
WebSphere® Application Server V4.0.1 for z/OS and OS/390

Assembling CORBA Applications

SA22-7848-02

���

WebSphere® Application Server V4.0.1 for z/OS and OS/390

Assembling CORBA Applications

SA22-7848-02

���

Note
Before using this information and the product it supports, be sure to read the general information under
“Appendix D. Notices” on page 179.

Third Edition (October 2001)

This is a major revision of SA22–7848–01

This edition applies to WebSphere Application Server V4.0.1 for z/OS and OS/390 (5655-F31), and to all subsequent
releases and modifications until otherwise indicated in new editions.

The most current versions of the WebSphere Application Server V4.0.1 for z/OS and OS/390 publications are at this
Web site: http://www.ibm.com/software/webservers/appserv/

© Copyright International Business Machines Corporation 2000,2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this book xi
Who should read this book xi
How this book is organized xiii
Where to find related information, tools, and
supplements xv
How to send your comments xvi

Summary of changes xix

Chapter 1. Getting started with CORBA
applications for WebSphere for z/OS . . . 1
Background on developing CORBA
applications 1

Developing CORBA applications that access
relational databases 2
Developing CORBA applications that access
CICS or IMS resources 5

Background on deploying server applications 8
Background on setting up the development
and deployment environments 11

Setting up the application development
and assembly environment 12
Setting up the server application run-time
environment 13
Setting up client applications 14
Setting up security controls 14

Chapter 2. Developing CORBA applications
for WebSphere for z/OS 15
Background on the OS/390 Component
Broker transactional environment 17

Rules for using the Required container
policy 19
Rules for using the TX MOFW Merged
Hybrid Global container policy 21
Rules for using the TX MOFW Isolated
Hybrid Global container policy 22
Rules for using the TX MOFW Supports
Merged Hybrid Global container policy . . 23

Restrictions for CORBA applications and their
clients 24
Guidelines for getting the best performance
from CORBA applications 25
Background on setting workstation tools to
generate application artifacts for z/OS or
OS/390 25
Background on required component objects
for CORBA applications 26
Guidelines for developing CORBA business
objects in C++ or Java. 26

Guidelines for developing CORBA
applications that use IMS resources . . . 27
Guidelines for developing CORBA
applications that use CICS resources . . . 34

Background on creating a container 37

Chapter 3. Assembling CORBA
applications on z/OS or OS/390 39
Steps for setting up the application
development environment 40
Steps for creating an HFS directory structure
for CORBA application files from the
workstation 46
Steps for transferring files from the
workstation to z/OS or OS/390 47
Background on deciding where to place
executable code for the server application . . 49
Background on allocating data sets for the
CORBA application’s executable code . . . 53
Background on make processing 55
Steps for compiling CORBA application
source files on z/OS or OS/390 64
Steps for adding your CORBA application to
the system search path 67
Steps for binding data objects for your
CORBA application 68

Chapter 4. Deploying CORBA applications
in WebSphere for z/OS MOFW servers . . 71
Background on naming rules for elements of
the run-time environment 72
Background on setting environment variables
for the WebSphere for z/OS MOFW server. . 73

© Copyright IBM Corp. 2000,2001 iii

Coding JCL procedures to start the
WebSphere for z/OS MOFW server 73
Defining the WebSphere for z/OS MOFW
server 74

Background on using the WebSphere for
z/OS Administration application 74
Selecting server properties for a test
system 75
Defining containers for MOFW servers . . 75
Connecting the WebSphere for z/OS
MOFW server to a back-end resource
manager 76
Guidelines for importing CORBA
application DDL 80

Preparing resource managers for processing
your application 81

Steps for preparing DB2 81
Steps for preparing IMS 82

Adding CORBA application interfaces to the
WebSphere for z/OS interface repository . . 84

Chapter 5. Developing, assembling, and
deploying client applications on z/OS or
OS/390 87
Background on supported client run-time
environments 88
Background on designing and coding clients
for your server applications 91
Background on setting up the application
development environment on z/OS or
OS/390 92
Background on deciding where to place
executable code for the client application . . 92
Background on allocating data sets for the
client application’s executable code 92
Steps for setting environment variables for
make processing 92
Steps for compiling client applications on
z/OS or OS/390 93
Background on setting up security for servers
and z/OS or OS/390 clients. 95
Steps for running a client application on
z/OS or OS/390 95

Chapter 6. Working with CORBA
applications in a production system . . . 97
Steps for using the export/import process
through the Administration application . . . 97
Installing applications using scripts 99

Chapter 7. Collecting data about CORBA
application activity 101
Collecting CORBA application information
through SMF records. 101
Debugging and tracing distributed
applications 101

Steps for starting the Debugger and OLT
on your workstation 102
Steps for preparing the Debugger and
OLT for Windows Java clients. 103
Steps for preparing the Debugger and
OLT for Windows C++ clients. 104
Step for preparing z/OS or OS/390 Java
clients. 104
Steps for preparing z/OS or OS/390 C++
clients. 105
Steps for preparing server applications in
a WebSphere for z/OS MOFW server . . 105

Logging messages and trace data for Java
applications 106

Background on issuing application
messages to the z/OS or OS/390 master
console 108
Background on issuing trace requests for
your application 110
Steps for coding your Java application to
issue messages and trace requests . . . 112
Steps for preparing the z/OS or OS/390
environment for logging Java application
messages and trace requests 118
Background on viewing messages and
trace data 121

Appendix A. Environment files. 125
Environment files and environment variables 125

How WebSphere for z/OS manages
server environment variables and
environment files 125
How run-time server start procedures
point to their environment files 126
Environment variables for z/OS or
OS/390 clients 127
Note on using substitution variables . . 127
Environment variable syntax 128
Environment variable use 128
Environment variable descriptions . . . 136

Appendix B. An IMS application as an
WebSphere for z/OS client 159

iv WebSphere for z/OS: Assembling CORBA Applications

|
||
|
||
|
||
|
||
|
||
|
||
|
||

Background on designing the IMS
application 160
Background on security for the IMS
application 163
Steps for developing and compiling the IMS
application 164
Steps for setting up the run-time
environment for the IMS application . . . 166

Appendix C. The Interface Definition
Language (IDL) compiler 171
idlc command syntax 171
idlc command option syntax and values . . 172

Supported emitters 173
Supported output modifiers 175

idlc command results 176

Appendix D. Notices 179
Examples in this book 181
Programming interface information 181
Trademarks 181

Glossary 183

Index 185

Contents v

vi WebSphere for z/OS: Assembling CORBA Applications

Figures

1. Developing component objects for a
CORBA application 2

2. Generating source code for the
component objects 3

3. Packaging the component objects into an
application family 4

4. Developing component objects for a
CORBA application that uses PAA
support 6

5. The PA bean package: the PAO and its
associated classes 7

6. Defining the run-time environment, or
MOFW application server 9

7. Defining the application family to its
MOFW server 10

8. Activating the MOFW application server 11
9. The OS/390 Component Broker MOFW

server transactional environment for
most CORBA applications 20

10. The OS/390 Component Broker MOFW
server transactional environment for the
TX MOFW Merged Hybrid Global
container policy 22

11. The OS/390 Component Broker MOFW
server transactional environment for the
TX MOFW Supports Merged Hybrid
Global container policy 24

12. How IMS receives requests from an
OS/390 Component Broker MOFW
application server 30

13. Sample /etc/profile 44
14. Sample /etc/profile, continued 45
15. Sample /etc/profile, continued 46
16. Clients that OS/390 Component Broker

supports for CORBA applications in
MOFW servers 90

17. An IMS application running as a client
of a WebSphere for z/OS MOFW
server 159

© Copyright IBM Corp. 2000,2001 vii

viii WebSphere for z/OS: Assembling CORBA Applications

Tables

1. Summary of container transaction
policies for MOFW servers, and their
usage rules 18

2. Summary of component objects for
CORBA server applications 26

3. The APPC/MVS conversation type and
appropriate server application
processing 29

4. General environment variables for
MOFW component developers 42

5. Summary of compile and run-time
placement options for a CORBA
application’s executable code 52

6. Requirements for server application data
sets 54

7. Environment variables to set for
compiling CORBA applications on z/OS
or OS/390 57

8. Variables to replace in your JCL to bind
DB2 packages 69

9. Trace setting property types and their
corresponding JRas trace types . . . 119

10. Where to use environment variables 130
11. idlc command options 173
12. Supported emitters to specify on the

command to invoke the IDL compiler . 173
13. Supported output modifiers to specify

on the command to invoke the IDL
compiler 175

© Copyright IBM Corp. 2000,2001 ix

x WebSphere for z/OS: Assembling CORBA Applications

About this book

WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling CORBA
Applications, SA22-7848 describes how to create, assemble, and deploy
Common Object Request Broker Architecture (CORBA) applications to run in
a WebSphere for z/OS server. WebSphere for z/OS includes two types of
application servers: One for Java 2 Enterprise Edition (J2EE) applications, the
other for CORBA applications. The server for CORBA applications is known
as the managed-object framework (MOFW) server. For information about J2EE
applications and the WebSphere for z/OS server in which they are installed,
see WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836.

CORBA applications may consist C++ or Java business objects, which are
reusable pieces of code that represent specific business functions or entities,
such as a checking account, or a customer. WebSphere for z/OS servers
provide an application environment that allows these objects to be highly
managed and integrated with databases and transactional systems on z/OS or
OS/390. Object-oriented client applications, written in a variety of
programming languages, may drive requests against these server applications
from any operating system (for example, Windows NT and AIX) that runs a
WebSphere Application Server for z/OS and OS/390 product.

Before using the instructions in this book, programmers must be familiar with
the WebSphere programming and component models, which are described in
detail in WebSphere Application Server for OS/390 Component Broker:
Programming Guide.

Who should read this book

This book is intended for programmers who want to learn how to enable
object-oriented, distributed applications to access new or existing data or
programs that reside or run on z/OS or OS/390 or its subsystems, such as
DB2, CICS, and IMS. To enable such access, programmers develop, assemble,
and deploy server applications that run in WebSphere for z/OS servers. These
tasks each require different skills:
v To develop the portable components of a server application (that is, the

component objects that are platform independent), programmers need to
know:
– The C++ or Java programming languages

© Copyright IBM Corp. 2000,2001 xi

– The WebSphere for z/OS common programming and component models,
which are described in detail in WebSphere Application Server for
OS/390Component Broker: Programming Guide

– The Object Management Group’s Common Object Request Broker
Architecture (CORBA)

– Application development tools, including Object Builder and other tools
that comprise VisualAge Component Development (formerly known as
the CBToolkit). Instructions for using these tools are described in
WebSphere Application Server for OS/390 Component Broker: Application
Development Tools Guide.

The bulk of information for client and server CORBA application
programmers appears in the common WebSphere for z/OS books; in other
words, those books that contain platform-independent information. This
book, however, contains some information, such as design considerations
and z/OS or OS/390-specific guidelines, that might be helpful if you know
that you will deploy your server application on z/OS or OS/390. This
information appears in “Chapter 2. Developing CORBA applications for
WebSphere for z/OS” on page 15.

v To assemble the portable and platform-specific components of a CORBA
server application, programmers need some expertise with both workstation
and z/OS or OS/390 application development. In other words, they need
some understanding of the process and tools required for developing those
portable components (as described in the preceding list), and some
familiarity with working in the UNIX System Server (USS) environment.
Working in the USS environment includes using the hierarchical file system
(HFS), setting environment variables, and using the make command to
compile code.
General information about working in the USS environment appears in
z/OS UNIX System Services User’s Guide, SA22-7801. Information about the
assembly process for CORBA applications appears in “Chapter 3.
Assembling CORBA applications on z/OS or OS/390” on page 39.

v To deploy a CORBA server application on z/OS or OS/390, one needs
some knowledge of the application to be deployed and knowledge of z/OS
or OS/390 and the subsystems that the server application requires. z/OS or
OS/390 system programmers and database administrators are the most
likely personnel to have the skills required for deploying an application. In
this book, personnel who assemble and deploy server applications are
called application assemblers. In addition to some details about the server
application to be deployed, these people need to know:
– How to work in the USS environment (as described in the preceding

list), and in TSO/E to access z/OS or OS/390 components and data sets.

xii WebSphere for z/OS: Assembling CORBA Applications

– How to set up z/OS or OS/390 subsystem resources that the application
requires. For example, these resources might include databases,
transaction managers, and security products.
The degree of expertise in each area depends on the type of server
application to be deployed. For example, if your CORBA application
accesses DB2 data directly instead of accessing DB2 through an IMS
transaction, you do not need to know anything about IMS.

– How to define and activate a WebSphere for z/OS application server
(that is, the run-time environment for the application to be deployed).

Information about the deployment process appears in “Chapter 4.
Deploying CORBA applications in WebSphere for z/OS MOFW servers” on
page 71.

Although the primary emphasis of this book is on server applications that run
in WebSphere for z/OS servers, several topics also address the client
applications that drive methods against CORBA applications, to obtain the
services of z/OS or OS/390 and its subsystems. WebSphere for z/OS supports
Java, C++, and other client applications that run on a variety of platforms,
including Windows NT and z/OS or OS/390.

Client application programmers require similar workstation skills and
resources as programmers who develop server applications. Again, the degree
of expertise in each area depends on the type of client application and its
run-time environment. One key difference between the skill requirements for
client and server application programmers, however, is that client
programmers do not need to know platform-specific details about the resource
managers or data stores, such as IMS and DB2, that server applications use.
Client applications deal only with the server application interfaces, not the
internal workings of the server deployment platform.

To develop client applications that run on z/OS or OS/390, however,
programmers need to have some z/OS or OS/390 skills, including familiarity
with the USS environment. The bulk of development information for client
application programmers appears in the common WebSphere for z/OS books;
this book addresses the requirements for preparing and running client
applications on z/OS or OS/390.

How this book is organized

This book is organized in the following chapters:
v “Chapter 1. Getting started with CORBA applications for WebSphere for

z/OS” on page 1 is the place to start if you have little or no experience
working with CORBA applications on WebSphere for z/OS. This chapter
walks you through the process of developing and deploying a CORBA

About this book xiii

server application, from writing code through running the server
application in a WebSphere for z/OS server.
This chapter serves as an introduction to the topics that are discussed in
detail in the next three chapters:
– “Chapter 2. Developing CORBA applications for WebSphere for z/OS”

on page 15
– “Chapter 3. Assembling CORBA applications on z/OS or OS/390” on

page 39
– “Chapter 4. Deploying CORBA applications in WebSphere for z/OS

MOFW servers” on page 71
v “Chapter 2. Developing CORBA applications for WebSphere for z/OS” on

page 15 provides the z/OS or OS/390-specific guidelines that you need to
know when you are designing and writing code for server applications that
you plan to deploy on z/OS or OS/390. For a complete picture of the
development process and guidelines, depending on the type of CORBA
application you are creating, you also might need to refer to one or more of
the common books for WebSphere for z/OS application development:
– WebSphere Application Server for OS/390 Component Broker Programming

Guide, SC09–4442, describes the programming model including business
objects, data objects, and information about the managed object
framework, IDL, and C++ CORBA programming.

– WebSphere Application Server for OS/390 Component Broker Programming
Reference, Volumes 1 and 2, SC09–4446 and SC09–4447, contain information
about the application programming interfaces (APIs) available to
Component Broker application developers.

– WebSphere Application Server for OS/390 Component Broker Advanced
Programming Guide, SC09–4443, describes the Component Broker
implementation for the CORBA Object Services and the Component
Broker Object Request Broker (including remote method invocation and
the dynamic invocation interface (DII) procedures), among other topics.

– WebSphere Application Server for OS/390 Component Broker Application
Development Tools Guide, SC09–4448, explains how to create and test
Component Broker applications using the tools provided in the
CBToolkit with a focus on common development scenarios such as
inheritance and team development.

– WebSphere Application Server for OS/390 Component Broker Glossary,
SC09–4450, defines commonly used terms.

v “Chapter 3. Assembling CORBA applications on z/OS or OS/390” on
page 39 lists the steps required to transform application source code
developed on the workstation into executable code that can run in a
WebSphere for z/OS server. These assembly steps include packaging the
component objects that constitute a server application, and compiling code
on z/OS or OS/390.

xiv WebSphere for z/OS: Assembling CORBA Applications

v “Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW
servers” on page 71 provides guidelines and procedures for creating and
activating a WebSphere for z/OS server (that is, the run-time environment)
for your server application.

v “Chapter 5. Developing, assembling, and deploying client applications on
z/OS or OS/390” on page 87 provides guidelines for setting up client
applications that use the CORBA applications you develop for WebSphere
for z/OS servers.

v “Chapter 6. Working with CORBA applications in a production system” on
page 97 provides background information alternative methods of installing
server applications in a production-level, rather than a test-level, WebSphere
for z/OS server.

v “Chapter 7. Collecting data about CORBA application activity” on page 101
covers various methods of collecting information, such as trace data, about
CORBA applications that run in WebSphere for z/OS servers.

Where to find related information, tools, and supplements

This is a list of books that are in the WebSphere for z/OS library. They can be
found at the following Web site:
http://www.ibm.com/software/webservers/appserv/

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Program Directory,
GI10-0680, describes the elements of and the installation instructions for
WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: License Information,
LA22-7855, describes the license information for WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and
Customization, GA22-7834, describes the planning, installation, and
customization tasks and guidelines for WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages and
Diagnosis, GA22-7837, provides diagnosis information and describes
messages and codes associated with WebSphere for z/OS.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Operations and
Administration, SA22-7835, describes system operations and administration
tasks.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836, describes how to develop, assemble, and install
J2EE applications in a WebSphere for z/OS J2EE server.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling CORBA
Applications, SA22-7848, describes how to develop, assemble, and deploy
CORBA applications in a WebSphere for z/OS (MOFW) server.

About this book xv

v WebSphere Application Server V4.0.1 for z/OS and OS/390: System Management
User Interface, SA22-7838, describes the system administration and
operations tasks as provided in the Systems Management User Interface.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: System Management
Scripting API, SA22-7839, describes the functionality of the WebSphere for
z/OS Systems Management Scripting API product.

v WebSphere Application Server V4.0.1 for z/OS and OS/390: Migration,
GA22-7860, describes migration procedures for WebSphere for z/OS.

Here are some other WebSphere Application Server books on that Web site
that you might find particularly helpful:
v WebSphere Application Server for OS/390 V3.5 Standard Edition Planning,

Installing, and Using, GC34-4835, provides information about running the
WebSphere for z/OS plug-in within the HTTP Server address space. You
can use this configuration if you want to continue running
non-J2EE-compliant Web applications in the V4.0.1 WebSphere for z/OS
plug-in within the HTTP Server address space while migrating to the full
WebSphere for z/OS run time.

v Getting Started with WebSphere Application Server, SC09-4581, provides an
overview of the WebSphere Application Server family of products.

v Building Business Solutions with WebSphere, SC09-4432

The integrated WebSphere Application Server Advanced Edition and
WebSphere Application Server Enterprise Edition InfoCenter includes CORBA
(MOFW) information you need to code CORBA (MOFW) components. Go to:
http://www.ibm.com/software/webservers/appserv/infocenter.html

For additional WebSphere for z/OS tools and supplements, go to the
following Web site:
http://www.ibm.com/software/webservers/appserv/zos_os390/download.html

You might also need to refer to information about other z/OS or OS/390
elements and products. All of this information is available through links at the
following Internet locations:
http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/s390/os390/

How to send your comments

Your feedback is important in helping to provide the most accurate and
highest quality information. You can e-mail your comments to:
wasdoc@us.ibm.com

or fax them to 919-254-0206.

xvi WebSphere for z/OS: Assembling CORBA Applications

Be sure to include the document name and number, the WebSphere
Application Server version, and, if applicable, the specific page, table, or
figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to
use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

About this book xvii

xviii WebSphere for z/OS: Assembling CORBA Applications

Summary of changes

Summary of changes
for SA22-7848-02
WebSphere for z/OS V4.0.1
as updated, October 2001

This book contains information previously presented in for SA22-7848-01,
which supports WebSphere for z/OS. The following is a summary of changes
to this information:
v The information about migrating applications has been removed from this

book. Information about migrating applications now appears in WebSphere
Application Server V4.0.1 for z/OS and OS/390: Migration, GA22-7860.

v “Debugging and tracing distributed applications” on page 101 describes
how to use the IBM Distributed Debugger and Object Level Trace, which
provides debugging and tracing capabilities for J2EE application
components and their Java clients, which may reside on platforms other
than z/OS or OS/390.

Summary of changes
for SA22-7848-01
WebSphere for z/OS
as updated, June 2001
service level W400018

This book contains information previously presented in for SA22-7848-00,
which supports WebSphere for z/OS. The following is a summary of changes
to this information:
v The information in “Logging messages and trace data for Java applications”

on page 106 has been changed to reflect the following behavior, introduced
through APAR PQ47682 (PTF UQ53715, service level W400010):
All messages that your application issues will appear in the CTRACE data
set for WebSphere for z/OS. Some messages also will appear on the master
console or in the error log, depending on the message type:
– TYPE_INFORMATION (or TYPE_INFO) will appear on the master console.
– TYPE_ERROR (or TYPE_ERR) will appear in the error log.

Note that comments in the sample code in section “Steps for coding your
Java application to issue messages and trace requests” on page 112 also
have changed to reflect the changed destinations for messages.

© Copyright IBM Corp. 2000,2001 xix

|
|
|

|
|
|

|
|
|
|
|

v New environment variables have been added to “Appendix A. Environment
files” on page 125.

Technical changes or additions to the text and illustrations are indicated by a
vertical line to the left of the change.

xx WebSphere for z/OS: Assembling CORBA Applications

Chapter 1. Getting started with CORBA applications for
WebSphere for z/OS

This chapter contains an overview of the processes for developing and
deploying CORBA applications on WebSphere for z/OS. This overview walks
you through the programming and deployment tools you will use for CORBA
applications.

The following table shows the tasks and associated background information
or procedures discussed in this chapter:

Task: Associated background information or
procedure (See ...)

Learning how to develop CORBA
applications for z/OS or OS/390

“Background on developing CORBA
applications”

Learning how to deploy CORBA
applications in a WebSphere for z/OS
server

“Background on deploying server
applications” on page 8

Setting up the application development
and deployment environments

“Background on setting up the
development and deployment
environments” on page 11

Background on developing CORBA applications

The first step in the development process is to create the component objects
that constitute the CORBA application. The types of component objects that a
CORBA application requires may vary depending on a number of factors. For
example, the objects you need to access CICS or IMS resources are different
from the objects you need to access DB2 resources. Because of this variety in
component objects, the development process also varies somewhat, as figures
in the following topics illustrate.

The deployment process, however, is the same regardless of the type of
CORBA application. Depending on the CORBA applications you want to
develop, review one or more of the development topics, along with
“Background on deploying server applications” on page 8:
v “Developing CORBA applications that access relational databases” on

page 2
v “Developing CORBA applications that access CICS or IMS resources” on

page 5

© Copyright IBM Corp. 2000,2001 1

If you have a basic understanding of the WebSphere for z/OS client
programming and component models, you already know about these
component objects: the business object, managed object, data object, and so
on. If you are unfamiliar with these terms, see the Component Broker
Programming Guide for an overview and detailed object descriptions.

Developing CORBA applications that access relational databases
To develop applications that access relational databases, such as DB2, you first
use Object Builder to define the components illustrated in Figure 1.

From those component object definitions, you instruct Object Builder to
generate source code and define the dynamic load libraries (DLLs) that are
necessary for client applications that use the CORBA server application, and
for the WebSphere for z/OS server in which the CORBA application will run.
Figure 2 on page 3 illustrates those steps in the process. At this point, Object
Builder also generates make files that you use later, on z/OS or OS/390, to
generate executable code.

Figure 1. Developing component objects for a CORBA application

2 WebSphere for z/OS: Assembling CORBA Applications

After generating source code, client and server DLLs, and make files, you
need only one more artifact from Object Builder: the metadata that a
WebSphere for z/OS server needs to understand the structure and identity of

Figure 2. Generating source code for the component objects

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 3

the CORBA application, its home and container. Object Builder generates this
metadata in data definition language (DDL) when you complete the steps for
packaging the CORBA application, as illustrated in Figure 3.

At this point, you transfer the artifacts from the development process to a
z/OS or OS/390 system on which WebSphere for z/OS is installed. On that

Figure 3. Packaging the component objects into an application family

4 WebSphere for z/OS: Assembling CORBA Applications

system, you can run the make files to generate executable code. The
instructions in this book provide the details you need to complete the transfer
and code generation. Once you have generated the code, you are ready to
deploy your CORBA application in a WebSphere for z/OS application server,
as illustrated in “Background on deploying server applications” on page 8.

Developing CORBA applications that access CICS or IMS resources
If you are developing a CORBA application that uses CICS or IMS, the
beginning of the development process is a bit different than that shown in
“Developing CORBA applications that access relational databases” on page 2.
The CICS and IMS CORBA applications use the procedural application
adapter (PAA) support that WebSphere for z/OS provides. For such server
applications, you first must create a procedural adapter object (PAO) using
VisualAge for Java. Through VisualAge for Java, you package this object and
its associated classes into a PA bean. You then import the PA bean into Object
Builder, which converts the PAO and its classes into two component objects:
the persistent object and its schema. Figure 4 on page 6 illustrates this process:

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 5

Figure 5 on page 7 gives you a closer look at the PAO and its beans, or classes,
and their function:

Create a

Export the “PA bean”
(the package containing the PAO
and its associated classes)

Import the PA bean

Develop the server application

procedural adapter object (PAO)

Object Builder

Component Broker for
Windows NT

VisualAge for Java

PAO
persistent

object
business

object

data
object

key
copy

helper

PAO

PA
bean

PAO
schemamanaged

object

Figure 4. Developing component objects for a CORBA application that uses PAA support

6 WebSphere for z/OS: Assembling CORBA Applications

The remainder of the development process is the same as illustrated in
Figure 2 on page 3 and Figure 3 on page 4.

After generating source code and packaging the application family, you
transfer the artifacts from the development process to a z/OS or OS/390
system on which WebSphere for z/OS is installed. On that system, you can
run the make files to generate executable code. The instructions in this book
provide the details you need to complete the transfer and code generation.
Once you have generated the code, you are ready to deploy your CORBA
application in a WebSphere for z/OS application server, as illustrated in
“Background on deploying server applications” on page 8.

VisualAge for Java

PAO

Record
classes

key

PA
bean

Represents the essential state
of a business object

Map PAO essential state to
input/output data fields in
record classes

Determines the format that
the mapper classes use

Define the structure and content
of the input/output data that a
CICS or IMS program expects

Wrap a single interaction with
a back-end system like CICS or IMS

Wrap a sequence of commands

Mapper
classes

Command
classes

Navigator
classes

Figure 5. The PA bean package: the PAO and its associated classes

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 7

Background on deploying server applications

Once you have an executable CORBA application, you need to set up its
run-time environment. Depending on the sample, you might have additional
tasks, such as DB2 tables to set up, specific client applications to set up, and
other tasks that are unique to one type of CORBA application. In such cases,
the instructions in this book outline those additional tasks.

In all cases, however, you will use the WebSphere for z/OS Administration
application, which runs on Windows NT, to define an application server.
When you define an application server, you create a model that consists of the
elements illustrated in Figure 6 on page 9.

Note: WebSphere for z/OS includes two types of application servers: One for
Java 2 Enterprise Edition (J2EE) applications, the other for CORBA
applications. The server for CORBA applications is known as the
managed-object framework (MOFW) server. When you use the
WebSphere for z/OS Administration application to define servers for
your CORBA applications, you will notice that the Administration
application uses two labels for servers: J2EE server and Server (for the
MOFW server type). Make sure you use Server for your CORBA
applications.

The steps to define a server include:
1. Starting a new conversation
2. Adding a MOFW application server
3. Adding a MOFW server instance
4. Adding a container
5. Adding a logical resource mapping (LRM), instance, and connection
6. Importing a CORBA server application

8 WebSphere for z/OS: Assembling CORBA Applications

The server model you define includes environment variables that control the
attributes of the server, or run-time environment for your application. The
instructions in this book contain information about what environment
variables to set for each type of CORBA application. When you start creating
WebSphere for z/OS servers for your own applications, see “Background on
setting environment variables for the WebSphere for z/OS MOFW server” on
page 73 for more details.

Also as part of this server definition, you import the DDL (the metadata) that
defines the structure of the CORBA application. Figure 7 on page 10 illustrates
the result of the server definition and DDL import process: a model of the
application server, the container, home, and the CORBA application.

Figure 6. Defining the run-time environment, or MOFW application server

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 9

Once you have a model of the run-time environment for your CORBA
application, you start the last phase of this process: converting the model into
an active run-time environment on z/OS or OS/390, as illustrated in Figure 8
on page 11.

First, you use the WebSphere for z/OS administration application to commit
the server model, which is analogous to permanently saving the definition.
You cannot make any changes to the model after committing it. Then, on
z/OS or OS/390, you must complete some manual tasks such as security
definitions. The instructions in this book provide you with advice to help you
with these tasks. If you are unfamiliar with these aspects of z/OS or OS/390
systems, you might need the help of a system programmer or security
administrator as well.

Finally, through the WebSphere for z/OS Administration application, you can
activate the server.

Figure 7. Defining the application family to its MOFW server

10 WebSphere for z/OS: Assembling CORBA Applications

Once the server is activated, you may run client applications that use the
CORBA application you have just developed. Depending on the type of client
application, you might have to complete a few set-up tasks for the client
application. The instructions in this book provide you with models or advice
to help you with these tasks.

Background on setting up the development and deployment environments

Depending on the roles and responsibilities at your site, your system
programmer might have already set up both the application development and
deployment environments for you. In this case, you might only have to check
that everything is set up correctly. Otherwise, you might have to do some
installation work yourself. In either case, this section reviews the minimum
requirements and indicates where to find more detailed information, if you
need it. You might need the help of your system programmer, security
administrator, or database administrator to complete some of these set-up
tasks.

Figure 8. Activating the MOFW application server

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 11

The instructions in this book for developing the CORBA applications assume
that you are working on a Windows NT workstation with WebSphere for
Windows NT and the VisualAge Component Development tools installed. You
may, however, develop applications in other workstation environments that
WebSphere for z/OS supports. To deploy CORBA applications in a WebSphere
for z/OS application server, you will also need to work in the z/OS or
OS/390 UNIX environment. For more information about the application
development environment, read “Setting up the application development and
assembly environment”.

For simplicity, the instructions in this book also assume that you will deploy
and run CORBA applications and their client programs on the same z/OS or
OS/390 system on which you perform application development tasks. (In
other words, you compile client and server application code on the same
system in which the WebSphere for z/OS application server will run.) When
you develop and deploy your own server applications, this client-server
configuration might be too simplistic for your needs. When you use more
complex configurations, you have to make sure that both the WebSphere for
z/OS application server that manages the sample application, and all of the
sample application’s clients, have access to the sample application code that
they need.

To deploy a server application in a WebSphere for z/OS application server,
you use the WebSphere for z/OS Administration application, a program that
runs on Windows NT, to complete most of the setup required for that
application server (or run-time environment). Although the instructions for
deploying the sample applications list all required tasks, they do not prescribe
how to perform some tasks, such as setting up security, because these tasks
vary for each customer installation. For more information about these tasks,
read “Setting up the server application run-time environment” on page 13.

Setting up the application development and assembly environment
When system programmers at your site install WebSphere for z/OS, they also
have the option of setting up the application development environment. The
instructions they receive in WebSphere Application Server V4.0.1 for z/OS and
OS/390: Installation and Customization, GA22-7834 are listed in “Steps for
setting up the application development environment” on page 40, so you may
verify or install the correct environment yourself.

To create CORBA applications, you must use the VisualAge Component
Development tools that are available with WebSphere for Windows NT 3.5. If
you find that you must install some software products, check the information
about software requirements in WebSphere Application Server V4.0.1 for z/OS
and OS/390: Installation and Customization, GA22-7834, to ensure you install the
correct product versions.

12 WebSphere for z/OS: Assembling CORBA Applications

To create CORBA applications, you might have to perform the following tasks:

Task: Associated background information or
procedure (See ...)

Setting up the workstation environment to
generate application artifacts for the z/OS
or OS/390 platform.

“Setting workstation tools to generate
application artifacts for z/OS or OS/390”

Changing some environment variables for
compiling source code on z/OS or
OS/390.

“Changing make environment variables to
compile source files on z/OS or OS/390”

Setting workstation tools to generate application artifacts for z/OS or
OS/390
Depending on the CORBA application you are developing, you will use one
or more of the following tools to develop component objects and generate
source files for them. For components and code to be deployed on z/OS or
OS/390, make sure the tools are set properly, as noted:

VisualAge for Java
Make sure that you:
v Select Window → Options. Select Visual Composition and clear Inherit

BeanInfo of bean superclass.
v Add the appropriate features for the bean you are creating. Individual

sample instructions list the correct features to add.

Object Builder
When you begin a new model, select Platform and set:
v View to 390
v Generate to 390
v Constrain to 390

Changing make environment variables to compile source files on z/OS or
OS/390
Environment variables for the make process are set in the CB390make.env file
that is shipped with the WebSphere for z/OS product. As part of the
installation process, your system programmer may have tailored this file for
use at your site.

Environment variable values that you should use depend on guidelines for
your installation or your individual development environment. If you need
further detail about the meaning of specific variables, see the descriptions in
“Background on make processing” on page 55.

Setting up the server application run-time environment
The series of figures in “Background on deploying server applications” on
page 8 illustrate the steps you complete through the WebSphere for z/OS
Administration application to define the server configuration, also known as a

Chapter 1. Getting started with CORBA applications for WebSphere for z/OS 13

conversation. Before you can activate that conversation, however, you also
need to complete some manual tasks to set up the run-time environment for
that server.

Specifically, you need to create JCL procedures to start the control and server
regions. You may copy and modify sample JCL procedures that are shipped
with the WebSphere for z/OS product. The instructions in this book tell you
where to find the JCL samples and what changes are required; see “Coding
JCL procedures to start the WebSphere for z/OS MOFW server” on page 73.

Setting up client applications
When you begin to develop client applications that drive the CORBA
applications installed in a WebSphere for z/OS server, see:
v “Background on designing and coding clients for your server applications”

on page 91 for information on designing and coding client applications,
and

v “Chapter 5. Developing, assembling, and deploying client applications on
z/OS or OS/390” on page 87 for information about preparing client
applications that use server applications on z/OS or OS/390.

Setting up security controls
Make sure you have set up the appropriate security definitions before you
import your server application’s DDL file. Because the input and output files
for the import process are associated with the Systems Management server
region identity, that user ID must have access to the files:
v If you use data sets for the DDL to be imported, the user ID must have

read access to the input data set, and alter access to the output data set.
v If you use HFS files for the DDL, the user ID must have the ability to

search the directories to find the input file, the ability to read the input file,
and the ability to write to the output file.

14 WebSphere for z/OS: Assembling CORBA Applications

Chapter 2. Developing CORBA applications for WebSphere
for z/OS

Because of the Application Server’s common programming model and the
capabilities of its tool set, you can develop reusable and portable business
objects, concentrating on business objectives rather than learning the
intricacies of programming for a specific platform. When you deploy these
objects in WebSphere for z/OS servers, they run in environments that are
highly integrated with databases and transactional systems on z/OS or
OS/390. Because of this integration, some knowledge of z/OS or OS/390 and
its subsystems can help you design efficient applications that are optimized
for the z/OS or OS/390 environment.

When you are ready to develop your own CORBA applications to run in
WebSphere for z/OS servers, read the topics in this chapter, which contain
design considerations, high-level functional descriptions, z/OS or
OS/390-specific guidelines, and restrictions or limitations of the current level
of WebSphere for z/OS. This information can help you develop applications
that get the most out of the unique qualities of service that z/OS or OS/390
provides.

Before you begin: Before you start designing and coding CORBA applications
for WebSphere for z/OS servers:
v Consider reviewing the information in “Chapter 1. Getting started with

CORBA applications for WebSphere for z/OS” on page 1, which walks you
through the entire development, assembly, and deployment processes that
you will perform for your own applications. That chapter also contains
some introductory information to help you learn the tasks you must
complete to develop, assemble, and deploy an application in a WebSphere
for z/OS server.

v Have one or more of the following resources available, depending on the
type of CORBA application that you are developing:
– WebSphere Application Server for OS/390 Component Broker Programming

Guide, SC09–4442, describes the programming model including business
objects, data objects, and information about the managed object
framework, IDL, and C++ CORBA programming.

– WebSphere Application Server for OS/390 Component Broker Programming
Reference, Volumes 1 and 2, SC09–4446 and SC09–4447, contain information
about the application programming interfaces (APIs) available to
Component Broker application developers.

– WebSphere Application Server for OS/390 Component Broker Advanced
Programming Guide, SC09–4443, describes the Component Broker

© Copyright IBM Corp. 2000,2001 15

implementation for the CORBA Object Services and the Component
Broker Object Request Broker (including remote method invocation and
the dynamic invocation interface (DII) procedures), among other topics.

– WebSphere Application Server for OS/390 Component Broker Application
Development Tools Guide, SC09–4448, explains how to create and test
Component Broker applications using the tools provided in the
CBToolkit with a focus on common development scenarios such as
inheritance and team development.

– WebSphere Application Server for OS/390 Component Broker Glossary,
SC09–4450, defines commonly used terms.

The following table shows the subtasks and associated information for
developing your own CORBA applications:

Subtask Associated information (See . . .)

Learning how the z/OS or
OS/390 environment might affect
the design of your application

v “Background on the OS/390 Component Broker
transactional environment” on page 17

v “Restrictions for CORBA applications and their
clients” on page 24

v “Guidelines for getting the best performance
from CORBA applications” on page 25

v “Background on designing and coding clients for
your server applications” on page 91

Creating CORBA applications for
z/OS or OS/390, using
workstation tools

v “Background on setting workstation tools to
generate application artifacts for z/OS or
OS/390” on page 25

v “Background on required component objects for
CORBA applications” on page 26

v “Guidelines for developing CORBA business
objects in C++ or Java” on page 26

– “Guidelines for developing CORBA
applications that use IMS resources” on
page 27

– “Guidelines for developing CORBA
applications that use CICS resources” on
page 34

v “Background on creating a container” on page 37

16 WebSphere for z/OS: Assembling CORBA Applications

Background on the OS/390 Component Broker transactional environment

As part of developing a CORBA application, you define one container for
each business object that is part of the that application. You also may define
container policies, which dictate how a specific container manages its object,
during the development process (through Object Builder). These policy
settings, however, have no effect on containers in a OS/390 Component
Broker server. To define container policies for server applications deployed on
z/OS or OS/390, you use the WebSphere for z/OS Administration
application.

One container policy that you set defines the transactional scope for the object
that the container manages. OS/390 Component Broker currently supports
four transaction policies for CORBA applications, but most applications will
use one: Required. With Required, the container either uses the client
application’s global transaction, or begins a global transaction on behalf of the
client. In a global transaction, the OS/390 Component Broker server, z/OS or
OS/390 resource recovery services (RRS), and other involved resource
managers (such as DB2 and IMS) work together to ensure that the CORBA
application’s processing is coordinated and treated as an atomic operation. In
other words, the application’s updates to distributed resources are either all
made (committed) or not made (rolled back).

Note: This limitation applies only for WebSphere for z/OS MOFW servers.
WebSphere for z/OS J2EE servers, in which only J2EE applications
(Enterprise beans, servlets and JavaServer Pages) may be installed, do
not require container definitions. The J2EE servers use the attributes set
in the deployment descriptors for a given J2EE application or its
individual components. For information about J2EE servers, see
WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836.

The other three policies improve the performance of only specific types of
server applications, because these policies simulate the absence of a global
transactional environment. In other words, the container does not represent
and manage the transaction for an object; instead, the container allows RRS
and other z/OS or OS/390 resource managers to manage transactional
context. To safely use these three alternative policies, you must thoroughly
understand your server application’s processing, and must abide by the rules
for each policy. Otherwise, your application might not behave as you want or
expect it to behave.

Recommendation: Use Required, unless you can guarantee that your server
application abides by the rules for one of the other policies, as summarized in
Table 1 on page 18. These other policies improve performance only for server

Chapter 2. Developing CORBA applications for WebSphere for z/OS 17

applications with specific characteristics and processing. As the WebSphere for
z/OS product matures, performance should improve for all applications.

Table 1 presents a summary of the container transaction policies that
WebSphere for z/OS MOFW server currently supports:

Table 1. Summary of container transaction policies for MOFW servers, and their usage
rules

For this container transaction policy: Your CORBA application must abide by
these rules:

Required (default container policy)

The WebSphere for z/OS MOFW
server either uses the client
application’s global transaction, or
begins a global transaction on behalf of
the client. See Figure 9 on page 20 for
an illustration.

The server, RRS and other involved
resource managers all participate in
managing the global transaction. See
“Rules for using the Required
container policy” on page 19 for more
details about server management of the
transactional context.

Because the server either uses the client
application’s global transaction or begins a
global transaction, the object cannot issue
begin to start a new transaction without first
issuing suspend to suspend the existing global
transaction.

If you want the business object to manage
transactional context, additional rules apply.
See “Rules for using the Required container
policy” on page 19.

TX MOFW Merged Hybrid Global

The WebSphere for z/OS MOFW
server disregards the client transaction,
if any, and allows RRS and other
involved resource managers to manage
the hybrid-global transaction.

All methods executed in the same
container share the same hybrid-global
transaction, but methods against
objects in other containers might
require a different transaction context,
depending on the transaction policy
specified for the other containers. Also,
if methods are driven against objects in
different servers, the server does not
propagate the hybrid-global transaction
to those remote servers. See “Rules for
using the TX MOFW Merged Hybrid
Global container policy” on page 21 for
more details about server management
of the transactional context.

If the business object is designed to first issue
begin to start a transaction, the object cannot
require the container to access a protected
resource, such as a DB2 database, to obtain
initial object state. In this case, the server
automatically starts a hybrid-global
transaction to retrieve initial state from the
persistent data store. Once the server starts a
hybrid-global transaction, the server does not
permit the object to manage the transactional
context.

Additional rules apply; for further details, see
“Rules for using the TX MOFW Merged
Hybrid Global container policy” on page 21.

18 WebSphere for z/OS: Assembling CORBA Applications

Table 1. Summary of container transaction policies for MOFW servers, and their usage
rules (continued)

For this container transaction policy: Your CORBA application must abide by
these rules:

TX MOFW Isolated Hybrid Global

As with the TX MOFW Merged Hybrid
Global policy, the WebSphere for z/OS
MOFW server disregards the client
transaction, if any, and allows RRS and
other involved resource managers to
manage the global transaction. Also, if
methods are driven against objects in
different servers, the server does not
propagate the hybrid-global transaction
to those remote servers.

Unlike the TX MOFW Merged Hybrid
Global policy, however, each object
method executed in the server has its
own hybrid-global transaction. See
“Rules for using the TX MOFW
Isolated Hybrid Global container
policy” on page 22 for more details
about server management of the
transactional context.

If the business object is designed to first issue
begin to start a transaction, the object cannot
require the container to access a protected
resource, such as a DB2 database, to obtain
initial object state. In this case, the server
automatically starts a hybrid-global
transaction to retrieve initial state from the
persistent data store. Once the server starts a
hybrid-global transaction, the server does not
permit the object to manage the transactional
context.

Additional rules apply; for further details, see
“Rules for using the TX MOFW Isolated
Hybrid Global container policy” on page 22.

TX MOFW Supports Merged Hybrid
Global

As with the policies other than
Required, the WebSphere for z/OS
MOFW server allows RRS and other
involved resource managers to manage
the global transaction.

In this case, however, the server honors
the client application’s transactional
context. If the client has a global
transaction, all methods executed in
the same server instance share that
same global transaction; the
transactional environment is the same
as that for the Required policy.

All objects that the server application uses
must be configured to run in the same server
instance.

Additional rules apply; for further details, see
“Rules for using the TX MOFW Supports
Merged Hybrid Global container policy” on
page 23.

Rules for using the Required container policy
With the Required container policy, the WebSphere for z/OS MOFW server
either uses the client application’s global transaction, or begins a global
transaction on behalf of the client, as illustrated in Figure 9 on page 20. The

Chapter 2. Developing CORBA applications for WebSphere for z/OS 19

server propagates this global transaction to remote servers, if the object drives
methods against another object that resides in a different WebSphere for z/OS
server.

If you want the business object to manage transactional context, you must
design the object to first suspend the current transaction. When you do so:
v You cannot invoke any managed-object methods before either coding begin

to start a new transaction, or coding resume to resume an existing
transaction. If you do not start a new or resume an existing transaction,
processing results will be unpredictable.

v You must ensure that the object does not end its processing without first
resuming the transaction that was active when the object began executing.
If you do not end object processing under the first active transaction, the
server region abnormally ends, and the first active transaction is forced to
roll back.

Transactional objects are available for the business object to use for managing
transactional context. For example, the business object may use the
CosTransactions::Control object, which enables an application to represent the
transaction context. For more information about transactional objects, see
Component Broker Advanced Programming Guide.

Figure 9. The OS/390 Component Broker MOFW server transactional environment for most CORBA applications

20 WebSphere for z/OS: Assembling CORBA Applications

Because the Required container policy does not permit transactional nesting,
you cannot design your server application to perform specific actions when
either system or user exceptions occur:
v If a system exception occurs, the OS/390 Component Broker MOFW server

rolls back the transaction.
v If a user exception occurs, the server either:

– Commits the transaction only if you defined this user exception in the
interface definition language (IDL) for your server application; or

– Converts the user exception to a system exception, and rolls back the
transaction.

Rules for using the TX MOFW Merged Hybrid Global container policy
With the TX MOFW Merged Hybrid Global container policy, the WebSphere
for z/OS MOFW server disregards the client transaction, if any, and allows
RRS and other involved resource managers to manage the hybrid-global
transaction, as illustrated in Figure 10 on page 22. Note that the initial
transaction context set for an object is the same for both the TX MOFW
Merged Hybrid Global and TX MOFW Isolated Hybrid Global container
policies.

All methods executed in the same container share the same hybrid-global
transaction, but methods against objects in other containers might require a
different transaction context, depending on the transaction policy specified for
the other containers. If methods are driven against objects in different servers,
the server does not propagate the hybrid-global transaction to those remote
servers.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 21

If the business object is designed to first issue begin to start a transaction, the
object cannot require the container to access a protected resource, such as a
DB2 database, to obtain initial object state. In this case, the server
automatically starts a hybrid-global transaction to retrieve initial state from
the persistent data store. Once the server starts a hybrid-global transaction,
the server does not permit the object to manage the transactional context.

Additionally:
v The server application must be designed to assume that it is running under

a global transaction.
v The server application must not attempt to manage its transactional context.
v All objects that interact must be deployed in the same server.

Rules for using the TX MOFW Isolated Hybrid Global container policy
As with the TX MOFW Merged Hybrid Global policy, the WebSphere for
z/OS MOFW server disregards the client transaction, if any, and allows RRS
and other involved resource managers to manage the global transaction. Also,
if methods are driven against objects in different servers, the server does not
propagate the hybrid-global transaction to those remote servers. See Figure 10

Figure 10. The OS/390 Component Broker MOFW server transactional environment for the TX MOFW Merged Hybrid
Global container policy

22 WebSphere for z/OS: Assembling CORBA Applications

for an illustration of this initial transactional context, which is the same for
both the TX MOFW Merged Hybrid Global and TX MOFW Isolated Hybrid
Global container policies.

Unlike the TX MOFW Merged Hybrid Global policy, however, each object
method executed in the server has its own hybrid-global transaction.

This policy ensures local-remote transparency; in other words, objects behave
the same way regardless of where they are deployed. Using TX MOFW
Isolated Hybrid Global provides performance improvements along with
maximum flexibility for deploying server application objects.

The TX MOFW Isolated Hybrid Global policy, however, does not provide as
much performance improvement as the TX MOFW Merged Hybrid Global
policy provides for applications that involve multiple objects. With TX MOFW
Merged Hybrid Global, the server can use the same hybrid-global transaction
for most objects. In contrast, with the TX MOFW Isolated Hybrid Global
policy, the server has additional overhead because it must suspend the current
hybrid-global transaction and create a new one, for each object method
request.

If the business object is designed to first issue begin to start a transaction, the
object cannot require the container to access a protected resource, such as a
DB2 database, to obtain initial object state. In this case, the server
automatically starts a hybrid-global transaction to retrieve initial state from
the persistent data store. Once the server starts a hybrid-global transaction,
the server does not permit the object to manage the transactional context.

Rules for using the TX MOFW Supports Merged Hybrid Global container
policy

As with the policies other than Required, the WebSphere for z/OS MOFW
server allows RRS and other involved resource managers to manage the
global transaction. In this case, however, the server honors the client
application’s transactional context. If the client has a global transaction, all
methods executed in the same server instance share that same global
transaction. Figure 11 on page 24 illustrates this initial transactional context.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 23

All objects that the server application uses must be configured to run in the
same server instance. Additionally, the server application:
v Assumes that it is running under a global transaction, and
v Does not attempt to manage its transactional context.

Restrictions for CORBA applications and their clients

v Do not use z/OS or OS/390 Language Environment CEESETL callable
service in your server application. This service, which is analogous to the C
language function setlocale(), establishes a global locale operating
environment. If your server application alters the global locale environment
that WebSphere for z/OS sets for its application servers, results will be
unpredictable.

v If you plan to run client applications on z/OS or OS/390, IBM strongly
recommends that you design those clients to use the same code page that
the OS/390 Component Broker MOFW servers use: EBCDIC IBM 1047.
Other EBCDIC code pages might work, but results will be unpredictable.

Notes:

1. This restriction applies only to clients that use applications running in a
MOFW server.

Figure 11. The OS/390 Component Broker MOFW server transactional environment for the TX MOFW Supports
Merged Hybrid Global container policy

24 WebSphere for z/OS: Assembling CORBA Applications

2. Client applications that run on non-z/OS or OS/390 platforms may use
any code page.

Guidelines for getting the best performance from CORBA applications

v Install the server portion of your business applications on the same system
in the network as the data store that the server application uses. Thus, for
business applications requiring z/OS or OS/390 data stores, locate the
server portions on WebSphere for z/OS servers.

v Because of the number of address spaces that may be required for your
business application servers, place load libraries in the link pack area (LPA).
IBM supplies parmlibs to help you do this. For further details, see the
section about placing modules in the system’s search order, inz/OS MVS
Initialization and Tuning Guide, SA22-7591.

Background on setting workstation tools to generate application artifacts for
z/OS or OS/390

Depending on the type of CORBA application you are developing, you will
use one or more of the following workstation tools to develop component
objects and generate source files for them. For components to be deployed in
a WebSphere for z/OS server, make sure the workstation tools are set
properly, as noted:

VisualAge for Java
Make sure that you:
v Select Window → Options. Select Visual Composition and clear Inherit

BeanInfo of bean superclass.
v Add the appropriate features for the bean you are creating. Individual

sample instructions list the correct features to add.

Object Builder
When you begin a new model, select Platform and set:
v View to 390
v Generate to 390
v Constrain to 390

Also, if you plan to use the IBM Distributed Debugger to provide trace
information or debugging support, you need to set a default configuration
option before you generate make files for your server application. To set
this option:
1. Select File → Preferences

2. Select Makefile Generation under the Tasks and Objects folder
3. Click on the radio button for either Trace build or Trace and debug

build

4. Click OK

Chapter 2. Developing CORBA applications for WebSphere for z/OS 25

Background on required component objects for CORBA applications

CORBA server applications consist of a collection of component objects, some
of which are automatically generated for you, based on selections you make
when using VisualAge for Java or Object Builder to develop your application.
The number and type of component objects required depends on the type of
server application you are developing, as you can see from Table 2.

Table 2. Summary of component objects for CORBA server applications

If your server
application:

Then the following component objects are required:

Procedural
adapter object

Business
object

Managed
object

Data
object

Persistent
object

Schema

Does not use
any backing
resource

U U

Uses CICS or
IMS resources

U U U U U U

Uses DB2 U U U U U

Guidelines for developing CORBA business objects in C++ or Java

Because the WebSphere Application Server for z/OS and OS/390 Component
Broker products define a common programming model, most of the
information about designing and coding server applications appears in the
following books:
v Component Broker Programming Guide

v Component Broker Advanced Programming Guide

v Component Broker Programming Reference

v Component Broker Application Development Tools Guide

These manuals define the concepts, coding practices, programming interfaces,
and tools you need to understand to design and code WebSphere for z/OS
business objects in C++ or Java. These manuals also note which concepts or
interfaces do not apply for the z/OS or OS/390 platform

Note that your CORBA server application might also function as an
Application Server client. In other words, the business object you code to run
in a WebSphere for z/OS MOFW server can itself:
v Find or create, use, and delete other business objects, which may reside on

any WebSphere for z/OS platform.
v If written in Java, find or create, use, and delete Enterprise beans running

in WebSphere for z/OS J2EE servers.

26 WebSphere for z/OS: Assembling CORBA Applications

In addition to using the common WebSphere Application Server programming
books, you also need to be familiar with the information in the following
topics, depending on the type of server application you are developing:
v “Guidelines for developing CORBA applications that use IMS resources”
v “Guidelines for developing CORBA applications that use CICS resources”

on page 34

Guidelines for developing CORBA applications that use IMS resources

Any CORBA server applications that you develop will require these
components: the business object and its associated classes, and a procedural
adapter (PA) bean and its associated classes. Developing the PA bean is
perhaps the most challenging part of creating a server application that
accesses IMS resources, because creating the bean classes requires some
knowledge of IMS and of the transaction that runs under IMS.

WebSphere for z/OS provides access to IMS resources through procedural
application adapters: one that uses Open Transaction Manager Access (OTMA)
to communicate with IMS, another that uses the advanced
program-to-program communication component of MVS (APPC/MVS). These
adapters enable a WebSphere for z/OS MOFW application server to
communicate with an IMS subsystem; the PA bean provides the input and
output those adapters use for communication with IMS. Your installation
probably has either installed IMS with OTMA or established APPC
connectivity to IMS. Check with your system programmer to determine which
configuration your installation uses.

The following tables shows the subtasks and associated guidelines for
developing a server application that accesses IMS resources:

Subtask Associated procedure (See . . .)

Understanding how to design your
application for a specific IMS procedural
application adapter

v “Guidelines for designing for an
IMS–OTMA adapter” on page 28

v “Guidelines for designing for an
IMS–APPC adapter” on page 28

Understanding how IMS processes requests “Background on IMS request processing”
on page 29

Chapter 2. Developing CORBA applications for WebSphere for z/OS 27

Subtask Associated procedure (See . . .)

Understanding how to code the PA bean
and its associated classes

v “Background on coding the PAO and
its associated classes using IBM
VisualAge Java with EAB” on page 30

v “Steps for creating a COBOL file that
defines input/output user data” on
page 31

v “Background on coding PA bean
mapper and information classes” on
page 33

v “Background on coding PA bean
command classes” on page 34

Guidelines for designing for an IMS–OTMA adapter
When communicating with a target transaction program in IMS, you may use
only SendReceive requests. OS/390 Component Broker does not support
requests to do Send-only or Receive-only processing with an IMS transaction
program.

Guidelines for designing for an IMS–APPC adapter
For server applications to access IMS resources, your installation defines a
OS/390 Component Broker MOFW server with an IMS-APPC logical resource
mapping (LRM). With this configuration, the server uses APPC/MVS as its
method of communicating with the IMS subsystem. In other words, the server
allocates an APPC/MVS conversation with the IMS subsystem.

When defining an IMS-APPC LRM, your installation selects an APPC
synchronization (sync) level, which determines the type of APPC/MVS
conversation to use for communication; any conversation that the server
allocates is either a protected or unprotected resource. The type of
conversation, protected or unprotected, depends on two factors:
v The type of processing your application does, as outlined in Table 3 on

page 29, and
v The transaction policy for the container (or containers) to which the

IMS-APPC LRM is connected.

Recommendation: For better performance, design your CORBA application to
require protected conversations only when necessary. Perhaps your
application does not fit nicely into one of the two categories in Table 3 on
page 29 because, for example, it both reads data and later reads data again,
manipulates that data, and stores the result. In this case, you could design
your server application to use two objects: one for read-only processing;
another for the read-update-and-store processing. With this design, each object
would have its own container connected to the same IMS-APPC LRM, and

28 WebSphere for z/OS: Assembling CORBA Applications

each container’s transaction policy would dictate whether the server uses a
protected or unprotected conversation.

Table 3. The APPC/MVS conversation type and appropriate server application
processing

This APPC/MVS conversation type: Is best suited for this application
processing:

Protected.

For protected conversations, APPC/MVS,
the OS/390 Component Broker MOFW
server, IMS, and other system components
work together to ensure that an
application’s updates to distributed
resources are coordinated, and treated as
an atomic operation. In other words, the
application’s updates are either all made
(committed) or not made (rolled back).

Application processing for which data
integrity is critical. For example, if your
server application transfers money
between checking and savings accounts,
those transfers ought to be considered a
single operation to ensure the integrity of
the account balances.

Unprotected.

Unprotected conversations have none of
the overhead involved with coordinating
an application’s processing, so application
performance is faster. If conversation
errors or failures occur, however, the
resources an application uses might be in
inconsistent states.

Application processing for which
performance is more important than data
integrity. For example, if a server
application performs read-only requests to
retrieve data, and does not rely on the
value of that data remaining constant, that
application is better suited for this
environment because it has no
dependency on data integrity.

Another design guideline concerns the type of request your server application
sends to an IMS transaction program. When communicating with a target
transaction program in IMS, you may use only send-receive requests. OS/390
Component Broker does not support requests to do send-only or receive-only
processing with an IMS transaction program.

Background on IMS request processing
When it receives a request to run a transaction, IMS builds an input message
for the request, using an 8-byte field to contain the name of the requested
transaction plus one blank. This action causes no problems for the original
customers of IMS: 3270 terminals and emulators. For you, however, this
behavior might misalign user data that you want to pass to the requested IMS
transaction. As you can see from Figure 12 on page 30, problems will occur if
the name of the IMS transaction is anything other than 7 bytes in length:
v If the transaction name is less than 7 bytes, IMS will fill the remaining bytes

of the 8-byte name field with the first bytes of your user data.
v If the transaction name is greater than 7 bytes, IMS places a blank at the

offset where the IMS transaction expects to find the start of user data.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 29

In either case, results will not be what you expect. Fortunately, you can easily
avoid the misalignment that occurs for transaction names that are less than 7
bytes long, by padding your user data with the correct amount of ″fill.″
Instructions for calculating fill are covered in “Steps for creating a COBOL file
that defines input/output user data” on page 31.

Background on coding the PAO and its associated classes using IBM
VisualAge Java with EAB
When you create a CORBA application that uses the IMS or CICS procedural
application adaptors, the first step is to create a procedural adapter (PA) bean

Figure 12. How IMS receives requests from an OS/390 Component Broker MOFW application
server

30 WebSphere for z/OS: Assembling CORBA Applications

using IBM VisualAge Java with EAB. You then import that PA bean into
Object Builder to create the other component objects of your server
application. A PA bean consists of several classes, which are illustrated in
Figure 5 on page 7. As you can see from that illustration:
v The procedural adapter object (PAO) represents the essential state of a

business object (that is, user data to be placed in permanent storage).
v The input or output information classes define the structure and content of

data that the backing IMS or CICS transaction.
v The mapper classes of the PA bean enable the transfer of data between the

PAO and the input or output information classes.

Steps for creating a COBOL file that defines input/output user data: When
you are creating a PA bean for your own server application, you need to look
at the existing IMS transaction’s communication (or data) area to create a
COBOL file that defines the area’s structure and contents. VisualAge for Java
uses this file to correctly generate the code for the input information and
output information classes. These classes are critical elements of the PA
bean— they provide the mechanism for presenting business object essential
state (that is, user data to be placed in permanent storage) in a format that the
IMS transaction can use.

Recommendation: Many IMS transactions use the same data area for both
input and output, so the field names and characteristics are the same for both
input and output. For your PA bean, however, you should define one set of
fields for input, and a separate set of fields— with different names— for
output. If you use the same field names for both input and output, VisualAge
for Java automatically generates unique field names for the second set that
you define. You may allow VisualAge for Java to generate unique names, but
then you must remember those names, and remember to use them in the code
you write for the insert(), retrieve(), update(), and del() methods of the PA
bean.

Before you begin: You need to have access to the source code for the IMS
transaction, specifically the code that defines the communication area that the
transaction uses for input and output.

Perform the following steps to create a COBOL file to import into VisualAge
for Java:
1. Create your own or copy a sample COBOL file into a working directory

on your workstation.

2. If the name of the IMS transaction you want to use is less than 7 bytes
long, calculate the amount of fill required for IMS to correctly align your
user data. To calculate the fill:

Chapter 2. Developing CORBA applications for WebSphere for z/OS 31

v Look in the source code to find the size of the input field used for the
transaction name. (Generally, this field is larger than necessary to fit the
actual transaction name.)

v Use the following algorithm to calculate the amount of fill:
Size_of_tran_name_field - (size_of_tran_name + 1) = size_of_fill

For example, suppose the transaction you want to use is named PCTIA,
and the size of the input field for the transaction name is 8 bytes. In this
case, the calculation is:
8 - (5 + 1) = 2

For this example, you need to define 2 bytes of fill to correctly align the
user data.

3. Edit the COBOL file in your working directory to add COBOL record

definitions for the user data and, if necessary, the required fill. The
following sample illustrates the COBOL record definitions you would need
for the data area of an IMS transaction written in PL/1. Note that fill is
required for the input data, but not for the output data:

For a PL/1 data structure like this: Use the following COBOL record
definitions:

Input data structure:

DCL 1 IN_MESSAGE STATIC,
2 LL BIN FIXED(31),
2 ZZ CHAR(2),
2 TRANID CHAR(8),
2 ITEMID CHAR(6),
2 PRICE CHAR(6);

01 INPUT-MSG.
02 INFILL PICTURE X(2).
02 IN_ITEMID PIC X(6).
02 IN_PRICE PIC X(6).

Output data structure:

DCL 1 OUT_MESSAGE BASED...,
2 LL BIN FIXED(31),
2 ZZ CHAR(2),
2 DATE CHAR(19),
2 ITEMID CHAR(6),
2 PRICE PICTURE'999V.99',
2 ERRMSG CHAR(78),
2 ERRMSG2 CHAR(78);

01 OUTPUT-MSG.
02 OUT_DATE PIC X(19).
02 OUT_ITEMID PIC X(6).
02 OUT_PRICE X(6).
02 OUT_ERRMSG PIC X(78).
02 OUT_ERRMSG2 PIC X(78).

You know you are done when you have created a COBOL record definition
for each user-data field in the transaction’s data area. When you import this

32 WebSphere for z/OS: Assembling CORBA Applications

file, VisualAge for Java will correctly generate the input and output
information classes for your PA bean to use.

Background on coding PA bean mapper and information classes: The
mapper classes need to connect a PAO attribute to the corresponding field in
the input or output information classes. So, when you use VisualAge for Java
to create mapper classes, you are actually defining only the PAO attributes,
and creating a link from each attribute to its corresponding field in the input
and output information classes.

Before you can create the information and mapper classes, you need to look at
the existing IMS or CICS transaction’s communication (or data) area, and
create a COBOL file that defines the area’s structure and contents. VisualAge
for Java uses this file to correctly generate the code for the input information
and output information classes. How many classes you need to create
depends on how the existing IMS or CICS transaction works:

If the IMS or
CICS
transaction
works this way:

Then create the following:

The IMS or CICS
transaction uses
a single
communication
area to handle
both input and
output

v A COBOL file with one record that defines the structure and
content of both input and output

v A single information class that matches the COBOL file record

v A single mapper class that matches the information class

Warning: If the IMS or CICS transaction uses a single
communication area, but you create separate input and output
information classes and you use the same field names for both input
and output, VisualAge for Java automatically generates unique field
names for the second set that you define. You may allow VisualAge
for Java to generate unique names, but then you must remember
those names, and remember to use them in the code you write for
the insert(), retrieve(), update(), and del() methods of the PAO.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 33

If the IMS or
CICS
transaction
works this way:

Then create the following:

The IMS or CICS
transaction uses
separate
communication
areas: one to
handle input;
another to
handle output

v A COBOL file with two records: one that defines the structure
and content of input; another that defines output

v Two information classes: one that matches the COBOL file record
for input; another that matches the record for output

v Two mapper classes: one that matches the input information class;
another that matches the output information class

Recommendation: Whenever you create separate input and output
information classes, make these selections to improve performance:

v Select custom records when you specify the record style for the
output information class

v Deselect the Generate with notification option for the output
information class

Background on coding PA bean command classes: The PA bean command
classes wrap a single interaction with IMS; in other words, these classes
package a request for the OS/390 Component Broker application server to
send to IMS, or to format the result the server receives from IMS. When you
use VisualAge for Java to create the command classes, you specify several key
pieces of information:

The interaction spec
IMSOTMAInteractionSpec or IMSAPPCInteractionSpec

The connector
com.ibm.connector.CB390.IMSOTMA.InteractionSpec or
com.ibm.connector.CB390.IMSAPPC.InteractionSpec

Guidelines for developing CORBA applications that use CICS resources

When you create a CORBA application that uses the IMS or CICS procedural
application adaptors, the first step is to create a procedural adapter (PA) bean
using IBM VisualAge Java with EAB. You then import that PA bean into
Object Builder to create the other component objects of your server
application. A PA bean consists of several classes, which are illustrated in
Figure 5 on page 7. As you can see from that illustration:
v The procedural adapter object (PAO) represents the essential state of a

business object (that is, user data to be placed in permanent storage).
v The input or output information classes define the structure and content of

data that the backing IMS or CICS transaction.

34 WebSphere for z/OS: Assembling CORBA Applications

v The mapper classes of the PA bean enable the transfer of data between the
PAO and the input or output information classes.

Background on coding PA bean mapper and information classes
The mapper classes need to connect a PAO attribute to the corresponding
field in the input or output information classes. So, when you use VisualAge
for Java to create mapper classes, you are actually defining only the PAO
attributes, and creating a link from each attribute to its corresponding field in
the input and output information classes.

Before you can create the information and mapper classes, you need to look at
the existing IMS or CICS transaction’s communication (or data) area, and
create a COBOL file that defines the area’s structure and contents. VisualAge
for Java uses this file to correctly generate the code for the input information
and output information classes. How many classes you need to create
depends on how the existing IMS or CICS transaction works:

If the IMS or
CICS
transaction
works this way:

Then create the following:

The IMS or CICS
transaction uses
a single
communication
area to handle
both input and
output

v A COBOL file with one record that defines the structure and
content of both input and output

v A single information class that matches the COBOL file record

v A single mapper class that matches the information class

Warning: If the IMS or CICS transaction uses a single
communication area, but you create separate input and output
information classes and you use the same field names for both input
and output, VisualAge for Java automatically generates unique field
names for the second set that you define. You may allow VisualAge
for Java to generate unique names, but then you must remember
those names, and remember to use them in the code you write for
the insert(), retrieve(), update(), and del() methods of the PAO.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 35

If the IMS or
CICS
transaction
works this way:

Then create the following:

The IMS or CICS
transaction uses
separate
communication
areas: one to
handle input;
another to
handle output

v A COBOL file with two records: one that defines the structure
and content of input; another that defines output

v Two information classes: one that matches the COBOL file record
for input; another that matches the record for output

v Two mapper classes: one that matches the input information class;
another that matches the output information class

Recommendation: Whenever you create separate input and output
information classes, make these selections to improve performance:

v Select custom records when you specify the record style for the
output information class

v Deselect the Generate with notification option for the output
information class

Background on coding PA bean command classes
The PA bean command class wraps a single interaction with CICS; in other
words, this class packages a request for the WebSphere for z/OS MOFW
application server to send to CICS, or formats the result the server receives
from CICS. When you use VisualAge for Java to create the command class,
you specify several key pieces of information:

The interaction spec
CICSEXCIInteractionSpec

The connector
com.ibm.connector.CB390.CICSEXCI.InteractionSpec

The program name
In the pgmName field, you enter the 8-character name of the program
you want to run in the CICS region. This program name also must be
specified on a predefined PROGRAM resource definition installed in the
CICS region, or defined to a user-written autoinstall program.

The transaction ID
In the CashAcct sample, you must make sure that the transID field is
null, which specifies the default behavior for CICS processing. With this
default behavior, the program you specified in the pgmName field runs
under the CICS-supplied mirror transaction, CSMI. When you are
developing a PA bean for your own server application, however, you
might want the program to run under a different mirror transaction. If
this is the case, see CICS External Interfaces Guide, SC34-5709 for
requirements for specifying the transID.

36 WebSphere for z/OS: Assembling CORBA Applications

Background on creating a container

When you use Object Builder to develop a server application to be deployed
in a WebSphere for z/OS server, you need to associate a container with the
application. Through Object Builder, provide only a container name. To define
container properties, you must use the WebSphere for z/OS Administration
application.

Note: This limitation applies only for WebSphere for z/OS MOFW servers.
WebSphere for z/OS J2EE servers, in which only J2EE applications
(Enterprise beans, servlets and JavaServer Pages) may be installed, do
not require container definitions. The J2EE servers use the attributes set
in the deployment descriptors for a given J2EE application or its
individual components. For information about J2EE servers, see
WebSphere Application Server V4.0.1 for z/OS and OS/390: Assembling J2EE
Applications, SA22-7836.

Guideline: When you use Object Builder to configure an existing application
for the z/OS or OS/390 platform, and that application is already associated
with a default container, always replace that default by defining a new
container. The default containers are designed for use only in WebSphere
Application Server servers on workstation platforms. WebSphere for z/OS
allows you to deploy applications associated with these default containers, but
the resulting run-time environment might not match that on the workstation
platforms.

For further details about using the WebSphere for z/OS Administration
application to define containers for MOFW servers, see “Defining containers
for MOFW servers” on page 75.

Chapter 2. Developing CORBA applications for WebSphere for z/OS 37

38 WebSphere for z/OS: Assembling CORBA Applications

Chapter 3. Assembling CORBA applications on z/OS or
OS/390

To assemble the portable and platform-specific components of a CORBA
server application, programmers compile source files generated on the
workstation into executable code that can run in a WebSphere for z/OS
MOFW server.

To accomplish this work, programmers need some expertise with both
workstation and z/OS or OS/390 application development. Specifically, they
need:
v Some understanding of the process, tools, and output required for

developing CORBA application components on the workstation
v Familiarity with software products for file transfer between the workstation

and z/OS or OS/390
v Familiarity with working in the UNIX System Server (USS) environment,

which includes using the hierarchical file system (HFS), setting environment
variables, and using the make command to compile code, and so on.

The following table shows the subtasks and associated information for
assembling a CORBA application.

Subtask Associated information (See . . .)

Setting up the assembly
environment on z/OS or OS/390

“Steps for setting up the application development
environment” on page 40

Working with CORBA application
files generated on the workstation

v “Steps for creating an HFS directory structure
for CORBA application files from the
workstation” on page 46

v “Steps for transferring files from the workstation
to z/OS or OS/390” on page 47

Preparing to compile CORBA
application files on z/OS or
OS/390

v “Background on deciding where to place
executable code for the server application” on
page 49

v “Background on allocating data sets for the
CORBA application’s executable code” on
page 53

v “Background on make processing” on page 55

Compiling CORBA application
files into executable code

“Steps for compiling CORBA application source
files on z/OS or OS/390” on page 64

© Copyright IBM Corp. 2000,2001 39

Subtask Associated information (See . . .)

Preparing the CORBA application
for use

v “Steps for adding your CORBA application to
the system search path” on page 67

v “Steps for binding data objects for your CORBA
application” on page 68

Steps for setting up the application development environment

When system programmers at your site install WebSphere for z/OS, they also
have the option of setting up the UNIX application development environment
z/OS or OS/390. The instructions they receive in WebSphere Application Server
V4.0.1 for z/OS and OS/390: Installation and Customization, GA22-7834 are listed
here, so you may verify the correct environment yourself. If necessary, check
WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and
Customization, GA22-7834 for the software product versions and other
requirements for both the z/OS or OS/390 UNIX and the workstation
application environments.

Before you begin: You must have your Windows NT and OS/390 UNIX
systems configured.

Follow these steps to set up the application development environment:
1. On Windows NT:

a. For each application developer, install the WebSphere for Windows NT
run-time and development environments. For installation instructions,
see Component Broker Quick Beginnings, G04L-2375.

b. IBM recommends you install an NFS client or equivalent on each
application developer’s workstation. As an alternative, you may use
the SAMBA client from MKS.

c. Install Personal Communications/3270 (or equivalent host emulator
software).

2. On z/OS or OS/390:

a. Assure the Java JDK is configured.
b. Assure that the C++ compiler is enabled.
c. Assure that the Debug Tool data set is catalogued and added to the

link list.
d. Install the NFS server or equivalent. An alternative is the SAMBA

server from MKS.

40 WebSphere for z/OS: Assembling CORBA Applications

e. Allocate at least 100 cylinders of HFS space in the home directory for
each application developer. You can maintain the application
development storage the same way you maintain OS/390 or z/OS
UNIX HFS storage.

f. Assure that each application developer has a TSO/E user ID that is
authorized to use OS/390 or z/OS UNIX.

g. Check the number of file descriptor files defined (MAXFILEPROC
statement in the BPXPRMxx parmlib member). You may need
additional file descriptor files when you compile programs.

h. Check the maximum number of processes allowed (MAXPROCUSER
statement in the BPXPRMxx parmlib member). You may need to add to
the limit when you run makes.

i. Check each application developer’s region size (MAXASSIZE in
BPXPRMxx or ASSIZEMAX on the RACF ADDUSER or ALTUSER
commands). The rule of thumb is to run with the largest region size
possible, but start with a minimum size of 256 MB. The size can be
limited by the IEFUSI exit, JES2 EXIT06, JES3 IATUX03, or TSO segment
defaults. If the compiler runs out of memory, you may need to increase
the application developer’s region size.

For more information on BPXPRMxx, see z/OS UNIX System Services
Planning, GA22-7800.

3. On z/OS or OS/390, check the CB390make.env file in

/usr/lpp/WebSphere390/CB390/samples. Base what you do on the following
table:

If . . . Then . . . Notes

You installed
WebSphere for
z/OS into the
prescribed
directories

Make no modifications to CB390make.env

Chapter 3. Assembling CORBA applications on z/OS or OS/390 41

If . . . Then . . . Notes

You installed
WebSphere for
z/OS into
directories other
than those
prescribed

Either:

a. Copy CB390make.env and customize it

b. Identify the new location through the
CB390_ENVFILE variable in your .profile
file. Example:

export CB390_ENVFILE=/etc/CB390make.env

If IBM does maintenance on
CB390make.env, you may need to
make maintenance changes to your
copied version.

Or:

Override the environment variables described
in Table 4 through your .profile file.

If IBM does maintenance on
CB390make.env, you may need to
make changes to the export
statements in your .profile file.

4. On z/OS or OS/390, set a system-wide default profile (/etc/profile) for

the location of WebSphere for z/OS files.
Table 4 describes the environment variables used for CORBA applications
you develop for WebSphere for z/OS.

Table 4. General environment variables for MOFW component developers

Variable Notes

CB390_ENVFILE=path Location of the CB390make.env file.

Default: /usr/lpp/WebSphere390/CB390/samples/CB390make.env

CB390_STDINC=path Location of include files.

Default: /usr/include //'CBC.SCLBH.+'

CLASSPATH=path For MOFW C++ clients, you do not need to specify anything.

For MOFW Java clients, specify ws390crt.jar

For Java business objects in the server, specify ws390srt.jar

LIBPATH=path Change the LIBPATH environment variable to include
/usr/lpp/WebSphere390/CB390/lib.

IVB_DRIVER_PATH=path Location of WebSphere for z/OS product files.

Default: /usr/lpp/WebSphere390/CB390/

PATH=path Change the PATH environment variable to include
/usr/lpp/WebSphere390/CB390/bin.

For tracing and debugging Java on z/OS or OS/390 include the path
to the executable called irmtdbgj.

42 WebSphere for z/OS: Assembling CORBA Applications

Table 4. General environment variables for MOFW component developers (continued)

Variable Notes

SBBOEXEC_DSN=
DATA_SET_NAME

Location of REXX EXECs in SBBOEXEC.

Default: BBO.SBBOEXEC

Table 4 on page 42 lists the default values for environment variables that point
to WebSphere for z/OS files. If the system programmers at your site installed
the Application Server into directories other than those that IBM prescribes,
they may have changed the /etc/profile to identify the location of WebSphere
for z/OS files for all z/OS or OS/390 shell users. If they did not update this
system-wide default profile to set the location of WebSphere for z/OS files,
you need to find out where the product files are located, and use your
$HOME/.profile file or a shell script to change the values of these
environment variables accordingly.

Recommendation: If the environment variables in Table 4 on page 42 are not
set in the /etc/profile, set them in your $HOME/.profile file. These
environment variables should have the same settings for all CORBA
applications you develop for WebSphere for z/OS.

Sample: The sample profile in Figure 13 on page 44 defines system-wide
variables that may be copied into the /etc/profile. This sample not only sets
the environment variables in Table 4 on page 42, but also includes settings that
are required to correctly operate the C++ compiler. This sample /etc/profile is
a variation of the IBM-supplied /samples/profile, which is described in more
detail in z/OS UNIX System Services Planning, GA22-7800.

Notes for the C++ customization section:

1. The environment variables in the C++ customization section provide
information to the c89/cc/c++ utilities, such as parts of names for
dynamically allocated data sets.

2. If installation of the compiler, run-time library products, or both, use
different values, then set the appropriate export lines to the correct value.
Note that because the c89/cc/c++ utilities do not support a VOL=SER=
parameter, you must catalog all named data sets that c89/cc/c++ use.

3. You might have to override the default esoteric unit for unnamed work
data sets, if the c89/cc/c++ default (SYSDA) is not defined for the
installed system. You may specify a null (″″) value to allow c89/cc/c++ to
use an installation-defined default.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 43

4. Only the c89 command variables are explicitly shown. The cc and c++
variables are set by the command line beginning with eval at the end of
this customization section.

5. This is not an exhaustive list of the environment variables that affect the
behavior of c89/cc/c++. It is, however, all those that will normally might
require customization by the system programmer.
Recommendation: For easier migration, set only the variables for correct
operation of the c89/cc/c++ utilities.

To enable and disable lines in this profile you may remove or add '#'
to uncomment or comment the desired lines.
#
Export the values so the system will have access to them.
#
Improve the shell's performance for users from ISPF or with
STEPLIB data sets allocated. This performance improvement is not
applicable to non-interactive shells, for example those started with
the BPXBATCH and OSHELL utilities.
if [-z "$STEPLIB"] && tty -s;
then

export STEPLIB=none
exec sh -L

fi
#
Set the time zone as appropriate.
TZ=EST5EDT
export TZ
#
Set the language
LANG=C
export LANG
#
Set a default command path, including your current working
directory.
PATH=/bin:.:/usr/lpp/java/J1.3/bin
PATH=/bin:.:/usr/lpp/java/J1.3/bin:/usr/lpp/WebSphere390/CB390/bin
export PATH
#
Specify the directory to search for a DLL (Dynamic Link Library)
filename. If not set, the working directory is searched. In the
sample below, db2_install_path is the HFS where you installed DB2 for OS/390.
LIBPATH=/db2_install_path/lib:/usr/lpp/java/J1.3/bin:/usr/lpp/java/J1.3/bin/classic:/usr/lpp/WebSphere390/CB390/lib
export LIBPATH
#
Set the path for NLS files (message catalogs).
NLSPATH=/usr/lib/nls/msg/%L/%N
export NLSPATH
#

Figure 13. Sample /etc/profile

44 WebSphere for z/OS: Assembling CORBA Applications

Set the path for man pages (help files).
MANPATH=/usr/man/%L
export MANPATH
#
Set the name of the system mail file and enable mail notification.
MAIL=/usr/mail/$LOGNAME
export MAIL
#
Set the default file creation mask
umask 022
#
Set the LOGNAME variable readonly so it is not accidentally modified.
readonly LOGNAME
#
==
Start of c89/cc/c++ customization section
#
High-Level Qualifier "prefixes" for data sets used by c89/cc/c++:
#
C/C++ Compiler:
--
export _C89_CLIB_PREFIX="SYS1.CPP"
#
#
Prelinker and run-time library:
--
export _C89_PLIB_PREFIX="SYS1.LEMVS"
#
#
OS/390 system data sets:
--
export _C89_SLIB_PREFIX="SYS1"
#
#
Esoteric unit for data sets:
#
#
Unit for (unnamed) work data sets:
--
export _C89_WORK_UNIT="SYSALLDA"
#
#
Commands to propogate c89 environment variables for cc and c++:
===
#
eval "export $(typeset -x | grep "|_C89_" | awk '{sub("_C89_","_CC_");printf

"%s ",$0}')"
eval "export $(typeset -x | grep "|_C89_" | awk '{sub("_C89_","_CXX_");printf

"%s ",$0}')"
#
End of c89/cc/c++ customization section
==
#

Figure 14. Sample /etc/profile, continued

Chapter 3. Assembling CORBA applications on z/OS or OS/390 45

Steps for creating an HFS directory structure for CORBA application files from
the workstation

One of the products that IBM recommends for your application development
environment is NFS, which allows you to access the HFS as a local drive on
your workstation. If you are using NFS or an equivalent product, you may
automatically place the files you create through workstation tools on OS/390,
and the directory structure will exactly match the structure used on the
workstation. If you are not using such a product, you must decide on a
directory structure, and have to manually transfer the files after creating them
on the workstation. Instructions for manual transfer appear in “Steps for
transferring files from the workstation to z/OS or OS/390” on page 47.

Perhaps the easiest approach is to use a working directory structure that
matches the structure of your working directories on the workstation. For
example, if you are using Object Builder on Windows NT, your working
directory on NT contains source files that Object Builder generates, with a
subdirectory for the DDL files it generates. You could pattern your HFS
directory to contain source files and the subdirectory for DDL. To create an
HFS directory structure for your server application files, perform the
following steps:
1. Choose an HFS directory structure for the files for the server application.

These files include:

==
Start of WebSphere for z/OS customization section
#
Provide the name of the WebSphere for z/OS environmental file
export CB390_ENVFILE=/usr/lpp/WebSphere390/CB390/samples/CB390make.env
#
Provide system names for the include libraries, override taken.
export CB390_STDINC="/usr/include //'SYS1.CPP.SCLBH.+'"
#
Provide the root structure for WebSphere for z/OS tree, default taken,
export CB390_ROOT=
#
Provide the name for the REXX exec, override taken.
export SBBOEXEC_DSN=CB390.CB11002.SBBOEXEC
#
Provide the path to the bin/obmdll20.mk, default taken
export IVB_DRIVER_PATH=/usr/lpp/WebSphere390/CB390/
#
#
End of CB390 customization section
==

Figure 15. Sample /etc/profile, continued

46 WebSphere for z/OS: Assembling CORBA Applications

v Source files for the application (component) objects that you create
through development tools on the workstation, and

v One or more data definition language (DDL) files that define the
structure of the server application family, and define its home and
container.

2. Regardless of the structure you choose, make sure you observe the

following rules:
v The directory structure must have a PRODUCTION subdirectory. When you

compile code on z/OS or OS/390, the make process expects a
PRODUCTION subdirectory in the directory in which you enter the make
command; without that subdirectory, make does not know where to
place output it generates.

v The name of the directory for the DDL files must exactly match the
name of the application family. For example, if you use the name
CashAcctAppFam for a server application family, you may use a fully
qualified directory name like the following examples:
/u/userid/CashAcctAppFam or /u/userid/Working390/CashAcctAppFam

v If you are developing Enterprise Java beans or server applications for
use with procedural application adaptors, you have JAR files that need
to be placed on z/OS or OS/390. You may place these JAR files in the
same directory you use for other server application source files, or you
may create a separate directory or subdirectory for them.

3. From the u/userid/ directory, enter mkdir commands as necesary to create

the directory structure you want to use. For details about the mkdir
command, see z/OS UNIX System Services Command Reference, SA22-7802.

When you have finished creating the directory structure, you are ready to
transfer the files from the workstation to z/OS or OS/390. For instructions,
see “Steps for transferring files from the workstation to z/OS or OS/390”.

Steps for transferring files from the workstation to z/OS or OS/390

If you are not using a product that allows you to access a z/OS or OS/390
hierarchical file system (HFS) as a local drive on your workstation, you need
to manually transfer server application files from the workstation to z/OS or
OS/390. Several software programs provide easier methods of transferring
files from the workstation to z/OS or OS/390, and you may use any of them,

Chapter 3. Assembling CORBA applications on z/OS or OS/390 47

as long as you are careful about ASCII to EBCDIC conversions. The
instructions provided here assume you are using ftp to transfer files to the
HFS on z/OS or OS/390.

Before you begin: Decide where you are going to place the files on z/OS or
OS/390. See “Steps for creating an HFS directory structure for CORBA
application files from the workstation” on page 46 for suggestions. If you need
more background information about working with files, see the file system
topics in z/OS UNIX System Services User’s Guide, SA22-7801.

Complete the following instructions to use ftp, through MS-DOS, to manually
transfer the files from Windows NT to the HFS on z/OS or OS/390. These
instructions assume that you are going to transfer all files during one ftp
session, but you are not required to do so. Once you establish the ftp session,
enter all commands at the ftp prompt (ftp>).
1. From the base directory you used for Object Builder output (for example,

x:), start an ftp session with the machine hosting the target HFS, using the
command ftp -i target-machine

Notes:

a. The -i argument turns off ftp file prompting, so you can more easily
move many files at once, which is useful for transferring the Object
Builder source files.

b. The default mode of transfer is ASCII, which is the correct mode to use
for both the Object Builder source files and DDL files. Use binary mode
to transfer any JAR files. To switch modes, enter either ascii or bin at
the ftp prompt.

2. To transfer the Object Builder source files:

a. Change to the HFS working directory where you intend to place the
Object Builder source files, using the command cd directory-path

b. Change to the NT subdirectory that contains the Object Builder source
files, using the command lcd directory-path

c. Transfer all of the files, using the command mput *

3. To transfer the DDL files:

a. Change to the HFS directory to contain the DDL files, using the
command cd directory-path

b. Change to the NT subdirectory that contains the Object
Builder-generated DDL files, using the command lcd directory-path

c. Transfer all of the files in the NT subdirectory, using the command
mput *

48 WebSphere for z/OS: Assembling CORBA Applications

4. If you are developing CORBA applications for use with procedural

application adaptors, you also have JAR files to transfer. You may need to
repeat the following steps if you have more than one JAR file or more
than one location (subdirectory) for JAR files. To transfer one JAR file:
a. Set the correct mode of transfer for a JAR file, using the command bin

b. Change to the HFS working directory where you intend to place the
JAR file, using the command cd directory-path

c. Change to the NT subdirectory that contains the JAR file, using the
command lcd directory-path

d. Transfer the JAR file, using the command put filename.jar

e. After transferring the file, add the fully qualified file name (the
directory path plus the file name; for example:
/u/userid/jarfiles/CICSEXCI/BeCash.jar) to the CLASSPATH
statement in the data set member you are using for environment
variables. If the logical record size of that data set prevents you from
adding the full name to the CLASSPATH statement, copy the JAR file
into a directory that is already listed in the CLASSPATH statement,
and expand the JAR file in place. To expand the JAR file, use the
command jar -xvf filename.jar

5. End the ftp session, using the command quit or bye

Background on deciding where to place executable code for the server
application

When you are assembling a server application to deploy in a WebSphere for
z/OS MOFW server, you need to consider not only where to direct the make
process to place executable code, but also where to place executables for the
most efficient run-time performance:
v When you compile your CORBA application, you may direct the make

process to place executable code in a partitioned data set (PDS), a
partitioned data set extended (PDSE), or in the hierarchical file system
(HFS). Because a PDS can contain load modules that are only 16 megabytes
or less, your choice is more likely between only two options: PDSE or HFS.

v When you deploy your application in a server, you may use one of the
following methods to identify the location of the executable code:
– For code in the HFS, you may use either the LIBPATH environment

variable or load the HFS files into the link pack area (LPA)

Chapter 3. Assembling CORBA applications on z/OS or OS/390 49

– For code in a PDS or PDSE, you may use either the STEPLIB DD
statement on the JCL procedure for the WebSphere for z/OS MOFW
server, load the data set into LPA, or add the data set to the link list.

Where you place code for run-time has an effect on both system and
application performance, and on use of virtual storage. For example, before
the server can run your application, the system must find and load your
application’s executable code into storage. The system uses the following
search order for code; the closer your code is to the top of the search order,
the better the system performs.
1. LIBPATH variable
2. STEPLIB DD statements
3. LPA
4. Link list

To determine the best placement for your application’s code, then, you need
to know how frequently it will be used, and how your installation will use
its production-level WebSphere for z/OS MOFW servers.

Although you do not necessarily need to consider run-time placement just to
compile code, you should be aware of the run-time options so you can avoid
additional work (such as copying HFS files to a PDSE, or the reverse). Use the
following recommendations along with the information in Table 5 on page 52,
which summarizes the advantages or disadvantages of each placement option.
If necessary, see z/OS MVS Initialization and Tuning Guide, SA22-7591 for a
complete discussion of placing modules in the system’s search order, and the
effects of placement on system and application performance.

Recommendations:

v If your installation uses the shared HFS function (available with z/OS
Version 1 Release 1, and OS/390 Version 2 Release 9 or later), place
executable code in the HFS. This choice is especially convenient if your
server application is distributed among systems within a sysplex, or if your
server application contains any Java code, because you have all your code
in one place. Java class files must be in the HFS.
If you decide to place executable code in the HFS, you may place the code
in an HFS directory other than your working directory. If you choose to do
so, you must specify output file names in the compiler options before using
the make utility; otherwise, the compiler places output in your working
directory.

v If your installation does not have the z/OS or OS/390 shared HFS function,
you should still consider using the HFS for executable code. This choice is
especially convenient if your server application contains any Java code,
because you have all your code in one place. Java class files must be in the
HFS.

50 WebSphere for z/OS: Assembling CORBA Applications

Even without the z/OS or OS/390 shared HFS function, you can still place
all of your server application code in the HFS, and use other methods to
share the file system among systems on which the WebSphere for z/OS
MOFW server is running. For example, you could take the following
approach:
1. Create a file system that will hold all of the Java class files and

executable code for the server application.
2. Compile and test the server application on one system.
3. Once the server application is ready for production, mount the file

system on all the systems on which the WebSphere for z/OS MOFW
server will run. Either mount all file systems in read-only mode, or
mount one in write mode and all others in read-only mode.

4. To refresh the DLLs in the file system, do the following:
a. Dismount the file system from all systems on which it was mounted
b. Quiesce the WebSphere for z/OS MOFW servers that use the

application
c. Refresh the DLLs
d. Remount the updated file system

Depending on the size of the server application, and how frequently you
have to make updates to it, this approach might result in better
manageability and performance than using the z/OS or OS/390 shared HFS
function.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 51

Table 5. Summary of compile and run-time placement options for a CORBA
application’s executable code

Placement
option

For compile time: For run-time:

HFS Using the HFS is
especially convenient
because you have a
single place for all of
your server application
files. Note that, if your
application contains any
Java code, the Java class
files must be in the HFS.

LIBPATH: If you use the LIBPATH
environment variable, the system creates one
copy of your application’s executable code for
each server region, per server instance.
Depending on the number of server regions
created and of replicated server instances, this
option might cause storage constraints.

Also, to update copies of your application,
you would have to quiesce all servers using
your application before applying the updates.

LPA: If you load your application into LPA,
the system loads one copy of your application
into shared virtual storage. This single copy is
available to all WebSphere for z/OS MOFW
servers that are running on the same system.

Using LPA is an advantage when you know
you will replicate server instances, or if you
expect a heavy workload for your application.

52 WebSphere for z/OS: Assembling CORBA Applications

Table 5. Summary of compile and run-time placement options for a CORBA
application’s executable code (continued)

Placement
option

For compile time: For run-time:

PDSE or
PDS

Compared to a PDS,
PDSEs offer several
advantages: PDSEs are
not only capable of
containing load modules
that are larger than 16
megabytes, but are also
easy to manage because
they do not require
reorganization or
compression as modules
are added or deleted.

If you decide to place
executable code in
PDSEs, you need to
allocate the data sets
before compiling your
server application. See
“Background on
allocating data sets for
the CORBA application’s
executable code” for
more information.

STEPLIB: If you use a STEPLIB DD statement,
the system creates one copy of your
application’s executable code for each server
region, per server instance, which is the same
behavior as using the HFS and the LIBPATH
variable. So the considerations for using
STEPLIB are the same as for using HFS and
LIBPATH. Because PDSEs can be shared
among systems in a sysplex, however,
distribution among systems is easier than with
alternative options (unless your installation
has z/OS Version 1 Release 1, or OS/390
Version 2 Release 9 or later, for shared HFS
support).

LPA: In this case, the same considerations for
using HFS and LPA apply.

Link list: In this case, the same considerations
for using the HFS and the LIBPATH variable
apply.

Background on allocating data sets for the CORBA application’s executable
code

If you decide to place executable code for your server application in a data
set, or if your server application uses DB2 resources, you have to allocate one
or more partitioned data sets (PDS) or PDSEs before compiling your server
application. Table 6 on page 54 lists the OS/390 Component Broker-specific
requirements for these data sets, including compile-time environment variable
settings, which are described in “Background on make processing” on page 55.

To allocate a data set, you may use any of several methods, which include the
TSO/E allocate command, ISPF, or JCL statements in a batch job. If necessary,
refer to one or more of the following resources for additional information:
v z/OS TSO/E User’s Guide, SA22-7794 describes how to use the allocate

command or ISPF, in the chapter on allocating data sets.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 53

v z/OS MVS JCL User’s Guide, SA22-7598 provides examples of allocating
various types of data sets, in the chapter on allocating data set resources.

v z/OS UNIX System Services User’s Guide, SA22-7801 explains how to use
TSO/E commands or JCL in the USS environment.

v DB2 Application Programming and SQL Guide, SC26-9933 provides
background information about programs that use DB2 resources. See the
chapter on preparing an application program to run, but keep in mind that
the make process that you will use to compile your program automatically
runs the DB2 precompiler for you.

Table 6. Requirements for server application data sets

If . . . Then you need to
allocate. . .

Notes

You want to
place your
server
application’s
executable
code in a data
set, rather
than in the
HFS

A load library
data set with the
following
characteristics:
LRECL=0
BLKSIZE=6144
RECFM=U
DSORG=PO

When you use the make utility to compile your
application, make sure you set the following
environment variables:
NOHFSLNKOUT=1
LOADLIB=data_set_name

Your server
application
will access
DB2 data

One DBRMLIB
data set, per
DB2–backed
object, with the
following
characteristics:
LRECL=80
BLKSIZE=6160
RECFM=FB
DSORG=PO

For such server applications, the make process uses
the DB2 precompiler to create a database request
module (DBRM) for the SQL statements and host
variable information extracted from the source
program, along with information that identifies the
program and ties the DBRM to the translated
source statements. The DBRM becomes the input
to the bind process.

If you need help determining the amount of space
your DBRMLIB data set requires, see the DBRM
mapping macro DSNXDBRM, in library
prefix.SDSNMACS, where prefix represents the
name that your installation uses to identify DB2
library data sets.

When you use the make utility to compile your
application, set the following environment
variables to identify the data sets you have
allocated:
DBRMHLQ
DBRMQUAL

54 WebSphere for z/OS: Assembling CORBA Applications

Background on make processing

To compile your CORBA server application, you use the make utility, which is
available through the UNIX system services (USS) shell. When you develop
your server application, Object Builder generates make files that contain some
environment variable settings and options required for compiling and linking
C++ or Java code on z/OS or OS/390. In most cases, you should be able to
use the Object Builder-generated make file without alteration. Through
various methods available in the USS shell environment, however, you may
add or override environment variables or options, depending on the needs of
the specific server application.

Before you use the make utility, you need to:
v Understand what settings are required for compiling a server application on

z/OS or OS/390. See Table 7 on page 57 for a list of environment variables
that you can set for compiling an application. Note that many variables
have default settings provided through files shipped with the WebSphere
for z/OS product, so you are not required to manually set all of the
variables. You might, however, want to override some settings, depending
on the application development environment at your installation, and on
the server application you are developing.

v Understand how Object Builder sets some environment variables and
options. You do not need to change these options, but you may do so; for
example, you might want to change options that control the compiler
listing.
For your server application, Object Builder generates three make files:
all.mak, xxxC.mak and xxxS.mak files. These three .mak files include the
prjdefs.mk file, which contains build options specified through Object
Builder. The default settings and options that Object Builder uses are listed
in Component Broker Application Development Tools Guide under the
configuration topic. The prjdefs.mk file might also contain compiler options
set for other, non-z/OS or OS/390 platform compilers; you can ignore those
settings.
The xxxC.mak and xxxS.mak files also include the obmdll30.mk file, which is
shipped with WebSphere for z/OS (the make process has access to it
through the IVB_DRIVER_PATH variable). The obmdll30.mk file uses the
CB390make.rules and CB390make.env files. The CB390make.help file contains
more information about the contents of these files.

v Understand how the system determines which values to set for
environment variables. Settings for the shell environment can be set in one
or more of the following places, which the system searches in the order
listed:
1. The user profile in the security product that your installation uses
2. The /etc/profile file, which is a system-wide file for all z/OS or OS/390

shell users

Chapter 3. Assembling CORBA applications on z/OS or OS/390 55

3. The $HOME/.profile file, which is a personalized file for an individual
user

4. The file named in the ENV environment variable
5. A shell command or shell script

If an environment variable appears in more than one of the following
places, the system uses the last setting it found in this search order. For
example, if one variable appears in the /etc/profile and in a shell script, the
system uses the setting in the shell script.

v Know whether the system programmers at your site have changed the
/etc/profile to identify the location of WebSphere for z/OS files for all
z/OS or OS/390 shell users. If they did not update this system-wide default
profile to set the location of WebSphere for z/OS files, you need to find out
where the product files are located, and use your $HOME/.profile file or a
shell script to change the values of these environment variables accordingly.
See “Steps for setting up the application development environment” on
page 40 for a sample profile that your system programmer might have used
to update the /etc/profile with settings for all shell users.

When you run the utility, make does the following processing, using the
resources, files, and environment settings listed:
1. Uses the startup.mk file, set up by your installation’s system programmer,

to find default rules for processing.
2. Uses the all.mak file to determine what processing to complete. As a

result, make runs both the Object Builder-generated xxxC.mak and
xxxS.mak files, to create client- and server-side bindings and headers,
respectively.

3. Uses the IDL compiler on z/OS or OS/390 to compile interface definition
language (IDL) files into C++ parts (.cpp files). These parts include client-
and server-side bindings and headers.

4. Uses the DB2 pre-compiler to create database request modules (DBRMs), if
the server application accesses DB2 data.

5. Uses the C++ compiler on z/OS or OS/390 to generate the object deck.
6. Uses the Java compiler on z/OS or OS/390 to generate Java class files, if

the server application requires Java classes.
7. Uses the binder and linker to create export files, and client and server

dynamic link libraries (DLLs).
8. Creates Java archive (JAR) files, if part of your server application contains

code written in Java.

56 WebSphere for z/OS: Assembling CORBA Applications

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

_CEE_PREFIX Optional Optional Specifies the prefix of the data set that contains
z/OS or OS/390 Language Environment files.
Set this variable only if your system programmer
did not install z/OS or OS/390 Language
Environment in the prescribed data sets.

_CEE_CBC Optional Optional Specifies the data set that contains the C++
compiler and class library files. Set this variable
only if your system programmer did not install
the z/OS or OS/390 C++ Compiler in the
prescribed data sets.

CB390_ENVFILE Optional Optional Specifies the location of the CB390make.env file.
Default:
/usr/lpp/WebSphere390/CB390/samples/CB390make.env.

The CB390make.env file contains default settings
for many of the variables in this table. Change
this variable only if you are using your own,
edited copy of CB390make.env.

CB390_ROOT Optional Optional Specifies the prefix path that the system uses to
construct the value of IVB_DRIVER_PATH, when
IVB_DRIVER_PATH is not specified. Default: No
default value is set. If neither
IVB_DRIVER_PATH nor CB390_ROOT are
specified, the value of CB390_ROOT is null, and
IVB_DRIVER_PATH is set to
/usr/lpp/WebSphere390/CB390

Change this variable only if your system
programmer did not install OS/390 Component
Broker in the prescribed directories.

CB390_USR_CLASSPATH Not
applicable

Optional Specifies the non-OS/390 Component Broker
JAR files to be included for a server application.
For example, if you are developing a server
application for use with procedural application
adaptors, you may prepend this variable to the
CLASSPATH variable to include the server
application JAR file that you created through
VisualAge for Java. Default: OS/390 Component
Broker does not set a default value for this
variable.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 57

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

CB390_USR_CPPFLAGS Optional Optional Specifies additional parameters for the C++
compiler. Default: OS/390 Component Broker
does not set a default value for this variable.

CB390_USR_
CPPSHELLFLAGS

Optional Optional Specifies additional switches for the C++ shell
command. Default: OS/390 Component Broker
does not set a default value for this variable.

CB390_USR_CXX_
INCDIRS

Optional Optional Specifies additional directories to search for C++
headers. Default: OS/390 Component Broker
does not set a default value for this variable.

CB390_USR_DLLFLAGS Optional Optional Specifies additional parameters for linking DLLs.
Default: OS/390 Component Broker does not set
a default value for this variable.

CB390_USR_EXEFLAGS Optional Optional Specifies additional parameters for linking
executables (that is, main programs). Default:
OS/390 Component Broker does not set a
default value for this variable.

CB390_USR_IDLC_
INCLUDE

Optional Optional Specifies additional directories to search for IDL
files. Default: OS/390 Component Broker does
not set a default value for this variable.

CB390_USR_PATH Optional Optional Specifies the search path for additional
executable programs. Default: OS/390
Component Broker does not set a default value
for this variable. If you specify a value for
CB390_USR_PATH, OS/390 Component Broker
prepends this value to the PATH variable setting.

CB390_USR_
PRLNKFLAGS

Optional Optional Specifies additional parameters for prelink (that
is, the creation of export files). Default: OS/390
Component Broker does not set a default value
for this variable.

CB390_STDINC Optional Optional Specifies the location of the C++ run-time
headers for OS/390 Component Broker. Default:
/usr/include//’CBC.SCLBH.+’

Change this variable only if your system
programmer did not install OS/390 Component
Broker in the prescribed directories.

58 WebSphere for z/OS: Assembling CORBA Applications

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

CLASSPATH Optional Required Specifies Java class files for use by Java business
objects. Default: The default value is set in
CB390make.env file, and includes the following
files that are required for all Java server
applications: wszOSsrt.jar

You also may either use this variable, or prepend
the CB390_USR_CLASSPATH variable, to include
the JAR files that you created for your server
application.

DBRMHLQ Optional Optional Specifies the high-level qualifier of the name for
the MVS data set into which the DB2
pre-compiler will place the DBRMLIBs for your
server application. Default: The default value is
your user ID.

Specify this variable only when your server
application uses DB2 to store data.

DBRMQUAL Optional Optional Specifies the middle-level qualifier of the name
for the z/OS or OS/390 data set into which the
DB2 pre-compiler will place the DBRMLIBs for
your server application. Default: the name of the
server DLL that contains the static SQL to be
compiled.

Specify this variable only when your server
application uses DB2 to store data.

IVB_BATCH_
INCREMENTAL

Optional Optional Recommendation: Set to 1 to improve
performance of an incremental build (that is, a
rebuild after making small changes).

Chapter 3. Assembling CORBA applications on z/OS or OS/390 59

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

IVB_BATCH_
PROCESS_ FACTOR

Optional Optional Specifies the maximum number of make targets
to be built at the same time (in parallel). Default:
The number of IDL files in your project.

Tip: Large projects might demand too many
parallel processes, so you might want to specify
a constant value to control the number of
processes used. (Your system programmer sets
the maximum number of processes through the
MAXPROCUSER statement in the BPXPRMxx
parmlib member.)

Recommendation: The best value to use
depends on the average size of your
applications. Start with a value of 10 and modify
it as necessary.

IVB_BUILD_DEBUG Optional Optional When set to 1, this variable specifies whether to
compile C++ source with debug information.
Default: OS/390 Component Broker does not set
a default value for this variable.

IVB_BUILD_
UNOPTIMIZE

Optional Optional Specifies whether to compile C++ source without
optimization. Setting this variable to 1 results in
faster compilation. Default: OS/390 Component
Broker does not set a default value for this
variable.

IVB_BUILD_ VERBOSE Optional Optional Specifies the amount of messages generated
during compilation. Default: Object Builder sets
the default value of 1, which results in the
maximum amount of detailed compiler
messages.

IVB_COMBINE_
SOURCE

Optional Optional Specifies whether header files are processed
multiple times. Default: Object Builder sets the
default value of 1, which results in header files
being processed only once, thus reducing the
time required for the build.

IVB_DRIVER_ PATH Required Required Specifies the location of OS/390 Component
Broker product files. Default: The default value,
/usr/lpp/WebSphere390/CB390, is set in
CB390make.env file.

60 WebSphere for z/OS: Assembling CORBA Applications

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

IVB_OPTIMIZE Optional Optional Specifies whether DLLs are compiled with
optimization, including inlining of code. Default:
Object Builder sets the default value of 1
(equivalent to setting IVB_UNOPTIMIZE=0)

Recommendation: Set to 0

IVB_PAX_LIST Optional Optional Specifies whether C++ listings are compressed to
save space. Example: For part xyz.cpp, the
compressed listing is xyz.clst.Z. To decompress
the xyz.clst.Z listing, use the following
command:

pax -rf xyz.cpp.Z

The result of the decompression is listing
xyz.clst

Recommendation: Set to 1 to compress listings.

IVB_UNOPTIMIZE Optional Optional Specifies whether DLLs are compiled with
optimization, including inlining of code. Default:
Object Builder sets the default value of 1
(equivalent to setting IVB_OPTIMIZE=0)

Recommendation: Set to 0

JAVA_COMPILER Not
applicable

Optional Specifies which Java compiler the make process
should use. Default: OS/390 Component Broker
does not set a default value for this variable.

JAVA_HOME Not
applicable

Optional Specifies the directory in which the Java 2
Standard Edition (J2SE) Software Development
Kit (SDK) is installed. Default: OS/390
Component Broker does not set a default value
for this variable.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 61

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

LIBPATH Required* Required Specifies the search path for Java DLLs in the
HFS. Default: A default value might be set in
your /etc/profile file. OS/390 Component
Broker does not set a default value for this
variable.

* Required for C++ applications if you are using
procedural application adaptors. In this case, as
for Java applications, specify system, OS/390
Component Broker, and Java DLLs. For example:

LIBPATH=/db2_install_path/lib
:/usr/lpp/java/J1.3/bin
:/usr/lpp/java/J1.3/bin/classic
:/usr/lpp/WebSphere390/CB390/lib

where db2_install_path is the HFS where you
installed DB2 for OS/390.

LOADLIB Required* Required* Specifies the name of the z/OS or OS/390 data
set into which the make process will place the
DLLs for your application. (If you are compiling
a Java application, make places DLLs in the data
set, but places the JAR file in the HFS.) Default:
OS/390 Component Broker does not set a
default value for this variable.

* Required only if you set the NOHFSLNKOUT
variable to 1, or you want to place DLLs in a
data set instead of in the HFS.

NOHFSLNKOUT Optional Optional Specifies whether the system is to place DLLs in
the HFS or in a z/OS or OS/390 data set. You
may set one of the following values:
v 0 sends link-edit output to the HFS
v 1 sends link-edit output to the data set

specified through the LOADLIB variable.

Default: 0

62 WebSphere for z/OS: Assembling CORBA Applications

Table 7. Environment variables to set for compiling CORBA applications on z/OS or OS/390 (continued)

Variable Required/Optional for this
type of CORBA

application:

Notes

C++ Java

PATH Optional Optional Specifies the search path for files containing
commands that you want to run. Default: A
default value might be set in your /etc/profile
file. OS/390 Component Broker alters the
/etc/profile setting by first prepending
IVB_DRIVER_PATH/bin to the PATH statement,
and then prepending CB390_USR_PATH, if you
specify that variable.

SBBOEXEC_DSN Optional Optional Specifies the data set in which OS/390
Component Broker REXX EXECs reside. Default:
’BBO.SBBOEXEC’

Change this variable only if your system
programmer did not install OS/390 Component
Broker in the prescribed directories.

STEPLIB Required* Required* Specifies additional data sets that your
application might need. Default: A default value
might be specified in your /etc/profile file.
OS/390 Component Broker does not set a
default value for this variable.

* Required only if both of the following
conditions are true:

v Your application uses DB2

v The DB2 pre-compiler data sets SDSNLOAD
and SDSNEXIT are not in the system link list.

If necessary, see the following sources for further information:

For information
about this topic:

See:

The USS shell
environment

z/OS UNIX System Services User’s Guide, SA22-7801 describes the
USS shell environment and how to work with environment
variables.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 63

For information
about this topic:

See:

The make utility v z/OS UNIX System Services Programming Tools, SA22-7805, for a
tutorial on using make.

v Component Broker Application Development Tools Guide, for the
default options that Object Builder uses.

v z/OS UNIX System Services Command Reference, SA22-7802, for
make command format and options, makefiles, usage notes, and
other reference information.

IDL v Component Broker Programming Guide, for a description of
interface definition language and its syntax

v “Appendix C. The Interface Definition Language (IDL)
compiler” on page 171, for the idlc command, along with
options and syntax for the OS/390 Component Broker IDL
compiler.

The DB2
pre-compiler

DB2 Application Programming and SQL Guide, SC26-9933 lists
pre-compiler options and default values that you might want to
change for a particular server application.

C++ v z/OS UNIX System Services Command Reference, SA22-7802, for
compiler options (under the c89 command description) that
you might want to change for a particular server application.

v z/OS C/C++ User’s Guide, SC09-4767, for general information
about the z/OS or OS/390 C++ compiler and its options.

Java on z/OS or
OS/390

http://www.s390.ibm.com/java/

Steps for compiling CORBA application source files on z/OS or OS/390

Once you have the workstation files for your CORBA server application in a
working directory on z/OS or OS/390, you can run the make file to produce
the executable code and bindings required for running a server application in
a WebSphere for z/OS MOFW application server.

When you generated server application artifacts on the workstation, Object
Builder produced three makefiles: a client DLL makefile, a server DLL
makefile, and an all.mak file. Use the all.mak file, not the individual DLL
makefiles, to compile code for your server application. Using the all.mak file
ensures that the DLLs are built in the correct order. The all.mak file also
includes any IDL compile, Java compile, CPP compile, and link options that
you specified in Object Builder for the client and server DLLs.

Before you begin:

64 WebSphere for z/OS: Assembling CORBA Applications

v Decide where you want to place your server application’s executable code.
See “Background on deciding where to place executable code for the server
application” on page 49 for recommendations.

v Make sure you have allocated any data sets that your server application
requires. See “Background on allocating data sets for the CORBA
application’s executable code” on page 53 for instructions on allocating data
sets.

v Make sure you understand how make processing works, and how
environment variable settings influence make processing. See “Background
on make processing” on page 55 for more information about make
processing and environment variable settings.

Perform the following steps to compile the source files for your server
application:
1. Make sure you have set the proper environment variables for compiling

code. The environment variables you need to set include those that
identify the location of WebSphere for z/OS product files, and identify
where you want to place the executable code for your server application.
To set the environment variables, do the following:
a. Enter the set or export command to display the current settings for

the shell environment.
b. Compare the current shell settings to Table 7 on page 57, which

describes the environment variables that you might need to set for
make processing, depending on the type of server application you are
going to compile. Some variable values that you should use depend on
guidelines for your installation or your individual development
environment.

c. Either edit your $HOME/.profile file or create a shell script to add or
override environment variable settings, as necessary, for each specific
server application.
Recommendations:

v If the environment variables in Table 4 on page 42 are not set in the
/etc/profile, set them in your $HOME/.profile file. These
environment variables should have the same settings for all server
applications you develop for WebSphere for z/OS. Make sure you
export these variables, to pass them on to shell commands and
scripts that run in your shell session.

v Set the environment variables for make processing in a shell script.
Consider using one shell script for each server application you are
assembling, and use the following naming convention for each
script:
serverappname_make_setup.sh

Chapter 3. Assembling CORBA applications on z/OS or OS/390 65

With one script per application, you can change shell settings or
compiler options as necessary for an individual application.

If you use a shell script to specify some options that also appear in
the Object Builder-generated prjdefs.mk file for your server
application, make sure you edit the prjdefs.mk file to comment out
the duplicate options.

d. (Optional) If you want to change any of the default settings in the
CB390make.env file shipped with WebSphere for z/OS, do the
following:
1) Make your own copy of the CB390make.env file. CB390make.env is

in IVB_DRIVER_PATH/samples.
2) Edit your copy of the CB390make.env and save your changes.
3) Change the setting for the CB390_ENVFILE environment variable

to point to your copy of CB390make.env.

2. If you use a shell script to set variables, you need to execute the script

before using the make command to start make processing. To execute a
shell script, enter the following:
. serverappname_make_setup.sh

3. From your working directory on z/OS or OS/390, enter make -f all.mak

Tips:

v Use the following make command to run the build process in the
background, and to direct all messages in a file for later review, if
necessary. For example, the file ./build_results.txt will contain all
messages generated during the make process.
make -f all.mak 1>build_results.txt 2>&1 &

v If you use a file to collect messages generated during the build process,
you can view them before make processing completes by using the head
and tail UNIX commands, which are described in z/OS UNIX System
Services Command Reference, SA22-7802.

v If you are placing executable code in a load library, the make process
might fail with a system completion (ABEND) code x37. These ABEND
codes indicate errors such as data sets that are too small. Look up the
specific ABEND code in z/OS MVS System Codes, SA22-7626 to
determine and fix the problem. Then restart the build process.

v If the make process fails, fix the error and restart the build process. If
you need to start from scratch again, issue the following command to
clean off all files generated in the HFS during the first build attempt:
make –f all.mak clean.

66 WebSphere for z/OS: Assembling CORBA Applications

You know you are done when the server application executables are in either
the data set you specified, or in your working directory on the HFS.

Steps for adding your CORBA application to the system search path

Before you deploy your application in a server, you may move the executable
code into one of the following locations:
v For code in the HFS, you may load the HFS files into the link pack area

(LPA)
v For code in a PDS or PDSE, you may load the data set into LPA or add the

data set to the link list.

Where you place code for run-time has an effect on both system and
application performance, and on use of virtual storage. To determine the best
placement for your application’s code, see the recommendations and
information in “Background on deciding where to place executable code for
the server application” on page 49.

To load the executable code for your server application into the link pack area
(LPA) or the link list, complete one of the following procedures:
v To move DLLs in the HFS into LPA, see the instructions in z/OS UNIX

System Services Planning, GA22-7800.
v To move DLLs in a PDS or PDSE into LPA, do the following:

1. Create a PROGxx parmlib member that uses LPA statements to add the
client and server DLLs to LPA. For example, adding the WebSphere for
z/OS installation verification program to LPA would require the
following LPA statements:
LPA ADD MODNAME=(JPOLICYS) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(JPOLSQMO) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(JPOLTRIR) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(POLICYC) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(POLICYS) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(POLSQIR) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(POLTRIR) DSNAME(high-level_qualifier.SBBOLOAD)
LPA ADD MODNAME=(POLHMIR) DSNAME(high-level_qualifier.SBBOLOAD)

If you need additional information about the PROGxx parmlib member,
see z/OS MVS Initialization and Tuning Reference, SA22-7592.

2. From an MVS console or TSO/E session, enter the SET PROG=xx
command to load the application into LPA. If you need additional
information about the SET PROG=xx command, see z/OS MVS System
Commands, SA22-7627.

v To move DLLs in a PDS or PDSE into the link list, do the following:

Chapter 3. Assembling CORBA applications on z/OS or OS/390 67

1. Create a PROGxx parmlib member that uses a LNKLST ADD statement
to specify the PDS or PDSE containing your server application’s
executable code. If you need additional information about the LNKLST
ADD statement or the PROGxx parmlib member, see z/OS MVS
Initialization and Tuning Reference, SA22-7592.

2. From an MVS console or TSO/E session, enter the SET PROG=xx
command to add the application to the link list. If you need additional
information about the SET PROG=xx command, see z/OS MVS System
Commands, SA22-7627.

Steps for binding data objects for your CORBA application

When your server application contains business objects and data objects that
use DB2 to store persistent data, you need to set up the DB2 tables those
objects use, and bind each data object into its own package in the DB2
Universal Database for z/OS and OS/390 plan. To set up the DB2 tables, see
“Steps for preparing DB2” on page 81.

To bind data objects into packages, you need to use the database request
modules (DBRMs) that the make process generated when you compiled your
server application. The make process generates one DBRM library per data
object.

Before you begin: You might want to either review or have available the
following references:
v DB2 Application Programming and SQL Guide, SC26-9933, for background

information about DB2 packages.
v DB2 Command Reference, SC26-9934, for details about the BIND PACKAGE

subcommand syntax and options.
v DB2 Administration Guide, SC26-9931, for information about setting up an ID

with DB2 Universal Database for z/OS and OS/390 SYSADM authority.

Perform the following steps to bind each data object into its own package:
1. Create a member in your working JCL data set, and copy the following

JCL example into it.
//jobname JOB
//*
//BIND1 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DBRMLIB DD DISP=SHR,DSN=project_dbrmlib
//SYSTSIN DD *
DSN SYSTEM(DB2_subsystem_name)
BIND PACKAGE(package_name) MEMBER(dbrm_name) ACTION(REPLACE) +

bind_options

68 WebSphere for z/OS: Assembling CORBA Applications

END
/*
//BIND2 EXEC PGM=IKJEFT01,REGION=0M
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//DBRMLIB DD DISP=SHR,DSN=CB390_dbrmlib
//SYSTSIN DD *
DSN SYSTEM(DB2_subsystem_name)

BIND PACKAGE(package_name) MEMBER(BBOSQDB) ACTION(REPLACE) +
ISOLATION(CS) CURRENTDATA(NO) RELEASE(COMMIT))

END
/*

2. Edit the member to customize the JCL for your installation, as follows:

v Update the JOB card with installation-specific parameters.
v Delete or comment out the BIND2 step if the application and its clients

will not be using the query service. You must use the BIND1 step for all
DB2–backed server applications, but you need the BIND2 step only if
the application uses the query service.

v Replace the following variables with appropriate values, as follows:

Table 8. Variables to replace in your JCL to bind DB2 packages

Replace this variable: With this value:

project_dbrmlib Specify the make-generated DBRM library.

If the make process generated more than one DBRM library
because your application has more than one data object that
uses DB2, either copy the make-generated DBRMLIB data
sets into one partitioned data set, or add additional
DBRMLIB DD statement to the BIND1 step, as necessary.

DB2_subsystem_name Specify the DB2 subsystem that manages the tables your data
objects will use.

package_name Specify the name you want to use for this DB2 package.

dbrm_name Specify the name of the load module that will be making
database requests. In other words, use the name of the
member in the library that you specified for project_dbrmlib.
Each member corresponds to a data object in your server
application.

If you specified more than one project_dbrmlib, or have more
than one member in the project_dbrmlib, make sure that you
specify one BIND PACKAGE subcommand for each member.

bind_options Specify the options that you want to use for binding the
package.

Chapter 3. Assembling CORBA applications on z/OS or OS/390 69

v If you are using the BIND2 step, replace the CB390_dbrmlib on the
DBRMLIB DD statement. Replace other variables as indicated in Table 8
on page 69.

3. From a user ID with DB2 Universal Database for z/OS and OS/390

SYSADM authority, submit the job.

70 WebSphere for z/OS: Assembling CORBA Applications

Chapter 4. Deploying CORBA applications in WebSphere
for z/OS MOFW servers

Once you have an executable CORBA server application, you need to set up
its run-time environment, which is a WebSphere for z/OS application server.
WebSphere for z/OS includes two types of application servers: One for Java 2
Enterprise Edition (J2EE) applications, the other for CORBA applications. The
server for CORBA applications is known as the managed-object framework
(MOFW) server. When you use the WebSphere for z/OS Administration
application to define servers for your CORBA applications, you will notice
that the Administration application uses two labels for servers: J2EE server
and Server (for the MOFW server type). Make sure you use Server for your
CORBA applications.

Rules:

v You cannot deploy CORBA applications in a J2EE server.
v You cannot deploy J2EE applications in a MOFW server.

To deploy a server application on z/OS or OS/390, one needs some
knowledge of the application to be deployed and knowledge of z/OS or
OS/390 and the subsystems that the CORBA application requires. z/OS or
OS/390 system programmers and database administrators are the most likely
personnel to have the skills required for deploying an application. In this
book, personnel who assemble and deploy server applications are called
application assemblers. In addition to some details about the server
application to be deployed, these people need to know:
v How to work in the USS environment, and in TSO/E to access z/OS or

OS/390 components and data sets.
v How to set up z/OS or OS/390 subsystem resources that the application

requires. For example, these resources might include databases, transaction
managers, and security products.
The degree of expertise in each area depends on the type of server
application to be deployed. For example, if your CORBA application
accesses DB2 data directly instead of accessing DB2 through an IMS
transaction, you do not need to know anything about IMS.

v How to define and activate a WebSphere for z/OS MOFW application
server (that is, the run-time environment for the application to be
deployed).

© Copyright IBM Corp. 2000,2001 71

Background on naming rules for elements of the run-time environment

When you define a server configuration through the WebSphere for z/OS
Administration application, you are creating a model of a run-time
environment for a particular type of application. When you create a model,
you must supply names for the following:
v A generic application environment, which is called a server.
v An entity that is responsible for a certain type of work. This entity is called

a server instance, which consists of one control region, and one or more
server regions.

v A logical resource mapping (LRM), which defines a particular type of
resource manager (such as DB2, IMS, or CICS) that your application will
use.

v An LRM instance, which identifies a particular resource manager subsystem
(such as DB2SYSA, or IMS2).

Servers and LRMs are general definitions, so to speak; whereas server
instances and LRM instances name specific entities that exist on z/OS or
OS/390.

Rules: For your model to become an active run-time environment on z/OS or
OS/390, you must make sure the names you use in the Administration
application are the same as names you use for related definitions on z/OS or
OS/390:
v Use the same generic name (for example, PAAIMSV) for the server you define

in the administration application, and for the application environment you
define in the workload manager IWMARIN0 dialog.

v You must use the same name (for example, PAAIMSV1) for the server
instance not only in the administration application, but also in the
following places:
1. In the JCL procedure that you create to start the control region. This JCL

proc is usually a copy of the BBOASR1 member of BBO.SBBOJCL. When
you make a copy of this member for your own use, you must modify
the PROC statement to identify the server instance; for example:
//label PROC SRVNAME='PAAIMSV1'

2. In the JCL procedure that you create to start the server region. This JCL
proc is usually a copy of the BBOASR1S member of BBO.SBBOJCL.
When you make a copy of this member for your own use, you must
modify the IWMSSNM parameter to identify the server instance; for
example:
// label PROC IWMSSNM='PAAIMSV1', PARMS='-ORBsrvname ',
// CBCONFIG='/u/cb390'

72 WebSphere for z/OS: Assembling CORBA Applications

For recommendations on naming conventions for the elements of a MOFW
server, see WebSphere Application Server V4.0.1 for z/OS and OS/390: Operations
and Administration, SA22-7835.

Background on setting environment variables for the WebSphere for z/OS
MOFW server

Whenever you use the Administration application to create a new or modify
an existing WebSphere for z/OS MOFW server, you have the chance to
change environment variable settings.

“Appendix A. Environment files” on page 125 lists the environment variables
you need to use for WebSphere for z/OS MOFW servers in which your server
applications will run. Use that list to determine which variables you need to
set. One variable that is particularly important is the CLASSPATH variable, to
which you must manually add the fully qualified names of JAR files for your
server application, if any.

Coding JCL procedures to start the WebSphere for z/OS MOFW server

In TSO, perform the following steps to create JCL procedures for the
application control region and server region:
1. In your working PROCLIB data set, create a new member with a name

that matches the generic server name. Copy the BBOASR1 sample member
from BBO.SBBOJCL into this new member, and make appropriate updates
according to comments in the file. Modify the PROC statement to identify
the server instance name you will specify in the WebSphere for z/OS
Administration application. This new member is now the JCL procedure
you can use to start the application control region.

2. Also in your PROCLIB, create a new member to contain the JCL procedure
for starting the application server region. Copy the BBOASR1S sample
member from BBO.SBBOJCL into this new member, and make appropriate
updates according to comments in the file, including::
v Edit the IWMSSNM parameter to use the server instance name you will

specify in the WebSphere for z/OSAdministration application.
v Edit the member to identify the location (PDS, PDSE, or HFS) of your

server application’s executable code.

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 73

Defining the WebSphere for z/OS MOFW server

“Background on deploying server applications” on page 8 illustrates the steps
you complete to define an application server, or run-time environment, for
server applications. The steps in that process are the same whether you are
defining an application server for testing purposes or for production-ready
applications. Through the WebSphere for z/OS Administration application,
you define a model configuration that you validate, commit, and activate.
When you activate that configuration, WebSphere for z/OS system manager
creates a run-time environment on z/OS or OS/390. Figure 8 on page 11
illustrates both a sample model and the run-time environment that results
from activating that model.

This configuration is fairly simple: only one server application is defined to a
container, which is connected to only one resource manager subsystem. More
complex configurations are possible; for example, you may connect more than
one resource manager to a particular container, which is an advantage that is
unique to WebSphere for z/OS. The configuration you define depends on the
qualities of service that your server applications require.

When you define a server configuration, the options or selections that you
make have a direct impact on the behavior of the server application that is to
run in that environment.

Note: WebSphere for z/OS includes two types of application servers: One for
Java 2 Enterprise Edition (J2EE) applications, the other for CORBA
applications. The server for CORBA applications is known as the
managed-object framework (MOFW) server. When you use the
WebSphere for z/OS Administration application to define servers for
your CORBA applications, you will notice that the Administration
application uses two labels for servers: J2EE server and Server (for the
MOFW server type). Make sure you use Server for your CORBA
applications.

Background on using the WebSphere for z/OS Administration application
When you first use the WebSphere for z/OS Administration application after
installing the WebSphere Application Server product, you use the CBADMIN
administrator user ID to log on. You may define additional administrator user
IDs later, to allow access to the administration application from several
workstations or sessions. When you have additional user IDs, however, keep
the following rules in mind:
v You cannot use the same administrator ID to log on to multiple concurrent

sessions of the application, from either a single workstation or from more
than one workstation. For example, if you start the administration
application on your workstation, using CBADMIN as the user ID, you
cannot start another session using CBADMIN from either your own or a

74 WebSphere for z/OS: Assembling CORBA Applications

different workstation. You may, however, start another session using a
different administrator user ID from any workstation.

v If you define several administrator user IDs, they all may be logged on
simultaneously, but only one can update and activate a conversation at a
time. While one administrator is activating a conversation, the others
should use the administration application for only read or display
functions.

Selecting server properties for a test system
For a complete list and explanation of MOFW server properties, use the help
available through the Administration application, or see WebSphere Application
Server V4.0.1 for z/OS and OS/390: System Management User Interface, SA22-7838.

Defining containers for MOFW servers
When you use the Administration application to add a container for your
CORBA application, you need to know the following:
v The container name specified through Object Builder, during the packaging

or configuration stage of developing the application.
Rule: For a given server application, the container names specified in the
Administration application and in Object Builder must match.

v The qualities of service that the server application requires, which
determine the values you specify for the container properties.

Note: When you use Object Builder to configure an existing application for
the z/OS or OS/390 platform, and that application is associated with a
default container, WebSphere for z/OS allows you to successfully
deploy that application. Because those default containers are designed
for use only in WebSphere servers on workstation platforms, the
resulting run-time environment might not match that on the
workstation platforms. In a WebSphere for z/OS MOFW server, these
default containers have pre-defined properties that match z/OS and
OS/390-recommended properties for containers that manage transient
objects.

When you define a container, you select various policies that determine how
the container manages its objects, and how those objects behave. One of those
policies is the container transaction policy, which defines the transactional
scope for the object that the container manages. For most server application
objects, you should select the Required transaction policy. Before you use any
other transaction policy, make sure you read and understand “Background on
the OS/390 Component Broker transactional environment” on page 17.

Restriction: When you define a container that contains a queryable home, you
cannot define more than one logical resource mapping connection for the
container.

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 75

Connecting the WebSphere for z/OS MOFW server to a back-end resource
manager

Guidelines for supplying connection data for an IMS-OTMA LRM instance
For a WebSphere for z/OS MOFW server and an IMS subsystem to
communicate through OTMA, you need to supply connection data related to
the IMS and OTMA configuration.

The following list identifies the connection data you need to supply for an
IMS-OTMA LRM instance, and how to determine appropriate values for that
data:

XCF group name
Fill in the name specified on the GRNAME parameter in the DFSPBxxx
proclib member used for IMS initialization.

XCF partner name
Fill in the name specified on the OTMANM parameter in the DFSPBxxx
proclib member used for IMS initialization. Otherwise, use the name
specified by the APPLID1 parameter in the DFSPBxxx member, which is
the default XCF partner name if no OTMANM parameter is defined.

number of sessions
Specify 1.

TPIPE prefix
Specify a prefix, which must be four characters or less, for the system to
use for all transaction pipes required for this LRM. When creating a
transaction pipe for this LRM, the system generates a unique transaction
pipe name by using this prefix and appending four characters of
session-related information.

If you need more information about using OTMA for access to an IMS
subsystem, see one or more of the following books:
v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834, for instructions on setting up a WebSphere for
z/OS MOFW server that uses IMS-OTMA procedural application adapter
support.

v IMS/ESA Open Transaction Manager Access Guide, SC26-8743, for information
about IMS with OTMA.

Guidelines for supplying connection data for an IMS-APPC LRM instance
For a WebSphere for z/OS MOFW server and an IMS subsystem to
communicate through APPC/MVS, you need to supply connection data
related to the specific APPC/MVS logical unit (LU) associated with the server,
and the LU associated with IMS.

76 WebSphere for z/OS: Assembling CORBA Applications

The following list identifies the connection data you need to supply for an
IMS-APPC LRM instance, and how to determine appropriate values for that
data:

Local LU name
Fill in the logical unit (LU) name associated with WebSphere for z/OS.
This local LU name is defined in an LUADD statement in the APPCPMxx
parmlib member for the system on which WebSphere for z/OS runs.

Look for the LUADD statement for the LU associated with WebSphere for
z/OS. Use the value specified on the ACBNAME parameter as the local
LU name.

Rule: Use only the value specified on the ACBNAME parameter, which is
the network LU name. If you specify a network-qualified (or fully
qualified) name for the local LU, you will receive error message
BBOU0106E, which indicates that the local LU name is not valid.

Partner LU name
Fill in the name of the LU with which the WebSphere for z/OS server will
initiate an APPC conversation. This partner LU is defined in an LUADD
statement in the APPCPMxx parmlib member for the system on which
IMS runs. The IMS subsystem may be, but does not have to be, on a
system other than the one on which the WebSphere for z/OS server runs.

Look for the LUADD statement for the LU associated with IMS (an LU
associated with IMS has the IMS subsystem name specified for the
SCHED parameter on the LUADD statement). Use the value specified on
the ACBNAME parameter as the partner LU name.

Tip: When you specify the partner LU name, you may use one of the
following forms:
v Only the value specified on the ACBNAME parameter (in other words,

the network LU name)
v A network-qualified name (in the form networkID.networkLUname)

networkID is the value specified for the VTAM start option NETID and
networkLUname is the value specified on the ACBNAME parameter.

v A VTAM generic resource name, if your installation is configured to use
generic resources.

VTAM logmode name
Fill in the name of the VTAM logmode that designates the network
properties to be associated with any APPC conversations between this
local LU and its partner LU. Logmode names appear in the VTAM logon
mode table, which reside in your installation’s VTAMLIB data set.

APPC conversation time-out value
Specify the length of time, in minutes, for the WebSphere for z/OS server
to wait for a response to the Allocate call and any subsequent calls the

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 77

server issues during its conversation with IMS. Valid time-out values
range from 0 through 1440, which is 24 hours.

If you specify a value that is less than the value set for the
OTS_DEFAULT_TIMEOUT environment variable, the APPC conversation
time-out value will have no effect. Look for the OTS_DEFAULT_TIMEOUT
environment variable setting that you use for the application server’s
control and server regions.

APPC sync level

Fill in one of the values listed in following table. This value controls the
type of APPC/MVS conversation the WebSphere for z/OS server uses to
communicate with IMS. Base your choice on the transaction policies you
select for containers in this server configuration, and the characteristics of
the applications to be deployed in this server.

Recommendation: Use a sync level value that corresponds with the
transactional context of the request that the server is currently processing.
The easiest way to match the sync level and context is to select Autotran,
which lets the system determine the matching sync level.

78 WebSphere for z/OS: Assembling CORBA Applications

If this LRM is
connected to:

Then specify
this sync
level value:

Notes

One or more
containers that all
use the TX
Required
transaction policy

Syncpt (in
certain cases,
None is also
acceptable)

Because this transaction policy enforces the use of a
global transaction, the most logical value for the
APPC sync level is Syncpt. With Syncpt, the server
allocates a protected conversation, which preserves
the global transactional context for the interaction
between the server and the IMS subsystem, and
allows the system to recover any resources if
conversation errors or failures occur.

In certain cases, however, you might consider using
None when your application’s processing does not
depend on the ability to recover resources at this
point in its processing. With None, APPC/MVS,
WebSphere for z/OS, and IMS do not coordinate
any processing done on behalf of a distributed
application; without the overhead of coordination,
your application’s performance improves.

Recommendations:

v Use Syncpt if you cannot guarantee that your
server application will always run on the same
z/OS or OS/390 system on which the IMS
subsystem runs.

v Use None judiciously. In this case, resources that
the application uses might be in inconsistent
states if conversation errors or failures occur.

One or more
containers that
use a transaction
policy other than
TX Required

Autotran Use Autotran with these policies, so the system can
determine which conversation type, Syncpt or
None, is appropriate for the transactional context
associated with the current thread of execution. In
other words, if the current thread has a local
transactional context, the server uses a sync level of
None; for a global transactional context, the server
uses Syncpt.

If you need more information about using APPC/MVS for access to an IMS
subsystem, see one or more of the following books:
v WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and

Customization, GA22-7834, for instructions on configuring a WebSphere for
z/OS MOFW server and an IMS subsystem as a local LU and partner LU,
respectively. See the topic about using IMS-APPC procedural application
adapter support.

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 79

v z/OS MVS Planning: APPC/MVS Management, SA22-7599, for general
APPC/MVS configuration details.

v OS/390 eNetwork Communications Server: SNA Resource Definition Reference,
SC31-8565, for VTAM definition statements.

Guidelines for importing CORBA application DDL
To correctly run and manage your server application, the WebSphere for z/OS
MOFW server needs to know the contents of your CORBA server application.
The server gets this information when you import the DDL files that Object
Builder generated when you packaged your server application.

Recommendation: Consider using HFS files, rather than z/OS or OS/390 data
sets, for both input and output files for the import process. The input file is
already in the HFS, in your working directory. You can define an output file
in the same directory; just make sure you use a name that is not exactly the
same as the input file.

Before you begin:

v If you want to use a z/OS or OS/390 data set for the import process, you
must copy the contents of the DDL file into a data set. For instructions on
copying HFS files into data sets, see z/OS UNIX System Services User’s Guide,
SA22-7801.

v Make sure that you have set up the appropriate security definitions for the
import DDL process. Because the input and output files for this process are
associated with the BBOSMSS address space user ID, that user ID must
have access to the files:
– If you use a data set for the DDL to be imported, the user ID must have

read access to the input data set, and alter access to the output data set.
– If you use an HFS file for the DDL, the user ID must have the ability to

search the directories to find the input file, the ability to read the input
file, and the ability to write to the output file.

v If you use a data set for the DDL to be imported, make sure that these data
sets are not in use by another process. For example, you cannot use ISPF to
edit or browse the data set or data set member at the same time you start
the import.

Rules:

v You cannot delete and re-import the same application family in one
conversation. To re-import an application family, you must:
1. Delete the application family in one conversation.
2. Activate that conversation.
3. Create another conversation, and re-import the DDL.

80 WebSphere for z/OS: Assembling CORBA Applications

v You must define a container in the WebSphere for z/OS Administration
application before you can import any CORBA application DDL that
references the container.

v When you import specific DDL, you may associate only one logical
resource mapping with the container referenced in the DDL.

v You cannot import DDL containing objects that are already in an active
conversation.

v If input and output files used for DDL import reside in the hierarchical file
system (HFS), those files must be available (through NFS mount or
replication, or shared HFS) to every system in the sysplex that has Systems
Management running on it.

v If input and output files used for DDL import are z/OS or OS/390 data
sets (either sequential or partitioned), the characteristics must be
RECFM=VB, LRECL=1020, BLKSIZE=1024.

v Another process cannot be using the data set to be imported during the
import process. For example, you cannot use ISPF to edit or browse the
data set or data set member at the same time you start the import.

v If you use a partitioned data set to store the DDL to be imported, you must
specify the member name when you supply the input file name for the
import process.

v If you specify a pre-allocated data set as the output file for the import
process, you must supply a member name.

v When you have to import both base and specific DDL, import the base
DDL first, then the specific DDL.

Preparing resource managers for processing your application

To ensure that your installation has correctly set up a resource manager for
use with WebSphere for z/OS, see WebSphere Application Server V4.0.1 for z/OS
and OS/390: Installation and Customization, GA22-7834 for specific requirements.
The procedures in this section assume that your installation has correctly
installed and configured any resource managers that your applications will
need to use.

Steps for preparing DB2
If your server application uses DB2 to store data, you need to complete the
following tasks before running your application:
v Bind each server application data object into its own package in the DB2

Universal Database for z/OS and OS/390 plan. For instructions, see “Steps
for binding data objects for your CORBA application” on page 68.

v Create new or check existing DB2 tables that your server application will
use.
Recommendations:

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 81

– Although Object Builder can generate database schema files, create new
database tables through the SQL processor using file input (SPUFI)
facility. For details about creating database tables, see DB2 Application
Programming and SQL Guide, SC26-9933.

– Use row locks instead of page locks. For information about the
advantages of using row locks, see DB2 Administration Guide, SC26-9931.

Steps for preparing IMS
Before running any client applications that drive your CORBA application on
z/OS or OS/390, complete the following steps to prepare the IMS subsystem:
1. Set the IMS parallel scheduling limit to 0 (zero), which means that any

number of transactions can be scheduled.
v To determine the current setting, you may issue the IMS /DISPLAY

TRANSACTION command, and look for the value under the PARLM heading
in the display results.

v To set a new value for the parallel scheduling limit, you may issue the
IMS /ASSIGN PARLIM command.

For more information about using IMS commands, see IMS/ESA Operations
Guide, SC26-8741 or IMS/ESA Operator’s Reference, SC26-8742.

2. Start enough IMS message processing regions (MPRs) to handle the

number of client application requests. The number of MPRs required
depends on your application’s processing and the IMS environment in
which it runs.
a. Determine the number of MPRs you need, using your knowledge of

your server application and its clients and guidelines in the following
chart:

82 WebSphere for z/OS: Assembling CORBA Applications

For this type of
logical resource
mapping (LRM):

Use this information to determine the number of MPRs:

IMS-OTMA or
IMS-APPC with a
sync level of Syncpt

In these environments, the WebSphere for z/OSMOFW server,
IMS, and other system components work together to coordinate
all processing within a single client transaction, so that all
updates are either completed successfully or rolled back. Because
one single client transaction may generate several IMS
transactions, and thus use several MPRs, delays might occur
because each MPR must wait until the client transaction
completes before they are free to handle other work. To avoid
such delays in processing, IMS needs at least the same number
of started MPRs as the number of IMS transactions that the
client application will generate.

For example, consider a CORBA application that uses begin and
commit/rollback instructions to define the scope of one
transaction. Within that one transaction, the client application
generates as many as three separate IMS transactions. An IMS
transaction consists of the processing required to receive a
request for work, to invoke a program to do the work, and to
transmit the response to the requestor. In this particular case,
you need at least three active MPRs to handle the requests from
a single client application.

IMS-APPC with a
sync level of None

In this environment, the WebSphere for z/OS MOFW server,
IMS, and other system components do not coordinate all
processing within a single client transaction, so MPRs are ready
for new work as soon as a single IMS transaction completes. In
this case, you might be able to achieve acceptable application
performance with fewer MPRs than the number of IMS
transactions that the client application will generate.

IMS-APPC with a
sync level of
Autotran

In this environment, the system decides which sync level, Syncpt
or None, to use for any APPC/MVS conversation it has to start
to communicate with IMS. To avoid the delays that might occur
when the system uses a sync level of Syncpt, use the same
guidelines listed above for IMS-OTMA or IMS-APPC with a sync
level of Syncpt.

b. Determine how many MPRs are currently active. To do so, you may
issue the IMS /DISPLAY ACTIVE REGION command.

c. If you need more MPRs than the number of currently active regions,
use the IMS sample job named IMSMSG to start new regions. This
sample job invokes the IMS DFSMPR procedure to start new regions.
Make sure you specify a unique name for each MPR.

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 83

Depending on your installation’s practice, you will find the IMSMSG
job in either the IMS.JOBS or IMS.PROCLIB data set. If you need more
information about this job, see IMS/ESA Installation Volume 2: System
Definition and Tailoring, GC26-8737.

Adding CORBA application interfaces to the WebSphere for z/OS interface
repository

Client applications can use either static bindings or dynamic interface
invocation to use a CORBA application. To enable clients to use dynamic
interface invocation, you must populate the WebSphere for z/OS interface
repository for each CORBA application that you deploy on the z/OS or
OS/390 platform.

Object Builder creates the source file for an interface-repository loader
program as part of the build process for each server application. Running the
all.mak file compiles not only the server application code, but also compiles
the loader program. The resulting executable program, application-
nameIR.exe, is placed in the same directory as the server application DLLs.

To run the loader program to add server application interfaces to the interface
repository, perform the following steps:
1. Copy the BBOIRC3 member from BBO.SBBOEXEC into your working JCL

data set.

2. Edit your copy of the BBOIRC3 member, as follows:
v Change PGM name to application-nameIR

v Specify one of the following options, in single quotes, on SET ARGV:

IRdelete
Removes only the current interface information from the IR database

IRforce
Forces the deletion of inheriting interfaces as well as current
interface and repopulate all of them

(default)
Forces deletion of only the current interface information, and
repopulate this interface information

3. Run the loader program from either the z/OS or OS/390 UNIX

environment or from TSO/E:

84 WebSphere for z/OS: Assembling CORBA Applications

v From the z/OS or OS/390 UNIX environment, enter the executable
name (and arguments, if you do not want the default); for example:
executable-name,argv=IRforce

v From TSO/E: specify the JCL procedure name, and executable name
(and arguments, if you do not want the default); for example:
s procname,exe=executable-name,argv=IRdelete

Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers 85

86 WebSphere for z/OS: Assembling CORBA Applications

Chapter 5. Developing, assembling, and deploying client
applications on z/OS or OS/390

Perhaps the most common approach to developing z/OS or OS/390 client
applications will be to:
1. Code and test both client and CORBA applications on the workstation,

using Visual Age Component Development tools
2. Assemble, deploy, and test server applications in a WebSphere for

z/OS(MOFW) server
3. Port client applications to z/OS or OS/390:

a. Editing source code as appropriate, on either the workstation or z/OS
or OS/390

b. Compiling and link-editing code on z/OS or OS/390

You may, however, code and test client applications directly on z/OS or
OS/390, without first creating a version of the client application that runs on
the workstation.

Regardless of the approach, however, client application programmers require
the following skills to develop client applications that run on z/OS or
OS/390:
v The C++ or Java programming languages
v The WebSphere for z/OS common client programming model, which is

described in detail in WebSphere Application Server for OS/390 Component
Broker: Programming Guide.

v Design considerations and z/OS or OS/390-specific guidelines for both
client and server applications in “Chapter 2. Developing CORBA
applications for WebSphere for z/OS” on page 15.

v z/OS or OS/390 UNIX system services, including working with shells,
setting environment variables, using the make command to compile code,
and other common programming tasks

v Security services available through the installation’s security product

The following table shows the subtasks and associated information for
preparing and running client applications on z/OS or OS/390.

Subtask Associated information (See . . .)

Learning which environments
WebSphere for z/OS supports for client
applications

“Background on supported client run-time
environments” on page 88

© Copyright IBM Corp. 2000,2001 87

Subtask Associated information (See . . .)

Learning about the application
development environment on z/OS or
OS/390

“Background on setting up the application
development environment on z/OS or
OS/390” on page 92

Developing client applications v “Background on designing and coding
clients for your server applications” on
page 91

v “Background on the OS/390 Component
Broker transactional environment” on
page 17

v “Restrictions for CORBA applications and
their clients” on page 24

Assembling client applications on z/OS
or OS/390

v “Background on deciding where to place
executable code for the client application”
on page 92

v “Background on allocating data sets for
the client application’s executable code” on
page 92

v “Steps for setting environment variables
for make processing” on page 92

v “Steps for compiling client applications on
z/OS or OS/390” on page 93

Deploying client applications on z/OS
or OS/390

v “Background on setting up security for
servers and z/OS or OS/390 clients” on
page 95

v “Steps for running a client application on
z/OS or OS/390” on page 95

Background on supported client run-time environments

For CORBA applications that run in its MOFW servers, OS/390 Component
Broker supports client applications that run on z/OS or OS/390, and on other
platforms, as shown in Figure 16 on page 90. For client applications that run
on z/OS or OS/390, the run-time environment includes z/OS or OS/390
Language Environment and UNIX System Services (USS):
v z/OS or OS/390 Language Environment provides common services and

language-specific routines, such as message handling and storage
management, in a single run-time environment for C++, Java, and other
programs.
Because various elements of z/OS or OS/390 require Language
Environment, system programmers at your site have already set up this
run-time environment as part of installing z/OS or OS/390. The common

88 WebSphere for z/OS: Assembling CORBA Applications

run-time library and run-time libraries for supported languages are already
available to your client application, through the link list, STEPLIB, or
run-time library services (RTLS).

v UNIX System Services provides a shell, the standard UNIX command-line
interface, that allows users to interact with z/OS or OS/390, plus all of the
utilities that UNIX users expect in their work environment. Through UNIX
System Services, users can develop or port application programs, manage
files, control processes, and so on.
As with Language Environment, system programmers at your site have
already set up the USS environment for all users. As part of preparing and
running OS/390 Component Broker client applications on z/OS or OS/390,
you have to modify or tailor the environment as instructed in this chapter.

Chapter 5. Developing, assembling, and deploying client applications on z/OS or OS/390 89

The topics addressed in this chapter apply to only the clients that run on
z/OS or OS/390. These clients can run either:
1. On the same system as the OS/390 Component Broker MOFW server that

manages the objects that the clients use; or
2. On another system on which OS/390 Component Broker is running.

Figure 16. Clients that OS/390 Component Broker supports for CORBA applications in MOFW servers

90 WebSphere for z/OS: Assembling CORBA Applications

In the first case, illustrated on the left side of Figure 16 on page 90, the client
application is local to the OS/390 Component Broker MOFW server. In the
second case, illustrated on the upper right side of Figure 16 on page 90, the
client application is remote to the OS/390 Component Broker MOFW server.

If necessary, see the following sources for further information:

For information about
this topic:

See:

Configuring and
running client
applications on
platforms other than
z/OS or OS/390

v WebSphere Application Server for OS/390 Component Broker
Programming Guide

v WebSphere Application Server for OS/390 Component Broker
System Administration Guide

Configuring and
running IMS
applications as
OS/390 Component
Broker clients

“Appendix B. An IMS application as an WebSphere for z/OS
client” on page 159

The z/OS or OS/390
Language
Environment

v z/OS Language Environment Concepts Guide, SA22-7567, for a
conceptual introduction to Language Environment,
including descriptions of the program model, callable
services, and glossary of terms.

v z/OS Language Environment Programming Guide, SA22-7561,
for instructions on creating and running application
programs under Language Environment.

The USS shell
environment

z/OS UNIX System Services User’s Guide, SA22-7801, for
descriptions of the USS shell environment and instructions
for using the various system services.

Background on designing and coding clients for your server applications

Because the WebSphere Application Server for z/OS and OS/390 Component
Broker products define a common programming model, most of the
information about designing and coding client applications appears in the
following books:
v Component Broker Programming Guide

v Component Broker Advanced Programming Guide

v Component Broker Programming Reference

v Component Broker Application Development Tools Guide

These manuals define the concepts, coding practices, programming interfaces,
and tools you need to understand to design and code Component Broker
client applications. These manuals also note which concepts or interfaces do

Chapter 5. Developing, assembling, and deploying client applications on z/OS or OS/390 91

not apply for the z/OS or OS/390 platform, but these restrictions apply only
to CORBA applications running in a WebSphere for z/OS MOFW server. The
Component Broker client programming model is identical for all platforms on
which the Component Broker products run.

Background on setting up the application development environment on z/OS or
OS/390

When system programmers at your site install OS/390 Component Broker,
they also have the option of tailoring the UNIX application development
environment on z/OS or OS/390. The instructions they receive in WebSphere
Application Server V4.0.1 for z/OS and OS/390: Installation and Customization,
GA22-7834 are listed in “Steps for setting up the application development
environment” on page 40. Generally speaking, the tailoring they do for
application assemblers, such as allocating HFS space, is adequate for
programmers who develop and run client applications on z/OS or OS/390.

If necessary, see WebSphere Application Server V4.0.1 for z/OS and OS/390:
Installation and Customization, GA22-7834 for specific software products and
release levels for the client environment.

Background on deciding where to place executable code for the client
application

Executable code for your client application can reside in a partitioned data set
(PDS), a partitioned data set extended (PDSE), or in the hierarchical file
system (HFS). Because a PDS can contain load modules that are only 16
megabytes or less, your choice is more likely between only two options: PDSE
or HFS. See “Background on deciding where to place executable code for the
server application” on page 49 for recommendations, which apply to client
application code as well as server application code.

Background on allocating data sets for the client application’s executable code

If you decide to place executable code for your client application in a data set,
or if your client application uses DB2 resources directly, see “Background on
allocating data sets for the CORBA application’s executable code” on page 53
for information about allocating one or more partitioned data sets (PDS) or
PDSEs before compiling your client application.

Steps for setting environment variables for make processing

Perhaps the easiest way to compile your client application is to use the make
utility, which is available through the UNIX system services (USS) shell.
“Steps for compiling client applications on z/OS or OS/390” on page 93
contains a sample make file that you can use; the sample make file is based

92 WebSphere for z/OS: Assembling CORBA Applications

on the make files that Object Builder generates for CORBA applications to be
deployed in OS/390 Component Broker MOFW servers. In most cases, the
requirements for make processing, the environment variable settings, and the
instructions for compiling code are the same for both server applications and
their z/OS or OS/390 clients. Use the information presented in “Background
on make processing” on page 55, for a description of make processing and
environment variable settings.

Steps for compiling client applications on z/OS or OS/390

Perhaps the easiest way to compile your client application is to use the make
utility, which is available through the UNIX system services (USS) shell. These
instructions contain a sample make file that you can use; the sample make file
is based on the make files that Object Builder generates for CORBA
applications to be deployed in OS/390 Component Broker MOFW servers. In
most cases, the requirements for make processing, the environment variable
settings, and the instructions for compiling code are the same for both server
applications and their z/OS or OS/390 clients.

Perform the following steps to compile your client application:
1. Make sure you have set the proper environment variables for compiling

code. The environment variables you need to set include those that:
v Identify the location of OS/390 Component Broker product files
v Identify where you want to place the executable code for your server

application

See “Background on make processing” on page 55 for instructions on
setting variables for make processing.

2. Make sure you have allocated any data sets that your client application

requires. See “Background on allocating data sets for the CORBA
application’s executable code” on page 53 for instructions on allocating
data sets.

3. Copy the following sample make file into your working HFS directory,
using the file naming convention: filename.mak
all: pass3 pass7

OBJ_FILES=client.o
EXE_FILES=client.exe

.INCLUDE: obmdll30.mk

Chapter 5. Developing, assembling, and deploying client applications on z/OS or OS/390 93

client.o.cppflags=NOEXPO
client.o : client.cpp
client.exe: client.o

4. From your working directory on z/OS or OS/390, enter make -f

filename.mak

Tips:

v Use the following make command to run the build process in the
background, and to direct all messages in a file for later review, if
necessary. For example, the file ./build_results.txt will contain all
messages generated during the make process.
make -f filename.mak 1>build_results.txt 2>&1 &

v If you use a file to collect messages generated during the build process,
you can view them before make processing completes by using the head
and tail UNIX commands, which are described in z/OS UNIX System
Services Command Reference, SA22-7802.

v If you are placing executable code in a load library, and the data set you
allocated is too small, the make process fails with a system completion
(ABEND) code x37. To fix the problem, allocate a larger data set and
restart the build process.

v If the make process fails, fix the error and restart the build process. If
you need to start from scratch again, issue the following command to
clean off all files generated in the HFS during the first build attempt:
make –f filename.mak clean.

If necessary, see the following sources for further information:

For information
about this topic:

See:

The USS shell
environment

z/OS UNIX System Services User’s Guide, SA22-7801 describes the
USS shell environment and how to work with environment
variables.

The make utility v z/OS UNIX System Services Programming Tools, SA22-7805, for a
tutorial on using make.

v z/OS UNIX System Services Command Reference, SA22-7802 , for
make command format and options, makefiles, usage notes, and
other reference information.

94 WebSphere for z/OS: Assembling CORBA Applications

For information
about this topic:

See:

IDL v Component Broker Programming Guide, for a description of
interface definition language and its syntax

v “Appendix C. The Interface Definition Language (IDL)
compiler” on page 171, for the idlc command, along with
options and syntax for the OS/390 Component Broker IDL
compiler.

The DB2
pre-compiler

DB2 Application Programming and SQL Guide, SC26-9933 lists
pre-compiler options and default values that you might want to
change for a particular server application.

C++ v z/OS UNIX System Services Command Reference, SA22-7802 , for
compiler options (under the c89 command description) that
you might want to change for a particular server application.

v z/OS C/C++ User’s Guide, SC09-4767, for general information
about the z/OS or OS/390 C++ compiler and its options.

Java on OS/390 http://www.s390.ibm.com/java/

Background on setting up security for servers and z/OS or OS/390 clients

Several security issues, including user identification and authentication, apply
for client programs running on z/OS or OS/390. How you set up security for
your client applications depends primarily on which WebSphere for z/OS
MOFW servers the client application will use, whether the client is local or
remote to those servers, and how secure their communication needs to be.

For further information about setting up security for the client run-time
environment, see WebSphere Application Server V4.0.1 for z/OS and OS/390:
Installation and Customization, GA22-7834.

Steps for running a client application on z/OS or OS/390

Once you have executable code for your client application, you can run the
client application to use CORBA applications (that is, objects) deployed in
WebSphere for z/OS MOFW application servers.

Perform the following steps to run your client application:
1. Set up the appropriate security mechanisms for your client and the

WebSphere for z/OS MOFW servers that it will use. For further
information about setting up security for the client run-time environment,
see WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and
Customization, GA22-7834.

Chapter 5. Developing, assembling, and deploying client applications on z/OS or OS/390 95

2. Set the proper environment variables for the client run-time environment.
You may use the same mechanisms and recommendations that you used
to set compile-time variables. If necessary, see “Steps for compiling
CORBA application source files on z/OS or OS/390” on page 64. For the
actual variable values to set, however, use the tables and definitions in
“Appendix A. Environment files” on page 125.

3. If you use a shell script to set variables, you need to execute the script
before running your client application. To execute a shell script, enter the
following:
. clientappname_setup.sh

4. Start your client application. You may use any of the methods available

through the z/OS or OS/390 UNIX environment. If necessary, see z/OS
UNIX System Services User’s Guide, SA22-7801 or z/OS Language
Environment Programming Guide, SA22-7561 for details about running
programs.

96 WebSphere for z/OS: Assembling CORBA Applications

Chapter 6. Working with CORBA applications in a
production system

In addition to step-by-step installation through the WebSphere for z/OS
Administration application, you may use the following alternative methods of
installing applications in a WebSphere for z/OS:

For information about: See . . .

Using the export/import function of the
Administration application

“Steps for using the export/import
process through the Administration
application”

Using the System Management Scripting
APIs

“Installing applications using scripts” on
page 99

Steps for using the export/import process through the Administration
application

After you have finished testing your CORBA applications, you can use the
WebSphere for z/OS Administration application to export the (MOFW) server
configuration you have been using on your test system, and import that
model configuration on a production system. Through this export/import
process, you create an HFS file that contains the server definition, which you
transfer to a production system. This process can be quicker and less
error-prone than defining a server configuration from scratch.

Perform the following steps to use the export/import process:
1. In the Administration application, export the server model of the MOFW

server in which your application is deployed:
a. Select the server in the active image.
b. Select the export server... action of the Selected menu bar choice. The

Export server dialog box appears.
c. Enter the fully qualified name of an HFS file to contain the output of

the export process.
d. Click OK.

Result: WebSphere for z/OS uses the specified output HFS file to store all
of the information associated with the server, including the following:
v All of the server properties
v Containers
v Application families

© Copyright IBM Corp. 2000,2001 97

v Logical resource mappings
v Applications
v Client interfaces
v Classes
v DLLs
v Homes
v Query meta-data objects

2. Copy or move the output HFS file to the z/OS or OS/390 production

system on which you want the server to run. See z/OS UNIX System
Services User’s Guide, SA22-7801 for methods of and instructions for
moving or copying files.
Warning: Do not edit the output HFS file.

3. In the Administration application, import the MOFW server model by
completing the following steps:
a. Add a conversation, if necessary.
b. Select the Servers folder.
c. Select the import server... action of the Selected menu bar choice. The

Import server dialog box appears.
d. For Server name, enter a name that is unique to this WebSphere for

z/OS configuration.
e. For Input file, enter the fully qualified name of the HFS file that you

moved or copied to the production system.
f. Click OK.
g. Modify the properties of the server, including Control region proc

name and Debugger allowed.
h. Add server instances for the production system, as appropriate.
i. Add logical resources for the production system, as appropriate.

4. Also in the Administration application:

a. Validate the imported model by selecting the conversation, then
selecting Validate. When message BBON0442I appears in the status
bar, the new conversation is valid.

b. Commit the conversation by selecting the conversation, then selecting
Commit. Answer Yes to the question: ″Do you still want to commit?″
When message BBON0444I appears in the status bar, the new
conversation was committed.

c. Complete OS/390 tasks, as appropriate.

98 WebSphere for z/OS: Assembling CORBA Applications

d. Activate the conversation by selecting the conversation, then selecting
Activate. Answer Yes to the question: ″Do you want to activate
conversation... ?″ At the bottom of the dialog, a message indicates
when the server definition has been activated.

Installing applications using scripts

To install applications in a MOFW server without using the WebSphere for
z/OS Administration application, you may use the System Management
Scripting APIs, which provide exactly the same capabilities as the
Administration application. Using the scripts might provide a quicker, less
error-prone method of installing applications into a production server, for
example. For more information about using the System Management Scripting
APIs, see WebSphere Application Server V4.0.1 for z/OS and OS/390: System
Management Scripting API, SA22-7839.

Chapter 6. Working with CORBA applications in a production system 99

100 WebSphere for z/OS: Assembling CORBA Applications

Chapter 7. Collecting data about CORBA application
activity

WebSphere for z/OS offers several different methods of collecting information
about CORBA applications running in a MOFW server:

For information about: See . . .

Using SMF records to collect accounting
information

“Collecting CORBA application
information through SMF records”

Using the IBM Distributed Debugger to
collect diagnostic data for distributed
applications

“Debugging and tracing distributed
applications”

Using JRas support to enable applications
to issue messages and trace entries

“Logging messages and trace data for
Java applications” on page 106

Collecting CORBA application information through SMF records

If you want to collect and record statistics related to your server applications,
you may define a MOFW server to use the z/OS or OS/390 systems
management facility (SMF). Through SMF activity and interval records, the
MOFW server records application details that you may use for application
profiling. To enable SMF recording, you must define the MOFW server to
create SMF records, and perform other administration tasks; for further
details, start with the SMF topic in WebSphere Application Server V4.0.1 for z/OS
and OS/390: Operations and Administration, SA22-7835.

Debugging and tracing distributed applications

The IBM Distributed Debugger and Object Level Trace tools enable you to
monitor and debug distributed applications, including the components that
run in an WebSphere for z/OS server. The IBM Distributed Debugger and
Object Level Trace provide debugging and tracing capabilities for Java or C++
application components and their Java or C++ clients, which may reside on
platforms other than z/OS or OS/390.

The following table shows the subtasks and associated information for using
the IBM Distributed Debugger and Object Level Trace tools, which are
hereafter called Debugger and OLT, respectively.

© Copyright IBM Corp. 2000,2001 101

|

|
|
|
|
|
|

|
|
|

Subtask Associated information (See . . .)

Learning concepts related to the
Debugger and OLT

The InfoCenter for WebSphere V3.5 or V4.0 for
distributed platforms. The InfoCenter is available at:
http://www.ibm.com/software/webservers/appserv/

Installing the Debugger and OLT
on your workstation

The InfoCenter as listed above

Setting up the workstation and
z/OS or OS/390 environments
and applications for using the
tools

v “Steps for starting the Debugger and OLT on
your workstation”

v “Steps for preparing the Debugger and OLT for
Windows Java clients” on page 103

v “Steps for preparing the Debugger and OLT for
Windows C++ clients” on page 104

v “Step for preparing z/OS or OS/390 Java clients”
on page 104

v “Steps for preparing z/OS or OS/390 C++
clients” on page 105

v “Steps for preparing server applications in a
WebSphere for z/OS MOFW server” on page 105

Using the Debugger and OLT
interfaces and output

The InfoCenter as listed above

Steps for starting the Debugger and OLT on your workstation
Perform the following steps to start the Debugger and OLT on a Windows NT
or 2000 workstation:
1. Start the OLT Viewer from either the Windows Taskbar Start Menu, or

type olt from an MS-DOS command prompt.

2. Start the Browser Preferences window by selecting File → Preferences...

3. From the Browser Preferences window, click on OLT. Write down the OLT

Server TCP/IP port value (the default is 2102), which is the value you will
later specify for the client environment variable.

4. From the Client Controller, in the Execution Mode list box, set the
application execution mode to one of the following:
v Trace only
v Debug only
v Trace and debug
v No trace and debug

Make sure you hit the Apply button to save any changes.

102 WebSphere for z/OS: Assembling CORBA Applications

|||

|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|
|

|

|

|
|

|
|

|

|

|

|
|
|

|

|
|
|
|
|
|

|

Notes:

a. Remember whether you select the trace-only option or a
trace-and-debug option, because you must specify the same option in
Object Builder to correctly prepare your server application for use with
the Debugger and OLT.

b. If the execution mode is set to Debug only or Trace and debug, the
debugger host name and debugger TCP/IP port field is enabled. You
can change the debugger host name and port to values that reflect the
location of the Debugger. This host name should be the same as the
value you specify for the OLT Server host name if OLT and the
debugger interface run on the same machine. Otherwise, these host
name values will be different. If your installation does not have DNS
configured for the WebSphere for z/OS environment, make sure you
use an IP address as the Remote Debugger host name.
The default setting for the Debugger host name is the local host name,
and the default for the Debugger TCP/IP port is 8001.

Before continuing to the next procedure, make sure that you remember the
following:
v The monitoring mode you selected for debugging.
v The IP addresses and port numbers for the machines on which the OLT

server and OLT client controller are running.

Steps for preparing the Debugger and OLT for Windows Java clients
To prepare the Debugger and OLT for Java clients that run on Windows and
use Java business objects that are installed in a MOFW server, perform the
following steps:
1. Create the client startup command based on the following default startup

command:
java -Xdebug -Xnoagent -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8888
-Djava.compiler=NONE -Dcom.ibm.debug.jdwpport=8888
-Xbootclasspath/a:%JAVA_HOME%\lib\tools.jar -classpath %SOMCBASE%\lib\somojor.zip;
%SOMCBASE%\samples\InstallVerification\ProgrammingModel\BusinessObjects\Policy\Working\NT\TRACE_DEBUG\JCB\jcbPolicyC.jar;
%SOMCBASE%\lib\dertrjrt.jar;%CLASSPATH%
-Dcom.ibm.CORBA.EnableApplicationOLT=true
-Dcom.ibm.CORBA.OLTApplicationHost=lei01.torolab.ibm.com
-Dcom.ibm.CORBA.OLTApplicationPort=2102 -DOLTClient=true
-Dcom.ibm.CORBA.BootstrapHost=boss0012.l2.ibm.com PolicyApp [options]

2. Change address and jdwpport to the same value that you will use for the

JVM_DEBUG_PORT variable for the MOFW server in which the Java
business objects are installed..

3. Change the OLTApplicationHost to the hostname where the OLT runs.

Chapter 7. Collecting data about CORBA application activity 103

|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|

|

4. Change the OLTApplicationPort to the OLT server’s TCP/IP port.

5. Change the BootstrapHost to the host name where the WebSphere for
z/OS MOFW server runs.

Steps for preparing the Debugger and OLT for Windows C++ clients
Before you begin:

v Make sure DCE is installed and running.
v Make sure CBConnector is running.
v Bring up the WebSphere for z/OS Administration application with Expert

mode.

To prepare the Debugger and OLT for C++ clients that run on Windows and
use business objects that are installed in a MOFW server, perform the
following steps using the WebSphere for z/OS Administration application:
1. Go to host images, open your IP name image, then open client style

image → preference, and edit the default client setting.

2. Under the orb panel, change the name server to where the WebSphere for
z/OS MOFW server is running.
Example: boss0109.12.ibm.com

3. Go to the transaction panel and change the deferred transaction begin

option to never.

4. Go to the main panel and set the OLThostname and OLTport to values that
point to the OLT tools.

5. Click the Apply button.

Step for preparing z/OS or OS/390 Java clients
To prepare Java clients that run on z/OS or OS/390 and use Java business
objects that are installed in a MOFW server, perform the following step:
v Add the following environment variables to the Java client’s shell script:

export HOME=/tmp
export IVB_DEBUG_ENABLED=1 # enable the OLT tools
export IVB_TRACE_PORT=2102 # OLT Server TCP/IP port
export IVB_TRACE_HOST=address # the IP address where the OLT is running, or

if WebSphere for z/OS has DNS set up, you may
use the host name for IVB_TRACE_HOST

104 WebSphere for z/OS: Assembling CORBA Applications

|

|

|
|

|

|

|

|

|

|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|
|

|

|

|

|

|
|

|

|
|
|
|
|
|

Steps for preparing z/OS or OS/390 C++ clients
Before you begin: Find out whether the IBM Distributed Debugger and
Object Level Trace are installed and available at your installation. You will
need to know whether the systems on which your WebSphere for z/OS server
and client applications will run have access to the cataloged data set for the
Debug Tool, which works with components of the IBM Distributed Debugger
and Object Level Trace. The Debug Tool is part of the C/C++ with Debug
Tool feature of z/OS or OS/390, and of VisualAge for Java, Enterprise Edition
for OS/390.

To prepare C++ clients that run on z/OS or OS/390 and use business objects
that are installed in a MOFW server, perform the following steps:
1. Add the following environment variables to the client’s environment file:

HOME=/tmp // this can be any existing writable directory
IVB_DEBUG_ENABLED=1 // this is to enable the client for debug/trace

// tool
IVB_TRACE_PORT=2102 // default port for the OLT Server TCP/IP port
IVB_TRACE_HOST=address // ip address or hostname of the work station

// where the OLT is running

2. Make sure the client and the server are able to access the OLT dlls or the

Debug Tool datasets.

Steps for preparing server applications in a WebSphere for z/OS MOFW
server

Before you begin: Find out whether the IBM Distributed Debugger and
Object Level Trace are installed and available at your installation. You will
need to know whether the systems on which your WebSphere for z/OS server
and client applications will run have access to the cataloged data set for the
Debug Tool, which works with components of the IBM Distributed Debugger
and Object Level Trace. The Debug Tool is part of the C/C++ with Debug
Tool feature of z/OS or OS/390.

Follow these instructions, from the workstation where you installed the
Debugger and OLT, to enable the Java or C++ business objects for OLT:
1. Compile the business object with the compiler debug option.

2. Start the WebSphere for z/OS Administration application and create a new

conversation for a new MOFW server.

3. Expand the Servers folder and highlight the MOFW server. Then, in the
server properties form:

Chapter 7. Collecting data about CORBA application activity 105

|

|
|
|
|
|
|
|
|

|
|

|

|
|
|
|
|
|

|

|
|

|

|
|

|
|
|
|
|
|
|

|
|

|

|

|
|

|

|
|

v Check the Debugger allowed check box.
v Set the Object Level Trace Hostname to the name of the machine where

OLT is running, and set the Object Level Trace Port to the value you
set in “Steps for starting the Debugger and OLT on your workstation”
on page 102. (The default port is 2102).

v Add the following environment variable only for Java business objects:
JVM_DEBUG_PORT=xxxx

where xxxx is the port number that the Debugger will use to connect to
the running JVM.

Logging messages and trace data for Java applications

The WebSphere for z/OS run-time supports the Ras Toolkit for Java, which
enables you to issue messages from and collect trace data for your Java server
applications that run in WebSphere for z/OS J2EE or MOFW servers. Through
WebSphere for z/OS extensions to the toolkit, known as JRas support, your
Java application’s messages can appear on the z/OS or OS/390 master
console or in the error log stream, depending on the message type. All
messages are logged in the component trace (CTRACE) data set for
WebSphere for z/OS. Also, your application’s trace entries can appear in the
same CTRACE data set.

You might want to issue messages to the master console to report serious
error conditions for mission-critical applications. Through the master console,
an operator can receive and, if necessary, take action in response to a message
that indicates the status of your application. In addition, by directing
messages to the master console, you can trigger automation packages to take
action for specific conditions or events related to your application’s
processing.

With JRas support, you may direct error messages to the error log stream.
Any messages that your application issues also appear in the CTRACE data
set for WebSphere for z/OS. Logging the messages in these system resources
can help you more easily diagnose errors related to your application’s
processing.

Similarly, issuing requests to log trace data in the CTRACE data set is another
method of recording error conditions, or collecting application data for
diagnostic purposes. You can select the amount and types of trace data to be
collected, so you have the ability to run your application with minimal

106 WebSphere for z/OS: Assembling CORBA Applications

|

|
|
|
|

|

|

|
|

|

|

tracing, when performance is a priority, or to run your application with
detailed tracing, when you need to recreate a problem and collect additional
diagnostic information.

Recommendation: The error log stream, the CTRACE data set for WebSphere
for z/OS, and the master console are primarily intended for recording
diagnostic data for or monitoring system components and critical applications.
Depending on your installation’s configuration, directing application messages
and data to these resources might have an adverse affect on system
performance. For example, if you send application data to the CTRACE data
set, trace entries in that data set might wrap more quickly, which means you
might lose some critical diagnostic data because the system writes new entries
over existing ones when wrapping occurs. Use this logging support
judiciously.

Notes:

1. You can use the WebSphere for z/OS support for logging messages and
trace data only for Java applications (not for Java applets).

2. The WebSphere for z/OS support for the Ras Toolkit is not the same as the
JRas support supplied in Enterprise Edition V3.02. The new JRas support:
v Always logs messages that your application issues. This change means

that, once you code an application to issue messages and run that
application, its messages will always be collected and logged. With
Enterprise Edition V3.02, you had the ability turn off message collection.

v Requires a different mechanism for enabling the collection of trace data.
With Enterprise Edition V3.02, environment variables for the MOFW
application server controlled the collection of trace data; with
WebSphere for z/OS V4.0, a customer-supplied trace settings file
enables or disables the collection of trace data.

v Uses different classes for obtaining message or trace loggers, but the
same methods: the createRASTraceLogger and createRASMessageLogger
methods. The WebSphere for z/OS V4.0 methods, however, have
slightly different signatures than those for Enterprise Edition V3.02.
Although the Enterprise Edition V3.02 createRASTraceLogger and
createRASMessageLogger methods are deprecated, you do not have to
change any of the programs you coded to use them, unless those
programs must run on another platform as well as on z/OS or OS/390.
With WebSphere for z/OS V4.0, calls to createRASTraceLogger or
createRASMessageLogger are delegated to the same methods in the new
WebSphere for z/OS V4.0 class. To run your application on additional
platforms, such as Windows NT, you must recode your program to use
the new methods.
For descriptions of the methods you can issue from your server
application to issue messages or log trace entries, refer to the InfoCenter
at http://www.ibm.com/software/webservers/appserv/library.html. The

Chapter 7. Collecting data about CORBA application activity 107

|
|

InfoCenter describes the JRas Facility methods in the com.ibm.ras
package, as it applies to all supported platforms, including z/OS or
OS/390.

The following table shows the subtasks and associated procedures for logging
messages and trace data for your Java application:

Subtask Associated procedure (See . . .)

Determining which types of messages and
trace data to issue or collect

v “Background on issuing application
messages to the z/OS or OS/390
master console”

v “Background on issuing trace requests
for your application” on page 110

Preparing your Java server application to
issue messages and trace requests

“Steps for coding your Java application to
issue messages and trace requests” on
page 112

Preparing the z/OS or OS/390 run-time
environment for logging messages and
collecting trace data

“Steps for preparing the z/OS or OS/390
environment for logging Java application
messages and trace requests” on page 118

Viewing messages or trace data collected
for your Java server application

v “Background on viewing messages and
trace data” on page 121

v “Steps for using IPCS in batch mode to
format application trace data” on
page 122

Background on issuing application messages to the z/OS or OS/390
master console

With the WebSphere for z/OS run-time support for the Ras Toolkit (JRas
support), you can issue messages from your Java application to the master
console. You might want to issue messages to the master console to report
serious error conditions for mission-critical applications, or to trigger
automation packages. The messages your application issues also appear in the
component trace (CTRACE) data set that WebSphere for z/OS uses, and in its
error log stream if the messages are classified as error messages. Logging the
messages is another method of recording error conditions, or collecting
application data for diagnostic purposes.

WebSphere for z/OS provides code that creates and manages a message
logger, which processes your application’s messages. The message logger runs
in the Java virtual machine (JVM) for the WebSphere for z/OS J2EE or MOFW
server in which your Java application will run. To use a message logger, all
you need to do in your Java application is:
1. Define the message logger,

108 WebSphere for z/OS: Assembling CORBA Applications

2. Drive the method to instruct WebSphere for z/OS to create the message
logger, and

3. Code messages at appropriate points in your application. To direct specific
messages to the master console, your code must include the appropriate
classification for each message.

Specific instructions for updating your application to use JRas support appear
in “Steps for coding your Java application to issue messages and trace
requests” on page 112. Before you can use those instructions to properly code
messages, however, you need to understand the concepts in the following
topics:
v “Defining messages through inline method calls or a message properties

file”
v “Understanding how the message type affects message destinations” on

page 110

Defining messages through inline method calls or a message properties
file
If you want to issue messages from your Java application, you may either
define the messages inline, or use a separate file to contain the messages.
Generally speaking, defining messages inline is faster and requires fewer steps
to complete; using a separate message properties file is a better approach for
both usability and for text translation, if you plan to provide message text in a
variety of languages. Regardless of whether you use the file or inline
approach for defining messages, you must code methods in your Java
application to issue messages at appropriate points in its processing. At those
points, you use methods defined in the RASIMessageLogger interface to issue
messages.

If you define messages inline, use textMessage methods to issue messages
from your application. The string that you specify on the method call is what
the message logger sends to the master console, error log stream, or CTRACE
data set.

If you plan to use a message properties file, you need to:
1. Create the message properties file.
2. Define all messages using a key/text pair.

The key enables the message logger to locate the appropriate message in
the message file; the text is what the message logger sends to the master
console, error log stream, or CTRACE data set.

3. Use the appropriate methods to tell the message logger where to find
message text for your application’s messages.
You can identify the message file to the message logger through two
mechanisms:

Chapter 7. Collecting data about CORBA application activity 109

v The setMessageFile method, which registers one message properties file
to serve as the default file for retrieving message text.

v The message or msg methods, on which you may specify the name of the
message properties file.

See “Steps for coding your Java application to issue messages and trace
requests” on page 112 for specific instructions for creating a message file, rules
for defining the messages in it, and examples.

Understanding how the message type affects message destinations
When you code the method to issue a message, you assign a message type to
characterize the message as an error, warning, or informational message. The
RASIMessageEvent interface defines the message types. These types define the
destination of each message:
v Only informational messages (TYPE_INFORMATION or TYPE_INFO) are sent to

the master console.
v Only error messages (TYPE_ERROR or TYPE_ERR) are sent to the error log

stream.
v All three types of messages are sent to the CTRACE data set.

Note that messages are always logged; once you code an application to issue
messages, and run that application on z/OS or OS/390, its messages will
always be collected and logged.

Background on issuing trace requests for your application
The purpose of collecting trace data is to provide sufficient information to
diagnose a problem with your application. With the WebSphere for z/OS
run-time support for the Ras Toolkit (JRas support), you can issue trace
requests from your Java application, and have the resulting trace data
recorded in the component trace (CTRACE) data set that WebSphere for z/OS
uses. Your application’s trace data appears in the CTRACE data set for the
WebSphere for z/OS J2EE or MOFW server in which your application runs.

WebSphere for z/OS provides code that creates and manages a trace logger,
which processes your application’s trace requests. The trace logger runs in the
Java virtual machine (JVM) for the WebSphere for z/OS J2EE or MOFW
server in which your Java application will run. To use a trace logger, all you
need to do in your Java application is:
1. Define the trace logger,
2. Drive the method to instruct WebSphere for z/OS to create the trace

logger, and
3. Code trace requests at appropriate trace points in your application.

Specific instructions for updating your application to use JRas support appear
in “Steps for coding your Java application to issue messages and trace

110 WebSphere for z/OS: Assembling CORBA Applications

requests” on page 112. Before you can use those instructions to properly code
trace requests, however, you need to understand the concepts in the following
topics:
v “Determining where to place trace points and what data to request”
v “Assigning trace types to trace points”

Determining where to place trace points and what data to request
To collect trace data for a Java application running in a WebSphere for z/OS
J2EE or MOFW server, you must decide where to locate trace points in your
application’s code. At those trace points, you can use RASTraceLogger class
interfaces to request a trace entry. Typical trace points include:
v Method entry
v Method exit
v Start of a functional request
v Major checkpoints in the process of completing a request
v Completion of a functional request
v Interface to another system function
v Any unusual event, such as a detected I/O error or an unexpected

exception

You must also decide what information to record in the trace entries, which
can hold a variable amount of data. WebSphere for z/OS automatically
collects the address space identifier (ASID) and task control block (TCB) for
the unit of work or transaction, and Java name for the thread. The following
are suggestions on the additional types of data you might place in the trace
entries for a Java application running in a WebSphere for z/OS J2EE or
MOFW server:
v Identification of the unit of work or transaction that is being serviced by the

application. This can be the JOBNAME, USERID, or transaction identifier.
v For entries that trace the start of a functional request, the input parameters.
v For internal checkpoints, an identification that ties this trace entry to the

original request, and information on the current status of the process.
v For unusual events, the cause of the problem and any additional data. For

example, you could record any exceptions and stack traces.
v On return from a service, the return code and reason code.
v For trace entries being used for analysis rather than as a debugging aid,

whatever information the user of the application needs.

Assigning trace types to trace points
For each trace point you define in your Java application, you use methods
defined in the RASITraceLogger interface to request trace entries. As part of
each trace request, you should assign a trace type for this specific request. The
RASITraceEvent interface defines the types that you may use.

Chapter 7. Collecting data about CORBA application activity 111

Note: The Enterprise Edition V3.02 JRas support required you to assign a
trace level to trace points in your application. These assignments are
still supported, so you do not have to recode any applications that use
trace levels.

After you code trace requests, your Java application is capable of issuing trace
requests while it runs. To actually record the trace data requested, however,
the WebSphere for z/OS J2EE or MOFW server in which your application
runs must be enabled for tracing. “Steps for preparing the z/OS or OS/390
environment for logging Java application messages and trace requests” on
page 118 provides more detail about enabling tracing for specific trace types.

Steps for coding your Java application to issue messages and trace
requests

By coding instructions for issuing messages and logging trace entries, you can
improve the reliability, availability, and serviceability (Ras) of your Java server
application. When your Java application runs in a WebSphere for z/OS J2EE
or MOFW server, its messages appear in one or more of the following
destinations, depending on the message type:
v The z/OS or OS/390 master console
v The error log stream that WebSphere for z/OS uses
v The component trace (CTRACE) data set that WebSphere for z/OS uses.

The application’s trace entries appear in the same CTRACE data set.

Before you begin:

v If you want to issue messages from your Java application, you may either
define the messages inline, or use a separate file to contain the messages.
Decide which approach you want to use before you start coding. If
necessary, see “Defining messages through inline method calls or a message
properties file” on page 109 for more information about these two
approaches.

v For descriptions of the JRas interfaces and methods you can use to issue
messages or log trace entries, refer to the InfoCenter at
http://www.ibm.com/software/webservers/appserv/library.html. The
InfoCenter describes the JRas Facility methods in the com.ibm.ras package,
as it applies to all supported platforms, including z/OS or OS/390.

Perform the following steps to add code to your Java server application to
direct messages and trace entry requests to z/OS or OS/390 message and
trace data logging facilities.
1. (Optional) Create a message properties file if you want to log messages

from your application, and have not defined messages inline. For each
message that the Java application issues, define the message in a key/text
pair:

112 WebSphere for z/OS: Assembling CORBA Applications

|
|

v Use the text portion to indicate what is to appear on the master console
or in the error log stream

v Use the key, in both the message properties file and in your Java
application code, to enable the run-time code to find the correct message
text.

Rules:

v Always use an equals sign to separate the key from the text. For
example:
BBOJ0001=BBOJ0001 Java BO created.
BBOJ0002=BBOJ0002 Policy number {0} obtained.

v Message text that contains variable data requires special coding to
indicate the placement and content. To correctly define messages with
variable text, use braces {} to indicate that a variable is to appear at a
particular place in the text. Within the braces, use a digit to indicate
which variable belongs at this place.
For example, suppose your code contains the following instructions:
String day = "Monday";
Integer temp = new Integer(75);
msgLogger.message(RASIMessageEvent.TYPE_INFO,

this,
"methodName",
"APPL061I",
day,
temp);

To correctly define this message, you would code the following in your
message properties file:
APPL061I=APPL061I On {0}, it is {1} degrees.

2. Using an appropriate application development tool for your application,

edit the source code for your Java application as follows:
v Add import statements for the com.ibm.ras and com.ibm.WebSphere

packages. For example, type the following:
import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

v Add definition statements for the message and trace loggers. For
example, type the following:
private RASIMessageLogger msgLogger = null;
private RASITraceLogger trcLogger = null;

3. Edit the constructor for your Java application to create the message logger,

trace logger, or both:

Chapter 7. Collecting data about CORBA application activity 113

For this type
of logger:

Complete the following steps:

Message v Use the createRASMessageLogger method to request a message
logger

v (Optional) Define the message properties file, if you are using the
file, rather than inline, approach for issuing messages from your
application.

Trace Use the createRASTraceLogger method to request a trace logger

Rules:

v Applications must refer to the object returned by the
createRASMessageLogger method as a type RASIMessageLogger object.

v Applications must refer to the object returned by the
createRASTraceLogger method as a type RASITraceLogger object.

Tip: Avoid using logger names that begin with the com.ibm. prefix, which
is reserved for use by WebSphere for z/OS.

4. If you want to issue messages from your Java application, add messages at

appropriate points in the application’s source code.
Rules:

v If you are defining messages inline, use the textMessage methods in the
RASIMessageLogger interface, specifying the complete message in a string
on the method call.

v If you are using a message properties file, use the message or msg
methods in the RASIMessageLogger interface, specifying the message key
on the method call. For example:
msgLogger.message(RASIMessageEvent.TYPE_INFO,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0001");

v For each message, assign an appropriate type, as defined in the
RASIMessageEvent interface. These types define the destination of each
message:

Message type Destination

TYPE_INFORMATION or TYPE_INFO Master console and CTRACE data set

TYPE_ERROR or TYPE_ERR Error log and CTRACE data set

TYPE_WARNING or TYPE_WARN CTRACE data set only

114 WebSphere for z/OS: Assembling CORBA Applications

Notes:

a. Assign only one message type to each message.
b. If you do not assign a type to a message, or specify ″null″ for the

type, the Java compiler issues an error message.
c. If you assign a type that is not valid, the message logger processes

the message as a TYPE_INFORMATION (or TYPE_INFO) message.
v Each character used in a message must map to an EBCDIC character.
v When routing a message to the master console, WebSphere for z/OS

sends only the first 700 characters of message text.

Limitation: When writing an error message to the error log stream,
WebSphere for z/OS uses only 512 characters of data, including the
information it adds to the message text for identification. (This additional
information consists of the date, time, organization name, and so on.) See
WebSphere Application Server V4.0.1 for z/OS and OS/390: Messages and
Diagnosis, GA22-7837 for the format and content of error log stream entries
for application messages.

5. If you want to collect trace data for your Java application, add trace

requests at appropriate points in the application’s source code.
Rules:

v For each trace request, assign an appropriate type as defined in the
RASITraceEvent interface.

Note: If you do not assign a type to a trace request, the trace logger
ignores that trace request.

v Each character used in trace data must map to an EBCDIC character.

Limitation: When processing trace data, WebSphere for z/OS uses only a
limited amount of hexadecimal or character data:
v For hexadecimal trace data (from tracing Java byte arrays), WebSphere

for z/OS truncates the data after 1024 bytes.
v For character trace data, WebSphere for z/OS substitutes the literal

BUFFER OVERFLOW when that trace data exceeds 16384 characters.
This cumulative limit includes 1-byte string terminators for each
character string.

Tip: To improve your application’s performance, you may use one of the
following alternatives:
v Wrap trace calls in a test of the RASTraceLogger.isLogging variable,

which is set to false when trace logging is not active.

Chapter 7. Collecting data about CORBA application activity 115

v Use the isLogging method in an if statement to test whether trace
logging is active for any level of tracing.

v Use the isLoggable method to determine whether logging is active for
the designated trace type.

With the first two approaches, the overhead of creating a trace entry does
not take place if trace logging is not active. In contrast, the isLoggable
method requires more overhead, but might be the better option, especially
if some level of tracing is always active.

6. Using the appropriate application development tools for your Java

application, generate and compile the code for your application.

When you have executable code for your Java application, you are ready to
complete the steps listed in “Steps for preparing the z/OS or OS/390
environment for logging Java application messages and trace requests” on
page 118.

Example: The following example illustrates the coding requirements described
in the instructions above. The example assumes the use of a message
properties file, named com/myCompany/JRasSample.properties, which contains
the following message definitions:
BBOJ0001=BBOJ0001 Java BO created.
BBOJ0002=BBOJ0002 Policy number {0} obtained.
BBOJ0003=BBOJ0003 Java BO destroyed.

package com.myCompany;

// Import JRas and Websphere packages
import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

public class JRasSample
{

// Loggers
private RASIMessageLogger msgLogger = null;
private RASITraceLogger trcLogger = null;
// Message file
private static final String MSG_FILE = "com.myCompany.JRasSample";
// Array of trace objects
Object[] objs = new Object[3];

// Constructor
public JRasSample()
{

// Get logger manager object
Manager manager = Manager.getManager();
// Get logger

116 WebSphere for z/OS: Assembling CORBA Applications

trcLogger = manager.createRASTraceLogger("com.myCompany","myProduct",
"myComponent","myLogger.COM");

msgLogger = manager.createRASMessageLogger("com.myCompany","myProduct",
"myComponent","myLogger.COM");

msgLogger.setMessageFile(MSG_FILE);
}

// Example of JRas trace events and messages
public int doSomething(String parm1,String parm2,String parm3)
{

int returnValue = 0;
byte[] byteArray = {1,2,3,4,5};

// Trace input parameters
objs[0] = parm1;
objs[1] = parm2;
objs[2] = parm3;
if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT,
"com.myCompany.JRasSample",
"doSomething",
objs);

if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA))
{

// Trace a text string
trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething",
"Text data to be traced");

// Trace binary data
trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething",
byteArray);

// Trace the current stack
trcLogger.stackTrace(RASITraceEvent.TYPE_MISC_DATA,

"com.myCompany.JRasSample",
"doSomething");

}
// Issue informational message to WTO and CTRACE
msgLogger.message(RASIMessageEvent.TYPE_INFO,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0001");

// Issue warning message to CTRACE
msgLogger.message(RASIMessageEvent.TYPE_WARN,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0002",
"123");

// Issue error message to error log and CTRACE
msgLogger.message(RASIMessageEvent.TYPE_ERR,

"com.myCompany.JRasSample",
"doSomething",
"BBOJ0003");

Chapter 7. Collecting data about CORBA application activity 117

// Trace return value
if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT))

trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT,
"com.myCompany.JRasSample",
"doSomething",
returnValue);

return returnValue;
}

// This method is invoked when a JRasSample object is traced
public String toString()
{

String traceString = "This is the JRasSample object trace data";
return traceString;

}

public static void main(String[] args)
{

JRasSample sample = new JRasSample();
sample.doSomething("parm1","parm2","parm3");

}
}

Steps for preparing the z/OS or OS/390 environment for logging Java
application messages and trace requests

Before you begin:

v Check with the appropriate installation personnel to determine whether
error log streams and component trace data sets were set up during the
installation process for WebSphere for z/OS. While error logs and CTRACE
data sets might be available already, your installation personnel might
determine that changes are necessary to handle your application data, as
well as current data from other WebSphere for z/OS servers and
applications. For example, your installation may set up either a common
error log stream for all WebSphere for z/OS servers, or a separate log
stream for each individual server. Your installation might want to switch
from using a common log to separate logs, to accomodate additional
diagnostic data from your Java applications.

v To turn on tracing for an application in a J2EE or MOFW server, you need
to edit or create a JVM properties file. This task might require special
authorization to edit or store this file in the appropriate directory. Check
with the system programmer who installed WebSphere for z/OS on your
system.

Notes:

1. Instructions for setting up error log streams appear in WebSphere
Application Server V4.0.1 for z/OS and OS/390: Installation and Customization,
GA22-7834.

118 WebSphere for z/OS: Assembling CORBA Applications

2. Instructions for setting up and running CTRACE appear in WebSphere
Application Server V4.0.1 for z/OS and OS/390: Messages and Diagnosis,
GA22-7837.

Perform the following steps to set up the z/OS or OS/390 environment for
JRas support:
1. On z/OS or OS/390, create a trace settings file in the hierarchical file

system (HFS), if you want to enable the WebSphere for z/OS J2EE or
MOFW server to collect and log your application’s trace data. In this file,
type the trace settings that you want, in the following format:
logger_name=type=[enabled|disabled]

Example:
myLogger.COM=all=enabled

logger_name corresponds to the logger name that you specified in the
source code for your application, when you coded the create method to
obtain a trace logger. To enable logging support for more than one logger
name, you may specify a common prefix with an asterisk (for example,
a.b.c.*), rather than spelling out each logger name in its entirety.
Specifying something like a.b.c.* enables logging for loggers named
a.b.c.d and a.b.c.e

Tip: Avoid using logger names that begin with the com.ibm. prefix, which
is reserved for use by WebSphere for z/OS.

type corresponds to one of the property values in the following table.
Property types are case-sensitive.

Table 9. Trace setting property types and their corresponding JRas trace types

Specifying this
property type:

Enables tracing for the following JRas trace types:

all All supported RASITraceEvent types

event v RASITraceEvent.TYPE_ERROR_EXC
v RASITraceEvent.TYPE_SVC
v RASITraceEvent.TYPE_OBJ_CREATE
v RASITraceEvent.TYPE_OBJ_DELETE
v RASITraceEvent.TYPE_LEVEL1

entryExit v RASITraceEvent.TYPE_ENTRY_EXIT
v RASITraceEvent.TYPE_API
v RASITraceEvent.TYPE_CALLBACK
v RASITraceEvent.TYPE_PRIVATE
v RASITraceEvent.TYPE_PUBLIC
v RASITraceEvent.TYPE_STATIC
v RASITraceEvent.TYPE_LEVEL1
v RASITraceEvent.TYPE_LEVEL2

Chapter 7. Collecting data about CORBA application activity 119

Table 9. Trace setting property types and their corresponding JRas trace
types (continued)

Specifying this
property type:

Enables tracing for the following JRas trace types:

debug v RASITraceEvent.TYPE_MISC_DATA
v RASITraceEvent.TYPE_LEVEL1
v RASITraceEvent.TYPE_LEVEL2
v RASITraceEvent.TYPE_LEVEL3

Rules:

v You may use the same trace properties file to enable different trace
types for given loggers. If you do not use a separate line to define each
logger’s trace types, you must use a single colon (:) to distinguish each
logger’s trace settings.
Example (separate line for each logger):
com.aCompany.*=all=enabled
com.anotherCompany.*=event=enabled

Example (same line for each logger):
com.aCompany.*=all=enabled:com.anotherCompany.*=event=enabled

v To specify more than one trace type for a logger, separate each trace
type with a comma (,)
Example:
com.aCompany.aComponent=debug=enabled,event=enabled

2. Create a new or edit an existing Java virtual machine (JVM) properties file

to point to the trace settings file you just created. This properties file,
named jvm.properties, changes the default settings for the JVM that runs
in a WebSphere for z/OS J2EE or MOFW server.
Rules:

v You must set the com.ibm.ws390.trace.settings system property to the
fully qualified directory path and file name for your trace settings file. If
you do not specify this system property, or specify the path and file
name incorrectly, all trace types are disabled (the default setting).

v You must make the jvm.properties file accessible to WebSphere for
z/OS, so it can find and use your property settings when activating the
server. Place the jvm.properties file in the same HFS directory in which
WebSphere for z/OS places the current.env file containing environment
variable settings for the server in which your Java application will run.
See “Appendix A. Environment files” on page 125 for more information
about this directory.

120 WebSphere for z/OS: Assembling CORBA Applications

v Trace logging cannot be dynamically started or stopped.

3. Check the environment variable settings related to the J2EE or MOFW

server’s use of component trace. You might want to modify some of the
values to accomodate additional trace entries in the CTRACE data set.
Specifically, check the following environment variable settings:
v TRACEBUFFCOUNT
v TRACEBUFFSIZE

4. Start the WebSphere for z/OS J2EE or MOFW server in which your

application will run:
v If you have set up JRas support for an existing application that you

already installed in a server, you need to:
a. Make sure your newly compiled code replaces the existing code.
b. Make sure the WebSphere for z/OS server picks up any

modifications you made to the jvm.properties file or the
environment variables. You need to stop and restart the server to
pick up these changes.

v If you have set up JRas support for a brand-new application, follow the
appropriate process to assemble and install your Java application in a
WebSphere for z/OS server. For Java applications to be installed in a
MOFW server, see “Chapter 4. Deploying CORBA applications in
WebSphere for z/OS MOFW servers” on page 71.

Background on viewing messages and trace data
Once your Java application starts running, you can view its messages and
trace data, as follows:

If you want to view
this type of output:

Use the following instructions:

Messages on the
z/OS or OS/390
master console

The message logger automatically routes messages to the master
console in a readable format. Their appearance and duration
depend on how your installation has set up its console
configuration. If necessary, see z/OS MVS Planning: Operations,
SA22-7601 for an explanation of ways to configure consoles,
including controlling message display, scrolling, and deletion.

Messages in the
error log stream

To view messages in the error log stream, use the log browse
utility (BBORBLOG). See WebSphere Application Server V4.0.1 for
z/OS and OS/390: Messages and Diagnosis, GA22-7837 for
instructions for using the log browse utility, and for examples of
message output.

Chapter 7. Collecting data about CORBA application activity 121

If you want to view
this type of output:

Use the following instructions:

Messages or trace
data in Component
Trace

To view messages or application trace data in Component Trace,
you must use the interactive problem control system (IPCS) in
one of the following ways:

v Line mode on a terminal (IPCS CTRACE command),

v Full-screen mode on a terminal (IPCS dialog), or

v Batch mode, using the terminal monitor program.

Recommendation: If you are not familiar with IPCS, TSO/E and
ISPF, use IPCS in batch mode to format and view trace data, as
described in “Steps for using IPCS in batch mode to format
application trace data”.

See WebSphere Application Server V4.0.1 for z/OS and OS/390:
Messages and Diagnosis, GA22-7837 for instructions for using the
IPCS dialog, and for examples of message and trace data output.

Note: When you view the trace data for your Java application, messages and
CTRACE records might not appear in the order in which your
application issued the message or trace requests. All message requests
appear in sequential order, relative to each other. Similarly, all CTRACE
records appear in order, relative to each other. Different types of trace
data, however, might not be in sequence; for example, messages issued
after trace requests might show up in trace output before the trace
requests.

Steps for using IPCS in batch mode to format application trace data
To view messages or application trace data from Component Trace, you must
use the interactive problem control system (IPCS) to format the data. Using
IPCS in batch mode is the easiest method of formatting data, especially if you
do not have much experience with using IPCS, TSO/E and ISPF. Through
batch mode, you can use IPCS to format trace data and write it to an MVS
data set. Optionally, you may copy the contents of that data set into an HFS
file for viewing.

Before you begin: You must create an IPCS dump directory before you can
use IPCS in batch mode. When setting up IPCS, your installation may
customize IPCS for its users. This customization can include modifying the
IBM-supplied BLSCDDIR CLIST with default values for creating an IPCS
dump directory.

If your installation has modified the BLSCDDIR CLIST, perform the following
steps to create an IPCS dump directory:
1. Decide on a fully-qualified data set name for the directory.

122 WebSphere for z/OS: Assembling CORBA Applications

2. From the TSO/E command prompt, enter the BLSCDDIR command,
specifying the data set name. For example, to create a dump directory
named IBMUSER.DDIR, enter:
%blscddir dsn('ibmuser.ddir')

If your installation has not customized IPCS, you might need to alter other
BLSCDDIR CLIST parameters. See z/OS MVS IPCS User’s Guide, SA22-7596
and z/OS MVS IPCS Commands, SA22-7594 for more details about using the
BLSCDDIR CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application
trace data:
1. Create a file and copy the following sample JCL into it. This JCL invokes

IPCS to extract and format JRAS trace data and write it into an MVS data
set, and then uses the TSO/E OPUT command to copy the formatted data
from the MVS data set into an HFS file.
//IBMUSERX JOB ,
// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H
//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR
//IPCSDOC DD SYSOUT=H
//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR
//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
IPCS
DROPDUMP DDNAME(JRASTRC)
PROFILE LINESIZE(80)PAGESIZE(99999999)
SETDEF NOCONFIRM
CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

NOTERMINAL
DROPDUMP DDNAME(JRASTRC)
END
/*
//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
oput 'ibmuser.ipcs.out' '/u/ibmuser/ipcs/jrastrace.txt' TEXT
/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that

you used for the IPCS dump directory you created.

Notes:

a. Use the PAGESIZE parameter on the PROFILE statement only if you do
not want to print the output data set.

b. You may replace the HFS file name with the name of an existing HFS
file, but you do not have to do so. The OPUT command processing will

Chapter 7. Collecting data about CORBA application activity 123

create a new HFS file, if the one specified does not exist, and grants
read and write access to that file for your user ID only.
If you do specify an existing HFS file, the OPUT command processing
will write over any data that is already in that file. If you want to
know more about the OPUT command, see z/OS UNIX System Services
Command Reference, SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example
to the name of the data set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD
statement and the OPUT command in the SYSTSIN stream, as necessary.
The formatted output of the JRAS CTRACE data is first written to the
MVS data set specified by the IPCSPRNT DD statement and then
(optionally) copied to the HFS data set. You must either pre-allocate
this data set, or change the sample JCL to allocate the data set. This
data set should have a record format of VBA and a record length of
133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace
data in the HFS file. If you want to know more about the UNIX editors, see
z/OS UNIX System Services User’s Guide, SA22-7801.

124 WebSphere for z/OS: Assembling CORBA Applications

Appendix A. Environment files

This appendix provides reference information for environment files and
environment variables.

Environment files and environment variables

This section describes:
v How WebSphere for z/OS manages environment variables and

environment files.
v How run-time server start procedures point to their environment files.
v Environment variables for z/OS or OS/390 clients.
v The syntax and meaning of the run-time environment variables.

Note: You may require additional environment variables to be set in your
z/OS or OS/390 application development environment. See “Steps
for setting up the application development environment” on page 40.

How WebSphere for z/OS manages server environment variables and
environment files

After the bootstrap process during installation and customization, WebSphere
for z/OS manages environment data through the Administration application
and writes the environmental data into the system management database. To
add or change environment variable data, you must enter environment data
pairs (an environment variable name and its value) on the sysplex, server, or
server instance properties form. When you activate a conversation or prepare
for a cold start, the environment variable data is written to HFS files.
WebSphere for z/OS determines which values are the most specific for an
environment file. For instance, a setting for a server instance takes precedence
over the setting for the same variable for its server, and a setting for a server
takes precedence over the setting for the same variable for its sysplex.

If you modify an environment file directly and not through the
Administration application, any changes are overwritten when you activate a
conversation or prepare for a cold start.

When you activate a conversation or prepare for a cold start, WebSphere for
z/OS writes the environment data to an HFS file for each server instance. The
path and name for each environment file is:
CBCONFIG/controlinfo/envfile/SYSPLEX/SRVNAME/current.env

where

© Copyright IBM Corp. 2000,2001 125

CBCONFIG
Is a read/write directory that you specify at installation time as the
directory into which WebSphere for z/OS is to write configuration data
and environment files. At installation time, we call this directory
TARGETDIR. The default is /WebSphere390/CB390.

Rule: The System Management group (default CBCFG1) and user ID
(default CBSYMSR1) must own each directory and subdirectory in
CBCONFIG. If the System Management group and user ID do not own
CBCONFIG, use the chown command to make them the owner of each
directory and subdirectory in CBCONFIG. Thus, if you use the default
CBCONFIG, you must use the chown command to give the System
Management group and user ID ownership of /WebSphere390 and
/WebSphere390/CB390.

Example:
chown -R CBSYMSR1:CBCFG1 /WebSphere390

SYSPLEX
Is the name of your sysplex. WebSphere for z/OS derives this name from
the predefined &SYSPLEX JCL variable.

SRVNAME
Is the server instance name.

Except for the initial installation of WebSphere for z/OS, you must manage
the environment variables through the Administration application. At initial
installation, the customization dialog modifies an initial environment file,
which the bootstrap job uses.

There are, therefore, two distinct situations in which you define environmental
data for your servers. Matching those situations are two distinct ways you
create the environment data:
1. Prior to the bootstrap process, the customization dialog creates the

environment file for you. The bootstrap job reads the file and places the
environmental data into the system management database.

2. Defining and managing environmental data through the Administration
application. In this situation, you enter environment data pairs (an
environment name and its value—no “=”) through a panel in the
Administration application.

How run-time server start procedures point to their environment files
WebSphere for z/OS run-time server start procedures must point to an
environment file for configuration information. The start procedures use a
BBOENV DD statement with a PATH parameter that points to an HFS file.
The BBOENV DD statement is:
//BBOENV DD PATH='&CBCONFIG/&RELPATH/&SYSPLEX/&SRVNAME/current.env'

126 WebSphere for z/OS: Assembling CORBA Applications

|
|
|
|

|
|
|

where

&CBCONFIG
Is a variable you set in the start procedure. It must match the read/write
directory that you specify at installation time as the directory into which
WebSphere for z/OS is to write configuration data and environment files.
The default is WebSphere390/CB390.

&RELPATH
Is a subdirectory (controlinfo/envfile). Its value must not change.

&SYSPLEX
Is the name of your sysplex. Because it is a predefined JCL variable, you
do not need to set it in your start procedure.

&SRVNAME
Is the server instance name. By specifying the server instance name when
you start the procedure, you can use the same start procedure for other
server instances.

Example: To pass the server instance name BBOASR1A to its start
procedure, specify:
s bboasr1.bboasr1a,srvname='BBOASR1A'

To use the same start procedure for server instance BBOASR1B, specify:
s bboasr1.bboasr1b,srvname='BBOASR1B'

Environment variables for z/OS or OS/390 clients
The Administration application does not manage environment variables for
z/OS or OS/390 clients. You must create and manage z/OS or OS/390 client
environment files and point to them from client programs. Table 10 on
page 130 tells you which environment variables are required or optional for
z/OS or OS/390 clients.

Note on using substitution variables
You cannot use variable substitution ($ variables) in environment statements.
The variable substitution that is used in UNIX shell environments is not
implemented in the Language Environment (LE). Because WebSphere for
z/OS processes environment variables in the Language Environment, use of
variables such as $PATH in a path environment variable will fail.

Example:

UNIX shell environments often set up paths by appending the new path to
the existing path, like this:
PATH=yourdir
PATH=$PATH/mydir

Appendix A. Environment files 127

The resulting path is PATH=yourdir/mydir after substitution for the $PATH
variable. However, because WebSphere for z/OS processes the environment
variables in the Language Environment, where no variable assignment is
made, the resulting path would be PATH=$PATH/mydir.

Environment variable syntax
You must follow this syntax only when defining your initial environment file
before the bootstrap process.

Rules: The following are the syntax rules:
v The syntax of the environment variables follows this pattern:

VARIABLE=VALUE

Where:

VARIABLE
is the environment variable.

VALUE
is the setting for the variable. The descriptions define possible values
for each variable.

v Leading and trailing white space (blanks or tabs) for both variables and
values is ignored.
Example: The two following lines yield the same result:
VARIABLE1=VALUE1

and
VARIABLE1 = VALUE1

v “=” is required.
v Blank lines are ignored.
v Code upper and lowercase characters as documented in this topic.
v To comment out an environment variable, simply add a character, such as

‘#’, to the variable. For example, you could change TRACEALL=0 to
#TRACEALL=0. The system ignores such coding because the variable does not
begin with an alphabetic character.

v Language Environment limits the size of environment variables to 2K.

Environment variable use
Not all environment variables need to be used for each server or client.
Table 10 on page 130 tells you where to use a given environment variable.
Here are the meanings for what appears in each column:
v “R” means required.
v “O” means optional.
v “F” means required in a future release.

128 WebSphere for z/OS: Assembling CORBA Applications

|

v A blank in the Default column means the variable is not set.
v A blank in other columns means the variable is not used.

Footnotes appear at the end of the table.

Note: The default settings and examples use the standard _CEE_ENVFILE
syntax. You do not use this syntax when defining environmental data
in the Administration application.

Appendix A. Environment files 129

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

B
B

O
C

_H
T

T
P_

ID
E

N
T

IT
Y

=
U

SE
R

_I
D

R
1

B
B

O
C

_H
T

T
P_

IN
PU

T
_T

IM
E

O
U

T
=

n
R

1

B
B

O
C

_H
T

T
P_

L
IS

T
E

N
_I

P_
A

D
D

R
E

SS
=

IP
_A

D
D

R
E

SS
R

1

B
B

O
C

_H
T

T
P_

O
U

T
PU

T
_T

IM
E

O
U

T
=

n
R

1

B
B

O
C

_H
T

T
P_

PE
R

SI
ST

E
N

T
_S

E
SS

IO
N

_T
IM

E
O

U
T

=
n

R
1

B
B

O
C

_H
T

T
P_

PO
R

T
=

n
R

1

B
B

O
C

_H
T

T
P_

SE
SS

IO
N

_G
C

=
n

R
1

B
B

O
C

_H
T

T
P_

T
R

A
N

SA
C

T
IO

N
_C

L
A

SS
=

T
R

A
N

SA
C

T
IO

N
_C

LA
SS

R
1

B
B

O
D

U
M

P=
3

O
O

O
O

O

B
B

O
D

U
M

P_
C

E
E

3D
M

P_
O

PT
IO

N
S=

O
O

O
O

O

B
B

O
L

A
N

G
=

E
N

U
S

O
O

O
O

O
O

B
E

A
N

_D
E

L
E

T
E

_S
L

E
E

P_
T

IM
E

=
42

00
R

2

C
B

C
O

N
FI

G
=

/
W

eb
Sp

he
re

39
0/

C
B

39
0

R
R

R
R

R

C
L

A
SS

PA
T

H
=

O
O

O
O

3

C
L

IE
N

T
_D

C
E

_Q
O

P=
N

O
_P

R
O

T
E

C
T

IO
N

O

C
L

IE
N

T
_H

O
ST

N
A

M
E

=
O

C
L

IE
N

T
L

O
G

ST
R

E
A

M
N

A
M

E
=

O

C
L

IE
N

T
_R

E
SO

LV
E

_I
PN

A
M

E
=

<
va

lu
e

fo
r

R
E

SO
LV

E
_

IP
N

A
M

E
>

O
O

O
O

O

C
L

IE
N

T
_T

IM
E

O
U

T
=

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.c
on

ta
in

er
d

n=
<

ib
m

-w
sn

Tr
ee

=
t1

,o
=

<
or

g>
,c

=
<

co
un

tr
y>

>
O

130 WebSphere for z/OS: Assembling CORBA Applications

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.d
om

ai
nn

am
e=

do
m

ai
n

na
m

e
O

co
m

.ib
m

.w
s.

na
m

in
g.

ld
ap

.m
as

te
ru

rl
=

ld
ap

:/
/

<
ip

na
m

e>
:<

po
rt

>
O

C
O

N
FI

G
U

R
E

D
_S

Y
ST

E
M

=
R

4
R

4
R

4
R

4
R

4

D
A

E
M

O
N

_I
PN

A
M

E
=

R
O

D
A

E
M

O
N

_P
O

R
T

=
55

55
O

5
O

5

D
E

FA
U

LT
_C

L
IE

N
T

_X
M

L
_P

A
T

H
=

O
6

D
E

FA
U

LT
_U

N
A

U
T

H
_C

L
IE

N
T

_I
D

=
C

B
G

U
E

ST
O

D
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
D

A
E

M
O

N
O

5
O

5

D
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

D
A

E
M

O
N

01
O

7
O

7
O

7
O

7
O

7

H
O

M
E

=
O

IB
M

_O
M

G
SS

L
=

0
O

IC
U

_D
A

TA
=

/
us

r/
lp

p/
W

eb
Sp

he
re

/
bi

n/
R

IR
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

IN
T

FR
P

O

IR
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
IN

T
FR

P0
1

O
7

O
7

O
7

O
7

O
7

IR
PR

O
C

=
B

B
O

IR
O

O

IV
B

_D
E

B
U

G
_E

N
A

B
L

E
D

=
O

8
O

8

IV
B

_D
R

IV
E

R
_P

A
T

H
=

/
us

r/
lp

p/
W

eb
Sp

he
re

R

IV
B

_T
R

A
C

E
_H

O
ST

=
O

8

IV
B

_T
R

A
C

E
_P

O
R

T
=

21
02

O
8

ja
va

.n
am

in
g.

se
cu

ri
ty

.c
re

d
en

ti
al

s=
<

pa
ss

w
or

d
>

O

ja
va

.n
am

in
g.

se
cu

ri
ty

.p
ri

nc
ip

al
=

<
us

er
id

>
O

Appendix A. Environment files 131

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

JA
V

A
_C

O
M

PI
L

E
R

=
O

O

JA
V

A
_I

E
E

E
75

4=
O

9

JV
M

_B
O

O
T

C
L

A
SS

PA
T

H
=

O
O

JV
M

_B
O

O
T

L
IB

R
A

R
Y

PA
T

H
=

O
O

JV
M

_D
E

B
U

G
=

O
O

JV
M

_D
E

B
U

G
_P

O
R

T
=

O
O

8

JV
M

_E
N

A
B

L
E

_C
L

A
SS

_G
C

=
O

O

JV
M

_E
N

A
B

L
E

_V
E

R
B

O
SE

_G
C

=
O

O

JV
M

_E
X

T
R

A
_O

PT
IO

N
S=

O

JV
M

_H
E

A
PS

IZ
E

=
25

6
O

JV
M

_L
O

C
A

L
R

E
FS

=
O

O

JV
M

_L
O

G
FI

L
E

=
O

O

JV
M

_M
IN

H
E

A
PS

IZ
E

=
O

O

L
D

A
PB

IN
D

PW
=

F
R

1
0

L
D

A
PC

O
N

F=
F

R
1

0

L
D

A
PH

O
ST

N
A

M
E

=
F

R
1

0

L
D

A
PI

R
B

IN
D

PW
=

F
R

11

L
D

A
PI

R
C

O
N

F=
F

R
11

L
D

A
PI

R
H

O
ST

N
A

M
E

=
F

R
11

L
D

A
PI

R
N

A
M

E
=

F
R

11

L
D

A
PI

R
R

O
O

T
=

F
R

L
D

A
PN

A
M

E
=

F
R

1
0

132 WebSphere for z/OS: Assembling CORBA Applications

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

L
D

A
PR

O
O

T
=

F
R

L
IB

PA
T

H
=

O
O

O
O

3

L
O

G
ST

R
E

A
M

N
A

M
E

=
O

O

M
IN

_S
R

S=
[0

fo
r

M
O

FW
,1

fo
r

J2
E

E
]

O

N
M

_G
E

N
E

R
IC

_S
E

R
V

E
R

_N
A

M
E

=
C

B
N

A
M

IN
G

O

N
M

_S
PE

C
IF

IC
_S

E
R

V
E

R
_N

A
M

E
=

N
A

M
IN

G
01

O
7

O
7

O
7

O
7

O
7

N
M

PR
O

C
=

B
B

O
N

M
O

O

O
T

S_
D

E
FA

U
LT

_T
IM

E
O

U
T

=
30

O
O

O
O

O

O
T

S_
M

A
X

IM
U

M
_T

IM
E

O
U

T
=

60
O

O
O

O
O

PA
T

H
=

O
O

R
A

S_
M

IN
O

R
C

O
D

E
D

E
FA

U
LT

=
N

O
D

IA
G

N
O

ST
IC

D
A

TA

R
E

M
_D

C
E

PA
SS

W
O

R
D

=
O

R
E

M
_D

C
E

PR
IN

C
IP

A
L

=
O

R
E

M
_P

A
SS

W
O

R
D

=
O

1
2

O
1

2
O

1
2

O
1

2
O

R
E

M
_U

SE
R

ID
=

O
1

2
O

1
2

O
1

2
O

1
2

O

R
E

SO
LV

E
_I

PN
A

M
E

=
O

1
3

O
1

4
O

1
4

O
1

4
R

1
5

R
E

SO
LV

E
_P

O
R

T
=

90
0

O
O

O
O

O

SM
_D

E
FA

U
LT

_A
D

M
IN

=
C

B
A

D
M

IN
O

SM
_G

E
N

E
R

IC
_S

E
R

V
E

R
_N

A
M

E
=

C
B

SY
SM

G
T

O

SM
_S

PE
C

IF
IC

_S
E

R
V

E
R

_N
A

M
E

=
SY

SM
G

T
01

O
7

O
7

O
7

O
7

O
7

SM
PR

O
C

=
B

B
O

SM
S

O
O

SO
M

O
O

SQ
L

=
O

Appendix A. Environment files 133

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

SR
V

IP
A

D
D

R
=

O
O

O
O

O

SS
L

_K
E

Y
R

IN
G

=
O

SY
S_

D
B

2_
SU

B
_S

Y
ST

E
M

_N
A

M
E

=
D

B
2

R
R

R
R

R

T
R

A
C

E
A

L
L

=
1

O
O

O
O

O
O

T
R

A
C

E
B

A
SI

C
=

O
O

O
O

O
O

T
R

A
C

E
B

U
FF

C
O

U
N

T
=

4
O

O
O

O
O

T
R

A
C

E
B

U
FF

L
O

C
=

(S
er

ve
r:

B
U

FF
E

R
,C

lie
nt

:
SY

SP
R

IN
T

)
O

O
O

O
O

O

T
R

A
C

E
B

U
FF

SI
Z

E
=

1M
O

O
O

O
O

T
R

A
C

E
D

E
TA

IL
=

O
O

O
O

O
O

T
R

A
C

E
M

IN
O

R
C

O
D

E
=

T
R

A
C

E
PA

R
M

=
00

O

134 WebSphere for z/OS: Assembling CORBA Applications

Ta
bl

e
10

.
W

he
re

to
us

e
en

vi
ro

nm
en

t
va

ria
bl

es
(c

on
tin

ue
d)

E
n

vi
ro

n
m

en
t

va
ri

ab
le

=
<

d
ef

au
lt

>
D

ae
m

on
se

rv
er

in
st

an
ce

S
ys

te
m

M
an

ag
em

en
t

se
rv

er
in

st
an

ce

N
am

in
g

se
rv

er
in

st
an

ce

In
te

rf
ac

e
R

ep
os

it
or

y
in

st
an

ce

B
u

si
n

es
s

ap
p

li
ca

ti
on

se
rv

er
in

st
an

ce

z/
O

S
or

O
S

/3
90

cl
ie

n
t

N
ot

es
:

1.
R

eq
ui

re
d

if
us

in
g

th
e

H
T

T
P

Tr
an

sp
or

t
H

an
d

le
r

fu
nc

ti
on

of
th

e
J2

E
E

se
rv

er
.

2.
R

eq
ui

re
d

w
he

n
st

at
ef

ul
se

ss
io

n
be

an
s

in
J2

E
E

se
rv

er
s

ar
e

ac
ti

va
te

d
ba

se
d

on
a

tr
an

sa
ct

io
n,

ra
th

er
th

an
ac

ti
va

te
d

on
ly

on
ce

.

3.
R

eq
ui

re
d

fo
r

se
rv

er
re

gi
on

s
th

at
us

e
Ja

va
,i

nc
lu

d
in

g
th

e
IM

S
PA

A
an

d
C

IC
S

PA
A

.

4.
T

hi
s

en
vi

ro
nm

en
t

va
ri

ab
le

is
au

to
m

at
ic

al
ly

ad
d

ed
to

ea
ch

se
rv

er
in

st
an

ce
’s

en
vi

ro
nm

en
t

fi
le

an
d

sh
ou

ld
no

t
be

ed
it

ed
.

5.
If

yo
u

sp
ec

if
y

a
va

lu
e

fo
r

th
e

D
ae

m
on

Se
rv

er
,y

ou
m

us
t

pr
ov

id
e

th
e

sa
m

e
va

lu
e

fo
r

th
e

Sy
st

em
M

an
ag

em
en

t
Se

rv
er

co
nt

ro
l

re
gi

on
.

6.
R

eq
ui

re
d

w
he

n
th

e
cl

ie
nt

us
es

th
e

Sy
st

em
M

an
ag

em
en

t
Sc

ri
pt

in
g

A
PI

.

7.
Yo

u
m

us
t

sp
ec

if
y

th
is

fo
r

th
e

se
co

nd
an

d
su

bs
eq

ue
nt

sy
st

em
s

in
a

sy
sp

le
x.

8.
R

eq
ui

re
d

on
ly

w
he

n
yo

u
ar

e
us

in
g

th
e

IB
M

O
bj

ec
t

L
ev

el
Tr

ac
e

an
d

D
is

tr
ib

ut
ed

D
eb

ug
ge

r
To

ol
s

to
tr

ac
e

an
d

/
or

d
eb

ug
cl

ie
nt

an
d

se
rv

er
ap

pl
ic

at
io

n
co

m
po

ne
nt

s.

9.
R

eq
ui

re
d

fo
r

Ja
va

cl
ie

nt
s

th
at

ru
n

on
z/

O
S

or
O

S/
39

0.

10
.

L
D

A
PC

O
N

F
is

m
ut

ua
lly

ex
cl

us
iv

e
w

it
h

L
D

A
PB

IN
D

PW
,L

D
A

PH
O

ST
N

A
M

E
,a

nd
L

D
A

PN
A

M
E

.E
it

he
r

L
D

A
PC

O
N

F
is

re
qu

ir
ed

,
or

L
D

A
PB

IN
D

PW
,L

D
A

PH
O

ST
N

A
M

E
,a

nd
L

D
A

PN
A

M
E

ar
e

re
qu

ir
ed

.

11
.

L
D

A
PI

R
C

O
N

F
is

m
ut

ua
lly

ex
cl

us
iv

e
w

it
h

L
D

A
PI

R
B

IN
D

PW
,L

D
A

PI
R

H
O

ST
N

A
M

E
,a

nd
L

D
A

PI
R

N
A

M
E

.E
it

he
r

L
D

A
PI

R
C

O
N

F
is

re
qu

ir
ed

,o
r

L
D

A
PI

R
B

IN
D

PW
,L

D
A

PI
R

H
O

ST
N

A
M

E
,a

nd
L

D
A

PI
R

N
A

M
E

ar
e

re
qu

ir
ed

.

12
.

U
se

d
w

he
n

a
se

rv
er

be
co

m
es

a
re

m
ot

e
cl

ie
nt

of
an

ot
he

r
se

rv
er

.

13
.

Fo
r

th
e

co
nt

ro
l

re
gi

on
,t

he
d

ef
au

lt
is

th
e

va
lu

e
of

D
A

E
M

O
N

_I
PN

A
M

E
d

ur
in

g
bo

ot
st

ra
p.

14
.

Fo
r

th
e

se
rv

er
re

gi
on

,t
he

d
ef

au
lt

is
th

e
lo

ca
l

sy
st

em
IP

na
m

e.
G

en
er

al
ly

,d
o

no
t

co
d

e.

15
.

O
pt

io
na

l
if

a
D

ae
m

on
Se

rv
er

is
on

th
e

sa
m

e
sy

st
em

as
th

e
cl

ie
nt

,i
n

w
hi

ch
ca

se
th

e
d

ef
au

lt
is

th
e

lo
ca

l
sy

st
em

IP
na

m
e.

Appendix A. Environment files 135

Environment variable descriptions

BBOC_HTTP_IDENTITY=USER_ID
Specifies a valid SAF user ID which will be used as the current security
principal for this HTTP request. The user ID will be treated as an
authenticated user by the Web container. If this variable is not specified,
the request will be executed under the SCO’s ″local Identity″
(Local_Identity()).

Example:
BBOC_HTTP_IDENTITY=SECURITY1

BBOC_HTTP_INPUT_TIMEOUT=n
The time in seconds that the J2EE server will allow for the complete
HTTP request to be received before cancelling the connection. The default
value is 10 seconds.

Example:
BBOC_HTTP_INPUT_TIMEOUT=10

BBOC_HTTP_LISTEN_IP_ADDRESS=IP_ADDRESS
Specifies the IP address, in dotted decimal format, that WebSphere for
z/OS J2EE servers use to listen for HTTP client connection requests. This
IP address is used by the server to bind to TCP/IP. Normally, the server
will listen on all IP addresses configured to the local TCP/IP stack.
However, if you want to fence the work or allow multiple heterogeneous
servers to listen on the same port, you can use
BBOC_HTTP_LISTEN_IP_ADDRESS. The specified IP address becomes
the only IP address over which this control region receives inbound HTTP
requests.

Example:
BBOC_HTTP_LISTEN_IP_ADDRESS=9.117.43.16

BBOC_HTTP_OUTPUT_TIMEOUT=n
The time, in seconds, that the J2EE server will wait from the time the
complete HTTP request is received until output is available to be sent to
the client. The default value is 120 seconds.

Example:
BBOC_HTTP_OUTPUT_TIMEOUT=120

BBOC_HTTP_PERSISTENT_SESSION_TIMEOUT =n
Specifies the time, in seconds, that the J2EE server will wait between
requests issued over a persistent connection from an HTTP client. After
the server sends a response, it uses the persistent timeout to determine
how long it should wait for a subsequent request before cancelling the
persistent connection. The default value is 30 seconds.

Example:

136 WebSphere for z/OS: Assembling CORBA Applications

|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|
|
|
|

|

BBOC_PERSISTENT_SESSION_TIMEOUT=10

BBOC_HTTP_PORT=n
Specifies the port at which the J2EE server listens for HTTP requests. Any
requests received over the HTTP port will be directed to the Web
container for processing.

If this variable is not specified, the J2EE server will not listen for HTTP
requests directly.

The use of this HTTP port does not preclude the use of the WebSphere for
z/OS plug-in with this J2EE server instance. The Web container is capable
of simultaneously processing requests received directly through the HTTP
port as well as from the WebSphere for z/OS plug-in.

Note: Currently, HTTP requests received over this HTTP port are not able
to be authenticated using the mechanisms described in the J2EE
Specification.

Example:
BBOC_HTTP_PORT=8080

BBOC_HTTP_SESSION_GC=n
An integer value indicating the maximum number of HTTP requests that
will be processed over a single connection from an HTTP client. When the
maximum number of requests have been processed, the client connection
will be closed. Set this value to 0 or 1 to turn off persistent connection
processing. The default value is 50.

Example:
BBOC_HTTP_SESSION_GC=50

BBOC_HTTP_TRANSACTION_CLASS=TRANSACTION_CLASS
A valid WLM transaction class, which will be used in the creation of the
WLM enclave for all HTTP requests. If a valid WLM transaction class is
not specified, no transaction class will be set for the enclave.

Example:
BBOC_HTTP_TRANSACTION_CLASS=TCLASSA

BBODUMP=n
Specifies the default dump used by the signal handler. Valid values and
their meanings are:

0 No dump is generated.

1 A ctrace dump is taken.

2 A cdump dump is taken.

3 A csnap dump is taken.

Appendix A. Environment files 137

|

|
|
|
|

|
|

|
|
|
|

|
|
|

|

|

|
|
|
|
|
|

|

|

|
|
|
|

|

|

|
|
|

||

||

||

||

4 A CEE3DMP dump is taken. CEE3DMP generates a dump of
Language Environment and the member language libraries. Sections
of the dump are selectively included, depending on dump options
specified, either by default or through the
BBODUMP_CEE3DMP_OPTIONS environment variable. By default,
this value passes THREAD(ALL) BLOCKS to CEE3DMP. You can
override the default options for CEE3DMP through the
BBODUMP_CEE3DMP_OPTIONS environment variable.

For more information about CEE3DMP and its options, see z/OS
Language Environment Programming Reference, SA22-7562.

If you do not specify BBODUMP, the default value is 3 (a csnap dump is
taken).

Example:
BBODUMP=3

BBODUMP_CEE3DMP_OPTIONS=options
Specifies dump options to be used with a CEE3DMP. This environment
variable is used when you specify BBODUMP=4. For an explanation of
CEE3DMP and valid dump options, see z/OS Language Environment
Programming Reference, SA22-7562.

Rule: The maximum length of the option string on this environment
variable is 255. If the option string is longer than 255, you receive message
BBOU0514W and the CEE3DMP dump options are set to THREAD(ALL)
BLOCKS.

Example:
BBODUMP_CEE3DMP_OPTIONS=NOTRACEBACK NOFILES

BBOLANG=LANGUAGE
The name of the WebSphere for z/OS message catalog used. The default
is ENUS.

BEAN_DELETE_SLEEP_TIME=n
The time in seconds allowed before an expired stateful session bean’s state
is deleted from its backing datastore (DB2). The default time is 4200
seconds (70 minutes). You can increase the time to 2147483 seconds (24.85
days). Recommendation: Do not set this variable less than 300 seconds (5
minutes).

Example: BEAN_DELETE_SLEEP_TIME=1000000

CBCONFIG=path
Specifies a read/write directory in the HFS into which WebSphere for
z/OS writes configuration and environment files when a conversation is
activated. The &CBCONFIG variable in control and server region start
procedures must match this value. In this way, WebSphere for z/OS can

138 WebSphere for z/OS: Assembling CORBA Applications

||
|
|
|
|
|
|
|

|
|

|
|

|

|

|
|
|
|
|

|
|
|
|

|

|

|

|
|
|
|
|
|

|

find the appropriate environment file for a server when those start
procedures are executed. The default is /WebSphere390/CB390.

Example: CBCONFIG=/WebSphere390/CB390

Rule: The System Management group (default CBCFG1) and user ID
(default CBSYMSR1) must own each directory and subdirectory in
CBCONFIG. If the System Management group and user ID do not own
CBCONFIG, use the chown command to make them the owner of each
directory and subdirectory in CBCONFIG. Thus, if you use the default
CBCONFIG, you must use the chown command to give the System
Management group and user ID ownership of /WebSphere390 and
/WebSphere390/CB390.

Example:
chown -R CBSYMSR1:CBCFG1 /WebSphere390

CLASSPATH=path1:[path2]:...
Specifies Java class files—.jar files and classes.zip files—for use by Java
business objects in server regions. Specify your Java business object’s .jar
files when you use Java business objects. The entire CLASSPATH
statement must be on one line only.

Example:
CLASSPATH=/usr/lpp/db2/db2710/classes/db2j2classes.zip: . . .

CLIENT_DCE_QOP=value
The level of DCE message protection used by a local z/OS or OS/390
client to apply to the current transaction flows. Normally, you would set
DCE security for an z/OS or OS/390 client that accesses servers on
remote systems. Note that the DCE level for a server is set through the
Administration application.

When enabled on client and server, DCE authentication offers each proof
of the other’s legitimacy with a handshake message exchange using DCE’s
third-party authentication scheme. Once this exchange has taken place,
messages can be assigned one of three levels of protection, which are the
values of this environment variable:

NO_PROTECTION
DCE assures only that the messages and their replies are from the
legitimate sender. This is the default.

INTEGRITY
DCE assures that the message is from the legitimate sender and it has
not been modified in any way since the sender sent it.

CONFIDENTIALITY
DCE encrypts the message so that none but the legitimate receiver can
read it.

Appendix A. Environment files 139

|
|
|
|
|
|
|
|

|

|

|

CLIENT_HOSTNAME=
Allows an z/OS or OS/390 client to determine its host IP name when no
Daemon is running on the same system. When a client program issues the
CBSeriesGlobal::hostName() method, the system checks the
CLIENT_HOSTNAME environment variable first and returns this value, if
it is set. If the value is not set, the system returns the IP name of the
Daemon running on that system, if the Daemon is running. The default
value is null.

Example: CLIENT_HOSTNAME=MYSYS.SYS.COM

CLIENTLOGSTREAMNAME=LOG_STREAM_NAME
The WebSphere for z/OS error log stream to which an z/OS or OS/390
client ORB writes error information.

Example: CLIENTLOGSTREAMNAME=MY.CLIENT.ERROR.LOG

CLIENT_RESOLVE_IPNAME=IP_NAME
The Internet Protocol name that an z/OS or OS/390 client, or server
region acting as a client, uses to access the bootstrap server (that is, when
the client or server region invokes the resolve_initial_references method).
The default is the value specified by the RESOLVE_IPNAME environment
variable, which is the Internet Protocol name associated with the System
Management Server (the default bootstrap server). If RESOLVE_IPNAME
is not set, the value is the system on which the client or server region is
running.

The CLIENT_RESOLVE_IPNAME environment variable allows you to
specify a bootstrap server running on a remote system, while other clients
use a local bootstrap server defined by the RESOLVE_IPNAME
environment variable.

Note: The TCP/IP port number for the CLIENT_RESOLVE_IPNAME is
defined by the RESOLVE_PORT environment variable.

The value of CLIENT_RESOLVE_IPNAME can be up to 255 characters.

Example: CLIENT_RESOLVE_IPNAME=REMHOST

CLIENT_TIMEOUT=n
Sets the time-out value for response from a client method call. The values
are in integers and signify the time in tenths of seconds (thus, a value of
10 is 1 second). The default value is 0, which means no time-out value is
set.

Example: CLIENT_TIMEOUT=20

com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=org,c=country
The starting point of WsnName tree. Only the Naming server uses this
environment variable. By default, the system expects the value to be

140 WebSphere for z/OS: Assembling CORBA Applications

ibm-wsnTree=t1,o=WASNaming,c=us. If you take the default, delete this
environment variable from your environment file.

This value must match the value specified in LDAP initialization file (our
sample is bboldif.cb). If you’ve modified the organization or country in
your bboldif.cb file, use the same value on this environment variable.
Note that case does not matter in LDAP, though it does matter for the
environment variables. The ″o=,c=″ portion must also be specified as a
suffix in bboslapd.conf.

Example:
suffix "o=WASNaming,c=us"

Tip: The suffix statement appears as:
suffix "<ws_rdn>"

in the sample bboslapd.conf we ship.

Example:
com.ibm.ws.naming.ldap.containerdn=ibm-wsnTree=t1,o=WASNaming,c=us

com.ibm.ws.naming.ldap.domainname=domain name
Uniquely identifies the host root and is the basis for partitioning the JNDI
global name space. Only the Naming server uses this environment
variable. By default, the system expects the value to be the domain name
of the sysplex on which Naming Server is running. If you want the
default, delete this environment variable from the environment file. If you
want a different domain name, specify it.

Example:
com.ibm.ws.naming.ldap.domainname=plex1

com.ibm.ws.naming.ldap.masterurl=ldap://IP_name:port
The LDAP Server IP Name and port number. Only the Naming server
uses this environment variable. By default, the system expects the IP name
to be the same as the system on which the Naming Server runs and the
port to be 1389. If your LDAP server is running on a system other then
the one the Naming Server runs on or uses a port other than 1389, update
this environment variable. Otherwise, delete this environment variable.

Example:
com.ibm.ws.naming.ldap.masterurl=ldap://wsldap:1389

CONFIGURED_SYSTEM=system
Specifies the name of the system to which the server instance was
originally configured. During prepare for cold start, cold start, and server
activation, the run time adds this environment variable to each server
instance’s environment file automatically.

Appendix A. Environment files 141

|
|
|
|
|

Rule: Do not manually add or change this environment variable at any
time, such as:
v In the initial environment file before bootstrap
v Through the Administration application (SM EUI)
v In an existing server environment file.

DAEMON_IPNAME=IP_NAME
The Internet Protocol name that the Daemon Server registers with the
Domain Name Service (DNS). Any CORBA client communication with
WebSphere for z/OS requires this IP name.

You must define the DAEMON_IPNAME environment variable at
installation time, before you start the Daemon bootstrap process.
Otherwise, WebSphere for z/OS issues an error message and terminates
the Daemon.

The bootstrap process sets, among other things, the Daemon IP name in
the system management database. After bootstrap, WebSphere for z/OS
uses the value in the system management database. It is possible that,
after bootstrap, the value of the DAEMON_IPNAME environment
variable could change to a value other than what is in the system
management database. If this happens, an error message is issued, but the
Daemon initializes with the Daemon IP name from the system
management database.

To place Daemon server instances in the same host cluster, you must code
the same DAEMON_IPNAME value for each server instance.

Rules:

v The value for DAEMON_IPNAME must be a fully-qualified long name.
v The first-level qualifier can be from 1 to 18 characters.
v Once chosen, the port and IP name for the Daemon should not change,

since every object reference includes the port and IP name—if you
change them, existing objects will no longer be accessible.

Example: DAEMON_IPNAME=CBQ091.PDL.POK.IBM.COM

DAEMON_PORT=n
The port number at which the Daemon Server listens for requests. The
default is 5555. If you specify a value, you must provide the same value
for the System Management Server control region.

Example: DAEMON_PORT=5555

DEFAULT_CLIENT_XML_PATH=path
Specifies the location of a set of XML files that hold default parameter

142 WebSphere for z/OS: Assembling CORBA Applications

|
|

|

|

|

lists used by the System Management Scripting API. You must set this
environment variable for clients that use the System Management
Scripting API.

IBM provides a set of sample XML files that contain default parameter
lists. After installation, these samples reside in
/usr/lpp/WebSphere/samples/smapi. For information about the XML files
and the parameter lists, see WebSphere Application Server V4.0.1 for z/OS
and OS/390: System Management Scripting API, SA22-7839.

You can override the default behavior of the System Management
Scripting API in two ways:
1. Specifying the parameters explicitly in the REXX script that calls the

System Management Scripting API. By specifying parameters
explicitly, you do not have to modify the XML samples IBM provides.
You simply need to code
DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

in your client environment file.
2. Copying the XML files to another directory (the samples IBM provides

are read-only), making modifications to the parameter lists, then
changing the DEFAULT_CLIENT_XML_PATH to point to the new
directory. Making these changes is required only if you want to
override permanently the default behavior of the System Management
Scripting API.

Example: DEFAULT_CLIENT_XML_PATH=/usr/lpp/WebSphere/samples/smapi

DEFAULT_UNAUTH_CLIENT_ID=user_id
The default local and remote user ID that the System Management server
associates with servers. If you allow unauthenticated client requests on a
server, and do not explicitly specify your own local and remote user ID
for that server, those requests run under the authority of this user ID.

If you do not define this environment variable, the default local and
remote user ID is CBGUEST.

You must define this user ID to z/OS or OS/390 and give it appropriate
security authorizations (for example, RACF permissions and LDAP
permissions).

This environment variable is used only by the System Management server.
Using this environment variable in the environment file for other servers
takes no effect. That is, you cannot use this environment variable for other
servers to define the default local and remote ID that is used by those
servers. Rather, you must define the default through the server properties
panel in the Administration application. To do this

Appendix A. Environment files 143

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|

v Select the “Allow non-authenticated clients” checkbox. The
Administration application supplies the value for the local and remote
identity from the value on the DEFAULT_UNAUTH_CLIENT_ID
variable (or, if not specified, it supplies CBGUEST).

v Type over the supplied values with your value.

The System Management server uses this environment variable during
bootstrap. After bootstrap, you can modify the value only at the sysplex
level through the Administration application.

Example: DEFAULT_UNAUTH_CLIENT_ID=DUDE

DM_GENERIC_SERVER_NAME=SERVER_NAME
The server name for the Daemon Server. The default is CBDAEMON. If
you specify a value, you must provide the same value for the System
Management Server control region.

Example: DM_GENERIC_SERVER_NAME=CBDAEMON

DM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
A server instance name of the Daemon Server. The default is DAEMON01.
You must specify this environment variable for all server instances in the
second and subsequent systems in a sysplex.

Example: DM_SPECIFIC_SERVER_NAME=DAEMON01

HOME=path
Specifies the home directory. This variable is set automatically from the
security product user profile when the user logs in to the UNIX shell.

IBM_OMGSSL=[0 | 1]
Specifies whether only CORBA-compliant security tags will be exported
by the server. The value 1 means only CORBA-compliant tags are
exported. The value 0 (the default) means CORBA-compliant and
non-compliant tags are exported.

Use value 1 when the server uses only SSL basic authentication for its
security and clients (such as CICS or other OEM ORBs) use
CORBA-compliant tags. This is only in the case when the server uses SSL
basic authentication. If your server supports SSL client certificates as well,
you do not have to set this variable.

Use value 0 (or take the default) when your server uses SSL basic
authentication and interoperates with WebSphere clients on distributed
platforms or WebSphere Application Server Enterprise Edition for OS/390
V3.02.

Example: IBM_OMGSSL=1

ICU_DATA=path
The path to binary files required by the XML Parser used by the System

144 WebSphere for z/OS: Assembling CORBA Applications

|
|
|
|

|

|
|
|

|

|
|
|

Management server during bootstrap and import server processing. If you
installed the WebSphere for z/OS code in the default directory, you do
not need to change this path. The default path is
/usr/lpp/WebSphere/bin/.

Example: ICU_DATA=/usr/lpp/WebSphere/bin/

IR_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Interface Repository Server. The default is
CBINTFRP. You must define a workload management (WLM) application
environment using this name for the Interface Repository Server server
regions to work.

IR_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
A server instance name of the Interface Repository Server. The default is
INTFRP01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

IRPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Interface
Repository Server. The default is BBOIR. You can supply the name of your
own start procedure. If you do so, copy the information from the default
start procedure to your new start procedure.

Example: IRPROC=BBOIR

IVB_DEBUG_ENABLED=1
Enables the z/OS or OS/390 client and the application server to load the
object level trace run time, and to use object level trace for tracing and/or
debugging client and server application components. The value 1 is
required for the application server, and for both C++ or Java clients
running on z/OS or OS/390, when debugging C++ or Java business
objects, servlets, JSPs, or Enterprise beans.

IVB_DRIVER_PATH=path
The name of the directory where WebSphere for z/OS files reside after
SMP/E installation. The default is /usr/lpp/WebSphere.

Example: IVB_DRIVER_PATH=/usr/lpp/WebSphere

IVB_TRACE_HOST=IP_ADDRESS (or HOSTNAME)
Specifies the workstation IP address (or host name if you have the DNS
server setup correctly) where the object level trace viewer runs. Use this
when you are tracing and/or debugging your client and server
components with the IBM Object Level Trace and Distributed Debugger
Tools.

Example: IVB_TRACE_HOST=MYHOST.IBM.COM

IVB_TRACE_PORT=port
Specifies the same port as the TCP/IP port specified for the object level

Appendix A. Environment files 145

|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|

trace server. Use this when you are tracing and/or debugging your client
and server components with the IBM Object Level Trace and Distributed
Debugger Tools. The default is 2102.

Example: IVB_TRACE_PORT=2102

java.naming.security.credentials=password
The password used by the distinguished name specified by
java.naming.security.principal. The password must match the password
defined for the administrator access ID (default is WASAdmin) by the
LDAP initialization file during initial system customization. IBM provides
the WASAdmin access ID in a sample LDIF file called bboldif.cb. The
default value is secret.

Example: java.naming.security.credentials=secret

Recommendation: You should change the IBM-supplied password.

java.naming.security.principal=distinguished_name
Distinguished name (user ID) defined to have write access to WsnName
directory. Specify this only if you want to provide read/write access to all
JNDI users. The distinguished name must match the one defined for the
administrator access ID (default is WASAdmin) by the LDAP LDIF file
during initial system customization. IBM provides the WASAdmin access
ID in a sample LDAP initialization file called bboldif.cb. The default value
is cn=WASAdmin,o=WASNaming,c=us.

Example:
java.naming.security.principal=cn=WASAdmin,o=WASNaming,c=us

Recommendation: We suggest you keep the WASAdmin access ID.

JAVA_COMPILER=
Specifies the use of the just-in-time (JIT) compiler.

If you use the environment variable, a null value (JAVA_COMPILER=) turns
the JIT compiler on. Any other value turns the JIT compiler off.

By default, a Java virtual machine (JVM) running on z/OS or OS/390 uses
the JIT compiler, so you do not have to explicitly set this environment
variable. If you are debugging Java business objects or J2EE application
components, however, turn off the JIT compiler by specifying a non-null
value.

Example: JAVA_COMPILER=NONE

JAVA_IEEE754=EMULATION
Specifies the correct executable code for the system to load for the Java
virtual machine (JVM) in which Java clients on z/OS or OS/390 run. This
environment variable setting is required only for Java clients that run on
z/OS or OS/390.

146 WebSphere for z/OS: Assembling CORBA Applications

|
|
|

|

JVM_BOOTCLASSPATH=path1:[path2]
Enables the use of bootclasspath. This option is equivalent to the
-Xbootclasspath/p: Java invocation option.

JVM_BOOTLIBRARYPATH=path1:[path2]
Enables the use of bootlibrarypath. This option is equivalent to the
-Dsun.boot.library.path= Java invocation option.

JVM_DEBUG=1
This option is equivalent to the —verbose:class,jni Java invocation
option. It reroutes JVM messages to SYSOUT for debugging purposes. Set
JVM_DEBUG=1 to invoke JVM messaging.

JVM_DEBUG_PORT=port
Specifies a TCP/IP port that the distributed debugger uses to connect to
the JVM.

JVM_ENABLE_CLASS_GC=1
Enables class objects to be garbage collected. The value 1 is required for
enabling class object garbage collection. This option is equivalent to the
-Xnoclassgc Java invocation option.

JVM_ENABLE_VERBOSE_GC=1
Sets verbose garbage collection on or off. The value 1 is required for
enabling garbage collection messages. This option is equivalent to the
-verbose:gc Java invocation option.

JVM_EXTRA_OPTIONS=string
Allows you to specify one new Java environment variable that is not
already predefined by IBM (those predefined variables start with JVM_).
With JVM_EXTRA_OPTIONS, string is the new Java option or property that
you want to specify.

JVM_HEAPSIZE=n
Sets the maximum size (in megabytes) of the JVM heap. The default is 256
MB. This option is equivalent to the -Xmx=xxxM Java invocation option.

Example: JVM_HEAPSIZE=256 # specifies a 256 MB heap

JVM_LOCALREFS=
Should only be used under the direction of IBM support. The default is
128.

JVM_LOGFILE=filename
Specifies the HFS file in which messages from the JVM will be logged.

Recommendation: Use this variable only in a single-server environment.
If you use JVM_LOGFILE in a multiple-server environment, all the servers
write to the same file, so you might have difficulty using the file for
diagnostic purposes. In a multiple-server environment, use JVM_DEBUG=1 to
direct JVM messages to the SYSOUT for a specific server.

Appendix A. Environment files 147

|
|
|
|

|
|
|

JVM_MINHEAPSIZE=n
Sets the mimimum size (in megabytes) of the JVM heap. The default is
256 MB. This option is equivalent to the -Xms=xxxM Java invocation option.
For optimal performance, specify the same value for JVM_HEAPSIZE and
JVM_MINHEAPSIZE.

LDAPBINDPW=password
The password the Naming Server uses to bind to the LDAP server. Used
in conjunction with LDAPNAME.

LDAPCONF=filename
The LDAP configuration file used by WebSphere for z/OS. If you
designate a file in the HFS, do not use quotes. If you designate an MVS
data set, enclose the data set in single quotes.

Example: LDAPCONF=‘bbo.s21slapd.conf’

LDAPHOSTNAME=name:port
The host name of the LDAP server that the Interface Repository Server
uses as its data store.

LDAPIRBINDPW=password
The password the Interface Repository Server uses to bind to the LDAP
server. Used in conjunction with LDAPIRNAME.

LDAPIRCONF=filename
The LDAP configuration file used by the LDAP server that the Interface
Repository Server uses as its data store. If you designate a file in the HFS,
do not use quotes. If you designate an MVS data set, enclose the data set
in single quotes.

LDAPIRHOSTNAME=name:port
The host name of the LDAP server that the Interface Repository Server
uses as its data store.

LDAPIRNAME
The LDAP entry name that the Interface Repository Server uses to
authenticate itself to the LDAP server that it uses as its data store.

LDAPIRROOT=root
The LDAP entry name at which the Interface Repository Server anchors
its data.

Example: LDAPIRROOT=o=BOSS,c=U

LDAPNAME
The LDAP entry name that the Naming Server uses to authenticate itself
to the LDAP server that it uses as its data store.

LDAPROOT=root
The LDAP entry name at which the Naming Server anchors its data.

148 WebSphere for z/OS: Assembling CORBA Applications

Example: LDAPROOT=o=BOSS,c=US

LIBPATH=path1:[path2]:...
Specifies the DLL search paths for Java in the hierarchical file system
(HFS). Specify system, WebSphere for z/OS, and Java DLLs.

Example:
LIBPATH=/db2_install_path/lib:/usr/lpp/java/J1.3/bin:/usr/lpp/java/J1.3/bin/classic:/usr/lpp/WebSphere/lib

where db2_install_path is the HFS where you installed DB2.

LOGSTREAMNAME=LOG_STREAM_NAME
The WebSphere for z/OS error log stream name the Daemon and System
Management servers use during bootstrap. If not specified in the
environment file for the Daemon and System Management servers during
bootstrap, the system uses the following algorithm to form an error log
stream name. WebSphere for z/OS:
1. Takes the first qualifier in the Daemon Server’s IP name.
2. If the first qualifier is more than 8 characters, divides the qualifier into

8-character strings and separates them with periods.
3. Adds a high-level qualifier “BBO”.

For example, if the Daemon IP name is MYDAEMONSERVER.IBM.COM,
the algorithm would produce an error log stream name
BBO.MYDAEMON.SERVER.

After bootstrap, you can create or change an error log stream name for the
entire sysplex, a server, or a server instance through the Administration
application. A server error log stream setting overrides the general
WebSphere for z/OS setting, and a server instance setting overrides a
server setting. Thus, you can set up general error logging, but direct error
logging for servers or server instances to specific log streams.

During processing, if the specified log stream is not found or not
accessible, a message is issued and errors are written to the server’s
joblog.

Example: LOGSTREAMNAME=MY.CB.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not
data set names.

MIN_SRS=nn
The number of server regions to be kept running once those server
regions have initialized. That is, workload management will not direct the
server region to shut down even though it becomes inactive. Use this

Appendix A. Environment files 149

environment variable when the response time for the workload requires
that several server regions are always ready to process work.

The default for J2EE servers is 1. For MOFW servers, the default is 0. The
maximum value is 20. If you specify more than 20, the variable is set to
20.

WebSphere for z/OS garbage collection may cause a server region to
refresh, but the minimum number of server regions will not fall below the
value specified on this environment variable.

Example: MIN_SRS=2

NM_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Naming Server. The default is CBNAMING. You
must define a workload management (WLM) application environment
using this name for the Naming Server server regions to work.

Example: NM_GENERIC_SERVER_NAME=CBNAMING

NM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
The server instance name of the Naming Server. The default is
NAMING01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

Example: NM_SPECIFIC_SERVER_NAME=NAMING01

NMPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Naming
Server. The default is BBONM. You can supply the name of your own
start procedure. If you do so, copy the information from the default start
procedure to your new start procedure.

Example: NMPROC=BBONM

OTS_DEFAULT_TIMEOUT=n
The amount of time (in seconds) given by default to an application
transaction to complete. This amount of time is given to the application
transaction if it does not set its own time-out value through the current
—> set_timeout method.

The default is 30 seconds and the maximum value is 2147483 seconds
(24.85 days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special
processing for the System Management server instances only.
v If the OTS_DEFAULT_TIMEOUT variable is not set, it is added.
v If the value for OTS_DEFAULT_TIMEOUT is less than 3600

(seconds), it is set to 3600.

150 WebSphere for z/OS: Assembling CORBA Applications

This special processing is performed for the System Management
server instances because the server instances sometimes perform
long-running transactions. Other server instances do not require
such lengthy transaction defaults.

Example: OTS_DEFAULT_TIMEOUT=30

OTS_MAXIMUM_TIMEOUT=n
The maximum allowable amount of time (in seconds) given to an
application transaction to complete. If an application assigns a greater
amount of time, the system limits the time to the
OTS_MAXIMUM_TIMEOUT value.

The default is 60 seconds and the maximum value is 2147483 seconds
(24.85 days). You should not use a null or 0 value.

Note: When a conversation is activated, the system performs special
processing for the System Management server instances only.
v If the OTS_MAXIMUM_TIMEOUT variable is not set, it is added.
v If the value for OTS_MAXIMUM_TIMEOUT is less than 3600

(seconds), it is set to 3600.

This special processing is performed for the System Management
server instances because the server instances sometimes perform
long-running transactions. Other server instances do not require
such lengthy transaction defaults.

Example: OTS_MAXIMUM_TIMEOUT=60

PATH=path
Specifies the path.

RAS_MINORCODEDEFAULT=value
Determines the default behavior for gathering documentation about
system exception minor codes. Use only under the guidance of IBM
Service.

CEEDUMP
Captures callback and offsets.

Tip: It takes time for the system to take CEEDUMPs and this may
cause transaction timeouts. For instance, your
OTS_DEFAULT_TIMEOUT may be set to 30 seconds, but, since
taking a CEEDUMP can take longer than 30 seconds, your
application transaction may time out. To prevent this from
happening, either:
v Increase the transaction timeout value.

or

Appendix A. Environment files 151

v Code RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA.
Be sure TRACEMINORCODE is not in the environment file.

TRACEBACK
Captures Language Environment and z/OS UNIX traceback data.

SVCDUMP
Captures an MVS dump (but will not produce a dump in the
client).

NODIAGNOSTICDATA
The default. This setting will not cause the gathering of a
CEEDUMP, TRACEBACK, or SVCDUMP.

Note: Sometimes results depend on the setting of another environment
variable, TRACEMINORCODE. If you code
TRACEMINORCODE=(null value) and
RAS_MINORCODEFAULT=TRACEBACK you get a traceback. But,
if you code RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA
and TRACEMINORCODE=ALL, you also get a traceback. So,
specifying RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA
does not cancel TRACEBACK; it simply does not cause a
TRACEBACK to be gathered.

REM_DCEPASSWORD=password
The password of the remote DCE principal passed in the security context
when an z/OS or OS/390 client makes a request to a system outside the
sysplex and SSL Type 1 authentication is being used. The password must
conform to DCE requirements for passwords.

Example: REM_DCEPASSWORD=mydcePW

REM_DCEPRINCIPAL=principal
The principal passed in the security context when a client makes a request
to a system outside the sysplex and SSL Type 1 authentication is being
used. This principal must be defined on the target server. The value must
conform to DCE requirements for principals.

Example: REM_DCEPRINCIPAL=myDCEprin

REM_PASSWORD=password
The password used in the security context when a client makes a request
to a remote z/OS or OS/390 system and user ID/password security or
SSL security is being used.

Example: REM_PASSWORD=MYPASSW

REM_USERID=USER_ID
The user ID used in the security context when a client makes a request to
a remote z/OS or OS/390 system and user ID/password security or SSL
security is being used.

152 WebSphere for z/OS: Assembling CORBA Applications

Example: REM_USERID=MCOX

RESOLVE_IPNAME=IP_NAME
The Internet Protocol name that the System Management Server registers
with the Domain Name Service (DNS). Any CORBA client communication
with WebSphere for z/OS requires this IP Name. If not set, the Resolve IP
Name is the system on which the program is running.

Rule: The value for RESOLVE_IPNAME should be a fully-qualified name,
but it cannot exceed 255 characters.

Example: RESOLVE_IPNAME=CBQ091.COMPANY.NY.COM

RESOLVE_PORT=n
The port number at which the System Management Server listens for
requests. The default is 900. This is a well-known port for Object Request
Brokers, so IBM advises that you do not change this variable. If you
already have an application that uses this port, consider using TCP/IP
bind-specific support and the SRVIPADDR environment variable.

Example: RESOLVE_PORT=900

SM_DEFAULT_ADMIN=USER_ID
The user ID for the administrator who uses the Administration and
Operations applications. This environment variable is used by the System
Management bootstrap during installation—setting this environment
variable after the System Management bootstrap runs has no effect. If you
do not define this environment variable, the default user ID is CBADMIN.
You must define this user ID to z/OS or OS/390 and give it appropriate
security authorizations (for example, RACF permissions and LDAP
permissions).

Note: After the System Management bootstrap runs, you can define
additional administrator user IDs only through the Administration
application. Those user IDs do not replace the user ID defined by
SM_DEFAULT_ADMIN.

Example: SM_DEFAULT_ADMIN=DUDE

SM_GENERIC_SERVER_NAME=SERVER_NAME
The server name of the Systems Management Server. The default is
CBSYSMGT. You must define a workload management (WLM) application
environment using this name for the Systems Management Server server
regions to work.

Example: SM_GENERIC_SERVER_NAME=CBSYSMGT

SM_SPECIFIC_SERVER_NAME=SERVER_INSTANCE_NAME
The server instance name of the Systems Management Server. The default

Appendix A. Environment files 153

is SYSMGT01. You must specify this environment variable for all server
instances in the second and subsequent systems in a sysplex.

Example: SM_SPECIFIC_SERVER_NAME=SYSMGT01

SMPROC=PROC_NAME
The start procedure used by the Daemon Server to start the Systems
Management Server. The default is BBOSMS. You can supply the name of
your own start procedure. If you do so, copy the information from the
default start procedure to your new start procedure.

Example: SMPROC=BBOSMS

SOMOOSQL=value
Improves performance for client applications that use object-oriented SQL
queries on string attributes. By using SOMOOSQL=1, string comparisons
are pushed down to the database.

The default value is null (SOMOOSQL=).

Rule: You can use SOMOOSQL=1 only when the database and server
region address spaces have been declared to run in the same locale.

SRVIPADDR=IP_ADDRESS
The IP address in dotted decimal format that WebSphere for z/OS servers
use to listen for client connection requests.

This IP address is used by the server to bind to TCP/IP. Normally, the
server will listen on all IP addresses configured to the local TCP/IP stack.
However if you want to fence the work or allow multiple heterogeneous
servers to listen on the same port, you can use SRVIPADDR. The specified
IP address becomes the only IP address over which WebSphere for z/OS
receives inbound requests. Normally, you also have to map the Daemon
IP name, resolve IP name, or host name of the server that you are on to
this particular SRVIPADDR.

SSL_KEYRING=keyring
The name of the z/OS or OS/390 client’s key ring used in SSL processing.
This key ring must reside in RACF.

Example: SSL_KEYRING=IVPRING

SYS_DB2_SUB_SYSTEM_NAME=NAME
The DB2 name used by Daemon and System Management servers to
connect to the database. Use either the DB2 subsystem name or group
attachment name. The default is DB2. If the default is not correct for your
installation, change the environment variable to match the correct value.

Example: SYS_DB2_SUB_SYSTEM_NAME=DB21

154 WebSphere for z/OS: Assembling CORBA Applications

TRACEALL=n
Specifies the default tracing level for WebSphere for z/OS. Valid values
and their meanings are:

0 No tracing

1 Exception tracing, the default

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

Use this variable in conjunction with the TRACEBASIC and
TRACEDETAIL environment variables to set tracing levels for WebSphere
for z/OS subcomponents. Do not change this variable unless directed by
IBM service personnel.

Example: TRACEALL=1

TRACEBASIC=n | (n,...)
Specifies tracing overrides for particular WebSphere for z/OS
subcomponents. Subcomponents, specified by numbers, receive basic and
exception traces. If you specify more than one subcomponent, use
parentheses and separate the numbers with commas. Contact IBM service
for the subcomponent numbers and their meanings. Other parts of
WebSphere for z/OS receive tracing as specified on the TRACEALL
environment variable. Do not change TRACEBASIC unless directed by
IBM service personnel.

Example: TRACEBASIC=3

TRACEBUFFCOUNT=n
Specifies the number of trace buffers to allocate. Valid values are 4
through 8. The default is 4.

TRACEBUFFLOC=SYSPRINT | BUFFER
Specifies where you want trace records to go: either to sysprint
(SYSPRINT) or to a memory buffer (BUFFER), then to a CTRACE data set.
The default is to direct trace records to sysprint for the client and to a
buffer for all other WebSphere for z/OS processes. For servers, you may
specify one or both values, separated by a space. For clients, you may
specify TRACEBUFFLOC=SYSPRINT only.

Example: TRACEBUFFLOC=SYSPRINT BUFFER

TRACEBUFFSIZE=n
Specifies the size of a single trace buffer in bytes. You can use the letters
“K” (for kilobytes) or “M” (for megabytes). Valid values are 128K through
4M. The default is 1M.

Appendix A. Environment files 155

TRACEDETAIL=n | (n,...)
Specifies tracing overrides for particular WebSphere for z/OS
subcomponents. Subcomponents, specified by numbers, receive detailed
traces. If you specify more than one subcomponent, use parentheses and
separate the numbers with commas. Contact IBM service for the
subcomponent numbers and their meanings. Other parts of WebSphere for
z/OS receive tracing as specified on the TRACEALL environment
variable. Do not change TRACEDETAIL unless directed by IBM service
personnel.

Examples:
TRACEDETAIL=3

TRACEDETAIL=(3,4)

TRACEMINORCODE=value
Enables traceback of system exception minor codes. Use only when
instructed by IBM Service. Values are:

ALL|all
Enables traceback for all system exception minor codes.

minor_code
Enables traceback for a specific minor code. Specify the code in
hex, such as X'C9C21234'.

(null value)
The default. This setting will not cause gathering of a traceback.

Note: Sometimes results depend on the setting of another environment
variable, RAS_MINORCODEDEFAULT. If you code
TRACEMINORCODE=ALL and
RAS_MINORCODEDEFAULT=NODIAGNOSTICDATA, you get a
traceback. But, if you code TRACEMINORCODE=(null value) and
RAS_MINORCODEFAULT=TRACEBACK you also get a traceback.
So, specifying TRACEMINORCODE=(null value) does not cancel
TRACEBACK; it simply does not cause a TRACEBACK to be
gathered.

TRACEPARM=SUFFIX | MEMBER_NAME
Identifies the CTRACE PARMLIB member. The value can be either a
two-character suffix, which is added to the string CTIBBO to form the
name of the PARMLIB member, or the fully-specified name of the
PARMLIB member. For example, you could use the suffix “01”, which the
system resolves to “CTIBBO01”. A fully-specified name must conform to
the naming requirements for a CTRACE PARMLIB member. For details,
see z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589.

The default value is 00.

156 WebSphere for z/OS: Assembling CORBA Applications

If this environment variable is specified and the PARMLIB member is not
found, the default PARMLIB member, CTIBBO00, is used. If neither the
specified nor the default PARMLIB member is found, tracing is defined to
CTRACE, but there is no connection to a CTRACE external writer. For
details on the PARMLIB member and the use of the CTRACE external
writer, see WebSphere Application Server V4.0.1 for z/OS and OS/390:
Messages and Diagnosis, GA22-7837.

Note that the Daemon Server is the only server that recognizes this
environment variable.

Example: TRACEPARM=01

Appendix A. Environment files 157

158 WebSphere for z/OS: Assembling CORBA Applications

Appendix B. An IMS application as an WebSphere for z/OS
client

WebSphere for z/OS allows IMS transaction-processing applications to act as
client applications. In other words, an IMS application, running in an IMS
message processing region, may create or find, use, and delete CORBA
business objects that run in a WebSphere for z/OS MOFW server. Figure 17
illustrates the environment and processing through which an IMS application
becomes a WebSphere for z/OS client.

In this illustration, the following processing takes place:

Figure 17. An IMS application running as a client of a WebSphere for z/OS MOFW server

© Copyright IBM Corp. 2000,2001 159

v The IMS client submits a transaction to IMS, which can be configured to
receive requests and send responses through one of the following:
– Open Transaction Manager Access (OTMA), or
– The advanced program-to-program communication component of MVS

(APPC/MVS)

Alternatively, a transaction request can come from a 3270 terminal that is an
IMS-defined logical terminal (LTERM).

v The IMS control region queues the transaction request for the IMS
application that runs as a WebSphere for z/OS client.

v The IMS application follows the WebSphere Application Server for z/OS
and OS/390 Component Broker client programming model to connect to a
WebSphere for z/OS MOFW server, and drives methods against objects in
that server to satisfy the original IMS client transaction request. The IMS
application then sends a response to the IMS client.

The following table shows the subtasks and associated procedures for creating
and running an IMS application as a WebSphere for z/OS client:

Subtask Associated procedure (See . . .)

Developing and assembling an IMS
application to run as a WebSphere for
z/OS client

v “Background on designing the IMS
application”

v “Steps for developing and compiling
the IMS application” on page 164

Preparing the run-time environment for the
IMS application

v “Background on security for the IMS
application” on page 163

v “Steps for setting up the run-time
environment for the IMS application”
on page 166

Background on designing the IMS application

For an IMS transaction-processing application as a client of WebSphere for
z/OS, you need to consider two programming characteristics that make your
application different from other IMS applications:
v Use of the Component Broker client programming model and instructions,

and
v The transactional scope of IMS processing.

For your IMS application to become a client of a WebSphere for z/OS MOFW
server, you must code it according to the Component Broker client
programming model, which prescribes the following processing sequence:

160 WebSphere for z/OS: Assembling CORBA Applications

1. Using the CBSeriesGlobal::Initialize method to establish a connection
with WebSphere for z/OS

2. Using the CBSeriesGlobal::orb method to obtain a pointer to WebSphere
for z/OS

3. Using the resolve_initial_references method to obtain a reference to the
WebSphere for z/OS naming server

4. Locating a factory finder to find the homes for the WebSphere for z/OS
objects that the client wants to use

5. Finding or creating, using, and deleting objects in WebSphere for z/OS
MOFW servers, as part of handling transactions from IMS clients.

Recommendation: To achieve the best performance as a client of WebSphere
for z/OS, design your IMS application to initialize with WebSphere for z/OS
only once, when the application is first loaded. Then the application can
continuously process transactions queued to it without reloading and
reinitializing. In other words, design your application as a wait for input
(WFI) application, which does the following processing:
1. Issue the CBSeriesGlobal::Initialize method
2. Issue the CBSeriesGlobal::orb method
3. Issue the resolve_initial_references method
4. Locate the object factories and homes needed for transaction processing
5. Begin a loop, in which the IMS application does the following processing:

a. Issues a Get Unique request to obtain the next transaction
b. Processes the transaction by issuing methods against objects in the

WebSphere for z/OS MOFW servers
c. Responding to the originator of the IMS transaction.

This design yields the best performance for an IMS application as a client of
WebSphere for z/OS, but the level of security you select for the application
might override its processing such that reloading is required for processing
each transaction request. “Background on security for the IMS application” on
page 163 describes security options and their effect on application processing.

The transactional scope, as well as the Component Broker client programming
model, also makes your IMS application different from other IMS applications.
When your IMS application requests a transaction, for example, the system
sets a specific transaction context under which your application runs while it
processes that single transaction request. When your IMS application issues a
method against a CORBA object in an WebSphere for z/OS MOFW server,
however, that server might not use the transaction context under which your
IMS application is running. The WebSphere for z/OS MOFW server decides
what transactional context to use, depending on the transaction policy in
effect for the container in which the object resides. For some container
transaction policies, the WebSphere for z/OS MOFW server initiates a
separate transaction context to process the method request against an object,

Appendix B. An IMS application as an WebSphere for z/OS client 161

and commits all changes before returning to the caller (that is, the IMS
application). Because of this behavior, you need to consider the following
recovery situations:
v If a termination error occurs under IMS during the processing of an IMS

transaction, and the termination error occurs before any update-object
request is sent to WebSphere for z/OS, recovery for the IMS transaction is
the same as for IMS applications that are not WebSphere for z/OS clients.

v If a termination error occurs under WebSphere for z/OS during the
processing of an object request for an IMS transaction, and the object
container policy propagated the IMS transactional context, WebSphere for
z/OS rolls back any processing completed for the object request. In this
case, the IMS application may, if it is designed to do so, catch the error
notification from WebSphere for z/OS, and choose to either continue
processing or terminate the IMS transaction.

v If a termination error occurs under IMS during the processing of an IMS
transaction, after WebSphere for z/OS has successfully processed and
committed object updates on behalf of the IMS application, your application
cannot roll back the updates that WebSphere for z/OS completed. Your IMS
application may, however, roll back its own processing. In this case, you
should design your application to properly communicate not only the
termination error, but also the fact that some updates have been completed,
and that they cannot be rolled back.

If necessary, see one or more of the following references for additional
information:

For more information about this topic: See:

Details about the Component Broker client
programming model and the methods clients
may use

v Component Broker Programming Guide

v Component Broker Programming
Reference

Details about defining an IMS application as
a wait-for-input (WFI) application, using the
TRANSACT macro

IMS/ESA Installation Volume 2: System
Definition and Tailoring, GC26-8737

Details about WebSphere for z/OS MOFW
server container transaction policies and their
implications for application processing

“Background on the OS/390
Component Broker transactional
environment” on page 17

Specific rules and restrictions for coding an
IMS application as a client of WebSphere for
z/OS

“Steps for developing and compiling
the IMS application” on page 164

162 WebSphere for z/OS: Assembling CORBA Applications

Background on security for the IMS application

Before you install your IMS application, you need to determine which level of
security is required for it, based on your knowledge of the application itself
and of your installation’s security requirements. You can set security controls
at the level of either the user ID of the message processing region (MPR), or
the user ID of the originator of the IMS transaction. Setting security at the
level of the MPR user ID means that all transactions that your IMS application
processes will run under the user ID of the MPR in which your application
runs. This security setting is the default security setting for transactions
received from IMS-defined logical terminals (LTERMs). In this case, the
system checks to see whether the transaction originator is authorized to issue
the transaction, but then uses the MPR user ID to check for authorization to:
v Update databases,
v Use UNIX System Services, and
v Use WebSphere for z/OS MOFW servers and the CORBA objects in those

servers.

With security at the level of MPR user ID, all authorization checks occur when
the IMS application is initially loaded. The application may then process
transactions without any further authorization checks, because the user ID
under which transaction processing occurs will not change.

Recommendation: If possible, use this level of security, along with the
recommended design in “Background on designing the IMS application” on
page 160, to achieve the best possible performance for an IMS application as a
WebSphere for z/OS client. This security setting, with a wait-for-input (WFI)
design, allows the application to continuously loop to process additional
transactions without repeating the initialization process.

Tip: For transactions received from OTMA or APPC, one possible way to set
the level of security to MPR user ID is to use the IMS /SECURE OTMA PROFILE
or /SECURE APPC command, respectively.

Setting security at the level of the user ID of the transaction originator means
that all transactions that your IMS application processes will run under the
user ID of the transaction originator. This security setting is the default
security setting for transactions received from IMS clients through OTMA or
APPC. In this case, the system uses the transaction originator’s user ID not
only to see whether the originator is authorized to issue the transaction, but
also uses the originator’s ID for all other authorization checks. The system
also reloads the application before the IMS application may process a
transaction. This level of security is known as “full security.”

With full security, the IMS application must be reloaded for each transaction
that it processes. This reloading is required to establish the proper security

Appendix B. An IMS application as an WebSphere for z/OS client 163

environment, based on the user ID that issued the IMS transaction, for
authorization to use UNIX System Services. This reinitialization occurs even if
the IMS application is designed as recommended in “Background on
designing the IMS application” on page 160.

See one or more of the following references for additional information:

For more information about this topic: See:

Details for establishing IMS security,
especially for changing the default security
for transactions received from LTERMs,
OTMA, or APPC

v IMS/ESA Administration Guide: System,
SC26-8730

v IMS/ESA Open Transaction Manager
Access Guide, SC26-8743

Specific instructions for setting up security
for an IMS application as a client of
WebSphere for z/OS

“Steps for setting up the run-time
environment for the IMS application”
on page 166

Steps for developing and compiling the IMS application

To design and code an IMS application that is a WebSphere for z/OS client,
you need to complete several steps in addition to those you usually complete
to design and code applications that run in IMS message processing regions.

Before you begin: Make sure you understand the information presented in
“Background on designing the IMS application” on page 160, which
recommends a design for optimal performance.

Perform the following steps to create and compile an IMS application as a
WebSphere for z/OS client:
1. Write new or edit existing source code for an IMS application.

Rules:

v Use the C++ programming language for this application.
v Use the Component Broker programming model to design and code

your application as a client of aWebSphere for z/OS MOFW server.
Briefly, to follow the Component Broker programming client model, the
IMS application must:
– Use the CBSeriesGlobal::Initialize method to establish a

connection with WebSphere for z/OS
– Use the CBSeriesGlobal::orb method to obtain a pointer to

WebSphere for z/OS
– Use the resolve_initial_references method to obtain a reference to

the WebSphere for z/OS naming server
– Locate a factory finder to find the homes for the WebSphere for z/OS

CORBA objects that the client wants to use

164 WebSphere for z/OS: Assembling CORBA Applications

– Find or create, use, and delete objects in WebSphere for z/OS MOFW
servers, as part of handling transactions from IMS clients.

For further details about the Component Broker client programming
model and the methods clients may use, see WebSphere Application Server
for OS/390 Component Broker: Programming Guide and WebSphere
Application Server for OS/390 Component Broker: Programming Reference.

v Use one of the following z/OS or OS/390 Language Environment
interfaces to pass requests to IMS. Depending on the interface you use,
include the appropriate header file:

For this interface: Include this header file:

CTDLI ims.h

CEETDLI leawi.h

For additional information about these interfaces, see one or more of the
following:
– z/OS Language Environment Programming Guide, SA22-7561 and

IMS/ESA Application Programming: Transaction Manager, SC26-8729 for
usage details, and

– z/OS Language Environment Programming Reference, SA22-7562 for
interface syntax.

v Use a #pragma runopts(...) statement in the source code, to specify
run-time options for the IMS application. The runopts statement must
include the following options:
– POSIX(ON), to indicate that the UNIX Systems Services environment is

required
– ENVAR("_CEE_ENVFILE=DD:BBOENV"), to link to a file containing

WebSphere for z/OS-specific environment variable settings. For
information about creating this file, see “Steps for setting up the
run-time environment for the IMS application” on page 166.

If necessary, see z/OS Language Environment Programming Guide,
SA22-7561 for general information about run-time options.

Restriction: Do not issue any begin or commit requests to define a
transaction that includes methods driven against CORBA objects in a
WebSphere for z/OS MOFW server. WebSphere for z/OS does not support
this capability for client applications running in the IMS environment.

2. Compile the IMS application source code, using the following compilation

parameters: TARGET(IMS) and PLIST(OS)

Appendix B. An IMS application as an WebSphere for z/OS client 165

If necessary, see z/OS Language Environment Programming Guide, SA22-7561
for further details about running applications under IMS.

Once you have completed these steps to code and compile the IMS
application, you are ready to complete WebSphere for z/OS-specific
installation set-up tasks that are required for IMS transactions that run as
WebSphere for z/OS clients. These tasks are listed in “Steps for setting up the
run-time environment for the IMS application”.

Steps for setting up the run-time environment for the IMS application

To set up the environment for an IMS application that is a WebSphere for
z/OS client, you need to complete several steps in addition to those you
usually complete to install and run applications in IMS message processing
regions.

Before you begin: Make sure you understand the information presented in
“Background on security for the IMS application” on page 163.

Perform the following steps to set up the run-time environment for an IMS
application as a WebSphere for z/OS client:
1. Create an HFS file to contain WebSphere for z/OS-specific environment

variable settings for the IMS application. Use the table and environment
variable descriptions in “Appendix A. Environment files” on page 125 to
determine which run-time environment variables you need to set for this
client.

Note: You are setting variables for the client run-time environment, not
for the WebSphere for z/OS MOFW server environment.

2. Write a new or edit an existing JCL procedure to start the IMS message

processing region in which the IMS application will run:
v Use the IMS sample job named IMSMSG to start message processing

regions. This sample job invokes the IMS DFSMPR procedure to start a
new region. Make sure you specify a unique name for each MPR.
Depending on your installation’s practice, you will find the IMSMSG job
in either the IMS.JOBS or IMS.PROCLIB data set.

v Add a BBOENV DD statement to the JCL procedure, to identify the HFS
file you created to define WebSphere for z/OS-specific environment
variable settings for the client run-time environment. Use the same
syntax for this DD statement as shown in “How run-time server start
procedures point to their environment files” on page 126.

166 WebSphere for z/OS: Assembling CORBA Applications

If you need more information about the IMS sample job named IMSMSG
or DFSMPR procedure, see IMS/ESA Installation Volume 2: System Definition
and Tailoring, GC26-8737.

3. Determine which level of security is required for the IMS application,

based on the information in “Background on security for the IMS
application” on page 163 and your knowledge of your installation’s
security requirements. You can set security controls at the level of either
the user ID of the message processing region (MPR), or the user ID of the
originator of the IMS transaction.
Then complete the appropriate security tasks:
v Define an OMVS segment for either the user ID of the MPR, or the user

ID of the originator of the IMS transaction, depending on the security
level you have selected. The user ID needs this authorization because
UNIX System Services are required to extract information to process
IMS service requests.
If necessary, see z/OS UNIX System Services Planning, GA22-7800 for
further details about defining UNIX users to RACF, or verifying user
OMVS segments.

v Use the CBIND class in RACF to establish authorization to access
WebSphere for z/OS MOFW servers, and to pass requests to those
servers (that is, use managed objects in those servers). WebSphere for
z/OS uses two profiles in the CBIND class:
– CB.BIND.server_name controls client access to WebSphere for z/OS

servers
– CB.server_name controls client use of managed objects in those

WebSphere for z/OS servers.

Depending on the security level you have selected, establish
authorization as follows:

For this level of
security:

Use the following CBIND profiles:

User ID of MPR Authorize the user ID of the MPR to have read access to each
server that the IMS application needs to access, and to the
managed objects in each of those servers. For example:

PERMIT CB.server1 CLASS(CBIND) ID(mpr_user_id) ACCESS(READ)

PERMIT CB.BIND.server1 CLASS(CBIND) ID(mpr_user_id) ACCESS(READ)

Appendix B. An IMS application as an WebSphere for z/OS client 167

For this level of
security:

Use the following CBIND profiles:

User ID of IMS
transaction
originator

Authorize the user ID of the MPR and the user IDs of transaction
originators as follows:

– The user ID of the MPR must have control access to each server
that the IMS application needs to access (CB.BIND.server_name).

– The user IDs of all originators must have read access to
managed objects in each server (CB.server_name).

If necessary, see the information about setting up system security in
WebSphere Application Server V4.0.1 for z/OS and OS/390: Installation and
Customization, GA22-7834 for further details.

v Specify the appropriate parameters on the TRANSACT macro statement
for the IMS application:

For this level of
security:

Specify the following parameters:

User ID of MPR – WFI parameter

The WFI parameter specifies that the IMS application will wait
for input if the IMS message queue is empty when the
application requests another transaction.

Tip: As an alternative, you may specify PWFI=Y as an input
parameter on the DFSMPR procedure for the MPR.

– PROCLIM=65535

This PROCLIM setting allows the IMS application to process
the maximum number of transactions before the IMS
application is re-loaded.

This parameter combination allows the IMS application to
continuously process transactions without re-initializing, which
yields the best possible performance for an IMS application
running as a WebSphere for z/OS client.

User ID of IMS
transaction
originator

PROCLIM=0

This PROCLIM setting indicates that the IMS application must be
reloaded after it processes each transaction. This setting is
necessary for properly reestablishing the UNIX Systems Services
authorization environment, as the user ID changes from
transaction to transaction.

If necessary, see the information about defining IMS transactions in
IMS/ESA Installation Volume 2: System Definition and Tailoring, GC26-8737
for further details about the TRANSACT macro.

168 WebSphere for z/OS: Assembling CORBA Applications

Once you have completed these steps to set up the IMS application as a client
of WebSphere for z/OS, you are ready to complete any further IMS-specific
installation tasks that are usually required for IMS transactions. If necessary,
see IMS/ESA Installation Volume 2: System Definition and Tailoring, GC26-8737
for further details.

Appendix B. An IMS application as an WebSphere for z/OS client 169

170 WebSphere for z/OS: Assembling CORBA Applications

Appendix C. The Interface Definition Language (IDL)
compiler

Use the IDL compiler to create usage and implementation bindings for
interfaces described in one or more files containing CORBA 2.0-compliant IDL
statements. To use the compiler, enter the idlc command with valid option
values and the names of the IDL files to be compiled.

idlc command syntax
idlc [-options] <file_name>

[options]
One or more option values that determine how the IDL compiler
processes your request. Note that a dash (-) precedes the first option
value. Additional syntax rules apply when you specify more than one
option, or specify an option with an argument. See “idlc command option
syntax and values” on page 172 for description of all option values,
associated arguments, and the remaining syntax rules.

<file_name>
The name of one or more IDL files to be compiled. The IDL compiler
processes files with the “.idl” extension. You may use a wildcard character
(*) only once in the nonpath portion of the file name. If you do not
precede the file name with the path, the IDL compiler looks only in the
current directory for the file you specified.

The following examples are acceptable methods of specifying IDL files in
directory “E:\idl\src” (the current directory, for these examples):
E:\idl\src\xyz.idl
E:\idl\src\xyz
E:\idl\src*.idl
E:\idl\src\x*.idl
xyz.idl
xyz
x*

If you need to use the same options, or a similar set of options, each time you
run the compiler, you can use the IDLC_OPTIONS environment variable
instead of retyping a lengthy command. You can add any of the idlc
command options to the IDLC_OPTIONS environment variable; then when
you next enter an idlc command, the IDL compiler processes these options
before any options that you specify on the idlc command itself. For example,
suppose you added the following options to the IDLC_OPTIONS environment
variable:

© Copyright IBM Corp. 2000,2001 171

-m cpponly -mdllname=mydll

If you then type the command idlc -ehh idlfile, the results of your request
are the same as if you had typed the following:
idlc -m cpponly -mdllname=mydll -ehh idlfile

You can use the same technique to specify emitters as well. Instead of
specifying an emit list on the idlc command itself, you can add a list of
emitter names to the IDLC_EMIT environment variable. As with options in
the IDLC_OPTIONS environment variable, the IDL compiler processes the list
in the IDLC_EMIT environment variable as well as options that you specify
directly on the idlc command.

idlc command option syntax and values

If you specify more than one option value or an option with an argument, the
following syntax rules apply:
v You may separate each value with a blank, or run the option values

together. If you use blanks, begin each option value with a dash:
idlc [-p -V -v]

If you run the option values together, omit all but the first dash:
idlc [-pVv]

v You may specify arguments for some options. If you do specify an
argument, it must follow the option to which it applies. For example, you
may specify any one of the following lines:
idlc [-p -m tie]
idlc [-p -mtie]
idlc [-pm tie]
idlc [-pmtie]

If you want to specify more than one option with an associated argument,
you cannot run the options together, as in the last two lines in the example.
(When you run option values together, you may specify an argument only
after the last option.) With multiple options and arguments, you must
separate the option-argument combinations.

v All option values are case-sensitive, even on platforms that do not require
case-sensitive file names. Make sure you enter each option value exactly as
shown in Table 11 on page 173.

Table 11 on page 173 lists and describes all option values and arguments.

172 WebSphere for z/OS: Assembling CORBA Applications

Table 11. idlc command options

Command Option Description

-? Writes a brief description of the idlc command syntax to standard output.

-D<define-expression> Predefines a preprocessor variable for the IDL compiler.

-d<directory-name> Specifies a directory where the compiler should place emitted output files. The
default is the current directory.

-e<emit-list> Specifies a list of emitters to run. The emit list consists of short emitter names.
Separate each emitter name in the list with a colon or a semicolon. See
“Supported emitters” for a list of emitters that you can specify through this
option.

-h Writes a brief description of the idlc command syntax to standard output.

-I<include-directory> Adds a directory to the list of directories that the IDL compiler uses to find
#include files. In addition to the -I option, you can use the IDLC_INCLUDE
environment variable to specify a list, with include-directory names separated by
the path separator character (\).

-i<file-name> Specifies the name of a file to be compiled. Use this option only if you want to
compile a file that contains IDL, but has an extension other than “.idl” in its
file name.

-J Passes options to the Java interpreter that the IDL compiler uses. For example,
you can set the heap size for the interpreter to 32M with the following:
-J"-mx32m"

-m<name[=value]> Specifies an output modifier that affects the bindings that the emitter produces.
See “Supported output modifiers” on page 175 for a list of output modifiers
that you can specify through this option.

-p Specifies the -D_PRIVATE_ preprocessor variable for the IDL compiler.

-s<emit-list> Same as -e<emit-list>

-V Shows the version number of the idlc command.

-v Specifies verbose mode, which means that you can see all the internal
commands (and their arguments) that the IDL compiler issues.

Supported emitters
Table 12 lists the emitters that you can specify through the e option on the
idlc command, which invokes the IDL compiler.

Table 12. Supported emitters to specify on the command to invoke the IDL compiler

Type of emitter Emitter names/descriptions

Repository
emitter ir Updates the CORBA interface repository with the interfaces in

this compilation unit.

Appendix C. The Interface Definition Language (IDL) compiler 173

Table 12. Supported emitters to specify on the command to invoke the IDL
compiler (continued)

Type of emitter Emitter names/descriptions

C++ file emitters
hh Produces C++ usage bindings. If you do not specify modifiers

by using the -m option on the idlc command, the emitter
produces bindings with support for remote, cross-language
operation. If you specify the cpponly, localonly, or somthis
modifier, the emitter produces specialized bindings. See the
description of the -m option for more information.

ic Produces a Component Broker C++ managed object
implementation template. If you do not specify modifiers by
using the -m option on the idlc command, the emitter
produces pure CORBA C++ bindings that are suitable for use
with a standalone ORB. If you specify the mo modifier, the
emitter produces bindings that support Component Broker
managed objects. See the description of the -m option for
more information.

ih Produces a C++ implementation header. If you do not specify
modifiers by using the -m option on the idlc command, the
emitter produces pure CORBA C++ bindings that are suitable
for use with a standalone ORB. If you specify the mo
modifier, the emitter produces bindings that support
Component Broker managed objects. See the description of
the -m option for more information.

sc Produces a C++ server implementation binding. Typically, this
file is the <class_name>_S.cpp file. If you do not specify
modifiers by using the -m option on the idlc command, the
emitter produces bindings with support for remote,
cross-language operation. If you specify the cpponly,
localonly, or somthis modifier, the emitter produces
specialized bindings. See the description of the -m option for
more information.

uc Produces the client-side implementation binding. This is the
<class_name>_C.cpp file. If you do not specify modifiers by
using the -m option on the idlc command, the emitter
produces bindings with support for remote, cross-language
operation. If you specify the cpponly, localonly, or somthis
modifier, the emitter produces specialized bindings. See the
description of the -m option for more information.

174 WebSphere for z/OS: Assembling CORBA Applications

Table 12. Supported emitters to specify on the command to invoke the IDL
compiler (continued)

Type of emitter Emitter names/descriptions

Java file emitters
bj Creates files to support business objects written in Java. Those

files are:

v _<interface_name>Wrapper.java that replaces
_<interface_name>Skeleton.java

v _<interface_name>Impl.java that is the implementation-side
proxy for the C++ managed object associated with the Java
business object.

sj Produces a Java implementation skeleton.

uj Produces the cross-language Java usage bindings.

Supported output modifiers
Table 13 lists the output modifiers that you can specify through the m option
on the idlc command, which invokes the IDL compiler. These output
modifiers affect the bindings that the emitters produce.

Table 13. Supported output modifiers to specify on the command to invoke the IDL
compiler

Name/Value Description

cpponly Suppresses the production of cross-language bindings and
produces standard CORBA C++ bindings that are suitable for use
with a standalone ORB. This modifier affects the bindings that
the hh, sc, and uc emitters produce.

dllname=<value> Specifies the name of the DLL that contains classes into which the
emitter is to place Windows NT import/export specifications.

IRforce Forces the ir emitter to replace existing objects when you update
the interface repository with objects that have the same names as
the existing objects.

LINKAGE=<value> Inserts customized C++ linkage modifiers into the generated
bindings.

localonly Generates bindings that can be used only to access a local object
for all of the most-derived interfaces in the IDL file. This modifier
is an alternative to using the localonly keyword on a #pragma in
the IDL file itself.

mo Generates bindings that support Component Broker managed
objects. If you do not specify this modifier, the emitter produces
pure CORBA C++ bindings that are suitable for use with a
standalone ORB. This modifier affects only the ih and ic emitters.

nohelper Prevents the uj emitter from generating the
<interface_name>Helper.java file.

Appendix C. The Interface Definition Language (IDL) compiler 175

Table 13. Supported output modifiers to specify on the command to invoke the IDL
compiler (continued)

noholder Prevents the uj emitter from generating the
<interface_name>Holder.java file.

noimpl Prevents the bj emitter from generating the
<interface_name>Impl.java file.

noimplbase Prevents the sj emitter from generating the
<interface_name>ImplBase.java file.

nointerface Prevents the uj emitter from generating the <interface_name>.java
file.

noskeleton Prevents the sj emitter from generating the
<interface_name>Skeleton.java file.

nostub Prevents the uj emitter from generating the
<interface_name>Stub.java file.

notcconsts Eliminates the generation of C++ TypeCode constants and
overloaded Any operators.

nowrapper Prevents the bj emitter from generating the
<interface_name>Wrapper.java file.

orbadapter Generates C++ bindings that allow the C++ ORB to dispatch Java
implementations.

postInclude=<file-
name>

Adds the following line to the usage binding (.hh) file, just before
the end of the file: #include <file-name>

preInclude=<file-
name>

Adds the following line to the usage binding (.hh) file, just before
the include statement for corba.h: #include <file-name>

tie Generates bindings that assume delegation rather than
inheritance.

idlc command results

When you enter an idlc command but do not specify any emitters, either
through an emit list on the command itself or through the IDLC_EMIT
environment variable, the IDL compiler only checks for syntax errors in the
input files. Otherwise, the IDL compiler produces output files based on the
emitters you specified. These output files contain language-specific usage and
implementation bindings for the IDL interfaces. The output file names vary,
depending on the language that you select:
v When you specify emitters for C++, each emitter produces one type of

output file, whose name begins with the same name as the IDL source file.
For the IDL source file named Policy.idl, for example, each emitter produces
an output file as follows:

176 WebSphere for z/OS: Assembling CORBA Applications

Emitter
Output file name

ic Policy_I.cpp

ih Policy.ih

hh Policy.hh

sc Policy_S.cpp

uc Policy_C.cpp

The IDL compiler places these output files in the directory that you
specified on the idlc command, or in the current directory, if you did not
specify a directory.

v When you specify emitters for Java, each emitter can produce one or more
types of output file. For the IDL source file named Policy.idl, for example,
each emitter produces an output file as follows:

Emitter
Output file name

bj
– _PolicyWrapper.java
– _PolicyImpl.java

sj
– _PolicySkeleton.java
– _PolicyImplBase.java

uj
– Policy.java
– PolicyHelper.java
– PolicyHolder.java
– _PolicyStub.java
– Additional .java files for elements of the Policy interface. For

example, if the IDL for Policy defines an exception named
InvalidAmount, the uj emitter produces an output file named
InvalidAmount.java.

To maintain consistency between the names of Java packages and the
directory structure where Java source files reside, the IDL compiler creates a
subdirectory where it places the output files. The subdirectory is a
subdirectory of the directory that you specified on the idlc command, or of
the current directory, if you did not specify a directory.

Appendix C. The Interface Definition Language (IDL) compiler 177

178 WebSphere for z/OS: Assembling CORBA Applications

Appendix D. Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow
disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2000,2001 179

be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement, or any equivalent
agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurement may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

180 WebSphere for z/OS: Assembling CORBA Applications

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is
subject to change before the products described become available.

Examples in this book

The examples in this book are samples only, created by IBM Corporation.
These examples are not part of any standard or IBM product and are
provided to you solely for the purpose of assisting you in the development of
your applications. The examples are provided ″as is.″ IBM makes no
warranties express or implied, including but not limited to the implied
warranties of merchantability and fitness for a particular purpose, regarding
the function or performance of these examples. IBM shall not be liable for any
damages arising out of your use of the examples, even if they have been
advised of the possibility of such damages.

These examples can be freely distributed, copied, altered, and incorporated
into other software, provided that it bears the above disclaimer intact.

Programming interface information

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain services of WebSphere for z/OS.

Trademarks

The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:

AIX
CICS
DB2
IBM
IMS
IMS/ESA
Language Environment
Open Class
OS/390
RACF
VisualAge
VTAM
WebSphere
z/OS

Appendix D. Notices 181

The term CORBA used throughout this book refers to Common Object
Request Broker Architecture standards promulgated by the Object
Management Group, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc.
in the United States, other countries, or both.

Microsoft, ActiveX, Visual Basic, Visual C++, Windows, Windows NT, and the
Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Other company, product, or service names may be trademarks or service
marks of others.

182 WebSphere for z/OS: Assembling CORBA Applications

Glossary

For more information on terms used in this book,
refer to one of the following sources:

v Sun Microsystems Glossary of Java
Technology-Related Terms, located on the
Internet at:

http://java.sun.com/docs/glossary.html

v IBM Glossary of Computing Terms, located on
the Internet at:

http://www.ibm.com/ibm/terminology/

v The Sun Web site, located on the Internet at:

http://www.sun.com/

© Copyright IBM Corp. 2000,2001 183

184 WebSphere for z/OS: Assembling CORBA Applications

Index

Special Characters
_CEE_CBC environment variable

set for compile time 57
_CEE_PREFIX environment variable

set for compile time 57
/etc/profile

settings for shell environment
use for make processing 56

$HOME/.profile
settings for shell environment

use for make processing 56

A
Administration and Operations

applications
CBADMIN 153

all.mak file
use for make processing 55

application design
restrictions for the design of

CORBA applications and their
clients 24

application development
environment

how to set up 40
HFS directory for server

application source files 46
sample /etc/profile 44

application source files
transferring from workstation to

z/OS or OS/390 47

B
binder

use in make processing 56
business object

design guidelines 26
that use CICS resources 34
that use IMS resources 27

C
C++ compiler

use in make processing 56
CB390_ENVFILE environment

variable
set for compile time 57

CB390_ROOT environment variable
set for compile time 57

CB390_STDINC environment
variable

set for compile time 58
CB390_USR_ CPPSHELLFLAGS

environment variable
set for compile time 58

CB390_USR_ PRLNKFLAGS
environment variable

set for compile time 58
CB390_USR_CLASSPATH

environment variable
set for compile time 57

CB390_USR_CPPFLAGS
environment variable

set for compile time 58
CB390_USR_CXX_ INCDIRS

environment variable
set for compile time 58

CB390_USR_DLLFLAGS
environment variable

set for compile time 58
CB390_USR_EXEFLAGS

environment variable
set for compile time 58

CB390_USR_IDLC_ INCLUDE
environment variable

set for compile time 58
CB390_USR_PATH environment

variable
set for compile time 58

CB390make.env file
use for make processing 55

CB390make.rules file
use for make processing 55

CICS
design guidelines for CORBA

server applications that use 34
CLASSPATH environment variable

set for compile time 59
client applications

running on z/OS or OS/390 87
IMS application as a

client 159
compile

server application code 64
using the make utility 55

component objects
required to develop CORBA

applications 26

CORBA applications
assembling on OS/390

adding to the system search
path 67

sample /etc/profile 44
setting up the application

development
environment 40

assembling on z/OS or OS/390
allocating data sets for

DBRMLIBs 53
allocating data sets for

executable code 53
binding data objects 68
compiling 64
setting up the HFS directory

for server application source
files 46

transferring source files from
workstation 47

using the make utility 55
where to place executable

code 49
client applications that use

CORBA server applications 14
collecting data 101
deploying on z/OS or

OS/390 71
developing your own 15

creating containers in Object
Builder 37

design guidelines 26
design guidelines for using

CICS resources 34
design guidelines for using

IMS resources 27
required component

objects 26
restrictions for the design of

applications and their
clients 24

setting workstation tools to
generate application artifacts
for z/OS or OS/390 25

understanding the OS/390
Component Broker
transactional
environment 17

reviewing deployment process 8

© Copyright IBM Corp. 2000,2001 185

CORBA applications (continued)
reviewing development

process 1
reviewing environment

set-up 11
CORBA server applications

assembling on z/OS or
OS/390 39

samples for z/OS or OS/390 1
using IBM Distributed Debugger

and Object Level Trace 101

D
Daemon

IP name 142
port 142
server instance name 144
server name 144

database request module
(DBRM) 53

DB2 bind 68
DB2 for OS/390

binding data objects of server
applications 68

environment variable 134, 154
DB2 package 68
DB2 pre-compiler

use in make processing 56
DBRMHLQ environment variable

set for compile time 53, 59
DBRMLIB data set

for server applications that use
DB2 68

how to allocate 53
required characteristics 53

specifying in bind process 68
DBRMQUAL environment variable

set for compile time 53, 59
design guidelines

for CORBA applications 26
that use CICS resources 34
that use IMS resources 27

Distributed Computing Environment
(DCE)

setting up a client 139

E
environment

for server applications
allocating data sets for

executable code 53
where to place executable

code 49
sample /etc/profile 44

environment (continued)
setting up for application

development 40
HFS directory for server

application source files 46
environment variables

_CEE_CBC
set for compile time 57

_CEE_PREFIX
set for compile time 57

CB390_ENVFILE
set for compile time 57

CB390_ROOT
set for compile time 57

CB390_STDINC
set for compile time 58

CB390_USR_ CPPSHELLFLAGS
set for compile time 58

CB390_USR_ PRLNKFLAGS
set for compile time 58

CB390_USR_CLASSPATH
set for compile time 57

CB390_USR_CPPFLAGS
set for compile time 58

CB390_USR_CXX_ INCDIRS
set for compile time 58

CB390_USR_DLLFLAGS
set for compile time 58

CB390_USR_EXEFLAGS
set for compile time 58

CB390_USR_IDLC_ INCLUDE
set for compile time 58

CB390_USR_PATH
set for compile time 58

CLASSPATH
set for compile time 59

DBRMHLQ
set for compile time 53, 59

DBRMQUAL
set for compile time 53, 59

for clients on z/OS or OS/390
reference 125

IVB_BATCH_ INCREMENTAL
set for compile time 59

IVB_BATCH_ PROCESS_
FACTOR

set for compile time 60
IVB_BUILD_DEBUG

set for compile time 60
IVB_BUILD_UNOPTIMIZE

set for compile time 60
IVB_BUILD_VERBOSE

set for compile time 60
IVB_COMBINE_ SOURCE

set for compile time 60

environment variables (continued)
IVB_DRIVER_ PATH

set for compile time 60
IVB_DRIVER_PATH

using for access to default
OS/390 Component Broker
files 55

IVB_OPTIMIZE
set for compile time 61

IVB_PAX_LIST
set for compile time 61

IVB_UNOPTIMIZE
set for compile time 61

JAVA_COMPILER
set for compile time 61

JAVA_HOME
set for compile time 61

LIBPATH
set for compile time 62
using to identify server

application executable
code 49

LOADLIB
set for compile time 53, 62

NOHFSLNKOUT
set for compile time 53, 62

PATH
set for compile time 63

run-time environment variables
DB2 134, 154
reference 125

SBBOEXEC_DSN
set for compile time 63

settings for shell environment
using for make utility 56
using for server application

executable code 56
STEPLIB

set for compile time 63
error log stream

client 130, 140
environment variable 133, 140,

149
executable code

compiling 64
for server applications

adding to system search
path 67

allocating data sets for 53
using partitioned data

sets 49
using the hierarchical file

system 49
using the link list 49
using the link pack area 49

186 WebSphere for z/OS: Assembling CORBA Applications

executable code (continued)
for server applications (continued)

using the make utility 55
where to place on z/OS or

OS/390 49
export/import process

for moving server applications
into production systems 97

H
HFS directories 125
hierarchical file system (HFS)

adding to system search path 67
using for server application

executable code 49

I
IDL compiler

command syntax 171
IMS

design guidelines for CORBA
server applications that use 27

IMS application as a client 159
Interface Definition Language (IDL)

compiler
command syntax 171
use in make processing 56

Interface Repository Server
server instance name 145
server name 145
start procedure 145

IVB_BATCH_ INCREMENTAL
environment variable

set for compile time 59
IVB_BATCH_ PROCESS_ FACTOR

environment variable
set for compile time 60

IVB_BUILD_DEBUG environment
variable

set for compile time 60
IVB_BUILD_UNOPTIMIZE

environment variable
set for compile time 60

IVB_BUILD_VERBOSE environment
variable

set for compile time 60
IVB_COMBINE_ SOURCE

environment variable
set for compile time 60

IVB_DRIVER_ PATH environment
variable

set for compile time 60

IVB_DRIVER_PATH environment
variable

using for access to default
OS/390 Component Broker files

CB390make.env file 55
CB390make.rules file 55
obmdll30.mk file 55

IVB_OPTIMIZE environment
variable

set for compile time 61
IVB_PAX_LIST environment variable

set for compile time 61
IVB_UNOPTIMIZE environment

variable
set for compile time 61

J
Java applications

logging messages and trace
data 106

Java compiler
use in make processing 56

JAVA_COMPILER environment
variable

set for compile time 61
JAVA_HOME environment variable

set for compile time 61

L
LIBPATH environment variable

set for compile time 62
using to identify server

application executable code 49
Lightweight Directory Access

Protocol (LDAP)
environment variables 132, 148

link list
using for server application

executable code 49, 67
link pack area (LPA)

using for server application
executable code 49, 67

linker
use in make processing 56

LNKLST concatenation 49
LOADLIB environment variable

set for compile time 53, 62
LPA (link pack area)

using for server application
executable code 49, 67

M
make processing

_CEE_CBC environment
variable 57

make processing (continued)
_CEE_PREFIX environment

variable 57
CB390_ENVFILE environment

variable 57
CB390_ROOT environment

variable 57
CB390_STDINC environment

variable 58
CB390_USR_ CPPSHELLFLAGS

environment variable 58
CB390_USR_ PRLNKFLAGS

environment variable 58
CB390_USR_CLASSPATH

environment variable 57
CB390_USR_CPPFLAGS

environment variable 58
CB390_USR_CXX_ INCDIRS

environment variable 58
CB390_USR_DLLFLAGS

environment variable 58
CB390_USR_EXEFLAGS

environment variable 58
CB390_USR_IDLC_ INCLUDE

environment variable 58
CB390_USR_PATH environment

variable 58
CLASSPATH environment

variable 59
DBRMHLQ environment

variable 59
DBRMQUAL environment

variable 59
for server application code 55,

64
IVB_BATCH_ INCREMENTAL

environment variable 59
IVB_BATCH_ PROCESS_

FACTOR environment
variable 60

IVB_BUILD_DEBUG
environment variable 60

IVB_BUILD_UNOPTIMIZE
environment variable 60

IVB_BUILD_VERBOSE
environment variable 60

IVB_COMBINE_ SOURCE
environment variable 60

IVB_DRIVER_ PATH
environment variable 60

IVB_OPTIMIZE environment
variable 61

IVB_PAX_LIST environment
variable 61

Index 187

make processing (continued)
IVB_UNOPTIMIZE environment

variable 61
JAVA_COMPILER environment

variable 61
JAVA_HOME environment

variable 61
LIBPATH environment

variable 62
LOADLIB environment

variable 62
NOHFSLNKOUT environment

variable 62
PATH environment variable 63
SBBOEXEC_DSN environment

variable 63
STEPLIB environment

variable 63
use of binder 56
use of C++ compiler 56
use of DB2 pre-compiler 56
use of Interface Definition

Language (IDL) compiler 56
use of Java compiler 56
use of linker 56

make utility
using for server application

code 55
using to compile code 64

messages
logging for Java

applications 106

N
Naming Server

root naming context 132, 148
server instance name 150
server name 150
start procedure 150

NOHFSLNKOUT environment
variable

set for compile time 53, 62

O
Object Builder

creating containers for CORBA
server applications 37

generating make files 55
setting to generate application

artifacts for z/OS or
OS/390 25

obmdll30.mk file
use for make processing 55

P
partitioned data set (PDS)

adding to system search path 67
using for server application

executable code 49
how to allocate 53

PATH environment variable
set for compile time 63

prjdefs.mk file
use for make processing 55

R
Resolve Port 153
root naming context 132, 148
run-time environment

environment variables 125

S
samples

server applications
CORBA applications 1

SBBOEXEC_DSN environment
variable

set for compile time 63
Secure Sockets Layer (SSL)

environment variables 133, 152
security

environment variables 133, 152
Lightweight Directory Access

Protocol (LDAP) 148
remote DCE password 152
remote DCE principal 152
remote password 152
remote user ID 152
setting up a client 139

Security Server (RACF)
remote password 133, 152
remote user ID 133, 152

server application
assembling CORBA applications

on z/OS or OS/390
allocating data sets for

DBRMLIBs 53
developing CORBA

applications 15
setting workstation tools to

generate application artifacts
for z/OS or OS/390 25

IMS application as a client 159
moving to a production system

export/import process 97
running client applications 87
samples for z/OS or OS/390

CORBA applications 1

server application (continued)
using IBM Distributed Debugger

and Object Level Trace 101
shell environment

setting variables
/etc/profile 56
$HOME/.profile 56

startup.mk file
use in make processing 56

STEPLIB DD statement
using to identify server

application executable code 49
STEPLIB environment variable

set for compile time 63
sysplex system

environment variables 126
system logger 130, 133, 140, 149
System Management Scripting API

DEFAULT_CLIENT_XML_PATH 142
System Management Server

IP name 153
port 153
server instance name 153
server name 153
start procedure 154

T
TCP/IP

client resolve IP name 130
resolve IP name 153
resolve port 153
server IP address 154

trace data
logging for Java

applications 106
transactional environment 17

V
VisualAge for Java

setting to generate application
artifacts for z/OS or
OS/390 25

W
workstation tools

using to develop CORBA
applications

setting to generate application
artifacts for z/OS or
OS/390 25

using to develop your own
CORBA applications

setting to generate application
artifacts for OS/390 37

188 WebSphere for z/OS: Assembling CORBA Applications

����

Program Number: 5655-F31

Printed in the United States of America

SA22-7848-02

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	How this book is organized
	Where to find related information, tools, and supplements
	How to send your comments

	Summary of changes
	Chapter 1. Getting started with CORBA applications for WebSphere for z/OS
	Background on developing CORBA applications
	Developing CORBA applications that access relational databases
	Developing CORBA applications that access CICS or IMS resources

	Background on deploying server applications
	Background on setting up the development and deployment environments
	Setting up the application development and assembly environment
	Setting workstation tools to generate application artifacts for z/OS or OS/390
	Changing make environment variables to compile source files on z/OS or OS/390

	Setting up the server application run-time environment
	Setting up client applications
	Setting up security controls

	Chapter 2. Developing CORBA applications for WebSphere for z/OS
	Background on the OS/390 Component Broker transactional environment
	Rules for using the Required container policy
	Rules for using the TX MOFW Merged Hybrid Global container policy
	Rules for using the TX MOFW Isolated Hybrid Global container policy
	Rules for using the TX MOFW Supports Merged Hybrid Global container policy

	Restrictions for CORBA applications and their clients
	Guidelines for getting the best performance from CORBA applications
	Background on setting workstation tools to generate application artifacts for z/OS or OS/390
	Background on required component objects for CORBA applications
	Guidelines for developing CORBA business objects in C++ or Java
	Guidelines for developing CORBA applications that use IMS resources
	Guidelines for designing for an IMS–OTMA adapter
	Guidelines for designing for an IMS–APPC adapter
	Background on IMS request processing
	Background on coding the PAO and its associated classes using IBM VisualAge Java with EAB

	Guidelines for developing CORBA applications that use CICS resources
	Background on coding PA bean mapper and information classes
	Background on coding PA bean command classes

	Background on creating a container

	Chapter 3. Assembling CORBA applications on z/OS or OS/390
	Steps for setting up the application development environment
	Steps for creating an HFS directory structure for CORBA application files from the workstation
	Steps for transferring files from the workstation to z/OS or OS/390
	Background on deciding where to place executable code for the server application
	Background on allocating data sets for the CORBA application's executable code
	Background on make processing
	Steps for compiling CORBA application source files on z/OS or OS/390
	Steps for adding your CORBA application to the system search path
	Steps for binding data objects for your CORBA application

	Chapter 4. Deploying CORBA applications in WebSphere for z/OS MOFW servers
	Background on naming rules for elements of the run-time environment
	Background on setting environment variables for the WebSphere for z/OS MOFW server
	Coding JCL procedures to start the WebSphere for z/OS MOFW server
	Defining the WebSphere for z/OS MOFW server
	Background on using the WebSphere for z/OS Administration application
	Selecting server properties for a test system
	Defining containers for MOFW servers
	Connecting the WebSphere for z/OS MOFW server to a back-end resource manager
	Guidelines for supplying connection data for an IMS-OTMA LRM instance
	Guidelines for supplying connection data for an IMS-APPC LRM instance

	Guidelines for importing CORBA application DDL

	Preparing resource managers for processing your application
	Steps for preparing DB2
	Steps for preparing IMS

	Adding CORBA application interfaces to the WebSphere for z/OS interface repository

	Chapter 5. Developing, assembling, and deploying client applications on z/OS or OS/390
	Background on supported client run-time environments
	Background on designing and coding clients for your server applications
	Background on setting up the application development environment on z/OS or OS/390
	Background on deciding where to place executable code for the client application
	Background on allocating data sets for the client application's executable code
	Steps for setting environment variables for make processing
	Steps for compiling client applications on z/OS or OS/390
	Background on setting up security for servers and z/OS or OS/390 clients
	Steps for running a client application on z/OS or OS/390

	Chapter 6. Working with CORBA applications in a production system
	Steps for using the export/import process through the Administration application
	Installing applications using scripts

	Chapter 7. Collecting data about CORBA application activity
	Collecting CORBA application information through SMF records
	Debugging and tracing distributed applications
	Steps for starting the Debugger and OLT on your workstation
	Steps for preparing the Debugger and OLT for Windows Java clients
	Steps for preparing the Debugger and OLT for Windows C++ clients
	Step for preparing z/OS or OS/390 Java clients
	Steps for preparing z/OS or OS/390 C++ clients
	Steps for preparing server applications in a WebSphere for z/OS MOFW server

	Logging messages and trace data for Java applications
	Background on issuing application messages to the z/OS or OS/390 master console
	Defining messages through inline method calls or a message properties file
	Understanding how the message type affects message destinations

	Background on issuing trace requests for your application
	Determining where to place trace points and what data to request
	Assigning trace types to trace points

	Steps for coding your Java application to issue messages and trace requests
	Steps for preparing the z/OS or OS/390 environment for logging Java application messages and trace requests
	Background on viewing messages and trace data
	Steps for using IPCS in batch mode to format application trace data

	Appendix A. Environment files
	Environment files and environment variables
	How WebSphere for z/OS manages server environment variables and environment files
	How run-time server start procedures point to their environment files
	Environment variables for z/OS or OS/390 clients
	Note on using substitution variables
	Environment variable syntax
	Environment variable use
	Environment variable descriptions

	Appendix B. An IMS application as an WebSphere for z/OS client
	Background on designing the IMS application
	Background on security for the IMS application
	Steps for developing and compiling the IMS application
	Steps for setting up the run-time environment for the IMS application

	Appendix C. The Interface Definition Language (IDL) compiler
	idlc command syntax
	idlc command option syntax and values
	Supported emitters
	Supported output modifiers

	idlc command results

	Appendix D. Notices
	Examples in this book
	Programming interface information
	Trademarks

	Glossary
	Index

