resource_attribute> XML tags

in the XML template:

System ID name of Remote Oracle Database

TCPIP port number of the listener running on the Oracle Database

Name or IP address of the remote Oracle Database

A valid user id for logging onto remote Oracle Database

A valid password for logging onto remote Oracle Database

4. Add the Type 4 JDBC Connector Driver to the server

 To provide runtime support for a Type 4 JDBC connector drivers, you must

specify the WS_EXT_DIRS environment variable for the server and identify the

HFS directory containing the jar files provided by the Type 4 JDBC connector

driver vendor.

 Refer to the Type 4 JDBC connector product documentation to determine which

jar files are required for a specific database driver.

5. Complete the Administration application conversation by validating,

committing, and activating the conversation.

 See WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE

Applications for more information.

Sample Datasource XML Template

The following XML file contains entries for defining a DataDirect Connect JDBC

Oracle9i datasource.

Example:

<?xml version=’1.0’?>

<!--=== START OF INSTRUCTIONS ==-->

<!-- -->

<!-- -->

<!-- File name: DataDirectOracleJDBCDataSource.xml -->

<!-- -->

<!-- Descriptive name: Jdbc DataSource xml template for the SM EUI -->

<!-- -->

<!-- -->

<!-- Proprietary statement: -->

<!-- -->

<!-- Licensed Material - Property of IBM -->

<!-- 5655-F31 (C) Copyright IBM Corp. 2002 -->

<!-- -->

<!-- All Rights Reserved. -->

264 WebSphere for z/OS: Assembling J2EE Applications

<!-- -->

<!-- U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or -->

<!-- Disclosure restricted by GSA-ADP schedule contract with IBM Corp.-->

<!-- -->

<!-- Status = H28W401 -->

<!-- -->

<!-- -->

<!-- NOTE: This program may be used, executed, copied, modified and -->

<!-- distributed without royalty for the purpose of developing, -->

<!-- using, marketing, or distributing. -->

<!-- -->

<!-- -->

<!-- Jdbc DataSource XML Creation: -->

<!-- -->

<!-- -->

<!-- Follow these instructions to create a WAS/zOS Systems Management -->

<!-- EUI xml file for your resource adapter: -->

<!-- -->

<!-- 1. Copy this model xml and name the new xml file -->

<!-- "xxxxxxJdbcDataSource.xml" where xxxxxx is a descriptive name -->

<!-- for your Jdbc data source. For example, DB2JdbcDataSource.xml, -->

<!-- OracleJdbcDataSource.xml, etc. -->

<!-- -->

<!-- 2. In the prologue of the xml, replace the File name -->

<!-- "xxxxxxJdbcDataSource.xml" with your xml file name. -->

<!-- -->

<!-- 3. Under <resource_id>, change the <name> value from -->

<!-- "xxxxxxJdbcDataSource" to the name of your xml file without -->

<!-- the xml suffix. -->

<!-- -->

<!-- 4. Under <resource_instance_name>, change the <descriptive_name>-->

<!-- value by replacing "xxxxxxJdbcDataSource" with the name of your -->

<!-- xml file without the xml suffix. -->

<!-- -->

<!-- 5. Under <resource_instance_description> change the -->

<!-- <descriptive_name> value by replacing "xxxxxxJdbcDataSource" -->

<!-- with the name of your xml file without the suffix. -->

<!-- -->

<!-- 6. Under <resource_instance_parent> change the -->

<!-- <descriptive_name> value by replacing "xxxxxxJdbcDataSource" -->

<!-- with the name of your xml file without the suffix. -->

<!-- -->

<!-- 7. Find <factory_class_name> and change the value specified -->

<!-- from "your-package-name.xxxxxxJdbcResourceFactory" to the fully -->

<!-- qualified name of your Jdbc Resource Factory. For example, -->

<!-- "vender.oracle.OracleJdbcResourceFactory". -->

<!-- NOTE: Your Jdbc Resource Factory is the factory that JNDI -->

<!-- Lookup processing will invoke getObjectInstance() on to get -->

<!-- a fully initialized instance of your Jdbc DataSource. -->

<!-- -->

<!-- 8. Find <connector_class_name> and change the value specified -->

<!-- from "your-package-name.xxxxxxJdbcDataSource" to the fully -->

<!-- qualified name of your Jdbc DataSource. For example, -->

<!-- "vender.oracle.OracleJdbcDataSource". -->

<!-- NOTE: In the case of jdbc connectors, your Jdbc DataSource -->

<!-- class should be the class that implements javax.sql.DataSource. -->

<!-- -->

<!-- 9. For your information, DO NOT CHANGE the value specified for -->

<!-- <connector_interface_class_name> that was copied from the -->

<!-- model. This is the generic interface class name for all Jdbc -->

<!-- DataSources. -->

<!-- -->

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 265

<!-- 10. The section of the xml where you should define the resource -->

<!-- properties required by your Jdbc DataSource in order to define -->

<!-- a real data source is bracketed by the following comment lines: -->

<!-- -->

<!-- == -->

<!-- Start of DataSource Properties -->

<!-- == -->

<!-- -->

<!-- == -->

<!-- End of DataSource Properties -->

<!-- == -->

<!-- -->

<!-- Locate this section in the xml file and define the properties -->

<!-- you need. As an example, there is a resource property that -->

<!-- is already defined by the model. The identifier for this -->

<!-- property is <resource_attribute id="DatabaseName">. Use this -->

<!-- property as a guide and then delete it from the set of -->

<!-- properties. -->

<!-- -->

<!-- When defining properties, there are a number of different -->

<!-- <attribute-type> choices that can be specified: textarea, -->

<!-- boolean, combobox, listbox, table, ordered_list, and -->

<!-- name_value_pair. Refer to the <!ELEMENT> definition descriptions -->

<!-- for these items in the frontend of the xml. -->

<!-- -->

<!-- When defining properties, DO NOT specify any input for the -->

<!-- following attribute related fields: <field_level_help_url>, -->

<!-- <validate_regex regular_expression=""/>. -->

<!-- -->

<!-- Refer to the documentation of the JDBC driver software vendor -->

<!-- to determine the specific fields which need to be added in this -->

<!-- step. -->

<!-- -->

<!-- 11. Finally, delete the instructions from the prologue and copy -->

<!-- this file into the templates directory. -->

<!-- -->

<!-- To use the new xml with the Systems Management EUI, install -->

<!-- the xml file in the WebSphere z/OS HFS directory: -->

<!-- <CBCONFIG>/<PLEXNAME>/resources/templates -->

<!-- -->

<!-- For example, using the default value for <CBCONFIG> and a -->

<!-- <PLEXNAME> of "PLEX1", the directory would be: -->

<!-- /WebSphere390/CB390/PLEX1/resources/templates -->

<!-- -->

<!-- NOTE: This file needs to be copied into the directory in -->

<!-- EBCDIC format. -->

<!-- -->

<!--=== END OF INSTRUCTIONS ==-->

<!-- -->

<!-- Change history: -->

<!-- -->

<!-- $L0=MDxxxxx H28W401 20020218 PDNW: initial creation -->

<!-- -->

<!--========================== PROLOG ================================-->

<!-- -->

<!-- File name: DataDirectOracleJDBCDataSource.xml -->

<!-- -->

<!-- Descriptive name: Jdbc configuration template for the SM EUI. -->

<!-- Provides support for DataDirect’s JDBC driver for non-IBM -->

<!-- databases. -->

<!-- -->

<!-- -->

266 WebSphere for z/OS: Assembling J2EE Applications

<!--==-->

<!DOCTYPE websphere390resource [

<!ELEMENT websphere390resource (version,

 resource)>

<!ELEMENT version EMPTY>

<!ATTLIST version initial CDATA #REQUIRED>

<!ELEMENT resource (resource_id,

 resource_information)>

<!ELEMENT resource_id (name,

 description?,

 general_help_url?)>

<!ELEMENT resource_information (resource_instance_name,

 resource_instance_description,

 resource_instance_parent,

 system,

 resource_attribute*,

 factory_class_name,

 connector_class_name,

 connector_interface_class_name)>

<!ELEMENT resource_instance_name (descriptive_name,

 textfield)>

<!ELEMENT resource_instance_description (descriptive_name,

 textarea)>

<!ELEMENT resource_instance_parent (descriptive_name,

 textfield)>

<!ELEMENT system (descriptive_name,

 systemchoice)>

<!ELEMENT resource_attribute (descriptive_name,

 attribute_type,

 dependency_logic,

 field_level_help_string,

 field_level_help_url,

 factory_field_name,

 setter_function)>

<!ATTLIST resource_attribute id ID #REQUIRED>

<!ELEMENT attribute_type (textfield | textarea | boolean | combobox | listbox | table | ordered_list)>

<!ELEMENT textfield (selected_value,

 default_value?,

 validate_regex)>

<!ATTLIST textfield editable (Y | N) "Y">

<!ELEMENT textarea (selected_value,

 default_value?,

 validate_regex)>

<!ELEMENT boolean EMPTY>

<!ATTLIST boolean selected_value (Y | N) #REQUIRED>

<!ELEMENT combobox (value+,

 selected_value,

 default_value?)>

<!ELEMENT listbox (value+,

 selected_value*,

 default_value*)>

<!ELEMENT table (validate_name_value_pair,

 name_value_pair*)>

<!ELEMENT ordered_list (validate_name_value_pair,

 name_value_pair*)>

<!ELEMENT validate_name_value_pair (validate_regex,

 validate_regex)>

<!ELEMENT name_value_pair (name,

 value)>

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 267

<!ELEMENT setter_function (function_name,

 function_parameter_type)>

<!ELEMENT systemchoice (selected_value)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT value (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT general_help_url (#PCDATA)>

<!ELEMENT factory_class_name (#PCDATA)>

<!ELEMENT descriptive_name (#PCDATA)>

<!ELEMENT selected_value (#PCDATA)>

<!ELEMENT default_value (#PCDATA)>

<!ELEMENT dependency_logic EMPTY>

<!ATTLIST dependency_logic dependency_expression CDATA #REQUIRED>

<!ELEMENT validate_regex EMPTY>

<!ATTLIST validate_regex regular_expression CDATA #REQUIRED>

<!ELEMENT field_level_help_string (#PCDATA)>

<!ELEMENT field_level_help_url (#PCDATA)>

<!ELEMENT factory_field_name (#PCDATA)>

<!ELEMENT connector_class_name (#PCDATA)>

<!ELEMENT connector_interface_class_name (#PCDATA)>

<!ELEMENT function_name (#PCDATA)>

<!ELEMENT function_parameter_type (#PCDATA)>

]>

<websphere390resource>

<version initial="1.0"/>

 <resource>

 <resource_id>

 <name>DataDirectOracleJDBCDataSource</name>

 <description>The DataSource to connect to Oracle</description>

 <general_help_url></general_help_url>

 </resource_id>

 <resource_information>

 <resource_instance_name>

 <descriptive_name>DataDirectOracleJDBCDataSource instance name</descriptive_name>

 <textfield>

 <selected_value></selected_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </resource_instance_name>

 <resource_instance_description>

 <descriptive_name>DataDirectOracleJDBCDataSource instance description</descriptive_name>

 <textarea>

 <selected_value></selected_value>

 <validate_regex regular_expression=""/>

 </textarea>

 </resource_instance_description>

 <resource_instance_parent>

 <descriptive_name>DataDirectOracleJDBCDataSource name</descriptive_name>

 <textfield editable="N">

 <selected_value></selected_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </resource_instance_parent>

 <system>

 <descriptive_name>System name</descriptive_name>

 <systemchoice>

268 WebSphere for z/OS: Assembling J2EE Applications

<selected_value></selected_value>

 </systemchoice>

 </system>

<!--==-->

<!-- Start of DataSource Properties -->

<!--==-->

<!--==-->

<!-- Property: System ID (SID) -->

<!--==-->

 <resource_attribute id="SID">

 <descriptive_name>System ID name of Remote Oracle Database</descriptive_name>

 <attribute_type>

 <textfield>

 <selected_value></selected_value>

 <default_value>IBM</default_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </attribute_type>

 <dependency_logic dependency_expression=""/>

 <field_level_help_string> SID </field_level_help_string>

 <field_level_help_url></field_level_help_url>

 <factory_field_name>SID</factory_field_name>

 <setter_function>

 <function_name>setSID</function_name>

 <function_parameter_type>java.lang.String</function_parameter_type>

 </setter_function>

 </resource_attribute>

<!--==-->

<!-- Property: PortNumber -->

<!--==-->

 <resource_attribute id="PortNumber">

 <descriptive_name>TCPIP port number of the listener running on the Oracle Database</descriptive_name>

 <attribute_type>

 <textfield>

 <selected_value></selected_value>

 <default_value>1521</default_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </attribute_type>

 <dependency_logic dependency_expression=""/>

 <field_level_help_string> Port number for connecting to remote Oracle DB</field_level_help_string>

 <field_level_help_url></field_level_help_url>

 <factory_field_name>PortNumber</factory_field_name>

 <setter_function>

 <function_name>setPortNumber</function_name>

 <function_parameter_type>int</function_parameter_type>

 </setter_function>

 </resource_attribute>

<!--==-->

<!-- Property: ServerName -->

<!--==-->

 <resource_attribute id="ServerName">

 <descriptive_name>Name or IP address of the remote Oracle Database</descriptive_name>

 <attribute_type>

 <textfield>

 <selected_value></selected_value>

 <default_value></default_value>

 <validate_regex regular_expression=""/>

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 269

</textfield>

 </attribute_type>

 <dependency_logic dependency_expression=""/>

 <field_level_help_string> Server containing the remote Oracle DB</field_level_help_string>

 <field_level_help_url></field_level_help_url>

 <factory_field_name>ServerName</factory_field_name>

 <setter_function>

 <function_name>setServerName</function_name>

 <function_parameter_type>java.lang.String</function_parameter_type>

 </setter_function>

 </resource_attribute>

<!--==-->

<!-- Property: User -->

<!--==-->

 <resource_attribute id="User">

 <descriptive_name>A valid user id for logging onto remote Oracle Database</descriptive_name>

 <attribute_type>

 <textfield>

 <selected_value></selected_value>

 <default_value></default_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </attribute_type>

 <dependency_logic dependency_expression=""/>

 <field_level_help_string> User id for logging onto the remote Oracle DB</field_level_help_string>

 <field_level_help_url></field_level_help_url>

 <factory_field_name>User</factory_field_name>

 <setter_function>

 <function_name>setUser</function_name>

 <function_parameter_type>java.lang.String</function_parameter_type>

 </setter_function>

 </resource_attribute>

<!--==-->

<!-- Property: Password -->

<!--==-->

 <resource_attribute id="Password">

 <descriptive_name>A valid password for logging onto remote Oracle Database</descriptive_name>

 <attribute_type>

 <textfield>

 <selected_value></selected_value>

 <default_value></default_value>

 <validate_regex regular_expression=""/>

 </textfield>

 </attribute_type>

 <dependency_logic dependency_expression=""/>

 <field_level_help_string> Password for logging onto the remote Oracle DB</field_level_help_string>

 <field_level_help_url></field_level_help_url>

 <factory_field_name>Password</factory_field_name>

 <setter_function>

 <function_name>setPassword</function_name>

 <function_parameter_type>java.lang.String</function_parameter_type>

 </setter_function>

 </resource_attribute>

<!--==-->

<!-- End of DataSource Properties -->

<!--==-->

 <factory_class_name>my.datasource.DataDirectOracleJdbcResourceFactory</factory_class_name>

 <connector_class_name>com.ddtek.jdbcx.oracle.OracleDataSource</connector_class_name>

270 WebSphere for z/OS: Assembling J2EE Applications

<connector_interface_class_name>javax.sql.DataSource</connector_interface_class_name>

 </resource_information>

 </resource>

</websphere390resource>

Sample NLS Properties File

The following sample NLS properties file shows the default English language

translation for displaying the DataDirect Connect JDBC Oracle9i datasource fields

on the Administration application.

Example:

#==

File name: DataDirectOracleJDBCDataSource.properties

Descriptive name: Default English language file for WAS/390

DataDirectOracleJDBCDataSource J2EE Resource template

Proprietary statement:

Licensed Material - Property of IBM

5655-F31 (C) Copyright IBM Corp. 2000, 2001

All Rights Reserved.

U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or

Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

Status = H28W401

#--

Translation Notes:

This file is organized as a sequence of key, value pairs.

The format is key=value. All text in the value part of the

key should be translated.

For example, in the key

resource_information.system=System name

the string "System name" should be translated. The key

(resource_information.system) should not be altered since

it used as the basis for relating the translated text

with the according field in the resource xml template.

Any kind of URL in this file does not need to be translated.

The target for these URLs will be translated separately and

assigned according URLs by information development.

#--

Change history:

$L0=MD12689, H28W401 20011121, PDNW: initial version

#==

#--

Base resource definition fields

#--

factory_class_name=Factory class name

connector_class_name=Connector class name

connector_interface_class_name=Connector interface class name

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 271

resource_id.name=DataDirectOracleJDBCDataSource

resource_id.description=The ConnectionFactory that allows for connection to DataDirect Oracle databases.

resource_information.resource_instance_name=DataDirectOracleJDBCDataSource instance name

resource_information.resource_instance_description= DataDirectOracleJDBCDataSource instance description

resource_information.resource_instance_parent=DataDirectOracleJDBCDataSource name

resource_information.system=System name

#--

NLS Definition for resource attribute ==>SID<==

#--

resource_information.resource_attribute.SID.descriptive_name=System ID Name of Remote Oracle Database

resource_information.resource_attribute.SID.field_level_help_string= \

The SID property refers to the instance of the Oracle database software running on the server. \

The default value is ORCL.

#--

NLS Definition for resource attribute ==>PortNumber<==

#--

resource_information.resource_attribute.PortNumber.descriptive_name= \

TCPIP port number of the listener running on the Oracle Database

resource_information.resource_attribute.PortNumber.field_level_help_string= \

The PortNumber property identifies the port used to connect to the remote Oracle database.

#--

NLS Definition for resource attribute ==>ServerName<==

#--

resource_information.resource_attribute.ServerName.descriptive_name= \

Name or IP address of the remote Oracle Database

resource_information.resource_attribute.ServerName.field_level_help_string= \

The ServerName property identifies the server containing the remote Oracle database.

#--

NLS Definition for resource attribute ==>User<==

#--

resource_information.resource_attribute.User.descriptive_name= \

Valid user id for logging onto the remote Oracle Database

resource_information.resource_attribute.User.field_level_help_string= \

The User property identifies the user id for logging onto the remote Oracle database.

#--

NLS Definition for resource attribute ==>Password<==

#--

resource_information.resource_attribute.Password.descriptive_name= \

Valid password for logging onto the remote Oracle Database

resource_information.resource_attribute.Password.field_level_help_string= \

The Password property identifies the password for logging onto the remote Oracle database.

#==

End of File

#==

Sample Type 4 JDBC Connector Application

The following example shows an application that was written to Lookup a

DataDirect Connect JDBC Oracle9i datasource, obtain a connection to the data

base, and then retrieve data from the data base and display it.

Example:

package com.ibm.oracle;

import javax.servlet.SingleThreadModel;

import javax.servlet.http.HttpServlet;

import java.sql.*;

import javax.sql.*;

import java.io.*;

import javax.naming.*; // Required for Initial context

import javax.transaction.xa.*;

272 WebSphere for z/OS: Assembling J2EE Applications

import com.ddtek.jdbcx.oracle.OracleDataSource;

// This servlet does a JNDI lookup of a DataDirect Oracle JDBC datasource

// and then gets a connection from that datasource

public class TestLookupOra

 extends HttpServlet

 implements SingleThreadModel

{

 public void doPost(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException

 {

 performTest(request, response);

 }

 public void doGet(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException

 {

 performTest(request, response);

 }

 public void performTest(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws java.io.IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 OracleDataSource ds = null;

 Context ctx = null;

 java.sql.Connection myCon = null;

 try

 {

 // Obtain an initialContext object and create a datasource

 ctx = new InitialContext();

 ds = (OracleDataSource) ctx.lookup("java:comp/env/jdbc/DataDirectOracleJDBCDataSource");

 // The datasource properties: SID, PortNumber,

 // ServerName, User and Password are set by

 // the application deployer using the SMEUI so

 // they do not need to be set explicitly here by the application

 // developer by driving setters on the datasource object.

 // Now that the JNDI lookup is complete, these properties have

 // already been set on the datasource.

 // Get connection from datasource.

 // We could also have used getConnection(userid,password).

 myCon = ds.getConnection();

 // Use connection. Use the myCon JDBC connection to

 // perform reads and/or writes to the database. We do not

 // show examples of reads or writes in this sample application

 // but leave this up to the reader’s imagination.

 // Close connection when we are done with it.

 myCon.close();

 // Display connection success msgs

 System.out.println("Success! -- Connection established by JNDI lookup.");

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Oracle9i JNDI Lookup Connection Test</TITLE></HEAD>");

 out.println("<BODY>");

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 273

out.println("<P>");

 out.println("Success! Connection established by JNDI lookup.");

 out.println("</BODY></HTML>");

 } catch (Exception ex)

 {

 ex.printStackTrace();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Oracle9i JNDI Lookup Connection Test Failed</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<P>");

 out.println("Connection failed! -- see stack trace.");

 out.println("</BODY></HTML>");

 }

 }

}

Sample Resource Factory Class

The following example contains code to define the resource factory class for a

DataDirect Connect JDBC Oracle9i datasource.

Example:

package my.datasource;

//---

//

// Module name: DataDirectOracleJdbcResourceFactory

//

// Descriptive Name: WS/390 DatatDirect Oracle Jdbc Resource Factory

//

// Proprietary statement:

//

// Licensed Material - Property of IBM

// 5655-F31 (C) Copyright IBM Corp. 2002

//

// All Rights Reserved.

//

// U.S. Government users - RESTRICTED RIGHTS - Use, Duplication, or

// Disclosure restricted by GSA-ADP schedule contract with IBM Corp.

//

// Status = H28W401

//

// NOTE: This program may be used, executed, copied, modified and

// distributed without royalty for the purpose of developing,

// using, marketing, or distributing.

//

// Change activity:

//

// Flag Reason Release Date Pgmr Description

// ---- --------- ------- -------- ----- ------------------------------

// $L0= Jdbc H28W401 20020318 PDNW: initial creation

// $L1= Oracle H28W401 20020423 PDMU: Customized for DataDirect

// Oracle driver

//---

// These import statements are not necessary, since for instructional

// purposes the fully-qualified class names were used in the sample code

// below. We leave them in as a reminder of which packages are used here.

import java.io.BufferedWriter;

import java.io.PrintWriter;

import java.util.Enumeration;

import java.util.Hashtable;

import javax.naming.Context;

import javax.naming.Name;

274 WebSphere for z/OS: Assembling J2EE Applications

import javax.naming.Reference;

import javax.naming.spi.ObjectFactory;

import javax.sql.DataSource;

// Referenced classes of package com.ibm.ws390.container.resref:

//

// BaseResourceFactory, ResourceRefAddr, ResourceInfo

//

// These classes can be found in ws390srt.jar which ships along

// with WebSphere for z/OS. See instructions for details.

import com.ibm.ws390.container.resref.BaseResourceFactory;

import com.ibm.ws390.container.resref.ResourceRefAddr;

import com.ibm.ws390.container.resref.ResourceInfo;

// Class Defintion

public class DataDirectOracleJdbcResourceFactory

 extends com.ibm.ws390.container.resref.BaseResourceFactory

 implements javax.naming.spi.ObjectFactory {

 public DataDirectOracleJdbcResourceFactory() {

 }

 public java.lang.Object getObjectInstance(java.lang.Object obj,

 javax.naming.Name name,

 javax.naming.Context context,

 java.util.Hashtable hashtable)

throws java.lang.Exception

 {

 com.ibm.ws390.container.resref.ResourceRefAddr resourcerefaddr = null;

 com.ibm.ws390.container.resref.ResourceInfo resourceinfo = null;

 java.lang.String j2eeResourceName = null;

 java.lang.String logwriterParm = null;

 javax.naming.Reference reference = (javax.naming.Reference) obj;

 java.util.Enumeration enumeration = reference.getAll();

 // Create the Jdbc DataSource

 System.out.println("Oracle resource factory: Getting datasource class");

 java.lang.Class datasourceClassName = java.lang.Class.forName(reference.getClassName());

 System.out.println("Oracle resource factory: Create JDBC datasource");

 java.lang.Object jdbcDataSource = datasourceClassName.newInstance();

 // Set the properties from the Systems Management EUI on the resource

 for (; enumeration.hasMoreElements();

 com.ibm.ws390.container.resref.BaseResourceFactory.driveSetter(resourcerefaddr, jdbcDataSource))

 {

 resourcerefaddr = (com.ibm.ws390.container.resref.ResourceRefAddr) enumeration.nextElement();

 }

 // Return the datasource now that the properties have been set

 return jdbcDataSource;

 }

}

Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS 275

276 WebSphere for z/OS: Assembling J2EE Applications

Part 4. Working with J2EE applications in the run-time

environment

© Copyright IBM Corp. 2000, 2003 277

278 WebSphere for z/OS: Assembling J2EE Applications

Chapter 17. Installing applications in a WebSphere for z/OS

server

In addition to step-by-step installation through the WebSphere for z/OS

Administration application, you may use the following alternative methods of

installing applications in a WebSphere for z/OS:

 For information about: See . . .

Using the export/import function of the

Administration application

“Steps for using the export/import process

through the Administration application”

Using the System Management Scripting APIs “Installing applications using scripts” on

page 280

Steps for using the export/import process through the Administration

application

After you have finished testing your J2EE applications, you can use the WebSphere

for z/OS Administration application to export the J2EE server configuration you

have been using on your test system, and import that model configuration on a

production system. Through this export/import process, you create an HFS file

that contains the server definition, which you transfer to a production system. This

process can be quicker and less error-prone than defining a server configuration

from scratch.

Perform the following steps to use the export/import process:

1. In the Administration application, export the server model of the J2EE server in

which your application is deployed:

a. Select the server in the active image.

b. Select the export server... action of the Selected menu bar choice. The Export

server dialog box appears.

c. Enter the fully qualified name of an HFS file to contain the output of the

export process.

d. Click OK.

Result: The action Export server... creates HFS files for the server on the host.

These files contain definitions of the server and its subtree with almost all its

properties, even referenced but not defined J2EE resources.

2. Copy or move the output HFS files to the z/OS or OS/390 production system

on which you want the server to run. See z/OS UNIX System Services User’s

Guide, SA22-7801 for methods of and instructions for moving or copying files.

 Warning: Do not edit the output HFS file.

3. In the Administration application, import the J2EE server model by completing

the following steps:

a. Add a conversation, if necessary.

b. Select the Servers folder.

© Copyright IBM Corp. 2000, 2003 279

c. Select the import server... action of the Selected menu bar choice. The

Import server dialog box appears.

d. For Server name, enter a name that is unique to this WebSphere for z/OS

configuration.

e. For Input file, enter the fully qualified name of the HFS files that you

moved or copied to the production system.

f. Click OK.

g. Modify the properties of the server, including Control region proc name

and Debugger allowed.

h. Add server instances for the production system, as appropriate.

i. Add J2EE resource instances for the production system, as appropriate.

4. Also in the Administration application:

a. Validate the imported model by selecting the conversation, then selecting

Validate. When message BBON0442I appears in the status bar, the new

conversation is valid.

b. Commit the conversation by selecting the conversation, then selecting

Commit. Answer Yes to the question: ″Do you still want to commit?″ When

message BBON0444I appears in the status bar, the new conversation was

committed.

c. Complete z/OS or OS/390 tasks, as appropriate.

d. Activate the conversation by selecting the conversation, then selecting

Activate. Answer Yes to the question: ″Do you want to activate

conversation... ?″ At the bottom of the dialog, a message indicates when the

server definition has been activated.

Installing applications using scripts

To install applications in a J2EE server without using the WebSphere for z/OS

Administration application, you may use the System Management Scripting APIs,

which provide similar capabilities as the Administration application. Using the

scripts might provide a quicker, less error-prone method of installing applications

into a production server, for example. For more information about using the

System Management Scripting APIs, see WebSphere Application Server V4.0.1 for

z/OS and OS/390: System Management Scripting API, SA22-7839.

280 WebSphere for z/OS: Assembling J2EE Applications

Chapter 18. Collecting data about J2EE application activity

WebSphere for z/OS offers several different methods of collecting information

about applications running in a J2EE server:

 For information about: See . . .

Using SMF records to collect accounting

information

“Collecting J2EE application information

through SMF records”

Using the IBM Distributed Debugger to collect

diagnostic data for distributed applications

“Debugging and tracing distributed

applications”

Using JRas support to enable applications to

issue messages and trace entries

“Logging messages and trace data for Java

applications” on page 284

Collecting J2EE application information through SMF records

If you want to collect and record statistics related to your server applications, you

may define a J2EE server to use the z/OS or OS/390 systems management facility

(SMF). Through SMF activity and interval records, the J2EE server records

application details that you may use for application profiling. To enable SMF

recording, you must define the J2EE server to create SMF records, and perform

other administration tasks; for further details, start with the SMF topic in

WebSphere Application Server V4.0.1 for z/OS and OS/390: Operations and

Administration, SA22-7835.

Debugging and tracing distributed applications

The IBM Distributed Debugger and Object Level Trace tools enable you to monitor

and debug distributed applications, including the components that run in an

WebSphere for z/OS server. The IBM Distributed Debugger and Object Level Trace

provide debugging and tracing capabilities for Java or C++ application components

and their Java or C++ clients, which may reside on platforms other than z/OS or

OS/390.

The following table shows the subtasks and associated information for using the

IBM Distributed Debugger and Object Level Trace tools, which are hereafter called

Debugger and OLT, respectively.

 Subtask Associated information (See . . .)

Learning concepts related to the

Debugger and OLT

The InfoCenter for WebSphere V3.5 or V4.0 for

distributed platforms. The InfoCenter is available at:

http://www.ibm.com/software/webservers/appserv/

Installing the Debugger and OLT

on your workstation

The InfoCenter as listed above

© Copyright IBM Corp. 2000, 2003 281

Subtask Associated information (See . . .)

Setting up the workstation and

z/OS or OS/390 environments and

applications for using the tools

v “Steps for starting the Debugger and OLT on your

workstation”

v “Steps for preparing the Debugger and OLT for

Windows Java clients” on page 283

v “Step for preparing z/OS or OS/390 Java clients” on

page 283

v “Steps for preparing J2EE application components in

a WebSphere for z/OS J2EE server” on page 283

Using the Debugger and OLT

interfaces and output

The InfoCenter as listed above

Steps for starting the Debugger and OLT on your workstation

Perform the following steps to start the Debugger and OLT on a Windows NT or

2000 workstation:

1. Start the OLT Viewer from either the Windows Taskbar Start Menu, or type olt

from an MS-DOS command prompt.

2. Start the Browser Preferences window by selecting File → Preferences...

3. From the Browser Preferences window, click on OLT. Write down the OLT

Server TCP/IP port value (the default is 2102), which is the value you will later

specify for the client environment variable.

4. From the Client Controller, in the Execution Mode list box, set the application

execution mode to one of the following:

v Trace only

v Debug only

v Trace and debug

v No trace and debug

Make sure you hit the Apply button to save any changes.

Note: If the execution mode is set to Debug only or Trace and debug, the

debugger host name and debugger TCP/IP port field is enabled. You can

change the debugger host name and port to values that reflect the

location of the Debugger. This host name should be the same as the

value you specify for the OLT Server host name if OLT and the debugger

interface run on the same machine. Otherwise, these host name values

will be different. If your installation does not have DNS configured for

the WebSphere for z/OS environment, make sure you use an IP address

as the Remote Debugger host name.

The default setting for the Debugger host name is the local host name,

and the default for the Debugger TCP/IP port is 8001.

Before continuing to the next procedure, make sure that you remember the

following:

v The monitoring mode you selected for debugging.

282 WebSphere for z/OS: Assembling J2EE Applications

v The IP addresses and port numbers for the machines on which the OLT server

and OLT client controller are running.

Steps for preparing the Debugger and OLT for Windows Java

clients

To prepare the Debugger and OLT for Java clients that run on Windows and use

Java application components that are installed in a J2EE server, perform the

following steps:

1. Create the client startup command based on the following default startup

command, replacing the italicized variables in the properties highlighted in

bold type, as instructed in the following steps:

java -Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=address

-Djava.compiler=NONE -Dcom.ibm.debug.jdwpport=address

-Xbootclasspath/a:%JAVA_HOME%\lib\tools.jar -classpath %SOMCBASE%\lib\somojor.zip;

%SOMCBASE%\samples\InstallVerification\ProgrammingModel\BusinessObjects\Policy\

 Working\NT\TRACE_DEBUG\JCB\jcbPolicyC.jar;

%SOMCBASE%\lib\dertrjrt.jar;%CLASSPATH%

-Dcom.ibm.CORBA.EnableApplicationOLT=true

-Dcom.ibm.CORBA.OLTApplicationHost=hostname

-Dcom.ibm.CORBA.OLTApplicationPort=portnumber -DOLTClient=true

-Dcom.ibm.CORBA.BootstrapHost=bootstrap_hostname PolicyApp [options]

2. Change address and jdwpport to the same value that you will use for the

JVM_DEBUG_PORT variable for the J2EE server in which the Java application

components are installed.

3. Change the OLTApplicationHost to the hostname where the OLT runs.

4. Change the OLTApplicationPort to the OLT server’s TCP/IP port.

5. Change the BootstrapHost to the host name where the WebSphere for z/OS

J2EE server runs.

Step for preparing z/OS or OS/390 Java clients

To prepare Java clients that run on z/OS or OS/390 and use Java application

components that are installed in a J2EE server, perform the following step:

v Add the following environment variables to the Java client’s shell script:

export HOME=/tmp

export IVB_DEBUG_ENABLED=1 # enable the OLT tools

export IVB_TRACE_PORT=2102 # OLT Server TCP/IP port

export IVB_TRACE_HOST=address # the IP address where the OLT is running,

 # or if WebSphere for z/OS has DNS set up,

 # you may use the host name for

 # IVB_TRACE_HOST

Steps for preparing J2EE application components in a

WebSphere for z/OS J2EE server

Before you begin: Find out whether the IBM Distributed Debugger and Object

Level Trace are installed and available at your installation.

Follow these instructions, from the workstation where you installed the Debugger

and OLT, to enable the Java application components for OLT:

Chapter 18. Collecting data about J2EE application activity 283

1. Start the WebSphere for z/OS Administration application and create a new

conversation for a new J2EE server.

2. Expand the J2EE servers folder and highlight the J2EE server. Then, in the

server properties form:

v Check the Debugger allowed check box.

v Set the Object Level Trace Hostname to the name of the machine where OLT

is running, and set the Object Level Trace Port to the value you set in

“Steps for starting the Debugger and OLT on your workstation” on page 282.

(The default port is 2102).

v Add the following environment variable only for Java business objects:

JVM_DEBUG_PORT=xxxx

where xxxx is the port number that the Debugger will use to connect to the

running JVM.

Logging messages and trace data for Java applications

The WebSphere for z/OS run-time supports the Ras Toolkit for Java, which enables

you to issue messages from and collect trace data for your Java server applications

that run in WebSphere for z/OS J2EE or MOFW servers. Through WebSphere for

z/OS extensions to the toolkit, known as JRas support, your Java application’s

messages can appear on the z/OS or OS/390 master console or in the error log

stream, depending on the message type. All messages are logged in the component

trace (CTRACE) data set for WebSphere for z/OS. Also, your application’s trace

entries can appear in the same CTRACE data set.

You might want to issue messages to the master console to report serious error

conditions for mission-critical applications. Through the master console, an

operator can receive and, if necessary, take action in response to a message that

indicates the status of your application. In addition, by directing messages to the

master console, you can trigger automation packages to take action for specific

conditions or events related to your application’s processing.

With JRas support, you may direct error messages to the error log stream. Any

messages that your application issues also appear in the CTRACE data set for

WebSphere for z/OS. Logging the messages in these system resources can help you

more easily diagnose errors related to your application’s processing.

Similarly, issuing requests to log trace data in the CTRACE data set is another

method of recording error conditions, or collecting application data for diagnostic

purposes. You can select the amount and types of trace data to be collected, so you

have the ability to run your application with minimal tracing, when performance is

a priority, or to run your application with detailed tracing, when you need to

recreate a problem and collect additional diagnostic information.

Recommendation: The error log stream, the CTRACE data set for WebSphere for

z/OS, and the master console are primarily intended for recording diagnostic data

for or monitoring system components and critical applications. Depending on your

installation’s configuration, directing application messages and data to these

resources might have an adverse affect on system performance. For example, if you

send application data to the CTRACE data set, trace entries in that data set might

284 WebSphere for z/OS: Assembling J2EE Applications

wrap more quickly, which means you might lose some critical diagnostic data

because the system writes new entries over existing ones when wrapping occurs.

Use this logging support judiciously.

Notes:

1. You can use the WebSphere for z/OS support for logging messages and trace

data only for Java applications (not for Java applets).

2. The WebSphere for z/OS support for the Ras Toolkit is not the same as the

JRas support supplied in Enterprise Edition V3.02. The new JRas support:

v Always logs messages that your application issues. This change means that,

once you code an application to issue messages and run that application, its

messages will always be collected and logged. With Enterprise Edition V3.02,

you had the ability turn off message collection.

v Requires a different mechanism for enabling the collection of trace data. With

Enterprise Edition V3.02, environment variables for the MOFW application

server controlled the collection of trace data; with WebSphere for z/OS V4.0,

a customer-supplied trace settings file enables or disables the collection of

trace data.

v Uses different classes for obtaining message or trace loggers, but the same

methods: the createRASTraceLogger and createRASMessageLogger methods.

The WebSphere for z/OS V4.0 methods, however, have slightly different

signatures than those for Enterprise Edition V3.02.

 Although the Enterprise Edition V3.02 createRASTraceLogger and

createRASMessageLogger methods are deprecated, you do not have to

change any of the programs you coded to use them, unless those programs

must run on another platform as well as on z/OS or OS/390. With

WebSphere for z/OS V4.0, calls to createRASTraceLogger or

createRASMessageLogger are delegated to the same methods in the new

WebSphere for z/OS V4.0 class. To run your application on additional

platforms, such as Windows NT, you must recode your program to use the

new methods.

 For descriptions of the methods you can issue from your server application

to issue messages or log trace entries, refer to the InfoCenter at

http://www.ibm.com/software/webservers/appserv/library.html. The

InfoCenter describes the JRas Facility methods in the com.ibm.ras package,

as it applies to all supported platforms, including z/OS or OS/390.

The following table shows the subtasks and associated procedures for logging

messages and trace data for your Java application:

 Subtask Associated procedure (See . . .)

Determining which types of messages and

trace data to issue or collect

v “Background on issuing application

messages to the z/OS or OS/390 master

console” on page 286

v “Background on issuing trace requests for

your application” on page 287

Preparing your Java server application to

issue messages and trace requests

“Steps for coding your Java application to

issue messages and trace requests” on page

289

Preparing the z/OS or OS/390 run-time

environment for logging messages and

collecting trace data

“Steps for preparing the z/OS or OS/390

environment for logging Java application

messages and trace requests” on page 294

Chapter 18. Collecting data about J2EE application activity 285

|
|

Subtask Associated procedure (See . . .)

Viewing messages or trace data collected for

your Java server application

v “Background on viewing messages and

trace data” on page 296

v “Steps for using IPCS in batch mode to

format application trace data” on page

297

Background on issuing application messages to the z/OS or

OS/390 master console

With the WebSphere for z/OS run-time support for the Ras Toolkit (JRas support),

you can issue messages from your Java application to the master console. You

might want to issue messages to the master console to report serious error

conditions for mission-critical applications, or to trigger automation packages. The

messages your application issues also appear in the component trace (CTRACE)

data set that WebSphere for z/OS uses, and in its error log stream if the messages

are classified as error messages. Logging the messages is another method of

recording error conditions, or collecting application data for diagnostic purposes.

WebSphere for z/OS provides code that creates and manages a message logger,

which processes your application’s messages. The message logger runs in the Java

virtual machine (JVM) for the WebSphere for z/OS J2EE or MOFW server in which

your Java application will run. To use a message logger, all you need to do in your

Java application is:

1. Define the message logger,

2. Drive the method to instruct WebSphere for z/OS to create the message logger,

and

3. Code messages at appropriate points in your application. To direct specific

messages to the master console, your code must include the appropriate

classification for each message.

Specific instructions for updating your application to use JRas support appear in

“Steps for coding your Java application to issue messages and trace requests” on

page 289. Before you can use those instructions to properly code messages,

however, you need to understand the concepts in the following topics:

v “Defining messages through inline method calls or a message properties file”

v “Understanding how the message type affects message destinations” on page

287

Defining messages through inline method calls or a message

properties file

If you want to issue messages from your Java application, you may either define

the messages inline, or use a separate file to contain the messages. Generally

speaking, defining messages inline is faster and requires fewer steps to complete;

using a separate message properties file is a better approach for both usability and

for text translation, if you plan to provide message text in a variety of languages.

Regardless of whether you use the file or inline approach for defining messages,

you must code methods in your Java application to issue messages at appropriate

points in its processing. At those points, you use methods defined in the

RASIMessageLogger interface to issue messages.

If you define messages inline, use textMessage methods to issue messages from

your application. The string that you specify on the method call is what the

message logger sends to the master console, error log stream, or CTRACE data set.

286 WebSphere for z/OS: Assembling J2EE Applications

If you plan to use a message properties file, you need to:

1. Create the message properties file.

2. Define all messages using a key/text pair.

 The key enables the message logger to locate the appropriate message in the

message file; the text is what the message logger sends to the master console,

error log stream, or CTRACE data set.

3. Use the appropriate methods to tell the message logger where to find message

text for your application’s messages.

 You can identify the message file to the message logger through two

mechanisms:

v The setMessageFile method, which registers one message properties file to

serve as the default file for retrieving message text.

v The message or msg methods, on which you may specify the name of the

message properties file.

See “Steps for coding your Java application to issue messages and trace requests”

on page 289 for specific instructions for creating a message file, rules for defining

the messages in it, and examples.

Understanding how the message type affects message

destinations

When you code the method to issue a message, you assign a message type to

characterize the message as an error, warning, or informational message. The

RASIMessageEvent interface defines the message types. These types define the

destination of each message:

v Only informational messages (TYPE_INFORMATION or TYPE_INFO) are sent to the

master console.

v Only error messages (TYPE_ERROR or TYPE_ERR) are sent to the error log stream.

v All three types of messages are sent to the CTRACE data set.

Note that messages are always logged; once you code an application to issue

messages, and run that application on z/OS or OS/390, its messages will always

be collected and logged.

Background on issuing trace requests for your application

The purpose of collecting trace data is to provide sufficient information to

diagnose a problem with your application. With the WebSphere for z/OS run-time

support for the Ras Toolkit (JRas support), you can issue trace requests from your

Java application, and have the resulting trace data recorded in the component trace

(CTRACE) data set that WebSphere for z/OS uses. Your application’s trace data

appears in the CTRACE data set for the WebSphere for z/OS J2EE or MOFW

server in which your application runs.

WebSphere for z/OS provides code that creates and manages a trace logger, which

processes your application’s trace requests. The trace logger runs in the Java virtual

machine (JVM) for the WebSphere for z/OS J2EE or MOFW server in which your

Java application will run. To use a trace logger, all you need to do in your Java

application is:

1. Define the trace logger,

2. Drive the method to instruct WebSphere for z/OS to create the trace logger,

and

3. Code trace requests at appropriate trace points in your application.

Chapter 18. Collecting data about J2EE application activity 287

Specific instructions for updating your application to use JRas support appear in

“Steps for coding your Java application to issue messages and trace requests” on

page 289. Before you can use those instructions to properly code trace requests,

however, you need to understand the concepts in the following topics:

v “Determining where to place trace points and what data to request”

v “Assigning trace types to trace points”

Determining where to place trace points and what data to

request

To collect trace data for a Java application running in a WebSphere for z/OS J2EE

or MOFW server, you must decide where to locate trace points in your

application’s code. At those trace points, you can use RASTraceLogger class

interfaces to request a trace entry. Typical trace points include:

v Method entry

v Method exit

v Start of a functional request

v Major checkpoints in the process of completing a request

v Completion of a functional request

v Interface to another system function

v Any unusual event, such as a detected I/O error or an unexpected exception

You must also decide what information to record in the trace entries, which can

hold a variable amount of data. WebSphere for z/OS automatically collects the

address space identifier (ASID) and task control block (TCB) for the unit of work

or transaction, and Java name for the thread. The following are suggestions on the

additional types of data you might place in the trace entries for a Java application

running in a WebSphere for z/OS J2EE or MOFW server:

v Identification of the unit of work or transaction that is being serviced by the

application. This can be the JOBNAME, USERID, or transaction identifier.

v For entries that trace the start of a functional request, the input parameters.

v For internal checkpoints, an identification that ties this trace entry to the original

request, and information on the current status of the process.

v For unusual events, the cause of the problem and any additional data. For

example, you could record any exceptions and stack traces.

v On return from a service, the return code and reason code.

v For trace entries being used for analysis rather than as a debugging aid,

whatever information the user of the application needs.

Assigning trace types to trace points

For each trace point you define in your Java application, you use methods defined

in the RASITraceLogger interface to request trace entries. As part of each trace

request, you should assign a trace type for this specific request. The

RASITraceEvent interface defines the types that you may use.

Note: The Enterprise Edition V3.02 JRas support required you to assign a trace

level to trace points in your application. These assignments are still

supported, so you do not have to recode any applications that use trace

levels.

After you code trace requests, your Java application is capable of issuing trace

requests while it runs. To actually record the trace data requested, however, the

WebSphere for z/OS J2EE or MOFW server in which your application runs must

be enabled for tracing. “Steps for preparing the z/OS or OS/390 environment for

logging Java application messages and trace requests” on page 294 provides more

detail about enabling tracing for specific trace types.

288 WebSphere for z/OS: Assembling J2EE Applications

Steps for coding your Java application to issue messages and

trace requests

By coding instructions for issuing messages and logging trace entries, you can

improve the reliability, availability, and serviceability (Ras) of your Java server

application. When your Java application runs in a WebSphere for z/OS J2EE or

MOFW server, its messages appear in one or more of the following destinations,

depending on the message type:

v The z/OS or OS/390 master console

v The error log stream that WebSphere for z/OS uses

v The component trace (CTRACE) data set that WebSphere for z/OS uses.

The application’s trace entries appear in the same CTRACE data set.

Before you begin:

v If you want to issue messages from your Java application, you may either define

the messages inline, or use a separate file to contain the messages. Decide which

approach you want to use before you start coding. If necessary, see “Defining

messages through inline method calls or a message properties file” on page 286

for more information about these two approaches.

v For descriptions of the JRas interfaces and methods you can use to issue

messages or log trace entries, refer to the InfoCenter at

http://www.ibm.com/software/webservers/appserv/library.html. The

InfoCenter describes the JRas Facility methods in the com.ibm.ras package, as it

applies to all supported platforms, including z/OS or OS/390.

Perform the following steps to add code to your Java server application to direct

messages and trace entry requests to z/OS or OS/390 message and trace data

logging facilities.

1. (Optional) Create a message properties file if you want to log messages from

your application, and have not defined messages inline. For each message that

the Java application issues, define the message in a key/text pair:

v Use the text portion to indicate what is to appear on the master console or in

the error log stream

v Use the key, in both the message properties file and in your Java application

code, to enable the run-time code to find the correct message text.

Rules:

v Always use an equals sign to separate the key from the text. For example:

BBOJ0001=BBOJ0001 Java BO created.

BBOJ0002=BBOJ0002 Policy number {0} obtained.

v Message text that contains variable data requires special coding to indicate

the placement and content. To correctly define messages with variable text,

use braces {} to indicate that a variable is to appear at a particular place in

the text. Within the braces, use a digit to indicate which variable belongs at

this place.

 For example, suppose your code contains the following instructions:

String day = "Monday";

Integer temp = new Integer(75);

msgLogger.message(RASIMessageEvent.TYPE_INFO,

 this,

Chapter 18. Collecting data about J2EE application activity 289

|
|

"methodName",

 "APPL061I",

 day,

 temp);

To correctly define this message, you would code the following in your

message properties file:

APPL061I=APPL061I On {0}, it is {1} degrees.

2. Using an appropriate application development tool for your application, edit

the source code for your Java application as follows:

v Add import statements for the com.ibm.ras and com.ibm.WebSphere packages.

For example, type the following:

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

v Add definition statements for the message and trace loggers. For example,

type the following:

private RASIMessageLogger msgLogger = null;

private RASITraceLogger trcLogger = null;

3. Edit the constructor for your Java application to create the message logger,

trace logger, or both:

 For this type

of logger:

Complete the following steps:

Message v Use the createRASMessageLogger method to request a message logger

v (Optional) Define the message properties file, if you are using the file,

rather than inline, approach for issuing messages from your application.

Trace Use the createRASTraceLogger method to request a trace logger

 Rules:

v Applications must refer to the object returned by the

createRASMessageLogger method as a type RASIMessageLogger object.

v Applications must refer to the object returned by the createRASTraceLogger

method as a type RASITraceLogger object.

Tip: Avoid using logger names that begin with the com.ibm. prefix, which is

reserved for use by WebSphere for z/OS.

4. If you want to issue messages from your Java application, add messages at

appropriate points in the application’s source code.

 Rules:

v If you are defining messages inline, use the textMessage methods in the

RASIMessageLogger interface, specifying the complete message in a string on

the method call.

v If you are using a message properties file, use the message or msg methods in

the RASIMessageLogger interface, specifying the message key on the method

call. For example:

290 WebSphere for z/OS: Assembling J2EE Applications

msgLogger.message(RASIMessageEvent.TYPE_INFO,

 "com.myCompany.JRasSample",

 "doSomething",

 "BBOJ0001");

v For each message, assign an appropriate type, as defined in the

RASIMessageEvent interface. These types define the destination of each

message:

 Message type Destination

TYPE_INFORMATION or TYPE_INFO Master console and CTRACE data set

TYPE_ERROR or TYPE_ERR Error log and CTRACE data set

TYPE_WARNING or TYPE_WARN CTRACE data set only

Notes:

a. Assign only one message type to each message.

b. If you do not assign a type to a message, or specify ″null″ for the type,

the Java compiler issues an error message.

c. If you assign a type that is not valid, the message logger processes the

message as a TYPE_INFORMATION (or TYPE_INFO) message.
v Each character used in a message must map to an EBCDIC character.

v When routing a message to the master console, WebSphere for z/OS sends

only the first 700 characters of message text.

Limitation: When writing an error message to the error log stream, WebSphere

for z/OS uses only 512 characters of data, including the information it adds to

the message text for identification. (This additional information consists of the

date, time, organization name, and so on.) See WebSphere Application Server

V4.0.1 for z/OS and OS/390: Messages and Diagnosis, GA22-7837 for the format

and content of error log stream entries for application messages.

5. If you want to collect trace data for your Java application, add trace requests at

appropriate points in the application’s source code.

 Rules:

v For each trace request, assign an appropriate type as defined in the

RASITraceEvent interface.

Note: If you do not assign a type to a trace request, the trace logger ignores

that trace request.

v Each character used in trace data must map to an EBCDIC character.

Limitation: When processing trace data, WebSphere for z/OS uses only a

limited amount of hexadecimal or character data:

v For hexadecimal trace data (from tracing Java byte arrays), WebSphere for

z/OS truncates the data after 1024 bytes.

v For character trace data, WebSphere for z/OS substitutes the literal ***BUFFER

OVERFLOW*** when that trace data exceeds 16384 characters. This cumulative

limit includes 1-byte string terminators for each character string.

Tip: To improve your application’s performance, you may use one of the

following alternatives:

Chapter 18. Collecting data about J2EE application activity 291

v Wrap trace calls in a test of the RASTraceLogger.isLogging variable, which is

set to false when trace logging is not active.

v Use the isLogging method in an if statement to test whether trace logging is

active for any level of tracing.

v Use the isLoggable method to determine whether logging is active for the

designated trace type.

With the first two approaches, the overhead of creating a trace entry does not

take place if trace logging is not active. In contrast, the isLoggable method

requires more overhead, but might be the better option, especially if some level

of tracing is always active.

6. Using the appropriate application development tools for your Java application,

generate and compile the code for your application.

When you have executable code for your Java application, you are ready to

complete the steps listed in “Steps for preparing the z/OS or OS/390 environment

for logging Java application messages and trace requests” on page 294.

Example: The following example illustrates the coding requirements described in

the instructions above. The example assumes the use of a message properties file,

named com/myCompany/JRasSample.properties, which contains the following

message definitions:

BBOJ0001=BBOJ0001 Java BO created.

BBOJ0002=BBOJ0002 Policy number {0} obtained.

BBOJ0003=BBOJ0003 Java BO destroyed.

package com.myCompany;

// Import JRas and Websphere packages

import com.ibm.ras.*;

import com.ibm.websphere.ras.*;

public class JRasSample

{

 // Loggers

 private RASIMessageLogger msgLogger = null;

 private RASITraceLogger trcLogger = null;

 // Message file

 private static final String MSG_FILE = "com.myCompany.JRasSample";

 // Array of trace objects

 Object[] objs = new Object[3];

 // Constructor

 public JRasSample()

 {

 // Get logger manager object

 Manager manager = Manager.getManager();

 // Get logger

 trcLogger = manager.createRASTraceLogger("com.myCompany","myProduct",

 "myComponent","myLogger.COM");

 msgLogger = manager.createRASMessageLogger("com.myCompany","myProduct",

 "myComponent","myLogger.COM");

 msgLogger.setMessageFile(MSG_FILE);

 }

 // Example of JRas trace events and messages

 public int doSomething(String parm1,String parm2,String parm3)

 {

 int returnValue = 0;

292 WebSphere for z/OS: Assembling J2EE Applications

byte[] byteArray = {1,2,3,4,5};

 // Trace input parameters

 objs[0] = parm1;

 objs[1] = parm2;

 objs[2] = parm3;

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT,

 "com.myCompany.JRasSample",

 "doSomething",

 objs);

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA))

 {

 // Trace a text string

 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

 "com.myCompany.JRasSample",

 "doSomething",

 "Text data to be traced");

 // Trace binary data

 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

 "com.myCompany.JRasSample",

 "doSomething",

 byteArray);

 // Trace the current stack

 trcLogger.stackTrace(RASITraceEvent.TYPE_MISC_DATA,

 "com.myCompany.JRasSample",

 "doSomething");

 }

 // Issue informational message to WTO and CTRACE

 msgLogger.message(RASIMessageEvent.TYPE_INFO,

 "com.myCompany.JRasSample",

 "doSomething",

 "BBOJ0001");

 // Issue warning message to CTRACE

 msgLogger.message(RASIMessageEvent.TYPE_WARN,

 "com.myCompany.JRasSample",

 "doSomething",

 "BBOJ0002",

 "123");

 // Issue error message to error log and CTRACE

 msgLogger.message(RASIMessageEvent.TYPE_ERR,

 "com.myCompany.JRasSample",

 "doSomething",

 "BBOJ0003");

 // Trace return value

 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT,

 "com.myCompany.JRasSample",

 "doSomething",

 returnValue);

 return returnValue;

 }

 // This method is invoked when a JRasSample object is traced

 public String toString()

 {

 String traceString = "This is the JRasSample object trace data";

 return traceString;

 }

 public static void main(String[] args)

 {

 JRasSample sample = new JRasSample();

 sample.doSomething("parm1","parm2","parm3");

 }

}

Chapter 18. Collecting data about J2EE application activity 293

Steps for preparing the z/OS or OS/390 environment for

logging Java application messages and trace requests

Before you begin:

v Check with the appropriate installation personnel to determine whether error log

streams and component trace data sets were set up during the installation

process for WebSphere for z/OS. While error logs and CTRACE data sets might

be available already, your installation personnel might determine that changes

are necessary to handle your application data, as well as current data from other

WebSphere for z/OS servers and applications. For example, your installation

may set up either a common error log stream for all WebSphere for z/OS

servers, or a separate log stream for each individual server. Your installation

might want to switch from using a common log to separate logs, to accomodate

additional diagnostic data from your Java applications.

v To turn on tracing for an application in a J2EE or MOFW server, you need to

edit or create a JVM properties file. This task might require special authorization

to edit or store this file in the appropriate directory. Check with the system

programmer who installed WebSphere for z/OS on your system.

Notes:

1. Instructions for setting up error log streams appear in WebSphere Application

Server V4.0.1 for z/OS and OS/390: Installation and Customization, GA22-7834.

2. Instructions for setting up and running CTRACE appear in WebSphere

Application Server V4.0.1 for z/OS and OS/390: Messages and Diagnosis,

GA22-7837.

Perform the following steps to set up the z/OS or OS/390 environment for JRas

support:

1. On z/OS or OS/390, create a trace settings file in the hierarchical file system

(HFS), if you want to enable the WebSphere for z/OS J2EE or MOFW server to

collect and log your application’s trace data. In this file, type the trace settings

that you want, in the following format: logger_name=type=[enabled|disabled]

 Example:

myLogger.COM=all=enabled

 logger_name corresponds to the logger name that you specified in the source

code for your application, when you coded the create method to obtain a trace

logger. To enable logging support for more than one logger name, you may

specify a common prefix with an asterisk (for example, a.b.c.*), rather than

spelling out each logger name in its entirety. Specifying something like a.b.c.*

enables logging for loggers named a.b.c.d and a.b.c.e

 Tip: Avoid using logger names that begin with the com.ibm. prefix, which is

reserved for use by WebSphere for z/OS.

 type corresponds to one of the property values in the following table. Property

types are case-sensitive.

 Table 24. Trace setting property types and their corresponding JRas trace types

Specifying this

property type:

Enables tracing for the following JRas trace types:

all All supported RASITraceEvent types

event v RASITraceEvent.TYPE_ERROR_EXC

v RASITraceEvent.TYPE_SVC

v RASITraceEvent.TYPE_OBJ_CREATE

v RASITraceEvent.TYPE_OBJ_DELETE

v RASITraceEvent.TYPE_LEVEL1

294 WebSphere for z/OS: Assembling J2EE Applications

Table 24. Trace setting property types and their corresponding JRas trace types (continued)

Specifying this

property type:

Enables tracing for the following JRas trace types:

entryExit v RASITraceEvent.TYPE_ENTRY_EXIT

v RASITraceEvent.TYPE_API

v RASITraceEvent.TYPE_CALLBACK

v RASITraceEvent.TYPE_PRIVATE

v RASITraceEvent.TYPE_PUBLIC

v RASITraceEvent.TYPE_STATIC

v RASITraceEvent.TYPE_LEVEL1

v RASITraceEvent.TYPE_LEVEL2

debug v RASITraceEvent.TYPE_MISC_DATA

v RASITraceEvent.TYPE_LEVEL1

v RASITraceEvent.TYPE_LEVEL2

v RASITraceEvent.TYPE_LEVEL3

 Rules:

v You may use the same trace properties file to enable different trace types for

given loggers. If you do not use a separate line to define each logger’s trace

types, you must use a single colon (:) to distinguish each logger’s trace

settings.

 Example (separate line for each logger):

com.aCompany.*=all=enabled

com.anotherCompany.*=event=enabled

 Example (same line for each logger):

com.aCompany.*=all=enabled:com.anotherCompany.*=event=enabled

v To specify more than one trace type for a logger, separate each trace type

with a comma (,)

 Example:

com.aCompany.aComponent=debug=enabled,event=enabled

2. Create a new or edit an existing Java virtual machine (JVM) properties file to

point to the trace settings file you just created. This properties file, named

jvm.properties, changes the default settings for the JVM that runs in a

WebSphere for z/OS J2EE or MOFW server.

 Rules:

v You must set the com.ibm.ws390.trace.settings system property to the fully

qualified directory path and file name for your trace settings file. If you do

not specify this system property, or specify the path and file name

incorrectly, all trace types are disabled (the default setting).

v You must make the jvm.properties file accessible to WebSphere for z/OS, so

it can find and use your property settings when activating the server. Place

the jvm.properties file in the same HFS directory in which WebSphere for

z/OS places the current.env file containing environment variable settings for

the server in which your Java application will run. See Appendix A,

“Environment and JVM properties files,” on page 299 for more information

about this directory.

v Trace logging cannot be dynamically started or stopped.

3. Check the environment variable settings related to the J2EE or MOFW server’s

use of component trace. You might want to modify some of the values to

Chapter 18. Collecting data about J2EE application activity 295

accomodate additional trace entries in the CTRACE data set. Specifically, check

the following environment variable settings:

v TRACEBUFFCOUNT

v TRACEBUFFSIZE

4. Start the WebSphere for z/OS J2EE or MOFW server in which your application

will run:

v If you have set up JRas support for an existing application that you already

installed in a server, you need to:

a. Make sure your newly compiled code replaces the existing code.

b. Make sure the WebSphere for z/OS server picks up any modifications

you made to the jvm.properties file or the environment variables. You

need to stop and restart the server to pick up these changes.
v If you have set up JRas support for a brand-new application, follow the

appropriate process to assemble and install your Java application in a

WebSphere for z/OS server. For applications to be installed in a J2EE server,

see the information in Part 2, “Creating, assembling and deploying J2EE

server applications,” on page 107.

Background on viewing messages and trace data

Once your Java application starts running, you can view its messages and trace

data, as follows:

 If you want to view

this type of output:

Use the following instructions:

Messages on the

z/OS or OS/390

master console

The message logger automatically routes messages to the master

console in a readable format. Their appearance and duration depend

on how your installation has set up its console configuration. If

necessary, see z/OS MVS Planning: Operations, SA22-7601 for an

explanation of ways to configure consoles, including controlling

message display, scrolling, and deletion.

Messages in the error

log stream

To view messages in the error log stream, use the log browse utility

(BBORBLOG). See WebSphere Application Server V4.0.1 for z/OS and

OS/390: Messages and Diagnosis, GA22-7837 for instructions for using

the log browse utility, and for examples of message output.

Messages or trace

data in Component

Trace

To view messages or application trace data in Component Trace, you

must use the interactive problem control system (IPCS) in one of the

following ways:

v Line mode on a terminal (IPCS CTRACE command),

v Full-screen mode on a terminal (IPCS dialog), or

v Batch mode, using the terminal monitor program.

Recommendation: If you are not familiar with IPCS, TSO/E and

ISPF, use IPCS in batch mode to format and view trace data, as

described in “Steps for using IPCS in batch mode to format

application trace data” on page 297.

See WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages

and Diagnosis, GA22-7837 for instructions for using the IPCS dialog,

and for examples of message and trace data output.

296 WebSphere for z/OS: Assembling J2EE Applications

Note: When you view the trace data for your Java application, messages and

CTRACE records might not appear in the order in which your application

issued the message or trace requests. All message requests appear in

sequential order, relative to each other. Similarly, all CTRACE records appear

in order, relative to each other. Different types of trace data, however, might

not be in sequence; for example, messages issued after trace requests might

show up in trace output before the trace requests.

Steps for using IPCS in batch mode to format application trace

data

To view messages or application trace data from Component Trace, you must use

the interactive problem control system (IPCS) to format the data. Using IPCS in

batch mode is the easiest method of formatting data, especially if you do not have

much experience with using IPCS, TSO/E and ISPF. Through batch mode, you can

use IPCS to format trace data and write it to an MVS data set. Optionally, you may

copy the contents of that data set into an HFS file for viewing.

Before you begin: You must create an IPCS dump directory before you can use

IPCS in batch mode. When setting up IPCS, your installation may customize IPCS

for its users. This customization can include modifying the IBM-supplied

BLSCDDIR CLIST with default values for creating an IPCS dump directory.

If your installation has modified the BLSCDDIR CLIST, perform the following

steps to create an IPCS dump directory:

1. Decide on a fully-qualified data set name for the directory.

2. From the TSO/E command prompt, enter the BLSCDDIR command, specifying

the data set name. For example, to create a dump directory named

IBMUSER.DDIR, enter:

%blscddir dsn(’ibmuser.ddir’)

If your installation has not customized IPCS, you might need to alter other

BLSCDDIR CLIST parameters. See z/OS MVS IPCS User’s Guide, SA22-7596 and

z/OS MVS IPCS Commands, SA22-7594 for more details about using the BLSCDDIR

CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application trace

data:

1. Create a file and copy the following sample JCL into it. This JCL invokes IPCS

to extract and format JRAS trace data and write it into an MVS data set, and

then uses the TSO/E OPUT command to copy the formatted data from the MVS

data set into an HFS file.

//IBMUSERX JOB ,

// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H

//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50

//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR

//IPCSDOC DD SYSOUT=H

//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR

//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

IPCS

DROPDUMP DDNAME(JRASTRC)

PROFILE LINESIZE(80)PAGESIZE(99999999)

SETDEF NOCONFIRM

CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

 NOTERMINAL

DROPDUMP DDNAME(JRASTRC)

END

Chapter 18. Collecting data about J2EE application activity 297

/*

//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

oput ’ibmuser.ipcs.out’ ’/u/ibmuser/ipcs/jrastrace.txt’ TEXT

/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that you

used for the IPCS dump directory you created.

Notes:

a. Use the PAGESIZE parameter on the PROFILE statement only if you do not

want to print the output data set.

b. You may replace the HFS file name with the name of an existing HFS file,

but you do not have to do so. The OPUT command processing will create a

new HFS file, if the one specified does not exist, and grants read and write

access to that file for your user ID only.

 If you do specify an existing HFS file, the OPUT command processing will

write over any data that is already in that file. If you want to know more

about the OPUT command, see z/OS UNIX System Services Command Reference,

SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example to the

name of the data set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD statement

and the OPUT command in the SYSTSIN stream, as necessary. The formatted

output of the JRAS CTRACE data is first written to the MVS data set

specified by the IPCSPRNT DD statement and then (optionally) copied to the

HFS data set. You must either pre-allocate this data set, or change the

sample JCL to allocate the data set. This data set should have a record

format of VBA and a record length of 133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace data

in the HFS file. If you want to know more about the UNIX editors, see z/OS UNIX

System Services User’s Guide, SA22-7801.

To learn about formatting CTRACE data with the IPCS dialog, see WebSphere

Application Server V4.0.1 for z/OS and OS/390: Messages and Diagnosis, GA22-7837.

298 WebSphere for z/OS: Assembling J2EE Applications

Appendix A. Environment and JVM properties files

This appendix provides reference information for:

v Environment files and environment variables

v JVM properties files and properties

Environment files and environment variables

This section describes:

v How WebSphere for z/OS manages environment variables and environment

files.

v How run-time server start procedures point to their environment files.

v Environment variables for z/OS or OS/390 clients.

v The syntax and meaning of the run-time environment variables.

How WebSphere for z/OS manages server environment

variables and environment files

After the bootstrap process during installation and customization, WebSphere for

z/OS manages environment data through the Administration application and

writes the environmental data into the system management database. To add or

change environment variable data, you must enter environment data pairs (an

environment variable name and its value) on the sysplex, server, or server instance

properties form. When you activate a conversation or prepare for a cold start, the

environment variable data is written to HFS files. WebSphere for z/OS determines

which values are the most specific for an environment file. For instance, a setting

for a server instance takes precedence over the setting for the same variable for its

server, and a setting for a server takes precedence over the setting for the same

variable for its sysplex.

If you modify an environment file directly and not through the Administration

application, any changes are overwritten when you activate a conversation or

prepare for a cold start.

When you activate a conversation or prepare for a cold start, WebSphere for z/OS

writes the environment data to an HFS file for each server instance. The path and

name for each environment file is:

CBCONFIG/controlinfo/envfile/SYSPLEX/SRVNAME/current.env

where

CBCONFIG

Is a read/write directory that you specify at installation time as the directory

into which WebSphere for z/OS is to write configuration data and

environment files. At installation time, we call this directory TARGETDIR. The

default is /WebSphere390/CB390.

 Rule: The System Management group (default CBCFG1) and user ID (default

CBSYMSR1) must own each directory and subdirectory in CBCONFIG. If the

System Management group and user ID do not own CBCONFIG, use the

chown command to make them the owner of each directory and subdirectory

in CBCONFIG. Thus, if you use the default CBCONFIG, you must use the

© Copyright IBM Corp. 2000, 2003 299

chown command to give the System Management group and user ID

ownership of /WebSphere390 and /WebSphere390/CB390.

 Example:

chown -R CBSYMSR1:CBCFG1 /WebSphere390

SYSPLEX

Is the name of your sysplex. WebSphere for z/OS derives this name from the

predefined &SYSPLEX JCL variable.

SRVNAME

Is the server instance name.

 Except for the initial installation of WebSphere for z/OS, you must manage the

environment variables through the Administration application. At initial

installation, the customization dialog modifies an initial environment file, which

the bootstrap job uses.

There are, therefore, two distinct situations in which you define environmental

data for your servers. Matching those situations are two distinct ways you create

the environment data:

1. Prior to the bootstrap process, the customization dialog creates the environment

file for you. The bootstrap job reads the file and places the environmental data

into the system management database.

2. Defining and managing environmental data through the Administration

application. In this situation, you enter environment data pairs (an environment

name and its value—no “=”) through a panel in the Administration application.

How run-time server start procedures point to their

environment files

WebSphere for z/OS run-time server start procedures must point to an

environment file for configuration information. The start procedures use a

BBOENV DD statement with a PATH parameter that points to an HFS file. The

BBOENV DD statement is:

//BBOENV DD PATH=’&CBCONFIG/&RELPATH/&SYSPLEX/&SRVNAME/current.env’

where

&CBCONFIG

Is a variable you set in the start procedure. It must match the read/write

directory that you specify at installation time as the directory into which

WebSphere for z/OS is to write configuration data and environment files. The

default is WebSphere390/CB390.

&RELPATH

Is a subdirectory (controlinfo/envfile). Its value must not change.

&SYSPLEX

Is the name of your sysplex. Because it is a predefined JCL variable, you do

not need to set it in your start procedure.

&SRVNAME

Is the server instance name. By specifying the server instance name when you

start the procedure, you can use the same start procedure for other server

instances.

 Example: To pass the server instance name BBOASR1A to its start procedure,

specify:

300 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|

s bboasr1.bboasr1a,srvname=’BBOASR1A’

To use the same start procedure for server instance BBOASR1B, specify:

s bboasr1.bboasr1b,srvname=’BBOASR1B’

Environment variables for z/OS or OS/390 clients

The Administration application does not manage environment variables for z/OS

or OS/390 clients. You must create and manage z/OS or OS/390 client

environment files and point to them from client programs. Table 25 on page 303

tells you which environment variables are required or optional for z/OS or OS/390

clients.

Note on using substitution variables

You cannot use variable substitution ($ variables) in environment statements. The

variable substitution that is used in UNIX shell environments is not implemented

in the Language Environment (LE). Because WebSphere for z/OS processes

environment variables in the Language Environment, use of variables such as

$PATH in a path environment variable will fail.

Example:

UNIX shell environments often set up paths by appending the new path to the

existing path, like this:

PATH=yourdir

PATH=$PATH/mydir

The resulting path is PATH=yourdir/mydir after substitution for the $PATH

variable. However, because WebSphere for z/OS processes the environment

variables in the Language Environment, where no variable assignment is made, the

resulting path would be PATH=$PATH/mydir.

Environment variable syntax

You must follow this syntax only when defining your initial environment file

before the bootstrap process.

Rules: The following are the syntax rules:

v The syntax of the environment variables follows this pattern:

VARIABLE=VALUE

 Where:

VARIABLE

is the environment variable.

VALUE

is the setting for the variable. The descriptions define possible values for

each variable.
v Leading and trailing white space (blanks or tabs) for both variables and values is

ignored.

 Example: The two following lines yield the same result:

VARIABLE1=VALUE1

and

 VARIABLE1 = VALUE1

v “=” is required.

Appendix A. Environment and JVM properties files 301

v Blank lines are ignored.

v Code upper and lowercase characters as documented in this topic.

v To comment out an environment variable, simply add a character, such as ‘#’, to

the variable. For example, you could change TRACEALL=0 to #TRACEALL=0. The

system ignores such coding because the variable does not begin with an

alphabetic character.

v Language Environment limits the size of environment variables to 2K.

Environment variable use

Not all environment variables need to be used for each server or client. Table 25 on

page 303 tells you where to use a given environment variable. Here are the

meanings for what appears in each column:

v “R” means required.

v “O” means optional.

v “F” means required in a future release.

v A blank in the Default column means the variable is not set.

v A blank in other columns means the variable is not used.

Footnotes appear at the end of the table.

Note: The default settings and examples use the standard _CEE_ENVFILE syntax.

You do not use this syntax when defining environmental data in the

Administration application.

302 WebSphere for z/OS: Assembling J2EE Applications

|

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

A
PP

_E
X

T
_D

IR
=

C

B
C

O
N

FI
G

/
ap

ps
/

SR
V

N
A

M
E

/
ap

p
R

1
9

B
B

O
C

_H
T

T
P_

B
A

C
K

L
O

G
=

10

O

O

O

O

O

B
B

O
C

_H
T

T
PS

_B
A

C
K

L
O

G
=

10

O

O

O

O

O

B
B

O
C

_H
T

T
P_

ID
E

N
T

IT
Y

=

R
1

B
B

O
C

_H
T

T
P_

IN
PU

T
_T

IM
E

O
U

T
=

10

R
1

B
B

O
C

_H
T

T
P_

L
IS

T
E

N
_I

P_
A

D
D

R
E

SS
=

R

1

B
B

O
C

_H
T

T
P_

M
A

X
_P

E
R

SI
ST

_R
E

Q
U

E
ST

S=
50

O

B
B

O
C

_H
T

T
P_

M
O

D
E

=

O

B
B

O
C

_H
T

T
P_

O
U

T
PU

T
_T

IM
E

O
U

T
=

12
0

R
1

B
B

O
C

_H
T

T
P_

O
U

T
PU

T
_T

IM
E

O
U

T
_R

E
C

O
V

E
R

Y
=

[S
E

R
V

A
N

T
]

O

O

O

O

B
B

O
C

_H
T

T
P_

SS
L

_O
U

T
PU

T
_T

IM
E

O
U

T
_R

E
C

O
V

E
R

Y
=

[S
E

R
V

A
N

T
]

O

O

O

O

B
B

O
C

_H
T

T
P_

PE
R

SI
ST

E
N

T
_S

E
SS

IO
N

_T
IM

E
O

U
T

=
30

R

1

B
B

O
C

_H
T

T
P_

PO
R

T
=

R

1

B
B

O
C

_H
T

T
P_

SS
L

_C
B

IN
D

=

O

B
B

O
C

_H
T

T
P_

SS
L

_I
D

E
N

T
IT

Y
=

R

2

B
B

O
C

_H
T

T
P_

SS
L

_I
N

PU
T

_T
IM

E
O

U
T

=
10

O

B
B

O
C

_H
T

T
P_

SS
L

_L
IS

T
E

N
_I

P_
A

D
D

R
E

SS
=

R

1

B
B

O
C

_H
T

T
P_

SS
L

_M
A

X
_P

E
R

SI
ST

_R
E

Q
U

E
ST

S=
50

O

B
B

O
C

_H
T

T
P_

SS
L

_M
O

D
E

=

O

B
B

O
C

_H
T

T
P_

SS
L

_O
U

T
PU

T
_T

IM
E

O
U

T
=

12
0

O

B
B

O
C

_H
T

T
P_

SS
L

_P
E

R
SI

ST
E

N
T

_S
E

SS
IO

N
_T

IM
E

O
U

T
=

30

O

B
B

O
C

_H
T

T
P_

SS
L

_P
O

R
T

=

R
2

B
B

O
C

_H
T

T
P_

SS
L

_T
R

A
N

SA
C

T
IO

N
_C

L
A

SS
=

R

2

B
B

O
C

_H
T

T
P_

SS
L

_V
3C

IP
H

E
R

S=

O

B
B

O
C

_H
T

T
P_

T
R

A
N

SA
C

T
IO

N
_C

L
A

SS
=

R

1

B
B

O
C

_H
T

T
PA

L
L

_N
E

T
W

O
R

K
_Q

O
S=

O

4

Appendix A. Environment and JVM properties files 303

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

B
B

O
C

_H
T

T
PA

L
L

_T
C

L
A

SS
_F

IL
E

=

O

B
B

O
C

_I
IO

P_
B

A
C

K
L

O
G

=
10

O

O

O

O

O

B
B

O
C

_I
IO

PS
SL

_B
A

C
K

L
O

G
=

10

O

O

O

O

O

B
B

O
C

_L
O

G
_R

E
SP

O
N

SE
_F

A
IL

U
R

E
=

N
O

O

O

O

O

O

B
B

O
C

_L
O

G
_R

E
T

U
R

N
_E

X
C

E
PT

IO
N

=
N

O

O

O

O

O

O

B
B

O
C

_P
R

O
PA

G
A

T
E

_U
N

K
N

O
W

N
_S

E
R

V
IC

E
_C

O
N

T
E

X
T

S=
0

O

O

O

O

O

O

B
B

O
D

U
M

P=
3

O

O

O

O

O

B
B

O
D

U
M

P_
C

E
E

3D
M

P_
O

PT
IO

N
S=

O

O

O

O

O

B
B

O
L

A
N

G
=

E
N

U
S

O

O

O

O

O

O

B
B

O
O

_A
C

C
E

PT
_H

T
T

P_
W

O
R

K
_A

FT
E

R
_M

IN
_S

R
S=

0
O

B
B

O
O

_A
C

C
E

PT
_H

T
T

P_
W

O
R

K
_A

FT
E

R
_N

_S
E

C
S=

n
O

B
B

O
O

_A
C

C
E

PT
_H

T
T

P_
W

O
R

K
_A

FT
E

R
_N

_S
R

S=
n

O

B
B

O
O

_W
O

R
K

L
O

A
D

_P
R

O
FI

L
E

=
va

lu
e

O

O

B
E

A
N

_D
E

L
E

T
E

_S
L

E
E

P_
T

IM
E

=
42

00

R
5

O
2

1

C
B

C
O

N
FI

G
=

/
W

eb
Sp

he
re

39
0/

C
B

39
0

R

R

R

R

R

C
L

A
SS

PA
T

H
=

O

O

O

O

6

C
L

IE
N

T
_D

C
E

_Q
O

P=
N

O
_P

R
O

T
E

C
T

IO
N

O

C
L

IE
N

T
_H

O
ST

N
A

M
E

=

O

C
L

IE
N

T
L

O
G

ST
R

E
A

M
N

A
M

E
=

O

C
L

IE
N

T
_R

E
SO

LV
E

_I
PN

A
M

E
=

<
va

lu
e

fo
r

R
E

SO
LV

E
_

IP
N

A
M

E
>

O

O

O

O

O

C
L

IE
N

T
_T

IM
E

O
U

T
=

C
L

O
N

E
ID

=

O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.c
on

ta
in

er
d

n=

<

ib
m

-
w

sn
Tr

ee
=

t1
,o

=
<

or
g>

, c
=

<
co

un
tr

y>
>

O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.d
om

ai
nn

am
e=

do

m
ai

n
na

m
e

O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.m
as

te
ru

rl
=

ld

ap
:/

/
<

ip

na

m
e>

:<
po

rt
>

O

304 WebSphere for z/OS: Assembling J2EE Applications

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

co
m

.ib
m

.w
s3

90
.s

er
ve

r.c
la

ss
lo

ad
er

m
od

e=
2

O

C
O

N
FI

G
U

R
E

D
_S

Y
ST

E
M

=

R
7

R
7

R
7

R
7

R
7

D
A

E
M

O
N

_I
PN

A
M

E
=

R

O

D
A

E
M

O
N

_P
O

R
T

=
55

55

O
8

O
8

D
A

TA
SH

A
R

IN
G

=
1

O

O

O

O

D
E

FA
U

LT
_C

L
IE

N
T

_X
M

L
_P

A
T

H
=

O

9

D
E

FA
U

LT
_U

N
A

U
T

H
_C

L
IE

N
T

_I
D

=
C

B
G

U
E

ST

O

D
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
D

A
E

M
O

N

O
8

O
8

D
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

D
A

E
M

O
N

01

O
1

0

O
1

0

O
1

0

O
1

0

O
1

0

E
N

A
B

L
E

_T
R

U
ST

E
D

_A
PP

L
IC

A
T

IO
N

S=
0

R
3

H
O

M
E

=

O

IB
M

_J
V

M
_S

T
_V

E
R

B
O

SE
G

C
_L

O
G

=

O

O

IB
M

_O
M

G
SS

L
=

0
O

IC
U

_D
A

TA
=

/
us

r/
lp

p/
W

eb
Sp

he
re

/
bi

n/

R

II
O

P_
SE

R
V

E
R

_S
E

SS
IO

N
_K

E
E

PA
L

IV
E

=
n

O

O

O
2

0

IR
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

IN
T

FR
P

O

IR
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
IN

T
FR

P0
1

O
1

0

O
1

0

O
1

0

O
1

0

O
1

0

IR
PR

O
C

=
B

B
O

IR

O

O

IV
B

_D
E

B
U

G
_E

N
A

B
L

E
D

=

O
11

O
11

IV
B

_D
R

IV
E

R
_P

A
T

H
=

/

us
r/

lp
p/

W
eb

Sp
he

re

R

IV
B

_T
R

A
C

E
_H

O
ST

=

O
11

IV
B

_T
R

A
C

E
_P

O
R

T
=

21
02

O

11

ja
va

.n
am

in
g.

se
cu

ri
ty

.c
re

d
en

ti
al

s=
<

pa
ss

w
or

d
>

O

ja
va

.n
am

in
g.

se
cu

ri
ty

.p
ri

nc
ip

al
=

<
us

er
id

>

O

JA
V

A
_C

O
M

PI
L

E
R

=

O

O

JA
V

A
_I

E
E

E
75

4=

O
1

2

Appendix A. Environment and JVM properties files 305

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

JV
M

_B
O

O
T

C
L

A
SS

PA
T

H
=

O

O

JV
M

_B
O

O
T

L
IB

R
A

R
Y

PA
T

H
=

O

O

JV
M

_D
E

B
U

G
=

O

O

JV
M

_D
E

B
U

G
_P

O
R

T
=

O

O

11

JV
M

_E
N

A
B

L
E

_C
L

A
SS

_G
C

=

O

O

JV
M

_E
N

A
B

L
E

_V
E

R
B

O
SE

_G
C

=

O

O

JV
M

_E
X

T
R

A
_O

PT
IO

N
S=

O

JV
M

_H
E

A
PS

IZ
E

=
25

6
O

JV
M

_L
O

C
A

L
R

E
FS

=

O

O

JV
M

_L
O

G
FI

L
E

=

O

O

JV
M

_M
IN

H
E

A
PS

IZ
E

=

O

O

L
D

A
PB

IN
D

PW
=

F

R
1

3

L
D

A
PC

O
N

F=

F
R

1
3

L
D

A
PH

O
ST

N
A

M
E

=

F
R

1
3

L
D

A
PI

R
B

IN
D

PW
=

F

R
1

4

L
D

A
PI

R
C

O
N

F=

F
R

1
4

L
D

A
PI

R
H

O
ST

N
A

M
E

=

F
R

1
4

L
D

A
PI

R
N

A
M

E
=

F

R
1

4

L
D

A
PI

R
R

O
O

T
=

F

R

L
D

A
PN

A
M

E
=

F

R
1

3

L
D

A
PR

O
O

T
=

F

R

L
IB

PA
T

H
=

O

O

O

O

6

L
O

G
ST

R
E

A
M

N
A

M
E

=

O

O

M
A

X
_S

R
S=

0
O

M
IN

_S
R

S=
[0

fo

r
M

O
FW

, 1

fo

r
J2

E
E

]
O

N
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
N

A
M

IN
G

O

306 WebSphere for z/OS: Assembling J2EE Applications

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

N
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

N
A

M
IN

G
01

O

1
0

O
1

0

O
1

0

O
1

0

O
1

0

N
M

PR
O

C
=

B
B

O
N

M

O

O

O
T

S_
D

E
FA

U
LT

_T
IM

E
O

U
T

=
30

O

O

O

O

O

O
T

S_
M

A
X

IM
U

M
_T

IM
E

O
U

T
=

60

O

O

O

O

O

PA
T

H
=

O

O

R
A

S_
M

IN
O

R
C

O
D

E
D

E
FA

U
LT

=

N

O
D

IA
G

N
O

ST
IC

D
A

TA

R
E

C
O

V
E

R
Y

_T
IM

E
O

U
T

=
15

O

O

O

O

R
E

C
Y

C
L

E
_J

2E
E

_S
E

R
V

E
R

S=
Y

O

O

O

O

R
E

M
_D

C
E

PA
SS

W
O

R
D

=

O

R
E

M
_D

C
E

PR
IN

C
IP

A
L

=

O

R
E

M
_P

A
SS

W
O

R
D

=

O
1

5

O
1

5

O
1

5

O
1

5

O

R
E

M
_U

SE
R

ID
=

O

1
5

O
1

5

O
1

5

O
1

5

O

R
E

SO
LV

E
_I

PN
A

M
E

=

O
1

6

O
1

7

O
1

7

O
1

7

R
1

8

R
E

SO
LV

E
_P

O
R

T
=

90
0

O

O

O

O

O

SE
SS

IO
N

_C
O

O
K

IE
_N

A
M

E
=

O

SM
_D

E
FA

U
LT

_A
D

M
IN

=

C

B
A

D
M

IN

O

SM
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

SY
SM

G
T

O

SM
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
SY

SM
G

T
01

O

1
0

O
1

0

O
1

0

O
1

0

O
1

0

SM
PR

O
C

=
B

B
O

SM
S

O

O

SO
M

O
O

SQ
L

=

O

SR
V

IP
A

D
D

R
=

O

O

O

O

O

SS
L

_H
A

N
D

SH
A

K
E

_T
H

R
E

A
D

_C
O

U
N

T
=

3
O

O

O

O

SS
L

_K
E

Y
R

IN
G

=

O

SS
L

_S
E

R
V

E
R

_V
3C

IP
H

E
R

S=

R

O

O

O

O

SY
S_

D
B

2_
SU

B
_S

Y
ST

E
M

_N
A

M
E

=
D

B
2

R

R

R

R

R

T
R

A
C

E
A

L
L

=
1

O

O

O

O

O

O

Appendix A. Environment and JVM properties files 307

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

T
R

A
C

E
B

A
SI

C
=

O

O

O

O

O

O

T
R

A
C

E
B

U
FF

C
O

U
N

T
=

4
O

O

O

O

O

T
R

A
C

E
B

U
FF

L
O

C
=

(S
er

ve
r:

B

U
FF

E
R

, C
lie

nt
: S

Y
SP

R
IN

T
)

O

O

O

O

O

O

T
R

A
C

E
B

U
FF

SI
Z

E
=

1M

O

O

O

O

O

T
R

A
C

E
D

E
TA

IL
=

O

O

O

O

O

O

T
R

A
C

E
M

IN
O

R
C

O
D

E
=

T
R

A
C

E
PA

R
M

=
00

O

T
R

A
C

E
SP

E
C

IF
IC

=

O

O

O

O

O

O

W
A

S_
JA

V
A

_O
PT

IO
N

S=

O

O

O

O

O

W
S_

E
X

T
_D

IR
S=

O

308 WebSphere for z/OS: Assembling J2EE Applications

Ta
bl

e
25

.
W

he
re

to

us

e
en

vi
ro

nm
en

t
va

ria
bl

es

(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>

D
ae

m
on

se
rv

er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er

in

st
an

ce

N
am

in
g

se
rv

er

in
st

an
ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

J2
E

E

se

rv
er

in
st

an
ce

z/
O

S

or

O
S

/3
90

cl

ie
n

t

N
ot

es
:

1.

R
eq

ui
re

d

if

us

in
g

th
e

H
T

T
P

Tr
an

sp
or

t
H

an
d

le
r

to

ha

nd
le

H

T
T

P
pr

ot
oc

ol

re

qu
es

ts

to

th

e
J2

E
E

se

rv
er

.

 2.

R
eq

ui
re

d

if

us

in
g

th
e

H
T

T
PS

Tr

an
sp

or
t

H
an

d
le

r
to

ha

nd
le

H

T
T

PS

re

qu
es

ts

to

th

e
J2

E
E

se

rv
er

.

3.

R
eq

ui
re

d

if

us

in
g

si
ng

le

si

gn
-o

n
ca

pa
bi

lit
y,

Fo

rm

B

as
ed

au

th
en

ti
ca

ti
on

, o
r

a
tr

us
t

as
so

ci
at

io
n

in
te

rc
ep

to
r.

 4.

M
us

t
be

ru

nn
in

g
on

z/

O
S

V
er

si
on

1

R
el

ea
se

2

or

hi

gh
er

fo

r
th

is

en

vi
ro

nm
en

t
va

ri
ab

le

to

ha

ve

an

y
af

fe
ct

. I
t

w
ill

be

ig

no
re

d

fo

r
z/

O
S

R
el

ea
se

1

or

O

S/
39

0
re

le
as

es
.

5.

R
eq

ui
re

d

w

he
n

st
at

ef
ul

se

ss
io

n
be

an
s

in

J2

E
E

se

rv
er

s
ar

e
ac

ti
va

te
d

ba

se
d

on

a

tr
an

sa
ct

io
n,

ra

th
er

th

an

ac

ti
va

te
d

on

ly

on

ce
.

 6.

R
eq

ui
re

d

fo

r
se

rv
er

re

gi
on

s
th

at

us

e
Ja

va
, i

nc
lu

d
in

g
th

e
IM

S
PA

A

an

d

C

IC
S

PA
A

.

7.

T
hi

s
en

vi
ro

nm
en

t
va

ri
ab

le

is

au

to
m

at
ic

al
ly

ad

d
ed

to

ea

ch

se

rv
er

in

st
an

ce
’s

en

vi
ro

nm
en

t
fi

le

an

d

sh

ou
ld

no

t
be

ed

it
ed

.

 8.

If

yo

u
sp

ec
if

y
a

va
lu

e
fo

r
th

e
D

ae
m

on

Se

rv
er

, y
ou

m

us
t

pr
ov

id
e

th
e

sa
m

e
va

lu
e

fo
r

th
e

Sy
st

em

M

an
ag

em
en

t
Se

rv
er

co

nt
ro

l
re

gi
on

.

 9.

R
eq

ui
re

d

w

he
n

th
e

cl
ie

nt

us

es

th

e
Sy

st
em

M

an
ag

em
en

t
Sc

ri
pt

in
g

A
PI

.

10
.

Yo
u

m
us

t
sp

ec
if

y
th

is

fo

r
th

e
se

co
nd

an

d

su

bs
eq

ue
nt

sy

st
em

s
in

a

sy
sp

le
x.

11
.

R
eq

ui
re

d

on

ly

w

he
n

yo
u

ar
e

us
in

g
th

e
IB

M

O

bj
ec

t
L

ev
el

Tr

ac
e

an
d

D

is
tr

ib
ut

ed

D

eb
ug

ge
r

To
ol

s
to

tr

ac
e

an
d

/
or

d

eb
ug

cl

ie
nt

an

d

se

rv
er

ap

pl
ic

at
io

n
co

m
po

ne
nt

s.

12
.

R
eq

ui
re

d

fo

r
Ja

va

cl

ie
nt

s
th

at

ru

n
on

z/

O
S

or

O

S/
39

0.

13
.

L
D

A
PC

O
N

F
is

m

ut
ua

lly

ex

cl
us

iv
e

w
it

h
L

D
A

PB
IN

D
PW

, L
D

A
PH

O
ST

N
A

M
E

, a
nd

L

D
A

PN
A

M
E

. E
it

he
r

L
D

A
PC

O
N

F
is

re

qu
ir

ed
, o

r
L

D
A

PB
IN

D
PW

,
L

D
A

PH
O

ST
N

A
M

E
, a

nd

L

D
A

PN
A

M
E

ar

e
re

qu
ir

ed
.

14
.

L
D

A
PI

R
C

O
N

F
is

m

ut
ua

lly

ex

cl
us

iv
e

w
it

h
L

D
A

PI
R

B
IN

D
PW

, L
D

A
PI

R
H

O
ST

N
A

M
E

, a
nd

L

D
A

PI
R

N
A

M
E

. E
it

he
r

L
D

A
PI

R
C

O
N

F
is

re

qu
ir

ed
, o

r
L

D
A

PI
R

B
IN

D
PW

, L
D

A
PI

R
H

O
ST

N
A

M
E

, a
nd

L

D
A

PI
R

N
A

M
E

ar

e
re

qu
ir

ed
.

15
.

U
se

d

w

he
n

a
se

rv
er

be

co
m

es

a

re
m

ot
e

cl
ie

nt

of

an

ot
he

r
se

rv
er

.

16
.

Fo
r

th
e

co
nt

ro
l

re
gi

on
, t

he

d

ef
au

lt

is

th

e
va

lu
e

of

D

A
E

M
O

N
_I

PN
A

M
E

d

ur
in

g
bo

ot
st

ra
p.

17
.

Fo
r

th
e

se
rv

er

re

gi
on

, t
he

d

ef
au

lt

is

th

e
lo

ca
l

sy
st

em

IP

na

m
e.

G

en
er

al
ly

, d
o

no
t

co
d

e.

18
.

O
pt

io
na

l
if

a

D
ae

m
on

Se

rv
er

is

on

th

e
sa

m
e

sy
st

em

as

th

e
cl

ie
nt

, i
n

w
hi

ch

ca

se

th

e
d

ef
au

lt

is

th

e
lo

ca
l

sy
st

em

IP

na

m
e.

19
.

R
eq

ui
re

d

if

co

m
m

on

JA

R

fi

le
s

an
d

d

ir
ec

to
ri

es

ar

e
go

in
g

to

be

ac

ce
ss

ed

by

m

ul
ti

pl
e

ap
pl

ic
at

io
ns

ru

nn
in

g
in

th

e
sa

m
e

J2
E

E

se

rv
er

in

st
an

ce
.

20
.

C
on

tr
ol

re

gi
on

on

ly
.

21
.

If

yo

u
ha

ve

an

ap

pl
ic

at
io

n
th

at

us

es

la

rg
e

nu
m

be
rs

of

″a

ct
iv

at
e

on
ce

″
st

at
ef

ul

se

ss
io

n
be

an
s,

ta

ki
ng

th

e
d

ef
au

lt

fo

r
B

E
A

N
_D

E
L

E
T

E
_S

L
E

E
P_

T
IM

E

co

ul
d

ca

us
e

Ja
va

ou

t
of

m

em
or

y
er

ro
rs

.

Appendix A. Environment and JVM properties files 309

Environment variable descriptions

APP_EXT_DIR=path

Specifies a directory that can be accessed by multiple applications running in

the same J2EE server instance. Classes in JAR or zip files in this directory are

loaded into the WebSphere for z/OS run-time by the Application Extension

class loader.

Note: See the related information about WebSphere for z/OS class loaders and

application modules in “Overview of WebSphere for z/OS classloader

operation” on page 120.

 Default:

CBCONFIG/apps/SRVNAME/app

 where

CBCONFIG

Is a read/write directory that you specify at installation time as the

directory into which WebSphere for z/OS is to write configuration data

and environment files. The default is /WebSphere390/CB390.

SRVNAME

Is the generic server name.

 Example: APP_EXT_DIR=/tmp/ws_com_apps

BBOC_HTTP_BACKLOG=n

An integer value that indicates the maximum queue length for pending

connections that use HTTP. You may set the maximum value up to 2147483647,

but the specification of the SOMAXCONN statement in the TCP/IP profile

may result in limitations to this. The default is 10.

 Example:

BBOC_HTTP_BACKLOG=25

BBOC_HTTPS_BACKLOG=n

An integer value that indicates the maximum queue length for pending

connections that use HTTPS. You may set the maximum value up to

2147483647, but the specification of the SOMAXCONN statement in the

TCP/IP profile may result in limitations to this. The default is 10.

 Example:

BBOC_HTTPS_BACKLOG=25

BBOC_HTTP_IDENTITY=USER_ID

Specifies a valid SAF user ID which will be used as the current security

principal for this HTTP request. The user ID will be treated as an authenticated

user by the Web container. If this variable is not specified, the request will be

executed under the server region’s identity.

 Example:

BBOC_HTTP_IDENTITY=SECUR001

BBOC_HTTP_INPUT_TIMEOUT=n

Sets a time, in seconds, that the J2EE server will wait for the complete HTTP

request to arrive after the connection has been established before cancelling the

connection. The default value is 10 seconds. Specifying a value of zero disables

the time-out function.

 Example:

310 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|
|
|

|

BBOC_HTTP_INPUT_TIMEOUT=10

BBOC_HTTP_LISTEN_IP_ADDRESS=IP_ADDRESS

Specifies the IP address, in dotted decimal format, that WebSphere for z/OS

J2EE servers use to listen for HTTP client connection requests. This

environment variable is used to specify a specific IP address over which the

J2EE server is to receive requests. It causes the server to bind to this specific a

specific IP address rather than to the default, which is to bind to all addresses

(inaddrany). Normally, the server will listen on all IP addresses configured to

the local TCP/IP stack. However, if you want to fence the work or allow

multiple heterogeneous servers to listen on the same port, you can use

BBOC_HTTP_LISTEN_IP_ADDRESS. The specified IP address becomes the

only IP address over which this control region receives inbound HTTP

requests.

 Example:

BBOC_HTTP_LISTEN_IP_ADDRESS=9.117.43.16

BBOC_HTTP_MAX_PERSIST_REQUESTS=n

An integer value indicating the maximum number of HTTP requests that will

be processed over a single connection from an HTTP client. When the

maximum number of requests have been processed, the client connection will

be closed. Set this value to 0 or 1 to turn off persistent connection processing.

The default value is 50.

 Example:

BBOC_HTTP_MAX_PERSIST_REQUESTS=50

Note: This environment variable is a replacement for environment variable

BBOC_HTTP_SESSION_GC. Once you add the

BBOC_HTTP_MAX_PERSIST_REQUESTS environment variable to your

current.env file, any value specified for the BBOC_HTTP_SESSION_GC

environment variable will be ignored. Therefore, if you have already

added environment variable BBOC_HTTP_SESSION_GC to your

current.env file, you should delete it.

BBOC_HTTP_MODE=INTERNAL

Indicates that Private Headers received from a WebSphere plug-in for Web

servers, over the port specified on the BBOC_HTTP_PORT environment variable,

are to be trusted. There is no default value for this property. If this property is

not included in the current.env file, or if it has a value other than INTERNAL,

all Private Headers received over this port will be ignored.

 Example:

BBOC_HTTP_MODE=INTERNAL

BBOC_HTTP_OUTPUT_TIMEOUT=n

The time, in seconds, that the J2EE server will wait for the response from the

application once the HTTP request has been completed. If the response is not

received within the specified length of time, the server region will fail with

ABENDEC3 and RC=04130001. The default value is 120 seconds.

 Example:

BBOC_HTTP_OUTPUT_TIMEOUT=120

BBOC_HTTP_OUTPUT_TIMEOUT_RECOVERY=[SESSION|SERVANT]

Controls the recovery action taken on timeouts for requests received over the

HTTP transport.

Appendix A. Environment and JVM properties files 311

|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

|

|
|
|

Specifying ″SERVANT″ allows for the termination of server regions when

timeouts occur. If an HTTP request is under dispatch in a server region when

its timeout value is reached, the server region terminates with an ABENDEC3

RSN=04130001. The HTTP request and socket are then cleaned up.

 A setting of ″SESSION″ only cleans up the HTTP request and socket. No

attempt is made to disrupt the execution of a dispatched HTTP request within

a server region. Be careful using this setting as it may lead to a loss of

resources if the dispatched HTTP request loops or hangs.

 The default value is ″SERVANT.″

 Example:

BBOC_HTTP_OUTPUT_TIMEOUT_RECOVERY=SERVANT

BBOC_HTTP_SSL_OUTPUT_TIMEOUT_RECOVERY=[SESSION|SERVANT]

Controls the recovery action taken on timeouts for requests received over the

HTTP SSL transport.

 Specifying ″SERVANT″ allows for the termination of server regions when

timeouts occur. If an HTTP SSL request is under dispatch in a server region

when its timeout value is reached, the server region terminates with an

ABENDEC3 RSN=04130001. The HTTP SSL request and socket are then cleaned

up.

 A setting of ″SESSION″ only cleans up the HTTP SSL request and socket. No

attempt is made to disrupt the execution of a dispatched HTTP SSL request

within a server region. Be careful using this setting as it may lead to a loss of

resources if the dispatched HTTP SSL request loops or hangs.

 The default value is ″SERVANT.″

 Example:

BBOC_HTTP_SSL_OUTPUT_TIMEOUT_RECOVERY=SESSION

BBOC_HTTP_PERSISTENT_SESSION_TIMEOUT=n

Specifies the time, in seconds, that the J2EE server will wait for a subsequent

request from an HTTP client on a persistent connection. If another request is

not received from the same client within this time limit, the connection is

closed. The default value is 30 seconds.

 Example:

BBOC_PERSISTENT_SESSION_TIMEOUT=30

BBOC_HTTP_PORT=n

Specifies the port at which the J2EE server listens for HTTP requests. Any

requests received over the HTTP port will be directed to the Web container for

processing.

 If this variable is not specified, the J2EE server will not listen for HTTP

requests directly.

 The use of this HTTP port does not preclude the use of the WebSphere for

z/OS plug-in with this J2EE server instance. The Web container is capable of

simultaneously processing requests received directly through the HTTP port as

well as from the WebSphere for z/OS plug-in.

Note: Currently, HTTP requests received over this HTTP port are not able to

be authenticated using the mechanisms described in the J2EE

Specification.

 Example:

312 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|

|

|

|
|
|
|

|
|

|
|
|
|

|
|
|

|

BBOC_HTTP_PORT=8080

BBOC_HTTP_SSL_CBIND=ON|OFF

If this environment variable is set to ON, all SSL connections from a browser

must have a client certificate, and the user ID associated with that client

certificate must have RACF CONTROL authority for CB.BIND.servername. If

these conditions are not met, the connection will be closed. Issue the following

RACF command to give the user ID associated with that client certificate

RACF CONTROL authority:

 PERMIT CB.BIND.servername CLASS(CBIND) ID(clientCertUserid) ACCESS(CONTROL)

 Example:

BBOC_HTTP_SSL_CBIND=OFF

BBOC_HTTP_SSL_IDENTITY=USER_ID

Specifies a valid SAF user ID which will be used as the current security

principal for this HTTPS request. The user ID specified on this variable will be

used as the default user ID for the current security principal if no other

mechanism is available for establishing client identity (such as a client supplied

user ID and password).

 The user ID will be treated as an authenticated user by the Web container. If

this variable is not specified, the remote identity specified when the J2EE

server was configured will be used as the current security principal. (See

WebSphere Application Server 4.0.1 for z/OS and OS/390: System Management User

Interface for more information about specifying the Remote Identity.)

 Example:

BBOC_HTTP_SSL_IDENTITY=CBGUEST

BBOC_HTTP_SSL_INPUT_TIMEOUT=n

The time in seconds that the J2EE server will allow for the complete HTTPS

request to be received before cancelling the connection. The default value is 10

seconds.

 Example:

BBOC_HTTP_SSL_INPUT_TIMEOUT=10

BBOC_HTTP_SSL_LISTEN_IP_ADDRESS=IP_ADDRESS

Specifies the IP address, in dotted decimal format, that WebSphere for z/OS

J2EE servers use to listen for HTTPS client connection requests. This IP address

is used by the server to bind to TCP/IP. Normally, the server will listen on all

IP addresses configured to the local TCP/IP stack. However, if you want to

fence the work or allow multiple heterogeneous servers to listen on the same

port, you can use BBOC_HTTP_SSL_LISTEN_IP_ADDRESS. The specified IP

address becomes the only IP address over which this control region receives

inbound HTTPS requests.

 Example:

BBOC_HTTP_SSL_LISTEN_IP_ADDRESS=9.117.43.16

BBOC_HTTP_SSL_MAX_PERSIST_REQUESTS=n

An integer value indicating the maximum number of HTTPS requests that will

be processed over a single connection from an HTTPS client. When the

maximum number of requests have been processed, the client connection will

be closed. Set this value to 0 or 1 to turn off persistent connection processing.

The default value is 50.

 Example:

BBOC_HTTP_SSL_MAX_PERSIST_REQUESTS=50

Appendix A. Environment and JVM properties files 313

|

BBOC_HTTP_SSL_MODE=INTERNAL

Indicates the Private Headers received from a WebSphere plug-in for Web

servers, over the port specified on the BBOC_HTTP_SSL_PORT environment

variable, are to be trusted. There is no default value for this property. If this

property is not included in the current.env file or if it has a value other than

INTERNAL, all Private Headers received over this port will be ignored.

 Example:

BBOC_HTTP_SSL_MODE=INTERNAL

BBOC_HTTP_SSL_OUTPUT_TIMEOUT=n

The time, in seconds, that the J2EE server will wait for the response from the

application once the HTTPS request has been completed. If the response is not

received within the specified length of time, the server region will fail with

ABENDEC3 and RC=04130001. The default value is 120 seconds.

 Example:

BBOC_HTTP_SSL_OUTPUT_TIMEOUT=120

BBOC_HTTP_SSL_PERSISTENT_SESSION_TIMEOUT=n

Specifies the time, in seconds, that the J2EE server will wait between requests

issued over a persistent connection from an HTTPS client. After the server

sends a response, it uses the persistent timeout to determine how long it

should wait for a subsequent request before cancelling the persistent

connection. The default value is 30 seconds.

 Example:

BBOC_HTTP_SSL_PERSISTENT_SESSION_TIMEOUT=30

BBOC_HTTP_SSL_PORT=n

Specifies the port at which the J2EE server listens for HTTPS requests. Any

requests received over the HTTPS port will be directed to the Web container

for processing.

 If this variable is not specified, the J2EE server will not listen for HTTPS

requests directly.

 The use of this HTTPS port does not preclude the use of an IBM HTTP Server

for z/OS with this J2EE server instance. The Web container is capable of

simultaneously processing requests received directly through the HTTPS port

as well as from an IBM HTTP Server for z/OS.

 Example:

BBOC_HTTP_SSL_PORT=8080

BBOC_HTTP_SSL_TRANSACTION_CLASS=TRANSACTION_CLASS

A valid WLM transaction class, which will be used in the creation of the WLM

enclave for all HTTPS requests. If a valid WLM transaction class is not

specified, no transaction class will be set for the enclave.

 Example:

BBOC_HTTP_SSL_TRANSACTION_CLASS=TCLASSA

BBOC_HTTP_SSL_V3CIPHERS=string

Defines the SSL Version 3 cipher suites that system SSL uses in the SSL

handshake for an HTTP SSL connection. It overrides any server-wide setting

set via the Administration Application or SSL_SERVER_V3CIPHERS. Specify a

string as documented in ″z/OS System Secure Sockets Layer Programming″

(SC24-5901). Each cipher is represented by two characters (for example, ″09″

instead of ″9″). You can specify the string with or without comma delineation.

314 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|

|

|
|
|
|
|
|
|

If you delineate with commas, a validity check will run against the installed

ciphers. The default is an empty string, meaning no change is made to the

cipher suites.

 Examples:

BBOC_HTTP_SSL_V3CIPHERS=09,0A,05

BBOC_HTTP_SSL_V3CIPHERS=090A05

BBOC_HTTP_TRANSACTION_CLASS=TRANSACTION_CLASS

A valid WLM transaction class, which will be used in the creation of the WLM

enclave for all HTTP requests. If a valid WLM transaction class is not specified,

no transaction class will be set for the enclave.

 Example:

BBOC_HTTP_TRANSACTION_CLASS=TCLASSA

BBOC_HTTPALL_NETWORK_QOS=HOST|URI|HOSTURI|TCLASS

Specifies the parameters that will be used to classify outbound data that is

delivered in response to HTTP and HTTPS requests. The classification

parameters and values can be used to construct a network Quality of Service

(QOS) policy. This environment variable is only effective if you are running

WebSphere for z/OS on z/OS Version 1 Release 2 or higher. It will be ignored

for lower releases.

 For more information about setting a QOS policy, see the z/OS Communications

Server IP Configuration Guide at URL:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

 If valid values are not provided for this environment variable or if this

environment variable is not specified, the response data will not be classified

to the network agent. The following parameters can be specified for this

environment variable:

HOST

If this parameter is specified, WebSphere for z/OS will classify the

outbound response data using the value that was provided in the host

header of the request. This value will typically be the domain name by

which this response will be exposed to Web clients in a DNS. The port

number will be included.

 Example:

www.mycompany.com

URI

If this parameter is specified, WebSphere for z/OS will use the value of the

URI in the request line of the request to classify the outbound response

data. Any query string will be truncated.

 Example:

/mywebap/myservlet

HOSTURI

If this parameter is specified, WebSphere for z/OS will classify the

outbound response data using the values specified for the HOST and URI

parameters concatenated together.

 Example:

www.mycompany.com/mywebap/myservlet

TCLASS

If this parameter is specified, WebSphere for z/OS will use the resultant

transaction class value that was used to classify the inbound request to the

Appendix A. Environment and JVM properties files 315

|
|
|

|

|
|

|
|
|
|

|

|

Z/OS Workload Manager. See z/OS V1R3.0 MVS Workload Management

Services, SA22-7619, for information on specifying a transaction class value.

Note: This environment variable is ignored if you are running WebSphere for

z/OS on an OS/390 Release 8 system.

BBOC_HTTPALL_TCLASS_FILE =<filename>

Specifies the fully qualified name of the file containing the rules for classifying

an HTTP or HTTPS request.

 Example:

/mydir/tclass.conf

 In this example, the content of the file tclass.conf will be used to map requests

to a transaction class.

 If multiple entries match the request, the first successful match is used. If there

are not matching entries, the value specified for the

BBOC_HTTP_TRANSACTION_CLASS environment variable will be used for a non-SSL

request, and the value specified for the BBOC_HTTP_SSL_TRANSACTION_CLASS

environment variable will be used, for an SSL request. If no value was

specified for either the BBOC_HTTP_TRANSACTION_CLASS or

BBOC_HTTP_SSL_TRANSACTION_CLASS environment variable, the enclave will get

created without a transaction class value.

 Following is the syntax for entries in this file:

TransClassMap <host>:<port> <uritemplate> <tclass>

where:

<host>

Is the value compared against the hostname of the HOST: header of the

request. This value can be a wildcard ’*’.

Note: A value of ’*’ for the host:port value is acceptable and is equivalent

to ’*:*’.

<port>

Is the value compared against the port of the request. This value can be a

wildcard ’*’.

<uritemplate>

Is the value compared against the URI of the request. Any query string

will not be used in the comparison. This value can be a wildcard ’*’, or end

in a wildcard.

<tclass>

Is the Workload Manager Transaction Class name that will be used in the

creation of the enclave.

Examples:

TransClassMap www.ibm.com:80 /webap1/myservlet TCLASS1

TransClassMap www.ibm.com:* /webap1/myservlet TCLASS2

TransClassMap *:443 * TCLASS3

TransClassMap *:* /webap1/myservlet TCLASS4

TransClassMap www.ibm.com:* /webap2/* TCLASS5

TransClassMap * /myservlet TCLASS6

TransClassMap * * TCLASS6

BBOC_IIOP_BACKLOG=n

An integer value that indicates the maximum queue length for pending

connections that use IIOP. You may set the maximum value up to 2147483647,

316 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

but the specification of the SOMAXCONN statement in the TCP/IP profile

may result in limitations to this. The default is 10.

 Example:

BBOC_IIOP_BACKLOG=25

BBOC_IIOPSSL_BACKLOG=n

An integer value that indicates the maximum queue length for pending

connections that use IIOP SSL. You may set the maximum value up to

2147483647, but the specification of the SOMAXCONN statement in the

TCP/IP profile may result in limitations to this. The default is 10.

 Example:

BBOC_IIOPSSL_BACKLOG=25

BBOC_LOG_RESPONSE_FAILURE=[YES|NO]

Determines whether message BBOU0733W is issued to record a failure

detected when attempting to send a response to a client. The message is sent to

the error log. YES causes the message to be issued. The default is NO.

 The message text will contain the request method name, the reply status, and

routing information identifying the client.

 Example:

BBOC_LOG_RESPONSE_FAILURE=YES

BBOC_LOG_RETURN_EXCEPTION=[YES|NO]

Determines whether message BBOU0734W is issued to record a response that

contains an SystemException. The message is sent to the error log. YES causes

the message to be issued. The default is NO.

 The message text will contain the exception identifier and minor code, the

request method name, and routing information identifying the client.

 Example:

BBOC_LOG_RETURN_EXCEPTION=YES

BBOC_PROPAGATE_UNKNOWN_SERVICE_CONTEXTS=[0|1]

Activates or deactivates the support for unknown IIOP Service Contexts.

 Unknown IIOP Service Contexts received on requests are propagated with the

Request. If the dispatched Request invokes an outbound Request, the current

set of unknown IIOP Service Contexts are propagated with the new outbound

Request. Upon receipt of the response to the new outbound Request, any

unknown IIOP Service Contexts received are propagated back to the outbound

Request. Also, the set of unknown IIOP Service Contexts are merged back from

the outbound Request into the dispatched Request. The response for the

original inbound Request contains the current set of unknown IIOP Service

Contexts.

 The default is 0, which instructs the ORB to not propagate unknown IIOP

Service Contexts.

 Example:

BBOC_PROPAGATE_UNKNOWN_SERVICE_CONTEXTS=1

BBODUMP=n

Specifies the default dump used by the signal handler. Valid values and their

meanings are:

0 No dump is generated.

1 A ctrace dump is taken.

Appendix A. Environment and JVM properties files 317

|
|

|

|

|
|
|
|
|

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|

|

|

|
|
|

||

||

2 A cdump dump is taken.

3 A csnap dump is taken.

4 A CEE3DMP dump is taken. CEE3DMP generates a dump of Language

Environment and the member language libraries. Sections of the dump are

selectively included, depending on dump options specified, either by

default or through the BBODUMP_CEE3DMP_OPTIONS environment

variable. By default, this value passes THREAD(ALL) BLOCKS to

CEE3DMP. You can override the default options for CEE3DMP through the

BBODUMP_CEE3DMP_OPTIONS environment variable.

 For more information about CEE3DMP and its options, see z/OS Language

Environment Programming Reference, SA22-7562.

 If you do not specify BBODUMP, the default value is 3 (a csnap dump is

taken).

 Example:

BBODUMP=3

BBODUMP_CEE3DMP_OPTIONS=options

Specifies dump options to be used with a CEE3DMP. This environment

variable is used when you specify BBODUMP=4. For an explanation of

CEE3DMP and valid dump options, see z/OS Language Environment

Programming Reference, SA22-7562.

 Rule: The maximum length of the option string on this environment variable is

255. If the option string is longer than 255, you receive message BBOU0514W

and the CEE3DMP dump options are set to THREAD(ALL) BLOCKS.

 Example:

BBODUMP_CEE3DMP_OPTIONS=NOTRACEBACK NOFILES

BBOLANG=LANGUAGE

The name of the WebSphere for z/OS message catalog used. The default is

ENUS.

BBOO_ACCEPT_HTTP_WORK_AFTER_MIN_SRS=[0|1]

A value of 1 indicates that the minimum number of Server Regions must be

ready for work before HTTP work will be accepted into the Server. The

minimum number of Server Regions is specified on the MIN_SRS environment

variable. Once the minimum number of Server Regions are ready for work, the

HTTP/S transport will start accepting work. The default is 0 (no Server

Regions need to be ready for work before work is accepted over the HTTP/S

transport).

 Example:

BBOO_ACCEPT_HTTP_WORK_AFTER_MIN_SRS=1

BBOO_ACCEPT_HTTP_WORK_AFTER_N_SECS=n

Defines the amount of time, specified in seconds, to wait for the desired

number of server regions as defined by environment variable

BBOO_ACCEPT_HTTP_WORK_AFTER_N_SRS before accepting work over the

HTTP Transport or HTTP SSL protocols. The default is 300 seconds and the

minimum value is 10 seconds.

 Example:

BBOO_ACCEPT_HTTP_WORK_AFTER_N_SECS=300

318 WebSphere for z/OS: Assembling J2EE Applications

||

||

||
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|

|

|

BBOO_ACCEPT_HTTP_WORK_AFTER_N_SRS=n

Defines the number of server regions that must be ready for work before HTTP

work is accepted into the server. Once the specified number of server regions

are ready, the HTTP Transport and HTTP SSL protocols start accepting work.

Both the default and the minimum value are 1.

 Example:

BBOO_ACCEPT_HTTP_WORK_AFTER_N_SRS=1

BBOO_WORKLOAD_PROFILE=value

Controls workload-pertinent decisions made by the WebSphere for z/OS

runtime, such as the number of threads used in the server region. The default

value is NORMAL, which is the appropriate value for most applications.

Consider using one of the other values when your application requires more

threads.

NORMAL

Gives you the thread count dictated by WebSphere for z/OS--either 1

(single-threaded) or 3 (multi-threaded). This value is the default.

IOBOUND

Use IOBOUND if you want more threads in applications that perform

I/O-intensive processing on z/OS. The number of threads is calculated

based on your number of CPUs.

CPUBOUND

Use CPUBOUND if you want more threads in applications that perform

processor-intensive operations on z/OS. The number of threads is

calculated based on your number of CPUs, and cannot be less than three.

LONGWAIT

Use LONGWAIT for application processing that involves sending or

receiving information across a network.

 Example: BBOO_WORKLOAD_PROFILE=NORMAL

BEAN_DELETE_SLEEP_TIME=n

The time in seconds allowed before an expired stateful session bean’s state is

deleted from its backing datastore (DB2). The default time is 4200 seconds (70

minutes). You can increase the time to 2147483 seconds (24.85 days).

Recommendation: Do not set this variable less than 300 seconds (5 minutes).

Note: If you change the value of this variable for your application server, you

may also need to adjust the bean timeout value for your stateful beans.

The default stateful bean timeout is 8 hours, which, when coupled with

the BEAN_DELETE_SLEEP_TIME default value, means it could take up

to 9 hours and 10 minutes to delete a bean. See WebSphere Application

Server V4.0.1 for z/OS and OS/390: Assembling J2EE Applications,

SA22-7836, for more information about stateful session bean timeout.

 Example:

BEAN_DELETE_SLEEP_TIME=1000000

CBCONFIG=path

Specifies a read/write directory in the HFS into which WebSphere for z/OS

writes configuration and environment files when a conversation is activated.

The &CBCONFIG variable in control and server region start procedures must

match this value. In this way, WebSphere for z/OS can find the appropriate

environment file for a server when those start procedures are executed. The

default is /WebSphere390/CB390.

Appendix A. Environment and JVM properties files 319

|
|
|
|

|
|
|
|
|
|
|

|

|

Example: CBCONFIG=/WebSphere390/CB390

 Rules:

1. You cannot change the value for CBCONFIG through the Administration

application (SM EUI).

2. The System Management group (default CBCFG1) and user ID (default

CBSYMSR1) must own each directory and subdirectory in CBCONFIG. If

the System Management group and user ID do not own CBCONFIG, use

the chown command to make them the owner of each directory and

subdirectory in CBCONFIG. Thus, if you use the default CBCONFIG, you

must use the chown command to give the System Management group and

user ID ownership of /WebSphere390 and /WebSphere390/CB390.

 Example:

chown -R CBSYMSR1:CBCFG1 /WebSphere390

Recommendation: You should not change the value of CBCONFIG except

prior to an initial bootstrap or a cold start of WebSphere for z/OS.

CLASSPATH=path1:[path2]:...

Specifies Java class files—.jar files and classes.zip files—for use by Java

business objects in server regions. Specify your Java business object’s .jar files

when you use Java business objects. The entire CLASSPATH statement must be

on one line only.

 Example:

CLASSPATH=/usr/lpp/db2/db2710/classes/db2j2classes.zip: . . .

CLIENT_DCE_QOP=value

The level of DCE message protection used by a local z/OS or OS/390 client to

apply to the current transaction flows. Normally, you would set DCE security

for an z/OS or OS/390 client that accesses servers on remote systems. Note

that the DCE level for a server is set through the Administration application.

 When enabled on client and server, DCE authentication offers each proof of the

other’s legitimacy with a handshake message exchange using DCE’s

third-party authentication scheme. Once this exchange has taken place,

messages can be assigned one of three levels of protection, which are the

values of this environment variable:

NO_PROTECTION

DCE assures only that the messages and their replies are from the

legitimate sender. This is the default.

INTEGRITY

DCE assures that the message is from the legitimate sender and it has not

been modified in any way since the sender sent it.

CONFIDENTIALITY

DCE encrypts the message so that none but the legitimate receiver can

read it.

CLIENT_HOSTNAME=

Allows an z/OS or OS/390 client to determine its host IP name when no

Daemon is running on the same system. When a client program issues the

CBSeriesGlobal::hostName() method, the system checks the

CLIENT_HOSTNAME environment variable first and returns this value, if it is

set. If the value is not set, the system returns the IP name of the Daemon

running on that system, if the Daemon is running. The default value is null.

 Example: CLIENT_HOSTNAME=MYSYS.SYS.COM

320 WebSphere for z/OS: Assembling J2EE Applications

|

|
|

|
|
|
|
|
|
|

|

|

|
|

|
|
|
|
|

|

|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|

|

CLIENTLOGSTREAMNAME=LOG_STREAM_NAME

The WebSphere for z/OS error log stream to which an z/OS or OS/390 client

ORB writes error information.

 Example: CLIENTLOGSTREAMNAME=MY.CLIENT.ERROR.LOG

CLIENT_RESOLVE_IPNAME=IP_NAME

The Internet Protocol name that an z/OS or OS/390 client, or server region

acting as a client, uses to access the bootstrap server (that is, when the client or

server region invokes the resolve_initial_references method). The default is the

value specified by the RESOLVE_IPNAME environment variable, which is the

Internet Protocol name associated with the System Management Server (the

default bootstrap server). If RESOLVE_IPNAME is not set, the value is the

system on which the client or server region is running.

 The CLIENT_RESOLVE_IPNAME environment variable allows you to specify a

bootstrap server running on a remote system, while other clients use a local

bootstrap server defined by the RESOLVE_IPNAME environment variable.

Note: The TCP/IP port number for the CLIENT_RESOLVE_IPNAME is

defined by the RESOLVE_PORT environment variable.

 The value of CLIENT_RESOLVE_IPNAME can be up to 255 characters.

 Example: CLIENT_RESOLVE_IPNAME=REMHOST

CLIENT_TIMEOUT=n

Sets the time-out value for response from a client method call. Set in the

control region, the time is in tenths of seconds (thus, a value of 10 is 1 second).

This is the only time-out available for remote method dispatches. Because the

sysplex TCP/IP that runs through the coupling facility does not always tell the

client when the other end of the socket is gone, you would normally wait

indefinitely for a response. CLIENT_TIMEOUT ensures that you get a response

within the configured time, even if it’s a COMM_FAILURE exception. The default

value is 0 (unlimited), which means no time-out value is set.

 Example:

CLIENT_TIMEOUT=20

CLONEID=<id>

Specifies the cloneID that is used to provide session affinity across WebSphere

for z/OS J2EE server instances. The value specified for this environment

variable must match a value specified on a <Server CloneID> element in the

plugin-cfg.xml file for the Web server plug-in that is being used with

WebSphere for z/OS. The default value for this environment variable is created

by the Web container based on the name of the J2EE server and the name of

the J2EE server instance with which this cloneID is associated, and is of the

form <ServerName.ServerInstanceName>.

 If you change the default value, you must make sure:

v The new value matches a value specified on a <Server CloneID> element in

the plugin-cfg.xml file for the Web server plug-in that you are using.

v The new value is a combination of the following:

– English alphanumeric characters (uppercase or lowercase A to Z and

numbers 0 to 9)

– Periods (.)

– Underscores (_)

– Hyphens (-)

Appendix A. Environment and JVM properties files 321

|
|
|

|

|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|

|

|
|

|

|
|

|

|

|

Note: Alphabetic characters are case-sensitive. The case of any alphabetic

character specified here must exactly match the case of that character

as it is specified on the <Server CloneID> element in the

plugin-cfg.xml file.

com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=org,c=country

The starting point of WsnName tree. Only the Naming server uses this

environment variable. By default, the system expects the value to be

ibm-wsnTree=t1,o=WASNaming,c=us. If you take the default, delete this

environment variable from your environment file.

 This value must match the value specified in LDAP initialization file (our

sample is bboldif.cb). If you’ve modified the organization or country in your

bboldif.cb file, use the same value on this environment variable. Note that case

does not matter in LDAP, though it does matter for the environment variables.

The ″o=,c=″ portion must also be specified as a suffix in bboslapd.conf.

 Example:

suffix "o=WASNaming,c=us"

 Tip: The suffix statement appears as:

suffix "<ws_rdn>"

in the sample bboslapd.conf we ship.

 Example:

com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=us

com.ibm.ws.naming.ldap.domainname=domain name

Uniquely identifies the host root and is the basis for partitioning the JNDI

global name space. Only the Naming server uses this environment variable. By

default, the system expects the value to be the domain name of the sysplex on

which Naming Server is running. If you want the default, delete this

environment variable from the environment file. If you want a different

domain name, specify it.

 Example:

com.ibm.ws.naming.ldap.domainname=plex1

com.ibm.ws.naming.ldap.masterurl=ldap://IP_name:port

The LDAP Server IP Name and port number. Only the Naming server uses this

environment variable. By default, the system expects the IP name to be the

same as the system on which the Naming Server runs and the port to be 1389.

If your LDAP server is running on a system other then the one the Naming

Server runs on or uses a port other than 1389, update this environment

variable. Otherwise, delete this environment variable.

 Example:

com.ibm.ws.naming.ldap.masterurl=ldap://wsldap:1389

com.ibm.ws390.server.classloadermode=number

Specifies the type and behavior of class loaders that the J2EE server uses to

load a class from an application module. This capability supports different

approaches to packaging application components for installation in a J2EE

server, and influences the search-path order that WebSphere for z/OS class

loaders use to find and load classes. For additional information about

application packaging guidelines and classloader operation, see “Overview of

WebSphere for z/OS classloader operation” on page 120.

 Recommendation: For most applications, use the default value (2, application

mode).

322 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|

|

|

|

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|

|
|

Valid values for this property are:

0 Specifies module mode.

 Recommendation: Use this value only if your applications have Manifest

classpath statements in EJB JAR files or in WAR files. Even in this case,

IBM recommends that you change this property setting to 2 (application

mode).

 With module mode, WebSphere for z/OS uses only one classloader per

module. Each module (JAR or WAR file) has its own unique classloader.

Visibility of other modules in the application is achieved only when

Manifest classpath entries are added to a module.

 If you specify module mode, you must include all application dependent

files in each application’s EAR file, or place them in the directory specified

through the APP_EXT_DIR environment variable. Any JAR or zip files that

exist in the directory specified on this environment variable are considered

common files and can be accessed by any application running in the same

J2EE server.

1 Specifies compatibility mode, which allows compatibility with applications

from previous releases of WebSphere for z/OS. In this mode, all EJB

module classloaders have visibility of all other EJB module classloaders,

and all Web application modules have visibility of the EJB classloaders.

The EJB classloaders are searched in the order in which the EJB modules

were initialized.

 If you specify compatibility mode, you must include all application

dependent files in each application’s EAR file, or place them in the

directory specified through the APP_EXT_DIR environment variable. Any

JAR or zip files that exist in the directory specified on this environment

variable are considered common files and can be accessed by any

application running in the same J2EE server.

2 Specifies application mode, which allows all classloaders in a J2EE

application to have visibility of other classloaders in the same application.

The search order is the same as the order in which the modules are

defined in the application.xml for the EAR file.

 If you specify application mode, you must include all application

dependent files in each application’s EAR file, or place them in the

directory specified through the APP_EXT_DIR environment variable. Any

JAR or zip files that exist in the directory specified on this environment

variable are considered common files and can be accessed by any

application running in the same J2EE server.

3 Specifies server mode, which allows all application classloaders on a J2EE

server to have visibility to all other application classloaders in the server.

This setting enables classes in one application to be visible to classes in all

of the other applications residing on that server. When server mode is

specified, common files do not have to be placed in the directory specified

through the APP_EXT_DIR environment variable.

 Default: 2 (application mode)

 Example: com.ibm.ws390.server.classloadermode=1

CONFIGURED_SYSTEM=system

Specifies the name of the system to which the server instance was originally

Appendix A. Environment and JVM properties files 323

|

||

|
|
|
|

|
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|

|
|
|
|
|
|

||
|
|
|

|
|
|
|
|
|

||
|
|
|
|
|

|

|

|
|

configured. During prepare for cold start, cold start, and server activation, the

run time adds this environment variable to each server instance’s environment

file automatically.

 Rule: Do not manually add or change this environment variable at any time,

such as:

v In the initial environment file before bootstrap

v Through the Administration application (SM EUI)

v In an existing server environment file.

DAEMON_IPNAME=IP_NAME

The Internet Protocol name that the Daemon Server registers with the Domain

Name Service (DNS). Any CORBA client communication with WebSphere for

z/OS requires this IP name.

 You must define the DAEMON_IPNAME environment variable at installation

time, before you start the Daemon bootstrap process. Otherwise, WebSphere

for z/OS issues an error message and terminates the Daemon.

 The bootstrap process sets, among other things, the Daemon IP name in the

system management database. After bootstrap, WebSphere for z/OS uses the

value in the system management database. It is possible that, after bootstrap,

the value of the DAEMON_IPNAME environment variable could change to a

value other than what is in the system management database. If this happens,

an error message is issued, but the Daemon initializes with the Daemon IP

name from the system management database.

 To place Daemon server instances in the same host cluster, you must code the

same DAEMON_IPNAME value for each server instance.

 Rules:

v The value for DAEMON_IPNAME must be a fully-qualified long name.

v The first-level qualifier can be from 1 to 18 characters.

v Once chosen, the port and IP name for the Daemon should not change, since

every object reference includes the port and IP name—if you change them,

existing objects will no longer be accessible.

Example: DAEMON_IPNAME=CBQ091.PDL.POK.IBM.COM

DAEMON_PORT=n

The port number at which the Daemon Server listens for requests. The default

is 5555. If you specify a value, you must provide the same value for the

System Management Server control region.

 Example: DAEMON_PORT=5555

DATASHARING=[0 | 1]

Specifies whether a WebSphere for z/OS instance shares DB2 resources with

one or more other WebSphere for z/OS members (clustered host instances) of

the sysplex. The value can be 0 or 1. The default value 1 means data sharing is

active. The value 0 means data sharing is not active. In a monoplex, this

variable has no effect and can be set to 1 or 0.

 Example:

DATASHARING=1

DEFAULT_CLIENT_XML_PATH=path

Specifies the location of a set of XML files that hold default parameter lists

used by the System Management Scripting API. You must set this environment

variable for clients that use the System Management Scripting API.

324 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|
|

|

|

|

IBM provides a set of sample XML files that contain default parameter lists.

After installation, these samples reside in /usr/lpp/WebSphere/samples/smapi.

For information about the XML files and the parameter lists, see WebSphere

Application Server V4.0.1 for z/OS and OS/390: System Management Scripting API,

SA22-7839.

 You can override the default behavior of the System Management Scripting

API in two ways:

1. Specifying the parameters explicitly in the REXX script that calls the System

Management Scripting API. By specifying parameters explicitly, you do not

have to modify the XML samples IBM provides. You simply need to code

DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

in your client environment file.

2. Copying the XML files to another directory (the samples IBM provides are

read-only), making modifications to the parameter lists, then changing the

DEFAULT_CLIENT_XML_PATH to point to the new directory. Making

these changes is required only if you want to override permanently the

default behavior of the System Management Scripting API.

Example: DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

DEFAULT_UNAUTH_CLIENT_ID=user_id

The default local and remote user ID that the System Management server

associates with servers. If you allow unauthenticated client requests on a

server, and do not explicitly specify your own local and remote user ID for

that server, those requests run under the authority of this user ID.

 If you do not define this environment variable, the default local and remote

user ID is CBGUEST.

 You must define this user ID to z/OS or OS/390 and give it appropriate

security authorizations (for example, RACF permissions and LDAP

permissions).

 This environment variable is used only by the System Management server.

Using this environment variable in the environment file for other servers takes

no effect. That is, you cannot use this environment variable for other servers to

define the default local and remote ID that is used by those servers. Rather,

you must define the default through the server properties panel in the

Administration application. To do this

v Select the “Allow non-authenticated clients” checkbox. The Administration

application supplies the value for the local and remote identity from the

value on the DEFAULT_UNAUTH_CLIENT_ID variable (or, if not specified,

it supplies CBGUEST).

v Type over the supplied values with your value.

The System Management server uses this environment variable during

bootstrap. After bootstrap, you can modify the value only at the sysplex level

through the Administration application.

 Example: DEFAULT_UNAUTH_CLIENT_ID=DUDE

DM_GENERIC_SERVER_NAME=SERVER_NAME

The server name for the Daemon Server. The default is CBDAEMON. If you

specify a value, you must provide the same value for the System Management

Server control region.

Appendix A. Environment and JVM properties files 325

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|

Example: DM_GENERIC_SERVER_NAME=CBDAEMON

DM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME

A server instance name of the Daemon Server. The default is DAEMON01. You

must specify this environment variable for all server instances in the second

and subsequent systems in a sysplex.

 Example: DM_SPECIFIC_SERVER_NAME=DAEMON01

ENABLE_TRUSTED_APPLICATIONS=

Specifies whether or not custom user registries can be used. Setting this

variable to 1 enables the custom user registry function. When this function is

enabled, RACF checks if the user is authorized, and if the user is authorized,

allows the call to complete. If this variable does not exist, or is not set to 1, the

user will get an exception.

HOME=path

Specifies the home directory. This variable is set automatically from the

security product user profile when the user logs in to the UNIX shell.

IBM_JVM_ST_VERBOSEGC_LOG=filename

Specifies the HFS file in which garbage-collection output will be logged. Use

this variable with both of the following:

v JVM_ENABLE_CLASS_GC=1 to enable garbage collection, and

v JVM_ENABLE_VERBOSE_GC=1 to view verbose output from the garbage

collection.

Recommendation: If you also are using the JVM_LOGFILE variable to specify an

HFS file for JVM-related output, do not specify the same HFS file for the

IBM_JVM_ST_VERBOSEGC_LOG variable. WebSphere for z/OS will not append data

to an existing file; instead, the data will be overwritten if both of these

variables specify the same HFS file.

IBM_OMGSSL=[0 | 1]

Specifies whether only CORBA-compliant security tags will be exported by the

server. The value 1 means only CORBA-compliant tags are exported. The value

0 (the default) means CORBA-compliant and non-compliant tags are exported.

 Use value 1 when the server uses only SSL basic authentication for its security

and clients (such as CICS or other OEM ORBs) use CORBA-compliant tags.

This is only in the case when the server uses SSL basic authentication. If your

server supports SSL client certificates as well, you do not have to set this

variable.

 Use value 0 (or take the default) when your server uses SSL basic

authentication and interoperates with WebSphere clients on distributed

platforms or WebSphere Application Server Enterprise Edition for OS/390

V3.02.

 Example: IBM_OMGSSL=1

ICU_DATA=path

The path to binary files required by the XML Parser used by the System

Management server during bootstrap and import server processing. If you

installed the WebSphere for z/OS code in the default directory, you do not

need to change this path. The default path is /usr/lpp/WebSphere/bin/.

 Example: ICU_DATA=/usr/lpp/WebSphere/bin/

IIOP_SERVER_SESSION_KEEPALIVE=n

This variable, if set, defines the value in seconds provided to TCP/IP on the

326 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|

|
|

|
|
|
|
|

SOCK_TCP_KEEPALIVE option for the IIOP listener. The function of this

option is to verify if idle sessions are still valid by polling the client TCP/IP

stack. If the client does not respond, the session is closed. If the client goes

away without notifying the server, it would unnecessarily leave the session

active on the server side. Use this option to clean up these unnecessary

sessions. The default is zero.See TCP/IP APAR PQ18618 for more information

about this option.

Notes:

1. If the environment variable is not set, the TCP/IP option is not set.

2. Setting the SOCK_TCP_KEEPALIVE option generates network traffic on

idle sessions, which can be undesirable.

Example: IIOP_SERVER_SESSION_KEEPALIVE=3600

IR_GENERIC_SERVER_NAME=SERVER_NAME

The server name of the Interface Repository Server. The default is CBINTFRP.

You must define a workload management (WLM) application environment

using this name for the Interface Repository Server server regions to work.

IR_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME

A server instance name of the Interface Repository Server. The default is

INTFRP01. You must specify this environment variable for all server instances

in the second and subsequent systems in a sysplex.

IRPROC=PROC_NAME

The start procedure used by the Daemon Server to start the Interface

Repository Server. The default is BBOIR. You can supply the name of your

own start procedure. If you do so, copy the information from the default start

procedure to your new start procedure.

 Example: IRPROC=BBOIR

IVB_DEBUG_ENABLED=1

Enables the z/OS or OS/390 client and the application server to load the object

level trace run time, and to use object level trace for tracing and/or debugging

client and server application components. The value 1 is required for the

application server, and for both C++ or Java clients running on z/OS or

OS/390, when debugging C++ or Java business objects, servlets, JSPs, or

Enterprise beans.

IVB_DRIVER_PATH=path

The name of the directory where WebSphere for z/OS files reside after SMP/E

installation. The default is /usr/lpp/WebSphere.

 Example: IVB_DRIVER_PATH=/usr/lpp/WebSphere

IVB_TRACE_HOST=IP_ADDRESS (or HOSTNAME)

Specifies the workstation IP address (or host name if you have the DNS server

setup correctly) where the object level trace viewer runs. Use this when you

are tracing and/or debugging your client and server components with the IBM

Object Level Trace and Distributed Debugger Tools.

 Example: IVB_TRACE_HOST=MYHOST.IBM.COM

IVB_TRACE_PORT=port

Specifies the same port as the TCP/IP port specified for the object level trace

server. Use this when you are tracing and/or debugging your client and server

components with the IBM Object Level Trace and Distributed Debugger Tools.

The default is 2102.

Appendix A. Environment and JVM properties files 327

Example: IVB_TRACE_PORT=2102

java.naming.security.credentials=password

The password used by the distinguished name specified by

java.naming.security.principal. The password must match the password defined

for the administrator access ID (default is WASAdmin) by the LDAP

initialization file during initial system customization. IBM provides the

WASAdmin access ID in a sample LDIF file called bboldif.cb. The default value

is secret.

 Example: java.naming.security.credentials=secret

 Recommendation: You should change the IBM-supplied password.

java.naming.security.principal=distinguished_name

Distinguished name (user ID) defined to have write access to WsnName

directory. Specify this only if you want to provide read/write access to all

JNDI users. The distinguished name must match the one defined for the

administrator access ID (default is WASAdmin) by the LDAP LDIF file during

initial system customization. IBM provides the WASAdmin access ID in a

sample LDAP initialization file called bboldif.cb. The default value is

cn=WASAdmin,o=WASNaming,c=us.

 Example:

java.naming.security.principal=cn=WASAdmin,o=WASNaming,c=us

 Recommendation: We suggest you keep the WASAdmin access ID.

JAVA_COMPILER=

Specifies the use of the just-in-time (JIT) compiler.

 If you use the environment variable, a null value (JAVA_COMPILER=) turns the

JIT compiler on. Any other value turns the JIT compiler off.

 By default, a Java virtual machine (JVM) running on z/OS or OS/390 uses the

JIT compiler, so you do not have to explicitly set this environment variable. If

you are debugging Java business objects or J2EE application components,

however, turn off the JIT compiler by specifying a non-null value.

 Example: JAVA_COMPILER=NONE

JAVA_IEEE754=EMULATION

Specifies the correct executable code for the system to load for the Java virtual

machine (JVM) in which Java clients on z/OS or OS/390 run. This

environment variable setting is required only for Java clients that run on z/OS

or OS/390.

JVM_BOOTCLASSPATH=path1:[path2]

Enables the use of bootclasspath. This option is equivalent to the

-Xbootclasspath/p: Java invocation option.

JVM_BOOTLIBRARYPATH=path1:[path2]

Enables the use of bootlibrarypath. This option is equivalent to the

-Dsun.boot.library.path= Java invocation option.

JVM_DEBUG=1

This option is equivalent to the —verbose:class,jni Java invocation option. It

reroutes JNI and class debug messages to SYSOUT for debugging purposes. Set

JVM_DEBUG=1 to invoke JVM messaging.

 Note: Setting this variable does not result in garbage collection processing; to

enable garbage collection, you must specify JVM_ENABLE_CLASS_GC=1.

328 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|
|

JVM_DEBUG_PORT=port

Specifies a TCP/IP port that the distributed debugger uses to connect to the

JVM.

JVM_ENABLE_CLASS_GC=1

Enables garbage collection of class objects when this environment variable is

set to the value 1. Without this setting, garbage collection is not enabled for

class objects, so the default behavior is equivalent to the -Xnoclassgc Java

invocation option.

 If you need garbage-collection output in an output file, specify the filename

through the IBM_JVM_ST_VERBOSEGC_LOG environment variable.

Otherwise, garbage-collection output appears in SYSOUT for the server region.

JVM_ENABLE_VERBOSE_GC=1

Sets verbose garbage collection on or off. The value 1 is required for enabling

garbage collection messages. This option is equivalent to the -verbose:gc Java

invocation option.

 If you need garbage-collection output in an output file, specify the filename

through the IBM_JVM_ST_VERBOSEGC_LOG environment variable.

Otherwise, garbage-collection output appears in SYSOUT for the server region.

JVM_EXTRA_OPTIONS=string

Allows you to specify one new Java environment variable that is not already

predefined by IBM (those predefined variables start with JVM_). With

JVM_EXTRA_OPTIONS, string is the new Java option or property that you want to

specify.

JVM_HEAPSIZE=n

Sets the maximum size (in megabytes) of the JVM heap. The default is 256 MB.

This option is equivalent to the -Xmx=xxxM Java invocation option.

 Example: JVM_HEAPSIZE=256 # specifies a 256 MB heap

JVM_LOCALREFS=

Should only be used under the direction of IBM support. The default is 128.

JVM_LOGFILE=filename

Specifies the HFS file in which JNI and class debug messages from the JVM

will be logged.

 Recommendations:

v Use this variable only in a single-server environment. If you use JVM_LOGFILE

in a multiple-server environment, all the servers write to the same file, so

you might have difficulty using the file for diagnostic purposes. In a

multiple-server environment, use JVM_DEBUG=1 to direct JNI and class debug

messages to the SYSOUT for a specific server.

v This log file does not contain garbage-collection output. If you enable

garbage collection by specifying JVM_ENABLE_CLASS_GC=1, the output

appears in SYSOUT for the server region, or in an HFS file you specify

through the IBM_JVM_ST_VERBOSEGC_LOG environment variable. Do not

specify the same HFS file for the IBM_JVM_ST_VERBOSEGC_LOG variable as you

do for the JVM_LOGFILE variable. WebSphere for z/OS will not append data

to an existing file; instead, the data will be overwritten if both of these

variables specify the same HFS file.

JVM_MINHEAPSIZE=n

Sets the mimimum size (in megabytes) of the JVM heap. The default is 256

Appendix A. Environment and JVM properties files 329

|
|
|
|
|

|
|
|

|
|
|

|

|

MB. This option is equivalent to the -Xms=xxxM Java invocation option. For

optimal performance, specify the same value for JVM_HEAPSIZE and

JVM_MINHEAPSIZE.

LDAPBINDPW=password

The password the Naming Server uses to bind to the LDAP server. Used in

conjunction with LDAPNAME.

LDAPCONF=filename

The LDAP configuration file used by WebSphere for z/OS. If you designate a

file in the HFS, do not use quotes. If you designate an MVS data set, enclose

the data set in single quotes.

 Example: LDAPCONF=‘bbo.s21slapd.conf’

LDAPHOSTNAME=name:port

The host name of the LDAP server that the Interface Repository Server uses as

its data store.

LDAPIRBINDPW=password

The password the Interface Repository Server uses to bind to the LDAP server.

Used in conjunction with LDAPIRNAME.

LDAPIRCONF=filename

The LDAP configuration file used by the LDAP server that the Interface

Repository Server uses as its data store. If you designate a file in the HFS, do

not use quotes. If you designate an MVS data set, enclose the data set in single

quotes.

LDAPIRHOSTNAME=name:port

The host name of the LDAP server that the Interface Repository Server uses as

its data store.

LDAPIRNAME

The LDAP entry name that the Interface Repository Server uses to authenticate

itself to the LDAP server that it uses as its data store.

LDAPIRROOT=root

The LDAP entry name at which the Interface Repository Server anchors its

data.

 Example: LDAPIRROOT=o=BOSS,c=U

LDAPNAME

The LDAP entry name that the Naming Server uses to authenticate itself to the

LDAP server that it uses as its data store.

LDAPROOT=root

The LDAP entry name at which the Naming Server anchors its data.

 Example: LDAPROOT=o=BOSS,c=US

LIBPATH=path1:[path2]:...

Specifies the DLL search paths for Java in the hierarchical file system (HFS).

Specify system, WebSphere for z/OS, and Java DLLs.

 Example:

LIBPATH=/db2_path/lib:/usr/lpp/java/J1.3/bin:/usr/lpp/java/J1.3/bin/classic:/usr/lpp/WebSphere/lib

where db2_path is the HFS where you installed DB2.

LOGSTREAMNAME=LOG_STREAM_NAME

The WebSphere for z/OS error log stream name the Daemon and System

Management servers use during bootstrap. If not specified in the environment

330 WebSphere for z/OS: Assembling J2EE Applications

file for the Daemon and System Management servers during bootstrap, the

system uses the following algorithm to form an error log stream name.

WebSphere for z/OS:

1. Takes the first qualifier in the Daemon Server’s IP name.

2. If the first qualifier is more than 8 characters, divides the qualifier into

8-character strings and separates them with periods.

3. Adds a high-level qualifier “BBO”.

For example, if the Daemon IP name is MYDAEMONSERVER.IBM.COM, the

algorithm would produce an error log stream name

BBO.MYDAEMON.SERVER.

 After bootstrap, you can create or change an error log stream name for the

entire sysplex, a server, or a server instance through the Administration

application. A server error log stream setting overrides the general WebSphere

for z/OS setting, and a server instance setting overrides a server setting. Thus,

you can set up general error logging, but direct error logging for servers or

server instances to specific log streams.

 During processing, if the specified log stream is not found or not accessible, a

message is issued and errors are written to the server’s joblog.

 Example: LOGSTREAMNAME=MY.CB.ERROR.LOG

 Tip: Do not put the log stream name in quotes. Log stream names are not data

set names.

MAX_SRS=nn

Specifies the total number of server regions allowed by workload management

to run concurrently in the server’s application environment. That is, workload

management will not start more server regions for a particular application

environment than are specified through this environment variable.

 Use this environment variable to limit the number of server regions created by

workload management for a server. The default is zero, which means there is

no limit.

 Attention: If you specify MAX_SRS, you must ensure that you specify a

MAX_SRS value that is greater than or equal to MIN_SRS times the number of

service classes you have defined for this application environment. Failure to do

so can result in timeouts due to an insufficient number of server regions.

 Example: MAX_SRS=10

MIN_SRS=nn

The number of server regions to be kept running once those server regions

have initialized. That is, workload management will not direct the server

region to shut down even though it becomes inactive. Use this environment

variable when the response time for the workload requires that several server

regions are always ready to process work.

 The default for J2EE servers is 1. For MOFW servers, the default is 0. The

maximum value is 20. If you specify more than 20, the variable is set to 20.

 WebSphere for z/OS garbage collection may cause a server region to refresh,

but the minimum number of server regions will not fall below the value

specified on this environment variable.

 Example: MIN_SRS=2

Appendix A. Environment and JVM properties files 331

NM_GENERIC_SERVER_NAME=SERVER_NAME

The server name of the Naming Server. The default is CBNAMING. You must

define a workload management (WLM) application environment using this

name for the Naming Server server regions to work.

 Example: NM_GENERIC_SERVER_NAME=CBNAMING

NM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME

The server instance name of the Naming Server. The default is NAMING01.

You must specify this environment variable for all server instances in the

second and subsequent systems in a sysplex.

 Example: NM_SPECIFIC_SERVER_NAME=NAMING01

NMPROC=PROC_NAME

The start procedure used by the Daemon Server to start the Naming Server.

The default is BBONM. You can supply the name of your own start procedure.

If you do so, copy the information from the default start procedure to your

new start procedure.

 Example: NMPROC=BBONM

OTS_DEFAULT_TIMEOUT=n

The amount of time (in seconds) given by default to an application transaction

to complete. This amount of time is given to the application transaction if it

does not set its own time-out value through the current —> set_timeout

method.

 The default is 30 seconds and the maximum value is 2147483 seconds (24.85

days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special

processing for the System Management server instances only.

v If the OTS_DEFAULT_TIMEOUT variable is not set, it is added.

v If the value for OTS_DEFAULT_TIMEOUT is less than 3600 (seconds),

it is set to 3600.

This special processing is performed for the System Management server

instances because the server instances sometimes perform long-running

transactions. Other server instances do not require such lengthy

transaction defaults.

 Example: OTS_DEFAULT_TIMEOUT=30

OTS_MAXIMUM_TIMEOUT=n

The maximum allowable amount of time (in seconds) given to an application

transaction to complete. If an application assigns a greater amount of time, the

system limits the time to the OTS_MAXIMUM_TIMEOUT value.

 The default is 60 seconds and the maximum value is 2147483 seconds (24.85

days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special

processing for the System Management server instances only.

v If the OTS_MAXIMUM_TIMEOUT variable is not set, it is added.

v If the value for OTS_MAXIMUM_TIMEOUT is less than 3600

(seconds), it is set to 3600.

332 WebSphere for z/OS: Assembling J2EE Applications

This special processing is performed for the System Management server

instances because the server instances sometimes perform long-running

transactions. Other server instances do not require such lengthy

transaction defaults.

 Example: OTS_MAXIMUM_TIMEOUT=60

PATH=path

Specifies the path.

RAS_MINORCODEDEFAULT=value

Determines the default behavior for gathering documentation about system

exception minor codes. Use only under the guidance of IBM Service.

CEEDUMP

Captures callback and offsets.

 Tip: It takes time for the system to take CEEDUMPs and this may

cause transaction timeouts. For instance, your

OTS_DEFAULT_TIMEOUT may be set to 30 seconds, but, since taking

a CEEDUMP can take longer than 30 seconds, your application

transaction may time out. To prevent this from happening, either:

v Increase the transaction timeout value.

 or

v Code RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA. Be

sure TRACEMINORCODE is not in the environment file.

TRACEBACK

Captures Language Environment and z/OS UNIX traceback data.

SVCDUMP

Captures an MVS dump (but will not produce a dump in the client).

NODIAGNOSTICDATA

The default. This setting will not cause the gathering of a CEEDUMP,

TRACEBACK, or SVCDUMP.

Note: Sometimes results depend on the setting of another environment

variable, TRACEMINORCODE. If you code TRACEMINORCODE=(null

value) and RAS_MINORCODEFAULT=TRACEBACK you get a

traceback. But, if you code

RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA and

TRACEMINORCODE=ALL, you also get a traceback. So, specifying

RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA does not cancel

TRACEBACK; it simply does not cause a TRACEBACK to be gathered.

RECOVERY_TIMEOUT=n

The time in minutes that this control region uses to attempt to resolve

transactions before asking the installation if it should:

1. Give up trying to resolve,

2. Write transaction-related information to the joblog or hard copy log, then

3. Terminate.

If the installation replies that it would like the recovery to continue, the control

region will attempt recovery for another n minutes before re-issuing the

WTOR. Of course, once all the transactions are resolved, the control region will

just terminate and you won’t see the WTOR again. This variable applies only

to control regions in restart and recovery mode, when you are not running on

your configured system. The default value is 15 minutes.

Appendix A. Environment and JVM properties files 333

Example:

RECOVERY_TIMEOUT=7

RECYCLE_J2EE_SERVERS=Y|N

Specifies whether or not the Systems Management server will automatically

recycle a J2EE server instance when a modified conversation for the associated

J2EE server is activated. If Y is specified, the Systems Management server will

automatically recycle J2EE server instances whenever a modified conversation

is activated. When Y is specified, the environment variable performs the same

function that was implemented prior to the introduction of this new variable. If

N is specified, the Systems Management server:

v Will not automatically recycle J2EE server instances whenever a modified

conversation for the associated J2EE server is activated. The servers must

still be restarted (manually or with some customer-provided automation) to

allow changes to the server instance to take effect.

v Will not delete files associated with deleted applications on these server

instances from the HFS because the application will still be running until the

server instance is restarted. To prevent accumulation of obsolete files on the

HFS, you should delete all files and directories associated with the deleted

applications after restarting the server instances. This includes:

 * /<CBCONFIG>/apps/<server_name>/A/A<uuid>/ (directory)

* /<CBCONFIG>/apps/<server_name>/A/A<uuid>.* (files)

* /<CBCONFIG>/apps/<server_name>/<j2ee_application_name>/ (directory)

* /<CBCONFIG>/working/<server_name>/temp/<sysplex_name>/

 <server_inst_name>/<app_name>/ (directory

Note: RECYCLE_J2EE_SERVERS is only used by the Systems Management

server. If specified on any other server, it is ignored.

 Default: Y

 Example: RECYCLE_J2EE_SERVERS=Y

REM_DCEPASSWORD=password

The password of the remote DCE principal passed in the security context when

an z/OS or OS/390 client makes a request to a system outside the sysplex and

SSL Type 1 authentication is being used. The password must conform to DCE

requirements for passwords.

 Example: REM_DCEPASSWORD=mydcePW

REM_DCEPRINCIPAL=principal

The principal passed in the security context when a client makes a request to a

system outside the sysplex and SSL Type 1 authentication is being used. This

principal must be defined on the target server. The value must conform to

DCE requirements for principals.

 Example: REM_DCEPRINCIPAL=myDCEprin

REM_PASSWORD=password

The password used in the security context when a client makes a request to a

remote z/OS or OS/390 system and user ID/password security or SSL security

is being used.

 Example: REM_PASSWORD=MYPASSW

REM_USERID=USER_ID

The user ID used in the security context when a client makes a request to a

remote z/OS or OS/390 system and user ID/password security or SSL security

is being used.

334 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|

|

Example: REM_USERID=MCOX

RESOLVE_IPNAME=IP_NAME

The Internet Protocol name that the System Management Server registers with

the Domain Name Service (DNS). Any CORBA client communication with

WebSphere for z/OS requires this IP Name. If not set, the Resolve IP Name is

the system on which the program is running.

 Rule: The value for RESOLVE_IPNAME should be a fully-qualified name, but

it cannot exceed 255 characters.

 Example: RESOLVE_IPNAME=CBQ091.COMPANY.NY.COM

RESOLVE_PORT=n

The port number at which the System Management Server listens for requests.

The default is 900. This is a well-known port for Object Request Brokers, so

IBM advises that you do not change this variable. If you already have an

application that uses this port, consider using TCP/IP bind-specific support

and the SRVIPADDR environment variable.

 Example: RESOLVE_PORT=900

SESSION_COOKIE_NAME=

Specifies the name of the cookie that is to be used for this J2EE server instance,

if cookies are enabled. The cookie name must only contain:

v English alphanumeric characters (uppercase or lowercase A to Z and

numbers 0 to 9)

v Underscore (_)

v Period (.)

v Hyphen (-)

The default value is “JSESSIONID”.

Note: The value specified on this environment variable must match the value

specified on the session.cookie.name property in the webcontainer.conf

file.

SM_DEFAULT_ADMIN=USER_ID

The user ID for the administrator who uses the Administration and Operations

applications. This environment variable is used by the System Management

bootstrap during installation—setting this environment variable after the

System Management bootstrap runs has no effect. If you do not define this

environment variable, the default user ID is CBADMIN. You must define this

user ID to z/OS or OS/390 and give it appropriate security authorizations (for

example, RACF permissions and LDAP permissions).

Note: After the System Management bootstrap runs, you can define additional

administrator user IDs only through the Administration application.

Those user IDs do not replace the user ID defined by

SM_DEFAULT_ADMIN.

 Example: SM_DEFAULT_ADMIN=DUDE

SM_GENERIC_SERVER_NAME=SERVER_NAME

The server name of the Systems Management Server. The default is

CBSYSMGT. You must define a workload management (WLM) application

environment using this name for the Systems Management Server server

regions to work.

 Example: SM_GENERIC_SERVER_NAME=CBSYSMGT

Appendix A. Environment and JVM properties files 335

|
|
|

|
|

|

|

|

|

|
|
|

SM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME

The server instance name of the Systems Management Server. The default is

SYSMGT01. You must specify this environment variable for all server instances

in the second and subsequent systems in a sysplex.

 Example: SM_SPECIFIC_SERVER_NAME=SYSMGT01

SMPROC=PROC_NAME

The start procedure used by the Daemon Server to start the Systems

Management Server. The default is BBOSMS. You can supply the name of your

own start procedure. If you do so, copy the information from the default start

procedure to your new start procedure.

 Example: SMPROC=BBOSMS

SOMOOSQL=value

Improves performance for client applications that use object-oriented SQL

queries on string attributes. By using SOMOOSQL=1, string comparisons are

pushed down to the database.

 The default value is null (SOMOOSQL=).

 Rule: You can use SOMOOSQL=1 only when the database and server region

address spaces have been declared to run in the same locale.

SRVIPADDR=IP_ADDRESS

The IP address in dotted decimal format that WebSphere for z/OS servers use

to listen for client connection requests.

 This IP address is used by the server to bind to TCP/IP. Normally, the server

will listen on all IP addresses configured to the local TCP/IP stack. However if

you want to fence the work or allow multiple heterogeneous servers to listen

on the same port, you can use SRVIPADDR. The specified IP address becomes

the only IP address over which WebSphere for z/OS receives inbound requests.

Normally, you also have to map the Daemon IP name, resolve IP name, or host

name of the server that you are on to this particular SRVIPADDR.

SSL_HANDSHAKE_THREAD_COUNT=n

Specifies the number of SSL handshake threads that are present in the control

region. The default is 3.

 Example: SSL_HANDSHAKE_THREAD_COUNT=10

SSL_KEYRING=keyring

The name of the z/OS or OS/390 client’s key ring used in SSL processing. This

key ring must reside in RACF.

 Example: SSL_KEYRING=IVPRING

SSL_SERVER_V3CIPHERS=string

Defines the SSL Version 3 cipher suites that system SSL uses in the SSL

handshake for an SSL connection. It overrides any server-wide setting set via

the Administration Application. Specify a string as documented in ″z/OS

System Secure Sockets Layer Programming″ (SC24-5901). Each cipher is

represented by two characters (for example, ″09″ instead of ″9″). You can

specify the string with or without comma delineation. If you delineate with

commas, a validity check will run against the installed ciphers. The default is

an empty string, meaning no change is made to the cipher suites.

 Examples:

SSL_SERVER_V3CIPHERS=09,0A,05

SSL_SERVER_V3CIPHERS=090A05

336 WebSphere for z/OS: Assembling J2EE Applications

|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|

SYS_DB2_SUB_SYSTEM_NAME=NAME

The DB2 name used by Daemon and System Management servers to connect

to the database. Use either the DB2 subsystem name or group attachment

name. The default is DB2. If the default is not correct for your installation,

change the environment variable to match the correct value.

 Example: SYS_DB2_SUB_SYSTEM_NAME=DB21

TRACEALL=n

Specifies the default tracing level for WebSphere for z/OS. Valid values and

their meanings are:

0 No tracing

1 Exception tracing, the default

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

 Use this variable in conjunction with the TRACEBASIC and TRACEDETAIL

environment variables to set tracing levels for WebSphere for z/OS

subcomponents. Do not change this variable unless directed by IBM service

personnel.

 Example: TRACEALL=1

TRACEBASIC=n | (n,...)

Specifies tracing overrides for particular WebSphere for z/OS subcomponents.

Subcomponents, specified by numbers, receive basic and exception traces. If

you specify more than one subcomponent, use parentheses and separate the

numbers with commas. Contact IBM service for the subcomponent numbers

and their meanings. Other parts of WebSphere for z/OS receive tracing as

specified on the TRACEALL environment variable. Do not change

TRACEBASIC unless directed by IBM service personnel.

 Example: TRACEBASIC=3

TRACEBUFFCOUNT=n

Specifies the number of trace buffers to allocate. Valid values are 4 through 8.

The default is 4.

TRACEBUFFLOC=SYSPRINT | BUFFER

Specifies where you want trace records to go: either to sysprint (SYSPRINT) or

to a memory buffer (BUFFER), then to a CTRACE data set. The default is to

direct trace records to sysprint for the client and to a buffer for all other

WebSphere for z/OS processes. For servers, you may specify one or both

values, separated by a space. For clients, you may specify

TRACEBUFFLOC=SYSPRINT only.

 Example: TRACEBUFFLOC=SYSPRINT BUFFER

TRACEBUFFSIZE=n

Specifies the size of a single trace buffer in bytes. You can use the letters “K”

(for kilobytes) or “M” (for megabytes). Valid values are 128K through 4M. The

default is 1M.

TRACEDETAIL=n | (n,...)

Specifies tracing overrides for particular WebSphere for z/OS subcomponents.

Subcomponents, specified by numbers, receive detailed traces. If you specify

more than one subcomponent, use parentheses and separate the numbers with

commas. Contact IBM service for the subcomponent numbers and their

Appendix A. Environment and JVM properties files 337

meanings. Other parts of WebSphere for z/OS receive tracing as specified on

the TRACEALL environment variable. Do not change TRACEDETAIL unless

directed by IBM service personnel.

 Examples:

TRACEDETAIL=3

TRACEDETAIL=(3,4)

TRACEMINORCODE=value

Enables traceback of system exception minor codes. Use only when instructed

by IBM Service. Values are:

ALL|all

Enables traceback for all system exception minor codes.

minor_code

Enables traceback for a specific minor code. Specify the code in hex,

such as X'C9C21234'.

(null value)

The default. This setting will not cause gathering of a traceback.

Note: Sometimes results depend on the setting of another environment

variable, RAS_MINORCODEDEFAULT. If you code

TRACEMINORCODE=ALL and

RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA, you get a

traceback. But, if you code TRACEMINORCODE=(null value) and

RAS_MINORCODEFAULT=TRACEBACK you also get a traceback. So,

specifying TRACEMINORCODE=(null value) does not cancel

TRACEBACK; it simply does not cause a TRACEBACK to be gathered.

TRACEPARM=SUFFIX | MEMBER_NAME

Identifies the CTRACE PARMLIB member. The value can be either a

two-character suffix, which is added to the string CTIBBO to form the name of

the PARMLIB member, or the fully-specified name of the PARMLIB member.

For example, you could use the suffix “01”, which the system resolves to

“CTIBBO01”. A fully-specified name must conform to the naming requirements

for a CTRACE PARMLIB member. For details, see z/OS MVS Diagnosis: Tools

and Service Aids, GA22-7589.

 The default value is 00.

 If this environment variable is specified and the PARMLIB member is not

found, the default PARMLIB member, CTIBBO00, is used. If neither the

specified nor the default PARMLIB member is found, tracing is defined to

CTRACE, but there is no connection to a CTRACE external writer. For details

on the PARMLIB member and the use of the CTRACE external writer, see

WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages and Diagnosis,

GA22-7837.

 Note that the Daemon Server is the only server that recognizes this

environment variable.

 Example: TRACEPARM=01

TRACESPECIFIC=n | (n,...)

Specifies tracing overrides for specific WebSphere for z/OS trace points. Trace

points are specified by 8-digit, hexadecimal numbers. To specify more than one

trace point, use parentheses and separate the numbers with commas. You can

also specify an environment variable name by enclosing the name in single

338 WebSphere for z/OS: Assembling J2EE Applications

quotes. The value of the environment variable will be handled as if you had

specified that value on TRACESPECIFIC. Do not use TRACESPECIFIC unless

directed by IBM service personnel.

 Examples:

TRACESPECIFIC=03004020

TRACESPECIFIC=(03004020,04005010)

TRACESPECIFIC=’xyz’ [where xyz is an environment variable name]

TRACESPECIFIC=(’xyz’,’abc’,03004021)

[where xyz and abc are environment variable names]

WAS_JAVA_OPTIONS=-option1 -option2 -option3

Should be used only under the direction of IBM support. The default is null.

WS_EXT_DIRS=name:name: ...

Specifies the common JAR files and directories for extensions to the run-time

functions or configuration of a J2EE server instance. For example, if you are

configuring Type 4 JDBC connector for Enterprise bean or servlet use, you use

WS_EXT_DIRS to specify the location of the connector’s JDBC resource factory jar

file. Each JAR file and directory in the list is separated with a colon (:). These

files are loaded into the WebSphere for z/OS run-time by the Web Container

run-time class loader.

Note: See the related information about WebSphere for z/OS class loaders and

application modules in “Overview of WebSphere for z/OS classloader

operation” on page 120.

 Example: WS_EXT_DIRS=/tmp/OracleJdbcResourceFactory.java

JVM properties and properties files

Use a properties file only if you want to change the default settings that

WebSphere for z/OS uses for the Java virtual machine (JVM) that runs in the

server. Note that the property settings that you define in this file override any

environment variables that you set through the WebSphere for z/OS

Administration application.

JVM properties are similar to environment variables and have a similar syntax.

However, upper and lower case characters are significant.

The syntax of the JVM properties has this pattern:

property=value

Where:

property

is the JVM property.

value

is the setting for the property. The descriptions define possible values for each

property.

Note: Do not place quotes arround the values.

Appendix A. Environment and JVM properties files 339

How to manage JVM properties

To change default properties for the JVM in a particular server, create a file in the

same HFS directory in which WebSphere for z/OS places the current.env file

containing environment variable settings for the server:

CBCONFIG/controlinfo/envfile/SYSPLEX/SRVNAME/

where

&CBCONFIG

Is the read/write directory that you specify at installation time as the directory

into which WebSphere for z/OS is to write configuration data and

environment files.

&SYSPLEX

Is the name of your sysplex.

&SRVNAME

Is the server instance name.

Note: This subdirectory will not exist until the conversation containing this

server is activated for the first time.

 Rules:

v The file must be named jvm.properties

v The permission bits for this HFS directory should be 775 so that server region

user IDs have read access to the directory.

You may add your own, installation-defined JVM properties to this file, as long as

you follow the syntax convention and rules. You cannot alter these properties

using the Administration application; instead, you must hand-edit the

jvm.properties file.

To retrieve the values of these properties, you can use one of the following:

v The System.getProperty method, through which any applications running in the

server can obtain the values of properties specified in this file.

v Deployment descriptors that can be retrieved through

ctx.lookup(″java:comp/env/my_app_variable″)

 where my_app_variable is a specific value that you can assign during application

deployment.

 This approach to retrieving system properties avoids possible conflicts among

multiple applications running in the same server.

JVM property use

Table 26 lists the supported JVM properties for a WebSphere for z/OS server. The

following list explains the table contents:

v “O” means optional

v A blank in the Default column means the variable is not set

v A blank in other columns means the variable is not used.

 Table 26. Where to use JVM properties

JVM property=<default> J2EE server

instance

MOFW server

instance

com.ibm.CORBA.iiop.noLocalCopies= O

340 WebSphere for z/OS: Assembling J2EE Applications

Table 26. Where to use JVM properties (continued)

JVM property=<default> J2EE server

instance

MOFW server

instance

com.ibm.ejs.EJBCache.size=251 O

com.ibm.websphere.cmp.cache.maxLevels=1 O

com.ibm.websphere.cmp.cache.printlevels=0 O

com.ibm.websphere.cmp.connection.policy=acrossTrans O

com.ibm.websphere.cmpLocation Name.connection.timeout=0 O

com.ibm.websphere.cmp.Location Name.preparedStatement.poolsize=100 O

com.ibm.websphere.cmp.Location Name.connection.maxTrans=100 O

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent=0 O

com.ibm.websphere.preconfiguredCustomServices= O

com.ibm.websphere.security.AuthorizationTable O

com.ibm.websphere.sendredirect.compliance=false O

com.ibm.ws.classloader.ejbDelegationMode=true O

com.ibm.ws.classloader.J2EEApplicationMode=false O

com.ibm.ws.classloader.warDelegationMode= false O

com.ibm.ws390.ConnectionUsageScopeDefault= O

com.ibm.ws390.install.root=/usr/lpp/WebSphere O

com.ibm.ws390.server.classloadermode=2 O

com.ibm.ws390.trace.settings= O O

com.ibm.ws390.wc.config.dynxmlfilename=path.dynacache.xml O

com.ibm.ws390.wc.config.dynsrvxmlfilename=path/servletcache.xml O

com.ibm.ws390.wc.config.filename= O

com.sun.tools.javac.main.largebranch= O

invocationCacheSize= O

mail.debug= O

org.omg.CORBA.ORBInitialHost=RESOLVE_IPNAME O O

org.omg.CORBA.ORBInitialPort=900 O O

service.debug.enabled=false O

WEB_SECURITY_VERSION= O

Properties descriptions

com.ibm.CORBA.iiop.noLocalCopies=string

Determines whether objects passed between enterprise beans running in the

same JVM are passed by reference instead of by value.

 By default, objects are passed by value. If you specify any non-null value for

the variable string, objects will be passed by reference.

 Recommendation: Use “true” as the assignment, which is consistent with

WebSphere on distributed platforms.

Appendix A. Environment and JVM properties files 341

|||

|||

|||

|||

|||

||

|

Attention: Passing objects by reference allows the caller to observe changes

made to parameters by the called method. Though passing objects by reference

results in a significant performance improvement, it is at the cost of removing

data integrity safeguards. Use this option with extreme caution.

 Example:

com.ibm.CORBA.iiop.noLocalCopies=true

com.ibm.ejs.EJBCache.size=number

Sets the size of the Enterprise bean (EJB) cache.

 Recommendation: Calculate the cache size based on the workload of this J2EE

server. The number that you specify for the size should correspond to the

number of activated entity beans in the J2EE server.

 Default: 251

com.ibm.websphere.cmp.cache.maxLevels=number

Specifies the maximum number of levels of stacked transactions for which the

J2EE server may cache container-managed persistence (CMP) connections and

prepared statements. Specifying a value of 0 causes the J2EE server to cache

CMP connections and prepared statements for only the root transaction. For

additional information, see the performance tuning topics in WebSphere

Application Server V4.0.1 for z/OS and OS/390: Operations and Administration,

SA22-7835.

 Default: 1 (caching occurs for the root transaction plus one level of stacked

transactions)

com.ibm.websphere.cmp.cache.printlevels=number

Specifies the level for which the J2EE server is to print debugging information

related to caching for container-managed persistence (CMP) connections and

prepared statements. If you specify 3, for example, the J2EE server will print

debugging information each time an application exceeds three levels of stacked

transactions beyond the root transaction.

 Default: 0 (no debugging information is printed)

com.ibm.websphere.cmp.connection.policy=string

Sets the WebSphere container managed persistence (CMP) connection and

prepared statement pooling behavior of a transaction. Possible values, which

represent the two pooling models, are acrossTrans (the default) and inTrans.

Change this property when you want to manage the performance of an

application that uses prepare statements.

acrossTrans

The acrossTrans pooling model employs a thread-based pool for pooling

connections and prepared statements. Any request for connections and

prepared statements by the EJB Container on behalf of CMP entity beans

accessed within a given transaction is satisfied from the current thread’s

connection and statement pool. At the end of a transaction, all connections

and prepared statements are returned to the pool. Only one connection per

DB2 subsystem is pooled per thread. This is the default pooling model and

generally provides the best performance.

inTrans

The inTrans pooling model employs a transactional pool for pooling

connections and prepared statements. Any requests for connections and

prepared statements by the EJB Container on behalf of CMP entity beans

accessed within a given transaction are satisfied from that transaction’s

connection and statement pool. At the end of a transaction, all connections

342 WebSphere for z/OS: Assembling J2EE Applications

|
|

|
|
|

|

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|

|

and prepared statements in the pool are closed. This pooling model

provides the most frugal management of database resources.

 Example:

com.ibm.websphere.cmp.connection.policy=acrossTrans

com.ibm.websphere.cmp.Location-Name.connection.timeout=time

Specifies the timeout value for pooled connections. If a connection is idle

longer than the specified time, it will be closed and removed from the pool.

This detection occurs only at the time the EJB container attempts to use a

pooled connection. If the pool detects the only available connection has timed

out, it is closed and a new connection is created. The variable text,

Location-Name, correlates a property setting to a specific datasource definition

from the Administration application. It matches the ″Location Name″ value

specified on the datasource definition from the Administration application.

Default for this property is 0, which means no timeout.

Note: This property setting is useful only for connections that are used to

access another DB2 subsystem (i.e. DRDA). Connection to another DB2

subsystem can timeout as specified by DB2’s idle connection timeout

setting.

 Recommendation: If your DB2 idle connection timeout setting is greater than

0, IBM recommends that you set your WebSphere CMP connection timeout

value to 90% of your DB2 idle connection timeout value.

 Example:

com.ibm.websphere.cmp.Location-Name.connection.timeout=0

com.ibm.websphere.cmp.Location-Name.preparedStatement.poolsize=size

Sets the prepared statement pool size. The variable text, Location-Name,

correlates a property setting to a specific datasource definition from the

Administration application. It matches the ″Location Name″ value specified on

the datasource definition from the Administration application. Generally, there

is no need to modify this setting. Default for this property is 100.

Attention: Prepared statements consume DB2 sections and cursors. The DB2

default number of sections is 150, and the default number of cursors per

connection is 100. The prepared statement poolsize value must not exceed the

lesser of these two numbers. The settings for these numbers are contained in

the JDBC profile, which is created by the db2genJDBC utility.

 Example:

com.ibm.websphere.cmp.Location-Name.preparedStatement.poolsize=100

com.ibm.websphere.cmp.Location-Name.connection.maxTrans=#ofTransactions

Specifies the number of transactions in which a connection may participate

before it is closed. DB2 collects SMF statistics for connections only at the time

they are closed. Use this setting to control how many transactions can be

executed to collect SMF statistics through a connection before it is closed. The

variable text, Location-Name, correlates a property setting to a specific

datasource definition from the Administration application. It matches the

″Location Name″ value specified on the datasource definition from the

Administration application. Default for this property is 100.

 Example:

com.ibm.websphere.cmp.Location-Name.connection.maxTrans=100

Appendix A. Environment and JVM properties files 343

com.ibm.websphere.persistence.bean.managed.custom.finder.access.intent=value

Specifies the access intent of custom-finder methods for a bean that uses

container-managed persistence (CMP bean). The values you may specify are 0

(update access intent) or 1 (read-only access intent). Using this property in the

J2EE server’s JVM property file sets the access intent for all CMP beans that

run in the server.

 Rule: Some applications use custom finders that contain the FOR UPDATE clause,

the ORDER BY keyword, or DISTINCT keyword on the SELECT operation. In such

cases, specify the value 1 to avoid encountering an SQL error (SQLCODE -126)

when the J2EE server attempts to run the CMP bean. If you do not want this

setting used for all CMP beans that run in the J2EE server, see the ″Verify

access intent″ item in “Checklist for using pessimistic concurrency control” on

page 58 for alternative choices.

 Note: Using a setting of 1 (read-only access intent) does not prevent the

custom finder from making updates, should any be necessary during the

course of its processing.

 Default: 0 (update access intent)

com.ibm.websphere.preconfiguredCustomServices=pathname

 Specifies customer-provided services to be installed in the Java virtual machine

that runs under the J2EE server. The value you specify for this property is the

full directory path and name of an ASCII xml file for the custom service. You

may specify more than one xml file, provided you follow each xml file name

with a colon. Each xml file may contain more than one custom service

application.

 For information about custom services and their xml files, see the topic about

developing custom services in the InfoCenter for WebSphere Application

Server Advanced Edition Version 4.0. The InfoCenter is available at

http://www.ibm.com/software/webservers/appserv/

 Examples:

com.ibm.websphere.preconfiguredCustomServices=/usr/lpp/services/service1.xml

com.ibm.websphere.preconfiguredCustomServices=/services/service1.xml:/services/service2.xml:

com.ibm.websphere.security.AuthorizationTable=<implementation_classs>

Specifies the implementation class for the authorization table. The default

implementation class provided with WebSphere for z/OS is:

com.ibm.ws390.wc.security.AuthorizationTableImpl

 Example:

com.ibm.websphere.security.AuthorizationTable=

 com.ibm.ws390.wc.security.AuthorizationTableImpl

com.ibm.websphere.sendredirect.compliance=

Specifies whether or not a URI is appended to the WebSphere for z/OS

install_root or the Web application’s context root when the URI starts with a

slash. If the URI starts with a slash, and the sendRedirect property is set to

true, the URI is appended to the install_root; if the URI starts with a slash, and

the sendRedirect property is set to false, the URI is appended to the Web

application’s context root, The default value is false.

 Example: com.ibm.websphere.sendredirect.compliance=false

com.ibm.ws.classloader.ejbDelegationMode=true|false

Specifies the behavior of particular WebSphere for z/OS class loaders during

the search for a class in a JAR module. This JVM property setting determines

whether a class loader first searches its own classpath before delegating to its

parent, or immediately delegates to its parent class loader. With the default

344 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|

|

|
|
|

|
|

|
|

value, the class loader immediately delegates to its parent class loader during

the search for an EJB class. For additional information about classloader

relationships and operation, see “Overview of WebSphere for z/OS classloader

operation” on page 120.

 Default: true (the class loader immediately delegates to its parent class loader)

 Example: com.ibm.ws.classloader.ejbDelegationMode=false

com.ibm.ws.classloader.J2EEApplicationMode=true|false

Specifies the type and behavior of class loaders that the J2EE server uses to

load application modules, in accordance with the Sun Microsystems J2EE 1.3

specification. For additional information about application packaging and

classloader operation, see “Overview of WebSphere for z/OS classloader

operation” on page 120.

 Default: false

 Example: com.ibm.ws.classloader.J2EEApplicationMode=true

com.ibm.ws.classloader.warDelegationMode=true|false

Specifies the behavior of particular WebSphere for z/OS class loaders during

the search for a class in a WAR module. This JVM property setting determines

whether a class loader first searches its own classpath before delegating to its

parent, or immediately delegates to its parent class loader. For additional

information about classloader relationships and operation, see “Overview of

WebSphere for z/OS classloader operation” on page 120.

 Default: true only if com.ibm.ws.classloader.J2EEApplicationMode is set to

true; otherwise, the default is false. If the value is true, the class loader

immediately delegates to its parent class loader; if the value is false, the class

loader searches its own classpath before delegating to its parent.

 Example: com.ibm.ws.classloader.warDelegationMode=true

com.ibm.ws390.ConnectionUsageScopeDefault=

Enables the reuse of physical connections to J2EE connectors associated with

this J2EE server. Setting this JVM property to the value SeriallyReusable

causes the J2EE server to create a connection pool that is associated with a

single global transaction, and to return connections to the pool when the J2EE

application component closes the connection. If this property is set to another

value, or is not set at all, the J2EE server cannot reuse a connection until the

global transaction is either committed or rolled back.

 For further information about using this JVM property, see “Connection

pooling and reuse” on page 72.

 Example: com.ibm.ws390.ConnectionUsageScopeDefault=SeriallyReusable

com.ibm.ws390.install.root=

Specifies the fully qualified directory path and file name for the HFS on which

WebSphere for z/OS is installed.

 Example: com.ibm.ws390.install.root=/usr/lpp/WebSphere

com.ibm.ws390.server.classloadermode=number

Specifies the type and behavior of class loaders that the J2EE server uses to

load a class from an application module. This capability supports different

approaches to packaging application components for installation in a J2EE

server, and influences the search-path order that WebSphere for z/OS class

loaders use to find and load classes. For additional information about

application packaging guidelines and classloader operation, see “Overview of

WebSphere for z/OS classloader operation” on page 120.

Appendix A. Environment and JVM properties files 345

Recommendation: For most applications, use the default value (2, application

mode).

 Valid values for this property are:

0 Specifies module mode.

 Recommendation: Use this value only if your applications have Manifest

classpath statements in EJB JAR files or in WAR files. Even in this case,

IBM recommends that you change this property setting to 2 (application

mode).

 With module mode, WebSphere for z/OS uses only one classloader per

module. Each module (JAR or WAR file) has its own unique classloader.

Visibility of other modules in the application is achieved only when

Manifest classpath entries are added to a module.

 If you specify module mode, you must include all application dependent

files in each application’s EAR file, or place them in the directory specified

through the APP_EXT_DIR environment variable. Any JAR or zip files that

exist in the directory specified on this environment variable are considered

common files and can be accessed by any application running in the same

J2EE server.

1 Specifies compatibility mode, which allows compatibility with applications

from previous releases of WebSphere for z/OS. In this mode, all EJB

module classloaders have visibility of all other EJB module classloaders,

and all Web application modules have visibility of the EJB classloaders.

The EJB classloaders are searched in the order in which the EJB modules

were initialized.

 If you specify compatibility mode, you must include all application

dependent files in each application’s EAR file, or place them in the

directory specified through the APP_EXT_DIR environment variable. Any

JAR or zip files that exist in the directory specified on this environment

variable are considered common files and can be accessed by any

application running in the same J2EE server.

2 Specifies application mode, which allows all classloaders in a J2EE

application to have visibility of other classloaders in the same application.

The search order is the same as the order in which the modules are

defined in the application.xml for the EAR file.

 If you specify application mode, you must include all application

dependent files in each application’s EAR file, or place them in the

directory specified through the APP_EXT_DIR environment variable. Any

JAR or zip files that exist in the directory specified on this environment

variable are considered common files and can be accessed by any

application running in the same J2EE server.

3 Specifies server mode, which allows all application classloaders on a J2EE

server to have visibility to all other application classloaders in the server.

This setting enables classes in one application to be visible to classes in all

of the other applications residing on that server. When server mode is

specified, common files do not have to be placed in the directory specified

through the APP_EXT_DIR environment variable.

 Default: 2 (application mode)

 Example: com.ibm.ws390.server.classloadermode=1

346 WebSphere for z/OS: Assembling J2EE Applications

com.ibm.ws390.wc.config.dynxmlfilename=path.dynacache.xml

Specifies the location of your dynacache.xml file.

 Example:

com.ibm.ws390.wc.config.dynxmlfilename=/u/SVR1/BBOASR4/dynacache.xml

com.ibm.ws390.wc.config.dynsrvxmlfilename=path/servletcache.xml

Specifies the location of your servletcache.xml file.

 Example:

 com.ibm.ws390.wc.config.dynsrvxmlfilename=/u/svr1/BBOASR4/servletcache.xml

com.ibm.ws390.trace.settings=path/file

The fully qualified directory path and file name for the trace settings file.

 For more information about trace settings, see:

v “Steps for preparing the z/OS or OS/390 environment for logging Java

application messages and trace requests” on page 294, and

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages and

Diagnosis, GA22-7837.

Example: com.ibm.ws390.trace.settings=/mydir/trace.settings

com.ibm.ws390.wc.config.filename=path/file

The fully qualified directory path and file name for an optional file for Web

container configuration information. Specify this property only if you want to

override the default webcontainer.conf file.

 Example:

com.ibm.ws390.wc.config.filename=/usr/lpp/WebSphere/AppServer/bin/WebCon2.conf

com.sun.tools.javac.main.largebranch=[true | false]

Enables JSPs to have up to 32K branches for internal compilation of Java files.

If this property is set to false, only 16K branches for internal compilation of

Java files are allowed.

invocationCacheSize=<size of the cache>

The invocation cache holds information for mapping request URLs to servlet

resources. A cache of the requested size is created for each worker thread that

is available to process a request.

 The number of worker threads is determined by the value specified for the

BBOO_WORKLOAD_PROFILE environment variable. If more than 50 unique

URLs (JSPs) are actively being used, you should increase this parameter.

Increasing this parameter enables a cached object to be used. This avoids the

need to create a new java object, and results in improved performance.

Note: A larger cache uses more of the Java heap, so you might need to

increase maximum Java heap size. For example, if each cache entry

requires 2KB, maximum number of worker threads size is set to 25, and

the URL invocation cache size is 100, you must allow for 5MB of heap

storage that will be dedicated to this cache and inaccessible by the

application.

mail.debug=[true | false]

Enables or disables JavaMail’s debugging capability. When debugging is

enabled, JavaMail will print out step-by-step mail-related interactions to stdout.

 WebSphere for z/OS normally redirects messages to stdout.log and stderr.log

files.

Appendix A. Environment and JVM properties files 347

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Note: The mail.debug property setting is shared by all mail session instances

within the same process JVM. Therefore, debugging will be turned on

for all mail session instances even if you only want to debug one of

them.

org.omg.CORBA.ORBInitialHost=host_name

The Internet Protocol name that a z/OS or OS/390 client, or server region

acting as a client, uses to access the bootstrap server (that is, when the client or

server region invokes the resolve_initial_references method). The default is the

value specified by the RESOLVE_IPNAME environment variable, which is the

Internet Protocol name associated with the System Management Server (the

default bootstrap server). If RESOLVE_IPNAME is not set, the value is the

system on which the client or server region is running.

 Use this property to specify a bootstrap server running on a remote system.

Note: The TCP/IP port number for org.omg.CORBA.ORBInitialHost is defined

by org.omg.CORBA.ORBInitialPort.

 The value of org.omg.CORBA.ORBInitialHost can be up to 255 characters.

 Example:

org.omg.CORBA.ORBInitialHost=MYHOST.COM

org.omg.CORBA.ORBInitialPort=host_port

Specifies the TCP/IP port number for the host name specified on

org.omg.CORBA.ORBInitialHost. Use this property to specify a bootstrap

server running on a remote system.

 The default is 900.

 Example:

org.omg.CORBA.ORBInitialPort=1900

service.debug.enabled=[true | false]

Specifies whether or not additional debugging and tracing information, such as

classpath, time to compile the source, and the version of the compiler, are to be

included in the log file.

 The default is false.

 Example:

service.debug.enabled=fa

WEB_SECURITY_VERSION=1|2

Specifies which version of the Web Security Collaborator is to be used to

provide Web container security.

 Version 1 of the Web container security collaborator uses a SAF user registry

and only provides the following security functions for requests received by the

IBM HTTP Server for z/OS and forwarded to the Web container via the

WebSphere for z/OS Local Redirector plug-in. None of these functions were

available for requests received by the HTTP or HTTPS Transport Handlers:

v Basic authentication

v Form-Based authentication

v Client Certificates

v Single Sign-On across WebSphere/390 Servers

348 WebSphere for z/OS: Assembling J2EE Applications

|
|
|
|

|

|

|

Version 2 of the Web container security collaborator enables the Web container

to provide most of these same security functions for requests that are received

by the HTTP or HTTPS Transport Handler as well as for requests received by

the IBM HTTP Server for z/OS. This version of the collaborator is required if

you are using a trust association interceptor or a custom user registry with

WebSphere for z/OS.

 Example:

WEB_SECURITY_VERSION=2

Appendix A. Environment and JVM properties files 349

350 WebSphere for z/OS: Assembling J2EE Applications

Appendix B. Default webcontainer.conf file

The following is a copy of the Web container configuration file, webcontainer.conf

file. This copy includes a description of the values that can be specified for the

various properties in the file. It also includes property migration considerations

which may be helpful if you are migrating from a previous version of the

Application Server.

(C) COPYRIGHT 2001 IBM Corporation. All rights reserved.

appserver.version=4.01

== #

Configuration file for an IBM WebSphere Application Server

for z/OS and OS/390 version 4.0 Web container.

The documentation in this file provides descriptions of the properties

contained in the webcontainer.conf file.

NOTES ON SYNTAX:

The property names consist of fixed portions (e.g. host)

and variable portions (e.g. <virtual-hostname>). The fixed portions

must be in lowercase; the variable portion can be in

mixed case and is case sensitive.

In the following example, host, and alias are fixed

portions of the property name and must be in lowercase, while

<virtual_hostname>, and <hostname> are the variable portions

within the property name and can be specified in mixed case.

ex. host.<virtual-hostname>.alias=<hostname>

== #

PROPERY GROUPINGS

=================

- Session

- Virtual Host

- Web Security

Note: Throughout this file, <applicationserver_root> refers

to the directory path of the mounted install image of the

product. The default is /usr/lpp/WebSphere.

== #

Session Settings

== #

session.urlrewriting.enable=true|false

The value of this property is a boolean that

indicates whether session tracking uses rewritten

URLs to carry the session IDs. If the property is

set to “true”, the Session Manager recognizes

session IDs that arrive in the URL and rewrites

the URL, if necessary, to send the session IDs.

The default is false.

session.urlrewriting.enable=false

© Copyright IBM Corp. 2000, 2003 351

#--#

session.cookies.enable=true|false

The value of this property is a boolean that

indicates whether session tracking uses cookies to

carry the session IDs. If the property is set to

“true”, session tracking recognizes session IDs that

arrive as cookies and tries to use cookies as a means

for sending the session IDs.

The default is true.

session.cookies.enable=true

#--#

session.protocolswitchrewriting.enable=true|false

The value of this property is a boolean that

indicates whether the session ID is added to a URL

when the URL requires a switch from HTTP to HTTPS, or

HTTPS to HTTP.

The default is false.

session.protocolswitchrewriting.enable=false

#--#

session.cookie.name=<name>

The value of this property is a string that specifies

the name of the cookie, if cookies are enabled. The

cookie name must only contain:

-English alphanumeric characters (uppercase or

lowercase A to Z and numbers 0 to 9)

-Period (.)

-Underscore (_)

-Hyphen (-)

The initial setting is “JSESSIONID”.

session.cookie.name=JSESSIONID

#--#

session.cookie.comment=<comment>

The value of this property is a string that specifies

a comment about the cookie, if cookies are enabled.

The default is “WebSphere Session Support”.

session.cookie.comment=WebSphere Session Support

#--#

session.cookie.maxage=<integer>

The value of this property is an integer that

specifies the amount of time, in milliseconds, that a

cookie will remain valid. Specify a value only to

restrict or extend how long the session cookie will

live on the client browser.

By default, the cookie only persists for the current

352 WebSphere for z/OS: Assembling J2EE Applications

invocation of the browser. When the browser is shut down,

the cookie is deleted.

The default is -1.

session.cookie.maxage=-1

#--#

session.cookie.secure=true|false

The value of this property is a boolean that

indicates whether session cookies include the secure

field. If this property is set to “true,” this will

restrict the exchange of cookies to only HTTPS

sessions. Otherwise, they will be exchanged in

HTTP sessions as well.

The default is false.

session.cookie.secure=false

#--#

session.tablesize=<integer>

Specifies the size of the session table used to maintain

session objects within the Web container. When

session.tableoverflowenable=false, this is the limit on

the number of session objects that can be created by the

Web container at any one time. When

session.tableoverflowenable=true, this represents the

initial size of the session table and the quantity by

which it is expanded.

The default is 1000 session objects.

session.tablesize=1000

#--#

session.invalidationtime=<milliseconds>

The value of this property is an integer that

specifies the amount of time in, milliseconds, that a

session is allowed to go unused before it is no

longer considered valid.

The default is 180000 millisecs, or 180 seconds.

Note: The HTTP session timeout settings specified in the

webcontainer.conf file can be overridden for a particular

Web application by adding the following tags to the the

web.xml file for that application:

<session-config>

<session-timeout>x</session-timeout>

where x is the timeout value, in minutes, for that

application. You can also override the webcontainer.conf file

setting by specifying the new value in the "Session timeout"

field on the "General" tab for the Web application when you

use the WebSphere for z/OS AAT to deploy the Web application

on your WebSphere for z/OS system.

session.invalidationtime=180000

#--#

#

Appendix B. Default webcontainer.conf file 353

session.tableoverflowenable=true|false

Specifies whether there is a limit on the number of session

objects that should be maintained by the Application Server,

or whether the number of session objects that should be

maintained is unlimited. The number of session objects

is controlled by the session.tablesize property.

The default value is true, which means that the number

of session objects is unlimited.

session.tableoverflowenable=true

#--#

session.dbenable=true|false

Specifies whether or not the session objects should be stored

in a database.

The default value is false, which means that the session

objects are stored using memory in the JVM of the Application

Server instance that created the session.

session.dbenable=false

#--#

session.dbtablename=<database-tablename>

Specifies the database table name to be used by the session

services when session.dbenable=true.

There is no default.

session.dbtablename=

#--#

session.cookie.domain=<domain_name>

Specifies the domain name for which the session cookie is

valid.

The default is null.

session.cookie.domain=

#--#

session.reaperinterval=<integer>

Specifies the interval, in seconds, at which the reaper

(i.e, invalidator) will run. If this property is not

included in the webcontainer.conf file, or if the specified

value is less than 30, the interval will be automatically

caclulated.

The default value is 0, which enables the Web

container to automatically calculate the interval.

session.reaperinterval=0

#--#

session.persistenceversion=1|2

#

354 WebSphere for z/OS: Assembling J2EE Applications

Specifies which DB2 table format is to be used for storing

data.

If 2 is specified, the table format for DB2 Session

Persistence Version 2 must be used for your DB2 database.

This format is described in the section "Steps for

configuring HTTP Session Support" in "WebSphere Application

Server for z/OS and OS/390: Assembling J2EE Applications".

This table requires that an HTTP(S)Transport Handler is being

used to handle HTTP(S) requests to the Web container and

that a Web server plug-in has been configured for use with

WebSphere for z/OS.

If 1 is specified, the table format for DB2 Session

Persistence Version 2 must be used for your DB2 database.

This format is described in the section "Steps for

configuring HTTP Session Support" in "WebSphere Application

Server for z/OS and OS/390: Assembling J2EE Applications".

When 1 is specified, the WebSphere for z/OS local redirector

pl;ugin, as well as an HTTP(S) Transport Handler, can be

used to handle HTTP(S) requests.

Note: Values specified for the following session properties

will be ignored if this property is not set to 2:

session.timebasedwrite

session.timebasedwriteinterval

session.dbconnections

session.usingmultirow

session.writeallproperties

session.scheduledinvalidation

The default is 1.

session.persistenceversion=1

#--#

session.timebasedwrite=true|false

Specifies whether or not database updates are done on a

separate thread. If true is specified, database updates are

done on a separate thread at the interval specified on

the session.timebasedwriteinterval property.

The true option gives better performance but leaves a

larger window for data loss during failover.

The default is false.

session.timebasedwrite=false

#--#

session.timebasedwriteinterval=<integer>

Specifies the interval, in seconds, at which session updates

get written to the database by a background thread. This

property only appliesif the timebasedwrite property is set

to true.

The default is 120.

session.timebasedwriteinterval=120

#--#

session.dbconnections=<integer>

Specifies the number of database connections that will be

Appendix B. Default webcontainer.conf file 355

held by the session manager for its exclusive use. Holding

connections will improve performance. By default, each JVM

runs three threads, in which case, specifying 3 DB2

connections is optimal.

The default is 0.

session.dbconnections=0

#--#

session.usingmultirow=true|false

Specifies how session attributes are to be written:

1. If true is specified, each session attribute will be

written in a separate row.

2. If false, is specified, all session attributes will be

written in a single row.

If your session is used only for a few small attriubutes,

single-row support will probably result in better performance.

The default value true.

session.usingmultirow=true

#--#

session.writeallproperties=true|false

Specifies that all properties are to be written to the

database even if they haven’t been changed by a call to

setAttribute. This forces changes to objects previously

added to the session to be written to the database even if

setAttribute isn’t called every time. False is the default

and will yeild better performance.

The default is false.

session.writeallproperties=false

#--#

session.scheduledinvalidation=true|false

Specifies whether or not sessions are to be invalidated at

the two specific hours of the day that are specified on the

session.scheduledhour1 and session.scheduledhour2 properties.

This minimizes database access for invalidations, but

effectively means sessions will not timeout when the

interval specified on the MaxInactiveInterval property is

reached. Specifiying true should result in better performance.

The default is false.

session.scheduledinvalidation=false

#--#

session.scheduledhour1=<integer_between_0_and_22>

Specifies the first hour of the day (0-22) at which

invalidation will occur if the scheduleinvalidation property

is set to true. Any value specified for this property is

ignored if the scheduleinvalidation property is set to false.

The default is 0.

356 WebSphere for z/OS: Assembling J2EE Applications

session.scheduledhour1=0

#--#

session.scheduledhour2=<integer_between_1_and_23>

Specifies the second hour of the day (1-23) at which

invalidation will occur if the scheduleinvalidation property

is set to true. Any value specified for this property is

ignored if the scheduleinvalidation property is set to false.

The default is 1.

session.scheduledhour2=1

== #

Virtual Host settings

== #

host.<virtual-hostname>.alias=<hostname>|localhost

Specifies a hostname alias to be associated with this virtual

host name. This property provides a binding between the

hostnames understood by the HTTP server and the virtual host

definitions in the Application Server.

You can specify multiple aliases for the same virtual host on the

same property. To specify multiple aliases, separate each alias

name with a comma and a space. For example:

Host.default_host.alias=www.hostname.alias1, www.hostname.alias2,

www.hostname.alias3

The Application Server supports a special hostname, "localhost",

which maps all requests to the virtual host definition.

This support is provided for the initial verification program.

IBM recommends that it not be used beyond that purpose.

Note: If you are using the IBM HTTP Server as your HTTP protocol

catcher, you must make sure that the values specified for the #

host.default_host.alias property in the

webcontainer.conf file match the values specified on the

host.<virtual-hostname>.alias

property in the V4.0.1 was.conf file,

which is initially set to localhost.

There is no default.

host.default_host.alias=localhost

#--#

host.<virtual_hostname>.contextroots=<contextroot>[,

<contextroot>]

Binds installed Web applications into a specific virtual

host. The context root specified here corresponds to the

context root bound to the Web application during application

deployment.

One or more context root values can be specified. When

specifying multiple context root values, separate each value

with a comma. One or more spaces between values are permitted.

For example:

host.default_host.contextroot=/webapp/examples, /payroll

#

Appendix B. Default webcontainer.conf file 357

The context root values specified can either be an explicit

match to the context root of the deployed web application

or you canuse a generic pattern. There are two types of

generic patterns:

1. "/" which is a catch all context root. All Web application

context roots will match this pattern unless there is a

more specific context root defined.

If you are only configuring one virtual host definition in a

J2EE server, you can map all Web applications to that

virtual host definition by specifying a context root binding

of "/". This will allow you to deploy future Web applications

into the server without having to update this property.

For example:

e.g. host.default_host.contextroots=/

2) "/appl/*" which is a generic pattern that means that any

Web application context root that begins with "/appl" will

match this pattern.

For example, the following context roots would all

match this pattern:

/appl

/appl/payroll

/appl/hr/benefits

Note: the use of "*" is limited to the last position in a

context root pattern and must be immediately proceeded by

a forward slash.

The following are examples of valid generic patterns:

/appl/*

/appl/payroll/*

The following are examples of invalid context root

patterns using *

*

/*

/appl*

/*/payroll

The rules for matching a Web application context root to a

virtual host context root pattern is as follows:

1. Find an exact match.

An exact match will always take precedence over a

generic pattern match. For example, if the following

context roots are specified for a virtual host:

host.vh1.contextroots=/webapp/examples/*

host.vh2.contextroots=/webapp/examples

A Web application with a context root of /webapp/examples

will be bound to virtual host name vh2, because it is an

exact match.

2. Find the pattern that matches best.

When multiple generic patterns match a Web application’s

context root, the generic pattern that matches the most

qualifiers of the URI, starting from the left, is

considered the best match. For example, given the following

context roots:

host.vh1.contextroots=/webapp/examples/*

host.vh2.contextroots=/webapp/*

host.vh3.contextroots=/

#

358 WebSphere for z/OS: Assembling J2EE Applications

A Web application context root of /webapp/examples/test

would be bound to virtual host vh1.

A Web application context root of /webapp/test

would be bound to virtual host vh2.

A Web application context root of /test

would be bound to virtual host vh3.

The default is "/".

host.default_host.contextroots=/

#--#

host.<virtual_hostname>.mimetypefile=<fully-qualified-filename>

Specifies the fully qualified filename of the mimetype properties

file used for this virtual host.

The default is:

<applicationserver_root>/AppServer/bin/default_mimetype.properties

host.default_host.mimetypefile=

== #

Web Security Settings

#--#

WebAuth.UnauthenticatedUserSurrogate=userid

Specifies a value that indicates either the SAF UserID or

CustomUserRegistryuserid under which unauthenticated clients are to

be executed.

If a SAF userid is going to be specified, the JVM property

WEB_SECURITY_VERSION must be set to 1.

If a CustomUserRegistry userid is going to be specified:

1. The JVM property WEB_SECURITY_VERSION must be set to 2.

2. The custom user registry implementation class must be

included on the WS_EXT_DIRS environment variable.

#**

WebAuth.CustomRegistry.ImplClass= # com.company_name.implementation_class_name

Specifies the implementation class for the CustomUserRegistry interface.

Example:

WebAuth.CustomRegistry.ImplClass=com.ibm.websphere.security.CustomRegistry.

#**

WebAuth.CustomRegistry.Properties=filename.properties

Specifies the fully qualified name of the configuration file used

by the CustomRegistry interface

to setup its environment.

Example: WebAuth.CustomRegistry.Properties=

/u/MyCompany/security/cur.properties.properties

There is no default value for this property.

#***

WebAuth.CustomRegistry.authorizationTableXML=filename.xml

Specifies the fully qualified name of the XML file containing

the list of XML files containing authorization tables. If a J2EE server is

Appendix B. Default webcontainer.conf file 359

going to be using a custom user registry to authenticate and authorize

requests, every Web application installed on that server must have

an entry in one of these tables. Use the following sample file to create

this type of file:

<AuthTableList>

<application>

<name>application_name</name>

<permission-file-name>fully_qualified_filename

</permission-file-name>

</application>

<application>

<name>application_name</name>

<permission-file-name>fully_qualified_filename

</permission-file-name>

</application>

</AuthTableList>

Include the following set of tags if you want to set up a default

authorization table:

<application>

<name>*</name>

<permission-file-name>fully_qualified_filename

</permission-file-name>

</application>

Example: WebAuth.CustomRegistry.authorizationTableXML=

/u/MyCompany/permissions.xml

#***

WebAuth.CustomRegistry.SAFPrincipal=MVS_ID

Specifies the valid MVS user ID under which requests from custom

registry clients are processed. (For example, this ID will be used when

processing EJB requests or to access an MVS resource that has a

deployment descriptor containing the attribute res-auth=container.) This

property is only required if you do not want to use the J2EE server’s

ID to establish these connections.

Example: WebAuth.CustomRegistry.SAFPrincipal=Admin4

== #

WebAuth.LoginToken.Expiration=<minutes>

Specifies the number of minutes for which a login is valid.

When the token expiration period is reached, the user is forced

to authenticate again. The value specified for <minutes>

must be a positive integer.

The default is 10 minutes.

WebAuth.LoginToken.Expiration=10

#--#

WebAuth.LoginToken.LimitToSecureConnections=true|false

Specifieds a boolean value that, when set to true, indicates a transport

constraint is to be used for requests that require use of a login token.

If true is specified, WebSphere for z/OS will only return the cookie over

a secure connection. Setting this value to true also instructs WebSphere

for z/OS to set the "secure" bit in the cookie containing the Login Token.

Setting the "secure" bit in the cookie instructs HTTP Clients, such as a

browser, to only send the cookie on requests that are being send on a

secure transport.

The default is true.

360 WebSphere for z/OS: Assembling J2EE Applications

WebAuth.LoginToken.LimitToSecureConnections=true

#--#

WebAuth.LoginToken.Encrypt=true|false

Specifies a boolean value that, when set to true, indicates that the

Login Token is to be encrypted.#

The default is true.

WebAuth.LoginToken.Encrypt=true

#--#

WebAuth.EncryptionKeyLabel=<label_name>

Specifies the label of the cryptographic key (preferably a

triple-DES key) contained in the ICSF CKDS (Cryptographic Key

Data Set) that is to be used for Web application security.

There is no default value for this property.

WebAuth.EncryptionKeyLabel=

#--#

WebAuth.SingleSignOn.Enabled=true|false

Specifies a A boolean value that, when set to true, indicates that

a Login Token can be used for multiple applications existing on different

WebSphere Application Server’s serving as virtual hosts, provided these

virtual hosts reside in the domain specified in the

WebAuth.FormBasedLogin.SingleSignOnDomain property.

The default is false.

WebAuth.SingleSignOn.Enabled=false

#--#

WebAuth.SingleSignOn.Domain=<domain_name>

Specifies the name of the domain to which a single sign-on is restricted.

This domain name is used when creating HTTP cookies for single sign-on,

and determines the scope to which single sign-on applies.

For example, a value of austin.ibm.com would allow single sign-on to work

between WebSphere Application Server A with virtual host of

serverA.austin.ibm.com and WebSphere Application Server B with virtual host

of serverB.austin.ibm.com.

Note: Cross-domain Single Sign On is not supported. A server at

austin.lotus.com,and another at austin.ibm.com cannot partipicate

in single sign-on.

The default is NULL.

WebAuth.SingleSignOn.Domain=

== #

WebAuth.TrustAssociationInterceptor.<value>.ImplClass=<classname>

Specifies the implementation class for a trust association interceptor.

You must include one of these properties for each trust association

Appendix B. Default webcontainer.conf file 361

interceptor you will be using.

<classname> is the name of a trust association interceptor’s

implementation class.

<value> is a unique string of alphanumeric characters that is used

to correlate a TAI with its property file. Even if a property file

is not being using, a character string, such as TA1, must be

included as a place holder.

Example: WebAuth.TrustAssociationInterceptor.TA1.ImplClass=class1

There is no default.

WebAuth.TrustAssociationInterceptor.<value>.ImplClass=

#--#

WebAuth.TrustAssociationInterceptor.<value>.Properties=<filename>

This property is optional and is only required if the trust

association interceptor class is using a configuration file

to set up the environment for a trust association interceptor.

<value> is a unique string of alphanumeric characters that

is used to correlate this property file to a TAI.

This string must match the string specified on a

WebAuth.TrustAssociationInterceptor.

<value>.ImplClass property

<filename> is the name of the trust association interceptor’s

properties file.

Example: WebAuth.TrustAssociationInterceptor.TA1.Properties=configFile1

There is no default.

WebAuth.TrustAssociationInterceptor.<value>.Properties=

== #

Migrating a Version 3.x was.conf properties file to

Version 4.0 webcontainer.conf

== #

The following V3.x properties can be used to

configure a V4.0 Web container. Update these properties, where

required, with environment-specific data and then uncomment the

properties and start the Application Server using these settings.

- Server properties: None. Server properties are established during the

J2EE server configuration process.

- Session properties

To start the Application Server with equivalent session support

configured, copy the following properties, with their current

settings, from your existing V3.x was.conf file to the new

V 4.0 webcontainer.conf file:

session.enable

session.urlrewriting.enable

session.cookies.enable

session.protocolswitchrewriting.enable

session.cookie.name

session.cookie.comment

session.cookie.maxage

session.cookie.secure

session.tablesize

session.invalidationtime

session.tableoverflowenable

session.dbenable

362 WebSphere for z/OS: Assembling J2EE Applications

session.dbtablename

session.domain

The remaining V3.5 was.conf session properties are not supported for V4.0.

- Virtual Host properties

To start the Application Server with equivalent virtual host support

configured, copy the following properties, with their current

settings, from your existing V3.x was.conf file to the new

V 4.0 webcontainer.conf file:

host.<virtual-hostname>.alias

host.<virtual_hostname>.mimetypefile

Notes:

1. If you prefer, you can define a host called “default_host”,

take the default mime types, and simply replace

<your-hostname> in the

host.default_host.alias=<your-hostname> property

with your specific hostname

2. You can have multiple alias statements for a single

host. If you want more than one DNS alias to map to a host,

just add multiple configuration directives.

Additionaly, you must provide a value for the new virtual host property,

host.<virtual_hostname>.contextroots, unless you want to use the

default value /.

Appendix B. Default webcontainer.conf file 363

364 WebSphere for z/OS: Assembling J2EE Applications

Appendix C. Using the Alternate Configuration Option

You can install and configure the IBM HTTP Server to act as the HTTP catcher,

with the V3.5 run-time environment serving as the execution environment for Web

applications residing in the HTTP Server’s address space. This configuration is

referred to as the Alternate Configuration Option. Once you have configured your

J2EE server environment, you can then also use the HTTP Server, along with the

V3.5 run-time environment (or the WebSphere for z/OS local redirector plug-in, as

it is sometimes called) to direct requests to Web applications residing in the J2EE

server’s Web container. However, at this point you should start using the HTTP

Transport Handler to handle non-SSL requests to the Web container.

Notes:

1. During intialization of the Alternate Configuration, you might receive messages

similar to the following:

BossLog: { 0001} 2002/03/13 17:46:41.432 01 SYSTEM=IBIR CLIENT=OSD13015

 PID=0X01000046 TID=0X0AFCC578 0X000033 c=UNK

 ./bbocsess.cpp+4977 ... BBOU0638E Function read() failed with RV=0,

 RC=129, RSN=0594003D, .EDC5129I No such file or

 directory..hostname/ip:p30zos2.ibi.com

BossLog: { 0002} 2002/03/13 17:46:41.436 01 SYSTEM=IBIR CLIENT=OSD13015

 PID=0X01000046 TID=0X0AFCC578 0X000033 c=UNK

 ./bboocomm.cpp+8992 ... BBOU0051E Internal communications error:

 REASON=C9C20CAE

 BossLog: { 0003} 2002/03/13 17:46:41.437 01 SYSTEM=IBIR CLIENT=OSD13015

 PID=0X01000046 TID=0X0AFCC578 0X000033 c=UNK

 ./bboosyse.cpp+749 ... BBOU0011W The function CORBA::throw_sysexcp(const

 char*,ULong,CompletionStatus)+748 raised CORBA

 system exception

 CORBA::COMM_FAILURE. Error code is C9C20CAE.

These messages occur because you have not defined a J2EE server. They can be

ignored because you currently do not intend to use a Web container to host

your Web applications.

2. As long as you continue using the IBM HTTP Server as your HTTP protocol

catcher for any application installed in a Web container, you must make sure

that the values specified for the host.<virtual-hostname>.alias properties in the

V4.0.1 was.conf file match values specified on the host.default_host.alias

property in the webcontainer.conf file. In the V4.0.1 was.conf file, this property

is initially set to localhost.

Rules:

v For HTTP Servers to communicate with the J2EE servers, an instance of the

WebSphere for z/OS Daemon (whose default start procedure is BBODMN) must

be active on each system in the sysplex where the HTTP Servers are installed.

v To use a non-WebSphere for z/OS ORB in conjuction with the V3.5 runtime,

such as the CICS ORB, the value of the appserver.java.extraparm=-DDisable.J2EE

property in the V4.0 was.conf file must be set to True. However, be aware that

changing the setting of this property removes your connection to the J2EE server

environment from the V3.5 runtime. This means that any applications that are

accessed using the HTTP Server must reside in the V3.5 runtime and not the

Web container on the J2EE Server.

© Copyright IBM Corp. 2000, 2003 365

Applications residing in the Web container, must either be moved to the V3.5

run-time environment, or accessed using the HTTP Transport Handler instead of

the HTTP Server.

Setting up the Alternate Configuration

When you install the WebSphere for z/OS product, the copy of the V3.5 Standard

Edition run-time environment that is provided with the V4.0.1 product is placed in

the IBM HTTP Server’s address space. As shown in Figure 29 on page 367, locally

residing Web applications (applications that reside within the V3.5 run-time

environment) can be executed within this address space.

If you are not planning to initially utilize the capabilities of the full Java

programming model, you do not have to configure a J2EE server environment at

this time. You can use the configuration information contained in WebSphere

Application Server for OS/390 V3.5 Standard Edition Planning, Installing, and Using,

GC34-4835 to set up this V3.5 run-time environment to host and execute your Web

applications.

Figure 28. Alternative: Using an HTTP Server as the protocol catcher

366 WebSphere for z/OS: Assembling J2EE Applications

To correctly execute a request within this environment, the HTTP server, and the

V3.5 run-time environment require specific configuration files that contain

information you provide. These files are illustrated in Figure 30:
 The following list summarizes, in general terms, the contents of those required

configuration files and how they relate to the processing of inbound requests. More

details are provided through an example in “Resolving requests to a specific

servlet using the HTTP Server” on page 374.

Figure 29. Using Alternate Configuration Option

Figure 30. Files required for configuring the Alternate Configuration Option

Appendix C. Using the Alternate Configuration Option 367

1. The httpd.conf and httpd.envvars files allow the HTTP Server to interpret

inbound requests for servlets.

 The httpd.conf file contains statements that allow the HTTP server to start the

V3.5 run-time environment, and to send inbound requests to this environment

for further processing. The httpd.envvars file contains environment variables

that allow the V3.5 run-time environment to communicate with the HTTP

Server. Although these variables have default values, the variable settings need

to be reviewed to make sure the configuration is set up correctly.

 So, using the information in the httpd.conf and httpd.envvars files, the HTTP

Server can catch inbound requests and passes them to the V3.5 run-time

execution environment.

2. The V4.0.1 was.conf file should contains configuration and deployment

information for Web applications that the V3.5 run-time environment is hosting.

See WebSphere Application Server Standard Edition V3.5: Planning, Installing and

Using for a description of the properties you need to include in the V4.0.1

was.conf file in order to execute these applications in this environment.

 If you are migrating from V3.5 Standard Edition and already have V3.5

Standard Edition was.conf file properties defining your Web applications:

v Copy these webapp and deployedwebapp properties into the V4.0.1 was.conf

file.

v Install the Web applications into the HTTP Server address space where the

V3.5 run-time environment provided with the V4.0.1 product has been

installed.

“Resolving requests to a specific servlet using the HTTP Server” on page 374

provides an example of how the HTTP Server, and the V3.5 run-time environment

work together to satisfy a sample application request.

When you are ready to start utilizing the full Java programming model, follow the

instructions in WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation

and Customization to configure your J2EE server. You can then install J2EE

compliant Web applications in the Web container residing within the J2EE server

and use either the HTTP Transport Handler described in “Using the HTTP

Transport Handler configuration” on page 81, or the HTTP Server to dispatch

requests to applications residing in the Web container. Requests to applications still

residing in the V3.5 run-time environment can only be dispatched by the HTTP

Server.

Instructions in Chapter 9, “Creating and running WebSphere for z/OS client

applications,” on page 217 explain how to enable Web applications residing in

either the V3.5 run-time environment or the Web container to access Enterprise

beans running in the WebSphere for z/OS J2EE server.

Steps for setting up an HTTP server

 The IBM HTTP Server receives requests coming in from a network of browsers

using the HTTP access protocol, and routes the request to the execution

environment. You can either set up a new HTTP server to route requests to

WebSphere for z/OS, or use an existing HTTP server. If you set up a new server to

run alongside an existing one, you will probably need to pick a new TCP/IP port

(such as 8080) at which the new server will be accessed.

Instructions for installing an HTTP server appear in z/OS HTTP Server Planning,

Installing, and Using, SC34-4826. If you are setting up a new HTTP server, follow

368 WebSphere for z/OS: Assembling J2EE Applications

the instructions in that book, start the new server and verify its basic operations

before proceeding with the instructions below. The procedure below only shows

you how to modify an HTTP server for use with WebSphere for z/OS.

The HTTP server uses specific configuration files that need to be properly placed

in the HFS. The recommended configuration structure looks like this:

/(root)

 /etc

 /Webserver_name

 httpd.conf (file)

 httpd.envvars (file)

where Webserver_name is the name of the HTTP server.

Perform the following steps to modify an existing HTTP server to route requests to

WebSphere for z/OS:

1. Locate the httpd.conf and httpd.envvars configuration files for the HTTP

server.

2. In the httpd.conf file, add the following statements:

v The statement that identifies the initialization module for the V3.5 run-time

environment:

ServerInit /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:init_exit

/usr/lpp/WebSphere,/dir_path/was.conf

 Replace the variable dir_path, with the HFS location of the was.conf file you

want to use. Instructions for setting up that file appear in “Steps for

configuring the V3.5 run-time provided with WebSphere for z/OS” on page

371..

Note: If you do not specify a was.conf file on the ServerInit statement,

WebSphere for z/OS uses the default was.conf file that is shipped

with the product in the

/usr/lpp/WebSphere/WebServerPlugIn/properties directory.

v The service directive that identifies the module for processing inbound

requests:

Service /servlet/* /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:service_exit

 Replace the variable /servlet with the context root for an individual servlet.

You need to define one Service statement for each context root that is

specified for modules in Web application to be installed in the J2EE server’s

Web container.

v The statement that identifies the termination module for the V3.5 run-time

environment:

ServerTerm /usr/lpp/WebSphere/WebServerPlugIn/bin/was400plugin.so:term_exit

Tips:

v The variable /usr/lpp/WebSphere represents the default location (HFS root)

where WebSphere Application Server V4.0.1 is installed. Replace it with the

correct root if the product is installed somewhere other than the default

location. If you still have WebSphere Application Server Standard Edition

Version 3.5 installed on the same system, make sure this root value does not

point to the root for the Standard Edition product.

v Be careful with upper- and lowercase letters in the samples below. Make sure

you use uppercase letters exactly as shown.

Appendix C. Using the Alternate Configuration Option 369

3. In the httpd.envvars file, define the following variables:

JAVA_PROPAGATE

Set the value to NO if you will be using the HTTP Server, in conjunction

with the V3.5 run-time environment provided with V4.0.1, to connect to

Web applications in a J2EE Web container. Example:

 Example:JAVA_PROPAGATE=NO

JAVA_HOME

Make sure that the JAVA_HOME environment variable contained in the

hosting Web server’s envvars file points to the exact location where the

required level of the Software Development Kit (SDK) is installed on your

system.

 Example: JAVA_HOME=/usr/lpp/java/IBM/J1.3

LIBPATH

Add the reference to the exact location where the WebSphere for z/OS

libraries are installed on your system.

 Example: /usr/lpp/WebSphere/lib

NLSPATH

Append the V3.5 run-time environment’s message catalog directory

applicationserver_root/AppServer/Msg/%L/%N to the existing NLSPATH

statement.

 Example: If the existing NLSPATH setting is

/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N and the V3.5 run-time

environment is installed in /usr/lpp/WebSphere, then change the NLSPATH

setting to: /usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:

/usr/lpp/WebSphere/AppServer/Msg/%L/%N

RESOLVE_IPNAME

(Optional) After you have set up a J2EE server with a defined Web

container, define the V3.5 run-time host you want to use to connect the

V3.5 run-time environment to the J2EE server. This connection enables

requests to pass through the HTTP Server to the Web container in the J2EE

server.

 Example: RESOLVE_IPNAME=wslx.washington.ibm.com

RESOLVE_PORT

(Optional) Define the port that the V3.5 run-time environment will use to

connect to the WebSphere for z/OS J2EE server.

 Example: RESOLVE_PORT=900

 Recommendation: These RESOLVE_IPNAME and RESOLVE_PORT variables have

default values (“localhost” on port 900) that should suffice if the V3.5 run-time

environment and WebSphere for z/OS run-time run on the same z/OS or

OS/390 image, so specifying values for these variables is optional. To avoid any

potential ambiguity or communication problems, however, code values for

these two variables in the httpd.envvars file.

Now you are ready to complete the next procedure, “Steps for configuring the V3.5

run-time provided with WebSphere for z/OS” on page 371.

370 WebSphere for z/OS: Assembling J2EE Applications

You also can configure session support through the HTTP server. Session support

is a method of tracking information received during a session (that is, a series of

requests that originate from the same user at the same browser). For further

information, see “HTTP session support” on page 87.

Steps for configuring the V3.5 run-time provided with

WebSphere for z/OS

The Version 3.5 run-time environment provided with WebSphere for z/OS acts as

the server engine for the Web-serving environment. This run-time environment can

route requests to the J2EE server’s Web container for remote execution, but should

be used primarily to run servlets locally in the HTTP Server’s address space. In the

latter case, the V3.5 run-time environment serves as both the servlet engine and

servlet execution environment.

Through the following procedure, you will add configuration files to the HFS

directories that the HTTP Server uses. When you have finished the steps below, the

configuration structure will look like this:

/(root)

 /etc

 /Webserver_name

 httpd.conf (file)

 httpd.envvars (file)

 was.conf (file)

 /var

 /Webserver_name

 was_logs <dir>

 work <dir>

Perform the following steps to configure the V3.5 run-time environment:

1. In the HFS, create a working directory and a log directory for the V3.5 run-time

environment, with permission bits 777.

 Example: You can use names like the following for these directories:

/var/Webserver_name/work

/var/Webserver_name/was_logs

where Webserver_name is the name of the HTTP Server that you started using

the instructions in “Defining the server configuration” on page 149.

2. Edit the default was.conf file provided with WebSphere for z/OS. The default

was.conf file is located in the

/usr/lpp/WebSphere/WebServerPlugIn/properties/ directory.

v Update the appserver.workingdirectory and appserver.logdirectory

properties to specify the working and log directories that you created in the

previous step.

v If you have an existing was.conf file that you previously used for WebSphere

Application Server Standard Edition Version 3.5, copy the following

properties into the default was.conf file:

– deployedwebapp and webapp properties defining any Web applications that

you want to run in the V3.5 run-time environment instead of in the Web

container.

– host properties defining any virtual hosts you want to continue using.
v Add the following versions of the appserver.java.extraparm property to the

was.conf file if you do not want to use the default values:

Appendix C. Using the Alternate Configuration Option 371

appserver.java.extraparm=-Dcom.ibm.ws390.wc.includedWebContainers=

 <server1>,<server2>,...

 This parameter is used to specify the installed J2EE servers with which the

WebSphere for z/OS V3.5 runtime can communicate. The servers in the list

are seperated by a comma. If this parameter is not specified, the V3.5

runtime is able to communicate with all of the installed J2EE servers.

 Example: In this example, only the BBS1104 J2EE server can communicate

with the V3.5 runtime.

 appserver.java.extraparm=-
Dcom.ibm.ws390.wc.includedWebContainers=BBS1104

appserver.java.extraparm=-Dcom.ibm.ws390.wc.serverCheckInterval=

 <interval>

 This parameter is used to indicate how frequently, in minutes, the WebSphere

for z/OS V3.5 runtime should check the list of J2EE servers specified on the

-Dcom.ibm.ws390.wc.includedWebContainers parameter to determine if new

servers have been added. If no value is specified for this property, the V3.5

runtime will check for new servers every 10 minutes.

 Example: In this example, the V3.5 runtime will check for the specification of

new J2EE servers every 15 minutes.

 appserver.java.extraparm=-Dcom.ibm.ws390.wc.serverCheckInterval=15

appserver.java.extraparm=-Dcom.ibm.ws390.wc.webappupdateInterval=

 <interval>

 This parameter is used to indicate how frequently, in minutes, the WebSphere

for z/OS V3.5 run-time should check to see if any new Web applications

have been installed on the J2EE servers to which it dispatches requests. If no

value is specified for this property, the V3.5 runtime will check for new Web

applications every 2 minutes.

 Example: In this example, the V3.5 runtime will check for new Web

applications every 4 minutes

 appserver.java.extraparm=-Dcom.ibm.ws390.wc.webappupdateInterval=4

 For more information about the appserver.java.extraparm property, see

“Template for the WebSphere for z/OS plug-in was.conf file” on page 376.

To test whether you correctly defined the V3.5 run-time environment’s

configuration files:

1. Restart the HTTP Server.

2. Browse the SYSOUT for the HTTP Server’s started task for the following

messages, which indicate that the V3.5 run-time environment started:

.....IBM WebSphere Application Server native plugin initialization went OK :-)

IMWO235I Server is ready.

The initialization process might take a few minutes to complete, even though

the HTTP Server is operational.

3. After the V3.5 run-time environment has initialized, enter

http://host_name:host_port/webapp/examples/index.html in a Web browser. In

this URL, host_name and host_port are the TCP/IP nodename and port of the

HTTP Server.

You should now see a screen with the WebSphere Application Server logo and the

heading Examples. If you receive this screen, the HTTP Server successfully

mapped your URL over to the V3.5 run-time environment, using the Service

statements in the httpd.conf file. At this point, however, the V3.5 run-time

environment served up this screen locally; no interaction with the V4.0.1 run-time

has taken place.

372 WebSphere for z/OS: Assembling J2EE Applications

You can now follow the procedures described in WebSphere Application Server

Standard Edition V3.5: Planning, Installing and Using to install these applications into

the V3.5 run-time environment.

Creating a customized JVM properties file for the Local

Redirector Plug-in

For most environments, the JVM properties provided in the

default_global.properties file are sufficient. However, if you want to use some of

the advanced functions provided in the V4.0.1 environment, you can either add the

appserver.java.extraparm properties described in the preceding section to your

was.conf file, or create a customized JVM properties file. To create a customized

JVM properties file:

1. Copy the default_global.properties file from the

/usr/lpp/WebSphere/WebServerPlugIn/properties/ directory to the directory

in which your plug-in’s was.conf file resides. Make sure the file has

permissions of at least 644.

2. Rename the copied file to something other than default_global.properties. It is

no longer a ″default″ properties, so something like jvm.properties would be

better.

3. Update the appserver.jvmproperties property in your was.conf file with the

directory and filename of your copied and renamed file.

4. Add one or more of the following properties to your copied and renamed file:

v com.ibm.ws390.wc.includeWebContainers=<server1>, <server2>, <server3>,

...

 Use this property to limit the J2EE servers with which the plug-in can

communicate to those specified list of servers. This would be applicable in an

environment where, for example, you had twenty application servers, one of

which had web applications deployed and nineteen of which did not.

 For example, if you had a server named APSRV3, and that server had five

instances defined as APSRV3S1, APSRV3S2, APSRV3S3, APSRV3S4, and

APSRV3S5, then adding the following the property would limit the plug-in’s

scope to the Web containers in the five instances defined for the server

APSRV3:

com.ibm.ws390.wc.includWebContainers=APSRV3

v com.ibm.ws390.wc.serverCheckInterval=<interval in minutes>

 If you want to alter the interval between which the plug-in checks for new

J2EE servers. By default the plug-in will check every 10 minutes to see if

additional J2EE servers have been defined. You may wish to set a longer

time if your environment is relatively stable regarding the number of servers

configured.

v com.ibm.ws390.wc.webappupdateinterval=<interval in minutes>

 If you want to alter the polling interval used by the plug-in to check for new

applications. By default, the plug-in will query each application server every

two minutes to see if any new applications have been deployed. You may

want to specify a higher value, particularly if your rate of new application

introduction is low, or if you have a large number of servers and wish to

minimize the amount of polling.
5. Stop and restart the Web server.

Appendix C. Using the Alternate Configuration Option 373

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|
|
|
|

|

|

|
|
|
|
|

|

|
|
|
|
|
|

|

Resolving requests to a specific servlet using the HTTP

Server

To understand how the HTTP server and the V3.5 run-time environment work

together, and use information in configuration files to satisfy a servlet request,

consider the following example. Suppose that your installation wants to do the

following:

v Continue using a Web site that you previously set up for the state of Maryland

police, fire, and tax authorities on WebSphere Application Server Standard

Edition V3.5 system.

 Each of the three authorities has its own Web page and supporting Web

applications. The left side of the figure depicts the three Maryland state Web

pages: one for the fire authority, one for the police, and one for the tax authority.

Under each is the URL that will appear on inbound servlet requests; the URL

contains the domain name for each state authority page (the domain names are

underlined in the figure). The URL also contains information that identifies the

servlet to be run (this information is shaded in the figure).

v Host these different Web applications in the V3.5 run-time environment on

WebSphere for z/OS.

 Although these Web applications will be installed in the same V3.5 run-time

environment, your installation wants to keep the applications isolated, or

logically grouped, by each state authority. The right side of the figure depicts the

logical configuration that your installation wants to achieve. In this

configuration, the V3.5 run-time environment has three logical partitions that

correlate with the domain names for each Web page: One for the fire authority,

one for the police, and one for the tax authority. These partitions are virtual

hosts, which separate each authority’s Web applications from any other Web

applications defined to this run-time environment. These virtual hosts also

ensure that each authority’s servlets are run only in response to requests that

contain the appropriate domain name.

The key to accomplishing these goals is to copy all of the properties defining the

virtual hosts and Web applications for each of the three authorities from the

Standard Edition V3.5 was.conf file to the V4.0.1 was.conf file.

Using the Maryland state tax authority Web page as a model, suppose that this tax

authority page allows users to request information about income taxes, property

taxes, or automobile taxes. In other words, inbound requests from the tax authority

page, with domain name taxes.state.md.us, drive the GovTaxes application that

includes the IncomeTax servlet, the PropertyTax servlet, or the AutoTax servlet. In

this case, your installation needs to copy the following properties from the V3.5

was.conf file to the V4.01 file to configure this virtual host and the application

containing these servlets to the V3.5 run-time environment:

host.taxes.alias=taxes.state.md.us

which defines the virtual host named taxes in the V3.5 run-time environment.

(This virtual host correlates the taxes.state.md.us domain name on inbound

requests.)

deployedwebapp.GovTaxes.host=taxes

 which deploys this application under the taxes virtual host.

webapp.GovTaxes.servlet.IncomeTx.description=Income Taxes

webapp.GovTaxes.servlet.PropTx.description=Property Taxes

webapp.GovTaxes.servlet.AutoTx.description=Auto Taxes

 which describe the servlets contained in this application, and any other

deployedwebapp and webapp properties associated with the GovTaxes application.

374 WebSphere for z/OS: Assembling J2EE Applications

With these properties in your V4.01 was.conf configuration file, you now have

constructs that match key elements of the URL in inbound servlet requests from

the tax authority Web page:

v The virtual host taxes matches the underlined domain name taxes.state.md.us

in the figure

v The context roots /auto, /property, and /income match the shaded information

in the figure.

The virtual hosts and application definitions determine how the V3.5 run-time

environment handles inbound requests. Figure 31, and the following list illustrate

the additional configuration information required to process an inbound request

from the Maryland state tax page. Numbers in the list correspond to the numbers

in the figure.

1. A user browses the Web site for the Maryland state tax authority, and submits a

request for information about automobile taxes. The inbound request (URL)

is:http://taxes.state.md.us/auto/tax_filing

 The Domain Name Server directs the servlet request to the appropriate

computer system: The Domain Name Server finds a DNS entry for

taxes.state.md.us, and passes the request to IP address nn.x.y.z., which is

the adapter of the z/Series machine you want to use for Web-serving.

2. The HTTP Server recognizes the inbound request as one for the V3.5 run-time

environment to process, and passes the inbound request to this environment.

 The HTTP Server at nn.x.y.z. catches the inbound request, and finds a

matching Service statement in its httpd.conf configuration file. This Service

statement contains the context root /auto/*, which matches part of the URL

(/auto) for the inbound request. The Service statement also includes the HFS

location and name of the V3.5 run-time module (was400plugin) for processing

inbound requests.

Figure 31. Routing an inbound request to the V3.5 run-time environment

Appendix C. Using the Alternate Configuration Option 375

The httpd.envvars file contains environment variables that allow the HTTP

Server to communicate with the V3.5 run-time environment.

3. The V3.5 run-time environmente executes the application locally.

Note: After a J2EE server has been defined that contains a Web container, the V3.5

run-time environment uses the following technique to determine whether a

given request is to be processed locally (the application resides in the same

address space as the V3.5 run-time environment) or passed on to the Web

container.

1. To find the appropriate execution environment, theV3.5 run-time

environment first uses the ServerInit statement in the httpd.conf file to

find the was.conf configuration file. It then scans that was.conf file for

application information. If the V3.5 run-time environment finds matching

application information, the WebSphere for z/OS plug-in runs the servlet

locally; that is, the servlet runs within this environment, rather than

being forwarded to the J2EE server’s Web container for execution.

2. Otherwise, the V3.5 run-time environment assumes that the appropriate

execution environment is the Web container in the WebSphere for z/OS

J2EE server. It then uses the jvm.properties file to find the Web

container’s configuration file, to match the domain name on the inbound

request to a virtual host defined to the Web container.

 In the configuration file, webcontainer.conf, the V3.5 run-time

environment uses two key statements:

v The host.taxes.alias statement, which equates the name of a virtual

host to the URL host name on an inbound request

(taxes.state.md.us), and

v The host.taxes.contextroots statement, which binds specific servlets

to this virtual host.

At this point, the V3.5 run-time environment knows the inbound request

is valid for Web container execution environment, because the domain

name and application context in the request match a defined virtual host

and its associated context roots, respectively. It then passes the request to

the Web container in the J2EE server.

Template for the WebSphere for z/OS plug-in was.conf file

Following is a copy of the template of the WebSphere for z/OS V4.0.1 plug-in’s

was.conf file. The template includes a description of the values that can be

specified for the various properties in the file. It also includes property migration

considerations which may be helpful if you are migrating from a previous version

of the Application Server. The template is located in the directory

/usr/lpp/WebSphere/WebServerPlugIn/properties. For more information about

how to use these properties, see WebSphere Appliation Server Standard Edtion for

OS/390 Version 3.5 Planning, Installing, and Using.

Note: Text following the number symbol (#) in column 1 is always treated as a

comment, regardless of the property setting.

(C) COPYRIGHT 2000-2001 IBM Corporation. All rights reserved.

Configuration file template for the IBM WebSphere Application Server

for OS/390 version 4.01.

The documentation in this file provides...

376 WebSphere for z/OS: Assembling J2EE Applications

- Descriptions of the directives that are to be included in

the application server configuration file. For more information,

please read WebSphere Application Server Standard Edition: Planning,

Installing, and Using Version 4.01.

- Step by step details for defining a configuration file which

makes use of the environment (physical files, etc.) from a

previous version of the application server. That is, this

gives detailed instructions for updating this file to be

a working configuration file that maps over the enities in

your existing server_model_root structure. Please see

the Migration section below.

NOTES ON SYNTAX:

The property names consist of fixed portions (e.g. webapp)

and variable portions (e.g. <webapp-name>). The fixed portions

must be in lowercase; the variable portion can be in

mixed case and is case sensitive.

In the following example..webapp, servlet and autostart are fixed

portions of the property name and must be in lowercase, while

<webapp-name> and <servlet-name> are variable portions within the

property name and can be specified in mixed case.

ex. webapp.<webapp-name>.servlet.<servlet-name>.autostart=true

== #

== #

DIRECTIVES GROUPINGS

=================

- Run-time Environment Properties

- Http Session Tracking

- JDBC Database Connection Pool

- Virtual Host

- Web Application

- Servlet

Note: Throughout this file, <INSTALL_ROOT> refers to the

directory path of the mounted install image of the

product. The default is /usr/lpp/WebSphere.

== #

Run-time Environment Settings

- Version

- Classpath/Libpath/Path settings

- JVM settings

- Logging level & location

- Working Directory

- Servlet 2.2 Compliance mode

== #

appserver.version=4.01

Version number used to verify this is the correct version

of configuration file. The value is used by the Application

Server to validate the file contents and should not be

changed.

A value of 4.0 or 4.01 MUST be specified for this property.

appserver.version=4.01

#

Appendix C. Using the Alternate Configuration Option 377

#--#

appserver.usesystemclasspath=true|false

If set to true, the current setting of the $CLASSPATH

environment variable will be appended to the generated

classpath.

The default is false.

#--#

appserver.libpath=<librarypath>

The libpath specified will be appended to the generated

libpath in the Application Server.

#--#

appserver.classpath=/usr/lpp/ldap/lib/ibmjndi.jar<:classpath>

The classpath specified will be appended to the generated

classpath.

#--#

appserver.name=<name>

Specifies the Application Server Name. This is used to

identify the Application Server in displays and log messages.

The default is "defaultServletEngine".

#--#

appserver.jvmpropertiesfile=<fully-qualified-filename>

Specifies the fully qualified name of the properties file

that contains the JVM specific properties.

The default name is:

<INSTALL_ROOT>/AppServer/properties/default_global.properties

#--#

appserver.loglevel INFO|ERROR|WARNING

Specifies the logging level of the Application Server. The

recommended loglevel is WARNING.

The default is warning.

#--#

appserver.logdirectory=directory_name | STDOUT

Specifies the directory that will contain the Application

Server log files. This directory must exist and be writeable

to the Application Server. If STDOUT is specified for this

property, the logging files will be written to STDOUT

The default is STDOUT.

#--#

appserver.jspbasehrefadd

The value of this property is a boolean that

378 WebSphere for z/OS: Assembling J2EE Applications

indicates whether a JSP will output the <base href>

tag when a JSP is invoked via callPage from a servlet.

Setting this property to false will disable the output

of the <base href> tag in the generated Java code of

a JSP for JSP’s using the .91 JSP processor.

When this property value is false, the <base href> tag

can be manually added to JSPs to prevent the need

to specify full pathing for all references to items such

as beans.

The default is true.

#--#

appserver.workingdirectory=<directory>

Specifies the directory that will be used by the Application

Server for temporary files, including the class files generated

by JSP compile processing. This should be a fully qualified

directory location. The default is

/tmp/WebSphere/AppServer/<appserver.name>

where <appserver.name> is the value of the appserver.name

property.

#--#

appserver.permissions=permissions

Specifies the UNIX style permission bits (rwxrwxrwx) which

will be used to set the owner/group/other permission bits

for the Application Server directories and files which are

created in the path defined by appserver.workingdirectory

and appserver.logdirectory, including the files generated

by JSP compile processing and the log files.

The default is 777.

#--#

appserver.nodetach=true|false

Specifies whether the http server worker thread will be

detached from the JVM on the completion of each individual

request. The default value is ’false’, which means the

thread will be detached after each request.

#--#

appserver.compliance.mode=true|false

Specifies whether the servlet engine is running in full

compliance with the servlet 2.2 specification, or is running

in compatibility mode. A value of ’true’ indicates that the

server is running in full compliance mode, a value of ’false’

indicates the server is running in compatibility mode.See the

section "Maintaining compatibility with existing applications",

in Chapter 2 of the "WebSphere Application Server Standard Edition

for OS/390 V3.5 Planning, Installing, and Using" publication

for a summary of the application processing

implications of running in compliance mode.

The default value is false.

#--#

appserver.java.system.property=property.name=property.value

Specifies additional properties that can be passed directly

to the java virtual machine when the JVM initializes. The

Appendix C. Using the Alternate Configuration Option 379

Application Server makes no attempt to validate or interpret

the properties or values. Multiple instances of the

appserver.java.system.property can be specified in the

configuration file.

There is no default.

#--#

appserver.java.extraparm=jvm_parm

Specifies additional JVM-specific parameters that can be

passed to the JVM on initialiation. These parameters are

not validated or interpreted by the Application Server, but

are passed directly to the JVM. Note that incorrect values

for this property may cause the initialization of the JVM

to fail, which will cause the Application Server

initialization to fail. Multiple instances of the

appserver.java.extraparm property can be specified. Only

one JVM parameter per property instance can be specified.

It is recommended that this property only be used under

guidance from IBM support.

There is no default.

#--#

appserver.configviewer=<root-URI>

Specifies the URI root for the configuration viewer

which is automatically configured into each virtual host

within the Application Server.

The default is /ConfigViewer which means that you would

specify a URL of <hostname>/ConfigViewer/showCfg to access

the configuration viewer.

#--#

appserver.initializeonwebappfailure=true|false

Specifies the initialization of AppServer when one or

more WebApp fails to load. When the property is set to true,

AppServer initializes if atleast one webapp loads successfully.

The default value is false. If property is set to false

Appserver fails to initialize if atleast one webapp fails.

If all the WebApps are loaded successfully, AppServer

initializes regardless of the value set through the property.

#--#

objectleveltrace.enabled=true|false

Specifies whether object level trace support is enabled.

The default value is false. When value is set to true, you

must also set next two properties:

objectleveltrace.host=<host_name>

Specifies the object level trace application host name or

its IP address.

objectleveltrace.port=<port_number>

Specifies the object level trace application port number.

#--#

#

380 WebSphere for z/OS: Assembling J2EE Applications

inline.comment=true|false

Specifies whether the ’#’ character is considered to be

comment or data on subsequent properties. The default

is ’false’, which means that all data following the ’#’

character is considered comment. A value of ’true’ means

that a ’#’ character found anywhere outside column 1 is

considered data.

The behavior of this property depends upon where in the

configuration file it is found. When detected, this

property affects the parsing of lines which follow it.

The behavior of this property remains in effect for

subsequent properties unless it is specifically disabled.

The property may be toggled, for example:

inline.comment=true

webapp.myApp.servlet.theWebApp.code=myWebApp

webapp.myApp.servlet.theWebApp.initargs=param=param1#param2

inline.comment=false

The default is false.

== #

Session Settings

== #

session.enable=true|false

The value of this property is a boolean that

indicates whether session tracking is enabled. If

the property is set to "true," the session-related

methods for the request and response objects will

be functional.

If session is disabled and an application within the

Application Server attempts to use the session services,

an exception will be thrown.

The default is true.

#--#

session.urlrewriting.enable=true|false

The value of this property is a boolean that

indicates whether session tracking uses rewritten

URLs to carry the session IDs. If the property is

set to "true", the Session Tracker recognizes

session IDs that arrive in the URL and rewrites

the URL, if necessary, to send the session IDs.

The default is false.

#--#

session.cookies.enable=true|false

The value of this property is a boolean that

indicates whether session tracking uses cookies to

carry the session IDs. If the property is set to

"true", session tracking recognizes session IDs that

arrive as cookies and tries to use cookies as a means

for sending the session IDs.

The default is true.

Appendix C. Using the Alternate Configuration Option 381

#--#

session.protocolswitchrewriting.enable=true|false

The value of this property is a boolean that

indicates whether the session ID is added to a URL

when the URL requires a switch from HTTP to HTTPS, or

HTTPS to HTTP.

The default is false.

#--#

session.cookie.name=<name>

The value of this property is a string that specifies

the name of the cookie, if cookies are enabled. The

cookie name must only contain:

-English alphanumeric characters (uppercase or

lowercase A to Z and numbers 0 to 9)

-Period (.)

-Underscore (_)

-Hyphen (-)

The initial setting is “SESSIONID”.

session.cookie.name=SESSIONID

#--#

session.cookie.path=<path>

The value of this property is a string that specifies

the path field that will be sent for session cookies.

Specify a value only to restrict to which paths on the

server (and, therefore, to which servlets, JHTML files,

and HTML files) the cookies will be sent.

Specifying “/” for the path indicates the root directory,

which means that the cookie will be sent on any access to

the given server.

The initial setting is “/”.

session.cookie.path=/

#--#

session.cookie.comment=<comment>

The value of this property is a string that specifies

a comment about the cookie, if cookies are enabled.

The default is "WebSphere Session Support".

#--#

session.cookie.maxage=<integer>

The value of this property is an integer that

specifies the amount of time, in milliseconds, that a

cookie will remain valid. Specify a value only to

restrict or extend how long the session cookie will

live on the client browser.

By default, the cookie only persists for the current

invocation of the browser. When the browser is shut down,

382 WebSphere for z/OS: Assembling J2EE Applications

the cookie is deleted.

The default is -1.

#--#

session.cookie.secure=true|false

The value of this property is a boolean that

indicates whether session cookies include the secure

field. If this property is set to "true", this will

restrict the exchange of cookies to only HTTPS

sessions. Otherwise, they will be exchanged in

HTTP sessions as well.

The default is false.

#--#

session.cookie.domain=<domain-name>

Specifies the domain name for which the session cookie is

valid.

The default is null.

#--#

session.invalidationtime=<milliseconds>

The value of this property is an integer that

specifies the amount of time in, milliseconds, that a

session is allowed to go unused before it is no

longer considered valid.

The default is 180000 millisecs, or 180 seconds.

#--#

session.tableoverflowenable=true|false

Specifies whether there is a limit on the number of session

objects that should be maintained by the Application Server,

or whether the number of session objects that should be

maintained is unlimited. The number of session objects

is controlled by the session.tablesize property.

The default value is true, which means that the number

of session objects is unlimited.

#--#

session.tablesize=<integer>

Specifies the size of the session table used to maintain

session objects within the Application Server. When

session.tableoverflowenable=false, this is the limit on

the number of session objects that can be created by the

Application Server at any one time. When

session.tableoverflowenable=true, this represents the

initial size of the session table and the quantity by

which it is expanded.

The default is 1000 session objects.

#

Appendix C. Using the Alternate Configuration Option 383

#--#

session.dbenable=true|false

Specifies whether or not the session objects should be stored

in a database.

The default value is false, which means that the session

objects are stored using memory in the JVM of the Application

Server instance that created the session.

#--#

session.dbjdbcpoolname=<session-jdbc-poolname>

Specifies the name of the JDBC Database Connection Pool name

for use by the session support whenever

session.dbenable=true

IBM recommends the following default characteristics for a

JDBC Database Connection Pool definition for use by the

session services:

jdbcconnpool.SessionJDBCConnectionPool.minconnections=10

jdbcconnpool.SessionJDBCConnectionPool.maxconnections=40

jdbcconnpool.SessionJDBCConnectionPool.

inuseconnectiontimeoutmilliseconds=-1

jdbcconnpool.SessionJDBCConnectionPool.jdbcdriver=ibm.sql.DB2Driver

jdbcconnpool.SessionJDBCConnectionPool.databaseurl=your_db_url

The pool name SessionJDBCConnectionPool is example.

Whatever name is used must match the value specified

in session.dbdbcpoolname.

The pool properties have the following characteristics:

- maxconnections for the pool should be equal to the

MaxActiveThreads value in your httpd.conf file for the web server.

- minconnections for the pool should be 1/4 of the maxconnections.

- inuseconnectiontimeout should be set to -1, which disables

the reclaiming of inuse connections for this pool.

- jdbcdriver must be the DB2 jdbc driver

- databaseurl must be the URL of the target database

IBM recommends that you take the JDBC pool defaults for both

- waitforconnectiontimeoutmilliseconds

- idleconnectiontimeoutmilliseconds

- datasourcename (not used by the session services)

IBM recommends that the session services should be the exclusive

user of this pool.

There is no default.

#--#

session.dbtablename=<database-tablename>

Specifies the database table name to be used by the session

services when session.dbenable=true.

There is no default.

== #

JDBC Database Connection Pool Settings

You can define one or more JDBC Database Connection Pools per

Application Server. The syntax of the property name is:

jdbcconnpool.<pool-name>.<property>=<value>

where <pool-name> is the name of the JDBC Database Connection Pool

384 WebSphere for z/OS: Assembling J2EE Applications

<property> is the property name

<value> is the value for the property

To create a JDBC Database Connection Pool, at least

one property and one non-null value must be specified.

The following properties exist for each connection pool:

#--#

jdbcconnpool.<pool-name>.minconnections=<integer>

Specifies the minimum number of connections for the pool.

The pool is not initialized with this number of connections;

however once this number is reached, it represents the

minimum number of connections that should be kept in the

pool.

The default is 1.

#--#

jdbcconnpool.<pool-name>.maxconnections=<integer>

Specifies the maximum number of connections for this pool.

Once the maximum number of connections is reached and all

connections in the pool are in-use, subsequent requests from

the pool will either be waited or failed based upon whether

the request will tolerate waiting.

The default is 25.

#--#

jdbcconnpool.<pool-name>.

waitforconnectiontimeoutmilliseconds=<milliseconds>

This should be on one line; it is split here because of

spacing constraints.

Specifies the wait, in milliseconds, for the connection timeout

value for this pool.

When all the connections in the pool are inuse, subsequent

requests from the pool will wait, up to the timelimit defined

by this property, for a connection to be released to the pool.

If no connection is released in the timelimit specified,

the request is failed.

If -1 is specified, it disables waiting for connections.

Hence, any request for a connection from the pool when all the

connections in the pool are already in-use will be failed

immediately, without waiting for connections to be released.

The default is 30000 millisecs or 30 seconds.

#--#

jdbcconnpool.<pool-name>.

idleconnectiontimeoutmilliseconds=<milliseconds>

This should be on one line; it is split here because of

spacing constraints.

Specifies, in milliseconds, the idle connection timeout for

this pool.

This specifies the length of time that a database connection

can remain idle (i.e. not used) in the pool before it is

eligible for removal, thus freeing up all the resources

associated with the database connection.

The default is 120000 millisecs or 120 seconds.

#

Appendix C. Using the Alternate Configuration Option 385

#--#

jdbcconnpool.<pool-name>.

inuseconnectiontimeoutmilliseconds=<milliseconds>

This should be on one line; it is split here because of

spacing constraints.

Specifies, in milliseconds, the in-use connection timeout for

this pool.

This specifies the length of time that a database connection

can be out of the pool before it is eligible for reclaiming

by the connection pool manager. This function guards against

an application that obtains a connection from the pool, but

does not return it within the timelimit defined by this

property.

If -1 is specified, it disables in-use connection processing

for this pool.

The default is 120000 millisecs, or 120 seconds.

#--#

jdbcconnpool.<pool-name>.jdbcdriver=<driver-class-name>

Specifies the JDBC driver used for this pool. This is

required if a datasource name is defined for the pool.

Otherwise, it is optional and if specified, will be used to

constrain the pool to connections that match the specified

JDBC driver name. If the request doesn’t match the pool’s

JDBC driver name, it will be failed.

The default is null.

#--#

jdbcconnpool.<pool-name>.databaseurl=<database-url>

Specifies the database URL used for this pool. This is

required if a datasource name is defined for the pool.

Otherwise, it is optional and if specified, will be used to

constrain the pool to connections that match the specified

database URL. If the request doesn’t match the pool’s

database URL, it will be failed.

The default is null.

#--#

jdbcconnpool.<pool-name>.datasourcename=<name>

Specifies a datasource name for this connection pool.

This is required if the Connection Pooling APIs are going

to be used to obtain connections from this pool. Otherwise,

it does not need to be specified.

The name specified should be the same name that the your

application will use to perform the naming service lookup

on the datasource object.

The default is null.

#--#

jdbcconnpool.<pool-name>.connectionidentity=<string>

Specifies the identity with which JDBC connections will

be established. The <string> value can be one of :

connspec : the identity will be assigned from the userid

field of the IBMJDBCConnSpec object.

server : the identity will be that of the Web Server

386 WebSphere for z/OS: Assembling J2EE Applications

address space.

thread : the identity will be that of the thread on

which the JDBC Connection request is made.

The default is connspec.

#--# #

jdbcconnpool.<pool-name>.provider= DB2/OS390 | other

Specifies the JDBC database host:

DB2/OS390 : the DBMS is DB2 running on OS/390 or z/OS.

other : the DBMS is not DB2 on OS/390 and no DB2

specfic optimizations should be used.

The default is DB2/OS390

== #

Virtual Host settings

You can define one or more Virtual Hosts per Application Server.

The syntax of the property name is:

host.<virtual-hostname>.<property>=<value>

where <virtual-hostname> is the name of the Virtual Host

<property> is the property name

<value> is the value for the property

The following properties exist for each virtual host:

== #

host.<virtual-hostname>.alias=<hostname>|localhost

Specifies a hostname alias to be associated with this virtual

host name. This property provides a binding between the

hostnames understood by the web server and the virtual host

definitions in the Application Server.

There can be multiple alias properties per virtual host.

The application server supports a special hostname, "localhost",

which maps all requests to the virtual host definition.

This support is provided for the initial verification program.

IBM recommends that it not be used beyond that purpose.

Note: If you are using the IBM HTTP Server as your HTTP protocol

catcher, you must make sure that the values specified for the

host.<virtual-hostname>.alias

properties in the V4.0.1 was.conf file match values specified on

the host.default_host.alias property in the

webcontainer.conf file. In the V4.0.1 was.conf file, this property

is initially set to localhost.

This property is initially set to localhost.

#--#

host.<virtual_hostname>.mimetypefile=<fully-qualified-filename>

Specifies the fully qualified filename of the mimetype properties

file used for this virtual host.

The default is:

<INSTALL_ROOT>/AppServer/properties/default_mimetype.properties

== #

Web Application Settings

Appendix C. Using the Alternate Configuration Option 387

A Web Application is made up of two sets of properties.

- Deployed Web Application properties

These properties represent characteristics that are unique to

the environment in which the web application is deployed.

- Web Application properties

These properties represent characteristics of the

content that comprises the web application.

One or more web application properties are required unless the

application’s component parts are defined in a

<webapp-name>.webapp XML file. If so, only deployed web application

properties should be defined for the web application. The

Application Server will search the class path to find the

<webapp-name>.webapp file.

== #

Deployed Web Application Properties

These properties represent characteristics that are unique to

the environment in which the web application is deployed.

These properties have the following syntax:

deployedwebapp.<webapp-name>.<property>=<value>

where <webapp-name> is the name of the web application

<property> is the property name

<value> is the value for the property

The deployed web application properties are:

#--#

deployedwebapp.<webapp_name>.host=<virtual-hostname>

Defines the name of the virtual host into which this

web application is being deployed. This property is required.

There is no default.

#--#

deployedwebapp.<webapp-name>.rooturi=

Defines the root URI for this web application. This defines

a pattern by which the web application is known within the

virtual host. This property is required.

There is no default.

#--#

deployedwebapp.<webapp-name>.classpath=

This property specifies the classpath that the application

level class loader uses to searche for classes when the system

class loader cannot locate the class. This property is required.

There is no default.

#--#

deployedwebapp.<webapp-name>.documentroot=

This property is used to specify the fully qualified name

of a directory containing JSPs, JHTML and static content to

be served by the Application Server. This property is required.

There is no default.

388 WebSphere for z/OS: Assembling J2EE Applications

#--#

deployedwebapp.<webapp-name>.authresource.

<resource-name>=<servletmapping>

This should be on one line; it is split here because of

spacing constraints.

This property is used to identify a web resource so that

access control policies can be applied to them.

<resource-name> is the resource name that is to be used

along with the virtual-hostname and webapp-name to construct

the SAF resource name of the form:

<virtual-hostname>.<webapp-name>.<resource-name>

<servletmappping> is the servlet mapping of the resource

covered by the security constraint.

There is no default.

#--#

deployedwebapp.<webapp-name>.autoreloadinterval=<millisecs>

This property is used to specify whether or not a web

application is to be reloaded if changes are detected in the

implementation file. The property value is the number of

milliseconds between checks for changes by the Application

Server.

Reloading is not recommended for production environments.

To disable reloading, either don’t specify the property

or specify an interval value of 0.

The default is no reloading.

== #

Web Application Properties

These properties identify the characteristics of the components

that comprise the web application. These properties can be

split into two groups.

- Web application characteristics

These are the base characteristics of the web application.

- Servlet definitions

Defines any additional servlet characteristics within the

web application.

== #

Web Application Characteristics

These properties have the following syntax:

webapp.<webapp-name>.<property>=<value>

where <webapp-name> is the name of the web application

<property> is the property name

<value> is the value for the property

The web application properties are:

#--#

webapp.<webapp-name>.description=<string>

#

Appendix C. Using the Alternate Configuration Option 389

This is a text description of the web application used in

displays and messages to help identify the web application.

The default is "Web Application: <webapp-name>".

#--#

webapp.<webapp-name>.servletmapping=<URI-pattern>

The value of this property is a string that specifies a

URI-pattern that, within this web application root URI,

resolves to a class file that contains a servlet.

This property can be specified multiple times within a

web application to define multiple servlet mappings.

Ex. webapp.default_app.servletmapping=/servlet/*

If this property is not specified, the serving of requests

that attempt to access specific class file names will not

be honored within this web application unless handled by

an explicitly defined servlet.

There is no default.

#--#

webapp.<webapp-name>.jspmapping=<URI-pattern>

The value of this property is a string that specifies a

URI-pattern that, within the web application, resolves to

a file that contains jsp or jhtml.

This property can be specified multiple times within a

web application to define multiple jsp mappings.

Ex. webapp.default_app.jspmapping=*.jsp

Ex. webapp.default_app.jspmapping=*.jhtml

If this property is not specified, jsp and/or jhtml

requests will not be honored within this web application

unless handled by an explicitly defined servlet.

There is no default.

#--#

webapp.<webapp-name>.jsplevel=<JSP-spec-level>

This property defines the level of the JSP processor to

be configured for this application. This property is

ignored if property

webapp.<webapp-name>.jspmapping=<URI-pattern>

is not defined within the web application.

<JSP-spec-level> is either "1.1" to configure the JSP processor

that supports the JSP 1.1 Specification Level, "1.0" to configure

the JSP processor that supports the JSP 1.0 Specification Level;

otherwise, the JSP processor for ".91" is configured.

The default is the ".91" JSP processor.

#--#

webapp.<webapp-name>.filemapping=<URI-pattern>

This property defines a URI-pattern that maps to static

content that you want to be served within this web

application. Static content is considered all content other

then servlets and jsp/jhtml.

#

390 WebSphere for z/OS: Assembling J2EE Applications

The Application Server streams all static content without

performing any character conversions.

Ex. webapp.default_app.filemapping=*.gif

The default is that no static content can be served within

this web application.

#--#

webapp.<webapp-name>.attributes=

<parm_1_name>=<parm_1_value>,<parm_2_name>=<parm_2_value>

<parm_n_name> specifies the name of a parameter

<parm_n_value> specifies the associated value which is

treated as a string.

This property defines attributes for the web application.

For example, to specify attributes called x, y and z that

are to be available to servlets/jsps within the web

application "default_app", the following line would be

inserted:

webapp.default_app.attributes=x=0,y=Fred,z=true

#--#

webapp.<webapp-name>.errorpagemapping=<URI-pattern>

This property defines a URI-pattern that will map to a

servlet or jsp that is written to handle error reporting

for exceptions thrown by servlets within the web application.

IBM provides a default error reporter.

#--#

webapp.<webapp-name>.filter.<MIME-type>=<servlet-name>

<MIME-type> is a file type, such as text/html, recognized

by the virtual host in which the web application is

deployed.

<servlet-name> is the servlet to be invoked when the

associated MIME type is recognized.

== #

Servlet Definitions

These properties have the following syntax:

webapp.<webapp-name>.servlet.<servlet-name>.<property>=<value>

where <webapp-name> is the name of the web application

<servlet-name> is the name of the servlet

<property> is the property name

<value> is the value for the property

The servlet properties are:

#--#

webapp.<webapp-name>.servlet.<servlet-name>.servletmapping=

<URI-pattern>

This should be on one line; it is split here because of

spacing constraints.

<URI-pattern> is the path for the servlet, relative

to the web application’s root URI.

Appendix C. Using the Alternate Configuration Option 391

Use a wild-card character (*) only at the beginning

of a path.

<servlet-nane> is the servlet being invoked.

For example, after you set up a servletmapping, you

can connect to the servlet by entering the URI-pattern

into a URL following the web application’s root URI.

For example, to create a servletmapping for the Big servlet

in web application default_app, which has a root URI of

"/Default" that allows it to be invoked at the browser

by the string /Default/servlet/myCompany/Big,

the following line would be inserted:

webapp.default_app.servlet.Big.servletmapping=

/servlet/myCompany/Big

#--#

webapp.<webapp-name>.servlet.<servlet-name>.code=<servlet-class>

<servlet-name> is the unique name of the servlet.

The name should not include double-byte characters.

<servlet-class> is the associated class file for the

servlet.

You do not need to specify this property if the servlet

name and class name are the same.

For example, to add a servlet named Big in web application

default_app that was compiled in file BigServlet.class

and is part of package com.abc,

the following line would be inserted:

webapp.default_app.servlet.Big.code=com.abc.BigServlet

#--#

webapp.<webapp-name>.servlet.<servlet-name>.initargs=

<parm_1_name>=<parm_1_value>,<parm_2_name>=<parm_2_value>

Above should be on one line but split for spacing.

<parm_n_name> specifies the name of a parameter

<parm_n_value> specifies the associated value which is

treated as a string

For example, to specify parameters called x, y, and z that

are to be passed to the init method for servlet Big within

web application default_app,

the following line would be inserted:

webapp.default_app.servlet.Big.initArgs=x=0,y=Fred,z=true

#--#

webapp.<webapp-name>.servlet.<servlet-name>.autostart=true|false

Property indicates whether the servlet should be loaded; and

its init method driven, whenever the Application Server starts.

Default is not to autostart a servlet.

== #

Migrating a version 1.x was.conf properties file to

version 4.01

== #

#

392 WebSphere for z/OS: Assembling J2EE Applications

The following are the minimal set of properties required to

configure an AppServer V4.01 server to support a migration from

AppServer v1.x. You should be able to update the properties, where

required, with environment-specific data and then uncomment the

properties and start the Application Server using these settings.

- Server properties

libpath - Propagate any libraries you added to the version 1.x

was.conf ncf.jvm.libpath over to the version 4.01

appserver.libpath. Don’t propagate any of the libraries

that were on the default version 1.2 was.conf. That is,

you should not include libraries required by the

application server itself. The 4.01 version of the

Application Server will automatically add the libraries

it requires to the libpath. Again, only specify libraries

which you have added in support of your applications.

classpath - As with the libpath, you should propagate only the

files (jars, zips, .ser) you added to the version 1.x

was.conf ncf.jvm.classpath property. Do not propagate any

of the files that resided on the default ncf.jvm.classpath.

The version 4.01 Application Server will automatically

add files it requires to the classpath.

There is a further discussion on classpath consideration

in the section regarding web application classpath.

- Session properties

- The session properties supported in the version 1.x was.conf

correspond one-to-one with properties in the version 4.01

was.conf. To start the server with equivalent session support

configured, you need to copy the directives prefixed with

session.* from your existing WAS.conf file to this file.

One point to note is that the session support in version 4.01

defaults to enable=true. This can be overridden by the

session.enable property.

- Logging properties

The logging properties have changed between version 1.x and

version 4.01. It is recommended that you start with the default

logging properties of version 4.01 and modify as needed.

- Virtual Host

- Define a host called "default_host".

- Take the default mime types.

- You must replace <your-hostname> with your specific hostname

(for example host.default_host.alias=www.mycompany.com:8027).

Note: You can have multiple alias statements for a single

host. If you want more than one DNS alias to map to a host,

just add multiple configuration directives.

host.default_host.alias=<your-hostname>

- Web Application

- Define a web application called "default_app".

- Deploy default_app into the virtual host default_host.

deployedwebapp.default_app.host=default_host

- Establish a URI namespace within the application of "/" for

default_app. This provides all content deployed within the

default_app with the view that their namespace is rooted

at the base of the virtual host.

deployedwebapp.default_app.rooturi=/

- Establish a document root for JSP, JHTML and static content

Appendix C. Using the Alternate Configuration Option 393

served within the Web Application. You must replace

<your-document-root> with the directory that contains your

JSP and JHTML.

deployedwebapp.default_app.documentroot=<your-document-root>

- Establishes the classpath for the default_app web application;

this classpath can be reloadable and is searched after the

JVM classpath. In version 1.x of the Application Server,

the server would always search the JVM classpath, followed

by the /servlets directory in the server_model_root, followed

by the reloadable classpath specified by the

servlet.reload.directories. To maintain this behavior in

the v4.01 Application Server, you need to consider

the following:

- JVM classpath - The version 4.01 Application Server

automatically constructs the classpath with the

jar and zips that are required to operate. This includes

Application specific libraries, as well as any required

JDK libraries. Therefore, you should propagate only the

libraries you added to the version 1.x ncf.jvm.classpath

onto the version 4.01 appserver.classpath.

- Reloadable classpath - The version 4.01 Application Server

supports a web application classpath which is searched after

the JVM classpath in the order in which the libraries

appear in the classpath. This classpath can be configured

to be reloadable. To maintain a consistent search

order with the version 1.x Application Server, you

should add your <server-model-root>/servlets directory

followed by the reloadable directories.

Note: The verion 4.01 Application Server has no

requirement to be pointed at the same instance

of the /servlets directory used in your version 1.x

Application Server. You may in fact choose to make

a copy of that directory and its subdirectories

before using it within a version 4.01 Application

Server in anticipation of the possible need to

migrate either servlets or JSP to the new APIs

APIs supported in version 4.01.

appserver.classpath=<your-libraries-for-the-jvm-classpath>

deployedwebapp.default_app.classpath=<your-reloadable-classpath>

- Servlet reload - The property to control servlet reloading in

version 1.x was.conf was servlets.reload. In the version 4.01

was.conf, servlet reloading is controled, per web application,

via the following property. The value of the property is the

interval, in milliseconds, that the Application Server should

pool for changes. To disable reloading, either don’t specify

the property or specify an interval value of 0.

deployedwebapp.default_app.autoreloadinterval=<milliseconds>

- Enable servlet requests to be resolved to a file name. This

property corresponds to the urltype.servlets= property in

the version 1.x was.conf file. For each instance of the

property defined in the version 1.x was.conf, add an

instance of the following property with the corresponding

value. For example, the default was.conf for version 1.x

defined urltype.servlet=/servlet. This same behavior is

represented in version 4.01 with the following property

within the default_app web application.

webapp.default_app.servletmapping=/servlet/*

- Enable jsp and jhtml requests to be processed. This property

corresponds to the urltype.jsp= property in the version 1.x

was.conf.

#

394 WebSphere for z/OS: Assembling J2EE Applications

webapp.default_app.jspmapping=*.jsp

webapp.default_app.jspmapping=*.jhtml

- Filtering by mime-type

version 1.x property

filter.<mime-type>=<servlet-1>,<servlet-2>,...

version 4.01 property

Version 4.01 Application Server supports one servlet

name per mime-type.

webapp.default_app.filter.<MIME-type>=<servlet-name>

- Servlet properties have a direct mapping between version 1.x and

version 4.01.

code -

version 1.x property

servlet.<servlet-name>.code=<servlet-class>

version 4.01 property

initargs -

version 1.x property

servlet.<servlet-name>.initArgs=<initargs>

version 4.01 property

autostart -

version 1.x property

servlets.startup=<servlet-name1> <servlet-name2> ...

version 4.01 property

Each unique servlet you want to have started when the

Application Server starts requires an autostart property.

Do not define an autostart property for the invoker servlet

from the default startup property in the version 1.x

was.conf.

alias -

version 1.x property

servlet.<alias-name>=<servlet-name>

version 4.01 property is servlet mapping

webapp.default_app.servlet.<servlet-name>.servletmapping=<alias-name>

webapp.default_app.servlet.<servlet-name>.autostart=true

webapp.servlet.<servlet-name>.code=<servlet-class>

webapp.default_app.servlet.<servlet-name>.initargs=<initargs>

default_global.properties

Following is a copy of the default_global.properties file used with the V3.5

run-time environment provided with the WebSphere for z/OS product.

@(#)default_global.properties 1.0 98/08/21

Configuration properties for JVM and plugin initialization

Customer modifiable jvm config options

JVM Configuration jit setting

Turn jit on or off, or specify a different jit compiler.

Default: on

#

Appendix C. Using the Alternate Configuration Option 395

Syntax: appserver.product.java.jvmconfig.jit=on | off | jitc

Example: appserver.product.java.jvmconfig.jit=on

appserver.product.java.jvmconfig.jit=

JVM Configuration maximum heap size setting

Default: 128m

Syntax: appserver.product.java.jvmconfig.mx=maxmem[k | m]

example: appserver.product.java.jvmconfig.mx=64m

appserver.product.java.jvmconfig.mx=

JVM Configuration initial heap size setting

Default: 128m

Syntax: appserver.product.java.jvmconfig.ms=initmem[k | m]

Example: appserver.product.java.jvmconfig.ms=64m

appserver.product.java.jvmconfig.ms=

JVM Configuration Java stacksize setting

Default: 400k

Syntax: appserver.product.java.jvmconfig.oss=stacksize[k | m]

Example: appserver.product.java.jvmconfig.oss=500k

appserver.product.java.jvmconfig.oss=

JVM Configuration native stacksize setting

Default: 256k

Syntax: appserver.product.java.jvmconfig.ss=stacksize[k | m]

Example: appserver.product.java.jvmconfig.ss=512k

appserver.product.java.jvmconfig.ss=

Application Server run byte-code verifier

Default: false

Syntax: appserver.product.java.jvmdebug.verify=true|false

Example: appserver.product.java.jvmdebug.verify=true

appserver.product.java.jvmdebug.verify=

396 WebSphere for z/OS: Assembling J2EE Applications

Application Server use Java debug library

Default: false

Syntax: appserver.product.java.jvmdebug.debug=true|false

Example: appserver.product.java.jvmdebug.debug=true

appserver.product.java.jvmdebug.debug=

JVM remote debug port. This property is used only when

appserver.product.java.jvmdebug.debug=true.

Default: None

Syntax: appserver.product.java.jvmdebug.port=<port_number>

Example: appserver.product.java.jvmdebug.port=8888

appserver.product.java.jvmdebug.port=

Application Server print message when garbage collection frees

memory

Default: false

Syntax: appserver.product.java.jvmdebug.verbosegc=true|false

Example: appserver.product.java.jvmdebug.verbosegc=true

appserver.product.java.jvmdebug.verbosegc=

Application Server print message when classes load

Default: false

Syntax: appserver.product.java.jvmdebug.verbose=true|false

Example: appserver.product.java.jvmdebug.verbose=true

appserver.product.java.jvmdebug.verbose=

Appendix C. Using the Alternate Configuration Option 397

398 WebSphere for z/OS: Assembling J2EE Applications

Appendix D. Running the SOAP Installation Verification

Program

Before you can run the SOAP Installation Verification Program:

1. If you are using the HTTP Transport Handler to handle application requests, go

to step 2. If you are using a z/OS or OS/390 IBM HTTP Server to handle

application requests, you must modify your HTTP Server’s httpd.conf file to:

v Include the following Service directive for the SOAP IVP:

Service /soapivp/* /<install_root>/WebServerPlugIn/bin/was400plugin.so:service_exit

v Set the Userid parameter to <surrogate ID> if it is currently set

%%CLIENT%%:

Userid <surrogate ID>

2. You must deploy the SoapIVP.ear file into the Web container on your J2EE

server.

To deploy the SoapIVP.ear file:

 1. Change directory to /usr/lpp/WebSphere/samples.

 2. Find the SoapIVP.ear in the samples directory.

 3. FTP the SoapIVP.ear to your workstation in binary format.

 4. Start the WebSphere for z/OS Administration Application.

 5. Select ″Add a conversation″ and add SoapIVP, and then save the

conversation.

 6. Expand the Tree: <sysplex_name> → <plex_name> → J2EE Servers →. You

should see the J2EE Servers that are defined. Right click on the your J2EE

Server and select the ″Install J2EE Application″.

 7. Select the SoapIVP.ear file from your local file system and press ENTER.

 8. Select the Soap-ivp-ejb bean, set the JNDI PATH to /soapivp/, and place

AdderService in the JNDI Name field.

 9. Set the soap_WebApp bean to the default JNDI name and path.

10. Click on the ″OK″ button. If the ″OK″ button remains grayed out and you

cannot click on it, one of the required JNDI values has not been filled-in.

Re-check these fields and ensure you have a green tick mark on each of the

bean symbols in the SOAP IVP J2EE application’s module tree.

11. Click on the ″OK″ button again. The Administration Applicaton will install the

SOAP IVP as a J2EE application.

Once the SOAP IVP is activated:

1. Issue the following command to verify that the directory where the SoapIVP

application is deployed has been created. If this directory was not properly

created, you will receive an error message stating that the system cannot find

the path specified.

cd <targetdir>/apps/<server_name>/SOAPIVP

Note: If your <targetdir> is located on a read-only HFS, you will need to copy

the SoapIVPClients jar file to a directory on an HFS to which you have

write access, and then change to that directory, before continuing to the

next step.

© Copyright IBM Corp. 2000, 2003 399

2. Change your directory to /usr/lpp/WebSphere/samples, and locate the

SoapIVPClients.jar file. Issue the following command to unjar this file to the

HFS containing WebSphere for z/OS:

jar -xvf SoapIVPClients.jar

3. Issue the following command to list the current directory:

ls

 You should see the following directory entries:

com/ibm/soap/soapivpclients/

ejbadder scripts

 This directory contains the EJBAdderIVP.sh script that can be used to test your

SOAP installation.

4. Make sure the Execute permission bit is set for this script.

5. From the command line, issue the following command to make sure

JAVA_HOME is set to the exact location where the required level of the

Software Development Kit (SDK) is installed on your system:

echo $JAVA_HOME

 If JAVA_HOME is not set to the correct location, issue the following command

to change its value:

export JAVA_HOME=<SDK_install_root>

6. From the command line, issue the following command to make sure

WAS_HOME is set to the correct value for your WebSphere for z/OS

environment:

echo $WAS_HOME

 If WAS_HOME is not set to your WebSphere for z/OS <install_root>, issue the

following command to change its value:

export WAS_HOME=<install_root>

 The default value for the WebSphere for z/OS <install_root> is

/usr/lpp/WebSphere.

7. Start the J2EE Server.

8. From the command line, change the directory to

com/ibm/soap/soapivpclients/scripts.

9. Then issue the following command to invoke the EJBAdderIVP.sh script, which

is located in this directory:

./EJBAdderIVP.sh <server_location:port_number>

 This service:

v Invokes the stateless Enterprise bean, AdderService.

v Passes AdderService three integers to be added.

v Returns the resulting sum, which should be 5.

Note: The value specified for <server_location:port_number> must match the

value of the virtual host to which this application is bound, which is

specified in the webcontainer.conf file. If the value of the value for the

virtual host is www.yourhost.com:8080, you would issue the following

command:

./EJBAdderIVP.sh www.yourhost.com:8080

400 WebSphere for z/OS: Assembling J2EE Applications

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2003 401

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

Examples in this book

The examples in this book are samples only, created by IBM Corporation. These

examples are not part of any standard or IBM product and are provided to you

solely for the purpose of assisting you in the development of your applications.

The examples are provided ″as is.″ IBM makes no warranties express or implied,

including but not limited to the implied warranties of merchantability and fitness

for a particular purpose, regarding the function or performance of these examples.

IBM shall not be liable for any damages arising out of your use of the examples,

even if they have been advised of the possibility of such damages.

These examples can be freely distributed, copied, altered, and incorporated into

other software, provided that it bears the above disclaimer intact.

402 WebSphere for z/OS: Assembling J2EE Applications

Programming interface information

This publication documents intended Programming Interfaces that allow the

customer to write programs to obtain services of WebSphere for z/OS.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, other countries, or both:

 AIX

CICS

DB2

IBM

IMS

IMS/ESA

Language Environment

Open Class

OS/390

RACF

VisualAge

VTAM

WebSphere

z/OS

 The term CORBA used throughout this book refers to Common Object Request

Broker Architecture standards promulgated by the Object Management Group, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both. The Duke logo is a trademark or registered

trademark of Sun Microsystems, Inc. in the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix E. Notices 403

404 WebSphere for z/OS: Assembling J2EE Applications

Glossary

 For more information on terms used in this book, refer

to one of the following sources:

v Sun Microsystems Glossary of Java

Technology-Related Terms, located on the Internet at:

http://java.sun.com/docs/glossary.html

v IBM Glossary of Computing Terms, located on the

Internet at:

http://www.ibm.com/ibm/terminology/

v The Sun Web site, located on the Internet at:

http://www.sun.com/

© Copyright IBM Corp. 2000, 2003 405

406 WebSphere for z/OS: Assembling J2EE Applications

Index

Special characters
&; tasks

for a new application server
defining security profiles and

permissions 144

defining WLM application

environment 144

setting up database resources 144

using naming conventions 144

marking as completed
steps for 157

ws390rt/cmp/jdbc/CMPDS resource

reference
instructions for replacing 154

A
Administration and Operations

applications
CBADMIN 335

Administration application tasks
activating a new server configuration

steps for 157

adding a J2EE resource
steps for 153

adding a J2EE resource instance
steps for 153

adding a J2EE server
steps for 151

adding a J2EE server instance
steps for 153

committing a new conversation
steps for 157

configuring trust association
steps for 202

enabling a custom user registry
steps for 193

Implementing the CustomRegistry

interface
steps for 199

installing a server application in a

J2EE server
steps for 154

marking z/OS or OS/390 tasks as

completed
steps for 157

starting a conversation
steps for 151

starting the Administration

application
steps for 150

validating a new conversation
steps for 156

Advanced Edition for Distributed

Platforms Web server plug-ins 92

alias, associating with a virtual host

name 158

alter ing the polling interval used by the

plug-in to check for new

applications 371, 373

altering the interval between which the

plugin checks for new J2EE

servers 371, 373

API (application programming interface)
Java Message Service (JMS)

overview 45

JavaMail
overview 49

supported specification level 4

APIs
supported by the WebSphere for z/OS

J2EE server 3, 4

application
class loaders

changing search order 344, 345

setting mode 322, 345

in EAR files 120

packaging components 120

application component
using connectors

checklist 77

application mode
for class loaders

default search order 122

search order 127

application programming interfaces

(APIs)
supported by the WebSphere for z/OS

J2EE server 3, 4

appserver.java.extraparm property 371

authentication policies 36

authentication services 36

authorization policies 36

authorization services 36

B
basic authentication 36

batch compiling JSPs 101, 200

C
cache variables 209

caching personalized pages 215

caching the output of dynamic servlets

and JSP files 101

checklists
for applications using connectors 77

class loader
defaults

controls 122

search order 122

types 122

delegation 127, 128, 129, 130, 131

modes 124

for J2EE 1.3 compliance 125

search order
application mode 127

compatibility mode 128

J2EE application mode 131

class loader (continued)
search order (continued)

module mode 130

server mode 129

class loaders
changing search order 344, 345

classpaths 120

setting mode 322, 345

visibility mode 120

classpaths
for class loaders 120

CloneID 171

com.ibm.websphere.servlet.cache API

package 104

com.ibm.ws390.wc.includeWebContainers

property 373

com.ibm.ws390.wc.serverCheckInterval

property 373

com.ibm.ws390.wc.webappupdateinterval

property 373

compatibility mode
for class loaders

search order 128

concurrency control management
deployment descriptor extensions 57

optimistic 57

pessimistic 57

configuring
a virtual host 158

DB2 for maintaining session data 163

HTTP Server 371

session tracking 91, 160

Web container 158

configuring trust association 202

connection
clean-up 73

monitoring 73

pooling 72

reusing 72

sharing 72

connection management
overview 71

policies 71

connector
checklist for using 77

CICSEXCI (beta) 64

coding lookups 68

deciding which to use for your

application 66

design guidelines for applications 68

determining user ID for resource

authentication 73

processing models for

applications 72

transacation processing 70

using Type 4 JDBC
steps for 257

WebSphere for z/OS-supported
CICS Transaction Gateway ECI

connector 64

IMS Connector for Java 64

© Copyright IBM Corp. 2000, 2003 407

connector (continued)
WebSphere for z/OS-supported

(continued)
IMS JDBC Connector 64

IMSAPPC (beta) 64

Container Managed Persistence (CMP)

Connection and Prepared Statement

Pooling
Properties descriptions 342

conversation
committing through the

Administration application
steps for 157

starting through the Administration

application
steps for 151

validating through the Administration

application
steps for 156

cookies
not using 91

using for session tracking 91, 160

custom ID and MetaData generators 104

custom ID generator 104, 215

custom user registry 96, 193

custom user registry interface 96

CustomRegistry interface 96

D
Daemon

IP name 324

port 324

server instance name 326

server name 325

DB2
environment variable 307, 337

DB2 database, storing session data in 87

DB2 table, setting up 163

DB2, using to store session data 163

delegation
setting for class loaders

application mode 127

compatibility mode 128

J2EE application mode 131

module mode 130

server mode 129

deploying an Enterprise application
SOAP services 250

deployment descriptor
IBM extensions 53

Activate 54

Bean pool size 55

concurrency control 57

Isolation level 56

Load 54

ReadOnly 56, 58

deployment descriptors for SOAP

Services 252

deployment descriptors for Web

Services 252

digest authentication 36

Distributed Computing Environment

(DCE)
setting up a client 320

DNS aliases 158

dynacache.dtd 204

dynacache.xml file 204

dynamic caching 101, 204

dynamic fragment caching 101, 204

E
EAR file

packaging applications 120

EJB Deployment Descriptor 252

enabling a custom user registry 193

enabling SOAP services 250

encodeRedirectURL() method 91

encodeURL method 91

Enterprise application, deploying as a

SOAP-accessible Web Service 250

Enterprise archive file
see EAR file 120

Enterprise bean
supported API levels 3, 4

supported J2EE technologies 3, 4

environment variables
for clients on z/OS or OS/390

reference 299

run-time environment variables
DB2 307, 337

reference 299

error log stream
client 304, 320

environment variable 306, 320, 330

export/import process
for moving server applications into

production systems 279

exposing Web applications to HTTP

clients 371

external caching 102

F
Form-Based authentication 36, 39

G
getSession() method 160

guidelines
packaging application

components 131

setting classloader mode 131

H
HFS directories 299

host properties 158

host.alias property 158

host.contextroots property 158

host.mimetypefile property 158

HTTP Basic Authentication 36

HTTP basic authentication, using with

SOAP 255

HTTP clients, exposing Web applications

to 371

HTTP Server ServerInit directive 371

HTTP Server ServerTerm directive 371

HTTP Server Service directive 371

HTTP Server, configuring 371

HTTP Server’s httpd.envvars file, setting

values in 371

HTTP Transport Handler 4, 80, 81, 87

setting up 83

storing session in-memory 87

httpd.envvars file, setting values in 371

HTTPS Transport Handler 80

HttpSession object 160

I
IBM deployment descriptor extension

Access intent
using with optimistic concurrency

control 61

using with pessimistic concurrency

control 58

Activate 54

Bean pool size 55

concurrency control 57

Isolation level 56

using with optimistic concurrency

control 61

using with pessimistic concurrency

control 58

Load 54

overview 53

ReadOnly 56, 58

ID generators 104

Implementing the CustomRegistry

interface 199

in-memory session data 87, 89, 169

installing a Web server plug-in on a

Microsoft Internet Information

Server 183

Interface Repository Server
server instance name 327

server name 327

start procedure 327

J
J2EE application

installing in a J2EE server
steps for 154

J2EE application client
running on Windows NT or Windows

2000
steps for 218

J2EE application components
migrating xi

J2EE application mode
for class loaders

search order 131

J2EE application programming interfaces

(APIs)
supported by the WebSphere for z/OS

J2EE server 3, 4

J2EE resource
adding through the Administration

application
steps for 153

JMS connection factories
overview 45

steps for configuring 237

408 WebSphere for z/OS: Assembling J2EE Applications

J2EE resource (continued)
JMS destinations

overview 45

steps for configuring 237

mail sessions
overview 49

steps for configuring 241

J2EE server
adding a Web container 158

adding SOAP services to 250

adding through the Administration

application
steps for 151

configuration for JavaMail 49

configuration for JMS 45

configuring a virtual host for 158

configuring JMS connection factories
steps for 237

configuring JMS destinations
steps for 237

configuring mail sessions
steps for 241

supported J2EE APIs 3, 4

supported J2EE technologies 3, 4

J2EE server instance
adding through the Administration

application
steps for 153

J2EE server instances, maintaining session

data in environment with multiple 169

J2EE technologies
supported by the WebSphere for z/OS

J2EE server 3, 4

Java applications
logging messages and trace data 284

Java client
supported API levels 3, 4

supported J2EE technologies 3, 4

types supported by the WebSphere for

z/OS J2EE server 4

Java Message Service (JMS)
API

steps for assembling applications

that use 237

configuration in WebSphere for z/OS
overview 45

connection factories
steps for configuring 237

destinations
steps for configuring 237

preparing J2EE applications to use
steps for 237

Java thin application client
running on Windows NT or Windows

2000
steps for 218

java.util.Dictionary object 160

JavaMail
API

coding JNDI look-ups 241

coding the setDebug method 241

configuration in WebSphere for z/OS
overview 49

mail sessions
steps for configuring 241

preparing J2EE applications to use
steps for 241

JavaMail (continued)
supported specification level 4

javax.servlet.http.HttpServletRequest

object 160

javax.servlet.http.HttpSessionBinding

Listener object 160

JMS
API

steps for assembling applications

that use 237

connection factories
steps for configuring 237

preparing J2EE applications to use
steps for 237

JspBatchCompiler.sh shell script 200

JSPs, batch compiling 101, 200

JVM properties for the Local Redirector

Plug-in 371, 373

JVM property
for class loaders

changing mode 124, 125

L
Lightweight Directory Access Protocol

(LDAP)
environment variables 306, 330

limiting the number of J2EE servers with

which the plugin will

communicate 371, 373

login-config element 36

M
maintaining session data in a DB2

database 87

maintaining session data in environment

with multiple J2EE server instance 169

messages
logging for Java applications 284

MetaData generator 104

MetaData generators 104

Microsoft Internet Information Server,

installing a Web server plug-in on 183

migrating J2EE applications xi

mode
for class loaders 124, 125

module mode
for class loaders

search order 130

monitoring dynamic fragment

caching 103, 208

MQSeries
configuration for JMS 45

N
Naming Server

root naming context 306, 330

server instance name 332

server name 331

start procedure 332

O
optimistic concurrency control

checklist for assembly 61

overview 57

when to use 58

P
persistent sessions 88, 163

personalized pages, caching 215

pessimistic concurrency control
checklist for assembly 58

overview 57

when to use 58

plug-in was.conf file template 376

plug-inKeys.kdb file 171

plug-ins for Web servers, properties

of 183

plugin-cfg.xml file 171

production and test, overview 105

properties of WebSphere plug-ins for Web

servers 183

R
Resolve Port 335

resource authentication
for connectors 73

root naming context 306, 330

run-time environment
environment variables 299

S
search order

default
for class loaders 122

setting for class loaders
application mode 127

compatibility mode 128

J2EE application mode 131

module mode 130

server mode 129

Secure Sockets Layer (SSL)
environment variables 307, 334

securing SOAP services 255

security
environment variables 307, 334

for individual sessions 90

Lightweight Directory Access Protocol

(LDAP) 330

recycling J2EE servers 334

remote DCE password 334

remote DCE principal 334

remote password 334

remote user ID 334

setting up a client 320

Security Server (RACF)
remote password 307, 334

remote user ID 307, 334

selecting a Web container security

collaborator 39

server application
moving to a production system

export/import process 279

Index 409

server application (continued)
using IBM Distributed Debugger and

Object Level Trace 281

server configuration
activating through the Administration

application
steps for 157

server mode
for class loaders

search order 129

ServerInit directive 371

ServerTerm directive 371

Service directive 371

servletcache.xml file 204, 212

ServletContextpath, setting prefix

associated with 158

session affinity 87

session cookie name 335

session data
collecting 87, 160

description of 87, 160

session objects 87, 160

session properties 91, 160, 163

session security 90

session tracking, configuring 160

session.cookies.comment property 91

session.cookies.domain property 91

session.cookies.enable property 91, 160

session.cookies.maxage property 91

session.cookies.name property 91

session.cookies.path property 91

session.cookies.secure property 91

session.dbenable property 163

session.enable property 160

session.invalidationtime property 160

session.protocolswitchrewriting.enable

property 91

session.tableoverflowenable

property 163

session.tablesize property 163

session.urlrewriting.enable property 91

sessions
locking 160

Simple Object Access Protocol services
deploying 250

description of 105, 249

single sign-on capability 39

SOAP Installation Verification

Program 399

SOAP IVP 399

SOAP services
deploying 250

description of 105, 249

SOAP services, securing 255

SoapEarEnabler tool, using 250

SQLID for managed datasources
Overview 34

Qualified and unqualified table

references 35

Rules for BMP 35

Rules for CMP 35

WSAD schema mapping editor 35

SSL Connections 256

storing session data in a DB2

database 87

storing session data in-memory 87, 89,

169

sysplex system
environment variables 300

system logger 304, 306, 320, 330

System Management Scripting API
DEFAULT_CLIENT_XML_

PATH 324

System Management Server
IP name 335

port 335

server instance name 335

server name 335

start procedure 336

T
TAI support 95

tasks
<gerund phrase>

steps for 158, 231, 233, 368

determining user ID for authenticating

connections 73

packaging application components
roadmap 120

setting trace options for classloader

operation
steps for 133

SQLID for managed datasources
overview 34

TCP/IP
client resolve IP name 304

resolve IP name 335

resolve port 335

server IP address 336

Template for the WebSphere for z/OS

plug-in was.conf file 376

test and production, overview 105

trace data
logging for Java applications 284

trust association, configuring 202

trust interceptor support 95

Type 4 JDBC connectors
using with WebSphere for z/OS 257

U
UDDI support 105

URL rewriting 91

user authenitcation, using a third party

product for 95

user authentication 90

using a third party product for user

authentication 95

V
V3.5 run-time environment 4

virtual host
adding to a J2EE server 158

configuring 158

visibility mode
class loaders 120

Seeclass loaders 322, 345

W
was.conf file template 376

Web application
supported API levels 3, 4

supported J2EE technologies 3, 4

Web component
supported API levels 3, 4

supported J2EE technologies 3, 4

Web container
adding SOAP services to 250

adding to a J2EE server 158

configuring 158

creating 158

customizing 158

Web container security collaborator level,

selecting 39

Web security
configuring 247

description of 36

Web server plug-ins 92, 171

Web server’s httpd.envvars file, setting

values in 371

Web services
deploying 250

description of 105, 249

Web Services deployment

descriptors 252

webcontainer.conf file 158, 160, 351

properties contained in 91, 158, 160

WebSphere for z/OS V3.5 run-time

environment 4

WebSphere HTTP Plug-in for z/OS 92,

171

WebSphere plug-ins for Web servers 92,

171

WebSphere plug-ins for Web servers,

properties of 183

WebSphere Studio Application Developer

Integration Edition
running applications developed

in 76

WebSphere V4.0.1 new function
custom user registry 96

Z
z/OS tasks

marking as completed
steps for 157

410 WebSphere for z/OS: Assembling J2EE Applications

����

Program Number: 5655-F31

Printed in the United States of America

SA22-7836-06

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Where to find related information, tools, and supplements
	How to send your comments

	Summary of changes
	Part 1. Introducing the WebSphere for z/OS J2EE server
	Chapter 1. Overview of the WebSphere for z/OS J2EE server
	Chapter 2. Overview of application development and tools
	Chapter 3. Overview of J2EE server definition and activation
	Chapter 4. A closer look at the J2EE server
	Security
	Authentication services for J2EE clients and servers
	Authorization controls for J2EE clients and servers
	Authorization controls for J2EE application components
	Security roles and method permissions
	RunAs identities
	Summary of requirements for using security roles and identities

	Overview of SQLID for managed datasources
	Qualified and unqualified table references
	Application Developer Integration Edition schema mapping editor

	Web Security
	Authenticating Web Clients
	Single sign-On
	Selecting a Web container security collaborator level

	Naming
	Application programming interfaces
	Java Naming and Directory Interface™ (JNDI)
	Java™ Message Service
	Selecting the type of ConnectionFactory to use for JMS
	Linking JMS resource references to a WebSphere for z/OS configuration

	JavaMail™
	IBM Extensions
	Altering commit-time options
	Setting the size of a bean pool
	Optimizing end-of-transaction processing
	Isolating transactions that access persistent data
	Controlling concurrent access to persistent data

	Connectors
	Deciding which connector to use
	Datasource lookup with backwards compatibility with Version 3.5
	Guidelines for accessing legacy programs
	Coding connector lookups
	Connector transaction processing
	Exploiting connection management support
	Connection management policies
	Connection processing models
	Connection sharing
	Connection pooling and reuse
	Connection monitoring and clean-up

	Determining the user ID for resource authentication
	Running applications developed in WebSphere Studio Application Developer Integration Edition
	Checklist for application components that use connectors

	The WebSphere for z/OS environment for Web applications
	Using the HTTP Transport Handler configuration
	Setting up the HTTP/HTTPS Transport Handler
	Resolving requests to a specific Web application
	HTTP session support
	Using Persistent sessions
	Maintaining session data In-memory
	Session security
	Using cookies for session tracking
	Using URL rewriting instead of cookies

	WebSphere plug-ins for Web servers support
	Trust association interceptor support
	Using a custom user registry with WebSphere for z/OS
	Methods used to define user registries
	Defining J2EE Permissions for J2EE servers that are configured for a non-SAF based user registry
	Implications of accessing z/OS Resource Managers
	Using the CustomRegistry interface

	Batch compiling JSPs
	Dynamic fragment caching
	External caching
	Monitoring dynamic fragment caching
	Custom ID and MetaData generators

	Web services
	Considerations for test and production environments

	Part 2. Creating, assembling and deploying J2EE server applications
	Chapter 5. Setting up the application development environment
	Steps for setting up your workstation
	Steps for setting up z/OS or OS/390

	Chapter 6. Creating new application components to be installed in a J2EE server
	Creating Enterprise beans
	Checklist for developing Enterprise beans
	Developing Enterprise beans

	Creating Web applications
	Developing Web components

	Preparing applications for assembly and installation
	Overview of WebSphere for z/OS classloader operation
	Setting alternative classloader modes
	Changing the default search order for classes

	Guidelines for setting classloader mode and application packaging
	Steps for setting trace options for classloader operation

	Chapter 7. Assembling a J2EE application
	Steps for installing the Application Assembly tool
	Steps for assembling a new J2EE application
	Direct Deployment Tool/390fy

	Chapter 8. Creating a J2EE server run-time environment
	Steps for completing manual z/OS or OS/390 tasks
	Steps for creating JCL procedures for the control and server regions
	Steps for setting properties for the JVM
	Steps for enabling J2EE server support for Web applications (optional)
	Defining the server configuration
	Steps for starting the Administration application
	Steps for starting a conversation
	Steps for adding the J2SERV server
	Steps for adding the J2SERV1 server instance
	Steps for adding a J2EE resource
	Steps for adding the J2EE resource instance
	Steps for installing a J2EE application
	Steps for validating the new conversation model
	Steps for committing the conversation
	Steps for marking z/OS or OS/390 tasks as completed
	Steps for activating the server configuration

	Steps for configuring the Web container
	Steps for configuring HTTP Session Support
	Configuring cookies
	Configuring URL rewriting
	Configuring WebSphere for z/OS to maintain session data in a DB2 database instead of in-memory.
	Configuring session data to be stored in-memory
	Configuring session affinity across multiple WebSphere for z/OS J2EE server instances
	Configuring session data sharing within a J2EE application

	Steps for setting up WebSphere plug-ins for Web servers for use with WebSphere for z/OS
	Setting up the WebSphere HTTP Plug-in for z/OS
	Setting up the Web server plug-in for a non-z/OS Web server
	Installing a Web server plug-in on a Microsoft Internet Information Server (IIS)
	Properties of WebSphere plug-ins for Web servers
	Config (exactly one)

	Steps for enabling a custom user registry
	Creating the XML file that defines the location of a Web application's authorization table
	Creating XML files containing authorization tables
	Implementing the CustomRegistry interface
	Steps for pre-compiling JSPs
	Steps for configuring trust association
	Steps for enabling dynamic fragment caching
	Using cache variables
	Summary of the elements in a servletcache.xml file
	Dynamic fragment cache XML examples
	Using HttpSession and request attributes
	Caching personalized pages

	Building a custom ID generator

	Chapter 9. Creating and running WebSphere for z/OS client applications
	Application clients that run on non-z/OS platforms
	Steps for running application clients on Windows NT or Windows 2000

	Java clients running in WebSphere Application Server Standard Edition for z/OS or OS/390
	Native z/OS or OS/390 Java clients

	Part 3. Programming and deployment scenarios for J2EE applications
	Chapter 10. Using JNDI look-ups
	Example: Using the JNDI subcontext to look up a resource
	Steps for preparing the Enterprise bean
	Setting up the J2EE server and DB2 datasource

	Example: Modifying JNDI caching behavior

	Chapter 11. Using security roles and RunAs identities with Enterprise beans
	Steps for assembling beans with security roles and method permissions
	Steps for configuring the run-time environment for security roles and identities

	Chapter 12. Using the Java Message Service API in J2EE application components
	Steps for preparing J2EE applications that use the JMS API
	Steps for configuring JMS resources for the J2EE server

	Chapter 13. Using the JavaMail API in J2EE application components
	Steps for preparing J2EE applications that use the JavaMail API
	Steps for configuring mail sessions for the J2EE server

	Chapter 14. Steps for configuring Web security
	Chapter 15. Creating and deploying Web Services
	Deploying an Enterprise application as a SOAP-accessible Web Service
	Specifying the EJB Deployment Descriptor
	Using the SoapEarEnabler Tool
	Invoking the SoapEarEnabler tool in interactive mode
	Invoking the SoapEarEnabler tool in silent mode

	Creating a SOAP client
	Using XML-SOAP for Remote Procedure Calls
	Securing SOAP Services
	Using HTTP basic authentication
	Using SSL Connections

	Chapter 16. Using Type 4 JDBC Connectors with WebSphere for z/OS
	Steps for adding an XML Definition for a Type 4 JDBC Connector to WebSphere for z/OS
	Steps for creating a Resource Factory for the Type 4 JDBC Connector
	Steps for developing and deploying applications
	Sample Datasource XML Template
	Sample NLS Properties File
	Sample Type 4 JDBC Connector Application
	Sample Resource Factory Class

	Part 4. Working with J2EE applications in the run-time environment
	Chapter 17. Installing applications in a WebSphere for z/OS server
	Steps for using the export/import process through the Administration application
	Installing applications using scripts

	Chapter 18. Collecting data about J2EE application activity
	Collecting J2EE application information through SMF records
	Debugging and tracing distributed applications
	Steps for starting the Debugger and OLT on your workstation
	Steps for preparing the Debugger and OLT for Windows Java clients
	Step for preparing z/OS or OS/390 Java clients
	Steps for preparing J2EE application components in a WebSphere for z/OS J2EE server

	Logging messages and trace data for Java applications
	Background on issuing application messages to the z/OS or OS/390 master console
	Defining messages through inline method calls or a message properties file
	Understanding how the message type affects message destinations

	Background on issuing trace requests for your application
	Determining where to place trace points and what data to request
	Assigning trace types to trace points

	Steps for coding your Java application to issue messages and trace requests
	Steps for preparing the z/OS or OS/390 environment for logging Java application messages and trace requests
	Background on viewing messages and trace data
	Steps for using IPCS in batch mode to format application trace data

	Appendix A. Environment and JVM properties files
	Environment files and environment variables
	How WebSphere for z/OS manages server environment variables and environment files
	How run-time server start procedures point to their environment files
	Environment variables for z/OS or OS/390 clients
	Note on using substitution variables
	Environment variable syntax
	Environment variable use
	Environment variable descriptions

	JVM properties and properties files
	How to manage JVM properties
	JVM property use
	Properties descriptions

	Appendix B. Default webcontainer.conf file
	Appendix C. Using the Alternate Configuration Option
	Setting up the Alternate Configuration
	Steps for setting up an HTTP server
	Steps for configuring the V3.5 run-time provided with WebSphere for z/OS
	Creating a customized JVM properties file for the Local Redirector Plug-in
	Resolving requests to a specific servlet using the HTTP Server

	Template for the WebSphere for z/OS plug-in was.conf file
	default_global.properties

	Appendix D. Running the SOAP Installation Verification Program
	Appendix E. Notices
	Examples in this book
	Programming interface information
	Trademarks

	Glossary
	Index

