
WebSphere Application Server for z/OS V5.0.1:

Troubleshooting

GA22-7964-00

���

Note
Before using this information, be sure to read the general information under “Notices” on page 171.

Compilation date: September 18, 2003

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to send your comments v

Chapter 1. Troubleshooting or problem
determination 1

Chapter 2. Diagnosing and fixing
problems 3
Acquiring skills for problem determination 3
Working with diagnostic tools and controls 4

Best practices for maintaining the run-time
environment 5
Best practices for using system controls 5
Collecting job-related information with Systems
Management Facility (SMF) 6
Configuring WebSphere Application Server for
z/OS variables 35
Debugging WebSphere Application Server
applications 36

Troubleshooting by task: what are you trying to do? 39
Troubleshooting installation problems 39
Troubleshooting testing and first time run
problems 41
Resolving timeout conditions 76
Debugging client exceptions 84
Debugging applications that hang 85
Debugging problems related to Java Message
Service (JMS) support 86

Troubleshooting by component: what is not
working? 87

Installation component troubleshooting tips . . 87
Administration and administrative console
troubleshooting tips 87
Application Assembly Tool troubleshooting tips 89
Web Container troubleshooting tips 89
JDBC and data source troubleshooting tips . . . 90
HTTP plug-in component troubleshooting tips . . 90
HTTP session manager troubleshooting tips . . 92
Naming services component troubleshooting tips 93
Messaging (JMS) component troubleshooting tips 93
Universal Discovery, Description, and
Integration, Web Service, and SOAP component
troubleshooting tips 94
Enterprise bean and EJB container
troubleshooting tips 94
Security components troubleshooting tips . . . 94
JSP engine troubleshooting tips 105
Workload Management component
troubleshooting tips 106

Setting up component trace (CTRACE) 108
Steps for preparing CTRACE controls and
resources 109
Steps for starting CTRACE as part of WebSphere
Application Server for z/OS customization . . 111

Steps for starting CTRACE while WebSphere
Application Server for z/OS servers are active . 111
Using CTRACE to collect trace data for Java
server applications 112

Setting up the error log 113
Using the z/OS modify command 113
Viewing diagnostic information 114

Viewing CEEDUMPs in the job log 114
Viewing SVC dumps 115
Viewing CTRACE and JRas data through IPCS 115
Viewing error log contents through the Log
Browse Utility (BBORBLOG) 120
Using the z/OS display command 123
Converting Java minor codes 123

Using the Error Dump and Cleanup interface . . 123
Adding logging and tracing to your application 125

Programming with the JRas framework . . . 125
Logging messages and trace data for Java server
applications 146

Automation and recovery scenarios and guidelines 147
APPC automation and recovery scenarios . . . 148
WLM automation and recovery scenarios . . . 149
RACF automation and recovery scenarios . . . 149
RRS automation and recovery scenarios . . . 150
UNIX System Services automation and recovery
scenarios 151
TCP/IP automation and recovery scenarios . . 151
DB2 automation and recovery scenarios . . . 152
CICS automation and recovery scenarios . . . 153
IMS automation and recovery scenarios . . . 153
LDAP automation and recovery scenarios . . . 154
WebSphere Application Server for z/OS
(Daemon) automation and recovery scenarios . 155
Web server (servlet) automation and recovery
scenarios 156

Types of configuration variables 157
Setting output destinations and characteristics 157
Setting trace controls 158
Setting dump controls 159
Controlling behavior through timeout values 160

Preparing for a call to IBM service 163
Using the IPCS VERBEXIT subcommand to
display diagnostic data 164
Setting trace controls for IBM service 165
Setting dump controls for IBM service 167

Diagnosing and fixing problems: Resources for
learning 168

Notices 171
Trademarks and service marks 171

Trademarks and service marks 173

© Copyright IBM Corp. 2003 iii

iv WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information.
v To send comments on articles in the WebSphere Application Server Information

Center
1. Display the article in your Web browser and scroll to the end of the article.
2. Click on the Feedback link at the bottom of the article, and a separate

window containing an e-mail form appears.
3. Fill out the e-mail form as instructed, and click on Submit feedback .

v To send comments on PDF books, you can e-mail your comments to:
wasdoc@us.ibm.com or fax them to 919-254-0206.
 Be sure to include the document name and number, the WebSphere Application
Server version you are using, and, if applicable, the specific page, table, or figure
number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 2003 v

vi WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Chapter 1. Troubleshooting or problem determination

As an activity, troubleshooting or problem determination encompasses a wide
range of tasks that might need to be performed at any phase in product usage. In
addition to built-in preventative measures, the product provides a variety of tools
to make problem determination easier.

 The troubleshooting section of the documentation helps you understand why your
enterprise application, application server, or product installation is not working,
and helps you resolve the problem. There are several ways to find information for
diagnosing and resolving problems:
v For tips on investigating common problems, organized by task, see

Troubleshooting by task: what are you trying to do?.
v To look up the explanation and recommended response for a particular

WebSphere Application Server error message, see Message referencethe message
reference.

v Difficult problems might require the use of product tracing, which exposes the
low-level flow of control and interactions among product components. For help
understanding and using product traces, see Working with trace.

v For help adding log and trace capability to your own application, see
Programming with the JRas framework.

v For help using product utilities to diagnose the problem, see Working with
troubleshooting tools.

v To find out how to look up documented problems, common mistakes, product
prerequisites, and other problem-determination information on the IBM
WebSphere Application Server public web site, or to obtain technical support,
see Obtaining help from IBM.

© Copyright IBM Corp. 2003 1

2 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Chapter 2. Diagnosing and fixing problems

The purpose of this section is to aid you in understanding why your enterprise
application, application server, or WebSphere Application Server is not working
and to help you resolve the problem. Unlike performance tuning which focuses on
solving problems associated with slow processes and un-optimized performance,
problem determination focuses on finding solutions to functional problems.

The kind of problem you are encountering, and how much you already know
about it, determine what steps to take to resolve it:
1. For tips on investigating common problems organized according to tasks within

WebSphere Application server, see Troubleshooting by task.
2. For tips on how to investigate common kinds of problems based on the

component that is causing the problem, see Troubleshooting by component.
3. For help in using WebSphere Application Server utilities to help you diagnose

the problem, see Working with diagnostic tools and controls.
4. For help in viewing diagnostic information like dumps, error logs and CTRACE

information, see Viewing diagnostic information

Acquiring skills for problem determination
In a large-scale enterprise system such as the WebSphere Application Server for
z/OS environment, diagnosis might require a variety of skills to progress from a
symptom to fixing the underlying cause of that symptom. Because WebSphere
Application Server for z/OS exploits many of the qualities and services that are
unique to the z/OS operating system, diagnosing system-related problems might
require skills in the following areas:
v Parallel sysplex
v TCP/IP
v Security Server (RACF) or the equivalent
v Database systems such as DB2 Universal Database for z/OS and OS/390
v UNIX Systems Services

You can find information for many of these topics in the publications available
through the z/OS library Web site.

Similarly, diagnosing application-related problems might require a variety of skills
because of the variety of application components that WebSphere Application
Server for z/OS supports. Programmers who diagnose application problems in the
WebSphere Application Server for z/OS environment need some familiarity with
the following:
v The roles defined in the Sun Microsystems Java 2 Enterprise Edition

Specification V1.3.
v The programming models and specifications for application components

(Enterprise beans, Web applications, and client programs) supported in the J2EE
1.3 environment.

v The process of assembling, deploying, installing, and running server
applications and clients in the WebSphere Application Server for z/OS
environment.

v Various tools such as the WebSphere Application Server for z/OS error log, and
the job logs for programs running on z/OS.

© Copyright IBM Corp. 2003 3

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Working with diagnostic tools and controls
The following list summarizes the z/OS tools you will use to access and work
with diagnostic information:
v z/OS console

 The console displays configuration errors that cause the termination of the
WebSphere Application Server for z/OS address spaces. Whatever goes to the
console also goes to SYSLOG.

v System log (SYSLOG)

 SYSLOG is the repository for all messages that have appeared on the operator
console. It also contains warning and informational messages that might be
helpful after a failure has occurred.

v Job log

 The job log contains errors and warnings (non-termination) that are related to
configuration. Anything that goes to the console and SYSLOG automatically
goes to the job log.

v System output (SYSOUT)

 SYSOUT is a batch log that usually contains diagnostic data from the Java
Virtual Machine (JVM) that runs in the servant (region). Any messages written to
CError will end up in SYSOUT. In addition, SYSOUT might contain error
messages that usually appear in the log stream, but were redirected to SYSOUT
becasue the log stream was not available.

v Error log

 The error log contains messages issued through JRas support, if any. In addition,
the error log usually contains messages intended for IBM use only; these are
messages that support actions, problems, or issues that are usually externalized
through additional messages in other sources. When you work with IBM service,
you might be asked to supply the error log so that service personnel can use
these support messages to diagnose the problem.

v SYSPRINT

 SYSPRINT contains component trace (CTRACE) output for clients, and for
servants when WebSphere Application Server for z/OS is configured to use
SYSPRINT rather than CTRACE buffers and data sets.

v Component trace (CTRACE) data set

 CTRACE data sets contain diagnostic trace entries for various processes,
depending on the trace options configured for WebSphere Application Server for
z/OS.

v Logrec

 When an error occurs, the system records information about the error in the
logrec data set or the logrec log stream. The information provides you with a
history of all hardware failures, selected software errors, and selected system
conditions.

To find additional information about these tools, and about the process of
diagnosing problems on z/OS, use the z/OS Web Library to access the following
books:
v z/OS MVS Diagnosis: Procedures, GA22-7587 helps you diagnose problems in the

MVS operating system, its subsystems, its components, and in applications
running under the system.

v z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 provides detailed
information about tools and service aids that can help you diagnose problems.
This book contains a guide on how to select the appropriate tool or service aid
for your purposes, and also provides an overview of all the tools and service
aids available.

4 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/

Best practices for maintaining the run-time environment
Use the following guidelines to make sure that WebSphere Application Server for
z/OS is customized and maintained correctly, to support your installation’s
application workload. Checking these basic software and hardware requirements
can help you avoid problems with the run-time environment.
v Check that you have the necessary prerequisite software up and running.

Check that they have the proper authorizations and that the definitions are
correct.

v Check for messages that signal potential problems. Look for warning and
error messages in the following sources:
– SYSLOG from other z/OS subsystems and products, such as TCP/IP

(especially the DNS, if in use), RACF, and so on
– WebSphere Application Server for z/OS error log
– SYSPRINT of the WebSphere Application Server for z/OS error log
– Component trace (CTRACE) output for the server

v Ensure that z/OS has enough DASD space for SVC dumps. You might have to
adjust the amount of space, because it depends on the size of your applications,
on the configured Java virtual machine (JVM) heap size, and on the number of
servant regions that might be included in one dump, and so on. For an SVC
dump of one controller and one servant, you can start with a minimum of 512,
but might have to increase the MAXSPACE to 1024 or higher, given the factors
listed above.

v Check your general environment. Does your system have enough memory?
Insufficient memory problems can show up as AUX shortages, abends, or
exceptions from the WebSphere Application Server for z/OS run-time.
Sometimes the heap size for Language Environment (LE) and for the Java virtual
machine (JVM) needs to be increased.

v Make sure all prerequisite fixes have been installed; a quick check for a fix
can save hours of debugging.
 For the most current information on fixes and service updates, see:
– The Preventive Service Planning (PSP) buckets for both WebSphere

Application Server for z/OS and JAVA subsets of the WebSphere Application
Server for z/OS Upgrade. To obtain a copy of the most current versions of
these PSP buckets, you can either contact the IBM Support Center, use S/390
SoftwareXcel or link to IBMLink.

– The Support Web page of the WebSphere Application Server for z/OS Web
site, which contains a table of the latest authorized program analysis reports
(APARs).

 With the latest service information, check the following:
– Ensure that all prerequisite PTFs (fixes) have been applied to the system.
– Verify that all PTFs were actually present in the executables that were used

at the time of error. Often, SMP can indicate that a fix is present and installed
on the system when, in reality, the executables that were used at the time of
error did not contain the fix.

Best practices for using system controls
v You have the option of using a z/OS system logger log stream as the

WebSphere Application Server for z/OS error log. The WebSphere variable
 ras_log_logstreamName

identifies which log stream you want to use for the error log; it has no default
setting. If you do not use a log stream, however, messages that usually appear in
the error log are directed to server’s job log.

Chapter 2. Diagnosing and fixing problems 5

http://www.ibmlink.ibm.com/
http://www.ibm.com/software/webservers/appserv/zos_os390/support/

v You have the option of directing trace output to SYSPRINT or buffers. The
WebSphere variable
 ras_trace_outputLocation

controls the location of trace output; its default values are SYSPRINT for client
applications, and buffers to all other processes. Although you can change the
default for other processes from buffers to SYSPRINT, performance is better
when you use buffers.

v You can use the Resource Measurement Facility (RMF) to view status
information that might indicate potential problems. WebSphere Application
Server for z/OS uses Workload Manager (WLM) services to report transaction
begin-to-end response times and execution delay times, which might indicate
that changes are required for timeout values or tuning controls.

 Related tasks

 “Setting up the error log” on page 113
 Related reference

 Workload management (WLM)
Workload management optimizes the distribution of incoming work requests to
the application servers, enterprise beans, servlets, and other objects that can
most effectively process the requests. Workload management also provides
failover when servers are not available, improving application availability.

Collecting job-related information with Systems Management
Facility (SMF)

This article gives an overview of how to enable and use the System Management
Facilities (SMF) to collect and record system and job-related information.

System Management Facilities (SMF) can be enabled to collect and record system
and job-related information on the WebSphere for z/OS system. This information
can be used to bill users, report system reliability, analyze your configuration,
schedule work, identify system resource usage, and perform other
performance-related tasks that your organization may require.

You can enable SMF recording for:
v Capacity planning, to determine:

– How many transactions have run?
– What is the average and maximum completion time for methods running on

each server?
– How many clients are attached to each server instance? Of these clients, how

many are active?
v Application profiling:

– To show an application broken down into its component parts.
– To provide timing information on the application’s component parts.

v Error reporting:
– To detect and record soft failures (those that are generated through an

exception or those that are performance-related).
– To use this error information to trigger an event that will cause an action to

occur once a threshold has been reached.

6 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

SMF record types
This article describes the SMF record types.

Two types of SMF records can be produced: activity records and interval records.
v Activity records are gathered as each activity within a server is completed. An

activity is a logical unit of business function. It can be a server or user-initiated
transaction.

v Interval records consist of data gathered at installation-specified intervals and
provide capacity planning and reliability information.

Six records can be produced:
v the Server Activity record
v the Server Interval record
v the J2EE Container Activity Record
v the J2EE Container Interval Record
v the WebContainer Activity record
v the WebContainer Interval record

Server activity record:

This file describes the server activity record

 The server activity SMF record is used to record activity that is running inside a
WebSphere Application Server for z/OS. This record can be used to perform basic
charge-back accounting and to profile your applications to determine, in detail,
what is happening inside the WebSphere Application Server transaction server.

A single record is created for each activity that is run inside a server or server
instance. If the activity runs in multiple servers, then a record is written for each
server.

You can activate this record through the administrative console by setting
server_SMF_server_activity_enabled=1.
 Related reference

 “Server interval record”
 “J2EE container activity record” on page 8
 “J2EE container interval record” on page 8
 “WebContainer activity record” on page 9
 “WebContainer interval record” on page 9

Server interval record:

This file describes the Server interval record

 The purpose of the server interval SMF record is to record activity that is running
inside a WebSphere Application Server for z/OS. This record is produced at
regular intervals and is an aggregate of the work that ran inside the server instance
during the interval.

A single record is created for each server instance that has interval recording active
during the interval. If a server has multiple server instances, then a record for each
server instance is written and the records must be merged after processing to get a
complete view of the work that ran inside the server.

Chapter 2. Diagnosing and fixing problems 7

You can activate this record through the administrative console by setting
server_SMF_server_interval_enabled=1. You can specify an interval through the
administrative console by setting server_SMF_interval_length=n, where n is the
desired number of seconds.
 Related reference

 “Server activity record” on page 7
 “J2EE container activity record”
 “J2EE container interval record”
 “WebContainer activity record” on page 9
 “WebContainer interval record” on page 9

J2EE container activity record:

This file describes the J2EE container activity record

 The purpose of the J2EE container activity SMF record is to record activity within a
J2EE container that is located inside the WebSphere Application Server transaction
server.

This record can be used to perform basic charge-back accounting, application
profiling, problem determination, and capacity planning. A single record is created
for each activity that is run within a J2EE container located inside a WebSphere
Application Server transaction server.

You can activate this record through the administrative console by setting
server_SMF_container_activity_enabled=1.
 Related reference

 “Server activity record” on page 7
 “Server interval record” on page 7
 “J2EE container interval record”
 “WebContainer activity record” on page 9
 “WebContainer interval record” on page 9

J2EE container interval record:

This file describes the J2EE container interval record

 The purpose of the J2EE container interval SMF record is to record activity within
a J2EE container that is located inside the WebSphere Application Server
transaction server.

This record is produced at regular intervals and is an aggregate of the activities
running inside a J2EE container during the interval. This record can be used to
perform application profiling, problem determination, and capacity planning.

A single record is created for each active J2EE container located in a WebSphere
Application Server transaction server within the interval being recorded. If there is
more than one server instance associated with a server, a record for the container
will exist for each server instance. To get a common view of the work running in
the J2EE container during the interval, you must merge the records after
processing.

8 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

You can specify an interval through the WebSphere Application Server
administrative console by setting server_SMF_interval_length=n, where n is the
desired number of seconds.
 Related reference

 “Server activity record” on page 7
 “Server interval record” on page 7
 “J2EE container activity record” on page 8
 “WebContainer activity record”
 “WebContainer interval record”

WebContainer activity record:

This file describes the WebContainer activity record

 The purpose of the WebContainer activity SMF record is to record activity within a
WebContainer running inside a WebSphere Application Server for z/OS transaction
server.

The Web container is deployed within an EJB and runs within the EJB container.
The WebContainer acts as a Web server handling HTTP sessions and servlets. The
EJB container is not aware of the work the WebContainer does. Instead, the EJB
container only records that the EJB has been dispatched. Meanwhile, the
WebContainer gathers the detailed information, such as HTTP sessions, servlets,
and their respective performance data. A single WebContainer Activity record is
created for each activity that is run within a Web container.

WebContainer SMF recording is activated and deactivated along with the
activation and deactivation of SMF recording for the J2EE container.
 Related reference

 “Server activity record” on page 7
 “Server interval record” on page 7
 “J2EE container activity record” on page 8
 “J2EE container interval record” on page 8
 “WebContainer interval record”

WebContainer interval record:

This file describes the WebContainer interval record

 The purpose of the WebContainer interval SMF record is to record activity within a
WebContainer running inside a WebSphere Application Server for z/OS transaction
server.

The Web container execution environment consists of an EJB that is deployed into
the EJB container. The WebContainer acts as a Web Server handling HttpSessions
and Servlets. The EJB container is not aware of the purpose of the WebContainer
activity record and only records that the EJB has been dispatched, but does not
gather any of the detailed information, such as HttpSessions, Servlets, and their
respective performance data. A single WebContainer record is created for each Web
container.

In addition to data that is associated with an individual activity, there are some
cases of Web container work that are performed outside the scope of an individual

Chapter 2. Diagnosing and fixing problems 9

request. For example, some instances of http session finalization and http session
invalidation are performed asynchronously. In such a case a WebContainer interval
record would record this data

WebContainer SMF recording is activated and deactivated along with the
activation and deactivation of SMF recording for the J2EE container.
 Related reference

 “Server activity record” on page 7
 “Server interval record” on page 7
 “J2EE container activity record” on page 8
 “J2EE container interval record” on page 8
 “WebContainer activity record” on page 9

Enabling SMF recording

Perform the following steps to enable SMF recording for WebSphere Application
Server:
1. Use the WebSphere Application Server administrative console to enable

properties for specific record types.
2. Edit the SMFPRMxx parmlib member.
3. Use the SET command to indicate which SMF parmlib member the system

should use.
4. Format the output data set.

SMF has been enabled successfully when the SMF data is recorded in the data set
which is specified in SMFPRMxx.

Using the WebSphere Application Server administrative console to enable
properties for specific record types:

Ensure that you have proper access to the administrative console.

To enable SMF you must first use the WebSphere Application Server administrative
console to enable properties for specific record types. To view or set properties
using the WebSphere Application Server administrative console:
1. Click Server>Application Servers in the navigation tree. The Application

Servers page appears.
2. Click the application server name in the Name column of the Application

Server collection table. The configuration panel of the application server
selected appears.

3. On the configuration panel, under the Additional Properties section, click on
Process Definition.

4. Click on control in the process Type column.
5. On the configuration panel, under the Additional Properties section, click on

Environment Entries.
6. To enable specific record types, specify one or more of the following properties:
v server_SMF_server_activity_enabled=1
v server_SMF_server_interval_enabled=1
v server_SMF_container_activity_enabled=1
v server_SMF_container_interval_enabled=1
v server_SMF_web_container_activity_enabled=1

10 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v server_SMF_web_container_interval_enabled=1
v server_SMF_interval_length=n, where n is the interval, in seconds, that the

system will use to write records for a server instance.
7. Click OK or Apply on the Server Level Security page.
8. Save the changes and make sure a file sync is performed before restarting the

servers.
9. For the changes to take effect, restart the application server.

The steps are completed when the record types are successfully activated.

Editing the SMFPRMxx parmlib member:

Make a working copy of the sample PARMLIB member SMFPRMYL.

Follow these steps to edit the SMFPRMxx parmlib member and enable SMF
recording for WebSphere Application Server:
1. Insert an ACTIVE statement to indicate SMF recording. See z/OS MVS

Initialization and Tuning Guide for more information.
2. Insert a SYS statement to indicate the types of SMF records you want the

system to create. For example, use SYS(TYPE(120:120)) to select WebSphere
Application Server type 120 records only. Keep the number of selected record
types small to minimize the performance impact.

3. You can specify the interval in which you want the Server and Container
interval records created (if no interval was specified in administrative console
for the server or container definition) using the INTVAL(mm) statement in the
SMFPRMxx parmlib member . The default SMF recording interval is 30
minutes. See z/OS MVS Initialization and Tuning Reference for more information.
 The server and container interval records will use either:
v The value specified in the server/container definition as specified in the

administrative console
v The interval specified in the SMF parmlib member (from the SMF product

settings) if you specify a length of 0.
 Related information

 z/OS MVS Initialization and Tuning Guide
 /OS MVS Initialization and Tuning Reference

Writing records to DASD:

Make sure you have your modified PARMLIB member SMFPRMxx.

Follow this step to start writing records to DASD:
Issue the following command: t smf=xx where xx is the suffix of the SMF parmlib
member (SMFPRMxx). See z/OS MVS System Management Facilities (SMF),
SA22-7630 for more information.

 Writing records to DASD has been completed successfully when the data is
recorded in the data set which is specified in SMFPRMxx.
 Related tasks

 “Editing the SMFPRMxx parmlib member”
 Related information

 z/OS MVS Initialization and Tuning Guide
 /OS MVS Initialization and Tuning Reference

Chapter 2. Diagnosing and fixing problems 11

http://publibz.boulder.ibm.com/epubs/pdf/iea2e100.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2e231.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2e100.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2e231.pdf

Formatting the output data set

Make sure SMF recording is running.

Perform the following steps to format the SMF recording output data set into a
readable format for printing to the screen or other output device:
1. Switch the SMF data sets by entering i smf from the MVS console to switch the

SMF data sets.
2. Run the SMF Dump program (IFASMFDP) to create a sequential data set from

the raw dump. A sample JCL is shown in z/OS MVS System Management
Facilities (SMF), SA22-7630.

You have successfully formatted the output data set when SMFDUMP ends with
return code 0.
 Related tasks

 “Viewing the output data set”

Viewing the output data set

The data set should be viewed using a program that can display record type 120.

The Java SMF Record Interpreter is provided in the form of a jar file named
bbomsmfv.jar. To use it from the z/OS or OS/390 UNIX environment:
1. Verify that the JAVA_HOME environment variable refers to the current java

installation. JAVA_HOME=../usr/bin/java/J1.3 This should be at least Java 1.3
since this release is the first to implicitly contain the necessary record support
needed by the interpreter.

2. Copy the file bbomsmfv. jar to your tools directory. Be sure that any edits made
to the file in the future are made to both copies of the file, or just execute from
the installation directory in the first place.

3. To interpret SMF data from a cataloged z/OS or OS/390 sequential file named
″USER.SMFDATA″ (which was previously created using the IFASMFDP utility
as described above), execute: java -cp bbomsmfv.jar
com.ibm.ws390.sm.smfview.Interpreter ″USER.SMFDATA″ It is implicit in the
java command parameterization that your current working directory is the
tools directory. If this is not the case, you will receive a NoClassDefFoundError
on com.ibm.ws390.sm.smfview.Interpreter. Java doesn’t generate a diagnostic
when it doesn’t find bbomsmfv.jar in the current directory.

The SMF ViewTool has been successfully installed and invoked when you do not
receive any Java error messages after the invocation and the Browser output is
shown on the screen.
 Related tasks

 “Formatting the output data set”

Example of SMF Browser output:

Example of SMF Browser output

 The SMF Browser available on the WebSphere for z/OS download site is able to
display record type 120. To download the SMF Browser go to:
http://www6.software.ibm.com/dl/websphere20/zosos390-p. For further
information on the SMF Browser, download the browser package and read the
associated documentation.

12 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

The following example shows sample output from the SMF Browser. The example
features subtype 7 and subtype 8, in that order.
Record#: 14;
 Type: 120; Size: 820; Date: Fri Nov 23 04:54:17 EST 2001;
 SystemID: SY1; SubsystemID: WAS; Flag: 94;
 Subtype: 7 (WEB CONTAINER ACTIVITY);
Triplets: 4;
Triplet #: 1; offset: 76; length: 32; count: 1;
Triplet #: 2; offset: 108; length: 140; count: 1;
Triplet #: 3; offset: 264; length: 556; count: 1;
Triplet #: 1; Type: ProductSection;
 Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);
 IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;
Triplet #: 2; Type: WebContainerActivitySection;
 HostName : PLEX1;
 ServerName : BBOASR4;
 ServerInstanceName: BBOASR4A;
 WlmEnclaveToken * 00000020 00000242 -------- --------
 * ^... * p1047
 ActivityID * b6c7a7b7 14e9bc85 000000b0 00000007
 * 0926306b -------- -------- --------
 *,............ *Cp1047
 ActivityStartTime * b6c7a7b7 14e9bc85 40404040 40404040 *
 ActivityStopTime * b6c7a7b7 53a8a645 40404040 40404040 *
Triplet #: 3; Type: HttpSessionManagerActivitySection;
 # http sessions created: 0; # http sessions invalidated: 0;
 # http sessions active: 0;
Average session life time: 0 [sec*10**-3];
 Triplet #: 4; Type: WebApplicationActivitySection;
 Name: PolicyIVP-localhost_1;
 # Servlets: 1;
 Triplet #: 4.1; offset: 272; length: 284; count: 1;
 Triplet #: 4.1; Type: ServletActivitySection;
 Name: SimpleFileServlet;
 ResponseTime: 48 [sec*10**-3];
 # errors: 0;
 Loaded by this request: 0;
 Loaded since (raw): ea54948e0d;
 Loaded since: Thu Nov 22 10:02:49 EST 2001;
Record#: 72;
 Type: 120; Size: 1744; Date: Fri Nov 23 05:01:02 EST 2001;
 SystemID: SY1; SubsystemID: WAS; Flag: 94;
 Subtype: 8 (WEB CONTAINER INTERVAL);
 # Triplets: 4;
 Triplet #: 1; offset: 76; length: 32; count: 1;
 Triplet #: 2; offset: 108; length: 112; count: 1;
 Triplet #: 3; offset: 264; length: 1480; count: 1;
 Triplet #: 1; Type: ProductSection;
 Version: 1; Codeset: Unicode; Endian: 1; TimeStampFormat: 1 (S390STCK64);
 IndexOfThisRecord: 1; Total # records: 1; Total # triplets: 4;
 Triplet #: 2; Type: WebContainerIntervalSection;
 HostName : PLEX1;
 ServerName : BBOASR4;
 ServerInstanceName: BBOASR4A;
 SampleStartTime * b6c7a6fd 655c0604 40404040 40404040 *
 SampleStopTime * b6c7a939 9a0e614c 40404040 40404040 *
Triplet #: 3; Type: HttpSessionManagerIntervalSection;
 http sessions #created: 1; #invalidated: 0;
 http sessions #active: 0; Min #active: 0; Max #active: 0;
 Average session life time: 0;
 Average session invalidate time: 0;
 http sessions #finalized: 0; #tracked: 0;
 http sessions #min live: 0; #max live: 0;
 Triplet #: 4; Type: WebApplicationIntervalSection;
 Name: PolicyIVP-localhost_1;
 # Servlets loaded: 0;

Chapter 2. Diagnosing and fixing problems 13

Servlets: 4;
 Triplet #: 4.1; offset: 312; length: 292; count: 1;
 Triplet #: 4.2; offset: 604; length: 292; count: 1;
 Triplet #: 4.3; offset: 896; length: 292; count: 1;
 Triplet #: 4.4; offset: 1188; length: 292; count: 1;
 Triplet #: 4.1; Type: ServletIntervalSection;
 Name: SimpleFileServlet;
 # requests: 6;
 AverageResponseTime: 764 [sec*10**-3];
 MinimumResponseTime: 18 [sec*10**-3];
 MaximumResponseTime: 4133 [sec*10**-3];
 # errors: 0;
 Loaded since (raw): ea54948e0d;
 Loaded since: Thu Nov 22 10:02:49 EST 2001;
 Triplet #: 4.2; Type: ServletIntervalSection;
 Name: Was40Ivp;
 # requests: 4;
 AverageResponseTime: 4664 [sec*10**-3];
 MinimumResponseTime: 1584 [sec*10**-3];
 MaximumResponseTime: 12572 [sec*10**-3];
 # errors: 0;
 Loaded since (raw): ea58a1509e;
 Loaded since: Fri Nov 23 04:55:14 EST 2001;
 Triplet #: 4.3; Type: ServletIntervalSection;
 Name: /cebit.jsp;
 # requests: 1;
 AverageResponseTime: 204 [sec*10**-3];
 MinimumResponseTime: 204 [sec*10**-3];
 MaximumResponseTime: 204 [sec*10**-3];
 # errors: 0;
 Loaded since (raw): ea58a24a69;
 Loaded since: Fri Nov 23 04:56:18 EST 2001;
 Triplet #: 4.4; Type: ServletIntervalSection;
 Name: JSP 1.1 Processor;
 # requests: 1;
 AverageResponseTime: 482 [sec*10**-3];
 MinimumResponseTime: 482 [sec*10**-3];
 MaximumResponseTime: 482 [sec*10**-3];
 # errors: 0;
 Loaded since (raw): ea54948b66;
 Loaded since: Thu Nov 22 10:02:48 EST 2001;

Disabling SMF recording for WebSphere Application Server

Ensure that you have proper access to the administrative console.

SMF recording can be enabled for WebSphere Application Server, and for z/OS
and OS/390. The following steps describe how to disable SMF recording for
WebSphere Application Server:
1. Disabling SMF recording can be achieved by the steps outlined in Using the

WebSphere Application Server administrative console to enable properties for
specific record types, and by deselecting the records that have been enabled.

2. When you have finished making the administrative console entries, recycle the
server.

The step for disabling SMF recording for WebSphere Application Server has been
successfully completed when SMF records of records type 120 are no longer being
recorded.
 Related tasks

 “Using the WebSphere Application Server administrative console to enable
properties for specific record types” on page 10

14 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Disabling SMF recording for the entire MVS system

Make sure that you have your own working copy of SMFPRMxx and SMF is
running.

SMF recording can be enabled for WebSphere Application Server, and for z/OS
and OS/390. The following steps describe how to disable SMF recording for your
MVS System (z/OS and OS/390):
Edit the SMFPRMxx parmlib member and set SMFPRMxx to ″NOACTIVE″ which
will disable the writing of SMF records to DASD.

 SMF recording has successfully been disabled for the whole MVS system when
SMF records for for both z/OS and OS/390 and WebSphere Application Server are
no longer being written to DASD.
 Related tasks

 “Editing the SMFPRMxx parmlib member” on page 11

Overview of SMF record type 120
This file gives an overview of SMF record type 120

Information resulting from the SMF data gathering process is typically presented
with the help of an SMF data viewing tool. This record format description is
intended to enable your tool providers to design an SMF data viewing tool. Your
system administrators will use an SMF data viewing tool with a description
presented by your tool provider, since it requires them to make proper selections
that limit the amount of presentation data. For example, they might want to view a
specific time frame and only specific containers, classes, and methods. They may
also occasionally need to refer to the record descriptions.

For additional information about using SMF records, see z/OS MVS System
Management Facilities (SMF), SA22-7630.
 Related information

 MVS System Management Facilities (SMF)

Record Type 120 (78) - WebSphere for z/OS performance statistics:

The following section defines the SMF Record Type 120 (78) - WebSphere for z/OS
performance statistics.

 Record Type 120 (78) - WebSphere for z/OS performance statistics

WebSphere for z/OS writes record type 120 to collect WebSphere for z/OS
performance statistics. For more information about SMF record types, see z/OS
MVS System Management Facilities (SMF).

All subtypes of the record type 120 have the following format:
v Standard header section
v Individual header extension for subtype x
v Product section
v Subtype-specific sections listed below.

Record type 120 has the following subtypes:
v Subtype 1: Server activity record

– Server activity section (one section per record):
 Contains information about each activity that occurred within one server.

Chapter 2. Diagnosing and fixing problems 15

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

– Communication session section (zero, one, or multiple sections per record):
 Contains information about each communication session.

– JVM heap section (zero, one, or multiple sections per record):
 Contains information about the heap in a server region.

v Subtype 3: Server interval record
– Server interval section (one section per record):

 Contains aggregated information about all activities that occurred within the
specified server interval.

– Server region section (zero, one, or multiple sections per record):
 Contains information about server regions in the specified interval.

v Subtype 5: J2EE container activity record
– J2EE container activity section (one section per record):

 Contains information about each activity that occurred within one J2EE
container.

– Bean section (multiple (0..n) sections per record):
 Contains information about all beans involved in this activity.

– Bean method section (multiple (0..n) sections per bean section):
 Contains information about all methods of this bean involved in this activity.

v Subtype 6: J2EE container interval record
– J2EE container interval section (one section per record):

 Contains aggregated information about all activities that occurred within one
J2EE container in the specified interval.

– Bean section (multiple (0..n) sections per record, see subtype 5):
 Contains information about all beans involved in this activity in the specified
interval.

– Bean method section (multiple (0..n) sections per bean section, see subtype
5):
 Contains information about all methods of this class involved in this activity
in the specified interval.

v Subtype 7: WebContainer activity record (Version 2)
– WebContainer activity section (one section per record):

 Contains information about each activity that occurred within one
WebContainer.

– HttpSessionManager activity section (one section per record):
 Contains information about all sessions involved in this activity.

– WebApplication section (multiple (0..n) sections per record):
 Contains information about all WebApplications involved in this activity.

– Servlet section (multiple (0..n) sections per WebApplication section):
 Contains information about all Servlets involved in this activity.

v Subtype 8: WebContainer interval record (Version 2)
– WebContainer interval section (one section per record):

 Contains information about each activity that occurred within one
WebContainer.

– HttpSessionManager section (one section per record):
 Contains information about all sessions involved in this activity.

– WebApplication section (multiple (0..n) sections per record):
 Contains information about all WebApplications involved in this activity.

– Servlet section (multiple (0..n) sections per WebApplication section):
 Contains information about all Servlets involved in this activity.

Triplets:

16 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

This section includes the header/self-defining and product sections.

 You can use triplets to build self-describing SMF records that contain various types
of data sections and a varying number of each of these sections. All data sections
are described by triplets that consist of:
1. An offset that specifies the start position of the data
2. A length that describes the length of the section
3. A count that describes how many instances of the section are included in this

record.

The two triplets that describe the product section and the general record
information section (for example, the section describing the container itself in a
container activity record) are located at fixed positions within the record. This
allows one to start evaluating the record right after having evaluated the record
header.
 Related reference

 “Splitting SMF records”
 “Record environment and mapping” on page 18

Splitting SMF records:

This section describes splitting SMF records.

 Since most of the WebSphere Application Server SMF records are used to describe
variable-length data structures (for example, there might be hundreds of classes by
container and hundreds of methods by class), the SMF records may be larger than
the maximum record size supported by SMF (32KB). In this case, the logical
records need to be split into several physical records.

Each of those physical records needs to be self-describing and self-contained.
Self-describing indicates what we described in the paragraph on triplets before; it is
a purely mechanical structure to help read a record. Self-contained indicates that,
even if we have only a subset of the physical records at hand that together
describe the original logical record, we need to be able to evaluate these records,
combine the information stored in them, and set an ’incomplete’ flag. This is
required since, as we break up a logical record into physical records and write
them to SMF one after the other, SMF might decide that only the first few physical
records fit into the primary SMF dump dataset whereas the remaining physical
records are written into an alternate SMF dump dataset. At the time when a
formatted SMF dump dataset is evaluated, we may not assume that all physical
records that make up one logical record are present. For example,
self-containedness of a physical container activity record means that it contains the
description of the container, but not necessarily all of its classes.

We use a similar splitting mechanism like the one that is currently used in the
RMF product. Note that,in the case of container records (subtype 2 and 4), we
cannot assume that records will be split at a class boundary, but we must consider
the case when the methods that belong to one class also need to be split over
multiple physical records, as shown in the diagrams below.

Note: The section length numbers used throughout the following diagrams are
only for demonstrative purposes. In particular, the arrows indicating 32K
boundaries or the total length of the records are placed at random. You can
fit many more classes and methods into a physical record than suggested by
the diagrams.

Chapter 2. Diagnosing and fixing problems 17

Related reference

 “Triplets” on page 16
 “Record environment and mapping”

Record environment and mapping:

This section includes the header/self-defining and product sections.

 Record environment

The following conditions exist for the generation of this record:
v

Macro SMFWTM (record exit: IEFU83)
Mode Task
Storage Residency

31-bit

Record mapping

For a description of the common SMF record header fields and the triplet fields
(offset/length/number), if applicable, that locate the other sections on the record,
see Header/Self-defining section. For a description of triplets, see Using Triplets
and z/OS MVS System Management Facilities (SMF).
 Related reference

 “Triplets” on page 16
 Related information

 MVS System Management Facilities (SMF)

Record environment and mapping:

This section includes the header/self-defining and product sections.

 Header/Self-defining section

The tables below describe the header/self-defining section of an SMF record.

 Offset (decimal) Offset
(hexadecimal)

Name Length Format Description

0 0 SM120LEN 2 binary Record length. This field and the
next field (total of four bytes) form
the RDW (record descriptor word).
See ″Standard SMF record header″
in WebSphere Application Server
V4.0.1 for z/OS and OS/390: System
Management User Interface, for a
detailed description.

2 2 SM120SEG 2 binary Segment descriptor (see record
length field)

18 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

4 4 SM120FLG 1 binary Bit meaning when set

0: New SMF record format

1: Subtypes used

2: Reserved

3-6: Version indicators*

7: Reserved

*See ″Standard SMF record
header″ in WebSphere Application
Server V4.0.1 for z/OS and OS/390:
System Management User Interface,
for a detailed description.

5 5 SM120RTY 1 binary Record type 120(X’78’)

6 6 SM120TME 4 binary Time since midnight, in
hundredths of a second, that the
record was moved into the SMF
buffer.

10 A SM120DTE 4 packed Date when the record was moved
into the SMF buffer, in the form
0cyydddF. See ″Standard SMF
record header″ in WebSphere
Application Server V4.0.1 for z/OS
and OS/390: System Management
User Interface, for a detailed
description.

14 E SM120SID 4 EBCDIC System identification (from the
SMFPRMxx SID parameter)

18 12 SM120SSI 4 EBCDIC Subsystem identification from
SUBSYS parameter

22 16 SM120RST 2 binary Record subtype:

1: Server activity

2: Container activity

3: Server interval

4: Container interval.

5: J2EE container activity

6: J2EE container interval

7: WebContainer activity

8: WebContainer interval

24 18 SM120TRN 4 binary Number of triplets in this record.
A triplet is a set of three SMF
fields (offset/length/number
values) that defines a section of
the record. The offset is the offset
from the RDW.

Subtypes:

1: Value is equal to the number of
sessions +2

2 and 4: Value is equal to the
number of classes +2.

28 1C SM120PRS 4 binary Offset to product section from
RDW.

32 20 SM120PRL 4 binary Length of product section.

36 24 SM120PRN 4 binary Number of product sections.

 Individual header extension for subtype 1

Chapter 2. Diagnosing and fixing problems 19

40 28 SM120SAS 4 binary Offset to server activity section
from RDW

44 2C SM120SAL 4 binary Length of server activity section

48 30 SM120SAN 4 binary Number of server activity sections

52 34 SM120CSS 4 binary Offset to communication session
section from RDW

56 38 SM120CSL 4 binary Length of communication session
section

60 3C SM120CSN 4 binary Number of communication session
sections

64 40 SM120JHS 4 binary Offset to JVM heap section from
RDW

68 44 SM120JHL 4 binary Length of JVM heap section

72 48 SM120JHN 4 binary Number of jvm heap sections

 Individual header extension for subtype 3

40 28 SM120SIS 4 binary Offset to server interval section
from RDW

44 2C SM120SIL 4 binary Length of server interval section

48 30 SM120SIN 4 binary Number of server interval sections

The following triplet appears 0-n times; once for each server region section.

52 34 SM120SRS 4 binary Offset to server region section
from RDW

56 38 SM120SRL 4 binary Length of server region section

60 3C SM120SRN 4 binary Number of server region sections

 Individual header extension for subtype 5

40 28 SM120JA1 4 binary Offset to J2EE container activity
section from RDW

44 2C SM120JA2 4 binary Length of J2EE container activity
section

48 30 SM120JA3 4 binary Number of J2EE container activity
sections

 The following triplet appears 0-n times; once for each bean section.

52 34 SM120JAS 4 binary Offset to bean section from RDW

56 38 SM120JAL 4 binary Length of bean section

60 3C SM120JAN 4 binary Number of bean sections

 Individual header extension for subtype 6

40 28 SM120JI1 4 binary Offset to J2EE container interval
section from RDW

44 2C SM120JI2 4 binary Length of J2EE container interval
section

48 30 SM120JI3 4 binary Number of J2EE container
interval sections

 The following triplet appears 0-n times; once for each bean section.

52 34 SM120JIS 4 binary Offset to bean section from RDW

20 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

56 38 SM120JIL 4 binary Length of bean section

60 3C SM120JIN 4 binary Number of bean sections

Individual header extension for subtype 7

40 28 SM120WA1 4 binary Offset to WebContainer activity
section from RDW.

44 2C SM120WA2 4 binary Length of WebContainer activity
section.

48 30 SM120WA3 4 binary Number of WebContainer activity
sections.

52 34 SM120WA4 4 binary Offset to HttpSessionManager
activity section from RDW.

56 38 SM120WA5 4 binary Length of HttpSessionManager
activity section.

60 3C SM120WA6 4 binary Number of HttpSessionManager
activity sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WA7 4 binary Offset to WebApplication section
from RDW.

68 44 SM120WA8 4 binary Length of WebApplication section.

72 48 SM120WA9 4 binary Number of WebApplication
sections.

Individual header extension for subtype 8

40 28 SM120WI1 4 binary Offset to WebContainer interval
section from RDW.

44 2C SM120WI2 4 binary Length of WebContainer interval
section.

48 30 SM120WI3 4 binary Number of WebContainer interval
sections.

52 34 SM120WI4 4 binary Offset to HttpSessionManager
interval section from RDW.

56 38 SM120WI5 4 binary Length of HttpSessionManager
interval section.

60 3C SM120WI6 4 binary Number of HttpSessionManager
interval sections.

The following triplet appears 0-n times, once for each WebApplication section.

64 40 SM120WI7 4 binary Offset to WebApplication section
from RDW.

68 44 SM120WI8 4 binary Length of WebApplication section.

72 48 SM120WI9 4 binary Number of WebApplication
sections.

 Related reference

 “Triplets” on page 16
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22
 “Subtype 3: Server interval record” on page 24
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

Chapter 2. Diagnosing and fixing problems 21

MVS System Management Facilities (SMF)

Product section:

This section includes the header/self-defining and product sections.

 Product section

 Offset Offset Name Length Format Description

0 0 SM120MFV 4 binary CB SMF version

4 4 SM120COD 8 EBCDIC Character codeset in which
strings in the SMF record are
encoded

12 C SM120END 4 binary Encode of numbers in the SMF
record

16 10 SM120TSF 4 binary Encoding of timestamps:

1: S390STCK64: The time values
are encoded in 64-bit S/390
Store Clock format.

 Reassembly information.

20 14 SM120IXR 4 binary Index of this record

24 18 SM120NRC 4 binary Total number of records

28 1C SM120NTR 4 binary Total number of triplets

 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Subtype 1: Server activity record”
 “Subtype 3: Server interval record” on page 24
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

 MVS System Management Facilities (SMF)

Subtype 1: Server activity record:

This section includes Subtype 1: Server activity record.

 Server activity section

The Server activity section contains information about each activity that occurred
within one server.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120HNM 64 EBCDIC WebSphere for z/OS transaction server host name

64 40 SM120SNA 8 EBCDIC WebSphere for z/OS transaction server name

72 48 SM120INA 8 EBCDIC WebSphere for z/OS transaction server instance
name

22 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

80 50 SM120SNM 4 binary Total number of server regions that were involved
to process this activity. If applicable, up to the first
five server region address space IDs are listed
within the next five fields.

84 54 SM120SR1 4 binary The specific WebSphere for z/OS transaction
server instance server region where the request ran

88 58 SM120SR2 4 binary The specific WebSphere for z/OS transaction
server instance server region where the request ran

92 5C SM120SR3 4 binary The specific WebSphere for z/OS transaction
server instance server region where the request ran

96 60 SM120SR4 4 binary The specific WebSphere for z/OS transaction
server instance server region where the request ran

100 64 SM120SR5 4 binary The specific WebSphere for z/OS transaction
server instance server region where the request ran

104 68 SM120CRE 8 EBCDIC The user credentials under which the activity
began.

112 70 SM120ATY 4 binary Type of activity that this record references:

1: Method request: This record refers to a method
request that is not part of a global transaction.

2: Transaction: This record refers to a transaction.

116 74 SM120AID 20 HEX Identity of the activity

136 88 SM120WLM 8 HEX WLM enclave token

144 90 SM120AST 16 S390STCK Activity start time

160 A0 SM120AET 16 S390STCK Activity stop time

176 B0 SM120NIM 4 binary Number of input methods

180 B4 SM120NGT 4 binary Number of global transactions that were started in
the server region

184 B8 SM120NLT 4 binary Number of local transactions that were started in
the server region

188 BC SM120J2E 4 binary J2EE server

192 C0 SM120CEL 8 EBCDIC WebSphere for z/OS cell name

200 C8 SM120NOD 8 EBCDIC WebSphere for z/OS node name

208 D0 SM120WCP 8 binary Total CPU time accumulated by the WLM enclave.
TOD clock format (bit 51 = microseconds).

Communications session section

There are zero, one, or multiple sections per record. The Communications session
section contains information about each communication session.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120CSH 8 HEX Communications session handle

8 8 SM120CSA 64 EBCDIC Communications session address

Chapter 2. Diagnosing and fixing problems 23

72 48 SM120CSO 4 binary Communications session optimization

1: Local communications session: The session is a
local OS/390 optimized communications session.

2: Remote communications session: The session
is a remote communications session.

3: Remote encrypted (SSL)

4: Remote within sysplex.

5: HTTP session.

6: HTTP encrypted session.

76 4C SM120SDR 4 binary Data received; the number of bytes received by
the server

80 50 SM120SDT 4 binary Data transferred; the number of bytes transferred
from the server back to the client.

JVM Heap section

There are zero, one, or multiple sections per record. The JVM heap section contains
information about the heap in each server region.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120JHA 4 binary Servant address space ID

4 4 SM120JHH 4 binary The heap for which the following data applies.

8 8 SM120JHC 4 binary The total number of allocation failures on this
heap or, if querying shared storage, the subpool
identifier. A negative value indicates the
information is for the shared memory page pool.

12 C SM120JHF 8 binary The total number of free bytes in the
heap/subpool/page pool.

20 14 SM120JHT 8 binary The total number of bytes in the
heap/subpool/page pool.

 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 3: Server interval record”
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

 MVS System Management Facilities (SMF)

Subtype 3: Server interval record:

This section includes Subtype 3: Server interval record

 Server interval section

The server interval section contains information about each activity that occurred
within one server.

24 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

Offset (decimal) Offset
(hexadecimal)

Name Length Format Description

0 0 SM120HN2 64 EBCDIC WebSphere for z/OS transaction server host
name

64 40 SM120SNI 8 EBCDIC WebSphere for z/OS transaction server name

72 48 SM120INI 8 EBCDIC WebSphere for z/OS transaction server instance
name

80 50 SM120SST 16 S390STCK Time that the sample began in the server

96 60 SM120SET 16 S390STCK Time that the sample ended

112 70 SM120NG2 4 binary Number of global transactions that have run
through the server instance during the interval
that have been initiated by the server instance
during the interval

116 74 SM120NL2 4 binary Number of local transactions that have been
initiated by the server instance during the
interval

120 78 SM120NCS 4 binary Number of communications sessions that exist
at the end of the interval

124 7C SM120NCA 4 binary The number of communications sessions that
have been active during the interval

128 80 SM120NLS 4 binary Number of local communication sessions that
exist at the end of the interval

132 84 SM120NLA 4 binary Number of active local communication sessions
that have been attached and active within the
server instance during the interval

136 88 SM120NRS 4 binary Number of remote communication sessions that
exist at the end of the interval

140 8C SM120NRA 4 binary Number of active remote communication
sessions that have been attached and active
within the server instance during the interval

144 90 SM120BTS 4 binary Number of bytes that have been transferred to
the server from all attached clients

148 94 SM120BFS 4 binary Number of bytes that have been sent from the
server to all attached clients

152 98 SM120BTL 4 binary Number of bytes that have been transferred to
the server from all locally attached clients

156 9C SM120BFL 4 binary Number of bytes that have been transferred
from the server to all locally attached clients

160 A0 SM120BTR 4 binary Number of bytes that have been transferred to
the server from all remotely attached clients

164 A4 SM120BFR 4 binary Number of bytes that have been transferred
from the server to all remotely attached clients

168 A8 SM120J2 4 binary J2EE server.

172 AC SM120CL1 8 EBCDIC WebSphere for z/OS transaction server cell
name

180 B4 SM120ND1 8 EBCDIC WebSphere for z/OS transaction server node
name

188 BC SM120NHS 4 binary Number of HTTP communication sessions that
exist at the end of the interval

192 C0 SM120NHA 4 binary Number of HTTP communication sessions that
have been attached and active within the server
instance during the interval

196 C4 SM120BTH 4 binary Number of bytes that have been transferred to
the server from all HTTP attached clients

200 C8 SM120BFH 4 binary Number of bytes that have been transferred
from the server to all HTTP attached clients

Chapter 2. Diagnosing and fixing problems 25

204 CC SM120TEC 8 binary Total CPU time accumulated by the WLM
enclaves. TOD clock format (bit 51 =
microseconds).

Server region section

There are zero, one, or multiple sections per record. The server regions section
contains information about each server region in the specified server interval.

 Offset Offset Name Length Format Description

0 0 SM120SSA 4 binary Servant address space ID

4 4 SM120SNT 4 binary Number of triplets.

The following triplet appears 0-n times; once for each heap id section.

8 8 SM120SSO 4 binary Offset to heap id section from the beginning of
this server region section.

12 C SM120SSL 4 binary Length of heap id section.

16 10 SM120SSN 4 binary Number of heap id sections.

Subtype 3: Heap id section

There are multiple (0..n) sections per server region section. The Heap id section
contains information about all heaps of this server region involved in this activity

 Offset Offset Name Length Format Description

0 0 SM120HIH 4 binary The heap for which the following data applies.

4 4 SM120HIC 4 binary Number of allocation failures on this heap
during the interval.

8 8 SM120HI1 8 binary Minimum number of bytes during the interval.

16 10 SM120HI2 8 binary Maximum number of bytes during the interval.

24 18 SM120HI3 8 binary Average number of bytes during the interval.

32 20 SM120HI4 8 binary Minimum number of free bytes during the
interval.

40 28 SM120HI5 8 binary Maximum number of free bytes during the
interval.

48 30 SM120HI6 8 binary Average number of free bytes during the
interval.

 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

 MVS System Management Facilities (SMF)

26 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

Subtype 5: J2EE container activity record (Version 2):

This section includes Subtype 5: J2EE container activity record (Version 2)

 J2EE container activity section

There is one section per record. The J2EE container activity section contains
information about each activity that occurred within one J2EE container.

 Offset Offset Name Length Format Description

0 0 SM120JA4 64 EBCDIC WebSphere for z/OS transaction server host name

64 40 SM120JA5 8 EBCDIC WebSphere for z/OS transaction server name

72 48 SM120JA6 8 EBCDIC WebSphere for z/OS transaction server instance name

80 50 SM120JA7 4 binary The specific WebSphere for z/OS transaction server
instance server region where the request ran

84 54 SM120JA8 512 Unicode WebSphere for z/OS container name.

596 254 SM120JA9 8 HEX The WLM enclave token

604 25C SM120JAA 4 binary RESERVED

608 260 SM120JAB 20 HEX The identity of the activity

628 274 SM120CL2 8 EBCDIC Cell

636 27C SM120ND2 8 EBCDIC Node

Bean section

There are multiple sections per record. The bean section contains information about
all beans involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120JB1 512 Unicode AMCName of the bean activated by the container.
Note: If the length of the AMCName exceeds 256
DBCS characters (512 bytes), the rightmost 256
characters are recorded.

512 200 SM120JB2 60 binary UUID based AMC name

572 23C SM120JB3 4 binary The bean’s type. 0: CMP entity bean. 1: BMP entity
bean. 2: Stateless session bean. 3: Stateful session
bean.

576 240 SM120JB4 4 binary RESERVED

580 244 SM120JB5 4 binary RESERVED

584 248 SM120JB6 4 binary RESERVED

588 24C SM120JB7 4 binary The bean’s reentrance policy. 0: Not reentrant
within transaction. 1: Reentrant within transaction.

592 250 SM120JB8 4 binary RESERVED

596 254 SM120JMC 4 binary RESERVED

600 258 SM120JM6 4 binary RESERVED

604 25C SM120JB9 4 binary Number of method triplets in this bean section

The following triplet appears 0-n times; once for each bean method section.

608 260 SM120JBS 4 binary Offset to bean method section from the beginning
of this bean section

612 264 SM120JBL 4 binary Length of bean method section

Chapter 2. Diagnosing and fixing problems 27

616 268 SM120JBN 4 binary Number of bean method sections

Bean method section

There are multiple sections per bean section. The bean method section contains
information about all methods of beans involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120JM1 1,024 Unicode The name of the method including its signature in
its externalized, human-readable form. If the length
of the method exceeds 512 DBCS characters (1024
bytes), the leftmost 512 characters are recorded.

1024 400 SM120JM2 4 binary The number of times the method was invoked
during the activity.

1028 404 SM120JM3 4 binary Average response time. The response time is
measured in milliseconds (the granularity provided
by the JVM - hopefully, it will be equal to 0 in most
cases).

1032 408 SM120JM4 4 binary Maximum response time. The response time is
measured in milliseconds.

1036 40C SM120JM5 4 binary The bean method’s transaction policy. Values from
com.ibm.WebSphere for z/OS.csi.
TransactionAttribute.java:

0: "TX_NOT_SUPPORTED"
1: "TX_BEAN_MANAGED"
2: "TX_REQUIRED"
3: "TX_SUPPORTS"
4: "TX_REQUIRES_NEW"
5: "TX_MANDATORY"
6: "TX_NEVER"

1040 410 SM120JM8 4 binary RESERVED.

1044 414 SM120JM9 4 binary RESERVED.

1048 418 SM120JMA 512 Unicode List of ejbRoles associated with the method.
Separator character: ″;″ (semicolon). If the length of
the concatenated string exceeds 256 characters (512
bytes), only its leftmost 256 characters are recorded.

1560 618 SM120JMB 4 binary RESERVED.

1564 61C SM120JMD 4 binary RESERVED.

1568 620 SM120JME 4 binary ejbLoad: # of invocations

1572 624 SM120JMF 4 binary ejbLoad: avg execution time

1576 628 SM120JMG 4 binary ejbLoad: max execution time

1580 62C SM120JMH 4 binary ejbStore: # of invocations

1584 630 SM120JMI 4 binary ejbStore: avg execution time

1588 634 SM120JMJ 4 binary ejbStore: max execution time

1592 638 SM120JMK 4 binary ejbActivate: # of invocations

1596 63C SM120JML 4 binary ejbActivate: avg execution time

1600 640 SM120JMM 4 binary ejbActivate: max execution time

1604 644 SM120JMN 4 binary ejbPassivate: # of invocations

1608 648 SM120JMO 4 binary ejbPassivate: avg execution time

1612 64C SM120JMP 4 binary ejbPassivate: max execution time

1616 650 SM120JMQ 8 binary Average cpu time in microseconds.

1624 658 SM120JMR 8 binary Minimum cpu time in microseconds.

1632 660 SM120JMS 8 binary Maximum cpu time in microseconds.

28 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22
 “Subtype 3: Server interval record” on page 24
 “Subtype 6: Container interval record (Version 2)”
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

 MVS System Management Facilities (SMF)

Subtype 6: Container interval record (Version 2):

This section includes Subtype 6: Container interval record (Version 2)

 J2EE container interval section

There is one section per record. The J2EE container interval section contains
information about each activity that occurred within one J2EE container in the
specified interval.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120JI4 64 EBCDIC The WebSphere for z/OS transaction server host
name.

64 40 SM120JI5 8 EBCDIC The WebSphere for z/OS transaction server name.

72 48 SM120JI6 8 EBCDIC The WebSphere for z/OS transaction server
instance name.

80 50 SM120JI7 512 Unicode The WebSphere for z/OS container name.
Note: This is hardcoded to ″Default″ for the 4.0.1
timeframe.

592 250 SM120JI8 16 S390STCK The time that the sample began in the server.

608 260 SM120JI9 16 S390STCK The time that the sample ended.

624 270 SM120CL3 8 EBCDIC Cell

632 278 SM120ND3 8 EBCDIC Node

Subtype 6: Bean section:

See Subtype 5: Bean section

Subtype 6: Bean method section:

See Subtype 5: Bean method section
 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22
 “Subtype 3: Server interval record” on page 24

Chapter 2. Diagnosing and fixing problems 29

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

“Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 7: WebContainer activity record (Version 2)”
 “Subtype 8: WebContainer interval record (Version 2)” on page 32
 Related information

 MVS System Management Facilities (SMF)

Subtype 7: WebContainer activity record (Version 2):

This section includes Subtype 7: WebContainer activity record (Version 2)

 WebContainer activity section

There is one section per record. The WebContainer activity section contains
information about each activity that occurred within one web container.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120WAA 64 EBCDIC The WebSphere
transaction server host
name.

64 40 SM120WAB 8 EBCDIC The WebSphere
transaction server name.

72 48 SM120WAC 8 EBCDIC The WebSphere
transaction server
instance name.

80 50 SM120WAD 8 HEX The WLM enclave token.

88 58 SM120WAE 20 HEX The identity of the
activity.

108 6C SM120WAF 16 S390STCK The time the activity
began in the server.

124 7C SM120WAG 16 S390STCK The time the activity
ended.

140 8C SM120CL4 8 EBCDIC Cell

148 94 SM120ND4 8 EBCDIC Node

HttpSessionManager section

There is one section per record. The HttpSessionManager section contains
information about all (there may be zero or one) http sessions associated to one
single activity.

 Offset Offset Name Length Format Description

0 0 SM120WAH 4 binary ″created Sessions″: Number of
http sessions that were created.

4 4 SM120WAI 4 binary ″invalidatedSessions″: Number of
http session that were invalidated.

8 8 SM120WAJ 4 binary ″activeSessions″: Number of http
sessions that were referenced
during this activity.

12 C SM120WAK 4 binary ″sessionLifeTime″: lifetime of the
session in milliseconds. If
″invalidatedSessions″ > 0, this is
the average lifetime (in
milliseconds) of the invalidated
http session.

30 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

WebApplication section

There are multiple (0-n) sections per record. The WebApplication section contains
information about all WebApplications involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WAL 256 Unicode The name of the WebApplication.

256 100 SM120WAM 4 binary Number of servlet triplets in this web
application section.

The following triplet appears 0-n times, once for each servlet section.

260 104 SM120WAN 4 binary Offset to servlet section from the
beginning of this WebApplication
section.

264 108 SM120WAO 4 binary Length of servlet section.

268 10C SM120WAP 4 binary Number of servlet sections.

Servlet activity section

There are multiple (0-n) sections per WebApplication section. The Servlet activity
section contains information about each servlet associated with WebApplications
involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WAQ 256 Unicode The name of the servlet.

256 100 SM120WAR 4 binary ″responseTime″: Response time in
milliseconds.

260 104 SM120WAS 4 binary ″numErrors″: The number of errors that
were encountered during the servlet
execution.

264 108 SM120WAT 4 binary ″loaded″:

0: The servlet did not have to be loaded
as a result of this request.

1: The servlet had to be loaded as the
result of this request.

268 10C SM120WAU 16 EBCDIC ″loadedSince″: Timestamp from
System.currentTimeMillis() when the
servlet was loaded, in HEX format.

Sample: The data as it appears in the
record has the format

e7ef7c577c

, which needs to be converted to a Java
long:

996155348860

. The Java long digits can be converted to
java.util.Date:

Thu Jul 26 15:49:08 GMT+02:00 2001

284 11C SM120CPU 8 binary Cpu time in microseconds.

 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22

Chapter 2. Diagnosing and fixing problems 31

“Subtype 3: Server interval record” on page 24
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 8: WebContainer interval record (Version 2)”
 Related information

 MVS System Management Facilities (SMF)

Subtype 8: WebContainer interval record (Version 2):

This section includes Subtype 8: WebContainer interval record (Version 2)

 WebContainer interval section

There is one section per record. The WebContainer interval section contains
information about each activity that occurred within one WebContainer record.

 Offset (decimal) Offset (hexadecimal) Name Length Format Description

0 0 SM120WIA 64 EBCDIC The WebSphere transaction server host
name.

64 40 SM120WIB 8 EBCDIC The WebSphere transaction server name.

72 48 SM120WIC 8 EBCDIC The WebSphere transaction server
instance name.

80 50 SM120WID 16 S390STCK The time the sample began.

96 60 SM120WIE 16 S390STCK The time the sample ended.

112 70 SM120CL5 8 EBCDIC Cell

120 78 SM120ND5 8 EBCDIC Node

HttpSessionManager section

There is one section per record. The HttpSessionManager section contains
information about all (there may be zero or one) http sessions associated to one
single activity.

 Offset Offset Name Length Format Description

0 0 SM120WIF 4 binary ″createdSessions″: Number of http
sessions that were created.

4 4 SM120WIG 4 binary ″invalidatedSessions″: Number of http
sessions that were invalidated.

8 8 SM120WIH 4 binary ″activeSessions″: Current number of http
sessions that are actively referenced in
the server at the end of the interval.

12 C SM120WII 4 binary ″minActiveSessions″: Minimum number
of active http sessions during the
interval..

16 10 SM120WIJ 4 binary ″maxActiveSessions″: Maximum number
of active http sessions during the
interval.

20 14 SM120WIK 4 binary ″sessionLifeTime″: Average lifetime (in
milliseconds) of invalidated http sessions.

24 18 SM120WIL 4 binary ″sessionInvalidateTime″: Average time (in
milliseconds) that was required to process
the invalidation of http sessions.

28 1C SM120WIM 4 binary ″finalizedSessions″: Number of sessions
that were finalized.

32 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

32 20 SM120WIN 4 binary ″liveSessions″: Total number of http
sessions being tracked by the server at
the end of the interval. This includes both
active and inactive sessions.

36 24 SM120WIO 4 binary ″minLiveSessions″: Minimum number of
live http sessions during the interval.

40 28 SM120WIP 4 binary ″maxLiveSessions″: Maximum number of
live http sessions during the interval.

WebApplication interval section

There are multiple (0-n) sections per record. The WebApplication interval section
contains information about all WebApplications involved in this activity.

 Offset Offset Name Length Format Description

0 0 SM120WIQ 256 Unicode The WebApplication name.

256 100 SM120WIR 4 binary ″numLoadedServlets″: Number of
servlets that were loaded.
Note: This value might differ from the
number of servlet sections in this record
since servlets might exist that have been
inactive during the interval.

260 104 SM120WIS 4 binary Number of servlet triplets in this web
application section.

The following triplet appears 0-n times, once for each servlet section.

264 108 SM120WIT 4 binary Offset to servlet section from the
beginning of this WebApplication
section.

268 10C SM120WIU 4 binary Length of the servlet section.

272 110 SM120WIV 4 binary Number of servlet section.

Servlet section

There are multiple (0-n) sections per WebApplication section. The Servlet activity
section contains information about all servlets involved per WebApplication in this
activity.

 Offset Offset Name Length Format Description

0 0 SM120WIW 256 Unicode The servlet name.

256 100 SM120WIX 4 binary ″totalRequests″: Number of times the
servlet service was requested during the
interval.

260 104 SM120WIY 4 binary ″responseTime″: Average response time in
milliseconds.

264 108 SM120WIZ 4 binary ″minResponseTime″: Minimum response
time in milliseconds.

268 10C SM120WJ1 4 binary ″maxResponseTime″: Maximum response
time in milliseconds.

272 110 SM120WJ2 4 binary ″numErrors″: The number of errors that
were encountered during servlet
execution.

276 114 SM120WJ3 16 EBCDIC ″loadedSince″: Timestamp when the
servlet was loaded.

Sample:

Fri May 25 08:42:25 EDT 2001

Chapter 2. Diagnosing and fixing problems 33

292 124 SM120WJ4 8 binary Average cpu time in microseconds.

300 12C SM120WJ5 8 binary Minimum cpu time in microseconds.

308 134 SM120WJ6 8 binary Maximum cpu time in microseconds.

 Related reference

 “Triplets” on page 16
 “Record environment and mapping” on page 18
 “Product section” on page 22
 “Subtype 1: Server activity record” on page 22
 “Subtype 3: Server interval record” on page 24
 “Subtype 5: J2EE container activity record (Version 2)” on page 27
 “Subtype 6: Container interval record (Version 2)” on page 29
 “Subtype 7: WebContainer activity record (Version 2)” on page 30
 Related information

 MVS System Management Facilities (SMF)

Overview of SMF record type 80
This file gives an overview of SMF record type 80

As WebSphere Application Server becomes more capable of authentication and
setting or changing the identity on a thread, so arises the need for the ability to
audit these changes. Along with this also comes the need to audit the
accompanying authorization requests made through EJBRoles checking, intending
to produce audit records that include the original authenticated identity. This
auditing in WebSphere Application Server is managed not through WebSphere
Application Server itself, but through its External Security Manager (RACF or
equivalent), where the SMF records are cut.

Preparing for audit support:

In order to take advantage of auditing in WebSphere, you need to set up SMF and
RACF and have both running.
1. Set up SMF for audit support. For information on setting up and starting SMF,

see z/OS MVS System Management Facilities (SMF), SA22-7630

2. Enable auditing for the EJB Roles by setting the RACF AUDIT attribute. This
will set up RACF for auditing in WebSphere Application Server. You can turn
on auditing for the ADMIN and PAYROLL classes with the following
command:
 RALTER EJBROLE (ADMIN,PAYROLL) AUDIT(ALL)
v Alternately, you could modify the RACFROLE job to put the AUDIT

information there.
v For more information and additional parameters for the AUDIT attribute,

see the z/OS Security Server RACF Auditor’s Guide.
 Related information

 MVS System Management Facilities (SMF)
 z/OS Security Server RACF Auditor’s Guide

Using audit support:

This file gives an overview of how to use audit support.

34 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ichza830.pdf

Auditing is performed using SMF records issued by RACF or an equivalent
External Security Manager. This means that SMF audit records are cut as part of
the WebSphere use of SAF interfaces such as IRRSIA00 (to manage ACEEs) and the
RACROUTE macro.

The table below lists the various security authentication mechanisms and the
corresponding data that is written to each part of the ACEE X500NAME field (this
data is also in the RACO and SMF records). The information under ″Service
Name″ is the constant string that is included in the ″Issuer’s Distinguished Name″
field of X500NAME. The information under ″Authenticated Identity″ is the
principal that is recorded in the ″Subject’s Distinguished Name″ field.

 Table 1. Security authentication mechanisms and the corresponding data that is written to
each part of the ACEE X500NAME field

Authentication
mechanism

Service name Authenticated identity

Custom Registry WebSphere Custom
Registry

Custom registry principal name

Kerberos WebSphere Kerberos Kerberos principal, in the ″DCE″
format used for extracting the
corresponding MVS userid using
IRRSIM00 (/.../realm/principal)

RunAs Rolename WebSphere Role Name Role name
RunAs Server WebSphere Server

Credential
MVS userid

Trust Interceptor WebSphere Authorized
Login

MVS userid

RunAs
Userid/Password

WebSphere
Userid/Password

MVS Userid

In addition to tracking by MVS userid, events need to be traced to an originating
userid. This is especially true for originating userids that are not MVS-based, such
as EJB Roles, Kerberos principals, and Custom Registry principals.
 Related information

 MVS System Management Facilities (SMF)
 z/OS Security Server RACF Auditor’s Guide

Configuring WebSphere Application Server for z/OS variables
WebSphere Application Server for z/OS provides configuration variables that
control server behavior. Specifically, these variables allow you to control:
v Output destinations and characteristics for the error log, and for CTRACE

buffers, data sets and the external writer.
v Trace buffers, data sets, and the content of trace data.
v Types of dumps to be requested.
v Timeout values for system and application behavior.

Generally speaking, the default values are designed for normal operation in a
production environment. Other circumstances might require different values:
v When you first customize and verify WebSphere Application Server for z/OS

installation, or
v When you test application workloads in a test environment, or
v when you encounter a problem, and need to collect more diagnostic data.

Chapter 2. Diagnosing and fixing problems 35

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ichza830.pdf

Steps for configuring WebSphere variables

You should know that:
v Configuration variables may be set on a cell, node, or server level.

– Variable values set on a cell level apply to all servers in all nodes in the cell,
unless a different value for the same variable is set on a node or server level.
Variable settings on a node or server level override values for the same
variable set at the cell level.

– Variables set on a node level apply to all servers in the node, unless a
different value for the same variable is set on the server level. Variable
settings on a server level override values for the same variable set at the node
or cell level.

– Variables set on a server level apply only to the specific server, not to any
other servers in the same node or cell.

 When you are diagnosing particular problems, you are most likely to alter
variable values on a server level, for a particular server. Specifying variable
values on the server level affects both the controller and servant regions.

v You may use scripting interfaces, instead of the WebSphere Administrative
console, to alter configuration variable values.

Depending on the types of problems you encounter, you might need to change the
values set for WebSphere configuration variables that control server behavior. The
following procedure explains how to use the WebSphere Administrative console to
change configuration variable values, commonly known as console settings.
1. Click Environment -> Manage WebSphere Variables in the console navigation

tree.
2. On the WebSphere Variables page, select Server as the scope of the variable

setting, and click Apply.
3. On the WebSphere Variables page, click New.
4. On the Variable page, specify a name and value for the variable. So other

people can understand what the variable is used for, also specify a description
for the variable. Then click OK.

5. Verify that the variable is shown in the list of variables.
6. Save your configuration.
7. To have the configuration take effect, stop the server and then start the server

again.

Debugging WebSphere Application Server applications

In order to debug your application, you must use your application development
tool (such as WebSphere Studio Application Developer) to create a Java project or a
project with a Java nature. You must then import the program that you want to
debug into the project. By following the steps below, you can import the
WebSphere Application Server examples into a Java project.

There are two debugging styles available:
v Step-by-step debugging mode prompts you whenever the server calls a method

on a Web object. A dialog lets you step into the method or skip it. In the dialog,
you can turn off step-by-step mode when you are finished using it.

v Breakpoints debugging mode lets you debug specific parts of programs. Add
breakpoints to the part of the code that you must debug and run the program
until one of the breakpoints is encountered.

36 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Breakpoints actually work with both styles of debugging. Step-by-step mode just
lets you see which Web objects are being called without having to set up
breakpoints ahead of time.

You need not import an entire program into your project. However, if you do not
import all of your program into the project, some of the source might not compile.
You can still debug the project. Most features of the debugger work, including
breakpoints, stepping, and viewing and modifying variables. You must import any
source that you want to set breakpoints in.

The inspect and display features in the source view do not work if the source has
build errors. These features let you select an expression in the source view and
evaluate it.
 1. Create a Java Project by opening the New Project dialog.
 2. Select Java from the left side of the dialog and Java Project in the right side of

the dialog.
 3. Click Next and then specify a name for the project (such as WASExamples).
 4. Press Finish to create the project.
 5. Select the new project, choose File > Import > File System, then Next to open

the import file system dialog.
 6. Select the directory Browse pushbutton and go to the following directory:

installation_root\installedApps\node_name
\DefaultApplication.ear\DefaultWebApplication.war.

 7. Select the checkbox next to DefaultWebApplication.war in the left side of the
Import dialog and then click Finish. This will import the JSPs and Java source
for the examples into your project.

 8. Add any JAR files needed to build to the Java Build Path. To do this, select
Properties from the right-click menu. Choose the Java Build Path node and
then select the Libraries tab. Use the Add External JARs pushbutton to add
the following JAR files:
v

 installation_root\installedApps\node_name\DefaultApplication.ear\Increment.jar.
 Once you have added this JAR file, select it and use the Attach Source
pushbutton to attach Increment.jar as the source - Increment.jar contains both
the source and class files.
v installation_root\lib\j2ee.jar
v installation_root\lib\pagelist.jar
v installation_root\\lib\webcontainer.jar

Click OK when you have added all of the JARs.
 9. You can set some breakpoints in the source at this time if you like, however, it

is not necessary as step-by-step mode will prompt you whenever the server
calls a method on a Web object. Step-by-step mode is explained in more detail
below.

10. To start debugging, you need to start the WebSphere Application Server in
debug mode and make note of the JVM debug port. The default value of the
JVM debug port is 7777.

11. Once the server is started, switch to the debug perspective by selecting
Window > Open Perspective > Debug. You can also enable the debug launch
in the Java Perspective by choosing Window > Customize Perspective and
selecting the Debug and Launch checkboxes in the Other category.

Chapter 2. Diagnosing and fixing problems 37

12. Select the workbench toolbar Debug pushbutton and then select WebSphere
Application Server Debug from the list of launch configurations. Click the
New pushbutton to create a new configuration.

13. Give your configuration a name and select the project to debug (your new
WASExamples project). Change the port number if you did not start the server
on the default port (7777).

14. Click Debug to start debugging.
15. Load one of the examples in your browser (for example,

http://localhost:9080/hitcount).

Attaching WebSphere Studio Application Developer to a remote
debug session

The steps below describe how to attach WebSphere Studio Application Developer
to a remote debug session on WebSphere Application Server for z/OS. Remote
debugging can prove useful when the program you are debugging behaves
differently on a z/OS system than on your local system.
1. Enable the debug engine on WebSphere Application Server for z/OS using the

adminstrative console. See Debugging WebSphere Application Server
Applications.

2. Import the the java source code you wish to debug into WebSphere Studio
Application Developer and set breakpoints. See the WebSphere Studio Application
Developer InfoCenter at http://publib.boulder.ibm.com/infocenter/wsphelp/
for instructions on setting breakpoints.

3. Open a WebSphere Studio Application Developer debug perspective and create
a debug session configuration. See the WebSphere Studio Application Developer
InfoCenter at http://publib.boulder.ibm.com/infocenter/wsphelp/ for
instructions.

4. Attach WebSphere Studio Application Developer to the WebSphere Application
Server for z/OS debug runtime. See ″Connecting to a remote VM with the
remote Java application launch configuration″ in the WebSphere Studio
Application Developer InfoCenter at
http://publib.boulder.ibm.com/infocenter/wsphelp/

5. Execute the java code in WebSphere Application Server for z/OS to hit the
breakpoints set in WebSphere Studio Application Developer.

6. Use WebSphere Studio Application Developer debugger controls and features
to debug the application. See the WebSphere Studio Application Developer
InfoCenter at http://publib.boulder.ibm.com/infocenter/wsphelp/ for more
information.

 Related concepts

 “Debugging WebSphere Application Server applications” on page 36
 Related information

 WebSphere combined information center

Unit testing with DB2

The steps below describe how to setup a unit test environment that would allow
you to develop and unit test code with DB2 z/OS to support Container Managed
Persistence (CMP) development and access DB2 test data that resides on z/OS.
1. Configure DB2 Distributed Data Facility on z/OS to allow remote TCP/IP

connections from your WebSphere Studio Application Developer workstation.

38 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publib.boulder.ibm.com/infocenter/wsphelp/

2. Install the DB2 Client Configuration Assistant on the workstation where
WebSphere Studio Application Developer is installed. The DB2 Client
Configuration Assistant is shipped with DB2.

3. Use the DB2 Client Configuration Assistant to define a DB2 alias.
4. Use the DB2 alias you defined to access the DB2 subsystem on z/OS using the

DB2 Distributed Data Facility (DDF).
 Related information

 WebSphere combined information center

Troubleshooting by task: what are you trying to do?

This section provides troubleshooting information based on the task you were
trying to accomplish when the problem occurred. To find more information about
your problem, select a task category from the list below.

Troubleshooting installation problems
Select the problem you are having with WebSphere Application Server installation:
v The installation process completes, but sample applications, such as the snoop

servlet or other applications from the Sample Gallery do not work.

Installation completes but the administrative console does not
start
What kind of problem are you having?
v ″Internal Server Error″, ″Page cannot be found″, 404, or similar error trying to

view administrative console.
v ″Unable to process login. Please check User ID and password and try again. ″

error when trying to access console page.
v Directory paths in the console are garbled.

If you are able to bring up the browser page, but the console’s behavior is
inconsistent, error-prone, or unresponsive, try upgrading the browser you are
using. Older browsers may not support the administrative console’s features. For a
listing of supported Web browsers, see
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html.

"Internal Server Error", "Page cannot be found", 404, or similar error trying to
view administrative console

If you are unable to view the administrative console, here are some steps to try:
v Verify that the application server which supports the administrative console is

up and running.
– For a ″base″ configuration, the administrative console is deployed by default

on ″server1″. Before viewing the administrative console, you must verify
″server1″ is running. Do so by issuing the following MVS console command
to list active processes. Enter the following command from the MVS console
D A,L

Check for the application server procedure name of BB05ACR with the server
short name of BB0S001. If it isn’t running, enter the following command on
the MVS console:
START appserver_proc_name,JOBNAME=server_short_name,
 ENV=cell_short_name.node_short_name.server_short_name
 Example:
START BBO5ACR,JOBNAME=BBOS001,ENV=PLEX1.SY1.BBOS001

Chapter 2. Diagnosing and fixing problems 39

http://publib.boulder.ibm.com/infocenter/wsphelp/
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

– For a Network Deployment configuration, the Deployment Manager runs the
administrative console. To start the Deployment Manager, you can, for
example, issue the following command from the MVS console:
START BBO5DCR,JOBNAME=BBODMGR,ENV=PLEX1.PLEX1.BBODMGR

– View the joblog or sysprint for the application server or deployment manager
to verify that the server supporting the administrative console has actually
started.

v Check the URL you are using to view the console. By default, it is
http://server_name:9080/admin.

v If you are browsing the console from a remote machine, try to eliminate
connection, address and firewall issues by:
– Pinging the server machine from a command prompt, using the same server

name as in the URL.

"Unable to process login. Please check User ID and password and try again. "
error when trying to access console page

This error indicates that security has been enabled for WebSphere Application
Server, and the user ID or password supplied is either invalid or not authorized to
access the console.

To access the console,
v If you are the administrator, use the ID defined as the security administrative

ID. This ID is stored in the WebSphere Application Server directory structure in
the file security.xml.

Directory paths in the console are garbled

If directory paths used for classpaths or resources specified in the Application
Assembly Tool, configuration files, or elsewhere, appear garbled in the
administrative console, it may be because the Java runtime interprets a backslash
(\) as denoting a control character.

To resolve, make sure you have no backslashes in your classpaths. You can only
have forward slashes in them.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Installation completes, but sample applications do not work
If the WebSphere Application Server installation program completes successfully,
but the sample applications do not run:
v Browse the application server logs for clues.
v View the logs of the hosting application server for clues, after attempting to run

a Sample application,
v Look up any error or warning messages in the message table by selecting the

Quick reference view of this InfoCenter and expanding the Messages heading.
v You can also encounter some security-related problems, such as after turning on

security, ″MSGS0508E: The JMS Server security service was unable to
authenticate userid:″ error is displayed in the error log when starting an
application server.

 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

40 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Related reference

 “Troubleshooting installation problems” on page 39

Troubleshooting testing and first time run problems
Select the problem you are having with testing or the first run of deployed code
for WebSphere Application Server:
v A Web resource, such as a JSP, servlet, HTML file, or image, does not display.
v Cannot access a datasource.
v Cannot access an enterprise bean from a servlet, JSP file, stand-alone program,

or other client.
v Cannot access an object hosted by WebSphere Application Server, such as an

enterprise bean or connection pool, from a servlet, JSP file, stand-alone program,
or other client.

v I have errors and access problems after enabling security.
v I get errors after enabling Secure Sockets Layer (SSL), or SSL-related error

messages.
v I have problems with messaging.
v I get errors when trying to send a SOAP request.
v A WebSphere Application Server Client program does not work.
v I get errors connecting to WebSphere MQ and creating WebSphere MQ queue

connection factory.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Web resource (JSP file, servlet, HTML file, image) does not
display
What kind of error do you see when you start an application?
v HTTP server and Application Server are working separately, but requests are

not passing from HTTP server to Application Server.
v File serving problems (html, images, etc).
v Graphics do not appear on jsp or servlet output.
v SRVE0026E: [Servlet Error]-[Unable to compile class for JSP error on JSP.
v After modifying and saving a JSP, the change does not show up in the browser

(the old JSP displays).
v Message similar to ″Message: /jspname.jsp(9,0) Include: Mandatory attribute

page missing″ displays when trying to access JSP.
v The Java source generated from a JSP is not retained in the temp directory (only

the classfile is found).
v The JSP Batch Compiler fails with the message ″Enterprise Application

[application name you typed in] not found.″
v Non-English browser input is garbled.
v Scroll bars do not appear around items in the browser window.
v Error ″Page cannot be displayed... server not found or DNS error″ appears when

attempting to browse a Java Server Page (JSP) using Internet Explorer.

Otherwise, if you are not able to display a resource in your browser follow these
steps:
v Verify that your HTTP server is healthy by accessing the

URLhttp://server_name from a browser and seeing whether the ″Welcome
page″ appears. This indicates whether the HTTP server is up and running,
regardless of the state of WebSphere Application Server.

v If the HTTP server ″Welcome page″ does not appear, that is, if you get a browser
message such as ″page cannot be displayed″ or something similar, try to
diagnose your Web server problem.

v If the HTTP server appears to be functioning, the problem is:

Chapter 2. Diagnosing and fixing problems 41

– The Application Server may not be serving the target resource. To see if this is
the case, try accessing the resource directly through the Application Server
instead of through the HTTP server.

– If you cannot access the resource directly through the Application Server:
- Verify that the URL used to access the resource is correct.
- If the URL is incorrect and it is created as a link from another JSP file,

servlet, or HTML file:
v After clicking the link, try correcting it by hand in the browser’s URL

field and reloading, to confirm that the problem is a malformed URL. If
this is the problem, correct the URL in the ″from″ HTML file, servlet or
jsp file.

- If the URL appears to be correct, but the resource cannot be accessed
directly through the Application Server, verify the health of the hosting
Application Server and Web module:
v View the hosting Application Server and Web module in the

administrative console to verify they are up and running.
v Copy a simple HTML or JSP file (such as SimpleJsp.jsp in the

WebSphere Application Server directory structure) to your Web module
document root, and try to access it. If this works, the problem is with
your resource. View the logs of your Application Server to find out why
your resource cannot be found or served

v If the resource can be accessed directly through the Application Server, but not
through an otherwise healthy HTTP server, the problem lies with the HTTP
plug-in -- the component that communicates between the HTTP server and the
WebSphere Application Server.

v If JSP and servlet output is served, but not static resources such as .html and
image files, see the steps for enabling file serving.

v If some kinds of resources display correctly, but you cannot display a servlet by
its class name:
– Ensure that the servlet is in a directory in the Web module classpath, such as

in the /Web_module_name.war/WEB-INF/classes directory.
– Ensure that you specify the full class name of the servlet, including its

package name, in the URL.
– Ensure that ″/servlet″ precedes the class name in the URL. For example: if

the root context of a Web module is ″myapp″, and the servlet is
com.mycom.welcomeServlet, then the URL should read:

http://<hostname>/myapp/servlet/com.mycom.welcomeServlet
– Ensure that serving servlets by classname is enabled for the hosting Web

module by opening the source Web module in the Application Assembly Tool
and browse the ″serve servlets by classname″ setting in the IBM Extensions
property page. If necessary, enable this flag and redeploy the Web module.

– For servlets or other resources served by mapped URLs, the URL is
http://hostname/web module context root/mappedURL.

Accessing a web resource through the application server (bypassing the HTTP
server)

Starting with WebSphere Application Server version 4.0, you can bypass the HTTP
server and access a web resource through the application server. It is not
recommended to serve a production Web site in this way, but it provides a good
diagnostic tool when it is not clear whether a problem resides in the HTTP server,
WebSphere Application Server, or the HTTP plug-in.

To access a Web resource through the Application Server:
v Find out the port of the HTTP service in the target Application Server.

42 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

– In the WebSphere Administrative Console, select Servers->Manage
Application Servers.

– Select the target server, then under Additional Properties select Web
Container.

– Under the Additional Properties of the Web Container, select HTTP
Transports. You will see the ports listed for virtual hosts served by the
Application Server.

v Using the HTTP transport port number of the Application Server, access the
resource from a browser. For example, if the port is 9080, the URL would be
http://hostname:9080\myAppContext\myJSP.jsp.

v If you are still unable to access the resource, ensure that the HTTP transport port
is in the ″Host Alias″ list:
1. Select Application Servers>Your_ApplicationServer>Web Container>HTTP

Transports to check the Default virtual host and the HTTP transport ports
used by this Application Server.

2. Select Environment>Manage Virtual Hosts>default host>Host Aliases to
check if the HTTP transport port exists. Add an entry if necessary. For
example, if the HTTP port for your application is server is 9080, add a host
alias of *:9082.

HTTP server and Application Server are working separately, but requests are not
passing from HTTP server to Application Server

If your HTTP server appears to be functioning correctly, and the Application
Server also works on its own, but browser requests sent to the HTTP server for
pages are not being served, this indicates a problem in the WebSphere Application
Server plug-in.

If this is the case:
v Determine whether the HTTP server is attempting to serve the requested

resource itself, rather than forwarding it to the WebSphere Application Server.
– Browse the HTTP server access log (IHS install root\logs\access.log for

IBM HTTP Server). It may indicate that it could not find the file in its own
document root directory.

– browse the plug-in log file as described below.
v The file install_dir/config/plugin-cfg.xml determines which requests sent to

the HTTP server are forwarded to the WebSphere Application Server, and to
which Application Server. You may need to refresh this file:
– In the WebSphere Application Server administrative console, expand the

Environment tree control.
– Select Update WebSphere Plugin.
– Stop and restart the HTTP server and retry the Web request.

v Browse the file install_dir/logs/http_plugin.log for clues to the problem.
Make sure the timestamps with the most recent Plugin Information stanza,
which is printed out when the plug-in is loaded, correspond to the time the
Webserver was started.

v Turn on plug-in tracing by setting the LogLevel attribute in the
install_dir/config/plugin-cfg.xml file to Trace and reloading the request, then
browsing the install_dir/logs/http_plugin.log file. You should be able to see
the plug-in attempting to match the request URI with the various URI
definitions for the routes in the plugin-cfg.xml. You should be able to see what
rules the plug-in is not matching against and then figure out if you need to add
additional ones. If you just recently installed the application you may need to
manually regenerate the plug-in configuration in order to pick up the new URIs
related to the new application.

Chapter 2. Diagnosing and fixing problems 43

File serving problems (html, images, etc)

If text output appears on your JSP- or servlet-supported Web page, but image files
do not:
v Ensure that your files are in the right place: the document root directory of your

Web application WebSphere Application Server follows the J2EE standard, which
means that the document root is the Web_module_name.war directory of your
deployed Web application. Typically this directory will be found in the
installation_root/installedApps/nodename/appname.ear or
installation_root/installedApps/nodename/appnameNetwork.ear directory.
 If the files are in a subdirectory of the document root, verify that the reference to
the file reflects that. That is, if invoices.html is stored in Windows directory
Web_module_name.war\invoices, then links from other pages in the Web
application to display it should read ″invoices\invoices.html″, not
″invoices.html″.

v Ensure that your Web application is configured to enable file serving (i.e.,
display of static resources like image and .html files):
– View the file serving property of the hosting Web module by browsing the

source .war file in the Application Assembly Tool (AAT). If necessary, update
the property and re-deploy the module.

– Edit the fileServingEnabled property in the deployed Web application
ibm-web-ext.xmi configuration file, typically found in the
install_root/config/cells/nodename or
nodenameNetwork/applications/application name/deployments/application
name/Webmodule name/web-inf directory.

Graphics do not appear on jsp or servlet output

If text output appears on your JSP- or -servlet-supported Web page, but image files
do not:
v Ensure that your graphic files are in the right place: the document root directory

of your Web application WebSphere Application Server 5 follows the J2EE
standard, which means that the document root is the Web_module_name.war
directory of your deployed Web application. Typically this directory will be
found in the installation_root/installedApps/nodename/appname.ear or
installation_root/installedApps/nodename/appnameNetwork.ear directory.
 If the graphics files are in a subdirectory of the document root, verify that the
reference to the graphic reflects that; e.g., if banner.gif is stored in Windows
directory Web_module_name.war/images, the tag to display it should read: <img
SRC=″images/banner.gif″>, not .

v Ensure that your Web application is configured to enable file serving (i.e.,
display of static resources like image and .html files).
– View the file serving property of the hosting Web module by browsing the

source .war file in the AAT. If necessary, update the property and re-deploy
the module. Or

– Edit the fileServingEnabled property in the deployed Web application
ibm-web-ext.xmi configuration file, typically found in the
install_root/config/cells/nodename or
nodenameNetwork/applications/application name/deployments/application
name/Webmodule name/web-inf directory.

– After following one of the above steps:
- In the administrative console, expand the Environment tree control .
- Click the link Update WebSphere Plugin.
- Stop and restart the HTTP server and retry the Web request.

44 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

SRVE0026E: [Servlet Error]-[Unable to compile class for JSP

If this error appears in a browser when trying to access a new or modified .jsp file
for the first time, the most likely cause is that the JSP Java source failed (was
incorrect) during the javac compilation phase.

To confirm that this is the problem, check the logs for a compiler error message,
such as:

C:\WASROOT\temp\ ... test.war_myJsp.java:14: \
Duplicate variable declaration: int myInt was int myInt
int myInt = 122;
String myString = ″number is 122″;
static int myStaticInt=22;
int myInt=121;
 ^

If this is the problem, fix the problem in the JSP source, save the source and
re-request the JSP.

If this error occurs when trying to serve a JSP that was copied from another system
where it ran successfully, then there is something different about the new server
environment that prevents the JSP from running.

Browse the text of the error for a statement like:

 Undefined variable or class name: MyClass

This error indicates that a supporting class or jar file has not been copied to the
target server, or is not on the classpath. To resolve, find the file MyClass.class, and
place it on the Web module WEB-INF/classes directory, or place its containing .jar
file in the Web module WEB-INF/lib directory.

Verify that the URL used to access the resource is correct
v For a JSP file, html file, or image file:

http://host_name/Web_module_context_root/subdir under doc root, if
any/filename.ext. The document root for a web application is the
application_name.WAR directory of the installed application.
– For example, to access myJsp.jsp, located in

c:\WebSphere\ApplicationServer\installedApps\myEntApp.ear\myWebApp.war\invoices
on myhost.mydomain.com, and assuming the context root for the myWebApp
Web module is ″myApp″, the URL would be
http://myhost.mydomain.com/myApp/invoices/myJsp.jsp.

– JSP serving is enabled by default. File serving for html and image files must
be enabled as a property of the Web module, in the Application Assembly
Tool, or by setting the fileServingEnabled property to ″true″ in the
ibm-web-ext.xmifile of the installed Web application and restarting the
application.

v For servlets served by class name, the URL is
http://hostname/Web_module_context_root/servlet/packageName.className.
– For example, to access myCom.myServlet.class, located in

c:\WebSphere\ApplicationServer\installedApps\
myEntApp.ear\myWebApp.war\WEB-INF\classes, and assuming the context
root for the myWebApp module is ″myApp″, the URL would be
http://myhost.mydomain.com/myApp/servlet/myCom.MyServlet.

Chapter 2. Diagnosing and fixing problems 45

v Serving servlets by classname must be enabled as a property of the Web module,
and is enabled by default. File serving for html and image files must be enabled
as a property of the Web application, in the Application Assembly Tool, or by
setting the fileServingEnabled property to ″true″ in the ibm-web-ext.xmi file of
the installed Web application and restarting the application.

Correct the URL in the "from" html file, servlet or jsp

An HREF with no leading ″/″ inherits the calling resource context. For example:
v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″ServletB″ resolves

to ″http://hostname/myapp/servlet/ServletB″
v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″servlet/ServletB″

resolves to ″http://hostname/myapp/servlet/servlet/ServletB″ (an error)
v an HREF in http://[hostname]/myapp/servlet/MyServlet to ″/ServletB″

resolves to ″http://hostname/ServletB″ (an error, if ServletB requires the same
context root as MyServlet)

After modifying and saving a JSP, the change does not show up in the browser
(the old JSP displays)

The most likely cause of this error is that the Web application is not configured for
servlet reloading, or the reload interval is too high.

To correct this problem, in the Application Assembly Tool, check the Reloading
Enabled flag and the Reload Interval value in the IBM Extensions for the the Web
module in question. Turn Reloading on, or if it is already on then set the Reload
Interval lower.

Message like "Message: /jspname.jsp(9,0) Include: Mandatory attribute page
missing" appears when attempting to browse JSP

The most likely cause of this error is that the JSP file failed during the translation
to Java phase. Specifically, a JSPdirective, in this case an Include statement, was
incorrect or referred to a file that could not be found.

To correct this problem, fix the problem in the JSP source, save the source and
re-request the JSP.

The Java source generated from a JSP is not retained in the temp directory (only
the classfile is found)

The most likely cause of this error is that the JSP Processor is not configured to
keep generated Java source.

To correct this problem, in the Application Assembly Tool, check the JSP
Attributes under Assembly Property Extensions for the Web module in question.
Make sure the attribute keepgenerated is there and is set to true. If not, set this
attribute and restart the Web application. To see the results of this operation, you
will have to delete the classfile from the temp directory in order to force the JSP
Processor to retranslate the JSP source into Java.

The JSP Batch Compiler fails with the message "Enterprise Application
[application name you typed in] not found."

The most likely cause of this error is that the full Enterprise Application path and
name, starting with the .ear subdirectory that resides in the

46 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

install_root\config\cells\node_nameNetwork\applications directory is expected
as an argument to the JspBatchCompiler tool, not just the display name. For
example:
v ″JspBatchCompiler -enterpriseapp.name

sampleApp.ear/deployments/sampleApp″ is correct, as opposed to
v ″JspBatchCompiler -enterpriseapp.name sampleApp″, which is incorrect.

Non-English browser input is garbled

If non-English-character-set browser input is apparently garbled after being read
by a servlet or JSP, ensure that the request parameters are encoded according to the
expected chararacter set before being read. For example, if the site is Chinese, the
target .jsp should have a line:

 req.setCharacterEncoding(″gb2312″);

before any req.getParameter() calls.

Note: This problem especially affects servlets and jsps ported from earlier versions
of WebSphere Application Server, which converted characters automatically
based upon the locale of the WebSphere Application Server.

Scroll bars do not appear around items in the browser window

In some browsers, tree or list type items that extend beyond their allotted windows
do not have scroll bars to allow you to see the entire list.

To correct this problem, right click on the browser window and select Reload from
the pop-up menu.

Error "Page cannot be displayed... server not found or DNS error" appears when
attempting to browse a Java Server Page (JSP) using Internet Explorer

This error can occur when you use the network deployment manager to deploy a
new application to WebSphere Application Server for z/OS version 5.0. The most
likely cause of this error is that the setting ″Show friendly HTTP error messages″
has been checked in Internet Explorer.

To correct this problem, select Tools -> Internet Options -> Advanced from the
action bar in Internet Explorer. Scroll down to the entry ’Show friendly HTTP error
messages’ and deselect the checkbox.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Cannot access a data source
What kind of database are you trying to access?
v Oracle
v DB2
v SQL Server
v Cloudscape
v Sybase
v My problem was not described under the topic for my database, or might not be

DBM specific.

If none of these errors match the one you see:
1. Browse the log files of the application server for clues.

Chapter 2. Diagnosing and fixing problems 47

2. Browse the Helper Class property of the data source to verify that it is correct
and that it is on the WebSphere Application Server classpath. Mysterious errors
or behavior might be the result of a missing or misnamed Helper Class name.
If WebSphere Application Server is not able to load the specified class, it uses a
default helper class that might not function correctly with your database
manager.

What kind of error do you see when you try to access your Oracle-based
datasource
v ″DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the

linkedException for more information.″
v Invalid Oracle URL specified
v ″DSRA0080E: An exception was received by the Data Store Adapter. See original

exception message: ORA-00600″ when connecting to or using an Oracle data
source.

v ″Error while trying to retrieve text for error″ error when connecting to an Oracle
data source.

v java.lang.UnsatisfiedLinkError connecting to an Oracle data source.
v java.lang.NullPointerException or ″internal error: oracle.jdbc.oci8.OCIEnv″

connecting to an Oracle data source.
v WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip,

in Resource, Oracle JDBC Thin Driver, located at
cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an invalid
variable.

What kind of problem are you having accessing your DB2 database?
v SQL0805N Package ″package name″ was not found.
v SQLException, with ErrorCode -99,999 and SQLState 58004, with java

″StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver]
CLI0119E Unexpected system failure. SQLSTATE=58004″ using WAS40-type data
source.

v DSRA0023E: The DataSource implementation class
″COM.ibm.db2.jdbc.DB2XADataSource″ could not be found. when trying to
access a data source based on a DB2 database.

v SQL0805N Package ″NULLID.SQLLC300″ was not found. SQLSTATE=51002.
v SQL0567N ″DB2ADMIN″ is not a valid authorization ID. SQLSTATE=42602.
v CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a

XAconnection, or DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception:
[IBM][CLI Driver] CLI0119E Unexpected system failure. SQLSTATE=58004.

v COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The
current transaction has been rolled back because of a deadlock or timeout.
Reason code ″2″. SQLSTATE=40001.

v (Unix)java.sql.SQLException: java.lang.UnsatisfiedLinkError: Can’t find library
db2jdbc (libdb2jdbc.a or .so) in java.library.path.

v ″COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource″ could not be found for data
source (data_source).

What kind of problem are you having accessing your SQL Server database?
v ERROR CODE: 20001 and SQL STATE: HY000.
v Application fails with message stating ″Cannot find stored procedure...″

What kind of problem are you having accessing your Cloudscape database?
v Unexpected IOException wrapped in SQLException, accessing Cloudscape

database.
v ″Select for update″ on one row causes table to become locked, triggering a

deadlock condition.

48 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v ″ERROR XSDB6: Another instance of Cloudscape might have already booted the
database databaseName.″ error starting application server.

Note: Cloudscape errorCodes (2000, 3000, 4000) indicate levels of severity, not
specific error conditions. In diagnosing Cloudscape problems, pay attention
to the given sqlState value.

What kind of problem are you having accessing your Sybase database?
v SET CHAINED command not allowed within multi-statement transaction.
v ″Sybase Error 7713: Stored Procedure can only be executed in unchained

transaction mode″ error.
v ″JZ0XS: The server does not support XA-style transactions. Please verify that the

transaction feature is enabled and licensed on this server.″
v A Container Managed Persistence (CMP) enterprise bean is causing exceptions.

What kind of general data access problem do you have?
v ″ObjectNotFoundException″, ″NameNotFoundException″, or other jndi-related

error when the client application attempts to use the data source.
v ″IllegalConnectionUseException″
v WTRN0062E: An illegal attempt to enlist multiple one phase capable resources

has occurred.
v ConnectionWaitTimeoutException.
v com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver]

SQL1013N The database alias name or database name ″NULL″ could not be
found. SQLSTATE=42705

v java.sql.SQLException: java.lang.UnsatisfiedLinkError:
v ″J2CA0030E: Method enlist caught java.lang.IllegalStateException″ wrapped in

error ″WTRN0063E: An illegal attempt to enlist a one phase capable resource
with existing two phase capable resources has occurred″ when attempting to
execute a transaction.

DSRA8100E: Unable to get a {0} from the DataSource. Explanation: See the
linkedException for more information.

When using oracle thin driver, Oracle throws ″java.sql.SQLException: invalid
arguments in call″ if no username or password is specified when getting a
connection. If you see this while running WebSphere Application Server, the alias
is not set.

To remove the exception, define the alias on the data source.

Invalid Oracle URL specified

This error might be caused by an incorrectly specified URL on the URL property of
the target data source.

Examine the URL property for the data source object in the administrative console.
For the 8i OCI driver, ensure that oci8 is used in the URL. For the 9i OCI driver,
you can use either oci8 or oci.

Examples of Oracle URLs:
v For the thin driver: jdbc:oracle:thin:@hostname.rchland.ibm.com:1521:IBM
v For the thick (OCI) driver: jdbc:oracle:oci8:@tnsname1

"DSRA0080E: An exception was received by the Data Store Adapter. See original
exception message: ORA-00600" when connecting to or using an Oracle data

Chapter 2. Diagnosing and fixing problems 49

source "DSRA0080E: An exception was received by the Data Store Adapter. See
original exception message: ORA-00600" when connecting to or using an Oracle
data source "DSRA0080E: An exception was received by the Data Store Adapter.
See original exception message: ORA-00600" when connecting to or using an
Oracle data source

A possible reason for this exception is that the version of the Oracle JDBC driver
being used is older than the Oracle database. It is possible that more than one
version of the Oracle JDBC driver has been configured on the WebSphere
Application Server.

To confirm that this is the cause of the problem, examine the version of the JDBC
driver. Sometimes you can determine the version by looking at the classpath to
determine what directory the driver is in.

If you cannot determine the version this way, use the following program to
determine the version. Before running the program, set the classpath to the
location of your JDBC driver files.

import java.sql.*;
 import oracle.jdbc.driver.*;
 class JDBCVersion
 {
 public static void main (String args[])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 // Get a connection to a database
 Connection conn = DriverManager.getConnection
 (″jdbc:oracle:thin:@appaloosa:1521:app1″,″sys″,″change_on_install″);
 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();
 // gets driver info:
 System.out.println(″JDBC driver version is ″ + meta.getDriverVersion());
 }
 }

If the driver and the database are at different versions, replace the JDBC driver
with the correct version. If multiple drivers are configured, remove any that are at
the incorrect level.

"Error while trying to retrieve text for error" error when connecting to an Oracle
data source

The most likely cause is that the Oracle 8i OCI driver is being used with an
ORACLE_HOME property that is either not set or is set incorrectly.

To correct the error, examine the user profile that WebSphere Application Server is
running under to verify that the $ORACLE_HOME environment variable is set
correctly.

"java.lang.UnsatisfiedLinkError:" connecting to an Oracle data source

50 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

The problem might be that the environment variable LIBPATH is not set or is set
incorrectly, if your data source throws an UnsatisfiedLinkError, and the full
exception indicates that the problem is related to an Oracle module, as in the
following examples.
v Example of invalid LIBPATH for the 8i driver:

Exception in thread ″main″ java.lang.UnsatisfiedLinkError:
/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so:
load ENOENT on shared library(s)
/usr/WebSphere/AppServer/java/jre/bin/libocijdbc8.so libclntsh.a

v Example of invalid LIBPATH for the 9i driver:

Exception in thread ″main″ java.lang.UnsatisfiedLinkError:
no ocijdbc9 (libocijdbc9.a or .so) in java.library.path
at java.lang.ClassLoader.loadLibrary(ClassLoader.java(Compiled Code))
at java.lang.Runtime.loadLibrary0(Runtime.java:780)

To correct the problem, examine the user profile that WebSphere Application
Server is running under to verify that the LIBPATH environment variable includes
Oracle libraries. Scan for the file lobocijdbc8.so to find the right directory.

java.lang.NullPointerException referencing 8i classes, or " internal error:
oracle.jdbc.oci8. OCIEnv" connecting to an Oracle data source

The problem might be that the 9i OCI driver is being used on an AIX 32 bit
machine, the LIBPATH is set correctly, but the ORACLE_HOME is not set or is set
incorrectly, if you encounter an exception similar to either of the following, when
your application attempts to connect to an Oracle data source:
v Exception example for java.lang.NullPointerException:

Exception in thread ″main″ java.lang.NullPointerException
at oracle.jdbc.oci8.OCIDBAccess.check_error(OCIDBAccess.java:1743)
at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:69)
at oracle.jdbc.oci8.OCIDBAccess.logon(OCIDBAccess.java:452)
at oracle.jdbc.driver.OracleConnection. <init>(OracleConnection.java:287)

v Exception example for java.sql.SQLException:

Exception in thread ″main″ java.sql.SQLException:
internal error: oracle.jdbc.oci8. OCIEnv@568b1d21
at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:184)
at oracle.jdbc.dbaccess.DBError.throwSqlException(DBError.java:226)
at oracle.jdbc.oci8.OCIEnv.getEnvHandle(OCIEnv.java:79)

To correct the problem, examine the user profile that WebSphere Application
Server is running under to verify that it has the $ORACLE_HOME environment variable
set correctly, and that the $LIBPATH includes $ORACLE_HOME/lib.

WSVR0016W: Classpath entry, ${ORACLE_JDBC_DRIVER_PATH}/classes12.zip,
in Resource, Oracle JDBC Thin Driver, located at
cells/BaseApplicationServerCell/nodes/wasrtp/resources.xml has an invalid
variable

This error occurs when no environment variable is defined for the property,
ORACLE_JDBC_DRIVER_PATH.

Chapter 2. Diagnosing and fixing problems 51

Verify that this is the problem in the administrative console. Go to Environment >
Manage WebSphere Variables to verify whether the variable
ORACLE_JDBC_DRIVER_PATH is defined.

To correct the problem, click New and define the variable. For example, name :
ORACLE_JDBC_DRIVER_PATH , value : c:\oracle\jdbc\lib Use a value that
names the directory in your operating system and directory structure that contains
the classes12.zip file.

SQL0805N Package "<package-name>" was not found

Possible reasons for these exceptions are:
v If the package name is NULLID.SQLLC300, see SQL0805N Package

″NULLID.SQLLC300″ was not found. SQLSTATE=51002. for the reason.
v You are attempting to use an XA-enabled JDBC driver on a DB2 database that is

not XA-ready.

To correct the problem on a DB2/UDB database, run this one-time procedure,
using the db2cmd interface while connected to the database in question:
1. DB2 bind @db2ubind.lst blocking all grant public
2. DB2 bind @db2cli.lst blocking all grant public

The db2ubind.lst and db2cli.lst files are in the bnd directory of your DB2
install_root. Run the commands from that directory.

SQLException, with ErrorCode -99,999 and SQLState 58004, with java
"StaleConnectionException: COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver]
CLI0119E Unexpected system failure. SQLSTATE=58004", when using
WAS40-type data source

An unexpected system failure usually occurs when running in XA mode
(two-phase commit). Among the many possible causes are:
v An invalid username or password was provided.
v The database name is incorrect.
v Some DB2 packages are corrupted.

To determine whether you have a username or password problem, look in the
db2diag.log file to view the actual error message and SQL code. A message like
the following, with an SQLCODE of -1403, indicates an invalid user ID or
password:

2002-07-26-14.19.32.762905 Instance:db2inst1 Node:000
PID:9086(java) Appid:*LOCAL.db2inst1.020726191932
XA DTP Support sqlxa_open Probe:101
DIA4701E Database ″POLICY2″ could not be opened
for distributed transaction processing.
String Title: XA Interface SQLCA PID:9086 Node:000
SQLCODE = -1403

To resolve these problems:
1. Correct your username and password. If you specify your password on the

GUI (for 40 Datasource), ensure that the username and password you specify
on the bean are correct. The username and password you specify on the bean
overwrite whatever you specify when creating the data source.

2. Use the correct database name.
3. Rebind the packages (in the bnd directory) as follows:

52 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

db2connect to dbname
c:\SQLLIB\bnd>DB2 bind @db2ubind.lst blocking all grant public
c:\SQLLIB\bnd>DB2 bind @db2cli.lst blocking all grant public

4. Ensure that the file \WebSphere\AppServer\properties\wsj2cdpm.properties
has the right userid and password.

Error message "java.lang.reflect.InvocationTargetException:
com.ibm.ws.exception.WsException: DSRA0023E: The DataSource
implementation class "COM.ibm.db2.jdbc.DB2XADataSource" could not be
found." when trying to access a DB2 database

One possible reason for this exception is that a user is attempting to use a JDBC
2.0 DataSource, but DB2 is not JDBC 2.0 enabled. This frequently happens with
new installations of DB2 because DB2 provides separate drivers for JDBC 1.X and
2.0, with the same physical file name. By default, the JDBC 1.X driver is on the
classpath.

To confirm that this is the problem:
v On Windows systems, look for the file inuse in the java12 directory in your

DB2 install_root. If it is not there, you are using the JDBC 1.x driver.
v On UNIX systems, check the classpath for your data source. If it does not point

to the db2java.zip file in the java12 directory, you are using the JDBC 1.x
driver.

To correct this problem:
v On Windows systems, stop DB2. Run usejdbc2.bat from the java12 directory in

your DB2 install_root. Run this from a command line to verify that it completes
successfully.

v On UNIX systems, change the classpath for your data source to point to the
db2java.zip file in the java12 directory of your DB2 install_root.

SQL0805N Package "NULLID.SQLLC300" was not found. SQLSTATE=51002

Some possible causes of this error are:
v The underlying database was dropped and recreated.
v DB2 was ugpraded, and its packages are not rebound correctly.

To resolve this problem, rebind the DB2 packages by running the db2cli.lst script
found in the bnd directory. For example:db2>@db2cli.lst.

SQL0567N "DB2ADMIN " is not a valid authorization ID. SQLSTATE=42602

If you encounter this error when attempting to access a DB2/UDB data source:
1. Verify that your username and password in the data source properties in the

admin console, are correct.
2. Ensure that the userid and password do not contain blank characters (before,

in between, or after).

CLI0119E System error. SQLSTATE=58004 - DSRA8100 : Unable to get a
XAconnection or DSRA0011E: Exception: COM.ibm.db2.jdbc.DB2Exception:
[IBM][CLI Driver] CLI0119E Unexpected system failure. SQLSTATE=5800

If you encounter this error when attempting to access a DB2/UDB data source:
1. Check your username and password ″custom properties″ in the data source

properties page in the admin console. Ensure that they are correct.

Chapter 2. Diagnosing and fixing problems 53

2. Ensure the userid and password do not contain any blank characters (before,
in between, or after).

3. Check that the WAS.policy file exists for the application, for example,
D:\WebSphere\AppServer\installedApps\markSection.ear\META-
INF\was.policy.

4. View the entire exception listing for an underlying SQL error, and look it up
using the DBM vendor message reference.

If you encounter this error while running DB2 on Red Hat Linux, the max queues
system wide parameter is too low to allow DB2 to acquire the necessary resources
to complete the transaction. When this is the problem, exception DSRA8100E can
be preceded by exceptions J2CA0046E and DSRA0010E.

To correct this problem, edit the file /proc/sys/kernal/msgmni to increase the value
of the max queues system wide parameter to a value greater than 128.

COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N The
current transaction has been rolled back because of a deadlock or timeout.
Reason code "2". SQLSTATE=40001

This is probably an application-caused DB2 deadlock, particularly if you see an
error similar to the following when accessing a DB2 data source:

ERROR CODE: -911
COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT] SQL0911N
The current transaction has been rolled back because of a deadlock or timeout.
Reason code ″2″. SQLSTATE=40001

To diagnose the problem:
1. Execute these DB2 commands:

a. db2 update monitor switches using LOCK ON
b. db2 get snapshot for LOCKS on dbName >

directory_name\lock_snapshot.log

The directory_name\lock_snapshot.log now has the DB2 lock information.
2. Turn off the lock monitor by executing: db2 update monitor switches using

LOCK OFF

To verify that you have a deadlock:
1. Look for an application handle that has a lock-wait status, then look for the ID

of agent holding lock to verify the ID of the agent.
2. Go to that handle to verify it has a lock-wait status, and the ID of the agent

holding the lock for it. If it is the same agent ID as the previous one, then you
know that you have a circular lock (deadlock).

To resolve the problem:
1. Examine your application and use a less restrictive isolation level if no

concurrency access is needed.
2. Use caution when moving to a lesser accessIntent, which can result in data

integrity problems.
3. For DB2/UDB Version 7.2 and earlier releases, you can set the DB2_RR_TO_RS

flag from the DB2 command line window to eliminate unnecessary deadlocks,
such as when the accessIntent defined on the bean method is too restrictive, for
example, PessmisticUpdate. The DB@_RR_TO_RS setting has two impacts:
v If RR is your chosen isolation level, it is effectively downgraded to RS.

54 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v If you choose another isolation level, and the DB2_RR_TO_RS setting is on,
a scan skips over rows that have been deleted but not committed, even
though the row might qualify for the scan. The skipping behavior affects the
RR, Read Stability (RS), and Cursor Stability (CS) isolation levels.

 For example, consider the scenario where transaction A deletes the row with
column1=10 and transaction B does a scan where column1>8 and column1<12.
With DB2_RR_TO_RS off, transaction B waits for transaction A to commit or
rollback. If transaction A rolls back, the row with column1=10 is included in the
result set of the transaction B query. With DB2_RR_TO_RS on, transaction B
does not wait for transaction A to commit or rollback. Transaction B
immediately receives query results that do not include the deleted row. Setting
DB2_RR_TO_RS effectively changes locking behavior, thus avoiding deadlocks.

java.sql.SQLException: java.lang.UnsatisfiedLinkError: Can’t find library
db2jdbc (libdb2jdbc.a or .so) in java.library.path

"COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource" could not be found for data
source ([data-source-name])"

This error usually occurs when the classpath of the DB2 JDBC driver is set
correctly to ${DB2_JDBC_DRIVER_PATH}/db2java.zip but the environment variable
DB2_JDBC_DRIVER_PATH is not set.

Confirm that this is the problem on the Manage WebSphere Variables panel.
Select Environment to verify that there is no entry for the variable
DB2_JDBC_DRIVER_PATH.

To correct this problem, add the variable DB2_JDBC_DRIVER_PATH with value
equal to the directory path containing the db2java.zip file.

ERROR CODE: 20001 and SQL STATE: HY000 accessing SQLServer database

The problem might be that the Distributed Transaction Coordinator service is not
started, if you see an error similar to the following when attempting to access an
SQL Server database:

ERROR CODE: 20001
SQL STATE: HY000
java.sql.SQLException: [Microsoft][SQLServer JDBC Driver]
[SQLServer]xa_open (0) returns -3
at com.microsoft.jdbc.base.BaseExceptions.createException(Unknown Source) ...
at com.microsoft.jdbcx.sqlserver.SQLServerDataSource.getXAConnection
(Unknown Source) ...

To confirm that this is the problem, in the Windows Control Panel > Services (or
the Control Panel > Administrative Tools > Services) window, verify whether the
service Distributed Transaction Coordinator or DTC is started. If not, it might be
the cause of the problem.

To resolve this problem, start the Distributed Transaction Coordinator service.

Application fails with message stating "Cannot find stored procedure..."
accessing an SQLServer database

Chapter 2. Diagnosing and fixing problems 55

One possible cause for this error is that the Stored Procedures for JTA feature was
not installed on the Microsoft SQL Server.

To correct the problem, repeat the installation for the Stored Procedures for JTA
feature, according to the ConnectJDBC installation guide.

Unexpected IOException wrapped in SQLException, accessing Cloudscape
database

This problem can occur because Cloudscape databases use a large number of files.
Some operating systems, such as Sun Solaris, limit the number of files an
application can open at one time. If the default is a low number, such as 64, you
can get this exception.

If your operating system lets you configure the number of file descriptors, you can
correct the problem by setting the number to a high value, such as 1024.

"select for update" causes table lock and deadlock when accessing Cloudscape

If a select for update operation on one row locks the entire table, which creates a
deadlock condition, the cause can be that you have not defined indexes on that
table. Lack of an index on the columns you use in the where clause can cause
Cloudscape to create a table lock rather than a row level lock.

To resolve this problem, create an index on the affected table.

ERROR XSDB6: Another instance of Cloudscape may have already booted the
database "database"

This problem is caused by the fact that running Cloudscape embedded framework
allows only one JVM to access the database instance at a time.

To resolve this problem:
1. Ensure that you do not have other JDBC client programs, such as ij or cview

running on that database instance, when WebSphere Application Server is
running.

2. Ensure that you do not use the same instance of the database for more than
one data source.

3. Or, use the networkServer framework, which doesn’t have this limitation.

"SET CHAINED command not allowed within multi-statement transaction."
exception accessing Sybase

The reason for the error might be that:
v You are attempting to set autocommit to on in a 2 phase transaction, which is

not permitted.
v You have an incorrectly configured DSM license.

To verify that one of these problems is the cause, look for an error similar to the
following when attempting to use a Sybase data source:

[7/30/02 9:44:06:191 CDT] 3ab306e5 SybaseDataSto d The sqlState is: ZZZZZ
[7/30/02 9:44:06:191 CDT] 3ab306e5 GenericDataSt > findMappingClass for exception
com.sybase.jdbc2.jdbc.SybSQLException: SET CHAINED command
not allowed within multi-statement transaction.

56 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

To resolve the problem of attempting to set autocommit on in a 2 phase
transaction, perform either of these actions:
v Do not modify the autocommit value.
v Use a single phase data source.

To resolve the problem of an incorrectly configured DSM license, correct the
Adaptive Server Enterprise DTM option authorization code. This is the license
code supplied by your Sybase dealer. You can enter it into the license.dat file in
the Sybase directory structure.

"Sybase Error 7713: Stored Procedure can only be executed in unchained
transaction mode" error

This error occurs when either:
v The JDBC attempts to put the connection in autocommit(true) mode.
v A stored procedure is not created in a compatible mode.

To fix the autocommit(true) mode problem, let the application change the
connection to chained mode using Connection.setAutoCommit(false), or use a set
chained on language command.

To resolve the stored procedure problem, use this command, sp_procxmode
procedure_name, ″anymode″.

"JZ0XS: The server does not support XA-style transactions. Please verify that the
transaction feature is enabled and licensed on this server."

This error occurs when XA-style transactions are attempted on a server that does
not have Distributed Transaction Management (DTM) installed.

To correct this problem, use the instructions in the Sybase Manual titled: Using
Adaptive Server Distributed Transaction Management Features to enable Distributed
Transaction Management (DTM). The main steps in this procedure are:
1. Install the DTM option.
2. Check the license.dat file to verify that the DTM option was installed.
3. Restart the license manager.
4. Enable DTM in ISQL.
5. Restart the ASE service.

A Container Managed Persistence (CMP) enterprise bean is causing exceptions

This error is caused by improper use of reserved words. Reserved words cannot be
used as column names.

To correct this problem, rename the variable to remove the reserved word. You can
find a list of reserved words in the Sybase Adaptive Server Enterprise Reference
Manual; Volume 1: Building Blocks, Chapter 4. This manual is available online at:
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman.

IllegalConnectionUseException

One possible reason for this error is that a connection obtained from a
WAS40DataSource is being used on more than one thread. This is a violation of the
J2EE 1.3 programming model, and an exception is generated when it is detected on
the server. This problem occurs for users accessing a data source through servlets
or Bean Managed Persistence (BMP) type enterprise beans.

Chapter 2. Diagnosing and fixing problems 57

http://manuals.sybase.com/onlinebooks/group-as/asg1250e/refman

To confirm that this is the problem, examine the code for sharing of connections.
Code can inadvertently cause sharing by not following the programming model
recommendations, for example by storing a connection in an instance variable in a
servlet, which can cause the connection to be used on multiple threads at the same
time.

WTRN0062E: An illegal attempt to enlist multiple one phase capable resources
has occurred

Possible causes of this error include:
v An attempt to share a single phase connection, when each getConnection

method has different connection properties; such as the AccessIntent. This causes
the connection to be created as non-shareable.

v An attempt to have more than one unshareable connection participate in a
global transaction, when the data source is not an XA resource.

v An attempt to have a one phase resource participate in a global transaction
while an XA resource or another one phase resource has already participated in
this global transaction.
– Within the scope of a global transaction you try to get a connection more than

once and at least one of the resource-refs you are using specifies that the
connection is unshareable, and the data source is not configured to support 2
Phase Commit transactions. It does not support an XAResource. If you do not
use a resource-ref, you default to unshareable connections.

– Within the scope of a global transaction you try to get a connection more than
once and at least one of the resource-refs you are using specifies that the
connection is shareable and the data source is not configured to support two
phase Commit transactions. That is, it does not support an XAResource. In
addition, even though you specify that connections should be shareable, each
getConnection request is made with different connection properties (such as
IsolationLevel or AccessIntent). In this case, the connections are not shareable,
and multiple connections are handed back.

– Multiple components (Servlets, Session Beans, BMP Entity Beans, or CMP
Entity Beans) are accessed within a global transaction. All use the same
DataSource, all specify shareable connections on their resource-refs, and you
expect them to all share the same connection. If the properties are different, as
stated above, you get multiple connections. AccessIntent settings on CMP
beans change their properties. To share a connection, the AccessIntent setting
must be the same. For more information about CMP beans sharing a
connection with non-CMP components, see the Data access application
programming interface support and Example: Accessing data using IBM extended
APIs to share connections between container-managed and bean-managed persistence
beans topics in the DataAccess section of the InfoCenter.

To correct this error:
v Check what your client code passes in with its getConnection requests, to

ensure they are consistent with each other.
v Check the connection sharing scope from the resource binding, using the AAT.

– If you are running an unshareable connection scope, ensure that your data
source is an XA data source.

– If you are running a shareable connection scope, ensure that all connection
properties, including AccessIntent and other properties (such as userid), are
sharable.

v Check the JDBC provider implementation class from the Manage JDBC
resource panel of the administrative console to ensure that it is a class that
supports XA-type transactions.

58 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

ConnectionWaitTimeoutException accessing a data source or resource adapter

If your application receives a
com.ibm.websphere.ce.cm.ConnectionWaitTimeoutException or
com.ibm.websphere.ce.j2c.ConnectionWaitTimeoutException when attempting to
access a WebSphere Application Server data source or JCA-compliant resource
adapter, respectively, some possible causes are:
v The maximum number of connections for a given pool is set too low. The

demand for concurrent use of connections is greater then the configured
maximum for the connection pool. One indication that this is the problem is that
you receive these exceptions regularly, but your CPU utilization is not high. This
indicates that there are too few connections available to keep the threads in the
server busy.

v Connection Wait Time is set too low. Current demand for connections is high
enough such that sometimes there is not an available connection for short
periods of time. If your connection wait timeout value is too low, you may
timeout shortly before a user returns a connection back to the pool. Adjusting
the connection wait time may give you some relief. One indication that this is
the problem is that you are using near the maximum number of connections for
an extended period and receiving this error regularly.

v You are not closing some connections or are returning connections back to the
pool at a very slow rate. This can easily happen when using unshareable
connections, when you forget to close them, or you close them long after you are
finished using them, thus keeping the connection from being returned to the
pool for reuse. The pool soon becomes empty and all applications get
ConnectionWaitTimeoutExceptions. One indication that this is the problem is
that the connection pool has become starved and you receive this error on most
requests.

v You are driving more load than the server or backend system have resources to
handle. In this case you must determine which resources you need more of and
upgrade configurations or hardware to address the need. One indication that
this is the problem is that the application or database server CPU is nearly 100%
busy.

To correct these problems, modify an application to use fewer connections or
properly close the connections, change the pool settings of MaxConnections or
ConnnectionWaitTimeout, or adjust resources and their configuration.

com.ibm.websphere.ce.cm.StaleConnectionException: [IBM][CLI Driver]
SQL1013N The database alias name or database name "NULL" could not be
found. SQLSTATE=42705

This error occurs when a data source has been defined but the databaseName
attribute and corresponding value have not been added to the ″custom properties″.

To add the databaseName property:
1. Expand the Resources->Manage JDBC Providers link in the administrative

console.
2. Select the JDBC Provider which supports the problem data source.
3. Select Data Sources and then select the problem data source.
4. Under additional properties select Custom Properties.
5. Select the databaseName property, or add one if it does not exist, and enter the

actual database name as the value.
6. Click Apply or OK, and then Save from the action bar.
7. Try to access the data source again.

Chapter 2. Diagnosing and fixing problems 59

java.sql.SQLException: java.lang.UnsatisfiedLinkError:

This error indicates that the directory containing the binary libraries which support
a database are not included in the LIBPATH environment variable for the
environment in which the WebSphere Application Server is started.

The path containing the DBM vendor’s libraries vary by dbm. One way to find
them is by scanning the for missing library specified in the error message. Then
the LIBPATH variable can be corrected to include the missing directory, either in
the .profile of the account from which WebSphere Application Server is executed,
or by adding a statement in a .sh file which then executes the ″startServer″
program.

"J2CA0030E: Method enlist caught java.lang.IllegalStateException" wrapped in
error "WTRN0063E: An illegal attempt to enlist a one phase capable resource
with existing two phase capable resources has occurred" when attempting to
execute a transaction.

This error can occur when Last Participant Support (LPS) is missing or disabled.
LPS allows a one-phase capable resource and a two-phase capable resource to be
enlisted within the same transaction.

LPS is only available if the following are true:
v WebSphere Application Server Programming Model Extensions (PME), which is

included in the Application Server Enterprise product) is installed.
v The option ″Additional Enterprise Extensions″ was enabled when PME was

installed. If you perform a typical installation, this is be enabled by default. If
you perform a custom installation, you have the option to disable this function,
which would disable LPS.

v The application enlisting the one phase resource has been deployed with the
Accept heuristic hazard option enabled. This is done through the Application
Assembly Tool. To enable this option in the Application Assembly Tool:
1. Load the EAR file into the Application Assembly Tool.
2. If the EAR file is actually a JTEE1.2 EAR then it must be upgraded to a

JTEE1.3 EAR by selecting File-> Convert EAR from the Application Assembly
Tool.

3. Select the EAR file in the left-hand panel of the Application Assembly Tool.
4. Select the WAS Enterprise tab in bottom right-hand window panel of the

Application Assembly Tool.
5. Ensure that the Accept heuristic hazard option is selected.
6. Save the EAR file.

 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Cannot access an enterprise bean from a servlet, JSP file,
stand-alone program, or other client
What kind of error are you seeing?
v javax.naming.NameNotFoundException: Name name not found in context

″local″ message when access is attempted
v BeanNotReentrantException is thrown
v CSITransactionRolledbackException / TransactionRolledbackException is

thrown
v Call fails, Stack trace beginning EJSContainer E Bean method threw exception

[exception_name] found in JVM log file.
v Call fails, ObjectNotFoundException or ObjectNotFoundLocalException when

accessing stateful session EJB found in JVM log file.

60 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v Attempt to start CMP EJB module fails with
javax.naming.NameNotFoundException: dataSourceName

v

v Message BBOT0003W is issued
v Symptom: CNTR0001W: A Stateful SessionBean could not be passivated

If the client is remote to the enterprise bean, which means, running in a different
application server or as a stand-alone client, browse thelogs of the application
server hosting the enterprise bean as well as log files of the client.

ObjectNotFoundException or ObjectNotFoundLocalException when accessing
stateful session EJB

A possible cause of this problem is that the stateful session bean timed out and
was removed by the container. This event must be coded for, according to the EJB
2.0 specification (available at http://java.sun.com/products/ejb/docs.html),
section 7.6.2, Dealing with exceptions.

Stack trace beginning "EJSContainer E Bean method threw exception
[exception_name]" found in JVM log file

If the ″exception name″ indicates an exception thrown by an IBM class, that is it
begins ″com.ibm...″, then search for the exception name within this InfoCenter, and
in the online help as described below. If ″exception name″ indicates an exception
thrown by your application, contact the application developer to determine what
might have caused it.

javax.naming.NameNotFoundException: Name name not found in context "local"

A possible reason for this is exception is that the enterprise bean is not local (not
running in the same Java Virtual Machine [JVM] or Application Server) to the
client JSP, servlet, Java application, or other enterprise bean, yet the call is to one of
the enterprise bean’s ″local″ interface methods. If access worked in a development
environment but not when deployed to WebSphere Application Server, for
example, it could be that the enterprise bean and its client were in the same JVM
in development, but after deployment they are in separate processes.

To resolve this problem, contact the developer of the enterprise bean and
determine whether the client call is to a method in the enterprise bean’s local
interface. If so, have the client code changed to call a remote interface method, or
promote the local method into the remote interface.

References to enterprise beans with local interfaces are bound in a name space
local to the server process with the URL scheme of local:.

BeanNotReentrantException is thrown

This problem can be caused by client code (typically a servlet or JSP) attempting to
call the same stateful SessionBean from two different client threads. This situation
often arises when the an application stores the reference to the stateful session
bean in a static variable, uses a global (static) JSP variable to refer to the stateful
SessionBean reference, or stores the stateful SessionBean reference in the HTTP
session object and then has the client browser issue a new request to the servlet or
JSP before the previous request has completed.

Chapter 2. Diagnosing and fixing problems 61

http://java.sun.com/products/ejb/docs.html

To resolve this problem, ask the developer of the client code to review their code
for these conditions.

CSITransactionRolledbackException / TransactionRolledbackException is thrown

These are high-level exceptions thrown by an enterprise bean’s container, and
indicate that an enterprise bean call could not be successfully completed. When
this exception is thrown, logs to determine the underlying cause.

Some possible causes are:
v The enterprise bean may throw an exception that was not declared as part of its

method signature. The container is required to roll back the transaction in this
case. Common causes of this situation are where the enterprise bean or code that
it calls throws a NullPointerException, ArrayIndexOutOfBoundsException, or
other Java ″runtime″ exception, or where a BMP bean encounters a JDBC error.
The resolution is to investigate the enterprise bean code and resolve the
underlying exception, or to add the exception to the problem method’s
signature.

v A transaction may attempt to do additional work after being placed in a ″Marked
Rollback″, ″RollingBack″, or ″RolledBack″ state. Transactions cannot continue to
do work after they have been set to one of these states. Often this occurs
because the transaction has timed out which, in turn, often occurs because of a
database deadlock. The resolution is to work with the application’s database
managements tools or administrator to determine whether database transactions
called by the enterprise bean are timing out.

v A transaction may fail on commit due to ″dangling work″. This could be due to
″local″ transactions. The local transaction encounters some ″dangling work″
during commit. When a local transactions encounters an ″unresolved action″ the
default ″action″ is to ″rollback″. This can be adjusted to ″commit″ in the
Application Assembly Tool. In the AAT, open the enterprise bean .jar file (or
the EAR file containing the enterprise bean) and select the ″Session Beans″ or
″Entity Beans″ object in the component tree on the left. The ″Unresolved Action″
property is on the ″IBM Extensions″ tab of the container properties.

Attempt to start EJB module fails with "javax.naming.NameNotFoundException
dataSourceName_CMP"exception

The possible causes of this problem are:
v When the DataSource resource was configured, Container Managed Persistence

was not selected.
– To confirm that this is the problem, in the administrative console, browse the

properties of the data source given in the NameNotFoundException. On the
Configuration panel, look for a checkbox labeled Container Managed
Persistence.

– To correct this problem, select checkbox for Container Managed Persistence.
v If Container Managed Persistence is selected, it is possible that the CMP

DataSource could not be bound into the namespace.
– Look for additional naming warnings or errors in the status bar, and in the

hosting application server’s logs. Check any further naming-exception
problems that you find by looking at the topic Cannot access an object hosted
by WebSphere Application Server (enterprise bean, connection pool, etc) from
a servlet, JSP, stand-alone program , or other client.

Message BBOT0003W is issued

62 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Message BBOT0003W indicates a transaction timeout. The timeout may result in
the abnormal termination of the servant where the transaction was executing.
v The default timeout value for enterprise bean transactions is 120 seconds. After

this time, the transaction times out and the connection is closed.
v If the transaction legitimately takes longer than the specified timeout period, on

the Administrative console:
1. Go to Manage Application Servers -> server_name
2. Select the Transaction Service properties page
3. Increase the Total transaction lifetime timeout value
4. Save the configuration

Note: z/OS will use the value you set for Total transaction lifetime timeout as
the default transaction timeout setting. If you set a value for this property
that is greater than the Maximum transaction timeout value, z/OS will
use the Maximum transaction timeout value as the default.

Symptom:CNTR0001W: A Stateful SessionBean could not be passivated

This error can occur when a Connection Object being used in the bean has not
been closed or nulled out.

To confirm that this is the problem, look for an exception stack in the logs for the
EJB Container which hosts the enterprise bean, which looks similar to:

StatefulPassi W CNTR0001W:
A Stateful SessionBean could not be passivated: StatefulBeanO
(BeanId(XXX#YYY.jar#ZZZZ),
state = PASSIVATING)
java.io.NotSerializableException: com.ibm.ws.rsadapter.jdbc.WSJdbcConnection
 at java.io.ObjectOutputStream.outputObject((Compiled Code))
 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))
 at java.io.ObjectOutputStream.outputClassFields((Compiled Code))
 at java.io.ObjectOutputStream.defaultWriteObject((Compiled Code))
 at java.io.ObjectOutputStream.outputObject((Compiled Code))
 at java.io.ObjectOutputStream.writeObject(ObjectOutputStream.java(Compiled Code))
 at com.ibm.ejs.container.passivator.StatefulPassivator.passivate((Compiled Code))
 at com.ibm.ejs.container.StatefulBeanO.passivate((Compiled Code)
 at com.ibm.ejs.container.activator.StatefulASActivationStrategy.atUnitOfWorkEnd
 ((Compiled Code))
 at com.ibm.ejs.container.activator.Activator.unitOfWorkEnd((Compiled Code))
 at com.ibm.ejs.container.ContainerAS.afterCompletion((Compiled Code)

where XXX,YYY,ZZZ is the Bean’s name.

To correct this problem, the application must close all connections and set the
reference to null for all connections. Typically this is done in the ejbPassivate()
method of the bean. See the enterprise bean specification mandating this
requirement, specifically section 7.4 in the EJB specification version 2.0. Also, note
that the bean must be coded to reacquire these connections when the bean is
reactivated. Otherwise, there will be NullPointerExceptions when the application
tries to reuse the connections.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Chapter 2. Diagnosing and fixing problems 63

Cannot look up an object hosted by WebSphere Application
Server from a servlet, JSP file, or other client
To resolve problems encountered when a servlet, JSP file, stand-alone application
or other client attempts to access an enterprise bean, ConnectionPool, or other
named object hosted by WebSphere Application Server, you must first verify that
the target server can be accessed from the client:
v From a command prompt on the client’s server, enter ″ping server_name″ and

verify connectivity.
v Use the WebSphere Application Server administrative console to verify that the

target resource’s application server and, if applicable, EJB module or Web
module, is started.

Continue only if there is no problem with connectivity and the target resource
appears to be running.

What kind of error are you seeing?
v NameNotFoundException from JNDI lookup operation
v CannotInstantiateObjectException from JNDI lookup operation
v Message NMSV0610I appears in the server’s log file, indicating that some

Naming exception has occurred
v OperationNotSupportedException from JNDI Context operation.
v ″WSVR0046E: Failed to bind″ error, with Original exception:

″org.omg.CosNaming.NamingContextPackage.AlreadyBound″.
v ConfigurationException from ″new InitialContext″ operation or from a JNDI

Context operation with a URL name.
v ServiceUnavailableException from ″new InitialContext″ operation.
v CommunicationException thrown from a ″new InitialContext″ operation.
v

NameNotFoundException from JNDI lookup operation

If you encounter this exception in trying to access an enterprise bean, data source,
messaging resource, or other resource:
v Browse the properties of the target object in the administrative console, and

verify that the jndi name it specifies matches the JNDI name the client is using.
v If you are looking up an object that resides on a server different from the one

from which the initial context was obtained, you must use the fully qualified
name.
– If access is from another server object such as a servlet accessing an enterprise

bean and you are using the default context, not specifying the fully qualified
JNDI name, you may get this error if the object is being hosted on a different
server.

– If access is from a stand-alone client, it may be that the object you are
attempting access is on a server different from the server from which you
obtained the initial context.

To correct this problem, use the fully-qualified JNDIname:
v If the object is in a single server:

cell/nodes/nodeName/servers/serverName/jndiName. Objects are not supported
in this release.

v If the object is on a server cluster: cell/clusters/clusterName/jndiName.

CannotInstantiateObjectException from JNDI lookup operation

If you encounter this exception in trying to access an enterprise bean, data source,
messaging resource, or other resource, possible causes include:

64 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v A serialized Java object is being looked up, but the necessary classes required to
deserialize it are not in the runtime environment.

v A Reference object is being looked up, and the associated factory used to process
it as part of the lookup processing is failing.

To determine the precise cause of the problem:
v Look in the logs of the server hosting the target resource. Look for exceptions

immediately preceding the CannotInstantiateObjectException. If it is a
java.lang.NoClassDefFoundError or java.lang.ClassNotFoundException, make
sure the class referenced in the error message can be located by the class loader.

v Print out the stack trace for the root cause and look for the factory class. It will
be called by javax.naming.NamingManager.getObjectInstance(). The reason for
the failure will depend on the factory implementation, and may require you to
contact the developer of the factory class.

Message NMSV0610I appears in the server’s log file, indicating that some
Naming exception has occurred

This error is informational only and is provided in case the exception is related to
an actual problem. Most of the time, it is not. If it is, the log file should contain
adjacent entries to provide context.
v If no problems are being experienced, ignore this message. Also ignore the

message if the problem you are experiencing does not appear to be related to the
exception being reported and if there are no other adjacent error messages in the
log.

v If a problem is being experienced, look in the log for underlying error messages.
v The information provided in message NMSV0610I can provide valuable debug

data for other adjacent error messages posted in response to the Naming
exception that occurred.

OperationNotSupportedException from JNDI Context operation

This error has two possible causes:
v An update operation, such as a bind, is being performed with a name that starts

with ″java:comp/env″. This context and its subcontexts are read-only contexts.
v A Context bind or rebind operation of a non-CORBA object is being performed

on a remote name space that does not belong to WebSphere Application Server.
Only CORBA objects can be bound to these CosNaming name spaces.

To determine which of these errors is causing the problem, check the full exception
message.

WSVR0046E: Failed to bind, ejb/jndiName: ejb/jndiName. Original exception :
org.omg.CosNaming.NamingContextPackage.AlreadyBound

This error occurs two enterprise bean server applications were installed on the
same server such that a binding name conflict occurred. That is, a jndiName value
is the same in the two applications’ deployment descriptors. The error will surface
during server startup when the second application using that jndiName value is
started.

To verify that this is the problem, examine the deployment descriptors for all
enterprise bean server applications running in the server in search for a jndiName
that is specified in more than one enterprise bean application.

Chapter 2. Diagnosing and fixing problems 65

To correct the problem, change any duplicate jndiName values to ensure that each
enterprise bean in the server process is bound with a different name.

ConfigurationException from "new InitialContext" operation or from a JNDI
Context operation with a URL name

If you are attempting to obtain an initial JNDI context, a configuration exception
can occur because an invalid JNDI property value was passed to the InitialContext
constructor. This includes JNDI properties set in the System properties or in some
jndi.properties file visible to the class loader in effect. A malformed provider URL
is the most likely property to be incorrect. If the JNDI client is being run as a thin
client such that the CLASSPATH is set to include all of the individual jar files
required, make sure the .jar file containing the properties file
com/ibm/websphere/naming/jndiprovider.properties is in the CLASSPATH.

If the exception is occurring from a JNDI Context call with a name in the form of a
URL, the current JNDI configuration may not be set up properly so that the
required factory class name cannot be determined, or the factory may not be
visible to the class loader currently in effect. If the name is a Java: URL, the JNDI
client must be running in a J2EE client or server environment. That is, the client
must be running in a container.

Check the exception message to verify the cause.

If the exception is being thrown from the InitialContext constructor, correct the
property setting or the CLASSPATH.

If the exception is being thrown from a JNDI Context method, make sure the
property java.naming.factory.url.pkgs includes the package name for the factory
required for the URL scheme in the name. URL names with the Java scheme can
only be used while running in a container.

ServiceUnavailableException from "new InitialContext" operation

This exception indicates that some unexpected problem occurred while attempting
to contact the name server to obtain an initial context. The
ServiceUnavailableException, like all NamingException objects, can be queried for
a root cause. Check the root cause for more information. It is possible that some of
the problems described for CommunicationExceptions may also result in a
ServiceUnavailableException.

Since this exception is triggered by an unexpected error, there is no probable cause
to confirm. If the root cause exception does not indicate what the probable cause is,
investigate the possible causes listed for CommunicationExceptions.

CommunicationException thrown from a "new InitialContext" operation

The name server identified by the provider URL cannot be contacted to obtain the
initial JNDI context. There are many possible causes for this problem, including:
v The host name or port in the provider URL is incorrect.
v The host name cannot be resolved into an IP address by the domain name

server, or the IP address does not match the IP address which the server is
actually running under.

v A firewall on the client or server is preventing the port specified in the provider
URL from being used.

66 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

To correct this problem:
v Make sure the provider URL and the network configurations on the client and

server machines are correct.
v Make sure the host name can be resolved into an IP address which can be

reached by the client machine. You can do this using the ping command.
v If you are running a firewall, make sure that use of the port specified in the

provider URL will be allowed.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Errors or access problems after enabling security
What kind of error are you seeing?
v I cannot access part or all of administrative console or use wsadmin after

enabling security
v I cannot access a Web page after enabling security
v The client cannot access an enterprise bean after enabling security
v The client never gets prompted when accessing a secured enterprise bean
v I cannot stop an application server, node manager, or node after enabling

security
v Error Message: SECJ0314E: Current Java 2 Security policy reported a potential

violation
v ″MSGS0508E: The JMS Server security service was unable to authenticate

userid:″ error displayed in SystemOut.log when starting an application server
v ″SECJ0237E: One or more vital LTPAServerObject configuration attributes are

null or not available″ after enabling security and starting application server.
v After enabling single sign-on, I cannot log on to the administrative console.

Can’t access part or all of admin console or use wsadmin after enabling security
v If you cannot access the administrative console, or view or update certain

objects, look in the logs of the application server which hosts the administrative
console page for a related error message.

v You may not have authorized your ID for administrative tasks. This is indicated
by errors such as:
– [8/2/02 10:36:49:722 CDT] 4365c0d9 RoleBasedAuth A SECJ0305A: Role

based authorization check failed for security name MyServer/myUserId,
accessId MyServer/S-1-5-21-882015564-4266526380-2569651501-1005 while
invoking method getProcessType on resource Server and module Server.

– Exception message: ″ADMN0022E: Access denied for the getProcessType
operation on Server MBean″

– When running the command: wsadmin -username j2ee -password j2ee:
WASX7246E: Cannot establish ″SOAP″ connection to host ″BIRKT20″
because of an authentication failure. Please ensure that user and password
are correct on the command line or in a properties file.

v To grant an ID administrative authority:
– From the Administrative Console, select System Administration -> Console

Users and validate that the ID is a member. If it is not, add the ID with at
least monitor access privileges, for read-only access.

v Check that the enable_trusted_application flag is set to true:
– From the Administrative Console, select Security -> Global Security ->

Custom Properties -> Enable Trusted Application and check that it is set to
true.

Can’t access a web page after enabling security

When secured resources cannot be accessed, causes include:

Chapter 2. Diagnosing and fixing problems 67

v Authentication errors - WebSphere Application Server security cannot identify
the ID of the person or process. Symptoms of authentication errors include:
– Netscape browser:

- ″Authorization failed. Retry?″ message displayed after an attempt to login.
- Allows any number of attempts to retry login and displays ″Error 401″

message when ″cancel″ is pressed to stop retry.
- Typical browser message: ″Error 401: Basic realm=’Default Realm’″.

– Internet Explorer browser:
- Login prompt displayed again after an attempt to login.
- Allows 3 attempts to retry login.
- Displays ″Error 401″ message after 3 unsuccessful retries.

v Authorization errors - security has identified the requesting person or process as
not authorized to access the secured resource. Symptoms of authorization errors
include:
– Netscape browser: ″Error 403: AuthorizationFailed″ message is displayed.
– Internet Explorer:

- ″You are not authorized to view this page″ message is displayed.
- ″HTTP 403 Forbidden″ error is also displayed.

v SSL errors - WebSphere Application Server security uses Secure Socket Layer
(SSL) technology internally to secure and encrypt its own communication, and
incorrect configuration of the internal SSL settings can cause problems. Also you
might have enabled SSL encryption for your own Web application or enterprise
bean client traffic which, if configured incorrectly, can cause problems regardless
of whether WebSphere Application Server security is enabled.
– SSL related problems are often indicated by error messages which contain a

statement such as: ERROR: Could not get the initial context or unable to
look up the starting context.Exiting. followed by
javax.net.ssl.SSLHandshakeException

– System SSL failures are indicated by error messages like the following:
Trace: 2003/08/11 19:53:40.682 01 t=9D49C0 c=UNK key=S2 (0E012048)
 Description: Failure Exit from -> SecurityManager::secureSocketInit
 Socket descriptor: 211
 gsk_secure_socket_init: 410

Authentication error accessing a Web page

Possible causes for authentication errors include:
Username or passwords invalid

Check the username and password and make sure they are correct.
Security configuration error : User registry type is not set correctly.

Check the user registry property in global security settings in the
administrative console. Ensure that it is the intended user registry.

Internal program error
If the client application is a Java stand-alone program, it might not be
gathering or sending credential information correctly.

Authorization error accessing a Web page

If a user who should have access to a resource does not, there is probably a
missing configuration step. Review the steps for securing and granting access to
resources.

Specifically:
v Check required roles for the accessed Web resource.
v Check the authorization table to make sure that the user, or the groups to which

the user belongs, is assigned to one of the required roles.

68 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v You can view required roles for the Web resource in the deployment descriptor
of the Web resource.

v You can also view the authorization table for the application that contains the
Web resource, using the administrative console.

v Test with a user who is granted the required roles, to see if the user can access
the problem resources.

v If the problem user is required to be granted one or more of the required roles,
use the administrative console to assign that user to required roles. Then stop
and restart the application.

Cannot access an enterprise bean after enabling security

If client access to an enterprise bean fails after security is enabled:
v Review the steps for securing and granting access to resources.
v Browse the server’s logs for errors relating to enterprise bean access and security.

Look up any errors in the message table.
v Errors similar to Authorization failed for /UNAUTHENTICATED while

invoking resource
securityName:/UNAUTHENTICATED;accessId:UNAUTHENTICATED not
granted any of the required roles roles indicate that:
– an unprotected servlet or JSP accessed a protected enterprise bean. When

unprotected servlet is accessed, the user is not prompted to login and hence
the servlet runs as UNAUTHENTICATED. When it makes a call to an
enterprise bean that is protected it will fail.
 To resolve this problem, secure the servlet that is accessing the secured
enterprise bean. Make sure the servlet’s runAs property is set to an ID that
can access the enterprise bean.

– An unauthenticated Java client program is accessing an enterprise bean
resource that is protected. This can happen if the file read by the
sas.client.props properties file used by the client program does not have
the securityEnabled flag set to true.
 To resolve this problem, make sure that the sas.client.props file on the
client side has its securityEnabled flag set to true.

v Errors similar to Authorization failed for valid_user while invoking resource
securityName:/username;accessId:xxxxxx not granted any of the required roles
roles indicate that a client attempted to access a secured enterprise bean
resource, and the supplied user ID is not assigned the required roles for that
enterprise bean.
– Check the required roles for the enterprise bean resource being accessed.

Required roles for the enterprise bean resource can be viewed in the
deployment descriptor of the Web resource.

– Check the authorization table and make sure that the user or the group that
the user belongs to is assigned one of the required roles. The authorization
table for the application that contains the enterprise bean resource can also be
viewed using administrative console.

v If you are using LOCALOS and SAFAuthorization, check the SAF EJBROLEs
setup. Specifically, make sure that
– the EJBROLE class has been activated
– The role has been defined to SAF
– The userid has been permitted to the role and the class was refreshed after

the permit operation.

Client program never gets prompted when accessing secured enterprise bean

Chapter 2. Diagnosing and fixing problems 69

Even though it appears security is enabled and an enterprise bean is secured, it
may happen that the client executes the remote method without getting prompted.
v If the remote method is protected, you should get an authorization failure.

Otherwise,
v Execute the method as an unauthenticated user.

Possible reasons for this include:
v The server you are communicating with may not have security enabled. Check

with the WebSphere Application Server administrator to ensure that the server
security is enabled. This is done in the global security settings from within the
Security section of the administrative console.

v The client does not have security enabled in the sas.client.props file. Edit the
sas.client.props to ensure the property com.ibm.CORBA.securityEnabled=true.

v The client does not have a ConfigURL specified. Ensure that the property
com.ibm.CORBA.ConfigURL is specified on the command line of the Java client,
using the -D parameter.

v The specified ConfigURL has an invalid URL syntax or the sas.client.props
pointed to by it cannot be found. Ensure that the property
com.ibm.CORBA.ConfigURL is valid, for example, similar to
file:/WebSphere/AppServer/properties/sas.client.props on Windows systems.
Check the Java documentation for a description of URL formatting rules. Also,
validate that the file exists at the specified path.

Cannot stop an application server, node manager, or node after enabling security

If you are using command line utilities to stop WebSphere Application Server
processes, you need to apply additional parameters after enabling security, in order
to provide authentication and authorization information.

Error Message: SECJ0314E: Current Java 2 Security policy reported a potential
violation on server

If you find errors on your server similar to:

Error Message: SECJ0314E: Current Java 2 Security policy reported a
potential violation of Java 2 Security Permission. Please refer to Problem
Determination Guide for further information.
{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code Base Location\:{5}

then The Java Security Manager checkPermission() method has reported a
SecurityException.

The reported exception may be critical to the secure system. Turn on security
trace to determine the potential code that may have violated the security policy.
Once the violating code is determined, you should verify if the attempted
operation is permitted with respect to Java 2 Security, by examining all applicable
Java 2 security policy files and the application code itself.

A more detailed report is enabled by either configuring RAS trace into debug
mode, or specifying a Java property.
v Specify the following property in the Application Servers > server name >

ProcessDefinition > Java Virtual Machine panel from the administrative
console in the Generic JVM arguments panel:
– add the runtime flag java.security.debug
– Valid values:

70 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

access to print all debug information including: required permission, code,
stack, and code base location.

stack to print debug information including: required permission, code, and
stack.

failure
to print debug information including: required permission and code.

For a review of Java security policies and what they mean , see the Java 2 Security
documentation at http://java.sun.com/j2se/1.3/docs/guide/security/index.html
.

Note: If the application is running with Java Mail, this message may be benign.
You can update the installed Enterprise Application
root/META-INF/was.policy file to grant the following permissions to the
application:
v permission java.io.FilePermission ″${user.home}${/}.mailcap″,

″read″;
v permission java.io.FilePermission ″${user.home}${/}.mime.types″,

″read″;
v permission java.io.FilePermission ″${java.home}${/}lib${/}mailcap″,

″read″;
v permission java.io.FilePermission

″${java.home}${/}lib${/}mime.types″, ″read″;

"MSGS0508E: The JMS Server security service was unable to authenticate
userid:" error displayed in SystemOut.log when starting an application server

This error may be a result of installing the JMS (messaging api) sample and then
enabling security. The JMS sample is not designed to work with WebSphere
Application Server security. If WebSphere Application Server was installed with
samples and no additional code was installed which uses messaging, this message
may be ignored.

You can verify the installation of the message-driven bean sample by launching the
installation program, selecting Custom, and browsing the components which are
already installed in the Select the features you like to install panel. The JMS
sample is shown as Message-Driven Bean Sample, under Embedded Messaging.

You can also verify this by using the administrative console to open the properties
of the application server which contains the samples, selecting ″MDBSamples″ and
clicking ″uninstall″.

SECJ0237E: One or more vital LTPAServerObject configuration attributes are
null or not available

The most likely cause of this error is that LTPA is selected as authentication
mechanism but the LTPA keys have not been generated. The LTPA keys are used
for encrypting the LTPA token.

To resolve this problem:
1. Select System Administration -> Console users -> LTPA
2. Enter a password, which can be anything.
3. Enter the same password in ″Confirm Password″.
4. Click Apply.
5. Click Generate Keys.
6. Click on Save.

Chapter 2. Diagnosing and fixing problems 71

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

After enabling single sign-on, I cannot log on to the administrative console

This problem occurs when single sign-on (SSO) is enabled, and you attempt to
access the administrative console using the short name of the server, for example
http://myserver:9090/admin. The server will accept your userID and password,
but returns you to the sign-on page instead of the administrative console.

To correct this problem, use the fully-qualified hostname of the server, for example
http://myserver.mynetwork.mycompany.com:9090/admin.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39

Errors after enabling Secure Sockets Layer, or Secure Sockets
Layer-related error messages
If you are unable to access resources using a Secure Sockets Layer (SSL) type URL
(beginning with ″https:″), or encounter error messages which indicate SSL
problems, ensure that your HTTP server has been configured correctly for SSL by
browsing the welcome page of the HTTP server using SSL by entering the URL
https://hostname.

If the page works with HTTP, but not HTTPS, the problem is in the HTTP server.
v Refer to the documentation for your HTTP server for instructions on correctly

enabling SSL. If you are using the IBM HTTP Server or Apache, go
to:http://www.ibm.com/software/webservers/httpservers/library.html. Select
the link Frequently Asked Questions, and the topic SSL.

If the HTTP server handles SSL-encrypted requests successfully, or is not involved
(for example, traffic flows from a Java client application directly to an enterprise
bean hosted by the WebSphere Application Server, or the problem appears only
after enabling WebSphere Application Server security), what kind of error are you
seeing?

System SSL

See z/OS System Secure Sockets Layer Programming SC24-5901 for information on
using the System Secure Sockets Layer (SSL) callable services programming
interfaces.
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: handshake failure
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: unknown certificate
v javax.net.ssl.SSLHandshakeException - The client and server could not negotiate

the desired level of security. Reason: bad certificate
v error when programmatically creating a credential.

javax.net.ssl.SSLHandshakeException - The client and server could not negotiate
the desired level of security. Reason: handshake failure

If you see a Java exception stack similar to: [Root exception is
org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:
JSSL0080E: javax.net.ssl.SSLHandshakeException - The client and server could
not negotiate the desired level of security. Reason: handshake
failure:host=MYSERVER,port=1079 minor code: 4942F303 completed: No] at
com.ibm.CORBA.transport.TransportConnectionBase.connect
(TransportConnectionBase.java:NNN), some possible causes are:

72 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/software/webservers/httpservers/library.html

v Not having common ciphers between the client and server.
v Not specifying the correct protocol.

To correct these problems:
v Review the SSL settings by browsing the WebSphere Administrative Console

Security Settings -> SSL Configuration Repertoires -> DefaultSSLSettings (or
other named SSL settings), then selecting the Secure Sockets Layer (SSL) option
from the Additional Properties menu. You can also browse the file manually by
viewing: install_dir/properties/sas.client.props.

v Check the property specified by com.ibm.ssl.protocol to determine which
protocol is specified.

v Check the cipher types specified by com.ibm.ssl.enabledCipherSuites. You may
want to add more cipher types to the list. To see which cipher suites are
currently enabled, go to the properties page of the SSL settings as described
above, and look for the Cipher Suites property. To see the list of all possible
cipher suites, go to the properties page of the SSL settings as described above,
then view the online help for that page. From the help page, click Configure
additional SSL settings.

v Correct the protocol or cipher problem by using a different client or server
protocol and/or cipher selection. Typical protocols are SSL or SSLv3.

javax.net.ssl.SSLHandshakeException: unknown certificate

If you see a Java exception stack similar to: ERROR: Could not get the initial
context or unable to look up the starting context. Exiting. Exception received:
javax.naming.ServiceUnavailableException: A communication failure occurred
while attempting to obtain an initial context using the provider url:
″corbaloc:iiop:localhost:2809″. Make sure that the host and port information is
correct and that the server identified by the provider url is a running name
server. If no port number is specified, the default port number 2809 is used.
Other possible causes include the network environment or workstation network
configuration. [Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:
JSSL0080E: javax.net.ssl.SSLHandshakeException - The client and server could
not negotiate the desired level of security. Reason: unknown
certificate:host=MYSERVER,port=1940 minor code: 4942F303 completed: No], it
may be caused by not having the server’s personal certificate in the client
truststore.

To correct this problem:
v Check the client truststore to determine if the signer certificate from the server

personal certificate is there. For a self-signed server personal certificate, the
signer certificate is the public key of the personal certificate. For a CA signed
server personal certificate, the signer certificate is the root CA certificate of the
CA which signed the personal certificate.

v Add the server signer certificate to the client truststore.

javax.net.ssl.SSLHandshakeException: bad certificate

If you see a Java exception stack similar to ERROR: Could not get the initial
context or unable to look up the starting context. Exiting. Exception received:
javax.naming.ServiceUnavailableException: A communication failure occurred
while attempting to obtain an initial context using the provider url:
″corbaloc:iiop:localhost:2809″. Make sure that the host and port information is
correct and that the server identified by the provider url is a running name
server. If no port number is specified, the default port number 2809 is

Chapter 2. Diagnosing and fixing problems 73

used.Other possible causes include the network environment or workstation
network configuration. [Root exception is org.omg.CORBA.TRANSIENT:
CAUGHT_EXCEPTION_WHILE_CONFIGURING_SSL_CLIENT_SOCKET:
JSSL0080E: javax.net.ssl.SSLHandshakeException - The client and server could
not negotiate the desired level of security. Reason: bad certificate:
host=MYSERVER,port=1940 minor code: 4942F303 completed: No], it can be
caused by having a personal certificate in the client keystore used for SSL mutual
authentication but not having extracted the signer certificate into the server
truststore so that the server could trust it whenever the SSL handshake is made.

To verify this, check the server truststore to determine if the signer certificate from
the client personal certificate is there. For a self-signed client personal certificate,
the signer certificate is the public key of the personal certificate. For a CA signed
client personal certificate, the signer certificate is the root CA certificate of the CA
which signed the personal certificate.

To correct this problem, add the client signer certificate to the server truststore.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting testing and first time run problems” on page 41

Errors in messaging (JMS API)
What kind of problem are you seeing?
v javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log.

javax.jms.JMSException: MQJMS2008: failed to open MQ queue in JVM log

This error can occur when the MQ queue name is not defined in the Internal JMS
Server Queue Names List. This can occur if a WebSphere Application Server Queue
Destination is created, without adding the Queue Name to the internal JMS Server
Queue Names List.

To resolve this problem:
v Open the WebSphere Application Server Administrative Console.
v Click Servers > Manage Application Servers > server_name> Server

Components > JMS Servers.
v Add the Queue Name to the list.
v Save the changes and restart the server.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting testing and first time run problems” on page 41

Errors returned to client trying to send a SOAP request
What kind of problem are you seeing?
v SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket;

java.net.ConnectException: Connection refused: connect
v javax.security.cert.CertPathBuilderException: No end-entity certificate matching

the selection criteria could be found.

If none of these errors match the one you see:
v Browse the application server logs.
v Look up any error or warning messages in the message table.

74 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

SOAPException: faultCode=SOAP-ENV:Client; msg=Error opening socket;
java.net.ConnectException: Connection refused: connect

The most likely cause of this refused connection is that it was sent to the default
port, 80, and an HTTP server is not installed or configured.

To verify this situation, send the message directly to the SOAP port. For example,
to http://hostname:9080. If this works, there are two ways to resolve the problem:
v Continue specifying port 9080 on SOAP requests.
v If an HTTP server such as the IBM HTTP Server, iis, IPlanet, or others, is not

installed, install one and then step through the WebSphere Application Server
installation to install the associated plug-in component.

v If an HTTP server is installed:
– Regenerate the HTTP plug-in configuration in the administrative console by

clicking Environment > Update WebServer Plugin, and restart the HTTP
server.

– If the problem persists, view the HTTP server access and error logs, as well as
the install_dir/logs/http_plugin.log file for more information.

javax.security.cert.CertPathBuilderException: No end-entity certificate matching
the selection criteria could be found

This error usually indicates that new or updated security keys are needed. The
security key files are:
v SOAPclient
v SOAPserver
v sslserver.p12

In an installed application, these files are located in:
install_dir/installedApps/application_name.ear/soapsec.war/key/. After
replacing these files, you must stop and restart the application.

To replace these files in a SOAP-enabled application that has not yet been installed:
v Expand application_name.ear.
v Expand soapsec.war.
v Replace the security key files in the key/ directory.
v After you have replaced these files, install the application and restart the server.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting testing and first time run problems” on page 41

Client program does not work
What kind of problem are you seeing?
v ActiveX client fails to display ASP files, or WebSphere Application Server

resources (JSP files, servlet, or HTML pages), or both.

If you do not see a problem that resembles yours, or if the information provided
does not solve your problem, for further assistance.

ActiveX client fails to display ASP files, or WebSphere Application Server
resources (JSP files, servlet, or HTML pages),or both

A possible cause of this problem is that both IIS (for serving ASP files) and an
HTTP server that supports WebSphere Application Server (such as IBM HTTP

Chapter 2. Diagnosing and fixing problems 75

Server) are deployed on the same host. This leads to misdirected HTTP traffic if
both servers are listening on the same port (such as the default port 80).

To resolve this problem, do one of the following:
v Open the IIS administrative panel, and edit the properties of the default Web

server to change the port number to something other than 80;
v Install IIS and the WebSphere Application Server HTTP server on separate

servers.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 “Troubleshooting by component: what is not working?” on page 87
 Related reference

 “Troubleshooting testing and first time run problems” on page 41

Errors connecting to WebSphere MQ and creating WebSphere
MQ queue connection factory
The following exception may occur when trying to create the MDBListener
instance:
6/23/03 22:45:58:232 CDT] 673106a8 MsgListenerPo W WMSG0049E:
Failed to start MDB PSSampleMDB against listener port SamplePubSubListenerPort
[6/23/03 22:47:58:289 CDT] 673106a8 FreePool E J2CA0046E:
Method createManagedConnctionWithMCWrapper caught an exception
during creation of the ManagedConnection for resource
JMS$SampleJMSQueueConnectionFactory, throwing ResourceAllocationException.
Original exception: javax.resource.spi.ResourceAdapterInternalException:
 createQueueConnection failed
com.ibm.mq.MQException: MQJE001: An MQException occurred:
Completion Code 2, Reason 2009
MQJE003: IO error transmitting message buffer at
com.ibm.mq.MQManagedConnectionJ11.(MQManagedConnectionJ11.java:239)

This problem occurs because the MQ manager userid does not have write access to
the /tmp directory. To correct this problem, before you use a Jacl procedure to
configure WebSphere Application Server resources and install an application:
1. Ensure that all applications have write access to /tmp directory. Use the chmod

1777 command on the directory if necessary.
2. Create another subdirectory under /tmp (for example, /tmp/mydir). Use this

directory as a ″working directory″ for the Jacl.
3. Restart the server.

Applications that use messaging on startup should start successfully.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting testing and first time run problems” on page 41

Resolving timeout conditions
This file gives an overview of how to resolve timeout conditions

In such a complex environment as WebSphere Application Server for z/OS,
timeouts might occur for many different reasons. Although you can alter timeout
values, you should not do so until you understand why the timeout occurs.
Depending on the timeout condition, you might be able to permanently fix the
timeout condition by doing some system or application tuning. For example, if the

76 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

diagnostic data indicates throughput problems, you can alter the number of server
regions, the number of threads within each server region, or the use of replicated
servers.

Generally speaking, increasing the timeout values should be your last resort, or
only a temporary action taken to prevent multiple timeout-abend dumps from
causing system performance problems. If you increase timeout values without
properly diagnosing the timeout condition, the only results you might see are less
frequent abends and dumps for the same timeout condition, or slower system or
application performance.

Understanding how timers work
This file gives an overview of understanding timers

Timers define a limit to the amount of time required for a specific operation to
complete. When the timer begins its countdown depends on type of operation it
controls. The timers that WebSphere Application Server for z/OS uses can be
classified into the general types described later in this article; the specific timers
themselves are described in Controlling behavior through timeout values. Most of
the timers have a default value that defines a reasonable limit for the particular
operation to complete. When the timer pops (that is, reaches the time limit),
WebSphere Application Server for z/OS takes one of the following actions:
v Sends a minor code to the client for timers that pop before the client request is

dispatched to a servant region.
v Abnormally ends the servant region with an EC3 ABEND for timers that pop

while the client request is being processed by an application component running
in the servant region. All threads in the abending servant region will be
terminated.
 WebSphere terminates the servant region to prevent the application from tying
up resources, thus causing other requests to start backing up. Once the servant is
terminated, WLM starts a new servant to take its place and continue processing
requests from the controller.

Different types of timers might be counting down simultaneously, because the
operations they control might overlap to a certain degree. For example, suppose
the application server receives an IIOP client request that will be processed by an
application component that uses transaction support. In this case, both of the
following WebSphere timers can be counting down simultaneously:
v control_region_wlm_dispatch_timeout, which limits both the amount of time a

client request waits on the WLM queue, as well as the time required for the
application component to process the request; and

v transaction_defaultTimeout, which limits the amount of time the controller will
wait for a transaction to be either committed or rolled back.

These timers overlap only for the time during which the application’s transaction
is being processed. To determine which timer cause the error, you can use the
symptoms- specific minor codes or EC3 ABEND reason codes.

Chapter 2. Diagnosing and fixing problems 77

General types of timers and the operations they control

 General type Timer processing Timeout symptoms

Input Input timers define limits for
receiving a complete request;
the countdown starts when a
connection to the J2EE server
is established. The
communication protocol
(HTTP, HTTPS) determines
the timer used for the
request.

The session is closed.

Session Session timers define limits
for the use of session
connections. These timers
start the countdown as soon
as a session becomes idle.

The session is closed.

WLM dispatch Dispatch timers control how
long a complete client
request waits to be
dispatched in a servant
region for processing. The
countdown starts when the
controller places the request
on the WLM queue.
Depending on the specific
timer, the time limit can
include not only wait time
on the WLM queue, but also
the time required for
processing a response to the
client request.

Message BBOO0232W and an EC3
ABEND in the servant (region),
with one of these accompanying
reason codes:

Transaction Transaction timers define
how long:

v An application or
controller will wait for one
transaction to complete.
The countdown starts
when the container starts
a transaction on behalf of
the application
component.

v A controller will attempt
to recover in-doubt
transactions during peer
restart and recovery mode.

v Message BBOT0003W or
BBOO0232W

v An EC3 ABEND in the servant
(region), with one of these
accompanying reason codes:

78 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

General type Timer processing Timeout symptoms

Output Output timers define how
long a controller will wait to
receive output for a client
request. The countdown
starts when the client
request is dispatched to the
servant region for
processing. The
communication protocol
(HTTP, HTTPS) determines
the timer used for the
request.

Message BBOO0232W and an EC3
ABEND in the servant (region),
with reason code 04130007

 Related reference

 “Guidelines for analyzing diagnostic data for timeout conditions”
 “Identifying possible causes of and fixes for timeout conditions” on page 81
 “Guidelines for altering timeout values” on page 82

Guidelines for analyzing diagnostic data for timeout conditions
This file gives an overview of how to enable and use the System Management
Facilities (SMF) to collect and record system and job-related information.

The following guidelines provide instructions for finding diagnostic data in an
SVC dump that can help you determine what timeout condition occurred:
v Find the task with the EC3 abend:

1. Format the TCB summary for the servant that was timed out by entering the
following command:
 ip summ format asid(x’ address ’)

where address is the address space ID of the servant.

 Find the TCB that had the EC3 completion code. Ignore any EC3 completion
code on the ″main″ thread which is the 4th TCB listed in the summary
format (the 1st one after the 3 MVS TCBs). The WebSphere main thread is
the one that is waiting in BBO_BOA::impl_is_ready. No application requests
are ever dispatched on this thread, therefore there is nothing to timeout.
During timeout processing the main thread for the server region is also
abended with EC3 as a mechanism of bringing the address space down.
Thus the reason why the EC3 completion code may appear on the main
thread. This is never the cause of a timeout though, only a result of timeout
processing.

2. If there is no EC3 completion code in the TCB summary, look in systrace.
Format the systrace in gmt time since the other timestamps you’ll be
comparing it to are in gmt time. To format in gmt time, enter the following
command::
 ip systrace all time(gmt)
 You may not see the EC3 abend in systrace either as systrace can cover a
small amount of time.

3. You can also try looking in ip verbx mtrace or in syslog to see when the
EC3 abend occurred. You’ll need this time to determine the ’end’ time of the
request which is the gmt time the timeout value was reached.

Chapter 2. Diagnosing and fixing problems 79

v Determine what timeout values are in effect by checking the reason code
associated with the EC3 abend.

 Reason code Explanation

04130002 The controller issued an ABTERM for this
servant region because a transaction timeout
ocurred. Code under dispatch could have
been in a tight loop.

04130003 The controller issued an ABTERM for this
servant region because it was hung trying to
move a controller request into the servant
region. The target request was timed out,
but the servant was currently copying the
request. The controller checked the servant
for progress at regular intervals, before
taking action by issuing an ABTERM.

04130004 The controller issued a ABTERM for this
servant region because the WLM queue
timeout occurred. Code under dispatch
could have been in a tight loop.

04130005 The controller issued an ABTERM for this
servant region because a transaction timeout
ocurred. The transaction has timed out, but
no current request associated with the
transaction was found. The servant
associated with the transaction will be
terminated.

04130006 A controller thread encountered a problem
while processing a request. The request has
been queued to WLM and associated with a
servant region. The termination of the
associated servant region is needed to
complete cleanup for the request.

04130007 The controller issued a ABTERM for this
servant region because the HTTP OUTPUT
timeout occurred. Code under dispatch
could have been in a tight loop.

v Find the method name to determine if it was
 httpRequest

,
 httpsRequest

or
 DispatchbyURI

or some other method.

 If the request is not specifically a request that came through the HTTP or HTTPS
transport handlers, the
 protocol_http_output_timeout
 (HTTP) and
 protocol_https_timeout_output

80 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

(HTTPS) timeout values will not be a factor. In other words, when the request is
a
 DispatchbyURI
 method, the request is received through the RMI/IIOP protocol, so the
 protocol_http
 * variables have no affect.

v Obtain the callback stack for the request, using the IPCS verbexit LEDATA, with
the CEEDUMP or NTHREADS option.

 Related reference

 “Understanding how timers work” on page 77
 “Identifying possible causes of and fixes for timeout conditions”
 “Guidelines for altering timeout values” on page 82

Identifying possible causes of and fixes for timeout conditions
This file lists common timer variables and tools for monitoring these timeout
conditions

The timer that expires first might not indicate the actual problem that needs to be
fixed. To properly diagnose timeout conditions, you should know all of the timer
values that might be in effect for a particular servant region.

 General type of timer Possible causes Possible solutions

Input The client sent only part of
the data and was delayed in
sending the rest.

The application on the client
side may want to consider
having retry logic in place if it
does receive a timeout minor
code in return.

Session The session is idle through
lack of use.

If you consider losing idle
sessions to be a problem,
increase the values of the
persistent-session timeouts, or
use the session more
frequently.

Chapter 2. Diagnosing and fixing problems 81

General type of timer Possible causes Possible solutions

WLM dispatch No threads are free to pick
up the request because of one
of the following conditions:

v The threads are all busy
processing requests.

v The currently executing
threads are waiting for a
response from DB2,
WebSphere MQ, another
server, and so on. In this
case, look for messages
indicating contention for
resources; for example, on
the z/OS console, you
might see messages about
DB2 deadlocks.

In either case, the request
times out waiting in the
WLM queue to be dispatched
in a servant (region).

The case where the threads
are all busy processing
requests could indicate one of
the following conditions:

v The number of servant
regions that WLM may start
is set too low. The number
is set through WebSphere
variable

 wlm_maximumSRCount

v The number of threads
allowed within a servant
region is set too low. The
number is controlled by the
Isolation Policy setting in
Administrative console or
WebSphere variable:

server_region_workload_profile

v You need to replicate
servers to handle the
amount of incoming work.

All of these conditions
indicate that performance
tuning might be necessary.

Transaction Possible causes of transaction
timeouts include:

v The same as those for
WLM dispatch timeouts, or

v Delays that prevent the
transaction coordinator
from committing or rolling
back a transaction within
the allotted time.

See the possible solutions for
WLM dispatch timeouts. In
addition, you can look for
messages indicating
contention for resources that
are involved in the transaction
that timed out.

Output Possible causes of output
timeouts are the same as
those for WLM dispatch
(dispatch is for IIOP, output
is for HTTP).

See the possible solutions for
WLM dispatch timeouts. In
addition, you can use the
WebSphere variable

 protocol_accept_http_work
_after_min_srs=1

to prevent the HTTP transport
handler from dispatching
requests until WLM starts a
minimum number of servant
regions.

 Related reference

 “Understanding how timers work” on page 77
 “Guidelines for analyzing diagnostic data for timeout conditions” on page 79
 “Guidelines for altering timeout values”

Guidelines for altering timeout values
This file lists common timer variables and tools for monitoring these timeout
conditions

82 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Generally speaking, increasing the timeout values should be your last resort, or
only a temporary action taken to prevent multiple timeout-abend dumps from
causing system performance problems. If you increase timeout values without
properly diagnosing the timeout condition, the only results you might see are less
frequent abends and dumps for the same timeout condition, or slower system or
application performance.

Common timer variables and tools for monitoring these timeout conditions

 WebSphere variable and its
relationship, if any, to other timers

How to monitor processing for this type
of timeout condition:

If you want to adjust the value, consider the
following:

control_region_wlm_dispatch_
timeout

For HTTP work, the WLM timer is
not set and only the

 HTTP_OUTPUT_TIMEOUT

is in effect (covering the entire
dispatch window)

SMF provides data on WLM queue time How long work takes to get to a servant depends
on the number of servants that WLM starts, how
many you let it start (wlm_maximumSRCount),
how many service classes the work is spread
across, how much work you’re getting, and so on

protocol_http_ timeout_ input

None.

This behavior is not easily monitored.
Turning on a trace point would indicate
whether a client failed because of this input
timeout setting, but tracing has
performance consequences.

v How long are you willing to allow a control
region worker thread to be blocked while it is
waiting for a message?

v How big are incoming HTTP requests? The
larger they are, the longer it might take to get
the whole request through the network.

protocol_http_timeout_ output

If the application component starts
transactions, then the transaction
timers also might be involved.

This behavior is not easily monitored, but
the controller will terminate the servant
(region) with abend EC3 for this timeout
condition.

v How long are you willing to let a client hang
waiting for a response?

v How long are you willing to let a thread in a
servant (region) be tied up working on a
response before concluding that the request has
taken too long?

v If you have multiple application threads in the
servant (region), all of them will be terminated
when only one of them times out. This loss of
work might make you want to allow these
timeouts to occur less frequently.

protocol_http_timeout_
persistentSession

None. All the other timers relate to
work processing, whereas this one
relates to what happens when there
is no work.

None. How much time passes between requests vs. how
much does it cost to establish a new session. You
would want to keep idle sessions around for a
while to avoid the startup cost of a new session,
but don’t want to keep them forever as resource
usage accumulation will eventually be a problem.

protocol_https_timeout_ input See the information for the

protocol_http_timeout_input variable

. This value applies in exactly the same way to work that comes in over the HTTPS port.

protocol_https_timeout_output See the information for the

 protocol_http_timeout_output

variable. This value applies in exactly the same way to work that comes in over the HTTPS port.

protocol_iiop_local_ timeout

None. This variable is a client-side
timeout, and IIOP only.

None, other than to observe the timeouts
occuring on the client side.

How long are you willing to let the client block?

protocol_iiop_server_session_
keepalive
protocol_iiop_server_session_
keepalive_ssl

None. These variables relate to
session activity during idle periods
and only for IIOP, so these timers do
not interact with the

 protocol_http_timeout_ persistentSession

timer.

You should read TCP/IP APAR PQ18618
for information about the

 SOCK_TCP_KEEPALIVE

values and their consequences.

Is it useful to have idle sessions timeout? They
normally don’t which can consume resources.
However, detecting a timeout requires network
traffic between TCP/IP stacks. Creating traffic on
otherwise idle sessions may have network
consequences you don’t want.

Chapter 2. Diagnosing and fixing problems 83

WebSphere variable and its
relationship, if any, to other timers

How to monitor processing for this type
of timeout condition:

If you want to adjust the value, consider the
following:

transaction_ defaultTimeout

This variable can be overriden by
applications up to the maximum
indicated by the

 transaction_maximumTimeout

variable, which limits the amount of
time an application can set for its
transactions to complete. Output
timers also might cause work to time
out, but the transaction timers and
output timers are not aware of each
other.

The controller issues message BBOT0003W
to indicate a timeout condition, and
terminates the servant (region) with abend
EC3 reason codes 04130002 or 04130005.

v How long are you willing to let a client hang
waiting for a response?

v How long are you willing to let a thread in a
servant (region) be tied up working on a
response before concluding that the request has
taken too long?

v If you have multiple application threads in the
servant (region), all of them will be terminated
when only one of them times out. This loss of
work might make you want to allow these
timeouts to occur less frequently.

transaction_ maximumTimeout

If set, this variable limits the amount
of time an application can set for its
transactions to complete. If the

 transaction_maximumTimeout

variable is not set, application
transactions are controlled by the
time limit set on the

 transaction_ defaultTimeout

variable.

None. Same considerations as for

 transaction_ defaultTimeout

transaction_ recoveryTimeout

None

None. Locks are held while one controller (region) waits
for other controllers that are required to resolve
in-doubt transactions. How long can you afford to
have these resources held?

 Related reference

 “Understanding how timers work” on page 77
 “Guidelines for analyzing diagnostic data for timeout conditions” on page 79
 “Identifying possible causes of and fixes for timeout conditions” on page 81

Debugging client exceptions
Start with the client and work your way backward to find the problem. When
tracing exceptions back to the original problem, be aware that the RMI/IIOP
protocol requires that some exceptions undergo conversion from one type to
another as the exception passes through the runtime. Usually this transformation is
between CORBA::SystemExceptions and RMI RemoteExceptions. Pay special
attention to the CORBA::SystemException minor codes which indicate that a type
transformation has occurred.

 Caused by: System exception (thrown by
runtime)

User exception (thrown by
application code)

Look for: v CEEDUMPs in controller
(region) or servant (region).
These dumps indicate that the
runtime had an error

v JRAS error log entries, which
can narrow the error down the
exception to a specific function
within the runtime

v CEEDUMPs
v JRAS error log entries and

traces

84 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Actions: v Look at the minor code that is
listed.

v Look for fixes that address
similar symptoms or minor
codes.

v System exceptions usually
represent the detection of an
unexpected error, and therefore
(unless directed by the
documentation of the minor
code) will often require IBM
assistance to identify the
problem.

v Look at your application for
any sign of error.

v Look for system failures, such
as a system exception in the
controller (region). If you find a
system exception, follow the
steps to the left for diagnosing a
system exception.

Debugging applications that hang
 Possible cause: The WebSphere variable transaction_defaultTimeout

might have a value too large.

Caused by: Loop in the application JVM runs out of heap storage, if
you are running Java in a
servant (region)

Look for: v Environment variable
that handles how
long the application
runs before timeout

v Timeout-related
minor codes:
– C9C21047
– C9C2110F
– C9C21110
– C9C21111
– C9C21112
– C9C21113
– C9C21114
– C9C21190
– C9C21191
– C9C21192
– C9C21809
– C9C21892
– C9C21893
– C9C22013

v ABEND EC3, reason
codes 0413002
through 04130007

v resource messages on
the console

 Example: DB2
deadlock messages
on the z/OS console

v A wait beyond the
timeout value length
with no timeout

v Any error messages from JVM
in the job log of the failed
servant (region)

Chapter 2. Diagnosing and fixing problems 85

Actions: v Analyze with IPCS
to determine whether
or not the servant
(region) was looping
(application code
loop) or waiting
(maybe the runtime
failed).
– Use the DUMP

command to get a
console dump of
the servant and its
controller.

v If you were utilizing
JRAS, look at the
JRAS CTRACE
entries:
– If the application

code was looping,
you may see the
same entry
repeating.

v Ensure that CTRACE
writer is on and take
a SVC dump at the
approximate time of
hang.

v Use the display
command to
determine the state
of the server.

v Through the Administrative
console, set the WebSphere
variable to debug the JVM;
this setting passes information
to the JVM and turns on the
high-level messages for you
to examine.

v Look for error message or
Java stack traces that might
indicate an OUT_OF_MEMORY
condition.

v Use application monitoring
tools, such as WebSphere
Studio Application Monitor
(WSAM) or Jinsight, to look
for application memory leaks.

Debugging problems related to Java Message Service (JMS)
support

You might encounter JMS-related errors in the WebSphere Application Server for
z/OS environment. To debug these errors, use any of the various WebSphere
console settings that controls the type of trace data collected.
com.ibm.ejs.*=all=enabled

Turns on all container tracing
com.ibm.ejs.j2c.*=all=enabled

Turns on all tracing for connector support in WebSphere Application Server
for z/OS

Messaging=all=enabled
Collects trace data for the JMS and Message-driven bean (MDB)
components of WebSphere Application Server for z/OS

If your installation configures WebSphere MQ to provide Java Message Service
(JMS) support, you might need to use specific MQ tools for diagnosis:
v WebSphere variable JMSApi=all=enabled, which turns on all tracing for

applications that use the JMS application programming interface (API).
v MQSC commands, which allow you to display information and perform other

operations
v The CSQUTIL utility program, which helps you to perform backup, restoration,

and reorganization tasks, and to issue WebSphere MQ commands.

86 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

For more information about these diagnostic tools, refer to WebSphere MQ books,
which are available through the Web site:
http://www.ibm.com/software/ts/mqseries/library/

The most useful for diagnostic information are:
v WebSphere MQ for z/OS Problem Determination, GC34-6054
v WebSphere MQ for z/OS Messages and Codes, SC34-6056
v WebSphere MQ Script (MQSC) Command Reference, SC34-6055
v WebSphere MQ for z/OS System Administration Guide, SC34-6053

All of these publications can be accessed from the IBM Publications Center.
 Related tasks

 “Steps for configuring WebSphere variables” on page 36

Troubleshooting by component: what is not working?

This section provides troubleshooting information based on the task you were
trying to accomplish when the problem occurred. To find more information about
your problem, select a task category from the list below.

Installation component troubleshooting tips
If you are having problems installing the WebSphere Application Server, follow
these steps to resolve the problem:
v Browse the relevant log files for clues:

– The main installation log file: install_dir/log.txt.
– IBM Http Server log: install_dir/ihs.log.
– The log file produced when the default application .ear file is installed is:

install_dir/logs/installDefaultApplication.log.
v Ensure that you have installed the correct level of dependent software, such as

operating system version and revision level, by reviewing
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Administration and administrative console troubleshooting
tips

In WebSphere Application Server products, administrative functions are supported
by:
v The application server (such as server1) process in the base product
v The deployment manager (dmgr) process in the Network Deployment product

The process must be running to use the administrative console. The wsadmin
command line utility has a local mode that you can use to perform administrative
functions, even when the server process is not running.

Chapter 2. Diagnosing and fixing problems 87

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

If you have problems starting or using the administrative console or wsadmin
utility, verify that the supporting server process is started and that it is healthy.
v For the base product, look at these files:

– install_root/logs/server/startServer.log for the message that indicates
that the server started successfully: ADMU3000I: Server server1 open for
e-business; process id is nnnn..

– the server log files for the message that indicates that the server started
successfully: WSVR0001I: Server server open for e-business.

v For the Network Deployment product, look at these files:
– install_root/logs/dmgr/startServer.log for the message that indicates that

the server started successfully: ADMU3000I: Server dmgr open for
e-business; process id is nnnn..

– the server log files for this message indicating that the server started
successfully: WSVR0001I: Server dmgr open for e-business.

v Look up any error messages in these files in the message reference table. Select
the Quick reference view in the InfoCenter, then click Messages.

v A message like WASX7213I: This scripting client is not connected to a server
process when trying to start wsadmin indicates that either the server process is
not running, the host machine where it is running is not accessible, or that the
port or server name used by wsadmin is incorrect.

v Verify that you are using the right port number to communicate with the
administrative console or wsadmin server using the following steps:
– Look in the the server log files.
– The line ADMC0013I: SOAP connector available at port nnnn indicates the

port that the server is using to listen for wsadmin functions.
– The property com.ibm.ws.scripting.port in the

install_root/properties/wsadmin.properties file controls the port used by
wsadmin to send requests to the server. If it is different from the value shown
in the the server log files, either change the port number in the
wsadmin.properties file, or specify the correct port number when starting
wsadmin by using the -port port_number property on the command line.

– The message SRVE0171I: Transport http is listening on port nnnn (default
9090) indicates the port the server uses to listen for administrative console
requests. If it is different than the one specified in the URL for the
administrative console, change the URL in the browser to the correct value.
The default value is http://localhost:9090/admin.

v Use the TCP/IP ping command to test that the hostname where the application
server or deployment manager is executing, is reachable from the system where
the browser or wsadmin program are being used. If you are able to ping the
hostname, this indicates that there are no firewall or connectivity issues.

v If the host where the application server or deployment manager is running is
remote to the machine from which the client browser or wsadmin command is
running, ensure that the appropriate hostname parameter is correct:
– The hostname in the browser URL for the console.
– The -host hostname option of the wsadmin command that is used to direct

wsadmin to the right server

If none of these steps solves the problem, see if the specific problem you are
having is addressed in the Installation completes but the administrative console
does not start topic. Check to see if the problem has been identified and
documented using the links in the Diagnosing and fixing problems: Resources for
learning topic.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

88 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

“Troubleshooting installation problems” on page 39

Application Assembly Tool troubleshooting tips
If you are having problems installing the WebSphere Application Server
Application Assembly Tool (AAT), follow these steps:
v If a problem occurs using this component, the first thing to do is to enable the

printing of messages and exceptions to the screen.
– Modify the assembly.bat file located in the bin directory of the product

installation. Change the statement ″start javaw″ to just ″java″.
– Restart the AAT and a hanging command prompt window will appear

through the lifetime of the Java process and display messages and exceptions.
– Look up any error or warning messages you see in the message reference

table.
v With a problem application open in the AAT, use the Verify menu command.

This command will go through all components of the application and validate
them for any XML errors or invalid entries such as missing fields, invalid bean
or class references.

v To verify the integrity of an EAR (Enterprise Application Resource) file, expand
it manually (outside of the AAT) by running the WebSphere Application Server
install_root\bin\EARExpander.bat or EARExpander.sh file and supplying the
name of the EAR file as a parameter. Browse the directory structure of the
expanded EAR file to see if contains all the expected files.
 Here is an example using the Windows command prompt: EARExpander -ear
my.ear -expandDir c:\tmp\myear -operation expand

v Contact the developer of the EAR file or its component files and ensure that
they comply with J2EE specification level 1.3 and that any enterprise beans it
contains conform to the EJB 2.0 Specification level.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Web Container troubleshooting tips
If you are having problems starting a Web module, or accessing resources within a
particular Web module:
v For specific problems that can cause servlets, HTML files, and JavaServer Pages

(JSP) files not to be served, seeWeb resource (JSP file, servlet, HTML file, image)
does not display .

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes).
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 “Troubleshooting by component: what is not working?” on page 87

Chapter 2. Diagnosing and fixing problems 89

JDBC and data source troubleshooting tips
To see whether your specific problem has been addressed, review the Cannot
access a data source topic.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39
 “Cannot access a data source” on page 47

HTTP plug-in component troubleshooting tips
If you are having problems with the HTTP plug-in component - the component
which sends requests from your HTTP server, such as IBM HTTP Server, Apache,
Domino, iPlanet, or IIS, to the Websphere Application Server, try these steps:
v Review the file install_dir/logs/http_plugin.log for clues. Look up any error

or warning messages in the message table.
v Review your HTTP server’s error and access logs to see if the HTTP server is

having a problem:
– IBM HTTP Server and Apache: access.log and error.log.
– Domino web server: httpd-log and httpd-error.
– iPlanet: access and error.
– IIS: timedatestamp.log.

If these files don’t reveal the cause of the problem, follow these additional steps.

Plugin Problem Determination Steps

The plug-in provides very readable tracing which can be beneficial in helping to
figure out the problem. By setting the LogLevel attribute in the
config/plugin-cfg.xml file to Trace, you can follow the request processing to see
what is going wrong. At a high level:
1. The plug-in gets a request.
2. The plug-in checks the routes defined in the plugin-cfg.xml file.
3. It finds the server group.
4. It finds the server.
5. It picks the transport protocol, usually HTTP.
6. It sends the request.
7. It reads the response.
8. It writes it back to the client.

You can see this very clearly by reading through the trace for a single request:
v The first step is to determine if the plug-in has loaded into the HTTP server

successfully.
– Check to make sure thehttp_plugin.log has been created.
– If it has, look in it to see if any error messages indicate some sort of failure

that took place during plug-in initialization. If no errors are found look for
the following stanza, which indicates that the plug-in started normally. Ensure
that the timestamps for the messages correspond to the time you started the
Web server:

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: ----------------System Information----
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Bld date: Jul 3 2002, 15:35:09
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Web server: IIS
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: Hostname = SWEETTJ05

90 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: OS version 4.0, build 1381, ’Se
[Thu Jul 11 10:59:15 2002] 0000009e 000000b1 - PLUGIN: --

– Some common errors are:
lib_security: loadSecurityLibrary: Failed to load gsk library

The GSK did not get installed or the installation is corrupt. If the GSK
did not get installed you can determine this by searching for the file
gsk5ssl.dll on all drives for Win32 or see if there are any
libgsk5*.so files in /usr/lib on Unix. Try reinstalling the plug-in to
see if you can get the GSK to install in order to fix this.

ws_transport: transportInitializeSecurity: Keyring wasn’t set
The HTTPS transport defined in the configuration file was
prematurely terminated and did not contain the Property definitions
for the keyring and stashfile. Check your XML syntax for the line
number given in the error messages that follow this one to make sure
the Transport element contains definitions for the keyring and
stashfiles before it is terminated.

– If thehttp_plugin.log is not created, check the Web server error log to see if
any plug-in related error messages have been logged there that indicate why
the plug-in is failing to load. Typical causes of this can include failing to
correctly configure the plug-in with the Web server environment. Check the
documentation for configuring the Web server you are trying to use with the
Web server plug-in.

v Determine whether there are network connection problems with the plug-in and
the various app servers defined in the configuration. Typically you will see the
following message when this is the case:
 ws_common: websphereGetStream: Failed to connect to app server, OS
err=%d

 Where %d is an OS specific error code related to why the connect() call failed.
This can happen for a variety of reasons.
– Ping the machines to make sure they are properly connected to the network.

If the machines can’t be pinged then there is no way the plug-in will be able
to contact them. Possible reasons for this include:
- Firewall policies limiting the traffic from the plug-in to the app server.
- The machines are not on the same network.

– If you are able to ping the machines then the likely cause of the problem is
that the port is not active. This could be because the application server or
cluster has not been started or the application server has gone down for some
reason. You can test this by hand by trying to telnet into the port that the
connect() is failing on. If you cannot telnet into the port the app server is not
up and that problem needs to be resolved before the plug-in will be able to
connect() successfully.

v Determine whether other activity on the machines where the servers are
installed is impairing the server’s ability to service a request. Check the
processor utilization as measured by the task manager, processor ID, or some
other outside tool to see if it:
– Is not what was expected.
– Is erratic rather than a constant.
– Shows that a newly added member of the cluster is not being utilized.
– Shows that a failing member that has been fixed is not being utilized.

v Check the administrative console to ensure that the application servers are
started. View the administrative console for error messages.

v In the administrative console, select the problem application server and view its
installed applications to verify that they are started.

If none of these steps solves the problem:

Chapter 2. Diagnosing and fixing problems 91

v For specific problems that can cause web pages and their contents not to display,
seeWeb resource (JSP, servlet, html file, image, etc) will not display in this
InfoCenter.

v Check to see if the problem has been identified and documented using the links
in Diagnosing and fixing problems: Resources for learning.

 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

HTTP session manager troubleshooting tips
If you are having problems creating or using HTTP sessions with your Web
application hosted by WebSphere Application Server, here are some steps to take:
v View the logs for the application server which hosts the problem application:

– first, look at messages written while each application is starting. They will be
written between the following two messages:

Starting application: <application>
.....................
Application started: <application>

– Within this block, look for any errors or exceptions containing a package
name of com.ibm.ws.webcontainer.httpsession. If none are found, this is an
indication that the session manager started successfully.

– Error ″SRVE0054E: An error occurred while loading session context and
Web application″ indicates that SessionManager didn’t start properly for a
given application.

– Look within the logs for any Session Manager related messages. These
messages will be in the format SESNxxxxE and SESNxxxxW for errors and
warnings, respectively, where xxxx is a number identifying the precise error.
Look up the extended error definitions in the Session Manager message table.

v See Best practices for using HTTP Sessions.
v Alternatively, a special servlet can be invoked that displays the current

configuration and statistics related to session tracking.
– Servlet name: com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.
– It can be invoked from any web module which is enabled to serve by class

name. For example, using default_app,
http://localhost:9080/servlet/com.ibm.ws.webcontainer.httpsession.IBMTrackerDebug.

– If you are viewing the module via the serve-by-class-name feature, be aware
that it may be viewable by anyone who can view the application. You may
wish to map a specific, secured URL to the servlet instead and disable the
serve-servlets-by-classname feature.

v If you are using database-based persistent sessions, look for problems related to
the data source the Session Manager relies on to keep session state information.
For details on diagnosing database related problems see Errors accessing a
datasource or connection pool

If none of these steps fixes your problem, check to see if the problem has been
identified and documented by looking at the available online support (hints and
tips, technotes, and fixes).
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 “Troubleshooting by component: what is not working?” on page 87

92 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Naming services component troubleshooting tips
″Naming″ is a J2EE service which publishes and provides access to resources such
as connection pools, enterprise beans, message listeners, etc, to client processes. If
you have problems in accessing a resource which otherwise appears to be healthy,
the naming service might be involved. To investigate problems with the
WebSphere Application Server Naming service:
v With WebSphere Application Server running, run the dumpNameSpace command

for Windows systems, or the dumpNameSpace.sh command for Unix systems, and
pipe, redirect, or ″more″ the output so that it is easily viewed. This command
results in a display of all objects in the WebSphere Application Server
namespace, including the directory path and object name.

v If the object a client needs to access does not appear, use the administrative
console to verify that:
– The server hosting the target resource is started.
– The Web module or EJB container, if applicable, hosting the target resource is

running.
– The jndi name of the target resource is correct and updated.
– If the problem resource is remote, that is, not on the same node as the Name

Server node, that the jndi name is fully qualified, including the host name.
This is especially applicable to Network Deployment configurations

v If you see an exception that appears to be CORBA related (″CORBA″ appears as
part of the exception name) look for a naming-services-specific CORBA minor
code, further down in the exception stack, for information on the real cause of
the problem. For a list of naming service exceptions and explanations, see the
class com.ibm.websphere.naming.WsnCorbaMinorCodes in the javadoc topic in
this InfoCenter.

If none of these steps solve the problem:
v For specific problems that can cause access to named object hosted in WebSphere

Application Server to fail, see Cannot look up an object hosted by WebSphere
Application Server from a servlet, jsp, or other client in this InfoCenter.

v Check to see if the problem has been identified and documented using the links
in Diagnosing and fixing problems: Resources for learning.

 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Messaging (JMS) component troubleshooting tips
If you are having problems deploying or executing applications which use the
WebSphere Application Server messaging capabilities, review these articles in the
WebSphere Application Server InfoCenter:
v Troubleshooting WebSphere Messaging
v Troubleshooting message-driven beans
v Troubleshooting transactions

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Chapter 2. Diagnosing and fixing problems 93

Universal Discovery, Description, and Integration, Web
Service, and SOAP component troubleshooting tips

If you are having problems deploying or executing applications that use
WebSphere Application Server Web Services, Universal Discovery, Description, and
Integration (UDDI), or SOAP, try these steps:
v Review the troubleshooting documentation for messaging in this InfoCenter:

– WSIF troubleshooting tips
v Investigate the following areas for SOAP-related problems:

– View the error log of the HTTP server to which the SOAP request is sent.
– Browse the Web site http://xml.apache.org/soap/ for FAQs and known

SOAP issues.

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Enterprise bean and EJB container troubleshooting tips
If you are having problems starting an EJB container, or encounter error messages
or exceptions that appear to be generated on by an EJB container, follow these
steps to resolve the problem:
v Browse the relevant log files for clues:

– Use the Administrative Console to verify that the application server which
hosts the container is running.

– Browse the logs for the application server which hosts the container. Look for
the message server server_name open for e-business in the server log files.
If it does not appear, or if you see the message problems occurred during
startup, browse the server log files for details.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Security components troubleshooting tips
This document explains basic resources and steps for diagnosing security related
issues in the WebSphere Application Server, including:
v What log files to look at and what to look for in them.
v A general approach to isolating and resolving security problems.
v When and how to enable security-related trace.

The following security-related problems are addressed elsewhere in this
InfoCenter:
v Errors and access problems after enabling security
v Errors after enabling SSL, or SSL-related error messages

94 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://xml.apache.org/soap/

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning.

Note: for an overview of WebSphere Application Server security components such
as zSAS and how they work, see Getting started with security.

When troubleshooting the security component, browse the SDSF logs for the server
that hosts the resource you are trying to access. The following is a sample of
messages you would expect to see from a server in which the security service has
started successfully:

Messages begining with BBOM0001I are related to zOS specific implementations
of zSAS and CSIv2. They appear in both the controller and servant
but are only applicable in the controller.

 BBOM0001I com_ibm_Server_Security_Enabled: 1.
 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationSupported: 1.
 BBOM0001I com_ibm_CSI_claimTLClientAuthenticationRequired: 0.
 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSSupported: 1.
 BBOM0001I com_ibm_CSI_claimTransportAssocSSLTLSRequired: 0.
 BBOM0001I com_ibm_CSI_claimMessageConfidentialityRequired: 0.
 BBOM0001I com_ibm_CSI_claimClientAuthenticationSupported: 1.
 BBOM0001I com_ibm_CSI_claimClientAuthenticationRequired: 0.
 BBOM0001I com_ibm_CSI_claimClientAuthenticationtype:
 SAFUSERIDPASSWORD.
 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeSAF: 0.
 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeDN: 0.
 BBOM0001I com_ibm_CSI_claimIdentityAssertionTypeCert: 0.
 BBOM0001I com_ibm_CSI_claimMessageIntegritySupported: NOT SET,DEFAULT=1.
 BBOM0001I com_ibm_CSI_claimMessageIntegrityRequired: NOT SET,DEFAULT=1.
 BBOM0001I com_ibm_CSI_claimStateful: 1.
 BBOM0001I com_ibm_CSI_claimSecurityLevel: HIGH.
 BBOM0001I com_ibm_CSI_claimSecurityCipherSuiteList: NOT SET.
 BBOM0001I com_ibm_CSI_claimKeyringName: WASKeyring.
 BBOM0001I com_ibm_CSI_claim_ssl_sys_v2_timeout: NOT SET, DEFAULT=100.
 BBOM0001I com_ibm_CSI_claim_ssl_sys_v3_timeout: 600.
 BBOM0001I com_ibm_CSI_performTransportAssocSSLTLSSupported: 1.
 BBOM0001I security_sslClientCerts_allowed: 0.
 BBOM0001I security_kerberos_allowed: 0.
 BBOM0001I security_userid_password_allowed: 0.
 BBOM0001I security_userid_passticket_allowed: 1.
 BBOM0001I security_assertedID_IBM_accepted: 0.
 BBOM0001I security_assertedID_IBM_sent: 0.
 BBOM0001I nonauthenticated_clients_allowed: 1.
 BBOM0001I security_remote_identity: WSGUEST.
 BBOM0001I security_local_identity: WSGUEST.
 BBOM0001I security_EnableRunAsIdentity: 0.

 Messages beginning with BBOO0222I are common to java WebSphere security.
They appear in both the controller and servant but are applicable to the servant.

 BBOO0222I SECJ0240I: Security service initialization completed successfully
 BBOO0222I SECJ0215I: Successfully set JAAS login provider
 configuration class to com.ibm.ws.security.auth.login.Configuration.
 BBOO0222I SECJ0136I: Custom

Chapter 2. Diagnosing and fixing problems 95

Registry:com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized
 BBOO0222I SECJ0157I: Loaded Vendor AuthorizationTable:
 com.ibm.ws.security.core.SAFAuthorizationTableImpl
 BBOO0222I SECJ0243I: Security service started successfully
 BBOO0222I SECJ0210I: Security enabled true

General approach for troubleshooting security-related issues

When troubleshooting security-related problems, the following questions are very
helpful and should be considered:
Does the problem occur when security is disabled?

This is a good litmus test to determine that a problem is security related.
However, just because a problem only occurs when security is enabled
does not always make it a security problem. More troubleshooting is
necessary to ensure the problem is really security-related.

Did security appear to initialize properly?
A lot of security code is visited during initialization. So you will likely see
problems there first if the problem is configuration related. The following
sequence of messages generated in the SDSF active log indicate normal
code initialization of an application server. Non-security messages have
been removed from the sequence that follows. This sequence will vary
based on the configuration, but the messages are similar:

 Trace: 2003/08/25 13:06:31.034 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.auth.login.Configuration
 SourceId: com.ibm.ws.security.auth.login.Configuration
 Category: AUDIT
 ExtendedMessage: SECJ0215I: Successfully set JAAS login provider
 configuration class to com.ibm.ws.security.auth.login.Configuration.
 Trace: 2003/08/25 13:06:31.085 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityDM
 SourceId: com.ibm.ws.security.core.SecurityDM
 Category: INFO
 ExtendedMessage: SECJ0231I: The Security component’s
 FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM
 registered success
 fully: true.
 Trace: 2003/08/25 13:06:31.086 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0231I: The Security component’s
FFDC Diagnostic Module com.ibm.ws.security.core.SecurityDM registered
 successfully: true.
 Trace: 2003/08/25 13:06:32.426 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl
 SourceId: com.ibm.ws.security.core.SecurityComponentImpl
 Category: INFO
 ExtendedMessage: SECJ0309I: Java 2 Security is disabled.
 Trace: 2003/08/25 13:06:32.427 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0309I: Java 2 Security is disabled.
 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl

96 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

SourceId: com.ibm.ws.security.core.SecurityComponentImpl
 Category: INFO
 ExtendedMessage: SECJ0212I: WCCM JAAS configuration information
successfully pushed to login provider class.
 Trace: 2003/08/25 13:06:32.445 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0212I: WCCM JAAS configuration
 information successfully pushed to login provider class.
 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: SecurityComponentImpl
 SourceId: SecurityComponentImpl
 Category: WARNING
 ExtendedMessage: BBOS1000W LTPA or ISCF are configured as the
authentication mechanism but SSO is disabled.
 Trace: 2003/08/25 13:06:32.459 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 824
 error message: BBOS1000W LTPA or ISCF are configured as the
authentication mechanism but SSO is disabled.
 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl
 SourceId: com.ibm.ws.security.core.SecurityComponentImpl
 Category: INFO
 ExtendedMessage: SECJ0240I: Security service initialization completed
successfully
 Trace: 2003/08/25 13:06:32.463 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0240I: Security service initialization
completed successfully
 Trace: 2003/08/25 13:06:39.718 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.registry.UserRegistryImpl
 SourceId: com.ibm.ws.security.registry.UserRegistryImpl
 Category: AUDIT
 ExtendedMessage: SECJ0136I: Custom Registry:
com.ibm.ws.security.registry.zOS.SAFRegistryImpl has been initialized
 Trace: 2003/08/25 13:06:41.967 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.WSAccessManager
 SourceId: com.ibm.ws.security.core.WSAccessManager
 Category: AUDIT
 ExtendedMessage: SECJ0157I: Loaded Vendor AuthorizationTable:
com.ibm.ws.security.core.SAFAuthorizationTableImpl
 Trace: 2003/08/25 13:06:43.136 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.role.RoleBasedAuthorizerImpl
 SourceId: com.ibm.ws.security.role.RoleBasedAuthorizerImpl
 Category: AUDIT
 ExtendedMessage: SECJ0157I: Loaded Vendor AuthorizationTable:
com.ibm.ws.security.core.SAFAuthorizationTableImpl
 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl
 SourceId: com.ibm.ws.security.core.SecurityComponentImpl
 Category: INFO

Chapter 2. Diagnosing and fixing problems 97

ExtendedMessage: SECJ0243I: Security service started successfully
 Trace: 2003/08/25 13:06:43.789 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0243I: Security service started successfully
 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.SecurityComponentImpl
 SourceId: com.ibm.ws.security.core.SecurityComponentImpl
 Category: INFO
 ExtendedMessage: SECJ0210I: Security enabled true
 Trace: 2003/08/25 13:06:43.794 01 t=9EA930 c=UNK key=P8 (0000000A)
 Description: Log Boss/390 Error
 from filename: ./bborjtr.cpp
 at line: 812
 error message: BBOO0222I SECJ0210I: Security enabled true
 Trace: 2003/08/25 13:07:06.474 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.WSAccessManager
 SourceId: com.ibm.ws.security.core.WSAccessManager
 Category: AUDIT
 ExtendedMessage: SECJ0157I: Loaded Vendor AuthorizationTable:
com.ibm.ws.security.core.SAFAuthorizationTableImpl
 Trace: 2003/08/25 13:07:09.315 01 t=9EA930 c=UNK key=P8 (13007002)
 FunctionName: com.ibm.ws.security.core.WSAccessManager
 SourceId: com.ibm.ws.security.core.WSAccessManager
 Category: AUDIT
 ExtendedMessage: SECJ0157I: Loaded Vendor AuthorizationTable:
com.ibm.ws.security.core.SAFAuthorizationTableImpl

Is this a distributed security problem or a local security problem?
v If the problem is local, that is the code involved does not make a remote

method invocation, then troubleshooting is isolated to a single process. It
is important to know when a problem is local versus distributed since
the behavior of the Orb, among other components, is different between
the two. Once a remote method invocation takes place, an entirely
different security code path is entered.

v When you know that the problem involves two or more servers, the
techniques of troubleshooting change. You will need to trace all servers
involved simultaneously so that the trace shows the client and server
sides of the problem. Try to make sure the timestamps on all machines
match as closely as possible so that you can find the request and reply
pair from two different processes. .

Is the problem related to authentication or authorization?
Most security problems fall under one of these two categories.
Authentication is the process of determing who the caller is. Authorization
is the process of validating that the caller has the proper authority to
invoke the requested method. When authentication fails, typically this is
related to either the authentication protocol, authentication mechanism or
user registry. When authorization fails, this is usually related to the
application bindings from assembly and/or deployment and to the caller’s
identity who is accessing the method and the roles required by the
method.

Is this a Web or EJB request?

 Web requests have a completely different code path than EJB requests.
Also, there are different security features for Web requests than for EJB
requests, requiring a completely different body of knowledge to resolve.

98 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

For example, when using the LTPA authentication mechanism, the Single
SignOn feature is available for Web requests but not for EJB requests. Web
requests involve HTTP header information not required by EJB requests
due to the protocol differences. Also, the Web container (or servlet engine)
is involved in the entire process. Any of these components could be
involved in the problem and all should be considered during
troubleshooting, based on the type of request and where the failure occurs.

 Secure EJB requests are passed from the controller to the servant. Web
requests are mostly ignored by the controller. As a result, EJB requests are
first processed and authenticated by the zSAS or CSIv2 layers of security.
Authorization is done by the servant. If an authentication failure occurs,
the zSAS type level of tracing must be turned on to diagnose the problem.
Other problems can be diagnosed using the WebSphere Application Server
component tracing (CTRACE) facility.

Does the problem seem to be related to SSL?

 The Secure Socket Layer is just that, a totally distinct, separate layer of
security. Troubleshooting SSL problems are usually separate from
troubleshooting authentication and/or authorization problems. There are
many things to consider. Usually, SSL problems are first time setup
problems because the configuration can be difficult. Each client must
contain the server’s signer certificate. During mutual authentication, each
server must contain the client’s signer certificate. Also, there can be
protocol differences (SSLv3 vs. TLS), and listener port problems related to
stale IORs (i.e., IORs from a server reflecting the port prior to the server
restarting).

 In z/OS, two variations of SSL are used. To determine the cause of an SSL
problem on z/OS, you will have to be aware of what protocol is being
used. System SSL is used by the IIOP and HTTPS protocols. Java Secure
Socket Extension (JSSE) is used by all other protocols, for example, Simple
Object Access Protocol (SOAP). System SSL requests are handled in the
controller and are used by zSAS and CSIv1 security. JSSE is predominately
used by the servant, but there are cases where it is used in the controller as
well.

 For SSL problems, we sometimes request an SSL trace to determine what is
happening with the SSL handshake. The SSL handshake is the process
which occurs when a client opens a socket to a server. If anything goes
wrong with the key exchange, cipher exchange, etc. the handshake will fail
and thus the socket is invalid. Tracing JSSE (the SSL implementation used
in WebSphere Application Server) involves the following steps:
v Set the following system property on the client and server processes:

-Djavax.net.debug=true. For the server, add this to the Generic JVM
Arguments property of the Java virtual machine settings page.

v Recreate the problem. The SDSF active log of both processes should
contain the JSSE trace. You will find trace similar to the following:

 JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2139,localport=8878]]
 JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2140,localport=8878]]
 TrustManagerFactoryImpl: trustStore is :
 /WebSphere/V5R0M0/AppServer/etc/DummyServerTrustFile.jks
 TrustManagerFactoryImpl: trustStore type is : JKS
 TrustManagerFactoryImpl: init truststore
 JSSEContext: handleConnection[Socket

Chapter 2. Diagnosing and fixing problems 99

[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2142,localport=8878]]
 KeyManagerFactoryImpl: keyStore is :
/WebSphere/V5R0M0/AppServer/etc/DummyServerKeyFile.jks
 KeyManagerFactoryImpl: keyStore type is : JKS
 KeyManagerFactoryImpl: init keystore
 KeyManagerFactoryImpl: init keystore
 JSSEContext: handleConnection[Socket
[addr=boss0106.plex1.l2.ibm.com/9.38.48.108,port=2143,localport=8878]]
 JSSEContext: handleSession[Socket
[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,localport=2145]]
 JSSEContext: confirmPeerCertificate
[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/9.38.48.108,port=8879,
 localport=2145]]
 X509TrustManagerImpl: checkServerTrusted
 X509TrustManagerImpl: Certificate [
 [
 Version: V3
 Subject: CN=jserver, OU=SWG, O=IBM, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4
0 Key: IBMJCE RSA Public Key:
 modulus:
 10094996692239509074796828756118539107568369566313889955538950668
6622953008589748001058216362638201577071902071311277365773252660799
 128781182947273802312699983556527878615792292244995317112436562491
489904381884265119355037731265408654007388863303101746314438337601
 264540735679944205391693242921331551342247891
 public exponent:
 65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,
 To: Thu Mar 17 20:08:18 GMT 2005]
 Issuer: CN=jserver, OU=SWG, O=IBM, C=US
 SerialNumber: [3d1387b2]
0]
 Algorithm: [MD5withRSA]
 Signature:
 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......″=. 1
 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%
 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .″.p.....W7.:c..
 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr
 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y
0]
 X509TrustManagerImpl: Certificate [
 [
 Version: V3
 Subject: CN=jserver, OU=SWG, O=IBM, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4
0 Key: IBMJCE RSA Public Key:
 modulus:
 1009499669223950907479682875611853910756836956631388995553895066866
22953008589748001058216362638201577071902071311277365773252660799
 1287811829472738023126999835565278786157922922449953171124365624914
89904381884265119355037731265408654007388863303101746314438337601
 264540735679944205391693242921331551342247891

100 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

public exponent:
 65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,
 To: Thu Mar 17 20:08:18 GMT 2005]
 Issuer: CN=jserver, OU=SWG, O=IBM, C=US
 SerialNumber: [3d1387b2]
0]
 Algorithm: [MD5withRSA]
 Signature:
 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......″=. 1
 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%
 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .″.p.....W7.:c..
 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr
 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y
0]
 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=2144,localport=8878]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2145]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2146]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2147]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2148]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2149]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2150]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2151]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2152]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2153]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2154]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2155]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2156]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2157]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2158]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2159]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2160]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2161]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2162]]

Chapter 2. Diagnosing and fixing problems 101

JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2163]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2164]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2165]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2166]]

 JSSEContext: handleSession[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
 JSSEContext: confirmPeerCertificate[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
 X509TrustManagerImpl: checkServerTrusted
 X509TrustManagerImpl: Certificate [
 [
 Version: V3
 Subject: CN=WAS z/OS Deployment Manager, O=IBM
 Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5
0 Key: IBMJCE RSA Public Key:
 modulus:
 12840948267119651469312486548020957441946413494498370439558603901582589
8755033448419534105183133064366466828741516428176579440511007
 6258795528749232737808897160958348495006972731464152299032614592135114
19361539962555997136085140591098259345625853617389396340664766
 649957749527841107121590352429348634287031501
 public exponent:
 65537
0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,
 To: Mon Jul 26 04:59:59 GMT 2004]
 Issuer: CN=WAS CertAuth, C=US
 SerialNumber: [02]
0Certificate Extensions: 3
 [1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false
 Extension unknown: DER encoded OCTET string =
 0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by
 0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S
 0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f
 0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)
-[2]: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 05 6A CD 7F AE AF 89 78 99 A8 F1 5B 64 8B 9F AF .j.....x...[d...
 0010: 73 1B 58 65 s.Xe
]
]
0[3]: ObjectId: 2.5.29.35 Criticality=false
 AuthorityKeyIdentifier [
 KeyIdentifier [
 0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8 t......3....
 0010: 36 51 57 16 6QW.
]
0]
0]
 Algorithm: [SHA1withRSA]
 Signature:

102 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

0000: 73 0D FC E1 8A B3 42 E1 04 73 72 B1 C6 C9 87 54 s.....B..sr....T
 0010: 87 57 02 FA 41 32 D8 B0 39 09 86 CB 6B 03 B6 F9 .W..A2..9...k...
 0020: 62 8D 95 36 56 0E D4 D2 F7 7A 8D 4B FB 0B FD 91 b..6V....z.K....
 0030: 89 A8 08 41 30 E2 27 DC 15 5F 2C F4 CD 2F 6B 8E ...A0.’.._,../k.
 0040: 21 2A 88 53 46 27 68 9B 55 14 38 8E 1F 50 95 BC !*.SF’h.U.8..P..
 0050: A8 46 F6 68 97 9E 7B 65 9E E8 A7 34 B2 C8 63 CF .F.h...e...4..c.
 0060: 73 C8 4E 25 0A EF C5 8F 04 A4 EB 8C CC 33 84 26 s.N%.........3.&
 0070: 5D FD 7C AD 7B 02 13 5A 86 A1 89 93 1E A4 93 63]......Z.......c
0]
 X509TrustManagerImpl: Certificate [
 [
 Version: V3
 Subject: CN=WAS CertAuth, C=US
 Signature Algorithm: SHA1withRSA, OID = 1.2.840.113549.1.1.5
0 Key: IBMJCE RSA Public Key:
 modulus:
 1167408593733331602218385578183389496484587418638676352829560040529918
40558681208199977833401609895748222369066230329785148883251144
 2382911186804921983976695395381692334250582278359056431484427844566504
41491799952592864895242987037929408453455627552772317382077015
 828713585220212502839546496071839496308430393
 public exponent:
 65537
0 Validity: [From: Fri Jul 25 05:00:00 GMT 2003,
 To: Sat Jul 24 04:59:59 GMT 2010]
 Issuer: CN=WAS CertAuth, C=US
 SerialNumber: [0]
0Certificate Extensions: 4
 [1]: ObjectId: 2.16.840.1.113730.1.13 Criticality=false
 Extension unknown: DER encoded OCTET string =
 0000: 04 3C 13 3A 47 65 6E 65 72 61 74 65 64 20 62 79 .<.:Generated by
 0010: 20 74 68 65 20 53 65 63 75 72 65 57 61 79 20 53 the SecureWay S
 0020: 65 63 75 72 69 74 79 20 53 65 72 76 65 72 20 66 ecurity Server f
 0030: 6F 72 20 7A 2F 4F 53 20 28 52 41 43 46 29 or z/OS (RACF)
-[2]: ObjectId: 2.5.29.14 Criticality=false
 SubjectKeyIdentifier [
 KeyIdentifier [
 0000: 7E D1 7B 17 74 D3 AD D1 7D D8 F8 33 85 19 04 F8 t......3....
 0010: 36 51 57 16 6QW.
]
]
0[3]: ObjectId: 2.5.29.15 Criticality=true
 KeyUsage [
 Key_CertSign
 Crl_Sign
]
0[4]: ObjectId: 2.5.29.19 Criticality=true
 BasicConstraints:[
 CA:true
 PathLen:2147483647
]
0]
 Algorithm: [SHA1withRSA]
 Signature:
 0000: 43 88 AB 19 5D 00 54 57 5E 96 FA 85 CE 88 4A BF C...].TW^.....J.
 0010: 6E CB 89 4C 56 BE EF E6 8D 2D 74 B5 83 1A EF 9C n..LV....-t.....

Chapter 2. Diagnosing and fixing problems 103

0020: B3 82 F2 16 84 FA 5C 50 53 2A B4 FD EB 27 98 5D \PS*...’.]
 0030: 43 48 D3 74 85 21 D1 E1 F2 63 9E FB 58 2A F3 6A CH.t.!...c..X*.j
 0040: 44 D2 F5 7D B2 55 B9 5E 32 11 78 B6 34 8E 4B 1D D....U.^2.x.4.K.
 0050: F3 82 1D C1 5F 7B 3F AD C9 29 FA FF D1 D1 13 2C _.?..).....,
 0060: 57 F7 7B 51 02 99 6F ED 54 E1 51 34 B8 51 BE 97 W..Q..o.T.Q4.Q..
 0070: 30 AC 4F 89 AB AA 8A B2 E1 40 89 2E 18 C7 0E 15 0.O......@......
0]
 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=9443,localport=2167]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2168]]

 JSSEContext: handleConnection[Socket[addr=boss0106.plex1.l2.ibm.com
/9.38.48.108,port=2235,localport=8878]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8879,localport=2236]]
 JSSEContext: handleSession[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8880,localport=2238]]
 JSSEContext: confirmPeerCertificate[Socket
[addr=BOSSXXXX.PLEX1.L2.IBM.COM
/9.38.48.108,port=8880,localport=2238]]
 X509TrustManagerImpl: checkServerTrusted
 X509TrustManagerImpl: Certificate [

 [
 Version: V3
 Subject: CN=jserver, OU=SWG, O=IBM, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4
0 Key: IBMJCE RSA Public Key:
 modulus:
 100949966922395090747968287561185391075683695663138899555389506686622953
008589748001058216362638201577071902071311277365773252660799
 1287811829472738023126999835565278786157922922449953171124365624914
89904381884265119355037731265408654007388863303101746314438337601
 264540735679944205391693242921331551342247891
 public exponent:
 65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,
 To: Thu Mar 17 20:08:18 GMT 2005]
 Issuer: CN=jserver, OU=SWG, O=IBM, C=US
 SerialNumber: [3d1387b2]
0]
 Algorithm: [MD5withRSA]
 Signature:
 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......″=. 1
 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%
 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .″.p.....W7.:c..
 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr
 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y
0]
 X509TrustManagerImpl: Certificate [
 [
 Version: V3

104 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Subject: CN=jserver, OU=SWG, O=IBM, C=US
 Signature Algorithm: MD5withRSA, OID = 1.2.840.113549.1.1.4
0 Key: IBMJCE RSA Public Key:
 modulus:
 100949966922395090747968287561185391075683695663138899555389506
686622953008589748001058216362638201577071902071311277365773252660799
 12878118294727380231269998355652787861579229224499531711243656249
1489904381884265119355037731265408654007388863303101746314438337601
 264540735679944205391693242921331551342247891
 public exponent:
 65537
0 Validity: [From: Fri Jun 21 20:08:18 GMT 2002,
 To: Thu Mar 17 20:08:18 GMT 2005]
 Issuer: CN=jserver, OU=SWG, O=IBM, C=US
 SerialNumber: [3d1387b2]
0]
 Algorithm: [MD5withRSA]
 Signature:
 0000: 54 DC B5 FA 64 C9 CD FE B3 EF 15 22 3D D0 20 31 T...d......″=. 1
 0010: 99 F7 A7 86 F9 4C 82 9F 6E 4B 7B 47 18 2E C6 25 L..nK.G...%
 0020: 5B B2 9B 78 D8 76 5C 82 07 95 DD B8 44 62 02 62 [..x.v\.....Db.b
 0030: 60 2A 0A 6D 4F B9 0A 98 14 27 E9 BB 1A 84 8A D1 `*.mO....’......
 0040: C2 22 AF 70 9E A5 DF A2 FD 57 37 CE 3A 63 1B EB .″.p.....W7.:c..
 0050: E8 91 98 9D 7B 21 4A B5 2C 94 FC A9 30 C2 74 72 !J.,...0.tr
 0060: 95 01 54 B1 29 E7 F8 9E 6D F3 B5 D7 B7 D2 9E 9B ..T.)...m.......
 0070: 85 D8 E4 CF C2 D5 3B 64 F0 07 17 9E 1E B9 2F 79 ;d....../y
0]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2238]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2239]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2240]]
 JSSEContext: handleConnection[Socket[addr=BOSSXXXX.PLEX1.L2.IBM.COM/
9.38.48.108,port=8880,localport=2241]]

Tracing security

The classes which implement WebSphere Application Server security are:
v com.ibm.ws.security.*
v com.ibm.websphere.security.*
v com.ibm.WebSphereSecurityImpl.*
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

JSP engine troubleshooting tips
If you are having difficulty using the JSP engine, try these steps:
1. Determine whether other resources such as .html files or servlets are being

requested and displayed correctly. If they are not, the problem probably lies at
a deeper level, such as with the HTTP server.

2. If other resources are being displayed correctly, determine whether the JSP
engine has started normally:

Chapter 2. Diagnosing and fixing problems 105

v Browse the logs of the server hosting the JSP files you are trying to access. A
message such as JSP 1.2 Processor: init a server log file indicates that the JSP
engine has started normally. If the JSP processor fails to load, you may see a
message such as Did not realize init() exception thrown by servlet JSP
1.2 Processor in the server log files.

3. If the JSP engine has started normally, the problem may be with the JSP file
itself.
v Copy a simple JSP file (such as the WebSphere Application Server sample

″HelloHTML.jsp″) to the Web application’s document root and attempt to
serve it.

v If that works, examine the target application server’s server log files for
invalid JSP directive syntax . Errors similar to the following in a browser
indicate this kind of problem: Message: /jspname.jsp(9,0) Include:
Mandatory attribute page missing. This example indicates that line 9,
column 0 of the named JSP is missing a mandatory page attribute. Similar
messages are displayed for other syntax errors.

v Examine the target application server’s server log files files for problems with
invalid Java syntax. Errors similar to Message: Unable to compile class for
JSP in a browser indicate this kind of problem.
 The error message output from the Javac compiler will be found in the
server log files. It might look like:

C:\WASROOT\temp\ ... test.war_myJsp.java:14: Duplicate variable declaration:
 int myInt was int myInt
 int myInt = 122; String myString = ″number is 122″;
 static int myStaticInt=22;
 int myInt=121;
 ^
 1 error

 Correct the error in the JSP file and retry the file.

If none of these steps solves the problem, check to see if the problem is identified
and documented using the links in Diagnosing and fixing problems: Resources for
learning.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Workload Management component troubleshooting tips
If the Workload Management component is not properly distributing the workload
across servers in multi-node configuration, use these steps to isolate the problem.

There are some basic steps for troubleshooting the Workload Management
component:
v Eliminate environment or configuration issues
v

v Resolve problem or contact IBM support

Eliminate environment or configuration issues

106 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

First, determine the health of the cluster. In other words, are the servers capable of
serving the applications for which they have been enabled? To do this, you must
identify the cluster that is exhibiting the problem.
v Are there network connection problems with the members of the cluster or the

administrative servers, for example deployment manager or node agents?
– If so, ping the machines to ensure that they are properly connected to the

network.
v Is there other activity on the machines where the servers are installed that is

impacting the servers ability to service a request? For example, check the
processor utilization as measured by the task manager, processor ID, or some
other outside tool to see if:
– It is not what is expected, or is erratic rather than constant.
– It shows that a newly added, installed, or upgraded member of the cluster is

not being utilized.
v Are all of the application servers you started on each node running, or are some

stopped?
v Are the applications installed and operating?
v If the problem relates to distributing workload across persistent (CMP or BMP)

enterprise beans, have you configured the supporting JDBC drivers and
datasources on each server? For problems relating to data access, review the
topic Cannot access a datasource.

If you are experiencing workload management problems related to HTTP requests,
such as HTTP requests not being served by all members of the cluster, be aware
that the HTTP plugin will balance the load across all servers that are defined in the
PrimaryServers list if affinity has not been established. If you do not have a
PrimaryServers list defined then the plugin will load balance across all servers
defined in the cluster if affinity has not been established. If affinity has been
established, the plugin should go directly to that server for all requests.

For workload management problems relating to enterprise bean requests, such as
enterprise bean requests not getting served by all members of a cluster:
v Are the weights set to the allowed values?

– For the cluster in question, log onto the administrative console and:
1. Select Cluster -> Manage cluster
2. Select your cluster from the list.
3. Select Cluster Members.
4. For each server in the cluster, click on servername and note the assigned

weight of the server.
– Ensure that the weights are within the valid range of 0-20. If a server has a

weight of 0, no requests will be routed to it. Weights greater than 20 are
treated as 0.

Note: The remainder of this article deals with enterprise bean workload balancing
only. For more help on diagnosing problems in distributing Web (HTTP)
requests, view the topics HTTP plugin component troubleshooting tips and
Web resource (JSP, servlet, html file, image, etc) will not display.

Resolve problem or contact IBM support

If the client logs indicate an error in WLM, collect the following information and
contact IBM support.
v A detailed description of your environment.
v A description of the symptoms.
v The server log files for all servers in the cluster.

Chapter 2. Diagnosing and fixing problems 107

v A description of what the client is attempting to do, and a description of the
client. For example, 1 thread, multiple threads, servlet, J2EE client, etc..

If none of these steps solves the problem, check to see if the problem has been
identified and documented using the links in Diagnosing and fixing problems:
Resources for learning. If you do not see a problem that resembles yours, or if the
information provided does not solve your problem, contact IBM support for
further assistance.
 Related tasks

 “Troubleshooting by task: what are you trying to do?” on page 39
 Related reference

 “Troubleshooting installation problems” on page 39

Setting up component trace (CTRACE)
This file describes how to set up CTRACE

WebSphere Application Server for z/OS uses z/OS component trace (CTRACE)
facilities to manage the collection and storage of trace data. Unless you configure
specific CTRACE controls, WebSphere Application Server for z/OS records its trace
data in address-space buffers in private (pageable) storage. This data is not
accessible unless a dump of the address space is taken.

Although CTRACE data is primarily output for IBM service personnel to use,
exploiting CTRACE capabilities at your installation allows you to have additional
trace data available when a problem first occurs. Because CTRACE efficiently uses
system resources, you can collect valuable trace data with minimal impact on
performance.

When your installation first customizes and verifies WebSphere Application Server
for z/OS installation, you have the option of defining CTRACE controls and
resources. Using the ISPF customization dialog to configure a base application
server node, you can specify:
v Data sets to contain CTRACE data collected for WebSphere Application Server

for z/OS.
v CTRACE writer parameters that control the writer through which trace data

moves from address-space buffers into trace data sets.
v The parmlib member that connects WebSphere Application Server for z/OS

address spaces to trace data sets, and optionally turns on the CTRACE writer.
v WebSphere variables that control the characteristics of trace data.

The ISPF customization dialog generates instructions for:
1. Starting the CTRACE writer
2. Starting the WebSphere Application Server for z/OS application server

Following the instructions in sequence is quite important; you can lose valuable
trace data if you do not start the CTRACE writer before starting the server.

For information about the advantages of using CTRACE facilities, see z/OS MVS
Diagnosis: Tools and Service Aids, GA22-7589

 Related reference

 “Setting output destinations and characteristics” on page 157
 “Setting trace controls” on page 158

108 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

“Viewing CTRACE and JRas data through IPCS” on page 115
 Related information

 z/OS MVS Diagnosis: Tools and Service Aids

Steps for preparing CTRACE controls and resources

Before you start CTRACE activity for WebSphere Application Server for z/OS
servers, you need to make some decisions about CTRACE controls and resources.
You have the option of using default CTRACE values and resources, such as the
IBM-supplied CTRACE parmlib member for WebSphere Application Server for
z/OS, or you may alter default values and provide your own resources.

Perform the following steps to prepare CTRACE controls and resources:
1. Decide where you want to store CTRACE data. The location of trace data is set

through the WebSphere variable ras_trace_outputLocation. Make a note of the
value that you want to use; you will set the value later, when you start
CTRACE activity.

Note: Tips:
v See Setting Trace Controls for an explanation of and default values for

the ras_trace_outputLocation variable.
v If you decide to use trace data sets, you can use existing or create

new data sets now or later, as part of the WebSphere Application
Server for z/OS customization process.

v If you want the CTRACE data for each cell to go into separate data
sets, use the ras_trace_ctraceParms variable described in Setting Trace
Controls.

v When you are installing WebSphere Application Server for z/OS,
sending trace data to SYSPRINT can be helpful; however, tracing to
SYSPRINT in a production environment can cause spool space to fill
up quickly. For production, you can specify a different trace output
location through the WebSphere variable ras_trace_outputLocation.

v To separate trace data from other standard output messages, such as
System.output.println from Java applications, you can direct
CTRACE data to a separate data set. To accomplish this separation,
you need to:
– Specify a TRCFILE DD statement in the JCL start procedure (proc)

for the server.
– Set the WebSphere variable ras_trace_outputLocation to TRCFILE.

Note that you may specify the TRCFILE value with or without
additional variable values.

2. Through modify commands, you have the ability to dynamically and
temporarily direct trace data to SYSPRINT or TRCFILE.
a. You can direct CTRACE data to buffers as part of normal operations.
b. When an error occurs, you can use the modify command to send trace data

to SYSPRINT or TRCFILE.
c. Then you can use the modify command again, to dynamically reset the

trace-output location

You can complete this sequence of actions without stopping the server that is
encountering the problem.

Chapter 2. Diagnosing and fixing problems 109

http://publibz.boulder.ibm.com/epubs/pdf/iea2v130.pdf

3. Decide whether you want to accept defaults or provide other values for the
following WebSphere variables. Make a note of the values that you want to use;
you will set the values later, when you start CTRACE activity.
v ras_time_local

v ras_trace_BufferCount

v ras_trace_BufferSize

For defaults and valid values, see Setting Trace Controls
4. Decide whether you want to use the default JCL start procedure for the

CTRACE writer, or code your own JCL proc. WebSphere Application Server for
z/OS provides a CTRACE writer proc named bbowtr. If you decide to provide
your own CTRACE writer procedure, create the JCL start proc using the rules
for source JCL for an external writer in . Place the start procedure in your
system proclib.

5. Decide whether you want to use the default CTRACE parmlib member for
WebSphere Application Server for z/OS, or provide your own. The WebSphere
parmlib member is named CTIBBO00. If you decide to provide your own
parmlib member, create one according to the following rules, and place it in
your system parmlib. Rules:

v You must follow the same naming convention; that is, the name must
consist of the letters CTIBBO, but you may replace the two zeroes with any
two alphanumeric characters.

v Your parmlib member must contain the following parameters:
 TRACEOPTS WTRSTART(xxxxxx)
 ON /*CONNECT TO CTRACE EXTERNAL WRITER: */ WTR(xxxxxx)

 Table 2. Parameters for the CTIBBOxx parmlib member

Parameter Required or
Optional?

Description

TRACEOPTS Required and
positional

This parameter must be specified first.

WTRSTART (xxxxxx) Optional This parameter automatically starts the
CTRACE writer, using the specified JCL
procedure.

Alternative: You may use the operator
command TRACE CT,WTRSTART=xxxxx to start
the CTRACE writer. If you use this parameter
in the parmlib member, and later issue the
operator command, CTRACE issues an
informational message to notify you that the
writer already has been started.

ON Required This parameter must be specified before
component options.

WTR(xxxxxx) Required This parameter identifies the JCL procedure
to be used to start the CTRACE external
writer. The specified value must match the
value of the WTRSTART parameter to capture
the WebSphere Application Server for z/OS
trace data into a trace data set.

6. Ensure that the DLL named BBORTSS5 is in the link-pack area (LPA).

After you have made these decisions and completed preparations, you are ready to
start CTRACE activities using one of the following procedures:

110 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

v During customization of WebSphere Application Server for z/OS (see “Steps for
starting CTRACE as part of WebSphere Application Server for z/OS
customization”) or

v While WebSphere Application Server for z/OS servers already are running on
z/OS or OS/390 (see “Steps for starting CTRACE while WebSphere Application
Server for z/OS servers are active”

 Related reference

 “Steps for starting CTRACE as part of WebSphere Application Server for z/OS
customization”

 “Steps for starting CTRACE while WebSphere Application Server for z/OS
servers are active”

 “Setting trace controls” on page 158

Steps for starting CTRACE as part of WebSphere Application
Server for z/OS customization

Make sure you have properly prepared CTRACE controls and resources as
described in “Steps for preparing CTRACE controls and resources” on page 109

Perform the following steps to start CTRACE as part of the customization process
for WebSphere Application Server for z/OS:
1. Using the ISPF customization dialog to configure a base application server

node, specify: Trace data set characteristics, CTRACE writer parameters, the
CTRACE parmlib member and WebSphere variables, if you want values other
than the defaults. The ISPF customization dialog generates instructions for
starting the CTRACE writer and instructions for starting the WebSphere
Application Server for z/OS application server

2. Start the CTRACE writer, using the generated instructions. You must start the
writer first, or you might lose valuable trace data.

3. Start the WebSphere Application Server for z/OS application server, using the
generated instructions.

4. When you need to collect trace data for analysis:
a. Use the following operator command to disconnect WebSphere Application

Server for z/OS from CTRACE: TRACE CT,ON,COMP= cell_short_name REPLY
x,WTR=DISCONNECT,END. where cell_short_name is the value specified through
the ISPF customization dialog to identify the location of server
configuration files. The name must be 8 or fewer characters and all
uppercase.

b. Use the following operator command to stop the CTRACE writer address
space: TRACE CT,WTRSTOP= writer_name where writer_name is the name of the
JCL start procedure for the CTRACE writer.

 Related reference

 “Viewing CTRACE and JRas data through IPCS” on page 115

Steps for starting CTRACE while WebSphere Application
Server for z/OS servers are active

Make sure you have properly prepared CTRACE controls and resources as
described in “Steps for preparing CTRACE controls and resources” on page 109

Chapter 2. Diagnosing and fixing problems 111

If you start a WebSphere Application Server for z/OS server before starting the
CTRACE writer for WebSphere, the server still gathers data in its trace buffers.
This trace data is not available for use unless you follow this procedure, or until a
dump of the server address space is taken.

Perform the following steps to start CTRACE when a WebSphere Application
Server for z/OS server already is active:
1.

v Use the following operator command to start the CTRACE writer address
space: TRACE CT,WTRSTART= writer_name where writer_name is the name of the
JCL start procedure for the CTRACE writer that is specified in the
WebSphere Application Server for z/OS CTIBBO xx parmlib member.

v To connect WebSphere Application Server for z/OS to a CTRACE writer
other than the one specified in the CTIBBO xx parmlib member, also enter
these operator commands: TRACE CT,ON,COMP= cell_short_name REPLY
x,WTR= writer_name, END where cell_short_name is the value specified
through the ISPF customization dialog to identify the location of server
configuration files (the name must be 8 or fewer characters and all
uppercase) and writer_name is the name of a JCL start procedure for a
CTRACE external writer. The JCL start procedure must reside in the system’s
proclib.

The CTRACE external writer begins writing the server’s trace data to the
location specified through the WebSphere variable ras_trace_outputLocation

2. When you need to collect trace data for analysis:
a. Use the following operator command to disconnect WebSphere Application

Server for z/OS from CTRACE: TRACE CT,ON,COMP= cell_short_name REPLY
x,WTR=DISCONNECT,END

b. Use the following operator command to stop the CTRACE writer address
space: TRACE CT,WTRSTOP= writer_name where writer_name is the name of the
JCL start procedure for the CTRACE writer.

 Related reference

 “Viewing CTRACE and JRas data through IPCS” on page 115

Using CTRACE to collect trace data for Java server
applications

This file describes how to set up CTRACE

Applications that run in WebSphere Application Server for z/OS can use JRas to
provide tracing support that is consistent with WebSphere tracing. Instrumented
applications use the JRas interfaces and classes for logging and tracing; trace data
is written to the same component trace data set as the internal traces issued by the
WebSphere Application Server for z/OS runtime. So you can gather application
trace data in the same locations, and use the same commands to start and stop
CTRACE for these JRas applications as you do for WebSphere Application Server
for z/OS server in which the applications are running.
 Related reference

 “Viewing CTRACE and JRas data through IPCS” on page 115
 “Programming with the JRas framework” on page 125

112 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Setting up the error log
WebSphere Application Server for z/OS uses an error log to record error
information when an unexpected condition or failure is detected within the
product’s own code. Such unexpected conditions or failures include:
v Assertion failures
v Unrecoverable error conditions
v Failures related to vital resources, such as memory
v Operating system exceptions
v Programming defects in WebSphere Application Server for z/OS code.

Because WebSphere Application Server for z/OS is predefined as a z/OS system
logger application, you can use a log stream as the product’s error log. Doing so
offers the following flexibility:
v You can direct error information to:

– A coupling facility log stream, which provides sysplex-wide error logging, or
– A DASD-only log stream, which provides single system-only error logging.

v You can set up a common log stream for all WebSphere Application Server for
z/OS servers, or individual log streams for each application server. Local z/OS
or OS/390 client ORBs can also log data in log streams. The system logger APIs
are unauthorized, but logstream resources can be protected using security
products such as RACF.

v You can use the WebSphere variable
 ras_time_local

to control whether timestamps in the error log appear in local time or
Greenwich Mean Time (GMT), which is the default.

When your installation first customizes and verifies WebSphere Application Server
for z/OS installation, you have the option of defining the error log as a log stream.
Using the ISPF customization dialog to configure a base application server node,
you can specify log stream characteristics, including sizes. After verifying
installation, you can change the log stream used for normal operations.

For additional information about z/OS log stream requirements, access the z/OS
MVS Setting up a Sysplex, SA22-7625 available on the z/OS Library Web page
 Related concepts

 “Setting output destinations and characteristics” on page 157

Using the z/OS modify command
This file lists parameters that allow you to dynamically change values related to
tracing activity for a server or servant.

You may use either the WebSphere Application Server administrative console or
the z/OS MVS console to accomplish many operations tasks related to WebSphere
Application Server for z/OS servers. Entering the z/OS display or modify
commands through the MVS console can provide information or perform tasks that
are useful for diagnosing problems.

In particular, the z/OS modify command provides parameters that not only allow
you to control WebSphere Application Server for z/OS operations, but also to:
v Display information about WebSphere Application Server for z/OS servers or

servants (regions), and
v Dynamically change values related to tracing activity for a server or servant.

Chapter 2. Diagnosing and fixing problems 113

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

The z/OS modify command provides parameters that allow you to dynamically
change values related to tracing activity for a server or servant. Table 2 lists the
modify command parameters and the WebSphere variable that provides equivalent
function.

 Table 3. z/OS modify command parameters and their equivalent WebSphere variables

z/OS modify command parameter Equivalent WebSphere variable

TRACEALL ras_trace_defaultTracingLevel

TRACEBASIC ras_trace_basic Note: Do not change this variable
unless directed by IBM service personnel.

TRACEDETAIL ras_trace_detail

TRACESPECIFIC ras_trace_specific Note: Do not change this
variable unless directed by IBM service personnel.

TRACE_EXCLUDE_SPECIFIC ras_trace_exclude_specific Note: Do not change
this variable unless directed by IBM service
personnel.

TRACEINIT n/a

TRACENONE n/a

TRACETOSYSPRINT ras_trace_outputLocation=SYSPRINT

TRACETOTRCFILE ras_trace_outputLocation=TRCFILE

TRACEJAVA n/a

 Related information

 MVS System Commands

Viewing diagnostic information
The following topics provide information about specific sources of diagnostic data,
and the tools or resources you might need to view or work with that data.

 Type of diagnostic
tools or data:

Notes and instructions for use appear in:

CEEDUMPs Viewing CEEDUMPs in the job log

SVC dumps Viewing SVC dumps

CTRACE and JRas
data

Viewing CTRACE and JRas data through IPCS

Error log data Viewing error log contents through the Log Browse Utility
(BBORBLOG)

z/OS display
command

Using the z/OS display command

Java minor codes Converting Java minor codes

Viewing CEEDUMPs in the job log
An error caught by LE or the Java run-time can result in the production of a
CEEDUMP, which is written to a separate CEEDUMP specification in the job log.
To view the dump contents, select the CEEDUMP portion of the output for the
address space. The ’Traceback’ section at the beginning of the dump can be very
helpful.

114 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://publibz.boulder.ibm.com/epubs/pdf/iea2g232.pdf

Viewing SVC dumps
A SVC dump is a core dump initiated by the operating system generally when a
programming exception occurs. SVC dump processing stores data in dump data
sets that you pre-allocate, or that the system allocates automatically as needed.

Alternatively, you can initiate an SVC dump through the MVS console, to gather
diagnostic data for a ’hang’ condition, for example. SVC dumps that you initiate
this way are called console dumps.

One example of an abend that could occur is the EC3 abend. WebSphere
Application Server for z/OS requests an SVC dump when a controller terminates a
servant (region) with an EC3 abend when timeout conditions occur.
v Your installation can set parmlib options that determine what to dump,

eliminate duplicate dumps, and so on. WebSphere Application Server for z/OS
provides a dump parmlib sample in
 SBBOJCL(BBODMCCB)

.
v The standard SDATA expected in a SVC dump:

 SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT),end
v If you cannot find an SVC dump for a specific abend, your installation might be

using Dump analysis and elimination (DAE) to suppress the dump. If this is the
case, you can change DAE to let the dump be taken or set a SLIP on the specific
abend for a particular job name if the timeout is consistently happening. For
further information, see:
– z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for details about

using DAE.
– z/OS MVS System Commands, SA22-7627 for details about the SLIP

command, which controls SLIP (serviceability level indication processing), a
diagnostic aid that intercepts or traps certain system events and specifies
what action to take. Using the SLIP command, you can set, modify, and delete
SLIP traps.

v When you initiate a console dump:
– When you want an SVC dump of a servant region, also request a dump of

the servant’s controller region.
– Unless you suspect a particular servant region as the source of a problem,

dump the controller region and all of its servant regions.
v If syslog contains a message indicating that the maxspace limit was reached for

this dump, the SVC dump might be a partial one that might not contain the data
you need to diagnose the timeout. This limit means that the data set used for
SVC dump is not large enough, and you have to change the size to capture a
complete dump.

v To view CEEDUMP contents within the SVC dump, use the IPCS verbexit
LEDATA, with the CEEDUMP or NTHREADS options, to format and analyze
Language Environment control blocks. For additional information, see z/OS
Language Environment Debugging Guide, GA22-756 for instructions for using
IPCS to format and analyze CEEDUMP contents.

See z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for additional
information about SVC dumps.

Viewing CTRACE and JRas data through IPCS
Once activated, the WebSphere Application Server for z/OS always writes trace
data into memory buffers. The number and size of these buffers is controlled using

Chapter 2. Diagnosing and fixing problems 115

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

WebSphere variables, also called console settings. You can get this trace data from
a dump, which may be taken by the system or requested by the operator through
DUMP or SLIP commands.

To view messages or application trace data from Component Trace, you must use
the interactive problem control system (IPCS) to format the data. The source of the
trace data can be a dump data set or a trace data set, and the command to use
would be
 IPCS CTRACE

. You can also use the
 IPCS CTRACE

command to merge multiple trace entities together such as multiple WebSphere
Application Server for z/OS address space traces, OMVS, and TCPIP.

Steps for using the IPCS dialog to format CTRACE data

When setting up IPCS, your installation may customize IPCS for its users. IBM
recommends providing access to the IPCS dialog through an ISPF panel. If your
installation has not customized IPCS as recommended, you need to start the IPCS
dialog. See z/OS MVS IPCS User’s Guide, SA22-7596 to find out how to start the
IPCS dialog.

Perform the following steps to use the IPCS dialog to format application trace data:
1. From the IPCS Primary Option Menu panel, select option 6 (COMMAND).
2. On the IPCS Subcommand Entry panel:

a. Issue the SETDEF subcommand to determine the default values for routing
displays.

b. Enter the CTRACE command, with the following required parameters:
CTRACE COMP(cell_short_name
)
 where cell_short_name is the value specified through the ISPF customization
dialog to identify the location of server configuration files. The name must
be 8 or fewer characters and all uppercase.

Note: If you were interested in only JRAS data, you would enter the
following:
CTRACE COMP(cell_short_name
)USEREXIT(JRAS)

Specify additional parameters as necessary.

 Example: To direct trace data to the terminal only, you would append the
 NOPRINT
 and
 TERMINAL
 parameters to the
 CTRACE
 command.

 Tip: For a complete list of CTRACE command parameters, see z/OS MVS IPCS
Commands, SA22-7594.

116 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

3. View your application’s data, basing the method you choose on which one is
appropriate for the location of the data:

 If you directed output to the... Then use the...

IPCS print data set (IPCSPRNT) ISPF/PDF Browse option

Terminal Dump Display Reporter panel

 Tips: To navigate through the trace data on the Dump Display Reporter panel,
use the commands and PF keys listed in z/OS MVS IPCS User’s Guide,
SA22-7596.
 CTRACE enables you to view multiple traces together with the trace data from
the various sources intermixed based on the time stamp. See z/OS MVS IPCS
Commands, SA22-7594, for specifics on using this MERGE subcommand.

Finding the subname for IPCS CTRACE
If the trace data set is an SVC dump, the trace subname must also be specified.
This subname is the aggregation of the address space’s jobname with its ASID
(address space identifier), in printable hexadecimal. An easy way to determine the
subname is to query CTRACE for the data using the following IPCS subcommand:
CTRACE QUERY DSN(’dump.data.set’)

Once you get the subname you can view the WebSphere Application Server for
z/OS trace data with the following IPCS subcommand:
CTRACE COMP(cell_short_name) SUB((subname)) FULL DSN(’dump.data.set’)

where cell_short_name is the value specified through the ISPF customization dialog
to identify the location of server configuration files. The name must be 8 or fewer
characters and all uppercase.

Note: The subname parameter is optional for only the trace data set. It is required
when viewing the trace data using the dump data set.

Steps for using IPCS in batch mode to format CTRACE data

You must create an IPCS dump directory before you can use IPCS in batch mode.
When setting up IPCS, your installation may customize IPCS for its users. This
customization can include modifying the IBM-supplied BLSCDDIR CLIST with
default values for creating an IPCS dump directory.

To view messages or application trace data from Component Trace, you must use
the interactive problem control system (IPCS) to format the data. Using IPCS in
batch mode is the easiest method of formatting data, especially if you do not have
much experience with using IPCS, TSO/E and ISPF. Through batch mode, you can
use IPCS to format trace data and write it to an MVS data set. Optionally, you may
copy the contents of that data set into an HFS file for viewing.

When your installation has modified the BLSCDDIR CLIST the steps outlined
herein will create an IPCS dump directory.
1. Decide on a fully-qualified data set name for the directory.
2. From the TSO/E command prompt, enter the

 BLSCDDIR

command, specifying the data set name.

 For example, to create a dump directory named IBMUSER.DDIR, enter:

Chapter 2. Diagnosing and fixing problems 117

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

%blscddir dsn(’ibmuser.ddir’)

If your installation has not customized IPCS, you might need to alter other
BLSCDDIR CLIST parameters. See the z/OS MVS IPCS User’s Guide, SA22-7596
and z/OS MVS IPCS Commands, SA22-7594 for more details about using the
BLSCDDIR CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application trace
data:
1. Create a file and copy the following sample JCL into it. This JCL invokes IPCS

to extract and format JRAS trace data and write it into an MVS data set, and
then uses the
 TSO/E OPUT

command to copy the formatted data from the MVS data set into an HFS file.
//IBMUSERX JOB ,
// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H
//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR
//IPCSDOC DD SYSOUT=H
//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR
//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
IPCS
DROPDUMP DDNAME(JRASTRC)
PROFILE LINESIZE(80)PAGESIZE(99999999)
SETDEF NOCONFIRM
CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +
 NOTERMINAL
DROPDUMP DDNAME(JRASTRC)
END
/*
//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
oput ’ibmuser.ipcs.out’ ’/u/ibmuser/ipcs/jrastrace.txt’ TEXT
/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that you
used for the IPCS dump directory you created.
a. Use the PAGESIZE parameter on the PROFILE statement only if you do not

want to print the output data set.
b. You may replace the HFS file name with the name of an existing HFS file,

but you do not have to do so. The
 OPUT

command processing will create a new HFS file, if the one specified does
not exist, and grants read and write access to that file for your user ID only.

 If you do specify an existing HFS file, the
 OPUT
 command processing will write over any data that is already in that file. If
you want to know more about the
 OPUT
 command, see the z/OS UNIX System Services Command Reference,
SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example to
the name of the data set containing the CTRACE data.

118 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

d. Change the name of the MVS data set on both the JRASTRC DD statement
and the OPUT command in the SYSTSIN stream, as necessary. The
formatted output of the JRAS CTRACE data is first written to the MVS data
set specified by the
 IPCSPRNT DD

statement and then (optionally) copied to the HFS data set. You must either
pre-allocate this data set, or change the sample JCL to allocate the data set.
This data set should have a record format of VBA and a record length of
133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace data
in the HFS file. If you want to know more about the UNIX editors, see z/OS UNIX
System Services User’s Guide, SA22-7801.

CTRACE enables you to view multiple traces together with the trace data from the
various sources intermixed based on the time stamp. See z/OS MVS IPCS
Commands, SA22-7594, for specifics on using this
 MERGE

subcommand.
 Related tasks

 “Steps for using the IPCS dialog to format CTRACE data” on page 116

Sample JCL to display WebSphere for z/OS trace data: The following sample
shows JCL that displays WebSphere for z/OS trace data.

Note: The JCL uses an IPCS dump directory (in VSAM data set userid.DUMP.DIR)
that must be allocated before you run the JCL. See z/OS MVS IPCS
Commands, SA22-7594 , for information about initializing a dump directory.

//SHOWTRC JOB <job card info>
//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR
//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM
 CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)
/*
 The following example shows JCL that displays WebSphere for z/OS trace data for
multiple address spaces.
//SHOWTRC2 JOB <job card info>
//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR
//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM

Chapter 2. Diagnosing and fixing problems 119

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

MERGE
 CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)
 CTRACE COMP(SYSBBOSS) SUB((subname2)) FULL DSN(’dump.data.set’)
 MERGEEND
/*

Viewing error log contents through the Log Browse Utility
(BBORBLOG)

You can use the Log Browse Utility (BBORBLOG) to view the error log stream. If
you need to look at the WebSphere Application Server for z/OS error logstream,
use ISPF option 6 to enter the command:
1. Use ISPF option 6 to enter the proper command.

 ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX ’
 the log-stream name is assumed to be BBO.BOSSXXXX

2. The space allocation and the unit for the allocation are contained within the
rexx code. If you keep a large amount of trace data, the allocation must be
made larger.

3. The WebSphere Application Server for z/OS provides an ISPF REXX EXEC
named BBORBLOG, that allows you to browse the error log stream.

4. Save the output.
 When you use the BBORBLOG browser, it creates a data set with your user ID
followed by the log stream name. You should rename it if you wish to save
your browser output. The contents of the current view of the log stream will
remain until the stream reaches its retention date. The next time you invoke the
browser, however, the current view of the log stream will be deleted (because it
uses the same data set name). The previous data will exist in another record
(not the current view) until its retention date.

Use the following information to determine viewing of the error log:
v By default, the macro formats the error records to fit a 3270 display.
v Timestamps are in Greenwich Mean Time (GMT) unless changed by setting

WebSphere variable ras_time_local to 1.
v Message BBOJ0051I, which appears in the job output can help correlate

error-log entries to the proper job output.

Using the log browse utility (BBORBLOG)

The browser takes two parameters:

 Parameter Description

log stream name The name of the log stream. See the job
messages for the name of the log stream.

format option
80 The default. The log stream record will be
formatted on a lrecl length of 80 characters.
Additional lines will be wrapped.

NOFORMAT Turns off formatting. The error
log message appears as one log message
string in the browse file.

View the error log stream output using the BBORBLOG browser. To invoke the
browser, go to ISPF option 6 and enter:
’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX format option ’

120 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Note: In this example, BBORBLOG resides in BBO.SBBOEXEC.

 The browser creates a browse data set named ″ userid.stream_name ″, which
contains the contents of the log stream. When the browser is executed, it:
1. Allocates a data set called userid.stream_name, which overwrites any duplicate

data sets.
2. Populates the data set with the contents of the log stream.
3. Puts the user in ″browse″ mode on the data set.

Important: Each time BBORBLOG is invoked a static file is created which overwrites
the existing file. In order to refresh the file, it is necessary to re-issue BBORBLOG

There are three valid ways (three separate commands to use) to invoke the
browser. We will illustrate each of these using the following example:Example: If
the BBORBLOG member was in a data set named BBO.SBBOEXEC, then you would
issue one of the following depending on your chosen format option:

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX ’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX 80’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX NOFORMAT ’

Tip: (For using BBORBLOG): If the target library in the BBO.SBBOEXEC example
above was added to the SYSEXEC concatenation of the user logon procedure during
the WebSphere Application Server for z/OS installation, it would be easiest to
invoke the browser. You would not have to specify the library containing the
browser REXX EXEC -you would only need to specify BBORBLOG.

Error log stream record output
There are two error log stream records that we will look at:
v Server logstream
v CERR of a server.

Note: The numbers to the left of each sample were added to specify lines-they will
not be in the actual output.

Sample output from a server logstream:
1| 2000/06/01 16:01:06.683 01 SYSTEM=SY1 SERVER=BBOASR1A JobName=BBOASR1S
2| ASID=0X0033 PID=0X0100003C TID=0X24F858A0 0X000004 c=2.1010030
3| ./bbooreq.cpp+4437 ... BBOU0013W The function
4| make_user_exception(IIOP_protocolArea*)+4437 raised a user exception
5| CosNaming::NamingContext::NotFound.
 The log stream record output fields from stream BBO.BOSSXXXX are:

 Table 4. Parts table for a server logstream record output

Component Description

line 1: 2000/06/01 16:01:06.683 01 Date / timestamp / 2-digit record version
number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 1: JobName=BBOASR1S Jobname

line 2: ASID=0X0033 ASID (address space identifier)

line 2: PID=0X0100003C PID (Process ID)

line 2: TID=0X24F858A0 0X000004 TID (Thread ID)

line 2: c=2.1010030 Request correlation information

Chapter 2. Diagnosing and fixing problems 121

Table 4. Parts table for a server logstream record output (continued)

Component Description

line 3: . /bbooreq.cpp+4437 File name & line

line 3: BBOU0013W Log message number

line 3: The function. .. Log message

lines 4-5: make_user_exception...
CosNaming::Naming...

Continuation lines: Continuation of the Log
Stream log message

Note: Each field is delimited by a blank.

Sample output from CERR of a server:
1| BossLog: { 0017} 2000/06/01 15:58:25.557 01 SYSTEM=SY1 SERVER=BBOASR1A
2| PID=0X0100003C TID=0X24F82920 00000000 c=3.C5D02
3| ./bboiroot.cpp+1195 ... BBOU0012W The function IRootHomeImpl::findHome(
4| const char*)+1195 received CORBA system exception CORBA::INTERNAL.
5| Error code is C9C21200.
 The CERR job message output fields are:

 Table 5. Parts table for a CERR record output

Component Description

line 1: BossLog: { 0017} BossLog: {entry number}

line 1: 2000/06/01 15:58:25.557 01 Date / timestamp / 2-digit record version
number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 2: PID=0X0100003C PID (Process ID)

line 2: TID=0X24F82920 00000000 TID (Thread ID)

line 2: c=3.C5D02 Request correlation information

line 3: . /bboiroot.cpp+1195 File name & line

line 3: BBOU0012W Log message number

line 3: The function IRootHomeImpl::find. .. Log message

lines 4-5: const char*)+1195 received CORBA
system exception CORBA::INTERNAL. Error
code is C9C21200.

Continuation lines: Continuation lines of
the CERR job message

 v Each field is delimited by a blank.
v The CERR format is found in SYSOUT, not the logger.

Saving your BBORBLOG browser output

When you use the BBORBLOG browser, it creates a data set with your user ID
followed by the log stream name. You should rename it if you wish to save your
browser output. The contents of the current view of the log stream will remain
until the stream reaches its retention date. The next time you invoke the browser,
however, the current view of the log stream will be deleted (because it uses the
same data set name). The previous data will exist in another record (not the
current view) until its retention date.

122 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Using the z/OS display command
You may use either the WebSphere Administrative console or the z/OS MVS
console to accomplish many operations tasks related to WebSphere Application
Server for z/OS servers. Entering the z/OS display or modify commands through
the MVS console can provide information or perform tasks that are useful for
diagnosing problems.

In particular, the z/OS display command provides parameters that allow you to
display information about the following:
v Servers
v Servant regions
v Sessions
v Trace settings
v JVM heap statistics

Converting Java minor codes
Occasionally, Java will take an WebSphere Application Server for z/OS error code
(C9C2xxxx in hexadecimal) and convert it to a very large negative number. If you
get a very large negative number, try converting it back to hexadecimal to find the
correct code.

To convert the error codes back to hexadecimal:
v Add 232 to the negative number and convert it into hexadecimal. This can be

done using the OMVS command
 bc
 Example: Suppose you get the error code ″910022649″:
1. Under OMVS, type the command:

bc
2. then type:

obase=16
2^32 - 910022649
quit

v The bc program displays C9C22807, which is the hex value that you should
look up.

Using the Error Dump and Cleanup interface
The Error Dump and Cleanup (BBORLEXT) interface exists to call WebSphere
Application Server for z/OS in a recovery environment to allow it to request a
dump and to clean up its resources.

The interface will:
v Save the function and DLL names of the failing z/OS component into the

SDWA.
v Determine whether or not to issue an SDUMP, if relevant to the time-of-failure

environment.
v Clean up z/OS internal structures and connections.

Program requirements: This interface must be called from within a WebSphere
Application Server for z/OS location service daemon, controller (region), or servant
(region). There are no restrictions against in which recovery environment, such as
an ESTAE or FRR routine, the caller must reside.

Chapter 2. Diagnosing and fixing problems 123

General information

 Interface: BALR to BBORLEXT

Address of routine: (ECVT+’234’x)+’20’x

Address mode: AMODE 31, RMODE
any

State: Allow problem program
state, task mode

Cross memory mode: PASN=HASN=SASN
(non-cross memory)

Return codes: No return codes

Function: Clean-up various
WebSphere for z/OS
resources and possibly
issue an SVC dump for
the current address
space

Input register information

The contents of the registers are as follows:

 1 Contains the address of the SDWA

14 Contains the return address

15 Contains the entry point address of
BBORLEXT

Output register information

When control returns to the caller, the contents of the registers are as follows:

 0-1 Used as a work register by the system

2-14 Unchanged

15 Used as a work register by the system

Note: Some callers depend on register contents remaining the same before and
after issuing a service. If the system changes the contents of registers on
which the caller depends, the caller must save them before issuing the
service and restore them after the system returns control.

Note: A dump will not occur for X22 abends or for certain reason codes from 0D6,
052, 067, CC3, and DC3 abends. There may also be other error conditions
that will not create a dump.

Example:
Example Here is an example of how to call this routine in assembler:
LA 1,SDWA Load SDWA@ in Reg 1
L 15,(0,16) Load CVT address
L 15,140(,15) Load ECVT address
L 15,564(,15) Load address of z/OS structure
L 15,32(,15) Load address of z/OS routine
BALR 14,15 Invoke z/OS routine

124 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Adding logging and tracing to your application
Designers and developers of applications that run with or under WebSphere
Application Server, such as servlets, JSP files, enterprise beans, client applications,
and their supporting classes, may find it useful to use the same facility for
generating messages that WebSphere Application Server itself uses, JRas.

This approach has advantages over simply adding System.out.println()
statements to your code:
v Your messages appear in the WebSphere Application Server standard message

format with additional data, such as a date and time stamp, added
automatically.

v You can more easily correlate problems and events in your own application to
problems and events associated with WebSphere Application Server components.

v You can take advantage of the WebSphere Application Server log file
management features.

v You can view your messages with the WebSphere Application Server
user-friendly Log Analyzer tool.

Unless you choose to extend the JRas framework, using the JRas API set is only
slightly more complicated than writing basic System println() statements.

Programming with the JRas framework

Use the JRas extensions to incorporate message logging and diagnostic trace into
WebSphere Application Server applications. The JRas extensions are based on the
stand-alone JRas logging toolkit.
1. Retrieve a reference to the JRas manager.
2. Retrieve message and trace loggers by using methods on the returned manager.
3. Call the appropriate methods on the returned message and trace loggers to

create message and trace entries, as appropriate.

Understanding the JRas facility
Developing, deploying and maintaining applications are complex tasks. For
example, when a running application encounters an unexpected condition it might
not be able to complete a requested operation. In such a case you might want the
application to inform the administrator that the operation has failed and give
information as to why. This enables the administrator to take the proper corrective
action. Application developers or maintainers might need to gather detailed
information relating to the execution path of a running application in order to
determine the root cause of a failure that is due to a code bug. The facilities that
are used for these purposes are typically referred to as message logging and
diagnostic trace.

Message logging (messages) and diagnostic trace (trace) are conceptually quite
similar, but do have important differences. It is important for application
developers to understand these differences in order to use these tools properly. To
start with, the following operational definitions of messages and trace are
provided.
Message

A message entry is an informational record intended to be viewed by end
users, systems administrators and support personnel. The text of the
message must be clear, concise and interpretable by an end user. Messages
are typically localized, meaning they are displayed in the national
language of the end user. Although the destination and lifetime of

Chapter 2. Diagnosing and fixing problems 125

messages might be configurable, some level of message logging is always
enabled in normal system operation. Message logging must be used
judiciously due to both performance considerations and the size of the
message repository.

Trace A trace entry is an information record that is intended to be used by
service engineers or developers. As such a trace record may be
considerably more complex, verbose and detailed than a message entry.
Localization support is typically not used for trace entries. Trace entries
may be fairly inscrutable, understandable only by the appropriate
developer or service personnel. It is assumed that trace entries are not
written during normal runtime operation, but may be enabled as needed to
gather diagnostic information.

WebSphere Application Server provides a message logging and diagnostic trace
API that can be used by applications. This API is based on the stand-alone JRas
logging toolkit which was developed by IBM. The stand-alone JRas logging toolkit
is a collection of interfaces and classes that provide message logging and
diagnostic trace primitives. These primitives are not tied to any particular product
or platform. The stand-alone JRas logging toolkit provides a limited amount of
support (typically referred to as systems management support), including log file
configuration support based on property files.

As designed, the stand-alone JRas logging toolkit does not contain the support
required for integration into the WebSphere Application Server runtime or for
usage in a J2EE environment. To overcome these limitations, WebSphere
Application Server provides a set of extension classes to address these
shortcomings. This collection of extension classes is referred to as the JRas
extensions. The JRas extensions do not modify the interfaces introduced by the
stand-alone JRas logging toolkit, but simply provide the appropriate
implementation classes. The conceptual structure introduced by the stand-alone
JRas logging toolkit is described below. It is equally applicable to the JRas
extensions.

JRas Concepts

The following is a basic overview of important concepts and constructs introduced
by the stand-alone JRas logging toolkit. It is not meant to be an exhaustive
overview of the capabilities of this logging toolkit, nor is it intended to be a
detailed discussion of usage or programming paradigms. More detailed
information, including code examples, is available in JRas extensions and its
subtopics, including in the Javadoc for the various interfaces and classes that make
up the logging toolkit.
Event Types

The stand-alone JRas logging toolkit defines a set of event types for
messages and a set of event types for trace. Examples of message types
include informational, warning and error. Examples of trace types include
entry, exit and trace.

Event Classes
The stand-alone JRas logging toolkit defines both message and trace event
classes.

Loggers
A logger is the primary object with which the user code interacts. Two
types of loggers are defined. These are message loggers and trace loggers.
The set of methods on message loggers and trace loggers are different,
since they provide different functionality. Message loggers create only
message records and trace loggers create only trace records. Both types of

126 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

loggers contain masks that indicates which categories of events the logger
should process and which it should ignore. Although every JRas logger is
defined to contain both a message and trace mask, the message logger only
uses the message mask and the trace logger only uses the trace mask. For
example, by setting a message logger’s message mask to the appropriate
state, it can be configured to process only Error messages and ignore
Informational and Warning messages. Changing the state of a message
logger’s trace mask has no effect.

 A logger contains one or more handlers to which it forwards events for
further processing. When the user calls a method on the logger, the logger
will compare the event type specified by the caller to its current mask
value. If the specified type passes the mask check, the logger will create an
event object to capture the information relating to the event that was
passed to the logger method. This information may include information
such as the names of the class and method which is logging the event, a
message and parameters to log, among others. Once the logger has created
the event object, it forwards the event to all handlers currently registered
with the logger.

 Methods that are used within the logging infrastructure itself should not
make calls to the logger method. When an application uses an object that
extends a thread class, implements the hashCode(), and makes a call to the
logging infrastructure from that method, the result is a recursive loop.

Handlers
A handler provides an abstraction over an output device or event
consumer. An example is a file handler, which knows how to write an
event to a file. The handler also contains a mask that is used to further
restrict the categories of events the handler will process. For example, a
message logger may be configured to pass both warning and error events,
but a handler attached to the message logger may be configured to only
pass error events. Handlers also include formatters, which the handler
invokes to format the data in the passed event before it is written to the
output device.

Formatters
Handlers are configured with Formatters, which know how to format
events of certain types. A handler may contain multiple formatters, each of
which know how to format a specific class of event. The event object is
passed to the appropriate formatter by the handler. The formatter returns
formatted output to the handler, which then writes it to the output device.

JRas Extensions
JRas extensions

The stand-alone JRas logging toolkit defines interfaces and provides a variety of
concrete classes that implement these interfaces. Since the stand-alone JRas logging
toolkit was developed as a general purpose toolkit, the implementation classes do
not contain the configuration interfaces and methods necessary for use in the
WebSphere Application Server product. In addition, many of the implementation
classes are not written appropriately for use in a J2EE environment. To overcome
these shortcomings, WebSphere Application Server provides the appropriate
implementation classes that allow integration into the WebSphere Application
Server environment. The collection of these implementation classes is referred to as
the JRas extensions.

Usage Model

Chapter 2. Diagnosing and fixing problems 127

You can use the JRas extensions in three distinct operational modes:
Integrated

In this mode, message and trace records are written only to logs defined
and maintained by the WebSphere Application Server runtime. This is the
default mode of operation and is equivalent to the WebSphere Application
Server 4.0 mode of operation.

stand-alone
In this mode, message and trace records are written solely to stand-alone
logs defined and maintained by the user. You control which categories of
events are written to which logs, and the format in which entries are
written. You are responsible for configuration and maintenance of the logs.
Message and trace entries are not written to WebSphere Application Server
runtime logs.

Combined
In this mode message and trace records are written to both WebSphere
Application Server runtime logs and to stand-alone logs that you must
define, control, and maintain. You can use filtering controls to determine
which categories of messages and trace are written to which logs.

The JRas extensions are specifically targeted to an integrated mode of operation.
The integrated mode of operation can be appropriate for some usage scenarios, but
there many scenarios are not adequately addressed by these extensions. Many
usage scenarios require a stand-alone or combined mode of operation instead. A
set of user extension points has been defined that allow the JRas extensions to be
used in either a stand-alone or combined mode of operations.

JRas extension classes:

WebSphere Application Server provides a base set of implementation classes that
collectively are referred to as the JRas extensions. Many of these classes provide
the appropriate implementations of loggers, handlers and formatters for use in a
WebSphere Application Server environment. As previously noted, this collection of
classes is targeted at an Integrated mode of operation. If you choose to use the
JRas extensions in either stand-alone or combined mode, you can reuse the logger
and manager class provided by the extensions, but you must provide your own
implementations of handlers and formatters.

WebSphere Application Server Message and Trace loggers

The message and trace loggers provided by the stand-alone JRas logging toolkit
cannot be directly used in the WebSphere Application Server environment. The
JRas extensions provide the appropriate logger implementation classes. Instances of
these message and trace logger classes are obtained directly and exclusively from
the WebSphere Application Server Manager class, described below. You cannot
directly instantiate message and trace loggers. Obtaining loggers in any manner
other than directly from the Manager is not allowed. Doing so is a direct violation
of the programming model.

The message and trace loggers instances obtained from the WebSphere Application
Server Manager class are subclasses of the RASMessageLogger() and
RASTraceLogger() classes provided by the stand-alone JRas logging toolkit. The
RASMessageLogger() and RASTraceLogger() classes define the set of methods that
are directly available. Public methods introduced by the JRas extensions logger
subclasses cannot be called directly by user code. Doing so is a violation of the
programming model.

128 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Loggers are named objects and are identified by name. When the Manager class is
called to obtain a logger, the caller is required to specify a name for the logger. The
Manager class maintains a name-to-logger instance mapping. Only one instance of
a named logger will ever be created within the lifetime of a process. The first call
to the Manager with a particular name will result in the logger being created and
configured by the Manager. The Manager will cache a reference to the instance,
then return it to the caller. Subsequent calls to the Manager that specify the same
name will result in a reference to the cached logger being returned. Separate
namespaces are maintained for message and trace loggers. This means a single
name can be used to obtain both a message logger and a trace logger from the
Manager, without ambiguity, and without causing a namespace collision.

In general, loggers have no predefined granularity or scope. A single logger could
be used to instrument an entire application. Or users may determine that having a
logger per class is more desirable. Or the appropriate granularity may lie
somewhere in between. Partitioning an application into logging domains is
rightfully determined by the application writer.

The WebSphere Application Server logger classes obtained from the Manager are
thread-safe. Although the loggers provided as part of the stand-alone JRas logging
toolkit implement the serializable interface, in fact loggers are not serializable.
Loggers are stateful objects, tied to a Java virtual machine instance and are not
serializable. Attempting to serialize a logger is a violation of the programming
model.

Please note that there is no provision for allowing users to provide their own
logger subclasses for use in a WebSphere Application Server environment.

WebSphere Application Server handlers

WebSphere Application Server provides the appropriate handler class that is used
to write message and trace events to the WebSphere Application Server run-time
logs. You cannot configure the WebSphere Application Server handler to write to
any other destination. The creation of a WebSphere Application Server handler is a
restricted operation and not available to user code. Every logger obtained from the
Manager comes preconfigured with an instance of this handler already installed.
You can remove the WebSphere Application Server handler from a logger when
you want to run in stand-alone mode. Once you have removed it, you cannot add
the WebSphere Application Server handler again to the logger from which it was
removed (or any other logger). Also, you cannot directly call any method on the
WebSphere Application Server handler. Attempting to create an instance of the
WebSphere Application Server handler, to call methods on the WebSphere
Application Server handler or to add a WebSphere Application Server handler to a
logger by user code is a violation of the programming model.

WebSphere Application Server formatters

The WebSphere Application Server handler comes preconfigured with the
appropriate formatter for data that is written to WebSphere Application Server
logs. The creation of a WebSphere Application Server formatter is a restricted
operation and not available to user code. No mechanism exists that allows the user
to obtain a reference to a formatter installed in a WebSphere Application Server
handler, or to change the formatter a WebSphere Application Server handler is
configured to use.

WebSphere Application Server manager

Chapter 2. Diagnosing and fixing problems 129

WebSphere Application Server provides a Manager class located in the
com.ibm.websphere.ras package. All message and trace loggers must be obtained
from this Manager. A reference to the Manager is obtained by calling the static
Manager.getManager() method. Message loggers are obtained by calling the
createRASMessageLogger() method on the Manager. Trace loggers are obtained by
calling the createRASTraceLogger() method on the Manager class.

The manager also supports a group abstraction that is useful when dealing with
trace loggers. The group abstraction allows multiple, unrelated trace loggers to be
registered as part of a named entity called a group. WebSphere Application Server
provides the appropriate systems management facilities to manipulate the trace
setting of a group, similar to the way the trace settings of an individual trace
logger.

For example, suppose component A consist of 10 classes. Suppose each class is
configured to use a separate trace logger. Suppose all 10 trace loggers in the
component are registered as members of the same group (for example
Component_A_Group). You can then turn on trace for a single class. Or you can
turn on trace for all 10 classes in a single operation using the group name if you
want a component trace. Group names are maintained within the namespace for
trace loggers.

Extending the JRas framework:

Since the Jras extensions classes do not provide the flexibility and behavior
required for many scenarios, a variety of extension points have been defined. You
are allowed to write your own implementation classes to obtain the required
behavior.

 In general, the JRas extensions require you to call the Manager class to obtain a
message logger or trace logger. No provision is made to allow you to provide your
own message or trace logger subclasses. In general, user-provided extensions
cannot be used to affect the integrated mode of operation.The behavior of the
integrated mode of operation is solely determined by the WebSphere Application
Server run-time and the JRas extensions classes.

Handlers

The stand-alone JRas logging toolkit defines the RASIHandler interface. All handlers
must implement this interface. You can write your own handler classes that
implement the RASIHandler interface. You should directly create instances of
user-defined handlers and add them to the loggers obtained from the Manager.

The stand-alone JRas logging toolkit provides several handler implementation
classes. These handler classes are inappropriate for usage in the J2EE environment.
You cannot directly use or subclass any of the Handler classes provided by the
stand-alone JRas logging toolkit. Doing so is a violation of the programming
model.

Formatters

The stand-alone JRas logging toolkit defines the RASIFormatter interface. All
formatters must implement this interface. You can write your own formatter
classes that implement the RASIFormatter interface. You can only add these classes
to a user-defined handler. WebSphere Application Server handlers cannot be

130 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

configured to use user-defined formatters. Instead, directly create instances of your
formatters and add them to the your handlers appropriately.

As with handlers, the stand-alone JRas logging toolkit provides several formatter
implementation classes. Direct usage of these formatter classes is not supported.

Message event types

The stand-alone JRas toolkit defines message event types in the RASIMessageEvent
interface. In addition, the WebSphere Application Server reserves a range of
message event types for future use. The RASIMessageEvent interface defines three
types, with values of 0x01, 0x02, and 0x04. The values 0x08 through 0x8000 are
reserved for future use. You can provide your own message event types by
extending this interface appropriately. User-defined message types must have a
value of 0x1000 or greater.

Message loggers retrieved from the Manager have their message masks set to pass
or process all message event types defined in the RASIMessageEvent interface. In
order to process user-defined message types, you must manually set the message
logger mask to the appropriate state by user code after the message logger has
been obtained from the Manager. WebSphere Application Server does not provide
any built-in systems management support for managing any message types.

Message event objects

The stand-alone JRas toolkit provides a RASMessageEvent implementation class.
When a message logging method is called on the message logger, and the message
type is currently enabled, the logger creates and distributes an event of this class to
all handlers currently registered with that logger.

You can provide your own message event classes, but they must implement the
RASIEvent interface. You must directly create instances of such user-defined
message event classes. Once it is created, pass your message event to the message
logger by calling the message logger’s fireRASEvent() method directly. WebSphere
Application Server message loggers cannot directly create instances of user-defined
types in response to calling a logging method (msg(), message()...) on the logger. In
addition, instances of user-defined message types are never processed by the
WebSphere Application Server handler. You cannot create instances of the
RASMessageEvent class directly.

Trace event types

The stand-alone JRas toolkit defines trace event types in the RASITraceEvent
interface. You can provide your own trace event types by extending this interface
appropriately. In such a case you must ensure that the values for the user-defined
trace event types do not collide with the values of the types defined in the
RASITraceEvent interface.

Trace loggers retrieved from the Manager typically have their trace masks set to
reject all types. A different starting state can be specified by using WebSphere
Application Server systems management facilities. In addition, the state of the trace
mask for a logger can be changed at run-time using WebSphere Application Server
systems management facilities.

Chapter 2. Diagnosing and fixing problems 131

In order to process user-defined trace types, the trace logger mask must be
manually set to the appropriate state by user code. WebSphere Application Server
systems management facilities cannot be used to manage user-defined trace types,
either at start time or run-time.

Trace event objects

The stand-alone JRas toolkit provides a RASTraceEvent implementation class. When
a trace logging method is called on the WebSphere Application Server trace logger
and the type is currently enabled, the logger creates and distributes an event of
this class to all handlers currently registered with that logger.

You can provide your own trace event classes. Such trace event classes must
implement the RASIEvent interface. You must create instances of such user-defined
event classes directly. Once it is created, pass the trace event to the trace logger by
calling the trace logger’s fireRASEvent() method directly. WebSphere Application
Server trace loggers cannot directly create instances of user-defined types in
response to calling a trace method (entry(), exit(), trace()) on the trace logger.
In addition, instances of user-defined trace types are never processed by the
WebSphere Application Server handler. You cannot create instances of the
RASTraceEvent class directly.

User defined types, user defined events and WebSphere Application Server

By definition, the WebSphere Application Server handler will process user-defined
message or trace types, or user-defined message or trace event classes. Message
and trace entries of either a user-defined type or user-defined event class cannot be
written to the WebSphere Application Server run-time logs.

Writing User Extensions:
General Considerations

You can configure the WebSphere Application Server to use Java 2 security to
restrict access to protected resources such as the file system and sockets. Since user
written extensions typically access such protected resources, user written
extensions must contain the appropriate security checking calls, using
AccessController doPrivileged() calls. In addition, the user written extensions
must contain the appropriate policy file. In general, it is recommended that you
locate user written extensions in a separate package. It is your responsibility to
restrict access to the user written extensions appropriately.

Writing a handler

User written handlers must implement the RASIHandler interface. The RASIHandler
interface extends the RASIMaskChangeGenerator interface, which extends the
RASIObject interface. A short discussion of the methods introduced by each of
these interfaces follows, along with implementation pointers. For more in depth
information on any of the particular interfaces or methods, see the corresponding
product Javadoc.

RASIObject interface

The RASIObject interface is the base interface for stand-alone JRas logging toolkit
classes that are stateful or configurable, such as loggers, handlers and formatters.
v The stand-alone JRas logging tookit supports rudimentary properties-file based

configuration. To implement this configuration support, the configuration state is

132 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

stored as a set of key-value pairs in a properties file. The methodspublic
Hashtable getConfig() and public void setConfig(Hashtable ht) are used to
get and set the configuration state. The JRas extensions do not support
properties based configuration and it is recommended that these methods be
implemented as no-operations. You can implement your own properties based
configuration using these methods.

v Loggers, handlers and formatters can be named objects. For example, the JRas
extensions require the user to provide a name for the loggers that are retrieved
from the manager. You can name your handlers. The methods public String
getName() and public void setName(String name) are provided to get or set the
name field. The JRas extensions currently do not call these methods on user
handlers. You can implement these methods as you want, including as no
operations.

v Loggers, handlers and formatters can also contain a description field. The
methods public String getDescription() and public void
setDescription(String desc) can be used to get or set the description field. The
JRas extensions currently do not use the description field. You can implement
these methods as you want, including as no operations.

v The method public String getGroup() is provided for usage by the RASManager.
Since the JRas extensions provide their own Manager class, this method is never
called. It is recommended you implement this as a no-operation.

RASIMaskChangeGenerator interface

The RASIMaskChangeGenerator interface is the interface that defines the
implementation methods for filtering of events based on a mask state. This means
that it is currently implemented by both loggers and handlers. By definition, an
object that implements this interface contains both a message mask and a trace
mask, although both need not be used. For example, message loggers contain a
trace mask, but the trace mask is never used since the message logger never
generates trace events. Handlers however can actively use both mask values. For
example a single handler could handle both message and trace events.
v The methods public long getMessageMask() and public void

setMessageMask(long mask) are used to get or set the value of the message
mask. The methods public long getTraceMask() and public void
setTraceMask(long mask) are used to get or set the value of the trace mask.

In addition, this interface introduces the concept of calling back to interested parties
when a mask changes state. The callback object must implement the
RASIMaskChangeListener interface.
v The methods public void addMaskChangeListener(RASIMaskChangeListener

listener) and public void removeMaskChangeListener(RASIMaskChangeListener
listener) are used to add or remove listeners to the handler. The method
public Enumeration getMaskChangeListeners() returns an Enumeration over the
list of currently registered listeners. The method public void
fireMaskChangedEvent(RASMaskChangeEvent mc) is used to call back all the
registered listeners to inform them of a mask change event.

For efficiency reasons, the Jras extensions message and trace loggers implement the
RASIMaskChangeListener interface. The logger implementations maintain a
″composite mask″ in addition to the logger’s own mask. The logger’s composite
mask is formed by logically or’ing the appropriate masks of all handlers that are
registered to that logger, then and’ing the result with the logger’s own mask. For
example, the message logger’s composite mask is formed by or’ing the message
masks of all handlers registered with that logger, then and’ing the result with the
logger’s own message mask.

Chapter 2. Diagnosing and fixing problems 133

This means that all handlers are required to properly implement these methods. In
addition, when a user handler is instantiated, the logger it is to be added to should
be registered with the handler using the addMaskChangeListener() method. When
either the message mask or trace mask of the handler is changed, the logger must
be called back to inform it of the mask change. This allows the logger to
dynamically maintain the composite mask.

The RASMaskChangedEvent class is defined by the stand-alone JRas logging toolkit.
Direct usage of that class by user code is allowed in this context.

In addition the RASIMaskChangeGenerator introduces the concept of caching the
names of all message and trace event classes that the implementing object will
process. The intent of these methods is to allow a management program such as a
GUI to retrieve the list of names, introspect the classes to determine the event
types that they might possibly process and display the results. The JRas extensions
do not ever call these methods, so they can be implemented as no operations, if
desired.
v The methods public void addMessageEventClass(String name) and public void

removeMessageEventClass(String name) can be called to add or remove a
message event class name from the list. The method public Enumeration
getMessageEventClasses() will return an enumeration over the list of message
event class names. Similarly, the public void addTraceEventClass(String name)
and public void removeTraceEventClass(String name) can be called to add or
remove a trace event class name from the list. The method public Enumeration
getTraceEventClasses() will return an enumeration over the list of trace event
class names.

RASIHandler interface

The RASIHandler interface introduces the methods that are specific to the behavior
of a handler.

The RASIHandler interface as provided by the stand-alone JRas logging toolkit
supports handlers that run in either a synchronous or asynchronous mode. In
asynchronous mode, events are typically queued by the calling thread and then
written by a worker thread. Since spawning of threads is not allowed in the
WebSphere Application Server environment, it is expected that handlers will not
queue or batch events, although this is not expressly prohibited.
v The methods public int getMaximumQueueSize() and public void

setMaximumQueueSize(int size) throw IllegalStateException are provided to
manage the maximum queue size. The method public int getQueueSize() is
provided to query the actual queue size.

v The methods public int getRetryInterval() and public void
setRetryInterval(int interval) support the notion of error retry, which again
implies some type of queueing.

v The methods public void addFormatter(RASIFormatter formatter), public
void removeFormatter(RASIFormatter formatter) and public Enumeration
getFormatters() are provided to manage the list of formatters that the handler
can be configured with. Different formatters can be provided for different event
classes, if appropriate.

v The methods public void openDevice(), public void closeDevice() and public
void stop() are provided to manage the underlying device that the handler
abstracts.

v The methods public void logEvent(RASIEvent event) and public void
writeEvent(RASIEvent event) are provided to actually pass events to the
handler for processing.

134 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Writing a formatter

User written formatters must implement the RASIFormatter interface. The
RASIFormatter interface extends the RASIObject interface. The implementation of
the RASIObject interface is the same for both handlers and formatters. A short
discussion of the methods introduced by the RASIFormatter interface follows. For
more in depth information on the methods introduced by this interface, see the
corresponding product javadoc.

RASIFormatter interface
v The methods public void setDefault(boolean flag) and public boolean

isDefault() are used by the concrete RASHandler classes provided by the
stand-alone JRas logging toolkit to determine if a particular formatter is the
default formatter. Since these RASHandler classes must never be used in a
WebSphere Application Server environment, the semantic significance of these
methods can be determined by the user.

v The methods public void addEventClass(String name), public void
removeEventClass(String name) and public Enumeration getEventClasses() are
provided to determine which event classes a formatter can be used to format.
You can provide the appropriate implementations as you see fit.

v The method public String format(RASIEvent event) is called by handler
objects and returns a formatted String representation of the event.

Programming model summary:

The programming model described in this section builds upon and summarizes
some of the concepts already introduced. This section also formalizes usage
requirements and restrictions. Use of the WebSphere Application Server JRas
extensions in a manner that does not conform to the following programming
guidelines is prohibited.

 As described previously, you can use the WebSphere Application Server JRas
extensions in three distinct operational modes. The programming models concepts
and restrictions apply equally across all modes of operation.
v You must not use implementation classes provided by the stand-alone JRas

logging toolkit directly, unless specifically noted otherwise. Direct usage of those
classes is not supported. IBM Support will provide no diagnostic aid or bug
fixes relating to direct usage of classes provided by the stand-alone JRas logging
toolkit.

v You must obtain message and trace loggers directly from the Manager class. You
cannot directly instantiate loggers.

v There is no provision that allows you to replace the WebSphere Application
Server message and trace logger classes.

v You must guarantee that the logger names passed to the Manager are unique,
and follow the naming constraints documented below. Once a logger is obtained
from the Manager, you must not attempt to change the name of the logger by
calling the setName() method.

v Named loggers can be used more than once. For any given name, the first call
to the Manager results in the Manager creating a logger that is associated with
that name. Subsequent calls to the Manager that specify the same name result in
a reference to the existing logger being returned.

v The Manager maintains a hierarchical namespace for loggers. It is
recommended but not required that a dot-separated, fully qualified class name
be used to identify any given logger. Other than dots or periods, logger names
cannot contain any punctuation characters, such as asterisk (*), comma(.), equals
sign(=), colon(:), or quotes.

Chapter 2. Diagnosing and fixing problems 135

v Group names must comply with the same naming restrictions as logger names.
v The loggers returned from the Manager are subclasses of the

RASMessageLogger and RASTraceLogger provided by the stand-alone JRas
logging toolkit. You are allowed to call any public method defined by the
RASMessageLogger and RASTraceLogger classes. You are not allowed to call
any public method introduced by the provided subclasses.

v If you want to operate in either stand-alone or combined mode, you must
provide your own Handler and Formatter subclasses. You are not allowed to use
the Handler and Formatter classes provided by the stand-alone JRas logging
toolkit. User written Handlers and Formatters must conform to the documented
guidelines.

v Loggers obtained from the Manager come with a WebSphere Application Server
handler installed. This handler will write message and trace records to logs
defined by the WebSphere Application Server runtime. Manage these logs using
the provided systems management interfaces.

v You can programmatically add and remove user-defined Handlers from a
logger at any time. Multiple additions and removals of user defined handlers are
allowed. You are responsible for creating an instance of the handler to add,
configuring the handler by setting the handler’s mask value and formatter
appropriately, then adding the handler to the logger using the addHandler()
method. You are responsible for programmatically updating the masks of
user-defined handlers as appropriate.

v You may get a reference to the handler installed within a logger by calling the
getHandlers() method on the logger and processing the results. You must not
call any methods on the handler obtained in this fashion. You are allowed to
remove the WebSphere Application Server handler from the logger by calling the
logger’s removeHandler() method, passing in the reference to the WebSphere
Application Server handler. Once removed, the WebSphere Application Server
handler cannot be re-added to the logger.

v You are allowed to define your own message type. The behavior of user-defined
message types and restrictions on their definitions is discussed in Extending the
JRas framework.

v You are allowed to define your own message event classes. The usage of
user-defined message event classes is discussed in Extending the JRas
framework.

v You are allowed to define your own trace types. The behavior of user-defined
trace types and restrictions on your definitions is discussed in Extending the
JRas framework.

v You are allowed to define your own trace event classes. The usage of
user-defined trace event classes is discussed in Extending the JRas framework.

v You must programmatically maintain the bits in the message and trace logger
masks that correspond to any user-defined types. If WebSphere Application
Server facilities are being used to manage the predefined types, these updates
must not modify the state of any of the bits corresponding to those types. If you
are assuming ownership responsibility for the predefined types then you can
change all bits of the masks.

JRas Messages and Trace event types
This section describes JRas message and trace event types.
Event types

The base message and trace event types defined by the stand-alone JRas logging
toolkit are not the same as the ″native″ types recognized by the WebSphere
Application Server run-time. Instead the basic JRas types are mapped onto the
native types. This mapping may vary by platform or edition. The mapping is
discussed below.

136 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Platform Message Event Types

The message event types that are recognized and processed by the WebSphere
Application Server runtime are defined in the RASIMessageEvent interface
provided by the stand-alone JRas logging toolkit. These message types are mapped
onto the native message types as follows.

 WebSphere Application Server native type JRas RASIMessageEvent type

Audit TYPE_INFO, TYPE_INFORMATION

Warning TYPE_WARN, TYPE_WARNING

Error TYPE_ERR, TYPE_ERROR

Platform Trace Event Types

The trace event types recognized and processed by the WebSphere Application
Server runtime are defined in the RASITraceEvent interface provided by the
stand-alone JRas logging toolkit. The RASITraceEvent interface provides a rich and
overly complex set of types. This interface defines both a simple set of levels, as
well as a set of enumerated types.
v For a user who prefers a simple set of levels, RASITraceEvent provides

TYPE_LEVEL1, TYPE_LEVEL2, and TYPE_LEVEL3. The implementations provide
support for this set of levels. The levels are hierarchical (that is, enabling level 2
will also enable level 1, enabling level 3 also enables levels 1 and 2).

v For users who prefer a more complex set of values that can be OR’d together,
RASITraceEvent provides TYPE_API, TYPE_CALLBACK, TYPE_ENTRY_EXIT,
TYPE_ERROR_EXC, TYPE_MISC_DATA, TYPE_OBJ_CREATE, TYPE_OBJ_DELETE,
TYPE_PRIVATE, TYPE_PUBLIC, TYPE_STATIC, and TYPE_SVC.

The trace event types are mapped onto the native trace types as follows:

Mapping WebSphere Application Server trace types to JRas RASITraceEvent ″Level″
types.

 WebSphere Application Server native type JRas RASITraceEvent level type

Event TYPE_LEVEL1

EntryExit TYPE_LEVEL2

Debug TYPE_LEVEL3

Mapping WebSphere Application Server trace types to JRas RASITraceEvent
enumerated types.

 WebSphere Application Server native type JRas RASITraceEvent enumerated types

Event TYPE_ERROR_EXC, TYPE_SVC,
TYPE_OBJ_CREATE, TYPE_OBJ_DELETE

EntryExit TYPE_ENTRY_EXIT, TYPE_API,
TYPE_CALLBACK, TYPE_PRIVATE,
TYPE_PUBLIC, TYPE_STATIC

Debug TYPE_MISC_DATA

For simplicity, it is recommended that one or the other of the tracing type
methodologies is used consistently throughout the application. For users who

Chapter 2. Diagnosing and fixing problems 137

decide to use the non-level types, it is further recommended that you choose one
type from each category and use those consistently throughout the application to
avoid confusion.

Message and Trace parameters

The various message logging and trace method signatures accept parameter types
of Object, Object[] and Throwable. WebSphere Application Server will process and
format the various parameter types as follows.
Primitives

Primitives, such as int and long are not recognized as subclasses of Object
and cannot be directly passed to one of these methods. A primitive value
must be transformed to a proper Object type (Integer, Long) before being
passed as a parameter.

Object toString() is called on the object and the resulting String is displayed.
The toString() method should be implemented appropriately for any
object passed to a message logging or trace method. It is the responsibility
of the caller to guarantee that the toString() method does not display
confidential data such as passwords in clear text, and does not cause
infinite recursion.

Object[]
The Object[] is provided for the case when more than one parameter is
passed to a message logging or trace method. toString() is called on each
Object in the array. Nested arrays are not handled. (i.e. none of the
elements in the Object array should be an array).

Throwable
The stack trace of the Throwable is retrieved and displayed.

Array of Primitives
An array of primitive (e.g. byte[], int[] is recognized as an Object, but is
treated somewhat as a second cousin of Object by Java code. In general,
arrays of primitives should be avoided, if possible. If arrays of primitives
are passed, the results are indeterminate and may change depending on
the type of array passed, the API used to pass the array and the release of
the product. For consistent results, user code should preprocess and format
the primitive array into some type of String form before passing it to the
method. If such preprocessing is not performed, the following may result.
v [B@924586a0b - This is deciphered as ″a byte array at location X″. This is

typically returned when an array is passed as a member of an Object[].
It is the result of calling toString() on the byte[].

v Illegal trace argument : array of long. This is typically returned when an
array of primitives is passed to a method taking an Object.

v 01040703... : the hex representation of an array of bytes. Typically this
may be seen when a byte array is passed to a method taking a single
Object. This behavior is subject to change and should not be relied on.

v ″1″ ″2″ ... : The String representation of the members of an int[] formed
by converting each element to an Integer and calling toString on the
Integers. This behavior is subject to change and should not be relied on.

v [Ljava.lang.Object;@9136fa0b : An array of objects. Typically this is seen
when an array containing nested arrays is passed.

Controlling message logging

Writing a message to a WebSphere Application Server log requires that the
message type passes three levels of filtering or screening.
1. The message event type must be one of the message event types defined in the

RASIMessageEvent interface.

138 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

2. Logging of that message event type must be enabled by the state of the
message logger’s mask.

3. The message event type must pass any filtering criteria established by the
WebSphere Application Server run-time itself.

When a WebSphere Application Server logger is obtained from the Manager, the
initial setting of the mask is to forward all native message event types to the
WebSphere Application Server handler. It is possible to control what messages get
logged by programmatically setting the state of the message logger’s mask.

Some editions of the product allow the user to specify a message filter level for a
server process. When such a filter level is set, only messages at the specified
severity levels are written to WebSphere Application Server logs. This means that
messages types that pass the message logger’s mask check may be filtered out by
the WebSphere Application Server itself.

Controlling Tracing

Each edition of the product provides a mechanism for enabling or disabling trace.
The various editions may support static trace enablement (trace settings are
specified before the server is started), dynamic trace enablement (trace settings for
a running server process can be dynamically modified) or both.

Writing a trace record to a WebSphere Application Server requires that the trace
type passes three levels of filtering or screening.
1. The trace event type must be one of the trace event types defined in the

RASITraceEvent interface.
2. Logging of that trace event type must be enabled by the state of the trace

logger’s mask.
3. The trace event type must pass any filtering criteria established by the

WebSphere Application Server run-time itself.

When a logger is obtained from the Manager, the initial setting of the mask is to
suppress all trace types. The exception to this rule is the case where the WebSphere
Application Server run-time supports static trace enablement and a non-default
startup trace state for that trace logger has been specified. Unlike message loggers,
the WebSphere Application Server may dynamically modify the state of a trace
loggers trace mask. WebSphere Application Server will only modify the portion of
the trace logger’s mask corresponding to the values defined in the RASITraceEvent
interface. WebSphere Application Server will not modify undefined bits of the
mask that may be in use for user defined types.

When the dynamic trace enablement feature available on some platforms is used,
the trace state change is reflected both in the Application Server run-time and the
trace loggers trace mask. If user code programmatically changes the bits in the
trace mask corresponding to the values defined by in the RASITraceEvent interface,
the trace logger’s mask state and the run-time state will become unsynchronized
and unexpected results will occur. Therefore, programmatically changing the bits of
the mask corresponding to the values defined in the RASITraceEvent interface is
not allowed.

Instrumenting an application with JRas extensions

To instrument an application using the WebSphere Application Server JRas
extensions, perform the following steps:

Chapter 2. Diagnosing and fixing problems 139

1. Determine the mode the extensions will be used in: integrated, stand-alone or
combined.

2. If the extensions will be used in either stand-alone or combined mode, create
the necessary handler and formatter classes.

3. If localized messages will be used by the application, create a resource bundle
as described in Creating JRas resource bundles and message files.

4. In the application code, get a reference to the Manager class and create the
manager and logger instances as described in Creating JRas manager and
logger instances.

5. Insert the appropriate message and trace logging statements in the application
as described in Creating JRas manager and logger instances.

Creating JRas resource bundles and message files:

The WebSphere Application Server message logger provides the message() and
msg() methods to allow the user to log localized messages. In addition, it provides
the textMessage() method for logging of messages that are not localized.
Applications can use either or both, as appropriate.

The mechanism for providing localized messages is the Resource Bundle support
provided by the IBM Developer Java Technology Edition. If you are not familiar
with resource bundles as implemented by the Developer’s Kit, you can get more
information from various texts, or by reading the Javadoc for the
java.util.ResourceBundle, java.util.ListResourceBundle and
java.util.PropertyResourceBundle classes, as well as the
java.text.MessageFormat class.

The PropertyResourceBundle is the preferred mechanism to use. In addition, note
that the JRas extensions do not support the extended formatting options such as {1,
date} or {0,number, integer} that are provided by the MessageFormat class.

You can forward messages that are written to the internal WebSphere Application
Server logs to other processes for display. For example, messages displayed on the
administrator console, which can be running in a different location than the server
process, can be localized using the late binding process. Late binding means that
WebSphere Application Server does not localize messages when they are logged,
but defers localization to the process that displays the message.

To properly localize the message, the displaying process must have access to the
resource bundle where the message text is stored. This means that you must
package the resource bundle separately from the application, and install it in a
location where the viewing process can access it. If you do not want to take these
steps, you can use the early binding technique to localize messages as they are
logged.

The two techniques are described as follows:
Early binding

The application must localize the message before logging it. The
application looks up the localized text in the resource bundle and formats
the message. When formatting is complete, the application logs the
message using the textMessage() method. Use this technique to package
the application’s resource bundles with the application.

Late binding
The application can choose to have the WebSphere Application Server
runtime localize the message in the process where it is displayed. Using

140 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

this technique,the resource bundles are packaged in a stand-alone .jar file,
separately from the application. You must then install the resource bundle
.jar file on every machine in the installation from which an
administrator’s console or log viewing program might be run. You must
install the .jar file in a directory that is part of the extensions classpath. In
addition, if you forward logs to IBM service, you must also forward the
.jar file containing the resource bundles.

To create a resource bundle, perform the following steps.
1. Create a text properties file that lists message keys and the corresponding

messages. The properties file must have the following characteristics:
v Each property in the file is terminated with a line-termination character.
v If a line contains only white space, or if the first non-white space character of

the line is the pound sign symbol (#) or exclamation mark (!), the line is
ignored. The # and ! characters can therefore be used to put comments into
the file.

v Each line in the file, unless it is a comment or consists only of white space,
denotes a single property. A backslash (\) is treated as the line-continuation
character.

v The syntax for a property file consists of a key, a separator, and an element.
Valid separators include the equal sign (=), colon (:), and white space ().

v The key consists of all characters on the line from the first non-white space
character to the first separator. Separator characters can be included in the
key by escaping them with a backslash (\), but doing this is not
recommended, because escaping characters is error prone and confusing. It is
instead recommended that you use a valid separator character that does not
appear in any keys in the properties file.

v White space after the key and separator is ignored until the first non-white
space character is encountered. All characters remaining before the
line-termination character define the element.

See the Java documentation for the java.util.Properties class for a full
description of the syntax and construction of properties files.

2. The file can then be translated into localized versions of the file with
language-specific file names (for example, a file named
DefaultMessages.properties can be translated into
DefaultMessages_de.properties for German and DefaultMessages_ja.properties
for Japanese).

3. When the translated resource bundles are available, write them to a
system-managed persistent storage medium. Resource bundles are then used to
convert the messages into the requested national language and locale.

4. When a message logger is obtained from the JRas manager, it can be configured
to use a particular resource bundle. Messages logged via the message() API
will use this resource bundle when message localization is performed. At run
time, the user’s locale setting is used to determine the properties file from
which to extract the message specified by a message key, thus ensuring that the
message is delivered in the correct language.

5. If the message loggers msg() method is called, a resource bundle name must be
explicitly provided.

The application locates the resource bundle based on the file’s location relative to
any directory in the classpath. For instance, if the property resource bundle named
DefaultMessages.properties is located in the baseDir/subDir1/subDir2/resources

Chapter 2. Diagnosing and fixing problems 141

directory and baseDir is in the class path, the name
subdir1.subdir2.resources.DefaultMessage is passed to the message logger to
identify the resource bundle.

Developing JRas resource bundles:
Resource bundle sample

You can create resource bundles in several ways. The best and easiest way is to
create a properties file that supports a PropertiesResourceBundle. This sample
shows how to create such a properties file.

For this sample, four localizable messages are provided. The properties file is
created and the key-value pairs inserted into it. All the normal properties files
conventions and rules apply to this file. In addition, the creator must be aware of
other restrictions imposed on the values by the Java MessageFormat class. For
example, apostrophes must be ″escaped″ or they will cause a problem. Also avoid
use of non-portable characters. WebSphere Application Server does not support
usage of extended formatting conventions that the MessageFormat class supports,
such as {1, date} or {0,number, integer}.

Assume that the base directory for the application that uses this resource bundle is
″baseDir″ and that this directory will be in the classpath. Assume that the
properties file is stored in a subdirectory of baseDir that is not in the classpath
(e.g. baseDir/subDir1/subDir2/resources). In order to allow the messages file to be
resolved, the name subDir1.subDir2.resources.DefaultMessage is used to identify
the PropertyResourceBundle and is passed to the message logger.

For this sample, the properties file is named DefaultMessages.properties.
Contents of DefaultMessages.properties file
MSG_KEY_00=A message with no substitution parameters.
MSG_KEY_01=A message with one substitution parameter: parm1={0}
MSG_KEY_02=A message with two substitution parameters: parm1={0}, parm2 = {1}
MSG_KEY_03=A message with three parameter: parm1={0}, parm2 = {1}, parm3={2}

Once the file DefaultMessages.properties is created, the file can be sent to a
translation center where the localized versions will be generated.

Creating JRas manager and logger instances:

You can use the JRas extensions in integrated, stand-alone, or combined mode.
Configuration of the application will vary depending on the mode of operation,
but usage of the loggers to log message or trace entries is identical in all modes of
operation.

 Integrated mode is the default mode of operation. In this mode, message and trace
events are sent to the WebSphere Application Server logs. See Setting up for
integrated JRas operation for information on configuring for this mode of
operation.

In the combined mode, message and trace events are logged to both WebSphere
Application Server and user-defined logs. See Setting up for combined JRas
operation for more information on configuring for this mode of operation.

In the stand-alone mode, message and trace events are logged only to user-defined
logs. See Setting up for stand-alone JRas operation for more information on
configuring for this mode of operation.

142 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Using the message and trace loggers

Regardless of the mode of operation, the use of message and trace loggers is the
same. See Creating JRas resource bundles and message files for more information
on using message and trace loggers.

Using a message logger

The message logger is configured to use the DefaultMessages resource bundle.
Message keys must be passed to the message loggers if the loggers are using the
message() API.
msgLogger.message(RASIMessageEvent.TYPE_WARNING, this,
 methodName, "MSG_KEY_00");
... msgLogger.message(RASIMessageEvent.TYPE_WARN, this,
 methodName, "MSG_KEY_01", "some string");

If message loggers use the msg() API, you can specify a new resource bundle
name.
msgLogger.msg(RASIMessageEvent.TYPE_ERR, this, methodName,
 "ALT_MSG_KEY_00", "alternateMessageFile");

You can also log a text message. If you are using the textMessage API, no message
formatting is done.
msgLogger.textMessage(RASIMessageEvent.TYPE_INFO, this, methodName,"String and Integer",
"A String", new Integer(5));

Using a trace logger

Since trace is normally disabled, trace methods should be guarded for performance
reasons.
private void methodX(int x, String y, Foo z)
{
 // trace an entry point. Use the guard to make sure tracing is enabled.
Do this checking before we waste cycles gathering parameters to be traced.
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT) {
 // since I want to trace 3 parameters, package them up in an Object[]
 Object[] parms = {new Integer(x), y, z};
 trcLogger.entry(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX", parms);
 }
... logic
 // a debug or verbose trace point
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_MISC_DATA) {
 trcLogger.trace(RASITraceEvent.TYPE_MISC_DATA, this, "methodX" "reached here");
 }
 ...
 // Another classification of trace event. Here an important state change
has been detected, so a different trace type is used.
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_SVC) {
 trcLogger.trace(RASITraceEvent.TYPE_SVC, this, "methodX", "an important event");
 }
 ...
 // ready to exit method, trace. No return value to trace
 if (trcLogger.isLoggable(RASITraceEvent.TYPE_ENTRY_EXIT)) {
 trcLogger.exit(RASITraceEvent.TYPE_ENTRY_EXIT, this, "methodX");
 }
}

Setting up for integrated JRas operation:

Chapter 2. Diagnosing and fixing problems 143

In the integrated mode of operation, message and trace events are sent to
WebSphere Application Server logs. This is the default mode of operation.
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Declare logger references.
private RASMessageLogger msgLogger = null;
private RASTraceLogger trcLogger = null;

3. Obtain a reference to the Manager and create the loggers. Since loggers are
named singletons, you can do this in a variety of places. One logical candidate
for enterprise beans is the ejbCreate() method. For example, for the enterprise
bean named ″myTestBean″, place the following code in the ejbCreate()
method.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());
// Configure the message logger to use the message file created
// for this application.
msgLogger.setMessageFile("acme.widgets.DefaultMessages");
trcLogger = mgr.createRASTraceLogger("Acme", "Widgets", "RasTest",
 myTestBean.class.getName());
mgr.addLoggerToGroup(trcLogger, groupName);

 Related concepts

 “Creating JRas manager and logger instances” on page 142
 Related tasks

 “Setting up for combined JRas operation”
 “Setting up for stand-alone JRas operation” on page 145

Setting up for combined JRas operation:

In combined mode, messages and trace are logged to both WebSphere Application
Server logs and user-defined logs. The following sample assumes that you have
written a user defined handler named SimpleFileHandler and a user defined
formatter named SimpleFormatter. It also assumes that you are not using user
defined types or events.
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.
private RASMessageLogger msgLogger = null;
 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager, create the loggers and add the user
handlers. Since loggers are named singletons, you can obtain a reference to the
loggers in a number of places. One logical candidate for enterprise beans is the
ejbCreate() method. Make sure that multiple instances of the same user
handler are not accidentally inserted into the same logger. Your initialization
code must handle this. The following sample is a message logger sample. The
procedure for a trace logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());
 // Configure the message logger to use the message file defined
 // in the ResourceBundle sample.

144 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Create the user handler and formatter. Configure the formatter,
 // then add it to the handler.
 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
 RASIFormatter formatter = new SimpleFormatter("simple formatter");
 formatter.addEventClass("com.ibm.ras.RASMessageEvent");
 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the
 //handlers listeners, then set the handlers
 // mask, which will update the loggers composite mask appropriately.
 // WARNING - there is an order dependency here that must be followed.
 msgLogger.addHandler(handler);
 handler.addMaskChangeListener(msgLogger);
 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

 Related concepts

 “Creating JRas manager and logger instances” on page 142
 Related tasks

 “Setting up for integrated JRas operation” on page 143
 “Setting up for stand-alone JRas operation”

Setting up for stand-alone JRas operation:

In stand-alone mode, messages and traces are logged only to user-defined logs.
The following sample assumes that you have a user-defined handler named
SimpleFileHandler and a user-defined formatter named SimpleFormatter. It is also
assumes that no user-defined types or events are being used.
1. Import the requisite JRas extensions classes

import com.ibm.ras.*;
import com.ibm.websphere.ras.*;

2. Import the user handler and formatter.
import com.ibm.ws.ras.test.user.*;

3. Declare the logger references.
private RASMessageLogger msgLogger = null;
 private RASTraceLogger trcLogger = null;

4. Obtain a reference to the Manager, create the loggers and add the user
handlers. Since loggers are named singletons, you can obtain a reference to the
loggers in a number of places. One logical candidate for enterprise beans is the
ejbCreate() method. Make sure that multiple instances of the same user
handler are not accidentally inserted into the same logger. Your initialization
code must handle this. The following sample is a message logger sample. The
procedure for a trace logger is similar.
com.ibm.websphere.ras.Manager mgr = com.ibm.websphere.ras.Manager.getManager();
 msgLogger = mgr.createRASMessageLogger("Acme", "WidgetCounter", "RasTest",
 myTestBean.class.getName());
 // Configure the message logger to use the message file defined in
 //the ResourceBundle sample.
 msgLogger.setMessageFile("acme.widgets.DefaultMessages");

 // Get a reference to the Handler and remove it from the logger.
 RASIHandler aHandler = null;
 Enumeration enum = msgLogger.getHandlers();
 while (enum.hasMoreElements()) {
 aHandler = (RASIHandler)enum.nextElement();
 if (aHandler instanceof WsHandler)
 msgLogger.removeHandler(wsHandler);
 }

Chapter 2. Diagnosing and fixing problems 145

// Create the user handler and formatter. Configure the formatter,
 // then add it to the handler.
 RASIHandler handler = new SimpleFileHandler("myHandler", "FileName");
 RASIFormatter formatter = new SimpleFormatter("simple formatter");
 formatter.addEventClass("com.ibm.ras.RASMessageEvent");
 handler.addFormatter(formatter);

 // Add the Handler to the logger. Add the logger to the list of the
 // handlers listeners, then set the handlers
 // mask, which will update the loggers composite mask appropriately.
 // WARNING - there is an order dependency here that must be followed.
 msgLogger.addHandler(handler);
 handler.addMaskChangeListener(msgLogger);
 handler.setMessageMask(RASIMessageEvent.DEFAULT_MESSAGE_MASK);

 Related concepts

 “Creating JRas manager and logger instances” on page 142
 Related tasks

 “Setting up for integrated JRas operation” on page 143
 “Setting up for combined JRas operation” on page 144

Logging messages and trace data for Java server applications
By using the WebSphere Application Server for z/OS support for logging
application messages and trace data, you can improve the reliability, availability,
and serviceability of any Java application that runs in a WebSphere Application
Server for z/OS server. Through this support, your Java application’s messages can
appear on the MVS master console, in the error log stream, or in the component
trace (CTRACE) data set for WebSphere Application Server for z/OS. Your
application’s trace entries can appear in the same CTRACE data set.

Determining where to issue the messages
You might want to issue messages to the MVS master console to report serious
error conditions for mission-critical applications. Through the master console, an
operator can receive and, if necessary, take action in response to a message that
indicates the status of an application. In addition, by directing messages to the
master console, you can trigger automation packages to take action for specific
conditions or events related to your application’s processing.

Any messages that your application issues to the console also appear in either the
error log stream or the CTRACE data set for WebSphere Application Server for
z/OS, depending on the message type. Logging the messages in these system
resources can help you more easily diagnose errors related to your application’s
processing. Similarly, issuing requests to log trace data in the CTRACE data set is
another method of recording error conditions or collecting application data for
diagnostic purposes.

System performance when logging messages and trace data
You can select the amount and types of trace data to be collected, which provides
you with the ability to either run your application with minimal tracing when
performance is a priority, or run your application with detailed tracing when you
need to recreate a problem and collect additional diagnostic information.

The error log stream, the CTRACE data set for WebSphere Application Server for
z/OS, and the master console are primarily intended for monitoring or recording
diagnostic data for system components and critical applications. Depending on
your installation’s configuration, directing application messages and data to these
resources might have an adverse affect on system performance. For example, if you
send application data to the CTRACE data set, trace entries in that data set might

146 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

wrap more quickly, which means you might lose some critical diagnostic data
because the system writes new entries over existing ones when wrapping occurs.
Use this logging support judiciously.

Note: You can only use WebSphere Application Server for z/OS support for
logging messages and trace data for Java applications, not for Java applets.

Issuing application messages to the MVS master console
With the WebSphere Application Server for z/OS reliability, availability, and
servicability support for Java (JRAS), you can issue messages from your Java
application to the MVS master console. You might want to issue messages to the
master console to report serious error conditions for mission-critical applications,
or to trigger automation packages.

The messages your application issues also appear in either the error log stream or
the component trace (CTRACE) data set that WebSphere Application Server for
z/OS uses.

Logging the messages is another method of recording error conditions or collecting
application data for diagnostic purposes.

Using a message logger:

WebSphere Application Server for z/OS provides code that creates and manages a
message logger, which processes your application’s messages. WebSphere
Application Server for z/OS creates only one message logger for each unique
organization, product, or component, so that you can more easily identify the
messages recorded in the error log stream or CTRACE data set for a specific
application. The message logger runs in the Java Virtual Machine (JVM) for the
WebSphere Application Server for z/OS server in which your Java application will
run.

To use a message logger, in your Java application:
1. Define the message logger.
2. Drive the method to instruct WebSphere Application Server for z/OS to create

the message logger.
3. Code messages at appropriate points in your application.
 Related concepts

 Welcome to Applications

Automation and recovery scenarios and guidelines
The following section provides information on how to monitor and recover
WebSphere Application Server for z/OS and the subsystems it uses. It provides
startup, shutdown, and recovery procedures and scenarios. It also tells you how to
determine if the subsystems are up or down, and tells you where to find more
information.

Chapter 2. Diagnosing and fixing problems 147

APPC automation and recovery scenarios
 Table 6. APPC automation and recovery scenarios

Task APPC automation and recovery scenarios

Startup APPC should be started before WebSphere Application
Server for z/OS. In theory, WebSphere Application
Server for z/OS could be started before APPC, but
only as long as no objects get dispatched in containers
that have an IMS APPC LRMI associated with them. If
APPC is not up before WebSphere Application Server
for z/OS, and you want to use an APPC connector to
talk to IMS, then you will have no connectivity.
APPC/MVS does not have to be up for CICS. APPC
does not have to be started after VTAM.

Shutdown Reverse the startup procedure. Shutdown WebSphere
Application Server for z/OS, APPC, then VTAM.

Handling in-flight or indoubt
transactions if there is a failure

If you are using APPC for communications and it fails,
do the following:
1. Shutdown all servers with APPC connectivity.
2. Restart APPC (if it totally failed).
3. Restart the WebSphere Application Server for z/OS

server.

Note: APPC will resynchronize itself. If your
transaction is indoubt, IMS waits until you restart
APPC. IMS relies on RRS for recovery. RRS will
resolve transactions that are in doubt by handshaking
with every subsystem it was communicating with
before it went down. If you are using CICS, note that
CICS has its own coordinator.

How to determine if APPC is
running

Issue the DISPLAY APPC,LU,ALL command. If APPC is
not active, it will say so. In addition, the status of the
logical units used by WebSphere Application Server
for z/OS and/or IMS should be active or no APPC
work will be successful.

What happens to WebSphere for
z/OS if APPC goes down?

Any objects attempting to use the IMS APPC PAA will
not work. The server region running on behalf of the
container attempting to use APPC will likely get a
C9C24C05 error, indicating that an APPC ALLOCATE
request was attempted and failed. Additional APPC
error diagnostic information that helps to pinpoint the
APPC problem is contained in the logs associated with
this region.

What happens to other subsystems
if APPC goes down?

Not applicable

Where to find more information v z/OS MVS Planning: Operations
v z/OS MVS Planning: APPC/MVS Management
v z/OS MVS Programming: Resource Recovery

148 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

WLM automation and recovery scenarios
 Table 7. Workload Manager (WLM) automation and recovery scenarios

Task WLM automation and recovery scenarios

Startup WLM is automatically started by z/OS or OS/390
when you IPL your system. You do not have to
start it.

Shutdown You cannot shutdown WLM.

Handling in-flight and indoubt
transactions if there is a failure

Not applicable

How to determine if WLM is running Not applicable

What happens to WebSphere for z/OS
if WLM goes down?

Not applicable

What happens to other subsystems if
WLM goes down?

Not applicable

How to handle a catastrophic failure
of the WebSphere Application Server
for z/OS server regions

Following a catastrophic failure of the WebSphere
Application Server for z/OS server regions, you
can use one of the following resume commands,
depending on your application environment type:
v Static application environment:

v wlm,applenv=applenvname,
resume

v Dynamic application environment:

v wlm,applenv=applenvname,
resume,options

Where to find more information v z/OS MVS Planning: Workload Management
v z/OS MVS Programming: Workload Management

Services

RACF automation and recovery scenarios
 Table 8. RACF automation and recovery scenarios

Task RACF automation and recovery scenarios

Startup If it is installed, RACF is started as a part of IPL.

Shutdown RACF is not shutdown.

Handling in-flight and indoubt
transactions if there is a failure

Not applicable

How to determine if RACF is running Use the RACF SETROPTS command to display the
status of RACF.

What happens to WebSphere for z/OS
if RACF goes down?

RACF goes into fail safe mode. This means that for
every resource that is accessed, the operator is
asked to verify if it is okay. In general, the system
is IPLed if this occurs.

What happens to other subsystems if
RACF goes down?

It depends on the subsystem and how RACF fails.

Where to find more information v z/OS Security Server RACF System Programmer’s
Guide

v z/OS Security Server RACF Security
Administrator’s Guide

Chapter 2. Diagnosing and fixing problems 149

RRS automation and recovery scenarios
 Table 9. RRS automation and recovery scenarios

Task RRS automation and recovery scenarios

Startup Ensure System Logger has been started before RRS.
Note: RRS will display error messages indicating that
System Logger must be started first if you try to start
RRS without starting System Logger.Ensure RRS is
started before WebSphere for z/OS. RRS does not start
by itself. RRS will start automatically only if it was
registered with the Automatic Restart Manager (ARM)
and if ARM is running. To start RRS, issue the start
command:

start atrrrs,sub=master

Note: RRS doesn’t restart itself if you issue the cancel
command, so you need to restart it manually if it was
canceled or if ARM isn’t running.

Shutdown Shutdown RRS in the reverse order that you started
RRS. Shutdown WebSphere Application Server for
z/OS, then RRS, followed by System Logger. There is
no controlled way to bring down RRS. The best
approach is:
1. Quiesce WebSphere Application Server for z/OS.
2. Shutdown WebSphere Application Server for z/OS.
3. Cancel RRS.

Note: You may want to bring down the DB2 you
are using for WebSphere Application Server for
z/OS before canceling RRS.

To cancel RRS, issue the command:

setrrs cancel

Handling in-flight and indoubt
transactions if there is a failure

Refer to the RRS system management panels to display
in-flight and resolve indoubt transactions. You can
display the resource managers on the RM panels in
RRS, display all units of recovery (UR), filter the URs,
and then resolve the indoubts. You cannot resolve
in-flights. You can display all RRS-managed
transactions.

If you are using the IMS Connector for Java, this
process applies only if IMS Connector for Java, IMS
Connect, and the IMS subsystem have been configured
locally on the same z/OS or OS/390 system image on
which the WebSphere for z/OS J2EE server runs. The
local configuration is the only configuration in which
IMS Connector for Java runs as an RRS-transactional
connector.

How to determine if RRS is
running

Use the display command:

d a,atrrs

atrrs is the name of the default RRS procedure
shipped with WebSphere Application Server for z/OS.
Use the procedure name that you use to start RRS. The
address space comes from the procedure.

150 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Table 9. RRS automation and recovery scenarios (continued)

Task RRS automation and recovery scenarios

What happens to WebSphere for
z/OS if RRS goes down?

RRS is a required subsystem, so WebSphere Application
Server for z/OS will not run without it. If RRS goes
down, WebSphere Application Server for z/OS will get
fatal errors. You need to get RRS started, then restart
WebSphere Application Server for z/OS.

What happens to other
subsystems if RRS goes down?

RRS is the z/OS or OS/390 transaction monitor. If you
cancel RRS, you will have problems with any
subsystems using it (for example, WebSphere
Application Server for z/OS, DB2, IMS). You should
understand the implications before you cancel RRS.

Where to find more information z/OS MVS Programming: Resource Recovery

UNIX System Services automation and recovery scenarios
 Table 10. UNIX System Services automation and recovery scenarios

Task UNIX System Services automation and recovery
scenarios

Startup UNIX System Services is a permanent
component of MVS and is started automatically
at IPL time.

Shutdown UNIX System Services does not support a
shutdown capability, so it is always available.

Handling in-flight or indoubt
transactions if there is a failure

The only data that could be considered
transactional in nature is data stored in the HFS.

How to determine if UNIX System
Services is running

UNIX System Services is always available as
long as the system is up and running.

What happens to WebSphere for z/OS if
UNIX System Services goes down?

If UNIX System Services fails, the system must
be re-IPLed. WebSphere Application Server for
z/OS will get errors and terminate.

What happens to other subsystems if
UNIX System Services goes down?

If UNIX System Services fails, the system must
be re-IPLed.

Where to find more information z/OS UNIX System Services Planning

TCP/IP automation and recovery scenarios
 Table 11. TCP/IP automation and recovery scenarios

Task TCP/IP automation and recovery scenarios

Startup TCP/IP must be up before starting WebSphere
Application Server for z/OS.

Shutdown Shutdown WebSphere Application Server for z/OS before
shutting down TCP/IP.

Handling in-flight or indoubt
transactions if there is a failure

Methods in flight will have their transactions rolled back
when the attempt to send a response to the method fails.
Other transactions will wait for a timeout.

How to determine if TCP/IP is
running

Use the display command looking for the TCP/IP
procedure.

Chapter 2. Diagnosing and fixing problems 151

Table 11. TCP/IP automation and recovery scenarios (continued)

Task TCP/IP automation and recovery scenarios

What happens to WebSphere
Application Server for z/OS if
TCP/IP goes down?

If TCP/IP goes down, then WebSphere Application Server
for z/OS on the system must be restarted. You will get an
SVC dump because the socket layer was destroyed.

What happens to other
subsystems if TCP/IP goes
down?

If TCP/IP goes down, sessions break and transactions
react as described above.
Note: WebSphere Application Server for z/OS will not be
able to recognize that TCP/IP is back up. Therefore,
WebSphere Application Server for z/OS must be restarted.
Note: If TCP/IP goes down, you should recycle LDAP
before restarting WebSphere Application Server for z/OS.

DB2 automation and recovery scenarios
 Table 12. DB2 automation and recovery scenarios

Task DB2 automation and recovery scenarios

Startup DB2 is started after RRS but before LDAP, NFS, and
WebSphere Application Server for z/OS.

Shutdown Reverse of startup sequence.

Handling in-flight or indoubt
transactions if there is a failure

Use the RRS panels to resolve. See z/OS MVS
Programming: Resource Recovery. The RRS panels are
the preferred way to resolve DB2 indoubts because
they allow you to view all resource managers that
have an interest in the transaction. However, you can
also use DB2 to resolve indoubts. You can issue the
command:

DISPLAY THREAD(*) TYPE(INDOUBT)

to display DB2 information about the indoubt threads
it knows about (if there are too many, you can go
into S.LOG to view the information). This display
will give you a DB2 identifier called a ″nid″. Copy
the nid and paste it into this command:

-RECOVER INDOUBT (RRSAF) ACTION(COMMIT)
 NID(B1D379D17ED6CF900000009401010000)

where the nid is the one that you cut from the
display command. You can issue this command to
roll back the transaction:

-RECOVER INDOUBT (RRSAF) ACTION(ABORT)
 NID(B1D379D17ED6CF900000009401010000)

How to determine if DB2 is
running

Use the display command to display the DB2 address
space.

What happens to WebSphere
Application Server for z/OS if DB2
goes down?

WebSphere Application Server for z/OS needs DB2 to
run, so it abends if DB2 goes down. You need to
restart the LDAP server, then restart DB2, and then
restart WebSphere Application Server for z/OS.

What happens to other subsystems
if DB2 goes down?

Not applicable

Where to find more information See the DB2 books at the following Internet
location:http://www.ibm.com/servers/eserver/zseries/zos/

152 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/servers/eserver/zseries/zos/

CICS automation and recovery scenarios
 Table 13. CICS automation and recovery scenarios

Task CICS automation and recovery scenarios

Startup CICS and any required CICS products, such as
CICS Transaction Gateway, need to be properly
installed, initialized, and started before any work
flows to a CICS-enabled WebSphere Application
Server for z/OS application control server region
are run.

Shutdown Shutdown the WebSphere Application Server for
z/OS application control region that uses CICS as a
backing store, then shut down the CICS service.

Handling in-flight or indoubt
transactions if there is a failure

If there is an error during processing, both CICS
and WebSphere Application Server for z/OS rely on
the underlying RRS subsystem to handle all
rollback notifications to the registered interests. In
the case of inflight transactions, RRS will notify all
participants that a rollback is required, and normal
rollback processing will occur in each registered
party. In the case of indoubt transactions, it may be
necessary to recycle the WebSphere Application
Server for z/OS Application Control/Server region
to release any pending transaction in CICS.

How to determine if CICS is running This is installation dependent.

What happens to CICS if WebSphere
Application Server for z/OS goes
down?

Should WebSphere Application Server for z/OS
happen to go down, one of two situations could
occur:
1. If WebSphere Application Server for z/OS and

CICS are currently engaged in a unit of work,
then RRS processing as described above would
occur and it may be necessary to recycle the
application control server regions to release
pending transactional work in CICS.

2. If WebSphere Application Server for z/OS and
CICS are not currently engaged in a unit of
work, CICS is not affected.

What happens to other subsystems if
CICS goes down?

Not applicable

Where to find more information CICS Operations and Utilities Guide

IMS automation and recovery scenarios
 Table 14. IMS automation and recovery scenarios

Task IMS automation and recovery scenarios

Startup IMS and any required IMS products, such as IMS
Connect, need to be properly installed, initialized, and
started before any work flows to an IMS-enabled
WebSphere for z/OS application control server region
are run.

Shutdown Shutdown the WebSphere Application Server for z/OS
application Control Region which uses IMS as a
backing store, then shutdown the IMS service

Chapter 2. Diagnosing and fixing problems 153

Table 14. IMS automation and recovery scenarios (continued)

Task IMS automation and recovery scenarios

Handling in-flight or indoubt
transactions if there is a failure

If there is an error during processing, both IMS and
WebSphere Application Server for z/OS rely on the
underlying RRS subsystem to handle all rollback
notifications to the registered interests. In the case of
inflight transactions, RRS will notify all participants
that a rollback is required and normal rollback
processing will occur in each registered party. In the
case of indoubt transactions, it may be necessary to
recycle the WebSphere Application Server for z/OS
Application Control/Server region to release any
pending transaction in the IMS MPRs.

How to determine if IMS is
running

This is installation-dependent.

What happens to IMS if
WebSphere Application Server for
z/OS goes down?

Should WebSphere Application Server for z/OS happen
to go down, one of two situations could occur:
1. If WebSphere Application Server for z/OS and IMS

are currently engaged in a unit of work, then RRS
processing as described above would occur and it
may be necessary to recycle the application control
server regions to release pending transactional work
in the IMS MPR.

2. If WebSphere Application Server for z/OS and IMS
are not currently engaged in a unit of work, IMS is
not affected.

What happens to other
subsystems if IMS goes down?

Not applicable

Where to find more information IMS/ESA Operator’s Reference

LDAP automation and recovery scenarios
 Table 15. LDAP automation and recovery scenarios

Task LDAP automation and recovery scenarios

Startup LDAP, as used by WebSphere Application Server for
z/OS, is completely run within the WebSphere
Application Server for z/OS address spaces using
something called ″the local backend.″ This support
takes the front side of the LDAP client APIs and the
backend database implementation and runs them
completely inside the WebSphere Application Server for
z/OS Naming Server and Interface Repository. For
Naming and IR, OMVS and DB2 must be up before
Naming and IR. To run the LDAP server, TCPIP,
OMVS, and DB2 must all be up before the LDAP
server.
Note: There are two LDAP modes supported:
1. Local LDAP backend.
2. Remote LDAP Server. The WebSphere Application

Server for z/OS environment has to be set up
correspondingly, and DB2, TCP/IP, and the remote
server have to be up and running before WebSphere
Application Server for z/OS is started.

154 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Table 15. LDAP automation and recovery scenarios (continued)

Task LDAP automation and recovery scenarios

Shutdown Shutdown Naming and IR, then OMVS and DB2. For
the LDAP server, shutdown the LDAP server, then
TCPIP and DB2, and then OMVS.

Handling in-flight or indoubt
transactions if there is a failure

If there is a failure during processing, Naming and IR
rely on RRS to issue a rollback directly to DB2 and, as
a result, any work done by the LDAP code is rolled
back along with it. For the LDAP server,
AUTOCOMMIT is set to NO, causing any error to
ROLLBACK for that transaction. This ensures the
atomicity characteristic of LDAP operations.

How to determine if LDAP is
running

In the case of WebSphere Application Server for z/OS,
if Naming and IR are operating, then LDAP is
operating. In the case of the LDAP server, and a started
task is used for the LDAP server, use the SDSF to see if
the started task is running. Examine the output log for
the started task to see if any error messages were
displayed. Alternatively, the LDAPSRCH command (from
TSO), or LDAPSEARCH command (from Unix System
Services shell) can be used to perform a simple search
to verify that the LDAP server is running.

What happens to WebSphere
Application Server for z/OS if
LDAP goes down?

v In J2EE server regions, the LDAP server must be
active since it is a separate server that no longer runs
inside the WebSphere Application Server for z/OS
region. Recycle the JNDI, then restart the J2EE
application servers.

What happens to other
subsystems if LDAP goes down?

Most z/OS or OS/390 subsystems do not depend on
LDAP, but this may change in the future. In the case of
accessing LDAP through the LDAP server, there is a
way to configure the LDAP server to operate in a
sysplex environment such that (using sysplex-enabled
DNS) LDAP requests will be sent to the LDAP server
in the sysplex that is operating (assuming that there is
one). As an alternative, subsystems that want to use
LDAP could configure a backup LDAP server to be
contacted in case the primary server is not accessible.
In this case, the application would assume that it could
retrieve all of the same data that it could get from the
backup on the primary which would be handled by
some replication mechanism. The LDAP server
currently supports a master/slave replication
mechanism, but you could also try duplicating the
sysplex server using DB2 data sharing.

Where to find more information z/OS Security Server LDAP Server Administration and Use

WebSphere Application Server for z/OS (Daemon) automation
and recovery scenarios

 Table 16. WebSphere Application Server for z/OS automation and recovery scenarios

Task WebSphere for z/OS (daemon) automation and
recovery scenarios

Startup See the instructions for ″Starting the WebSphere for
z/OS environment″.

Chapter 2. Diagnosing and fixing problems 155

Table 16. WebSphere Application Server for z/OS automation and recovery
scenarios (continued)

Task WebSphere for z/OS (daemon) automation and
recovery scenarios

Shutdown See the instructions for ″Stopping the WebSphere for
z/OS environment″.

Handling in-flight or indoubt
transactions if there is a failure

The daemon is a location agent. If the daemon fails
during the course of a transaction, locate requests to
the daemon will fail. These request failures will be
surfaced by the client ORB. If the client is a
WebSphere Application Server for z/OS client
running in a sysplex, the locate request will be
routed to another available daemon in the sysplex, if
present.

How to determine if the daemon is
running

Use the MVS display command.

What happens to WebSphere
Application Server for z/OS if the
daemon goes down?

If the daemon goes down, all WebSphere
Application Server for z/OS servers started on the
same system as the terminating daemon will also be
terminated.

What happens to other subsystems
if the daemon goes down?

Other subsystems will continue to work fine. As a
general rule, if the daemon goes down and there is
another one in the sysplex, clients will not be
affected.

Web server (servlet) automation and recovery scenarios
 Table 17. Web server (servlet) automation and recovery scenarios

Task WebServer automation and recovery scenarios

Startup Web servers have a relationship with WebSphere Application
Server for z/OS only in the sense that a client application
program that is written to use WebSphere Application Server for
z/OS facilities may be written as a servlet. Any implications for
ordering of startup will be introduced by the applications. You
probably want to have the WebSphere Application Server for
z/OS object servers up and ready before starting the client
application that the web server is hosting.

Shutdown There are no dependencies from the product code. Similar to most
applications, you may want to quiesce the clients prior to taking
down the target WebSphere Application Server for z/OS servers.
Shut down the web server to stop the port of entry.

Handling in-flight or
indoubt transactions if
there is a failure

Since a web server is stateless, there are no in-flight or indoubt
transactions.

How to determine if a
web server is running

Use the z/OS display commands and viewer tools (SDDF) to
monitor the Application Server.

What happens to
WebSphere Application
Server for z/OS if the
web server goes
down?

WebSphere Application Server for z/OS requires an IBM HTTP
J2EE server web server in order to provide full function servlets.
So, if the web server goes down, applications that require a port
of entry (like servlets and SOAP) cannot run.

156 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Table 17. Web server (servlet) automation and recovery scenarios (continued)

Task WebServer automation and recovery scenarios

What happens to other
subsystems if Web
Server goes down?

HTTP only provides information to other subsystems, so they are
unaffected if the web server goes down.

Where to find more
information

z/OS HTTP Server Planning, Installing, and Using

Types of configuration variables
WebSphere Application Server for z/OS provides configuration variables that allow
you to control:
v Output destinations and characteristics for the error log, and for CTRACE

buffers, data sets and the external writer.
v Trace buffers, data sets, and the content of trace data.
v Types of dumps to be requested.
v Timeout values for system and application behavior.

Setting output destinations and characteristics
client_ras_logstreamname= name Specifies the name of the log stream for an
application client run-time to use for error information.

Default: If this variable is not specified, the client run-time uses STDERR.

Example:
 client_ras_logstreamname=MY.CLIENT.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data set
names.

ras_default_msg_dd= DD_card_name Redirects write-to-operator (WTO) messages
that use the default routing to hardcopy. These messages are redirected to the
location identified through the DD card on the server’s JCL start procedure. These
WTO messages are primarily messages that WebSphere Application Server for
z/OS issues during initialization.

Default: No default value is set; WTO messages that use default routing are sent
to hardcopy.

Examples:
 ras_default_msg_dd=MSGDD
 ras_default_msg_dd=DFLTLOG
 Example of the
 DFLTLOG DD

card on the server’s JCL start procedure:
//DFLTLOG DD SYSOUT=*

ras_hardcopy_msg_dd= DD_card_name Redirects write-to-operator (WTO)
messages that WebSphere Application Server for z/OS routes to hardcopy. These
messages are redirected to the location identified through the DD card on the
server’s JCL start procedure. These WTO messages are primarily audit messages
issued from Java code during initialization.

Chapter 2. Diagnosing and fixing problems 157

Default: No default value is set; WTO messages that use hardcopy routing are sent
to hardcopy.

Example:
 ras_hardcopy_msg_dd=MSGDD

ras_log_logstreamName= name Specifies the log stream for WebSphere Application
Server for z/OS to use for error information during bootstrap processing. If the
specified log stream is not found or not accessible, a message is issued and errors
are written to the server’s job log.

Default: If this variable is not specified, WebSphere Application Server for z/OS
uses STDERR.

Example:
 ras_log_logstreamName=MY.CB.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data set
names.

Setting trace controls
Controlling behavior through timeout values

ras_trace_outputLocation=SYSPRINT | BUFFER | TRCFILE
Specifies where you want trace records to be sent:
v To SYSPRINT
v To a memory buffer (BUFFER), the contents of which are later written to a

CTRACE data set
v To a trace data set (TRCFILE) specified on the TRCFILE DD statement in the

server’s start procedure.

For servers, you may specify one or more values, separated by a space. For
clients, you may specify SYSPRINT only.

 Defaults:

v For clients, SYSPRINT
v For all other processes, BUFFER

Example: ras_trace_outputLocation=SYSPRINT BUFFER

ras_time_local=0 | 1
Specifies whether timestamps in trace records use Greenwich Mean Time
(GMT) or local time. This variable setting controls timestamp format in the
error log, and in traces sent to SYSPRINT or TRCFILE DD.

 Default: 0 (GMT)

 Example: ras_time_local=1 sets timestamps to local time.

ras_trace_ctraceParms=SUFFIX | MEMBER_NAME
Identifies the CTRACE PARMLIB member. The value can be either:
v A two-character suffix, which is added to the string CTIBBO to form the

name of the PARMLIB member, or
v The fully specified name of the PARMLIB member. A fully specified name

must conform to the naming requirements for a CTRACE PARMLIB
member.

158 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

If this environment variable is specified and the PARMLIB member is not
found, the default PARMLIB member, CTIBBO00, is used. If neither the
specified nor the default PARMLIB member is found, tracing is defined to
CTRACE, but there is no connection to a CTRACE external writer.

Note: The Daemon is the only server that recognizes this environment
variable.

 Default: 00 (the default PARMLIB member, CTIBBO00)

 Example: ras_trace_ctraceParms=01 identifies PARMLIB member CTIBBO01

ras_trace_BufferCount= n
Specifies the number of trace buffers to allocate. Valid values are 4 through 8.

 Default: 4

 Example: ras_trace_BufferCount=6

ras_trace_BufferSize= n
Specifies the size of a single trace buffer in bytes. You can use the letters K (for
kilobytes) or M (for megabytes). Valid values are 128K through 4M.

 Default: 1M

 Example: ras_trace_BufferSize=2M

 Related reference

 “Setting dump controls”

Setting dump controls
ras_dumpoptions_dumptype= n

Specifies the default dump used by the signal handler. Valid values and
their meanings are:
v 0

 No dump is generated.
v 1

 A ctrace dump is taken.
v 2

 A cdump dump is taken.
v 3

 A csnap dump is taken.
v 4

 A CEE3DMP dump is taken.
 CEE3DMP generates a dump of Language Environment and the member
language libraries. Sections of the dump are selectively included,
depending on dump options specified, either by default or through the
 ras_dumpoptions_ledumpoptons
 variable. By default, this value passes
 THREAD(ALL) BLOCKS
 to CEE3DMP. You can override the default options for CEE3DMP
through the
 ras_dumpoptions_ledumpoptons
 variable. For more information about CEE3DMP and its options, see
z/OS Language Environment Programming Reference, SA22-7562..

Default: 3

Chapter 2. Diagnosing and fixing problems 159

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Example:
 ras_dumpoptions_dumptype=2

ras_dumpoptions_ledumpoptons= options
Specifies dump options to be used with a CEE3DMP. If you want more
than one option, separate each option with a blank. Specifies dump options
to be used with a CEE3DMP. If you want more than one option, separate
each option with a blank.

 This WebSphere variable is used only when you specify
 ras_dumpoptions_dumptype=4
 . For an explanation of CEE3DMP and valid dump options, see z/OS
Language Environment Programming Reference, SA22-7562.
 Rule: The maximum length of the option string on this environment
variable is 255. If the option string is longer than 255, you receive message
BBOM0011W and the CEE3DMP dump options are set to
 THREAD(ALL) BLOCKS
 .
 Default:
 THREAD(ALL) BLOCKS
 Example:
 ras_dumpoptions_ledumpoptons=NOTRACEBACK NOFILES

Controlling behavior through timeout values
Controlling behavior through timeout values

control_region_wlm_dispatch_timeout
Specifies the maximum amount of time, in seconds, that WebSphere
Application Server for z/OS will wait for IIOP requests to complete. This time
limit includes:
v Time during which the IIOP request waits on the WLM queue until being

dispatched to a servant (region), and
v Time during which an application component, running in the servant,

processes the request and generates a response.

The server generates a failure response if this processing does not complete
within the specified time.

Note: This variable setting does not apply for HTTP requests; for that type of
work, the value specified through the protocol_http_timeout_output
variable controls the time allowed for dispatching work to a servant
(region).

 Default: 300 seconds

 Example: control_region_wlm_dispatch_timeout=600

protocol_http_timeout_input
Sets a maximum amount of time, in seconds, that the J2EE server will wait for
the complete HTTP request to arrive. The J2EE server starts the timer after the
connection has been established, and cancels the connection if a complete
request does not arrive within the specified maximum time limit. Specifying a
value of zero disables the time-out function.

 Default: 10 seconds

 Example: protocol_http_timeout_input=15

160 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

protocol_http_timeout_output
Sets a maximum amount of time, in seconds, that the J2EE server will wait for
an application component to respond to an HTTP request. If the response is
not received within the specified length of time, the servant (region) fails with
ABENDEC3 and RC=04130007. Setting this timer prevents client applications
from waiting for a response from an application component that might be
deadlocked, looping, or encountering other processing problems related to:
v JSP compiles (javac / jit compiles)
v XML parser
v jaspr

Default: 120 seconds

 Example: protocol_http_timeout_output=150

protocol_http_timeout_persistentSession
Specifies the time, in seconds, that the J2EE server will wait for a subsequent
request from an HTTP client on a persistent connection. If another request is
not received from the same client within this time limit, the connection is
closed.

 Default: 30 seconds

 Example: protocol_http_timeout_persistentSession=40

protocol_https_timeout_input
Specifies the maximum amount of time, in seconds, that the J2EE server will
allow for the complete HTTPS request to be received before cancelling the
connection.

 Default: 10 seconds

 Example: protocol_https_timeout_input=15

protocol_https_timeout_output
Specifies the maximum amount of time, in seconds, that the J2EE server will
wait from the time the complete HTTPS request is received until output is
available to be sent to the client.

 Default: 120 seconds

 Example: protocol_https_timeout_output =150

protocol_https_timeout_persistentSession
Specifies the time, in seconds, that the J2EE server will wait between requests
issued over a persistent connection from an HTTPS client. After the server
sends a response, it uses the persistent timeout to determine how long it
should wait for a subsequent request before cancelling the persistent
connection.

 Default: 30 seconds

 Example: protocol_https_timeout_persistentSession=40

protocol_iiop_local_timeout
Specifies the maximum time, in tenths of seconds, that the client will wait for
the response to a client request. This variable is the only time-out available for
remote method dispatches made by clients only, not by application
components within the servant region. Because the sysplex TCP/IP that runs
through the coupling facility does not always tell the client when the other end
of the socket is gone, clients can wait indefinitely for a response unless you set

Chapter 2. Diagnosing and fixing problems 161

this variable. Setting protocol_iiop_local_timeout ensures that the client gets a
response within the specified time, even if the response is a COMM_FAILURE
exception.

 Default: 0 (unlimited), which means no time-out value is set

 Example: protocol_iiop_local_timeout=20 sets the time to 2 seconds

protocol_iiop_server_session_keepalive
Defines the value, in seconds, provided to TCP/IP on the
SOCK_TCP_KEEPALIVE option for the IIOP listener. The function of this
option is to verify if idle sessions are still valid by polling the client TCP/IP
stack. If the client does not respond, the session is closed. If the client goes
away without notifying the server, it would unnecessarily leave the session
active on the server side. Use this option to clean up these unnecessary
sessions.
v If the environment variable is not set, the TCP/IP option is not set.
v Setting the SOCK_TCP_KEEPALIVE option generates network traffic on idle

sessions, which can be undesirable.

Default: 0

 Example: protocol_iiop_server_session_keepalive=3600

protocol_iiop_server_session_keepalive_ssl

transaction_defaultTimeout
Specifies the maximum amount of time, in seconds, that the J2EE server will
wait for an application transaction to complete. This default amount of time is
given to the application transaction if it does not set its own time-out value
through the current->set_timeout method. The timer in the controller (region)
starts when the container starts a global transaction. If the application
transaction is not committed or rolled back within the specified time, the
controller abends servant (region) in which the application component is
running, with abend EC3 reason code 04130002 or 04130005.

 The maximum value is 2147483 seconds (24.85 days). You should not use a null
or 0 value.

 Default: 120 seconds

 Example: transaction_defaultTimeout=300

transaction_maximumTimeout
Specifies the maximum amount of time, in seconds, that your installation will
allow an application to specify for its transactions to complete. If an
application assigns a greater amount of time through the current-
>set_timeout method, the J2EE server overrides the application setting to the
value specified for the transaction_maximumTimeout variable. If the application
does not set its own time-out value through the current->set_timeout method,
the default value set through the transaction_defaultTimeout variable applies.

 The maximum value is 2147483 seconds (24.85 days). You should not use a null
or 0 value.

 Default: 300 seconds

 Example: transaction_maximumTimeout=600

162 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

transaction_recoveryTimeout
Specifies the time, in minutes, that this controller (region) uses to attempt to
resolve in-doubt transactions before issuing a write-to-operator-with-reply
(WTOR) message to the console, requesting whether it should:
v Stop trying to resolve in-doubt transactions,
v Write transaction-related information to the job log or hard copy log, and
v Terminate.

If the operator replies that recovery should continue, the controller (region)
will attempt recovery for the specified amount of time before re-issuing the
WTOR message. Once all the transactions are resolved, the control region
terminates. This variable applies only to controllers in peer restart and recovery
mode.

 Default: 15 minutes

 Example: transaction_recoveryTimeout=7

 Related reference

 “Setting dump controls” on page 159

Preparing for a call to IBM service
When you report a problem to IBM service, you will need to provide as much
information as possible to help service personnel quickly resolve the problem. The
information you might need to send depends, in part, on the type of problem you
have encountered, and includes the following items:
v Job logs for affected address spaces; for example, the controller and any servant

regions that the controller terminated
v Job output for affected address spaces, particularly WebSphere Application

Server for z/OS messages that are written to the JESMSGLG data set
v The system log (SYSLOG), another source of WebSphere Application Server for

z/OS messages
v WebSphere Application Server for z/OS error log
v The system logrec data set or log stream
v CTRACE external writer data sets
v SVC dumps, CEEDUMPs, or other types of dumps produced because of the

problem.
v The affected server’s environment file, WAS.env, which is located in the HFS:

AppServer/config/cells/cellname/nodes/nodename/servers/servername/was.env

Additionally, IBM service might request you to:
v Provide a description of the circumstances or scenario under which the error

occurs.
v Use the

 VERBEXIT CBDATA

subcommand.
v Reset WebSphere variables that are for use only when directed by IBM service.
v Set WebSphere variable values for the location service daemon address space

(same as those for servers, with the prefix “DAEMON_”).

Chapter 2. Diagnosing and fixing problems 163

Using the IPCS VERBEXIT subcommand to display diagnostic
data

The interactive problem control system (IPCS) is a tool that provides formatting
and analysis support for dumps and traces produced by WebSphere Application
Server for z/OS and the applications that it hosts. IBM service personnel might
request that you use the IPCS subcommand VERBEXIT with theCBDATA verb name to
display dump information for WebSphere Application Server for z/OS. The
CBDATA formatters reside in the SBBOMIG data set, which must be in the link list or
LPA.

Entering VERBEXIT CBDATA results in a display of dump contents that can include
the following WebSphere Application Server for z/OS structures:
v Global control blocks
v Address space control blocks
v Task control blocks (TCBs)
v ORB control block

Optional parameters control which of these structures are included in the dump
display. If you enter VERBEXIT CBDATA without any optional parameters, the dump
display includes only global control block contents.

To enter VERBEXIT CBDATA, you may use any of the methods for entering IPCS
subcommands on z/OS, as described in z/OS MVS IPCS User’s Guide, SA22-7596.
Use the following syntax: VERBEXIT CBDATA [’parameter [,parameter]...’]

Valid parameters are:
v GLOBAL(bgvt-address)

 Formats and displays cell-level global vector data for the specified address
space. This display includes the following formatted control blocks:
– BGVT address - z/OS Global Vector table
– ASR Table and ASR Table entries - Active Server Resposity information

v ASID(asid-number)
 Formats and displays address space information for the daemon, the controller
(region), or the servant (region). This display includes the following formatted
control blocks:
– BACB - z/OS address space control block
– BTRC,TBUFSET,TBUF - z/OS Component trace control blocks
– BOAM,BOAMX - z/OS BOA control blocks
– ACRW queue - Application Control Region Work element control blocks
– BTCB queues - z/OS control information

Along with ASID(asid-number), IBM service personnel might direct you to
specify one of the following parameters, to include additional information in the
dump display:
– BTCB(btcb_address)

 Formats and displays the specified BTCB and ORB information for the
WebSphere Application Server for z/OS TCB.

– COMMDATA
 Formats and displays session information.

v CONFIG
 Formats and displays configuration information for the address space.

v OBJADDR(object_address) and OBJTYPE(object_type_ID)

164 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

Formats and displays information for the specified object of the specified type.
IBM service personnel will provide the values for you to supply for these
parameters.

v ORBDATA
 Formats and displays ORB information.

v TCB(tcb_address)
 Formats and displays request summary information for the specified task.

v TRACEBACK
 Formats and displays ORB information.

v SUMMARY
 Summarizes information from some of the other CBDATA optional parameters. For
example, for the GLOBAL parameter, specifying SUMMARY produces a list of active
servers.

Example: Output from the command ip VERBEXIT CBDATA ’ASID(xx) TCB(
yyyyyyyy)’:
command ===> ip VERBX CBDATA ’ASID(xx) TCB(xxxxxxxx)’
********************************* TOP OF DATA *******************************
COMPON=WEBSPHERE Z/OS,COMPID=5655A9801,ISSUER=BBORMCDP,ERRNO=04006006

BBOR0012I Formatting Clssname
 Clssname: 2BE6947E
+0000 D9859496 A385E685 82C39695 A3818995 |RemoteWebContain|................|
+0010 859900 |er. |... |
BBOR0012I Formatting MethodNm
 MethodNm: 2BE69472
+0000 88A3A397 998598A4 85A2A300 00000000 |httprequest.....|.........?......|
BBOR0012I Formatting ComRtInf
 ComRtInf: 2BE69212
+0000 89974081 8484997E F94BF5F6 4BF4F24B |ip addr=9.56.42.|..@....~.K..K..K|
+0010 F1F6F840 979699A3 7EF1F0F8 F500 |168 port=1085. |...@....~..... |
BBOR0026I GMT Time Request was received into CTL region
 TODCLOCK: 00000000
 04/08/2003 12:58:02.926136
BBOR0026I GMT Time Request was Queued to WLM in CTL region
 TODCLOCK: 00000000
 04/08/2003 12:58:02.926263
BBOR0026I GMT Time Request will be Expired (approximated)
 TODCLOCK: 00000000
 04/08/2003 13:08:01.663032
BBOR0026I GMT Time Request was received into SR region
 TODCLOCK: 00000000
 04/08/2003 12:58:02.927729

Setting trace controls for IBM service
ras_trace_defaultTracingLevel= n

Specifies the default tracing level for WebSphere Application Server for
z/OS.

 Valid values and their meanings are:

 0 No tracing

1 Exception tracing

2 Basic and exception tracing

3 Detailed tracing, including basic and
exception tracing

 Use this variable together with the

Chapter 2. Diagnosing and fixing problems 165

ras_trace_basic
 and
 ras_trace_detail
 variables to set tracing levels for WebSphere Application Server for z/OS
subcomponents.Specifies the default tracing level for WebSphere
Application Server for z/OS.
 Default: 1
 Example:
 ras_trace_defaultTracingLevel=2

ras_trace_basic=n | (n,...)
Specifies tracing overrides for particular WebSphere Application Server for
z/OS subcomponents.

 Subcomponents, specified by numbers, receive basic and exception traces.
If IBM service directs you to specify more than one subcomponent, use
parentheses and separate the numbers with commas. IBM service provides
the subcomponent numbers and their meanings.

 Other parts of WebSphere Application Server for z/OS receive tracing as
specified on the
 ras_trace_defaultTracingLevel
 variable.
 Default: (no default value)
 Example:
 ras_trace_basic=3

ras_trace_detail=n | (n,...)
Specifies tracing overrides for particular WebSphere Application Server for
z/OS subcomponents.

 Subcomponents, specified by numbers, receive detailed traces. If IBM
service directs you to specify more than one subcomponent, use
parentheses and separate the numbers with commas. IBM service provides
the subcomponent numbers and their meanings.

 Other parts of WebSphere Application Server for z/OS receive tracing as
specified on the
 ras_trace_defaultTracingLevel
 variable.
 Default: (no default value)
 Examples:
 ras_trace_detail=3
 ras_trace_detail=(3,4)

ras_trace_specific=n | (n,...)
Specifies tracing overrides for specific WebSphere Application Server for
z/OS trace points.

 Trace points are specified by 8-digit, hexadecimal numbers. If IBM service
directs you to specify more than one trace point, use parentheses and
separate the numbers with commas. You also can specify a WebSphere
variable name by enclosing the name in single quotes. The value of the
WebSphere variable will be handled as if you had specified that value on
 ras_trace_specific
 .
 Default: (no default value)
 Examples:
 ras_trace_specific=03004020
 ras_trace_specific=(03004020,04005010)

166 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

ras_trace_specific=’xyz’
 [where xyz is an environment variable name]
 ras_trace_specific=(’xyz’,’abc’,03004021)
 [where xyz and abc are environment variable names]

ras_trace_exclude_specific=n | (n,...)
Specifies WebSphere Application Server for z/OS trace points to exclude
from tracing activity.

 Trace points are specified by 8-digit, hexadecimal numbers. If IBM service
directs you to specify more than one trace point, use parentheses and
separate the numbers with commas. You also can specify a WebSphere
variable name by enclosing the name in single quotes. The value of the
WebSphere variable will be handled as if you had specified that value on
 ras_trace_exclude_specific
 .
 Default: (no default value)
 Examples:
 ras_trace_exclude_specific=03004020
 ras_trace_exclude_specific=(03004020,04005010)

 ras_trace_exclude_specific=’xyz’
 [where xyz is an environment variable name]
 ras_trace_exclude_specific=(’xyz’,’abc’,03004021)
 [where xyz and abc are environment variable names]

Setting dump controls for IBM service
ras_minorcode_action= value

Determines the default behavior for gathering documentation about system
exception minor codes.

CEEDUMP
Captures callback and offsets.

 Tip: It takes time for the system to take CEEDUMPs and this may cause
transaction timeouts. For instance, if the WebSphere variable
 transaction_defaultTimeout
 is set to 30 seconds, your application transaction may time out because
processing a CEEDUMP can take longer than 30 seconds. To prevent this
from happening, either:
v Increase the transaction timeout value, or
v Code

 ras_minorcode_action=NODIAGNOSTICDATA

and make sure the
 ras_trace_minorCodeTraceBacks

variable is not specified.
TRACEBACK

Captures Language Environment and z/OS UNIX traceback data.
SVCDUMP

Captures an MVS dump (but will not produce a dump in the client).
NODIAGNOSTICDATA

Specifies that no diagnostic data will be collected, even if CEEDUMP,
TRACEBACK, or SVCDUMP processing occurs because of another
WebSphere variable setting. For example, if you code both of the following
variables, traceback processing occurs but none of the traceback data is
collected:

Chapter 2. Diagnosing and fixing problems 167

ras_minorcode_action=NODIAGNOSTICDATA

 ras_trace_minorCodeTraceBacks=ALL
 Default: NODIAGNOSTICDATA
 Example:
 ras_minorcode_action=SVCDUMP

ras_trace_minorCodeTraceBacks= value
Enables traceback of system exception minor codes. Values are:
ALL|all

Enables traceback for all system exception minor codes.

 Enables traceback of system exception minor codes. Values are:
v minor_code Enables traceback for a specific minor code.

 Example: Type
 1234
 for minor code
 C9C21234

v (null value) The default. This setting will not cause gathering of a
traceback.
 Default: (null value)
 Example:
 ras_trace_minorCodeTraceBacks=all

Diagnosing and fixing problems: Resources for learning
In addition to this InfoCenter, there are several Web-based resources for
researching and resolving problems related to the WebSphere Application Server.

The WebSphere Application Server support page

The official site for providing tools and sharing knowledge about WebSphere
Application Server problems is the WebSphere Application Server support page:
http://www.ibm.com/software/webservers/appserv/support.html. Among the
features it provides are:
v A search field for searching the entire support site for documentation and fixes

related to a specific exception, error message, or other problem. Use this search
function before contacting IBM Support directly.

v Hints and Tips, Technotes, and Solutions links take you to specific problems and
resolutions documented by WebSphere Application Server technical support
personnel.

v A link All fixes, fix packs, and tools provides free WebSphere Application Server
maintenance upgrades and problem determination tools.
– fixes are software patches which address specific WebSphere Application

Server defects. Selecting a specific defect from the list in the All fixes, fix packs,
and tools page takes you to a description of what problem the fix addresses.

– Fix packs are bundles of multiple fixes, tested together and released as a
maintenance upgrade to WebSphere Application Server. If you select a fix
pack from this page, you are taken to a page describing the target platform,
WebSphere Application Server prerequisite level, and other related
information. Selecting the list defects link on that page displays a list of the
fixes which the fix pack includes. If you intend to install an fix which is part
of a fix pack, it is usually better to upgrade to the complete fix pack rather
than to just install the individual fix.

168 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

http://www.ibm.com/software/webservers/appserv/support.html

– Tools are free programs that help you analyze the configuration, behavior and
performance of your WebSphere Application Server installation.

Accessing WebSphere Application Server support page resources

Some resources on the WebSphere Application Server support page are marked
with a key icon. To access these resources, you must supply a user ID and
password, or to register if do not already have an ID. When registering, you are
asked for your contract number, which is supplied as part of a WebSphere
Application Server purchase.

WebSphere Developer Domain

The Developer Domains are IBM-supported sites for enabling developers to learn
about IBM software products and how to use them. They contain resources such as
articles, tutorials, and links to newsgroups and user groups. You can reach the
WebSphere Developer Domain at http://www7b.software.ibm.com/wsdd/.

Chapter 2. Diagnosing and fixing problems 169

http://www7b.software.ibm.com/wsdd/

170 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead of the IBM product, program, or
service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

 IBM Director of Licensing
 IBM Corporation
 500 Columbus Avenue
 Thornwood, New York 10594 USA

 Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

 IBM Corporation
 Mail Station P300
 522 South Road
 Poughkeepsie, NY 12601-5400
 USA
 Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Trademarks and service marks
The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v CICS
v Cloudscape
v DB2
v DFSMS
v Everyplace
v iSeries
v IBM
v IMS
v Informix
v iSeries

© Copyright IBM Corp. 2003 171

v Language Environment
v MQSeries
v MVS
v OS/390
v RACF
v Redbooks
v RMF
v SecureWay
v SupportPac
v ViaVoice
v VisualAge
v VTAM
v WebSphere
v z/OS
v zSeries

The term CORBA used throughout this book refers to Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

The Duke logo is a trademark or registered trademark of Sun Microsystems, Inc. in
the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

172 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v CICS
v Cloudscape
v DB2
v DFSMS
v Everyplace
v iSeries
v IBM
v IMS
v Informix
v iSeries
v Language Environment
v MQSeries
v MVS
v OS/390
v RACF
v Redbooks
v RMF
v SecureWay
v SupportPac
v ViaVoice
v VisualAge
v VTAM
v WebSphere
v z/OS
v zSeries

The term CORBA used throughout this book refers to Common Object Request
Broker Architecture standards promulgated by the Object Management Group, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

The Duke logo is a trademark or registered trademark of Sun Microsystems, Inc. in
the United States and other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

© Copyright IBM Corp. 2003 173

Other company, product and service names may be trademarks or service marks of
others.

174 WebSphere Application Server for z/OS V5.0.1:: Troubleshooting

	Contents
	How to send your comments
	Chapter 1. Troubleshooting or problem determination
	Chapter 2. Diagnosing and fixing problems
	Acquiring skills for problem determination
	Working with diagnostic tools and controls
	Best practices for maintaining the run-time environment
	Best practices for using system controls
	Collecting job-related information with Systems Management Facility (SMF)
	SMF record types
	Enabling SMF recording
	Formatting the output data set
	Viewing the output data set
	Disabling SMF recording for WebSphere Application Server
	Disabling SMF recording for the entire MVS system
	Overview of SMF record type 120
	Overview of SMF record type 80

	Configuring WebSphere Application Server for z/OS variables
	Steps for configuring WebSphere variables

	Debugging WebSphere Application Server applications
	Attaching WebSphere Studio Application Developer to a remote debug session
	Unit testing with DB2

	Troubleshooting by task: what are you trying to do?
	Troubleshooting installation problems
	Installation completes but the administrative console does not start
	Installation completes, but sample applications do not work

	Troubleshooting testing and first time run problems
	Web resource (JSP file, servlet, HTML file, image) does not display
	Cannot access a data source
	Cannot access an enterprise bean from a servlet, JSP file, stand-alone program, or other client
	Cannot look up an object hosted by WebSphere Application Server from a servlet, JSP file, or other client
	Errors or access problems after enabling security
	Errors after enabling Secure Sockets Layer, or Secure Sockets Layer-related error messages
	Errors in messaging (JMS API)
	Errors returned to client trying to send a SOAP request
	Client program does not work
	Errors connecting to WebSphere MQ and creating WebSphere MQ queue connection factory

	Resolving timeout conditions
	Understanding how timers work
	Guidelines for analyzing diagnostic data for timeout conditions
	Identifying possible causes of and fixes for timeout conditions
	Guidelines for altering timeout values

	Debugging client exceptions
	Debugging applications that hang
	Debugging problems related to Java Message Service (JMS) support

	Troubleshooting by component: what is not working?
	Installation component troubleshooting tips
	Administration and administrative console troubleshooting tips
	Application Assembly Tool troubleshooting tips
	Web Container troubleshooting tips
	JDBC and data source troubleshooting tips
	HTTP plug-in component troubleshooting tips
	HTTP session manager troubleshooting tips
	Naming services component troubleshooting tips
	Messaging (JMS) component troubleshooting tips
	Universal Discovery, Description, and Integration, Web Service, and SOAP component troubleshooting tips
	Enterprise bean and EJB container troubleshooting tips
	Security components troubleshooting tips
	JSP engine troubleshooting tips
	Workload Management component troubleshooting tips

	Setting up component trace (CTRACE)
	Steps for preparing CTRACE controls and resources
	Steps for starting CTRACE as part of WebSphere Application Server for z/OS customization
	Steps for starting CTRACE while WebSphere Application Server for z/OS servers are active
	Using CTRACE to collect trace data for Java server applications

	Setting up the error log
	Using the z/OS modify command
	Viewing diagnostic information
	Viewing CEEDUMPs in the job log
	Viewing SVC dumps
	Viewing CTRACE and JRas data through IPCS
	Steps for using the IPCS dialog to format CTRACE data
	Finding the subname for IPCS CTRACE
	Steps for using IPCS in batch mode to format CTRACE data

	Viewing error log contents through the Log Browse Utility (BBORBLOG)
	Using the log browse utility (BBORBLOG)
	Error log stream record output

	Using the z/OS display command
	Converting Java minor codes

	Using the Error Dump and Cleanup interface
	Adding logging and tracing to your application
	Programming with the JRas framework
	Understanding the JRas facility
	JRas Extensions
	JRas Messages and Trace event types
	Instrumenting an application with JRas extensions

	Logging messages and trace data for Java server applications
	Determining where to issue the messages
	System performance when logging messages and trace data
	Issuing application messages to the MVS master console

	Automation and recovery scenarios and guidelines
	APPC automation and recovery scenarios
	WLM automation and recovery scenarios
	RACF automation and recovery scenarios
	RRS automation and recovery scenarios
	UNIX System Services automation and recovery scenarios
	TCP/IP automation and recovery scenarios
	DB2 automation and recovery scenarios
	CICS automation and recovery scenarios
	IMS automation and recovery scenarios
	LDAP automation and recovery scenarios
	WebSphere Application Server for z/OS (Daemon) automation and recovery scenarios
	Web server (servlet) automation and recovery scenarios

	Types of configuration variables
	Setting output destinations and characteristics
	Setting trace controls
	Setting dump controls
	Controlling behavior through timeout values

	Preparing for a call to IBM service
	Using the IPCS VERBEXIT subcommand to display diagnostic data
	Setting trace controls for IBM service
	Setting dump controls for IBM service

	Diagnosing and fixing problems: Resources for learning

	Notices
	Trademarks and service marks

	Trademarks and service marks

