
WebSphere Application Server for OS/390

WebSphere Application Server
Standard Edition
Planning, Installing, and Using
Version 3.5

GC34-4835-05

���

WebSphere Application Server for OS/390

WebSphere Application Server
Standard Edition
Planning, Installing, and Using
Version 3.5

GC34-4835-05

���

Note

Before using this information and the product it supports, be sure to read the general information under “Notices” on
page K-1.

Sixth Edition (July, 2003)

This edition applies to WebSphere Application Server for OS/390 Version 3.5, product number 5655-A98, and to all
subsequent releases and modifications until otherwise indicated in new editions.

The most current versions of the WebSphere Application Server for OS/390 publications are located at the following
web site:
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

You can E-mail your comments to waseedoc@us.ibm.com or fax them to 919–254–0206.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 2001, 2003. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication, or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

Contents

Summary of Changes v
Updates, June 2003 v
Updates, September 2002 v
Updates, July 2002 vi

Welcome! ix
Application Server product information x

Documentation formats xi
Related documentation. xi

Java documentation xi
Web server. xi

Support services xi

Chapter 1. Planning for installation . . 1-1
Software requirements 1-1

Compatible OS/390 releases 1-1
Required OS/390 Web server 1-1
Required Software Development Kit 1-2
Required Java Servlet API levels 1-2
Required JavaServer Pages levels 1-3
XML Document Structure Services 1-3
DB2 Requirements 1-4

OS/390 Workload Management considerations . . 1-5
System Authorization Facility (SAF) Support . . . 1-5
Connector support 1-5
IBM Distributed Debugger and Object Level Trace
support 1-6

Installing and running Object Level Trace . . . 1-6
Installing and Running the IBM Distributed
Debugger 1-7

Application development tooling considerations . . 1-9
Deploying Components generated by VisualAge
for Java 1-9
Deploying Components generated by
WebSphere Studio 1-10

Installation and configuration process changes 1-10
APARs and service updates 1-10

Chapter 2. Installing and customizing
the Application Server 2-1
Installing the Application Server 2-1
Verifying the Application Server installation . . . 2-1

Configuring a Web server to host an Application
Server 2-1
Starting the Application Server 2-3
Invoking the Installation Verification Program 2-4

Configuring the Application Server 2-5
Using a was.conf file to set configuration
properties. 2-5
Specifying configuration properties 2-6
Updating Application Server properties 2-7
Directing requests to the Application Server . . 2-7

Customizing the Application Server 2-8
Specifying the name of a file containing the
properties for instantiating a JVM. 2-8

Maintaining compatibility with existing
applications 2-9
Configuring the Application Server to use the
Xerces.jar and Xalan.jar files distributed with
Apache 2-10
Specifying the logging level for customer
directed messages 2-10
Specifying the log file directory 2-11
Specifying a working directory 2-11

Chapter 3. Defining virtual hosts and
Web applications 3-1
Defining virtual hosts. 3-1
Configuring a virtual host 3-2
Defining and deploying Web applications 3-3

Including Web components in a Web application 3-5
Deploying a Web application to the Application
Server 3-7

Using Web applications contained in War files 3-11
Configuring Web applications 3-14

Setting the Application Server (JVM) and Web
application classpaths 3-14
Placing .property files in appropriate directories 3-16
Placing application files in appropriate
directories 3-16

Mapping URLs to Web components 3-17
Determining the virtual host that should
process a request 3-18
Determining the requested Web component and
resolving it to a physical entity 3-18

Securing Web components 3-19
Class loading and optional reloading 3-21
Compiling JSP level 1.0 or level 1.1 source files 3-22

Pre-compiling JSPs 3-22
Improving JSP compile time 3-25

Compiling servlets 3-26
Passing init-parameters to a servlet 3-26

Using webapp properties in the was.conf file 3-27
Using XML tags in a <webapp-name>.webapp
file. 3-27
Using a .servlet file 3-28

Configuring servlet chaining 3-29

Chapter 4. Accessing relational
databases 4-1
How servlets use the JDBC 2.0 Standard Extension
API 4-2
Using JDBC 2.0 Standard Extension API with the
Application Server 4-3
Setting up JDBC connection pools 4-4

jdbcconnpool.<pool-
name>.provider=DB2/OS390 | other 4-5
jdbcconnpool.<pool-name>.jdbcdriver=<driver-
class-name> 4-5

© Copyright IBM Corp. 2000, 2003 iii

||

||

|
||

jdbcconnpool.<pool-
name>.databaseurl=<database-url> 4-6
jdbcconnpool.<pool-
name>.datasourcename=<name> 4-6
jdbcconnpool.<pool-
name>.connectionidentity=<string> 4-6
jdbcconnpool.<pool-
name>.maxconnections=<integer> 4-6
jdbcconnpool.<pool-
name>.minconnections=<integer>. 4-6
jdbcconnpool.<pool-name>.
waitforconnectiontimeoutmilliseconds=<time> . 4-7
jdbcconnpool.<pool-name>.
inuseconnectiontimeoutmilliseconds=<time> . . 4-7
jdbcconnpool.<pool-name>.
idleconnectiontimeoutmilliseconds=<time> . . 4-7

Example of a JDBC connection pool definition . . 4-8
Migrating Connection Manager Code to use the
JDBC Standard 2.0 Extension APIs 4-8
Supported Connection Manager APIs 4-10

Chapter 5. Session tracking 5-1
Session security 5-1
Session state without cookies 5-2
Configuring session tracking 5-3
Session clustering 5-3

Configuring a session cluster 5-4
Session clustering considerations 5-6

In-memory session pools. 5-7

Appendix A. Migrating from previous
Versions of the Application Server . . A-1
Migrating your existing configuration (was.conf
file) settings A-5

Required changes if you are migrating from
V3.02 A-5
Required changes if you are migrating from
V1.1 or V1.2. A-5

Migrating Web server directives and environment
variable settings A-7

Migrating Web server directives A-7
Migrating Web server environment variables A-7

Migrating Servlets. A-7
Migrating JSPs A-8
Migrating servlets from Version 3.0x connection
pooling to Version 3.5 connection pooling A-9
Migrating servlets that use the Application Server
Connection Manager A-10

Utilizing JDBC APIs for data access A-10
Migrating to XML API Version 2.0 A-10

Appendix B. was.conf file template B-1

Appendix C. default_global.properties
file C-1

Appendix D. Programming Model
Restrictions D-1

Appendix E. Enabling subsystems for
use with the Application Server . . . E-1
Enabling communication with DB2 E-1

Installing DB2 E-2
Installing a JDBC driver E-2
Enabling the Application Server to locate, and
communicate with, DB2 E-3
Setting up DB2 tables. E-5
Customizing SQLJ/JDBC run-time properties
files E-5

Enabling communication with CICS E-5
Preparing the Application Server for CICS TS E-5

Enabling communication with IMS using IMS
Connect and IMS Connector for Java E-6

IMS Connector for Java E-7

Appendix F. Using the Connection
Manager APIs F-1
How a servlet uses the Connection Manager . . . F-1
Connection Manager APIs F-2

IBMJdbcConnSpec class F-2
IBMConnMgrUtil class F-4
IBMConnMgr class F-4

getIBMConnection() F-4
IBMJdbcConn class F-5
IBMConnection class F-5

verifyIBMConnection() F-5
releaseIBMConnection() F-6

Appendix G. Messages EJS3002I -
EJS3087E G-1

Appendix H. Apache Software
License, Version1.1 H-1

Glossary I-1

Bibliography J-1
Application Server publications J-1
Web server publications J-1
OS/390 publications J-1

Notices K-1
Trademarks K-2

Index X-1

iv

Summary of Changes

This book is available in softcopy formats only. The most current version is
available in PDF format on the following Web sites:

http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

and
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Updates, June 2003
The following changes have been made to this publication since the last revision:
v The fully qualified name of the default was.conf file,

applicationserver_root/AppServer/properties/was.conf specified in section
“Configuring the Application Server” on page 2-5 of Chapter 2 has been
corrected.

v The following changes were made to Chapter 3:
– The section, “Improving JSP compile time” on page 3-25, was added.
– An additional note describing when to use the appserver.extraparm=-

Dcom.sun.jsp.useBeanConstructorMethod=true property was added to section
“Including Web components in a Web application” on page 3-5.

– A description of when to set the new webapp.<webapp-
name>.servlet.jsp11.initargs=allowwebinf was.conf file property to true was
added to section “Passing init-parameters to a servlet” on page 3-26.

– The section, “Pre-compiling JSPs” on page 3-22, was updated with the new
optional parameters that APARs PQ68506 and PQ67191 added to the
jsp10BatchCompiler.sh and jsp11BatchCompiler.sh shell scripts.

v The following changes were made to Chapter 4:
– A description of the new jdbcconnpool.<pool-name>.provider property,

provided in APAR PQ66335 has been added to the section “Setting up JDBC
connection pools” on page 4-4.

– A note was added to section “How servlets use the JDBC 2.0 Standard
Extension API” on page 4-2 describing what to do if a naming conflicts occurs
while using the com.ibm.ejs.ns.jndi.CNInitialContextFactory class.

– The example in section “Migrating Connection Manager Code to use the
JDBC Standard 2.0 Extension APIs” on page 4-8 was corrected.

v Section “In-memory session pools” on page 5-7 in Chapter 5 was updated with
the correct name of the method used to indicate that a returned session is
invalid.

v A description of the new jdbcconnpool.<pool-name>.provider property, that was
added to the was.conf file in APAR PQ66335 has been added to Appendix B,
“was.conf file template”, on page B-1.

v Technical inaccuracies in section “Enabling the Application Server to locate, and
communicate with, DB2” on page E-3 in Appendix E have been corrected.

Updates, September 2002
The following changes have been made to this publication since the last revision:

© Copyright IBM Corp. 2000, 2003 v

|

|

|
|
|
|

|

|

|
|
|

|
|
|

|
|
|

|

|
|
|

|
|
|

|
|

|
|
|

|
|
|

|
|

http://www.ibm.com/software/websphere/appserv/zos_os390/library.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

v Section “Configuring a Web server to host an Application Server” on page 2-1 in
Chapter 2 was updated to indicate that the ServiceSync On directive should be
added to the HTTP Server’s configuration file if a servlet, by any means, sets an
HTTP response code, and the client does not receive the expected response code.

v Updates have been made to the following sections of Chapter 3:
– A new section, “Compiling JSP level 1.0 or level 1.1 source files” on page 3-22,

documents new function that was added in response to APAR PQ61925.
– A description of how to leverage the newer 32K branch mechanism for JSPs

that throw BranchTooLarge exceptions, that is available with SDK V1.3, was
added to the topic ″Java Server Pages (JSPs) and JHTML files″ in section
“Including Web components in a Web application” on page 3-5.

– A migration consideration has been added to the section“Passing
init-parameters to a servlet” on page 3-26.

– The table in section “Compiling servlets” on page 3-26 has been updated.
v Technical inaccuracies in section “Enabling the Application Server to locate, and

communicate with, DB2” on page E-3 in Appendix E have been corrected.
v A new Appendix Appendix G, “Messages EJS3002I - EJS3087E”, on page G-1 has

been added.

Updates, July 2002
The following changes have been made to this publication since the last revision:
v The following changes were made to Chapter 2:

– Information was added to the description of the ServerInit directive contained
in section “Configuring a Web server to host an Application Server” on
page 2-1.

– A new section, “Configuring the Application Server to use the Xerces.jar and
Xalan.jar files distributed with Apache” on page 2-10, has been added.

– The description of the request mapping behavior differences contained in the
table in “Maintaining compatibility with existing applications” on page 2-9
has been clarified.

v Updates have been made to the following sections of Chapter 3:
– “Configuring servlet chaining” on page 3-29
– “Defining and deploying Web applications” on page 3-3
– “Including Web components in a Web application” on page 3-5
– “Using Web applications contained in War files” on page 3-11

v Corrections were made to the classpath description in section “Deploying a Web
application to the Application Server” on page 3-7.

v A description of the new was.conf configuration property, appserver.permissions,
was added to Appendix B, “was.conf file template”, on page B-1.

v Corrections were made to the description of the content of the Web server’s
httpd.envvars configuration file in the section “Enabling the Application Server
to locate, and communicate with, DB2” on page E-3.

Summary of Changes
for GC34-4835-02
as Updated April 2002

v Information was added to “Deploying a Web application to the Application
Server” on page 3-7 indicating that JDK/SDK .jar files containing classes
required by your servlets, such as the recordio.jar file which contains the JRIO
classes, must be included in the appserver.classpath rather than in the
deployedwebapp.classpath.

vi

v The information on servlet chaining was clarified and moved from Appendix E
to Chapter 3.

v Changes have been made to “Enabling the Application Server to locate, and
communicate with, DB2” on page E-3.

Summary of Changes
for GC34-4835-01
as Updated October 2001

v The following changes have been made to Chapter 1. Planning for Installation:
– New information has been added to the section “Deploying Components

generated by WebSphere Studio” on page 1-10.
– DB2 UDB for OS/390 and z/OS Version 7 has been added as a version of

DB2 that can be used with V3.5 of the Application Server.
– A new section, “IBM Distributed Debugger and Object Level Trace support”

on page 1-6, has been added
– A description of the CICS Connector support, that is now available via

Version 4.0 of the CICS Transaction Gateway product, has been added.
– Information was added to sections “Compatible OS/390 releases” on page 1-1,

and “Required OS/390 Web server” on page 1-1, indicating that Version 3.5
can be used with z/OS.

– The section “XML Document Structure Services” on page 1-3 has been
updated to reflect that XML parser level 2.0 is also supported.

– Instructions not to replace the copy of the databeans.jar file shipped with the
Application Server with the copy that is shipped with the Studio product
have been added to the section“Deploying Components generated by
WebSphere Studio” on page 1-10.

v A new step has been added to the section “Configuring a Web server to host an
Application Server” on page 2-1 in Chapter 2. Installing and Customizing the
Application Server.

v The following changes have been made to Chapter 3. Defining virtual hosts
and Web applications:
– Additional information has been added to the section “Using Web

applications contained in War files” on page 3-11.
– The section “Setting the Application Server (JVM) and Web application

classpaths” on page 3-14 has been updated to indicate which classpath ASCII
and EBCDIC files need to be placed in.

– The section “Compiling servlets” on page 3-26 to indicate that the system
CLASSPATH environment variable must includes your SDK rt.jar file.

– A description of how reloading affects the collection of session data has been
added to the section “Class loading and optional reloading” on page 3-21.

– The table of required JAR files in the section “Compiling servlets” on
page 3-26 has been corrected.

– A new section, “Placing .property files in appropriate directories” on
page 3-16, was added.

– Incorrect references to a webapp.xml file, contained in Chapter 3, “Defining
virtual hosts and Web applications”, on page 3-1, have been changed to
<webapp-name>.webapp file.

– The example in section ″Configuring a virtual host″ has been corrected.
– The description of the deployedwebapp.<webapp-name>.classpath=<value>

property has been updated to indicate that it is required for all Web
applications being deployed.

Summary of Changes vii

– Additional classpath information was added to “Deploying a Web application
to the Application Server” on page 3-7.

v The following changes have been made to Chapter 4. Accessing relational
databases:
– Information has been added to the section “Setting up JDBC connection

pools” on page 4-4.
– The java.util.Hastable import statement was added to the coding sample in

the section “How servlets use the JDBC 2.0 Standard Extension API” on
page 4-2.

v The following changes have been made to Chapter 5. Session tracking:
– In the section “Session security” on page 5-1, references to the getUserName

method have been changed to getRemoteUser method.
– Section “Configuring a session cluster” on page 5-4 has been updated to

include a description of the index that needs to be included in the DB2 table
that will be used to collect session data.

v The following changes have been made to Appendix B. was.conf file template:
– The descriptions of the jdbcconnpool.<pool-name>.connectionidentity,

appserver.compliance.mode, and appserver.nodetach=true|false properties
have been updated.

– A description of the inline.comment property was added.
– The webapp.<webapp-name>.servletmapping=<URI-pattern> property has been

changed to make it compliant with the J2EE Specification.
v Appendix C. default_global.properties file has been updated to reflect changes

to this file that were included in a recent PTF.
v Two new appendices have been added:

– Appendix E. Passing init-parameters to a servlet and configuring servlet
chaining

– Appendix G. Using the Connection Manager APIs. This appendix has been
added for users who are migrating from a previous version of the Application
Server. Because the Connection Manager may not be supported in future
Application Server releases, these APIs should not be used in newly
developed servlets; the Java Database Connectivity (JDBC) API described in
Chapter 4, “Accessing relational databases”, on page 4-1 should be used to
establish connectivity to a relational database.

viii

Welcome!

WebSphere Application Server Version 3.5 is a new release of the WebSphere
Application Server Standard Edition feature of the WebSphere Application Server
for OS/390 product. This new release includes:
v Java 2 Software Development Kit (SDK) 1.3 support
v Support for Servlets written to the Java Servlet Version 2.2 Specification
v Support for JavaServer Pages written to the JavaServer Pages Version 1.1

Specification level
v Utilities for importing a Web application that is packaged as a Web Application

Archive (.war) file into the Application Server for execution.

See Chapter 2, “Installing and customizing the Application Server”, on page 2-1 for
information on how to use these new capabilities.

The process for configuring and operating the Application Server is unchanged
from Version 3.02 of the Standard Edition product. If you are migrating from
Version 3.02, you should be able to configure the Version 3.5 Application Server by
making a few small changes to your existing Version 3.02 was.conf files.

In addition to maintaining consistent configuration support, the Application Server
provides a servlet compatibility mode. In compatibility mode, the application
server will not enforce portions of the Java Servlet Specification Version 2.2 that are
not compatible with the Version 2.1 Specification. Therefore, you are not required
to make changes to existing servlets that were deployed in your Version 3.02
Application Server to accommodate changes imposed by the new specification
level.

The Application Server continues to provide support for JavaServer Pages written
to the 0.91 and 1.0 specification levels. The desired specification level can be
specified within each Web application definition. Web applications that were
deployed in version 3.02 of the Application Server that contain JavaServer Pages
written to the 0.91 and 1.0 level do not have to be changed for this version of the
Application Server.

Version 3.5 of the WebSphere Application Server Standard Edition feature requires
the use of the Java Development Kit Version 1.3, which is shipped with the
product.

This new release of the Standard Edition feature no longer includes IBM
WebSphere Application Server Site Analyzer. This element is now available as a
separately orderable product. See the following URL for information on how to
order this product.
http://www.ibm.com/software/webservers/siteanalyzer/

This book only includes information on the WebSphere Application Server
Standard Edition Version 3.5 element of the Standard Edition feature. For the most
current Java documentation, go to URL:
http://www.ibm.com/servers/eserver/zseries/software/java/

© Copyright IBM Corp. 2000, 2003 ix

http://www.ibm.com/software/webservers/siteanalyzer/
http://www.ibm.com/servers/eserver/zseries/software/java/

The most current version of this book and related Version 3.5 product
documentation for the z/OS platform is available on the WebSphere Application
Server Web site library page at URL:
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other
WebSphere Application Server publication, E-mail them to waseedoc@us.ibm.com.
Be sure to include the name of the book, the document number of the book, the
version of WebSphere Application Server for z/OS, and if applicable, the specific
location of the information on which you are commenting (for example, a page
number or table number).

Application Server product information
WebSphere Application Server Standard Edition Version 3.5, hereafter referred to
simply as the Application Server, is a plug-in DLL that runs within the IBM HTTP
Server’s address space. The IBM HTTP Server is referred to hereafter as the Web
Server. The Application Server provides an environment for defining and
deploying Java Web applications.

This version of the Application Server can only be obtained as a ServerPac or
CBPDO:
v A ServerPac is an entitled software delivery package consisting of products and

service for which IBM has performed the SMP/E installation steps and some of
the post-SMP/E installation steps. To install the package on your system and
complete the installation of the software that it includes, you use the CustomPac
Installation Dialog. ServerPac: Using the Installation Dialog, SC28-1244, describes
how to do this. The ServerPac installation performs a full feature replacement
and installs the complete WebSphere Application Server Standard Edition V3.5
feature. Use an order checklist (available from your IBM representative, the
OS/390 Web site, or the configurator function of IBMLink) to order the
ServerPac for the Version 3.5 feature.

v A CBPDO (Custom-Built Product Delivery Option) is an entitled software
delivery package consisting of un-installed products and un-integrated service.
You must use SMP/E to install the WebSphere Application Server Standard
Edition for OS/390 feature and its service. Use an order checklist (available from
your IBM representative, the OS/390 Web site, or the configurator function of
IBMLink) to order the CBPDO for the Version 3.5 feature.

For the latest Application Server product offerings, information, and news, go to
the WebSphere Application Server for OS/390 Web site at URL:

http://www.ibm.com/software/websphere/appserv/os390.html

For WebSphere Application Server Standard Edition installation information, see
the WebSphere Application Server for OS/390 Version 3.5 Program Directory that is
shipped with the product. This document is also available in PDF format on the
WebSphere Application Server for OS/390 Web site library page.

Additional product information is contained in the WebSphere Troubleshooter for
OS/390.

The WebSphere Troubleshooter for OS/390 is available on the Web and provides the
most current debugging and tuning tips for the Application Server. To access the
Troubleshooter, go to URL:

x

http://www.ibm.com/software/websphere/appserv/zos_os390/library.html
http://www.ibm.com/software/websphere/appserv/os390.html

http://www.ibm.com/software/websphere/httpservers/troubleshooter.html

Documentation formats
The WebSphere Application Server Standard Edition Version 3.5 for OS/390 Program
Directory is available in both hardcopy and PDF format.

The WebSphere Troubleshooter for OS/390 is available in HTML format only.

The WebSphere Application Server Standard Edition Planning, Installing and Using,
GC34-4835, is available in HTML and PDF formats.

To access the most current Application Server documentation and updates, go to
the WebSphere Application Server library page at URL:
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

HTML and PDF books are updated as needed.

Related documentation
This section includes information on frequently used related documentation. For
additional related documentation, see the “Bibliography” on page J-1.

Java documentation
For Java for OS/390 documentation, go to URL:
http://www.ibm.com/servers/eserver/zseries/software/java/

For information on servlets, JavaServer Pages (JSPs), and other Java services, go to
URL:
http://java.sun.com

Web server
To obtain the most current version of your Web server documentation and
information updates, go to the library page for your particular Web server. (See
“Required OS/390 Web server” on page 1-1 for a list of the library pages for the
different Web servers that can be used with WebSphere Application Server
Standard Edition Version 3.5.)

Support services
For information on support options and resources, see “APARs and service
updates” on page 1-10.

Welcome! xi

http://www.ibm.com/software/websphere/httpservers/troubleshooter.html
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html
http://www.ibm.com/servers/eserver/zseries/software/java/
http://java.sun.com

xii

Chapter 1. Planning for installation

Software requirements 1-1
Compatible OS/390 releases 1-1
Required OS/390 Web server 1-1
Required Software Development Kit 1-2
Required Java Servlet API levels 1-2
Required JavaServer Pages levels 1-3
XML Document Structure Services 1-3
DB2 Requirements 1-4

OS/390 Workload Management considerations . . 1-5
System Authorization Facility (SAF) Support . . . 1-5
Connector support 1-5
IBM Distributed Debugger and Object Level Trace
support 1-6

Installing and running Object Level Trace . . . 1-6
Installing and Running the IBM Distributed
Debugger 1-7

Application development tooling considerations . . 1-9
Deploying Components generated by VisualAge
for Java 1-9
Deploying Components generated by
WebSphere Studio 1-10

Installation and configuration process changes 1-10
APARs and service updates 1-10

Software requirements

Compatible OS/390 releases
WebSphere Application Server Standard Edition Version 3.5, hereafter referred to as
the Application Server, runs on OS/390 Version 2 Releases 8, 9, and 10, as well as
all current z/OS releases.

Required OS/390 Web server
The Application Server requires one of the following OS/390 Web servers:

Web server Releases For Web server documentation and updates, go to URL:

V5.3 IBM HTTP
Server

z/OS and OS/390
Release 10

http://www.ibm.com/software/websphere/httpservers/doc53.html

V5.2 IBM HTTP
Server

OS/390 Releases 8
and 9

http://www.ibm.com/software/websphere/httpservers/doc52.html

The Application Server is implemented as a Go Web Server API (GWAPI) that
executes within an OS/390 Web server address space. It is recommended that you
give the Web Server access to the BPX.SERVER profile in the FACILITY class
defined within the SAF facility. The system subsequently requires that any DLLs
that are loaded into an address space, which has been granted access to
BPX.SERVER, be loaded from a dataset that has been marked program-controlled.
If an attempt is made to load code from a non-program controlled library, the
system will issue an abend.

A recent Web server PTF removed the requirement that the Web server address
space be defined with UID=0. The Application Server does not require this level of
processing at either the Version 3.02 or 3.5 product levels. Because application code
executes in this address space, it is strongly recommended that you apply one of
the following Web server PTFs and redefine the Web server’s UID with less
authority than UID=0:
v UQ49251, if you are using a Version 5.1 Web server
v UQ49253, if you are using a Version 5.2 Web server
v UQ49254, if you are using a Version 5.3 Web server

© Copyright IBM Corp. 2000, 2003 1-1

http://www.ibm.com/software/websphere/httpservers/doc53.html
http://www.ibm.com/software/websphere/httpservers/doc52.html

Required Software Development Kit
Version 3.5 of the Application Server requires the Software Development Kit (SDK)
Version 1.3.

For the most current Java for OS/390 documentation, go to URL:
http://www.ibm.com/servers/eserver/zseries/software/java/

Notes:

1. When you apply service to the SDK, the program control bits will be lost.
Therefore, you need to reissue the extattr command each time you apply
service to reset these control bits.

2. The WebSphere Application Server Version 3.5 for MultiPlatforms currently
supports JDK Version 1.2.2.and SDK Version 1.3. Both development kits are
often referred to as Java 2 based JDKs. Applications that have been developed
and deployed using JDK 1.2.2 are bytecode compatible with SDK 1.3. Therefore,
Web applications that have been developed and deployed on WebSphere
Application Server Version 3.5 for MultiPlatforms can be executed, unchanged,
in the WebSphere Application Server for OS/390 Version 3.5 environment. You
do not need to recompile an application when moving it across platforms;
simply re-deploy the executable files such as .jar and .class files.

3. Version 3.02 of WebSphere Application Server for OS/390 required JDK 1.1.8.
JDK 1.1.8 is referred to as a Java 1 based JDK. Java 1 is not fully upwardly
compatible to Java 2. Therefore, applications that currently execute on a Java 1
based JDK that make use of APIs and facilities that have been removed or
changed in Java 2 must be changed prior to deploying them on Version 3.5 of
WebSphere Application Server for OS/390. Java 1 based applications that do
not use APIs that have been changed in Java 2 remain bytecode compatible. If
your current Java 1 based application, such as a Web application that is
executing in Version 3.02, does not use APIs that are incompatible in Java 2,
you can re-deploy the executable files into the Java 2 environment without
recompiling them.

For more information about differences in JDK and SDK levels, see Appendix A,
“Migrating from previous Versions of the Application Server”, on page A-1 and the
following Web site:
http://java.sun.com

Required Java Servlet API levels
Version 3.5 of the Application Server supports Servlets that are compliant with the
Java Servlet Specification Version 2.2. Version 3.02 of the Application Server
supported servlets written to the Java Servlet Specification Version 2.1. The Version
2.2 specification is not upwardly compatible with the Version 2.1 specification. For
more information on changes introduced with Version 2.2, see Appendix A,
“Migrating from previous Versions of the Application Server”, on page A-1 and the
following Web site:
http://java.sun.com

To accommodate migration from Version 3.02, Version 3.5 of the Application Server
provides a servlet compatibility mode. When running in compatibility mode, the
Application Server does not enforce inconsistent behavior or semantics that are
introduced in Version 2.2 of the Servlet API Specification. This implies that servlets
that currently execute in Version 3.02 do not need to be changed before being
deployed in Version 3.5 as long as the Application Server is being run servlet
compatibility mode (see “Including Web components in a Web application” on
page 3-5

Planning

1-2

http://www.ibm.com/servers/eserver/zseries/software/java/
http://java.sun.com
http://java.sun.com

page 3-5). It is strongly recommended that installations migrating from Version 3.02
to Version 3.5 initially operate the Version 3.5 Application Server in compatibility
mode.

WebSphere Application Server Version 3.5.2 for MultiPlatforms also supports Java
Servlet specification Version 2.2, and includes a compatibility mode features.
Servlets developed and tested on version 3.5, 3.5.1, or 3.5.2 (running in
compatibility mode) of the WebSphere Application Server for MultiPlatforms
should be able to be deployed unchanged to WebSphere Application Server for
OS/390 running in compatibility mode, except where an explicit programming
model restriction is noted. Similarly, servlets developed and tested on WebSphere
Application Server Version 3.5.2 for MultiPlatforms running in compliance mode
should be able to be deployed unchanged to WebSphere Application Server for
OS/390 running in compliance mode except where an explicit restriction is noted.
See Appendix D, “Programming Model Restrictions”, on page D-1 for a description
of these restrictions.

Versions 1.1 and 1.2 of the Application Server provided support for servlets written
to the Servlet Version 2.01 API Specification level. The Servlet Version 2.01 API
Specification is not upwardly compatible to the Servlet Version 2.1 API
Specification. Certain APIs have been changed or deprecated. Therefore, a servlet
that uses any of these APIs must be updated to accommodate these changes.
Servlets which do not utilize these APIs should be able to be deployed unchanged
to this version of the Application Server. See Appendix A, “Migrating from
previous Versions of the Application Server”, on page A-1 for more information on
how to determine if changes are required to the servlets you are migrating.

Required JavaServer Pages levels
Version 3.5 of the Application Server introduces support for JavaServer Pages
written to the JavaServer Pages Specification Version 1.1 level. It also continues to
maintain support for JavaServer Pages written to the 0.91 and 1.0 specification
levels.

The desired JavaServer Page specification level can be specified as part of a Web
application definition. Therefore, Web applications that were previously deployed
in Version 3.02 that contained JavaServer Pages compliant with the 0.91 or 1.0
specification level do not need to be changed as part of migrating to Version 3.

For more information on differences between the JavaServer Pages specification
levels, see Appendix A, “Migrating from previous Versions of the Application
Server”, on page A-1 and the following Web site:
http://java.sun.com

Note: Even though JSPs written to the Version 0.91 Specification level are
supported in Version 3.5 of the Application Server, it is recommended that
you start converting these JSPs to the 1.0 or 1.1 Specification level. JSPs
written to the 0.91 Specification may not be supported by future versions of
the WebSphere Application Server product.

XML Document Structure Services
The Application Server provides XML Document Structure Services which consist
of an XML parser at the XML4J API 2.0.15 level, a document validator, and a
document generator for server-side XML processing. These features let you
leverage the power of XML, a tagging alternative to HTML, and enable you to use
the IBM WebSphere Studio product in conjunction with the Application Server.

Planning

Chapter 1. Planning for installation 1-3

http://java.sun.com

For more information about using XML, see URL:
http://www.alphaworks.ibm.com/

DB2 Requirements
Optionally, you can configure Version 3.5 of the Application Server to share HTTP
session state data among multiple Application Server instances executing on the
same or different OS/390 images. These OS/390 images can be members of the
same Parallel Sysplex.

To provide this support, the Application Server requires one of the following
hosted databases:
v DB2 Version 5 with PTF UQ49041applied
v DB2 UDB for OS/390 Version 6 with PTF UQ49039 applied
v DB2 UDB for OS/390 and z/OS Version 7

Note: Hereafter, all of these versions will simply be referred to as DB2.

It is necessary for the DB2 dynamic load libraries (DLLs) to be marked as program
controlled in order for DB2 to function correctly with the Application Server.

It also requires that the Resource Recovery Manager Services and the OS/390
System Logger be configured to enable the JDBC driver to use the underlying
Resource Recovery Services Attachment Facility (RRSAF). See one of the following
publications for more information about configuring the Resource Recovery
Manager Services Attachment Facility:
v DB2 for OS/390 Version 5 Application Programming and SQL Guide , SC26–8958
v DB2 UDB for OS/390 V6 Application Programming and SQL Guide, SC26–9004
v DB2 UDB for OS/390 and z/OS V7 Application Programming and SQL Guide,

SC26-9933

Note: Alternate attach mechanisms such as the Call Attach Facility (CAF) are not
supported in the Application Server environment.

See OS/390 Parallel Sysplex Systems Management, GC28–1861, for more information
about the MVS System Logger.

See “Enabling communication with DB2” on page E-1, and “Session clustering” on
page 5-3 for additional information about using DB2 with the Application Server.

Periodically, service updates are made to the JDBC driver. Please check the DB2
Preventive Service Planning (PSP) Bucket documentation on IBMLink for the most
current information on APAR fixes and service updates. To access IBMLink on the
Web, go to URL:
http://www.ibm.com/ibmlink/

Important Maintenance Note: When you apply service to DB2, the program
control bits you set in order to enble DB2 to work correctly with the Application
Server will be lost. Therefore, you need to reissue the extattr command each time
you apply DB2 service.

Planning

1-4

http://www.alphaworks.ibm.com/
http://www.ibm.com/ibmlink/

OS/390 Workload Management considerations
In an OS/390 production environment, Workload Management (WLM) running in
Goal mode can be used to balance workloads and distribute resources among
competing workloads. To exploit the benefits of WLM, the Web server can be
enabled for running in Scalable Server mode. This means that the Web server is
configured for WLM support using the ApplEnv directive, and is started using the
-SN (subsystem name) option.

For more information on WLM and Goal mode, refer to the OS/390 MVS Planning:
Workload Management book. You can view this book on the Web at URL:
http://www.ibm.com/s390/os390/bkserv/

For more information on Scalable Server mode and enabling WLM support on the
Web server, refer to your Web server documentation. For information on accessing
Web server documentation, see “Required OS/390 Web server” on page 1-1.

System Authorization Facility (SAF) Support
Version 3.5 Application Servers can be configured to perform access control checks
against Web resources. To provide this support, you must create resource profiles
within the configured SAF product. See “Securing Web components” on page 3-19
for more information on access controls for Web resources.

Connector support
The Application Server supports Version 1.1 of the Common Connector Framework
(CCF) architecture. CCF defines a framework which allows run-time providers,
connector providers, and application code to collaborate in performing access to
Enterprise Information Systems such as CICS and IMS. The Application Server
implements the required infrastructure interfaces such that CCF Version 1.1
connectors can be deployed into its run-time environment. This implementation,
which was contained in the ccf.jar file in previous versions of the Application
Server, is now loaded by default into the Application Server’s classpath at startup.
Therefore, you no longer have to specifically enable CCF at run time.

The Visual Age for Java Enterprise Access Builder feature can generate the
application code (command beans) that the connector needs to access the existing
system. However, before deploying code generated by Visual Age for Java Version
3.x into the Application Server run-time environment, ensure that you have
configured the necessary Visual Age for Java prerequisite support. This support,
and corresponding installation documentation for installing it, is available at the
following URL:
http://www.ibm.com/software/ad/vajava/

Also, ensure that the Visual Age for Java generated CCF code you are deploying
has been generated from a Version 3.5x level of Visual Age for Java. Consult the
Visual Age for Java documentation for information on considerations when moving
to different levels of Visual Age for Java and/or when targeting different levels of
the Application Server for deployment.

The IMS Connect product (5655-E51), which is a replacement for the IMS TCP/IP
OTMA Connection (ITOC), must also be installed before IMS can communicate
with the Application Server. This product can be downloaded from the following
IMS product Web site:

Planning

Chapter 1. Planning for installation 1-5

http://www.ibm.com/s390/os390/bkserv/
http://www.ibm.com/software/ad/vajava/

http://www.ibm.com/software/data/ims/

For more information about setting up IMS and the Application Server to
communicate with each other, see “Enabling communication with IMS using IMS
Connect and IMS Connector for Java” on page E-6.

The CICS Connector is available via Version 4.0 of the CICS Transaction Gateway
product (5648–B43). For more information about setting up CICS and the
Application Server to communicate with each other, see “Enabling communication
with CICS” on page E-5. For more information about this product and how to
purchase it, go to URL:
http://www-4.ibm.com/software/ts/cics/platforms/desktop

As with the Visual Age for Java server-side support, you must obtain the necessary
packages and define them to the Application Server classpath so that they can be
accessed at run time by the requesting application. Connectors that are not
compliant with the CCF Version 1.1 architecture will not execute in the Application
Server Version 3.5 run-time environment. Therefore, connectors shipped with
Visual Age for Java Version 2.0 are not guaranteed to execute in this environment.

IBM Distributed Debugger and Object Level Trace support
The IBM Distributed Debugger and Object Level Trace tools, which are shipped as
part of the VisualAge for Java product, can be used to collect problem
determination information about servlets and Version .91 and 1.0 level JSPs
running in WebSphere Application Server V3.5 on OS/390. These tools provide
graphical representation of the interactions between client/server applications, via
the Object Level Trace Viewer on a workstation, thus enhancing a user’s ability to
debug distributed applications.

Notes:

1. These tools can only be used with the Application Server for OS/390 V3.5 if the
hosting Web server is running in standalone mode.

2. V1.1 JSPs running on an OS/390 V3.5 Application Server can not be debugged
using these tools.

In order to work with a V3.5 Application Server, the VisualAge for Java product
must be at a Version 3.5.3 level, or higher. This version of VisualAge for Java can
be downloaded from the following Web site:
http://www7.software.ibm.com/vad.nsf

Note: You must be a registered member of the VisualAge Developer Domain
before you can download this product. If you are not already registered,
click on ″Register″ in the left hand margin of this Web page.

The IBM Distributed Debugger and Object Level Trace products have their own
detailed user documentation that is available once you install VisualAge for Java
Version 3.5.3 on a Windows NT, Windows 2000, or AIX platform. This
documentation is also included in the WebSphere Application Server Information
Center for Distributed Platforms, which is available at URL:
http://www-4.ibm.com/software/webservers/appserv/infocenter.html

Installing and running Object Level Trace
The README.txt file included with IBM Distributed Debugger and Object Level
Trace provides general information on how to set up the tools to work with an

Planning

1-6

http://www.ibm.com/software/data/ims/
http://www-4.ibm.com/software/ts/cics/platforms/desktop
http://www7.software.ibm.com/vad.nsf
http://www-4.ibm.com/software/webservers/appserv/infocenter.html

OS/390 system. You must also make the following changes to the Application
Server was.conf file before you can use the IBM Distributed Debugger and the
Object Level Trace tools with the OS/390 Application Server:
v Set the objectleveltrace.enabled property to true.
v Update the objectleveltrace.host property with the host name of the workstation

where the IBM Distributed Debugger and Object Level Trace tools are installed.
v Update the objectleveltrace.port property with the the OLT Server TCP/IP port

as it is defined for the IBM Distributed Debugger and Object Level Trace tools
on your workstation. To determine this value:
1. From the Object Level Trace Viewer window, select File/Preferences. This

opens the Browser Preferences window.
2. In the Browser Preferences window, highlight the OLT folder. Use the value

that appears for ″OLT Server TCP/IP port″ as the value you specify on the
objectleveltrace.port property.

See Appendix B, “was.conf file template”, on page B-1 for more information about
these properties.

Once you have installed these tools, and updated the was.conf file properties use
the following procedure whenever you want to run Object Level Trace:
1. Start the Object Level Trace Viewer on your workstation.
2. Set its Execution mode to ″Trace only″.
3. Start the Application Server on your OS/390 system.
4. Using a browser, request a servlet or JSP to be traced in the Application Server

on OS/390.

Output from Object Level Trace should begin being displayed in the Object Level
Trace Viewer window on your workstation. (See the IBM Distributed Debugger
and Object Level Trace documentation for information about the content of this
output.)

Installing and Running the IBM Distributed Debugger
Before installing the IBM Distributed Debugger on your OS/390 system, you must:
v Make sure that IBM SDK 1.3 is installed on your z/OS or OS/390system and is

at Service Release level 7 with PTF UQ53763 installed.
v Create the following directory structures, if they do not already exist:

/usr
/usr/lpp
/usr/lpp/IBMDebug
/usr/lpp/IBMDebug/bin
/usr/lpp/IBMDebug/lib

v In binary mode, FTP file derdebug.jar from the /extras/390/lib/ directory on your
workstation to the /usr/lpp/IBMDebug/lib directory on the OS/390 system.

v In binary mode, FTP file irmtdbgj from the /extras/390/bin/ directory on your
workstation to the /usr/lpp/IBMDebug/bin directory on the OS/390 system.

v Issue the following command to make the Distributed Debugger executable:
chmod +x irmtdbgj

v Make the following updates to your HTTP Server’s httpd.envvars file:
– Prepend /usr/lpp/IBMDebug/bin to the PATH statement.
– Prepend /usr/lpp/IBMDebug/lib to the LIBPATH statement

Planning

Chapter 1. Planning for installation 1-7

v Make the following changes to the Application Server was.conf file, unless you
have already made them to enable the Object Level Trace tool:
– Set the objectleveltrace.enabled property to true.
– Update the objectleveltrace.host property with the host name of the

workstation where the IBM Distributed Debugger and Object Level Trace
tools are installed.

– Update the objectleveltrace.port property with the the OLT Server TCP/IP
port as it is defined for the IBM Distributed Debugger and Object Level Trace
tools on your workstation.

v Change following properties in the Application Server default_global.properties
file:
– Set the appserver.product.java.jvmdebug.debug property to true to enable

the IBM Distributed Debugger support.
– Update the appserver.product.java.jvmdebug.port property with the number

of the pre-selected port used as the JVM remote debugger port. For more
information on pre-selected port, see the section ″Java 2 JDK-related issues″ in
the README.txt file that is installed on your system when you install the
IBM Distributed Debugger and the Object Level Trace tools.

Note: When the appserver.product.java.jvmdebug.debug property is set to true,
the appserver.product.java.jvmconfig.jit property is automatically set to
NONE, and any value specified in the default_global.properties file will
be ignored.

v It is recommended that you also change the values specified for the following
properties in the Application Server default_global.properties file to the
indicated values:
– Set the value on the appserver.product.java.jvmconfig.mx property to 512m

– Set the value on the appserver.product.java.jvmconfig.ms property to 512m

– Set the value on the appserver.product.java.jvmconfig.oss property to 512k

– Set the value on the appserver.product.java.jvmconfig.ss property to 512k

See Appendix B, “was.conf file template”, on page B-1 and Appendix C,
“default_global.properties file”, on page C-1 for more information about these
Application Server properties.

Once you have performed all of the installation steps, use the following procedure
whenever you want to run the Distributed Debugger:
1. Start the Object Level Trace Viewer on your workstation.
2. Set its Execution mode to ″Trace and Debug only″.
3. Check the Step-by-step Debugging Mode selection under the Options

pull-down menu.
4. Start the Application Server on your OS/390 system.
5. Using a browser, request the servlet or JSP to be debugged in the Application

Server on OS/390.
6. If you are debugging a V.91 JSP,

a. When the ″Source File Name″ dialog box appears in the Object Level Trace
Viewer requesting the location of the javax/servlet/http/HttpServlet.java
source code, select ″Cancel″.

b. Then from the ″Debug menu″ pull-down list select ″Step Over″ and then
″Step Over″ again, and then ″Step into″ to get to the JSP .91 source code
you want to debug.

Planning

1-8

7. When the ″Method BreakPoints″ dialog appears in a window on your
Workstation, indicating that the servlet or JSP class is loaded, select the only
entry and select ″OK″.

The IBM Distributed Debugger and Object Level Trace documentation describes, in
detail, the information that will start appearing in Object Level Trace Viewer
window.

Application development tooling considerations
WebSphere Application Server Version 3.5 is designed to support Web-based
application components (servlets, JSPs, JavaBeans, etc.) which are generated by the
IBM VisualAge for Java Version 3.5 application development environment, and
Web components that are generated and/or published by WebSphere Studio
Version 3.5.

The version number of the Visual Age for Java and WebSphere Studio products
indicates the WebSphere Application Server run-time environment which they are
intended to support. For example, Visual Age for Java Version 3.5x is intended to
be compatible with WebSphere Application Server for OS/390 Version 3.5 run-time
environments. In cases where extended support is provided by the tooling (i.e., the
ability to operate with multiple versions of Application Server run-time
environments), this capability will be documented in the Visual Age for Java and
WebSphere Studio product documentation.

Deploying Components generated by VisualAge for Java
The VisualAge for Java, Enterprise Edition, Version 3.5 product for Windows NT
that ships on CDs includes the Enterprise Toolkit for OS/390. ET/390 provides a
way to write Java programs at the workstation, and then export these programs to
run in a remote OS/390 Java Virtual Machine (JVM). The documentation that is
shipped with the workstation version of ET/390 and the host version (5655JAV01)
is identical.

Before you can deploy components generated by VisualAge for Java into the
Application Server run-time environments, you must have the following JAR files
installed on your file system and their location must be included on the
appserver.classpath property, which specifies the directories in your JVM classpath:
v ivjdab.jar
v recjava.jar
v eablib.jar

These files can be found in the \extras\runtime30 directory on Disk 2 of the
VisualAge for Java, Enterprise Edition, Version 3.5 product CDs, or in your
temporary directory where you extracted IDE 4 of 9 (Deployment Environments
and online documentation in PDF format), if you have an electronic version of
VisualAge for Java.

In addition, if you are deploying components, such as a command bean generated
by EAB, that require Common Connector Framework (CCF) support, you must
also include the necessary connector files. For example, if you are using the CICS
Transaction Gateway product to provide your connector support, you must also
include the following JAR files on the appserver.classpath property:
v ctgclient.jar
v ctgserver.jar

Planning

Chapter 1. Planning for installation 1-9

These files are located in the CTG User Classpath that was set up during the CTG
configuration process.

See Appendix B, “was.conf file template”, on page B-1 for more information about
the appserver.classpath property.

For more information about IBM Visual Age for Java, see the product Web site, at
URL:
http://www.ibm.com/software/ad/vajava/

Deploying Components generated by WebSphere Studio
The Application Server does not require any supporting server side classes to be
installed in order to deploy components that are generated and/or published by
WebSphere Studio.

The IBM WebSphere Studio combines easy-to-use wizards with site design and
Java development tools, simplifying and speeding the application development
process. WebSphere Studio is available on Windows NT, Windows 2000, Windows
98, and Windows 95. See the WebSphere Studio Guide for a detailed description of
this product.

For the most current information and to download a trial version of this product,
go to the Studio Web site at URL:
http://www.ibm.com/software/websphere/studio/

Notes:

1. Before attempting to run servlets generated using the WebSphere Studio
product, you must download the webtlsrn.jar file from WebSphere Studio to
your OS/390 system and place it in the classpath of the Web applications that
will be using these servlets. This file contains the WebSphere Studio utilities
required to run the servlets generated using the WebSphere Studio product.

2. A copy of the databeans.jar file is shipped as part of the Application Server
product. DO NOT replace this copy of the databeans.jar file with the copy that
is shipped with the WebSphere Studio product.

Installation and configuration process changes
As with Version 3.02, for Version 3.5, the Application Server properties are
contained in a single configuration file. See Appendix A, “Migrating from previous
Versions of the Application Server”, on page A-1 for information about properties
that have been added or changed for this version of the Application Server. See
Appendix B, “was.conf file template”, on page B-1 for a copy of the template for
this configuration file.

APARs and service updates
For the most current information on APAR fixes and service updates, check the
WebSphere Application Server for OS/390 Version 3.5 Program Directory, which is
shipped with the product, and the WASSE350 Preventive Service Planning (PSP)
bucket. You can link to the most current copy of the Program Directory and the
PSP bucket from the Application Server library page at URL:
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

The PSP Bucket is also available on IBMLink. To access IBMLink on the Web, go to
URL:

Planning

1-10

http://www.ibm.com/software/ad/vajava/
http://www.ibm.com/software/websphere/studio/
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

http://www.ibm.com/ibmlink/

Planning

Chapter 1. Planning for installation 1-11

http://www.ibm.com/ibmlink/

Planning

1-12

Chapter 2. Installing and customizing the Application Server

Installing the Application Server 2-1
Verifying the Application Server installation . . . 2-1

Configuring a Web server to host an Application
Server 2-1
Starting the Application Server 2-3
Invoking the Installation Verification Program 2-4

Configuring the Application Server 2-5
Using a was.conf file to set configuration
properties. 2-5
Specifying configuration properties 2-6
Updating Application Server properties 2-7
Directing requests to the Application Server . . 2-7

Customizing the Application Server 2-8
Specifying the name of a file containing the
properties for instantiating a JVM. 2-8
Maintaining compatibility with existing
applications 2-9
Configuring the Application Server to use the
Xerces.jar and Xalan.jar files distributed with
Apache 2-10
Specifying the logging level for customer
directed messages 2-10
Specifying the log file directory 2-11
Specifying a working directory 2-11

Installing the Application Server
Instructions for installing the WebSphere Application Server Standard Edition
element of WebSphere Application Server for OS/390 Version 3.5 can be found in
the WebSphere Application Server for OS/390 Version 3.5 Program Directory. This
program directory is shipped with the product and can also be obtained from the
product library page at URL:
http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

After the installation process has been completed, the resulting HFS containing the
install-image can be mounted to any execution system that is to host an
Application Server. The name of the root directory where the install-image of an
individual execution system is located is referred to as the applicationserver_root.
The default applicationserver_root is /usr/lpp/WebSphere.

Note: An install-image may be mounted as read-only on the execution systems on
which it is going to execute. An Application Server, which will be executing
within a Web server address space under the identity of that address space,
will require read access to the applicationserver_root at run time. Therefore,
the mounted image must have the appropriate file permissions to allow read
access.

Verifying the Application Server installation
The Application Server installation process can be verified by:
1. Configuring a Web server to host an Application Server.
2. Starting the Application Server
3. Invoking the Installation Verification Program.

Configuring a Web server to host an Application Server
To run an Application Server within a Web server address space, you must:
1. Add the following Web server directives to the httpd.conf configuration file of

any Web server that will be hosting an Application Server to provide the Web
server with the entry point to the Application Server’s initialization, request
processing, and exit routines. These routines exist as entry points init_exit,
service_exit, and term_exit, respectively, within the was350plugin.so DLL. The
was350plugin.so DLL is found within the applicationserver_root/AppServer/bin
directory.

© Copyright IBM Corp. 2000, 2003 2-1

http://www.ibm.com/software/websphere/appserv/zos_os390/library.html

ServerInit applicationserver_root/AppServer/bin/
was350plugin.so:init_exit applicationserver_root

Service /webapp/examples/* applicationserver_root/AppServer/bin/
was350plugin.so:service_exit

ServerTerm applicationserver_root/AppServer/bin/was350plugin.so:term_exit

Notes:

a. In this example, the ServerInit and Service directives are split for printing
purposes. In the actual httpd.conf file, each directive is on a single line.

b. If you do not want to use the default was.conf file to configure the
Application Server, you must specify the name of the was.conf file you
want to use at the end of the ServerInit directive. See“Configuring the
Application Server” on page 2-5 for an example where the name of a
was.conf file was added to the ServerInit directive.

c. The Web server interprets a blank in a directive specification as a delimiter
and a number sign (#) as the beginning of a comment that should be
ignored. Therefore, if you need to use a blank or number sign in a directive,
you must include a backslash (\) before the blank or number sign to enable
the Web server to correctly process the directive.

d. If a servlet sets an HTTP response code by any means, such as using
methods lastModified() or setStatus(), and the client does not receive the
expected response code, add the following directive to the HTTP Server
configuration file:
ServiceSync On

2. Make sure that the JAVA_HOME environment variable contained in the hosting
Web server’s envvars file points to the exact location where the required level
of the Software Development Kit (SDK) is installed on your system. (See
“Required Software Development Kit” on page 1-2 for the Development Kit
level that is required by the Version 3.5 Application Server.)

3. Append the Application Server message catalog directory,
applicationserver_root/AppServer/msg/%L/%N, to the existing NLSPATH
statement specified in the HTTP server’s envvars file. For example, if NLSPATH
was set as:
/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N

and the Application Server is installed in /usr/lpp/WebSphere, change the
NLSPATH to:
/usr/lib/nls/msg/%L/%N:/usr/lpp/internet/%L/%N:/usr/lpp/WebSphere/AppServer

/msg/%L/%N

The Application Server environment is a Java Server Runtime environment capable
of hosting Web components such as Java Servlets and JavaServer Pages. The
environment is structured to accommodate inclusion of other services and facilities
(such as JDBC support) for use by the Web components. Many of these Java
services are implemented assuming that only Java compliant implementations of
these services are to exist within the Java based run-time environment. Many
packages are not guaranteed to work properly when native code in other versions
of the services are introduced into this environment. Other packages impose a
large set of restrictions that must be adhered to.

For example, the JDBC driver provided by DB2 makes use of the RRSAF package
when connecting to DB2. DB2 explicitly documents that only one type of attach
package can exist within a given address space. Therefore, any native code that is
configured in the address space, such as another GWAPI plug-in that makes use of
the Call Attach Facility (CAF), is not allowed. For cases where another GWAPI

Installing and customizing

2-2

program makes use of RRSAF natively to attach to DB2, the program must
consider whether its management of this connection conflicts with the assumptions
made by the JDBC driver (i.e., state management on threads within this
multi-threaded execution environment) within its implementation.

You must be sure to accommodate the use of JDBC by other system components.
An attempt to reconcile any deltas by simply not including application code that
makes use of JDBC in the same address space with code that uses other native
facilities may not be sufficient because the Application Server often makes uses of
JDBC in its implementation of persistent HTTP Session state.

Configuring multiple instances of the Application Server or multiple product levels
of the Application Server within the same address space is not permitted.
Therefore, when updating an existing httpd.conf file that contains existing
Application Server directives, you must replace the existing ServerInit, ServerTerm,
and Service directives with corresponding directives containing the new format
previously described in this section.

Notes:

1. To minimize the risk of encountering an incompatibility in system services, IBM
recommends that you do not run other plug-in routines that use different
programming model facilities in the same address space where you are running
the Application Server.

2. As a result of the install process, the DLL libraries for the Application Server
contained in the applicationserver_root/AppServer/bin directory are marked as
program controlled. You must be sure to preserve these settings.

Starting the Application Server
At execution time, an Application Server will run within any Web Server address
space in which an Application Server has been properly configured. Both the Web
server and the Application Server issue status messages to the standard error
(stderr) log file to indicate their progress throughout their initialization process.

The following depicts the content of the stderr log file upon successful
initialization of the Application Server. Successful completion of initialization is
indicated by messages in the log file from both the Application Server and the
hosting Web server indicating that the server is ready.
............ This is IBM HTTP Server web_server_type
............ Built on date at time.
............ Started at day date time year.
............ Running as "your_server_name", UID:OS/390_UNIX_UID,

GID:OS/390_group_ID.
IMW0234I Starting.. httpd

This is IBM WebSphere Application Server for OS/390 3.50 built on OS/390 Version 2
Release release_number,WAS Service Level service_level_number

Built on date at time.
Started at day date time year

Started Queue State = HTTPD

Started Server Type = STANDALONE
WAS Startup Parameter -- Install Root = /applicationserver_root
WAS Startup Parameter -- Configuration file = applicationserver_root/AppServer/

properties/was.conf
WAS Startup Parameter -- Bootstrap file = applicationserver_root/AppServer/

properties/default_global.properties
WAS Startup Parameter -- JDK install directory (JAVA_HOME) = /usr/lpp/java/

Installing and customizing

Chapter 2. Installing and customizing the Application Server 2-3

J1.3.0/IBM/J1.3

WAS Startup Parameter -- Plugin Logging Level = WARNING

WAS Startup Parameter -- Plugin Logging Directory = /your_server_name/logs
WAS generated CLASSPATH follows:
CLASSPATH entry: applicationserver_root/AppServer/lib
CLASSPATH entry: applicationserver_root/AppServer/lib/ant.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/antxalan_1_1.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/bsf.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/databeans.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/dertrjrt.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/ibmant.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/ibmwebas.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/jsp10.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/lotusxsl.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/servlet.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/xerces.jar
CLASSPATH entry: applicationserver_root/AppServer/lib/xml4j.jar
CLASSPATH entry: applicationserver_root/AppServer/properties
CLASSPATH entry: applicationserver_root/AppServer/classes
CLASSPATH entry: /usr/lpp/java/J1.3.0/J1.3/lib/tools.jar
CLASSPATH entry: /usr/lpp/java/J1.3.0/J1.3/lib/ext/RACF.jar
............ End of generated CLASSPATH

IMW0234I Starting.. httpd
............ WAS Startup Parameter -- Servlet Engine Logging Level = WARNING
............ WAS Startup Parameter -- Servlet Engine Logging Directory =

/your_server_name/logs
............ WAS Startup Parameter -- Servlet Engine Working Directory =

/your_server_name/work

............ IBM WebSphere Application Server native plugin initialization
went OK :-)

IMW0235I Server is ready.

Note: The IBM Developer Kit for the Java Platform, used with previous versions of
the Application Server, required that system classes (classes.zip) had to be
added to the Application Server CLASSPATH. SDK 1.3, used withVersion 3.5
of the Application Server, does not have this requirement.

Message IMW0235I indicates that your Web server has successfully initialized. The
preceding ″smiley face″ message indicates that the Application Server successfully
initialized. It is possible to get message IMW0235I without the preceding ″smiley
face″ message if the Application Server did not successfully initialize. If you do not
receive message IMW0235I, an error has occurred during the Web server
initialization process.

Invoking the Installation Verification Program
Once the Application Server is started, you can verify the install by entering the
following URL from a browser to invoke the IBM-provided Installation Verification
Program:
http://your.server.name/webapp/examples/index.html

Installing and customizing

2-4

You can then select one of the examples from this page and verify that the
Application Server has properly installed.
v The Show Server Configuration example will display your current Application

Server configuration settings.
v Either of the simple.jsp examples will verify that level 1.1 JSPs work properly in

your Application Server environment.

Note: If you have changed any of the default settings in the was.conf file for this
instance of the Application Server, make sure the session.enable property is
set to true before running the Installation Verification Program.

Configuring the Application Server
As with Version 3.02 of the Application Server, Version 3.5 can be configured by
updating properties provided in a was.conf configuration file. The Application
Server takes as input the fully qualified name of a was.conf file. The properties
within this file are each specified on a single line and can set things such as a
classpath or document root.

If you are migrating from Version 1.1 or 1.2 of the Application Server, you are not
required to deviate from your current server_model_root structure. The properties
within the new was.conf file enable you to configure the Application Server so that
it uses your existing directory structures and specifications. See Appendix A,
“Migrating from previous Versions of the Application Server”, on page A-1 for
more migration information.

Using a was.conf file to set configuration properties
The fully qualified location of the Application Server’s configuration file (was.conf)
can be specified within the Web Server’s configuration file as the second positional
parameter to the Application Server initialization routine. When a value is not
supplied for this parameter, the Application Server uses the default was.conf file

Installing and customizing

Chapter 2. Installing and customizing the Application Server 2-5

located at applicationserver_root/AppServer/properties/was.conf. This default file is
designed to support execution of the Installation Verification Program (see
“Invoking the Installation Verification Program” on page 2-4).

The property values specified in the was.conf file determine how the Application
Server handles Web applications deployed within it. You can use the was.conf
template that is provided with the product to create a was.conf file for a particular
instance of the Application Server. The template is located in the
applicationserver_root/AppServer/properties/was.conf.template file; a copy is also
provided in Appendix B, “was.conf file template”, on page B-1.

You must add a ServerInit directive to the hosting Web server’s httpd.conf file that
specifies the Application Server’s location (applicationserver_root) and the name of
the associated was.conf file. The following example shows the ServerInit directive
that was added to the hosting Web server’s httpd.conf file for an Application
Server with an applicationserver_root of /MyExecutionSystem/usr/lpp/WebSphere,
and whose configuration is provided in the was.conf file
/MyExecutionSystem/usr/ServerDefs/PayrollServer.conf:
ServerInit /MyExecutionSystem/usr/lpp/WebSphere/AppServer/bin/

was350plugin.so:init_exit/MyExecutionSystem/usr/lpp/WebSphere,/
MyExecutionSystem/usr/ServerDefs/PayrollServer.conf

Note: In this example, the ServerInit directive is split for printing purposes. In the
actual file, this directive is on a single line.

If no name is specified, the default was.conf file,
applicationserver_root/AppServer/properties/was.conf, is used.

During initialization, the Application Server performs syntax checking on the
values within the was.conf file. If an error is detected, initialization will fail and
appropriate error messages will be sent to the stderr log.

Specifying configuration properties
The following types of properties can be included in your was.conf file:
v Application Server run-time properties: You can provide properties within the

was.conf file that influence the behavior of the Application Server’s run-time
code, and apply to all Web applications deployed in the Application Server .
Among other things, you can specify:
– Information that is to be provided to the Java Virtual Machine that is to be

instantiated
– The level of logging that is desired
– The physical directories to use for logging output.
– The physical directories to use for temporary files created by the Application

Server, such as classes created during JSP processing.

Properties in this category have the format of appserver.property_name=value. For
more information on configuring the Application Server run-time properties, see
“Customizing the Application Server” on page 2-8.

v Virtual Hosts: Virtual hosts can be explicitly configured to the Application
Server. Properties relating to the configuration of virtual hosts have the format
host.host_name.property_name=value. For more information on configuring virtual
hosts, see “Configuring a virtual host” on page 3-2.

v Web applications: If a request routed to the Application Server is to be satisfied,
it must ultimately be routed to a Web application which satisfies the request.

Installing and customizing

2-6

|
|

Web applications provide the ability to group a set of Servlets, JSPs, and static
files together so they can be managed as a single unit. Web applications can be
configured within a defined virtual host. Properties relating to the configuration
of Web applications have the format webapp.webapp_name.property=value.
Properties relating to the deployment of Web applications have the format
deployedwebapp.webapp_name.property=valueFor more information on defining
and deploying Web applications, see “Defining and deploying Web applications”
on page 3-3.

v JDBC Database Connection Pools: You can use properties having the format
jdbcconnpool.pool_name.property_name=value to define database resources for
your applications to use. For more information on configuring database
connection pools, see Chapter 4, “Accessing relational databases”, on page 4-1.

v HTTP Session Support: The Application Server provides support for the HTTP
Session API defined by the Servlet API Specification. Properties relating to the
configuration of HTTP Session support have the format of
session.property_name=value. For more information on configuring HTTP Session
support, see Chapter 5, “Session tracking”, on page 5-1.

Appendix B, “was.conf file template”, on page B-1 contains detailed descriptions of
all configuration properties contained in the was.conf file.

Updating Application Server properties
When the Application Server initialization routine executes, it creates an
Application Server instance within the process of the hosting Web server. The
Application Server instance is created using the values provided to the
initialization routine through the associated was.conf file. The Application Server
instance that is created remains resident for the life of the Web server process in
which it was created. Therefore, before the Application Server can recognize
changes in its configuration, it must be instantiated within a new physical address
space.

When the Application Server is executing in a Web server that is running in
stand-alone mode, the Web server must be stopped and a new instance started
before the Application Server recognizes changes in its configuration. Because a
restart of the Web Server running in stand-alone mode does not destroy and
recreate the Web server process, configuration changes to the Application Server
are not recognized after a restart. The Application Server will continue to execute
using the configuration settings specified when the process was originally created.

If the hosting Web server is running in scalable server mode, it is recommended
that you configure the Application Server to execute within a queue server.
Scalable server mode allows new queue servers to be started to replace existing
processes. The Application Server instances that will be started within the new
queue servers will read and process any changes that exist in the configuration file.
While the queue server address spaces are being recycled, the Queue Manager
representing the network endpoint remains active. This enables you to make
changes to the Application Server’s configuration without clients experiencing an
interruption in service.

Directing requests to the Application Server
The Service directives within the hosting Web server’s httpd.conf file indicate
which requests the Application Server is to process. If the requested URL matches
a URL or URL pattern specified in a directive in the httpd.conf file, that request is

Installing and customizing

Chapter 2. Installing and customizing the Application Server 2-7

routed to the Application Server. The Application Server then uses webapp
definition statements to determine which Web Application the request should be
routed to.

The deployedwebapp. <webapp-name>.rooturi= properties in the was.conf file for
an Application Server instance defines what URLs the Application Server is able to
process for a particular Web application. When a request is routed to a Web
application, the Web application attempts to satisfy it using the physical resources
that are defined within its configuration. If the request is unable to be satisfied, it
will be rejected. (See “Mapping URLs to Web components” on page 3-17 for
information on how to define a URL mapping in the was.conf file.)

The hosting Web server performs protection directive processing prior to invoking
the Application Server service routine. Before passing a request to the Application
Server Service routine, the Web server selects a thread in which to dispatch the
request and establishes any necessary security credentials on that execution thread.
The Application Server then attempts to process requests synchronously on the
HTTP execution thread in which its service routine is invoked. In cases where this
is not possible, the Application Server is responsible for propagating the necessary
context (i.e. execution identity, etc.) to any subsidiary threads prior to invoking the
target application component such as a servlet or a JSP.

Note: The Application Server does not provide facilities to initiate client
authentication. Instead, it relies on the security facilities provided by the
hosting Web server. The Application Server is able to subsequently perform
access control checks using the identity that is assigned during the Web
server’s authentication processing.

Customizing the Application Server
Using the run-time properties in the Application Server was.conf file, you can :
v Specify the fully qualified name of a file containing the properties that are to be

used to instantiate a Java Virtual Machine (JVM).
v Maintain compatibility with existing applications while simultaneously

supporting the Java Servlet API 2.2 specification.
v Specify that you want to use the copy of the Xerces.jar and Xalan.jar files

distributed with Apache rather than the version that is shipped with the
Application Server.

v Specify the logging level for customer-directed messages.
v Specify a working directory that the Application Server can use to create a

temporary file.

Specifying the name of a file containing the properties for
instantiating a JVM

The appserver.jvmpropertiesfile property is used to specify the fully qualified
name of a file containing the properties that are to be used to instantiate a Java
Virtual Machine (JVM) for use by the Application Server. If a value is not specified
for this property, the Application Server defaults to using the
applicationserver_root/AppServer/properties/default_global.properties file. This file
contains reasonable defaults for executing the JVM within the Application Server at
the supported levels. IBM recommends that you continue to use this default file
until individual observation identifies an explicit need to change it. Using the
default values ensures that you will get the latest recommended defaults as they
are applied through service updates. The configuration settings that can be

Installing and customizing

2-8

specified in a JVM properties file are described in detail within the default file. See
Appendix C, “default_global.properties file”, on page C-1 for a copy of this file.

Maintaining compatibility with existing applications
The appserver.compliance.mode property is used to maintain compatibility with
existing applications that you may have been running on a Version 3.02
Application Server, while simultaneously supporting the Java Servlet API 2.2
specification. To ensure compatibility, this new property enables you to indicate to
the Application Server whether the Web applications you are running comply with
the Java Servlet API 2.1 or 2.2 specification. If the components in a Web application
comply with the Java Servlet API 2.1 specification, you specify false to indicate to
the Application Server that you want it to run in compatibility mode; if they
comply with the Java Servlet API 2.2 specification, you specify true for this
property. false is the default value for this property.

The following table describes how the appserver.compliance.mode property setting
affects Servlet API classes and methods, and various application functions. In this
table, ″Compatibility Mode″ indicates that the applications comply with the Java
Servlet API 2.1 specification, and ″Compliance Mode″ indicates that the
applications comply with the Java Servlet API 2.2 specification. Make sure you
understand all of the application processing implications noted in this table before
changing the setting of this property to true.

Method or function Compatibility mode Compliance mode

Error-page tags in the
.webapp file

The >error-page< contains a string that is the
relative path to the Web application’s default
error page.

The >error-page< contains the following
tags:

v >location<

v >exception-type<

v >error-code<

These tags are only available in a .webapp
file. Since there is no corresponding property
in the was.conf file, this function is only
available when a .webapp file is used to
define a Web application.

getCharacter Encod
ing() method

If the client request did not send any
character encoding data, the default
encoding of the server JVM is returned.

If the client request did not send any
character encoding data, null is returned.

Default content type
on response buffer reset

On response buffer reset, the content type of
the request is reset to text/html.

On response buffer reset, the content type is
cleared and not set to a default value.

getMimeType()
method

If the file extension does not map to a valid
mime type, the mime type www/unknown is
returned.

If the file extension does not map to a valid
mime type, null is returned.

HTTP Session scoping Values placed in the HTTP Session object
have a global scope, across all Web
applications.

Values placed in the HTTP Session object
have a scope limited to the Web application
that created the value.

Installing and customizing

Chapter 2. Installing and customizing the Application Server 2-9

Method or function Compatibility mode Compliance mode

Request mapping
behavior

v Exact mapping is not supported. Any URL
pattern that is to be accepted and used as
is, must end with with /* .

v Wildcard mapping is an implied wildcard.
Any URL pattern specified without /* on
the end is assumed to be a wildcard rule,
and /* is added in the servlet run-time
environment. For example, /Servlet would
be interpretted as /Servlet/*.

v The servlet specification pattern mapping
logic is followed. This includes support for
exact matches.

v To specify a URL, the Servlet 2.2
specification allows the following syntax:

1. A string beginning with / and ending
with /* specifies a wildcard match.

2. A string beginning with *. specifies an
extension mapping.

3. All other strings are used as exact
matches.

v The Servlet 2.2 specification indicates how
requests for resources are mapped to the
appropriate resources. Mapping occurs in
the following order:

1. exact match

2. longest wildcard match

3. matching extension

4. default servlet (defined by / URL)

Configuring the Application Server to use the Xerces.jar and
Xalan.jar files distributed with Apache

If you prefer to use the copy of the Xerces.jar and Xalan.jar files distributed with
Apache rather than using the version that is shipped with the Application Server,
add the following property to the was.conf file:
appserver.java.system.property=com.ibm.servlet.classloader.delegate=false

When you add this property to the was.conf file, the Application Server will use
the WebApp classloader to load classes before it uses the system classloader. You
can then place the versions of the Xerces.jar and Xalan.jar files you want to use in
the WebApp classpath and the Application Server will load these versions instead
of the versions shipped with the Application Server product that reside in the
system classpath.

If, at a later time, you decide to use the version of the Xerces.jar and Xalan.jar files
shipped with the Application Server, simply change the value specified on this
property to true. This will cause the system classloader to be used to load classes
ahead of the WebApp classloader.

Specifying the logging level for customer directed messages
The appserver.loglevel property is used to select one of three levels of logging for
customer-directed messages. The values that can be specified for this property are
ERROR, WARNING, and INFO.
v Specifying ERROR instructs the Application Server to log only events that are

fatal to the operation of the Application Server. This level represents the most
minimal First Failure Data Capture.

v Specifying WARNING results in the logging of ERROR level messages as well
as WARNING messages, which indicate a potential error. WARNING is the
default value and the value recommended by IBM for normal operations.

Installing and customizing

2-10

v Specifying INFO results in extensive logging. INFO level logging is only
recommended when you need to perform explicit problem determination.

Note: The Servlet 2.1 and Servlet 2.2 specifications define a log method on the
ServletContext object that allows servlets to write messages to a destination
provided by the underlying servlet engine implementation. The Application
Server’s implementation of log method will direct these messages to the
destination log defined on the appserver.logdirectory property in the
was.conf file. The Application Server treats all messages written through this
method as information messages. Therefore, these messages will only be
written to the destination log if the appserver.loglevel property in the
was.conf file is set to INFO.

Specifying the log file directory
The appserver.logdirectory property is used to specify a directory in which the
Application Server is to create log files at run time. This directory must exist before
the Application Server is started.

At run time, the Application Server attempts to access this directory using the
identity of the hosting Web server’s process. Therefore, the Application Server
requires permission to read or write to any files or directories in this path at run
time.

During its initialization process, the Application Server uses the value provided for
this property to create two files per Application Server instance within the
specified directory structure. These files are then used throughout the life of the
Application Server instance. The names for these two files will have the format
ncf.log.date.WLMmode.PID and native.log.date.WLMmode.PID, where date is the date
the log is created, WLMmode provides information about the hosting Web server’s
address space, and PID is the process ID of the hosting Web server’s address space.
The native.log file will be used to log messages produced by the Application
Server’s C code before entering Java; the ncf.log file will be used to log any
System.out and System.err prints.

If the Web server is running in stand-alone mode, a value of STANDALONE is
used for WLMmode. If the Web server is executing in scalable server mode and the
Application Server is executing in a queue server address space, a value equal to
the APPLENV name of that queue server is used for WLMmode. If the Web server
is executing in scalable server mode and the Application Server has been
configured to execute in the Queue Manager address space, a value of QM is used
for WLMmode. IBM does not recommend this latter configuration.

If no value is specified for the log directory property, the output location is
determined by the mode in which the hosting Web server is started. If the Web
server is started from the Unix System Services shell, output is directed to
STDOUT and STDERR. If the Web server is running as an OS/390 Started Task,
output is directed to the location represented by the SYSPRINT DD within the JCL
of that started task. If the Application Server needs to log messages for use by IBM
Service personnel, it will do so within these same output destinations.

Specifying a working directory
The appserver.workingdirectory property is used to specify a working directory
that the Application Server can use to create temporary files. If you do not specify
a fully qualified path for this directory, the Application Server will use the default

Installing and customizing

Chapter 2. Installing and customizing the Application Server 2-11

directory path and append the Application Server name to that directory path. (See
Appendix B, “was.conf file template”, on page B-1 for more information about this
property.)

Among other things, this directory is used to contain the output from Java Server
Page compilations. This directory must exist before the Application Server is
started. At run time, the Application Server will attempt to access this directory
using the identity of the hosting Web server’s process. Therefore, the Application
Server requires permission to read or write to any files or directories in this path at
run time.

Note: Some of the files the Application Server creates under the working directory
use fully qualified file names to reference other files in the working
directory. Therefore, if you need to change the mount point of the working
directory, you must first stop the Application Server and delete the contents
of the working directory, including all of its subdirectories. You can then
change the mount point and update the Application Server’s working
directory property in the was.conf file. When the Application Server is
stopped and then started again, it will recreate the directories and files
within those directories as necessary.

Installing and customizing

2-12

Chapter 3. Defining virtual hosts and Web applications

Defining virtual hosts. 3-1
Configuring a virtual host 3-2
Defining and deploying Web applications 3-3

Including Web components in a Web application 3-5
Deploying a Web application to the Application
Server 3-7

Using Web applications contained in War files 3-11
Configuring Web applications 3-14

Setting the Application Server (JVM) and Web
application classpaths 3-14
Placing .property files in appropriate directories 3-16
Placing application files in appropriate
directories 3-16

Mapping URLs to Web components 3-17
Determining the virtual host that should
process a request 3-18

Determining the requested Web component and
resolving it to a physical entity 3-18

Securing Web components 3-19
Class loading and optional reloading 3-21
Compiling JSP level 1.0 or level 1.1 source files 3-22

Pre-compiling JSPs 3-22
Improving JSP compile time 3-25

Compiling servlets 3-26
Passing init-parameters to a servlet 3-26

Using webapp properties in the was.conf file 3-27
Using XML tags in a <webapp-name>.webapp
file. 3-27
Using a .servlet file 3-28

Configuring servlet chaining 3-29

Defining virtual hosts
Version 3.5 of the Application Server enables you to define virtual hosts. This
support allows you to have multiple logical hosts which share the same IP address
on a Web server.

A virtual host can have one or more DNS aliases. A DNS alias consists of a
TCP/IP hostname and port number. A client request for a Web application, servlet,
or related resource contains a DNS alias plus a Web path name that is unique to
that resource.

Application Server virtual host support allows multiple Application Server hosts to
be defined within a single Web server. When the Application Server is configured,
at least one virtual host (the default virtual host that is provided with the
Application Server) is associated with it. “Configuring a virtual host” on page 3-2
describes how to define additional virtual hosts if they are needed.

One or more Web Applications can be deployed within a virtual host. (See
“Defining and deploying Web applications” on page 3-3 for a description of a Web
application.) Web applications support the programming model concepts
introduced to Web developers in the Servlet V2.1 and V2.2 API Specifications (see
“Required JavaServer Pages levels” on page 1-3). These specifications expose a
ServletContext object that provides a view of an application to each component at
run time. The ServletContext object enables components within a Web application
to locate, dispatch requests to, and share information with their related
components at run time without knowing where they are physically located.

The components in a Web application:
v May be related in the sense that they work together to perform a business

function. For example, a customer service Web application might contain
servlets, JSPs, and HTML files that collaborate to provide this service to end
users. Web applications are managed as a single unit.

v May be related only in the sense that you want to administer them as a single
unit deployed on a particular Application Server and sharing a single
ServletContext object. For example, if you are migrating from a previous version

© Copyright IBM Corp. 2000, 2003 3-1

||

of the Application Server, you might want to initially place all of your existing
servlets and JSPs in a single Web application.

Configuring a virtual host
Virtual hosting allows a single Web server to act as a server for more than one
internet host. The use of virtual hosting reduces the number of physical machines
required, and reduces the need to dedicate and manage Web servers configured to
non-standard ports. For example, a Web server listening on port 80, the usual port
used for HTTP requests, may actually be servicing requests for hosts
www.mycompany.com and www.MyOtherCompany.com. In this case, both host
names would be registered in the Domain Name Server (DNS) with the same IP
address. Information that the HTTP protocol requires to be in the input request
enables the Web server to distinguish the intended virtual host.

The IBM HTTP Server for OS/390 contains support for logically partitioning its
configuration based on the target host name of a request it is processing. The
Application Server configuration file (was.conf) allows virtual hosts to be defined.
Once defined, you can deploy one or more Web applications into a virtual host.
This capability allows the Application Server configuration to be partitioned in
accordance with the hosts for which it is servicing requests.

Properties of the form host.<virtual-hostname>.<>=<value> are used to define a
virtual host. These properties indicate the name by which this host is known
within the Application Server administrative domain (virtual-hostname).

A virtual host defined using this property may subsequently be used in a
deployedwebapp.<webapp_name>.host property to deploy a Web Application under
that virtual host.

The Application Server uses the host. properties to determine which virtual host to
route an input HTTP request to. It checks the URL used to initiate an input request
and routes the request to the specified virtual host.

The following properties are used to define a virtual host:
v host.<virtual-hostname>.alias<hostname>|localhost. This property is the name by

which this host is known to clients and applications. The host may be specified
as both a host name and target port.

v host.<virtual-hostname>.mimetypefile. This property is the fully qualified name
of a file containing definitions for MIME types that describe the content that can
be included in HTTP responses served from this host. The Application Server
contains a default MIME type file containing standard MIME type definitions.
The name of this default file is contained in the default was.conf file provided
with the Application Server.

A host can have more than one alias. The alias definition may contain both a host
name and a port number. When a client requests a Web application, servlet, or
related resource, the Application Server compares the hostname and port in the
request with the list of configured DNS aliases. If a match is not found, the servlet
engine reports an error that is returned to the browser. The following illustrates
how you might define the virtual host MyHost with DNS aliases of
www.mycompany.com and www.MyOtherCompany.com: within a was.conf file:
host.MyHost.alias=www.mycompany.com
host.MyHost.alias=www.MyOtherCompany.com

3-2

See Appendix B, “was.conf file template”, on page B-1 for a complete description of
the was.conf file properties that are applicable to defining a virtual host.

Note: The default_host provided with the product is meant to be used when
running the Installation Verification Program (see “Invoking the Installation
Verification Program” on page 2-4). It should be removed when you begin
deploying other Web applications.

Defining and deploying Web applications
A Web application is a grouping of Web components, such as servlets, Java Server
Pages (JSPs), and static files, such as HTML files and GIF files, that is defined and
then deployed into a WebSphere virtual host and managed as a single unit. A
virtual host is able to contain one or more Web applications.

Web applications enable you to manage components as a single unit even though
they may not be related in a business sense. Components that do not explicitly use
the ServletContext object and grouping concepts can still be connected and
deployed as a single Web application. This is similar to how they were managed
on previous versions of the Application Server; as a single unit deployed on a
particular Application Server sharing a single ServletContext object.

There are two distinct sets of attributes associated with a Web application:
v Deployment attributes, which define the physical residency and characteristics of

the Application Server into which the Web application is being deployed, such
as the fully qualified directories that comprise the Web application’s classpath.
These attributes are defined using was.conf file properties that start with the
keyword deployedwebapp and are of the form:
deployedwebapp.<webapp-name>.<property>=<value>

<webapp-name> is the unique name by which a Web application is identified to
the Application Server.

The deployment attributes enable the ServletContext object to correctly resolve
these physical residencies and characteristics at run time and efficiently deploy
the Web application.

v Definitional attributes, which define the characteristics of a Web application,
such as the servlets that are part of that application, and servlet and JSP
mapping information. A web application’s definition can be communicated to
the Application Server using either of the following methods:
– Using the Web application was.conf file properties that start with the

keyword webapp and are of the form:
webapp.<webapp-name>.<property>=<value>

<webapp-name> is the unique name by which a Web application is identified
to the Application Server. (The same name is used on both the
deployedwebapp and webapp properties associated with a specific Web
application.)

See Appendix B, “was.conf file template”, on page B-1 for a description of all
of the webapp properties.

– Using a Web application XML file, of the form <webapp-name>.webapp, which
uses XML tags to define the attributes of the Web application. Use a Web

Chapter 3. Defining virtual hosts and Web applications 3-3

Archive (WAR) file conversion utility to produce this Web application XML
file. (See “Using Web applications contained in War files” on page 3-11 for
more information about WAR files.)

For more information about the XML tags that can be used to provide
definitional attributes for a Web application, see the Deployment Descriptor
Elements section in the Java Servlet Specification V2.2 at URL:
http://java.sun.com

Whenever the Application Server initializes and detects Web application
deployedwebapp properties in the was.conf file, it:
1. First looks for webapp properties in the was.conf file with the same value for

the <webapp-name> keyword as appeared on the deployedwebapp properties. If
the Application Server finds webapp properties that meet this requirement, it
uses them to define the Web application and initialize the servlet. It will ignore
any XML file of the form <webapp-name>.webapp with the same <webapp-name>
keyword as appeared on the deployedwebapp properties.
If webapp properties are being used to pass initalization parameters to a
servlet, the servlet must include the statement:
String s = getInitParameter("<parameter>")

where <parameter> is the name of the parameter to be retrieved.
2. If the Application Server does not find webapp properties in the was.conf file

with a matching value for the <webapp-name> keyword, it searches the Web
application’s classpath for a an XML file of the form <webapp-name>.webapp. If
it finds such an XML file, the Application Server uses the contents of this file to
configure the Web application’s definition.
If a .webapp XML file is being used to pass initalization parameters to a
servlet, you must include the following property in the was.conf file:
deployedwebapp.Payroll.classpath=<path>

where <path> is the location of the Payroll application. (The associated .webapp
file must be placed in the same classpath as the Web application.)

For more information about defining a Web application in a .webapp file, see
the Deployment Descriptor Elements section in the Java Server Specification
V2.2 at URL:
http://java.sun.com

3. If the Application Server does not find an appropriate .webapp file, it will look
for a <servlet-name>.servlet file, where<servlet-name> is the name of the servlet
requiring the initalization parameters. This .servlet file is an XML servlet
configuration file and contains the name of the servlet class file, servlet
initalization parameters, and a page list containing the URIs (universal resource
identifiers) of the JSPs the servlet can call.

For more information about passing initalization parameters to a servlet, see
“Passing init-parameters to a servlet” on page 3-26.

Note: If you are migrating from a previous version of the Application Server, you
might want to initially define all of the Web components you are migrating
within a single Web application. (See Appendix A, “Migrating from previous
Versions of the Application Server”, on page A-1 for more information on
migrating existing Web components into the Web application structure.)

3-4

http://java.sun.com
http://java.sun.com

Including Web components in a Web application
A Web application can contain the following types of Web components:
v Servlets. The deployed Web application is able to host servlets that conform to

the Java Servlet API 2.1 or 2.2 Specification. The Servlet API version is set for the
Application Server; not for individual deployed Web applications. The value
specified on the appserver.compliance.mode property in the was.conf file
determines which version the servlets must conform to (see “Maintaining
compatibility with existing applications” on page 2-9).
Servlets that have been developed and tested on WebSphere Version 3.x for
distributed platforms should be able to be deployed unchanged to this version
of the Application Server except where an explicit restriction is noted. See
Appendix D, “Programming Model Restrictions”, on page D-1 for a description
of these restrictions.
Servlet implementations can be provided to the Application Server as a java
.class file, a java .ser file, or as part of a .jar file.

Note: If you are intending to use servlets written to the Java Servlet API 2.01
Specification with this version of the Application Server, see Appendix A,
“Migrating from previous Versions of the Application Server”, on
page A-1 for more information on how to determine if changes are
required before deploying them as part of a Web application.

v Java Server Pages (JSPs) and JHTML files. The deployed Web application is
able to host Java Server Pages (JSPs) and JHTML files that comply with either
the Java Server Pages 0.91, 1.0, or 1.1 Specifications. However, the Application
Server does not support deploying JSPs written to different specification levels
within the same Web application. JSPs written to different specification levels
must be defined in separate Web applications. Use the webapp.<webapp-
name>.jsplevel=<JSP-spec-level> property in the was.conf file to define the
specification level of the JSPs contained in a specific Web application.
The Application Server treats JSPs and JHTML files as text files for the purpose
of interpreting and compiling them. At run time, the Application Server uses
Java readers and writers to access the source files. The Java facilities perform the
necessary conversion of the file content from the file encoding scheme (that is
specified as a Java system property) to unicode format for processing. Therefore,
JSP and JHTML files should be stored on the file system in the encoding scheme
that is expected by the Java Virtual Machine (JVM).
For JSP Specification levels 0.91 and 1.0, the JVM is typically configured with a
file encoding of EBCDIC; for level 1.1, it is typically configured with a file
encoding of ISO-8859–1 (ASCII). When transferring JSP and JHTML from an
ASCII-based system, you must perform the necessary conversions as part of
transferring the files.

Notes:

1. If you are using JDK 1.3, the Application Server’s JSP implementation enables
you to leverage the newer 32K branch mechanism for JSPs that throw
BranchTooLarge exceptions, by adding the appserver.java.extraparm=-
Djsp.largebranch=true property to the was.conf file. This property causes the
JVM system property, jsp.largebranch=true, to be passed to the JVM during
JVM initialization.

2. For a JSP written to the 0.91 Specification level, reloading automatically
occurs when the Application Server detects that the JSP has been changed;
for a JSP written to the 1.0 or 1.1 Specification level, automatic reloading will
only occur if the reloading function has been enabled in the Web application.
See “Class loading and optional reloading” on page 3-21 and “Deploying a

Chapter 3. Defining virtual hosts and Web applications 3-5

|
|
|
|
|
|

Web application to the Application Server” on page 3-7 for more information
about the automatic reloading function.

3. According to an interpretation of the JSP 1.0 specification section 2.13.1 for
the usebean tag, if the object is not found in a specified scope, and the class
specified names a non-abstract class that defines a public no-args constructor,
then that class is instantiated and the new object reference is associated with
the scripting variable and with the specified name in the specified scope.
This behavior can be enabled by adding the following property to the
was.conf file:
appserver.extraparm=-Dcom.sun.jsp.useBeanConstructorMethod=true

v Static Files. The Application Server does not require static files, such as HTML
and GIF files, to be in a Web application. They can remain on the hosting Web
server. When the Application Server serves a static file, it treats it as a binary
(ASCII) file and does not perform translation prior to writing it to the output
stream. Therefore, static files, such as HTML and CSS files, that are not in binary
format, should not be placed in a Web application. They should be stored on the
file system in the codepage in which they are to be returned to the client.

To define the content and characteristics of a Web application, add properties of
the form webapp.<webapp-name>.<property>=<value> to the was.conf file of the
Application Server instance that is to host the Web application. (webapp-name is the
logical internal name of the Web application being defined.)

These properties enable you to specify such things as a Web application’s JSP
specification level, URI mappings for included Web components, and definitions of
the servlets that are to be included. They also enable you to define a custom error
page for each Web application. Following are some of the properties that can be
used to define a Web application. Appendix B, “was.conf file template”, on
page B-1 provides a complete description of all of the available properties.

webapp.<webapp-name>.jsplevel=<JSP-spec-level>
This property is used to define the level of the JSP processor that is to be
configured for this Web application.

webapp.<webapp-name>.attributes=errorrootcause=true|false
Use this property to specify whether or not you want the error stack trace
for this Web application to be returned to the browser from which it was
requested. The default value for this property is false.

webapp.<webapp-name>.<component-type-mapping>=<URI-pattern>
Use this property to provide the Application Server with information about
the type of Web components that are represented by a particular URI
mapping. Using this property, you might specify that URIs ending with
.html or .gif should be treated as static files, or you might designate a
pattern for Java Server Pages, JHTML files, or servlets. For
component-type-mapping specify either filemapping, servletmapping, or
jspmapping.

webapp.<webapp-name>.servlet.<servlet-name>.<property>=<value>
Properties with this format are used to define a servlet that is included in
the Web Application and include:
v webapp.<webapp-name>.servlet.<servlet-name>.servletmapping=<URI-

pattern>, which is used to specify the servlet path relative to the Web
application’s root URI.

v webapp.<webapp-name>.servlet.<servlet-name>.code=<servlet-class>, which
is used to associate a servlet with a class file.

3-6

|
|
|
|
|
|
|

|

v webapp.<webapp-name>.servlet.<servlet-name>.autostart=<true/false>,
which is used to indicate whether or not a servlet is to be loaded
whenever the Application Server starts.

Appendix B, “was.conf file template”, on page B-1 describes all of the
properties that can be used to define a servlet within a Web application.

webapp.<webapp-name>.errorpagemapping=<URI-pattern>
This property is used to define a custom error page for each Web
application. A custom error page allows you to tailor the output provided
to end users in the event of an application error. For example, you could
add information indicating that Function A has experienced an error and to
please call a provided number for help. The Application Server provides a
default error reporting format that can be overwritten.

Note: If you do not include at least one of the following mapping properties in a
Web application’s definition, the Application Server will not be able to
initialize that application:
v webapp.<webapp-name>.servletmapping=/servlet

v webapp.<webapp-name>.jspmapping=*.jsp

v webapp.<webapp-name>.filemapping=/

v webapp.<webapp-name>.servlet.<servlet-name>.servletmapping=/<servlet-
name>

Deploying a Web application to the Application Server
Before deploying Web applications on the Application Server, you must
1. Ensure that the Web components are in a format suitable for deployment.
2. Place the files containing the Web components on the Application Server.
3. Define the physical files to the Application Server by providing a Web

application definition within the Application Server’s was.conf file.

One or more Web applications can be deployed into a virtual host on an
Application Server. For each Web application, the following properties are used to
deploy it in the Application Server. They all have the format
deployedwebapp.<webapp-name.><property>=<value> and are added to the
was.conf file of the hosting instance of the Application Server. webapp-name is the
name of the Web application.

deployedwebapp.<webapp-name.>description=<string>
This property is used to provide a description of a Web application, which
can be exposed by invoking the Show server configuration example from a
browser (see “Invoking the Installation Verification Program” on page 2-4).

deployedwebapp.<webapp-name>.host=<virtual-hostname>
This property specifies the administrative name of the virtual host in
which a Web application is deployed.

deployedwebapp.<webapp-name>.rooturi=<value>
This property provides the pattern by which a Web application is known
within its virtual host. For example, a Web application with a root URI of
/catalog that is deployed within a virtual host with an alias of
www.mycompany.com would be the target of requests for resources with
the following URLs:
www.mycompany.com/catalog/Servlets/MyServlet
www.mycompany.com/catalog
www.mycompany.com/catalog/index.html

Chapter 3. Defining virtual hosts and Web applications 3-7

When multiple Web applications are defined with in a single virtual host,
each must have a unique root URI pattern specification.

deployedwebapp.<webapp-name>.documentroot=<directory-root>
This property is used to specify the fully qualified name of the directory
root in the file system that contains the files associated with the Web
application, such as Java Server Pages, JHTML, and static files that are to
be served by the Web application. The Application Server uses the
directory specified on this property to locate a Web component of the
specified type. Because the Application Server attempts to access JSPs, and
JHTML and static files using the identity of the hosting Web server’s
process, the hosting Web server requires permission for read access to any
files or directories which contain JSP, JHTML, or static files. For more
information on how Web component requests are resolved to a physical
resource, see “Mapping URLs to Web components” on page 3-17.

deployedwebapp.<webapp-name>.classpath=<value>
This property specifies the classpath that the application level class loader
searches for a servlet when the system class loader cannot find it. This
property is REQUIRED and must specify the directory where the servlet
resides.

When the Application Server needs to load a servlet, it first attempts to
load it using a system class loader, which is configured to search the
classpath defined in the appserver.classpath=<your-libraries-for-the-jvm-
classpath> property in the was.conf file. If the requested servlet cannot be
found by the system class loader, an application-specific class loader is
used to locate and load the target servlet implementation, using the
classpath specified on the deployedwebapp.<webapp-
name>.classpath=<value> property. (The Application Server internally
maintains a separate class loader for each Web application instance.)

The Application Server will attempt to load servlets from the file system
using the hosting Web server’s identity. Therefore, the user-id under which
the Web server runs requires permission for read access to any files or
directories that contain servlet implementation files.

The Web application classpath specification can include directories, JAR
files, or ZIP files. “Configuring Web applications” on page 3-14 describes
where specific types of Web application files need to be placed. describes
the proper placement of Web application files in more detail.

Notes:

1. The following types of classes must be added only to the
appserver.classpath=<your-libraries-for-the-jvm-classpath> property:
v Classes referenced from servlets whose objects are added to sessions.

Such objects are serialized and their classes must not be reloaded.
See “Class loading and optional reloading” on page 3-21 for more
information on servlet reloading.

v Classes that call Java Native Interface (JNI) methods. Those classes,
and any imported classes, must be placed in the Application Server
classpath to prevent loading errors.

Note: Any text file placed in this classpath must be in EBCDIC format.
2. Classes that are added to the appserver.classpath=<your-libraries-for-

the-jvm-classpath> property should not reference other classes that
cannot be found in this classpath, such as classes included in the
deployedwebapp.<webapp-name>.classpath=<value> property.

3-8

3. If your servlets use classes from Development Kit .jar files, such as
JRIO classes in the recordio.jar file, you must make sure that these .jar
files are included in the appserver.classpath rather than in the
deployedwebapp.classpath. You can use the ″Show Server
Configuration″ example in the Installation Verification Program to see
which .jar files are currently in the appserver.classpath.

deployedwebapp.<webapp-name>.autoreloadinterval=<millisecs>
This property is used to specify whether or not a Web application is to be
reloaded if changes are detected in the implementation file for one or more
servlets in this Web application. The integer value <millisecs> indicates the
number of milliseconds the Application Server waits between checks. The
default value for <millisecs> is 0 and indicates that reloading will not be
done. If you want to enable the auto reload function, carefully chose a
reload interval that meets your requirements. System resources required to
check for changes can be quite high. Therefore, the number of checks
performed should be minimized.

This version of the Application Server reloads servlets on a deployed Web
application basis. The Application Server is able to monitor servlets, loaded
by the application specific class loader, for changes in the implementation
file. If changes are detected in the implementation file for one or more
servlets in a Web application for which reloading has been enabled, then
all servlets and JSPs have been currently loaded by the application level
class loader for that deployed Web application are reloaded. See “Class
loading and optional reloading” on page 3-21 for more information about
the servlet reloading.

Notes:

1. Servlet reloading is not recommended for production environments
because of the impact it may have on system performance.

2. Versions 1.x of the Application Server, only support Version 0.91 JSPs
and these JSPs are automatically reloaded even if the automatic reload
function is not enabled. For Version 3.5, Version 0.91 JSPs are still
automatically reloaded even if the automatic reload function is not
enabled. However, Version 1.0 and Version 1.1 JSPs are only reloaded if
automatic reloading is enabled for the Web applications in which they
are included.

deployedwebapp.<webapp-name>.authresource.<resource-name>=<servletmapping>
This property is used to define security constraint policies for Web
components. These policies allow the Application Server to perform access
checks using operating system SAF facilities prior to accessing a Web
component. <resource-name>is the name of the resource that is to be used
along with the names of the virtual host and Web application to construct
the SAF resource name of the form:
<virtual-hostname>.<webapp-name>.<resource-name>

<servletmapping> is the servlet mapping of the resource that is to be
covered by the security constraint. (See “Securing Web components” on
page 3-19 for more information on defining security policy.)

A detailed description of these properties is contained in the default was.conf file.
See Appendix B, “was.conf file template”, on page B-1 for a copy of this file.

Chapter 3. Defining virtual hosts and Web applications 3-9

The following example illustrates the properties that might be added to the
Application Server was.conf file to define and deploy the Web application,
PayrollApp, into the virtual host, MyHost:
host.MyHost.alias=www.mycompany.com:8027
deployedwebapp.PayrollApp.host=MyHost
deployedwebapp.PayrollApp.rooturi=/Payroll
deployedwebapp.PayrollApp.classpath=/usr/MyCompanyApps/PayrollFiles/lib:

/usr/MyCompanyApps/PayrollFiles/PayrollServlets.jar:/usr/MyCompanyApps
/PayrollFiles/WEB-INF

deployedwebapp.PayrollApp.documentroot=/usr/MyCompanyApps/PayrollFiles
deployedwebapp.PayrollApp.autoreloadinterval=0
webapp.PayrollApp.filemapping=*.html
webapp.PayrollApp.filemapping=*.gif
webapp.PayrollApp.jspmapping=*.jsp
webapp.PayrollApp.jsplevel=1.0
webapp.PayrollApp.servlet.PayrollServlet.servletmapping=/Servlets/Payroll
webapp.PayrollApp.servlet.PayrollServlet.code=com.mycompany.payroll.

MainServlet
webapp.PayrollApp.attributes=firstattr=Bill,secondattr=2
webapp.PayrollApp.servlet.PayrollServlet.initargs=x=0,y=Fred,z=true

Note: The deployedwebapp.PayrollApp.classpath property should be entered in
the was.conf file as a single line. It was split here for printing purposes.

As this example illustrates, a clear distinction is made between the configuration
data that needs to be supplied by the developer versus the configuration data that
is supplied at deployment time. In this example, the webapp.Payroll definition
properties the developer provided indicate that this Web application:
v Contains HTML, JSP, and GIF files.
v Includes JSPs that are coded to the JSP Version 1.0 Specification.
v Contains a servlet, PayrollServlet, whose implementation exists as

MainServlet.class within the package com.mycompany.payroll.
v Includes mappings that indicate the URI pattern by which JSPs, GIFs and HTML

files, and the PayrollServlet servlet are to be referenced at run time. (For
example, the webapp.PayrollApp.servlet.PayrollServlet.servletmapping
property specifies that /Servlets/Payroll is a valid URI pattern for the
PayrollServlet servlet. Requests for
www.mycompany.com:8027/Payroll/Servlets/Payroll will be serviced by the
MainServlet implementation provided in the PayrollServlets.jar file.)

It also indicates that:
v All components within this Web application expect to be able to retrieve the

values for firstattr and secondattr from their ServletContext object at run time.
v The servlet PayrollServlet expects three initialization arguments, x, y, and z to be

available at run time.

After receiving the physical files and Web application definition (webapp.Payroll
properties) from the developer, the deployer adds deployedwebapp properties to
the was.conf file to define the Web application to the Application Server. These
properties:
v Provide the classpath that, in conjunction with classpath specifications provided

as part of other Application Server properties, is to be used to locate a servlet
implementation class at run time.

v Indicate that auto-reloading of components within the Web application is not
enabled (the deployedwebapp.PayrollApp.autoreloadinterval property has a
value of 0).

3-10

v Indicate in which host(s) the Web application may be deployed.
v Provide the root URI by which the Web application is exposed to end users of

the Web site.
v Define, to the Application Server, the physical location of the various Web

components. (In this example, the deployer indicates to the Application Server
that these files and JSPs should be resolved using the directory
/usr/MyCompanyApps/PayrollFiles as the document root.

v Indicates that the class file for the servlet PayrollServlet has been packaged
within the jar file, PayrollServlets.jar.

As previously described in this section, instead of using webapp properties, a
developer can provide the development specific configuration data for a Web
application definition in a separate XML document. See the following product file
for examples of Web application definitions that are coded this way:
applicationserver_root/AppServer/hosts/default_host/examples/servlets/

examples.webapp

Using Web applications contained in War files
The servlets and JavaServer Pages (JSP) files in a Web application share a servlet
context, meaning they share data and information about the execution
environment, including a Web application classpath. Version 3.5 of the Application
Server introduces a new way to introduce Web applications into the WebSphere
environment. The product now consumes and converts Web Archive (WAR) files
into WebSphere configurations. Alternatively, you can continue to configure Web
applications directly using properties in the Application Server was.conf file. The
latter allows you to add WebSphere servlets to your Web applications to extend
their functionality.

Web Archive (WAR) files are essentially JAR files containing the various files and
configuration information of a Web application. (The WAR file is included as part
of the Java Servlet specification.) WAR files are useful for importing complete Web
applications into an Application Server run-time environment. To maintain
compatibility with existing applications, WAR files are only used as a deployment
vehicle. After a WAR file is installed into the Application Server run-time
environment, the WAR file itself is no longer used.

While the Application Server does not support the direct importation of Web
applications from WAR files, you can enter the following commands from the
OMVS shell to set your JAVA environment variables, if they have not already been
set:
export JAVA_HOME=/usr/lpp/java13/IBM/J1.3
export PATH=$PATH:/usr/lpp/java13/IBM/J1.3/bin

and then enter the following command to convert the WAR file into a .webapp file
format that can be imported into a stand-alone Web server environment:
applicationserver_root/AppServer/bin/wartowebapp.sh warfile-name

Note: DO NOT run the wartowebapp.sh program against .war files containing JSP
0.91 or 1.0 files.

The converted WAR file can then be deployed into the Application Server by
merging the generated deployment properties into
applicationserver_root/AppServer/properties/was.conf.

Chapter 3. Defining virtual hosts and Web applications 3-11

For example, if you enter the following command:
$WAS_HOME/bin/wartowebapp.sh /u/user25/warfiles/jsp-tests.war

you will receive the following message:
/u/user25/WebSphere/AppServer/bin/wartowebapp.sh:
please enter value(s) for the following missing parameter(s):

and will be prompted for the name of the hosting virtual host, the name of the
Web application contained in the WAR file, the file encoding of the local OS/390
machine, where you want to have the Web application installed, and :
VIRTUAL_HOST_NAME <null to accept: default_host>
WEBAPP_NAME <null to accept: jsp-tests>
WEBAPP_DESTINATION <null to accept: $was_install_root$/AppServer/hosts/

default_host>
WEBAPP_PATH <null to accept: /webapp/jsp-tests>
WAS_HOME <null to accept: /usr/lpp/WebSphere/AppServer>
LOCAL_FILE_ENCODING <null to accept: en_US.IBM-104>
ENTER YES TO CONFIGURE THE AUTO-REGISTRATION (INVOKER) SERVLET

<Code>com.ibm.servlet.engine.webapp.InvokerServlet</code>
<servlet-path>/servlet</servlet-path>
or enter no,
or enter a servlet path (i.e. /servlet/* for compliance mode)

INVOKER_SERVLET <null to accept: no>

If you accept the default values for all of these prompts, you will receive the
following messages:
parameters in effect:

TEMP_DIRECTORY /tmp
WAR_FILENAME /u/user25/warfiles/jsp-tests.war
VIRTUAL_HOST_NAME default_host
WEBAPP_NAME jsp-tests
WEBAPP_DESTINATION $was_install_root$/AppServer/hosts/default_host
WEBAPP_AUTO_RELOAD_INTERVAL 0
WEBAPP_PATH /webapp/jsp-tests
WAS_HOME /u/user25/WebSphere/AppServer
LOCAL_FILE_ENCODING en_US.IBM-1047

java -Xmx64m -classpath /u/user25/WebSphere/AppServer/lib/antxalan_1_1.jar:
/u/user25/WebSphere/AppServer/lib/xerces.jar:/u/user25/WebSphere/AppServer

/lib/ant.jar:
/u/user25/WebSphere/AppServer/lib/ibmant.jar -Dwebapp.dest=
/u/user25/WebSphere/AppServer/hosts/default_host -Dwar.filename=
/u/user25/warfiles/jsp-tests.war -Dvirtual.host.name=
default_host -Dwas.home=/u/user25/WebSphere/AppServer -Dtmp.directory=
/tmp -Droot.uri=/webapp/jsp-tests -Dwebapp.name=jsp-tests -Dant.home=
/u/user25/WebSphere/AppServer -Dwas.java.name=
java org.apache.tools.ant.Main -buildfile
/u/user25/WebSphere/AppServer/properties/convertwar.xml transform.to.webapp
Buildfile: /u/user25/WebSphere/AppServer/properties/convertwar.xml

init:

unpack.war:
[unzip] Expanding: /u/user25/warfiles/jsp-tests.war into

/tmp/jsp-tests

copyto.webapp:
[mkdir] Created dir: /u/user25/WebSphere/AppServer/hosts/

default_host/jsp-tests
[mkdir] Created dir: /u/user25/WebSphere/AppServer/hosts/

default_host/jsp-tests/web
[mkdir] Created dir: /u/user25/WebSphere/AppServer/hosts/

default_host/jsp-tests
/web/WEB-INF

3-12

[mkdir] Created dir: /u/user25/WebSphere/AppServer/hosts/
default_host/jsp-tests/servlets

[copydir] Copying 272 files to /u/user25/WebSphere/AppServer/
hosts/default_host/jsp-tests/web

[copydir] Copying 2 files to /u/user25/WebSphere/AppServer/
hosts/default_host/jsp-tests/web/WEB-INF

copy.war.classes:
[copydir] Copying 96 files to /u/user25/WebSphere/AppServer/

hosts/default_host/jsp-tests/servlets

copy.war.lib:
[copydir] Copying 1 files to /u/user25/WebSphere/AppServer/

hosts/default_host/jsp-tests/servlets

transform.to.webapp:
[deltree] Deleting: /tmp/jsp-tests

BUILD SUCCESSFUL

Total time: 11 seconds

iconv -f ISO8859-1 -t IBM-1047 /u/user25/WebSphere/AppServer/hosts/default_host/
jsp-tests/servlets/jsp-tests.webapp > /tmp/wartowebapp-convert-work

created ’/u/user25/WebSphere/AppServer/hosts/default_host/jsp-tests/
was.conf.updates’ containing:

deployedwebapp.jsp-tests.host=default_host
deployedwebapp.jsp-tests.rooturi=/webapp/jsp-tests
deployedwebapp.jsp-tests.classpath=$was_install_root$/AppServer/hosts/

default_host/jsp-tests/servlets
deployedwebapp.jsp-tests.documentroot=$was_install_root$/AppServer/hosts/

default_host/jsp-tests/web
deployedwebapp.jsp-tests.autoreloadinterval=0

please merge the contents of ’/u/user25/WebSphere/AppServer/hosts/default_host/
jsp-tests/was.conf.updates’

into ’/u/user25/WebSphere/AppServer/properties/was.conf’ to deploy the web
application: jsp-tests

As the final message indicates, you must take the resulting deployedwebapp
properties (highlighted in the previous example) and add them to the was.conf file
for the Application Server on which you want this Web application to be deployed
before attempting to use this Web application.

Note: With the exception of the .webapp file and .servlet files, XML content in the
Web Application generated by
$server_root$/AppServer/bin/wartowebapp.sh is NOT converted to the file
encoding of the local OS/390 machine. This is likely to be a problem since
most XML content found in a .war file is probably encoded using codepage
ISO8859-1 and the WebSphere Application Server Version 3.5 expects XML
content to be encoded in the native file encoding of the OS/390 machine.
The following three step process can be used to convert all XML content
from codepage ISO8859-1 to codepage IBM-1047. From the Unix System
Services command line, enter the following 3 commands:
echo "iconv -f ISO8859-1 -t IBM-1047 \$* > /tmp/convert-work;

cat /tmp/convert-work > \$*" > /tmp/convert-script
chmod 755 /tmp/convert-script
find /u/joe/webapps/MyWebApp -name ’*.xml’ -exec /tmp/convert-script {} \;

/u/joe/webapps/MyWebApp is the location in the Unix System Services file
system where the Web application was created by the

Chapter 3. Defining virtual hosts and Web applications 3-13

$server_root$/AppServer/bin/wartowebapp.sh tool. Each of these
commands must be entered as a single line. The echo command is split here
for printing purposes.

Configuring Web applications
When configuring Web applications, you should understand a few main settings:
v The classpath specifies where to find the servlets that belong to an application.

The classpath can specify a directory containing servlets, or can specify each
servlet explicitly. It can also specify the location of other files supporting the
Web application.

v The document root specifies where to find the static content and JSP files
belonging to the Web application.

You can also include webapp properties to specify:
v Servlet filtering parameters
v Affiliation with a virtual host
v Whether to reload servlets whose class files have changed

After Web applications are developed, add them and their building blocks
(servlets, JSP files, and such) to the Application Server environment by preparing
the WebSphere environment to handle them. This includes:
v Setting the Application Server (JVM) and Web application classpaths
v Placing property files in appropriate directories
v Placing application files in appropriate directories
v Configuring application settings
v Securing applications (see “Securing Web components” on page 3-19)

Setting the Application Server (JVM) and Web application
classpaths

The Application Server environment has two classpath components:
1. The Application Server (JVM) Classpath
2. The Web application Classpath

The following table describes the JVM classpath.

Where to set There is one Application Server classpath for each application server in the Application
Server environment. Each Application Server corresponds to a JVM. Set the classpath using
the Application Server run-time properties contained in the Application Server was.conf file.
(See “Specifying configuration properties” on page 2-6, and Appendix B, “was.conf file
template”, on page B-1 for a description of these properties.)

Scope This classpath is visible to all servlets and JSP files contained by an Application Server.

Behavior The classes in this classpath are loaded by the JVM ClassLoader. Therefore, after the
Application Server is started, any changes to this classpath will not take effect until the
Application Server is stopped and started again.

Reloadable? Classes loaded from this classpath will not be reloaded if they are changed while the
Application Server is running.

3-14

Typical contents v Classes referenced from servlets whose objects are added to sessions. Such objects are
serialized and their classes must not be reloaded.

v Classes that call Java Native Interface (JNI) methods. These classes and any imported
classes must be placed in the Application Server classpath to prevent loading errors.

v Classes common to all Web applications, such as JOBL driver classes.

v Files that must remain in EBCDIC format. (It is recommended that files be converted to
ASCII format, if possible, and placed in the Web application classpath specified on the
deployedwebapp.<webapp-name>.classpath= property contained in the Application Server
was.conf file.)

All files contained in this classpath must be in EBCDIC format.

Classes that are put in this classpath should not reference other classes that cannot be found
in this classpath.

The following table describes a Web application classpath.

Where to set Use the deployedwebapp.<webapp-name>.classpath= property contained in the Application
Server was.conf file. (See “Specifying configuration properties” on page 2-6, and Appendix B,
“was.conf file template”, on page B-1 for a description of this property.)

Scope The classpath is visible to all servlets and JSP files in the corresponding Web application.

Behavior If reloading is enabled, this classpath is monitored and all components (JAR or class files)
are reloaded whenever it is detected that a servlet has been updated. A new JAR file is
automatically loaded upon detection in any directory already contained in this classpath.
This means that it is not necessary to explicitly specify a new JAR file in this classpath. It is
sufficient to just put the JAR file in a directory that is already present in this classpath.
Remote servlet loading (that is, loading servlets across a network) is not supported. All
application components must be on the machine containing the Application Server hosting
the application.

Reloadable? Yes

Typical contents v Directories or JAR files with servlet classes

v Directories or JAR files with helper classes that are not included in the servlet JAR file and
that are expected to be reloadable;

v Directories or JAR files with access bean classes that are referenced from servlet classes.

All files contained in this classpath must be in ASCII format. Files that are in EBCDIC
format must either be converted to ASCII format or placed in the Application Server (JVM)
classpath.

The following table summarizes the directory path that should be specified for the
various types of files.

File description File Extension Directory path

HTML documents and related static files .html, .jhtml, .gif, .au,
and so on

These can be either served by the Web server, or
placed in the Web application document root
with the WebSphere file servlet enabled.

JavaServer Pages files .jsp Web application document root.

Servlet that are not to be reloaded .class or .jar Application Server classpath. If the servlets are in
a package, mirror the package structure as
subdirectories under the Web application
classpath.

Servlet configuration file .servlet Web application classpath.

Chapter 3. Defining virtual hosts and Web applications 3-15

File description File Extension Directory path

JavaBean (not an enterprise bean) or
other object to be reloaded

.ser or .jar Web application classpath

JavaBean (not an enterprise bean) or
other object not to be reloaded, such as
serialized objects and servlets that use
Java Native Interface methods

.ser or .jar Application Server classpath

Java objects added to a session .class, .jar, or .ser Application Server classpath. This requirement
applies to non-EJB objects in either of the
following conditions:

v Session persistence is enabled (the default
setting).

v The Application Server is part of a session
cluster.

In a session cluster, be sure to place the objects in
the application server classpath on each cluster
host and cluster client. An object in the
Application Server classpath is not reloaded
when its source file changes.

Objects passed as arguments for remote
calls

Application Server classpath

Placing .property files in appropriate directories
All .properties files accessed by the Application Server, must reside in one of the
following directories:
v The applicationserver_root/AppServer/properties directory.
v The applicationserver_root/AppServer/lib directory.
v A directory specified on a deployedwebapp.<webapp-name>.classpath property

in the was.conf file.

Where you place your .properties files depends on how they will be loaded:
v If a .properties file will be loaded via the appserver.classpath property in the

was.conf file, it must be included in either the
applicationserver_root/AppServer/lib or applicationserver_root/AppServer/properties
directory. All .properties files that are loaded this way must be in EBCDIC
format.

v If a .properties file will be loaded via a deployedwebapp.<webapp-name property,
it’s location must be specified on a corresponding deployedwebapp.<webapp-
name>.classpath property. All .properties files that are loaded this way must be
in ASCII (ISO8859-1) format.

When looking for a .properties file, the Application Server first searches the
classpath specified on the deployedwebapp.<webapp-name>.classpath property, and
then searches the classpath specified on the appserver.classpath property.

Placing application files in appropriate directories
For successful deployment of Web applications, you must specify where the
Application Server can find the files belonging to these applications. The following
table indicates where to specify specific types of content.

3-16

Type of content For example... Where to specify

Java content JAR and class files for servlets Application server classpath or Web
application classpath

Static content JSP files, HTML files, graphics, and so on Web application document root

For successful operation of applications, you must place the application files in the
appropriate product directories, and set classpaths and document roots as
necessary, before starting the Application Server that will be hosting that
application.

Mapping URLs to Web components
Resources are defined to the Application Server by a Uniform Resource Locator
(URL). URLs provide Web paths for identifying the location of servlets, Web pages,
JSP files JSP files and other Web components such as image files.

To resolve a URL to an individual Web component, the Application Server
incrementally parses pieces of the URL. A URL can be of the form:
<protocol>//<DNS-hostname><RequestURI>

v <DNS-hostname> is the name of the virtual host hosting the requested Web
application. The Application Server uses this part of the URL to route the
request to the proper virtual host.

v <RequestURI>provides path information and can be of either of the following
forms:
<ContextPath><PathInfo>
<ContextPath><ServletPath><PathInfo>

The <ContextPath> part of the URL is used to route the request to the selected Web
application deployed under the given virtual host. Depending on the Web
application definition, <RequestURI>s that include a <ServletPath> are assumed to
be requests to run servlets. The <PathInfo> part of the path is used to identify the
requested Web component within the deployed Web application, and will be
resolved to a physical entity.

For a servlet request the following methods in the HttpServletRequest interface can
be used to access the parts of the <RequestURI>:
v getContextPath
v getServletPath
v getPathInfo

For example, the following URL might be used to request a servlet:
http://MyCompanyHost/PayrollApp/servlet/PayrollServlet

For this request,
v PayrollServlet is the <PathInfo> for a servlet defined in a Web application.
v /servlet is the <ServletPath>which is used by the Web application to indicate that

<RequestURI>s that start with /servlet are assumed to be a request for a servlet.
v PayrollApp is the <ContextPath> configured for the deployed Web application
v MyCompanyHost is the <DNS-hostname>

Understanding how the Application Server resolves a resource request entered by a
client is key to developing a strategy for managing your Web components, and the

Chapter 3. Defining virtual hosts and Web applications 3-17

name space by which they are exposed to other applications and the outside
world. Resources are defined to the Application Server by a Uniform Resource
Locator (URL). URLs themselves consist of a virtual host name concatenated with
a Uniform Resource Identifier (URI). The URI is a concatenation of the Web
application name and the Web component name. To resolve a URL to an individual
Web component, the Application Server incrementally parses pieces of the URL.
Specifically, the Application Server:
1. Determines the virtual host that should process the request.
2. Determines the target Web application within that host.
3. Determines the requested Web component and resolves it to a physical entity.

Determining the virtual host that should process a request
The Application Server assumes that the left-most portion of the URL, up to and
including the character that precedes the first slash, is the host mapping. The
Application Server then attempts to map this host mapping to a host definition
statement contained on a host.<virtual-hostname> property in the Application
Server’s was.conf file. For example, the following properties might be used to
define the host, MyCompanyHost, so that it matches host mappings of
www.mycompany.com and www.mycompany.com:8027:
host.MyCompanyHost.alias=www.mycompany.com
host.MyCompanyHost.alias=www.mycompany.com:8027

If the Application Server finds a matching host name, processing continues to the
next step. If a matching host name is not found, the request is rejected and an error
code is issued indicating that the resource was not found.

Determining the requested Web component and resolving it to
a physical entity

The final processing the Application Server performs during the URL mapping
process is dependent upon the type of Web component requested:
v If the target Web component is a JSP or JHTML file - the Application Server

attempts to locate the matching source file within the Application Server
document root structure. If the JSP is located, the Application Server processes
the JSP and compiles it into a servlet. If a corresponding JSP source file is not
found, an error code indicating that the resource was not found is returned to
the client. If an error is encountered while compiling the resultant servlet, a
response code of 500 is returned to the client. If a compilation error occurs,
appropriate error information is written to the ncf.log file.

v If the target Web component is a static file - the Application Server attempts to
locate the corresponding file within the document root structure of the
Application Server. If the file is successfully located, the Application Server
writes the content of the file to the output stream. (The Application Server
considers the file content to be binary data. Therefore, translation is not
performed on the content prior to writing it to the output stream.) If the
corresponding physical file is not found, a response code indicating that the
resource is not found is returned to the error log for processing. When the
Application Server is able to locate the corresponding physical file but
encounters a problem when it tries to access it (i.e., insufficient access authority),
a response code of 500 is returned and the appropriate error information is
written to the ncf.log file.

v If the target Web component is a servlet - the Application Server attempts to
resolve the resultant servlet name to a file containing the servlet implementation
by trying to locate a .servlet file containing additional configuration information

3-18

for this servlet. .servlet files are XML documents that may be placed in the
classpath. If a .servlet file is located, the Application Server uses the information
within it to locate, load, and initialize the target servlet. The following example
shows the grammar that exists within a .servlet XML document file. It illustrates
a servlet implementation that exists as class MainServlet within the package
com.mycompany.payroll. The file also contains the parameter information that is
to be provided to the servlet as part of its servlet configuration.
<?xml version="1.0"?>

<servlet>
<code>com.mycompany.payroll.MainServlet</code>

<init-parameter value="5" name="x"/>
<init-parameter value="abc" name="y"/>

</servlet>

The WebSphere Studio product makes use of .servlet files when publishing
servlets to the Application Server. If a .servlet file is not located, the Application
Server attempts to locate a servlet implementation with a class name equal to
the servlet name. If a servlet implementation is unable to be located, a response
code indicating that the resource was not found is returned to the error log for
processing.

Securing Web components
The Application Server allows Web resources to be uniquely identified such that
access control policies can be applied to them. This capability, along with the user
authentication capabilities of the hosting Web server, provide a mechanism for
controlling access to Web resources at various levels of granularity on behalf of
users and/or groups of users. The Application Server does not provide support for
authenticating users. Instead, it relies on the hosting Web server to perform this
function. See your Web server documentation for more information on how to
implement security.

The Application Server provides the ability to define security constraints within a
deployed Web application. A security constraint allows specific servlet mappings
within a Web application to be associated with a resource name for use in the
administrative domain. The following example illustrates a security constraint
which associates the administrative name MyServletResources with requests that
map to pattern /Servlets within the specified Web application:
host.MyCompanyHost.alias=www.mycompany.com:8027
deployedwebapp.PayrollApp.host=MyCompanyHost
deployedwebapp.PayrollApp.description=Payroll Application for My Company
deployedwebapp.PayrollApp.rooturi=/Payroll
deployedwebapp.PayrollApp.classpath=/u/MyCompanyApps/PayrollFiles

/lib:/u/MyCompanyApps/PayrollFiles/classes
deployedwebapp.PayrollApp.documentroot=/u/MyCompanyApps/PayrollFiles
webapp.PayrollApp.servletmapping=/Servlets
webapp.PayrollApp.jsplevel=1.0
webapp.PayrollApp.jspmapping=*.jsp
webapp.PayrollApp.filemapping=*.html
webapp.PayrollApp.filemapping=*.gif
deployedwebapp.PayrollApp.authresource.MyServletResources=/Servlets

Notes:

1. For this example, the Application Server is running in compatibility mode (see
“Maintaining compatibility with existing applications” on page 2-9). If the
Application Server was running in compliance mode, the servletmapping
property would specify /Servlets/* instead of /Servlets.

Chapter 3. Defining virtual hosts and Web applications 3-19

2. The values specified on the deployedwebapp.PayrollApp.classpath property
must all be in a single line in the was.conf file. It was split here for printing
purposes.

As part of request processing, the Application Server attempts to determine if there
is a security constraint that matches the requested URL. When a match is detected,
the Application Server performs an authorization check using SAF facilities prior
to accessing the resource. (An authorization check is not performed for requests
which do not have a matching security constraint.) If the authorization check is
successful, request processing continues. If the access control check fails, HTTP
response code 500 is returned to the client indicating that access to the resource is
forbidden.

Authorization checks are performed against resource profiles defined within the
SOMDOBJS RACF class. It is your responsibility to define the appropriate resource
profiles within this RACF class. The resource profile name is constructed from the
combination of the administrative names of the virtual host, the deployed Web
application, and the resource name of the matching security constraint. The
components are separated by a period. For the purpose of authorization checking,
the preceding example would have resulted in requests for
www.mycompany.com:8027/Payroll/Servlets/MyServlet1 resolving to the resource
MyCompanyHost.PayrollApp.MyServletResources.

The Application Server does not verify whether the resultant resource profile
conforms to SAF conventions. It is your responsibility to ensure that the
administrative names consist of characters that result in a valid SAF resource
definition. However, before performing an authorization check, the Application
Server does convert all alphabetic characters contained in a resource profile to
uppercase.

The level of access check is determined by the type of HTTP request that is being
processed. HTTP PUT requests result in checking whether the current principal has
UPDATE access to the specified resource; HTTP DELETE requests result in
checking whether the current principal has ALTER access to the specified resource.
All other HTTP methods result in a check for READ access to the specified
resource.

When the Application Server is required to access a physical resource as part of
request processing, it performs the access using process level identity. The access is
performed from an execution thread which has an identity that reflects the identity
of the hosting Web server process for that Application Server instance. Therefore,
you must ensure that the Web server process has been granted access to the
necessary files at run time. In particular, Web server processes must have read
access to files within the document root, as well as any Java class and jar files that
may need to be loaded.

If, while accessing a physical resource, the Application Server fails to access a
physical file, an HTTP Response code 500, indicating an internal server failure has
occurred, will be returned to the client.

3-20

Class loading and optional reloading
Servlets and non-servlet Java components, such as JSPs, of an application are
loaded by the Application Server’s Web application classloader or the system
classloader (the JVM classloader). The following points explain the timing of the
loading, which classloader loads the Java component, and whether the component
will be reloaded when a change is detected:
v The Application Server classpath is dynamically set when you start the product.

The default setting for the classpath contains all of the Application Server APIs
(the JAR files in the applicationserver_rootAppServer/lib directory). When the
Application Server starts, the system classloader automatically loads the classes
in the Application Server classpath. Those classes are not reloadable.

v You must add the following Java components to the Application Server
classpath:
– Java objects that are added to sessions. Such objects are serialized and must

not be reloaded.
– Java classes that call Java Native Interface (JNI) methods. Those classes and

any imported classes must be placed in the Application Server classpath to
prevent loading errors.

– Objects passed as arguments for remote calls.
v When you configure a Web application, you specify the application classpath,

which contains the servlets and their non-servlet Java components. You can also
use the following property to indicate whether or not you want the automatic
reload function to be enabled for this Web application:
deployedwebapp.<webapp-name>.autoreloadinterval=<millisecs>

See “Deploying a Web application to the Application Server” on page 3-7 and
Appendix B, “was.conf file template”, on page B-1 for more information about
specifying this property.

v If automatic reloading is enabled (a non-zero value is specified for
autoreloadinterval), the classloader monitors the application classpath and
reloads all of the Java components in that application classpath whenever it
detects that a loaded servlet has been updated.

Automatic reloading at the application level keeps all of the application
components synchronized, and conserves system resources. If your application
uses Java components whose classes you do not want to be reloaded, add those
classes to the Application Server classpath instead of the application classpath.
Then the classes will not be reloaded, but the objects will be.

When automatic reloading is in effect, all dispatched work (servlets, jsps, beans)
that have reached a certain point in their processing will complete before a reload
is initiated. Therefore, a reload must wait until this work finishes. All dispatched
work that has not reached this point is halted, and must wait for the current work
and the reload to complete. At that point processing of the dispatched work that
had to wait resumes. However, all session objects associated with that work that
had to wait for the reload to complete will be destroyed.

A Web application’s scope is its application classpath plus the Application Server
system classloader classpath. The Application Server does not support remote
servlet loading (that is, loading servlets across a network). All of a Web
application’s components must be on the Application Server machine.

Chapter 3. Defining virtual hosts and Web applications 3-21

Note: If you are collecting session data while the reload function is enabled,
whenever a servlet contained in a Web application is reloaded, all sessions
associated with that application will be destroyed. However, the reloading of
JSPs associated with that application will not cause these sessions to be
destroyed.

Compiling JSP level 1.0 or level 1.1 source files
JSP source files coded to the level 1.0 or 1.1 specification level may be:
1. Compiled during the Application Server initialization process, and then loaded

during Application Server JSP 1.1 processor initialization, or
2. Pre-compiled outside the Application Server initialization process. If JSP source

files are pre-complied, the servlet mapping, which will be processed by the JSP
level 1.0 or level 1.1support servlet, must be specified by:
v Adding the appropriate <code></code> and <autostart></autostart> XML

elements to the .webapp XML file associated with the Web application, or
v Adding the appropriate webapp.xxx.servlet.yyy.code and

webapp.xxx.servlet.yyy.autostart=true properties to the was.conf file, and
v Ensuring that the JSP 1.0 or 1.1 support servlet is autostarted.

When the Application Server encounters these XML elements or was.conf
properties, it checks to see if a generated .class file for the JSP already exists in the
working directory. If one does not exist, it will generate Java code from the JSP
source file, compile that code, and load the generated class file during JSP level 1.0
or 1.1 processor initialization.

JSPs can also be pre-compiled outside of the Application Server runtime.

Pre-compiling JSPs
Level 1.0 JSPs can be pre-compiled by running the jsp10BatchCompile.sh shell
script; level 1.1 JSPs can be pre-compiled by running the jsp11BatchCompile.sh
shell script. Both of these shell scripts are provided with the Application Server in
the directory:
applicationserver_root/AppServer/bin

To invoke the jsp10BatchCompile.sh script, enter the following command (on one
line) from the USS command line:
applicationserver_root/AppServer/bin/jsp10BatchCompile.sh

target-directory full-path-to-jsp-file(s)
webapp-classpath webapp-document-root

[-keepgenerated]
[-recurse]

where:

target-directory
is the directory into which the generated Java file will be compiled.

full-path-to-jsp-file
is the fully qualified path to the JSP source file.

webapp-classpath
is the Web application’s class path.

webapp-document-root
is the Web application’s document root.

3-22

|
|
|
|
|

keepgenerated
is optional and requests that the generated Java code be kept.

recurse
is usually optional and requests that all file(s) with extensions .jsp, .jsv, and
.jsw contained in all subdirectories of full-path-to-jsp-file(s) be compiled. This
parameter is required if full-path-to-jsp-file(s) includes a directory.

Note: The parameters webapp-classpath and webapp-document-root must match
exactly the values specified on the deployedwebapp.<webapp-
name>.classpath and deployedwebapp.<webapp-name>.documentroot
properties in the was.conf file for the Web application requiring the JSP.

To invoke the jsp11BatchCompile.sh shell script, enter the following command (on
one line) from the USS command line:
applicationserver_root/AppServer/bin/jsp11BatchCompile.sh

target-directory full-path-to-jsp-file
[uriRoot]
[-recurse]

where:

target-directory
is the directory into which the generated java file will be compiled.

full-path-to-jsp-file
is the fully qualified path to the JSP source file.

uriRoot
is the Web application’s document root. This is parameter is optional if a
directory named WEB-INF exists immediately underneath the document root.
It is required if such a directory does not exist.

recurse
is usually optional and requests that all file(s) with extensions .jsp, .jsv, and
.jsw contained in all subdirectories of full-path-to-jsp-file(s) be compiled. This
parameter is required if full-path-to-jsp-file(s) includes a directory.

Both of these shell scripts call the org.apache.jasper.JspC (batch compiler) code that
is shipped with the Application Server. This code checks for a .class file for this JSP
and, if one does not already exist in the target directory, generates Java code from
the JSP source and compiles that code. This batch compiler will not re-compile a
JSP if a .class file for that JSP already exists and is not outdated.

The target-directory parameter must be consistent with the values specified in the
was.conf file. It must be of the form xxx/yyy/zzz, where xxx is the value specified
on the appserver.workingdirectory property, yyy is the value specified on the
deployedwebapp.zzz.host property, and zzz is the name of the deployed Web
application.

For example, if, for Web application pq61925, you included the following
properties in the was.conf file:
appserver.workingdirectory=/tmp
deployedwebapp.pq61925.host=default_host
deployedwebapp.pq61925.rooturi=/webapp/pq61925
deployedwebapp.pq61925.classpath=

/u/webusr1/sys02/webapps/pq61925/servlets
deployedwebapp.pq61925.documentroot=

/u/webusr1/sys02/webapps/pq61925/web
deployedwebapp.pq61925.autoreloadinterval=1000

Chapter 3. Defining virtual hosts and Web applications 3-23

|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

webapp.pq61925.jspmapping=*.jsp
webapp.pq61925.jspmapping=*.jsv
webapp.pq61925.jspmapping=*.jsw
webapp.pq61925.jsplevel=1.1
webapp.pq61925.filemapping=/
webapp.pq61925.servlet.ajsp.name=ajsp
webapp.pq61925.servlet.ajsp.description=This is ajsp
webapp.pq61925.servlet.ajsp.code=/a.jsp
webapp.pq61925.servlet.ajsp.servletmapping=/a.jsp
webapp.pq61925.servlet.ajsp.autostart=true
webapp.pq61925.servlet.bjsp.name=bsp
webapp.pq61925.servlet.bjsp.description=This is bjsp
webapp.pq61925.servlet.bjsp.code=/b.jsp
webapp.pq61925.servlet.bjsp.servletmapping=/b/b.jsp
webapp.pq61925.servlet.bjsp.autostart=true

or the .webapp file for this Web application contains the following information:
<?xml version="1.0"?>
<webapp>

<name>pq61925</name>
<servlet>

<name>ajsp</name>
<code>a.jsp</code>
<autostart>true</autostart>
<servlet-path>/a.jsp</servlet-path>

</servlet>
<servlet>

<name>bjsp</name>
<code>/b/b.jsp</code>
<autostart>true</autostart>
<servlet-path>/b/b.jsp</servlet-path>

</servlet>
<servlet>

<name>jsp11</name>
<description>JSP 1.1 support servlet</description>
<code>org.apache.jasper.runtime.JspServlet</code>
<servlet-path>*.jsp</servlet-path>
<servlet-path>*.jsv</servlet-path>
<servlet-path>*.jsw</servlet-path>
<autostart>true</autostart>

</servlet>
</webapp>

If you issue the following command (all on one line):
/usr/lpp/WebSphere/AppServer/bin/jsp11BatchCompile

/tmp/default_host/pq61925 /u/webusr1/sys02/web/a.jsp

The command line compiler JspC will check the target-directory,
/tmp/default_host/pq61925, for a .class file for JSP a.jsp. If one does not exist, or if
one exists but is out of date, it will compile the JSP a.jsp contained in directory
/u/webusr1/sys02/web.

Similarly, if you issue the command (all on one line):
/usr/lpp/WebSphere/AppServer/bin/jsp11BatchCompile

/tmp/default_host/pq61925 /u/webusr1/sys02/web/b/b.jsp

The command line compiler JspC will check the target-directory,
/tmp/default_host/pq61925/b, for a .class file for JSP b.jsp. If one does not exist, or
if one exists but is out of date, it will compile the JSP b.jsp contained in directory
/u/webusr1/sys02/web/b.

3-24

Notes:

1. Invoking the jsp10BatchCompile.sh or jsp11BatchCompile.sh shell script to
compile JSPs while the Application Server is running (and potentially serving
these same compiled JSPs) WILL NOT RESULT in the Application Server
recognizing that a JSP has changed and thus requires re-loading (in the case
where reloading is enabled for that Web application). To indicate to the
Application Server that a JSP has become outdated, you must modify the JSP’s
time stamp by changing (or touching) the JSP source file. When the Application
Server notices that the time stamp for a JSP in a reloadable Web application is
newer than the generated .class file, it automatically re-compiles and re-loads
that JSP the next time it is requested.

2. Invoking the jsp10BatchCompile.sh or jsp11BatchCompile.sh shell script
without parameters yields usage information.

Improving JSP compile time
Long JSP compile time and/or long javac compiler response time can result if the
JAR files in the Web application classpath are lacking directory entries. (JAR files
produced by VAJAVA and WSAD do not contain directory entries.) If you do not
choose to pre-compile your JSPs, you might still be able to decrease the amount of
time it takes to compile them.

To determine if a JAR file is missing directory entries, issue the following
command:
jar -tvfd bad.jar > out.filenames

If the JAR file is includes directory entries, the resulting list of files will looked like
this:
0 Tue Nov 12 11:36:30 EST 2002 it/
0 Tue Nov 12 11:36:30 EST 2002 it/customer1/
0 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/
0 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/utils/

If the JAR file is missing directory entries, the resulting list of files will looked like
this:
1041 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/utils/DataRW.class
1867 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/utils/IMSBOManager.class
2513 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/utils/IMSConnectionManager.class
13473 Tue Nov 12 11:36:30 EST 2002 it/customer1/ims/utils/TrxExec.class

If the JAR file is not missing directory entries:
1. Place all of the classes to be included in the JAR file into a single directory.
2. Issue the following form of the jar command, where itdir is a directory

containing the classes to be included in the JAR file:
jar cvf WebApPo_utils.jar itdir

If directory entries are not contained in the output file, you can issue the following
commands to rebuild the JAR file with directory entries:
mkdir good (creates a clean directory)
cd good jar -xvf ../bad.jar (extracts the classes into the new ’good’ directory)
jar -cvf ../good.jar (archives all the class files in the "good" directory)

and then:
1. Place all of the classes to be included in the JAR file into a single directory.

Chapter 3. Defining virtual hosts and Web applications 3-25

|

|
|
|
|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|
|

|

|

|
|

|

|
|

|
|
|

|

|

2. Issue the following form of the jar command, where itdir is a directory
containing the classes to be included in the JAR file:
jar cvf WebApPo_utils.jar itdir

Compiling servlets
To compile a servlet:
1. Test that the appropriate Development Kit is in your system path by issuing

one of the following commands:
v java -version
v java -fullversion

Both of these commands should return a message stating the SDK version that
is in your system path. If the command is not found, you will see an error
message. See “Required Software Development Kit” on page 1-2 for the
required Development Kit level for Version 3.5 of the Application Server.

2. Ensure that the system CLASSPATH environment variable includes your SDK
rt.jar file and the appropriate Application Server JAR files. There are several
JAR files in the applicationserver_rootAppServer/lib directory. Use the following
table to determine which Application Server JAR files you will need.

3. Compile the classes by issuing the following command:
javac filename.java

API JAR file

Java Servlet API 2.1 V2.2 servlet.jar

Java Servlet API 2.2 V2.2 servlet.jar

JavaServer Pages V0.91 ibmwebas.jar (but not material to compile)

JavaServer Pages V1.0 ibmwebas.jar (but not material to compile). ibmwebas.jar
now includes code previously contained in jsp10.jar.

JavaServer Pages V1.1 ibmwebas.jar (but not material to compile)

PageLIstServlet ibmwebas.jar (but not material to compile)

SessionsAPIs ibmwebas.jar

Data access beans databeans.jar

Connection Manager (deprecated) ibmwebas.jar

Connection pooling ibmwebas.jar

XML and XSL APIs xml4j.jar and lotusxsl.jar

Passing init-parameters to a servlet
The init-parameters can be passed to a servlet:
v Through webapp properties in the was.conf file.
v Through XML tags in a <webapp-name>.webapp file. This file must includes a

<servlet-path> tag.
v As part of the content of a .servlet file. An associated webapp property

containing the initargs keyword must be included in the was.conf file to
initialize the variable in the getInitParameter method contained in the servlet.

Note: If you migrated from WebSphere Application Server V1.2, you might have
used a continuation character (″\″) on the servlet.servlet_name.initargs

3-26

|
|

|

|

property in the was.conf file to include additional variables for the
getInitParameter method because a maximum of 255 characters were
allowed on a single line in the was.conf file. Since up to 1024 characters
are allowed on a single line in the V3.5 was.conf file, the use of this
continuation charater is no longer supported.

Regardless of which method is used to pass the init-parameters to a servlet:
v The following line of code must be included in the servlet receiving the

init-parameters:
String s = getInitParameter("<parameter>")

where <parameter> is the name of the parameter to be retrieved.
v If level 1.1 JSPs, which reside in the WEB-INF directory of the Web application

document root, are to be compiled, either add the following property to the
was.conf file for each affected Web application:
webapp.<webapp-name>.servlet.jsp11.initargs=allowwebinf=true

or or add the following tags to the appropriate <webapp-name>.webapp XML
properties files:
<init-parameter>

<name>allowwebinf</name>
<value>true</value>

</init-parameter>

Using webapp properties in the was.conf file
When the Application Server receives a request for a Web application, it searches
the was.conf file for webapp.<webapp-name> properties, where the name specified
for <webapp-name> matches the name of the requested Web application. If it finds
such properties, it uses them to configure the Web application’s definition,
including the init-parameters. Any .webapp file and/or .servlet file having the
same name as the Web application’s name, that exists in the same classpath as the
Web application, will be ignored.

For example:
v There is a Web application called Payroll.
v This Web application invokes the servlet EmployeeServlet.
v The servlet EmployeeServlet is contained in the class file HRapps.
v The Web application and servlet are located in the classpath /u/Payroll/servlets
v parm1 is the name of the parameter to be retrieved.

If the following properties exist in the was.conf file, the Application Server will use
these properties to define and initialize the EmployeeServlet servlet when the
Payroll application is requested:
webapp.Payroll.servlet.EmployeeServlet=/servlet/*
webapp.Payroll.servlet.EmployeeServlet.code=HRapps
webapp.Payroll.servlet.EmployeeServlet.servletmapping=/servlet
webapp.Payroll.servlet.EmployeeServlet.initargs=parm1=HRapps.class

If a Payroll.webapp and/or Payroll.servlet file exist, their content will be ignored.

Using XML tags in a <webapp-name>.webapp file.
If a .webapp file is going to be used to pass an init-parameter to a servlet, no
webapp.<webapp-name> properties defining that servlet can exist in the was.conf

Chapter 3. Defining virtual hosts and Web applications 3-27

|
|
|

|

|
|

|
|
|
|

file. However the following deployedwebapp.property must be included to
indicate where the invoking Web application is located:
deployedwebapp.<webappname>.classpath=<path>

Note: The associated .webapp file must be placed in the same classpath as the
requested Web application.

For example, to specify the parm1 init-parameter in a .webapp file:
1. Add the following property to the was.conf file:

deployedwebapp.Payroll.classpath=/u/Payroll/servlets

2. Include the following XML tags in the Payroll.webapp file that resides in the
/u/Payroll/servlets classpath:

<init-parameter>>
<name>parm1</name>
<value>500</value>

In the absense of webapp.Payroll properties that define the EmployeeServlet
servlet, the Application Server will use the content of this Payroll.webapp file to
configure the Web application and initialize the EmployeeServlet servlet. If a
Payroll.servlet file also exists, it will be ignored.

Note: Regardless of the other XML tags the .webapp file contains, it MUST include
a <servlet-path>tag defining where the servlet is located.

For more information about XML tags that can be included in a .webapp file to
define a Web application, see the Deployment Descriptor Elements section in the
Java Server Specification V2.2 at URL:
http://java.sun.com

Using a .servlet file
A .servlet file is an XML servlet configuration file and contains the name of the
servlet class file, servlet initalization parameters, and a page list containing the
URIs (universal resource identifiers) of the JSPs the servlet can call. The name of a
.servlet file is derived from the name of the servlet for which it contains these
configuration statements.

You can use a .servlet file to pass init-parameters to a servlet. However, the
Application Server will only look for a .servlet file for the required servlet after it
determines that webapp properties or a .webapp file are not available for the
invoking Web application. The Application Server will then use the content of the
.servlet file to define and initialize the servlet.

For example, to specify the parm1 init-parameter in a .servlet file, include the
following init-parameter XML tag in the EmployeeServlet.servlet file:

<init-parameter name="parm1" value="500"/>

For more information about XML tags that can be included in a .servlet file, see the
WebSphere Studio Guide at URL:
http://www.ibm.com/software/websphere/studio/

3-28

http://java.sun.com
http://www.ibm.com/software/websphere/studio/

Configuring servlet chaining
Servlet chaining refers to the process of satisfying a client request via a sequence of
servlets, each servlet in the sequence piping its output to the next servlet, until the
output of the last servlet in the chain is returned to the client. The chaining process
is managed by the ChainerServlet, which invokes the chained servlets in order and
manages the passing of data between them.

To use servlet chaining for a specific Web application:
1. Add the following property to the was.conf file to configure the invoker servlet:

webapp.<webapp_name>.servletmapping=/servlet/*

2. Add the following properties to the was.conf file to configure the
ChainerServlet and specify the chained servlets as its init parameters:
webapp.<webapp_name>servlet.<servlet_name>.servletmapping=/<servletmapping_name>
webapp.<webapp_name>servlet.<servlet_name>.classpath=com.ibm.websphere.servlet.

filter.ChainerServlet
webapp.<webapp_name>servlet.<servlet_name>.initargs=chainer.pathlist=/servlet/

<servlet1> /servlet/<servlet2> /servlet/<servlet3>

The value specified for the
webapp.<webapp_name>servlet.<servlet_name>.servletmapping property
establishes an alias for the ChainerServlet that effectively represents the chain
and through which the chain is invoked.

For example, to configure the Web application TestChain for servlet chaining
where:
v Servlet chainServlet1 is the servlet being invoked.
v Servlet chainServlet2 is the second servlet in the chain.
v Servlet chainServlet3 is the last servlet in the chain and provides the response

back to the client.

Add the following webapp properties to the was.conf file:
webapp.TestChain.servletmapping=/servlet/*
webapp.TestChain.servlet.CHAIN.code=com.ibm.websphere.servlet.

filter.ChainerServlet
webapp.TestChain.servlet.CHAIN.servletmapping=/servletChain
webapp.TestChain.servlet.CHAIN.classpath=com.ibm.websphere.servlet.

filter.ChainerServlet
webapp.TestChain.servlet.CHAIN.initargs=chainer.pathlist=/servlet/

chainServlet1 /servlet/chainServlet2 /servlet/chainServlet3

Then to run this chain of servlets, you would invoke the ChainerServlet by
entering the following URL from a browser:
http://your.server.name/root-uri/servletChain

Servlet chaining can also be configured using XML tags in a <webapp-
name>.webapp file or in a .servlet file. See the sections “Using XML tags in a
<webapp-name>.webapp file.” on page 3-27 and “Using a .servlet file” on page 3-28
for more information.

To chain more than one set of servlets in the same Web application, configure the
chainer servlet with a different sevlet names. For example, to configure the Web
application TestChain with two servlet chains CHAIN1 (calling chainServlet10,
chainServlet11, and chainServlet12) and CHAIN2 (calling chainServlet20,
chainServlet21, and chainServlet22), add the following webapp properties to the
was.conf file:

Chapter 3. Defining virtual hosts and Web applications 3-29

webapp.TestChain.servletmapping=/servlet/*
webapp.TestChain.servlet.CHAIN1.code=com.ibm.websphere.servlet.filter.

ChainerServlet
webapp.TestChain.servlet.CHAIN1.servletmapping=/servletChain1
webapp.TestChain.servlet.CHAIN1.classpath=com.ibm.websphere.servlet.filter.

ChainerServlet
webapp.TestChain.servlet.CHAIN1.initargs=chainer.pathlist=/servlet/

chainServlet10 /servlet/chainServlet11 /servlet/chainServlet12
webapp.TestChain.servlet.CHAIN2.code=com.ibm.websphere.servlet.filter.

ChainerServlet
webapp.TestChain.servlet.CHAIN2.servletmapping=/servletChain2
webapp.TestChain.servlet.CHAIN2.classpath=com.ibm.websphere.servlet.filter.

ChainerServlet
webapp.TestChain.servlet.CHAIN2.initargs=chainer.pathlist=/servlet/

chainServlet20 /servlet/chainServlet21 /servlet/chainServlet22

Then, to run the first chain of servlets, you would invoke the ChainerServlet by
entering the following URL from a browser:
http://your.server.name/root-uri/servletChain1

To run the second chain of servlets, you would invoke the ChainerServlet by
entering the following URL from a browser:
http://your.server.name/root-uri/servletChain2

Note: Each webapp property statement contained in the preceding examples must
be entered as a single line in the was.conf file. Some of them are split here
for printing purposes.

3-30

Chapter 4. Accessing relational databases

How servlets use the JDBC 2.0 Standard Extension
API 4-2
Using JDBC 2.0 Standard Extension API with the
Application Server 4-3
Setting up JDBC connection pools 4-4

jdbcconnpool.<pool-
name>.provider=DB2/OS390 | other 4-5
jdbcconnpool.<pool-name>.jdbcdriver=<driver-
class-name> 4-5
jdbcconnpool.<pool-
name>.databaseurl=<database-url> 4-6
jdbcconnpool.<pool-
name>.datasourcename=<name> 4-6
jdbcconnpool.<pool-
name>.connectionidentity=<string> 4-6

jdbcconnpool.<pool-
name>.maxconnections=<integer> 4-6
jdbcconnpool.<pool-
name>.minconnections=<integer>. 4-6
jdbcconnpool.<pool-name>.
waitforconnectiontimeoutmilliseconds=<time> . 4-7
jdbcconnpool.<pool-name>.
inuseconnectiontimeoutmilliseconds=<time> . . 4-7
jdbcconnpool.<pool-name>.
idleconnectiontimeoutmilliseconds=<time> . . 4-7

Example of a JDBC connection pool definition . . 4-8
Migrating Connection Manager Code to use the
JDBC Standard 2.0 Extension APIs 4-8
Supported Connection Manager APIs 4-10

Servlets use the Java Database Connectivity (JDBC) API to access relational
databases. Version 1.0 of the JDBC specification provided a base set of APIs for
obtaining connections and subsequently driving SQL requests to relational
databases. With the introduction of JDBC 2.0, the API has been split into:
v The JDBC 2.0 Core API, which contains evolutionary improvements, has been

kept small and focused, like the JDBC 1.0 API, to promote ease of use. Code
written for the 1.0 API continues to work with the 2.0 API. The 2.0 API classes
remain in the java.sql package.

v The JDBC 2.0 Standard Extension API, which introduces additional capability in
the programming and deployment of JDBC based applications. The
programming model introduced by the JDBC 2.0 Standard Extension API is
centered around the concept of a datasource. An instance of a datasource object
contains attributes, such as a database URL, which describe the physical
database (or data server) that is to be accessed at run time. In addition, data
source objects expose interfaces that applications can use to create physical JDBC
connections.

The JDBC 2.0 Specification also provides Java Naming and Directory Interface
(JNDI) services which applications can use to locate datasource objects at run time.
Previous versions of the Application Server contained support for defining JDBC
database connection pools within the Application Server. This support introduced
the notion of a Connection Manager and a set of programming APIs for servlets to
use to access these pools at run time.

For compatibility, these APIs and capabilities continue to exist in this version of the
Application Server. This version of the Application Server also provides an
implementation of the JDBC 2.0 Standard Extension API for servlets to use. In
particular, the Application Server provides an implementation of a datasource
object and a JNDI initial context object. This implementation is able to take
information from the Application Server was.conf file and create an in-memory
directory structure that servlets can use at run time. This capability allows you to
manage database related resources in a manner consistent with other Application
Server defined resources.

The Application Server’s implementation of the JDBC Standard Extension APIs is
not dependent upon the level, nor the provider, of the JDBC Core API function.

© Copyright IBM Corp. 2000, 2003 4-1

|
||

This enables the Application Server to manage connections to databases that were
created by the DB2 JDBC 1.0 Driver Manager, as well as connections to databases
that were created with a JDBC 2.0 Core package and/or a comparable product
provided by another vendor.

How servlets use the JDBC 2.0 Standard Extension API
The JDBC 2.0 Standard Extension API enables an application to use a datasource
object to describe the physical database (or data server) that is to be accessed at
run time. At run time, the datasource object acts as a factory for creating database
connections. The application code is able to invoke a getConnection method on a
datasource object which, in turn, obtains a JDBC connection handle that is returned
to the application for use in accessing the database.

The JDBC 2.0 Standard Extension API Specification also uses the Java Naming and
Directory Interface (JNDI) APIs to standardize how applications locate, and obtain
a reference to, a datasource object. In particular, the specification suggests that
applications use the Java Naming and Directory Interface (JNDI) APIs to obtain a
naming context object that can subsequently be used to perform lookups into a
Name Space. Whoever implements the naming context objects is responsible for
using a logical name to register these implementations with the Java Naming and
Directory Interface services. Applications can subsequently use the services
provided by JNDI to produce a context at run time that has this logical name.

WebSphere Application Servers always register an initial context implementation
under the name com.ibm.ejs.ns.jndi.CNInitialContextFactory. Applications use
theses facilities to subsequently locate resources that have been registered by the
Application Server as part of its initialization process. The following example
illustrates the application code required to access a database using the JDBC Core
and Standard Extension APIs. As the comment lines in this example indicate, some
of the operations shown in the example should be performed initially, such as
within the INIT method of a servlet, while others are intended to be used on a per
request method, such as within the doGet method of a servlet.
/* APIs that should be invoked once per Servlet lifetime... */
Hashtable parms =new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.ejs.ns.jndi.

CNInitialContextFactory");
Context ctx =new InitialContext(parms);
DataSource ds =(DataSource)ctx.lookup("jdbc/sample");
/* APIs that should be invoked per request... */
conn =ds.getConnection("userid","password");
/* Sql requests against jdbc connection go here */
conn.close()

Notes:

1. Sometimes naming conflicts occur when using the
com.ibm.ejs.ns.jndi.CNInitialContextFactory package. If a naming conflict
occurs, use the com.ibm.ejs.ns.jndi.ws390.CNInitialContextFactory package
instead of the com.ibm.ejs.ns.jndi.CNInitialContextFactory package. Both
packages contain the same CNInitialContextFactory class.

2. The Application Server automatically loads the classes that implement both of
the interfaces introduced by JNDI and the JDBC Version 2.0 Standard Extension
APIs into the Application Server classpath as part of its startup procedure.
Therefore, no action is required to enable these classes for use at run time. The
Application Server does not provide an implementation of the JDBC Core
Driver APIs that exist within the javax.sql package. You must obtain, and make
available for use at run time, an implementation of the Core Driver APIs. For

4-2

|
|
|
|
|

example, you can obtain the JDBC driver provided by DB2 for use within the
Application Server. For servlets to gain access to these services, they must have
the following import statements in their source code:
import java.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;
import javax.naming;
import javax.sql.*;
import java.util.Hastable;

Using JDBC 2.0 Standard Extension API with the Application Server
The Application Server provides an implementation of a datasource object for
applications to use. The application code is insensitive to the processing that is
employed within the datasource implementation for satisfying a getConnection
request. That is, the application has no knowledge or dependencies on how a
connection is established. The datasource may have gotten the connection from a
pool of JDBC connections that it is maintaining, or may have been required to
instantiate a new JDBC connection using the JDBC Core driver package that is
configured on each request.

The Application Server’s implementation of the datasource maintains connection
pools within the Application Server. You can use properties in the was.conf file to
manage these pools. Specifically, you can define a connection pool, stipulating
things like the maximum number of connections that can be obtained, and then
map a datasource to this pool for administrative purposes. For more information
on configuring connection pools, see “Example of a JDBC connection pool
definition” on page 4-8.

The JDBC datasource interface defines two forms of the getConnection method for
obtaining a connection handle:
v One form of the getConnection method takes as input an explicit userid and

password. The userid and password are used in conjunction with the Core JDBC
API to produce a connection handle which has as its primary authorization ID
the userid and password that was passed to it. JDBC Core Driver providers
often have variances in their implementation of this support. For instance, the
JDBC driver provided by the DB2 product ignores the userid and password
passed on a JDBC connect request to its Driver Manager. Instead, it uses the
security information obtained from the invocation thread as the primary
authorization ID. To accommodate CORE Driver vendors who implement this
support in different manners, the Application Server implementation of the
getConnection(userid,password) request not only passes the userid and
password explicitly to the Core Driver provider, but also establishes the identity
represented by the userid and password on the execution thread prior to
invoking the CORE Driver API. This ensures that Core Drivers that establish
security in either of these manners can be used in conjunction with the
Application Server extended API implementation.

v The second form provides a getConnection method which does not require any
parameters (in contrast to the userid, password form). When this form of the
API is used, the Application Server defaults to establishing the JDBC connection
with a primary authorization ID equal to that of the hosting Web server.

The was.conf file provides properties for assigning a JNDI name to entities such as
datasources. The Application Server, in turn, provides a lightweight
implementation of a naming service. At startup, the Application Server constructs
an in-memory name space from the information in the was.conf file. The
Application Server also registers an implementation of a JNDI naming context with

Chapter 4. Accessing relational databases 4-3

JNDI Context Factory services. The Application Server also provides the
com.ibm.ejs.ns.jndi.CNInitialContextFactory class as an implementation of a JNDI
Context Factory. Applications can use this class as input to JNDI Factory services
to produce an initial naming context that serves as the starting point for name
resolution within the Application Server name space.

The Application Server provides naming service and naming context
implementations that are not intended to support generalized, full function
navigation over a hierarchal name space. Instead, the lookup() method on the
context object is the only API supported for application use. All other APIs for this
interface will throw a not-implemented exception if invoked. This restriction does
not impose constraints on the JDBC programming model and does not inhibit
application portability among WebSphere Version 3 Application Servers.

When navigating a name space, each access is relative to a context. It should also
be recognized that the Application Server name space is implemented as a flat,
name-value pair name space with no notion of such things as subcontexts and
junctions. The name space implementation behaves like a hash table where items
are registered by the full name specified in the was.conf file and subsequently
fetched by applications using that name. The provision of an Application Server
naming service does not prevent the use of other naming service implementations
within the Application Server. The structure of the JNDI APIs allows multiple
independent naming context implementations to be available. An application is
able to access a specific implementation by specifying the desired provider’s
Context Factory implementation. The Application Server does not provide support
for, or aid in configuring, datasources into a naming service other than the
lightweight version provided with the Application Server.

See “Enabling communication with DB2” on page E-1 for additional information
about setting up DB2 to communicate with the Application Server.

Setting up JDBC connection pools
Creating a connection to a database is a high overhead task that can significantly
degrade mainline application performance. For this reason, an application often
establishes pools of connections early in their processing and then serially reuses
them on subsequent requests. In particular, it provides a mechanism for pooling
Java Database Connectivity (JDBC) handles which represent physical connections
to a database.

The JDBC driver implementation must be added to the Application Server
classpath. JDBC pools are managed at the Application Server level. Even when use
of a pool is constrained to a single application, it is not sufficient to include the
database driver as part of the application’s classpath because the Application
Server may choose to maintain the connections within the pool beyond the life of
that individual application. (See “Enabling communication with DB2” on page E-1
for additional informaiton on how to add the JDBC driver implementation to the
Application Server classpath.)

In addition to providing efficient access to database connection handles, the
Connection Manager also attempts to minimize the amount of excess resource that
the system is using at any given point in time. The pooling properties contained in
the was.conf file allow you to specify how the pool is to be managed by specifying
settings such as:
v The JDBC database management system (DBMS) that is hosting the Application

Server connection pools.

4-4

|
|

v The minimum number of connections that should be in the pool
v The maximum number of connections that can be obtained
v How long a request for a connection will wait until an exception is thrown
v The amount of time that a connection may be in-use before the pool manager

considers the connection to be invalid
v The amount of time a connection can remain idle before the resource is returned

to the database
v The identity with which JDBC connections will be established.

The Application Server attempts to manage these settings as efficiently as possible
within the bounds you set and in accordance with real time usage and workload.

An Application Server instance can contain multiple connection pools for use by
applications executing within that Application Server. A JDBC connection pool can
be defined to the Application Server by adding the appropriate properties to the
Application Server’s was.conf file. Applications can then access the resources
configured within a pool by either using the Connection Manager APIs that were
provided with an earlier version of the Application Server, or by mapping a
datasource to that pool.

Note: All of the Connection Manager APIs are deprecated in Version 3.5 and might
not work in future releases. Therefore, new servlets should use the
connection pooling model introduced in Version 3.02 instead of the
Connection Manager.

If Connection Manager APIs are used, applications are not allowed to
override values specified in the was.conf file. Any attempt by an application
to override a value specified in the was.conf file will be ignored.

All connection pool properties contained in the was.conf file are of the form:
jdbcconnpool.<pool-name>.<property>=<value>

where <pool-name> is the name of the JDBC connection pool being defined (each
connection pool within the Application Server must have a unique name);
<property> is the property name; and <value> is the value for that property. In
order to create a JDBC database connection pool, at least one property and
non-null value must be specified for each <pool-name> you want to set up.

jdbcconnpool.<pool-name>.provider=DB2/OS390 | other
This property is used to specify the JDBC database management system (DBMS)
that is hosting the Application Server connection pools. DB2/OS390, which
indicates that DB2 is hosting the connection pools, is the default value for this
property. Therefore, you only have to include this property if you are using a
DBMS other than DB2.

jdbcconnpool.<pool-name>.jdbcdriver=<driver-class-name>
This property is used to specify the fully qualified name of the JDBC driver that
will be used to interact with the physical database. This property is required if a
datasource name is defined for this connection pool; otherwise, it is optional. If this
property is specified, it will be used to limit the pool to connections that match the
specified JDBC driver name. If a request doesn’t match the pool’s JDBC driver
name, no connection will be obtained.

There can be only one driver associated with a pool.

Chapter 4. Accessing relational databases 4-5

|

|

|
|
|
|
|

jdbcconnpool.<pool-name>.databaseurl=<database-url>
This property is used to specify the database URL used for this connection pool.
This property is required if a datasource name is defined for the pool; otherwise, it
is optional. If this property is specified, it will be used to limit the pool to use by
connections that match the specified database URL. If the request doesn’t match
the pool’s database URL, a connection will not be made.

A pool definition can contain multiple versions of this property. When multiple
database URLs are defined for a connection pool, the Application Server serves
requests from that pool on a first come, first served basis. The entire set of
connections, regardless of how they are distributed over multiple databases, are
managed within the bounds of that pool’s controls.

jdbcconnpool.<pool-name>.datasourcename=<name>
This property is used to specifies a datasource name for a connection pool. This
property is required if the resources in the pool are to be exposed using a
datasource implementation provided by the Application Server; otherwise, it does
not need to be specified. The datasource name specified must be the exact name
that an application will use when doing a context lookup. Only one datasource
object can be mapped to a given connection pool.

jdbcconnpool.<pool-name>.connectionidentity=<string>
This property is used to specify the identity with which JDBC connections will be
established. <string> can be one of the following values:
v connspec - The identity will be assigned from the userid field of the

IBMJDBCConnSpec object.
v server - The identity will be that of the Web Server address space.
v thread - The identity will be that of the thread on which the JDBC Connection

request is made.

If this property is not specified for a connection pool, the default value connspec is
used.

jdbcconnpool.<pool-name>.maxconnections=<integer>
This property is used to specify the maximum number of connections that can
exist within the connection pool. These connections can be in either an in-use or
idle state. The idle state refers to a connection that is in the pool and available to
be returned to a requesting client. In-use refers to a connection that has been
returned to a client for use.

Once the maximum number of connections is reached, and all connections in the
pool are in-use, subsequent requests for connections will either wait until a
connection is released, or fail if the request will not tollerate waiting. If this
property is not specified for a connection pool, the maximum number of
connections the pool will have is 25.

jdbcconnpool.<pool-name>.minconnections=<integer>
This property is used to specify the minimum number of connections that can be
in a pool after initial population. The pool manager does not initially populate the
pool to contain this number of connections. Instead, the pool is populated on an
on-demand basis. The pool manager will not remove idle connections from a pool
if that action will result in the number of connections in the pool going below this

4-6

minimum number. If this property is not specified for a connection pool, at least 1
connection will always remain in the pool.

jdbcconnpool.<pool-name>.
waitforconnectiontimeoutmilliseconds=<time>

This property is used to specify how long, in milliseconds, a request for a
connection will wait until an exception is thrown. This can happen when a request
for a connection is received, the maximum number of connections has been met,
there are no idle connections in the pool, and no in-use connections are returned to
the pool prior to the timeout period.

Specifying a value of -1 for this property will result in a request for a connection
failing immediately if no connection is available. It will not wait for a connection
to become available.

If this property is not included for a connection pool, the pool manager will wait
30000 millisecs (30 seconds) before it will fail a connection request.

Note: This property must be entered in the was.conf file as a single line; it is split
here for printing purposes.

jdbcconnpool.<pool-name>.
inuseconnectiontimeoutmilliseconds=<time>

This property is used to specify how long, in milliseconds, a connection can be
in-use before the pool manager invalidates it. This property is intended to guard
against the situation where an application encounters a fatal error while holding a
connection from the pool. When the pool manager determines a handle has
exceeded this threshold, it will invalidate the connection and place it back in the
pool for use by another request.

Independent of this support, applications have to be sensitive to receiving an
invalid connection exception (i.e., the database has failed).

Specifying a value of -1 for this property will result in connections not being
invalidated because the allotted connection time has been exceeded.

If this property is not included for a connection pool, the pool manager will wait
120000 millisecs, (120 seconds) before it will invalidate a connection and place it
back into the pool.

Note: This property must be entered in the was.conf file as a single line; it is split
here for printing purposes.

jdbcconnpool.<pool-name>.
idleconnectiontimeoutmilliseconds=<time>

This property is used to specify the length of time that a database connection can
remain idle (i.e. not used) in the pool before it is eligible to be removed, thus
freeing up all the resourcesassociated with that connection.

If this property is not included for a connection pool, the pool manager will wait
120000 millisecs, (120 seconds) before it will remove an idle connection from the
pool.

Chapter 4. Accessing relational databases 4-7

Note: This property must be entered in the was.conf file as a single line; it is split
here for printing purposes.

Example of a JDBC connection pool definition
The following depicts the properties that might be included in the was.conf file to
define the connection pool MyPool:
jdbcconnpool.MyPool.jdbcdriver=ibm.sql.DB2Driver
jdbcconnpool.MyPool.databaseurl=jdbc:db2os390:NETA
jdbcconnpool.MyPool.datasourcename=jdbc/sample
jdbcconnpool.<pool-name>.connectionidentity=connspec
jdbcconnpool.MyPool.minconnections=3
jdbcconnpool.MyPool.maxconnections=10
jdbcconnpool.MyPool.waitforconnectiontimeoutmilliseconds=30000
jdbcconnpool.MyPool.idleconnectiontimeoutmilliseconds=120000
jdbcconnpool.MyPool.inuseconnectiontimeoutmilliseconds=30000

Migrating Connection Manager Code to use the JDBC Standard 2.0
Extension APIs

This section uses code fragments to show how Connection Manager code (the
″old″ way) can be replaced with code that makes use of datasources (the ″new″
way.) Most servlets previously written to use the Connection Manager to access
DB2 need to be updated with code similar to the following ″new″ code fragments:
v Make sure you have the necessary import statements. Consider dropping any

unnecessary imports.
Old (if migrating from V1.x):

import java.sql.*; // for data server access (keep)
import com.ibm.servlet.connmgr.*; // connection manager classes (drop)

Old (if migrating from V3.02):

import java.sql.*; // for data server access (keep)
import com.ibm.db2.jdbc.app.stdext.javax.sql.*; // IBM implementations.

.. (delete)
import com.ibm.ejs.dbm.jdbcext.*; // ..of the extensions (delete)
import javax.naming.*; // to get at naming service (keep)

New:

import java.sql.*; // for data server access (retained)
import javax.sql.*; // IBM implementations... (new)
import javax.naming.*; // to get at naming service (retained)

v In the servlet init() method, if you are migrating from Version 1.x, do one-time
initializations to establish variables for use by all client requests. The spec,
connMgr, and ds variables shown below are actually instance variables and are
not local to the init() method. Therefore, in actual servlets, these variables are
first declared outside of all methods, and setting their values in init() would not
be preceded with the class names IBMConnSpec, IBMConnMgr, and DataSource
as shown in the following example. The class names are shown in this example
to help you more easily identify the variables. For the ″new″ way, you must
provide information on the arguments for the put() and lookup() methods.
Old:

// create specification for desired connection
IBMConnSpec spec = new IBMJdbcConnSpec("poolname",

true,
"COM.ibm.db2.jdbc.app.DB2Driver",
"jdbc:subprotocol:database",
"userid",

4-8

|
|
|
|
|
|
|

|
|
|
|
|

"password");
// establish connection manager access to use its facilities
IBMConnMgr connMgr = IBMConnMgrUtil.getIBMConnMgr();

New:

// create parameter list to access naming system
Hashtable parms = new Hashtable();
parms.put(Context.INITIAL_CONTEXT_FACTORY, "com.ibm.ejs.ns.jndi.

CNInitialContextFactory");
// access naming system
Context ctx = new InitialContext(parms);
// get DataSource factory object from naming system
DataSource ds = (DataSource)ctx.lookup("jdbc/sample");

v For every client request, the doGet() or doPost() method will begin by getting a
connection. The Connection Manager must be explicitly told, by the value
specified on the spec variable (the ″old″ way), which connection pool to use.
Using the ds DataSource variable, however, hides from the servlet programmer
any need to be aware of connection pooling (the ″new″ way).
Old:

// use spec to get connection manager connection
IBMJdbcConn cmConn = (IBMJdbcConn)connMgr.getIBMConnection(spec);
// use connection manager connection to get data server connection
Connection conn = cmConn.getJdbcConnection();

New

// use DataSource factory to get data server connection
Connection conn = ds.getConnection("userid", "password");

v For every client request, a connection is used to access DB2. This is usually in
the doGet() or doPost() method. Since standard JDBC APIs are used for data
access, no Connection Manager APIs are used. Therefore, no code changes need
to be made. However, the JDBC Standard Extension APIs offer some new
possibilities that you may want to consider for DB2 interaction.

v Near the end of every client request, usually in the doGet() or doPost() method,
connection related resources should be released. However, there are subtle
differences between how the ″old″ and ″new″ ways process the release of a
connection.
– Under the ″old″ way, you release the Connection Manager connection but you

must not close the actual DB2 connection, since management of the DB2
connection must be done by the Connection Manager.

– Under the ″new″ way, you actually invoke the close() method to release the
DB2 connection itself. However, this does not really close the connection.
Instead, it returns the connection to the connection pool for reuse.

Old:

// release connection manager connection
cmConn.releaseIBMConnection();
// do not issue conn.close();

New

// "close" connection, placing it back in the connection pool
conn.close();

It is possible, in rare situations, for a servlet using connection pooling to have its
connection taken away. This is a ″preemption″ feature that is disabled by default,
but which can be enabled through the JVM properties files. If preemption is
enabled, a problem can arise if a single request makes multiple uses of the
connection separated by extended periods of time. The connection might be

Chapter 4. Accessing relational databases 4-9

considered an ″orphan″ connection owned by a servlet that has failed or otherwise
become unresponsive. The connection pooling facility can take away an orphaned
connection, returning it to the connection pool for reuse. The
verifyIBMConnection() method can be included in servlet code to check for this
case and to provide a means of recovery.

Servlets using the Connection Manager have the same problem. Therefore, any
servlet that uses the verifyIBMConnection() method to check whether a connection
has been preempted, must be migrated to check for a
ConnectionPreemptedException and include a means of recovery when this
exception is encountered.

Supported Connection Manager APIs
Some Connection Manager APIs are intended only for monitoring purposes or
internal Connection Manager use, and do not have any practical use in production
servlets. The Connection Manager classes (and associated methods) that can be
used in production servlets are listed below:
v Class: com.ibm.servlet.connmgr.IBMConnMgrUtil

Methods:
Class: com.ibm.servlet.connmgr.IBMConnMgrUtil

The next three methods are intended for WebSphere Studio use only.
public static IBMConnPoolSpec getPoolProperties(String poolName)
public static void addPoolProperties(IBMConnPoolSpec spec)
public static String urlToPoolName(String url)

v Class: com.ibm.servlet.connmgr.IBMConnMgr
Methods:
public IBMConnection getIBMConnection(IBMConnSpec connSpec)
public IBMConnection getIBMConnection(IBMConnSpec connSpec, String ownerClass)

v Class: com.ibm.servlet.connmgr.IBMConnection
Methods:
public boolean verifyIBMConnection()
public void removeIBMConnection()
public void releaseIBMConnection()

v Class: com.ibm.servlet.connmgr.IBMJdbcConn
This class is derived from the IBMConnection class above and it implements the
following additional method:
public Connection getJdbcConnection()

v Class: com.ibm.servlet.connmgr.IBMConnPoolSpec
This class and the associated methods are intended for WebSphere Studio use
only.
public IBMConnPoolSpec(String poolName,

String poolType,
int maxConnections,
int minConnections,
int connectionTimeOut,
int maxAge,
int maxIdleTime,
int reapTime)

public IBMConnPoolSpec(String poolName, String poolType)

v Class: com.ibm.servlet.connmgr.IBMJdbcConnSpec
Methods (the first three are constructors):

4-10

public IBMJdbcConnSpec(String poolName,
boolean waitRetry,
String dbDriver,
String url,
String loginUser,
String loginPasswd)

public IBMJdbcConnSpec(String poolName)
public IBMJdbcConnSpec()
public void verify()

Chapter 4. Accessing relational databases 4-11

4-12

Chapter 5. Session tracking

Session security 5-1
Session state without cookies 5-2
Configuring session tracking 5-3
Session clustering 5-3

Configuring a session cluster 5-4
Session clustering considerations 5-6

In-memory session pools. 5-7

A session is a series of requests originating from the same user, at the same
browser. Using the Application Server Version 3.5 implementation of the Java
Servlet API session framework, your server can maintain state information about
sessions.

The Application Server provides facilities we group under the heading Session
Manager that support the javax.servlet.http.HttpSession interface described in the
Servlet API specification. A session object can be implemented in a variety of ways,
each of which provides different levels of performance, failover, and clustering. In
all cases, the Application Server defines the notion of a session transaction. A
session transaction begins when the servlet calls
javax.servlet.http.HttpServletRequest.getSession(boolean). It ends with the
completion of the servlet’s javax.servlet.http.HttpServlet.service(request, response)
method.

The Application Server, by default, locks sessions during the processing of a
session transaction to maintain session integrity. This means that one, and only
one, instance of a servlet can access a session at a given time. In the case where
several servlets are chained together to service an individual http request, the
session stays locked across each servlet in the chain until a response is finally sent
back to the user.

The sync() method of the com.ibm.websphere.servlet.session.IBMSession interface
(which extends the javax.servlet.http.HttpSession interface) can be used to override
a session transaction. A servlet can call sync() while it is in its service() method to
unlock the session transaction, and then call the getSession() method of the request
object to re-lock it.

Session security
Maintaining the security of individual sessions is part of the overall security
structure built into the Application Server. Unlike the 1.x versions of the
Application Server, the servlet will no longer be able to set a user name associated
with a session; that functionality is now incorporated into the Session Manager.
When creating a session as part of request processing, the Application Server will
use the value returned by the getRemoteUser method on the HTTP Request object
as the user name associated with a session. If the getRemoteUser method returns
null (which it will if a request does not require authentication), the Application
Server uses a value of ″anonymous″ to denote the user. When processing a
getSession() request on behalf of a Servlet, the Application Server validates that the
user name associated with the current request matches the user name associated
with the session. If the names do not match, the getSession method will throw an
exception of
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException.

User authentication is performed by the Web server prior to invoking the
Application Server. The following table illustrates the different scenarios that may

© Copyright IBM Corp. 2000, 2003 5-1

occur depending on whether the HTTP Request was authenticated and whether a
valid session ID and user name were detected by the Session Manager.

No session ID was
passed in for this
request, or an ID is
passed in for a
session that is no
longer valid.

A session ID for a
valid session is
passed in. The
current session user
name is
″anonymous″.

A Session ID for a
valid session is
passed in. The
current session user
name is ″FRED″.

A Session ID for a
valid session is
passed in. The
current session user
name is ″BOB″.

Unauthen ticated
HTTP request used
to retrieve a session.

A new session is
created and the user
name is marked as
″anony- mous″.

The session is
returned.

The session is not
returned; Unauthori
zedSession Request
Exception is thrown.

The session is not
returned; Unauthori
zedSession Request
Exception is thrown.

HTTP request
authen- ticated, with
an identity of
″FRED″ used to
retrieve a session.

A new session is
created and the user
name is marked as
″FRED″.

The session is
returned and the user
name is changed by
the Session Manager
to ″FRED″.

The session is
returned.

The session is not
returned; Unauthori
zedSession Request
Exception is thrown.

Session state without cookies
When you first make a request for which session management is enabled, the
HttpSession object is created and the session ID is sent to the browser as a cookie.
On subsequent requests, the browser sends the session ID back as a cookie and the
Session Manager uses it to find the HttpSession associated with this user.

There are situations in which cookies will not work. Some browsers do not support
cookies. Other browsers allow the user to disable cookie support. In such cases, the
Session Manager must resort to a second method, URL rewriting, to manage the
user session. With URL rewriting, all links that you return to the browser or
redirect have the session ID appended to them.

To use URL rewriting in the Application Server, you will need to enable URL
rewriting in the Session Manager and use a servlet or a JSP to serve as an entry
point. This entry point is not dependent on sessions for its processing; rather, it
contains encoded HREFs to servlets in the application that are dependent on
sessions. The following example shows how Java code may be embedded within a
JSP:
<%
response.encodeURL ("/store/catalog") ;
%>

Note: If you want to use URL rewriting to maintain session state, do not include
links to parts of your Web applications in plain HTML files (i.e., files with
.html or .htm extensions). This restriction is necessary because URL
encoding cannot be used in plain HTML files.

To maintain state using URL rewriting, every page that the user requests during
the session must have code that can be understood by the Java interpreter. If your
Web application and portions of the site that the user might access during the
session contain plain HTML files, these files must be converted to JSPs. This will
impact the application writer because, unlike maintaining sessions with cookies,
maintaining sessions with URL rewriting requires that each servlet in the
application use URL encoding for every HREF attribute on tags. Sessions will be
lost if one or more servlets in an application do not call the encodeURL(String url)
or encodeRedirectURL(String url) methods.

5-2

To rewrite the URLs that are returning to the browser, the servlet must call the
encodeURL() method before sending the URL to the output stream. For example, if
a servlet that does not use URL rewriting contains the code:
out.println("catalog<a>");

then this code must be replaced with:
out.println("");
out.println(response.encodeURL ("/store/catalog"));
out.println("/">catalog");

To rewrite URLs that are redirecting, a servlet must call the encodeRedirectURL()
method. For example, if a servlet contains the following code:
response.sendRedirect ("http://myhost/store/catalog");

then this code must be replaced with:
response.sendRedirect (response.encodeRedirectURL("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the
HttpServletResponse object. In both cases, these calls check to see if URL rewriting
is configured before encoding the URL. If it is not configured, it returns the
original URL. Also, unlike previous releases, WebSphere no longer makes any
checks to see if the browser making an http request has processed cookies, and
thus halts encoding of the URL. If URL encoding is configured and
response.encodeURL or encodeRedirectURL are called, the URL will be encoded.

Configuring session tracking
To activate the session tracking function within an Application Server instance, the
appropriate properties must be added to the was.conf file that is specified during
the Application Server initialization process. Following is an example of the
properties that would need to be included in the was.conf file to enable
non-persistent session support with an invalidation interval of 30 minutes (the
value is specified in milliseconds). This example configures cookies as the
mechanism for maintaining the state with the client.
session.enable=true
session.invalidationtime=1800000
session.cookies.enable=true

Note: This example illustrates a minimal set of options. The full set of session
properties, including detailed descriptions, are provided in the default
was.conf file, a copy of which is provide in Appendix B, “was.conf file
template”, on page B-1.

Session data can be stored either in memory or in a DB2 table. Regardless of where
this data is stored, if the reloading function is enabled, all sessions associated with
a Web application will be destroyed whenever a servlet contained in that
application is reloaded. These sessions will not destroyed if a JSP contained in that
application is reloaded. (See “Class loading and optional reloading” on page 3-21
for more information about the reload function.)

Session clustering
To support propagating events across OS/390 nodes in a session cluster, the
Application Server uses a database to track and manage sessions in the common
pool of sessions across all OS/390 cluster nodes. With the use of a database as well
as the general architectural changes implemented in this version of the Application

Chapter 5. Session tracking 5-3

Server, the Application Server no longer maintains the notion of a session cluster
client and a session cluster server. In a clustered environment, the session may be
accessed on any one of the virtual hosts in a cluster; which one is actually accessed
will be transparent to the end user.

During the processing of a session transaction, if the virtual host fails for whatever
reason during the WebSphere HttpSession transaction, the update to the database
does not occur, but the common pool of sessions remains functioning (including
the session being processed during the failure, minus any updates made during
the uncompleted transaction). For non-catastrophic failures (i.e., when the virtual
host remains functional), any changes made to the session which cannot be
completed are rolled back and the session reverts to its state prior to the start of
the transaction. Otherwise, once the transaction is completed and the changes are
committed, the session is still accessible regardless of the failure of an individual
node.

Configuring a session cluster
The Application Server can be configured so that the hosting Web server session
data can be accessed by instances of Web applications executing in the same or
different Application Server instances. The Application Server instances hosting
these Web applications may be executing within multiple Web server processes.
The Web server processes may be located on the same or on a different OS/390
image. Essentially, a session cluster defines the scope in which the session data
may be shared among Application Servers.

The Application Server uses a DB2 database as the sharing mechanism among
Application Server instances. Any Version 3.02 or Version 3.5 Application Server
that is executing on an OS/390 image and is able to access the central database is
able to participate in the session cluster; Version 1.x Application Servers are not
able to participate in the cluster.

To configure a session cluster, you must:
v Have your DB2 Administrator create a database table for use within the session

cluster. For more information about creating DB2 tables see one of the following
publications:
– DB2 for OS/390 V5 Administration Guide, GC26–8957
– DB2 UDB for OS/390 V6 Administration Guide, GC26–9003
– DB2 UDB for OS/390 and z/OS V7 Administration Guide, SC26-9931

The table space in which the database table is created must be defined with row level
locking (LOCKSIZE ROW). It should also have a page size that is large enough for the
objects that will be stored in the table during a session. Following is an example of a table
space definition with row level locking specified and a buffer pool page size of 32K:

CREATE TABLESPACE <tablespace_name>
IN <database_name>
USING STOGROUP <group_name>

PRIQTY 52
SECQTY 2
ERASE NO

LOCKSIZE ROW
BUFFERPOOL BP32K
CLOSE YES;

5-4

Notes:

1. At run time, the Session Manager will access the target table using the
identity of the hosting Web server. Any Application Server that is configured
to use persistent sessions should be granted both read and update access to
the subject database table.

2. HTTP session processing uses the index defined using the CREATE INDEX
statement to avoid database deadlocks. In some situations, such as when the
a relatively small table size is defined for the database, DB2 may decide not
to use this index. When the index isn’t used, database deadlocks can occur. If
this situation occurs, see the DB2 Administration Guide for the version of
DB2 you are using for recommedations on how to calculate the space
required for an index, and adjust the size of the tables you are using
accordingly.

3. It may be necessary to tune DB2 in order to make efficient use of the sessions
database table and to avoid deadlocks when accessing it. Your DB2
Administrator should refer to the DB2 Administration Guide for specific
information about tuning the version of DB2 you are using.

v Create a JDBC connection pool for the Session Manager to use at run time. The
pool can be configured using normal connection pooling constructs. IBM
recommends the following default characteristics for a JDBC Database
Connection Pool definition for connection pools that are going to be used by the
Session Manager:
session.dbjdbcpoolname=<session-pool_name>
jdbcconnpool.<session_pool -name>.JDBCConnectionPool.minconnections=10
jdbcconnpool.<session_pool_name>.maxconnections=40
jdbcconnpool.<session_pool_name>.inuseconnectiontimeoutmilliseconds=-1
jdbcconnpool.<session_pool_name>.jdbcdriver=ibm.sql.DB2Driver
jdbcconnpool.<session_pool_name>.databaseurl=your_db_url
jdbcconnpool.<session_pool_name>.connectionidentity=server

A DB2 table must then be defined within this table space for the Session Manager to use to
process the session data. The following example shows the format of this table:

CREATE TABLE database_name.<table_name>
(ID VARCHAR(24) NOT NULL,
PROPID VARCHAR(24) NOT NULL,
APPNAME VARCHAR(32),
LISTENERCNT SMALLINT,
EXPIRES TIMESTAMP,
LASTACCESS TIMESTAMP,
CREATIONTIME TIMESTAMP,
MAXINACTIVETIME INTEGER,
USERNAME VARCHAR(256),
SMALL VARCHAR(3595) FOR BIT DATA,
MEDIUM LONG VARCHAR FOR BIT DATA
)

IN DATABASE.<database_name>;

The DB2 Administrator must also create a type 2 unique index on the ID and PROPID
columns of this table. The following is an example of the index definition:

CREATE TYPE 2 UNIQUE INDEX DATABASE.<database_name>.<index_name>
ON DATABASE.<database_name>.<table_name>
(ID , PROPID)
USING STOGROUP <group_name>
ERASE NO
BUFFERPOOL BP0
CLOSE YES;

Chapter 5. Session tracking 5-5

You can also add the following properties to the was.conf file to enable session
persistence and to inform the Session Manager of the location of its entities:
session.enable=true
session.invalidationtime=1800000
session.cookies.enable=true
session.dbenable=true
session.dbjdbcpoolname=SessionPool
session.dbtablename=SessionDB

Notes:

1. The maximum number of connections allowed for the pool should be equal
to the MaxActiveThreads value specified in your httpd.conf file for the Web
server.

2. The minimum number of connections for the pool should be 1/4 of the
maximum number of allowed connections.

3. Setting the inuseconnectiontimeout property to -1, disables the reclaiming of
inuse connections for this pool.

4. The connectionidentity property must be set to server.
5. IBM recommends that you take the JDBC pool defaults for both the

waitforconnectiontimeoutmilliseconds and idleconnectiontimeoutmilliseconds
properties.

6. IBM recommends that the Session Manager should be the only user of this
pool.

Session clustering considerations
You should be aware of the following caveats regarding how session management
works within a clustered Web server environment:
v The definition of the putValue() method of the HttpSession interface in the

current Java Servlet Version 2.1 and 2.2 API Specifications (as specified by Sun
Microsystems) does not account for the possibility of a clustered environment. If
you add an object to a session that does not implement the serializable interface,
you do not have any way to propagate the object along with a given session
(each session must be serialized across the cluster). Consequently, the object will
not be sent to and from the database when session updates are made. To make
your applications portable to a clustered environment, you must make any
objects placed in a session serializable.

v When HttpSessionBindingListener and HttpSessionBindingEvent are used in a
clustered Web server environment, the event will be fired in the Application
Server where the session is currently being processed. This will occur in
situations where:
– The servlet explicitly invalidates the session.
– The session times out.
– A listener is removed from a session.

v Any changes to the database parameters require a restart of the associated
Session Managers. Therefore, you must restart ALL instances of a Session
Manager in a cluster. Session Management operates under the previous mode
setting until you restart the Session Manager.

5-6

In-memory session pools
With Version 3.5, you can specify the number of in-memory sessions that are to be
maintained. Once this number is surpassed, these functions are bypassed. General
memory requirements for your hardware system, as well as your site’s usage
characteristics, will determine the optimum value for this number. Also, with
larger numbers, you may need to increase the heap sizes of the java processes for
the Application Servers.

If you do not wish to place a limit on the number of sessions maintained in
memory and allow overflow, set the value contained in the base in-memory session
pool size to true. Allowing for an unlimited amount of sessions, however, can
potentially exhaust system memory and even allow for system sabotage (where
somebody could write a malicious program that continually hits your site and
creates sessions, but ignores any cookies or encoded URLs and never utilizes the
same session from one http request to the next).

When overflow is not allowed, the Session Manager will still return a session with
the HttpServletRequest’s getSession(true) method if the memory limit has currently
been reached, but it will be an invalid session which is not saved in any fashion.
With the WebSphere extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, there is an isOverflow() method
which will return ″true″ if the session is such an invalid session. Your application
could then check this and react accordingly.

Chapter 5. Session tracking 5-7

|
|
|
|
|
|
|

5-8

Appendix A. Migrating from previous Versions of the
Application Server

The process for configuring and operating the Application Server is unchanged
from Version 3.02 of the Standard Edition product. If you are migrating from
Version 3.02, you should be able to configure the Version 3.5 Application Server by
making a few small changes to your existing Version 3.02 was.conf files (see
“Required changes if you are migrating from V3.02” on page A-5).

In addition to maintaining consistent configuration support, Version 3.5 of the
Application Server provides a Servlet compatibility mode (see “Including Web
components in a Web application” on page 3-5). In compatibility mode, the
application server will not enforce portions of the Javasoft Servlet Version 2.2
Specification that are not compatible with the Version 2.1 Specification. Therefore,
you are not required to make changes to existing servlets that were deployed in
your Version 3.02 Application Server to accommodate changes imposed by the new
specification level.

The Application Server continues to provide support for JavaServer Pages written
to the 0.91 and 1.0 specification levels. The desired specification level must be
specified within each Web application definition (see “Including Web components
in a Web application” on page 3-5). Web applications that were deployed in version
3.02 of the Application Server that contain JavaServer Pages written to the 0.91 and
1.0 level do not have to be changed for this version of the Application Server.

Version 3.5 continues support for the following concepts introduced in Version 3.02
of the Application Server. These concepts and support levels are consistent with
the support provided in Version 3.5 of the Application Server on MultiPlatforms.
v Support for configuring virtual hosts and Web applications. A Web application

allows a group of Web components (servlets, JavaServer Pages, and static files,
such as HTML and GIF files) to be grouped and managed as a single unit. A
common practice in deploying a Web infrastructure is to define a single Web
server to act as a host for multiple logical host names. For instance, a single Web
server instance could serve requests for hosts www.mycompany.com and
www.myothercompany.com. To support this capability, Web server configuration
files allow resources to be defined specific to a particular host (i.e. Resource A,
Resource B are part of host my.company.com).
The Application Server now provides similar support. The was.conf file is used
for configuring the Application Server and contains support for new properties
that allow you to define virtual hosts. A virtual host is able to contain one or
more Web applications.
Grouping related components together is not a new concept for the Application
Server. Previous versions of the Application Server allowed components to be
implicitly grouped together. Components deployed on a particular Application
Server shared a single servlet context and were administered as a single unit.
However, there was no provision for managing the components at less than the
Application Server level.
The introduction of Web applications in this version of the Application Server
does not prevent you from continuing to manage components at this level. You
can achieve this effect by grouping existing components in a single Web
application. “Deploying a Web application to the Application Server” on page 3-7

© Copyright IBM Corp. 2000, 2003 A-1

describes how to create a Web application that can be used to contain the
servlets you currently have defined within your existing was.conf configuration.
Similarly, steps are provided to show how to create a virtual host for this Web
application.

v Servlet API Specifications support. The Application Server is able to host
servlets that conform to the Servlet API Specification Version 2.2 or 2.1. Versions
1.x of the Application Server provided support for servlets written to the Servlet
API 2.01 Specification level. The Servlet API 2.2 and 2.1 Specifications are NOT
upwardly compatible from the Servlet API 2.01 Specification. Certain APIs have
been changed or deprecated. Therefore, any servlet that uses one of these APIs
must be updated to accommodate the changes. Servlets which do not utilize
these APIs should be able to be deployed unchanged to this version of the
Application Server. See “Migrating Servlets” on page A-7 for some of the more
frequently used new and deprecated classes and methods.
Servlets that have been developed and tested on WebSphere Application Server
Version 3.5 on MultiPlatforms should be able to be deployed unchanged to this
version of the OS/390 Application Server except where an explicit exception is
noted. (See Appendix D, “Programming Model Restrictions”, on page D-1 for a
list of these explicit exceptions.)

v JSP 0.91, 1.0 and 1.1 Specifications support. The Application Server is able to
host JavaServer Pages and JHTML files that comply with either the JavaServer
Pages 0.91, 1.0, or 1.1 Specifications. JSPs written to the 0.91 Specification level
are not upwardly compatible with level 1.0. See “Migrating JSPs” on page A-8
for migrating JSPs.
Previous versions of the Application Server for OS/390 supported the 0.91 and
1.0 Specification levels. If a Web application includes JSPs that are being
migrated from an earlier version of the Application Server for OS/390, a
webapp.<webapp-name>.jsplevel property must be included in the Web
application definition statements in the was.conf file to indicate to which level of
the specification the Web application is compliant.

v SDK 1.3 support. The Application Server V3.5 run-time environment is built on
SDK 1.3. You should be able to run most programs that ran under JDK 1.1x with
little or no modification. The following list summarizes some minor potential
incompatibilities:
1. There are now two Timer classes:

– java.util.Timer (new)
– javax.swing.Timer (existed in V1.1x)

If an application has the following two import statements:
import java.util.*;
import javax.swing.*;

and refers to javax.swing.Timer by its unqualified name, the following
import statement must be added in order for the ambiguous reference to
class Timer to be correctly resolved:
import javax.swing.Timer;

2. The implementation of method java.lang.Double.hashcode has been
changed to conform to the API specification. This change should not affect
the behavior of existing applications because hashcode returns a truncated
integer value.

3. A new Permission class, java.sql.SQLPermission, has been added in
version 1.3. WebSphere Application Server V3.5 on MultiPlatforms supports
this new class; WebSphere Application Server for OS/390 V3.5 does not.

A-2

4. The internal implementation of the Java Sound APIs (in class
com.sun.media.sound.SimpleInputDevice) now checks
javax.sound.sampled.AudioPermission. This new check means that, under
1.3, applets must now be given the appropriate AudioPermission to access
audio system resources

5. JInternalFrames are no longer visible by default. Developers must set the
visibility of each JInternalFrame to true in order to have it show up on the
screen.

6. The TableColumn.getHeaderRenderer method returns null by default.
Therefore, you must use the new JTableHeader.getDefaultRenderer method
instead to get the default header renderer.

7. The JTable’s default text editor now gives setValueAt objects of the
appropriate type, instead of always specifying strings. For example, if
setValueAt is invoked for an Integer cell, then the value is specified as an
Integer instead of a String. If you implemented a table model, you might
have to change its setValueAt method to take the new data type into
account. If you implemented a class that is used as a data type for cells,
make sure that your class has a constructor that takes a single String
argument.

8. It is no longer possible for sufficiently trusted code to modify final fields by
first calling Field.setAccessible(true) and then calling Field.set(). An
IllegalArgumentException will be thrown when an attempt is made to
modify a final field. The JNI Set<Field> routines can be used to set
non-static final fields.

9. The specification and behavior of the constructors BasicPermission(String
name) and BasicPermission(String name, String actions) in class
java.security.BasicPermission have been modified. When the name
parameter is null, the constructors now throw a NullPointerException.
When name is an empty string, the constructors now throw an
IllegalArgumentException. This change of behavior is inherited by
subclasses of BasicPermission. The change also affects the behavior of
java.lang.System.getProperty() and java.lang.System.setProperty() whose
implementations construct an instance of PropertyPermission, a subclass of
BasicPermission. Because of this change, a call to getProperty or
setProperty with an empty property name (that is, getProperty(″″) or
setProperty(″″, value)) will result in an IllegalArgumentException. In
previous SDK versions, such a call would return quietly with no exception.

10. The behavior of java.net.URL has changed for cases where a URL instance
is constructed from a String. A final slash (’/’) is not automatically added to
a URL when the URL is constructed without one. For example, the
following code:
URL url = new URL("http://www.xxx.yyy");
System.out.println(url.toString());

now results in the following output:
http://www.xxx.yyy

11. The javac complier has a new implementation with the following
implications:
– Inherited members of an enclosing class are now accessible.
– A local variable or catch clause parameter can be hidden when it is

declared within the scope of a like-named method parameter, local
variable, or catch clause parameter.

Appendix A. Migrating from previous Versions of the Application Server A-3

– It is now illegal for a package to contain a class or interface type and a
subpackage with the same name. A package, class, or interface is
presumed to exist if there is a corresponding directory, source file, or
class file accessible on the classpath or the sourcepath, regardless of its
content.

– A qualified name in a constant expression must be of the form
TypeName.identifier.

– Member classes of interfaces are inherited by implementing classes
12. java.io.ObjectInputStream has been optimized to buffer incoming data.

This change should improve performance. This change causes
ObjectInputStream to more frequently call the multi-byte read(byte[], int,
int) method of the underlying stream. If underlying stream classes
incorrectly implement this method, serialization failures may occur.

13. A public input method engine SPI as been included so that a client side
adapter can be developed and distributed as a separate product and
installed into any implementation of the Java 2 platform. Environments that
are currently set up to allow text entry using a server-based input method
should updated to use a different solution, such as host input methods.

For the most current Java for OS/390 documentation, go to URL:
http://www.ibm.com/servers/eserver/zseries/software/java/

v was.conf configuration file support. Application Server properties are contained
in a single configuration file that is a refinement of the was.conf configuration
file used in previous versions of the Application Server. While the single file
concept remains, it is no longer necessary to physically represent the Application
Server model using a nested directory structure. Therefore, the makeserver and
updateproperties utilities used to propagate changes to this nested directory
structure in Versions 1.1 and 1.2 have been eliminated.
In order to execute applications that currently exist on Version 1.1 or Version 1.2
of the Application Server, you must:
1. Create a was.conf file for this version of the Application Server.
2. Make any necessary changes to your applications to accommodate the new

Servlet API and JSP Specification levels.

In many cases, IBM extends the specification levels supported by the Application
Server to provide additional features and customization options. If your existing
applications use extensions from past Application Server releases, mandatory or
optional migration might be necessary to utilize the same kinds of extensions in
Version 3.5. From Version 3.0x to Version 3.5, the main migration areas concern the
IBM extensions and the SDK. In contrast, migrating from Versions 1.1 and 1.2
requires updating applications with respect to the open specifications, such as the
Java Servlet API. The following table summarizes potential migration areas.

Functional area Version 3.5.x support Need to
migrate
from
V3.0x?

Need to
migrate
from
V1.x?

Details

Servlets Servlet 2.1
Specification and IBM
extensions

No Yes Versions 1.1 and 1.2 supported the Servlet
2.01 Specification and IBM extensions that
were updated in Version 3.0x.

Servlets Servlet 2.2
Specification

No Yes See the Sun Microsystems Web site for
information about the new Servlet 2.2 APIs.

A-4

http://www.ibm.com/servers/eserver/zseries/software/java/

Functional area Version 3.5.x support Need to
migrate
from
V3.0x?

Need to
migrate
from
V1.x?

Details

JSP files Supported JSP
specifications are V1.1
(recommended), V1.0
(supported), V0.91
(supported)

No** Yes Version 1.x supported only the JSP 0.91
Specification.

** If you did not already migrate JSP 0.91
files for use with Version 3.0x, small
migration is required for use with Version
3.5. It is recommended you migrate to JSP
1.1, despite 0.91 support.

XML XML 2.0.x supported;
XML 1.1.x supported
with restrictions

No*** No*** *** Migration from 1.1x to 2.0.x is not
required, but you might decide to migrate
based on criteria and 1.1.x restrictions
described in “Migrating to XML API Version
2.0” on page A-10.

JDBC and IBM
database connection
support APIs

JDBC 2.0; connection
pooling model

No Yes V1.2 supported JDBC 1.0 and a Connection
Manager model. If still using Connection
Manager in Version 3.0x, it is recommended
you switch to connection pooling.

Sessions IBM session support
APIs

No Yes Need to migrate from V1.x deprecated
classes, changes to clustering, URL encoding
for use with V3.0x or V3.5.

Transactions Java 1.2 transactions
support

Yes Yes Version 3.0x provided proprietary IBM
packages to simulate Java 1.2 functionality.
Version 1.x did not provide any support.
Migrate to Version 3.5 if your applications
require this kind of support.

Migrating your existing configuration (was.conf file) settings

Required changes if you are migrating from V3.02
If you are migrating from Version 3.02 of the Application Server, you should only
need to make one change to your existing was.conf file before using it with your
Version 3.5 Application Server; you must change the value specified on the
appserver.version property from 3.02 to 3.50. All of the other property values you
have specified in your existing was.conf file should produce the same results as
they did in Version 3.02 when used in a Version 3.5 environment.

If you do not make any other changes to your existing Version 3.02 was.conf file,
your Version 3.5 Application Server will be running in compatibility mode, which
is the default value for the new appserver.compliance.mode property. Therefore,
the Web applications you are running on this instance of the Application Server
must ALL comply with the Java Servlet API 2.1 specification. If you want to run
Web applications that comply with the Java Servlet API 2.2 specification, you must
change the value specified for this property to true. (See “Maintaining
compatibility with existing applications” on page 2-9 for more information about
this new property.)

Required changes if you are migrating from V1.1 or V1.2
If you are migrating from Version 1.1 or 1.2 of the Application Server, many of the
was.conf file properties remain unchanged for. These properties can be grouped as
follows:

Appendix A. Migrating from previous Versions of the Application Server A-5

v Server properties. As with previous versions of the Application Server, you can
define a classpath on an Application Server basis. Each Application Server
instance maintains an application level classloader to locate and load the classes
it needs. If you included utility classes, such as Connector Gateway and JDBC
implementations, on your classpath specification for a previous version of the
Application Server, you can add them to the classpath for this version of the
Application Server.
You can also continue to configure logging on an Application Server basis.
Improvements have been made to the logging function in this version of the
Application Server that result in simplified configurations. It is recommended
that you use the default logging level and location when migrating to the new
version.
You are no longer required to control tracing. If tracing is required, IBM support
will provide instructions for enabling it.

v Session properties. HTTP Session data can be shared across Version 3.x
Application Servers . This function uses configuration properties which are
included in the was.conf file. (See Appendix B, “was.conf file template”, on
page B-1 for a template of this file.) For purposes of migrating an existing
configuration, no changes are required to your session configuration properties
unless you want to share data across Version 3.x Application Servers. The
properties used to define session characteristics in Versions 1.1 and 1.2 remain
valid in this version of the Application Server.

v Connection pool properties. New Support for JDBC 2.0 Standard Extensions has
been added to this version of the Application Server. If you use this new
support, you will need to add additional configuration properties to your
was.conf file. For migrating existing configurations, no changes are required as
existing Connection Manager properties remain unchanged with one exception;
the IBMConnMgr.JDBC.useSerVerIdentity property is no longer supported.

v Logging properties. The new appserver.loglevel and appserver.logdirectory
properties replace the followingVersion 1.1 and 1.2 properties:
– log.error.level

– log.error.destination

– log.error.filename

– log.event.level

– log.event.destination

– log.event.filename

– log.time

.
v Virtual host definitions. For migration purposes, a single virtual host can be

created.
v Application definition. For migration purposes, a single Web application can be

created that includes all of the Web components used on a previous version of
the Application Server.

v JVM definition. The JVM property in the was.conf file contains the fully
qualified name of the file containing the run-time properties relating to the Java
Virtual Machine. (JVM).) Appendix C, “default_global.properties file”, on
page C-1 provides a copy of the default version of this file that is shipped with
the Application Server.
The default settings for the properties contained in this file are based on internal
benchmarking with the Application Server Version 3.5 and the Java Virtual
Machine that is shipped with it. Therefore, IBM recommends that Application

A-6

Server instances be allowed to initialize with these default values until an
explicit need to modify them is recognized.

See Appendix B, “was.conf file template”, on page B-1 for a copy of the was.conf
file template that includes migration considerations for individual properties.

Migrating Web server directives and environment variable settings
As in previous versions of the Application Server, Version 3.5 is configured to the
hosting Web server by including the appropriate ServerInit, ServerTerm, and
Service directives in that Web server’s httpd.conf file. To configure this version of
the Application Server, you need to update the existing directives in the httpd.conf
file of the hosting Web server to point to the Application Server initialization,
termination, and service routines.

The initialization routine no longer requires a server_model_root directory as input.
Instead, this routine takes as input the fully qualified name of a was.conf file
containing the Application Server’s configuration. The new format for these
directives is described in detail in “Configuring a Web server to host an
Application Server” on page 2-1.

The Application Server continues to rely on environment variables containing
pointers to the SDK libraries. For information on required environment variables
and how to set them, see “Configuring a Web server to host an Application
Server” on page 2-1.

Migrating Web server directives
If you are migrating from Version 3.02, you do not have to make any changes to
your Web server directives.

If you are migrating from Version 1.1 or 1.2 of the Application Server, and are
updating a Web server httpd.conf file that contains existing Application Server
directives, you must replace existing ServerInit, ServerTerm, and Service directives
with corresponding directives containing the new format.

The new format for these directives for Version 3.5 is fully described in
“Configuring a Web server to host an Application Server” on page 2-1.

Migrating Web server environment variables
Make sure that the JAVA_HOME environment variable and any other hardcoded
pointers to the SDK libraries contained in the hosting Web server’s envvars file
point to the SDK that is required by the Version 3.5 Application Server. (See
“Required Software Development Kit” on page 1-2 for the supported SDK level.)
For example, if you’ve installed the SDK in /usr/lpp/java/J1.3.0, before starting a
hosting Web server, set JAVA_HOME=/usr/lpp/java/J1.3.0/IBM/J1.3

Migrating Servlets
If you have servlets that were developed using the Servlet API Specification
Version 2.1, you do not need to modify them before running them on Version 3.5
of the Application Server. However, if you have servlets that were developed using
a Servlet API Specification earlier than Version 2.1, you should modify those
servlets to use Servlet API Specification 2.1 or higher.

Appendix A. Migrating from previous Versions of the Application Server A-7

The following table highlights a few of the classes and methods that were new or
deprecated with Servlet API Specification 2.1. Refer to the Java Servlet API
Specification for Versions 2.1 and 2.2 for complete information concerning new and
deprecated APIs.

Note: An efficient way to check if a servlet is using APIs that have been changed
in either the Version 2.1 or 2.2 Servlet API Specification is to compile that
servlet using the Servlet API 2.2 libraries. The compile step will highlight
any source code that may require changes. This version of the Application
Server includes the libraries for Servlet API 2.2. See “Compiling servlets” on
page 3-26 for details of how to compile a servlet using the Application
Server libraries on OS/390.

Method or Class Status and recommendation

RequestDispatcher New. Use the forward method to forward a servlet response from one
servlet to a second servlet for further processing. Use the include
method to include part of the one servlet’s response in the body of
another servlet’s response.

HttpSessionContext Deprecated. See Session state for tips for sharing session information.

HttpSession. getSessionContext Deprecated. For security reasons, no equivalent.

HttpSession. getMaxInactiveInterval New. Sets the maximum time a session will be maintained by the
servlet engine without a client request.

ServletRequest. getRealPath Deprecated. Use ServletContext.getRealPath.

ServletContext. getServlet Deprecated. Use ServletContext.getRequestDispatcher.

ServletContext. getResource New. Use this method to obtain a servlet resource by requesting its
URL.

ServletContext. getResourceAsStream New. Use this method to obtain a servlet resource (as an InputStream)
from its servlet context.

encodeUrl and encodeRedirectUrl
methods of HttpServletResponse

Deprecated. But the fix is easy. Change Url to URL in the method
names.

HttpSession.isRequested
SessionIdFromUrl

Deprecated. Another easy fix. Change Url to URL in the method name.

HttpServiceRequest. setAttribute() Deprecated. See Migrating JSP APIs for details.

HttpServiceResponse. callPage() Deprecated. See Migrating JSP APIs for details.

Migrating JSPs
The following level 0.91 JSPs are deprecated in the Application Server Version 3.5:
v HttpServiceRequest.setAttribute()
v HttpSerivceResponse.callPage()

There are two options for migration:
v Migrate to JSP 1.1: It is recommended that you migrate JSPs run under previous

versions of the Application Server, and develop new JSPs, to conform to the JSP
1.1 Specification. Refer to the Sun JSP 1.1 Specification for details.

v Migrate servlets or JSPs that use HttpServiceRequest and
HttpServiceResponse: If your servlets or JSPs developed under the Application
Server Version 1.x cast to methods of com.sun.server.http.HttpServiceRequest or
com.sun.server.http.HttpServiceResponse, you must perform one of the
following migration steps:

A-8

1. Migrate com.sun.server.http.HttpServiceRequest.setAttribute() to
javax.servlet.http.HttpServletRequest.setAttribute(), and migrate
com.sun.server.http.HttpServiceResponse.callPage() to
javax.servlet.RequestDispatcher.

2. Recompile the servlets before you use them with Version 3.5. Recompiling is
necessary because HttpServiceRequest and HttpServiceResponse are
provided as interfaces (instead of classes) that are implemented by the
Version 3.5 servlet container.

The following is an example of migrating HttpServiceResponse.callPage() to
RequestDispatcher:
// Code example of using the old HttpServiceResponse.callPage()
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UpdateJSPTest extends HttpServlet
{

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

String message = "This is a test";
((com.sun.server.http.HttpServiceRequest)req).

setAttribute("message", message);
((com.sun.server.http.HttpServiceResponse)res).

callPage("/Update.jsp", req);
}

}
// Code example of using the new RequestDispatcher
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class UpdateJSPTest extends HttpServlet
{

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

String message = "This is a test";
req.setAttribute("message", message);
RequestDispatcher rd = getServletContext().

getRequestDispatcher("/Update.jsp");
rd.forward(req, res);
//((com.sun.server.http.HttpServiceRequest)req).

setAttribute("message", message);
//((com.sun.server.http.HttpServiceResponse)res).

callPage("/Update.jsp", req);
}

}

Migrating servlets from Version 3.0x connection pooling to Version 3.5
connection pooling

Connection pooling (provided through datasource objects) was introduced in
Version 3.0x. Version 3.0x servlets using connection pooling need to be changed
slightly and recompiled to run under Version 3.5. You will need to change one
import statement from this:
import
com.ibm.db2.jdbc.app.stdext.javax.sql.*;

to:

Appendix A. Migrating from previous Versions of the Application Server A-9

import javax.sql.*;

Also, an application component that obtains two or more connections to the same
database manager, using either the same datasource or different datasources, must
use datasources with JTA-enabled drivers. With the Version 3.02 Connection
Manager, obtaining two connections to the same resource resulted in only one
actual connection, allowing JDBC drivers to be used in this scenario.

Migrating servlets that use the Application Server Connection Manager
The Connection Manager APIs are deprecated in the Application Server Version 3.5
environment and might not work with releases beyond this one. Therefore, you
should not write new servlets using the Connection Manager. New servlets should
be written using the connection pooling model. (See “Setting up JDBC connection
pools” on page 4-4 for a description of the connection pooling model.)

If existing applications contain servlets (or JSP files) that require database
connections, and the servlets use the Connection Manager from Version 1.2, it is
recommended that you update the servlets to use the new connection pooling
model. For most servlets, this update consists of simple coding changes. Because
you should not write new servlets using the Connection Manager, the details of
Connection Manager coding are not described in this publication, except as needed
in the migration. For servlets that are going to be migrated, the following functions
need to be modified:
v Import statements
v Servlet init() methods
v How connections are obtained
v How data is accessed (JDBC APIs must be used)
v How connections are closed (conn.close() methods need to be added)

“Migrating Connection Manager Code to use the JDBC Standard 2.0 Extension
APIs” on page 4-8 describes how to modify the import statements and the servlet
init() methods, and how to close connections for the new connection pooling
model.

Utilizing JDBC APIs for data access
A servlet employing sessions uses a database connection to access the data server
for each client request. The access usually occurs in the doGet() or doPost()
method. Standard JDBC APIs are used for data access. Because no Connection
Manager APIs are used, no code migration is necessary. However, the JDBC 2.0
Standard Extension APIs offer some new possibilities to consider for data server
interaction.

Migrating to XML API Version 2.0
If you have XML applications that use XML for Java API Version 1.1.x, you can use
those applications with the Application Server Version 3.5 with certain restrictions,
or you can migrate those applications to XML for Java API Version 2.0.x.

Most XML applications are partly based on the DOM or SAX APIs. The primary
decision factor for migration to the API Version 2.0.x is whether the application
must strictly adhere to the DOM or SAX APIs. If strict adherence is a requirement,
use the API Version 2.0.x. If the applications employ some of the convenience
features of the compatibility APIs, use the API Version 1.1.x. Also, there are some

A-10

inherent performance improvements in the API Version 2.0.x APIs, but you can
gain additional performance improvements by explicitly using non-validating
parsers (instead of the API Version 1.1.x parsers, which force validation) in
application environments where the data can be trusted.

You cannot mix Version 2.0.x APIs with Version 1.1.x APIs in the same XML
application. Some of the API Version 1.1.x classes are deprecated or not supported
in API 2.0.x The Application Server Version 3.5 XML4J.JAR file includes the
following API Version 1.1.x packages for TX compatibility:
v com.ibm.xml.parser package
v com.ibm.xml.xpointer package

If you need parser function that is provided in the API Version 1.1.x but not in the
API Version 2.0.x, you can use the Version 1.1.x classes for TX compatibility; use
the API Version 1.1.x methods to create a parser, cause the parser to read input,
and set options. The DOM tree returned by the TX compatibility classes is an
instance of the TX classes from the API Version 1.1.x. The following table
summarizes the methods of the API Version 1.1.x class com.ibm.xml.parser.Parser
that are not supported or implemented in API Version 2.0.x.

Method Status

Parser.addNoRequired AttributeHandler Not supported. Throws java.lang.IllegalArgumentException.

Parser.getReaderBufferSize Not supported. Throws java.lang.IllegalArgumentException.

Parser.setErrorNoByteMark Not supported. Throws java.lang.IllegalArgumentException.

Parser.setReaderBufferSize Not supported. Throws java.lang.IllegalArgumentException.

Parser.setProcess External DTD Not implemented. Does not function the same as in the API Version
1.1.x.

Parser.setWarningNoDoctype Decl Not implemented. Does not function the same as in the API Version
1.1.x.

Parser.setWarningNoXML Decl Not implemented. Does not function the same as in the API Version
1.1.x.

Parser.stop Not implemented. Does not function the same as in the API Version
1.1.x.

In the API Version 2.0.x, some Version 1.1.x methods are deprecated, as
summarized by the following table.

Deprecated Method Recommendation

com.ibm.xml.parser.Parent. addElement(Chil Use appendChild().

com.ibm.xml.parser.EntityDecl .getName() Use getNodeName().

com.ibm.xml.parser.TXNotation. getName() Use getNodeName().

com.ibm.xml.parser.TXElement. getName() Use getNodeName() or getTagName()

com.ibm.xml.parser.EntityDecl. getNDATAType() Use getNotationName().

com.ibm.xml.parser.Namespace. getUniversalName() See createExpandedName().

com.ibm.xml.parser.TXElement. getUniversalName() Use createExpandedName().

com.ibm.xml.parser.TXAttribute.ok getUniversalName() Use createExpandedName().

com.ibm.xml.parser.TXElement. isEmpty() See hasChildNodes().

com.ibm.xml.parser.EntityDecl. isNDATAType() This method will be removed in a future release.

Appendix A. Migrating from previous Versions of the Application Server A-11

Deprecated Method Recommendation

com.ibm.xml.parser.TXAttribute.
setAttribute(TXAttribute)

Use setAttributeNode().

com.ibm.xml.parser.TXNotation. setName(String) This method will be removed in a future release.

com.ibm.xml.parser.DTD. setName(String) This method will be removed in a future release.

com.ibm.xml.parser.TXText. splice(Element, int, int) This method will be removed in a future release.

A-12

Appendix B. was.conf file template

Following is a copy of the Application Server was.conf file template. The template
includes a description of the values that can be specified for the various properties
in the file. It also includes property migration considerations which may be helpful
if you are migrating from a previous version of the Application Server. The
template is located in the
applicationserver_root/AppServer/properties/was.conf.template file.

Note: Text following the number symbol (#) in column 1 is always treated as a
comment, regardless of the property setting.

##
(C) COPYRIGHT 2000-2001 IBM Corporation. All rights reserved.
#
#
Configuration file template for the IBM WebSphere Application Server
for OS/390 version 3.50.
#
The documentation in this file provides...
#
- Descriptions of the directives that are to be included in
the application server configuration file. For more information,
please read WebSphere Application Server Standard Edition: Planning,
Installing, and Using Version 3.50.
#
- Step by step details for defining a configuration file which
makes use of the environment (physical files, etc.) from a
previous version of the application server. That is, this
gives detailed instructions for updating this file to be
a working configuration file that maps over the enities in
your existing server_model_root structure. Please see
the Migration section below.
#
#
NOTES ON SYNTAX:
#
The property names consist of fixed portions (e.g. webapp)
and variable portions (e.g. <webapp-name>). The fixed portions
must be in lowercase; the variable portion can be in
mixed case and is case sensitive.
#
In the following example..webapp, servlet and autostart are fixed
portions of the property name and must be in lowercase, while
<webapp-name> and <servlet-name> are variable portions within the
property name and can be specified in mixed case.
#
ex. webapp.<webapp-name>.servlet.<servlet-name>.autostart=true
#
#
==
==
#
DIRECTIVES GROUPINGS
=================
- Runtime Properties
- Http Session Tracking
- JDBC Database Connection Pool
- Virtual Host
- Web Application
- Servlet
#

© Copyright IBM Corp. 2000, 2003 B-1

Note: Throughout this file, <INSTALL_ROOT> refers to the
directory path of the mounted install image of the
product. The default is /usr/lpp/WebSphere.
#
#
==
#
Runtime settings
- Version
- Classpath/Libpath/Path settings
- JVM settings
- Logging level & location
- Working Directory
- Servlet 2.2 Compliance mode
#
==
#
#
appserver.version=3.50
#
Version number used to verify this is the correct version
of configuration file. The value is used by the Application
Server to validate the file contents and should not be
changed.
#
This property and value must not be deleted or changed.
#
#
appserver.version=3.50
#
#--#
#
appserver.usesystemclasspath=true|false
#
If set to true, the current setting of the $CLASSPATH
environment variable will be appended to the generated
classpath.
#
The default is false.
#
#
#--#
#
appserver.libpath=<librarypath>
#
The libpath specified will be appended to the generated
libpath in the Application Server.
#
#
#--#
#
appserver.classpath=<classpath>
#
The classpath specified will be appended to the generated
classpath.
#
#
#--#
#
appserver.name=<name>
#
Specifies the Application Server Name. This is used to
identify the Application Server in displays and log messages.
#
The default is "defaultServletEngine".
#
#--#

B-2

#
appserver.jvmpropertiesfile=<fully-qualified-filename>
#
Specifies the fully qualified name of the properties file
that contains the JVM specific properties.
#
The default name is:
<INSTALL_ROOT>/AppServer/properties/default_global.properties
#
#
#--#
#
appserver.loglevel INFO|ERROR|WARNING
#
Specifies the logging level of the Application Server. The
recommended loglevel is WARNING.
#
The default is warning.
#
#
#--#
#
appserver.logdirectory=directory_name | STDOUT
#
Specifies the directory that will contain the Application
Server log files. This directory must exist and be writeable
to the Application Server. If STDOUT is specified for this
property, the logging files will be written to STDOUT
#
The default is STDOUT.
#
#--#
#
appserver.jspbasehrefadd
#
The value of this property is a boolean that
indicates whether a JSP will output the <base href>
tag when a JSP is invoked via callPage from a servlet.
Setting this property to false will disable the output
of the <base href> tag in the generated Java code of
a JSP for JSP’s using the .91 JSP processor.
#
When this property value is false, the <base href> tag
can be manually added to JSPs to prevent the need
to specify full pathing for all references to items such
as beans.
#
The default is true.
#
#--#
#
appserver.workingdirectory=<directory>
#
Specifies the directory that will be used by the Application
Server for temporary files, including the class files generated
by JSP compile processing. This should be a fully qualified
directory location. The default is
/tmp/WebSphere/AppServer/<appserver.name>
where <appserver.name> is the value of the appserver.name
property.
#
#--#
#
appserver.nodetach=true|false
#
Specifies whether the http server worker thread will be
detached from the JVM on the completion of each individual

Appendix B. was.conf file template B-3

request. The default value is ’false’, which means the
thread will be detached after each request.
#
#--#
#
appserver.permissions=
#
Specifies the UNIX style permission bits (rwxrwxrwx) which
will be used to set the owner/group/other permission bits
for the Application Server directories and files which are
created in the path defined by appserver.workingdirectory
and appserver.logdirectory, including the files generated
by JSP compile processing and the log files.
#
The default is 777.
#
#---#
appserver.compliance.mode=true|false
#
Specifies whether the servlet engine is running in full
compliance with the servlet 2.2 specification, or is running
in compatibility mode. A value of ’true’ indicates that the
server is running in full compliance mode, a value of ’false’
indicates the server is running in compatibility mode. See the
section "Maintaining compatibility with existing applications",
in Chapter 2 for a summary of the application processing
implications of running in compliance mode.
#
The default value is false.
#
#
#--#
#
appserver.java.system.property=property.name=property.value
#
Specifies additional properties that can be passed directly
to the java virtual machine when the JVM initializes. The
Application Server makes no attempt to validate or interpret
the properties or values. Multiple instances of the
appserver.java.system.property can be specified in the
configuration file.
#
There is no default.
#
#--#
#
appserver.java.extraparm=jvm_parm
#
Specifies additional JVM-specific parameters that can be
passed to the JVM on initialization. These parameters are
not validated or interpreted by the Application Server, but
are passed directly to the JVM. Note that incorrect values
for this property may cause the initialization of the JVM
to fail, which will cause the Application Server
initialization to fail. Multiple instances of the
appserver.java.extraparm property can be specified. Only
one JVM parameter per property instance can be specified.
It is recommended that this property only be used under
guidance from IBM support.
#
There is no default.
#
#--#
#
appserver.configviewer=<root-URI>
#
Specifies the URI root for the configuration viewer

B-4

which is automatically configured into each virtual host
within the Application Server.
#
The default is /ConfigViewer which means that you would
specify a URL of <hostname>/ConfigViewer/showCfg to access
the configuration viewer.
#
#--#
#
appserver.initializeonwebappfailure=true|false
#
Specifies the initialization of AppServer when one or
more WebApp fails to load. When the property is set to true,
AppServer initializes if atleast one webapp loads successfully.
#
The default value is false. If property is set to false
Appserver fails to initialize if atleast one webapp fails.
#
If all the WebApps are loaded successfully, AppServer
initializes regardless of the value set through the property.
#
#--#
#
objectleveltrace.enabled=true|false
#
Specifies whether object level trace support is enabled.
#
The default value is false. When value is set to true, you
must also set next two properties:
#
objectleveltrace.host=<host_name>
#
Specifies the Object Level Trace/Distributed Debugger
application host name or its IP address.
#
objectleveltrace.port=<port_number>
#
Specifies the object level trace application port number.
#
#--#
#
inline.comment=true|false
#
Specifies whether the ’#’ character is considered to be
comment or data on subsequent properties. The default
is ’false’, which means that all data following the ’#’
character is considered comment. A value of ’true’ means
that a ’#’ character found anywhere outside column 1 is
considered data.
#
The behavior of this property depends upon where in the
configuration file it is found. When detected, this
property affects the parsing of lines which follow it.
The behavior of this property remains in effect for
subsequent properties unless it is specifically disabled.
#
The property may be toggled, for example:
#
inline.comment=true
webapp.myApp.servlet.theWebApp.code=myWebApp
webapp.myApp.servlet.theWebApp.initargs=param=param1#param2
inline.comment=false
#
The default is false.
#
==
#

Appendix B. was.conf file template B-5

Session Settings
#
==
#
session.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking is enabled. If
the property is set to "true," the session-related
methods for the request and response objects will
be functional.
#
If session is disabled and an application within the
Application Server attempts to use the session services,
an exception will be thrown.
#
The default is true.
#
#
#
#--#
#
session.urlrewriting.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking uses rewritten
URLs to carry the session IDs. If the property is
set to "true", the Session Tracker recognizes
session IDs that arrive in the URL and rewrites
the URL, if necessary, to send the session IDs.
#
The default is false.
#
#
#--#
#
session.cookies.enable=true|false
#
The value of this property is a boolean that
indicates whether session tracking uses cookies to
carry the session IDs. If the property is set to
"true", session tracking recognizes session IDs that
arrive as cookies and tries to use cookies as a means
for sending the session IDs.
#
The default is true.
#
#
#--#
#
session.protocolswitchrewriting.enable=true|false
#
The value of this property is a boolean that
indicates whether the session ID is added to a URL
when the URL requires a switch from HTTP to HTTPS, or
HTTPS to HTTP.
#
The default is false.
#
#
#--#
#
session.cookie.name
#
The value of this property is a string that specifies
the name of the cookie, if cookies are enabled. The
cookie name must only contain:

B-6

-English alphanumeric characters (uppercase or
lowercase A to Z and numbers 0 to 9)
-Period (.)
-Underscore (_)
-Hyphen (-)
#
#
The initial setting is "sesessionid".
#
session.cookie.name=sesessionid
#--#
#
session.cookie.comment=<comment>
#
The value of this property is a string that specifies
a comment about the cookie, if cookies are enabled.
#
The default is "WebSphere Session Support".
#
#
#--#
#
session.cookie.maxage=<integer>
#
The value of this property is an integer that
specifies the amount of time, in milliseconds, that a
cookie will remain valid. Specify a value only to
restrict or extend how long the session cookie will
live on the client browser.
#
By default, the cookie only persists for the current
invocation of the browser. When the browser is shut down,
the cookie is deleted.
#
The default is -1.
#
#
#--#
#
session.cookie.path=<path>
#
The value of this property is a string that specifies
the path field that will be sent for session cookies.
Specify a value only to restrict to which paths on the
server (and, therefore, to which servlets, JHTML files,
and HTML files) the cookies will be sent.
#
Specifying "/" for the path indicates the root directory,
which means that the cookie will be sent on any access to
the given server.
#
The initial setting is "/".
#
session.cookie.path=/
#
#--#
#
session.cookie.secure=true|false
#
The value of this property is a boolean that
indicates whether session cookies include the secure
field. If this property is set to "true", this will
restrict the exchange of cookies to only HTTPS
sessions. Otherwise, they will be exchanged in
HTTP sessions as well.
#
The default is false.

Appendix B. was.conf file template B-7

#
#
#--#
#
session.cookie.domain=<domain-name>
#
Specifies the domain name for which the session cookie is
valid.
#
The default is null.
#
#
#--#
#
session.invalidationtime=<milliseconds>
#
The value of this property is an integer that
specifies the amount of time in, milliseconds, that a
session is allowed to go unused before it is no
longer considered valid.
#
The default is 180000 millisecs, or 180 seconds.
#
#
#--#
#
session.tableoverflowenable=true|false
#
Specifies whether there is a limit on the number of session
objects that should be maintained by the Application Server,
or whether the number of session objects that should be
maintained is unlimited. The number of session objects
is controlled by the session.tablesize property.
#
The default value is true, which means that the number
of session objects is unlimited.
#
#
#
#--#
#
session.tablesize=<integer>
#
Specifies the size of the session table used to maintain
session objects within the Application Server. When
session.tableoverflowenable=false, this is the limit on
the number of session objects that can be created by the
Application Server at any one time. When
session.tableoverflowenable=true, this represents the
initial size of the session table and the quantity by
which it is expanded.
#
The default is 1000 session objects.
#
#
#--#
#
session.dbenable=true|false
#
Specifies whether or not the session objects should be stored
in a database.
#
The default value is false, which means that the session
objects are stored using memory in the JVM of the Application
Server instance that created the session.
#
#

B-8

#--#
#
session.dbjdbcpoolname=<session-jdbc-poolname>
#
Specifies the name of the JDBC Database Connection Pool name
for use by the session support whenever
session.dbenable=true
#
IBM recommends the following default characteristics for a
JDBC Database Connection Pool definition for use by the
session services:
#
jdbcconnpool.SessionJDBCConnectionPool.minconnections=10
jdbcconnpool.SessionJDBCConnectionPool.maxconnections=40
jdbcconnpool.SessionJDBCConnectionPool.
inuseconnectiontimeoutmilliseconds=-1
jdbcconnpool.SessionJDBCConnectionPool.jdbcdriver=ibm.sql.DB2Driver
jdbcconnpool.SessionJDBCConnectionPool.databaseurl=your_db_url
jdbcconnpool.SessionJDBCConnectionPool.connectionidentity=server
#
The pool name, SessionJDBCConnectionPool, is just an example.
Whatever name is used must match the value specified
on the session.dbdbcpoolname property.
The pool properties have the following characteristics:
- maxconnections for the pool should be equal to the
MaxActiveThreads value in your httpd.conf file for the web server.
- minconnections for the pool should be 1/4 of the maxconnections.
- inuseconnectiontimeout should be set to -1, which disables
the reclaiming of inuse connections for this pool.
- jdbcdriver must be the DB2 jdbc driver
- databaseurl must be the URL of the target database
- connectionidentity must be server
IBM recommends that you take the JDBC pool defaults for both
- waitforconnectiontimeoutmilliseconds
- idleconnectiontimeoutmilliseconds
- datasourcename (not used by the session services)
IBM recommends that the session services should be the exclusive
user of this pool.
#
There is no default.
#
#
#--#
#
session.dbtablename=<database-tablename>
#
Specifies the database table name to be used by the session
services when session.dbenable=true.
#
There is no default.
#
#
==
#
JDBC Database Connection Pool Settings
#
You can define one or more JDBC Database Connection Pools per
Application Server. The syntax of the property name is:
#
jdbcconnpool.<pool-name>.<property>=<value>
#
where <pool-name> is the name of the JDBC Database Connection Pool
<property> is the property name
<value> is the value for the property
#
To create a JDBC Database Connection Pool, at least
one property and one non-null value must be specified.

Appendix B. was.conf file template B-9

#
The following properties exist for each connection pool:
#
#--#
#
jdbcconnpool.<pool-name>.minconnections=<integer>
#
Specifies the minimum number of connections for the pool.
The pool is not initialized with this number of connections;
however once this number is reached, it represents the
minimum number of connections that should be kept in the
pool.
#
The default is 1.
#
#--#
#
jdbcconnpool.<pool-name>.maxconnections=<integer>
#
Specifies the maximum number of connections for this pool.
Once the maximum number of connections is reached and all
connections in the pool are in-use, subsequent requests from
the pool will either be waited or failed based upon whether
the request will tolerate waiting.
#
The default is 25.
#
#--#
#
jdbcconnpool.<pool-name>.
waitforconnectiontimeoutmilliseconds=<milliseconds>
#
This should be on one line; it is split here because of
spacing constraints.
#
Specifies the wait, in milliseconds, for the connection timeout
value for this pool.
When all the connections in the pool are inuse, subsequent
requests from the pool will wait, up to the timelimit defined
by this property, for a connection to be released to the pool.
If no connection is released in the timelimit specified,
the request is failed.
If -1 is specified, it disables waiting for connections.
Hence, any request for a connection from the pool when all the
connections in the pool are already in-use will be failed
immediately, without waiting for connections to be released.
#
The default is 30000 millisecs or 30 seconds.
#
#
#--#
#
jdbcconnpool.<pool-name>.
idleconnectiontimeoutmilliseconds=<milliseconds>
#
This should be on one line; it is split here because of
spacing constraints.
#
Specifies, in milliseconds, the idle connection timeout for
this pool.
This specifies the length of time that a database connection
can remain idle (i.e. not used) in the pool before it is
eligible for removal, thus freeing up all the resources
associated with the database connection.
#
The default is 120000 millisecs or 120 seconds.
#

B-10

#--#
#
jdbcconnpool.<pool-name>.
inuseconnectiontimeoutmilliseconds=<milliseconds>
#
This should be on one line; it is split here because of
spacing constraints.
#
Specifies, in milliseconds, the in-use connection timeout for
this pool.
This specifies the length of time that a database connection
can be out of the pool before it is eligible for reclaiming
by the connection pool manager. This function guards against
an application that obtains a connection from the pool, but
does not return it within the timelimit defined by this
property.
If -1 is specified, it disables in-use connection processing
for this pool.
#
The default is 120000 millisecs, or 120 seconds.
#
#--#
#
jdbcconnpool.<pool-name>.jdbcdriver=<driver-class-name>
#
Specifies the JDBC driver used for this pool. This is
required if a datasource name is defined for the pool.
Otherwise, it is optional and if specified, will be used to
constrain the pool to connections that match the specified
JDBC driver name. If the request doesn’t match the pool’s
JDBC driver name, it will be failed.
#
The default is null.
#
#--#
#
jdbcconnpool.<pool-name>.databaseurl=<database-url>
#
Specifies the database URL used for this pool. This is
required if a datasource name is defined for the pool.
Otherwise, it is optional and if specified, will be used to
constrain the pool to connections that match the specified
database URL. If the request doesn’t match the pool’s
database URL, it will be failed.
#
The default is null.
#
#--#
#
jdbcconnpool.<pool-name>.datasourcename=<name>
#
Specifies a datasource name for this connection pool.
This is required if the Connection Pooling APIs are going
to be used to obtain connections from this pool. Otherwise,
it does not need to be specified.
#
The name specified should be the same name that the your
application will use to perform the naming service lookup
on the datasource object.
#
The default is null.
#
#--#
#
jdbcconnpool.<pool-name>.connectionidentity=<string>
#
Specifies the identity with which JDBC connections will

Appendix B. was.conf file template B-11

be established. <string> can be one of the following:
#
connspec - The identity will be assigned from the userid
field of the IBMJDBCConnSpec object.
server - The identity will be that of the Web Server
address space.
thread - The identity will be that of the thread on
which the JDBC Connection request is made.
#
The default value is connspec.
#
#--#
#
jdbcconnpool.<pool-name>.provider= DB2/OS390 | other
#
Specifies the JDBC database host:
#
DB2/OS390 : the DBMS is DB2 running on OS/390 or z/OS.
other : the DBMS is not DB2 on OS/390 and no DB2
specfic optimizations should be used.
#
The default is DB2/OS390
#
==
#
Virtual Host settings
#
You can define one or more Virtual Hosts per Application Server.
The syntax of the property name is:
#
host.<virtual-hostname>.<property>=<value>
#
where <virtual-hostname> is the name of the Virtual Host
<property> is the property name
<value> is the value for the property
#
The following properties exist for each virtual host:
#
==
#
host.<virtual-hostname>.alias=<hostname>|localhost
#
Specifies a hostname alias to be associated with this virtual
host name. This property provides a binding between the
hostnames understood by the web server and the virtual host
definitions in the Application Server.
There can be multiple alias properties per virtual host.
#
The application server supports a special hostname, "localhost",
which maps all requests to the virtual host definition.
This support is provided for the initial verification program.
IBM recommends that it not be used beyond that purpose.
#
There is no default.
#
#
#--#
#
host.<virtual_hostname>.mimetypefile=<fully-qualified-filename>
#
Specifies the fully qualified filename of the mimetype properties
file used for this virtual host.
#
The default is:
<INSTALL_ROOT>/AppServer/properties/default_mimetype.properties
#
==

B-12

#
Web Application Settings
#
A Web Application is made up of two sets of properties.
#
- Deployed Web Application properties
These properties represent characteristics that are unique to
the environment in which the web application is deployed.
#
- Web Application properties
These properties represent characteristics of the
content that comprises the web application.
#
One or more web application properties are required unless the
application’s component parts are defined in a
<webapp-name>.webapp XML file. If so, only deployed web application
properties should be defined for the web application. The
Application Server will search the class path to find the
<webapp-name>.webapp file.
#
==
#
Deployed Web Application Properties
#
These properties represent characteristics that are unique to
the environment in which the web application is deployed.
These properties have the following syntax:
#
deployedwebapp.<webapp-name>.<property>=<value>
#
where <webapp-name> is the name of the web application
<property> is the property name
<value> is the value for the property
#
The deployed web application properties are:
#
#--#
#
deployedwebapp.<webapp_name>.host=<virtual-hostname>
#
Defines the name of the virtual host into which this
web application is being deployed. This property is required.
#
There is no default.
#
#--#
#
deployedwebapp.<webapp-name>.rooturi=
#
Defines the root URI for this web application. This defines
a pattern by which the web application is known within the
virtual host. This property is required.
#
There is no default.
#
#--#
#
deployedwebapp.<webapp-name>.classpath=
#
This property specifies the classpath that the application
level class loader uses to searche for classes when the system
class loader cannot locate the class. This property is required.
#
There is no default.
#
#--#
#

Appendix B. was.conf file template B-13

deployedwebapp.<webapp-name>.documentroot=
#
This property is used to specify the fully qualified name
of a directory containing JSPs, JHTML and static content to
be served by the Application Server. This property is required.
#
There is no default.
#
#--#
#
deployedwebapp.<webapp-name>.authresource.<resource-name>=
<servletmapping>
#
This should be on one line; it is split here because of
spacing constraints.
#
This property is used to identify a web resource so that
access control policies can be applied to them.
#
<resource-name> is the resource name that is to be used
along with the virtual-hostname and webapp-name to construct
the SAF resource name of the form:
<virtual-hostname>.<webapp-name>.<resource-name>
#
<servletmappping> is the servlet mapping of the resource
covered by the security constraint.
#
There is no default.
#
#--#
#
deployedwebapp.<webapp-name>.autoreloadinterval=<millisecs>
#
This property is used to specify whether or not a web
application is to be reloaded if changes are detected in the
implementation file. The property value is the number of
milliseconds between checks for changes by the Application
Server.
Reloading is not recommended for production environments.
#
To disable reloading, either don’t specify the property
or specify an interval value of 0.
#
The default is no reloading.
#
#--#
#
==
#
Web Application Properties
#
These properties identify the characteristics of the components
that comprise the web application. These properties can be
split into two groups.
#
- Web application characteristics
These are the base characteristics of the web application.
#
- Servlet definitions
Defines any additional servlet characteristics within the
web application.
#
==
#
Web Application Characteristics
#
These properties have the following syntax:

B-14

#
webapp.<webapp-name>.<property>=<value>
#
where <webapp-name> is the name of the web application
<property> is the property name
<value> is the value for the property
#
The web application properties are:
#
#
#--#
#
webapp.<webapp-name>.description=<string>
#
This is a text description of the web application used in
displays and messages to help identify the web application.
#
The default is "Web Application: <webapp-name>".
#
#--#
#
webapp.<webapp-name>.servletmapping=<URI-pattern>
#
The value of this property is a string that specifies a
URI-pattern that, within this web application root URI,
resolves to a class file that contains a servlet.
#
This property can be specified multiple times within a
web application to define multiple servlet mappings.
#
Ex. webapp.default_app.servletmapping=/servlet/*
#
If this property is not specified, the serving of requests
that attempt to access specific class file names will not
be honored within this web application unless handled by
an explicitly defined servlet.
#
There is no default.
#
#--#
#
webapp.<webapp-name>.jspmapping=<URI-pattern>
#
The value of this property is a string that specifies a
URI-pattern that, within the web application, resolves to
a file that contains jsp or jhtml.
#
This property can be specified multiple times within a
web application to define multiple jsp mappings.
#
Ex. webapp.default_app.jspmapping=*.jsp
Ex. webapp.default_app.jspmapping=*.jhtml
#
If this property is not specified, jsp and/or jhtml
requests will not be honored within this web application
unless handled by an explicitly defined servlet.
#
There is no default.
#
#--#
#
webapp.<webapp-name>.jsplevel=<JSP-spec-level>
#
This property defines the level of the JSP processor to
be configured for this application. This property is
ignored if property
webapp.<webapp-name>.jspmapping=<URI-pattern>

Appendix B. was.conf file template B-15

is not defined within the web application.
#
<JSP-spec-level> is either "1.1" to configure the JSP processor
that supports the JSP 1.1 Specification Level, "1.0" to configure
the JSP processor that supports the JSP 1.0 Specification Level;
otherwise, the JSP processor for ".91" is configured.
#
#
The default is the ".91" JSP processor.
#
#--#
#
webapp.<webapp-name>.filemapping=<URI-pattern>
#
This property defines a URI-pattern that maps to static
content that you want to be served within this web
application. Static content is considered all content other
then servlets and jsp/jhtml.
#
The Application Server streams all static content without
performing any character conversions.
#
Ex. webapp.default_app.filemapping=*.gif
#
The default is that no static content can be served within
this web application.
#
#--#
#
webapp.<webapp-name>.attributes=
<parm_1_name>=<parm_1_value>,<parm_2_name>=<parm_2_value>
#
<parm_n_name> specifies the name of a parameter
#
<parm_n_value> specifies the associated value which is
treated as a string.
#
This property defines attributes for the web application.
For example, to specify attributes called x, y and z that
are to be available to servlets/jsps within the web
application "default_app", the following line would be
inserted:
#
webapp.default_app.attributes=x=0,y=Fred,z=true
#
#--#
#
webapp.<webapp-name>.errorpagemapping=<URI-pattern>
#
This property defines a URI-pattern that will map to a
servlet or jsp that is written to handle error reporting
for exceptions thrown by servlets within the web application.
#
IBM provides a default error reporter.
#
#--#
#
webapp.<webapp-name>.filter.<MIME-type>=<servlet-name>
#
<MIME-type> is a file type, such as text/html, recognized
by the virtual host in which the web application is
deployed.
#
<servlet-name> is the servlet to be invoked when the
associated MIME type is recognized.
#
==

B-16

#
Servlet Definitions
#
These properties have the following syntax:
#
webapp.<webapp-name>.servlet.<servlet-name>.<property>=<value>
#
where <webapp-name> is the name of the web application
<servlet-name> is the name of the servlet
<property> is the property name
<value> is the value for the property
#
The servlet properties are:
#
#--#
#
webapp.<webapp-name>.servlet.<servlet-name>.servletmapping=
<URI-pattern>
#
This should be on one line; it is split here because of
spacing constraints.
#
<URI-pattern> is the path for the servlet, relative
to the web application’s root URI.
Use a wild-card character (*) only at the beginning
of a path.
#
<servlet-nane> is the servlet being invoked.
For example, after you set up a servletmapping, you
can connect to the servlet by entering the URI-pattern
into a URL following the web application’s root URI.
#
For example, to create a servletmapping for the Big servlet
in web application default_app, which has a root URI of
"/Default" that allows it to be invoked at the browser
by the string /Default/servlet/myCompany/Big,
the following line would be inserted:
#
webapp.default_app.servlet.Big.servletmapping=
/servlet/myCompany/Big
#
#--#
#
webapp.<webapp-name>.servlet.<servlet-name>.code=<servlet-class>
#
<servlet-name> is the unique name of the servlet.
The name should not include double-byte characters.
#
<servlet-class> is the associated class file for the
servlet.
#
You do not need to specify this property if the servlet
name and class name are the same.
#
For example, to add a servlet named Big in web application
default_app that was compiled in file BigServlet.class
and is part of package com.abc,
the following line would be inserted:
#
webapp.default_app.servlet.Big.code=com.abc.BigServlet
#
#--#
#
webapp.<webapp-name>.servlet.<servlet-name>.initargs=
<parm_1_name>=<parm_1_value>,<parm_2_name>=<parm_2_value>
#
Above should be on one line but split for spacing.

Appendix B. was.conf file template B-17

#
<parm_n_name> specifies the name of a parameter
#
<parm_n_value> specifies the associated value which is
treated as a string
#
For example, to specify parameters called x, y, and z that
are to be passed to the init method for servlet Big within
web application default_app,
the following line would be inserted:
#
webapp.default_app.servlet.Big.initArgs=x=0,y=Fred,z=true
#
#--#
#
webapp.<webapp-name>.servlet.<servlet-name>.autostart=true|false
#
Property indicates whether the servlet should be loaded; and
its init method driven, whenever the Application Server starts.
#
Default is not to autostart a servlet.
#
==
#
Migrating a version 1.x was.conf properties file to
version 3.50
#
==
#
The following are the minimal set of properties required to
configure an AppServer V3.50 server to support a migration from
AppServer v1.x. You should be able to update the properties, where
required, with environment-specific data and then uncomment the
properties and start the Application Server using these settings.
#
- Server properties
#
libpath - Propagate any libraries you added to the version 1.x
was.conf ncf.jvm.libpath over to the version 3.50
appserver.libpath. Don’t propagate any of the libraries
that were on the default version 1.2 was.conf. That is,
you should not include libraries required by the
application server itself. The 3.50 version of the
Application Server will automatically add the libraries
it requires to the libpath. Again, only specify libraries
which you have added in support of your applications.
#
classpath - As with the libpath, you should propagate only the
files (jars, zips, .ser) you added to the version 1.x
was.conf ncf.jvm.classpath property. Do not propagate any
of the files that resided on the default ncf.jvm.classpath.
The version 3.50 Application Server will automatically
add files it requires to the classpath.
#
There is a further discussion on classpath consideration
in the section regarding web application classpath.
#
- Session properties
#
- The session properties supported in the version 1.x was.conf
correspond one-to-one with properties in the version 3.50
was.conf. To start the server with equivalent session support
configured, you need to copy the directives prefixed with
session.* from your existing WAS.conf file to this file.
#
One point to note is that the session support in version 3.50
defaults to enable=true. This can be overridden by the

B-18

session.enable property.
#
- Logging properties
#
The logging properties have changed between version 1.x and
version 3.50. It is recommended that you start with the default
logging properties of version 3.50 and modify as needed.
#
- Virtual Host
- Define a host called "default_host".
- Take the default mime types.
- You must replace <your-hostname> with your specific hostname
(for example host.default_host.alias=www.mycompany.com:8027).
#
Note: You can have multiple alias statements for a single
host. If you want more than one DNS alias to map to a host,
just add multiple configuration directives.
#
host.default_host.alias=<your-hostname>
#
- Web Application
- Define a web application called "default_app".
- Deploy default_app into the virtual host default_host.
#
deployedwebapp.default_app.host=default_host
#
- Establish a URI namespace within the application of "/" for
default_app. This provides all content deployed within the
default_app with the view that their namespace is rooted
at the base of the virtual host.
#
deployedwebapp.default_app.rooturi=/
#
- Establish a document root for JSP, JHTML and static content
served within the Web Application. You must replace
<your-document-root> with the directory that contains your
JSP and JHTML.
#
#
deployedwebapp.default_app.documentroot=<your-document-root>
#
- Establishes the classpath for the default_app web application;
this classpath can be reloadable and is searched after the
JVM classpath. In version 1.x of the Application Server,
the server would always search the JVM classpath, followed
by the /servlets directory in the server_model_root, followed
by the reloadable classpath specified by the
servlet.reload.directories. To maintain this behavior in
the v3.50 Application Server, you need to consider
the following:
#
- JVM classpath - The version 3.50 Application Server
automatically constructs the classpath with the
jar and zips that are required to operate. This includes
Application specific libraries, as well as any required
JDK libraries. Therefore, you should propagate only the
libraries you added to the version 1.x ncf.jvm.classpath
onto the version 3.50 appserver.classpath.
- Reloadable classpath - The version 3.50 Application Server
supports a web application classpath which is searched after
the JVM classpath in the order in which the libraries
appear in the classpath. This classpath can be configured
to be reloadable. To maintain a consistent search
order with the version 1.x Application Server, you
should add your <server-model-root>/servlets directory
followed by the reloadable directories.
#

Appendix B. was.conf file template B-19

Note: The verion 3.50 Application Server has no
requirement to be pointed at the same instance
of the /servlets directory used in your version 1.x
Application Server. You may in fact choose to make
a copy of that directory and its subdirectories
before using it within a version 3.50 Application
Server in anticipation of the possible need to
migrate either servlets or JSP to the new APIs
APIs supported in version 3.50.
#
appserver.classpath=<your-libraries-for-the-jvm-classpath>
deployedwebapp.default_app.classpath=<your-reloadable-classpath>
#
- Servlet reload - The property to control servlet reloading in
version 1.x was.conf was servlets.reload. In the version 3.50
was.conf, servlet reloading is controled, per web application,
via the following property. The value of the property is the
interval, in milliseconds, that the Application Server should
pool for changes. To disable reloading, either don’t specify
the property or specify an interval value of 0.
#
deployedwebapp.default_app.autoreloadinterval=<milliseconds>
#
- Enable servlet requests to be resolved to a file name. This
property corresponds to the urltype.servlets= property in
the version 1.x was.conf file. For each instance of the
property defined in the version 1.x was.conf, add an
instance of the following property with the corresponding
value. For example, the default was.conf for version 1.x
defined urltype.servlet=/servlet. This same behavior is
represented in version 3.50 with the following property
within the default_app web application.
#
webapp.default_app.servletmapping=/servlet/*
#
- Enable jsp and jhtml requests to be processed. This property
corresponds to the urltype.jsp= property in the version 1.x
was.conf.
#
webapp.default_app.jspmapping=*.jsp
webapp.default_app.jspmapping=*.jhtml
#
- Filtering by mime-type
#
version 1.x property
filter.<mime-type>=<servlet-1>,<servlet-2>,...
version 3.50 property
Version 3.50 Application Server supports one servlet
name per mime-type.
#
webapp.default_app.filter.<MIME-type>=<servlet-name>
#
- Servlet properties have a direct mapping between version 1.x and
version 3.50.
#
code -
version 1.x property
servlet.<servlet-name>.code=<servlet-class>
version 3.50 property
#
initargs -
version 1.x property
servlet.<servlet-name>.initArgs=<initargs>
version 3.50 property
#
autostart -
version 1.x property

B-20

servlets.startup=<servlet-name1> <servlet-name2> ...
version 3.50 property
Each unique servlet you want to have started when the
Application Server starts requires an autostart property.
Do not define an autostart property for the invoker servlet
from the default startup property in the version 1.x
was.conf.
#
alias -
version 1.x property
servlet.<alias-name>=<servlet-name>
version 3.50 property is servlet mapping
#
webapp.default_app.servlet.<servlet-name>.servletmapping=<alias-name>
webapp.default_app.servlet.<servlet-name>.autostart=true
webapp.servlet.<servlet-name>.code=<servlet-class>
webapp.default_app.servlet.<servlet-name>.initargs=<initargs>
#
###

Appendix B. was.conf file template B-21

B-22

Appendix C. default_global.properties file

Following is a copy of the default JVM properties file that is provided with the
Application Server. This file is located in the
applicationserver_root/properties/default_global.properties file.
##
@(#)default_global.properties 1.0 98/08/21
#
Configuration properties for JVM and plugin initialization
#
##

##
#
Customer modifiable jvm config options
#
##

##
#
JVM Configuration jit setting
#
Turn jit on or off, or specify a different jit compiler.
#
Default: on
#
Syntax: appserver.product.java.jvmconfig.jit=on | off | jitc
#
Example: appserver.product.java.jvmconfig.jit=on
#
##
appserver.product.java.jvmconfig.jit=

##
#
JVM Configuration maximum heap size setting
#
Default: 128m
#
Syntax: appserver.product.java.jvmconfig.mx=maxmem[k | m]
#
example: appserver.product.java.jvmconfig.mx=64m
#
##
appserver.product.java.jvmconfig.mx=

##
#
JVM Configuration initial heap size setting
#
Default: 128m
#
Syntax: appserver.product.java.jvmconfig.ms=initmem[k | m]
#
Example: appserver.product.java.jvmconfig.ms=64m
#
##
appserver.product.java.jvmconfig.ms=

##
#

© Copyright IBM Corp. 2000, 2003 C-1

JVM Configuration Java stacksize setting
#
Default: 400k
#
Syntax: appserver.product.java.jvmconfig.oss=stacksize[k | m]
#
Example: appserver.product.java.jvmconfig.oss=500k
#
##
appserver.product.java.jvmconfig.oss=

##
#
JVM Configuration native stacksize setting
#
Default: 256k
#
Syntax: appserver.product.java.jvmconfig.ss=stacksize[k | m]
#
Example: appserver.product.java.jvmconfig.ss=512k
#
##
appserver.product.java.jvmconfig.ss=

##
#
Application Server run byte-code verifier
#
Default: false
#
Syntax: appserver.product.java.jvmdebug.verify=true | false
#
Example: appserver.product.java.jvmdebug.verify=true
#
##
appserver.product.java.jvmdebug.verify=

##
#
Application Server use Java debug library
#
Default: false
#
Syntax: appserver.product.java.jvmdebug.debug=true | false
#
Example: appserver.product.java.jvmdebug.debug=true
#
##
appserver.product.java.jvmdebug.debug=

##
#
JVM remote debug port. This property is used only when
appserver.product.java.jvmdebug.debug=true.
#
Default: None
#
Syntax: appserver.product.java.jvmdebug.port=<port_number>
#
Example: appserver.product.java.jvmdebug.port=8888
#
##
appserver.product.java.jvmdebug.port=

##
#

C-2

Application Server print message when garbage collection frees
memory
#
Default: false
#
Syntax: appserver.product.java.jvmdebug.verbosegc=true | false
#
Example: appserver.product.java.jvmdebug.verbosegc=true
#
##
appserver.product.java.jvmdebug.verbosegc=

##
#
Application Server print message when classes load
#
Default: false
#
Syntax: appserver.product.java.jvmdebug.verbose=true | false
#
Example: appserver.product.java.jvmdebug.verbose=true
#
##
appserver.product.java.jvmdebug.verbose=
#
#
This line added as an aid to users of OEDIT that want to create long
lines. It can be deleted with no effect on the Application Server.
##

Appendix C. default_global.properties file C-3

C-4

Appendix D. Programming Model Restrictions

As with Version 3.02, it is an objective of WebSphere Application Server Standard
Edition Version 3.5 for OS/390 to fully support the same interfaces and facilities
that are supported on WebSphere Application Server Standard Edition Version 3.5
for MultiPlatforms. Therefore, applications developed on WebSphere Application
Server Standard Edition Version 3.5 for MultiPlatforms can be re-deployed
unchanged to WebSphere Application Server Standard Edition Version 3.5 for
OS/390.

There are known Programming Model exceptions for this version of the
Application Server for OS/390. It does not currently provide support for:
v The User Profile APIs that are present on Version 3.5 Standard and Advanced

Edition Application Servers for MultiPlatforms. This support will be added to
the product in a future service update.

v The Java Transaction API (JTA) interfaces. Servlets executing on OS/390 cannot
explicitly begin and commit transactions using the JTA APIs. It is possible to
execute requests to databases such as DB2 using JDBC and existing transactional
systems, such as IMS, using Common Connector Framework support.
The ability to commit and roll back requests made to these systems is provided
within the driver implementations for accessing these systems. You can perform
a commit and roll back of DB2 resources using the SQL Commit capability
provided by the JDBC driver. However, you cannot begin a transaction using the
JTA interfaces, drive requests to DB2 over JDBC, and then subsequently commit
or roll back these changes using the JTA interfaces. This capability will be
provided in a future version of the product.

v The ″session-timeout″ XML tag in .webapp configuration files is not supported.
You can configure the maximum inactive time for HttpSessions for an instance
of the Application Server by setting the ″session.invalidationtime″ value in the
was.conf file.

This version of the Application Server for OS/390 exists within the IBM HTTP
Server and is able to receive HTTP requests. This enables this version of the
Application Server to exist in DMZ configurations, including routers, proxy
servers, etc., that send HTTP requests to the originating Web servers.

This version of the Application Server for OS/390:
v Does not provide support for single sign-on capability with Application Servers

executing on distributed platforms. Instead, it makes use of the security facilities
provided by OS/390.

v Cannot participate in a WebSphere redirector configuration which routes
requests via IIOP or OSE from an intermediary Web server (often referred to as a
redirector) to a Application Server host containing the servlets and JSPs.

These capabilities will be added in a future version of the product.

© Copyright IBM Corp. 2000, 2003 D-1

D-2

Appendix E. Enabling subsystems for use with the
Application Server

Enabling communication with DB2 E-1
Installing DB2 E-2
Installing a JDBC driver E-2
Enabling the Application Server to locate, and
communicate with, DB2 E-3
Setting up DB2 tables. E-5
Customizing SQLJ/JDBC run-time properties
files E-5

Enabling communication with CICS E-5
Preparing the Application Server for CICS TS E-5

Enabling communication with IMS using IMS
Connect and IMS Connector for Java E-6

IMS Connector for Java E-7

This appendix discusses the customization needed to enable communication
between the Application Server and the following OS/390 subsystems:
v DB2
v CICS
v IMS

Enabling communication with DB2
Before the Web servers and their Java applications can access DB2, JDBC and/or
SQLJ support must be available on the OS/390 system on which they are running.
v JDBC is an application programming interface (API) that Java applications can

use to access any relational database.
v SQLJ is an API that provides support for embedded static SQL in Java

applications.

Because DB2 for OS/390 SQLJ support includes JDBC, SQLJ applications can also
execute dynamic SQL statements through JDBC. To use DB2 for OS/390, you must:
v Install one of the following DB2 products:

– DB2 for OS/390 Version 5
– DB2 UDB for OS/390 Version 6
– DB2 UDB for OS/390 and z/OS Version 7

Note: Hereafter, all of these versions will simply be referred to as DB2.
v Install the DB2 JDBC driver.
v Install Version 3.5 of the Application Server. (See Chapter 2, “Installing and

customizing the Application Server”, on page 2-1 for installation instructions.)
v Update the Application Server and Web server configuration files to enable the

Application Server to locate, and communicate with, DB2.
v Set up DB2 tables to contain the data the servlets require.
v Configure the Recoverable Resource Manager Services Attachment Facility

(RRSAF), if it is not already configured, and enable multicontext support:
1. Established a profile for controlling access from RRS by defining

ssnm.RRSAF in the DSNR resource class with a universal access authority of
NONE.

2. Activate the resource class:
SETROPTS RACLIST(DSNR) REFRESH

© Copyright IBM Corp. 2000, 2003 E-1

3. Add user IDs that are associated with the stored procedures address spaces
to the RACF Started Procedures Table:
DC CL8’DSNWLM’ WLM-ESTABLISHED S.P. ADDRESS SPACE
DC CL8’SYSDSP’ USERID
DC CL8’DB2SYS’ GROUP NAME
DC X’00’ NO PRIVILEGED ATTRIBUTE
DC XL7’00’ RESERVED BYTES

4. Allow read access to ssnm.RRSAF to the user ID associated with the stored
procedures address space.

v Start the Web server.

When the Web server starts, the changes made in the Application Server and Web
server configuration files will become effective, and DB2 and the Application
Server should be able to communicate with each other. Invoke a servlet that uses
the DB2 database at this time to ensure that a proper interface has been
established.

Installing DB2
If DB2 for OS/390 is already installed on your OS/390 system, and you are using
either Version 5 or Version 6, make sure one of the following PTFs is applied:
v PTF UQ49041, if you are using DB2 Version 5.
v PTF UQ49039, if you are using DB2 Version 6.

If DB2 for OS/390 is not already installed on your OS/390 system:
v Install DB2. See one of the following pairs of publications for a description of

how to install a specific version of DB2:
– DB2 for OS/390 Program directory, GI10-6973-05, and DB2 for OS/390 V5

Installation Guide, GC26-8970
– IBM Database 2 Universal Database Server for OS/390 Program Directory,

GI10-8182-04, and DB2 UDB for OS/390 V6 Installation Guide, GC26-9008
– DB2 Universal Database for OS/390 and z/OS V7 Program Directory,

GI10-8216-01, and DB2 UDB for OS/390 and z/OS V7 Installation Guide,
GC26-9936

v Apply PTF UQ49041 (for DB2 Version 5) or PTF UQ49039 (for DB2 Version 6).

The DB2 program directories are shipped with the respective products. All of the
other documents can be accessed by entering the following URL from your
browser and then selecting the appropriate version of DB2:
http://www.ibm.com/software/data/db2/os390/library.html

Installing a JDBC driver
If a DB2 JDBC driver is already installed on your OS/390 system, see “Enabling
the Application Server to locate, and communicate with, DB2” on page E-3 for a
description of what needs to be done to ensure that the Application Server knows
where to find it.

If a DB2 JDBC driver is not already installed on your OS/390 system, the following
publications describe how to install a JDBC driver for DB2:
v DB2 for OS/390 V5 Application Programming Guide and Reference for Java™,

SC26-9547
v DB2 UDB for OS/390 V6 Application Programming Guide and Reference for Java™,

SC26-9018

E-2

http://www.ibm.com/software/data/db2/os390/library.html

v DB2 UDB for OS/390 and z/OS V7 Application Programming Guide and Reference for
Java™, SC26-9932

To access these documents, enter the following URL from your browser and then
select the version of DB2 that you will be using with the JDBC driver:
http://www.ibm.com/software/data/db2/os390/library.html

When JDBC installs, it creates a Samples subdirectory on the JDBC driver which
contains JDBC samples. Have your DB2 Administrator update these samples with
your system-specific information, such as the location of DB2, the correct URL, and
so forth, and have him give you authority to use them. Then run one of the
samples before starting the Web server.
v If the sample runs successfully and JDBC can access the DB2 data, this indicates

you have successfully installed and configured the DB2 JDBC driver.
v If the sample does not run successfully, there is probably a problem with your

JDBC installation that your DB2 Administrator needs to fix before the Web
server is started.

For more information about updating and running these samples and how to use
DB2 for OS/390 JDBC when writing Java applications, see one of the following
publicaitons:
v DB2 for OS/390 V5 Application Programming Guide and Reference for Java™,

SC26-9547
v DB2 UDB for OS/390 V6 Application Programming Guide and Reference for Java™,

SC26-9018
v DB2 UDB for OS/390 and z/OS V7 Application Programming Guide and Reference for

Java™, SC26-9932

Enabling the Application Server to locate, and communicate
with, DB2

Before DB2 can be used to store data required by servlets running under the
Application Server, the Application Server must be able to locate, and
communicate with, DB2,. To set up communication between DB2 and the
Application Server you must:
1. Make the following changes to the Application Server was.conf file:

v Add the name of the DB2 JDBC driver classes file to the appserver.classpath
property.
If you are using DB2 Version 5 or DB2 Version 6, db2jdbcclasses.zip is the
name of the JDBC driver classes file.
If you are using DB2 Version 7, the name you specify on the
appserver.classpath property depends on which JDBC driver your DB2
administrator has selected to use:
– If the driver that is based on the JDBC 1.2 specification has been selected,

specify any one of the following files:
- db2jdbcclasses.zip

- db2sqljclasses.zip

- db2sqljruntime.zip

– If the driver that is based on the JDBC 2.0 specification has been selected,
specify db2j2classes.zip.

Appendix E. Enabling subsystems for use with the Application Server E-3

http://www.ibm.com/software/data/db2/os390/library.html

Adding the name of the DB2 JDBC driver classes file to this property enables
the Application Server to locate the DB2 JDBC driver. If DB2 was installed
using the instructions in the DB2 Program Directory, and the DB2 Installation
Guide, all of these file will be located in the /usr/lpp/db2/db2nn0/classes
directory. (nn is 51 for DB2 V5, 61 for DB2 V6, or 71 for DB2 V7.)

v Add the directory containing the DSNJDBC_JDBCProfile.ser file to the
appserver.classpath property after the name of the DB2 JDBC driver classes
file. (The DSNJDBC_JDBCProfile.ser file is created when the db2genJDBC
program is run during the DB2 JDBC driver installation.) If DB2 is installed
using the instructions in the DB2 Program Directory, and the DB2 Installation
Guide, this file will be located in the /usr/lpp/db2/db2nn0/classes directory.
(nn is 51 for DB2 V5, 61 for DB2 V6, or 71 for DB2 V7.)
If the DB2 JDBC driver was installed into the default directories, this file will
be located in the /usr/lpp/db2/db2nn0, directory. (nn is 51 for DB2 V5, 61 for
DB2 V6, or 71 for DB2 V7.)

v Add the location of the DB2 JDBC driver to the values specified on the
appserver.libpath property. If DB2 was installed using the instructions in the
DB2 Program Directory, and the DB2 Installation Guide, this file will be
located in the usr/lpp/db2/db2nn0/lib directory. (nn is 51 for DB2 V5, 61 for
DB2 V6, or 71 for DB2 V7.)

Note: If you prefer, you can obtain the same results by adding the following
values to the LIBPATH variables in the Web server httpd.envvars
configuration file:
/usr/lpp/db2/db2nn0/lib

A template of the was.conf file is located in the applicationserver_root/properties
directory. See “Customizing the Application Server” on page 2-8 for more
information about updating this file.

Note: If you prefer, you can place these classpath entries in your HTTP
Server’s httpd.envvars file and set the appserver.usesystemclasspath
was.conf file property to true. Directories mentioned in the ″system
classpath″ are added to the end of the generated classpath without
undergoing the ″archive expansion″ process.

2. Add the following environment variables to the end of the Web serve’sr
httpd.envvars configuration file:
DB2SQLJPROPERTIES=/usr/lpp/db2/db2nn0/classes/db2sqljjdbc.properties

nn is 51 for DB2 V5, 61 for DB2 V6, or 71 for DB2 V7.

Note: A dsnaoini file is not required for a DB2 JDBC driver at this service
level.

3. Add the following DD statements to the Web server’s STEPLIB DD statement:
// DD DSN=DSNnn0.SDSNEXIT,DISP=SHR
// DD DSN=DSNnn0.SDSNLOAD,DISP=SHR

If you are using DB2 V7, you must also add the the following DD statement in
the STEPLIB statement in order to include the SDSNLOD2 library:
// DD DSN=DSNnn0.SDSNLOD2,DISP=SHR

Remember that the DSN= portion of these statements must start no later than
column 16.

E-4

|

|
|

|
|

|

|
|

Setting up DB2 tables
Even if the Application Server is able to locate, and communicate with, DB2, the
DB2 Administrator must set up DB2 tables to contain the data the servlets require
before data can be passed between DB2 and the Application Server. You should
work with your servlet developers and DB2 Administrator to set up the required
DB2 tables. See one of the following publications for a description of the syntax of
the SQL statements used to define DB2 tables:
v DB2 for OS/390 V5 SQL Reference, SC26-8966
v DB2 UDB for OS/390 V6 SQL Reference, SC26-9014
v DB2 UDB for OS/390 and z/OS V7 SQL Reference, SC26-9944

Customizing SQLJ/JDBC run-time properties files
The DB2 JDBC driver’s default settings for the DB2 attach type and OS/390
multiple context support are correct for Application Server use. However, you may
want to refer to the DB2 Application Programming Guide and Reference for Java for the
version of DB2 you are using for information about the other JDBC driver
properties that can be set within this file.

Enabling communication with CICS
Before the Application Server can communicate with CICS, the CICS Transaction
Server must be installed and working. CICS Transaction Gateway: OS/390 Gateway
Administration, SC34-5935, describes how to install the CICS Transaction Gateway
for OS/390 and how to configure the CICS Transaction Server.

The EXCI must also be correctly configured. See CICS External Interfaces Guide,
SC33-1944 for details.

Information about how CICS can be used to exploit Java based technologies can be
found at URL:
http://www.ibm.com/software/ts/cics/about/modern/cicsjava.html

Preparing the Application Server for CICS TS
The following changes must be made to the Application Server, the Web server,
and CICS before Java servlets can communicate with the CICS Transaction Server:
1. Add the following jar files to the appserver.classpath property in the

Application Server was.conf file:
/usr/lpp/cicsts/ctg/classes/ctgclient.jar
/usr/lpp/cicsts/ctg/classes/ctgserver.jar

It is recommended that these files be placed near the beginning of the list of
files/directories specified on this property.

2. Add the following directory to the appserver.libpath property in the
Application Server was.conf file:
/usr/lpp/cicsts/ctg/bin

It is recommended that this directory be placed near the beginning of the list of
files/directories specified on this property.

3. Add the CICS Transaction Server SDFHEXCI library as a STEPLIB to your Web
server startup procedure.

4. Make sure the following program control has been added:

Appendix E. Enabling subsystems for use with the Application Server E-5

http://www.ibm.com/software/ts/cics/about/modern/cicsjava.html

RALTER PROGRAM * ADDMEM (’CICSTS13.CICS.SDFHEXCI’//NOPADCHK) UACC(READ)
SETR WHEN(PROGRAM) REFRESH
SETR RACLIST(FACILITY) REFRESH

Make sure the extended program attributes have also been turned on. You can
check this by issuing the following command:
ls -E /ctg/bin/lib*.so

If required, the following command will turn on extended program attributes:
extattr +p /ctg/bin/lib/*.so
extattr +p /ctg/lib/*.SECURES

5. Make sure the DFH$EXCI group has been installed. This group defines session
and connection resources to CICS.

6. If you are not running CTG in local mode, you must specify that ctgstart script
does not share its address space with any other processes. To force the JVM to
use its own non-sharable address space, enter:
extattr -s /ctg/bin/ctgstart

If you are concerned about performance, it is recommended that you run CTG
in local mode. In this case, you must set:
JAVA_PROPAGATE=NO

For more information about CICS configuration settings, see CICS Transaction
Gateway V4.0 OS/390 Gateway Administration, SC34-5935, and the Information Center
v1.0 for CICS Transaction Server v2.1, at URL:
http://www-4.ibm.com/software/ts/cics/library/infocenter/

Enabling communication with IMS using IMS Connect and IMS
Connector for Java

IMS Connect replaces IMS TCP/IP OTMA Connection (ITOC). IMS Connect is an
SMP/E installable and maintainable product, and provides several new functions
and enhancements not available with ITOC. ITOC should only be used for ″proof
of concept″ purposes, since support for ITOC will be withdrawn March 1, 2001.
IMS Connect allows TCP/IP clients, IMS Connector for Java in particular, to send
messages to the IMS Transaction Manager through the IMS Open Transaction
Manager Access (OTMA) interface.

IMS Connect 1.1 and IMS Connector for Java 3.5.3 includes Local Option support.
Local Option enables non-TCP/IP communication between IMS Connector for Java
and IMS Connect when IMS Connector for Java is used with WebSphere
Application Server for OS/390. In addition, both the IMS Connector for Java and
IMS Connect address spaces must reside in the same MVS image. Local Option
uses MVS Program Calls to communicate between the Application Server and IMS
Connect address spaces.

Local Option is supported only with IMS Version 7.1. APAR PQ45057 must be
applied to IMS Connect in order to enable the Local Option support in IMS
Connect that allows IMS Connector for Java to use Local Option.

Local Option is not supported with IMS Version 5.1 or IMS Version 6.1. However,
IMS Connector for Java 3.5.3 can be used with IMS Connect 1.1 and IMS Version
5.1 or 6.1. For additional information on IMS Connect, including access by clients
other than IMS Connector for Java, see:
http://www.ibm.com/software/data/ims/imstoc.html

E-6

http://www-4.ibm.com/software/ts/cics/library/infocenter/
http://www.ibm.com/software/data/ims/imstoc.html

IMS Connector for Java
IMS Connector for Java, one of the e-business connectors included in VisualAge for
Java, can be used by servlets to access IMS transactions. IMS Connector for Java is
used, in conjunction with VisualAge for Java’s Enterprise Access Builder (EAB)
tools, to create an EAB command that accesses the IMS transaction. This EAB
command is typically provided to IBM’s WebSphere Studio to generate a servlet.

To run servlets developed with VisualAge for Java Enterprise Edition V 3.5.3, you
must:
v Have the IMS Connect product installed and running.
v Make the following class libraries accessible to the Application Server:

– The IMS Connector for Java, found in <vajava_install_drive>/IBM
Connector/classes/imsconn.jar.

– The J2EE Connector Architecture, found in <vajava_install_drive>/IBM
Connector/classes/connector.jar.

– The IBM Enterprise Access Builder Library, found in
<vajava_install_dir>/eab/runtime30/eablib.jar .

– The IBM Java Record Library, found in
<vajava_install_dir>/eab/runtime30/\recjava.jar.

– The Local Option Shared Library, found in <vajava_install_drive>/IBM
Connector/lib/libimsconn.so .

<vajava_install_drive> is the drive on which VisualAge for Java is installed; for
example, d:, and <vajava_install_dir is the directory where VisualAge for Java is
installed; for example, d:\VAJava.

Note: The Local Option Shared Library is only needed if you are using Local
Option. Also, VisualAge for Java’s Common Connector Framework (ccf.jar)
file is not copied, since the Application Server provides its own
implementation of ccf.jar. For this implementation, the RuntimeContext
object that is associated, by default, with the servlet’s thread of execution
has a global (common) ConnectionManager that supports connection
pooling.

If you are running servlets that inherit from Studio class StudioPervasiveServlet of
package com.ibm.webtools.runtime, ensure that the class StudioPervasiveServlet is
deployed in your Application Server environment. You can do this by using
VisualAge for Java to create a JAR file of the package com.ibm.webtools.runtime
(for example, webtools.jar), and then deploy it to your Application Server
environment.

The first four files in the above list, and, for example, webtools.jar if needed, must
be uploaded to the Host, stored in your HFS, and added to the appserver.classpath
property in the Application Server was.conf file. The file libimsconn.so, if used,
needs to be uploaded to the Host, stored in your HFS, and added to the
appserver.libpath property in the Application Server was.conf file.

The JAR files containing the Enterprise Access Builder (EAB) commands that the
servlets running on the WebSphere Application Server for OS/390 execute also
need to be added to the appserver.classpath property in the Application Server
was.conf file.

Appendix E. Enabling subsystems for use with the Application Server E-7

E-8

Appendix F. Using the Connection Manager APIs

Connection Manager support will be deprecated in future releases of the
Application Server. Therefore you should not use the Connection Manager for new
application development.

If you have applications that currently use the Connection Manager, the
information contained in this appendix may be useful.

How a servlet uses the Connection Manager
Any servlet using the Connection Manager must follow the following steps:
1. Create the connection specification:

The servlet prepares a specification object identifying information necessary for
connection to a DB2 JDBC database.
If the connection pool property, connectionidentity=server, is specified for the
Connection Manager pool, the Application Server gets a connection using the
Web server’s identity, even if %%CLIENT%% is specified or a userid and
password are coded in the connection specification. If
connectionidentity=connspec, the Application Server gets a connection using
the identity specified by the user and password in the connection specification.
If the connection pool property, connectionidentity=thread, is specified for the
Connection Manager pool, the Application Server gets a connection using the
identity of the thread on which the connection request is made. With
%%CLIENT%% this will be the userid entered on the browser. With
%%SERVER%% this will be the identity of the Web server address space. See
the notes on the connectionidentity property for a Connection Manager pool
under IBMJdbcConnSpec class for more information.

2. Connect to the Connection Manager:
The servlet gets a reference to the Connection Manager in order to
communicate with it. This needs to be done only once in a servlet’s lifetime.

3. Get a Connection Manager connection:
The servlet asks the Connection Manager for a connection to a DB2 JDBC
database using the connection specification prepared in step 1. The connection
object returned is from a Connection Manager pool, and is an instance of a
class defined in the Connection Manager APIs – it is not an object from a class
in the JDBC API set. This first connection is called a Connection Manager
connection. Usually, a servlet gets a Connection Manager connection for every
user request.

4. Use the Connection Manager connection to access a pre-established DB2
connection:
The servlet invokes a method on the Connection Manager connection returned
in step 3, retrieving an object defined in the JDBC API set. This object is called
a DB2 connection to distinguish it from a Connection Manager connection.
The DB2 connection, unlike the Connection Manager connection, is from the
underlying JDBC API set. The DB2 connection is not created for the servlet – the
servlet instead uses the pre-established DB2 connection by virtue of owning a
Connection Manager connection from the pool.

© Copyright IBM Corp. 2000, 2003 F-1

The DB2 connection will be used for the actual interactions with DB2, using the
methods from the underlying JDBC API set. The JDBC APIs are found in the
java.sql package.

5. Interact with DB2:
The servlet interacts with DB2. It retrieves data, updates data, etc., using JDBC
methods. (Information about these methods can be found in the documentation
for the java.sql package and in the documentation that comes with DB2.)

Note: If a servlet uses a DB2 connection for more than one interaction within
the same user request, before performing each interaction, your
developers should verify that the servlet still owns the associated
Connection Manager connection. The Connection Manager periodically
checks a last-used timestamp to see if your servlet has been using the
Connection Manager connection, and if not, the Connection Manager
assumes that your servlet has failed or has otherwise become
unresponsive. It takes the Connection Manager connection away.
Verifying the Connection Manager connection (using the
verifyIBMConnection() method) also updates the last-used timestamp.

6. Release the connection:
The servlet returns the Connection Manager connection to the Connection
Manager pool, freeing the connection for use by another servlet or by another
request from the same servlet.

7. Prepare and send the response:
The servlet prepares and returns the response to the user request. In this step
the developer will probably not be using any Connection Manager APIs.

Connection Manager APIs
The following sections describe the Connection Manager APIs and illustrate how
they relate to the steps discussed in “How a servlet uses the Connection Manager”
on page F-1.

IBMJdbcConnSpec class
A servlet must include a JDBC specification object to record the specifications for
the connection to DB2. This is typically done in step 1 on page F-1. Note that the
specification object does not actually set the specifications, but is used as an
argument by the method that gets the connection (see the getIBMConnection()
method in the IBMConnMgr class below). After the servlet constructs the
specification object, it can use get and set methods to specify the connection
requirements, but usually all the requirements are included on the specification
object. The constructor details are:
public IBMJdbcConnSpec(String poolName, boolean waitRetry, String
dbDriver, String url,String user,String password)

Parameters:

poolName
The name of the Connection Manager pool containing the connection type
the servlet requires.

waitRetry
Indicates whether a servlet is to wait for a connection to free up if the pool
does not currently have an available connection (set to true), or if it is to
immediately fail if a connection from the pool is not available (set to false).
The waitforconnectiontimeoutmilliseconds Connection Time Out parameter

F-2

for the Connection Manager pool is used to set the length of the wait for
the entire connection pool. If the waitRetry parameter is set to true and a
connection cannot be made is not available by the timeout within the time
limit specified on the waitforconnectiontimeoutmilliseconds parameter, the
connection request will fail.

dbDriver
The name of the DB2 driver providing the JDBC-ODBC bridge. See the
DB2 Administrator for the driver name. See the Driver class in the java.sql
package for more information.

url The URL for the DB2 database (typically in the form
jdbc:db2os390:database name). See the getConnection() method in the
DriverManager class in the java.sql package for more information.

user ID
The database user on whose behalf the connection is being made. See the
getConnection() method in the DriverManager class in the java.sql package
for more information.

password
The user password. See the getConnection() method in the DriverManager
class in the java.sql package for more information.

When specifying a value for the connectionidentity property in the was.conf file,
you should consider the following:
v The JDBC specification dictates that the user ID that is to be used for subsequent

database access checks be explicitly provided as user ID and password
parameters on the DriverManager.getConnection method.

v The Application Server always passes the user ID and password specified on the
IBMJdbcConnSpec method as input to the DriverManager.getConnection method
when obtaining a database connection.

v The JDBC driver implementation provided with the DB2 for the OS/390 product
currently does not make use of the values passed in the user ID and password
parameters of the DriverManager.getConnection method. Instead, it uses the
identity that has been established on the currently executing thread as the
primary authorization ID for use on subsequent database access checks via SQL.
In order to accommodate this behavior, the Application Server always establishes
a user identity on the execution thread prior to invoking the
DriverManager.getConnection method.

v When the connectionidentity property is set to server, the identity of the process
that is hosting the Application Server (i.e. the Web server’s identity) is
established on the execution thread prior to obtaining a DB2 JDBC connection.

v When the connectionidentity property is set to connspec, the user ID and
password specified on the IBMJdbcConnSpec are used to establish the identity of
the execution thread when obtaining a DB2 JDBC connection.

v When the connectionidentity property is set to thread, the user ID on the thread
issuing the connection request is used to obtain the DB2 JDBC connection. With
%%CLIENT%%, the userid on the thread will be the userid entered at the
browser. With %%SERVER%%, the userid on the thread will be the identity of
the Web server address space.

v JAVA_PROPAGATE=NO, the Web server must be defined as a RACF
SURROGAT and all client userids permitted to the Web server SURROGAT.

v If the connectionidentity property is not specified, the default behavior is to use
the user ID and password specified on the IBMJdbcConnSpec to establish the
identity of the execution thread when obtaining a DB2 JDBC connection.

Appendix F. Using the Connection Manager APIs F-3

See the Javadoc for the Application Server APIs for information about the get and
set methods for the IBMJdbcConnSpec class.

IBMConnMgrUtil class
Use a method of this class to get a reference to the Connection Manager. This is
typically done in 2 on page F-1. You will use the reference to communicate with the
Connection Manager and use its services.

Only one class or static method of this class is of interest – the public static
IBMConnMgr.

Returns:

A reference to the Connection Manager.

IBMConnMgr class
The running instance of the Connection Manager is an instance of this class. A
servlet will get a reference to the Connection Manager in step 2 2 on page F-1. The
servlet will use this reference to communicate with the Connection Manager and
use its services. A servlet never creates an instance of the Connection Manager, but
instead uses a reference to the existing instance. For details, see the previous
discription of the getIBMConnMgr() method of the IBMConnMgrUtil class.

Only one method of this class is of interest – the getIBMConnection() method to
get a Connection Manager connection from the pool (used in step 3 on page F-1).

getIBMConnection()
public IBMConnection getIBMConnection(IBMConnSpec connSpec)
throws IBMConnMgrException

This method gets a Connection Manager connection from the pool for use by the
servlet, if such a connection is available. Note, the only parameter passed is a
specification object (created in step 1 on page F-1) for the connection. If a
Connection Manager connection is not immediately available, and if waitRetry in
the specification object is set to true, the servlet can wait for a Connection Manager
connection to become available.

The length of the wait is set using the ConnectionTimeOut parameter for the
Connection Manager pool. The ConnectionTimeOut parameter can also be used to
disable the wait or extend the wait indefinitely. If a Connection Manager
connection does not become available after the wait period, the
getIBMConnection() method will throw an IBMConnMgrException exception.

If waitRetry is false, failure to get a Connection Manager connection causes the
getIBMConnection() method to throw the exception right away.

Note: Note the returned IBMConnection object is a ″general″ connection object and
must be cast to a connection object specific to DB2. Without the appropriate
cast, the connection object cannot use its methods to get to DB2 in step 5 on
page F-2.

Parameters:

connSpec
An extension of the IBMConnSpec class, containing detailed connection
requirements for DB2 (created in step 1 on page F-1).

F-4

Returns:

An IBMConnection object from the Connection Manager pool.

IBMJdbcConn class
The IBMConnection object retrieved in step 3 on page F-1 needs to be cast to the
IBMJdbcConn class in order for DB2 to be accessed. Otherwise, there is no access
to the APIs associated with DB2. Access to the APIs of the JDBC server through a
IBMJdbcConn object is typically established in step 4 on page F-1.

The IBMJdbcConn class has one method of interest:
public Connection getJdbcConnection()

Returns:

A Connection object to DB2.

The connection class is from the JDBC API and is documented with the java.sql
package. Methods of the Connection class let you interact with DB2. Elsewhere in
this chapter the Connection class is referred to as the DB2 connection, to
distinguish it from the Connection Manager connection. Recall that the Connection
Manager connection is not part of the JDBC API set.

IBMConnection class
The IBMJdbcConn class is an extension of the IBMConnection class. Thus, many of
the methods in the IBMConnection class are also in instances of the IBMJdbcConn
class. Two methods of the IBMConnection class (also in IBMJdbcConn) are of
interest – the verifyIBMConnection() method to verify that the Connection
Manager connection is still valid (optionally used in step 5 on page F-2), and the
releaseIBMConnection() method to return the Connection Manager connection to
the pool (used in step 6 on page F-2).

verifyIBMConnection()
public boolean verifyIBMConnection()
throws IBMConnMgrException

The Connection Manager might take a Connection Manager connection away from
a servlet if the Connection Manager connection has been inactive for a specified
length of time. The MaximumAge property in the was.conf file is used to specify
this time period.

If a servlet uses a DB2 connection for several interactions within one user request,
your developers may want to invoke the verifyIBMConnection() method before
each interaction to check whether the servlet still owns the associated Connection
Manager connection from the pool. If the servlet still owns the connection,
invoking the method will also reset a last-used timestamp.

If a servlet’s interactions with DB2 (from one user request) will complete within a
few seconds, there is probably no need to use the verifyIBMConnection() method
— the request will complete long before there is any chance that the Connection
Manager will take away the connection.

Returns:

True if the servlet still owns the Connection Manager connection; otherwise false.

Appendix F. Using the Connection Manager APIs F-5

releaseIBMConnection()
public void releaseIBMConnection()
throws IBMConnMgrException

When a servlet no longer needs the Connection Manager connection object, the
servlet uses this method to release the connection back to the pool. This should be
done at the end of each user request.

F-6

Appendix G. Messages EJS3002I - EJS3087E

EJS3002I This is IBM WebSphere Application
Server for OS/390 3.50 built on OS/390
Version v Release r, WAS Service Level
ll

Explanation: This message identifies WebSphere
Application Server’s service level and the MVS version
and release upon which WebSphere Application Server
was built.

User Response: Informational message, no action
required.

EJS3003I Built on ddd at ttt.

Explanation: This message identifies the date and time
when WebSphere Application Server was built. ddd
specifies the date and ttt specifies the time.

User Response: Informational message, no action
required.

EJS3004I Started at ttt

Explanation: This message identifies the time when
WebSphere Application Server was started. ttt specifies
the time.

User Response: Informational message, no action
required.

EJS3005I Started Server Type = nnn

Explanation: This message identifies WebSphere
Application Server’s started server type. nnn is either
STANDALONE, WQ_Daemon, or WQ_Server.

User Response: Informational message, no action
required.

EJS3006I Restarted at ttt

Explanation: This message specifies the time when
WebSphere Application Server restarted. ttt is the time.

User Response: Informational message, no action
required.

EJS3007E IBM WebSphere Application Server for
OS390 native plugin cannot restart...

Explanation: This message indicates WebSphere
Application Server cannot restart because an error
occurred during termination.

User Response: Examine the trace log for entries
pertaining to the termination error. Correct any
problem(s) indicated there. Restart WebSphere

Application Server. If the problem persists, call IBM
product support.

EJS3008I IBM WebSphere Application Server for
OS390 native plugin is reinitializing...

Explanation: This message indicates WebSphere
Application Server is reinitializing.

User Response: Informational message, no action
required.

EJS3009I Started Queue State = ttt

Explanation: This message identifies WebSphere
Application Server’s started queue state. ttt is either:
STANDALONE, WQ_Daemon, or WQ_Server

User Response: Informational message, no action
required.

EJS3010E IBM WebSphere Application Server for
OS390 unable to extract the Queue State
environment variable

Explanation: This message indicates WebSphere
Application Server is unable to extract the Queue State
environment variable.

User Response: Examine the error log for entries
pertaining to the extract error. Correct any problem(s)
indicated there. Restart WebSphere Application Server.
If the problem persists, call IBM product support.

EJS3011E IBM WebSphere Application Server for
OS390 Unable to extract the APPLENV
environment variable

Explanation: This message indicates WebSphere
Application Server is unable to extract the APPLENV
environment variable.

User Response: Examine the error log for entries
pertaining to the extract error. Correct any problem(s)
indicated there. Restart WebSphere Application Server.
If the problem persists, call IBM product support.

EJS3012E IBM WebSphere Application Server for
OS390 Unable to extract the
INIT_STRING environment variable

Explanation: This message indicates the HTTP
Server’s ServerInit directive (to initialize WebSphere
Application Server) does not contain the
applicationserver_root parameter.

See the section ″Verifying the Application Server
installation″ in ″WebSphere Application Server for

© Copyright IBM Corp. 2000, 2003 G-1

OS/390 Standard Edition, Version 3.5: Planning,
Installing and Using″, GC34–4835, for specific
information on the correct way to specify the
initialization string.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3013E IBM WebSphere Application Server for
OS390 unable to parse configuration
parameter: nnn

Explanation: This message indicates the HTTP
Server’s ServerInit directive (to initialize WebSphere
Application Server) has an invalid
applicationserver_root parameter. That parameter does
not begin with a forward slash.

See the section ″Verifying the Application Server
installation″ of ″WebSphere Application Server for
OS/390 Standard Edition, Version 3.5: Planning,
Installing and Using″, GC34–4835, for specific
information about the correct way to specify the
initialization string.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3014E IBM WebSphere Application Server for
OS390 Unable to parse the
INIT_STRING environment variable

Explanation: This message indicates the HTTP
Server’s ServerInit directive (to initialize WebSphere
Application Server) has an initialization parameter
which cannot be parsed by WebSphere Application
Server.

See the section ″Verifying the Application Server
installation″ of ″WebSphere Application Server for
OS/390 Standard Edition, Version 3.5: Planning,
Installing and Using″, GC34–4835, for specific
information about the correct way to specify the
initialization string.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3015E IBM WebSphere Application Server for
OS390 JAVA_HOME is not set

Explanation: This message indicates the environment
variable JAVA_HOME is not set.

User Response: Correct the error(s) indicated by the
message and/or trace log entries. If the problem
persists, call IBM product support.

EJS3016E Initialization Error: Failed to load xxx

Explanation: This message indicates WebSphere
Application Server is unable to load the was.conf
configuration file.

See the section ″Verifying the Application Server
installation″ of ″WebSphere Application Server for
OS/390 Standard Edition, Version 3.5: Planning,
Installing and Using″, GC34–4835, for specific
information about the correct way to specify the
initialization string.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3017E IBM WebSphere Application Server for
OS390 native plugin initialization failed
:-(

Explanation: This message indicates WebSphere
Application Server initialization failed.

User Response: Correct any error(s) indicated by
previous messages or by trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3018E Initialization Error: Failed to validate
properties

Explanation: This message indicates WebSphere
Application Server failed to validate initialization
properties because of syntax error.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for the correct property syntax.

User Response: Correct any error(s) indicated by
previous messages or by trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3019E Initialization Error: Failed to obtain
storage for get default global name

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3020I Startup Parameter -- Install Root = nnn

Explanation: This message specifies the WebSphere
Application Server’s installation root directory, nnn.

User Response: Informational message, no action
required.

G-2

EJS3021I Startup Parameter -- Configuration file =
nnn

Explanation: This message identifies WebSphere
Application Server’s configuration file.

User Response: Informational message, no action
required.

EJS3022I Startup Parameter -- Default Global
properties file = nnn

Explanation: This message identifies WebSphere
Application Server’s default global properties
configuration file.

User Response: Informational message, no action
required.

EJS3023I Startup Parameter -- JDK install
directory (JAVA_HOME) = nnn

Explanation: This message identifies WebSphere
Application Server’s JDK installation directory.

User Response: Informational message, no action
required.

EJS3024E Initialization Error: Failed to load
Default Global properties file nnn

Explanation: This message indicates WebSphere
Application Server failed to load the default global
properties file default_global.properties.

See ″Appendix ″C″ ″WebSphere Application Server for
OS/390 Standard Edition, Version 3.5: Planning,
Installing and Using″, GC34–4835, for the correct way
to specify default global properties.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3025E Initialization Error: Unable to set
product log level

Explanation: This message indicates WebSphere
Application Server failed to set the logging level.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for the correct way to specify the
product logging level.

User Response: Correct the configuration error.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3026I Startup Parameter -- Plugin Logging
Level = nnn

Explanation: This message identifies WebSphere
Application Server’s plugin logging level. nnn is either
INFO, ERROR, WARNING.

User Response: Informational message, no action
required.

EJS3027E Initialization Error: Configuration file
version number in nnn is missing or
incorrect

Explanation: This message indicates WebSphere
Application Server was.conf configuration file version
number property appserver.version is missing or
specifies an incorrect value. It must specify:
appserver.version=3.50.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for the correct way to specify the
appserver.version property in the was.conf
configuration file.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3028E Initialization Error: Unable to obtain
storage while setting plugin trace level

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3029E Initialization Error: Unable to obtain
storage while setting servlet engine trace
level

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3030E Initialization Error: Unable to obtain
storage while reading product work
directory

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

Appendix G. Messages EJS3002I - EJS3087E G-3

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3031E Initialization Error: Unable to obtain
storage while reading java eventlib

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3032E Initialization Error:
setenv(″JAVA_PROPAGATE″,″nnn″,1)
failed, errno=xx, __errno2()=yy

Explanation: This message indicates WebSphere
Application Server’s call to setenv failed.

User Response: Correct the error(s) indicated by the
errno and errno2 fields, and any error(s) indicated by
previous message(s) and/or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3033I Startup Parameter -- Plugin Logging
Directory = nn

Explanation: This message identifies WebSphere
Application Server’s plugin logging directory, nn.

User Response: Informational message, no action
required.

EJS3034I Initialization Error: Unable to obtain
storage while creating initialization data

Explanation: This message indicates WebSphere
Application Server is unable to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3035I IBM WebSphere Application Server for
OS390 native plugin initialization went
OK :-)

Explanation: This message indicates WebSphere
Application Server successfully initialized.

User Response: Informational message, no action
required.

EJS3036W Warning: Server IP address could not be
obtained.

Explanation: This message indicates WebSphere
Application Server’s IP address could not be obtained.

User Response: Correct any error(s) indicated by
previous message(s) and/or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3037W Warning: Failure obtaining storage for
server address.

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous message(s)
and/or trace log entries. Restart WebSphere Application
Server. If the problem persists, call IBM product
support.

EJS3038I Startup Parameter -- Using server IP
address: xxx

Explanation: This message identifies WebSphere
Application Server’s IP address.

User Response: Informational message, no action
required.

EJS3039I Error Log Started at ttt

Explanation: This message indicates the time (ttt) that
WebSphere Application Server’s error log started
recording.

User Response: Informational message, no action
required.

EJS3040E Specification violation -- write not
called

Explanation: This message is typically symptomatic of
an application error. For example, the application did
not generate any output.

User Response: Ensure that the failing application
catches and reports exceptions. Examine the ncf log for
any message(s) associated with the failing application.
Correct the application error(s). Restart WebSphere
Application Server. If the problem persists, call IBM
product support.

EJS3041E SE specification violation!!!
prepare_for_write() was already called

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

G-4

EJS3042E SE specification violation!!!
prepare_for_write() was not called
before write()

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3043E SE specification violation!!! send_error()
was called after prepare_for_write()

Explanation: This message is typically symptomatic of
an application error.

User Response: Ensure that the failing application
catches and reports exceptions. Examine the ncf log for
any message(s) associated with the failing application.
Correct the application error(s). Restart WebSphere
Application Server. If the problem persists,call IBM
product support.

EJS3044E Could not find class nnn ...

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3045E Initialization Failed: DLL Version
Mismatch

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3046E Initialization Failed: No connection data
pointer provided.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Cestart WebSphere Application Server.
If the problem persists, call IBM product support.

EJS3047E Initialization Failed: No initialization
data pointer provided.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3048E Initialization Failed: No bootstrap
properties provided.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Cestart WebSphere Application Server.
If the problem persists, call IBM product support.

EJS3049E Initialization Failed: No default server
name specified.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3050E Initialization Failed: No default server
software specified.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3051E Initialization Failed: OSE Version
mismatch.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3052E Initialization Failed: Invalid engine type
specified.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3053E Failed to Initialize OSE: rc = nnn

Explanation: This message indicates WebSphere
Application Server failed initialization.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3054E Failed to Initialize in-process JVM :
return code = nnn

Explanation: This message indicates WebSphere
Application Server failed initialization.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3055E Failed to create in-process JVM : return
code = nnn

Explanation: This message indicates WebSphere
Application Server failed initialization.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

Appendix G. Messages EJS3002I - EJS3087E G-5

EJS3056E Verification of in-process JVM failed :
return code = nnn

Explanation: This message indicates WebSphere
Application Server failed initialization.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3057E Switching Thread Security Failed: Error
in userid...

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3058E Switching Thread Security Failed: Error
in password...

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3059E Switching Thread Security Failed:
security create failed - rc= nn errno= nn
errno2 = nn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3060E Switching Thread Security Failed:
security delete failed - rc= nn errno= nn
errno2 = nn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3061E Can’t open directory nnn

Explanation: This message indicates WebSphere
Application Server was unable to open directory nnn
specified in the application server classpath.

User Response: Ensure that the directory exists and is
readable by WebSphere Application Server. Correct any
error(s) indicated by previous messages or trace log
entries. Restart WebSphere Application Server. If the
problem persists, call IBM product support.

EJS3062E Can’t find system environment variable
[nnn]

Explanation: This message indicates the was.conf
property appserver.usesystemclasspath was set to true
but WebSphere Application Server cannot find the

CLASSPATH system environment variable.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server.If the problem persists,
call IBM product support.

EJS3063E Failed in classpath validation

Explanation: This message indicates WebSphere
Application Server failed in classpath validation.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3064E BM WebSphere Application Server for
OS390 detected an illegal value for
property nnn

Explanation: This message indicates WebSphere
Application Server detected an illegal value for
property nnn.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for a description of property nnn.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3065E IBM WebSphere Application Server for
OS390 detected illegal property nnn

Explanation: This message indicates WebSphere
Application Server detected an illegal value for
property nnn.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for a description of property nnn.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3066E Initialization Error: Failed to obtain
storage for ini file

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous messages or
trace log entries. Restart WebSphere Application Server.
If the problem persists, call IBM product support.

G-6

EJS3067E Initialization Error: Failed to open file
nnn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3068E Error : wrong input to nnn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3069E Error : in nnn, property nnn is missing

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3070E Error : in nnn, given buffer is short

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3071E Error : obtaining storage for plugin
libpath

Explanation: This message indicates WebSphere
Application Server failed to obtain required storage.

User Response: Increase the amount of storage.
Correct any error(s) indicated by previous messages or
trace log entries. Restart WebSphere Application Server.
If the problem persists, call IBM product support.

EJS3072E errno: nn, __errno2(): nnn, loading DLL
[nnn]: nnn

Explanation: This message indicates WebSphere
Application Server failed loading DLL nnn.

User Response: Correct any error(s) indicated by the
errno and errno2 fields, and correct any error(s)
indicated by previous messages or trace log entries.
Restart WebSphere Application Server. If the problem
persists, call IBM product support.

EJS3073E Loading function pointer for [nnn] from
[nnn]: errno: nnn __errno2(): nnn

Explanation: This message indicates WebSphere
Application Server failed loading function pointer for
nnn.

User Response: Correct any error(s) indicated by the
errno and errno2 fields, and any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3074E errno: nnn, __errno2(): nnn, in nnn can
not get the ose lib [nnn]

Explanation: This message indicates WebSphere
Application Server failed getting ose lib nnn.

User Response: Correct the error(s) indicated by the
errno and errno2 fields, and any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3075E Error : in nnn can not get the ose router
lib

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3076E Error - NULL property file name

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3077E Error - Couldn’t find property file nnn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3078I Generated CLASSPATH follows:

Explanation: This message indicates WebSphere
Application Server’s generated classpath follows.

User Response: Informational message, no action
required.

EJS3079I CLASSPATH entry: nnn

Explanation: This message indicates WebSphere
Application Server’s classpath entry.

User Response: Informational message, no action
required.

EJS3080I End of generated CLASSPATH

Explanation: This message indicates WebSphere
Application Server’s generated classpath echo has
ended.

User Response: Informational message, no action
required.

Appendix G. Messages EJS3002I - EJS3087E G-7

EJS3081E Error : in nnn, nnn is not a directory

Explanation: This message indicates that WebSphere
Application Server, while validating properties,
detected nnn is not a directory.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for a description of the correct way
to specify was.conf file properties.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3082E Error : in nnn no java libpath given in
nnn.

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3083E Error : in nnn, can not generate directory
from nnn and nnn

Explanation: This message indicates a WebSphere
Application Server internal error.

User Response: Call IBM product support.

EJS3084E Detected bad classpath entry: nnn

Explanation: This message indicates WebSphere
Application Server detected bad classpath entry nnn.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

EJS3085E Missing property [nnn] using default
[nnn]

Explanation: This message indicates WebSphere
Application Server detected missing property nnn and
is using the default of nnn.

User Response: Informational message, no action
required.

EJS3086W Warning: Default Global property [nnn]:
nnn

Explanation: This message indicates WebSphere
Application Server is using the value nnn for Default
Global property nnn.

User Response: Informational message, no action
required.

EJS3087E Error: Invalid Default Global property
[vvv]: nnn

Explanation: This message indicates WebSphere
Application Server detected an invalid value (vvv) for
Default Global property nnn.

See ″WebSphere Application Server for OS/390
Standard Edition, Version 3.5: Planning, Installing and
Using″, GC34–4835, for a description of the correct way
to specify default.global file properties.

User Response: Correct any error(s) indicated by
previous messages or trace log entries. Restart
WebSphere Application Server. If the problem persists,
call IBM product support.

G-8

Appendix H. Apache Software License, Version1.1

Copyright (c) 1999 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must
include the following acknowlegement:
"This product includes software developed by the Apache Software
Foundation (http://www.apache.org/)."

Alternately, this acknowlegement may appear in the software itself, if and
wherever such third-party acknowlegements normally appear.

4. The names ″The Jakarta Project″, ″Tomcat″, and ″Apache Software Foundation″
must not be used to endorse or promote products derived from this software
without prior written permission. For written permission, please contact
apache@apache.org.

5. Products derived from this software may not be called ″Apache″ nor may
″Apache″ appear in their names without prior written permission of the
Apache Group.

THIS SOFTWARE IS PROVIDED ``AS IS’’ AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on
behalf of the Apache Software Foundation. For more information on the Apache
Software Foundation, please see:
http://www.apache.org/

© Copyright IBM Corp. 2000, 2003 H-1

H-2

Glossary

All technical terms and abbreviations used in WebSphere Application Server
documentation are contained in the publication IBM Glossary of Computing Terms
located at URL:

http://www.ibm.com/networking/nsg/nsgmain.htm.

© Copyright IBM Corp. 2000, 2003 I-1

http://www.ibm.com/networking/nsg/nsgmain.htm

I-2

Bibliography

This bibliography lists the books related to
Version 3.5 of the WebSphere Application Server
for OS/390.

Application Server books are available from the
WebSphere Application Server for OS/390 Web
site at URL:
http://www.ibm.com/software/websphere/

appserv/zos_os390/library.html

For a summary of available OS/390 books and
online information, see the OS/390 Information
Road Map which is available in BookManager
format on the OS/390 CD-ROM Collection Kit
and from the OS/390 Web site at URL:
http://www.ibm.com/s390/os390/bkserv/

Application Server publications
v Application Server Planning, Installing, and Using,

GC34–4835
This book contains the information you need to
plan for, install, configure, and use the
Application Server.

v WebSphere Troubleshooter for OS/390. This
document is only available on the Web and
provides the most current hints and tips
(debugging, tuning, and browser) for the
Application Server and the Web server. To
access the Troubleshooter, go to URL:
http://www.ibm.com/software/websphere/

httpservers/troubleshooter.html

Web server publications
Web server documentation can be accessed from
the default Front Page of your Web server.

For the most current documentation and updates,
go to the Web site Library page for your Web
server. For more information, see “Required
OS/390 Web server” on page 1-1.

OS/390 publications
v OS/390 Information Road Map, GC28-1727

This book describes available information for
the elements and features in OS/390. It also
explains how to order OS/390 documentation
and how to access online OS/390 information.

v OS/390 Planning for Installation, GC28-1726
This book lists the elements and features in
OS/390. It explains how to get OS/390 up and
running, and provides information about
migration actions for specific elements of
OS/390.

v OS/390 MVS Planning: Workload Management,
GC28-1761
This book explains Workload Management
(WLM) concepts and interfaces, and includes
the steps required for using WLM as well as its
benefits.

© Copyright IBM Corp. 2000, 2003 J-1

J-2

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

This product includes software developed by the Apache Software Foundation
(http://www.apache.org/). The relevant terms and conditions, notices and other
information regarding this software is provided in Appendix H, “Apache Software
License, Version1.1”, on page H-1.

© Copyright IBM Corp. 2000, 2003 K-1

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION ″AS IS″
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain translations, therefore, this statement may not apply to you.

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of the Application Server.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v BookManager
v DB2
v IBM
v IBMLink
v OS/390
v RACF
v S/390
v System/390
v WebSphere

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Incorporated.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries.

Lotus, Domino, Lotus Go Webserver, and Lotus Notes are trademarks of the Lotus
Development Corporation in the United States, or other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

Netscape and Netscape Navigator are trademarks of the Netscape Communications
Corporation in the United States, or other countries, or both.

K-2

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product or service names may be the trademarks or service marks
of others.

Notices K-3

K-4

Index

Special characters
/AppServer/properties/

default_global.properties file 2-8, 3-16,
B-1

.jar files 3-15

.ser files 3-15
*.class files 3-15
*.html files 3-7, 3-15
*.jsp files 3-15
*.servlet files 3-15, 3-26

A
AdapterExit entry point 2-1
AdapterInit entry point 2-1
API 2.1 specification 2-9, 3-7, A-7
API 2.2 specification 2-9
API compatibility mode 2-9
API compliance mode 2-9
APIs 2-9, A-7, A-8, A-10
APIs provided with the Application

Server 3-26
Connection Manager 4-10, A-10

application development tooling
considerations 1-9

Application Server
adding *.class files to 3-15, 3-16
adding *.servlet files to 3-15
adding *.servlets in jar, ser, or zip files

to 3-5, 3-15, 3-16
adding HTML, and JSP files to 3-5,

3-15, 3-16
API packages 3-26, 4-10
application development tools that

can be used with 1-9
changing configuration properties

for 2-5, 2-6, 2-7
customizing 2-5
description of ix, x
directing requests to 2-7
file types supported by 3-15
installing 2-1
JVM.properties file B-1
logging supported by 2-10
migration considerations A-1
modifying basic configuration

settings 2-5, 2-6, 2-8
ordering information x
planning for installation of i, 1-10
restrictions to programming

model D-1
running in Scalable Server mode 1-5,

2-7
software requirements 1-1
starting 2-3
using proxy server with 5-3
using to access DB2 4-1, E-1, E-3, E-7
using with CICS 1-5, E-5
using with IMS 1-5
verifying it is properly installed 2-1

Application Server (continued)
Web server requirements 1-1

Application Server JVM classpath,
specifying 3-14, B-1

Application Server model 2-5
Application Server properties

alias property B-1
Application Server run-time

environment 2-5
classpath properties B-1
debug property B-1
filter property B-1, F-1
format requirements 3-16
IBMConnMgr.JDBC.useSerVerIdentity

property A-5
migrating settings for 2-5
ncf.jvm .classpath property E-3, E-7
servlet properties B-1
servlet.<servlet_name> .initargs

property 3-26
servlets.callpage.create.href 5-3
session properties B-1
session.protocolswitchrewriting.enable

property 5-2
session.urlrewriting.enable

property 5-2
summary of A-5
to define servlet engine instance 2-5

Application Server run-time
properties B-1

description of 2-5
processing of 2-7

applicationserver_root
definition of 2-1

applicationserver_root, default value
for 2-1

appserver.compliance.mode
property 2-9, B-1

appserver.configviewer property B-1
appserver.jspbasehrefadd property B-1
appserver.jvmpropertiesfile

property 2-8, B-1
appserver.logdirectory property 2-8,

2-10, B-1
appserver.loglevel property 2-8, 2-10,

B-1
appserver.workingdirectory

property 2-11, B-1
ASCII files 3-14, 3-16
au file extension 3-15

B
base hdref property B-1
batch compiling JSPs 3-22

C
Call Level Interface (CLI) 1-4
CCF support 1-5

chaining servlets 3-29
CICS, enabling communication with 1-5,

E-5
class files 3-15, A-5
class loading 3-7, 3-20
classes, Java

IBMConnection F-5
IBMConnMgr F-4
IBMJdbcConn F-5
IBMJdbcConnSpec F-2

ClassLoader 3-14
classpath properties B-1
classpath setting for a Web

application 3-3, 3-7, 3-14, 3-16
close() method 4-8
Common Connector Framework

support 1-5
compiling

non-ejb applications 3-26
servlets 3-26

compiling JSPs 3-22
compliance.mode property 2-9, B-1
configuration settings,

checking current values 2-4
migrating A-5
modifying 2-5, 2-6

configuring
Application Server 2-8
log files 2-8
session clusters 5-4
session tracking 5-3
Web applications 3-14

configviewer property B-1
Connection Manager

APIs 4-10, F-2
how servlets use F-1
recording specifications F-2
specifying pool names for F-2
using connection pooling instead

of 4-8, A-10
connection object

casting to underlying server F-4
used by servlets F-1

Connection object 4-1, D-1, E-1
connection pool properties B-1
connection pooling 4-1, 4-4, 4-8, D-1, E-1
connection pooling parameters

connection timeout 4-4, 4-8
how to change 4-4, 4-8
idle timeout 4-4, 4-8
maximum connection pool size 4-4,

4-8
minimum connection pool size 4-4,

4-8
orphan timeout 4-4, 4-8

connection pools
getting connection from F-4
setting parameters for 4-4, 4-8
setting up F-2

connection specification F-1
connections, orphan 4-4, 4-8

© Copyright IBM Corp. 2000, 2003 X-1

cookies, using 5-2
creating a Web application 3-7

D
database pool connection 4-1, 4-4, 4-8,

D-1, E-1
DataSource objects 4-1, 4-3, 4-8, D-1, E-1
DB2

accessing from the Application
Server 4-1, E-1

identifying to the Application
Server E-3, E-7

planning considerations 1-4
setting up tables for E-5
using to store session tracking

information E-3, E-7
using with the Connection

Manager 4-8, E-7
DB2 Call Level Interface (CLI) 1-4
DBMS, specifying 4-5
default was.conf file 2-5, 2-6, 5-4
default_global.properties file 2-8, 3-16,

B-1
defining a Web application 3-7
deployed Web application name 3-7
deployedwebapp properties 3-7, 3-14,

B-1
deploying

a Web application 3-3
JSPs 3-5

directing requests to the Application
Server 2-7

directives, Web server 2-1
directories

applicationserver_root, default
for 2-1

applicationserver_root/
AppServer/bin 2-1

Distributed Debugger tool 1-6, B-1
DLLs 2-1
document root setting for a Web

application 3-3, 3-7, 3-14, 3-16
documentation

APAR and service updates 1-10
Application Server xi, J-1
IBM WebSphere Application Server

Site Analyzer ix
Java xi
OS/390 J-1
Resource Recovery Manager Services

(RRS) 1-4
SQLJ 1-4
Web server xi, 2-1, J-1
WebSphere Application Server for

OS/390 Component Broker ix
Workload Management (WLM) 1-4,

J-1
doGet() method 4-8
doPost() method 4-8
double-byte character set K-1

E
EBCDIC files 3-14, 3-16
enabling protocol switching 5-2

enabling URL rewriting 5-2
establishing a session 5-1

F
file extensions, directory paths for 3-15
file types supported 3-15

G
getIBMConnection() method F-4
GIF files 3-7, 3-15
global.properties 2-8, 3-16, B-1

H
Hashtable objects 4-1, D-1, E-1
host properties 3-18, B-1
HTML files 3-7, 3-15
HTTP1.1 extensions, methods for 5-1,

5-2
httpd.conf, Web server configuration

file 2-1

I
IBM support services xi
IBM WebSphere Application Server Site

Analyzer ix
IBMConnection class F-5
IBMConnMgr class 4-8, F-4
IBMConnMgr.JDBC.useSerVerIdentity

property A-5
IBMConnMgrUti class 4-10
IBMJdbcConn class F-5
IBMJdbcConnSpec class 4-8, F-2
idle connections 4-4, 4-8
improving JSP compile time 3-25
IMS, enabling communication with 1-5
in-memory session pools 5-7
init-parameters, passing to a servlet 3-26
init() method 4-8
install image, default value for 2-1
Installation Verification Program 2-4
installing 1-10

Application Server 2-1

J
jar files 3-15, 3-26
Java classes

IBMConnection F-5
IBMConnMgr F-4
IBMJdbcConn F-5
IBMJdbcConnSpec F-2

Java files, specifying path information
for 3-15

Java Native Interface, Java Native
Interface 3-20

Java Server Pages (JSPs)
adding to a Web application 3-5
invoking example provided with

product 2-4
specification level required 3-7

Java Servlet API 2.1 2-9, 3-7, A-7

Java Servlet API 2.2 2-9
JAVA_HOME environment variable,

setting 2-1
JavaBeans

*.class files for 3-15
javac compiler response time,

improving 3-25
JDBC

how servlets use 4-2, A-10
location of APIs F-1

JDBC 2.0 Standard Extension API 4-2,
4-3

JDBC database management system,
specifying 4-5

jdbcconnpool properties B-1
JNI, Java Native Interface 3-20
JSP compile time, improving 3-25
jsp10BatchCompile.sh shell script 3-22
jsp11BatchCompile.sh shell script 3-22
JSPs

adding to a Web application 3-5
invoking example provided with

product 2-4
specification level required 3-7

JSPs, compiling 3-22
JVM classpath, specifying 3-14, B-1
jvm.properties file B-1
JVM.properties file

description of 2-5
directory B-1

jvmproperties file property 2-8, B-1

L
log files 2-8
log files, where located 2-8
logdirectory property 2-8, 2-10, B-1
logging, supported by the Application

Server 2-8, 2-10
loglevel property 2-8, 2-10, B-1

M
maintaining session state

information 5-2
mapping URLs to Web components 3-17
migrating

class files A-5
configuration settings A-5
considerations A-1
from 3.0x connection pooling to 3.5

connection pooling A-9
JSP APIs A-1, A-8
servlets A-5, A-10
to Servlet API 2.1 A-7
Web server directive changes A-7

model, Application Server 2-5
monitoring

log output 2-8, 2-10
multicontext support E-1

N
non-EJB applications

compiling 3-26

X-2

O
Object Level Trace tool 1-6, B-1
OLT (Object Level Trace) tool 1-6, B-1
orphan connection 4-4, 4-8
OS/390

releases the Application Server runs
on 1-1

required Web server 1-1
OS/390 Workload Management (WLM)

considerations 1-4

P
pool name, specifying F-2
pre-compiling JSPs 3-22
problem determination, run-time 1-6
programming model restrictions D-1
property files for Application Server

V1.1 A-5
protocol switching 5-2
proxy server 5-3

R
Recoverable Resources Management

Services (RRS) 1-4
releaseIBMConnection() method F-5
reloading servlets when modified 3-7,

3-14, 3-20, 5-3
requests, directing to the Application

Server 2-7
restrictions, programming model D-1
root-URI 3-7
run-time problem determination 1-6

S
SAF support 1-5
Scalable Server mode, running in 1-5
SDK

requirements ix, 1-2, 2-1, 3-26
security

security considerations 3-19
ser files 3-15
server_model_root 2-5
ServerInit directive 2-1, 2-5
ServerTerm directive 2-1
Service directives 2-1
Servlet API 2.1 2-9, 3-7, A-7
Servlet API 2.2 2-9
servlet APIs provided with the

Application Server 3-26
Connection Manager 4-10, A-10

servlet class files 3-15
servlet engine

properties used to define 2-5
servlet files 3-15, 3-26
servlet.<servlet_name> .initargs

property 3-26
servlets

*.class files for 3-15
adding to a Web application 3-5
chaining 3-29
compiling 3-26

servlets (continued)
connection pools, using 4-1, 4-4, 4-8,

D-1, E-1
HTML files 3-15
JSP files 3-15
migrating A-5
passing init-parameters to 3-26
reloading when modified 3-7, 3-14,

3-20
URL rewriting 5-2
using connection pooling instead of

the Connection Manager 4-8, A-10,
F-1

servlets.callpage.create.href property 5-3
session clustering 5-3
session tracking

configuring 5-3
establishing 5-1
generating output from 5-1
security 5-1
storing application-specific data 5-1
use of cookies 5-2

session.protocolswitchrewriting.enable
property 5-2

session.urlrewriting.enable property 5-2
Software Development Kit (SDK)

requirements ix, 1-2, 2-1, 3-26
software requirements 1-1
SQLJ/JDBC run-time properties files,

customizing E-5
static files 3-5, 3-7, 3-15, 3-16
Studio created files 1-9, 4-10
Support services xi
System Authorization Facility

support 1-5

T
tooling considerations for application

development 1-9
tracing 1-6, B-1

U
URLs

for Application Server
documentation 2-1

for viewing APARS and service
updates 1-10

for Web server documentation 2-1
mapping Web components to 3-17
rewriting before returning to

browser 5-2
user security 3-19

V
verifyIBMConnection() method F-5
verifying a Web application 1-10
virtual host properties 3-18, B-1
virtual hosts 3-1

W
War files, placing Web applications

into 3-11
wartowebapp.sh command, issuing 3-11
was.conf file 2-5, 2-6, 5-4
was302plugin.so DLL 2-1
Web App

configuring 3-14
creating 3-3, 3-5
deploying 3-3, 3-7
description of 3-1
main settings for 3-3
placing in a war file 3-11
verifying 1-10
Web components that can be included

in 3-5, 3-17
Web application

configuring 3-14
creating 3-3, 3-5
deploying 3-3, 3-7
description of 3-1
main settings for 3-3
placing in a war file 3-11
verifying 1-10
Web components that can be included

in 3-5, 3-17
Web application name 3-7
Web Archive files, placing Web

applications into 3-11
Web components

adding to a Web application 3-5
definition of 3-1
mapping URLs to 3-17

Web path setting for a Web
application 3-3

Web server
configuration file, httpd.conf 2-1, A-7
documentation 1-1
requirements 1-1
setting CLASSPATH environment

variables 3-26
Webapp properties 3-5, 3-14, 3-26, B-1
WebSphere Application Server for

OS/390
description of ix
elements included in ix
features of ix

WebSphere Application Server for
OS/390 Component Broker ix

WebSphere Application Server Standard
Edition

adding *.class files to 3-15, 3-16
adding *.servlet files to 3-15
adding *.servlets in jar, ser, or zip files

to 3-5, 3-15, 3-16
adding HTML, and JSP files to 3-5,

3-15, 3-16
API packages 3-26, 4-10
application development tools that

can be used with 1-9
changing configuration properties

for 2-5, 2-6, 2-7
customizing 2-5
description of ix, x
directing requests to 2-7
file types supported by 3-15
installing 2-1

Index X-3

WebSphere Application Server Standard
Edition (continued)

JVM.properties file B-1
logging supported by 2-10
migration considerations A-1
modifying basic configuration

settings 2-5, 2-6, 2-8
ordering information x
planning for installation of i, 1-10
restrictions to programming

model D-1
running in Scalable Server mode 1-5,

2-7
software requirements 1-1
starting 2-3
using proxy server with 5-3
using to access DB2 4-1, E-1, E-3, E-7
using with CICS 1-5, E-5
using with IMS 1-5
verifying it is properly installed 2-1
Web server requirements 1-1

WebSphere Studio created files 1-9, 4-10
working directory, specifying 2-8, 2-11
workingdirectory property 2-11, B-1
Workload Management (WLM)

considerations 1-4

X
XML API support A-10
XML applications A-10
XML Document Structure Services 1-3
XML Parser 1-3
XML tags, using to pass init-parameters

to a servlet 3-26

Z
zip files 3-26

X-4

����

Program Number: 5655–A98

Printed in U.S.A.

GC34-4835-05

	Contents
	Summary of Changes
	Updates, June 2003
	Updates, September 2002
	Updates, July 2002

	Welcome!
	Application Server product information
	Documentation formats
	Related documentation
	Java documentation
	Web server

	Support services

	Chapter 1. Planning for installation
	Software requirements
	Compatible OS/390 releases
	Required OS/390 Web server
	Required Software Development Kit
	Required Java Servlet API levels
	Required JavaServer Pages levels
	XML Document Structure Services
	DB2 Requirements

	OS/390 Workload Management considerations
	System Authorization Facility (SAF) Support
	Connector support
	IBM Distributed Debugger and Object Level Trace support
	Installing and running Object Level Trace
	Installing and Running the IBM Distributed Debugger

	Application development tooling considerations
	Deploying Components generated by VisualAge for Java
	Deploying Components generated by WebSphere Studio

	Installation and configuration process changes
	APARs and service updates

	Chapter 2. Installing and customizing the Application Server
	Installing the Application Server
	Verifying the Application Server installation
	Configuring a Web server to host an Application Server
	Starting the Application Server
	Invoking the Installation Verification Program

	Configuring the Application Server
	Using a was.conf file to set configuration properties
	Specifying configuration properties
	Updating Application Server properties
	Directing requests to the Application Server

	Customizing the Application Server
	Specifying the name of a file containing the properties for instantiating a JVM
	Maintaining compatibility with existing applications
	Configuring the Application Server to use the Xerces.jar and Xalan.jar files distributed with Apache
	Specifying the logging level for customer directed messages
	Specifying the log file directory
	Specifying a working directory

	Chapter 3. Defining virtual hosts and Web applications
	Defining virtual hosts
	Configuring a virtual host
	Defining and deploying Web applications
	Including Web components in a Web application
	Deploying a Web application to the Application Server

	Using Web applications contained in War files
	Configuring Web applications
	Setting the Application Server (JVM) and Web application classpaths
	Placing .property files in appropriate directories
	Placing application files in appropriate directories

	Mapping URLs to Web components
	Determining the virtual host that should process a request
	Determining the requested Web component and resolving it to a physical entity

	Securing Web components
	Class loading and optional reloading
	Compiling JSP level 1.0 or level 1.1 source files
	Pre-compiling JSPs
	Improving JSP compile time

	Compiling servlets
	Passing init-parameters to a servlet
	Using webapp properties in the was.conf file
	Using XML tags in a <webapp-name>.webapp file.
	Using a .servlet file

	Configuring servlet chaining

	Chapter 4. Accessing relational databases
	How servlets use the JDBC 2.0 Standard Extension API
	Using JDBC 2.0 Standard Extension API with the Application Server
	Setting up JDBC connection pools
	jdbcconnpool.<pool-name>.provider=DB2/OS390 | other
	jdbcconnpool.<pool-name>.jdbcdriver=<driver-class-name>
	jdbcconnpool.<pool-name>.databaseurl=<database-url>
	jdbcconnpool.<pool-name>.datasourcename=<name>
	jdbcconnpool.<pool-name>.connectionidentity=<string>
	jdbcconnpool.<pool-name>.maxconnections=<integer>
	jdbcconnpool.<pool-name>.minconnections=<integer>
	jdbcconnpool.<pool-name>. waitforconnectiontimeoutmilliseconds=<time>
	jdbcconnpool.<pool-name>. inuseconnectiontimeoutmilliseconds=<time>
	jdbcconnpool.<pool-name>. idleconnectiontimeoutmilliseconds=<time>

	Example of a JDBC connection pool definition
	Migrating Connection Manager Code to use the JDBC Standard 2.0 Extension APIs
	Supported Connection Manager APIs

	Chapter 5. Session tracking
	Session security
	Session state without cookies
	Configuring session tracking
	Session clustering
	Configuring a session cluster
	Session clustering considerations

	In-memory session pools

	Appendix A. Migrating from previous Versions of the Application Server
	Migrating your existing configuration (was.conf file) settings
	Required changes if you are migrating from V3.02
	Required changes if you are migrating from V1.1 or V1.2

	Migrating Web server directives and environment variable settings
	Migrating Web server directives
	Migrating Web server environment variables

	Migrating Servlets
	Migrating JSPs
	Migrating servlets from Version 3.0x connection pooling to Version 3.5 connection pooling
	Migrating servlets that use the Application Server Connection Manager
	Utilizing JDBC APIs for data access

	Migrating to XML API Version 2.0

	Appendix B. was.conf file template
	Appendix C. default_global.properties file
	Appendix D. Programming Model Restrictions
	Appendix E. Enabling subsystems for use with the Application Server
	Enabling communication with DB2
	Installing DB2
	Installing a JDBC driver
	Enabling the Application Server to locate, and communicate with, DB2
	Setting up DB2 tables
	Customizing SQLJ/JDBC run-time properties files

	Enabling communication with CICS
	Preparing the Application Server for CICS TS

	Enabling communication with IMS using IMS Connect and IMS Connector for Java
	IMS Connector for Java

	Appendix F. Using the Connection Manager APIs
	How a servlet uses the Connection Manager
	Connection Manager APIs
	IBMJdbcConnSpec class
	IBMConnMgrUtil class
	IBMConnMgr class
	getIBMConnection()

	IBMJdbcConn class
	IBMConnection class
	verifyIBMConnection()
	releaseIBMConnection()

	Appendix G. Messages EJS3002I - EJS3087E
	Appendix H. Apache Software License, Version1.1
	Glossary
	Bibliography
	Application Server publications
	Web server publications
	OS/390 publications

	Notices
	Trademarks

	Index

