
IBM

WebSphere

Application

Server

for

z/OS

V5.0.2

Performance

Tuning

and

Monitoring

SA22-7963-01

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

93.

Compilation

date:

November

13,

2003

©

Copyright

International

Business

Machines

Corporation

2002,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Summary

of

Changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

Introduction

to

this

book

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Task

overviews

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ix

Chapter

1.

Monitoring

performance

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Performance

Monitoring

Infrastructure

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 1

Performance

data

organization

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

BeanModule

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 4

JDBC

connection

pool

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

J2C

connection

pool

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Session

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Transaction

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Web

application

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Dynamic

cache

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Web

services

data

counters

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Performance

data

classification

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console

15

Performance

monitoring

service

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Enabling

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

.

.

. 16

Enabling

performance

monitoring

services

using

the

command

line

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Monitoring

and

analyzing

performance

data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)

.

.

.

.

.

. 20

Developing

your

own

monitoring

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Third-party

performance

monitoring

and

management

solutions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

RMF

Workload

Activity

reports

and

RMF

Monitor

III

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 57

WLM

Delay

Monitoring

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 59

Performance:

Resources

for

learning

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 61

Chapter

2.

Tuning

performance

parameter

index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

Recommended

hardware

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Tuning

index

for

WebSphere

Application

Server

for

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Tuning

the

z/OS

operating

system

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Tuning

for

subsystems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Tuning

the

WebSphere

Application

Server

for

z/OS

runtime

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 85

Tuning

for

J2EE

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

Tuning

hardware

capacity

and

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

Tuning

applications

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Trademarks

and

service

marks

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 93

©

Copyright

IBM

Corp.

2002,

2003

iii

iv

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center,

follow

these

steps:

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.

v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2002,

2003

v

vi

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Summary

of

Changes

This

section

describes

what

is

new

in

WebSphere

Application

Server

for

z/OS

in

V5.0.2.

It

also

provides

a

general

overview

of

V5.

©

Copyright

IBM

Corp.

2002,

2003

vii

viii

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Introduction

to

this

book

All

of

the

documentation

for

WebSphere

Application

Server

for

z/OS

is

organized

by

task.

Task

overviews

Task

overviews

are

special

sets

of

steps

in

this

documentation.

Each

outlines

a

feasible

sequence

of

tasks

for

working

with

an

area

of

product

functionality,

such

as

security.

Use

task

overviews

to

gain

broad

knowledge

of

the

decisions

and

actions

needed

to

accomplish

your

goals.

From

task

overviews,

you

can

drill

down

to

more

detailed

sub-tasks.

The

tasks

in

a

task

overview

typically

reflect

the

main

activities,

such

as

Migrating,

Developing,

Assembling,

Deploying,

and

so

on.

Time

Updating and

re-deploying

applications

A simple timeline of activities for .Planning, Installer and Administrator roles

Installing the product, setting up multiple node environments

Planning the production environment

Migrating existing installations and configurations

Administering in preparation for application deployment

Obtaining modules containing application codeassembled

Deploying modules onto test, production servers

Testing access to deployed modules

Monitoring and tuning performance

Troubleshooting problems

Administering deployed modules, servers, resources

For

learning

purposes,

task

overviews

outline

one

feasible

sequence

of

tasks.

In

reality,

several

sequences

might

work.

As

you

learn

more,

vary

the

sequence

for

your

needs.

This

book

describes

the

planning,

migrating,

and

installing

tasks.

©

Copyright

IBM

Corp.

2002,

2003

ix

x

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Chapter

1.

Monitoring

performance

WebSphere

Application

Server

collects

data

on

run-time

and

applications

through

the

Performance

Monitoring

Infrastructure

(PMI).

Performance

data

can

then

be

monitored

and

analyzed

with

a

variety

of

tools.

WebSphere

for

z/OS

relies

on

its

use

of

WLM

services

to

collect

some

of

the

accounting

and

performance

data.

This

information

gets

presented

back

to

the

installation

through

RMF

and

RMF-written

SMF

records.

1.

Enable

performance

monitoring

services

in

the

application

server

through

the

administrative

console

and

Enable

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

if

running

WebSphere

Application

Server

Network

Deployment.

In

order

to

monitor

performance

data

through

the

PMI

interfaces,

you

must

first

enable

the

performance

monitoring

service

through

the

administrative

console

and

restart

the

server.

If

running

in

Network

Deployment,

you

need

to

enable

PMI

services

on

both

the

server

and

on

the

node

agent

and

restart

the

server

and

the

node

agent.

2.

Setup

workload

management

(WLM).

Also

see

Workload

management

(WLM)

tuning

tips

for

z/OS.

3.

Collect

the

data.

The

monitoring

levels

that

determine

which

data

counters

are

enabled

can

be

set

dynamically,

without

restarting

the

server.

This

can

be

done

in

one

of

the

following

ways:

a.

Enable

performance

monitoring

services

through

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer).

b.

Enable

performance

monitoring

services

using

the

command

line.

For

WebSphere

for

z/OS,

also

refer

to

Collecting

performance

diagnosis

information.

WebSphere

Application

Server

also

collects

data

through

PMI

Request

Metrics.

This

feature

times

requests

as

they

travel

through

WebSphere

Application

Server

components.

For

more

information

about

PMI

Request

Metrics

see

the

topic

″Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics)″.

Related

tasks

“Performance

monitoring

service

settings”

on

page

15

Using

the

dynamic

cache

service

to

improve

performance

Performance

Monitoring

Infrastructure

The

Performance

Monitoring

Infrastructure

(PMI)

uses

a

client-server

architecture.

The

server

collects

performance

data

from

various

WebSphere

Application

Server

components.

A

client

retrieves

performance

data

from

one

or

more

servers

and

processes

the

data.

As

shown

in

the

figure,

the

server

collects

PMI

data

in

memory.

This

data

consists

of

counters

such

as

servlet

response

time

and

data

connection

pool

usage.

The

data

points

are

then

retrieved

using

a

Web

client,

Java

client

or

JMX

client.

WebSphere

Application

Server

contains

Tivoli

Performance

Viewer,

a

Java

client

which

displays

and

monitors

performance

data.

See

the

topics

Tivoli

performance

monitoring

and

management

solutions,

Third-party

performance

monitoring

and

management

solutions,

and

Developing

your

own

monitoring

applications

for

more

information

on

monitoring

tools″.

The

figure

shows

the

overall

PMI

architecture.

On

the

right

side,

the

server

updates

and

keeps

PMI

data

in

memory.

The

left

side

displays

a

Web

client,

Java

client

and

JMX

client

retrieving

the

performance

data.

Related

tasks

Chapter

1,

“Monitoring

performance”

“Developing

your

own

monitoring

applications”

on

page

30

©

Copyright

IBM

Corp.

2002,

2003

1

Related

reference

“Third-party

performance

monitoring

and

management

solutions”

on

page

57

Performance

data

organization

Performance

Monitoring

Infrastructure

(PMI)

provides

server-side

monitoring

and

a

client-side

API

to

retrieve

performance

data.

PMI

maintains

statistical

data

within

the

entire

WebSphere

Application

Server

domain,

including

multiple

nodes

and

servers.

Each

node

can

contain

one

or

more

WebSphere

Application

Servers.

Each

server

organizes

PMI

data

into

modules

and

submodules.

Counters

are

enabled

at

the

module

level

and

can

be

enabled

or

disabled

for

elements

within

the

module.

For

example,

in

the

figure,

if

the

Enterprise

beans

module

is

enabled,

its

Avg

Method

RT

counter

is

enabled

by

default.

However,

you

can

then

disable

the

Avg

Method

RT

counter

even

when

the

rest

of

the

module

counters

are

enabled.

You

can

also,

if

desired,

disable

the

Avg

Method

RT

counter

for

Bean1,

but

the

aggregate

response

time

reported

for

the

whole

module

will

no

longer

include

Bean1

data.

Each

counter

has

a

specified

monitoring

level:

none,

low,

medium,

high

or

maximum.

If

the

module

is

set

to

lower

monitoring

level

than

required

by

a

particular

counter,

that

counter

will

not

be

enabled.

Thus,

if

Bean1

has

a

medium

monitoring

level,

Gets

Found

and

Num

Destroys

are

enabled

because

they

require

a

low

monitoring

level.

However,

Avg

Method

RT

is

not

enabled

because

it

requires

a

high

monitoring

level.

Data

collection

can

affect

performance

of

the

application

server.

The

impact

depends

on

the

number

of

counters

enabled,

the

type

of

counters

enabled

and

the

monitoring

level

set

for

the

counters.

The

following

PMI

modules

are

available

to

provide

statistical

data:

v

Enterprise

bean

module,

enterprise

bean,

methods

in

a

bean

Data

counters

for

this

category

report

load

values,

response

times,

and

life

cycle

activities

for

enterprise

beans.

Examples

include

the

average

number

of

active

beans

and

the

number

of

times

bean

data

is

loaded

or

written

to

the

database.

Information

is

provided

for

enterprise

bean

methods

and

the

remote

interfaces

used

by

an

enterprise

bean.

Examples

include

the

number

of

times

a

method

is

called

and

the

average

response

time

for

the

method.

v

JDBC

connection

pools

Data

counters

for

this

category

contain

usage

information

about

connection

pools

for

a

database.

Examples

include

the

average

size

of

the

connection

pool

or

number

of

connections,

the

average

number

of

threads

waiting

for

a

connection,

the

average

wait

time

in

milliseconds

for

a

connection,

and

the

average

time

the

connection

is

in

use.

v

J2C

connection

pool

Data

counters

for

this

category

contain

usage

information

about

the

Java

2

Enterprise

Edition

(J2EE)

Connector

Architecture

that

enables

enterprise

beans

to

connect

and

interact

with

procedural

back-end

systems,

such

as

Customer

Information

Control

System

(CICS),

and

Information

Management

System

(IMS).

Examples

include

the

number

of

managed

connections

or

physical

connections

and

the

total

number

of

connections

or

connection

handles.

v

Servlet

session

manager

Data

counters

for

this

category

contain

usage

information

for

HTTP

sessions.

Examples

include

the

total

number

of

accessed

sessions,

the

average

amount

of

time

it

takes

for

a

session

to

perform

a

request,

and

the

average

number

of

concurrently

active

HTTP

sessions.

v

Java

Transaction

API

(JTA)

Data

counters

for

this

category

contain

performance

information

for

the

transaction

manager.

Examples

include

the

average

number

of

active

transactions,

the

average

duration

of

transactions,

and

the

average

number

of

methods

per

transaction.

2

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

v

Web

applications,

servlet

Data

counters

for

this

category

contain

information

for

the

selected

server.

Examples

include

the

number

of

loaded

servlets,

the

average

response

time

for

completed

requests,

and

the

number

of

requests

for

the

servlet.

v

Dynamic

cache

Data

counters

for

this

category

contain

information

for

the

dynamic

cache

service.

Examples

include

in

memory

cache

size,

number

of

invalidations

and

number

of

hits

and

misses.

v

Web

Services

Data

counters

for

this

category

contain

information

for

the

web

services.

Examples

include

number

of

loaded

web

services,

number

of

requests

delivered

and

processed,

request

response

time,

and

average

size

of

requests.

You

can

access

PMI

data

via

the

getStatsObject

and

getStatsArray

method

in

PerfMBean.

You

will

need

to

pass

the

MBean

ObjectName(s)

to

PerfMBean.

The

following

MBean

types

allow

you

to

get

PMI

data

in

the

related

categories.

v

DynaCache:

for

dynamic

cache

PMI

data

v

EJBModule*:

for

EJB

module

PMI

data

(BeanModule)

v

EntityBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

JDBCProvider*:

for

JDBC

connection

pool

PMI

data

v

J2CResourceAdapter*:

for

J2C

connection

pool

PMI

data

v

JVM:

for

Java

Virtual

machine

PMI

data

v

MessageDrivenBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

ORB:

for

Object

Request

Broker

PMI

data

v

Server:

for

PMI

data

in

the

whole

server,

you

must

pass

recurisive=true

to

PerfMBean

v

SessionManager*:

for

HTTP

Sessions

PMI

data

v

StatefulSessionBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

StatelessSessionBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

SystemMetrics:

for

system

level

PMI

data

v

ThreadPool*:

for

thread

pool

PMI

data

v

TransactionService:

for

JTA

Transaction

PMI

data

v

WebModule*:

for

web

application

PMI

data

v

Servlet*:

for

a

servlet

PMI

data

v

WLMAppServer:

for

Workload

Management

PMI

data

v

WebServicesService:

for

web

services

PMI

data

v

WSGW*:

for

web

services

gateway

PMI

data

First,

you

will

need

to

use

the

AdminClient

API

to

query

the

ObjectName

for

each

of

the

above

MBean

types.

You

can

either

query

all

the

MBeans

and

then

match

the

MBean

type

or

use

the

query

String

for

the

type

only:

String

query

=

″WebSphere:type=mytype,node=mynode,server=myserver,*″;

You

will

need

to

set

mytype,

mynode,

and

myserver

accordingly.

Note

that

you

get

a

Set

when

you

call

AdminClient

to

query

MBean

ObjectNames.

It

means

that

you

may

get

multiple

ObjectNames.

In

the

above,

the

MBean

types

with

a

star

(*)

mean

that

there

may

be

multiple

ObjectNames

in

a

server

for

the

same

MBean

type.

In

this

case,

the

ObjectNames

can

be

identified

by

both

type

and

name

(but

mbeanIdentifier

will

be

the

real

UID

for

MBeans).

However,

the

MBean

names

are

not

predefined

--

they

are

decided

at

runtime

based

on

the

applications/resources.

Once

you

get

multiple

ObjectNames,

you

can

construct

an

array

of

ObjectNames

that

you

are

interested

in.

Then

you

can

pass

the

ObjectNames

to

PerfMBean

to

get

PMI

data.

You

have

the

recursive

and

non-recursive

options.

Recursive

option

will

return

Chapter

1.

Monitoring

performance

3

you

Stats

and

sub-stats

objects

in

a

tree

structure

while

non-recursive

option

will

return

you

a

Stats

object

for

that

MBean

only.

More

programming

information

can

be

found

in

″Develop

your

own

monitoring

applications″.

Related

tasks

Chapter

1,

“Monitoring

performance,”

on

page

1

BeanModule

data

counters

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

creates

Number

of

times

beans

were

created

3.5.5

and

above

per

home

CountStatistic

Low

removes

Number

of

times

beans

were

removed

3.5.5

and

above

per

home

CountStatistic

Low

passivates

Number

of

times

beans

were

passivated

(entity

and

stateful)

3.5.5

and

above

per

home

CountStatistic

Low

activates

Number

of

times

beans

were

activated

(entity

and

stateful)

3.5.5

and

above

per

home

CountStatistic

Low

persistence

loads

Number

of

times

bean

data

was

loaded

from

persistent

storage

(entity)

3.5.5

and

above

per

home

CountStatistic

Low

persistence

stores

Number

of

times

bean

data

was

stored

in

persistent

storage

(entity)

3.5.5

and

above

per

home

CountStatistic

Low

instantiations

Number

of

times

bean

objects

were

instantiated

3.5.5

and

above

per

home

CountStatistic

Low

destroys

Number

of

times

bean

objects

were

freed

3.5.5

and

above

per

home

CountStatistic

Low

Num

Ready

Beans

Number

of

concurrently

ready

beans

(entity

and

session).

This

counter

was

called

concurrent

active

in

Versions

3.5.5+

and

4.0.

3.5.5

and

above

per

home

RangeStatistic

High

concurrent

live

Number

of

concurrently

live

beans

3.5.5

and

above

per

home

RangeStatistic

High

avg

method

rsp

time

Average

response

time

in

milliseconds

on

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

home

TimeStatistic

High

avg

method

rsp

time

for

create

Average

time

in

milliseconds

a

bean

create

call

takes

including

the

time

for

the

load

if

any

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

load

Average

time

in

milliseconds

for

loading

the

bean

data

from

persistent

storage

(entity)

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

store

Average

time

in

milliseconds

for

storing

the

bean

data

to

persistent

storage

(entity)

5.0

per

home

TimeStatistic

Medium

4

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

avg

method

rsp

time

for

remove

Average

time

in

milliseconds

a

bean

entries

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

total

method

calls

total

number

of

method

calls

3.5.5

and

above

per

home

CountStatistic

High

avg

method

rsp

time

for

activation

Average

time

in

milliseconds

a

beanActivate

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

passivation

Average

time

in

milliseconds

a

beanPassivate

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

active

methods

Number

of

concurrently

active

methods

-

num

methods

called

at

the

same

time.

3.5.5

and

above

per

home

TimeStatistic

High

Per

method

invocations

Number

of

calls

to

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

method/per

home

CountStatistic

Max

Per

method

rsp

time

Average

response

time

in

milliseconds

on

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

home

TimeStatistic

Max

Per

method

concurrent

invocations

Number

of

concurrent

invocations

to

call

a

method

5.0

per

method/per

home

RangeStatistic

Max

getsFromPool

Number

of

calls

retrieving

an

object

from

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

getsFound

Number

of

times

a

retrieve

found

an

object

available

in

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

returnsToPool

Number

of

calls

returning

an

object

to

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

returnsDiscarded

Number

of

times

the

returning

object

was

discarded

because

the

pool

was

full

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

drainsFromPool

Number

of

times

the

daemon

found

the

pool

was

idle

and

attempted

to

clean

it

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

avgDrainSize

Average

number

of

objects

discarded

in

each

drain

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

TimeStatistic

Medium

avgPoolSize

Number

of

objects

in

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

RangeStatistic

High

messageCount

Number

of

messages

delivered

to

the

bean

onMessage

method

(message

driven

beans)

5.0

per

type

CountStatistic

Low

Chapter

1.

Monitoring

performance

5

messageBackoutCount

Number

of

messages

failed

to

be

delivered

to

the

bean

onMessage

method

(message

driven

beans)

5.0

per

type

CountStatistic

Low

serverSessionWait

Average

time

to

obtain

a

ServerSession

from

the

pool

(message

drive

bean)

5.0

per

type

TimeStatistic

Medium

serverSessionUsage

Percentage

of

server

session

pool

in

use

(message

driven)

5.0

per

type

RangeStatistic

High

JDBC

connection

pool

data

counters

PMI

collects

performance

data

for

4.0

and

5.0

JDBC

data

sources.

For

a

4.0

data

source,

the

data

source

name

is

used.

For

a

5.0

data

source,

the

JNDI

name

is

used.

The

JDBC

connection

pool

counters

are

used

to

monitor

the

JDBC

data

sources

performance.

The

data

can

be

found

by

using

the

Tivoli

Performance

Viewer

and

looking

under

each

application

server.

Click

application_server

>

JDBC

connection

pool.

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

creates

Total

number

of

connections

created

3.5.5

and

above

per

connection

pool

CountStatistic

Low

avg

pool

size

Average

pool

size

3.5.5

and

above

per

connection

pool

BoundedRangeStatistic

High

free

pool

size

Average

free

pool

size

5.0

per

connection

pool

BoundedRangeStatistic

High

allocates

Total

number

of

connections

allocated

3.5.5

and

above

per

connection

pool

CountStatistic

Low

returns

Total

number

of

connections

returned

4.0

and

above

per

connection

pool

CountStatistic

Low

avg

waiting

threads

Number

of

threads

that

are

currently

waiting

for

a

connection

3.5.5

and

above

per

connection

pool

RangeStatistic

High

connection

pool

faults

Total

number

of

faults,

such

as,

timeouts,

in

connection

pool

3.5.5

and

above

per

connection

pool

CountStatistic

Low

destroys

Number

of

times

bean

objects

were

freed

3.5.5

and

above

per

connection

pool

CountStatistic

Low

avg

wait

time

Average

waiting

time

in

milliseconds

until

a

connection

is

granted

5.0

per

connection

pool

TimeStatistic

Medium

avg

time

in

use

Average

time

a

connection

is

used

(Difference

between

the

time

at

which

the

connection

is

allocated

and

returned.

This

includes

the

JDBC

operation

time.)

5.0

per

connection

pool

TimeStatistic

Medium

percent

used

Average

percent

of

the

pool

that

is

in

use

3.5.5

and

above

per

connection

pool

RangeStatistic

High

percent

maxed

Average

percent

of

the

time

that

all

connections

are

in

use

3.5.5

and

above

per

connection

pool

RangeStatistic

High

Statement

cache

discard

count

Total

number

of

statements

discarded

by

the

LRU

algorithm

of

the

statement

cache

4.0

and

above

per

connection

pool

CountStatistic

Low

6

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Number

managed

connections

Number

of

ManagedConnection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

connections

Current

number

of

connection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

jdbcOperationTimer

Amount

of

time

in

milliseconds

spent

executing

in

the

JDBC

driver

(includes

time

spent

in

JDBC

driver,

network

and

database)

5.0

per

data

source

TimeStatistic

Medium

J2C

connection

pool

data

counters

The

J2C

connection

pool

data

counters

are

used

to

monitor

the

J2C

connection

pool

performance.

The

data

can

be

found

by

using

the

Tivoli

Performance

Viewer

and

looking

under

each

application

server.

Click

application_server

>

J2C

connection

pool.

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Number

managed

connections

Number

of

ManagedConnection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

connections

Current

number

of

connection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

created

Total

number

of

connections

created

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

destroyed

Total

number

of

connections

destroyed

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

allocated

Total

number

of

connections

allocated

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

freed

Total

number

of

connections

freed

5.0

per

connection

factory

CountStatistic

Low

faults

Number

of

faults,

such

as

timeouts,

in

connection

pool

5.0

per

connection

factory

CountStatistic

Low

free

pool

size

Number

of

free

connections

in

the

pool

5.0

per

connection

factory

BoundedRangeStatistic

High

pool

size

Pool

size

5.0

per

connection

factory

BoundedRangeStatistic

High

concurrent

waiters

Average

number

of

threads

concurrently

waiting

for

a

connection

5.0

per

connection

factory

RangeStatistic

High

Percent

used

Average

percent

of

the

pool

that

is

in

use

5.0

per

connection

factory

RangeStatistic

High

Percent

maxed

Average

percent

of

the

time

that

all

connections

are

in

use

5.0

per

connection

factory

RangeStatistic

High

Average

wait

time

Average

waiting

time

in

milliseconds

until

a

connection

is

granted

5.0

per

connection

factory

TimeStatistic

Medium

Average

use

time

Average

time

in

milliseconds

that

connections

are

in

use

5.0

per

connection

factory

TimeStatistic

Medium

Chapter

1.

Monitoring

performance

7

Session

data

counters

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

createdSessions

Number

of

sessions

created

3.5.5

and

above

per

web

application

CountStatistic

Low

invalidatedSessions

Number

of

sessions

invalidated

3.5.5

and

above

per

web

application

CountStatistic

Low

sessionLifeTime

The

average

session

lifetime

3.5.5

and

above

per

web

application

TimeStatistic

Medium

activeSessions

The

number

of

concurrently

active

sessions.

A

session

is

active

if

WebSphere

is

currently

processing

a

request

which

uses

that

session.

3.5.5

and

above

per

web

application

RangeStatistic

High

liveSession

The

number

of

sessions

that

are

currently

cached

in

memory

5.0

and

above

per

web

application

RangeStatistic

High

NoRoomForNewSession

Applies

only

to

session

in

memory

with

AllowOverflow=false.

The

number

of

times

that

a

request

for

a

new

session

can

not

be

handled

because

it

would

exceed

the

maximum

session

count.

5.0

per

Web

application

CountStatistic

Low

cacheDiscards

Number

of

session

objects

that

have

been

forced

out

of

the

cache.

(An

LRU

algorithm

removes

old

entries

to

make

room

for

new

sessions

and

cache

misses).

Applicable

only

for

persistent

sessions.

5.0

per

Web

application

CountStatistic

Low

externalReadTime

Time

(milliseconds)

taken

in

reading

the

session

data

from

persistent

store.

For

multirow

sessions,

the

metrics

are

for

the

attribute;

for

single

row

sessions,

the

metrics

are

for

the

whole

session.

Applicable

only

for

persistent

sessions.

When

using

a

JMS

persistent

store,

the

user

has

the

choice

of

whether

to

serialize

the

data

being

replicated.

If

they

choose

not

to

serialize

the

data,

the

counter

will

not

be

available.

5.0

per

Web

application

TimeStatistic

Medium

8

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

externalReadSize

Size

of

session

data

read

from

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions;

similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

externalWriteTime

Time

(milliseconds)

taken

to

write

the

session

data

from

the

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions.

Similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

externalWriteSize

Size

of

session

data

written

to

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions.

Similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

affinityBreaks

The

number

of

requests

received

for

sessions

that

were

last

accessed

from

another

Web

application.

This

can

indicate

failover

processing

or

a

corrupt

plug-in

configuration.

5.0

per

Web

application

CountStatistic

Low

serializableSessObjSize

The

size

in

bytes

of

(the

serializable

attributes

of

)

in-memory

sessions.

Only

count

session

objects

that

contain

at

least

one

serializable

attribute

object.

Note

that

a

session

may

contain

some

attributes

that

are

serializable

and

some

that

are

not.

The

size

in

bytes

is

at

a

session

level.

5.0

per

Web

application

TimeStatistic

Max

timeSinceLastActivated

The

time

difference

in

milliseconds

between

previous

and

current

access

time

stamps.

Does

not

include

session

time

out.

5.0

per

Web

application

TimeStatistic

Medium

invalidatedViaTimeout

The

number

of

requests

for

a

session

that

no

CountStatistic

exists,

presumeably

because

the

session

timed

out.

5.0

per

Web

application

CountStatistic

Low

attemptToActivateNotExistentSession

Number

of

requests

for

a

session

that

no

longer

exists,

presumeably

because

the

session

timed

out.

Use

this

counter

to

help

determine

if

the

timeout

is

too

short.

5.0

per

Web

application

CountStatistic

Low

Transaction

data

counters

Related

reference

“Performance

data

organization”

on

page

2

Chapter

1.

Monitoring

performance

9

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Number

global

transactions

begun

Total

number

of

global

transactions

begun

on

server

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

global

transactions

involved

Total

number

of

global

trans

involved

on

server

(for

example,

begun

and

imported)

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

local

transactions

begun

Total

number

of

local

transactions

begun

on

server

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Active

global

transactions

Number

of

concurrently

active

global

transactions

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

Active

local

transactions

Number

of

concurrently

active

local

transactions

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Global

transactions

duration

Average

duration

of

global

transactions

3.5.5

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

duration

Average

duration

of

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transactions

before_completion

time

Average

duration

of

before_completion

for

local

transactions

4.0

and

above

per

transaction

manager

or

server

TimeStatistic

Medium

Global

transaction

commit

time

Average

duration

of

commit

for

global

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Global

transaction

prepare

time

Average

duration

of

prepare

for

global

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

before_completion

time

Average

duration

of

before_completion

for

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

commit

time

Average

duration

of

commit

for

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Number

global

transactions

committed

Total

number

of

global

transactions

committed

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

global

transactions

rolled

back

Total

number

of

global

transactions

rolled

back

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

Number

global

transactions

optimized

Number

of

global

transactions

converted

to

single

phase

for

optimization

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

committed

Number

of

local

transactions

committed

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

rolled

back

Number

of

local

transactions

rolled

back

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

global

transactions

timed

out

Number

of

global

transactions

timed

out

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

timed

out

Number

of

local

transactions

timed

out

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Web

application

data

counters

Related

reference

“Performance

data

organization”

on

page

2

10

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

numLoadedServlets

Number

of

servlets

that

were

loaded

3.5.5

and

above

per

Web

application

CountStatistic

Low

numReloads

Number

of

servlets

that

were

reloaded

3.5.5

and

above

per

Web

application

CountStatistic

Low

totalRequests

Total

number

of

requests

a

servlet

processed

3.5.5

and

above

per

servlet

CountStatistic

Low

concurrentRequests

Number

of

requests

that

are

concurrently

processed

3.5.5

and

above

per

servlet

RangeStatistic

High

responseTime

The

response

time,

in

milliseconds,

of

a

servlet

request

3.5.5

and

above

per

servlet

TimeStatistic

Medium

numErrors

Total

number

of

errors

in

a

servlet

or

Java

Server

Page

(JSP)

3.5.5

and

above

per

servlet

CountStatistic

Low

Dynamic

cache

data

counters

The

PMI

data

for

Dynamic

Cache

are

used

to

monitor

the

behavior

and

performance

of

the

dynamic

cache

service.

The

functions

and

usages

of

dynamic

cache

can

be

found

in

Using

the

dynamic

cache

service

to

improve

performance.

The

related

data

can

be

accessed

via

the

DynaCache

MBean

and

displayed

under

Dynamic

Cache

in

TPV.

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

maxInMemoryCacheSize

Maximum

number

of

in-memory

cache

entries

5.0

per

server

CountStatistic

Low

inMemoryCacheSize

Current

number

of

in-memory

cache

entries

5.0

per

server

CountStatistic

Low

totalTimeoutInvalidation

Aggregate

of

template

timeouts

and

disk

timeouts

5.0

per

server

CountStatistic

Low

hitsInMemory

Requests

for

this

cacheable

object

served

from

memory

5.0

per

template

CountStatistic

Low

hitsOnDisk

Requests

for

this

cacheable

object

served

from

disk

5.0

per

template

CountStatistic

Low

explicitInvalidations

Total

explicit

invalidation

issued

for

this

template

5.0

per

template

CountStatistic

Low

lruInvalidations

Cache

entries

evicted

from

memory

by

a

Least

Recently

Used

algorithm.

These

entries

are

passivated

to

disk

if

disk

overflow

is

enabled.

5.0

per

template

CountStatistic

Low

timeoutInvalidations

Cache

entries

evicted

from

memory

and/or

disk

because

their

timeout

has

expired

5.0

per

template

CountStatistic

Low

Chapter

1.

Monitoring

performance

11

Entries

Current

number

of

cache

entries

created

from

this

template.

Refers

to

the

per-template

equivalent

of

totalCacheSize.

5.0

per

template

CountStatistic

Low

hitsRemove

Requests

for

this

cacheable

object

served

from

other

Java

Virtual

Machines

(JVM)

in

the

cluster

5.0

per

template

CountStatistic

Low

Misses

Requests

for

this

cacheable

object

that

were

not

found

in

the

cache

5.0

per

template

CountStatistic

Low

RequestFromClient

Requests

for

this

cacheable

object

generated

by

applications

running

on

the

application

server

5.0

per

template

CountStatistic

Low

requestsFromJVM

Requests

for

this

cacheable

object

generated

by

cooperating

caches

in

this

cluster

5.0

per

template

CountStatistic

Low

explicitInvalidationsFromMemory

Explicit

invalidations

resulting

in

an

entry

being

removed

from

memory

5.0

per

template

CountStatistic

Low

explicitInvalidationsFromDisk

Explicit

invalidations

resulting

in

an

entry

being

removed

from

disk

5.0

per

template

CountStatistic

Low

explicitInvalidationsNoOp

Explicit

invalidations

received

for

this

template

where

no

corresponding

entry

exists

5.0

per

template

CountStatistic

Low

explicitInvalidationsLocal

Explicit

invalidations

generated

locally,

either

programmatically

or

by

a

cache

policy

5.0

per

template

CountStatistic

Low

explicitInvalidationsRemote

Explicit

invalidations

received

from

a

cooperating

JVM

in

this

cluster

5.0

per

template

CountStatistic

Low

remoteCreations

Entries

received

from

cooperating

dynamic

caches

5.0

per

template

CountStatistic

Low

Web

services

data

counters

Related

reference

“Performance

data

organization”

on

page

2

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

numLoadedServices

Number

of

loaded

Web

services

5.02

and

above

per

service

CountStatistic

Low

numberReceived

Number

of

requests

service

received

5.02

and

above

per

Web

service

CountStatistic

Low

numberDispatched

Number

of

requests

service

dispatched/delivered

5.02

and

above

per

web

service

CountStatistic

Low

12

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

numberSuccessful

Number

of

requests

service

successfully

processed

5.02

and

above

per

web

service

TimeStatistic

Low

responseTime

The

average

response

time,

in

milliseconds,

for

a

successful

request

5.02

and

above

per

web

service

TimeStatistic

Medium

requestResponseTime

The

average

response

time,

in

milliseconds,

to

prepare

a

request

for

dispatch

5.02

and

above

per

web

service

TimeStatistic

Medium

dispatchResponseTime

The

average

response

time,

in

milliseconds,

to

dispatch

a

request

5.02

and

above

per

web

service

TimeStatistic

Medium

replyResponseTime

The

average

response

time,

in

milliseconds,

to

prepare

a

reply

after

dispatch

5.02

and

above

per

web

service

TimeStatistic

Medium

size

The

average

payload

size

in

bytes

of

a

received

request/reply

5.02

and

above

per

web

service

TimeStatistic

Medium

requestSize

The

average

payload

size

in

bytes

of

a

request

5.02

and

above

per

web

service

TimeStatistic

Medium

replySize

The

average

payload

size

in

bytes

of

a

reply

5.02

and

above

per

web

service

TimeStatistic

Medium

Performance

data

classification

Performance

Monitoring

Infrastructure

provides

server-side

data

collection

and

client-side

API

to

retrieve

performance

data.

Performance

data

has

two

components:

static

and

dynamic.

The

static

component

consists

of

a

name,

ID

and

other

descriptive

attributes

to

identify

the

data.

The

dynamic

component

contains

information

that

changes

over

time,

such

as

the

current

value

of

a

counter

and

the

time

stamp

associated

with

that

value.

The

PMI

data

can

be

one

of

the

following

statistical

types

defined

in

the

JSR-077

specification:

v

CountStatistic

v

BoundaryStatistic

v

RangeStatistic

v

TimeStatistic

v

BoundedRangeStatistic

RangeStatistic

data

contains

current

value,

as

well

as

lowWaterMark

and

highWaterMark.

In

general,

CountStatistic

data

require

a

low

monitoring

level

and

TimeStatistic

data

require

a

medium

monitoring

level.

RangeStatistic

and

BoundedRangeStatistic

require

a

high

monitoring

level.

There

are

a

few

counters

that

are

exceptions

to

this

rule.

The

average

method

response

time,

the

total

method

calls,

and

active

methods

counters

require

a

high

monitoring

level.

The

Java

Virtual

Machine

Profiler

Interface

(JVMPI)

counters,

SerializableSessObjSize,

and

data

tracked

for

each

individual

method

Chapter

1.

Monitoring

performance

13

(method

level

data)

require

a

maximum

monitoring

level.

BoundedRangeStatistic

count: long

CountStatistic

upperBound: long

lowerBound: long

highWaterMark: long

lowWaterMark: long

current: long listed

count: long

maxTime: long

minTime: long

totalTime: long

BoundaryStatistic RangeStatistic TimeStatistic

name: String

unit: String

descriptions: String

startTime: long

Statistic

In

previous

versions,

PMI

data

was

classified

with

the

following

types:

v

Numeric:

Maps

to

CountStatistic

in

the

JSR-077

specification.

Holds

a

single

numeric

value

that

can

either

be

a

long

or

a

double.

This

data

type

is

used

to

keep

track

of

simple

numeric

data,

such

as

counts.

v

Stat:

Holds

statistical

data

on

a

sample

space,

including

the

number

of

elements

in

the

sample

set,

their

sum,

and

sum

of

squares.

You

can

obtain

the

mean,

variance,

and

standard

deviation

of

the

mean

from

this

data.

v

Load:

Maps

to

the

RangeStatistic

or

BoundedRangeStatistic,

based

on

JSR-077

specification.

This

data

type

keeps

track

of

a

level

as

a

function

of

time,

including

the

current

level,

the

time

that

level

was

reached,

and

the

integral

of

that

level

over

time.

From

this

data,

you

can

obtain

the

time-weighted

average

of

that

level.

For

example,

this

data

type

is

used

in

the

number

of

active

threads

and

the

number

of

waiters

in

a

queue.

These

PMI

data

types

continue

to

be

supported

through

the

PMI

API.

Statistical

data

types

are

supported

through

both

the

PMI

API

and

Java

Management

Extension

(JMX)

API.

The

TimeStatistic

type

keeps

tracking

many

counter

samples

and

then

returns

the

total,

count

and

average

of

the

samples.

An

example

of

this

is

an

average

method

response

time.

Given

the

nature

of

this

statistic

type,

it

is

also

used

to

track

non-time

related

counters,

like

average

read

and

write

size.

You

can

always

call

getUnit

method

on

the

data

configuration

information

to

learn

the

unit

for

the

counter.

In

order

to

reduce

the

monitoring

overhead,

numeric

and

stat

data

are

not

synchronized.

Since

these

data

track

the

total

and

average,

the

extra

accuracy

is

generally

not

worth

the

performance

cost.

Load

data

is

very

sensitive,

therefore,

load

counters

are

always

synchronized.

In

addition,

when

the

monitoring

level

of

a

module

is

set

to

max,

all

numeric

data

are

also

synchronized

to

guarantee

accurate

values.

Related

tasks

Chapter

1,

“Monitoring

performance,”

on

page

1

14

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console

To

monitor

performance

data

through

the

performance

monitoring

infrastructure

(PMI)

interfaces,

you

must

first

enable

PMI

services

through

the

administrative

console.

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

3.

Click

server.

4.

Click

the

Configuration

tab.

When

in

the

Configuration

tab,

settings

will

apply

once

the

server

is

restarted.

When

in

the

Runtime

Tab,

settings

will

apply

immediately.

Note

that

enablement

of

Performance

Monitoring

Service

can

only

be

done

in

the

Configuration

tab.

5.

Click

Performance

Monitoring

Service.

6.

Select

the

checkbox

Startup.

7.

(Optional)

Select

the

PMI

modules

and

levels

to

set

the

initial

specification

level

field.

8.

Click

Apply

or

OK.

9.

Click

Save.

10.

Restart

the

application

server.

The

changes

you

make

will

not

take

affect

until

you

restart

the

application

server.

When

running

in

WebSphere

Application

Server

Network

Deployment,

be

sure

to

Enable

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console.

Related

tasks

Chapter

1,

“Monitoring

performance,”

on

page

1

“Enabling

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console”

on

page

16

Performance

monitoring

service

settings

Use

this

page

to

specify

settings

for

performance

monitoring,

including

enabling

performance

monitoring,

selecting

the

PMI

module

and

setting

monitoring

levels.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Performance

Monitoring.

Startup

Specifies

whether

the

application

server

attempts

to

start

the

specified

service.

If

an

application

server

is

started

when

the

performance

monitoring

service

is

disabled,

you

will

have

to

restart

the

server

in

order

to

enable

it.

Initial

specification

level

Specifies

a

Performance

Monitoring

Infrastructure

(PMI)

string

that

stores

PMI

specification

levels,

for

example

module

levels,

for

all

components

in

the

server.

Set

the

PMI

specification

levels

by

selecting

the

none,

standard

or

custom

checkbox.

If

you

choose

none,

all

PMI

modules

are

set

to

the

none

level.

Choosing

standard,

sets

all

PMI

modules

to

high

and

enables

all

PMI

data

excluding

the

method

level

data

and

JVMPI

data.

Choosing

custom,

gives

you

the

option

to

change

the

level

for

each

individual

PMI

module.

You

can

set

the

level

to

N,

L,

M,

H

or

X

(none,

low,

medium,

high

and

maximum).

Note

that

you

should

not

change

the

module

names.

Specifications

Specifies

the

PMI

module

and

monitoring

level

that

you

have

set.

Set

the

PMI

specification

levels

by

selecting

the

none,

standard

or

custom

checkbox.

If

you

choose

none,

all

PMI

modules

are

set

to

the

none

level.

Choosing

standard,

sets

all

PMI

modules

to

high

and

enables

all

PMI

data

excluding

the

method

level

data

and

JVMPI

data.

Choosing

custom,

gives

you

the

option

to

Chapter

1.

Monitoring

performance

15

change

the

level

for

each

individual

PMI

module.

You

can

set

the

level

to

N,

L,

M,

H

or

X

(none,

low,

medium,

high

and

maximum).

Note

that

you

should

not

change

the

module

names.

Enabling

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

To

monitor

performance

data

through

the

performance

monitoring

infrastructure

(PMI)

interfaces,

you

must

first

enable

PMI

services

through

the

administrative

console.

1.

Open

the

administrative

console.

2.

Click

System

Administration

>

NodeAgents

in

the

console

navigation

tree.

3.

Click

node_agent.

4.

Click

Performance

Monitoring

Service.

5.

Select

the

checkbox

Startup.

6.

(Optional)

Select

the

PMI

modules

and

levels

to

set

the

initial

specification

level

field.

7.

Click

Apply

or

OK.

8.

Click

Save.

9.

Restart

the

NodeAgent.

The

changes

you

make

will

not

take

affect

until

you

restart

the

NodeAgent.

When

in

the

Configuration

tab,

settings

will

apply

once

the

server

is

restarted.

When

in

the

Runtime

Tab,

settings

will

apply

immediately.

Note

that

enablement

of

Performance

Monitoring

Service

can

only

be

done

in

the

Configuration

tab.

Related

tasks

Chapter

1,

“Monitoring

performance,”

on

page

1

Related

reference

“Performance

monitoring

service

settings”

on

page

15

Enabling

performance

monitoring

services

using

the

command

line

You

can

use

the

command

line

to

enable

performance

monitoring

services.

1.

Enable

PMI

services

through

the

administrative

console.

Make

sure

to

restart

the

application

server.

2.

Run

the

wsadmin

command.

Using

wsadmin,

you

can

invoke

operations

on

Perf

Mbean

to

obtain

the

PMI

data,

set

or

obtain

PMI

monitoring

levels

and

enable

data

counters.

Note:

If

PMI

data

are

not

enabled

yet,

you

need

to

first

enable

PMI

data

by

invoking

setInstrumentationLevel

operation

on

PerfMBean.

The

following

operations

in

Perf

MBean

can

be

used

in

wsadmin:

/**

Set

instrumentation

level

using

String

format

*

This

should

be

used

by

scripting

for

an

easy

String

processing

*/

The

level

STR

is

a

list

of

moduleName=Level

connected

by

":".

public

void

setInstrumentationLevel(String

levelStr,

Boolean

recursive);

/**

Get

instrumentation

level

in

String

for

all

the

top

level

modules

*

This

should

be

used

by

scripting

for

an

easy

String

processing

*/

public

String

getInstrumentationLevelString();

/**

Return

the

PMI

data

in

String

*

*/

public

String

getStatsString(ObjectName

on,

Boolean

recursive);

/**

Return

the

PMI

data

in

String

*

Used

for

PMI

modules/submodules

without

direct

MBean

mappings.

*/

public

String

getStatsString(ObjectName

on,

String

submoduleName,

16

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Boolean

recursive);

/**

*

Return

the

submodule

names

if

any

for

the

MBean

*/

public

String

listStatMemberNames(ObjectName

on);

If

an

MBean

is

a

StatisticProvider

and

if

you

pass

its

ObjectName

to

getStatsString,

you

will

get

the

Statistic

data

for

that

MBean.

MBeans

with

the

following

MBean

types

are

statistic

providers:

v

DynaCache

v

EJBModule

v

EntityBean

v

JDBCProvider

v

J2CResourceAdapter

v

JVM

v

MessageDrivenBean

v

ORB

v

Server

v

SessionManager

v

StatefulSessionBean

v

StatelessSessionBean

v

SystemMetrics

v

TransactionService

v

WebModule

v

Servlet

v

WLMAppServer

v

WebServicesService

v

WSGW

The

following

are

sample

commands

in

wsadmin

you

can

use

to

obtain

PMI

data:

Obtain

the

Perf

MBean

ObjectName

wsadmin>set

perfName

[$AdminControl

completeObjectName

type=Perf,*]

wsadmin>set

perfOName

[$AdminControl

makeObjectName

$perfName]

Invoke

getInstrumentationLevelString

operation

v

use

invoke

since

it

has

no

parameter

wsadmin>$AdminControl

invoke

$perfName

getInstrumentationLevelString

This

command

returns

the

following:

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRuntimeModule=H

:orbPerfModule=H:servletSessionsModule=H:systemModule=H:threadPoolModule=H

:trans

actionModule=H:webAppModule=H

Note

that

you

can

change

the

level

(n,

l,

m,

h,

x)

in

the

above

string

and

then

pass

it

to

setInstrumentationLevel

method.

Invoke

setInstrumentationLevel

operation

-

enable/disable

PMI

counters

v

set

parameters

(″pmi=l″

is

the

simple

way

to

set

all

modules

to

the

low

level)

wsadmin>set

params

[java::new

{java.lang.Object[]}

2]

wsadmin>$params

set

0

[java::new

java.lang.String

pmi=l]

wsadmin>$params

set

1

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

2]

wsadmin>$sigs

set

0

java.lang.String

wsadmin>$sigs

set

1

java.lang.Boolean

v

invoke

the

method:

use

invoke_jmx

since

it

has

parameter

Chapter

1.

Monitoring

performance

17

wsadmin>$AdminControl

invoke_jmx

$perfOName

setInstrumentationLevel

$params

$sigs

This

command

does

not

return

anything.

Note

that

the

PMI

level

string

can

be

as

simple

as

pmi=level

(where

level

is

n,

l,

m,

h,

or

x)

or

something

like

module1=level1:module2=level2:module3=level3

with

the

same

format

shown

in

the

string

returned

from

getInstrumentationLevelString.

Invoke

getStatsString(ObjectName,

Boolean)

operation

If

you

know

the

MBean

ObjectName,

you

can

invoke

the

method

by

passing

the

right

parameters.

As

an

example,

JVM

MBean

is

used

here.

v

get

MBean

query

string

-

e.g.,

JVM

MBean

wsadmin>set

jvmName

[$AdminControl

completeObjectName

type=JVM,*]

v

set

parameters

wsadmin>set

params

[java::new

{java.lang.Object[]}

2]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$jvmName]

wsadmin>$params

set

1

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

2]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$sigs

set

1

java.lang.Boolean

v

invoke

method

wsadmin>$AdminControl

invoke_jmx

$perfOName

getStatsString

$params

$sigs

This

command

returns

the

following:

{Description

jvmRuntimeModule.desc}

{Descriptor

{{Node

wenjianpc}

{Server

server

1}

{Module

jvmRuntimeModule}

{Name

jvmRuntimeModule}

{Type

MODULE}}}

{Level

7}

{

Data

{{{Id

4}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeM

odule}

{Name

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModul

e.upTime}

{Id

4}

{Description

jvmRuntimeModule.upTime.desc}

{Level

1}

{Comment

{

The

amount

of

time

in

seconds

the

JVM

has

been

running}}

{SubmoduleName

null}

{T

ype

2}

{Unit

unit.second}

{Resettable

false}}}

{Time

1033670422282}

{Value

{Coun

t

638}

}}

{{Id

3}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRunt

imeModule}

{Name

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeM

odule.usedMemory}

{Id

3}

{Description

jvmRuntimeModule.usedMemory.desc}

{Level

1

}

{Comment

{Used

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

2}

{Unit

uni

t.kbyte}

{Resettable

false}}}

{Time

1033670422282}

{Value

{Count

66239}

}}

{{Id

2}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeModule}

{Nam

e

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModule.freeMemor

y}

{Id

2}

{Description

jvmRuntimeModule.freeMemory.desc}

{Level

1}

{Comment

{Fre

e

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

2}

{Unit

unit.kbyte}

{Reset

table

false}}}

{Time

1033670422282}

{Value

{Count

34356}

}}

{{Id

1}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeModule}

{Name

jvmRuntimeMod

ule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModule.totalMemory}

{Id

1}

{Des

cription

jvmRuntimeModule.totalMemory.desc}

{Level

7}

{Comment

{Total

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

5}

{Unit

unit.kbyte}

{Resettable

false}

}}

{Time

1033670422282}

{Value

{Current

100596}

{LowWaterMark

38140}

{HighWaterM

ark

100596}

{MBean

38140.0}

}}}}

Invoke

getStatsString

(ObjectName,

String,

Boolean)

operation

This

operation

takes

an

additional

String

parameter

and

it

is

used

for

PMI

modules

that

do

not

have

matching

MBeans.

In

this

case,

the

parent

MBean

is

used

with

a

String

name

representing

the

PMI

module.

The

String

names

available

in

a

MBean

can

be

found

by

invoking

listStatMemberNames.

For

example,

beanModule

is

a

logic

module

aggregating

PMI

data

over

all

EJBs

but

there

is

no

MBean

for

beanModule.

Therefore,

you

can

pass

server

MBean

ObjectName

and

a

String

″beanModule″

to

get

PMI

data

in

beanModule.

v

get

MBean

query

string

-

e.g.,

server

MBean

wsadmin>set

mySrvName

[$AdminControl

completeObjectName

type=Server,name=server1,

node=wenjianpc,*]

v

set

parameters

18

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

wsadmin>set

params

[java::new

{java.lang.Object[]}

3]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$mySrvName]

wsadmin>$params

set

1

[java::new

java.lang.String

beanModule]

wsadmin>$params

set

2

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

3]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$sigs

set

1

java.lang.String

wsadmin>$sigs

set

2

java.lang.Boolean

v

invoke

method

wsadmin>$AdminControl

invoke_jmx

$perfOName

getStatsString

$params

$sigs

This

command

returns

PMI

data

in

all

the

EJBs

within

the

BeanModule

hierarchy

since

the

recursive

flag

is

set

to

true.

Note

that

this

method

is

used

to

get

stats

data

for

the

PMI

modules

that

do

not

have

direct

MBean

mappings.

Invoke

listStatMemberNames

operation

v

get

MBean

queryString

-

for

example,

Server

wsadmin>set

mySrvName

[$AdminControl

completeObjectName

type=Server,name=server1,

node=wenjianpc,*]

v

set

parameter

wsadmin>set

params

[java::new

{java.lang.Object[]}

1]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$mySrvName]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

1]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$AdminControlinvoke_jmx

$perfOName

listStatMemberNames

$params

$sigs

This

command

returns

the

PMI

module

and

submodule

names,

which

have

no

direct

MBean

mapping.

The

names

are

seperated

by

a

space

″

″.

You

can

then

use

the

name

as

the

String

parameter

in

getStatsString

method,

for

example:

beanModule

connectionPoolModule

j2cModule

servletSessionsModule

threadPoolModule

webAppModule

Related

tasks

“Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console”

on

page

15

Launching

scripting

clients

Related

reference

Wsadmin

tool

Monitoring

and

analyzing

performance

data

WebSphere

Application

Server

performance

data,

once

collected,

can

be

monitored

and

analyzed

with

a

variety

of

tools.

1.

Monitor

performance

data

with

Tivoli

Performance

Viewer.

This

tool

is

included

with

WebSphere

Application

Server.

2.

Monitor

performance

data

with

user-developed

monitoring

tools.

Write

your

own

applications

to

monitor

performance

data.

3.

Monitor

performance

with

third-party

monitoring

tools.

4.

RMF

Workload

Activity

reports

and

RMF

Monitor

III.

5.

WLM

Delay

Monitoring.

Chapter

1.

Monitoring

performance

19

Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)

The

Resource

Analyzer

has

been

renamed

Tivoli

Performance

Viewer.

Tivoli

Performance

Viewer

(which

is

shipped

with

WebSphere)

is

a

Graphical

User

Interface

(GUI)

performance

monitor

for

WebSphere

Application

Server.

Tivoli

Performance

Viewer

can

connect

to

a

local

or

to

a

remote

host.

Connecting

to

a

remote

host

will

minimize

performance

impact

to

the

application

server

environment.

Monitor

and

analyze

the

data

with

Tivoli

Performance

Viewer

with

these

tasks:

1.

Start

the

Tivoli

Performance

Viewer.

2.

Set

monitoring

levels.

3.

View

summary

reports.

4.

(Optional)

Store

data

to

a

log

file.

5.

(Optional)

Replay

a

performance

data

log

file.

6.

(Optional)

View

and

modify

performance

chart

data.

7.

(Optional)

Scale

the

performance

data

chart

display.

8.

(Optional)

Refresh

data.

9.

(Optional)

Clear

values

from

tables

and

charts.

10.

(Optional)

Reset

counters

to

zero.

Related

tasks

Chapter

1,

“Monitoring

performance,”

on

page

1

Related

reference

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

Tivoli

Performance

Viewer

features

Tivoli

Performance

Viewer

is

a

Java

client

which

retrieves

the

Performance

Monitoring

Infrastructure

(PMI)

data

from

an

application

server

and

displays

it

in

a

variety

of

formats.

You

can

do

the

following

tasks

with

the

Tivoli

Performance

Viewer:

v

View

data

in

real

time

v

Record

current

data

in

a

log,

and

replay

the

log

later

v

View

data

in

chart

form,

allowing

visual

comparison

of

multiple

counters.

Each

counter

can

be

scaled

independently

to

enable

meaningful

graphs.

v

View

data

in

tabular

form

v

Compare

data

for

single

resources

to

aggregate

data

across

a

node

To

minimize

the

performance

impact,

Tivoli

Performance

Viewer

polls

the

server

with

the

PMI

data

at

an

interval

set

by

the

user.

All

data

manipulations

are

done

in

the

Tivoli

Performance

Viewer

client,

which

can

be

run

on

a

separate

machine,

further

reducing

the

impact.

The

Tivoli

Performance

Viewer

graphical

user

interface

includes

the

following:

v

Resource

selection

panel

v

Data

monitoring

panel

v

Menu

bar

v

Toolbar

icons

v

Node

icons

v

Status

bar

20

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Layout

of

the

console

The

performance

viewer

main

window

consists

of

two

panels:

the

Resource

Selection

panel

and

the

Data

Monitoring

panel.

The

Resource

Selection

panel,

located

on

the

left,

provides

a

view

of

resources

for

which

performance

data

can

be

displayed.

The

Data

Monitoring

panel,

located

on

the

right,

displays

numeric

and

statistical

data

for

the

resources

that

are

highlighted

(selected)

in

the

Resource

Selection

panel.

You

can

adjust

the

width

of

the

Resource

Selection

and

Data

Monitoring

panels

by

dragging

the

split

bar

left

or

right.

You

can

rearrange

the

order

of

the

table

columns

in

the

Data

Monitoring

panel

by

dragging

the

column

heading

left

or

right.

You

can

also

adjust

the

width

of

the

columns

by

dragging

the

edge

of

the

column

left

or

right.

Resource

selection

panel

The

Resource

Selection

panel

provides

a

hierarchical

(tree)

view

of

resources

and

the

types

of

performance

data

available

for

those

resources.

Use

this

panel

to

select

which

resources

to

monitor

and

to

start

and

stop

data

retrieval

for

those

resources.

The

Resource

Selection

panel

displays

resources

and

associated

resource

categories

in

an

indented

tree

outline.

Clicking

the

plus

(+)

and

minus

(-)

symbols

expands

and

collapses

the

tree

to

reveal

the

categories

for

the

various

resource

instances.

The

resource

tree

can

also

be

navigated

by

using

the

up

and

down

arrow

keys

to

cycle

through

the

branches

and

by

using

the

left

and

right

arrow

keys

to

expand

and

collapse

the

tree

of

resources.

Resource

instances

can

be

expanded

to

reveal

the

instances

they

contain,

if

applicable.

For

example,

when

a

EJB

JAR

instance

is

expanded,

the

enterprise

bean

instances

in

the

EJB

JAR

are

revealed.

The

Data

Monitoring

panel

automatically

displays

the

appropriate

selection

of

counters

for

any

objects

highlighted

in

the

Resource

Selection

panel.

The

first

level

of

the

hierarchy

includes

all

nodes

(machines)

in

the

administrative

domain,

followed

by

all

application

servers

on

the

node.

Below

each

application

server,

all

resource

categories

are

listed.

If

the

enterprise

beans

category

is

expanded,

all

EJB

JAR

instances

in

the

server

are

displayed.

Next,

all

enterprise

bean

instances

appear

below

the

EJB

JAR

in

the

hierarchy.

Then,

a

methods

resource

is

associated

with

each

bean.

Clicking

an

individual

bean

or

EJB

JAR

instance

causes

its

corresponding

counters

to

be

displayed

in

the

Data

Monitoring

panel.

For

enterprise

beans,

the

counters

displayed

depend

on

whether

the

bean

is

an

entity

bean

or

a

session

bean.

For

EJB

JARs,

the

counters

are

aggregate

counters

for

all

enterprise

beans

in

the

EJB

JARs.

See

the

InfoCenter

article

Performance

data

organization

for

more

information.

Data

monitoring

panel

The

Data

Monitoring

panel

enables

the

selection

of

multiple

counters

and

displays

the

resulting

performance

data

for

the

currently

selected

resource.

It

contains

two

panels:

the

Viewing

Counter

panel

above

and

the

Counter

Selection

panel

below.

Counter

selection

panel

The

Counter

Selection

panel

shows

the

counters

available

for

the

resource

performance

category

selection.

Two

factors

determine

the

list

of

available

counters

in

the

Counter

Selection

panel:

v

Only

counters

associated

with

the

resource

that

is

selected

in

the

Resource

Selection

panel

are

displayed.

v

Only

counters

having

impact

cost

ratings

within

or

below

the

instrumentation

or

monitoring

level

that

is

set

for

that

resource

in

the

administrative

domain

are

displayed.

Chapter

1.

Monitoring

performance

21

The

first

three

counters

shown

for

each

resource

performance

category

are

selected

by

default.

All

counters

can

be

selected

or

deselected,

and

the

resulting

output,

shown

in

the

top

panel,

automatically

reflects

the

selection.

The

columns

in

the

Counter

Selection

panel

provide

the

following

information

for

each

counter:

v

Name.

The

names

of

the

counters

that

are

available

for

selection

with

this

resource.

v

Description.

A

brief

description

of

the

function

of

each

counter.

v

Value.

The

value

for

the

counter,

displayed

according

to

the

display

mode

in

effect.

Values

are

actual

values

(not

scaled

values

used

for

the

chart,

if

applicable).

v

Select.

A

check

box

that

indicates

whether

a

counter

is

to

be

reflected

in

the

chart.

To

hide

data,

clear

the

check

box.

The

column

representing

that

counter

is

then

removed

from

the

View

Data

window,

and

the

graphic

display

for

that

counter

is

removed

from

the

View

Chart

window.

v

Scale.

A

value

indicating

whether

data

has

been

scaled

(amplified

or

diminished)

from

its

actual

value

to

fit

on

the

chart.

This

value

is

reflected

only

in

the

View

Chart

window.

The

value

for

the

Scale

column

can

be

set

manually

by

editing

the

value

of

the

Scale

field.

See

Scaling

the

chart

display

manually

for

information

on

manually

setting

the

scale.

Viewing

Counter

panel

When

a

counter

on

the

list

in

the

Counter

Selection

panel

is

selected,

the

statistics

gathered

from

that

counter

are

displayed

in

the

Viewing

Counter

panel

at

the

top

of

the

Data

Monitoring

panel.

The

View

Data

window

shows

the

counter’s

output

in

table

format;

the

View

Chart

window

displays

a

graph

with

time

represented

on

the

x-axis

and

the

performance

value

represented

on

the

y-axis.

One

or

more

performance

counters

can

be

simultaneously

graphed

on

a

single

chart.

The

chart

plots

data

from

n

data

points,

where

n

is

the

current

table

size

(number

of

rows).

Display

of

multiple

resources

and

aggregate

data

When

a

single

resource

is

selected

in

the

Resource

Selection

panel,

the

Data

Monitoring

panel

displays

a

choice

of

a

table

view

or

a

chart

view.

If

multiple

resources

are

selected,

the

Data

Monitoring

panel

displays

a

single

data

sheet

for

viewing

summary

information

for

the

selected

resources.

The

data

sheet

displays

the

tables

for

all

objects

of

similar

type

for

the

selected

resources.

For

example,

if

three

servlet

instances

are

selected,

the

data

sheet

displays

a

table

of

counter

values

for

all

the

servlets.

By

default,

the

display

buffer

size

is

set

to

40

rows,

corresponding

to

the

values

of

the

last

40

data

points

retrieved.

The

performance

viewer

provides

aggregate

data

at

the

module

level.

If

aggregate

data

is

available

for

a

group,

it

is

displayed

in

the

Data

Monitoring

panel.

For

example,

for

each

enterprise

bean

home

interface,

counters

track

the

number

of

active

enterprise

beans

of

that

home.

Each

EJB

JAR

has

an

aggregate

value

that

is

the

sum

of

all

the

enterprise

beans

in

that

EJB

JAR.

The

enterprise

beans

resource

category

(module)

within

the

application

server

has

an

aggregate

value

that

is

the

sum

of

all

enterprise

beans

in

all

EJB

JARs.

Menu

bar

The

menu

bar

contains

the

following

options:

v

File

menu.

Used

to

change

to

current

mode

(from

logging

mode),

to

open

an

existing

log

file,

and

to

exit

from

the

performance

viewer.

The

File

menu

contains

the

following

items:

–

Refresh.

Queries

the

administrative

server

for

any

newly

started

resources

since

data

retrieval

began

or

for

additional

counters

to

report.

This

operation

is

also

recursive

over

all

components

subordinate

to

the

selected

resources.

Tivoli

Performance

Viewer

refreshes

data

every

10

seconds.

When

changing

the

refresh

rate,

you

must

use

an

integer

greater

than

or

equal

to

1.

–

Current

Activity.

Resumes

the

display

of

real-time

data

in

tables

and

charts.

This

menu

option

is

used

to

stop

viewing

data

from

a

log

file

and

return

to

viewing

real-time

data.

–

Log.

Displays

a

dialog

box

for

specifying

the

name

and

location

of

an

existing

log

file

to

be

replayed.

22

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

–

Exit.

Closes

the

performance

viewer.

If

you

made

changes

to

the

instrumentation

levels

of

any

resources

during

the

session,

a

dialog

box

opens

to

ask

whether

you

want

to

save

the

changed

settings

before

closing

the

tool.
v

Logging

menu.

Provides

On

and

Off

options

that

are

used

to

start

and

stop

recording

data

in

a

log

file.

If

you

start

a

new

log

file

and

specify

the

same

file

name,

the

file

is

overwritten.

v

Setting

menu.

Used

to

start

and

stop

the

reporting

of

data,

and

to

clear

and

refresh

data.

The

Setting

menu

contains

the

following

items:

–

Clear

Buffer.

Deletes

the

values

currently

displayed

in

tables

and

charts.

For

example,

after

stopping

a

counter,

you

can

use

this

operation

to

remove

the

remaining

data

from

a

table.

–

Reset

to

Zero.

Resets

cumulative

counters

of

the

selected

performance

group

back

to

zero.

–

View

Data

As.

Specifies

how

counter

values

are

displayed.

You

can

choose

whether

to

display

absolute

values,

changes

in

values,

or

rates

of

change.

How

data

is

displayed

differs

slightly

depending

on

where

you

are

viewing

data.

The

choices

follow:

-

Raw

Value.

Displays

the

absolute

value.

If

the

counter

represents

load

data,

such

as

the

average

number

of

connections

in

a

database

pool,

then

the

Tivoli

Performance

Viewer

displays

the

current

value

followed

by

the

average.

For

example,

18

(avg:5).

-

Change

in

Value.

Displays

the

change

in

the

current

value

from

the

previous

value.

-

Rate

of

Change.

Displays

the

ratio

change/(T1

-

T2),

where

change

is

the

change

in

the

current

value

from

the

previous

value,

T1

is

the

time

when

the

current

value

was

retrieved

and

T2

is

the

time

when

the

previous

value

was

retrieved.
–

Log

Replay.

Includes

Rewind

Stop

Play

Fast

Forward.

Note

that

right-clicking

a

resource

in

the

Resource

Selection

panel

displays

a

menu

that

provides

the

following

options:

Refresh,

Clear

Buffer,

and

Reset

to

Zero.

v

Help

menu.

Provides

information

for

users.

Toolbar

icons

Toolbar

icons

provide

shortcuts

to

frequently

used

commands.

The

toolbar

includes

the

following

icons:

v

Refresh.

Updates

data

and

structures

for

the

selected

resources.

That

is,

it

polls

the

administrative

server

to

retrieve

new

information

about

additional

counters

to

display

or

new

servers

recently

added

to

the

domain.

v

Clear

Buffer.

Deletes

the

values

currently

displayed

in

all

tables

and

charts.

v

Reset

to

Zero.

Resets

the

counters.

Node

icons

In

the

Resource

Selection

panel,

the

color

of

the

node

icon

indicates

the

current

state

and

availability

of

the

application

server

in

the

domain.

v

Green--The

resource

is

running

and

available.

v

Red--The

resource

is

stopped.

Status

bar

The

status

bar

across

the

bottom

of

the

performance

viewer

window

dynamically

displays

the

current

state

of

the

reporting

values.

The

following

state

information

is

reported

in

the

status

bar:

v

The

current

setting

for

the

refresh

rate

v

The

buffer

size

in

use

in

the

current

Viewing

Counter

panel

v

The

display

mode

in

use

in

the

current

Viewing

Counter

panel

v

The

current

state

of

the

logging

setting

Related

tasks

“Storing

data

to

a

log

file”

on

page

28

“Changing

the

refresh

rate

of

data

retrieval”

on

page

26

“Changing

the

display

buffer

size”

on

page

26

“Viewing

and

modifying

performance

chart

data”

on

page

26

Chapter

1.

Monitoring

performance

23

“Scaling

the

performance

data

chart

display”

on

page

26

“Viewing

summary

reports”

on

page

25

Related

reference

“Performance

data

organization”

on

page

2

Starting

the

Tivoli

Performance

Viewer

You

can

also

start

the

Tivoli

Performance

Viewer

with

security

enabled.

To

do

this

see

Running

your

monitoring

applications

with

security

enabled.

1.

Start

the

Tivoli

Performance

Viewer.

This

can

be

done

in

two

ways:

a.

Start

performance

monitoring

from

the

command

line.

Go

to

the

product_installation_directory/bin

directory

and

run

the

tperfviewer

script.

You

can

specify

the

host

and

port

in

Windows

NT,

2000,

and

XP

environments

as:

tperfviewer.bat

host_name

port_number

connector_type

or

On

the

AIX

and

other

UNIX

platforms,

use

tperfviewer.sh

host_name

port_number

connector_type

for

example:

tperfviewer.bat

localhost

8879

SOAP

Connector_type

can

be

either

SOAP

or

RMI.

The

port

numbers

for

SOAP/RMI

connector

can

be

configured

in

the

Administrative

Console

under

Servers

>

Application

Servers

>

server_name

>

End

Points.

If

you

are

connecting

to

WebSphere

Application

Server,

use

the

application

server

host

and

connector

port.

If

additional

servers

have

been

created,

then

use

the

appropriate

server

port

for

which

data

is

required.

Tivoli

Performance

Viewer

will

only

display

data

from

one

server

at

a

time

when

connecting

to

WebSphere

Application

Server.

If

you

are

connecting

to

WebSphere

Application

Server

Network

Deployment,

use

the

deployment

manager

host

and

connector

port.

Tivoli

Performance

Viewer

will

display

data

from

all

the

servers

in

the

cell.

Tivoli

Performance

Viewer

cannot

connect

to

an

individual

server

in

WebSphere

Application

Server

Network

Deployment.

8879

is

the

default

SOAP

connector

port

for

WebSphere

Application

Server

Network

Deployment.

8880

is

the

default

SOAP

connector

port

for

WebSphere

Application

Server.

9809

is

the

default

RMI

connector

port

for

WebSphere

Application

Server

Network

Deployment.

2809

is

the

default

RMI

connector

port

for

WebSphere

Application

Server.

On

iSeries,

you

can

connect

the

Tivoli

Performance

Viewer

to

an

iSeries

instance

from

either

a

Windows,

an

AIX,

or

a

UNIX

client

as

described

above.

To

discover

the

RMI

or

SOAP

port

for

the

iSeries

instance,

start

Qshell

and

enter

the

following

command:

product_installation_directory/bin/dspwasinst

-instance

myInstance

where

v

product_installation_directory

is

your

iSeries

install

directory

v

myInstance

is

the

instance

used

when

you

created

iSeries

instance.

24

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

b.

Click

Start

>

Programs

>

IBM

WebSphere

>

Application

Server

v.50

>

Tivoli

Performance

Viewer.

Tivoli

Performance

Viewer

detects

which

package

of

WebSphere

Application

Server

you

are

using

and

connects

using

the

default

SOAP

connector

port.

If

the

connection

fails,

a

dialog

is

displayed

to

provide

new

connection

parameters.

You

can

connect

to

a

remote

host

or

a

different

port

number,

by

using

the

command

line

to

start

the

performance

viewer.

2.

Adjust

the

data

collection

settings.

Refer

to

the

instructions

in

the

topicSetting

performance

monitoring

levels.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

“Running

your

monitoring

applications

with

security

enabled”

on

page

57

“Performance

monitoring

service

settings”

on

page

15

Setting

performance

monitoring

levels

The

monitoring

settings

determine

which

counters

are

enabled.

Changes

made

to

the

settings

from

Tivoli

Performance

Viewer

affect

all

applications

that

use

the

Performance

Monitoring

Infrastructure

(PMI)

data.

To

view

monitoring

settings:

1.

Choose

the

Data

Collection

icon

on

the

Resource

Selection

panel.

This

selection

provides

two

options

on

the

Counter

Selection

panel.

Choose

the

Current

Activity

option

to

view

and

change

monitoring

settings.

Alternatively,

use

File>

Current

Activity

to

view

the

monitoring

settings.

2.

Set

monitoring

levels

by

choosing

one

of

the

following

options:

v

None:

Provides

no

data

collection

v

Standard:

Enables

data

collection

for

all

modules

with

monitoring

level

set

to

high

v

Custom:

Allows

customized

settings

for

each

module

These

options

apply

to

an

entire

application

server.

3.

(Optional)

Fine

tune

the

monitoring

level

settings.

a.

Click

Specify.

This

sets

the

monitoring

level

to

custom.

b.

Select

a

monitoring

level.

For

each

resource,

choose

a

monitoring

level

of

None,

Low,

Medium,

High

or

Maximum.

The

dial

icon

will

change

to

represent

this

level.

Note:

The

instrumentation

level

is

set

recursively

to

all

elements

below

the

selected

resource.

You

can

override

this

by

setting

the

levels

for

children

AFTER

setting

their

parents.

4.

Click

OK.

5.

Click

Apply.

If

the

instrumentation

level

excludes

a

counter,

that

counter

does

not

appear

in

the

tables

and

charts

of

the

performance

viewer.

For

example,

when

the

instrumentation

level

is

set

to

low,

the

thread

pool

size

is

not

displayed

because

that

counter

requires

a

level

of

high.

Note

that

monitoring

levels

can

also

be

set

through

the

administrative

console.

See

Enabling

data

collection

through

the

administrative

console

for

more

information.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Viewing

summary

reports

Summary

reports

are

available

for

each

application

server.

Before

viewing

reports,

make

sure

data

counters

are

enabled

and

monitoring

levels

are

set

properly.

See

Setting

performance

monitoring

levels.

Chapter

1.

Monitoring

performance

25

The

standard

monitoring

level

will

enable

all

reports

except

the

report

on

EJB

methods.

To

enable

EJB

methods

report,

use

the

custom

monitoring

setting

and

set

the

monitoring

level

to

Max

for

the

Enterprise

Beans

module.

To

view

the

summary

reports:

1.

Click

the

application

server

icon

in

the

navigation

tree.

2.

Click

the

appropriate

column

header

to

sort

the

columns

in

the

report.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Changing

the

refresh

rate

of

data

retrieval

By

default,

the

Tivoli

Performance

Viewer

retrieves

data

every

10

seconds.

To

change

the

rate

at

which

data

is

retrieved:

1.

Click

Setting

>

Set

Refresh

Rate.

2.

Type

a

positive

integer

representing

the

number

of

seconds

in

the

Set

Refresh

Rate

dialog

box.

3.

Click

OK.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Changing

the

display

buffer

size

To

change

the

size

of

the

buffer

and

the

number

of

rows

displayed:

1.

Click

Setting

>

Set

Buffer

Size.

2.

Type

the

number

of

rows

to

display

in

the

Set

Buffer

Size

dialog

box.

3.

Click

OK.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Viewing

and

modifying

performance

chart

data

The

View

Chart

tab

displays

a

graph

with

time

as

the

x-axis

and

the

performance

value

as

the

y-axis.

1.

Click

a

resource

in

the

Resource

Selection

panel.

The

Resource

Selection

panel,

located

on

the

left

side,

provides

a

hierarchical

(tree)

view

of

resources

and

the

types

of

performance

data

available

for

those

resources.

Use

this

panel

to

select

which

resources

to

monitor

and

to

start

and

stop

data

retrieval

for

those

resources.

See

Tivoli

Performance

Viewer

features

for

information

on

the

Resource

Selection

panel.

2.

Click

the

View

Chart

tab

in

the

Data

Monitoring

panel.

The

Data

Monitoring

panel,

located

on

the

right

side,

enables

the

selection

of

multiple

counters

and

displays

the

resulting

performance

data

for

the

currently

selected

resource.

It

contains

two

panels:

the

Viewing

Counter

panel

above

and

the

Counter

Selection

panel

below.

If

necessary,

you

can

set

the

scaling

factors

by

typing

directly

in

the

scale

field.

See

Scaling

the

performance

data

chart

display

for

more

information.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Scaling

the

performance

data

chart

display

You

can

manually

adjust

the

scale

for

each

counter

so

that

the

graph

allows

meaningful

comparisons

of

different

counters.

Follow

these

steps

to

manually

adjust

the

scale:

1.

Double-click

the

Scale

column

for

the

counter

that

you

want

to

modify.

2.

Type

the

desired

value

in

the

field

for

the

Scale

value.

26

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

The

View

Chart

display

immediately

reflects

the

change

in

the

scaling

factor.

The

possible

values

for

the

Scale

field

range

from

0

to

100

and

show

the

following

relationships:

v

A

value

equal

to

1

indicates

that

the

value

is

the

actual

value.

v

A

value

greater

than

1

indicates

that

the

variable

value

is

amplified

by

the

factor

shown.

For

example,

a

scale

setting

of

1.5

means

that

the

variable

is

graphed

as

one

and

one-half

times

its

actual

value.

v

A

value

less

than

1

indicates

that

the

variable

value

is

decreased

by

the

factor

shown.

For

example,

a

scale

setting

of

.5

means

that

the

variable

is

graphed

as

one-half

its

actual

value.

Scaling

only

applies

to

the

graphed

values.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Refreshing

data

The

refresh

operation

is

a

local,

not

global,

operation

that

applies

only

to

selected

resources.

The

refresh

operation

is

recursive;

all

subordinate

or

children

resources

refresh

when

a

selected

resource

refreshes.

To

refresh

data:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

File

>

Refresh.

Alternatively,

click

the

Refresh

icon

or

right-click

the

resource

and

select

Refresh.

Clicking

refresh

with

server

selected

under

the

viewer

icon

causes

TPV

to

query

the

server

for

new

PMI

and

product

configuration

information.

Clicking

refresh

with

server

selected

under

the

advisor

icon

causes

TPV

to

refresh

the

advice

provided,

but

will

not

refresh

PMI

or

product

configuration

information.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Performance

data

refresh

behavior:

New

performance

data

can

become

available

in

either

of

the

following

situations:

v

An

administrator

uses

the

console

to

change

the

instrumentation

level

for

a

resource

(for

example,

from

medium

to

high).

v

An

administrator

uses

the

console

to

add

a

new

resource

(for

example,

an

enterprise

bean

or

a

servlet)

to

the

run

time.

In

both

cases,

if

the

resource

in

question

is

already

polled

by

the

Tivoli

Performance

Viewer

or

the

parent

of

the

resource

is

being

polled,

the

system

is

automatically

refreshed.

If

more

counters

are

added

for

a

group

that

the

performance

viewer

is

already

polling,

the

performance

viewer

automatically

adds

the

counters

to

the

table

or

chart

views.

If

the

parent

of

the

newly

added

resource

is

polled,

the

new

resource

is

detected

automatically

and

added

to

the

Resource

Selection

tree.

You

can

refresh

the

Resource

Selection

tree,

or

parts

of

it,

by

selecting

the

appropriate

node

and

clicking

the

Refresh

icon,

or

by

right-clicking

a

resource

and

choosing

Refresh.

When

an

application

server

runs,

the

performance

viewer

tree

automatically

updates

the

server

local

structure,

including

its

containers

and

enterprise

beans,

to

reflect

changes

on

the

server.

However,

if

a

stopped

server

starts

after

the

performance

viewer

starts,

a

manual

refresh

operation

is

required

so

that

the

server

structure

accurately

reflects

in

the

Resource

Selection

tree.

Clicking

refresh

with

server

selected

under

the

viewer

icon

causes

TPV

to

query

the

server

for

new

PMI

and

product

configuration

information.

Clicking

refresh

with

server

selected

under

the

advisor

icon

causes

TPV

to

refresh

the

advice

provided,

but

will

not

refresh

PMI

or

product

configuration

information.

Related

tasks

“Refreshing

data”

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

Chapter

1.

Monitoring

performance

27

Clearing

values

from

tables

and

charts

Selecting

Clear

Values

removes

remaining

data

from

a

table

or

chart.

You

can

then

begin

populating

the

table

or

chart

with

new

data.

To

clear

the

values

currently

displayed:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

Setting

>

Clear

Buffer.

Alternatively,

right-click

the

resource

and

select

Clear

Buffer

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Storing

data

to

a

log

file

You

can

save

all

data

reported

by

the

Tivoli

Performance

Viewer

in

a

log

file

and

write

the

data

in

binary

format

(serialized

Java

objects)

or

XML

format.

To

start

recording

data:

1.

Click

Logging

>

On

or

click

the

Logging

icon.

2.

Specify

the

name,

location,

and

format

type

of

the

log

file

in

the

Save

dialog

box.

The

Files

of

type

field

allows

an

extension

of

*.perf

for

binary

files

or

*.xml

for

XML

format.

Note:

The

*.perf

files

may

not

be

compatible

between

fix

levels.

3.

Click

OK.

To

stop

logging,

click

Logging

>

Off

or

click

the

Logging

icon.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Performance

data

log

file:

An

example

of

the

performance

data

log

file

format

is

below.

Location

By

default,

this

file

is

written

to:

product_installation_root/logs/ra_mmdd_hhmm.xml

where

mmdd=month

and

date,

and

hhmm=hour

and

minute

Usage

Notes

This

read-write

data

file

is

created

by

Tivoli

Performance

Viewer

and

provides

data

collected

by

the

performance

viewer.

The

log

file

is

not

updated,

but

remains

available

for

you

to

replay

the

collected

data.

The

performance

data

log

file

does

not

have

an

effect

on

the

WebSphere

environment.

Example

<?xml

version="1.0"?>

<RALog

version="5.0">

<RAGroupSnapshot

time="1019743202343"

numberGroups="1">

<CpdCollection

name="root/peace/Default

Server/jvmRuntimeModule"

level="7">

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.total/Memory"

id="1">

<CpdLong

value="39385600"

time="1.019743203334E12"/>

</CpdData>

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.freeMemory"

id="2">

<CpdLong

value="4815656"

time="1.019743203334E12"/>

</CpdData>

28

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.usedMemory"

id="3">

<CpdLong

value="34569944"

time="1.019743203334E12"/>

</CpdData>

</CpdCollection>

</RAGroupSnapshot>

</RALog>

Related

tasks

“Storing

data

to

a

log

file”

on

page

28

Replaying

a

performance

data

log

file

You

can

replay

both

binary

and

XML

logs

by

using

the

Tivoli

Performance

Viewer.

To

replay

a

log

file,

do

the

following:

1.

Click

Data

Collection

in

the

navigation

tree.

2.

Click

the

Log

radio

button

in

the

Performance

data

from

field.

3.

Click

Browse

to

locate

the

file

that

you

want

to

replay

or

type

the

file

path

name

in

the

Log

field.

4.

Click

Apply.

5.

Play

the

log

by

using

the

Play

icon

or

click

Setting

>

Log

Replay

>

Play.

By

default,

the

data

replays

at

the

same

rate

it

was

collected

or

written

to

the

log.

You

can

choose

Fast

Forward

mode

in

which

the

log

replays

without

simulating

the

refresh

interval.

To

Fast

Forward,

use

the

button

in

the

tool

bar

or

click

Setting

>

Log

Replay

>

FF.

To

rewind

a

log

file,

click

Setting

>

Log

Replay

>

Rewind

or

use

the

Rewind

icon

in

the

toolbar.

While

replaying

the

log,

you

can

choose

different

groups

to

view

by

selecting

them

in

the

Resource

Selection

pane.

You

can

also

view

the

data

in

either

of

the

views

available

in

the

tabbed

Data

Monitoring

panel.

You

can

stop

and

resume

the

log

at

any

point.

However,

you

cannot

replay

data

in

reverse.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Resetting

counters

to

zero

Some

counters

report

relative

values

based

on

how

much

the

value

has

changed

since

the

counter

was

enabled.

The

Reset

to

Zero

operation

resets

those

counters

so

that

they

will

report

changes

in

values

since

the

reset

operation.

This

operation

will

also

clear

the

buffer

for

the

selected

resources.

See

″Clearing

values

from

tables

and

charts″

in

Related

Links

for

more

information

about

clearing

the

buffer

for

selected

resources.

Counters

based

on

absolute

values

can

not

be

reset

and

will

not

be

affected

by

the

Reset

to

Zero

operation.

To

reset

the

start

time

for

calculating

relative

counters:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

Setting

>

Reset

to

Zero.

Alternatively,

right-click

the

resource

and

click

Reset

to

Zero.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

“Clearing

values

from

tables

and

charts”

on

page

28

Chapter

1.

Monitoring

performance

29

Developing

your

own

monitoring

applications

You

can

use

the

Performance

Monitoring

Infrastructure

(PMI)

interfaces

to

develop

your

own

applications

to

collect

and

display

performance

information.

There

are

three

such

interfaces

-

a

Java

Machine

Extension

(JMX)-based

interface,

a

PMI

client

interface,

and

a

servlet

interface.

All

three

interfaces

return

the

same

underlying

data.

The

JMX

interface

is

accessible

through

the

AdminClient

tool.

The

PMI

client

interface

is

a

Java

interface.

The

servlet

interface

is

perhaps

the

simplest,

requiring

minimal

programming,

as

the

output

is

XML.

1.

Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client

.

2.

Developing

your

own

monitoring

applications

with

PMI

servlet

3.

Compiling

your

monitoring

applications

4.

Running

your

new

monitoring

applications

5.

Accessing

Performance

Monitoring

Infrastructure

data

through

the

Java

Management

Extension

interface.

6.

Developing

Performance

Monitoring

Infrastructure

interfaces

(Version

4.0).

Performance

Monitoring

Infrastructure

client

interface

The

data

provided

by

the

Performance

Monitoring

Infrastructure

(PMI)

client

interface

is

documented

here.

Access

to

the

data

is

provided

in

a

hierarchical

structure.

Descending

from

the

object

are

node

information

objects,

module

information

objects,

CpdCollection

objects

and

CpdData

objects.

Using

Version

5.0,

you

will

get

Stats

and

Statistic

objects.

The

node

and

server

information

objects

contain

no

performance

data,

only

static

information.

Each

time

a

client

retrieves

performance

data

from

a

server,

the

data

is

returned

in

a

subset

of

this

structure;

the

form

of

the

subset

depends

on

the

data

retrieved.

You

can

update

the

entire

structure

with

new

data,

or

update

only

part

of

the

tree,

as

needed.

The

JMX

statistic

data

model

is

supported,

as

well

as

the

existing

CPD

data

model

from

Version

4.0.

When

you

retrieve

performance

data

using

the

Version

5.0

PMI

client

API,

you

get

the

Stats

object,

which

includes

Statistic

objects

and

optional

sub-Stats

objects.

When

you

use

the

Version

4.0

PMI

client

API

to

collect

performance

data,

you

get

the

CpdCollection

object,

which

includes

the

CpdData

objects

and

optional

sub-CpdCollection

objects.

The

following

are

additional

Performance

Monitoring

Infrastructure

(PMI)

interfaces:

v

BoundaryStatistic

v

BoundedRangeStatistic

v

CountStatistic

v

MBeanStatDescriptor

v

MBeanLevelSpec

v

New

Methods

in

PmiClient

v

RangeStatistic

v

Stats

v

Statistic

v

TimeStatistic

The

following

PMI

interfaces

introduced

in

Version

4.0

are

also

supported:

v

CpdCollection

v

CpdData

v

CpdEventListener

and

CpdEvent

v

CpdFamily

class

v

CpdValue

–

CpdLong

–

CpdStat

30

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

–

CpdLoad
v

PerfDescriptor

v

PmiClient

class

The

CpdLong

maps

to

CountStatistic;

CpdStat

maps

to

Time

Statistic;

CpdCollection

maps

to

Stats;

and

CpdLoad

maps

to

RangeStatistic

and

BoundedRangeStatistic.

Note:

Version

4.0

PmiClient

APIs

are

supported

in

this

version,

however,

there

are

some

changes.

The

data

hierarchy

is

changed

in

some

PMI

modules,

notably

the

enterprise

bean

module

and

HTTP

sessions

module.

If

you

have

an

existing

PmiClient

application,

and

you

want

to

run

it

against

Version

5.0,

you

might

have

to

update

the

PerfDescriptor(s)

based

on

the

new

PMI

data

hierarchy.

Also,

the

getDataName

and

getDataId

methods

in

PmiClient

are

changed

to

be

non-static

methods

in

order

to

support

multiple

WebSphere

Application

Server

versions.

You

might

have

to

update

your

existing

application

which

uses

these

two

methods.

Related

tasks

“Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client”

Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client

The

following

is

the

programming

model

for

Performance

Monitoring

Infrastructure

(PMI)

client:

1.

Create

an

instance

of

PmiClient.

This

is

used

for

all

subsequent

method

calls.

2.

Call

the

listNodes()

and

listServers(nodeName)

methods

to

find

all

the

nodes

and

servers

in

the

WebSphere

Application

Server

domain.

3.

Call

listMBeans

and

listStatMembers

to

get

all

the

available

MBeans

and

MBeanStatDescriptors.

4.

Call

the

getStats

method

to

get

the

Stats

object

for

the

PMI

data.

5.

(Optional)

The

client

can

also

call

setStatLevel

or

getStatLevel

to

set

and

get

the

monitoring

level.

Use

the

MBeanLevelSpec

objects

to

set

monitoring

levels.

Related

reference

“Performance

Monitoring

Infrastructure

client

package”

on

page

56

“Performance

Monitoring

Infrastructure

client

interface”

on

page

30

Performance

Monitoring

Infrastructure

client:

A

Performance

Monitoring

Infrastructure

(PMI)

client

is

an

application

that

receives

PMI

data

from

servers

and

processes

this

data.

In

Version

4.0,

PmiClient

API

takes

PerfDescriptor(s)

and

returns

PMI

data

as

a

CpdCollection

object.

Each

CpdCollection

could

contain

a

list

of

CpdData,

which

has

a

CpdValue

of

the

following

types:

v

CpdLong

v

CpdStat

v

CpdLoad

Version

4.0

PmiClient

APIs

are

supported

in

this

version,

however,

there

are

some

changes.

The

data

hierarchy

is

changed

in

some

PMI

modules,

notably

the

enterprise

bean

module

and

HTTP

sessions

module.

If

you

have

an

existing

PmiClient

application,

and

you

want

to

run

it

against

Version

5.0,

you

might

have

to

update

the

PerfDescriptor(s)

based

on

the

new

PMI

data

hierarchy.

Also,

the

getDataName

and

getDataId

methods

in

PmiClient

are

changed

to

be

non-static

methods

in

order

to

support

multiple

WebSphere

Application

Server

versions.

You

might

have

to

update

your

existing

application

which

uses

these

two

methods.

Related

tasks

“Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client”

Chapter

1.

Monitoring

performance

31

Example:

Performance

Monitoring

Infrastructure

client

with

new

data

structure:

The

following

is

example

code

using

Performance

Monitoring

Infrastructure

(PMI)

client

data

structure:

import

com.ibm.websphere.pmi.*;

import

com.ibm.websphere.pmi.stat.*;

import

com.ibm.websphere.pmi.client.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.exception.*;

import

java.util.*;

import

javax.management.*;

import

java.io.*;

/**

*

Sample

code

to

use

PmiClient

API

(new

JMX-based

API)

and

get

Statistic/Stats

objects.

*/

public

class

PmiClientTest

implements

PmiConstants

{

static

PmiClient

pmiClnt

=

null;

static

String

nodeName

=

null;

static

String

serverName

=

null;

static

String

portNumber

=

null;

static

String

connectorType

=

null;

static

boolean

success

=

true;

/**

*

@param

args[0]

host

*

@param

args[1]

portNumber,

optional,

default

is

2809

*

@param

args[2]

connectorType,

optional,

default

is

RMI

connector

*

@param

args[3]serverName,

optional,

default

is

the

first

server

found

*/

public

static

void

main(String[]

args)

{

try

{

if(args.length

>

1)

{

System.out.println("Parameters:

host

[portNumber]

[connectorType]

[serverName]");

return;

}

//

parse

arguments

and

create

an

instance

of

PmiClient

nodeName

=

args[0];

if

(args.length

>

1)

portNumber

=

args[1];

if

(args.length

>

2)

connectorType

=

args[2];

//

create

an

PmiClient

object

pmiClnt

=

new

PmiClient(nodeName,

portNumber,

"WAS50",

false,

connectorType);

//

Uncomment

it

if

you

want

to

debug

any

problem

//pmiClnt.setDebug(true);

//

update

nodeName

to

be

the

real

host

name

//

get

all

the

node

PerfDescriptor

in

the

domain

PerfDescriptor[]

nodePds

=

pmiClnt.listNodes();

if(nodePds

==

null)

{

System.out.println("no

nodes");

return;

}

//

get

the

first

node

32

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

nodeName

=

nodePds[0].getName();

System.out.println("use

node

"

+

nodeName);

if

(args.length

==

4)

serverName

=

args[3];

else

{

//

find

the

server

you

want

to

get

PMI

data

//

get

all

servers

on

this

node

PerfDescriptor[]

allservers

=

pmiClnt.listServers(nodeName);

if

(allservers

==

null

||

allservers.length

==

0)

{

System.out.println("No

server

is

found

on

node

"

+

nodeName);

System.exit(1);

}

//

get

the

first

server

on

the

list.

You

may

want

to

get

a

different

server

serverName

=

allservers[0].getName();

System.out.println("Choose

server

"

+

serverName);

}

//

get

all

MBeans

ObjectName[]

onames

=

pmiClnt.listMBeans(nodeName,

serverName);

//

Cache

the

MBeans

we

are

interested

ObjectName

perfOName

=

null;

ObjectName

serverOName

=

null;

ObjectName

wlmOName

=

null;

ObjectName

ejbOName

=

null;

ObjectName

jvmOName

=

null;

ArrayList

myObjectNames

=

new

ArrayList(10);

//

get

the

MBeans

we

are

interested

in

if(onames

!=

null)

{

System.out.println("Number

of

MBeans

retrieved=

"

+

onames.length);

AttributeList

al;

ObjectName

on;

for(int

i=0;

i<onames.length;

i++)

{

on

=

onames[i];

String

type

=

on.getKeyProperty("type");

//

make

sure

PerfMBean

is

there.

//

Then

randomly

pick

up

some

MBeans

for

the

test

purpose

if(type

!=

null

&&

type.equals("Server"))

serverOName

=

on;

else

if(type

!=

null

&&

type.equals("Perf"))

perfOName

=

on;

else

if(type

!=

null

&&

type.equals("WLM"))

{

wlmOName

=

on;

}

else

if(type

!=

null

&&

type.equals("EntityBean"))

{

ejbOName

=

on;

//

add

all

the

EntityBeans

to

myObjectNames

myObjectNames.add(ejbOName);

//

add

to

the

list

}

else

if(type

!=

null

&&

type.equals("JVM"))

{

jvmOName

=

on;

}

}

//

set

monitoring

level

for

SERVER

MBean

testSetLevel(serverOName);

//

get

Stats

objects

testGetStats(myObjectNames);

//

if

you

know

the

ObjectName(s)

testGetStats2(new

ObjectName[]{jvmOName,

ejbOName});

Chapter

1.

Monitoring

performance

33

//

assume

you

are

only

interested

in

a

server

data

in

WLM

MBean,

//

then

you

will

need

to

use

StatDescriptor

and

MBeanStatDescriptor

//

Note

that

wlmModule

is

only

available

in

ND

version

StatDescriptor

sd

=

new

StatDescriptor(new

String[]

{"wlmModule.server"});

MBeanStatDescriptor

msd

=

new

MBeanStatDescriptor(wlmOName,

sd);

Stats

wlmStat

=

pmiClnt.getStats(nodeName,

serverName,

msd,

false);

if

(wlmStat

!=

null)

System.out.println("\n\n

WLM

server

data\n\n

+

"

+

wlmStat.toString());

else

System.out.println("\n\n

No

WLM

server

data

is

availalbe.");

//

how

to

find

all

the

MBeanStatDescriptors

testListStatMembers(serverOName);

//

how

to

use

update

method

testUpdate(jvmOName,

false,

true);

}

else

{

System.out.println("No

ObjectNames

returned

from

Query"

);

}

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("Exception

=

"

+e);

e.printStackTrace();

success

=

false;

}

if(success)

System.out.println("\n\n

All

tests

are

passed");

else

System.out.println("\n\n

Some

tests

are

failed.

Check

for

the

exceptions");

}

/**

*

construct

an

array

from

the

ArrayList

*/

private

static

MBeanStatDescriptor[]

getMBeanStatDescriptor(ArrayList

msds)

{

if(msds

==

null

||

msds.size()

==

0)

return

null;

MBeanStatDescriptor[]

ret

=

new

MBeanStatDescriptor[msds.size()];

for(int

i=0;

i<ret.length;

i++)

if(msds.get(i)

instanceof

ObjectName)

ret[i]

=

new

MBeanStatDescriptor((ObjectName)msds.get(i));

else

ret[i]

=

(MBeanStatDescriptor)msds.get(i);

return

ret;

}

/**

*

Sample

code

to

navigate

and

display

the

data

value

from

the

Stats

object.

*/

private

static

void

processStats(Stats

stat)

{

processStats(stat,

"");

}

/**

*

Sample

code

to

navigate

and

display

the

data

value

from

the

Stats

object.

*/

private

static

void

processStats(Stats

stat,

String

indent)

{

if(stat

==

null)

return;

System.out.println("\n\n");

34

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

//

get

name

of

the

Stats

String

name

=

stat.getName();

System.out.println(indent

+

"stats

name="

+

name);

//

Uncomment

the

following

lines

to

list

all

the

data

names

/*

String[]

dataNames

=

stat.getStatisticNames();

for

(int

i=0;

i<dataNames.length;

i++)

System.out.println(indent

+

"

"

+

"data

name="

+

dataNames[i]);

System.out.println("\n");

*/

//

list

all

datas

com.ibm.websphere.management.statistics.Statistic[]

allData

=

stat.getStatistics();

//

cast

it

to

be

PMI’s

Statistic

type

so

that

we

can

have

get

more

Statistic[]

dataMembers

=

(Statistic[])allData;

if(dataMembers

!=

null)

{

for(int

i=0;

i<dataMembers.length;

i++)

{

System.out.print(indent

+

"

"

+

"data

name="

+

PmiClient.getNLSValue(dataMembers[i].getName())

+

",

description="

+

PmiClient.getNLSValue(dataMembers[i].getDescription())

+

",

unit="

+

PmiClient.getNLSValue(dataMembers[i].getUnit())

+

",

startTime="

+

dataMembers[i].getStartTime()

+

",

lastSampleTime="

+

dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LONG)

{

System.out.println(",

count="

+

((CountStatisticImpl)dataMembers[i]).getCount());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_STAT)

{

TimeStatisticImpl

data

=

(TimeStatisticImpl)dataMembers[i];

System.out.println(",

count="

+

data.getCount()

+

",

total="

+

data.getTotal()

+

",

mean="

+

data.getMean()

+

",

min="

+

data.getMin()

+

",

max="

+

data.getMax());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LOAD)

{

RangeStatisticImpl

data

=

(RangeStatisticImpl)dataMembers[i];

System.out.println(",

current="

+

data.getCurrent()

+

",

lowWaterMark="

+

data.getLowWaterMark()

+

",

highWaterMark="

+

data.getHighWaterMark()

+

",

integral="

+

data.getIntegral()

+

",

avg="

+

data.getMean());

}

}

}

//

recursively

for

sub-stats

Stats[]

substats

=

(Stats[])stat.getSubStats();

if(substats

==

null

||

substats.length

==

0)

return;

for(int

i=0;

i<substats.length;

i++)

{

processStats(substats[i],

indent

+

"

");

}

}

/**

*

test

set

level

and

verify

using

get

level

*/

private

static

void

testSetLevel(ObjectName

mbean)

{

System.out.println("\n\n

testSetLevel\n\n");

try

{

//

set

instrumentation

level

to

be

high

for

the

mbean

MBeanLevelSpec

spec

=

new

MBeanLevelSpec(mbean,

null,

PmiConstants.LEVEL_HIGH);

Chapter

1.

Monitoring

performance

35

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

System.out.println("after

setInstrumentaionLevel

high

on

server

MBean\n\n");

//

get

all

instrumentation

levels

MBeanLevelSpec[]

mlss

=

pmiClnt.getStatLevel(nodeName,

serverName,

mbean,

true);

if(mlss

==

null)

System.out.println("error:

null

from

getInstrumentationLevel");

else

{

for(int

i=0;

i<mlss.length;

i++)

if(mlss[i]

!=

null)

{

//

get

the

ObjectName,

StatDescriptor,

and

level

out

of

MBeanStatDescriptor

int

mylevel

=

mlss[i].getLevel();

ObjectName

myMBean

=

mlss[i].getObjectName();

StatDescriptor

mysd

=

mlss[i].getStatDescriptor();

//

may

be

null

//

Uncomment

it

to

print

all

the

mlss

//System.out.println("mlss

"

+

i

+

":,

"

+

mlss[i].toString());

}

}

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("Exception

in

testLevel");

success

=

false;

}

}

/**

*

Use

listStatMembers

method

*/

private

static

void

testListStatMembers(ObjectName

mbean)

{

System.out.println("\n\ntestListStatMembers

\n");

//

listStatMembers

and

getStats

//

From

server

MBean

until

the

bottom

layer.

try

{

MBeanStatDescriptor[]

msds

=

pmiClnt.listStatMembers(nodeName,

serverName,

mbean);

if(msds

==

null)

return;

System.out.println("

listStatMembers

for

server

MBean,

num

members

(i.e.

top

level

modules)

is

"

+

msds.length);

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i]

==

null)

continue;

//

get

the

fields

out

of

MBeanStatDescriptor

if

you

need

them

ObjectName

myMBean

=

msds[i].getObjectName();

StatDescriptor

mysd

=

msds[i].getStatDescriptor();

//

may

be

null

//

uncomment

if

you

want

to

print

them

out

//System.out.println(msds[i].toString());

}

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i]

==

null)

continue;

System.out.println("\n\nlistStatMembers

for

msd="

+

msds[i].toString());

MBeanStatDescriptor[]

msds2

=

pmiClnt.listStatMembers(nodeName,

serverName,

msds[i]);

//

you

get

msds2

at

the

second

layer

now

and

the

listStatMembers

can

be

called

recursively

//

until

it

returns

now.

}

}

36

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("Exception

in

testListStatMembers");

success

=

false;

}

}

/**

*

Test

getStats

method

*/

private

static

void

testGetStats(ArrayList

mbeans)

{

System.out.println("\n\n

testgetStats\n\n");

try

{

Stats[]

mystats

=

pmiClnt.getStats(nodeName,

serverName,

getMBeanStatDescriptor(mbeans),

true);

//

navigate

each

of

the

Stats

object

and

get/display

the

value

for(int

k=0;

k<mystats.length;

k++)

{

processStats(mystats[k]);

}

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("exception

from

testGetStats");

success

=

false;

}

}

/**

*

Test

getStats

method

*/

private

static

void

testGetStats2(ObjectName[]

mbeans)

{

System.out.println("\n\n

testGetStats2\n\n");

try

{

Stats[]

statsArray

=

pmiClnt.getStats(nodeName,

serverName,

mbeans,

true);

//

You

can

call

toString

to

simply

display

all

the

data

if(statsArray

!=

null)

{

for(int

k=0;

k<statsArray.length;

k++)

System.out.println(statsArray[k].toString());

}

else

System.out.println("null

stat");

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("exception

from

testGetStats2");

success

=

false;

}

}

/**

*

test

update

method

*/

private

static

void

testUpdate(ObjectName

oName,

boolean

keepOld,

boolean

recursiveUpdate)

{

System.out.println("\n\n

testUpdate\n\n");

try

{

//

set

level

to

be

NONE

MBeanLevelSpec

spec

=

new

MBeanLevelSpec(oName,

null,

PmiConstants.LEVEL_NONE);

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

Chapter

1.

Monitoring

performance

37

//

get

data

now

-

one

is

non-recursive

and

the

other

is

recursive

Stats

stats1

=

pmiClnt.getStats(nodeName,

serverName,

oName,

false);

Stats

stats2

=

pmiClnt.getStats(nodeName,

serverName,

oName,

true);

//

set

level

to

be

HIGH

spec

=

new

MBeanLevelSpec(oName,

null,

PmiConstants.LEVEL_HIGH);

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

Stats

stats3

=

pmiClnt.getStats(nodeName,

serverName,

oName,

true);

System.out.println("\n\n

stats3

is");

processStats(stats3);

stats1.update(stats3,

keepOld,

recursiveUpdate);

System.out.println("\n\n

update

stats1");

processStats(stats1);

stats2.update(stats3,

keepOld,

recursiveUpdate);

System.out.println("\n\n

update

stats2");

processStats(stats2);

}

catch(Exception

ex)

{

System.out.println("\n\n

Exception

in

testUpdate");

ex.printStackTrace();

success

=

false;

}

}

}

Related

tasks

“Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client”

on

page

31

Developing

your

own

monitoring

applications

with

Performance

Monitoring

Infrastructure

servlet

The

performance

servlet

uses

the

Performance

Monitor

Interface

(PMI)

infrastructure

to

retrieve

the

performance

information

from

WebSphere

Application

Server.

The

performance

servlet

.ear

file

perfServletApp.ear

is

located

in

the

install_root

directory.

The

performance

servlet

is

deployed

exactly

as

any

other

servlet.

To

use

it,

follow

these

steps:

1.

Deploy

the

servlet

on

a

single

application

server

instance

within

the

domain.

2.

After

the

servlet

deploys,

you

can

invoke

it

to

retrieve

performance

data

for

the

entire

domain.

Invoke

the

performance

servlet

by

accessing

the

following

default

URL:

http://hostname/wasPerfTool/servlet/perfservlet

The

performance

servlet

provides

performance

data

output

as

an

XML

document,

as

described

by

the

provided

document

type

definition

(DTD).

The

output

structure

provided

is

called

leaves.

The

paths

that

lead

to

the

leaves

provide

the

context

of

the

data.

See

the

topic

″Performance

Monitoring

Infrastructure

(PMI)

servlet″

for

more

information

about

the

PMI

servlet

output.

Performance

Monitoring

Infrastructure

servlet:

The

Performance

Monitoring

Infrastructure

(PMI)

servlet

is

used

for

simple

end-to-end

retrieval

of

performance

data

that

any

tool,

provided

by

either

IBM

or

a

third-party

vendor,

can

handle.

38

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

The

PMI

servlet

provides

a

way

to

use

an

HTTP

request

to

query

the

performance

metrics

for

an

entire

WebSphere

Application

Server

administrative

domain.

Because

the

servlet

provides

the

performance

data

through

HTTP,

issues

such

as

firewalls

are

trivial

to

resolve.

The

performance

servlet

provides

the

performance

data

output

as

an

XML

document,

as

described

in

the

provided

document

type

description

(DTD).

In

the

XML

structure,

the

leaves

of

the

structure

provide

the

actual

observations

of

performance

data

and

the

paths

to

the

leaves

that

provide

the

context.

There

are

three

types

of

leaves

or

output

formats

within

the

XML

structure:

v

PerfNumericInfo

v

PerfStatInfo

v

PerfLoadInfo

PerfNumericInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

Performance

Monitoring

Infrastructure

(PMI),

some

of

the

values

are

raw

counters

that

record

the

number

of

times

a

specific

event

occurs

during

the

lifetime

of

the

server.

If

a

performance

observation

is

of

the

type

PerfNumericInfo,

the

value

represents

the

raw

count

of

the

number

of

times

this

event

has

occurred

since

the

server

started.

This

information

is

important

to

note

because

the

analysis

of

a

single

document

of

data

provided

by

the

performance

servlet

might

not

be

useful

for

determining

the

current

load

on

the

system.

To

determine

the

load

during

a

specific

interval

of

time,

it

might

be

necessary

to

apply

simple

statistical

formulas

to

the

data

in

two

or

more

documents

provided

during

this

interval.

The

PerfNumericInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

when

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

the

observation

v

val--Specifies

the

raw

counter

value

The

following

document

fragment

represents

the

number

of

loaded

servlets.

The

path

providing

the

context

of

the

observation

is

not

shown.

<numLoadedServlets>

<PerfNumericData

time="988162913175"

uid="pmi1"

val="132"/>

</numLoadedServlets>

PerfStatInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

PMI,

some

of

the

values

are

stored

as

statistical

data.

Statistical

data

records

the

number

of

occurrences

of

a

specific

event,

as

the

PerfNumericInfo

type

does.

In

addition,

this

type

has

sum

of

squares,

mean,

and

total

for

each

observation.

This

value

is

relative

to

when

the

server

started.

The

PerfStatInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

this

observation

v

num--Specifies

the

number

of

observations

v

sum_of_squares--Specifies

the

sum

of

the

squares

of

the

observations

v

total--Specifies

the

sum

of

the

observations

v

mean--Specifies

the

mean

(total

number)

for

this

counter

The

following

fragment

represents

the

response

time

of

an

object.

The

path

providing

the

context

of

the

observation

is

not

shown:

<responseTime>

<PerfStatInfo

mean="1211.5"

num="5"

sum_of_squares="3256265.0"

time="9917644193057"

total="2423.0"

uid="pmi13"/>

</responseTime>

PerfLoadInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

PMI,

some

of

the

values

are

stored

as

a

load.

Loads

record

values

as

a

function

of

time;

they

are

averages.

This

value

is

relative

to

when

the

server

started.

Chapter

1.

Monitoring

performance

39

The

PerfLoadInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

when

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

this

observation

v

currentValue--Specifies

the

current

value

for

this

counter

v

integral--Specifies

the

time-weighted

sum

v

timeSinceCreate--Specifies

the

elapsed

time

in

milliseconds

since

this

data

was

created

in

the

server

v

mean--Specifies

time-weighted

mean

(integral/timeSinceCreate)

for

this

counter

The

following

fragment

represents

the

number

of

concurrent

requests.

The

path

providing

the

context

of

the

observation

is

not

shown:

<poolSize>

<PerfLoadInfo

currentValue="1.0"

integral="534899.0

"

mean="0.9985028962051592"

time="991764193057"

timeSinceCreate="535701.0

"uid="pmi5"</poolSize>

When

the

performance

servlet

is

first

initialized,

it

retrieves

the

list

of

nodes

and

servers

located

within

the

domain

in

which

it

is

deployed.

Because

the

collection

of

this

data

is

expensive,

the

performance

servlet

holds

this

information

as

a

cached

list.

If

a

new

node

is

added

to

the

domain

or

a

new

server

is

started,

the

performance

servlet

does

not

automatically

retrieve

the

information

about

the

newly

created

element.

To

force

the

servlet

to

refresh

its

configuration,

you

must

add

the

refreshConfig

parameter

to

the

invocation

as

follows:

http://hostname/wasPerfTool/servlet/perfservlet?refreshConfig=true

By

default,

the

performance

servlet

collects

all

of

the

performance

data

across

a

WebSphere

domain.

However,

it

is

possible

to

limit

the

data

returned

by

the

servlet

to

either

a

specific

node,

server,

or

PMI

module.

v

Node.The

servlet

can

limit

the

information

it

provides

to

a

specific

host

by

using

the

node

parameter.

For

example,

to

limit

the

data

collection

to

the

node

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones

v

Server.The

servlet

can

limit

the

information

it

provides

to

a

specific

server

by

using

the

server

parameter.

For

example,

in

order

to

limit

the

data

collection

to

the

TradeApp

server

on

all

nodes,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Server=TradeApp

To

limit

the

data

collection

to

the

TradeApp

server

located

on

the

host

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

v

Module.The

servlet

can

limit

the

information

it

provides

to

a

specific

PMI

module

by

using

the

module

parameter.

You

can

request

multiple

modules

from

the

following

Web

site:

http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule+jvmRuntimeModule

For

example,

to

limit

the

data

collection

to

the

beanModule

on

all

servers

and

nodes,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule

To

limit

the

data

collection

to

the

beanModule

on

the

server

TradeApp

on

the

node

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

&Module=beanModule>

Related

tasks

“Developing

your

own

monitoring

applications

with

Performance

Monitoring

Infrastructure

servlet”

on

page

38

40

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Developing

your

own

monitoring

application

with

the

Java

Management

Extension

interface

WebSphere

Application

Server

allows

you

to

invoke

methods

on

MBeans

through

the

AdminClient

Java

Management

Extension

(JMX)

interface.

You

can

use

AdminClient

API

to

get

Performance

Monitoring

Infrastructure

(PMI)

data

by

using

either

PerfMBean

or

individual

MBeans.

See

information

about

using

individual

MBeans

at

bottom

of

this

article.

Individual

MBeans

provide

the

Stats

attribute

from

which

you

can

get

PMI

data.

The

PerfMBean

provides

extended

methods

for

PMI

administration

and

more

efficient

ways

to

access

PMI

data.

To

set

the

PMI

module

instrumentation

level,

you

must

invoke

methods

on

PerfMBean.

To

query

PMI

data

from

multiple

MBeans,

it

is

faster

to

invoke

the

getStatsArray

method

in

PerfMBean

than

to

get

the

Stats

attribute

from

multiple

individual

MBeans.

PMI

can

be

delivered

in

a

single

JMX

cell

through

PerfMBean,

but

multiple

JMX

calls

have

to

be

made

through

individual

MBeans.

See

the

topic

″Developing

an

administrative

client

program″

for

more

information

on

AdminClient

JMX.

After

the

performance

monitoring

service

is

enabled

and

the

application

server

is

started

or

restarted,

a

PerfMBean

is

located

in

each

application

server

giving

access

to

PMI

data.

To

use

PerfMBean:

1.

Create

an

instance

of

AdminClient.

When

using

AdminClient

API,

you

need

to

first

create

an

instance

of

AdminClient

by

passing

the

host

name,

port

number

and

connector

type.

The

example

code

is:

AdminClient

ac

=

null;

java.util.Properties

props

=

new

java.util.Properties();

props.put(AdminClient.CONNECTOR_TYPE,

connector);

props.put(AdminClient.CONNECTOR_HOST,

host);

props.put(AdminClient.CONNECTOR_PORT,

port);

try

{

ac

=

AdminClientFactory.createAdminClient(props);

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

System.out.println("getAdminClient:

exception");

}

2.

Use

AdminClient

to

query

the

MBean

ObjectNames

Once

you

get

the

AdminClient

instance,

you

can

call

queryNames

to

get

a

list

of

MBean

ObjectNames

depending

on

your

query

string.

To

get

all

the

ObjectNames,

you

can

use

the

following

example

code.

If

you

have

a

specified

query

string,

you

will

get

a

subset

of

ObjectNames.

javax.management.ObjectName

on

=

new

javax.management.ObjectName("WebSphere:*");

Set

objectNameSet=

ac.queryNames(on,

null);

//

you

can

check

properties

like

type,

name,

and

process

to

find

a

specified

ObjectName

After

you

get

all

the

ObjectNames,

you

can

use

the

following

example

code

to

get

all

the

node

names:

HashSet

nodeSet

=

new

HashSet();

for(Iterator

i

=

objectNameSet.iterator();

i.hasNext();

on

=

(ObjectName)i.next())

{

String

type

=

on.getKeyProperty("type");

if(type

!=

null

&&

type.equals("Server"))

{

nodeSet.add(servers[i].getKeyProperty("node"));

}

}

Note,

this

will

only

return

nodes

that

are

started.

To

list

running

servers

on

the

node,

you

can

either

check

the

node

name

and

type

for

all

the

ObjectNames

or

use

the

following

example

code:

StringBuffer

oNameQuery=

new

StringBuffer(41);

oNameQuery.append("WebSphere:*");

oNameQuery.append(",type=").append("Server");

oNameQuery.append(",node=").append(mynode);

Chapter

1.

Monitoring

performance

41

oSet=

ac.queryNames(new

ObjectName(oNameQuery.toString()),

null);

Iterator

i

=

objectNameSet.iterator

();

while

(i.hasNext

())

{

on=(objectName)

i.next();

String

process=

on[i].getKeyProperty("process");

serversArrayList.add(process);

}

3.

Get

the

PerfMBean

ObjectName

for

the

application

server

from

which

you

want

to

get

PMI

data.

Use

this

example

code:

for(Iterator

i

=

objectNameSet.iterator();

i.hasNext();

on

=

(ObjectName)i.next())

{

//

First

make

sure

the

node

name

and

server

name

is

what

you

want

//

Second,

check

if

the

type

is

Perf

String

type

=

on.getKeyProperty("type");

String

node

=

on.getKeyProperty("node");

String

process=

on.getKeyProperty("process");

if

(type.equals("Perf")

&&

node.equals(mynode)

&

&

server.equals(myserver))

{

perfOName

=

on;

}

}

4.

Invoke

operations

on

PerfMBean

through

the

AdminClient.

Once

you

get

the

PerfMBean(s)

in

the

application

server

from

which

you

want

to

get

PMI

data,

you

can

invoke

the

following

operations

on

the

PerfMBean

through

AdminClient

API:

-

setInstrumentationLevel:

set

the

instrmentation

level

params[0]

=

new

MBeanLevelSpec(objectName,

optionalSD,

level);

params[1]

=

new

Boolean(true);

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

ac.invoke(perfOName,

"setInstrumentationLevel",

params,

signature);

-

getInstrumentationLevel:

get

the

instrumentation

level

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(objectName,

optionalSD);

params[1]

=

new

Boolean(recursive);

String[]

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

-

getConfigs:

get

PMI

static

config

info

for

all

the

MBeans

configs

=

(PmiModuleConfig[])ac.invoke(perfOName,

"getConfigs",

null,

null);

-

getConfig:

get

PMI

static

config

info

for

a

specific

MBean

ObjectName[]

params

=

{objectName};

String[]

signature=

{

"javax.management.ObjectName"

};

config

=

(PmiModuleConfig)ac.invoke(perfOName,

"getConfig",

params,

signature);

-

getStatsObject:

you

can

use

either

ObjectName

or

MBeanStatDescriptor

Object[]

params

=

new

Object[2];

params[0]

=

objectName;

//

either

ObjectName

or

or

MBeanStatDescriptor

params[1]

=

new

Boolean(recursive);

String[]

signature

=

new

String[]

{

"javax.management.ObjectName",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

signature);

Note:

The

returned

data

only

have

dynamic

information

(value

and

time

stamp).

See

PmiJmxTest.java

for

additional

code

to

link

the

configuration

information

with

the

returned

data.

-

getStatsArray:

you

can

use

either

ObjectName

or

MBeanStatDescriptor

ObjectName[]

onames

=

new

ObjectName[]{objectName1,

objectName2};

Object[]

params

=

new

Object[]{onames,

new

Boolean(true)};

42

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

String[]

signature

=

new

String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

Stats[]

statsArray

=

(Stats[])ac.invoke(perfOName,

"getStatsArray",

params,

signature);

Note:

The

returned

data

only

have

dynamic

information

(value

and

time

stamp).

See

PmiJmxTest.java

for

additional

code

to

link

the

configuration

information

with

the

returned

data.

-

listStatMembers:

navigate

the

PMI

module

trees

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

or,

Object[]

params

=

new

Object[]{mbeanSD};

String[]

signature=

new

String[]

{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke

(perfOName,

"listStatMembers",

params,

signature);

v

To

use

an

individual

MBean:

You

need

to

get

the

AdminClient

instance

and

the

ObjectName

for

the

individual

MBean.

Then

you

can

simply

get

the

Stats

attribute

on

the

MBean.

Related

tasks

Developing

an

administrative

client

program

Example:

Administering

Java

Management

Extension-based

interface:

The

following

is

example

code

directly

using

Java

Management

Extension

(JMX)

API.

For

information

on

compiling

your

source

code,

see

″Compiling

your

monitoring

applications.″

package

com.ibm.websphere.pmi;

import

com.ibm.websphere.management.AdminClient;

import

com.ibm.websphere.management.AdminClientFactory;

import

com.ibm.websphere.management.exception.ConnectorException;

import

com.ibm.websphere.management.exception.InvalidAdminClientTypeException;

import

com.ibm.websphere.management.exception.*;

import

java.util.*;

import

javax.management.*;

import

com.ibm.websphere.pmi.*;

import

com.ibm.websphere.pmi.client.*;

import

com.ibm.websphere.pmi.stat.*;

/**

*

Sample

code

to

use

AdminClient

API

directly

to

get

PMI

data

from

PerfMBean

*

and

individual

MBeans

which

support

getStats

method.

*/

public

class

PmiJmxTest

implements

PmiConstants

{

private

AdminClient

ac

=

null;

private

ObjectName

perfOName

=

null;

private

ObjectName

serverOName

=

null;

private

ObjectName

wlmOName

=

null;

private

ObjectName

jvmOName

=

null;

private

ObjectName

orbtpOName

=

null;

private

boolean

failed

=

false;

private

PmiModuleConfig[]

configs

=

null;

/**

*

Creates

a

new

test

object

Chapter

1.

Monitoring

performance

43

*

(Need

a

default

constructor

for

the

testing

framework)

*/

public

PmiJmxTest()

{

}

/**

*

@param

args[0]

host

*

@param

args[1]

port,

optional,

default

is

8880

*

@param

args[2]

connectorType,

optional,

default

is

SOAP

connector

*

*/

public

static

void

main(String[]

args)

{

PmiJmxTest

instance

=

new

PmiJmxTest();

//

parse

arguments

and

create

AdminClient

object

instance.init(args);

//

navigate

all

the

MBean

ObjectNames

and

cache

those

we

are

interested

instance.getObjectNames();

//

set

level,

get

data,

display

data

instance.doTest();

//

test

for

EJB

data

instance.testEJB();

//

how

to

use

JSR77

getStats

method

for

individual

MBean

other

than

PerfMBean

instance.testJSR77Stats();

}

/**

*

parse

args

and

getAdminClient

*/

public

void

init(String[]

args)

{

try

{

String

host

=

null;

String

port

=

"8880";

String

connector

=

"SOAP";

if(args.length

<

1)

{

System.err.println("ERROR:

Usage:

PmiJmxTest

<host>

[<port>]

[<connector>]");

System.exit(2);

}

else

{

host

=

args[0];

if(args.length

>

1)

port

=

args[1];

if(args.length

>

2)

connector

=

args[2];

}

if(host

==

null)

{

host

=

"localhost";

}

if(port

==

null)

{

port

=

"8880";

}

44

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

if(connector

==

null)

{

connector

=

AdminClient.CONNECTOR_TYPE_SOAP;

}

System.out.println("host="

+

host

+

"

,

port="

+

port

+

",

connector="

+

connector);

//--

//

Get

the

ac

object

for

the

AppServer

//--

System.out.println("main:

create

the

adminclient");

ac

=

getAdminClient(host,

port,

connector);

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

*

get

AdminClient

using

the

given

host,

port,

and

connector

*/

public

AdminClient

getAdminClient(String

hostStr,

String

portStr,

String

connector)

{

System.out.println("getAdminClient:

host="

+

hostStr

+

"

,

portStr="

+

portStr);

AdminClient

ac

=

null;

java.util.Properties

props

=

new

java.util.Properties();

props.put(AdminClient.CONNECTOR_TYPE,

connector);

props.put(AdminClient.CONNECTOR_HOST,

hostStr);

props.put(AdminClient.CONNECTOR_PORT,

portStr);

try

{

ac

=

AdminClientFactory.createAdminClient(props);

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

System.out.println("getAdminClient:

exception");

}

return

ac;

}

/**

*

get

all

the

ObjectNames.

*/

public

void

getObjectNames()

{

try

{

//--

//

Get

a

list

of

object

names

//--

javax.management.ObjectName

on

=

new

javax.management.ObjectName("WebSphere:*");

//--

//

get

all

objectnames

for

this

server

//--

Set

objectNameSet=

ac.queryNames(on,

null);

//--

//

get

the

object

names

that

we

care

about:

Chapter

1.

Monitoring

performance

45

//

Perf,

Server,

JVM,

WLM

(only

applicable

in

ND)

//--

if(objectNameSet

!=

null)

{

Iterator

i

=

objectNameSet.iterator();

while(i.hasNext())

{

on

=

(ObjectName)i.next();

String

type

=

on.getKeyProperty("type");

//

uncomment

it

if

you

want

to

print

the

ObjectName

for

each

MBean

//

System.out.println("\n\n"

+

on.toString());

//

find

the

MBeans

we

are

interested

if(type

!=

null

&&

type.equals("Perf"))

{

System.out.println("\nMBean:

perf

="

+

on.toString());

perfOName

=

on;

}

if(type

!=

null

&&

type.equals("Server"))

{

System.out.println("\nMBean:

Server

="

+

on.toString());

serverOName

=

on;

}

if(type

!=

null

&&

type.equals("JVM"))

{

System.out.println("\nMBean:

jvm

="

+

on.toString());

jvmOName

=

on;

}

if(type

!=

null

&&

type.equals("WLMAppServer"))

{

System.out.println("\nmain:

WLM

="

+

on.toString());

wlmOName

=

on;

}

if(type

!=

null

&&

type.equals("ThreadPool"))

{

String

name

=

on.getKeyProperty("name");

if(name.equals("ORB.thread.pool"))

System.out.println("\nMBean:

ORB

ThreadPool

="

+

on.toString());

orbtpOName

=

on;

}

}

}

else

{

System.err.println("main:

ERROR:

no

object

names

found");

System.exit(2);

}

//

You

must

have

Perf

MBean

in

order

to

get

PMI

data.

if(perfOName

==

null)

{

System.err.println("main:

cannot

get

PerfMBean.

Make

sure

PMI

is

enabled");

System.exit(3);

}

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

*

Some

sample

code

to

set

level,

get

data,

and

display

data.

46

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

*/

public

void

doTest()

{

try

{

//

first

get

all

the

configs

-

used

to

set

static

info

for

Stats

//

Note:

server

only

returns

the

value

and

time

info.

//

No

description,

unit,

etc

is

returned

//

with

PMI

data

to

reduce

communication

cost.

//

You

have

to

call

setConfig

to

bind

the

static

info

and

Stats

data

later.

configs

=

(PmiModuleConfig[])ac.invoke(perfOName,

"getConfigs",

null,

null);

//

print

out

all

the

PMI

modules

and

matching

mbean

types

for(int

i=0;

i<configs.length;i++>

System.out.println("config:

moduleName="

+

configs[i].getShortName()

+

",

mbeanType="

+

configs[i].getMbeanType());

//

set

the

instrumentation

level

for

the

server

setInstrumentationLevel(serverOName,

null,

PmiConstants.LEVEL_HIGH);

//

example

to

use

StatDescriptor.

//

Note

WLM

module

is

only

available

in

ND.

StatDescriptor

sd

=

new

StatDescriptor(new

String[]{"wlmModule.server"});

setInstrumentationLevel(wlmOName,

sd,

PmiConstants.LEVEL_HIGH);

//

example

to

getInstrumentationLevel

MBeanLevelSpec[]

mlss

=

getInstrumentationLevel(wlmOName,

sd,

true);

//

you

can

call

getLevel(),

getObjectName(),

getStatDescriptor()

on

mlss[i]

//

get

data

for

the

server

Stats

stats

=

getStatsObject(serverOName,

true);

System.out.println(stats.toString());

//

get

data

for

WLM

server

submodule

stats

=

getStatsObject(wlmOName,

sd,

true)

if(stats

==

null)

System.out.println("Cannot

get

Stats

for

WLM

data");

else

System.out.println(stats.toString());

//

get

data

for

JVM

MBean

stats

=

getStatsObject(jvmOName,

true);

processStats(stats);

//

get

data

for

multiple

MBeans

ObjectName[]

onames

=

new

ObjectName[]{orbtpOName,

jvmOName};

Object[]

params

=

new

Object[]{onames,

new

Boolean(true)};

String[]

signature

=

new

String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

Stats[]

statsArray

=

(Stats[])ac.invoke(perfOName,

"getStatsArray",

params,

signature);

//

you

can

call

toString

or

processStats

on

statsArray[i]

if(!failed)

System.out.println("All

tests

passed");

else

System.out.println("Some

tests

failed");

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

Chapter

1.

Monitoring

performance

47

*

Sample

code

to

get

level

*/

protected

MBeanLevelSpec[]

getInstrumentationLevel(ObjectName

on,

StatDescriptor

sd,

boolean

recursive)

{

if(sd

==

null)

return

getInstrumentationLevel(on,

recursive);

System.out.println("\ntest

getInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(on,

sd);

params[1]

=

new

Boolean(recursive);

String[]

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

return

mlss;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("getInstrumentationLevel:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

get

level

*/

protected

MBeanLevelSpec[]

getInstrumentationLevel(ObjectName

on,

boolean

recursive)

{

if(on

==

null)

return

null;

System.out.println("\ntest

getInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[]{on,

new

Boolean(recursive)};

String[]

signature=

new

String[]{

"javax.management.ObjectName",

"java.lang.Boolean"};

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

return

mlss;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

failed

=

true;

System.out.println("getInstrumentationLevel:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

set

level

*/

protected

void

setInstrumentationLevel(ObjectName

on,

StatDescriptor

sd,

int

level)

{

System.out.println("\ntest

setInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[2];

String[]

signature

=

null;

MBeanLevelSpec[]

mlss

=

null;

params[0]

=

new

MBeanLevelSpec(on,

sd,

level);

params[1]

=

new

Boolean(true);

48

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

ac.invoke(perfOName,

"setInstrumentationLevel",

params,

signature);

}

catch(Exception

e)

{

failed

=

true;

new

AdminException(e).printStackTrace();

System.out.println("setInstrumentationLevel:

FAILED:

Exception

Thrown");

}

}

/**

*

Sample

code

to

get

a

Stats

object

*/

public

Stats

getStatsObject(ObjectName

on,

StatDescriptor

sd,

boolean

recursive)

{

if(sd

==

null)

return

getStatsObject(on,

recursive);

System.out.println("\ntest

getStatsObject\n");

try

{

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(on,

sd);

//

construct

MBeanStatDescriptor

params[1]

=

new

Boolean(recursive);

String[]

signature

=

new

String[]

{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

signature);

if(stats

==

null)

return

null;

//

find

the

PmiModuleConfig

and

bind

it

with

the

data

String

type

=

on.getKeyProperty("type");

if(type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);

else

stats.setConfig(PmiClient.findConfig(configs,

on));

return

stats;

}

catch(Exception

e)

{

failed

=

true;

new

AdminException(e).printStackTrace();

System.out.println("getStatsObject:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

get

a

Stats

object

*/

public

Stats

getStatsObject(ObjectName

on,

boolean

recursive)

{

if(on

==

null)

return

null;

System.out.println("\ntest

getStatsObject\n");

try

{

Object[]

params

=

new

Object[]{on,

new

Boolean(recursive)};

String[]

signature

=

new

String[]

{

"javax.management.ObjectName",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

Chapter

1.

Monitoring

performance

49

signature);

//

find

the

PmiModuleConfig

and

bind

it

with

the

data

String

type

=

on.getKeyProperty("type");

if(type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);

else

stats.setConfig(PmiClient.findConfig(configs,

on));

return

stats;

}

catch(Exception

e)

{

failed

=

true;

new

AdminException(e).printStackTrace();

System.out.println("getStatsObject:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

navigate

and

get

the

data

value

from

the

Stats

object.

*/

private

void

processStats(Stats

stat)

{

processStats(stat,

"");

}

/**

*

Sample

code

to

navigate

and

get

the

data

value

from

the

Stats

and

Statistic

object.

*/

private

void

processStats(Stats

stat,

String

indent)

{

if(stat

==

null)

return;

System.out.println("\n\n");

//

get

name

of

the

Stats

String

name

=

stat.getName();

System.out.println(indent

+

"stats

name="

+

name);

//

list

data

names

String[]

dataNames

=

stat.getStatisticNames();

for(int

i=0;

i<dataNames.length;i++)

System.out.println(indent

+

"

"

+

"data

name="

+

dataNames[i]);

System.out.println("");

//

list

all

datas

com.ibm.websphere.management.statistics.Statistic[]

allData

=

stat.getStatistics();

//

cast

it

to

be

PMI’s

Statistic

type

so

that

we

can

have

get

more

//

Also

show

how

to

do

translation.

Statistic[]

dataMembers

=

(Statistic[])allData;

if(dataMembers

!=

null)

{

for(int

i=0;

i<dataMembers.length;i++)

{

System.out.print(indent

+

"

"

+

"data

name="

+

PmiClient.getNLSValue(dataMembers[i].getName())

+

",

description="

+

PmiClient.getNLSValue(dataMembers[i].getDescription())

+

",

startTime="

+

dataMembers[i].getStartTime()

+

",

lastSampleTime="

+

dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LONG)

{

System.out.println(",

count="

+

50

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

((CountStatisticImpl)dataMembers[i]).getCount());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_STAT)

{

TimeStatisticImpl

data

=

(TimeStatisticImpl)dataMembers[i];

System.out.println(",

count="

+

data.getCount()

+

",

total="

+

data.getTotal()

+

",

mean="

+

data.getMean()

+

",

min="

+

data.getMin()

+

",

max="

+

data.getMax());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LOAD)

{

RangeStatisticImpl

data

=

(RangeStatisticImpl)dataMembers[i];

System.out.println(",

current="

+

data.getCurrent()

+

",

integral="

+

data.getIntegral()

+

",

avg="

+

data.getMean()

+

",

lowWaterMark="

+

data.getLowWaterMark()

+

",

highWaterMark="

+

data.getHighWaterMark());

}

}

}

//

recursively

for

sub-stats

Stats[]

substats

=

(Stats[])stat.getSubStats();

if(substats

==

null

||

substats.length

==

0)

return;

for(int

i=0;

i<substats.length;

i++)

{

processStats(substats[i],

indent

+

"

");

}

}

/**

*

The

Stats

object

returned

from

server

does

not

have

static

config

info.

*

You

have

to

set

it

on

client

side.

*/

public

void

setServerConfig(Stats

stats)

{

if(stats

==

null)

return;

if(stats.getType()

!=

TYPE_SERVER)

return;

PmiModuleConfig

config

=

null;

Stats[]

statList

=

stats.getSubStats();

if(statList

==

null

||

statList.length

==

0)

return;

Stats

oneStat

=

null;

for(int

i=0;

i<statList.length;

i++)

{

oneStat

=

statList[i];

if(oneStat

==

null)

continue;

config

=

PmiClient.findConfig(configs,

oneStat.getName());

if(config

!=

null)

oneStat.setConfig(config);

else

System.out.println("Error:

get

null

config

for

"

+

oneStat.getName());

}

}

/**

*

sample

code

to

show

how

to

get

a

specific

MBeanStatDescriptor

*/

public

MBeanStatDescriptor

getStatDescriptor(ObjectName

oName,

String

name)

{

try

Chapter

1.

Monitoring

performance

51

{

Object[]

params

=

new

Object[]{serverOName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i].getName().equals(name))

return

msds[i];

}

return

null;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

show

you

how

to

navigate

MBeanStatDescriptor

via

listStatMembers

*/

public

MBeanStatDescriptor[]

listStatMembers(ObjectName

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i].getName().equals(name))

return

msds[i];

}

return

null;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

show

you

how

to

navigate

MBeanStatDescriptor

via

listStatMembers

*/

public

MBeanStatDescriptor[]

listStatMembers(ObjectName

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

52

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

MBeanStatDescriptor[]

msds2

=

listStatMembers(msds[i]);

}

return

null;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

get

MBeanStatDescriptors

*/

public

MBeanStatDescriptor[]

listStatMembers(MBeanStatDescriptor

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

MBeanStatDescriptor[]

msds2

=

listStatMembers(msds[i]);

//

you

may

recursively

call

listStatMembers

until

find

the

one

you

want

}

return

msds;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

get

PMI

data

from

beanModule

*/

public

void

testEJB()

{

//

This

is

the

MBeanStatDescriptor

for

Enterprise

EJB

MBeanStatDescriptor

beanMsd

=

getStatDescriptor(serverOName,

PmiConstants.BEAN_MODULE);

if(beanMsd

==

null)

System.out.println("Error:

cannot

find

beanModule");

//

get

the

Stats

for

module

level

only

since

recursive

is

false

Stats

stats

=

getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(),

false);

//

pass

true

if

you

wannt

data

from

individual

beans

Chapter

1.

Monitoring

performance

53

//

find

the

avg

method

RT

TimeStatisticImpl

rt

=

(TimeStatisticImpl)stats.getStatistic(EJBStatsImpl.METHOD_RT);

System.out.println("rt

is

"

+

rt.getMean());

try

{

java.lang.Thread.sleep(5000);

}

catch(Exception

ex)

{

ex.printStackTrace();

}

//

get

the

Stats

again

Stats

stats2

=

getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(),

false);

//

pass

true

if

you

wannt

data

from

individual

beans

//

find

the

avg

method

RT

TimeStatisticImpl

rt2

=

(TimeStatisticImpl)stats2.getStatistic(EJBStatsImpl.METHOD_RT);

System.out.println("rt2

is

"

+

rt2.getMean());

//

calculate

the

difference

between

this

time

and

last

time.

TimeStatisticImpl

deltaRt

=

(TimeStatisticImpl)rt2.delta(rt);

System.out.println("deltaRt

is

"

+

rt.getMean());

}

/**

*

Sample

code

to

show

how

to

call

getStats

on

StatisticProvider

MBean

directly.

*/

public

void

testJSR77Stats()

{

//

first,

find

the

MBean

ObjectName

you

are

interested.

//

Refer

method

getObjectNames

for

sample

code.

//

assume

we

want

to

call

getStats

on

JVM

MBean

to

get

statistics

try

{

com.ibm.websphere.management.statistics.JVMStats

stats

=

(com.ibm.websphere.management.statistics.JVMStats)ac.invoke(jvmOName,

"getStats",

null,

null);

System.out.println("\n

get

data

from

JVM

MBean");

if(stats

==

null)

{

System.out.println("WARNING:

getStats

on

JVM

MBean

returns

null");

}

else

{

//

first,

link

with

the

static

info

if

you

care

((Stats)stats).setConfig(PmiClient.findConfig(configs,

jvmOName));

//

print

out

all

the

data

if

you

want

//System.out.println(stats.toString());

//

navigate

and

get

the

data

in

the

stats

object

processStats((Stats)stats);

//

call

JSR77

methods

on

JVMStats

to

get

the

related

data

com.ibm.websphere.management.statistics.CountStatistic

upTime

=

stats.getUpTime();

com.ibm.websphere.management.statistics.BoundedRangeStatistic

heapSize

=

stats.getHeapSize();

54

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

if(upTime

!=

null)

System.out.println("\nJVM

up

time

is

"

+

upTime.getCount());

if(heapSize

!=

null)

System.out.println("\nheapSize

is

"

+

heapSize.getCurrent());

}

}

catch(Exception

ex)

{

ex.printStackTrace();

new

AdminException(ex).printStackTrace();

}

}

}

Related

tasks

“Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client”

on

page

31

“Compiling

your

monitoring

applications”

Developing

Performance

Monitoring

Infrastructure

interfaces

This

section

discusses

the

use

of

the

Performance

Monitoring

Infrastructure

(PMI)

client

interfaces

in

applications.

The

basic

steps

in

the

programming

model

follow:

1.

Retrieve

an

initial

collection

or

snapshot

of

performance

data

from

the

server.

A

client

uses

the

CpdCollection

interface

to

retrieve

an

initial

collection

or

snapshot

from

the

server.

This

snapshot,

which

is

called

Snapshot

in

this

example,

is

provided

in

a

hierarchical

structure

as

described

in

data

organization

and

hierarchy,

and

contains

the

current

values

of

all

performance

data

collected

by

the

server.

The

snapshot

maintains

the

same

structure

throughout

the

lifetime

of

the

CpdCollection

instance.

2.

Process

and

display

the

data

as

specified.

The

client

processes

and

displays

the

data

as

specified.

Processing

and

display

objects,

for

example,

filters

and

GUIs,

can

register

as

CpdEvent

listeners

to

data

of

interest.

The

listener

works

only

within

the

same

Java

virtual

machine

(JVM).

When

the

client

receives

updated

data,

all

listeners

are

notified.

3.

Display

the

new

CpdCollection

instance

through

the

hierarchy.

When

the

client

receives

new

or

changed

data,

the

client

can

simply

display

the

new

CpdCollection

instance

through

its

hierarchy.

When

it

is

necessary

to

update

the

Snapshot

collection,

the

client

can

use

the

update

method

to

update

Snapshot

with

the

new

data.

Snapshot.update(S1);

//

...later...

Snapshot.update(S2);

Steps

2

and

3

are

repeated

through

the

lifetime

of

the

client.

Compiling

your

monitoring

applications

To

compile

your

Performance

Monitoring

Infrastructure

(PMI)

code,

you

must

have

the

following

JAR

files

in

your

classpath:

v

admin.jar

v

wsexception.jar

v

jmxc.jar

v

pmi.jar

v

pmiclient.jar

v

ras.jar

v

wasjmx.jar

v

j2ee.jar

v

soap.jar

v

soap-sec.jar

v

nls.jar

Chapter

1.

Monitoring

performance

55

v

ws-config-common.jar

v

namingclient.jar

If

your

monitoring

applications

use

APIs

in

other

packages,

also

include

those

packages

on

the

classpath.

Related

tasks

“Developing

your

own

monitoring

applications”

on

page

30

Running

your

new

monitoring

applications

1.

Obtain

the

pmi.jar

and

pmiclient.jar

files.

The

pmi.jar

and

pmiclient.jar

files

are

required

for

client

applications

using

PMI

client

APIs.

The

pmi.jar

and

pmiclient.jar

files

are

distributed

with

WebSphere

Application

Server

and

are

also

a

part

of

WebSphere

Java

thin

client

package.

You

can

get

it

from

either

a

WebSphere

Application

Server

installation

or

WebSphere

Java

Thin

Application

Client

installation.

You

also

need

the

other

JAR

files

in

WebSphere

Java

Thin

Application

Client

installation

in

order

to

run

a

PMI

application.

2.

Use

PMI

client

API

to

write

your

own

application.

3.

Compile

the

newly

written

PMI

application

and

place

it

on

the

classpath.

4.

Run

the

application

with

the

following

script:

call

"%~dp0setupCmdLine.bat"

set

WAS_CP=%WAS_HOME%\properties

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmi.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmiclient.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ras.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wasjmx.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\j2ee.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap-sec.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\nls.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wsexception.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ws-config-common.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\namingclient.jar

%JAVA_HOME%\bin\java

"%CLIENTSOAP%"

"%CLIENTSAS%"

"-Dws.ext.dirs=%WAS_EXT_DIRS%"

%DEBUGOPTS%

-classpath

"%WAS_CP%"

com.ibm.websphere.pmi.PmiClientTest

host

name

[port]

[connectorType]

Performance

Monitoring

Infrastructure

client

package:

Performance

Monitoring

Infrastructure

(PMI)

client

package

provides

a

wrapper

class

PmiClient

to

deliver

PMI

data

to

a

client.

As

shown

in

the

following

figure,

PmiClient

uses

the

AdminClient

API

to

communicate

the

Perf

MBean

in

an

application

server.

PmiClient

communicates

with

the

network

manager

first,

retrieving

an

AdminClient

instance

to

each

application

server.

Once

the

PmiClient

receives

the

instance,

it

uses

it

to

communicate

with

the

application

server

directly

for

performance

or

level

setting

changes.

Since

level

settings

are

persistent

through

PmiClient,

you

are

only

required

to

set

it

once,

unless

you

want

to

change

it.

Performance

Monitoring

Infrastructure

and

Java

Management

Extensions

The

PmiClient

API

does

not

work

if

the

Java

Management

Extensions

(JMX)

infrastructure

and

Perf

MBean

are

not

running.

If

you

prefer

to

use

the

AdminClient

API

directly

to

retrieve

PMI

data,

you

still

have

a

dependency

on

the

JMX

infrastructure.

56

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

When

using

the

PmiClient

API,

you

have

to

pass

the

JMX

connector

protocol

and

port

number

to

instantiate

an

object

of

the

PmiClient.

Once

you

get

a

PmiClient

object,

you

can

call

its

methods

to

list

nodes,

servers

and

MBeans,

set

the

monitoring

level,

and

retrieve

PMI

data.

The

PmiClient

API

creates

an

instance

of

the

AdminClient

API

and

delegates

your

requests

to

the

AdminClient

API.

The

AdminClient

API

uses

the

JMX

connector

to

communicate

with

the

PerfMBean

in

the

corresponding

server

and

then

returns

the

data

to

the

PmiClient,

which

returns

the

data

to

the

client.

Related

concepts

“Performance

Monitoring

Infrastructure

client”

on

page

31

Related

tasks

“Running

your

new

monitoring

applications”

on

page

56

Running

your

monitoring

applications

with

security

enabled:

In

order

to

run

a

Performance

Monitoring

Infrastructure

client

application

with

security

enabled,

you

must

have

%CLIENTSOAP%

and

%CLIENTSAS%

properties

on

your

Java

virtual

machine

command

line.

The

%CLIENTSOAP%

and

%CLIENTSAS%

properties

are

defined

in

the

setupCmdLine.bat

or

setupCmdline.sh

files.

1.

Set

com.ibm.SOAP.securityEnabled

to

True

in

the

soap.client.props

file

for

the

SOAP

connector.

The

soap.client.props

property

file

is

located

in

the

WAS_ROOT/properties

directory.

2.

Set

com.ibm.SOAP.loginUserid

and

com.ibm.SOAP.loginPassword

as

the

user

ID

and

password

for

login.

3.

Set

the

sas.client.props

file

or

type

the

user

ID

and

password

in

the

pop-up

window

if

you

do

not

put

them

in

the

property

file

for

RMI

connector

A

common

mistake

is

leaving

extra

spaces

at

the

end

of

the

lines

in

the

property

file.

Do

not

leave

extra

spaces

at

the

end

of

the

lines,

especially

for

the

user

ID

and

password

lines.

Related

tasks

“Running

your

new

monitoring

applications”

on

page

56

Third-party

performance

monitoring

and

management

solutions

Several

other

companies

provide

performance

monitoring,

problem

determination

and

management

solutions

that

can

be

used

with

WebSphere

Application

Server.

These

products

use

WebSphere

Application

Server

interfaces,

including

Performance

Monitoring

Infrastructure

(PMI),

Java

Management

Extensions

(JMX).

See

the

topic

Performance:

Resources

for

learning

for

a

link

to

IBM

business

partners

providing

monitoring

solutions

for

WebSphere

Application

Server.

Related

reference

“Performance:

Resources

for

learning”

on

page

61

RMF

Workload

Activity

reports

and

RMF

Monitor

III

Performance

metrics

include

transaction

rates

and

response

times.

Resource

utilization

includes

CPU,

I/O

(channel),

and

storage

utilization.

Transactions/second

This

is

shown

in

the

AVG,

MPL,

and

AVG

ENC

fields

which

is

equal

to

the

average

number

of

enclaves

in

the

period

in

the

RMF

Monitor

I

report

below.

Response

times

The

actual

response

times

of

the

WLM

transaction

is

shown

in

the

TRANS.-TIME

SS.TTT’

column

n

the

RMF

Monitor

I

report

below

and

are

measured

in

milliseconds.

(This

also

includes

time

waiting

on

WLM

queue.)

Chapter

1.

Monitoring

performance

57

Service

Rates

Resource

utilization

in

CPU

service

units,

and

Service

Units

per

Sec.

The

APPL%

field

shows

the

number

of

processor

engines

(CPs)

required

to

drive

the

work

in

the

service

(report)

class.

Controller

Regions

Example:

Here

is

the

report

for

the

WebSphere

controller

regions

which

were

all

assigned

a

particular

reporting

class

according

to

the

STC

classification

rules

based

on

the

started

class

jobname.

There

is

only

one

transaction

active

in

the

system,

there

are

no

response

time

figures,

and

required

37.2%

of

a

processor

engine

to

support

its

work.

TRANSACTIONS

TRANS.-TIME

SS.TTT

---SERVICE--

--SERVICE

RATES--

AVG

1.00

ACTUAL

0

IOC

0

ABSRPTN

89615

MPL

1.00

EXECUTION

0

CPU

522567

TRX

SERV

89615

ENDED

0

QUEUED

0

MSO

10159K

TCB

39.9

END/S

0.00

R/S

AFFINITY

0

SRB

61728

SRB

4.7

#SWAPS

0

INELIGIBLE

0

TOT

10743K

RCT

0.0

EXCTD

0

CONVERSION

0

/SEC

89630

IIT

0.0

AVG

ENC

0.00

STD

DEV

0

HST

0.0

REM

ENC

0.00

APPL

%

37.2

Servant

Regions

Example:

Here

is

the

report

for

the

WebSphere

servant

regions

which

were

all

assigned

a

particular

reporting

class

according

to

the

STC

classification

rules

based

on

the

stared

class

jobname.

There

are

only

two

transactions

active

in

the

system

(meaning

there

were

two

servant

regions),

there

are

no

response

time

figures,

and

they

required

10%

of

a

processor

engine

to

support

their

work.

TRANSACTIONS

TRANS.-TIME

SS.TTT

---SERVICE--

--SERVICE

RATES--

AVG

2.00

ACTUAL

0

IOC

0

ABSRPTN

122075

MPL

2.00

EXECUTION

0

CPU

143957

TRX

SERV

122075

ENDED

0

QUEUED

0

MSO

29113K

TCB

11.0

END/S

0.00

R/S

AFFINITY

0

SRB

12460

SRB

1.0

#SWAPS

0

INELIGIBLE

0

TOT

29270K

RCT

0.0

EXCTD

0

CONVERSION

0

/SEC

244192

IIT

0.0

AVG

ENC

0.00

STD

DEV

0

HST

0.0

REM

ENC

0.00

APPL

%

10.0

WebSphere

Transactions

(Enclaves)

Example:

Here

is

the

report

for

the

real

WebSphere

transaction

work

which

runs

as

enclaves

in

this

particular

reporting

class.

The

average

number

of

these

kind

of

transactions

active

in

the

system

was

241.52,

the

average

response

time

was

276

milliseconds,

and

required

2.129

processor

engines

to

support

this

work.

TRANSACTIONS

TRANS.-TIME

SS.TTT

---SERVICE--

--SERVICE

RATES--

AVG

241.52

ACTUAL

276

IOC

0

ABSRPTN

115

MPL

241.52

EXECUTION

272

CPU

3343K

TRX

SERV

115

ENDED

106717

QUEUED

4

MSO

0

TCB

255.5

END/S

890.32

R/S

AFFINITY

0

SRB

0

SRB

0.0

#SWAPS

0

INELIGIBLE

0

TOT

3343K

RCT

0.0

EXCTD

0

CONVERSION

0

/SEC

17

IIT

0.0

AV

ENC

241.52

STD

DEV

66

HST

0.0

REM

ENC

0.00

APPL

%

212.9

Delays

Example:

The

QMPL

field

in

the

following

report

means

that

the

server

was

waiting

for

a

Server

Region

to

select

work

off

the

WLM

queue.

Here

is

a

queue

delay

report

which

shows

that

work

was

delayed

23.5%

of

the

time

waiting

for

the

CPU

and

12.6%

of

the

time

waiting

for

a

servant

region:

EX

PERF

AVG

--USING%--

EXECUTION

DELAYS

%

VEL

INDX

ADRSP

CPU

I/O

TOTAL

CPU

QMPL

GOAL

40.0%

ACTUALS

45.3%

.89

13.4

0.1

0.0

36.1

23.5

12.6

Started

Class

Classification

Example:

Here

is

an

example

of

the

STC

classification

rules/panel

in

WLM

which

can

be

used

to

classify

the

non-enclave

time

in

the

websphere

server

regions.

WebSphere

production

controller

region

with

a

jobname

of

WSPRODC

is

assigned

a

service

class

of

STCCR

and

reporting

class

of

RCTLREG,

production

controller

region

with

a

jobname

of

WSPRODC

is

assigned

a

service

class

of

STCSR

and

reporting

class

of

RSRVREG,

and

testregions

(servant

and

controllers)

with

a

jobname

starting

with

WSTare

assigned

a

service

class

of

STCWSTST

and

reporting

class

of

RWSTST.

58

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Subsystem

Type

.

.

.

.

.

.

.

:

STC

Description

.

.

.

.

.

.

.

.

.

All

started

tasks

-------Qualifier-------------

-------Class--------

Type

Name

Start

Service

Report

Type

Name

Start

Service

Report

DEFAULTS:

STCMED__

RSTCMED_

1

TNG

WSPRODC

STCCR___

RCTLREG_

1

TNG

WSPRODS

STCSR___

RSRVREG_

1

TNG

WST*

STCWSTST

RWSTST__

Steps

for

capturing

a

workload

activity

report

The

following

RMF1

job

reads

the

data

from

RMF

data

buffers.

Run

the

RMF

Monitor

1

post

processor

as

a

batch

job

which

can

read

the

RMF

data

buffers

from

memory

and

produce

a

report.

1.

Here

is

a

sample

job

to

run

the

RMF

Monitor

1

post

processor:

(You

will

need

to

change

the

time

and

date

parameters.)

//RMF1JOB

JOB

1,CLASS=A

//RMFPP

EXEC

PGM=ERBRMFPP,REGION=0M

//MFPMSGDS

DD

SYSOUT=*

//SYSIN

DD

*

SYSOUT(O)

NOSUMMARY

SYSRPTS(WLMGL(SCPER(WSHIGH,WSMED,WSLOW,SYSSTC,OPS_DEF)))

DATE(04172003,04172003)

/*

<==

SET

TO

MEAS.

DATE

MMDDYYYY

*/

RTOD(1430,1500)

/*

<==

SET

TO

MEAS.

TIME

OF

DAY

HHMM*/

DINTV(0002)

/*

//

This

will

take

the

raw

SMF

data,

in

this

case

the

MANE

data,

and

produce

the

workload

activity

report

as

an

H

output

class

in

SDSF.

2.

Using

the

Workload

Activity

Reports,

observe

the

measurements

in

the

service

and

reporting

classes.

After

your

measurement

run

is

over,

you

should

reset

the

SMF

parameters

to

their

standard

settings

with

the

SET

SMF=xx

command.

WLM

Delay

Monitoring

WebSphere

Application

Server

for

z/OS

Version

5

can

use

Workload

Manager

(WLM)

services

to

report

transaction

begin-to-end

response

times

and

execution

delay

times.

The

WLM

data

collected

by

Resource

Measurement

Facility

(RMF)

is

captured

in

two

phases

of

the

RMF

report:

v

BTE

-

the

begin-to-end

phase

applies

to

requests

handled

by

the

controller

v

EXE

-

the

execution

phase

applies

to

requests

handled

by

the

servant

You

can

use

this

status

information

to

determine

where

possible

performance

bottlenecks

are

occurring.

This

feature

is

available

on

z/OS

V1R2

and

above

with

WLM

APAR

OW51848

and

RMF

APAR

OW52227.

When

a

new

transaction

enters

the

system,

the

WebSphere

Application

Server

for

z/OS

application

control

region

(ACR)

starts

the

classify

service.

Delays

associated

with

the

WebSphere

Application

Server

for

z/OS

ACR

service

class

are

counted

separately

for

the

BTE

phase

and

the

EXE

phase.

This

support

allows

WLM

to

associate

a

performance

block

(PB)

with

an

enclave

to

record

delays

that

occur

in

the

flow

of

a

transaction.

The

state

samples

are

collected

on

an

ongoing

basis

and

reported

as

a

percentage

of

average

transaction

response

time.

The

following

table

shows

the

states,

their

codes,

the

section

of

the

RMF

report

where

each

is

reported,

the

meaning,

and

suggested

response.

You

can

use

this

information

in

the

RMF

report

to

determine

where

some

of

your

system’s

performance

problems

may

be

occurring.

Table

1.

WLM

delay

monitoring

states

State

Code

Report

Meaning

Response

ACTIVE

ACTIVE

SUB

Both

BTE

and

EXE

WebSphere

is

actively

processing

request

Chapter

1.

Monitoring

performance

59

Table

1.

WLM

delay

monitoring

states

(continued)

ACTIVE_APPLIC

ACTIVE

APPL

Both

BTE

and

EXE

Application

is

running

Use

application

monitoring

tool

to

determine

the

cause

of

the

delay.

WAITING

TYPE1

TYP1

EXE

EJB

collaborator

delay

WAITING

TYPE2

TYP2

EXE

Resource

manager

delay

Called

a

J2C

connector

to

perhaps

DB2,

CICS,

IMS.

Investigate

other

resource

manager

using

their

monitoring

tools.

WAITING

TYPE3

TYP3

EXE

Servant

called

to

a

different

distributed

object

server

using

RMI/IIOP

1.

Investigate

the

delay

on

the

other

server.

The

delay

may

point

to

session

caches.

2.

Look

for

any

network

problems.

3.

Avoid

outbound

calls.

WAITING

TYPE

4

TYP4

BTE

OTS

call

to

RRS.

Occurs

only

in

controller

when

controller

is

trying

to

commit

a

distributed

transaction.

1.

Investigate

the

delay

on

the

other

server.

2.

Look

for

any

network

problems.

3.

Consider

combining

application

into

one

server

to

avoid

delay.

WAITING

REGIST

TO

WORKTABLE

WORK

BTE

An

indication

of

contention

within

the

controller

while

trying

to

process

concurrent

requests.

If

delay

is

excessive,

consider

adding

another

controller

and

splitting

work

off

to

it.

WAITING

OTHER_PRODUCT

OTHER

BTE

Indicates

a

configuration

problem

in

DNS

or

TCP/IP

Check

to

make

sure

all

the

DNS

servers

are

running.

You

might

want

to

look

at

OPING

or

ONSLOOKUP.

WAITING

DISTRIB

DIST

BTE

Controller

as

a

client

went

outbound

waiting

for

a

response.

1.

Investigate

the

delay

on

the

other

server.

2.

Look

for

any

network

problems.

3.

Consider

combining

application

into

one

server

to

avoid

delay.

WAITING

SESS_NETWORK

REMT

BTE

Time

spent

waiting

for

a

TCP/IP

session

to

be

established

on

the

network.

The

two

session

delays

should

be

observable

in

conjunction

with

TYP3

delays.

Look

at

TCP/IP

configuration.

WAITING

SESS_SYSPLEX

SYSP

BTE

Time

spent

waiting

for

a

TCP/IP

session

to

be

established

on

the

sysplex.

The

two

session

delays

should

be

observable

in

conjunction

with

TYP3

delays.

Look

at

TCP/IP

configuration.

WAITING

REGULAR_THREAD

REGT

BTE

Waiting

for

a

thread

in

the

controller.

Work

is

bottlenecked

in

the

controller

because

it

is

receiving

more

requests

than

it

can

process.

Split

the

controller.

WAITING

SSL_THREAD

SSLT

BTE

Waiting

for

an

SSL

thread

in

the

controller.

Work

is

bottlenecked

in

the

controller

because

it

is

receiving

more

requests

for

SSL

handshakes

than

it

can

process.

Split

controller

in

increase

SSL

threads.

1.

Increase

SSL

threads.

2.

Look

at

SSL

configuration.

3.

Split

the

controller

to

increase

SSL

threads.

WAITING

SESS_LOCALMVS

LOCL

BTE

Time

spent

communicating

with

a

different

distributed

object

server

using

local

optimized

communication.

1.

Investigate

the

delay

on

the

other

server.

2.

Avoid

outbound

calls.

RMF

report

examples

This

section

includes

several

examples

of

RMF

reports

with

WLM

delay

monitoring

information.

RESP

STATE

SAMPLES

BREAKDOWN

(%)

------STATE------

SUB

P

TIME

--ACTIVE--

READY

IDLE

------WAITING

FOR---------

SWITCHED

SAMPL(%)

TYPE

(%)

SUB

APPL

TYP1

LOCAL

SYSPL

REMOT

CB

BTE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

CB

EXE

95.7

0.5

74.7

0.0

0.0

24.9

0.0

0.0

0.0

60

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

RESP

STATE

SAMPLES

BREAKDOWN

(%)

------STATE------

SUB

P

TIME

--ACTIVE--

READY

IDLE

------WAITING

FOR---------

SWITCHED

SAMPL(%)

TYPE

(%)

SUB

APPL

TYP4

REGT

LOCL

LOCAL

SYSPL

REMOT

CB

BTE

0.0

26.9

0.0

0.0

0.0

65.4

3.8

3.8

0.0

0.0

0.0

CB

EXE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

RESP

STATE

SAMPLES

BREAKDOWN

(%)

------STATE------

SUB

P

TIME

--ACTIVE--

READY

IDLE

------WAITING

FOR---------

SWITCHED

SAMPL(%)

TYPE

(%)

SUB

APPL

LOCAL

SYSPL

REMOT

CB

BTE

0.0

100

0.0

0.0

0.0

0.0

0.0

0.0

CB

EXE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

RESP

STATE

SAMPLES

BREAKDOWN

(%)

------STATE------

SUB

P

TIME

--ACTIVE--

READY

IDLE

------WAITING

FOR---------

SWITCHED

SAMPL(%)

TYPE

(%)

SUB

APPL

TYP4

REGT

SYSP

LOCAL

SYSPL

REMOT

CB

BTE

0.0

40.7

0.0

0.0

0.0

51.9

3.7

3.7

0.0

0.0

0.0

CB

EXE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

RESP

STATE

SAMPLES

BREAKDOWN

(%)

------STATE------

SUB

P

TIME

--ACTIVE--

READY

IDLE

------WAITING

FOR---------

SWITCHED

SAMPL(%)

TYPE

(%)

SUB

APPL

TYP4

REGT

WORK

LOCAL

SYSPL

REMOT

CB

BTE

0.0

40.0

0.0

0.0

0.0

50.0

7.5

2.5

0.0

0.0

0.0

CB

EXE

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Performance:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

performance.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

The

following

sections

are

covered

in

this

reference:

View

links

to

additional

information

about:

v

Monitoring

performance

with

third-party

tools

v

Tuning

performance

v

Garbage

collection

Monitoring

performance

with

third-party

tools

v

Enterprise

Web

Application

Management

WebSphere

Performance

Management

Business

Partner

Solution

Finder

Find

a

list

of

IBM’s

business

partners

that

offer

performance

monitoring

tools

compliant

with

WebSphere

Application

Server.

Tuning

performance

v

Hints

on

Running

a

high-performance

Web

server

Read

hints

about

running

Apache

on

a

heavily

loaded

Web

server.

The

suggestions

include

how

to

tune

your

kernel

for

the

heavier

TCP/IP

load,

and

hardware

and

software

conflicts

v

Application

tuning

See

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

for

more

information

on

application

tuning.

v

Performance

Analysis

for

Java

Web

sites

v

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

Describes

development

best

practices

for

Web

applications

with

servlets,

JSP

files,

JDBC

connections,

and

enterprise

applications

with

EJB

components.

Garbage

collection

v

IBM

developerWorks

Chapter

1.

Monitoring

performance

61

http://www-3.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html
http://www-3.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html
http://www-1.ibm.com/support/docview.wss?uid=swg27000615
http://www.awprofessional.com/catalog/product.asp?product_id={A801214C-A166-4836-859A-423B246C65E4}
http://www-1.ibm.com/support/docview.wss?uid=swg27000615
http://java.sun.com/docs/hotspot/gc/index.html

Search

the

IBM

developerWorks

Web

site

for

a

list

of

garbage

collection

documentation,

including

″Understanding

the

IBM

Java

Garbage

Collector″,

a

three-part

series.

To

locate

the

documentation,

search

on

″sensible

garbage

collection″

in

the

developerWorks

search

application.

Review

″Understanding

the

IBM

Java

Garbage

Collector″

for

a

description

of

the

IBM

verbose:gc

output

and

more

information

about

the

IBM

garbage

collector.

v

Tuning

Garbage

Collection

with

the

1.3.1

JavaTM

Virtual

Machine

Learn

more

about

using

garbage

collection

in

a

Solaris

operating

environment.

Related

concepts

Application

Response

Measurement

Application

Response

Measurement

(ARM)

is

an

Open

Group

standard

composed

of

a

set

of

interfaces

implemented

by

an

ARM

agent

that

provides

information

on

elapsed

time

for

process

hops.

Related

tasks

“Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)”

on

page

20

Chapter

2,

“Tuning

performance

parameter

index,”

on

page

63

62

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

http://java.sun.com/docs/hotspot/gc/index.html

Chapter

2.

Tuning

performance

parameter

index

5.0.1 +

Tuning

parameter

index

for

z/OS

5.0.1 +

Performance

tuning

for

WebSphere

for

z/OS

becomes

a

complex

exercise

because

the

nature

of

the

runtime

involves

many

different

components

of

the

operating

system

and

middleware.

Use

the

Tuning

parameter

index

for

z/OS

to

find

information

and

parameters

for

tuning

the

z/OS

operating

system,

subsystems,

the

WebSphere

for

z/OS

runtime

environment,

and

some

J2EE

application

tuning

tips.

5.0.1 +

Recommendation:

Before

you

read

a

description

of

WebSphere

for

z/OS

tuning

guidelines,

it

is

important

to

note

that,

no

matter

how

well

the

middleware

is

tuned,

it

cannot

make

up

for

poorly

designed

and

coded

applications.

Focusing

on

the

application

code

can

help

improve

performance.

Often,

poorly

written

or

designed

application

code

changes

will

make

the

most

dramatic

improvements

to

overall

performance.

The

tuning

guide

focuses

on

server

tuning.

If

you

want

to

tune

your

applications,

see

Performance:

Resources

for

learning

for

more

information

about

application

tuning.

For

your

convenience,

procedures

for

tuning

parameters

in

other

products,

such

as

DB2,

Web

servers

and

operating

systems

are

included.

Because

these

products

might

change,

consider

these

descriptions

as

suggestions.

Each

WebSphere

Application

Server

process

has

several

parameters

influencing

application

performance.

You

can

use

the

WebSphere

Application

Server

administrative

console

to

configure

and

tune

applications,

Web

containers,

EJB

containers,

application

servers

and

nodes

in

the

administrative

domain.

If

you

are

a

WebSphere

Application

Server

Administrator

or

Systems

programmer

on

z/OS,

refer

to

Tuning

index

for

WebSphere

Application

Server

for

z/OS

for

z/OS

specific

tuning

tips.

Each

parameter

in

the

tuning

parameter

index

links

to

information

that

explains

the

parameter,

provides

reasons

to

adjust

the

parameter,

how

to

view

or

set

the

parameter,

as

well

as

default

and

recommended

values.

v

Application

servers

The

WebSphere

Application

Server

contains

interrelated

components

that

must

be

harmoniously

tuned

to

support

the

custom

needs

of

your

end-to-end

e-business

application.

v

Java

virtual

machines

The

JVM

offers

several

tuning

parameters

affecting

the

performance

of

WebSphere

Application

Servers

(which

are

primarily

Java

applications),

as

well

as

the

performance

of

your

applications.

v

Applications

Several

topics

including

Web

modules,

EJB

modules,

client

modules,

Web

services

and

application

services

comprise

the

application

programming

model

and

provide

numerous

services

supporting

deployed

applications.

v

Databases

WebSphere

supports

the

integration

of

several

different

database

systems.

Each

is

tuned

in

its

own

manor.

DB2

tuning

parameters

are

provided

for

your

convenience.

v

Java

messaging

service

Java

messaging

service

(JMS)

can

be

tuned

to

balance

memory

with

the

servicing

of

the

JMS

subscribers.

v

Security

Security

may

have

an

affect

on

performance

depending

on

certain

actions

taken.

Related

tasks

©

Copyright

IBM

Corp.

2002,

2003

63

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

Tuning

application

servers

Tuning

Java

virtual

machines

Tuning

databases

Tuning

Java

messaging

service

Tuning

security

Tuning

Web

servers

Related

reference

DB2

tuning

parameters

Secure

Sockets

Layer

performance

tips

EJB

method

Invocation

Queuing

Java

memory

tuning

tips

Performance

troubleshooting

tips

xrun_transport.dita.

Recommended

hardware

configuration

The

tuning

guidelines

presented

in

this

chapter

will

have

the

most

benefit

on

the

following

recommended

configuration:

v

IBM

S/390

G5

Model

9672-Rx6,

or

later

Note:

IEEE

floating

point,

which

is

commonly

used

in

Java,

is

emulated

on

earlier

machines.

v

Storage

Storage

requirements

are

higher

than

for

traditional

workloads

–

Virtual

storage

default

should

be

about

370

MB

per

servant,

which

includes

a

256

MB

default

heap

size

and

a

default

initial

LE

heap

size

of

80

MB.

–

Real

storage

minimum

is

376

MB

per

LPAR

for

a

light

load

such

as

the

IVP.

For

most

real-world

applications,

we

recommend

2

GB

or

higher.
v

DASD

To

maximize

your

performance,

we

recommend

a

fast

DASD

subsystem

(for

example,

IBM

Shark),

running

with

a

high

cache

read/write

hit

rate.

v

Networking

For

high

bandwidth

applications,

we

recomend

at

least

a

1

Gb

Ethernet

connection.

If

your

applications

have

extremely

high

bandwidth

requirements,

you

may

need

additional

Ethernet

connections.

v

Cryptography

For

applications

that

make

heavy

use

of

cryptography,

we

recommend

the

zSeries

or

S/390

cryptographic

hardware

and

the

Integrated

Cryptographic

Service

Facility.

Tuning

index

for

WebSphere

Application

Server

for

z/OS

One

of

the

goals

of

the

WebSphere

Application

Server

for

z/OS

programming

model

and

runtime

is

to

significantly

simplify

the

work

required

for

application

developers

to

write

and

deploy

applications.

Sometimes

we

say

that

WebSphere

Application

Server

for

z/OS

relieves

the

application

programmer

of

many

of

the

plumbing

tasks

involved

in

developing

applications.

For

example,

application

code

in

WebSphere

Application

Server

for

z/OS

does

not

concern

itself

directly

with

remote

communication--it

locates

objects

which

may

be

local

or

remote

and

drives

methods.

Therefore,

you

won’t

see

any

direct

use

of

socket

calls

or

TCP/IP

programming

in

a

WebSphere

Application

Server

for

z/OS

application.

This

separation

of

what

you

want

to

do

from

where

you

do

it

is

one

aspect

of

removing

the

application

programmers

from

plumbing

tasks.

Other

considerations

are

not

having

to

deal

with

data

calls

for

some

types

of

beans,

potentially

user

authentication,

and

threading.

There

are

generally

no

calls

from

the

application

code

to

touch

sockets,

RACF

calls,

or

management

of

threading.

Removing

this

from

the

64

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

xrun_transport.dita.

application

programmer

doesn’t

mean

this

work

won’t

get

done.

Rather,

it

means

that

there

may

be

more

work

for

the

DBA,

the

network

administrator,

the

security

administrator,

and

the

performance

analyst.

There

are

four

layers

of

tuning

that

need

to

be

addressed:

v

Tuning

the

z/OS

operating

system

v

Tuning

for

Subsystems

v

Tuning

the

WebSphere

Application

Server

for

z/OS

runtime

v

Tuning

for

J2EE

applications

We

deal

with

the

first

three

in

separate

sections

under

this

article

and

briefly

touch

on

the

fourth.

For

more

information

on

tuning

applications,

refer

to

Using

application

clients.

Related

tasks

Using

application

clients

Tuning

the

z/OS

operating

system

Steps

involved

in

tuning

the

z/OS

operating

system

to

optimize

WebSphere

performance

include:

v

Tuning

storage

v

z/OS

or

OS/390

operating

system

tuning

tips

v

Resource

Recovery

Service

tuning

tips

for

z/OS

v

UNIX

System

Services

tuning

tips

for

z/OS

v

Workload

management

(WLM)

tuning

tips

for

z/OS

Tuning

storage

WebSphere

for

z/OS

puts

much

higher

demands

on

virtual

memory

than

a

traditional

workload.

Ensure

that

you

don’t

underestimate

the

amount

of

virtual

storage

applied

to

the

WebSphere

for

z/OS

servers.

Generally,

they

use

significantly

more

virtual

memory

than

traditional

application

servers

on

z/OS

or

OS/390.

Since

real

storage

is

needed

to

back

the

virtual

storage,

its

usage

is

also

high.

1.

Allocate

enough

virtual

storage.

The

setting

of

REGION

on

the

JCL

for

the

proc

should

be

large

(at

least

200MB

to

run),

and

much

larger

if

high

throughput

is

required.

You

can

get

an

idea

of

the

virtual

storage

usage

through

RMF

or

other

performance

monitors.

It

would

not

be

unreasonable

for

the

servant

procs

to

specify

REGION=0M,

which

tells

the

operating

system

to

give

all

the

available

region

(close

to

2GB).

Note:

For

more

information

on

REGION=0M

and

IEFUSI,

please

see

″Preparing

the

base

OS/390

or

z/OS

environment″

in

the

Getting

Started

section

of

the

InfoCenter.

If

you

choose

to

not

put

most

of

the

runtime

in

LPA,

as

described

in

the

program

locations

section,

be

sure

to

specify

more

region

(as

high

as

512MB).

Also,

in

conjunction

with

the

increase

in

storage

usage,

you

may

have

to

define

more

paging

space

or

auxiliary

storage

to

back

up

the

additional

virtual

storage

used.

2.

Optional:

Allocate

enough

real

storage.

Expect

a

requirement

of

at

least

376MB

of

real

storage

for

a

small

configuration.

For

controllers

and

servants,

real

storage

utilizations

depends

on

the

size

of

the

JVM

heapsize.

Recommendation:

It

can

be

the

case

that

in

a

heavy

use

environment

2G

of

central

storage

is

not

enough

to

handle

the

real

storage

demands

of

a

high

volume

Java

application.

In

this

case,

we

recommend

that

you

configure

with

64-bit

real

storage,

which

will

give

you

the

ability

to

dedicate

more

central

storage

to

the

LPAR.

Installations

with

a

zSeries

processor

(z800,

z900)

have

the

ability

to

run

OS/390

Release

10

in

64-bit

mode.

z/OS

on

a

zSeries

will

always

run

in

64-bit

mode.

Running

in

64-bit

mode

gives

you

the

ability

to

define

more

than

2

GB

of

central

storage

When

you

configure

for

64-bit

real

all

of

the

storage

is

defined

as

central

storage.

For

non-zSeries

processors,

or

31-bit

mode,

you

can

minimize

paging

by

defining

more

expanded

storage.

Chapter

2.

Tuning

performance

parameter

index

65

3.

Tune

the

Java

virtual

machine

storage.

Also

refer

to

Best

practices

for

maintaining

the

run-time

environment.

Related

reference

Preparing

for

diagnosis

Java

virtual

machine

storage

tuning

tips

for

z/OS:

Specifying

a

sufficient

JVM

Heap

Size

is

important

to

Java

performance.

The

JVM

has

thresholds

it

uses

to

manage

the

JVM’s

storage.

When

the

thresholds

are

reached,

the

garbage

collector

(GC)

gets

invoked

to

free

up

unused

storage.

GC

can

cause

significant

degradation

of

Java

performance.

Use

the

administrative

console

to

specify

the

Initial

Heap

Size

and

the

Maximum

Heap

Size

for

the

JVM.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name

>

Process

Definition

>

Java

Virtual

Machine.

Access

the

configuration

tab

to

change

these

settings.

v

In

order

to

get

it

to

run

less

frequently,

you

can

give

the

JVM

more

memory.

This

is

done

by

specifying

a

larger

value

for

Initial

Heap

Size.

The

default

of

256M

is

a

good

starting

point

but

may

need

to

be

raised

for

larger

applications.

When

specifying

either

a

larger

or

smaller

JVM

heap

size

value,

IBM

recommends

that

you

code

both

the

initial

and

maximum

values

that

you

desire.

v

It

is

good

for

the

Initial

Heap

Size

to

equal

the

Maximum

Heap

Size

because

it

allows

the

allocated

storage

to

be

completely

filled

before

GC

kicks

in.

Otherwise,

GC

will

run

more

frequently

than

necessary,

potentially

impacting

performance.

v

Make

sure

the

region

is

large

enough

to

hold

the

specified

JVM

heap.

v

Beware

of

making

the

Initial

Heap

Size

too

large.

While

it

initially

improves

performance

by

delaying

garbage

collection,

it

ultimately

affects

response

time

when

garbage

collection

eventually

kicks

in

(because

it

runs

for

a

longer

time).

v

Paging

activity

on

your

system

must

also

be

considered

when

you

set

your

JVM

heap

size.

If

your

system

is

already

paging

heavily,

increasing

the

JVM

heap

size

might

make

performance

worse

rather

than

better.

v

To

determine

if

you

are

being

affected

by

garbage

collection,

you

can

enable

Verbose

Garbage

Collection

on

the

JVM

Configuration

tab.

The

default

is

not

enabled.

This

will

write

a

report

to

the

output

stream

each

time

the

garbage

collector

runs.

This

report

should

give

you

an

idea

of

what

is

going

on

with

Java

GC.

Example:

This

is

an

example

of

a

verboseGC

report.

..

<AF[21]:

Allocation

Failure.

need

32784

bytes,

32225

ms

since

last

AF

>

<AF[21]:

managing

allocation

failure,

action=1

(84320/131004928)

(3145728/3145728)>

<GC(21):

GC

cycle

started

Wed

Feb

27

22:46:11

2002

<GC(21):

freed

99587928

bytes,

76%

free

(102817976/134150656),

in

118

ms>

<GC(21):

mark:

103

ms,

sweep:

15

ms,

compact:

0

ms>

<GC(21):

refs:

soft

0

(age

>=

32),

weak

0,

final

878,

phantom

0>

<AF[21]:

completed

in

118

ms

>.

..

Key

things

to

look

for

in

a

verboseGC

report

are:

–

Time

spent

in

garbage

collection.

Ideally,

you

want

to

be

spending

less

than

5%

of

the

time

in

GC.

To

determine

percentage

of

time

spent

in

GC,

divide

the

time

it

took

to

complete

the

collection

by

the

time

since

the

last

AF

and

multiply

the

result

by

100.

For

example,

118/32225

*

100

=

0.366%

If

you

are

spending

more

than

5%

of

your

time

in

GC

and

if

GC

is

occurring

frequently,

you

may

need

to

increase

your

Java

heap

size.

–

Growth

in

the

allocated

heap.

66

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

To

determine

this,

look

at

the

%free.

You

want

to

make

sure

the

number

is

not

continuing

to

decline.

If

the

%free

continues

to

decline

you

are

experiencing

a

gradual

growth

in

allocated

heap

from

GC

to

GC

which

could

indicate

that

your

application

has

a

memory

leak.

You

can

also

use

the

MVS

console

command,

modify

display,

jvmheap

to

display

JVM

heap

information.

See

″Modify

command″

for

details.

In

addition,

you

can

check

the

server

activity

and

interval

SMF

records.

The

JVM

heap

size

is

also

made

available

to

PMI

and

can

be

monitored

using

the

Tivoli

Performance

Viewer.

z/OS

or

OS/390

operating

system

tuning

tips

This

section

provides

tuning

tips

for

various

components

of

z/OS

or

OS/390.

v

CTRACE

The

first

place

to

review

is

your

CTRACE

configuration.

Ensure

that

all

components

are

either

set

to

MIN

or

OFF.

To

display

the

CTRACE

options

for

all

components

on

your

system,

issue

the

following

command

from

the

operator

console:

D

TRACE,COMP=ALL

To

change

the

setting

for

an

individual

component

to

its

minimum

tracing

value,

use

the

following

command

(where

’xxx’

is

the

component):

TRACE

CT,OFF,COMP=xxxx

This

will

eliminate

any

unnecessary

overhead

of

collecting

trace

information

that

is

not

being

used.

Often

during

debug,

CTRACE

is

turned

on

for

a

component

and

not

shut

off

when

the

problem

is

resolved.

v

SMF

Ensure

that

you

are

not

collecting

more

SMF

data

than

you

need.

Review

the

SMFPRMxx

to

ensure

that

only

the

minimum

number

of

records

are

being

collected.

Use

SMF

92

or

120

only

for

diagnostics.

–

SMF

Type

92

SMF

Type

92

records

are

created

each

time

an

HFS

file

is

opened,

closed,

deleted,

and

so

forth.

Almost

every

web

server

request

references

HFS

files,

so

thousands

of

SMF

Type

92

records

are

created.

Unless

you

specifically

need

this

information,

turn

off

SMF

Type

92

records.

In

the

following

example,

we

have

disabled

the

collection

of

SMF

type

92

records:

Example:

ACTIVE,

DSNAME(SYS1.&.SYSNAME..SMF.MAN1;SYS1.&SYSNAME..SMF.MAN2;),

NOPROMPT,

REC(PERM),

MAXDORM(3000),

STATUS(010000),

JWT(0510),

SID(&SYSNAME;(1:4)),

LISTDSN,

SYS(NOTYPE(19,40,92)),

INTVAL(30),

SYNCVAL(00),

SYS(DETAIL,INTERVAL(SMF,SYNC)),

SYS(EXITS(IEFACTRT,IEFUJI,IEFU29,IEFU83,IEFU84,IEFU85,IEFUJV,IEFUSI))

–

SMF

Type

120

You

may

find

that

running

with

SMF

120

records

in

production

is

appropriate,

since

these

records

give

information

specific

to

WebSphere

applications

such

as

response

time

for

J2EE

artifiacts,

bytes

transferred,

and

so

forth.

If

you

do

choose

to

run

with

SMF

120

records

enabled,

we

recommend

that

you

use

server

interval

SMF

records

and

container

interval

SMF

records

rather

than

server

activity

records

and

container

activity

records.

For

details

of

the

SMF

120

record,

refer

to

Record

Type

120

(78)

-

WebSphere

for

z/OS

performance

statistics.

Chapter

2.

Tuning

performance

parameter

index

67

For

steps

involved

in

controlling

collection

of

SMF

120

records

refer

to

Enabling

SMF

recording.

To

enable

specific

record

types,

specify

the

following

properties:

-

server_SMF_server_activity_enabled=0

-

server_SMF_server_interval_enabled=1

-

server_SMF_container_activity_enabled=0

-

server_SMF_container_interval_enabled=1

-

server_SMF_web_container_activity_enabled=0

-

server_SMF_web_container_interval_enabled=1

-

server_SMF_interval_length=1800
v

You

might

also

want

to

review

your

DB2

records

and

the

standard

RMF

written

SMF

records,

and

ensure

that

the

SMF

datasets

are

allocated

optimally.

Information

on

ensuring

a

high

performance

SMF

recording

environment

can

be

found

in

the

chapter

on

Customizing

SMF

in

z/OS

MVS

System

Management

Facilities

(SMF).

Related

information

Record

Type

120

(78)

-

WebSphere

for

z/OS

performance

statistics

The

following

section

defines

the

SMF

Record

Type

120

(78)

-

WebSphere

for

z/OS

performance

statistics.

Resource

Recovery

Service

(RRS)

tuning

tips

for

z/OS

v

For

best

throughput,

use

coupling

facility

(CF)

logger.

DASD

logger

can

limit

your

throughput

because

it

is

I/O-sensitive.

The

CF

logger

has

much

more

throughput

(in

one

measurement,

the

CF

logger

was

six

times

faster

than

the

DASD

logger).

Throughput

will

benefit

from

moving

the

RRS

logs

in

logger

to

a

coupling

facility

(CF)

logstream.

Doing

so

will

help

transactions

complete

quickly

and

not

require

any

DASD

I/O.

If

it’s

not

possible

to

use

CF

logs,

use

well

performing

DASD

and

make

sure

the

logs

are

allocated

with

large

CI

sizes.

v

Ensure

that

your

logger

configuration

is

optimal

by

using

SMF

88

records.

See

the

tuning

section

of

z/OS

MVS

Setting

Up

a

Sysplex

or

the

chapter

on

System

Logger

Accounting

in

z/OS

MVS

System

Management

Facilities

(SMF)

for

details.

In

any

case,

you

should

monitor

the

logger

to

ensure

that

there

is

a

sufficient

size

in

the

CF

and

that

offloading

is

not

impacting

the

overall

throughput.

The

transaction

logs

are

one

of

the

only

shared

I/O

intensive

resources

in

the

mainline

and

can

affect

throughput

dramatically

if

they

are

mistuned.

v

Set

adequate

default

values

for

the

LOGR

policy.

Default

values

of

LOGR

policy

may

have

an

impact

on

performance.

We

recommend

the

default

settings

in

the

table

below.

Table

2.

Recommended

default

setting

for

LOGR

Log

Stream

Initial

Size

Size

RM.DATA

1

MB

1MB

MAIN.UR

5

MB

50

MB

DELAYED

.UR

5

MB

50

MB

RESTART

1

MB

5

MB

ARCHIVE

5

MB

50

MB

v

Review

XA

Resource

Managers

log

sizes.

If

you

are

using

XA

Resource

Managers

and

you

have

chosen

to

put

the

logs

in

the

logger,

you

may

have

to

review

the

log

sizes.

As

of

this

writing,

we

cannot

give

specific

recommendations.

v

Eliminate

archive

log

if

not

needed.

If

you

don’t

need

the

archive

log,

we

recommend

that

you

eliminate

it

since

it

can

introduce

extra

DASD

I/Os.

The

archive

log

contains

the

results

of

completed

transactions.

Normally,

the

archive

log

is

not

needed.

Following

is

an

example

of

disabling

archive

logging.

Example:

68

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

//STEP1

EXEC

PGM=IXCMIAPU

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

DATA

TYPE(LOGR)

DELETE

LOGSTREAM

NAME(ATR.WITPLEX.ARCHIVE)

DELETE

LOGSTREAM

NAME(ATR.WITPLEX.MAIN.UR)

DELETE

LOGSTREAM

NAME(ATR.WITPLEX.RESTART)

DELETE

LOGSTREAM

NAME(ATR.WITPLEX.RM.DATA)

DELETE

LOGSTREAM

NAME(ATR.WITPLEX.DELAYED.UR)

DELETE

STRUCTURE

NAME(RRSSTRUCT1)

/*

//STEP2

EXEC

PGM=IXCMIAPU

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

DATA

TYPE(LOGR)

DEFINE

STRUCTURE

NAME(RRSSTRUCT1)

LOGSNUM(9)

DEFINE

LOGSTREAM

NAME(ATR.WITPLEX.MAIN.UR)

STRUCTNAME(RRSSTRUCT1)

STG_DUPLEX(YES)

DUPLEXMODE(UNCOND)

LS_DATACLAS(SYSPLEX)

LS_STORCLAS(LOGGER)

HLQ(IXGLOGR)

AUTODELETE(YES)

RETPD(3)

DEFINE

LOGSTREAM

NAME(ATR.WITPLEX.RESTART)

STRUCTNAME(RRSSTRUCT1)

STG_DUPLEX(YES)

DUPLEXMODE(UNCOND)

LS_DATACLAS(SYSPLEX)

LS_STORCLAS(LOGGER)

HLQ(IXGLOGR)

AUTODELETE(YES)

RETPD(3)

DEFINE

LOGSTREAM

NAME(ATR.WITPLEX.RM.DATA)

STRUCTNAME(RRSSTRUCT1)

STG_DUPLEX(YES)

DUPLEXMODE(UNCOND)

LS_DATACLAS(SYSPLEX)

LS_STORCLAS(LOGGER)

HLQ(IXGLOGR)

AUTODELETE(YES)

RETPD(3)

DEFINE

LOGSTREAM

NAME(ATR.WITPLEX.DELAYED.UR)

STRUCTNAME(RRSSTRUCT1)

STG_DUPLEX(YES)

DUPLEXMODE(UNCOND)

LS_DATACLAS(SYSPLEX)

LS_STORCLAS(LOGGER)

HLQ(IXGLOGR)

AUTODELETE(YES)

RETPD(3)

/*

//*

DEFINE

LOGSTREAM

NAME(ATR.WITPLEX.ARCHIVE)

//*

STRUCTNAME(RRSSTRUCT1)

//*

STG_DUPLEX(YES)

//*

DUPLEXMODE(UNCOND)

//*

LS_DATACLAS(SYSPLEX)

//*

LS_STORCLAS(LOGGER)

//*

HLQ(IXGLOGR)

//*

AUTODELETE(YES)

//*

RETPD(3)

Chapter

2.

Tuning

performance

parameter

index

69

LE

tuning

tips

for

z/OS

v

For

best

performance,

use

the

LPALSTxx

parmlib

member

to

ensure

that

LE

and

C++

runtimes

are

loaded

into

LPA,

as

shown

in

the

following

example:

Example:

sys1.parmlib(LPALSTxx):

Top

of

Data

USER.LPALIB,

ISF.SISFLPA,

SDSF

CEE.SCEELPA,

LANGUAGE

ENVIRONMENT

CBC.SCLBDLL,

C++

RUNTIME

.

.

.

Bottom

of

Data

v

Ensure

that

you

are

NOT

using

the

following

options

during

production:

–

RPTSTG(ON)

–

RPTOPTS(ON)

–

HEAPCHK(ON)

v

Turn

LE

heappools

on.

If

you

are

running

a

client

on

z/OS,

setting

the

following:

SET

LEPARM=’HEAPP(ON)’

in

a

shell

script,

turns

on

LE

heappools,

which

should

improve

the

performance

of

the

client.

v

Fine

tune

the

LE

Heap

options.

Fine

tuning

the

LE

heap:

The

LE

Heap

is

an

area

of

storage

management

to

be

concerned

with.

For

servers,

IBM

has

compiled

default

values

for

HEAP

and

HEAPPOOL

into

the

server

main

programs.

These

are

good

starting

points

for

simple

applications.

To

fine

tune

the

LE

Heap

settings,

use

the

following

procedure:

1.

Generate

a

report

on

storage

utilization

for

your

application

servers.

Use

the

LE

function

RPTSTG(ON)

in

a

SET

LEPARM=

statement

in

JCL

as

shown

in

the

example:.

SET

LEPARM=’RPTOPTS(ON),RPTSTG(ON)’

Results

appear

in

servant

joblog.

2.

To

bring

the

server

down

cleanly,

use

the

following

VARY

command:

VARY

WLM,APPLENV=xxxx,QUIESCE

The

following

example

shows

the

servant

SYSPRINT

DD

output

from

the

RPTSTG(ON)

option.

Example:

.

.

.

0

HEAP

statistics:

Initial

size:

83886080

Increment

size:

5242880

Total

heap

storage

used

(sugg.

initial

size):

184809328

Successful

Get

Heap

requests:

426551

Successful

Free

Heap

requests:

424262

Number

of

segments

allocated:

1

Number

of

segments

freed:

0

.

.

.

Suggested

Percentages

for

current

Cell

Sizes:

HEAPP(ON,8,6,16,4,80,42,808,45,960,5,2048,20)

70

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Suggested

Cell

Sizes:

HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

.

.

.

3.

Take

the

heap

values

from

the

″Suggested

Cell

Sizes″

line

in

the

storage

utilization

report

and

use

them

in

another

RPTSTG(ON)

function

to

get

another

report

on

storage

utilization

as

shown

below:

SET

LEPARM=’RPTOPTS(ON),RPTSTG(ON,32,,80,,192,,520,,1232,,2048,)’

The

following

example

shows

the

servant

joblog

output

from

the

RPTOPTS(ON),RPTSTG(ON,32,,80,,192,,520,,1232,,2048,)

option.

Example:

.

.

0

HEAP

statistics:

Initial

size:

83886080

Increment

size:

5242880

Total

heap

storage

used

(sugg.

initial

size):

195803218

Successful

Get

Heap

requests:

426551

Successful

Free

Heap

requests:

424262

Number

of

segments

allocated:

1

Number

of

segments

freed:

0

.

.

.

Suggested

Percentages

for

current

Cell

Sizes:

HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

Suggested

Cell

Sizes:

HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

.

.

.

4.

Take

the

heap

values

from

the

″Suggested

Percentages

for

current

Cell

Sizes″

line

of

the

second

storage

utilization

report

and

use

them

in

another

RPTSTG(ON)

function

to

get

a

third

report

on

storage

utilization

as

shown

below:

SET

LEPARM=’RPTOPTS(ON),RPTSTG(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)’

The

following

example

shows

the

servant

joblog

output

from

the

RPTOPTS(ON),RPTSTG(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

option.

Example:

.

.

0

HEAP

statistics:

Initial

size:

83886080

Increment

size:

5242880

Total

heap

storage

used

(sugg.

initial

size):

198372130

Successful

Get

Heap

requests:

426551

Successful

Free

Heap

requests:

424262

Number

of

segments

allocated:

1

Number

of

segments

freed:

0

.

.

.

Suggested

Percentages

for

current

Cell

Sizes:

HEAPP(ON,32,8,80,43,192,48,520,20,1232,5,2048,20)

Suggested

Cell

Sizes:

HEAPP(ON,32,,80,,192,,520,,1232,,2048,)

.

.

.

5.

On

the

third

storage

utilization

report,

look

for

the

″Total

heap

storage

used

(sugg.

initial

size):″

line

and

use

this

value

for

your

initial

LE

heap

setting.

For

example,

in

the

report

in

third

report

example

this

value

is

198372130.

Chapter

2.

Tuning

performance

parameter

index

71

6.

Make

sure

that

you

remove

RPTSTG

since

it

does

incur

a

small

performance

penalty

to

collect

the

storage

use

information.

7.

For

your

client

programs

that

run

on

z/OS

or

OS/390,

we

recommend

that

you

at

least

specify

HEAPP(ON)

on

the

proc

of

your

client

to

get

the

default

LE

heappools.

LE

will

be

providing

additional

pools

(more

than

6)

and

larger

than

2048MB

cell

size

in

future

releases

of

z/OS.

You

may

be

able

to

take

advantage

of

these

increased

pools

and

cell

sizes,

if

you

have

that

service

on

your

system.

8.

If

you

use

LE

HEAPCHECK,

make

sure

to

turn

it

off

once

you

have

ensured

that

your

code

doesn’t

include

any

uninitialized

storage.

HEAPCHECK

can

be

very

expensive.

UNIX

System

Services

(USS)

tuning

tips

for

z/OS

WebSphere

Application

Server

for

z/OS

V5

no

longer

requires

or

recommends

the

shared

file

system

for

the

configuration

files,

since

it

maintains

its

own

mechanism

for

managing

this

data

in

a

cluster.

However,

WebSphere

for

z/OS

does

require

the

shared

files

system

for

XA

partner

logs.

Your

application

may

also

use

the

shared

file

system.

This

article

provides

some

basic

tuning

information

for

the

shared

file

system.

For

basic

z/OS

UNIX

System

Services

performance

information,

refer

to

the

following

web

site:

http://www.ibm.com/servers/eserver/zseries/ebusiness/perform.html

v

Mount

the

shared

file

system

R/O.

Special

consideration

needs

to

be

made

to

file

system

access

when

you

run

in

a

sysplex.

If

you

mount

the

file

system

R/W

in

a

shared

file

system

environment,

only

one

system

will

have

local

access

to

the

files.

All

other

systems

have

remote

access

to

the

files

which

negatively

affects

performance.

You

may

choose

to

put

all

of

the

files

for

WebSphere

in

their

own

mountable

file

system

and

mount

it

R/O

to

improve

performance.

However,

to

change

your

current

application

or

install

new

applications,

the

file

system

must

be

mounted

R/W.

You

will

need

to

put

operational

procedures

in

place

to

ensure

that

the

file

system

is

mounted

R/W

when

updating

or

installing

applications.

v

HFS

files

caching.

HFS

Files

Caching

Read/Write

files

are

cached

in

kernel

dataspaces.

In

order

to

determine

what

files

would

be

good

candidates

for

file

caching

you

can

use

SMF

92

records.

Initial

cache

size

is

defined

in

BPXPRMxx.

v

Consider

using

zFS.

z/OS

has

introduced

a

new

file

system

called

zFS

which

should

provide

improved

file

system

access.

You

may

benefit

from

using

the

zFS

for

your

UNIX

file

system.

See

z/OS

UNIX

System

Services

Planning

for

more

information.

v

Use

the

filecache

command.

High

activity,

read-only

files

can

be

cached

in

the

USS

kernel

using

the

filecache

command.

Access

to

files

in

the

filecache

can

be

much

more

efficient

than

access

to

files

in

the

shared

file

system,

even

if

the

shared

file

system

files

are

cached

in

dataspaces.

GRS

latch

contention,

which

sometimes

is

an

issue

for

frequently

accessed

files

shared

file

system,

will

not

affect

files

in

the

filecache.

To

filecache

important

files

at

startup,

you

can

add

filecache

command

to

your

/etc/rc

file.

Unfortunately,

files

which

are

modified

after

being

added

to

the

filecache

may

not

be

eligible

for

caching

until

the

file

system

is

unmounted

and

remounted,

or

until

the

system

is

re-IPLed.

Refer

to

z/OS

UNIX

System

Services

Command

Reference

for

more

information

about

the

filecache

command.

Example

of

using

the

filecache

command:

/usr/sbin/filecache

-a

/usr/lpp/WebSphere/V5R0M0/MQSeries/java/samples/base/de_DE/mqsample.html

Workload

management

(WLM)

tuning

tips

for

z/OS

If

you

are

running

z/OS

1.2

or

higher,

you

may

choose

to

use

the

dynamic

application

environment.

In

that

case,

use

the

Administrative

console

to

turn

on

the

dynamic

application

environment.

Use

the

Administrative

console

to

provide

the

JCL

proc

name

for

the

servant

and

the

JCL

Parm

for

the

servant.

Whether

or

not

you

use

the

dynamic

application

environment,

you

will

need

to

follow

the

instructions

below

to

set

the

WLM

goals.

72

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

http://www.ibm.com/servers/eserver/zseries/ebusiness/perform.html

Setting

the

WLM

goals

properly

can

have

a

very

significant

effect

on

application

throughput.

The

WebSphere

for

z/OS

system

address

spaces

should

be

given

a

fairly

high

priority.

As

work

comes

into

the

system,

the

work

classification

of

the

enclaves

should

be

based

on

your

business

goals.

v

Classify

location

service

daemons

and

controllers

as

SYSSTC

or

high

velocity.

v

Use

STC

classification

rules

to

classify

velocity

goals

for

application

servers.

Java

garbage

collection

runs

under

this

classification.

Java

GC

is

a

CPU

and

storage

intensive

process,

so

if

you

set

the

velocity

goal

too

high

GC

could

consume

more

of

the

system

resources

than

desired.

On

the

other

hand,

if

your

Java

heap

is

correctly

tuned,

GC

for

each

server

region

should

run

no

more

than

5%

of

the

time.

Also,

providing

proper

priority

to

GC

processing

is

necessary

since

other

work

in

the

server

region

is

stopped

during

much

of

the

time

GC

is

running.

JSP

compiles

run

under

this

classification.

If

your

system

is

configured

to

do

these

compiles

at

runtime,

setting

the

velocity

goal

too

low

could

result

in

longer

delays

waiting

for

JSP

compiles

to

complete.

Application

work

is

actually

classified

under

the

work

manager.

v

Application

Environment

for

work

running

under

servants

–

Subsystem

type

=

CB

–

Classify

based

on

Application

Server

name

and

Userid

–

Percentage

response

time

goal

is

recommended

It

is

usually

a

good

idea

to

make

the

goals

achievable.

For

example,

a

goal

that

80%

of

the

work

will

complete

in

.25

seconds

is

a

typical

goal.

Velocity

goals

for

application

work

are

not

meaningful

and

should

be

avoided.

–

Provide

a

high

velocity

default

service

class

for

CB

transactions

(Default

is

SYSOTHER)

v

Set

your

Application

environment

to

″No

Limit″

–

Required

if

you

need

more

than

one

servant

per

application

server.

–

Under

WLM,

you

can

control

how

many

servants

can

be

started

for

each

server.

If

you

need

more

than

one

servant

in

a

server

make

sure

that

″No

Limit″

is

selected

for

the

application

environment

associated

with

your

server.

For

information

about

setting

up

WLM

performance

goals,

see

z/OS

MVS

Planning:

Workload

Management.

Example:

Application-Environment

Notes

Options

Help

--

Modify

an

Application

Environment

Command

===>

__

Application

Environment

Name

.

:

BBOASR2

Description

.

.

.

.

.

.

.

.

.

.

WAS.V40.WB02

Application

server

Subsystem

Type

.

.

.

.

.

.

.

.

.

CB

Procedure

Name

.

.

.

.

.

.

.

.

.

BBOASR2S

Start

Parameters

.

.

.

.

.

.

.

.

IWMSSNM=&IWMSSNM

__

__

Limit

on

starting

server

address

spaces

for

a

subsystem

instance:

1

1.

No

limit

2.

Single

address

space

per

system

3.

Single

address

space

per

sysplex

Note:

When

the

WLM

configuration

is

set

to

no

limit,

you

can

control

the

maximum

and

minimum

number

of

servants

by

specifying

the

product

variables

wlm_maximumSRCount=x

and

wlm_minimumSRCount=y.

To

specify

these

variables,

click

Severs

>

Application

servers

and

go

the

application

server

page.

Caution:

If

you

specify

wlm_maximumSRCount

you

must

ensure

that

you

specify

a

wlm_maximumSRCount

value

that

is

greater

than

or

equal

to

the

number

of

service

classes

you

have

defined

for

this

application

environment.

Failure

to

do

so

can

result

in

timeouts

due

to

an

insufficient

number

of

server

regions.

–

Results

reported

in

RMF

Postprocessor

workload

activity

report:

-

Transactions

per

second

(not

always

the

same

as

client

tran

rate)

Chapter

2.

Tuning

performance

parameter

index

73

-

Average

response

times

(and

distrubution

of

response

times)

-

CPU

time

used

-

Percent

response

time

associated

with

various

delays

Related

tasks

Defining

application

server

processes

Using

IWMARIN0

(example

of

steps

for

defining

an

application

environment)

Tuning

for

subsystems

Steps

involved

in

tuning

the

z/OS

subsystems

to

optimize

WebSphere

performance

include:

v

DB2

tuning

tips

for

z/OS

v

RACF

tuning

tips

for

z/OS

v

TCP/IP

tuning

tips

for

z/OS

v

Message

tuning

tips

for

z/OS

v

GRS

tuning

tips

for

z/OS

v

Java

virtual

machine

(JVM)

tuning

tips

for

z/OS

v

CICS

tuning

tips

for

z/OS

DB2

tuning

tips

for

z/OS

Performance

tuning

for

DB2

is

usually

critical

to

the

overall

performance

of

a

WebSphere

for

z/OS

application.

DB2

is

often

the

preferred

datastore

for

a

session

or

EJB.

There

are

many

books

that

cover

DB2

tuning-we

can’t

possibly

provide

as

thorough

a

treatment

of

DB2

here

as

we

would

like.

Listed

here

are

some

basic

guidelines

for

DB2

tuning

as

well

as

some

guidelines

for

tuning

DB2

for

WebSphere.

For

more

complete

information

on

DB2

tuning

refer

to

DB2

Universal

Database

for

OS/390

and

z/OS

Administration

Guide

Version

7

Document

Number

SC26-9931-02.

General

DB2

tuning

tips:

v

First,

ensure

that

your

DB2

logs

are

large

enough,

are

allocated

on

the

fastest

volumes

you

have,

and

make

sure

they

have

optimal

CI

sizes.

v

Next,

ensure

that

you

have

tuned

your

bufferpools

so

that

the

most

often-read

data

is

in

memory

as

much

as

possible.

Use

ESTOR

and

hyperpools.

v

You

many

want

to

consider

pre-formatting

tables

that

are

going

to

be

heavily

used.

This

avoids

formatting

at

runtime.

DB2

for

WebSphere

tuning

tips:

v

Turn

off

any

JDBC

tracing

in

db2sqljjdbc.properties.

Example:

DB2SQLJSSID=DB2

DB2SQLJATTACHTYPE=RRSAF

DB2SQLJMULTICONTEXT=YES

DB2SQLJDBRMLIB=MVSDSOM.DB2710.DBRMLIB.DATA

#DB2SQLJ_TRACE_FILENAME=/tmp/mytrc

v

We

recommend

that

you

ensure

indexes

are

defined

on

all

your

object

primary

keys.

Failure

to

do

so

will

result

in

costly

tablespace

scans.

v

Ensure

that,

once

your

tables

are

sufficiently

populated,

you

do

a

re-org

to

compact

the

tables.

Executing

RUNSTATS

will

ensure

that

the

DB2

catalog

statistics

about

table

and

column

sizes

and

accesses

are

most

current

so

that

the

best

access

patterns

are

chosen

by

the

optimizer.

v

You

will

have

to

define

more

connections

called

threads

in

DB2.

WebSphere

for

z/OS

uses

a

lot

of

threads.

Sometimes

this

is

the

source

of

throughput

bottlenecks

since

the

server

will

wait

at

the

create

thread

until

one

is

available.

v

Make

sure

you

are

current

with

JDBC

maintenance.

Many

performance

improvements

have

been

made

to

JDBC

recently.

To

determine

the

JDBC

maintenance

level,

enter

the

following

from

the

shell:

java

COM.ibm.db2os390.sqlj.util.DB2DriverInfo

74

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

If

this

returns

a

class

not

found,

either

you

are

at

a

level

of

the

driver

that

is

older

and

doesn’t

support

this

command

or

you

have

not

issued

the

command

properly.

v

We

recommend

that

you

enable

dynamic

statement

caching

in

DB2.

To

do

this,

modify

your

ZPARMS

to

say

CACHEDYN(YES)

MAXKEEPD(16K).

Depending

on

the

application,

this

can

make

a

very

significant

improvement

in

DB2

performance.

Specifically,

it

can

help

JDBC

and

LDAP

query.

v

Increase

DB2

checkpoint

interval

settings

to

a

large

value.

To

do

this,

modify

your

ZPARMS

to

include

CHKFREQ=xxxxx,

where

xxxxx

is

set

at

a

high

value

when

doing

benchmarks.

On

production

systems

there

are

other

valid

reasons

to

keep

checkpoint

frequencies

lower,

however.

Example:

This

example

identifies

zparm

values

discussed

in

this

article.

//DB2INSTE

JOB

MSGCLASS=H,CLASS=A,NOTIFY=IBMUSER

/*JOBPARM

SYSAFF=*

//**

//*

JOB

NAME

=

DSNTIJUZ

//*

//*

DESCRIPTIVE

NAME

=

INSTALLATION

JOB

STREAM

//*

//*

LICENSED

MATERIALS

-

PROPERTY

OF

IBM

//*

5675-DB2

//*

(C)

COPYRIGHT

1982,

2000

IBM

CORP.

ALL

RIGHTS

RESERVED.

//*

//*

STATUS

=

VERSION

7

//*

//*

FUNCTION

=

DSNZPARM

AND

DSNHDECP

UPDATES

//*

//*

PSEUDOCODE

=

//*

DSNTIZA

STEP

ASSEMBLE

DSN6....

MACROS,

CREATE

DSNZPARM

//*

DSNTIZL

STEP

LINK

EDIT

DSNZPARM

//*

DSNTLOG

STEP

UPDATE

PASSWORDS

//*

DSNTIZP

STEP

ASSEMBLE

DSNHDECP

DATA-ONLY

LOAD

MODULE

//*

DSNTIZQ

STEP

LINK

EDIT

DSNHDECP

LOAD

MODULE

//*

DSNTIMQ

STEP

SMP/E

PROCESSING

FOR

DSNHDECP

//*

//*

NOTES

=

STEP

DSNTIMQ

MUST

BE

CUSTOMIZED

FOR

SMP.

SEE

THE

NOTES

//*

NOTES

PRECEDING

STEP

DSNTIMQ

BEFORE

RUNNING

THIS

JOB.

//*

//*

LOGLOAD=16000000,

//***/

//*

//DSNTIZA

EXEC

PGM=ASMA90,PARM=’OBJECT,NODECK’

//STEPLIB

DD

DSN=ASM.SASMMOD1,DISP=SHR

//SYSLIB

DD

DISP=SHR,

//

DSN=DB2710.SDSNMACS

//

DD

DISP=SHR,

//

DSN=SYS1.MACLIB

//SYSLIN

DD

DSN=&LOADSET(DSNTILMP),DISP=(NEW,PASS),

//

UNIT=SYSALLDA,

//

SPACE=(800,(50,50,2)),DCB=(BLKSIZE=800)

//SYSPRINT

DD

SYSOUT=*

//SYSUDUMP

DD

SYSOUT=*

//SYSUT1

DD

UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSUT2

DD

UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSUT3

DD

UNIT=SYSALLDA,SPACE=(800,(50,50),,,ROUND)

//SYSIN

DD

*

DSN6ENV

MVS=XA

DSN6SPRM

RESTART,

X

.

.

.

AUTH=YES,

X

AUTHCACH=1024,

X

BINDNV=BINDADD,

X

BMPTOUT=4,

X

Chapter

2.

Tuning

performance

parameter

index

75

CACHEDYN=YES,

X

.

.

.

MAXKEEPD=16000,

X

.

.

.

DSN6ARVP

ALCUNIT=CYL,

X

.

.

.

DSN6LOGP

DEALLCT=(0),

X

.

.

.

DSN6SYSP

AUDITST=NO,

X

BACKODUR=5,

X

CHKFREQ=16000000,

X

CONDBAT=400,

X

CTHREAD=1200,

X

DBPROTCL=PRIVATE,

X

DLDFREQ=5,

X

DSSTIME=5,

X

EXTRAREQ=100,

X

EXTRASRV=100,

X

EXTSEC=NO,

X

IDBACK=1800,

X

.

.

.

//*

Related

information

Creating

and

configuring

a

JDBC

provider

using

the

administrative

console

WebSphere

Application

Server

tuning

tips

for

use

with

DB2:

Prepared

statement

caching

effects

on

DB2

for

OS/390

JDBC

cursor

objects

WebSphere

Application

Server

uses

JDBC

prepared

statement

caching

as

a

performance

enhancing

feature.

If

you

are

using

this

feature

together

with

DB2

for

OS/390,

be

aware

of

the

potential

impact

on

the

number

of

DB2

JDBC

cursor

objects

available.

When

you

obtain

a

ResultSet

object

by

executing

a

PreparedStatement

object,

a

DB2

JDBC

cursor

object

is

bound

to

it

until

the

corresponding

DB2

prepared

statement

is

closed.

This

happens

when

the

DB2

Connection

object

is

released

from

the

WebSphere

Application

Server

connection

pool.

From

an

application

perspective,

the

result

set,

prepared

statement,

and

connection

are

each

closed

in

turn.

However,

the

underlying

DB2

Connection

is

pooled

by

the

WebSphere

Application

Server,

the

underlying

DB2

PreparedStatement

is

cached

by

the

application

server,

and

each

underlying

DB2

JDBC

cursor

object

associated

with

each

ResultSet

created

on

this

PreparedStatement

object

is

not

yet

freed.

Each

PreparedStatement

object

in

the

cache

can

have

one

or

more

result

sets

associated

with

it.

If

a

result

set

is

opened

and

not

closed,

even

though

you

close

the

connection,

that

result

set

is

still

associated

with

the

prepared

statement

in

the

cache.

Each

of

the

result

sets

has

a

unique

JDBC

cursor

attached

to

it.

This

cursor

is

kept

by

the

statement

and

is

not

released

until

the

prepared

statement

is

cleared

from

the

WebSphere

Application

Server

cache.

76

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

If

there

are

more

of

the

cached

statements

than

there

are

cursors,

eventually

the

execution

of

a

PreparedStatement

object

results

in

the

following

exception:

java.sql.SQLException:

DB2SQLJJDBCProfile

Error:

No

more

JDBC

Cursors

without

hold

Some

WebSphere

Application

Server

tuning

suggestions

to

help

avoid

this

problem

are:

1.

Decrease

the

statement

cache

size

setting

on

the

DB2

for

OS/390

data

source

definition.

Setting

this

value

to

zero

(0)

eliminates

statement

caching,

but

causes

a

noticeable

performance

impact.

2.

Decrease

the

minConnections

connection

pool

setting

on

the

DB2

for

OS/390

data

source

definition.

3.

Decrease

the

Aged

Timeout

connection

pool

setting

on

the

DB2

for

OS/390

data

source

definition.

However,

it

is

NOT

recommended

that

you

set

this

to

zero

(0),

as

this

disables

the

Aged

Timeout

function.

RACF

tuning

tips

for

z/OS

Follow

these

guidelines

for

RACF

tuning:

v

As

is

always

the

case,

don’t

turn

things

on

unless

you

need

them.

In

general,

the

cost

of

security

has

been

highly

optimized.

However,

if

you

don’t

need

EJBROLEs,

then

don’t

enable

the

class

in

RACF.

v

Use

the

RACLIST

to

place

into

memory

those

items

that

will

improve

performance.

Specifically,

ensure

that

you

RACLIST

(if

used):

–

CBIND

–

EJBROLE

–

SERVER

–

STARTED

Example:

RACLIST

(CBIND,

EJBROLE,

SERVER,

STARTED)

v

Use

of

things

like

SSL

come

at

a

price.

If

you

are

a

heavy

SSL

user,

ensure

that

you

have

appropriate

hardware,

such

as

PCI

crypto

cards,

to

speed

up

the

handshake

process.

v

Here’s

how

you

define

the

BPX.SAFFASTPATH

facility

class

profile.

This

profile

allows

you

to

bypass

SAF

calls

which

can

be

used

to

audit

successful

shared

file

system

accesses.

–

Define

the

facility

class

profile

to

RACF.

RDEFINE

FACILITY

BPX.SAFFASTPATH

UACC(NONE)

–

Activate

this

change

by

doing

one

of

the

following:

-

re-IPL

-

invoke

the

SETOMVS

or

SET

OMVS

operator

commands.

Note:

Do

not

use

this

option

if

you

need

to

audit

successful

HFS

accesses

or

if

you

use

the

IRRSXT00

exit

to

control

HFS

access.

v

Use

VLF

caching

of

the

UIDs

and

GIDs

as

shown

in

the

example

COFVLFxx

parmlib

member

below:

Example:

sys1.parmlib(COFVLFxx):

Top

of

Data

********************.

.

CLASS

NAME(IRRGMAP)

EMAJ(GMAP)

CLASS

NAME(IRRUMAP)

EMAJ(UMAP)

CLASS

NAME(IRRGTS)

EMAJ(GTS)

CLASS

NAME(IRRACEE)

EMAJ(ACEE)

.

Bottom

of

Data

To

avoid

a

costly

scan

of

the

RACF

databases,

make

sure

all

HFS

files

have

valid

GIDs

and

UIDs.

TCP/IP

tuning

tips

for

z/OS

TCP/IP

can

be

the

source

of

some

significant

remote

method

delays.

Follow

these

tips

to

tune

TCP/IP:

v

First,

ensure

that

you

have

defined

enough

sockets

to

your

system

and

that

the

default

socket

time-out

of

180

seconds

is

not

too

high.

To

allow

enough

sockets,

update

the

BPXPRMxx

parmlib

member:

Chapter

2.

Tuning

performance

parameter

index

77

–

Set

MAXSOCKETS

for

the

AF_INET

filesystem

high

enough.

–

Set

MAXFILEPROC

high

enough.

We

recommend

setting

MAXSOCKETS

and

MAXFILEPROC

to

at

least

5000

for

low-throughput,

10000

for

medium-throughput,

and

35000

for

high-throughput

WebSphere

transaction

environments.

Setting

high

values

for

these

parameters

should

not

cause

excessive

use

of

resources

unless

the

sockets

or

files

are

actually

allocated.

Example:

/*

Open/MVS

Parmlib

Member

*/

/*

CHANGE

HISTORY:

*/

/*

01/31/02

AEK

Increased

MAXSOCKETS

on

AF_UNIX

from

10000

to

50000*/

/*

per

request

from

Michael

Everett

*/

/*

10/02/01

JAB

Set

up

shared

HFS

*/

/*

KERNEL

RESOURCES

DEFAULT

MIN

MAX

*/

/*

========================

===================

===

===========

*/

.

.

MAXFILEPROC(65535)

/*

64

3

65535

*/

.

.

NETWORK

DOMAINNAME(AF_INET)

DOMAINNUMBER(2)

MAXSOCKETS(30000)

.

v

Next

check

the

specification

of

the

port

in

TCPIP

profile

dataset

to

ensure

that

NODELAYACKS

is

specified

as

follows:

PORT

8082

TCP

NODELAYACKS

In

your

runs,

changing

this

could

improve

throughput

by

as

much

as

50%

(this

is

particularly

useful

when

dealing

with

trivial

workloads).

This

setting

is

important

for

good

performance

when

running

SSL.

v

You

should

ensure

that

your

DNS

configuration

is

optimized

so

that

lookups

for

frequently-used

servers

and

clients

are

being

cached.

Caching

is

sometimes

related

to

the

name

server’s

Time

To

Live

(TTL)

value.

On

the

one

hand,

setting

the

TTL

high

will

ensure

good

cache

hits.

However,

setting

it

high

also

means

that,

if

the

Daemon

goes

down,

it

will

take

a

while

for

everyone

in

the

network

to

be

aware

of

it.

A

good

way

to

verify

that

your

DNS

configuration

is

optimized

is

to

issue

the

oping

and

onslookup

USS

commands.

Make

sure

they

respond

in

a

reasonable

amount

of

time.

v

Increase

the

size

of

the

TCPIP

send

and

receive

buffers

from

the

default

of

16K

to

at

least

64K.

This

is

the

size

of

the

buffers

including

control

information

beyond

what

is

present

in

the

data

that

you

are

sending

in

your

application.To

do

this

specify

the

following:

TCPCONFIG

TCPSENDBFRSIZE

65535

TCPRCVBUFRSIZE

65535

Note:

It

would

not

be

unreasonable,

in

some

cases,

to

specify

256K

buffers.

v

Increase

the

default

listen

backlog.

This

is

used

to

buffer

spikes

in

new

connections

which

come

with

a

protocol

like

HTTP.

The

default

listen

backlog

is

10

requests.

We

recommend

that

you

increase

this

value

to

something

larger.

For

example:

protocol_http_backlog=100

protocol_https_backlog=100

protocol_iiop_backlog=100

protocol_ssl_backlog=100

v

Reduce

the

finwait2

time.

In

the

most

demanding

benchmarks

you

may

find

that

even

defining

65K

sockets

and

file

descriptors

does

not

give

you

enough

’free’

sockets

to

run

100%.

When

a

socket

is

closed

(for

example,

no

longer

78

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

needed)

it

is

not

made

available

immediately.

Instead

it

is

placed

into

a

state

called

finwait2

(this

is

what

shows

up

in

the

netstat

-s

command).

It

waits

there

for

a

period

of

time

before

it

is

made

available

in

the

free

pool.

The

default

for

this

is

600

seconds.

Note:

Unless

you

have

trouble

using

up

sockets,

we

recommend

that

you

leave

this

set

to

the

default

value.

If

you

are

using

z/OS

V1.2

or

above,

you

can

control

the

amount

of

time

the

socket

stays

in

finwait2

state

by

specifying

the

following

in

the

configuration

file:

FINWAIT2TIME

60

MQ/JMS

tuning

tips

for

z/OS

JMS

tuning

tips

WebSphere

Application

Server

Version

5

supports

3

different

JMS

providers:

v

Integral

JMS

provider

(IJP)

v

MQ

series

JMS

provider

v

Generic

JMS

-

used

when

a

third-party

JMS

provider

is

used.

Tuning

JMS

involves

the

use

of

the

JMS

provider,

design

requirements

of

the

applications,

and

the

use

of

message

driven

beans

(MDB).

The

JMS

provider

could

be

any

of

the

three

listed

above.

Application

design

depends

on

the

requirements

of

the

applications,

which

fall

under

two

main

categories:

v

Quality

of

service

–

Guaranteed

delivery

–

Persistence

–

Transaction

–

Security

v

Messaging

programming

style

–

Point

to

point

(P2P)

–

Publish/Subscribe

When

using

IJP

as

the

JMS

provider,

we

highly

recommend

that

you

not

change

any

settings,

since

WebSphere

has

a

view

of

what

it

thinks

is

going

on.

The

following

tuning

tips

are

applicable

in

case

of

both

IJP

and

MQ

series

JMS

Non-persitenet,

non-durable

and

transaction-not-supported

messages

perform

better,

but

at

the

cost

that

they

are

non-recoverable

due

to

the

lack

of

persistence.

v

Turn

off

all

tracing.

Use

the

display

trace

command

to

get

the

trace

number.

D

TRACE

Then

use

the

stop

trace

global

command

to

turn

off

the

specific

trace

number

STOP

TRACE

(G)

TNO(xxx)

v

Create

long-lived

queue

manager

connections

rather

than

creating

and

destroying

connections

on

every

message.

Reuse

connections

and

sessions.

v

Use

bindings

mode

if

your

queue

manager

and

client

both

reside

on

the

same

zOS

image.

Bindings

mode

is

a

cross-memory

interface

that

eliminates

the

need

for

MQ

to

call

TCP/IP.

It

can

be

implemented

by

not

setting

the

TransportType

on

the

connection.

Use

bindings

only

in

case

of

MQ

series

JMS

provider

v

Client

acknowledgements

required

that

an

ack

be

received

from

the

client

before

another

message

is

sent.

Auto

acknowledgements

are

a

better

choice

and

reduce

delays.

Chapter

2.

Tuning

performance

parameter

index

79

v

Performance

will

be

best

if

the

client

and

queue

manager

have

the

same

CCSID

so

the

queue

manager

does

not

need

to

translate

message

headers.

v

Small

messages

are

best.

Use

of

system

resources

and

throughput

will

be

proportional

to

the

size

of

MQ

messages.

However,

if

you

must

send

large

amounts

of

data,

one

larger

message

is

preferable

to

multiple

small

ones.

If

using

very

large

messages

(for

example,

over

1MB)

see

″WebSphere

MQ

Tips″.

v

Persistent,

transacted

messages

perform

better

than

persisted

non-transacted

messages

because

multiple

MQ

commits

can

be

delayed

until

the

end

of

the

transaction.

v

Express

(nonpersistent)

messages

perform

most

optimally,

so

use

them

if

your

application

does

not

require

persistence.

v

MQ

Application

Server

Framework

(ASF)

generally

adds

more

overhead

then

non-ASF

messaging.

v

MQ

local

queues

defined

as

DEFSOPT(SHARED)

with

the

SHARE

option,

and

shared

by

multiple

threads

or

processes

generally

perform

better

than

non-shared

queues

and

use

fewer

resources.

v

MDBs

are

asynchronous

by

nature,

therefore,

should

never

be

forced

to

run

in

a

serial

mode

(maxsession=1).

Set

a

realistic

number

for

maxsession

for

the

number

of

concurrent

sessions.

MQ

tuning

tips

v

Turn

off

MQ

tracing

in

the

MQ

ZPARMS

by

specifying:.

TRACSTR=NO,

TRACING

AUTO

START

X

Example:

//*

//*

Assemble

step

for

CSQ6LOGP

//*

//LOGP

EXEC

PGM=ASMA90,PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

//

REGION=4M

//SYSLIB

DD

DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

//

DD

DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1

DD

UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH

DD

DSN=&&LOGP;,

//

UNIT=SYSDA,DISP=(,PASS),

//

SPACE=(400,(100,100,1))

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

CSQ6LOGP

INBUFF=60,

LOG

INPUT

BUFFER

SIZE

(KB)

X

MAXRTU=2,

MAX

ALLOCATED

ARCHIVE

LOG

UNITS

X

DEALLCT=0,

ARCHIVE

LOG

DEALLOCATE

INTERVAL

X

MAXARCH=500,

MAX

ARCHIVE

LOG

VOLUMES

X

OFFLOAD=YES,

ARCHIVING

ACTIVE

X

OUTBUFF=4000,

LOG

OUTPUT

BUFFER

SIZE

(KB)

X

TWOACTV=YES,

DUAL

ACTIVE

LOGGING

X

TWOARCH=YES,

DUAL

ARCHIVE

LOGGING

X

TWOBSDS=YES,

DUAL

BSDS

X

WRTHRSH=20

ACTIVE

LOG

BUFFERS

END

/*

//*

//*

Assemble

step

for

CSQ6ARVP

//*

//ARVP

EXEC

PGM=ASMA90,COND=(0,NE),

//

PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

//

REGION=4M

//SYSLIB

DD

DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

//

DD

DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1

DD

UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH

DD

DSN=&&ARVP;,

80

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

//

UNIT=SYSDA,DISP=(,PASS),

//

SPACE=(400,(100,100,1))

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

CSQ6ARVP

ALCUNIT=BLK,

UNITS

FOR

PRIQTY/SECQTY

X

ARCPFX1=WIT.MQ1.WITA,

DSN

PREFIX

FOR

ARCHIVE

LOG

1

X

ARCPFX2=WIT.MQ2.WITA,

DSN

PREFIX

FOR

ARCHIVE

LOG

2

X

ARCRETN=9999,

ARCHIVE

LOG

RETENION

TIME

(DAYS)

X

ARCWRTC=(1,3,4),

ARCHIVE

WTO

ROUTE

CODE

X

ARCWTOR=NO,

PROMPT

BEFORE

ARCHIVE

LOG

MOUNT

X

BLKSIZE=24576,

ARCHIVE

LOG

BLOCKSIZE

X

CATALOG=YES,

CATALOG

ARCHIVE

LOG

DATA

SETS

X

COMPACT=NO,

ARCHIVE

LOGS

COMPACTED

X

PRIQTY=4320,

PRIMARY

SPACE

ALLOCATION

X

PROTECT=NO,

DISCRETE

SECURITY

PROFILES

X

QUIESCE=5,

MAX

QUIESCE

TIME

(SECS)

X

SECQTY=540,

SECONDARY

SPACE

ALLOCATION

X

TSTAMP=YES,

TIMESTAMP

SUFFIX

IN

DSN

X

UNIT=DASD,

ARCHIVE

LOG

DEVICE

TYPE

1

X

UNIT2=

ARCHIVE

LOG

DEVICE

TYPE

2

END

/*

//*

//*

Assemble

step

for

CSQ6SYSP

//*

//SYSP

EXEC

PGM=ASMA90,COND=(0,NE),

//

PARM=’DECK,NOOBJECT,LIST,XREF(SHORT)’,

//

REGION=4M

//SYSLIB

DD

DSN=MQSERIES.V5R3M0.SCSQMACS,DISP=SHR

//

DD

DSN=SYS1.MACLIB,DISP=SHR

//SYSUT1

DD

UNIT=SYSDA,SPACE=(CYL,(1,1))

//SYSPUNCH

DD

DSN=&&SYSP;,

//

UNIT=SYSDA,DISP=(,PASS),

//

SPACE=(400,(100,100,1))

//SYSPRINT

DD

SYSOUT=*

//SYSIN

DD

*

CSQ6SYSP

CTHREAD=600,

TOTAL

NUMBER

OF

CONNECTIONS

X

CMDUSER=CSQOPR,

DEFAULT

USERID

FOR

COMMANDS

X

EXITLIM=30,

EXIT

TIMEOUT

(SEC)

X

EXITTCB=8,

NUMBER

OF

EXIT

SERVER

TCBS

X

IDBACK=500,

NUMBER

OF

NON-TSO

CONNECTIONS

X

IDFORE=100,

NUMBER

OF

TSO

CONNECTIONS

X

LOGLOAD=900000,

LOG

RECORD

CHECKPOINT

NUMBER

X

OTMACON=(,,DFSYDRU0,2147483647,CSQ),

OTMA

PARAMETERS

X

QMCCSID=0,

QMGR

CCSID

X

QSGDATA=(,,,),

QUEUE-SHARING

GROUP

DATA

X

RESAUDIT=YES,

RESLEVEL

AUDITING

X

ROUTCDE=1,

DEFAULT

WTO

ROUTE

CODE

X

SMFACCT=NO,

GATHER

SMF

ACCOUNTING

X

SMFSTAT=NO,

GATHER

SMF

STATS

X

STATIME=30,

STATISTICS

RECORD

INTERVAL

(MIN)

X

TRACSTR=NO,

TRACING

AUTO

START

X

TRACTBL=99,

GLOBAL

TRACE

TABLE

SIZE

X4K

X

WLMTIME=30,

WLM

QUEUE

SCAN

INTERVAL

(SEC)

X

SERVICE=0

IBM

SERVICE

USE

ONLY

END

/*

Chapter

2.

Tuning

performance

parameter

index

81

//*

//*

LINKEDIT

CSQARVP,

CSQLOGP

and

CSQSYSP

into

a

//*

system

parameter

module.

//*

//LKED

EXEC

PGM=IEWL,COND=(0,NE),

//

PARM=’SIZE=(900K,124K),RENT,NCAL,LIST,AMODE=31,RMODE=ANY’

//*

//*

OUPUT

AUTHORIZED

APF

LIBRARY

FOR

THE

NEW

SYSTEM

//*

PARAMETER

MODULE.

//*

//SYSLMOD

DD

DSN=SYS1.WITA.LINKLIB,DISP=SHR

//SYSUT1

DD

UNIT=SYSDA,DCB=BLKSIZE=1024,

//

SPACE=(1024,(200,20))

//SYSPRINT

DD

SYSOUT=*

//ARVP

DD

DSN=&&ARVP;,DISP=(OLD,DELETE)

//LOGP

DD

DSN=&&LOGP;,DISP=(OLD,DELETE)

//SYSP

DD

DSN=&&SYSP;,DISP=(OLD,DELETE)

//*

//*

LOAD

LIBRARY

containing

the

default

system

//*

parameter

module

(CSQZPARM).

//*

//OLDLOAD

DD

DSN=MQSERIES.V520.SCSQAUTH,DISP=SHR

//SYSLIN

DD

*

INCLUDE

SYSP

INCLUDE

ARVP

INCLUDE

LOGP

INCLUDE

OLDLOAD(CSQZPARM)

ENTRY

CSQZMSTR

NAME

CSQZPARM(R)

Your

system

parameter

module

name

/*

v

Similarly,

you

are

advised

to

turn

off

tracing

in

the

channel

initiator.

Unlike

base

MQ

tracing,

this

parameter

cannot

be

enabled

dynamically.

To

turn

tracing

back

on

for

debug

purposes,

you

will

need

to

reassemble

your

MQ

XPARMS.

Enabling

channel

initiator

tracing

can

degrade

your

system

by

5-10%.

The

variable

to

set

is

as

follows:

TRAXSTR=NO,

START

TRACE

AUTOMATICALLY

YES|NO

v

For

improved

performance

in

the

laboratory,

the

following

WebSphere

MQ

tuning

parameters

required

modification

from

their

default

settings.The

difference

in

most

cases

was

significant.

–

Optimize

the

number

of

concurrent

queue

manager

connections

CTHREAD

parameter

of

CSQ6SYSP

(Maximum

number

of

concurrent

connections

to

MQ)

IDBACK

parameter

of

CSQ6SYSP

(Maximum

number

of

background

concurrent

threads

connected

to

MQ)

CTHREAD

is

the

maximum

number

of

simultaneous

connections

to

the

queue

manager.

It

should

be

greater

than,

or

equal

to,

the

sum

of

IDFORE

and

IDBACK.

IDFORE

is

the

number

of

concurrent

TSO

connections

to

WebSphere

MQ,

and

IDBACK

is

the

number

of

concurrent

background

connections,

which

includes

jms

threads.

If

any

or

all

of

these

parameters

are

too

low,

applications

will

be

unable

to

connect

to

the

queue

manager.

These

parameters

are

found

in

the

CSQ6SYSP

section

of

the

MQ

ZPARMS.

You

can

update

the

MQ

ZPARMS

at

any

time;

the

updates

will

take

effect

the

next

time

you

restart

the

queue

manager.

–

Adjust

the

WebSphere

MQ

checkpoint

interval

and

active

log

buffers

LOGLOAD

parameter

of

CSQ6SYSP

(number

of

log

records

written

before

a

checkpoint)

WRTHRSH

parameter

of

CSQ6LOGP

(Number

of

active

log

buffers)

When

using

persistent

messages,

it

is

particularly

important

to

pay

attention

to

logging

characteristics.

MQ

logs

should

always

be

placed

on

high

performance

volumes

with

DASD

fast

write

enabled.

MQ

logs

are

often

the

single

most

significant

bottleneck

when

using

persistent

messages.

The

LOGLOAD

parameter

controls

the

number

of

log

records

written

before

a

checkpoint

(assuming,

of

course,

that

the

log

is

large

enough

to

hold

this

number

of

records).

Checkpoints

generally

should

82

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

occur

no

more

frequently

than

every

5

or

6

minutes.

If

your

MQ

checkpoints

are

more

frequent,

you

may

need

to

increase

either

the

size

of

the

logs,

the

value

of

LOGLOAD,

or

both.

In

the

laboratory,

we

use

a

LOGLOAD

value

of

900000

because

we

execute

high

throughput

jms

workloads

that

are

very

write-intensive.

When

the

space

on

the

log

is

exhausted,

a

log

switch

occurs

which

disrupts

performance.

You

can

avoid

frequent

log

switches

by

increasing

the

size

of

the

log(s).

WRTHRSH

is

the

number

of

active

log

buffers,

and

determines

how

much

data

is

held

in

memory

before

a

log

write

occurs.

If

you

have

a

high

I/O

rate

to

your

log

volume(s),

you

may

wish

to

increase

this

parameter.

In

the

laboratory,

we

use

a

value

of

200.

Generally

speaking,

your

message

rate

for

persistent

messages

cannot

exceed

the

bandwidth

capacity

of

your

slowest

log

volume.

For

example,

if

your

were

sending

messages

of

5KB

at

a

throughput

rate

of

300

per

second,

you

would

be

writing

at

least

1.9

MB

of

data

per

second

to

the

log

(this

is

roughly

1.3KB

plus

the

user

message

size

for

each

logged

message).

–

Specify

the

size

of

the

archive

logs

SECQTY

parameter

of

CSQ6ARVP

(archive

log

space

allocation)

PRIQTY

parameter

of

CSQ6ARVP

(archive

log

space

allocation)

ALCUNIT

parameter

of

CSQ6ARVP

(archive

Log

allocation

unit)

TWOARCH

parameter

of

CSQ6LOGP

(dual

archive

logs)

The

PRIQTY

and

SECQTY

parameters

control

the

size

of

the

archive

logs.

Generally

it

is

best

to

allocate

them

(ALCUNIT)

in

cylinders

in

lieu

of

blocks.

Depending

upon

your

data

integrity

requirements,

you

may

or

may

not

choose

to

have

dual

archive

logging.

–

Specify

the

number

of

buffers

BUFFERS

(number

of

buffers

on

the

DEFINE

BUFFERPOOL

statement)

Use

the

DEFINE

BUFFERPOOL

statement

to

specify

the

number

of

buffers.

It

is

important

to

insure

the

number

of

buffers

is

large

enough

to

hold

at

least

an

entire

message

(and

its

headers).

Otherwise,

WebSphere

MQ

will

be

forced

to

write

to

the

Page

Data

sets

for

every

message.

For

example,

a

100MB

message

requires

at

least

26000

pages

in

the

bufferpool.

MQ

Buffer

Manager

statistics

can

be

used

to

determine

the

number

of

times

a

buffer

was

unavailable.

See

Support

Pac

MP1B,

MQSeries

for

OS/390

V5.2

-

Interpreting

accounting

and

statistics

data.

–

Specify

queue

definitions

INDXTYPE(NONE)

(index

specification

for

queue

definitions)

or

INDXTYPE(CORRELID)

DEFPSIST(NO)

Unless

your

applications

retrieve

messages

by

other

than

correlation

ID

(which

is

the

case

for

jms

publish/subscribe)

or

message

ID,

it

is

normally

best

not

to

specify

message

selectors

on

queue

definitions.

You

should,

however,

make

sure

you

have

specified

INDXTYPE(CORRELID)

on

the

SYSTEM.JMS.ND/D

queues,

and/or

on

the

SYSTEM.JMS.ND.CC

/

.D.CC

queues,

and/or

on

any

shared

message

queues

for

publish/subscribe.

Specify

DEFPSIST(NO)

unless

you

want

messages

on

a

particular

queue

to

default

to

persistent.

Since

DEFPSIST(YES)

will

affect

performance,

make

sure

you

really

want

persistent

messages.

–

Specify

channel

definitions

BATCHSZ

parameter

for

queue

definitions

(Number

of

messages

sent

as

a

batch)

We

did

not

modify

the

BATCHSZ

parameter

in

the

laboratory.

GRS

tuning

tips

for

z/OS

WebSphere

for

z/OS

uses

GRS

to

communicate

information

between

servers

in

a

sysplex.

When

there

are

multiple

servers

defined

in

a

system

or

a

sysplex,

a

request

may

end

up

on

the

wrong

server.

To

determine

where

the

transaction

is

running

WebSphere

uses

GRS.

Therefore,

if

you

are

using

global

transactions,

WebSphere

will

issue

an

enqueue

for

that

transaction

at

the

start

of

the

transaction

and

hold

on

to

that

enqueue

until

the

transaction

ends.

WebSphere

for

z/OS

uses

GRS

enqueues

for

the

following:

Chapter

2.

Tuning

performance

parameter

index

83

v

Two-phase

commit

transactions

involving

more

than

one

server

v

HTTP

sessions

in

memory

v

Stateful

EJBs

v

″Sticky″

transactions

to

keep

track

of

pseudo-conversational

states.
v

If

you

are

not

in

a

sysplex,

you

should

configure

GRS=NONE.

v

If

you

are

in

a

sysplex,

we

strongly

recommend

GRS=STAR.

This

requires

configuring

GRS

to

use

the

coupling

facility.

See

the

GRS

documentation

for

details

on

setting

this

up.

Java

virtual

machine

(JVM)

tuning

tips

for

z/OS

Before

you

begin:

1.

Ensure

that

you

have

the

most

recent

version

of

JVM

that

is

supported

by

WebSphere

for

z/OS.

As

of

this

writing,

the

JVM

level

for

WebSphere

Application

Server

for

z/OS

V5

is

1.3.1

and

PTF

20.

2.

Have

the

most

recent

PTFs,

since

almost

every

PTF

level

has

improved

performance

of

the

JVM.

3.

Have

sufficient

JVM

Heap

Size.

Refer

to

“Java

virtual

machine

storage

tuning

tips

for

z/OS”

on

page

66for

a

discussion

of

this

setting.

How

to

view

or

set:

Use

the

WebSphere

Administrative

console

:

1.

Click

Servers

>

Application

Servers

>

server_name

>

Process

Definition

>

Java

Virtual

Machine

2.

Select

the

options

listed

in

the

section

belong

on

the

Configuration

Tab.

v

Run

with

the

JIT

(Just

In

Time)

compiler

active.

In

the

General

Properties

section

of

the

Configuration

Tab,

ensure

that

Disable

JIT

is

not

selected.

The

default

is

JIT

support

enabled.

v

Do

not

specify

the

debug

version

of

the

JVM

libjava_g

in

your

libpath.

Severe

performance

degradation

is

likely

when

running

with

the

debug

version

of

the

JVM.

v

Have

Classpath

point

to

only

the

classes

you

need

(the

classes

that

are

referenced

most

frequently

should

be

located

near

the

front

of

the

path,

if

possible).

In

the

General

Properties

section

of

the

Configuration

Tab,

enter

the

Classpath

in

the

text

box

of

the

Classpath

option.

v

Verify

the

Classpath

as

part

of

the

Java

configuration.

v

To

speed

up

JVM

initialization

and

improve

server

startup

time,

specify

the

following

command

line

arguments

in

the

General

JVM

Arguments

field

in

the

General

Properties

section

of

the

Configuration

Tab.

-Xquickstart

-Xverify:none

These

options

can

reduce

servant

startup

time

by

as

much

as

40%.

However,

they

will

reduce

runtime

throughput

by

about

8%.

v

Sometimes

poor

performance

is

caused

by

a

missing

class.

The

class

loader

will

look

in

it’s

tables

of

already

loaded

classes

and

if

the

class

is

not

found

to

be

already

loaded

it

will

search

for

it.

This

search

process

can

cause

a

high

amount

of

I/O

activity

to

the

HFS

volumes.

To

determine

if

this

is

the

problem

you

can

collect

CTRACE

records

from

the

file

system.

Once

you

determine

which

class

is

not

being

found

you

can

repair

the

problem

by

providing

the

class

or

by

removing

the

need

for

it.

Note:

Please

see

the

″Applications″

section

in

the

WebSphere

Application

Server

for

z/OS

V5.0

InfoCenter,

access

to

which

can

be

obtained

through

the

WebSphere

forz/OS

library

Web

site

http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

for

more

information

on

″Application

client

troubleshooting

tips.″
v

For

more

information

about

JVM

performance

on

z/OS

and

OS/390,

see

http://www.s390.ibm.com/java/perform.html.

Related

information

“Java

virtual

machine

storage

tuning

tips

for

z/OS”

on

page

66

84

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

http://www.s390.ibm.com/java/perform.html

Application

client

troubleshooting

tips

CICS

tuning

tips

for

z/OS

These

recommendations

only

apply

to

WebSphere

applications

that

access

CICS.

The

LGDFINT

system

initialization

parameter

specifies

the

log

defer

interval

used

by

CICS

log

manager

when

determining

how

long

to

delay

a

forced

journal

write

request

before

invoking

the

MVS

system

logger.

The

value

is

specified

in

milliseconds.

Performance

evaluations

of

typical

CICS

transaction

workloads

have

shown

that

the

default

setting

of

5

milliseconds

gives

the

best

balance

between

response

time

and

central

processor

cost.

Be

aware

that

CICS

performance

can

be

adversely

affected

by

a

change

to

the

log

defer

interval

value.

Too

high

a

value

will

delay

CICS

transaction

throughput

due

to

the

additional

wait

before

invoking

the

MVS

system

logger.

An

example

of

a

scenario

where

a

reduction

in

the

log

defer

interval

might

be

beneficial

to

CICS

transaction

throughout

would

be

where

many

forced

log

writes

are

being

issued,

and

little

concurrent

task

activity

is

occurring.

Such

tasks

will

spend

considerable

amounts

of

their

elapsed

time

waiting

for

the

log

defer

period

to

expire.

In

such

a

situation,

there

is

limited

advantage

in

delaying

a

call

to

the

MVS

system

logger

to

write

out

a

log

buffer,

since

few

other

log

records

will

be

added

to

the

buffer

during

the

delay

period.

v

Set

the

LGDFINT

system

initialization

parameter

to

5.

While

CICS

is

running,

you

can

use

the

CEMT

SET

SYSTEM[LOGDEFER(value)]

command

to

alter

the

LGDFINT

setting

dynamically.

v

Set

the

CICS

RECEIVECOUNT

value

high

enough

to

handle

all

concurrent

EXCI

pipes

on

the

system.

The

default

value

is

4.

You

set

this

value

in

the

EXCI

sessions

resource

definition.

For

more

detailed

information

on

CICS,

refer

to

the

CICS

Performance

Guide.

Tuning

the

WebSphere

Application

Server

for

z/OS

runtime

Steps

involved

in

tuning

the

WebSphere

Application

Server

for

z/OS

runtime

to

optimize

performance

include

reviewing

the:

v

WebSphere

Application

Server

for

z/OS

configuration

v

Internal

tracing

tips

for

WebSphere

Application

Server

for

z/OS

v

Location

of

executable

programs

tips

for

z/OS

v

Security

tuning

tips

for

z/OS

v

Servlet

and

EJB

integrated

runtime

tuning

tips

for

z/OS

Review

the

WebSphere

for

z/OS

configuration

The

first

thing

to

do

is

review

the

WebSphere

for

z/OS

configuration.

One

simple

way

to

do

this

is

to

look

in

your

application

control

and

server

regions

in

SDSF.

When

each

server

starts,

the

runtime

prints

out

the

current

configuration

data

in

the

joblog.

Internal

tracing

tips

for

WebSphere

for

z/OS

WebSphere

traces

can

be

extremely

helpful

in

detecting

and

diagnosing

problems.

By

properly

setting

trace

options,

you

can

capture

the

information

needed

to

detect

problems

without

significant

performance

overhead.

v

Ensure

that

you

are

not

collecting

more

diagnostic

data

than

you

need.

You

should

check

your

WebSphere

for

z/OS

tracing

options

to

ensure

that

ras_trace_defaultTracingLevel=0

or

1,

and

that

ras_trace_basic

and

ras_trace_detail

are

not

set.

How

to

view

or

set:

Use

the

WebSphere

administrative

console:

1.

Click

Environment

>

Manage

WebSphere

Variables.

2.

On

the

Configuration

Tab

check

for

any

of

these

variables

in

the

name

field

and

observe

the

variable

setting

in

the

value

field.

3.

To

change

or

set

a

variable,

specify

the

variable

in

the

name

field

and

specify

the

setting

in

the

value

field.

You

can

also

describe

the

setting

in

the

description

field

on

this

tab.

Chapter

2.

Tuning

performance

parameter

index

85

v

If

you

use

any

level

of

tracing,

including

ras_trace_defaultTracingLevel=1,

ensure

that

you

set

ras_trace_outputLocation

to

BUFFER.

ras_trace_defaultTracingLevel=1

will

write

exceptions

to

the

trace

log

as

well

as

to

the

ERROR

log.

–

It

is

best

to

trace

to

CTRACE.

If

you

are

tracing

to

sysprint

with

ras_trace_defaultTracingLevel=3,

you

may

experience

an

almost

100%

throughput

degradation.

If

you

are

tracing

to

CTRACE,

however,

you

may

only

experience

a

15%

degradation

in

throughput.

v

Set

the

ras_trace_BufferCount=4

and

ras_trace_BufferSize=128.

This

will

get

512KB

of

storage

for

the

trace

buffers

(the

minimum

allowed)

and

reduce

memory

requirements.

v

Make

sure

you

disable

JRAS

tracing.

To

do

this,

look

for

the

following

lines

in

the

trace.dat

file

pointed

to

by

the

JVM

properties

file:

com.ibm.ejs.*=all=disable

com.ibm.ws390.orb=all=disable

Ensure

that

both

lines

are

set

to

=disable

or

delete

the

two

lines

altogether.

Note:

If

ras_trace_outputLocation

is

set,

you

may

be

tracing

and

not

know

it.

Location

of

executable

programs

tips

for

z/OS

The

next

thing

to

review

in

the

configuration

is

where

your

program

code

is

located.

IBM

recommends

that

you

install

as

much

of

the

WebSphere

for

z/OS

code

in

LPA

as

is

reasonable,

and

the

remainder

in

the

linklist.

This

ensures

that

you

have

eliminated

any

unnecessary

steplibs

which

can

adversely

affect

performance.

If

you

must

use

STEPLIBs,

verify

that

any

STEPLIB

DDs

in

the

controller

and

servant

procs

do

not

point

to

any

unnecessary

libraries.

Refer

to

“UNIX

System

Services

(USS)

tuning

tips

for

z/OS”

on

page

72

for

USS

shared

file

system

tuning

considerations.

If

you

choose

to

not

put

most

of

the

runtime

in

LPA,

you

may

find

that

your

processor

storage

gets

a

bigger

workout

as

the

load

increases.

At

a

minimum,

WebSphere

for

z/OS

will

start

three

address

spaces,

so

that

any

code

that

is

not

shared

will

load

three

copies

rather

than

one.

As

the

load

increases,

many

more

servants

may

start

and

will

contribute

additional

load

on

processor

storage.

Review

the

PATH

statement

to

ensure

that

only

required

programs

are

in

the

PATH

and

that

the

order

of

the

PATH

places

frequently-referenced

programs

in

the

front.

Related

information

“UNIX

System

Services

(USS)

tuning

tips

for

z/OS”

on

page

72

Security

tuning

tips

for

z/OS

As

a

general

rule,

two

things

happen

when

you

increase

security:

the

cost

per

transaction

increases

and

throughput

decreases.

By

default,

WebSphere

for

z/OS

runs

with

security

off.

With

security

turned

off

there

is

virtually

no

overhead.

However,

we

recommend

that

you

run

with

security

enabled,

even

though

the

runtime

will

always

incur

a

small

price

to

collect

and

carry

the

security

credential

information

for

users

and

the

server.

v

When

a

SAF

(RACF

or

equivalent)

class

is

active,

the

number

of

profiles

in

a

class

will

affect

the

overall

performance

of

the

check.

Placing

these

profiles

in

a

(RACLISTed)

memory

table

will

improve

the

performance

of

the

access

checks.

Audit

controls

on

access

checks

also

affect

performance.

Usually,

you

audit

failures

and

not

successes.

Audit

events

are

logged

to

DASD

and

will

increase

the

overhead

of

the

access

check.

Since

all

the

security

authorization

checks

are

done

with

SAF

(RACF

or

equivalent),

you

can

choose

to

enable

and

disable

SAF

classes

to

control

security.

A

disabled

class

will

cost

a

negligible

amount

of

overhead.

v

Use

a

minimum

number

of

EJBROLEs

on

methods.

86

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

If

you

are

using

EJBROLEs,

specifying

more

roles

on

a

method

will

lead

to

more

access

checks

that

need

to

be

executed

and

a

slower

overall

method

dispatch.

If

you

are

not

using

EJBROLEs,

do

not

activate

the

class.

v

If

you

do

not

need

Java

2

security,

you

should

disable

it.

For

instructions

on

how

to

disable

Java

2

security,

refer

to

Configuring

Java

2

security

v

Use

the

lowest

level

of

authorization

consistent

with

your

security

needs.

You

have

several

options

when

dealing

with

authentication:

–

Local

authentication:

Local

authentication

is

the

fastest

type

because

it

is

highly

optimized.

–

UserID

and

password

authentication:

Authentication

that

utilizes

a

userID

and

password

has

a

high

first-call

cost

and

a

lower

cost

with

each

subsequent

call.

–

Kerberos

security

authentication:

We

have

not

adequately

characterized

the

cost

of

kerberos

security

yet.

–

SSL

security

authentication:

SSL

security

is

notorious

in

the

industry

for

its

performance

overhead.

Luckily,

there

is

a

lot

of

assists

available

from

hardware

to

make

this

reasonable

on

z/OS.

v

If

using

SSL,

select

the

lowest

level

of

encryption

consistent

with

your

security

requirements.

WebSphere

allows

you

to

select

which

cipher

suites

you

use.

The

cipher

suites

dictate

the

encryption

strength

of

the

connection.

The

higher

the

encryption

strength,

the

greater

the

impact

on

performance.

For

more

information

refer

to

Secure

Sockets

Layer

performance

tips

Related

tasks

Configuring

Java

2

security

Related

information

Session

Management

settings

Use

this

page

to

manage

HTTP

session

support.

This

support

includes

specifying

a

session

tracking

mechanism,

setting

maximum

in-memory

session

count,

controlling

overflow,

and

configuring

session

timeout.

Secure

Sockets

Layer

performance

tips

Servlet

and

EJB

integrated

runtime

tuning

tips

for

z/OS

If

you

are

running

with

an

HTTP

server

(DGW)

as

well

as

WebSphere

on

your

z/OS

system,

you

can

run

servlets

and

JSPs

under

the

HTTP

server

or

you

can

run

servlets

and

JSPs

under

WebSphere

in

an

environment

called

the

servlet/EJB

integrated

runtime.

Normally,

servlets

and

JSPs

are

run

under

the

HTTP

server

since

this

is

more

efficient.

However,

the

integrated

runtime

provides

a

more

powerful

environment

and

the

performance

impact

of

using

the

integrated

runtime

is

only

significant

if

servlets/JSPs

perform

only

trivial

functions.

If

you

are

running

just

a

servlet,

the

integrated

runtime

may

not

initially

show

an

improvement

in

performance.

However,

when

a

servlet

is

calling

on

an

EJB,

it

will

benefit

greatly

from

the

integrated

runtime.

Essentially,

the

integrated

runtime

will

convert

the

remote

method

calls

to

local

in-process

EJB

invocations

(which

are

much

faster).

The

Servlet/EJB

integrated

runtime

provides

functions

such

as

access

to

transactional

resource

managers

and

it

is

the

only

way

to

get

true

J2EE

compliance

with

WebSphere

for

z/OS.

Tuning

for

J2EE

applications

Steps

involved

in

tuning

the

J2EE

applications

performance

include:

v

Topology

planning

and

performance

v

J2EE

container

and

applications

v

J2EE

application

programming

tips

v

Tuning

for

SOAP

Chapter

2.

Tuning

performance

parameter

index

87

Topology

planning

and

performance

Topology

can

have

a

significant

effect

on

WebSphere

performance.

This

article

describes

some

of

the

topology

considerations

you

should

be

aware

of

when

configuring

and

installing

WebSphere

for

z/OS.

v

Single

server

or

multiple

servers?

WebSphere

for

z/OS

gives

you

the

ability

to

install

your

application

either

in

a

single

server

or

spread

it

across

multiple

servers.

There

are

many

reasons

for

partitioning

your

application.

However,

for

performance,

placing

your

application

all

in

the

same

server

will

always

provide

better

performance

than

partitioning

it.

If

you

do

choose

to

partition

your

application

across

servers,

you

will

get

better

performance

if

there

are

at

least

replica

servers

on

each

system

in

the

sysplex.

The

WebSphere

for

z/OS

runtime

will

try

to

keep

calls

local

to

the

system

if

it

can,

which

will,

for

example,

use

local

interprocess

calls

rather

than

sockets.

v

One

tran

or

multiple

trans?

You

also

have

a

choice

of

running

server

regions

with

an

isolation

policy

of

one

tran

per

server

region

or

multiple

trans

per

server

region.

From

a

performance

perspective,

running

more

threads

in

a

server

region

will

consume

less

memory

but

at

the

cost

of

thread

contention.

This

contention

is

application-dependent.

We

generally

recommend

the

use

of

multiple

trans

unless

you

run

into

contention

problems.

Specify

the

threads

setting

using

the

server_region_workload_profile.

The

variables

include:

–

ISOLATE

-

sets

the

value

to

1

thread.

–

CPUBOUND

–

IOBOUND

-

default

–

LONGWAIT

-

40

The

thread

value

increases

with

each

variable

to

the

maximum

number

available

with

the

LONGWAIT

setting

(40).

For

more

information

refer

to

ORB

services

advanced

settings

Note:

Please

see

the

″Servers″

section

in

the

WebSphere

Application

Server

for

z/OS

V5.0

InfoCenter,

access

to

which

can

be

obtained

through

the

WebSphere

forz/OS

library

Web

site

http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

for

more

information

on

ORB

services

advanced

settings.

v

Local

client

or

remote

client?

On

a

local

client,

the

client

and

the

optimized

communication

are

done

on

the

same

system.

This

has

some

additional

client

CPU

costs

but

less

communication

cost.

On

a

remote

client,

the

client

cost

is

replaced

by

the

additional

communication

overhead

of

sockets.

The

CPU

cost

on

either

system

is

almost

equivalent.

Latency

is

better

for

a

local

client

than

for

a

remote

client,

meaning

you

will

get

better

response

time

with

a

local

client.

v

One

copy

of

a

server

or

many

clones?

You

can

define

more

than

one

copy

of

a

server

on

a

system.

These

copies

are

called

clones.

We

have

found

slight

improvements

in

performance

when

running

with

a

couple

of

clones

as

opposed

to

just

one

(very

large

configuration).

While

there

is

some

benefit,

IBM

does

not

recommend,

at

this

time,

the

creation

of

replicated

control

regions

for

the

sole

purpose

of

improving

performance.

We

do,

however,

recommend

them

for

eliminating

a

single

point

of

failure

and

for

handling

rolling

upgrades

without

introducing

an

outage.

Related

information

ORB

services

advanced

settings

Use

this

page

to

support

ORB

service

advanced

settings.

This

support

includes

ORB

listener

keep

alive,

ORB

SSL

listener

keep

alive,

control

threads,

workload

profile.

J2EE

container

and

applications

In

WebSphere

for

z/OS,

there

are

several

types

of

EJBs

and

several

transaction

policies

supported.

Selection

of

each

type

has

performance

implications.

While

we

won’t

be

able

to

give

an

exhaustive

treatise

on

this

yet,

we

will

give

some

basic

rules.

88

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Enterprise

bean

development

performance

ramifications:

There

are

three

basic

bean

types

in

WebSphere

for

z/OS:

session,

entity,

and

message

driven.

v

Session

beans

Within

a

session

bean

in

WebSphere

for

z/OS,

there

are

stateless

and

stateful

session

beans.

Stateless

session

bean

The

lowest

overhead

type

of

bean.

They

are

cheap

to

create,

do

very

little

automatically

and,

if

not

cleaned

up

by

the

application,

will

go

away

when

the

server

terminates.

Stateful

session

bean

The

default

for

a

stateful

session

bean

is

to

not

harden

its

state

to

a

backing

store

except

in

the

case

of

a

controlled

server

shut

down.

In

this

configuration,

a

stateful

bean

is

slightly

more

overhead

than

a

stateless

bean.

The

configuration

overhead

of

hardening

the

stateful

bean

state

at

the

end

of

each

transaction

has

yet

to

be

quantified.

v

Entity

beans

In

WebSphere

Application

Server

for

z/OS

V5,

entity

beans

come

in

two

flavors:

bean

managed

persistence

(BMP)

and

container

managed

persistence

(CMP).

Since

managing

persistence

is

the

responsibility

of

the

bean

in

BMP,

it

really

depends

on

the

way

the

load

and

store

is

implemented

whether

a

BMP

is

faster

than

a

CMP.

CMP

beans

manage

persistence.

The

CMP

bean

implementation

is

highly

optimized

and

will

often

produce

better

performance

than

a

typical

BMP

bean.

Additional

improvements

are

expected

which

will

add

even

more

flexibility

to

CMP

beans.

v

Message-driven

beans

(MDBs)

v

Marking

a

bean

method

with

the

readonly

extended

deployment

descriptor

will

cause

the

runtime

to

avoid

writing

the

state

of

the

bean

back

out.

Specify

this

value

on

a

method

when

you

know

that

the

method

does

not

update

any

attributes

of

the

bean.

Related

information

Application

clients

Message-driven

beans

-

an

overview

Transaction

policy

tuning

tips:

There

are

seven

transaction

policies

in

WebSphere

for

z/OS:

v

TRANSACTION_REQUIRES

v

TRANSACTION_REQUIRES_NEW

v

TRANSACTION_SUPPORTS

v

TRANSACTION_NOT_SUPPORTED

v

TRANSACTION_BEAN_MANAGED

v

TRANSACTION_NEVER

v

TRANSACTION_MANDATORY

These

transaction

policies

control

how

EJBs

are

associated

with

global

or

local

transactions.

Generally,

local

transactions

are

the

fastest.

J2EE

application

programming

tips

These

programming

tips

relate

to

the

following

topics:

v

JavaServer

pages

(JSPs)

–

Disable

session

state

of

JSPs.

<%@

page

language=″java″

contentType=″text/html″

session=″false″

%>

–

By

default,

JSPs

will

save

session

state

<%@

page

language=″java″

contentType=″text/html″

%>

–

Replace

setProperties()

calls

in

your

JSPs

with

direct

calls

to

the

appropriate

setxxx

methods.

v

Java

Database

Connectivity

(JDBC)

–

Make

sure

you

are

at

the

current

JDBC

level.

–

Use

prepared

statements

to

allow

dynamic

statement

cache

of

DB2

on

z/OS.

–

Don’t

include

literals

in

the

prepared

statements,

use

a

parameter

marker

″?″

to

allow

dynamic

statement

cache

of

DB2

on

z/OS.

Chapter

2.

Tuning

performance

parameter

index

89

–

Use

the

right

getxxx

method

by

each

data

type

of

DB2.

–

Turn

auto

commit

off

when

just

read-only

operations

are

performed.

–

Use

explicit

connection

context

objects.

–

When

coding

an

iterator,

you

have

a

choice

of

named

or

positioned.

For

performance,

we

recommend

positioned

iterators.

–

Close

prepared

statements

before

reusing

the

statement

handle

to

prepare

a

different

SQL

statement

within

the

same

connection.

–

As

a

bean

developer,

you

have

the

choice

of

JDBC

or

SQLJ.

JDBC

makes

use

of

dynamic

SQL

whereas

SQLJ

generally

is

static

and

uses

pre-prepared

plans.

SQLJ

requires

an

extra

step

to

create

and

bind

the

plan

whereas

JDBC

does

not.

SQLJ,

as

a

general

rule,

is

faster

than

JDBC.

–

With

JDBC

and

SQLJ,

you

are

better

off

writing

specific

calls

that

retrieve

just

what

you

want

rather

than

generic

calls

that

retrieve

the

entire

row.

There

is

a

high

per-field

cost.

Related

tasks

Developing

J2EE

application

client

code

Tuning

for

SOAP

The

Simple

Object

Access

Protocol

(SOAP)

is

a

lightweight

protocol

which

provides

a

mechanism

to

use

XML

for

exchanging

structured

and

typed

information

between

peers

in

a

decentralized,

distributed

environment.

v

Specify

noLocalCopies

in

servant.jvm.options

(-Dcom.ibm.CORBA.iiop.noLocalCopies=1).

This

will

allow

passing

of

parameters

by

reference

instead

of

by

value.

This

only

applies

if

you

are

exposing

an

EJB

as

a

web

service.

Refer

to

Object

Request

Broker

service

settings

in

administrative

console.

v

Make

certain

that

all

traces

are

disabled

unless

you

are

actively

debugging

a

problem.

v

When

defining

transaction

policies

for

your

application,

specify

TX_NOT_SUPPORTED

and

select

local

transactions.

Local

transactions

perform

better

than

global

transactions

because

WebSphere

is

not

required

to

coordinate

commit

scope

over

multiple

resource

managers.

v

Avoid

passing

empty

attributes

or

empty

elements

in

SOAP

messages.

Do

not

include

extraneous

and

unneeded

data

in

SOAP

messages.

If

you

can

use

document/literal

style

web

services

invocation

to

batch

requests

into

a

single

SOAP

message,

this

is

preferable

to

sending

multiple

individual

SOAP

messages.

SOAP

applications

will

perform

better

with

smaller

SOAP

messages

containing

fewer

XML

elements

and

especially

fewer

XML

attributes.

The

contents

of

SOAP

messages

must

be

serialized

and

parsed.

These

are

expensive

operations

and

should

be

minimized.

In

other

words,

it

is

preferable

to

send

1,

10KB

message

than

10,

1KB

messages.

However,

very

large

messages

(for

example,

over

200KB)

may

impact

system

resources

like

memory.

v

You

may

need

to

increase

the

default

Java

heap

size.

SOAP

and

XML

(DOM)

are

storage-intensive

and

small

heap

sizes

may

result

in

excessive

Java

garbage

collection.

We

found

a

heapsize

of

256M

(the

default)

was

optimal

for

most

test

cases

in

the

laboratory.

You

can

monitor

garbage

collection

using

the

verbose:gc

Java

directive.

v

Insure

TCP/IP

send/receive

buffers

are

large

enough

to

hold

the

bulk

of

the

xml

messages

that

will

be

sent.

v

Consider

using

a

Document

Model

rather

than

the

RPC

model.

It

provides

complete

control

over

the

format

of

the

XML

but

requires

additional

programming

effort.

v

When

using

RPC-style

messages,

try

to

send

strings

if

possible.

v

Consider

writing

your

own

serializers

and

deserializers,

avoiding

reflection.

v

Consider

writing

a

servlet

to

use

a

SAX

parser

rather

than

the

SOAP

runtime

if

you

require

improved

performance.

Alternately,

you

can

download

and

install

Apache

AXIS,

or

use

the

Web

Services

Technology

Preview.

SOAP

V

2.3

in

WebSphere

V

5.0.1:

One-

to

three-sentence

description

that

will

appear

as

the

first

paragraph

of

the

finished

article.

90

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

SOAP

2.3

has

a

number

of

enhancements

over

SOAP

2.2.

They

are

described

in

full

in

http://ws.apache.org/soap/releases.html#v2.2.

Some

of

the

key

enhancements

in

WebSphere

V

5.0

are

as

follows:

v

Support

for

document-oriented

messaging

v

Web

Services

Definition

Language

(WSDL)

Version

1.1

v

Universal

Description,

Discovery,

and

Integration,

UDDI4J

Version

2.0,

logging

v

Web

Services

Invocation

Framework

(WSIF)

v

Web

Services

Caching

v

Some

minor

SOAP

performance

enhancements

v

Elimination

of

the

Nagle

Algorithm

Web

Services

is

a

more

expensive

protocol

than

HTTP

or

socket

communication.

It

is

best

used

where

its

benefits

can

be

exploited.

For

example,

for

integration

of

decentralized

distributed

environment,

where

the

clients

have

little

knowledge

of

the

application

implementation.

We

do

not

recommend

that

programs

running

in

the

same

JVM

use

Web

Services

as

a

means

of

communication

or

invocation.

For

obvious

reasons,

calling

a

method

using

SOAP

generally

has

longer

response

time

than

other

forms

of

invocation.

XML

parsing

serialization/deserialization

and

network

latency

are

all

inhibitors

to

Web

Services

performance.

There

is

no

support

for

locally

optimized

invocation

such

that

network

protocols

can

be

avoided

when

client

and

server

are

collocated.

We

have

observed,

one

of

the

most

expensive

operations

in

the

processing

of

a

SOAP

message,

whether

by

SOAP,

AXIS

or

the

Tech

preview,

is

the

deserialization

of

the

inbound

SOAP

message.

This

step

converts

the

message

from

an

inbound

string

in

wire

format

to

an

XML

document.

Therefore,

if

either

the

client

or

the

server

receives

a

large

SOAP

message,

that

entity

normally

has

the

highest

CPU

cost.

We

have

found

the

CPU

time

to

be

similar

for

z/OS

acting

as

either

a

SOAP

server

or

a

SOAP

client

as

long

as

the

inbound

and

outbound

message

sizes

are

comparable.

There

are

many

forms

of

an

XML

message

that

are

equivalent,

for

example,

messages

with

additional

white

space

are

equivalent

to

messages

with

fewer

blanks

or

spaces.

Therefore,

it

is

advisable

to

create

SOAP

messages

without

formatted

nesting

(pretty

printing),

which

adds

additional

spaces.

The

XML

parser

must

examine

all

characters,

including

blanks.

Therefore,

XML

documents

with

additional

blank

characters

will

take

longer

to

parse.

Document-oriented

messaging,

unlike

RPC

messaging,

is

not

required

to

be

synchronous.

The

UDDI

Registry

is

a

special

purpose

data

base

wherein,

establishments

can

register

the

WSDL

Service

Interface

Definition

and

the

Service

Implementation

Definition

for

Web

Services.

WSDL

describes

the

interfaces

to

the

web

service.

This

essentially

makes

them

available

to

other

establishments

or

business

partners.

WebSphere

V

5.0

for

z/OS

also

supports

a

Private

UDDI

Registry

for

private

access

to

Web

Services.

Tuning

hardware

capacity

and

settings

These

parameters

include

considerations

for

selecting

and

configuring

the

hardware

on

which

the

application

servers

can

run.

v

Optimize

disk

speed

–

Description:

Disk

speed

and

configuration

can

have

a

dramatic

effect

on

the

performance

of

application

servers

that

run

applications

that

are

heavily

dependent

on

database

support,

that

use

extensive

messaging,

or

are

processing

workflow.

Using

disk

I/O

subsystems

that

are

optimized

for

performance,

for

example

RAID

array,

are

essential

components

for

optimum

application

server

performance

in

these

environments.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

Spread

the

disk

processing

across

as

many

disks

as

possible

to

avoid

contention

issues

that

typically

occur

with

1

or

2

disk

systems.

Placing

database

tables

on

disks

that

are

separate

from

the

disks

used

for

the

database

log

files

can

reduce

disk

contention

and

improve

throughput.

Chapter

2.

Tuning

performance

parameter

index

91

http://ws.apache.org/soap/releases.html#v2.2

v

Increase

processor

speed

and

processor

cache

–

Description:

In

the

absence

of

other

bottlenecks,

increasing

the

processor

speed

often

helps

throughput

and

response

times.

A

processor

with

a

larger

L2

or

L3

cache

can

yield

higher

throughput

even

if

the

processor

speed

is

the

same

as

a

CPU

with

a

smaller

L2

or

L3

cache.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

None

v

Increase

system

memory

–

Description:

Increase

memory

to

prevent

the

system

from

paging

memory

to

disk,

improving

performance.

Allow

a

minimum

of

256MB

of

memory

for

each

processor.

Adjust

the

available

memory

when

the

system

is

paging

and

processor

utilization

is

low

because

of

the

paging.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

512MB

per

application

server

v

Run

network

cards

and

network

switches

at

full

duplex.

–

Description:

Running

at

half

duplex

decreases

performance.

Verify

that

the

network

speed

of

adapters,

cables,

switches,

and

other

devices

can

accommodate

the

required

throughput.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

Make

sure

that

the

highest

speed

is

in

use

on

10/100/1000

Ethernet

networks.

Tuning

applications

Application

assembly

tools

are

used

to

build

J2EE

components

and

modules

into

J2EE

applications.

Generally,

assembling

consists

of

defining

application

components

and

their

attributes

including

enterprise

beans,

servlets

and

resource

references.

Many

of

these

application

configuration

settings

and

attributes

play

an

important

role

in

the

run-time

performance

of

the

deployed

application.

5.0.1

5.0.2

Use

the

following

information

as

a

check

list

of

important

parameters

and

advice

for

finding

optimal

settings:

5.0.1

5.0.2

v

EJB

modules

–

Entity

bean

Bean

Cache

-

Activate

at

and

Bean

Cache

-

Load

at

settings

–

Method

extensions

Isolation

level

and

Access

intent

settings

–

Container

transactions

assembly

settings

v

Web

modules

–

Web

modules

assembly

settings

-

Distributable

-

Reload

interval

-

Reload

enabled

v

Web

components

–

Load

on

startup

Related

tasks

5.0.2 +

Assembling

applications

with

the

Assembly

Toolkit

Assemble

enterprise

application

modules

(EAR

files)

from

new

or

existing

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.2

or

1.3

modules,

including

these

archives:

Web

application

archives

(WAR),

resource

adapter

archives

(RAR),

enterprise

bean

(EJB)

JAR

files,

and

application

client

archives

(JAR).

This

packaging

and

configuration

of

code

artifacts

into

application

modules

or

stand-alone

Web

modules

is

necessary

for

deploying

the

applications

onto

the

application

server.

Chapter

2,

“Tuning

performance

parameter

index,”

on

page

63

92

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Mail

Station

P300

522

South

Road

Poughkeepsie,

NY

12601-5400

USA

Attention:

Information

Requests

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

MQSeries

v

MVS

v

OS/390

©

Copyright

IBM

Corp.

2002,

2003

93

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

The

term

CORBA

used

throughout

this

book

refers

to

Common

Object

Request

Broker

Architecture

standards

promulgated

by

the

Object

Management

Group,

Inc.

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

The

Duke

logo

is

a

trademark

or

registered

trademark

of

Sun

Microsystems,

Inc.

in

the

United

States

and

other

countries.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product

and

service

names

may

be

trademarks

or

service

marks

of

others.

94

IBM

WebSphere

Application

Server

for

z/OS

V5.0.2:

Performance

Tuning

and

Monitoring

	Contents
	How to send your comments
	Summary of Changes
	Introduction to this book
	Task overviews

	Chapter 1. Monitoring performance
	Performance Monitoring Infrastructure
	Performance data organization
	BeanModule data counters
	Data counter definitions

	JDBC connection pool data counters
	Data counter definitions

	J2C connection pool data counters
	Data counter definitions

	Session data counters
	Data counter definitions

	Transaction data counters
	Data counter definitions

	Web application data counters
	Data counter definitions

	Dynamic cache data counters
	Data counter definitions

	Web services data counters
	Data counter definitions

	Performance data classification
	Enabling performance monitoring services in the application server through the administrative console
	Performance monitoring service settings
	Startup
	Initial specification level
	Specifications

	Enabling performance monitoring services in the NodeAgent through the administrative console
	Enabling performance monitoring services using the command line
	Monitoring and analyzing performance data
	Monitoring performance with Tivoli Performance Viewer (formerly Resource Analyzer)
	Tivoli Performance Viewer features
	Starting the Tivoli Performance Viewer
	Setting performance monitoring levels
	Viewing summary reports
	Changing the refresh rate of data retrieval
	Changing the display buffer size
	Viewing and modifying performance chart data
	Scaling the performance data chart display
	Refreshing data
	Clearing values from tables and charts
	Storing data to a log file
	Replaying a performance data log file
	Resetting counters to zero

	Developing your own monitoring applications
	Performance Monitoring Infrastructure client interface
	Developing your own monitoring application using Performance Monitoring Infrastructure client
	Developing your own monitoring applications with Performance Monitoring Infrastructure servlet
	Developing your own monitoring application with the Java Management Extension interface
	Developing Performance Monitoring Infrastructure interfaces
	Compiling your monitoring applications
	Running your new monitoring applications

	Third-party performance monitoring and management solutions
	RMF Workload Activity reports and RMF Monitor III
	Steps for capturing a workload activity report

	WLM Delay Monitoring
	RMF report examples

	Performance: Resources for learning

	Chapter 2. Tuning performance parameter index
	Recommended hardware configuration
	Tuning index for WebSphere Application Server for z/OS
	Tuning the z/OS operating system
	Tuning storage
	z/OS or OS/390 operating system tuning tips
	Resource Recovery Service (RRS) tuning tips for z/OS
	LE tuning tips for z/OS
	UNIX System Services (USS) tuning tips for z/OS
	Workload management (WLM) tuning tips for z/OS

	Tuning for subsystems
	DB2 tuning tips for z/OS
	RACF tuning tips for z/OS
	TCP/IP tuning tips for z/OS
	MQ/JMS tuning tips for z/OS
	GRS tuning tips for z/OS
	Java virtual machine (JVM) tuning tips for z/OS
	CICS tuning tips for z/OS

	Tuning the WebSphere Application Server for z/OS runtime
	Review the WebSphere for z/OS configuration
	Internal tracing tips for WebSphere for z/OS
	Location of executable programs tips for z/OS
	Security tuning tips for z/OS
	Servlet and EJB integrated runtime tuning tips for z/OS

	Tuning for J2EE applications
	Topology planning and performance
	J2EE container and applications
	J2EE application programming tips
	Tuning for SOAP

	Tuning hardware capacity and settings
	Tuning applications

	Notices
	Trademarks and service marks

