WebSpherem Application Server

Using the JRas Message Logging and
Trace Facility

Version 4.0

GC09-3952-00



Note
Before using this information and the product it supports, be sure to read the general information under

t/II . 7" ]z

First Edition (March 2001)
Order publications through your IBM representative or through the IBM branch office serving your locality.

© Copyright International Business Machines Corporation 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

Figures .
Tables .

Using the JRas Message Logglng and Trace
Facility . . Ce e
Introduction .

Overview of messages and trace
The WebSphere JRas programming model

© Copyright IBM Corp. 2001

. Vi

N — =

Naming and managing loggers . .3
Message and trace event types . .4
Using JRas loggers . .6
Creating resource bundles and message flles 6
Creating manager and logger instances 8
Using loggers . .9
Notices . . . B Y
Trademarks and service marks R &
iii



iv WebSphere: Using the JRas Message Logging and Trace Facility



Figures

1.  Sample resource bundle . . . . . .8 3. Example code: Using a message logger
2. Example code: Obtaining a manager, a and a trace logger . . . . . . . .16
message logger, and a trace logger . . . 9

© Copyright IBM Corp. 2001 v



vi WebSphere: Using the JRas Message Logging and Trace Facility



Tables

1. JRas message types and their WebSphere 3. Nonleveled JRas trace types and their
equivalents . .. . . . . . .5 WebSphere equivalents .

2. Leveled JRas trace types and their
WebSphere equivalents. . . . . . .6

© Copyright IBM Corp. 2001 vii



viii WebSphere: Using the JRas Message Logging and Trace Facility



Using the JRas Message Logging and Trace Facility

Introduction

The IBM® JRas toolkit is a set of Java " packages that enables developers to
incorporate message logging and trace facilities into Java applications.
Although JRas is a standalone product, it has been customized for use with
the Standard, Advanced, and Enterprise (Component Broker) Editions of
WebSphere " Application Server. The WebSphere implementation of JRas
integrates with the WebSphere run-time environment and system-management
utilities (for instance, Advanced Edition’s Administrative Console and
Component Broker’s System Manager). This document discusses the
WebSphere implementation of JRas and using it to write WebSphere
applications that log and manage application-specific messages and trace. Use
of the non-WebSphere implementation of JRas is not discussed in this
document.

Note: The non-WebSphere (base) implementation of JRas is not supported for
use with WebSphere Application Server. The use of JRas with
WebSphere is supported only with the WebSphere-specific JRas
implementation and programming model discussed in this document.

Overview of messages and trace

Applications often need to provide information about their internal operations
to users, system administrators, programmers, and other interested parties.
This information is typically provided as text that can be sent to a console or
terminal, written to a log file, directed to a standard output or error device, or
all three. The JRas toolkit divides informational text into the following two
categories:

* Messages, consisting of information about the application that is brief, clear,
and meaningful to an end user. An example of a message is a string
indicating that the application started successfully. Messages are generated
by default; they are not normally suppressed. Messages can be localized;
that is, the message catalogs can be translated into various national
language versions, and messages can be displayed in the user’s preferred
language.

* Trace, consisting of detailed technical information about the current state of
one or more of the application’s internal data structures, including
summaries of all objects in those data structures. Trace information is meant
for use by developers and support personnel when debugging applications;
it is not generally intended for use by end users. An example of trace
information is a string listing an error, the time at which the error occurred,
the thread in which the error occurred, the method that was being executed

© Copyright IBM Corp. 2001 1



when the error occurred, and a description of the error. Trace information is
not normally generated by applications and is enabled only to help resolve
specific problems, because the creation of trace information consumes
system resources beyond the application’s normal requirements. Trace is not
localizable; that is, it cannot be translated into national language versions.

The JRas packages implement objects called loggers, handlers, formatters, and
managers to provide messaging and trace capabilities. These objects are
described in the following list.

* Loggers are the primary objects with which the application code interacts.
* Handlers receive data that is to be logged from a logger.
* Formatters are objects invoked by handlers to format data.

* Managers provide methods to predefine and manage logger, handler, and
formatter configurations. These configurations can be kept in a persistent
data store. Using managers simplifies programming with JRas; when a
manager is used to obtain a logger, the manager retrieves the logger’s
configuration data, creates the logger and populates it with the correct
handlers, performs any other needed tasks, and returns the configured
logger to the caller. The Manager class provided with WebSphere is
WebSphere specific and cannot be used with generic JRas implementations.
Using this class to create and manage WebSphere JRas objects ensures that
all derived objects (loggers, handlers, and formatters) conform to the
requirements of the WebSphere JRas implementation.

To view message and trace text, you must read the appropriate log files.
WebSphere currently logs all messages to single-level log files; that is,
application messages and run-time messages are written to the same log file.
It is recommended that you monitor the size of the log files and increase the
allowable size of the files depending on the number of messages written to
the log. WebSphere also logs all trace events, whether application trace or
run-time trace, to the same trace log file. All editions of WebSphere
Application Server provide facilities to view message and trace logs; see the
documentation for your edition of WebSphere for more information.

The WebSphere JRas programming model

This section discusses the supported model for programming with JRas in
WebSphere Application Server.

In WebSphere, you create and manage JRas loggers and managers by using
the Manager class of the com.ibm.websphere.ras package. The Manager class
provides mechanisms to obtain JRas message and trace loggers that are
integrated with WebSphere; it also provides the ability to group trace loggers
into logical groups. The basic process for creating JRas objects is to retrieve a
reference to the JRas manager by using the getManager method of the

2 WebSphere: Using the JRas Message Logging and Trace Facility



com.ibm.websphere.ras.Manager class, then to retrieve message and trace
loggers by using methods on the returned manager. See I‘Creating manager

nd logger instances” on page § for sample code illustrating this process.

The retrieved loggers are implementations of the RASIMessageLogger and
RASITraceLogger interfaces. You then program to these interfaces, both of

which are derived from the RASILogger interface. The loggers are stateful

objects with their states tied to an existing Java Vlrtual Machme (JVM) and
run-time instance. These interfaces are discussed in ”

Note: Although loggers implement the Java java.io.Serializable interface, they
must not be serialized.

Naming and managing loggers
This section discusses considerations for naming and managing loggers.

WebSphere JRas loggers have no predefined granularity or scope. An
application consisting of many different classes can be instrumented by using
a single logger, can be subdivided into several components with a logger for
each component, or can have a logger for each class.

Loggers are named objects; the manager maintains a hierarchical name space
of loggers, with separate name spaces for message loggers and trace loggers.
For each unique logger name, the logger instance is created on the first
request to the manager and the same instance is returned on subsequent calls.
The following recommendations apply to naming loggers:

* To prevent name-space conflicts, it is recommended that a dot-separated,
fully qualified class name be used to name each logger.

* It is recommended that the full logger name reflect the name of the class
that retrieves the logger from the manager.

* Application developers are responsible for ensuring that the logger names
used by an application do not conflict with names in use by the WebSphere
run time; using full logger names based on retrieval class names
automatically provides this assurance.

* Because of potential name-space conflicts and limitations in the size of the
name space, it is recommended that any given class have no more than one
message logger or trace logger associated with it.

* The name ORBRas is reserved for use by the WebSphere run time. Do not
use this name in WebSphere applications that use JRas.

The WebSphere run time and system-management utilities enable you to
enable and disable trace at any level of the name-space hierarchy. Changing
the trace state at any level of the hierarchy automatically makes the same state
change for all child levels. For instance, enabling trace at the middle level of a
hierarchy automatically enables trace for all levels below the middle level.

Using the JRas Message Logging and Trace Facility 3



Trace loggers can be combined into logical sets called groups to track events
across various components of an application. For example, if an application
contains three different components, you can create a group that includes
trace loggers from each component, thereby providing a way to trace the flow
of a particular function across all three components. Application developers
must provide group names that are unique to the application and that do not
conflict with other group names in the name space, including names used by
the WebSphere run time.

JRas objects are managed by the WebSphere run time. When a logger is
created, the JRas manager queries the WebSphere system-management utility
to determine the initial state for the logger’s mask. The state of the mask is
updated dynamically in accordance with settings provided to the
system-management utility. The default initial states for the different types of
loggers are as follows:

* For message loggers, the default initial state is always for logging to be
enabled to the logger’s specified state. There is currently no way to sEecifﬁ
an initial state of disabled. For a list of possible initial states, see

* For trace loggers, the default initial state is for logging to be disabled;
however, an initial state of enabled can be specified by using the
appropriate WebSphere system-management utility. The trace logger’s mask
is set as specified in the system-management utility. For a list of possible
initial states, see [Lahle 2 on page d and [Tahle 3 on page d. Some editions of
WebSphere Application Server enable you to change the state of the mask
dynamically by enabling tracing for one or more trace loggers; refer to the
documentation for your WebSphere system-management utility for more
information.

All enabling and disabling of trace must be performed through the
appropriate WebSphere system-management utility.

Message and trace event types

This section discusses the message and trace types that are available through
the WebSphere implementation of JRas. Message types are provided by the
RASIMessageEvent interface, and trace types are provided by the
RASITraceEvent interface.

Message types and usage
Message types are provided by the RASIMessageEvent interface. Types

include the following:

* TYPE_INFORMATIONAL for informational messages. This type can be
abbreviated as TYPE_INFO.

* TYPE_WARNING for warning messages. This type can be abbreviated as
TYPE_WARN.

* TYPE_ERROR for error messages. This type can be abbreviated as TYPE_ERR.

4  WebSphere: Using the JRas Message Logging and Trace Facility



These types, which are provided by JRas, do not correspond exactly to the
message types supported by the different editions of the WebSphere run time.
The following table shows the mappings between the JRas message types and
their WebSphere equivalents. Note that the Enterprise Edition types apply to
Component Broker on workstations.

Table 1. JRas message types and their WebSphere equivalents

JRas message type

Equivalent WebSphere
Standard/Advanced
Edition type

Equivalent WebSphere
Enterprise Edition
(Component Broker for
workstations) type

TYPE_INFO, Audit Informational
TYPE_INFORMATION

TYPE_WARN, TYPE_WARNING Warning Warning
TYPE_ERR, TYPE_ERROR Error Error

Trace types and usage
Trace types are provided by the RASITraceEvent interface. This interface

defines two sets of JRas trace types: a basic set of leveled types for simple
trace implementations and a more complex set of nonleveled types that can be
logically combined to create precise information about any given trace event.
It is recommended that only one of these sets be used in any given
application.

The basic set of types consists of the TYPE_LEVEL1, TYPE_LEVEL2, and
TYPE_LEVELS3 trace levels. These levels are hierarchical; enabling a higher level
of trace automatically enables all levels beneath it (for instance, enabling
TYPE_LEVEL2 automatically enables TYPE_LEVELL).

The complex set of types consists of the following trace values:
TYPE_API
TYPE_CALLBACK
TYPE_ENTRY_EXIT
TYPE_ERROR_EXC
TYPE_MISC_DATA
TYPE_OBJ_CREATE
TYPE_OBJ_DELETE
TYPE_PRIVATE
TYPE_PUBLIC
TYPE_STATIC
TYPE_SVC

Using the JRas Message Logging and Trace Facility 5



These values can be combined logically (that is, by using operators such as
AND, OR, and NOR) to provide detailed information about any given trace
event.

As with the message types, the JRas trace types do not correspond exactly to
the types used by the WebSphere run time. The following tables show the
mappings between the JRas trace types and their WebSphere equivalents.
Note that the WebSphere equivalents apply to Standard Edition, Advanced
Edition, and, for Enterprise Edition, Component Broker on workstations.

Table 2. Leveled JRas trace types and their WebSphere equivalents

JRas level event type WebSphere equivalent
TYPE_LEVEL1 Event

TYPE_LEVEL2 Entry/Exit
TYPE_LEVEL3 Debug

Table 3. Nonleveled JRas trace types and their WebSphere equivalents

JRas nonleveled event types WebSphere equivalent
TYPE_ERROR_EXC, TYPE_OBJ_CREATE, Event
TYPE_OBJ_DELETE, TYPE_SVC

TYPE_API, TYPE_CALLBACK, Entry/Exit

TYPE_ENTRY_EXIT, TYPE_PRIVATE,
TYPE_PUBLIC, TYPE_STATIC

TYPE_MISC_DATA Debug

Using JRas loggers

This sectlon discusses how to use JRas loggers in WebSphere applications.

: 1 provides an overview of
creatmg resource bundles to prov1de localized (translated) messages.

. ” discusses how to obtain a
JRas manager, and subsequently how to obtain message and trace loggers.

[1lsing loggers” on page 9 describes the logger interfaces and shows how to

use them.

Creating resource bundles and message files

This section provides an overview of how to create resource bundles that can
be translated to provide localized messages in WebSphere applications. The
Java programming language provides the java.util.ResourceBundle class and
its subclasses, java.util.ListResourceBundle and
java.util.PropertyResourceBundle, to enable national language support for
applications. The ResourceBundle class is used in conjunction with the

6  WebSphere: Using the JRas Message Logging and Trace Facility



java.text. MessageFormat class to provide localized (translated) text support.
See the Java documentation for a full discussion of the ResourceBundle and
MessageFormat classes.

ResourceBundle is a class that encapsulates the retrieval of text. Entries in a
resource bundle consist of message keys and their corresponding message
text. When a resource bundle is translated, only the message text is translated
into the national language. The translated resource bundles are packaged
together and shipped with the application to provide localized messages.

This section discusses how to create resource bundles in the form of text
properties files that can be accessed by PropertyResourceBundle. You can also
create resource bundles by using a Java class that extends ListResourceBundle.
The class encapsulates the mapping of keys to values by using arrays. For
information on creating resource bundles by using ListResourceBundle, see
the Java documentation.

The simplest way to create a resource bundle is to create a text properties file
that lists message keys and the corresponding messages. The properties file
must have the following characteristics:

* Each property in the file is terminated with a line-termination character.

* If a line contains only white space, or if the first non-white space character
of the line is the symbol # (pound sign) or ! (exclamation mark), the line is
ignored. The # and ! characters can therefore be used to put comments into
the file.

* Each line in the file, unless it is a comment or consists only of white space,
denotes a single property. A backslash (\) is treated as the line-continuation
character.

¢ The syntax for a property line consists of a key, a separator, and an element.
Valid separators include the equal sign (=), colon (:), and white space ( ).

* The key consists of all characters on the line from the first non-white space
character to the first separator. Separator characters can be included in the
key by escaping them with a backslash (\), but doing this is not
recommended, because escaping characters is error prone and confusing. It
is instead recommended that you use a valid separator character that does
not appear in any keys in the properties file.

* White space after the key and separator is ignored until the first non-white
space character is encountered. All characters remaining before the
line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full
description of the syntax and construction of properties files.

Using the JRas Message Logging and Trace Facility 7



The following example shows a properties file named
DefaultMessages.properties.

# Contents of DefaultMessages.properties file

MSG_KEY_00=A message with no substitution parameters.

MSG_KEY_01=A message with one substitution parameter: parml={0}

MSG_KEY_02=A message with two substitution parameters: parml={0}, parm2={1}
MSG_KEY_03=A message with three substitution parameters: parml={0}, parm2={1}, \
parm3={2}

Figure 1. Sample resource bundle

This file can then be translated into localized versions of the file (for example,
DefaultMessages_de.properties for German and DefaultMessages_ja.properties
for Japanese). When the translated resource bundles are available, they are
written to a system-managed persistent storage medium. Resource bundles
are then used to convert the messages into the requested national language
and locale. When a message logger is obtained from the JRas manager, it can
be configured with a default resource bundle. At run time, the user’s locale is
used to determine the properties file from which to extract the message
specified by a message key, thus ensuring that the message is delivered in the
correct language. If a default resource bundle is not specified, the msg method
of the RASIMessageLogger interface can be used to specify a resource bundle
name.

The application locates the resource bundle based on the file’s location in the
directory structure. For instance, if the resource bundle is located in the
baseDir /subDirl/subDir2 /resources directory and baseDir is in the classpath,
the name subDirl.subDir2.resources.DefaultMessage is passed to the message
logger to identify the resource bundle.

Creating manager and logger instances

This section provides sample code in which message loggers and trace loggers
are obtained in the main method of a standalone application. To obtain a
logger, you first obtain a manager by calling the getManager method on the
com.ibm.websphere.ras.Manager class. You then obtain a message logger by
calling createRASIMessageLogger on the returned manager object, or a trace
logger by calling createRASITraceLogger on the returned manager object.

i demonstrates these methods.

8  WebSphere: Using the JRas Message Logging and Trace Facility



// Import the appropriate JRas and WebSphere packages
import com.ibm.ras.*;

import com.ibm.websphere.ras.=*;

// Declare the logger attributes and a group name for trace loggers. The storage
// scope used here depends on the application.

static RASITracelLogger trcLogger = null;

static RASIMessagelogger msglLogger = null;

// Define some convenience strings

static String svOrg = "My organization name";

static String svProd = "My product name";

static String svComponent = "My component name";

static String svClassName = "Fully qualified class name";
static java.lang.String groupName = "MyProduct_someGroup";

public static void main(String[] argv)

{

// Get a reference to the Manager instance and create the loggers.

// Because "Manager" is a common term, fully qualify it to ensure we

// get the right one.

com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASIMessagelogger(svOrg, svProd, svComponent, svClassName);
trcLogger = mgr.createRASITracelLogger(svOrg, svProd, svComponent, svClassName);
// Configure the message logger with the default resource bundle
msgLogger.setMessageFile("subDirl.subDir2.resources.DefaultMessages");

// Add the trace logger to a group

mgr.addLoggerToGroup(trcLogger, groupName);

}

Figure 2. Example code: Obtaining a manager, a message logger, and a trace logger

Using loggers

This section discusses the use of JRas loggers in WebSphere applications.
Al discusses the message and trace parameters

used with JRas objects. LIb.e_R.ASLLog.ger_m.te.nfa.ce_on_pa.ge_ld discusses the

RASILogger interface,

discusses the RASIMessagelLogger interface, and £
interface” an page 13 discusses the RASITraceLogger interface.

m shows examples of using these methods.

Message and trace parameters

The JRas methods accept parameter types of Object, Object[], and Exception.
The following is a list of parameter types and how they are handled by the
WebSphere implementation of JRas.

* Primitives—Primitive data types such as int and long are not recognized as
subclasses of the Object class and cannot be directly passed to JRas
methods. A primitive value must be transformed to its proper type (for
instance, Integer or Long) before being passed as a parameter.

Using the JRas Message Logging and Trace Facility 9



* Object—]JRas methods accept members of the Object class; the toString
method is called on the object and the resulting String is returned. The
toString method must therefore be implemented on Objects of traced
classes.

* Object[]|—JRas methods accept members of the Object[] class when two or
more Object parameters need to be passed to the method. The toString
method is called on each Object in the array. Nested arrays (that is, arrays
with elements that are also arrays) are not supported.

* Throwable—JRas methods accept members of the Throwable class, returning
the stack trace of the Throwable object.

* Arrays of primitives—An array of primitives (for example, byte[] or int[]) is
considered to be an Object by Java; however, because of potentially
inconsistent processing, it is recommended that members of the array be
converted to String and then passed to the method. If such conversion is
not performed, the results are unpredictable.

The RASILogger interface
The RASILogger interface is the base interface for both the

RASIMessageLogger and RASITraceLogger classes. This section discusses
topics that are common to both of these classes, including the isLoggable,
getName and setName, and isSynchronous and setSynchronous methods. See
Eigure 3 on page 14 for examples of the classes and methods being used in

context.

The RASILogger interface provides the isLoggable method to determine
whether a logger is currently enabled to log a particular event type. The event
type to be checked is passed to the method. The definition is as follows:

public boolean isLoggable(long type);

where type is a valid message or trace type. See '’Message and trace event
bypes” on page 4 for a discussion of message and trace types.

The getName and setName methods provide access to logger names. Because

all loggers are assigned an unchangeable name by the manager when they are
created, the setName method results in a null operation if used. The getName
method can be used at any time to retrieve a logger’s name. The definitions of
these methods are as follows:

public String getName();
public void setName (String name);

where name is the logger’s name.
The isSynchronous and setSynchronous methods enable applications to

configure loggers to perform synchronous or asynchronous logging, assuming
that the logger can accept the configuration. The configuration is set by the

10  WebSphere: Using the JRas Message Logging and Trace Facility



WebSphere run time, so the setSynchronous method is currently implemented
as a null operation. The definitions of these methods are as follows:

public boolean isSynchronous();
public void setSynchronous(boolean flag);

where flag is a Boolean value indicating True (for synchronous logging) or
False (for asynchronous logging).

The RASIMessagelogger interface
The RASIMessageLogger interface provides methods that enable localizable

message logging. These methods include getMessageFile and setMessageFile,
message, msg, and textMessage. When an instance of RASIMessageLogger is
obtained from the manager, you must provide nonnull strings that specify the
logger’s organization name, product name, and component information. These
strings are unchangeable for the lifetime of the logger.

The logger interface includes support for an internal mask that identifies
which categories of messages are to be logged and which categories are to be
disregarded. The mask is set by the WebSphere run time when the logger is
created.

The getMessageFile method enables you to specify a resource bundle that the
logger uses to localize messages. If the name of the resource bundle is not
specified, a default name is assumed. The setMessageFile enables you to
configure the message logger with a message file that is used by a message
logged by the message interface. There is no default value for the message
file; if this value is not specified, using the message interface can have
unpredictable results. See L. i

for information on resource bundles. The definitions of the methods
are as follows:

17

public String getMessageFile();
public void setMessageFile(String file);

where file is the name of the resource bundle.

The message method provides flexible access to message strings. The
definition of the method is as follows:

public void message(long type, Object obj, String methodName, String key,
Object parameter);

where:

* type is a valid message type. See [!Message and trace event types” on page 4

for a discussion of trace types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the

Using the JRas Message Logging and Trace Facility 11



class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

e methodName is a valid method name.

* key is the message key of the localizable message. The resource bundle that
was specified by the setMessageFile method is used to retrieve the message
text.

* parameter represents an Object that is to be substituted positionally into the
message text. More than one parameter can be passed. See m

trace parameters” on page d for more information.

The msg method also provides access to message strings; unlike the message
method, it enables you to specify the resource bundle from which message
text is to be retrieved. The definition of the method is as follows:

public void msg(long type, Object obj, String methodName, String key,
String file, Object parameter);

where:

* type is a valid message type. See ['Message and trace event types” on page 4

for a discussion of message types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

* methodName is a valid method name.

* key is the message key of the localizable message.

* file is the resource bundle to use when retrieving the message text.

* parameter represents an Object that is to be substituted positionallé into the

message text. More than one parameter can be passed. See

krace parameters” an page 9 for more information.

The textMessage method enables applications to send text messages that are
not accessed from a resource bundle. This method is intended for use in
development environments or environments in which localization support is
not required. This method is not intended to be used in production code. The
definition of the method is as follows:

public void textMessage(long type, Object obj, String methodName,
String text, Object parameter);

where:

* type is a valid message type. See ['Message and trace event types” on page 4

for a discussion of message types.

12 WebSphere: Using the JRas Message Logging and Trace Facility



obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

methodName is a valid method name.

text is the message text. No resource bundle is accessed to provide the text,
and the text cannot be localized.

parameter represents an Object that is to be appended to the message text.

More than one parameter can be passed. See 'Message and tracé

” for more information.

The RASITracelLogger interface
The RASITraceLogger interface provides methods that enable generic tracing

mechanisms. These methods include entry, exit, trace, and exception. When an
instance of RASITraceLogger is obtained from the manager, you must provide
nonnull strings that specify the logger’s organization name, product name,
and component information. These strings are unchangeable for the lifetime of
the logger.

The logger interface includes support for an internal mask that identifies

which categories of trace events are to be logged and which categories are to
be disregarded. The mask is set by the WebSphere run time when the logger
is created.

The entry method provides access to trace entry events. The definition of the
method is as follows:

public void entry(long type, Object obj, String methodName, Object parameter);

where:

* type is a valid trace type. See ['Message and trace event types” on page 4 for

a discussion of trace types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

» methodName is a valid method name.

* parameter represents a parameter to be added to the trace text. See m
- for more information.

The exit method provides access to trace exit events. The definition of the
method is as follows:

public void exit(long type, Object obj, String methodName, Object retValue);

Using the JRas Message Logging and Trace Facility 13



where:

* type is a valid trace type. See [!Message and trace event types” on page 4 for

a discussion of trace types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

e methodName is a valid method name.

* retValue is a return value for the event. See !Message and trace parameters’]

for more information.

The trace method provides a way to write text strings as trace events. The
definition of the method is as follows:

public void trace(long type, Object obj, String methodName, String text,
Object parameter);

where:

* type is a valid trace type. See Message and trace event types” an page 4 for

a discussion of trace types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

* methodName is a valid method name.
* text is a text string to be written to the trace event record.

* parameter represents a parameter to be added to the trace text. See M
” for more information.

The exception method provides access to exceptions. The definition of the
method is as follows:

public void exception(long type, Object obj, String methodName,
Exception exc);

where:

* type is a valid trace type. See 'Message and trace event types” on page 4 for

a discussion of trace types.

* obj is a class name to be passed to the logger. You can pass the class name
in the form of either a String or an Object. Passing a String is more efficient
and must be used in static methods. For convenience, you can also pass the
class name in the form of the this object; in this case, the logger retrieves
the class name from the this reference by calling this.getClass().getName().

14  WebSphere: Using the JRas Message Logging and Trace Facility



* methodName is a valid method name.

* exc is an exception whose stack trace is to be written to the trace event
record.

Eigure 3 on page 164 shows an example of using a message logger and a trace
logger.

Using the JRas Message Logging and Trace Facility 15



private void methodX(int x, String y, Foo z)

{

// Trace an entry point. Use the guard to ensure tracing is enabled. Do this
// checking before we waste cycles gathering parameters to be traced.

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {

// Because we want to trace three parameters, package them into an Object[]
Object[] parms = {new Integer(x), y, z};

trcLogger.entry (RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);

// ...additional logic here...

// A debug or verbose trace point

if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC DATA)) {
trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX", "reached here");
}

/...

// Call methodY on Foo. Assume that Foo is provided by another vendor or user.
// This method throws no Exceptions, so any run-time exceptions such as a

// NullPointerException coming out of it must be logged as errors.

// Although it is not good practice to put stack traces into message,

// it is not explicitly prohibited.

try {

z.methodY(...);

}

catch (Throwable t) {

msgLogger.message (RASIMessageEvent.TYPE_ERR, this, "methodX", "MSG_KEY 01", t);
}

/] ...

// Another classification of trace event. An important state change was

// detected, so a different trace type is used.

if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC)) {
trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
/]l ...

// Ready to exit method, trace. No return value to trace.

if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");
}

Figure 3. Example code: Using a message logger and a trace logger

16  WebSphere: Using the JRas Message Logging and Trace Facility



Notices

This information was developed for products and services offered in the
U.S.A. IBM may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe
any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM
product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give
you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the
IBM Intellectual Property Department in your country or send inquiries, in
writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
DOCUMENT “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will

© Copyright IBM Corp. 2001 17



be incorporated in new editions of the document. IBM may make
improvements and/or changes in the product(s) and/or the program(s)
described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact:

For Component Broker:
IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758

US.A.

For TXSeries:

IBM Corporation

ATTN: Software Licensing
11 Stanwix Street
Pittsburgh, PA 15222
US.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM International
Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.

18  WebSphere: Using the JRas Message Logging and Trace Facility



Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change
or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples may
include the names of individuals, companies, brands, and products. All of
these names are fictitious and any similarity to the names and addresses used
by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks and service marks

The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, other countries, or both:

Advanced Peer-to-Peer Networking
AFS

AIX

APPN

AS/400

CICS

CICS OS/2

CICS/400

CICS/6000

CICS/ESA

CICS/MVS

CICS/VSE

CICSPlex

DB2

DCE Encina Lightweight Client
DFS

Encina

IBM

IBM System Application Architecture
IMS

IMS/ESA

Language Environment
MQSeries

MVS/ESA
NetView

Open Class
0Ss/2

0S/390

0OS/400

Parallel Sysplex
PowerPC

RACF

RAMAO

RMF

RISC System/6000
RS/6000

S/390

SAA

SecureWay
TeamConnection
Transarc
TXSeries
VSE/ESA
VTAM
VisualAge
WebSphere

Notices 19



Domino, Lotus, and LotusScript are trademarks or registered trademarks of
Lotus Development Corporation in the United States, other countries, or both.

Tivoli is a registered trademark of Tivoli Systems, Inc. in the United States,
other countries, or both.

ActiveX, Microsoft, Visual Basic, Visual C++, Visual J++, Windows, Windows
NT, and the Windows 95 logo are trademarks or registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

UNIX is a registered trademark of The Open Group in the United States and
other countries.

Some of this documentation is based on material from Object Management
Group bearing the following copyright notices:

Copyright 1995, 1996 AT&T/NCR

Copyright 1995, 1996 BNR Europe Ltd.

Copyright 1991, 1992, 1995, 1996 by Digital Equipment Corporation
Copyright 1996 Gradient Technologies, Inc.

Copyright 1995, 1996 Groupe Bull

Copyright 1995, 1996 Expersoft Corporation

Copyright 1996 FUJITSU LIMITED

Copyright 1996 Genesis Development Corporation

Copyright 1989, 1990, 1991, 1992, 1995, 1996 by Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 by HyperDesk Corporation
Copyright 1995, 1996 IBM Corporation

Copyright 1995, 1996 ICL, plc

Copyright 1995, 1996 Ing. C. Olivetti &C.Sp

Copyright 1997 International Computers Limited

Copyright 1995, 1996 IONA Technologies, Ltd.

Copyright 1995, 1996 Itasca Systems, Inc.

Copyright 1991, 1992, 1995, 1996 by NCR Corporation
Copyright 1997 Netscape Communications Corporation
Copyright 1997 Northern Telecom Limited

Copyright 1995, 1996 Novell USG

Copyright 1995, 1996 02 Technolgies

Copyright 1991, 1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1995, 1996 Objectivity, Inc.

Copyright 1995, 1996 Oracle Corporation

Copyright 1995, 1996 Persistence Software

20  WebSphere: Using the JRas Message Logging and Trace Facility



Copyright 1995, 1996 Servio, Corp.

Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 by Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.

Copyright 1996 Sybase, Inc.

Copyright 1996 Taligent, Inc.

Copyright 1995, 1996 Tandem Computers, Inc.

Copyright 1995, 1996 Teknekron Software Systems, Inc.
Copyright 1995, 1996 Tivoli Systems, Inc.

Copyright 1995, 1996 Transarc Corporation

Copyright 1995, 1996 Versant Object Technology Corporation
Copyright 1997 Visigenic Software, Inc.

Copyright 1996 Visual Edge Software, Ltd.

Each of the copyright holders listed above has agreed that no person shall be
deemed to have infringed the copyright in the included material of any such
copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE
ACCURATE, THE OBJECT MANAGEMENT GROUP, AND THE
COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND WITH
REGARDS TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. The Object Management Group and the companies
listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance, or use
of this material.

sssssss

This software contains RSA encryption code.

Other company, product, and service names may be trademarks or service
marks of others.

Notices 21



	Contents
	Figures
	Tables
	Using the JRas Message Logging and Trace Facility
	Introduction
	Overview of messages and trace

	The WebSphere JRas programming model
	Naming and managing loggers
	Message and trace event types
	Message types and usage
	Trace types and usage


	Using JRas loggers
	Creating resource bundles and message files
	Creating manager and logger instances
	Using loggers
	Message and trace parameters
	The RASILogger interface
	The RASIMessageLogger interface
	The RASITraceLogger interface



	Notices
	Trademarks and service marks


