
WebSphere

Application

Server

for

z/OS

V5.0.2:

Applications

SA22-7959-01

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

925.

Compilation

date:

December

3,

2003

©

Copyright

International

Business

Machines

Corporation

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

. xi

Chapter

1.

Welcome

to

Applications

.

. 1

Chapter

2.

Using

Web

applications

.

.

. 7

Web

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 7

web.xml

file

.

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Migrating

Web

application

components

.

.

.

.

. 9

Default

Application

.

.

.

.

.

.

.

.

.

.

.

. 12

Servlets

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Developing

servlets

with

WebSphere

Application

Server

extensions

.

.

.

.

.

.

.

.

.

.

.

. 13

Application

lifecycle

listeners

and

events

.

.

. 14

Listener

classes

for

servlet

context

and

session

changes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Example:

com.ibm.websphere.DBConnectionListener.java

. 15

Servlet

filtering

.

.

.

.

.

.

.

.

.

.

.

. 15

Filter,

FilterChain,

FilterConfig

classes

for

servlet

filtering

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Example:

com.ibm.websphere.LoggingFilter.java

16

Configuring

page

list

servlet

client

configurations

17

autoRequestEncoding

and

autoResponseEncoding

20

Examples:

autoRequestEncoding

and

autoResponseEncoding

encoding

examples

.

.

. 21

JavaServer

Pages

files

.

.

.

.

.

.

.

.

.

.

. 21

Developing

JavaServer

Pages

files

with

WebSphere

extensions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 22

Tag

libraries

.

.

.

.

.

.

.

.

.

.

.

.

. 22

tsx:dbconnect

tag

JavaServer

Pages

syntax

.

.

. 22

dbquery

tag

JavaServer

Pages

syntax

.

.

.

.

. 24

dbmodify

tag

JavaServer

Pages

syntax

.

.

.

. 25

tsx:getProperty

tag

JavaServer

Pages

syntax

and

examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

tsx:userid

and

tsx:passwd

tag

JavaServer

Pages

syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

tsx:repeat

tag

JavaServer

Pages

syntax

.

.

.

. 27

Example:

Combining

tsx:repeat

and

tsx:getProperty

JavaServer

Pages

tags

.

.

.

.

. 27

Example:

tsx:dbmodify

tag

syntax

.

.

.

.

.

. 28

Example:

Using

tsx:repeat

JavaServer

Pages

tag

to

iterate

over

a

results

set

.

.

.

.

.

.

.

. 28

JspBatchCompiler

tool

.

.

.

.

.

.

.

.

.

. 30

Bean

Scripting

Framework

.

.

.

.

.

.

.

.

. 31

Developing

Web

applications

.

.

.

.

.

.

.

. 32

Disabling

JavaServer

Pages

run-time

compilation

32

Example:

Converting

JavaScript

source

to

the

Bean

Scripting

Framework

.

.

.

.

.

.

.

.

.

.

. 34

Scenario:

Creating

a

Bean

Scripting

Framework

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Example:

Bean

Scripting

Framework

code

example

40

Web

modules

.

.

.

.

.

.

.

.

.

.

.

.

.

. 43

Assembling

Web

applications

.

.

.

.

.

.

.

. 44

Using

the

AAT

to

assemble

Web

modules

.

.

.

. 44

Context

parameters

.

.

.

.

.

.

.

.

.

.

. 46

Security

constraints

.

.

.

.

.

.

.

.

.

.

. 46

Servlet

mappings

.

.

.

.

.

.

.

.

.

.

. 47

Invoker

attributes

.

.

.

.

.

.

.

.

.

.

. 47

Error

pages

.

.

.

.

.

.

.

.

.

.

.

.

. 47

File

serving

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Initialization

parameters

.

.

.

.

.

.

.

.

. 47

Servlet

caching

.

.

.

.

.

.

.

.

.

.

.

. 47

Web

components

.

.

.

.

.

.

.

.

.

.

. 47

Web

property

extensions

.

.

.

.

.

.

.

.

. 47

Web

resource

collections

.

.

.

.

.

.

.

.

. 47

Welcome

files

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Context

parameter

assembly

settings

.

.

.

.

. 48

Initialization

parameter

assembly

settings

.

.

. 48

Filter

assembly

settings

.

.

.

.

.

.

.

.

. 49

JavaServer

Pages

attribute

assembly

settings

.

. 49

Multipurpose

Internet

Mail

Extensions

(MIME)

filter

assembly

settings

.

.

.

.

.

.

.

.

. 52

Page

list

assembly

settings

.

.

.

.

.

.

.

. 53

Security

constraint

assembly

settings

.

.

.

.

. 54

Servlet

mapping

assembly

settings

.

.

.

.

. 55

Tag

library

assembly

settings

.

.

.

.

.

.

. 55

Welcome

file

assembly

settings

.

.

.

.

.

.

. 55

Servlet

caching

configuration

assembly

settings

56

Web

components

assembly

settings

.

.

.

.

. 58

Web

modules

assembly

settings

.

.

.

.

.

. 60

Assembly

property

extensions

.

.

.

.

.

.

. 63

File

serving

attribute

assembly

settings

.

.

.

. 63

Invoker

attribute

assembly

settings

.

.

.

.

. 63

Error

page

assembly

settings

.

.

.

.

.

.

. 64

Web

resource

collections

security

constraint

properties

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

Troubleshooting

tips

for

Web

application

deployment

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Modifying

the

default

Web

container

configuration

66

Web

container

.

.

.

.

.

.

.

.

.

.

.

. 67

Web

container

settings

.

.

.

.

.

.

.

.

.

. 67

Web

module

settings

.

.

.

.

.

.

.

.

.

. 68

Web

Module

Deployment

settings

.

.

.

.

.

. 68

Web

container

advanced

settings

.

.

.

.

.

. 69

Web

container

custom

properties

.

.

.

.

.

. 70

Web

applications:

Resources

for

learning

.

.

.

. 71

Chapter

3.

Managing

HTTP

sessions

73

Sessions

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Migrating

HTTP

sessions

.

.

.

.

.

.

.

.

.

. 74

Developing

session

management

in

servlets

.

.

. 75

Example:

SessionSample.java

.

.

.

.

.

.

. 76

Assembling

so

that

session

data

can

be

shared

.

. 76

Session

security

support

.

.

.

.

.

.

.

.

.

. 77

Session

management

support

.

.

.

.

.

.

.

. 78

Configuring

session

management

by

level

.

.

.

. 80

Session

tracking

options

.

.

.

.

.

.

.

.

.

. 80

Session

tracking

with

cookies

.

.

.

.

.

.

. 80

Session

tracking

with

URL

rewriting

.

.

.

.

. 80

Session

tracking

with

SSL

information

.

.

.

. 82

©

Copyright

IBM

Corp.

2003

iii

Configuring

session

tracking

.

.

.

.

.

.

.

. 82

Serializing

access

to

session

data

.

.

.

.

.

. 82

Session

Management

settings

.

.

.

.

.

.

. 83

Cookie

settings

.

.

.

.

.

.

.

.

.

.

.

. 86

Distributed

sessions

.

.

.

.

.

.

.

.

.

.

. 87

Session

recovery

support

.

.

.

.

.

.

.

.

.

. 87

Distributed

Environment

settings

.

.

.

.

.

. 88

Configuring

for

database

session

persistence

.

.

. 88

Switching

to

a

multirow

schema

.

.

.

.

.

. 89

Creating

a

DB2

table

for

session

persistence

.

. 89

Database

settings

.

.

.

.

.

.

.

.

.

.

. 91

Multirow

schema

considerations

.

.

.

.

.

. 92

Memory-to-memory

replication

.

.

.

.

.

.

.

. 93

Clustered

session

support

.

.

.

.

.

.

.

.

. 94

Tuning

session

management

.

.

.

.

.

.

.

.

. 95

Configuring

scheduled

invalidation

.

.

.

.

. 95

Configuring

write

contents

.

.

.

.

.

.

.

. 96

Configuring

write

frequency

.

.

.

.

.

.

.

. 97

Base

in-memory

session

pool

size

.

.

.

.

.

. 97

Controlling

write

operations

.

.

.

.

.

.

.

. 98

Tuning

parameter

settings

.

.

.

.

.

.

.

. 98

Tuning

parameter

custom

settings

.

.

.

.

.

. 99

Best

practices

for

using

HTTP

Sessions

.

.

.

.

. 101

Managing

HTTP

sessions:

Resources

for

learning:

104

Chapter

4.

Using

enterprise

beans

in

applications

.

.

.

.

.

.

.

.

.

.

.

. 105

Enterprise

beans

.

.

.

.

.

.

.

.

.

.

.

. 105

Developing

enterprise

beans

.

.

.

.

.

.

.

. 106

Migrating

enterprise

bean

code

to

the

supported

specification

.

.

.

.

.

.

.

.

.

.

.

.

. 107

WebSphere

extensions

to

the

Enterprise

JavaBeans

specification

.

.

.

.

.

.

.

.

. 110

Best

practices

for

developing

enterprise

beans

110

Unknown

primary-key

class

.

.

.

.

.

.

. 115

Using

access

intent

policies

.

.

.

.

.

.

.

.

. 115

Access

intent

policies

.

.

.

.

.

.

.

.

.

. 115

Applying

access

intent

policies

to

methods

.

. 118

Access

intent

exceptions

.

.

.

.

.

.

.

.

. 118

Access

intent

assembly

settings

.

.

.

.

.

. 119

Access

intent

best

practices

.

.

.

.

.

.

.

. 121

Frequently

asked

questions:

Access

intent

.

.

. 122

EJB

modules

.

.

.

.

.

.

.

.

.

.

.

.

.

. 123

Assembling

EJB

modules

.

.

.

.

.

.

.

.

. 123

Assembling

EJB

modules

.

.

.

.

.

.

.

.

. 124

Container

transactions

.

.

.

.

.

.

.

.

. 126

Method

extensions

.

.

.

.

.

.

.

.

.

. 126

Method

permissions

.

.

.

.

.

.

.

.

.

. 126

References

.

.

.

.

.

.

.

.

.

.

.

.

. 126

CMP

field

assembly

settings

.

.

.

.

.

.

. 126

Container

transaction

assembly

settings

.

.

. 126

EJB

module

assembly

settings

.

.

.

.

.

.

. 128

Entity

bean

assembly

settings

.

.

.

.

.

.

. 130

Message-driven

bean

assembly

settings

.

.

.

. 138

Method

extension

assembly

settings

.

.

.

.

. 140

Method

permission

assembly

settings

.

.

.

. 143

Query

assembly

settings

.

.

.

.

.

.

.

.

. 144

EJB

reference

assembly

settings

.

.

.

.

.

. 144

EJB

local-reference

assembly

settings

.

.

.

. 145

EJB

relation

assembly

settings

.

.

.

.

.

.

. 146

Exclude

list

assembly

settings

.

.

.

.

.

.

. 146

Security

role

assembly

settings

.

.

.

.

.

. 147

Session

bean

assembly

properties

.

.

.

.

.

. 148

EJB

containers

.

.

.

.

.

.

.

.

.

.

.

.

. 151

Managing

EJB

containers

.

.

.

.

.

.

.

.

. 152

EJB

container

settings

.

.

.

.

.

.

.

.

. 153

EJB

container

system

properties

.

.

.

.

.

. 154

EJB

cache

settings

.

.

.

.

.

.

.

.

.

.

. 154

Container

interoperability

.

.

.

.

.

.

.

. 155

Deploying

EJB

modules

.

.

.

.

.

.

.

.

.

. 159

EJB

module

collection

.

.

.

.

.

.

.

.

. 159

EJB

module

settings

.

.

.

.

.

.

.

.

.

. 159

Troubleshooting

tips

for

EJBDEPLOY

relationships

.

.

.

.

.

.

.

.

.

.

.

.

. 159

Enterprise

beans:

Resources

for

learning

.

.

.

. 160

EJB

method

Invocation

Queuing

.

.

.

.

.

.

. 161

Chapter

5.

Using

message-driven

beans

in

applications

.

.

.

.

.

.

.

. 163

Message-driven

beans

-

an

overview

.

.

.

.

. 163

Message-driven

beans

-

components

.

.

.

.

. 164

Message-driven

beans

-

transaction

support

.

. 166

Designing

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

.

. 166

Developing

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

.

. 168

Deploying

an

enterprise

application

to

use

message-driven

beans

.

.

.

.

.

.

.

.

.

. 170

Configuring

deployment

attributes

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

.

.

.

. 170

Configuring

deployment

attributes

for

a

message-driven

bean

.

.

.

.

.

.

.

.

.

. 173

Configuring

message

listener

resources

for

message-driven

beans

.

.

.

.

.

.

.

.

.

. 175

Configuring

the

message

listener

service

.

.

. 175

Adding

a

new

listener

port

.

.

.

.

.

.

.

. 182

Configuring

a

listener

port

.

.

.

.

.

.

.

. 183

Deleting

a

listener

port

.

.

.

.

.

.

.

.

. 183

Configuring

security

for

message-driven

beans

183

Administering

listener

ports

.

.

.

.

.

.

. 184

Important

files

for

message-driven

beans

and

extended

messaging

.

.

.

.

.

.

.

.

.

.

. 186

Troubleshooting

message-driven

beans

.

.

.

.

. 186

Message-driven

beans

samples

.

.

.

.

.

.

. 187

Chapter

6.

Using

application

clients

189

Application

clients

.

.

.

.

.

.

.

.

.

.

. 189

Application

client

functions

.

.

.

.

.

.

. 191

J2EE

application

clients

.

.

.

.

.

.

.

.

. 192

Pluggable

application

clients

.

.

.

.

.

.

. 193

Migration

tips

for

application

clients

.

.

.

.

. 195

Developing

J2EE

application

client

code

.

.

.

. 195

J2EE

application

client

class

loading

.

.

.

.

. 198

Developing

pluggable

application

client

code

.

.

. 200

Assembling

application

clients

.

.

.

.

.

.

.

. 201

Assembling

Application

Client

Modules

.

.

.

. 202

Application

client

assembly

settings

.

.

.

.

. 203

Deploying

application

clients

on

z/OS

.

.

.

.

. 203

Application

Client

Resource

Configuration

Scripting

tool

for

z/OS

.

.

.

.

.

.

.

.

. 205

iv

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Determining

required

properties

for

z/OS

application

client

resources

.

.

.

.

.

.

.

. 207

Deploying

application

clients

on

workstation

platforms

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 215

Starting

the

Application

Client

Resource

Configuration

Tool

and

opening

an

EAR

file

.

. 215

Data

sources

for

application

clients

.

.

.

.

. 216

Configuring

new

data

source

providers

(JDBC

providers)

for

application

clients

.

.

.

.

.

. 216

Configuring

new

data

sources

for

application

clients

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 219

Configuring

mail

providers

and

sessions

for

application

clients

.

.

.

.

.

.

.

.

.

.

. 220

Configuring

new

mail

sessions

for

application

clients

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 223

URLs

for

application

clients

.

.

.

.

.

.

. 223

URL

providers

for

the

Application

Client

Resource

Configuration

Tool

.

.

.

.

.

.

. 224

Configuring

new

URL

providers

for

application

clients

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 224

Configuring

new

URLs

with

the

Application

Client

Resource

Configuration

Tool

.

.

.

.

. 226

WebSphere

asynchronous

messaging

using

the

Java

Message

Service

API

for

the

Application

Client

Resource

Configuration

Tool

.

.

.

.

. 227

Configuring

Java

messaging

client

resources

.

. 227

Configuring

new

connection

factories

for

application

clients

.

.

.

.

.

.

.

.

.

.

. 262

Configuring

new

Java

Message

Service

destinations

for

application

clients

.

.

.

.

. 263

Example:

Configuring

MQ

Queue

and

Topic

connection

factories

and

destination

factories

for

application

clients

.

.

.

.

.

.

.

.

.

.

. 263

Example:

Configuring

WAS

Queue

and

Topic

connection

factories

and

destination

factories

for

application

clients

.

.

.

.

.

.

.

.

.

.

. 265

Configuring

new

resource

environment

providers

for

application

clients

.

.

.

.

.

. 266

Configuring

new

resource

environment

entries

for

application

clients

.

.

.

.

.

.

.

.

.

. 267

Managing

application

clients

.

.

.

.

.

.

.

. 268

Updating

data

source

and

data

source

provider

configurations

with

the

Application

Client

Resource

Configuration

Tool

.

.

.

.

.

.

. 268

Updating

URLs

and

URL

provider

configurations

for

application

clients

.

.

.

. 269

Updating

mail

session

configurations

for

application

clients

.

.

.

.

.

.

.

.

.

.

. 269

Updating

Jave

Message

Service

provider,

connection

factories,

and

destination

configurations

for

application

clients

.

.

.

. 270

Updating

MQ

Java

Message

Service

provider,

MQ

connection

factories,

and

MQ

destination

configurations

for

application

clients

.

.

.

. 270

Updating

Resource

Environment

Entry

and

Resource

Environment

Provider

configurations

for

application

clients

.

.

.

.

.

.

.

.

.

. 271

Removing

application

client

resources

.

.

.

. 272

Running

application

clients

.

.

.

.

.

.

.

.

. 272

launchClient

tool

.

.

.

.

.

.

.

.

.

.

. 273

Application

client

troubleshooting

tips

.

.

.

.

. 277

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

. 283

Web

services

.

.

.

.

.

.

.

.

.

.

.

.

. 284

SOAP

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 285

Planning

to

use

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

. 286

Service-oriented

architecture

.

.

.

.

.

.

. 287

Web

services

approach

to

a

service-oriented

architecture

.

.

.

.

.

.

.

.

.

.

.

.

. 287

Web

services

business

models

supported

.

.

. 290

Migrating

Apache

SOAP

Web

services

to

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

. 291

Developing

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 293

Example:

Developing

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

. 294

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

. 296

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

.

.

.

.

.

.

.

.

.

.

.

.

. 297

Artifacts

used

to

develop

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

. 297

Mapping

between

Java

language,

WSDL

and

XML

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 298

Installing

IBM

Web

Services

Development

Kit

for

z/OS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 321

Java2WSDL

command

.

.

.

.

.

.

.

.

. 321

WSDL2Java

command

.

.

.

.

.

.

.

.

. 324

Setting

up

a

development

and

unmanaged

client

execution

environment

for

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

. 327

Developing

a

Web

service

from

a

Java

bean

.

. 328

Developing

a

Web

service

using

a

stateless

session

enterprise

bean

.

.

.

.

.

.

.

.

. 339

Configuring

the

webservices.xml

deployment

descriptor

.

.

.

.

.

.

.

.

.

.

.

.

. 342

Configuring

the

ibm-webservices-bnd.xmi

deployment

descriptor

.

.

.

.

.

.

.

.

. 343

Configuring

the

webservices.xml

deployment

descriptor

for

Handler

classes

.

.

.

.

.

.

. 345

Developing

a

new

Web

service

with

an

existing

WSDL

file

using

a

Java

bean

.

.

.

.

.

.

. 346

Developing

a

new

Web

service

from

an

existing

WSDL

file

using

a

stateless

session

enterprise

bean

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 348

Web

services

implementation

scope

.

.

.

.

. 349

Default

Port

Mapping

Definitions

collection

.

. 350

Default

Port

Type

Mapping

Properties

settings

350

Developing

Web

services

clients

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

. 351

Example:

Developing

Web

services

clients

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

. 351

Developing

client

bindings

from

a

WSDL

file

352

Assembling

a

Web

services-enabled

client

JAR

file

into

an

EAR

file

.

.

.

.

.

.

.

.

.

. 353

Assembling

a

Web

services-enabled

client

WAR

file

into

an

EAR

file

.

.

.

.

.

.

.

.

.

. 355

Configuring

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor

.

.

.

.

.

.

.

.

. 356

Configuring

the

webservicesclient.xml

deployment

descriptor

.

.

.

.

.

.

.

.

. 359

Contents

v

Configuring

the

webservicesclient.xml

deployment

descriptor

for

Handler

classes

.

. 360

Testing

Web

services-enabled

clients

.

.

.

.

. 364

Web

services

client

bindings

.

.

.

.

.

.

. 365

Assembling

Web

services

applications

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

. 366

Assembling

a

Web

services-enabled

EJB

JAR

file

366

Assembling

a

Web

services-enabled

WAR

file

368

Assembling

a

Web

services-enabled

EJB

JAR

into

an

EAR

file

.

.

.

.

.

.

.

.

.

.

. 371

Assembling

a

Web

services-enabled

WAR

into

an

EAR

file

.

.

.

.

.

.

.

.

.

.

.

.

. 371

Enabling

a

Web

services-enabled

EAR

file

.

.

. 372

Deploying

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 377

wsdeploy

command

.

.

.

.

.

.

.

.

.

. 378

Using

the

Java

Messaging

Service

to

transport

Web

services

requests

.

.

.

.

.

.

.

.

.

.

.

. 380

Java

Messaging

Service

endpoint

URL

syntax

382

Securing

Web

services

based

on

WS-Security

.

.

. 383

Web

services

security

specification-

a

chronology

.

.

.

.

.

.

.

.

.

.

.

.

. 384

Web

services

security

support

.

.

.

.

.

.

. 385

Web

services

security

and

Java

2

Platform,

Enterprise

Edition

security

relationship

.

.

.

. 387

Web

services

security

model

in

WebSphere

Application

Server

.

.

.

.

.

.

.

.

.

. 390

Web

services

security

property

collection

.

.

. 393

Web

services

security

property

configuration

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

. 393

Usage

scenario

for

propagating

security

tokens

394

Configurations

.

.

.

.

.

.

.

.

.

.

.

. 395

Authentication

method

overview

.

.

.

.

.

. 411

XML

digital

signature

.

.

.

.

.

.

.

.

. 414

Securing

Web

services

using

XML

digital

signature

.

.

.

.

.

.

.

.

.

.

.

.

.

. 419

XML

encryption

.

.

.

.

.

.

.

.

.

.

. 488

Securing

Web

services

using

XML

encryption

491

Securing

Web

services

using

basicauth

authentication

.

.

.

.

.

.

.

.

.

.

.

. 512

Identity

assertion

.

.

.

.

.

.

.

.

.

.

. 520

Securing

Web

services

using

identity

assertion

authentication

.

.

.

.

.

.

.

.

.

.

.

. 521

Securing

Web

services

using

signature

authentication

.

.

.

.

.

.

.

.

.

.

.

. 528

Token

type

overview

.

.

.

.

.

.

.

.

.

. 534

Security

token

.

.

.

.

.

.

.

.

.

.

.

. 538

Securing

Web

services

using

a

pluggable

token

538

Tuning

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 550

Troubleshooting

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

.

.

.

.

.

.

. 551

Troubleshooting

command-line

tools

for

Web

services

based

on

Web

Services

for

J2EE

.

.

. 551

Troubleshooting

compiled

bindings

for

Web

services

based

on

Web

Services

for

J2EE

.

.

. 552

Troubleshooting

the

run

time

of

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

. 552

Troubleshooting

the

run

time

for

a

Web

services

client

based

on

Web

Services

for

J2EE

.

.

.

. 554

Troubleshooting

serialization

and

deserializaton

in

Web

services

based

on

Web

Services

for

J2EE

. 554

Frequently

asked

questions

about

Web

services

based

on

Web

Services

for

J2EE

.

.

.

.

.

. 556

Web

services:

Resources

for

learning

.

.

.

.

.

. 558

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

.

.

.

.

.

.

.

.

.

.

.

.

.

. 563

Goals

of

WSIF

.

.

.

.

.

.

.

.

.

.

.

.

. 563

WSIF

-

Web

services

are

more

than

just

SOAP

services

.

.

.

.

.

.

.

.

.

.

.

.

.

. 564

WSIF

-

Tying

client

code

to

a

particular

protocol

implementation

is

restricting

.

.

.

.

.

.

. 564

WSIF

-

Incorporating

new

bindings

into

client

code

is

hard

.

.

.

.

.

.

.

.

.

.

.

.

. 564

WSIF

-

Multiple

bindings

can

be

used

in

flexible

ways

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 564

WSIF

-

Enabling

a

freer

Web

services

environment

promotes

intermediaries

.

.

.

. 565

An

overview

of

WSIF

.

.

.

.

.

.

.

.

.

. 565

WSIF

architecture

.

.

.

.

.

.

.

.

.

.

. 566

Using

WSIF

with

Web

services

that

offer

multiple

bindings

.

.

.

.

.

.

.

.

.

.

. 566

WSIF

and

WSDL

.

.

.

.

.

.

.

.

.

.

. 566

WSIF

usage

scenarios

.

.

.

.

.

.

.

.

.

. 567

Dynamic

invocation

.

.

.

.

.

.

.

.

.

. 568

Using

WSIF

to

invoke

Web

services

.

.

.

.

.

. 568

Using

the

WSIF

providers

.

.

.

.

.

.

.

. 569

Developing

a

WSIF

service

.

.

.

.

.

.

.

. 580

Using

complex

types

.

.

.

.

.

.

.

.

.

. 589

Using

the

Java

Naming

and

Directory

Interface

(JNDI)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 591

Passing

SOAP

messages

with

attachments

using

WSIF

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 593

Interacting

with

the

J2EE

container

in

WebSphere

Application

Server

.

.

.

.

.

.

. 595

Running

WSIF

as

a

client

.

.

.

.

.

.

.

. 595

WSIF

system

management

and

administration

.

. 596

Maintaining

the

WSIF

properties

file

.

.

.

. 596

Enabling

security

for

WSIF

.

.

.

.

.

.

.

. 597

Troubleshooting

the

Web

Services

Invocation

Framework

.

.

.

.

.

.

.

.

.

.

.

.

. 597

WSIF

API

.

.

.

.

.

.

.

.

.

.

.

.

.

. 602

WSIF

API

reference:

Creating

a

message

for

sending

to

a

port

.

.

.

.

.

.

.

.

.

.

. 602

WSIF

API

reference:

Finding

a

port

factory

or

service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 603

WSIF

API

reference:

Using

ports

.

.

.

.

.

. 605

Chapter

9.

IBM

WebSphere

UDDI

Registry

.

.

.

.

.

.

.

.

.

.

.

.

.

. 611

UDDI

Registry

terminology

.

.

.

.

.

.

.

.

. 611

UDDI

Registry

definitions

.

.

.

.

.

.

.

. 612

An

overview

of

IBM

UDDI

Registries

.

.

.

.

. 612

Installing

and

setting

up

a

UDDI

Registry

.

.

.

. 614

Installing

the

UDDI

Registry

into

a

deployment

manager

cell

.

.

.

.

.

.

.

.

.

.

.

.

. 616

Installing

the

UDDI

Registry

into

a

single

appserver

.

.

.

.

.

.

.

.

.

.

.

.

. 624

vi

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Reinstalling

the

UDDI

Registry

application

.

.

. 630

Removing

the

UDDI

Registry

application

from

a

deployment

manager

cell

.

.

.

.

.

.

.

.

. 631

Removing

the

UDDI

Registry

application

from

a

single

application

server

.

.

.

.

.

.

.

.

.

. 631

Configuring

the

UDDI

Registry

.

.

.

.

.

.

. 632

Configuring

global

UDDI

properties

.

.

.

.

. 632

Modifying

the

database

userid

and

password

634

Configuring

security

roles

.

.

.

.

.

.

.

. 634

Configuring

the

UDDI

User

Console

(GUI)

for

multiple

language

encoding

support

.

.

.

.

. 635

Customizing

the

UDDI

User

Console

(GUI)

.

. 635

Configuring

SOAP

interface

properties

.

.

.

. 636

Configuring

SOAP

properties

with

the

Application

Assembly

ToolWebSphere

Assembly

Toolkit

or

the

Application

Assembly

Tool

.

.

. 636

Configuring

SOAP

properties

in

an

application

that

is

already

deployed

.

.

.

.

.

.

.

.

. 637

Administering

the

UDDI

Registry

.

.

.

.

.

. 637

Running

the

UDDI

Registry

.

.

.

.

.

.

. 637

Backing

up

and

restoring

the

UDDI

Registry

database

.

.

.

.

.

.

.

.

.

.

.

.

.

. 638

UDDI

user

console

.

.

.

.

.

.

.

.

.

.

. 638

Displaying

the

user

console

.

.

.

.

.

.

. 642

Custom

Taxonomy

Support

in

the

UDDI

Registry

643

SOAP

application

programming

interface

for

the

UDDI

Registry

.

.

.

.

.

.

.

.

.

.

.

.

. 652

Programming

the

SOAP

API

.

.

.

.

.

.

. 653

SOAP

API

error

handling

tips

in

the

UDDI

Registry

.

.

.

.

.

.

.

.

.

.

.

.

.

. 653

UDDI

Registry

Application

Programming

Interface

653

Inquiry

API

for

the

UDDI

Registry

.

.

.

.

. 653

Publish

API

for

the

UDDI

Registry

.

.

.

.

. 656

UDDI

EJB

Interface

for

the

UDDI

Registry

.

.

. 657

Datatypes

package

in

the

UDDI

Registry

.

.

. 663

EJB

interface

methods

in

the

UDDI

Registry

.

. 666

UDDI

troubleshooting

tips

.

.

.

.

.

.

.

.

. 666

Turning

on

UDDI

trace

.

.

.

.

.

.

.

.

. 670

Messages

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 670

UDAI

(Web

Services

UDDI)

messages

.

.

.

. 671

UDCF

(Web

Services

UDDI)

messages

.

.

.

. 671

UDDA

(Web

Services

UDDI)

messages

.

.

.

. 672

UDDM

(Web

Services

UDDI)

messages

.

.

.

. 672

UDEJ

(Web

Services

UDDI)

messages

.

.

.

. 672

UDEX

(Web

Services

UDDI)

messages

.

.

.

. 673

UDIN

(Web

Services

UDDI)

messages

.

.

.

. 673

UDLC

(Web

Services

UDDI)

messages

.

.

.

. 696

UDPR

(Web

Services

UDDI)

messages

.

.

.

. 696

UDRS

(Web

Services

UDDI)

messages

.

.

.

. 696

UDSC

(Web

Services

UDDI)

messages

.

.

.

. 696

UDSP

(Web

Services

UDDI)

messages

.

.

.

. 696

UDUC

(Web

Services

UDDI)

messages

.

.

.

. 698

UDUT

UDDI

Utility

Tools

messages

.

.

.

.

. 700

UDUU

(Web

Services

UDDI)

messages

.

.

.

. 712

Running

the

UDDI

samples

.

.

.

.

.

.

.

. 712

Installation

Verification

Program

(IVP)

.

.

.

.

. 712

Reporting

problems

with

the

IBM

WebSphere

UDDI

Registry

.

.

.

.

.

.

.

.

.

.

.

.

. 714

Feedback

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 715

Chapter

10.

Class

loading

.

.

.

.

.

. 717

Class

loaders

.

.

.

.

.

.

.

.

.

.

.

.

. 718

Class

loader

collection

.

.

.

.

.

.

.

.

.

. 721

Classloader

ID

.

.

.

.

.

.

.

.

.

.

.

. 722

Classloader

Mode

.

.

.

.

.

.

.

.

.

.

. 722

Class

loader

settings

.

.

.

.

.

.

.

.

.

. 722

Migrating

the

class-loader

Module

Visibility

Mode

setting

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 722

Class

loading:

Resources

for

learning

.

.

.

.

. 723

Chapter

11.

Using

EJB

query

.

.

.

.

. 725

EJB

query

language

.

.

.

.

.

.

.

.

.

.

. 725

Example:

EJB

queries

.

.

.

.

.

.

.

.

.

. 726

FROM

clause

.

.

.

.

.

.

.

.

.

.

.

. 728

Inheritance

in

EJB

query

.

.

.

.

.

.

.

.

. 729

Path

expressions

.

.

.

.

.

.

.

.

.

.

. 729

WHERE

clause

.

.

.

.

.

.

.

.

.

.

.

. 730

Scalar

functions

.

.

.

.

.

.

.

.

.

.

. 738

Aggregation

functions

.

.

.

.

.

.

.

.

. 741

SELECT

clause

.

.

.

.

.

.

.

.

.

.

.

. 742

ORDER

BY

clause

.

.

.

.

.

.

.

.

.

.

. 743

Subqueries

.

.

.

.

.

.

.

.

.

.

.

.

. 743

EJB

query

restrictions

.

.

.

.

.

.

.

.

.

. 744

EJB

Query:

Reserved

words

.

.

.

.

.

.

. 745

EJB

query:

BNF

syntax

.

.

.

.

.

.

.

.

. 745

Comparison

of

EJB

2.0

specification

and

WebSphere

query

language

.

.

.

.

.

.

.

. 747

Chapter

12.

Internationalizing

applications

.

.

.

.

.

.

.

.

.

.

.

. 749

Internationalization

.

.

.

.

.

.

.

.

.

.

. 749

Identifying

localizable

text

.

.

.

.

.

.

.

.

. 750

Creating

message

catalogs

.

.

.

.

.

.

.

.

. 750

Composing

language-specific

strings

.

.

.

.

. 751

Localization

API

support

.

.

.

.

.

.

.

. 751

LocalizableTextFormatter

class

.

.

.

.

.

.

. 752

Creating

a

formatter

instance

.

.

.

.

.

.

. 755

Setting

optional

localization

values

.

.

.

.

. 756

Generating

localized

text

.

.

.

.

.

.

.

. 758

Preparing

the

localizable-text

package

for

deployment

.

.

.

.

.

.

.

.

.

.

.

.

.

. 758

LocalizableTextEJBDeploy

command

.

.

.

. 759

Internationalization:

Resources

for

learning

.

.

. 760

Chapter

13.

Using

the

transaction

service

.

.

.

.

.

.

.

.

.

.

.

.

.

. 761

Transaction

support

in

WebSphere

Application

Server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 761

Resource

manager

local

transaction

(RMLT)

.

. 763

Global

transactions

.

.

.

.

.

.

.

.

.

. 763

Local

transaction

containment

(LTC)

.

.

.

.

. 764

Local

and

global

transaction

considerations

.

. 764

Developing

components

to

use

transactions

.

.

. 765

Configuring

transactional

deployment

attributes

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

. 765

Configuring

transactional

deployment

attributes

using

the

Application

Assembly

Tool

.

.

.

. 767

Using

bean-managed

transactions

.

.

.

.

. 768

Classifying

WebSphere

transaction

workload

for

WLM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 769

Contents

vii

Configuring

transaction

properties

for

an

application

server

.

.

.

.

.

.

.

.

.

.

.

. 771

Transaction

service

settings

.

.

.

.

.

.

.

. 772

Using

local

transactions

.

.

.

.

.

.

.

.

.

. 774

Managing

active

transactions

.

.

.

.

.

.

.

. 775

Interoperating

transactionally

between

application

servers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 776

Troubleshooting

transactions

.

.

.

.

.

.

.

. 776

Transaction

service

exceptions

.

.

.

.

.

.

.

. 777

UserTransaction

interface

-

methods

available

.

. 778

Chapter

14.

Using

naming

.

.

.

.

.

. 779

Naming

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 780

Version

5

features

for

name

space

support

.

.

.

. 780

Name

space

logical

view

.

.

.

.

.

.

.

.

. 781

Initial

context

support

.

.

.

.

.

.

.

.

.

. 784

Lookup

names

support

in

deployment

descriptors

and

thin

clients

.

.

.

.

.

.

.

.

.

.

.

.

. 785

JNDI

support

in

WebSphere

Application

Server

788

Developing

applications

that

use

JNDI

.

.

.

.

. 788

Example:

Getting

the

default

initial

context

.

. 790

Example:

Getting

an

initial

context

by

setting

the

provider

URL

property

.

.

.

.

.

.

.

. 794

Example:

Setting

the

provider

URL

property

to

select

a

different

root

context

as

the

initial

context

.

.

.

.

.

.

.

.

.

.

.

.

.

. 796

Example:

Looking

up

an

EJB

home

with

JNDI

797

Example:

Looking

up

a

JavaMail

session

with

JNDI

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 799

JNDI

interoperability

considerations

.

.

.

.

. 799

JNDI

caching

.

.

.

.

.

.

.

.

.

.

.

. 801

JNDI

cache

settings

.

.

.

.

.

.

.

.

.

. 802

Example:

Controlling

JNDI

cache

behavior

from

a

program

.

.

.

.

.

.

.

.

.

.

.

.

. 803

JNDI

name

syntax

.

.

.

.

.

.

.

.

.

.

. 804

INS

name

syntax

.

.

.

.

.

.

.

.

.

.

. 804

JNDI

to

CORBA

name

mapping

considerations

805

Example:

Setting

the

syntax

used

to

parse

name

strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 805

Developing

applications

that

use

CosNaming

(CORBA

Naming

interface)

.

.

.

.

.

.

.

.

. 806

Example:

Getting

an

initial

context

with

CosNaming

.

.

.

.

.

.

.

.

.

.

.

.

. 806

Example:

Looking

up

an

EJB

home

with

CosNaming

.

.

.

.

.

.

.

.

.

.

.

.

. 809

Configured

name

bindings

.

.

.

.

.

.

.

.

. 811

Name

space

federation

.

.

.

.

.

.

.

.

.

. 813

Name

space

bindings

.

.

.

.

.

.

.

.

.

.

. 814

Configuring

and

viewing

name

space

bindings

.

. 814

String

binding

settings

.

.

.

.

.

.

.

.

. 815

CORBA

object

binding

settings

.

.

.

.

.

. 815

Indirect

lookup

binding

settings

.

.

.

.

.

. 816

EJB

binding

settings

.

.

.

.

.

.

.

.

.

. 816

Name

space

binding

collection

.

.

.

.

.

. 817

Configuring

name

servers

.

.

.

.

.

.

.

.

. 818

Name

server

settings

.

.

.

.

.

.

.

.

.

. 818

Troubleshooting

name

space

problems

.

.

.

.

. 818

dumpNameSpace

tool

.

.

.

.

.

.

.

.

. 819

Example:

Invoking

the

name

space

dump

utility

821

Name

space

dump

utility

forjava:,

local:

and

server

name

spaces

.

.

.

.

.

.

.

.

.

. 822

Example:

Invoking

the

name

space

dump

utility

for

java:

andlocal:

name

spaces

.

.

.

.

. 824

Name

space

dump

sample

output

.

.

.

.

. 825

Naming

and

directories:

Resources

for

learning

.

. 827

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

.

.

. 829

Dynamic

cache

.

.

.

.

.

.

.

.

.

.

.

.

. 829

Configuring

cache

replication

.

.

.

.

.

.

.

. 829

Cache

replication

.

.

.

.

.

.

.

.

.

.

. 830

Internal

messaging

configuration

settings

.

.

. 830

Enabling

the

dynamic

cache

service

.

.

.

.

.

. 831

Dynamic

cache

service

settings

.

.

.

.

.

. 831

Configuring

servlet

caching

.

.

.

.

.

.

. 832

Configuring

the

dynamic

cache

disk

offload

.

. 833

Configuring

Edge

Side

Include

caching

.

.

.

. 833

Configuring

external

cache

groups

.

.

.

.

. 836

Displaying

cache

information

.

.

.

.

.

.

.

. 840

Configuring

cacheable

objects

with

the

cachespec.xml

file

.

.

.

.

.

.

.

.

.

.

.

. 841

Verifying

the

cacheable

page

.

.

.

.

.

.

. 843

Cachespec.xml

file

.

.

.

.

.

.

.

.

.

.

. 843

Configuring

command

caching

.

.

.

.

.

.

. 850

Command

class

.

.

.

.

.

.

.

.

.

.

. 850

CacheableCommandImpl

class

.

.

.

.

.

. 851

Example:

Caching

a

command

object

.

.

.

. 851

Example:

Caching

Web

services

.

.

.

.

.

.

. 852

Example:

Configuring

the

dynamic

cache

.

.

.

. 854

Cache

monitor

.

.

.

.

.

.

.

.

.

.

.

.

. 856

Edge

cache

statistics

.

.

.

.

.

.

.

.

.

. 858

Troubleshooting

the

dynamic

cache

service

.

.

. 858

Troubleshooting

tips

for

the

dynamic

cache

service

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 859

Chapter

16.

Assembling

applications

with

the

AAT

.

.

.

.

.

.

.

.

.

.

.

. 863

Application

assembly

and

J2EE

applications

.

.

. 864

Archive

support

in

Version

5.0

.

.

.

.

.

.

. 865

Starting

the

Application

Assembly

Tool

(AAT)

.

. 865

Migrating

application

modules

from

J2EE

1.2

to

J2EE

1.3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 866

earconvert

tool

.

.

.

.

.

.

.

.

.

.

.

. 866

Assembling

new

or

modifying

existing

modules

867

Adding

files

to

assembled

modules

.

.

.

.

. 869

Resource

environment

reference

assembly

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

. 870

Resource

Adapter

Archive

file

assembly

settings

871

Saving

applications

after

assembly

.

.

.

.

.

. 874

Verifying

archive

files

.

.

.

.

.

.

.

.

.

. 874

Application

assembly

performance

checklist

.

.

. 875

Generating

code

for

deployment

.

.

.

.

.

.

. 875

ejbdeploy

tool

.

.

.

.

.

.

.

.

.

.

.

. 876

ejbdeploy

syntax

--

relationship

to

Application

Assembly

Tool

options

.

.

.

.

.

.

.

.

. 877

Application

Assembly

Tool:

Resources

for

learning

877

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

.

.

.

.

.

. 879

Application

assembly

and

J2EE

applications

.

.

. 881

Archive

support

in

Version

5.0

.

.

.

.

.

.

. 882

viii

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Starting

the

Assembly

Toolkit

.

.

.

.

.

.

.

. 882

astk

command

.

.

.

.

.

.

.

.

.

.

.

. 883

Migrating

code

artifacts

to

the

Assembly

Toolkit

883

Importing

enterprise

applications

.

.

.

.

.

. 884

Importing

WAR

files

.

.

.

.

.

.

.

.

.

. 884

Importing

client

applications

.

.

.

.

.

.

. 885

Importing

EJB

files

.

.

.

.

.

.

.

.

.

. 885

Importing

RAR

files

or

connectors

.

.

.

.

. 886

Creating

enterprise

applications

.

.

.

.

.

.

. 886

Creating

Web

applications

.

.

.

.

.

.

.

.

. 887

Creating

application

clients

.

.

.

.

.

.

.

.

. 889

Creating

EJB

modules

.

.

.

.

.

.

.

.

.

. 890

Creating

connector

modules

.

.

.

.

.

.

.

. 891

Editing

deployment

descriptors

.

.

.

.

.

.

. 892

Mapping

enterprise

beans

to

database

tables

.

.

. 893

Verifying

archive

files

.

.

.

.

.

.

.

.

.

. 894

Generating

code

for

EJB

deployment

.

.

.

.

. 895

Generating

code

for

Web

service

deployment

.

.

. 896

Assembly

Toolkit:

Resources

for

learning

.

.

.

. 896

Chapter

18.

Deploying

and

managing

applications

.

.

.

.

.

.

.

.

.

.

.

. 899

Enterprise

applications

.

.

.

.

.

.

.

.

.

. 899

Installing

a

new

application

.

.

.

.

.

.

.

. 899

Preparing

for

application

installation

settings

904

Example:

Installing

an

EAR

file

using

the

default

bindings

.

.

.

.

.

.

.

.

.

.

. 908

Enterprise

application

collection

.

.

.

.

.

.

. 908

Name

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 908

Status

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 908

Enterprise

application

settings

.

.

.

.

.

.

. 909

Starting

and

stopping

applications

.

.

.

.

.

. 911

Exporting

applications

.

.

.

.

.

.

.

.

.

. 912

Exporting

DDL

files

.

.

.

.

.

.

.

.

.

.

. 912

Updating

applications

.

.

.

.

.

.

.

.

.

. 912

Hot

deployment

and

dynamic

reloading

.

.

. 914

Uninstalling

applications

.

.

.

.

.

.

.

.

. 922

Deploying

and

managing

applications:

Resources

for

learning

.

.

.

.

.

.

.

.

.

.

.

.

.

. 922

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 925

Trademarks

and

service

marks

.

.

.

. 927

Contents

ix

x

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2003

xi

xii

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

1.

Welcome

to

Applications

The

following

items

comprise

the

application

programming

model,

including

numerous

services

available

to

support

deployed

applications.

Web

modules

Use

Web

components

such

as

servlets

and

JavaServer

Pages

files

to

develop

dynamic

Web

sites.

Product

extensions

to

the

open

source

servlet

and

JSP

APIs

enhance

standard

features,

and

provide

additional

functionality.

Web

modules

consist

of

the

following

application

components,

each

performing

a

different

function:

v

HTML

and

JSP

pages

provide

the

user

interface

and

program

logic

v

Servlets

coordinate

work

between

other

components

of

the

application

HTTP

sessions

are

a

key

area

of

product

support

for

Web

modules.

By

managing

HTTP

sessions

for

your

Web

applications,

you

can

personalize

a

Web

site

for

individual

customers.

A

session

is

a

series

of

requests

to

a

servlet,

originating

from

the

same

user

at

the

same

browser.

Managing

HTTP

sessions

allows

servlets

running

in

a

Web

container

to

keep

track

of

individual

users.

For

example,

a

servlet

might

use

sessions

to

provide

″shopping

carts″

to

on-line

shoppers.

Suppose

the

servlet

is

designed

to

record

the

items

each

shopper

indicates

he

or

she

will

purchase

from

the

Web

site.

It

is

important

that

the

servlet

be

able

to

associate

incoming

requests

with

particular

shoppers.

Otherwise,

the

servlet

might

mistakenly

add

choices

of

Shopper

1

to

the

cart

of

Shopper

2.

EJB

modules

IBM

WebSphere

Application

Server

provides

broad

support

for

enterprise

beans,

including

the

Enterprise

JavaBeans

(EJB)

2.0

specification.

The

EJB

2.0

specification

introduces

a

container-managed

persistence

(CMP)

2.0

component

model,

which

provides

a

number

of

improvements

to

aid

developer

productivity

and

application

performance.

In

addition,

this

product

continues

to

fully

support

enterprise

beans

written

to

the

CMP

1.1

programming

model

and

deployed

in

previous

versions

of

this

product;

applications

can

use

CMP

1.1

beans,

CMP

2.0

beans,

or

a

mixture

of

both.

CMP

1.1

beans

can

be

directly

carried

forward

in

an

EJB

1.1

ejb-jar

module

or

may

be

repackaged

and

combined

with

CMP

2.0

beans

in

an

EJB

2.0

module.

For

EJB

2.0

modules,

a

feature

introduced

in

Version

5

of

this

product,

called

access

intent

policies,

eases

the

management

of

interactions

between

CMP

beans

and

their

underlying

data

stores.

Each

policy

sets

such

data

access

characteristics

such

as

access

type

(read

or

update)

and

transaction

isolation

that

affect

the

locking

of

resources,

letting

you

choose

the

level

of

data

integrity

and

performance

for

your

application.

Several

excellent

trade

books

that

cover

EJB

2.0

and

the

CMP

2.0

persistence

model

are

already

available.

A

good

way

to

locate

some

of

these

is

to

visit

your

favorite

online

bookstore

and

search

on

the

term

Enterprise

JavaBeans.

For

a

more

basic

orientation,

see

“Enterprise

beans:

Resources

for

learning”

on

page

160.

©

Copyright

IBM

Corp.

2003

1

Your

application

development

might

include

asynchronous

messaging,

which

the

product

supports

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

IBM

WebSphere

Application

Server

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

An

application

can

explicitly

poll

for

messages

on

a

destination.

The

product

also

provides

a

message

listener

service

that

applications

can

use

to

automatically

retrieve

messages

from

JMS

destinations

for

processing

by

message-driven

beans,

without

the

application

having

to

explicitly

poll

JMS

destinations.

Client

modules

For

an

overview,

refer

to

Welcome

to

Client

modules.

Web

services

The

Web

services

development

and

implementation

components

included

in

this

product

version

are

based

on

Apache

SOAP

2.3.

This

information

is

deprecated

in

newer

product

versions.

5.0.2 +

The

Web

services

development

and

implementation

components

included

with

this

product

version

are

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE),

Java

for

XML-based

remote

procedure

call

(JAX-RPC)

and

WS-I

Basic

Profile

1.0

specifications.

An

open

source

implementation

for

a

Web

Services

Invocation

Framework

(WSIF)

is

also

supported.

Additional

features,

such

as

UDDI

Registry

are

described

in

Welcome

to

Servers.

5.0.2 +

WebSphere

Application

Server

supports

Web

services

security

functionality

that

is

based

on

standards

included

in

the

Web

services

security

(WS-Security)

specification.

Application

services

IBM

WebSphere

Application

Server

provides

essential

services

to

ease

the

building

of

dynamic

and

flexible

e-business

applications.

These

services

support

and

extend

the

open

standards

of

J2EE

and

Web

services,

with

a

focus

on

application

reuse

and

integration.

v

Class

loading

The

WebSphere

Application

Server

product

provides

several

class-loading

modes,

policies,

and

features

to

enable

you

to

deploy

and

run

your

applications

successfully.

An

application

server

provides

an

Application

class-loader

policy

that

enables

you

to

control

the

isolation

of

applications

in

a

server.

If

you

want

applications

to

share

classes,

choose

the

SINGLE

policy;

otherwise

choose

the

MULTIPLE

policy,

which

isolates

the

class

loaders

for

each

application.

Similarly,

at

the

application

level,

you

can

choose

a

WAR

class-loader

policy

that

configures

the

isolation

of

Web

modules

within

an

application.

If

you

choose

the

policy

APPLICATION,

then

each

Web

module

in

your

application

can

see

the

2

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

classes

of

other

Web

modules.

A

policy

of

MODULE

creates

a

separate

class

loader

for

each

Web

module,

resulting

in

isolation

for

each

of

the

classes

of

each

Web

module.

The

class-loader

mode

setting,

which

you

can

configure

at

the

server,

application,

or

Web

module

level

depending

on

your

class-loader

policy,

enables

you

to

control

whether

application

class

loaders

override

classes

contained

in

base

run-time

class

loaders.

By

default,

the

WebSphere

Application

Server

class

loaders

have

a

class-loader

mode

of

PARENT_FIRST,

which

is

the

standard

JDK

mode

and

does

not

allow

the

application

class

loader

to

override

classes.

You

must

take

care

when

using

the

PARENT_LAST

class-loader

mode

to

make

all

dependent

classes

available

within

the

application

or

you

might

get

LinkageErrors

or

other

class-loader

exceptions.

For

example,

if

you

provide

a

newer

version

of

the

Xerces.jar

file

and

your

application

is

using

XSLT,

you

must

also

provide

a

xalan.jar

file

within

your

application.

v

Shared

library

Version

5.0

of

WebSphere

Application

Server

introduces

the

concept

of

a

shared

library.

A

shared

library

is

a

CLASSPATH

and

a

symbolic

name

for

that

class

path.

You

define

shared

libraries

at

the

cell,

node,

or

server

level

and

then

associate

the

shared

libraries

either

with

an

application

server

(making

the

classes

available

to

all

applications

in

the

server)

or

with

individual

applications

(making

the

classes

available

only

to

the

referencing

application).

This

mechanism

provides

a

convenient

way

to

make

libraries

of

classes

available

to

your

applications

outside

of

a

standard

J2EE

enterprise

application

(EAR)

file

for

easier

version

management

and

space

efficiency.

v

Internationalization

support

If

your

application

component

must

support

multiple

locales,

the

localizable-text

API

can

help

both

developers

and

administrators

through

central

management

of

displayed

strings.

The

developer

separates

strings

into

a

message

catalog,

which

is

then

translated

into

the

other

languages

required.

All

message

catalogs

are

then

deployed

with

the

application

component.

From

then

on,

the

administrator

can

add

or

update

message

catalogs

centrally

as

required.

See

Chapter

12,

“Internationalizing

applications,”

on

page

749.

v

Transactions

IBM

WebSphere

Application

Server

applications

can

use

transactions

to

coordinate

multiple

updates

to

resources

as

atomic

units

(as

indivisible

units

of

work)

such

that

all

or

none

of

the

updates

are

made

permanent.

The

way

that

applications

use

transactions

depends

on

the

type

of

application

component,

as

follows:

–

A

session

bean

can

either

use

container-managed

transactions

(where

the

bean

delegates

management

of

transactions

to

the

container)

or

bean-managed

transactions

(where

the

bean

manages

transactions

itself)

–

Entity

beans

use

container-managed

transactions

–

Web

components

(servlets)

use

bean-managed

transactions

The

product

is

a

transaction

manager

that

supports

the

coordination

of

resource

managers

through

their

XAResource

interface

and

participates

in

distributed

global

transactions

with

other

OTS

1.2

compliant

transaction

managers

(for

example,

J2EE

1.3

application

servers).

Applications

can

also

be

configured

to

interact

with

databases,

JMS

queues,

and

JCA

connectors

through

their

local

transaction

support

when

distributed

transaction

coordination

is

not

required.

Resource

managers

that

offer

transaction

support

can

be

categorized

into

those

that

support

two-phase

coordination

(by

offering

an

XAResource

interface)

and

those

that

support

only

one-phase

coordination

(for

example

through

a

LocalTransaction

interface).

The

IBM

WebSphere

Application

Server

transaction

Chapter

1.

Welcome

to

Applications

3

support

provides

coordination,

within

a

transaction,

for

any

number

of

two-phase

capable

resource

managers.

It

also

enables

a

single

one-phase

capable

resource

manager

to

be

used

within

a

transaction

in

the

absence

of

any

other

resource

managers,

although

a

WebSphere

transaction

is

not

necessary

in

this

case.

With

the

Last

Participant

Support

of

Enterprise

Extensions,

you

can

coordinate

the

use

of

a

single

one-phase

commit

(1PC)

capable

resource

with

any

number

of

two-phase

commit

(2PC)

capable

resources

in

the

same

global

transaction.

At

transaction

commit,

the

two-phase

commit

resources

are

prepared

first

using

the

two-phase

commit

protocol,

and

if

this

is

successful

the

one-phase

commit-resource

is

then

called

to

commit(one_phase).

The

two-phase

commit

resources

are

then

committed

or

rolled

back

depending

on

the

response

of

the

one-phase

commit

resource.

v

Naming

Naming

clients

use

Naming

Services

primarily

to

access

objects,

such

as

EJB

homes,

associated

with

applications

installed

on

IBM

WebSphere

Application

Server.

Objects

are

made

available

to

clients

by

being

bound

into

a

name

space.

A

name

space

is

under

the

control

of

a

name

server.

In

this

product,

there

are

potentially

many

name

servers,

and

the

name

spaces

controlled

by

the

various

name

servers

are

federated

together

to

form

the

view

of

a

single

name

space.

Each

name

server

presents

the

same

logical

view

of

the

federated

name

spaces.

Name

servers

provided

by

this

product

are

a

CORBA

CosNaming

implementation.

IBM

WebSphere

Application

Server

provides

a

CosNaming

JNDI

plug-in

which

enables

clients

to

access

the

name

servers

through

the

JNDI

interface.

Clients

to

EJB

applications

typically

use

JNDI

to

perform

Naming

operations.

Clients

may

access

the

name

servers

directly

through

the

CORBA

programming

model.

The

CosNaming

interface

is

part

of

the

CORBA

programming

model.

CORBA

clients

which

need

to

access

EJB

homes

or

some

other

objects

bound

to

the

name

space

would

typically

use

the

CORBA

CosNaming

interface

to

perform

Naming

operations.

v

Dynamic

cache

Dynamic

cache

improves

application

performance

by

caching

outputs

and

contents

of

outputs

of

servlets,

JavaServer

Pages

(JSP)

files,

Web

services,

and

commands.

On

subsequent

client

requests

to

the

same

applications,

dynamic

cache

intercepts

these

calls

and

responds

by

serving

the

output

or

the

contents

of

output

from

the

cache.

Dynamic

cache

in

this

product

version

includes:

Servlet/JSP

files

caching

This

caches

output

of

dynamic

servlets

and

JSP

files

by

working

with

Java

virtual

machine

of

the

application

server

by

intercepting

calls

to

service

methods

and

serving

Web

pages

from

the

cache.

This

improves

server

response

time,

throughput

and

scalability.

Command

caching

Commands

that

are

written

to

the

Command

Architecture

encapsulate

business

logic

tasks

and

provide

a

standard

way

to

invoke

the

business

logic

request.

Command

objects

need

to

implement

CacheableCommand

interface

instead

of

TargetableCommand

interface

to

cache.

Like

in

servlets

and

JSP

caching,

requests

to

execute

business

logic

in

the

command

is

intercepted

by

the

cache.

If

a

command

with

the

same

request

attributes

are

available

in

cache,

output

properties

are

copied

from

the

cached

instance

to

the

requested

instance

and

returned

without

executing

the

business

logic

again.

Web

Services

caching

Web

service

responses

can

be

cached

just

like

servlet

and

JSP

results.

These

requests

are

intercepted

and

cache

ID

computed

based

on

how

the

cache

ID

rules

are

specified

in

the

cache

policy.

Hash

of

the

whole

4

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

SOAPEnvelope

can

be

used

as

a

cache

ID

or

it

can

be

parsed

and

service

name,

operation

name

and

parameter

names

to

these

operations

used

as

cache

ID.

If

a

cache

entry

is

not

found

for

the

computed

cache

ID,

the

request

is

forwarded

to

the

SOAP

engine

and

the

result

is

cached.

Edge

Side

Include

caching

This

provides

the

ability

to

cache,

assemble

and

deliver

dynamic

web

pages

at

the

edge

of

the

enterprise

network.

Edge

Side

Includes

(ESI)

is

a

simple

markup

language

which

enables

dynamic

web

pages

(which

by

themselves

are

not

so

cache

efficient)

to

be

broken

down

into

cacheable

fragments.

These

fragments

are

then

cached

on

the

edge

of

the

network

and

assembled

into

a

single

page

upon

user

requests.

Distributed

caching

Cache

contents

can

be

shared

and

replicated

among

servers

by

dynamic

caching

using

an

underlying

JMS

based

message

broker

system,

DRS

(Data

Replication

Service).

Sharing

characteristics

of

individual

cache

entry

is

configured

using

the

cache

policy

specification.

Assembly

tools

Assembling

is

an

activity

in

which

you

package

code

components

into

″modules″

that

comply

with

the

J2EE

specification.

You

define

configurations

for

the

modules,

in

the

form

of

XML

documents

known

as

deployment

descriptors.

5.0.2

See

″Chapter

17,

“Assembling

applications

with

the

Assembly

Toolkit,”

on

page

879″

or

″Chapter

16,

“Assembling

applications

with

the

AAT,”

on

page

863.″

5.0.1

See

″Chapter

16,

“Assembling

applications

with

the

AAT,”

on

page

863.″

Enterprise

archive

(EAR)

files

are

comprised

of

the

following

archives:

v

Enterprise

bean

(JAR)

files

(known

as

“EJB

modules”

on

page

123)

v

Web

archive

(WAR)

files

(known

as

“Web

modules”

on

page

43)

v

Application

client

(JAR)

files

(known

as

“Application

clients”

on

page

189)

v

Resource

adapter

archive

(RAR)

files

(known

as

resource

adapter

modules)

v

Additional

JAR

files

containing

dependent

classes

or

other

components

required

by

the

application

The

standard

file

extension

of

an

enterprise

application

file

is

.ear.

5.0.2 +

For

a

discussion

of

archives

and

Web

components

supported

by

the

Assembly

Toolkit,

see

″“Archive

support

in

Version

5.0”

on

page

882.″

5.0.1

5.0.2

For

a

discussion

of

archives

and

Web

components

supported

by

the

Application

Assembly

Tool

in

Version

5,

see

″“Archive

support

in

Version

5.0”

on

page

865.″

Deployment

Deployment

involves

placing

applications

onto

application

servers

and

running

the

applications.

The

main

tasks

include:

1.

Installing

application

files

onto

an

application

server.

2.

Configuring

the

application

for

the

particular

operational

environment.

3.

Starting

the

newly

deployed

application.

Chapter

1.

Welcome

to

Applications

5

Information

on

these

tasks

is

available

from

″Chapter

18,

“Deploying

and

managing

applications,”

on

page

899.″

The

information

describes

how

to

deploy

applications

using

the

WebSphere

Application

Server

administrative

console.

You

can

also

deploy

applications

using

the

wsadmin

tool,

which

provides

deployment

capabilities

identical

to

those

available

using

the

administrative

console.

Packaging

and

class

loading

You

can

package

your

business

logic

as

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

enterprise

archive

(EAR)

file

or

as

an

enterprise

bean

(EJB)

or

Web

module

for

deployment

to

WebSphere

Application

Server.

You

must

also

consider

the

class

loading

relationships

among

modules.

Uninstalling

and

redeploying

applications

At

some

point,

you

will

need

to

uninstall

your

deployed

applications.

Or

you

might

need

to

update

your

applications

and

deploy

them

again.

You

might

be

able

to

use

hot

deployment

and

dynamic

reloading,

where

you

do

not

need

to

restart

the

application

server

(or

the

application

in

some

cases)

after

deploying

an

updated

application.

6

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

2.

Using

Web

applications

A

developer

creates

the

files

comprising

a

Web

application,

and

then

assembles

the

Web

application

components

into

a

Web

module.

Next,

the

deployer

(typically

the

developer

in

a

unit-testing

environment

or

the

administrator

in

a

production

environment)

installs

the

Web

application

on

the

server.

1.

(Optional)

Migrate

existing

Web

applications

to

run

in

the

new

version

of

WebSphere.

2.

Design

the

Web

application

and

develop

its

code

artifacts:

Servlets,

JavaServer

Pages

(JSP)

files,

and

static

files,

as

for

example,

images

and

Hyper

Text

Markup

Language

(HTML)

files.

See

the

″Resources

for

learning″

article

for

links

to

design

documentation.

3.

(Optional)

Implement

JavaScript

within

JSP

tags

using

the

Bean

Scripting

Framework

(BSF).

4.

Develop

the

Web

application,

using

WebSphere

Application

Server

extensions

to

enhance

its

functionality.

5.

Assemble

the

Web

application

into

a

Web

module

using

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT).

Web

module

assembly

properties

might

include

the

ability

to:

v

Configure

servlet

page

lists.

v

Configure

servlet

filters.

v

Serve

servlets

by

class

name.

v

Enable

file

serving.
6.

Deploy

the

Web

module

or

application

module

that

contains

the

Web

application.

Following

deployment,

you

might

find

it

handy

to

use

the

tool

that

enables

batch

compiling

of

the

JSP

files

for

quicker

initial

response

times.

7.

(Optional)

Troubleshoot

your

Web

application.

8.

(Optional)

Modify

the

default

Web

container

configuration

in

the

application

server

in

which

you

deployed

the

Web

module

or

application

module

containing

the

Web

application.

9.

(Optional)

Manage

the

deployed

Web

application..

Web

applications

A

Web

application

is

comprised

of

one

or

more

related

servlets,

JavaServer

Pages

technology

(JSP

files),

and

Hyper

Text

Markup

Language

(HTML)

files

that

you

can

manage

as

a

unit.

The

files

in

a

Web

application

are

related

in

that

they

work

together

to

perform

a

business

logic

function.

For

example,

one

of

the

WebSphere

Application

Server

samples

is

a

Simple

Greeting

Web

application.

This

application,

comprised

of

a

servlet

and

Web

pages,

greets

new

users

when

the

application

is

accessed.

The

Web

application

is

a

concept

supported

by

the

Java

Servlet

Specification.

Web

applications

are

typically

packaged

as

.war

files.

©

Copyright

IBM

Corp.

2003

7

web.xml

file

The

web.xml

file

provides

configuration

and

deployment

information

for

the

Web

components

that

comprise

a

Web

application.

Examples

of

Web

components

are

servlet

parameters,

servlet

and

JavaServer

Pages

(JSP)

definitions,

and

Uniform

Resource

Locators

(URL)

mappings.

The

servlet

2.3

specification

dictates

the

format

of

the

web.xml

file,

which

makes

this

file

portable

among

Java

Two

Enterprise

Edition

(J2EE)

compliant

products.

Location

The

web.xml

file

must

reside

in

the

WEB-INF

directory

under

the

context

of

the

hierarchy

of

directories

that

exist

for

a

Web

application.

For

example,

if

the

application

is

client.war,

then

the

web.xml

file

is

placed

in

the

install_root/client

war/WEB-INF

directory.

Usage

notes

v

Is

this

file

read-only?

No

v

Is

this

file

updated

by

a

product

component?

This

file

is

updated

by

the

Assembly

Toolkitor

Application

Assembly

Tool

(AAT).

v

If

so,

what

triggers

its

update?

The

Assembly

Toolkitor

AAT

updates

the

web.xml

file

when

you

assemble

Web

components

into

a

Web

module,

or

when

you

modify

the

properties

of

the

Web

components

or

the

Web

module.

v

How

and

when

are

the

contents

of

this

file

used?

WebSphere

Application

Server

functions

use

information

in

this

file

during

the

configuration

and

deployment

phases

of

Web

application

development.

Sample

file

entry

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

web-app

PUBLIC

"-//Sun

Microsystems,

Inc.

//DTD

Web

Application

2.3//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app

id="WebApp_1">

<display-name>Persistence

Manager

Web

Client</display-name>

<description>Peristence

Manager

Web

Client</description>

<servlet

id="Servlet_1">

<servlet-name>CustomerLocalServlet</servlet-name>

<description>Local

Customer

Servlet</description>

<servlet-class>CustomerLocalServlet</servlet-class>

</servlet>

<servlet

id="Servlet_2">

<servlet-name>CustomerServlet</servlet-name>

<description>Remote

Customer

Servlet</description>

<servlet-class>CustomerServlet</servlet-class>

</servlet>

<servlet

id="Servlet_3">

<servlet-name>CreditCardServlet</servlet-name>

<description>Credit

Card

Servlet

-

PM

Verification</description>

<servlet-class>CreditCardServlet</servlet-class>

</servlet>

<servlet-mapping

id="ServletMapping_1">

<servlet-name>CustomerLocalServlet</servlet-name>

<url-pattern>/CustomerLocal</url-pattern>

</servlet-mapping>

8

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<servlet-mapping

id="ServletMapping_2">

<servlet-name>CustomerServlet</servlet-name>

<url-pattern>/Customer</url-pattern>

</servlet-mapping>

<servlet-mapping

id="ServletMapping_3">

<servlet-name>CreditCardServlet</servlet-name>

<url-pattern>/CreditCard</url-pattern>

</servlet-mapping>

<welcome-file-list

id="WelcomeFileList_1">

<welcome-file>index.html</welcome-file>

</welcome-file-list>

<security-role

id="SecurityRole_1">

<description>Everyone

role</description>

<role-name>Everyone

Role</role-name>

</security-role>

<security-role

id="SecurityRole_2">

<description>AllAuthenticated

role</description>

<role-name>All

Role</role-name>

</security-role>

<security-role

id="SecurityRole_3">

<description>Deny

all

access

role</description>

<role-name>DenyAllRole</role-name>

</security-role>

</web-app>

Migrating

Web

application

components

Supported

open

specification

levels

in

WebSphere

Application

Server

Version

5

are

documented

in

article,

Migrating.

Migration

of

Web

applications

deployed

in

WebSphere

Application

Server

Version

4.0.1

is

not

necessary;

version

2.2

of

the

servlet

specification

and

version

1.1

of

the

JavaServerPages

(JSP)

specification

are

still

supported.

However,

where

there

are

behavioral

differences

between

the

Java

Two

Enterprise

Edition

(J2EE)

1.2

and

J2EE

1.3

specifications,

bear

in

mind

that

J2EE

1.3

specifications

are

implemented

in

WebSphere

Application

Server

Version

5

and

will

override

any

J2EE

1.2

behaviors.

Servlet

migration

might

be

a

concern

if

your

application:

v

implements

a

WebSphere

internal

servlet

to

bypass

a

WebSphere

Application

Server

Version

4.0.1

single

application

path

restriction.

v

extends

a

PageListServlet

that

relies

on

configuration

information

in

the

servlet

configuration

XML

file.

v

uses

a

servlet

to

generate

Hyper

Text

Markup

Language

(HTML)

output.

v

calls

the

response.sendRedirect()

method

for

a

servlet

using

the

encodeRedirectURL

function

or

executing

within

a

non-context

root.

JSP

migration

might

be

a

concern

if

your

application

references

JSP

page

implementation

classes

in

unnamed

packages,

or

if

you

install

WebSphere

Application

Server

Version

4.0.1

EAR

files

(deployed

in

Version

4.0.1

with

the

JSP

Precompile

option),

in

Version

5.

Follow

these

steps

if

migration

issues

apply

to

your

Web

application:

1.

Use

WebSphere

Application

Server

Version

5

package

names

for

any

WebSphere

Application

Server

Version

4.0.1

internal

servlets,

which

are

implemented

in

your

application.

In

WebSphere

Application

Server

Version

4.0.1,

Web

modules

with

a

context

root

setting

of

/

are

not

supported.

Accessing

Web

modules

with

this

root

context

results

in

HTTP

404

-

File

not

Found

errrors.

Chapter

2.

Using

Web

applications

9

To

bypass

the

errors,

and

to

enable

the

serving

of

static

files

from

the

root

context,

WebSphere

Application

Server

Version

4.0.1

users

are

advised

to

add

the

servlet

class,

com.ibm.servlet.engine.webapp.SimpleFileServlet,

to

their

Web

module.

The

Version

4.0.1

single

path

limitation

does

not

exist

in

Version

5.

However,

users

who

choose

to

use

the

com.ibm.servlet.engine.webapp.SimpleFileServlet

in

Version

5

must

do

one

of

the

following:

v

Rename

com.ibm.servlet.engine.webapp.SimpleFileServlet

to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.

v

Opena

Web

deployment

descriptor

editor

in

the

Assembly

Toolkit

and

select

File

serving

enabled

on

the

Extensions

tab.

Or,

open

the

EAR

file

in

the

Application

Assembly

Tool

(AAT)

and

enable

the

SimpleFileServlet

static

file

setting.

The

following

list

identifies

the

other

internal

servlets

affected

by

the

Version

5

package

name

change:

v

DefaultErrorReporter

v

AutoInvoker

Use

the

Version

5

package

name,

com.ibm.ws.webcontainer.servlet.<servlet

class

name>

for

these

servlets.

2.

Migrate

servlets

that

extend

PageListServlet

and

rely

on

configuration

information

in

the

associated

XML

servlet

configuration

file.

In

Version

4.0.1,

the

XML

servlet

configuration

file

provides

configuration

data

for

page

lists

and

augments

servlet

configuration

information.

This

file

is

named

as

either

servlet_class_name.servlet

or

servlet_name.servlet,

and

is

stored

in

the

same

directory

as

the

servlet

class

file.

The

XML

servlet

configuration

file

is

not

supported

in

WebSphere

Application

Server

Version

5.

The

direct

use

of

the

servlet

has

been

deprecated.

The

PageList

servlet

function

is

still

available

but

is

configured

as

part

of

the

servlet

extension

configuration

in

the

WAR

file.

3.

Set

a

content

type

if

your

servlet

generates

Hyper

Text

Markup

Language

(HTML)

output.

The

default

behavior

of

the

Web

container

changed

in

WebSphere

Application

Server

Version

5.

If

the

servlet

developer

does

not

specify

a

content

type

in

the

servlet

then

the

container

is

forbidden

to

set

one

automatically.

Without

an

explicit

content

type

setting,

the

content

type

is

set

to

null.

The

Netscape

browser

displays

HTML

source

as

plain

text

with

a

null

content

type

setting.

To

resolve

this

problem,

do

one

of

the

following:

v

Explicitly

set

a

content

type

in

your

servlet.

v

Opena

Web

deployment

descriptor

editor

in

the

Assembly

Toolkit

and

select

Automatic

Response

Encoding

enabled

on

the

Extensions

tab.

Or,

open

the

WAR

file

in

the

Application

Assembly

Tool

(AAT)

and

enable

the

autoResponseEncoding

static

file

setting.
4.

Set

the

Java

environment

variable,

com.ibm.websphere.sendredirect.compatibility,

to

true

if

you

want

your

URLs

interpreted

relative

to

the

application

root.

The

default

value

of

the

Java

environment

variable

com.ibm.websphere.sendredirect.compatibility

changed

in

WebSphere

Application

Server

Version

5.

In

Version

4,

the

default

setting

of

this

variable

is

true.

In

Version

5,

the

setting

is

false.

When

this

variable

is

set

to

false,

if

a

URL

has

a

leading

slash,

the

URL

is

interpreted

relative

to

the

Web

module/application

root.

However,

if

the

URL

10

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

does

not

have

a

leading

slash,

it

is

interpreted

relative

to

the

Web

container

root

(also

known

as

the

Web

server

document

root).

Therefore,

if

an

application

has

a

WAR

file

that

has

a

context

root

of

myPledge_app

and

a

servlet

that

has

a

servlet

mapping

of

/Intranet/,

a

JSP

file

in

the

WAR

file

cannot

access

the

servlet

when

its

encodeRedirectURL

is

set

to

/Intranet/myPledge.

The

JSP

file

can

access

the

servlet

if

the

encodeRedirectURL

is

set

to

myPledge_app/Intranet/myPlege,

or

if

the

com.ibm.websphere.sendredirect.compatibility

variable

is

set

to

true.

See

the

Setting

the

sendredirect

variable

article

for

more

information.

5.

Migrate

WebSphere

Version

4.0.1

enterprise

applications

to

Version

5.

Note:

The

WebSphere

Application

Server

Version

4.0.1

JSP

page

implementation

class

files

are

not

compatible

with

the

WebSphere

Application

Server

Version

5

JSP

container.

You

must

do

one

of

the

following:

v

Select

the

Pre-compile

JSP

option

in

the

administrative

console

Install

New

Application

window.

See

article

Installing

a

new

application

for

more

information.

v

Specify

the

-preCompileJSPs

option

when

using

the

Wsadmin

tool.
6.

Import

your

classes

if

your

application

uses

unnamed

packages.

Section

8.2

of

the

JSP

1.2

specification

states:

The

JSP

container

creates

a

JSP

page

implementation

class

for

each

JSP

page.

The

name

of

the

JSP

page

implementation

class

is

implementation

dependent.

The

JSP

page

implementation

object

belongs

to

an

implementation-dependent

named

package.

The

package

used

may

vary

between

one

JSP

and

another,

so

minimal

assumptions

should

be

made.

The

unnamed

package

should

not

be

used

without

an

explicit

import

of

the

class.

For

example,

if

myBeanClass

is

in

the

unnamed

package,

and

you

reference

it

in

a

jsp:useBean

tag,

then

you

must

explicitly

import

myBeanClass

with

the

page

directive

import

attribute,

as

shown

in

the

following

example:

<%@page

import="myBeanClass"

%>

.

.

.

<jsp:useBean

id="myBean"

class="myBeanClass"

scope="session"/>

In

WebSphere

Application

Server

Version

5,

the

JSP

engine

creates

JSP

page

implementation

classes

in

the

org.apache.jsp

package.

If

a

class

in

the

unnamed

package

is

not

explicitly

imported,

then

the

javac

compiler

assumes

the

class

is

in

package

org.apache.jsp,

and

the

compilation

fails.

Note:

Avoid

using

the

unnamed

package

altogether

because

of

a

change

made

in

JDK

1.4

that

will

affect

the

JSP

2.0

specification.

WebSphere

Application

Server

Version

5

ships

with

JDK

1.3.1,

so

this

is

not

an

issue

with

the

Version

5

JSP

engine,

but

it

will

become

an

issue

in

future

releases.

The

Incompatibilities

section

of

the

version

1.4.Java

2

Platform,

Standard

Edition

(J2SE)

documentation

states:

The

compiler

now

rejects

import

statements

that

import

a

type

from

the

unnamed

namespace.

Previous

versions

of

the

compiler

would

accept

such

import

declarations,

even

though

they

were

arguably

not

allowed

by

the

language

(because

the

type

name

appearing

in

the

import

clause

is

not

in

scope).

The

specification

is

being

clarified

to

state

clearly

that

you

cannot

have

a

simple

name

in

an

import

statement,

nor

can

you

import

from

the

unnamed

namespace.

To

summarize,

the

syntax:

import

SimpleName;

Chapter

2.

Using

Web

applications

11

is

no

longer

legal.

Nor

is

the

syntax

import

ClassInUnnamedNamespace.Nested;

which

would

import

a

nested

class

from

the

unnamed

namespace.

To

fix

such

problems

in

your

code,

move

all

of

the

classes

from

the

unnamed

namespace

into

a

named

namespace.

See

″Resources

for

learning″

for

links

to

the

J2SE,

JSP,

and

Servlet

specification

documentation.

Default

Application

The

IBM

WebSphere

Application

Server

provides

a

default

configuration

that

allows

administrators

to

easily

verify

that

the

Application

Server

is

running.

When

the

product

is

installed,

it

includes

an

application

server

called

server1

and

an

enterprise

application

called

Default

Application.

Default

Application

contains

a

Web

Module

called

DefaultWebApplication

and

an

enterprise

bean

JAR

file

called

Increment.

The

Default

Application

provides

a

number

of

servlets,

described

below.

These

servlets

are

available

in

the

product.

For

additional

code

examples,

visit

the

Samples

Gallery.

Learn

how

to

locate

and

install

the

Samples

Gallery

by

viewing

the

Samples

Gallery

reference

page.

The

URL

for

accessing

Samples

is:

http://localhost:9080/WSamples/

Snoop

Use

the

Snoop

servlet

to

retrieve

information

about

a

servlet

request.

This

servlet

returns

the

following

information:

v

Servlet

initialization

parameters

v

Servlet

context

initialization

parameters

v

URL

invocation

request

parameters

v

Perferred

client

locale

v

Context

path

v

User

principal

v

Request

headers

and

their

values

v

Request

parameter

names

and

their

values

v

HTTPS

protocol

information

v

Servlet

request

attributes

and

their

values

v

HTTP

session

information

v

Session

attributes

and

their

values

The

Snoop

servlet

includes

security

configuration

so

that

when

WebSphere

Security

is

enabled,

clients

must

supply

a

user

ID

and

password

to

execute

the

servlet.

The

URL

for

the

Snoop

servlet

is:

http://localhost:9080/snoop/.

HelloHTML

Use

the

HelloHTML

pervasive

servlet

to

exercise

the

PageList

support

provided

by

the

WebSphere

Web

container.

This

servlet

extends

the

PageListServlet,

which

provides

APIs

that

allow

servlets

to

call

other

Web

resources

by

name

or,

when

using

the

Client

Type

detection

support,

by

type.

12

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

can

invoke

the

Hello

servlet

from

an

HTML

browser,

speech

client,

or

most

Wireless

Application

Protocol

(WAP)

enabled

browsers

using

the

URL:

http://localhost:9080/HelloHTML.jsp.

HitCount

Use

the

HitCount

Demonstration

application

to

demonstrate

incrementing

a

counter

using

a

variety

of

methods,

including:

v

A

servlet

instance

variable

v

An

HTTP

session

v

An

enterprise

bean

You

can

instruct

the

servlet

to

execute

any

of

these

methods

within

a

transaction

that

you

can

ommit

or

roll

back.

If

the

transaction

is

committed,

the

counter

is

incremented.

If

the

transaction

is

rolled

back,

the

counter

is

not

incremented.

The

enterprise

bean

method

uses

a

Container-

Managed

Persistence

enterprise

bean

that

persists

the

counter

value

to

a

Cloudscape

database.

This

enterprise

bean

is

configured

to

use

the

Default

Datasource,

which

is

set

to

the

DefaultDB

database.

When

using

the

enterprise

bean

method,

you

can

instruct

the

servlet

to

look

up

the

enterprise

bean,

either

in

the

WebSphere

global

namespace,

or

in

the

namespace

local

to

the

application.

The

URL

for

the

HitCount

application

is:

http://localhost:9080/HitCount.jsp.

Servlets

Servlets

are

Java

programs

that

use

the

Java

Servlet

Application

Programming

Interface

(API).

You

must

package

servlets

in

a

Web

ARchive

(WAR)

file

or

Web

module

for

deployment

to

the

application

server.

Servlets

run

on

a

Java-enabled

Web

server

and

extend

the

capabilities

of

a

Web

server,

similar

to

the

way

applets

run

on

a

browser

and

extend

the

capabilities

of

a

browser.

Servlets

can

support

dynamic

Web

page

content,

provide

database

access,

serve

multiple

clients

at

one

time,

and

filter

data.

For

the

purposes

of

IBM

WebSphere

Application

Server,

discussions

of

servlets

focus

on

Hyper

Text

Transfer

Protocol

(HTTP)

servlets,

which

serve

Web-based

clients.

Developing

servlets

with

WebSphere

Application

Server

extensions

Several

WebSphere

Application

Server

extensions

are

provided

for

enhancing

your

servlets.

This

task

provides

a

summary

of

the

extensions

that

you

can

utilize.

1.

Review

the

supported

specifications.

Create

Java

components,

referring

to

the

Servlet

specifications

from

Sun

Microsystems.

See

Resources

for

learning

for

links

to

coding

specifications

and

examples.

The

application

server

includes

its

own

packages

that

extend

and

add

to

the

Java

Servlet

Application

Programming

Interface

(API).

These

extensions

and

additions

make

it

easier

to

manage

session

states,

create

personalized

Web

Chapter

2.

Using

Web

applications

13

pages,

generate

better

servlet

error

reports,

and

access

databases.

Locate

the

Javadoc

for

the

application

server

APIs

in

the

product

install_root\web\apidocs

directory.

All

the

public

WebSphere

Application

Server

APIs

are

located

in

the

com.ibm.websphere...

packages.

2.

Use

your

favorite

integrated

development

environment

(IDE),

or

a

text

editor,

to

develop

or

migrate

code

artifacts

that

meet

the

specifications.

3.

Test

the

code

artifacts.

Assemble

your

code

artifacts

into

a

Web

module

using

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT)

as

a

prerequisite

to

deploying

the

code

to

the

application

server.

Application

lifecycle

listeners

and

events

Application

lifecycle

listeners

and

events,

now

part

of

the

Servlet

API,

enable

you

to

notify

interested

listeners

when

servlet

contexts

and

sessions

change.

For

example,

you

can

notify

users

when

attributes

change

and

if

sessions

or

servlet

contexts

are

created

or

destroyed.

The

lifecycle

listeners

give

the

application

developer

greater

control

over

interactions

with

ServletContext

and

HttpSession

objects.

Servlet

context

listeners

manage

resources

at

an

application

level.

Session

listeners

manage

resources

associated

with

a

series

of

requests

from

a

single

client.

Listeners

are

available

for

lifecycle

events

and

for

attribute

modification

events.

The

listener

developer

creates

a

class

that

implements

the

javax

listener

interface,

corresponding

to

the

desired

listener

functionality.

At

application

startup

time,

the

container

uses

introspection

to

create

an

instance

of

your

listener

class

and

registers

it

with

the

appropriate

event

generator.

When

a

servlet

context

is

created,

the

contextInitialized

method

of

your

listener

class

is

invoked,

which

creates

the

database

connection

for

the

servlets

in

your

application

to

use,

if

this

context

is

for

your

application.

When

the

servlet

context

is

destroyed,

your

contextDestroyed

method

is

invoked,

which

releases

the

database

connection,

if

this

context

is

for

your

application.

Listener

classes

for

servlet

context

and

session

changes

The

following

methods

are

defined

as

part

of

the

javax.servlet.ServletContextListener

interface:

v

void

contextInitialized(ServletContextEvent)

-

Notification

that

the

Web

application

is

ready

to

process

requests.

Place

code

in

this

method

to

see

if

the

created

context

is

for

your

Web

application

and

if

it

is,

allocate

a

database

connection

and

store

the

connection

in

the

servlet

context.

v

void

contextDestroyed(ServletContextEvent)

-Notification

that

the

servlet

context

is

about

to

shut

down.

Place

code

in

this

method

to

see

if

the

created

context

is

for

your

Web

application

and

if

it

is,

close

the

database

connection

stored

in

the

servlet

context.

Two

new

listener

interfaces

are

defined

as

part

of

the

javax.servlet

package:

v

ServletContextListener

v

ServletContextAttributeListener

14

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

One

new

filter

interface

is

defined

as

part

of

the

javax.servlet

package:

v

FilterChain

interface

-

methods:

doFilter()

Two

new

event

classes

are

defined

as

part

of

the

javax.servlet

package:

v

ServletContextEvent

v

ServletContextAttributeEvent

Three

new

listener

interfaces

are

defined

as

part

of

the

javax.servlet.http

package:

v

HttpSessionListener

v

HttpSessionAttributeListener

v

HttpSessionActivationListener

One

new

event

class

is

defined

as

part

of

the

javax.servlet.http

package:

v

HttpSessionEvent

Example:

com.ibm.websphere.DBConnectionListener.java

The

following

example

shows

how

to

create

a

servlet

context

listener:

package

com.ibm.websphere;

import

java.io.*;

import

javax.servlet.*;

public

class

DBConnectionListener

implements

ServletContextListener

{

//

implement

the

required

context

init

method

void

contextInitialized(ServletContextEvent

sce)

{

}

//

implement

the

required

context

destroy

method

void

contextDestroyed(ServletContextEvent

sce)

{

}

}

Servlet

filtering

Servlet

filtering

is

an

integral

part

of

the

Servlet

2.3

API.

Servlet

filtering

provides

a

new

type

of

object

called

a

filter

that

can

transform

a

request

or

modify

a

response.

You

can

chain

filters

together

so

that

a

group

of

filters

can

act

on

the

input

and

output

of

a

specified

resource

or

group

of

resources.

Filters

typically

include

logging

filters,

image

conversion

filters,

encryption

filters,

and

Multipurpose

Internet

Mail

Extensions

(MIME)

type

filters

(functionally

equivalent

to

the

servlet

chaining).

Although

filters

are

not

servlets,

their

lifecycle

is

very

similar.

Filters

are

handled

in

the

following

manner:

v

The

Web

container

determines

whether

it

needs

to

construct

a

FilterChain

containing

the

LoggingFilter

for

the

requested

resource.

The

FilterChain

begins

with

the

invocation

of

the

LoggingFilter

and

ends

with

the

invocation

of

the

requested

resource.

v

If

other

filters

need

to

go

in

the

chain,

the

Web

container

places

them

after

the

LoggingFilter

and

before

the

requested

resource.

v

The

Web

container

then

instantiates

and

initializes

the

LoggingFilter

(if

it

was

not

done

previously)

and

invokes

its

doFilter(FilterConfig)

method

to

start

the

chain.

Chapter

2.

Using

Web

applications

15

v

The

LoggingFilter

preprocesses

the

request

and

response

objects

and

then

invokes

the

filter

chain

doFilter(ServletRequest,

ServletResponse)

method.

This

method

passes

the

processing

to

the

next

resource

in

the

chain

(in

this

case,

the

requested

resource).

v

Upon

return

from

the

filter

chain

doFilter(ServletRequest,

ServletResponse)

method,

the

LoggingFilter

performs

post-processing

on

the

request

and

response

object

before

sending

the

response

back

to

the

client.

Filter,

FilterChain,

FilterConfig

classes

for

servlet

filtering

The

following

interfaces

are

defined

as

part

of

the

javax.servlet

package:

v

Filter

interface

-

methods:

doFilter(),

getFilterConfig(),

setFilterConfig()

v

FilterChain

interface

-

methods:

doFilter()

v

FilterConfig

interface

-

methods:

getFilterName(),

getInitParameter(),

getInitParameterNames(),

getServletContext()

The

following

classes

are

defined

as

part

of

the

javax.servlet.http

package:

v

HttpServletRequestWrapper

-

methods:

See

the

Servlet

2.3

Specification

v

HttpServletResponseWrapper

-

methods:

See

the

Servlet

2.3

Specification

Example:

com.ibm.websphere.LoggingFilter.java

The

following

example

shows

how

to

implement

a

filter:

package

com.ibm.websphere;

import

java.io.*;

import

javax.servlet.*;

public

class

LoggingFilter

implements

Filter

{

File

_loggingFile

=

null;

//

implement

the

required

init

method

public

void

init(FilterConfig

fc)

{

//

create

the

logging

file

xxx;

}

//

implement

the

required

doFilter

method...this

is

where

most

of

the

work

is

done

public

void

doFilter(ServletRequest

request,

ServletResponse

response,

FilterChain

chain)

{

try

{

//

add

request

info

to

the

log

file

synchronized(_loggingFile)

{

xxx;

}

//

pass

the

request

on

to

the

next

resource

in

the

chain

chain.doFilter(request,

response);

}

catch

(Throwable

t)

{

//

handle

problem...

}

}

//

implement

the

required

destroy

method

public

void

destroy()

16

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

{

//

make

sure

logging

file

is

closed

_loggingFile.close();

}

}

Configuring

page

list

servlet

client

configurations

You

can

define

PageListServlet

configuration

information

in

the

IBM

Web

Extensions

file.

The

IBM

Web

Extensions

file

is

created

and

stored

in

the

Web

Applications

archive

(WAR)

file

by

theAssembly

Toolkitor

Application

Assembly

Tool

(AAT).

To

configure

and

implement

page

lists:

1.

To

configure

page

list

information,

use

the

Add

Markup

Language

entry

dialog

of

the

Assembly

Toolkit.

On

the

Servlets

tab

of

a

Web

deployment

descriptor

editor,

select

a

servlet

and

click

Add

under

WebSphere

Extensions.Or

use

the

PageList

Extensions

tab

in

the

AAT.

2.

Add

the

callPage()

method

to

your

servlet

to

invoke

a

JavaServer

Page

(JSP)

file

in

response

to

a

client

request.

The

PageListServlet

has

a

callPage()

method

that

invokes

a

JSP

file

in

response

to

the

HTTP

request

for

a

page

in

a

page

list.

The

callPage()

method

can

be

invoked

in

one

of

the

following

ways:

v

callPage(String

pageName,

HttpServletRequest

request,

HttpServletResponse

response)

where

the

method

arguments

are:

pageName

A

page

name

defined

in

the

PageListServlet

configuration

request

The

HttpServletRequest

object

response

The

HttpServletResponse

object
v

callPage(String

mlName,

String

pageName,

HttpServletRequest

request,

HttpServletResponse

response)

where

the

method

arguments

are:

mlName

A

markup

language

type

pageName

A

page

name

defined

in

the

PageListServlet

configuration

request

The

HttpServletRequest

object

response

The

HttpServletResponse

object
3.

Use

the

PageList

Servlet

client

type

detection

support

to

determine

the

markup

language

type

a

calling

client

requires

for

the

response.

Page

lists

Page

lists

allow

you

to

avoid

hard-coding

URLs

in

servlets

and

JSP

files.

A

page

list

specifies

the

location

where

a

request

is

to

be

forwarded,

but

automatically

customizes

that

location

depending

on

the

MIME

type

of

the

servlet.

Use

these

properties

to

specify

a

markup

language

and

an

associated

MIME

type.

For

the

given

MIME

type,

you

also

specify

a

set

of

pages

to

invoke.

WebSphere

Application

Server

supplies

the

PageListServlet

servlet,

which

you

can

use

to

call

a

JavaServer

Pages

(JSP)

file

by

name

based

on

the

configuration

data

in

the

client_types.xml

file.

This

file

maps

a

JSP

file

to

a

Uniform

Resource

Identifier

Chapter

2.

Using

Web

applications

17

(URI).

When

the

URI

is

invoked,

it

specifies

another

JSP

file

in

a

Web

module.

This

support

allows

you

to

access

multiple

Uniform

Resource

Locators

(URLs)

without

hard-coding

them

in

your

servlets.

You

can

also

logically

group

page

lists

according

to

the

markup

language

type,

such

as,

Hypertext

Markup

Language

(HTML)

or

Wireless

Markup

Language

(WML).

This

allows

applications

that

use

servlets

to

extend

the

PageListServlet

servlet,

to

call

JSP

files

which

return

the

proper

markup-language

type

for

the

client

request.

For

example,

a

request

that

originates

from

a

PDA

device

requires

WML

data.

The

application

server

sends

the

request

to

a

servlet

that

extends

the

PageListServlet

servlet,

and

the

servlet

calls

a

JSP

file

that

returns

a

WML

response.

Client

type

detection

support

In

addition

to

providing

the

page

list

mapping

capability,

the

PageListServlet

also

provides

Client

Type

Detection

support.

A

servlet

determines

the

markup

language

type

that

a

calling

client

needs

in

the

response,

using

the

configuration

information

in

the

client_types.xml

file.

Client

type

detection

support

allows

a

servlet,

extending

the

PageListServlet,

to

call

an

appropriate

JavaServer

Pages

(JSP)

file.

The

servlet

invokes

the

callPage()

method,

which

calls

a

JSP

file

based

on

the

markup-language

type

of

the

request.

client_types.xml

The

client_types.xml

file

provides

client

type

detection

support

for

servlets

extending

PageListServlet.

Using

the

configuration

data

in

the

client_types.xml

file,

servlets

can

determine

the

language

type

that

calling

clients

require

for

the

response.

The

client

type

detection

support

allows

servlets

to

call

appropriate

JavaServer

Pages

(JSP)

files

with

the

callPage()

method.

Servlets

select

JSP

files

based

on

the

markup-language

type

of

the

request.

Servlets

must

use

the

following

version

of

the

callPage()

method

to

determine

the

markup

language

type

required

by

the

client:

callPage(String

mlName,

String

pageName,

HttpServletRequest

request,

HttpServletResponse

response)

where

the

arguments

are:

v

mlName

-

a

markup

language

type

v

pageName

-

a

page

name

defined

in

the

PageListServlet

configuration

v

request

-

the

HttpServletRequest

object

v

response

-

the

HttpServletResponse

object

Review

the

Extending

PageListServlet

code

example

to

see

how

the

callPage()

method

is

invoked

by

a

servlet.

In

the

example,

the

client

type

detection

method,

getMLTypeFromRequest(HttpServletRequestrequest),

provided

by

the

PageListServlet,

inspects

the

HttpServletRequest

object

request

headers,

and

searches

for

a

match

in

the

client_types.xml

file.

The

client

type

detection

method

does

the

following:

v

Uses

the

input

HttpServletRequest

and

the

client_types.xml

file,

to

check

for

a

matching

HTTP

request

name

and

value.

v

Returns

the

markup-language

value

configured

for

the

<client-type>

element,

if

a

match

is

found.

18

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

multiple

matches

are

found,

this

method

returns

the

markup-language

for

the

first

<client-type>

element

for

which

a

match

is

found.

v

If

no

match

is

found,

returns

the

value

of

the

markup-language

for

the

default

page

defined

in

the

PageListServlet

configuration.

Location

The

client_types.xml

file

is

located

in

the

install_root/properties

directory.

Usage

notes

v

Is

this

file

read-only?

No

v

Is

this

file

updated

by

a

product

component?

No

v

If

so,

what

triggers

its

update?

This

file

is

created

and

updated

manually

by

users.

v

How

and

when

are

the

contents

of

this

file

used?

Servlets,

extending

PageListServlet,

use

this

file

to

determine

the

language

type

that

calling

clients

require

for

the

response.

Sample

file

entry

<?xml

version="1.0"

>

<!DOCTYPE

clients

[

<!ELEMENT

client-type

(description,

markup-language,request-header+)>

<!ELEMENT

description

(#PCDATA)>

<!ELEMENT

markup-language

(#PCDATA)>

<!ELEMENT

request-header

(name,

value)>

<!ELEMENT

clients

(client-type+)>

<!ELEMENT

name

(#PCDATA)>

<!ELEMENT

value

(#PCDATA)>]>

<clients>

<client-type>

<description>IBM

Speech

Client</description>

<markup-language>VXML</markup-language>

<request-header>

<name>user-agent</name>

<value>IBM

VoiceXML

pre-release

version

000303</value>

</request-header>

<request-header>

<name>accept</name>

<value>text/vxml</value>

</request-header>

</client-type>

<client-type>

<description>WML

Browser</description>

<markup-language>WML</markup-language>

<request-header>

<name>accept</name>

<value>text/x-wap.wml</value>

</request-header>

<request-header>

<name>accept</name>

<value>text/vnd.wap.xml</value>

</request-header>

</client-type>

</clients>

Example:

Extending

PageListServlet

The

following

example

shows

how

a

servlet

extends

the

PageListServlet

class

and

determines

the

markup-language

type

required

by

the

client.

The

servlet

then

uses

Chapter

2.

Using

Web

applications

19

the

callPage()

method

to

call

an

appropriate

JavaServer

Pages

(JSP)

file.

In

this

example,

the

JSP

file

that

provides

the

the

correct

markup-language

for

the

response

is

Hello.page.

public

class

HelloPervasiveServlet

extends

PageListServlet

implements

Serializable

{

/*

*

doGet

--

Process

incoming

HTTP

GET

requests

*/

public

void

doGet(HttpServletRequest

request,

HttpServletResponse

response)

throws

IOException,

ServletException

{

//

This

is

the

name

of

the

page

to

be

called:

String

pageName

=

"Hello.page";

//

First

check

if

the

servlet

was

invoked

with

a

queryString

that

contains

//

a

markup-language

value.

//

For

example,

if

this

is

how

the

servlet

is

invoked:

//

http://localhost/servlets/HeloPervasive?mlname=VXML

//

then

use

the

following

method:

String

mlname=

getMLNameFromRequest(request);

//

If

no

markup

language

type

is

provided

in

the

queryString,

//

then

try

to

determine

the

client

//

Type

from

the

request,

and

use

the

markup-language

name

configured

in

//

the

client_types.xml

file.

if

(mlName

==

null)

{

mlName

=

getMLTypeFromRequest(request);

}

try

{

//

Serve

the

request

page.

callPage(mlName,

pageName,

request,

response);

}

catch

(Exception

e)

{

handleError(mlName,

request,

response,

e);

}

}

}

autoRequestEncoding

and

autoResponseEncoding

Two

new

WebSphere

Application

Server

extensions

are

available

in

Version

5,

autoRequestEncoding

and

autoResponseEncoding.

In

WebSphere

Application

Server

Version

5,

the

Web

container

no

longer

automatically

sets

request

and

response

encodings,

and

response

content

types.

Programmers

are

expected

to

set

these

values

using

available

methods

in

the

Servlet

2.3

Specification.

If

programmers

choose

not

to

use

the

character

encoding

methods,

they

can

specify

the

autoRequestEncoding

and

autoResponseEncoding

extensions,

which

enable

the

application

server

to

set

the

encoding

values

and

content

type.

The

values

of

the

autoRequestEncoding

and

autoResponseEncoding

extensions

are

either

true

or

false.

The

default

value

for

both

extensions

is

false.

If

the

value

is

false

for

both

autoRequestEncoding

and

autoResponseEncoding,

then

the

request

and

response

character

encoding

is

set

to

the

Servlet

2.3

Specification

default,

which

is

ISO-8859-1.

Also,

If

the

value

is

set

to

false

for

a

response,

the

Web

container

cannot

set

a

response

content

type.

5.0.2 +

Use

the

Assembly

Toolkit

to

change

the

default

values

for

the

autoRequestEncoding

and

autoResponseEncoding

extensions.

20

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

5.0.1 Use

the

Application

Assembly

Tool

(AAT)

to

change

the

default

values

for

the

autoRequestEncoding

and

autoResponseEncoding

extensions.

Review

the

autoRequestEncoding

and

autoResponseEncoding

encoding

examples

for

a

description

of

Web

container

behavior

when

these

values

are

set

to

true.

Examples:

autoRequestEncoding

and

autoResponseEncoding

encoding

examples

The

default

value

of

the

autoRequestEncoding

and

autoResponseEncoding

extensions

is

false,

which

means

that

both

the

request

and

response

character

encoding

is

set

to

the

Servlet

2.3

Specification

default

of

ISO-8859-1.

Different

character

encodings

are

possible

if

the

client

defines

character

encoding

in

the

request

header,

or

if

the

code

includes

the

setCharacterEncoding(String

encoding)

method.

Also,

If

the

value

is

set

to

false

for

a

response,

the

Web

container

cannot

set

a

response

content

type.

If

the

autoRequestEncoding

value

is

set

to

true,

and

the

client

did

not

specify

character

encoding

in

the

request

header,

and

the

code

does

not

include

the

setCharacterEncoding(String

encoding)

method,

the

Web

container

tries

to

determine

the

correct

character

encoding

for

the

request

parameters

and

data.

The

Web

container

performs

each

step

in

the

following

list

until

a

match

is

found:

v

Looks

at

the

character

set

(charset)

in

the

Content-Type

header.

v

Attempts

to

map

the

servers

locale

to

a

character

set

using

defined

properties.

v

Attempts

to

use

the

DEFAULT_CLIENT_ENCODING

system

property,

if

one

is

set.

v

Uses

the

ISO-8859-1

character

encoding

as

the

default.

If

the

autoResponsetEncoding

value

is

set

to

true,

and

the

client

did

not

specify

character

encoding

in

the

request

header,

and

the

code

does

not

include

the

setCharacterEncoding(String

encoding)

method,

the

Web

container

does

the

following:

v

Attempts

to

determine

the

response

content

type

and

character

encoding

from

information

in

the

request

header.

v

Uses

the

ISO-8859-1

character

encoding

as

the

default.

JavaServer

Pages

files

JavaServer

Pages

(JSP)

files

are

application

components

coded

to

the

Sun

Microsystems

JavaServer

Pages

(JSP)

Specification.

JSP

files

enable

the

separation

of

the

Hypertext

Markup

Language

(HTML)

code

from

the

business

logic

in

Web

pages

so

that

HTML

programmers

and

Java

programmers

can

more

easily

collaborate

in

creating

and

maintaining

pages.

The

IBM

extensions

to

the

JSP

Specification

include

JSP

tags

that

resemble

HTML

tags.

These

JSP

tags

make

it

easy

for

HTML

authors

to

add

the

power

of

Java

technology

to

Web

pages,

without

being

experts

in

Java

programming.

JSP

files

support

a

division

of

roles:

HTML

authors

Develop

JSP

files

that

access

databases

and

reusable

Java

components,

such

as

servlets

and

beans.

Java

programmers

Create

the

reusable

Java

components

and

provide

the

HTML

authors

with

the

component

names

and

attributes.

Chapter

2.

Using

Web

applications

21

Database

administrators

Provide

the

HTML

authors

with

the

name

of

the

database

access

and

table

information.

Developing

JavaServer

Pages

files

with

WebSphere

extensions

Several

IBM

WebSphere

extensions

are

provided

for

enhancing

your

JavaServer

Pages

(JSP)

files.

This

task

provides

a

summary

of

the

extensions

that

you

can

utilize.

1.

Review

the

supported

specifications.

Create

Java

components,

referring

to

the

JSP

specifications

from

Sun

Microsystems.

See

Resources

for

learning

for

links

to

coding

specifications

and

examples.

WebSphere

Application

Server

Version

3.5

added

IBM

extensions

to

the

base

Application

Programming

Interfaces

(APIs).

Since

the

JavaServer

Pages

(JSP)

1.1

and

JSP

1.2

Specifications

are

backward

compatible

to

the

JSP

1.0

Specifications,

you

can

invoke

the

APIs

with

the

IBM

extensions

without

modification.

The

extensions

belong

to

these

categories:

Syntax

for

variable

data

Put

variable

fields

in

JSP

files

and

have

servlets

and

beans

dynamically

replace

the

variables

with

values

from

a

database

when

the

JSP

output

is

returned

to

the

browser.

Syntax

for

database

access

Add

a

database

connection

to

a

Web

page

and

then

use

that

connection

to

query

or

update

the

database.

You

can

provide

the

user

ID

and

password

for

the

database

connection

at

request

time,

or

you

can

hard

code

the

user

ID

and

password

within

the

JSP

file.
2.

Use

your

favorite

integrated

development

environment

(IDE),

or

a

text

editor,

to

develop

or

migrate

code

artifacts

that

meet

the

specifications.

3.

Test

the

code

artifacts.

4.

(Optional)

Batch

compile

your

JSP

files

if

necessary.

Tag

libraries

Java

ServerPages

(JSP)

tag

libraries

contain

classes

for

common

tasks

such

as

processing

forms

and

accessing

databases

from

JSP

files.

Tag

libraries

encapsulate,

as

simple

tags,

core

functionality

common

to

many

Web

applications.

The

Java

Standard

Tag

Library

(JSTL)

supports

common

programming

tasks

such

as

iteration

and

conditional

processing,

and

provides

tags

for:

v

manipulating

XML

documents

v

supporting

internationalization

v

using

Structured

Query

Language

(SQL)

Tag

libraries

also

introduce

the

concept

of

an

expression

language

to

simplify

page

development,

and

include

a

version

of

the

JSP

expression

language.

A

tag

library

has

two

parts

-

a

Tag

Library

Descriptor

(TLD)

file

and

a

JAR

file.

tsx:dbconnect

tag

JavaServer

Pages

syntax

Use

the

<tsx:dbconnect>

tag

to

specify

information

needed

to

make

a

connection

to

a

Java

Database

Connectivity

(JDBC)

or

an

Open

Database

Connectivity

(ODBC)

database.

22

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

<tsx:dbconnect>

syntax

does

not

establish

the

connection.

Use

the

<tsx:dbquery>

and

<tsx:dbmodify>

syntax

instead

to

reference

a

<tsx:dbconnect>

tag

in

the

same

JavaServer

Pages

(JSP)

file

to

establish

the

connection.

When

the

JSP

file

compiles

into

a

servlet,

the

Java

processor

adds

the

Java

coding

for

the

<tsx:dbconnect>

syntax

to

the

servlet

service()

method,

which

means

a

new

database

connection

is

created

for

each

request

for

the

JSP

file.

This

section

describes

the

syntax

of

the

<tsx:dbconnect>

tag.

<tsx:dbconnect

id="connection_id"

userid="db_user"

passwd="user_password"

url="jdbc:subprotocol:database"

driver="database_driver_name"

jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:

v

id

Represents

a

required

identifier.

The

scope

is

the

JSP

file.

This

identifier

is

referenced

by

the

connection

attribute

of

a

<tsx:dbquery>

tag.

v

userid

Represents

an

optional

attribute

that

specifies

a

valid

user

ID

for

the

database

that

you

want

to

access.

Specify

this

attribute

to

add

the

attribute

and

its

value

to

the

request

object.

Although

the

userid

attribute

is

optional,

you

must

provide

the

user

ID.

See

<tsx:userid>

and

<tsx:passwd>

for

an

alternative

to

hard

coding

this

information

in

the

JSP

file.

v

passwd

Represents

an

optional

attribute

that

specifies

the

user

password

for

the

userid

attribute.

(This

attribute

is

not

optional

if

the

userid

attribute

is

specified.)

If

you

specify

this

attribute,

the

attribute

and

its

value

are

added

to

the

request

object.

Although

the

passwd

attribute

is

optional,

you

must

provide

the

password.

See

<tsx:userid>

and

<tsx:passwd>

for

an

alternative

to

hard

coding

this

attribute

in

the

JSP

file.

v

url

and

driver

Respresents

a

required

attribute

if

you

want

to

establish

a

database

connection.

You

must

provide

the

URL

and

driver.

The

application

server

supports

connection

to

JDBC

databases

and

ODBC

databases.

–

For

a

JDBC

database,

the

URL

consists

of

the

following

colon-separated

elements:

jdbc,

the

subprotocol

name,

and

the

name

of

the

database

to

access.

An

example

for

a

connection

to

the

Sample

database

included

with

IBM

DB2

is:

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver"

–

For

an

ODBC

database,

use

the

Sun

JDBC-to-ODBC

bridge

driver

included

in

their

Java2

Software

Developers

Kit

(SDK)

or

another

vendor’s

ODBC

driver.

The

url

attribute

specifies

the

location

of

the

database.

The

driver

attribute

specifies

the

name

of

the

driver

to

use

in

establishing

the

database

connection.

If

the

database

is

an

ODBC

database,

you

can

use

an

ODBC

driver

or

the

Sun

JDBC-to-ODBC

bridge.

If

you

want

to

use

an

ODBC

driver,

refer

to

the

driver

documentation

for

instructions

on

specifying

the

database

location

with

the

url

attribute

and

the

driver

name.

Chapter

2.

Using

Web

applications

23

If

you

use

the

bridge,

the

url

syntax

is

jdbc:odbc:database.

An

example

follows:

url="jdbc:odbc:autos"

driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note:

To

enable

the

application

server

to

access

the

ODBC

database,

use

the

ODBC

Data

Source

Administrator

to

add

the

ODBC

data

source

to

the

System

DSN

configuration.

To

access

the

ODBC

Administrator,

click

the

ODBC

icon

on

the

Windows

NT

Control

Panel.
v

jndiname

Represents

an

optional

attribute

that

identifies

a

valid

context

in

the

application

server

Java

Naming

and

Directory

Interface

(JNDI)

naming

context

and

the

logical

name

of

the

data

source

in

that

context.

The

Web

administrator

configures

the

context

using

an

administrative

client

such

as

the

WebSphere

Administrative

Console.

If

you

specify

the

jndiname

attribute,

the

JSP

processor

ignores

the

driver

and

url

attributes

on

the

<tsx:dbconnect>

tag.

An

empty

element

(such

as

<url></url>)

is

valid.

dbquery

tag

JavaServer

Pages

syntax

Use

the

<tsx:dbquery>

tag

to

establish

a

connection

to

a

database,

submit

database

queries,

and

return

the

results

set.

The

<tsx:dbquery>

tag

does

the

following:

1.

References

a

<tsx:dbconnect>

tag

in

the

same

JavaServer

Pages

(JSP)

file

and

uses

the

information

the

tag

provides

to

determine

the

database

URL

and

driver.

You

can

also

obtain

the

user

ID

and

password

from

the

<tsx:dbconnect>

tag

if

those

values

are

provided

in

the

<tsx:dbconnect>

tag.

2.

Establishes

a

new

connection

3.

Retrieves

and

caches

data

in

the

results

object.

4.

Closes

the

connection

and

releases

the

connection

resource.

This

section

describes

the

syntax

of

the

<tsx:dbquery>

tag.

<%--

SELECT

commands

and

(optional)

JSP

syntax

can

be

placed

within

the

tsx:dbquery.

--%>

<%--

Any

other

syntax,

including

HTML

comments,

are

not

valid.

--%>

<tsx:dbquery

id="query_id"

connection="connection_id"

limit="value"

>

</tsx:dbquery>

where:

v

id

Represents

the

identifier

of

this

query.

The

scope

is

the

JSP

file.

Use

id

to

reference

the

query.

For

example,

from

the

<tsx:getProperty>

tag,

use

id

to

display

the

query

results.

The

id

is

a

tsx

reference

to

the

bean

and

can

be

used

to

retrieve

the

bean

from

the

page

contect.

For

example,

if

id

is

named

mySingleDBBean,

instead

of

using:

–

if

(mySingleDBBean.getValue(″UISEAM″,0).startsWith(″N″))

use:

–

com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults

bean

=

(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext.

findAttribute(″mySingleDBBean″);

if

(bean.getValue(″UISEAM″,0).startsWith(″N″)).

.

.

24

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

bean

properties

are

dynamic

and

the

property

names

are

the

names

of

the

columns

in

the

results

set.

If

you

want

different

column

names,

use

the

SQL

keyword

for

specifying

an

alias

on

the

SELECT

command.

In

the

following

example,

the

database

table

contains

columns

named

FNAME

and

LNAME,

but

the

SELECT

statement

uses

the

AS

keyword

to

map

those

column

names

to

FirstName

and

LastName

in

the

results

set:

Select

FNAME,

LNAME

AS

FirstName,

LastName

from

Employee

where

FNAME=’Jim’

v

connection

Represents

the

identifier

of

a

<tsx:dbconnect>

tag

in

this

JSP

file.

The

<tsx:dbconnect>

tag

provides

the

database

URL,

driver

name,

and

optionally,

the

user

ID

and

password

for

the

connection.

v

limit

Represents

an

optional

attribute

that

constrains

the

maximum

number

of

records

returned

by

a

query.

If

this

attribute

is

not

specified,

no

limit

is

used.

In

such

a

case,

the

effective

limit

is

determined

by

the

number

of

records

and

the

system

caching

capability.

v

SELECT

command

and

JSP

syntax

Represents

the

only

valid

SQL

command,

SELECT.

The

<tsx:dbquery>

tag

must

return

a

results

set.

Refer

to

your

database

documentation

for

information

about

the

SELECT

command.

See

other

articles

in

this

section

for

a

description

of

JSP

syntax

for

variable

data

and

inline

Java

code.

dbmodify

tag

JavaServer

Pages

syntax

The

<tsx:dbmodify>

tag

establishes

a

connection

to

a

database

and

then

adds

records

to

a

database

table.

The

<tsx:dbmodify>

tag

does

the

following:

1.

References

a

<tsx:dbconnect>

tag

in

the

same

JavaServer

Pages

(JSP)

file

and

uses

the

information

provided

by

that

tag

to

determine

the

database

URL

and

driver.

Note:

You

can

also

obtain

the

user

ID

and

password

from

the

<tsx:dbconnect>

tag

if

those

values

are

provided

in

the

<tsx:dbconnect>

tag.

2.

Establishes

a

new

connection.

3.

Updates

a

table

in

the

database.

4.

Closes

the

connection

and

releases

the

connection

resource.

This

section

describes

the

syntax

of

the

<tsx:dbmodify>

tag.

<%--

Any

valid

database

update

commands

can

be

placed

within

the

DBMODIFY

tag.

-->

<%--

Any

other

syntax,

including

HTML

comments,

are

not

valid.

-->

<tsx:dbmodify

connection="connection_id">

</tsx:dbmodify>

where:

v

connection

Represents

the

identifier

of

a

<tsx:dbconnect>

tag

in

this

JSP

file.

The

<tsx:dbconnect>

tag

provides

the

database

URL,

driver

name,

and

(optionally)

the

user

ID

and

password

for

the

connection.

v

Database

commands

Represents

valid

database

commands.

Refer

to

your

database

documentation

for

details

tsx:getProperty

tag

JavaServer

Pages

syntax

and

examples

The

<tsx:getProperty>

tag

gets

the

value

of

a

bean

to

display

in

a

JavaServer

Pages

(JSP)

file.

Chapter

2.

Using

Web

applications

25

This

IBM

extension

of

the

Sun

JSP

<jsp:getProperty>

tag

implements

all

of

the

<jsp:getProperty>

function

and

adds

the

ability

to

introspect

a

database

bean

created

using

the

IBM

extension

<tsx:dbquery>

or

<tsx:dbmodify>.

Note:

You

cannot

assign

the

value

from

this

tag

to

a

variable.

The

value,

generated

as

output

from

this

tag,

displays

in

the

browser

window.

This

section

describes

the

syntax

of

the

<tsx:getProperty>

tag:

<tsx:getProperty

name="bean_name"

property="property_name"

/>

where:

v

name

Represents

the

name

of

the

bean

declared

by

the

id

attribute

of

a

<tsx:dbquery>

syntax

within

the

JSP

file.

See

<tsx:dbquery>

for

an

explanation.

The

value

of

this

attribute

is

case-sensitive.

v

property

Represents

the

property

of

the

bean

to

access

for

substitution.

The

value

of

the

attribute

is

case-sensitive

and

is

the

locale-independent

name

of

the

property.

Tag

example:

<tsx:getProperty

name="userProfile"

property="username"

/>

<tsx:getProperty

name="request"

property=request.getParameter("corporation")

/>

In

most

cases,

the

value

of

the

property

attribute

is

just

the

property

name.

However,

to

access

the

request

bean

or

to

access

a

property

of

a

property

(sub

property),

specify

the

full

form

of

the

property

attribute.

The

full

form

also

gives

you

the

option

to

specify

an

index

for

indexed

properties.

You

can

specify

the

optional

index

as

a

constant

(such

as

2),

or

an

index

like

the

one

described

in

the

<tsx:repeat>

tag.

Some

examples

using

the

full

form

of

the

property

attribute

follow:

<tsx:getProperty

name="staffQuery"

property=address(currentAddressIndex)

/>

<tsx:getProperty

name="shoppingCart"

property=items(4).price

/>

<tsx:getProperty

name="fooBean"

property=foo(2).bat(3).boo.far

/>

tsx:userid

and

tsx:passwd

tag

JavaServer

Pages

syntax

With

the

<tsx:userid>

and

<tsx:passwd>

tags,

you

do

not

have

to

hard

code

a

user

ID

and

password

in

the

<tsx:dbconnect>

tag.

Use

the

<tsx:userid>

and

<tsx:passwd>

tags

to

accept

user

input

for

the

values

and

then

add

that

data

to

the

request

object.

You

can

access

the

request

object

with

a

JavaServer

Pages

(JSP)

file,

such

as

the

JSPEmployee.jsp

example

that

requests

the

database

connection.

You

must

use

<tsx:userid>

and

<tsx:passwd>

tags

within

a

<tsx:dbconnect>

tag.

This

section

describes

the

syntax

of

the

<tsx:userid>

and

<tsx:passwd>

tags.

<tsx:dbconnect

id="connection_id"

<font

color="red"><userid>

<tsx:getProperty

name="request"

property=request.getParameter("userid")

/>

<font

color="red"></userid>

<font

color="red"><passwd>

<tsx:getProperty

name="request"

property=request.getParameter("passwd")

/>

26

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<font

color="red"></passwd>

url="protocol:database_name:database_table"

driver="JDBC_driver_name">

</tsx:dbconnect>

where:

v

<tsx:getProperty>

Represents

the

syntax

as

a

mechanism

for

embedding

variable

data.

v

userid

Represents

a

reference

to

the

request

parameter

that

contains

the

user

ID.

You

must

add

the

parameter

to

the

request

object

that

passes

to

this

JSP

file.

You

can

set

the

attribute

and

its

value

in

the

request

object,

using

an

HTML

form

or

a

URL

query

string

to

pass

the

user-specified

request

parameters.

v

passwd

Represents

a

reference

to

the

request

parameter

that

contains

the

password.

Add

the

parameter

to

the

request

object

that

passes

to

this

JSP

file.

You

can

set

the

attribute

and

its

value

in

the

request

object,

using

an

HTML

form

or

a

URL

query

string,

to

pass

user-specified

values.

tsx:repeat

tag

JavaServer

Pages

syntax

The

<tsx:getProperty>

tag

repeats

a

block

of

HTML

tagging.

Use

the

<tsx:repeat>

syntax

to

iterate

over

a

database

query

results

set.

The

<tsx:repeat>

syntax

iterates

from

the

start

value

to

the

end

value

until

one

of

the

following

conditions

is

met:

v

The

end

value

is

reached.

v

An

exception

is

thrown.

The

output

of

a

<tsx:repeat>

block

is

buffered

until

the

block

completes.

If

an

exception

is

thrown

before

a

block

completes,

no

output

is

written

for

that

block.

This

section

describes

the

syntax

of

the

<tsx:repeat>

tag:

<tsx:repeat

index=name

start="starting_index"

end="ending_index">

</tsx:repeat>

where:

v

index

Represents

an

optional

name

used

to

identify

the

index

of

this

repeat

block.

The

value

is

case-sensitive

and

its

scope

is

the

JSP

file.

v

start

Represents

an

optional

starting

index

value

for

this

repeat

block.

The

default

is

0.

v

end

Represents

an

optional

ending

index

value

for

this

repeat

block.

The

maximum

value

is

2,147,483,647.

If

the

value

of

the

end

attribute

is

less

than

the

value

of

the

start

attribute,

the

end

attribute

is

ignored.

Example:

Combining

tsx:repeat

and

tsx:getProperty

JavaServer

Pages

tags

The

following

code

snippet

shows

you

how

to

code

these

tags:

<tsx:repeat>

<tr>

<td><tsx:getProperty

name="empqs"

property="EMPNO"

/>

Chapter

2.

Using

Web

applications

27

<tsx:getProperty

name="empqs"

property="FIRSTNME"

/>

<tsx:getProperty

name="empqs"

property="WORKDEPT"

/>

<tsx:getProperty

name="empqs"

property="EDLEVEL"

/>

</td>

</tr>

</tsx:repeat>

Example:

tsx:dbmodify

tag

syntax

In

the

following

example,

a

new

employee

record

is

added

to

a

database.

The

values

of

the

fields

are

based

on

user

input

from

this

JavaServer

Pages

(JSP)

file

and

referenced

in

the

database

commands

using

the

<tsx:getProperty>

tag.

<tsx:dbmodify

connection="conn"

>

insert

into

EMPLOYEE

(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)

values

(’<tsx:getProperty

name="request"

property=request.getParameter("EMPNO")

/>’,

’<tsx:getProperty

name="request"

property=request.getParameter("FIRSTNME")

/>’,

’<tsx:getProperty

name="request"

property=request.getParameter("MIDINIT")

/>’,

’<tsx:getProperty

name="request"

property=request.getParameter("LASTNAME")

/>’,

’<tsx:getProperty

name="request"

property=request.getParameter("WORKDEPT")

/>’,

<tsx:getProperty

name="request"

property=request.getParameter("EDLEVEL")

/>)

</tsx:dbmodify>

Example:

Using

tsx:repeat

JavaServer

Pages

tag

to

iterate

over

a

results

set

The

<tsx:repeat>

tag

iterates

over

a

results

set.

The

results

set

is

contained

within

a

bean.

The

bean

can

be

a

static

bean,

for

example,

a

bean

created

by

using

the

IBM

WebSphere

Studio

database

wizard,

or

a

dynamically

generated

bean,

for

example,

a

bean

generated

by

the

<tsx:dbquery>

syntax.

The

following

table

is

a

graphic

representation

of

the

contents

of

a

bean

called,

myBean:

col1

col2

col3

row0

friends

Romans

countrymen

row1

bacon

lettuce

tomato

row2

May

June

July

Some

observations

about

the

bean:

v

The

column

names

in

the

database

table

become

the

property

names

of

the

bean.

The

<tsx:dbquery>

section

describes

a

technique

for

mapping

the

column

names

to

different

property

names.

v

The

bean

properties

are

indexed.

For

example,

myBean.get(Col1(row2))

returns

May.

v

The

query

results

are

in

the

rows.

The

<tsx:repeat>

tag

iterates

over

the

rows,

beginning

at

the

start

row.

The

following

table

compares

using

the

<tsx:repeat>

tag

to

iterate

over

a

static

bean,

versus

a

dynamically

generated

bean:

28

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Static

Bean

Example

<tsx:repeat>

Bean

Example

myBean.class

//

Code

to

get

a

connection

//

Code

to

get

the

data

Select

*

from

myTable;

//

Code

to

close

the

connection

JSP

file

<tsx:repeat

index=abc>

<tsx:getProperty

name="myBean"

property="col1(abc)"

/>

</tsx:repeat>

Notes:

v

The

bean

(myBean.class)

is

a

static

bean.

v

The

method

to

access

the

bean

properties

is

myBean.get(property(index)).

v

You

can

omit

the

property

index,

in

which

case

the

index

of

the

enclosing

<tsx:repeat>

tag

is

used.

You

can

also

omit

the

index

on

the

<tsx:repeat>

tag.

v

The

<tsx:repeat>

tag

iterates

over

the

bean

properties

row

by

row,

beginning

with

the

start

row.

JSP

file

<tsx:dbconnect

id="conn"

userid="alice"passwd="test"

url="jdbc:db2:sample"

driver="COM.ibm.db2.jdbc.app.DB2Driver">

</tsx:dbconnect

>

<tsx:dbquery

id="dynamic"

connection="conn"

>

Select

*

from

myTable;

</tsx:dbquery>

<tsx:repeat

index=abc>

<tsx:getProperty

name="dynamic"

property="col1(abc)"

/>

</tsx:repeat>

Notes:

v

The

bean

(dynamic)

is

generated

by

the

<tsx:dbquery>

tag

and

does

not

exist

until

the

syntax

executes.

v

The

method

to

access

the

bean

properties

is

dynamic.getValue(″property″,

index).

v

You

can

omit

the

property

index,

in

which

case

the

index

of

the

enclosing

<tsx:repeat>

tag

is

used.

You

can

also

omit

the

index

on

the

<tsx:repeat>

tag.

v

The

<tsx:repeat>

tag

syntax

iterates

over

the

bean

properties

row

by

row,

beginning

with

the

start

row.

Implicit

and

explicit

indexing

Examples

1,

2,

and

3

show

how

to

use

the

<tsx:repeat>

tag.

The

examples

produce

the

same

output

if

all

indexed

properties

have

300

or

fewer

elements.

If

there

are

more

than

300

elements,

Examples

1

and

2

display

all

elements,

while

Example

3

shows

only

the

first

300

elements.

Example

1

shows

implicit

indexing

with

the

default

start

and

default

end

index.

The

bean

with

the

smallest

number

of

indexed

properties

restricts

the

number

of

times

the

loop

repeats.

<table>

<tsx:repeat>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="city"

/>

</tr></td>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="address"

/>

</tr></td>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="telephone"

/>

</tr></td>

</tsx:repeat>

</table>

Example

2

shows

indexing,

starting

index,

and

ending

index:

<table>

<tsx:repeat

index=myIndex

start=0

end=2147483647>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property=city(myIndex)

/>

</tr></td>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property=address(myIndex)

/>

</tr></td>

Chapter

2.

Using

Web

applications

29

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property=telephone(myIndex)

/>

</tr></td>

</tsx:repeat>

</table>

Example

3

shows

explicit

indexing

and

ending

index

with

implicit

starting

index.

Although

the

index

attribute

is

specified,

you

can

still

implicitly

index

the

indexed

property

city

because

the

(myIndex)

tag

is

not

required.

<table>

<tsx:repeat

index=myIndex

end=299>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="city"

/t>

</tr></td>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="address(myIndex)"

/>

</tr></td>

<tr><td><tsx:getProperty

name="serviceLocationsQuery"

property="telephone(myIndex)"

/>

</tr></td>

</tsx:repeat>

</table>

Nesting

<tsx:repeat>

blocks

You

can

nest

<tsx:repeat>

blocks.

Each

block

is

separately

indexed.

This

capability

is

useful

for

interleaving

properties

on

two

beans,

or

properties

that

have

subproperties.

In

the

example,

two

<tsx:repeat>

blocks

are

nested

to

display

the

list

of

songs

on

each

compact

disc

in

the

user’s

shopping

cart.

<tsx:repeat

index=cdindex>

<h1><tsx:getProperty

name="shoppingCart"

property=cds.title

/></h1>

<table>

<tsx:repeat>

<tr><td><tsx:getProperty

name="shoppingCart"

property=cds(cdindex).playlist

/>

</td></tr>

</tsx:repeat>

</table>

</tsx:repeat>

JspBatchCompiler

tool

As

an

IBM

enhancement

to

JavaServer

Pages

support,

IBM

WebSphere

Application

Server

provides

a

batch

JSP

compiler.

Use

this

function

to

batch

compile

your

JSP

files

and

thereby

enable

faster

responses

to

the

initial

client

requests

for

the

JSP

files

on

your

production

Web

server.

Batch

compiling

makes

the

first

request

for

a

JSP

file

much

faster

because

the

JSP

file

is

translated

and

compiled

into

a

servlet.

Batch

compiling

is

also

useful

as

a

fast

way

to

resynchronize

all

of

the

JSP

files

for

an

application.

To

use

the

JSP

batch

compiler

for

JSP

files,

enter

the

following

command

on

a

single

line

at

an

operating

system

command

prompt:

JspBatchCompiler

-enterpriseapp.name

<name>

[

-webmodule.name

<name>]

[

-cell.name

<name>]

[

-node.name

<name>]

[

-server.name

<name>]

[

-filename

<jsp

name>]

[

-keepgenerated

<true|false>]

[

-verbose

<true|false>]

[

-deprecation

<true|false>]

If

the

names

specified

for

these

arguments

are

comprised

of

two

or

more

words

separated

by

spaces,

you

must

add

quotation

marks

around

the

names.

30

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

where:

v

enterpriseapp.name

Represents

the

name

of

the

enterprise

application

you

want

to

compile.

v

webmodule.name

Represents

the

name

of

the

specific

Web

module

that

you

want

to

compile.

If

this

argument

is

not

set,

all

Web

modules

in

the

enterprise

application

are

compiled.

v

cell.name

Represents

the

name

of

the

cell

in

which

the

application

is

deployed.

The

default

is

BaseApplicationServerCell.

v

node.name

Represents

the

name

of

the

node

in

which

the

application

is

deployed.

The

default

is

DefaultNode.

v

server.name

Represents

the

name

of

the

server

in

which

the

application

is

deployed.

The

default

is

server1.

v

filename

Represents

the

name

of

a

single

JSP

file

that

you

want

to

compile.

If

this

argument

is

not

set,

all

files

in

the

Web

module

are

compiled.

Alternatively,

if

filename

is

set

to

the

name

of

a

directory,

only

the

JSP

files

in

that

directory

are

compiled.

v

keepgenerated

Represents

the

option

to

save

or

erase

the

generated

files.

If

set

to

yes,

WebSphere

Application

Server

saves

the

generated

.java

files

used

for

compilation

on

your

server.

By

default,

this

argument

is

set

to

no

and

the

.java

files

are

erased

after

the

class

files

have

compiled.

v

verbose

Indicates

the

compiler

should

generate

verbose

output

while

compiling

the

generated

sources.

v

deprecation

Indicates

the

compiler

should

generate

deprecation

warnings

while

compiling

the

generated

sources.

Bean

Scripting

Framework

The

Bean

Scripting

Framework

(BSF)

enables

you

to

use

scripting

language

functions

in

your

Java

server-side

applications.

This

framework

also

extends

scripting

languages

so

that

you

can

use

existing

Java

classes

and

Java

beans

in

the

JavaScript

language.

With

BSF,

you

can

write

scripts

that

create,

manipulate

and

access

values

from

Java

objects,

or

you

can

write

Java

programs

that

evaluate

and

access

results

from

scripts.

WebSphere

Application

Server

provides

the

Bean

Scripting

Framework,

which

consists

of

a

BSF

manager,

a

BSF

engine,

and

a

scripting

engine.

BSF

provides

an

access

mechanism

to

Java

objects

for

the

scripting

languages

it

supports,

so

that

both

the

scripting

language

and

theJava

code

can

access

code

exclusive

functions.

The

access

mechanism

is

implemented

through

a

registry

of

objects

maintained

by

BSF.

BSF

in

WebSphere

Application

Server

supports

the

Rhino

ECMAScript.

Chapter

2.

Using

Web

applications

31

The

″Resources

for

Learning″

article

provides

external

BSF

links

that

document

future

supported

languages.

Developing

Web

applications

Design

a

Web

application

and

the

components

that

it

needs.

For

general

Web

application

design

information,

see

″Resources

for

learning.″

There

are

two

basic

approaches

to

selecting

tools

for

developing

Web

applications:

v

You

can

use

one

of

the

available

integrated

development

environments

(IDEs).

IDE

tools

automatically

generate

significant

parts

of

the

servlet

and

JavaServer

Pages

(JSP)

code,

and

Hypertext

Markup

Language

(HTML)

files.

They

also

contain

integrated

tools

for

packaging

and

testing

the

Web

application

components.

The

IBM

WebSphere

Application

Developer

product

is

the

recommended

IDE.

For

more

information,

see

the

documentation

for

that

product.

v

If

you

decide

to

develop

Web

components

without

an

IDE,

you

need

at

least

an

ASCII

text

editor.

You

can

also

use

tools

available

in

the

Java

Software

Development

Kit

(SDK)

and

in

this

product

to

assemble,

test,

and

deploy

the

Web

application

components.

The

following

steps

support

the

second

approach,

development

without

an

IDE.

1.

If

necessary,

migrate

any

pre-existing

code

to

the

required

version

of

the

servlet

and

JSP

specification.

2.

Write

and

compile

the

components

of

the

Web

application.

To

access

classes

that

were

extended,

compile

your

code

using

the

-classpath

option

on

the

javac

compiler.

This

option

allows

you

to

reference

the

j2ee.jar

file

in

the

product

<install_root>\lib

directory.

For

example,

to

compile

a

servlet

running

on

the

Windows

NT

version

of

WebSphere

Application

Server,

specify:

javac

-classpath

D:\Program

Files\WebSphere\AppServer\lib\j2ee.jar

MyServlet.java

To

compile

that

same

servlet

on

the

Windows

NT

version

of

WebSphere

Network

Deployment,

specify:

javac

-classpath

D:\Program

Files\WebSphere\DeploymentManager\lib\j2ee.jar

MyServlet.java

3.

5.0.1 +

(Optional)

Disable

JavaServer

Pages

(JSP)

runtime

compilation,

if

necessary.

Assemble

the

application

components

in

one

or

more

Web

modules.

Disabling

JavaServer

Pages

run-time

compilation

By

default,

the

JavaServer

Pages

(JSP)

engine

translates

a

requested

JSP

file,

compiles

the

.java

file,

and

loads

the

compiled

servlet

into

the

run-time

environment.

In

previous

releases

of

WebSphere

Application

Server,

if

a

.class

file

did

not

exist,

the

JSP

engine

always

translated

and

compiled

the

JSP

file.

You

had

to

turn

off

the

Web

applications

reload

capability

to

prevent

additional

translations

and

recompiles

of

the

file.

With

Version

5.0.1

of

WebSphere

Application

Server,

you

can

now

change

the

JSP

engine

default

behavior

by

indicating

a

JSP

file

should

never

be

translated

or

compiled

at

run

time,

even

when

a

.class

file

does

not

exist.

32

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

run-time

compilation

is

disabled,

you

must

precompile

the

JSP

files,

which

provides

the

following

advantages:

v

Reduces

compilation

related

disk

operations.

v

Minimizes

disk

storage

requirements

necessary

for

handling

temporary

.java

and

.class

files

generated

during

a

run-time

compilation.

v

Forces

you

to

verify

that

a

JSP

file

compiled

successfully

before

deploying

and

installing

the

application

in

WebSphere

Application

Server.

You

can

disable

run-time

JSP

file

compilation

on

a

global

or

an

individual

Web

application

basis:

v

To

disable

the

translation

and

compilation

of

JSP

files

for

all

Web

applications,

set

the

Web

container

Custom

property

disableJspRuntimeCompilation

to

true.

Set

this

property

through

the

Web

container

Custom

properties

panel

in

the

administrative

console.

To

view

this

administrative

console

page,

click:

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Custom

Properties

>

property_name

Valid

values

for

this

setting

are

true

or

false.

If

this

property

is

set

to

true,

then

translation

and

compilation

of

the

JSP

files

is

disabled

at

run

time

for

all

Web

applications.

v

To

disable

the

translation

and

compilation

of

JSP

files

for

a

specific

Web

application,

set

the

JSP

engine

initialization

parameter

disableJspRuntimeCompilation

to

true.

This

setting,

if

enabled,

determines

the

run-time

behavior

of

the

JSP

engine

and

overrides

the

Web

container

custom

property

setting.

Set

this

parameter

through

the

JavaServer

Pages

attribute

assembly

settings

panel

in

the

Application

Assembly

Tool

(AAT)or

.

To

view

this

page

in

the

AAT,

click:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

Valid

values

for

this

setting

are

true

or

false.

If

this

parameter

is

set

to

true,

then,

for

that

specific

Web

application,

translation

and

compilation

of

the

JSP

files

is

disabled

at

run

time,

and

the

JSP

engine

only

loads

precompiled

files.

v

If

neither

the

Web

container

custom

property

nor

the

JSP

attribute

assembly

parameter

is

set,

the

first

request

for

a

JSP

file

results

in

the

translation

and

compilation

of

the

JSP

file

when

the

.class

file

does

not

exist.

Subsequent

requests

for

the

file

also

result

in

compilations

and

translations,

but

only

if

the

following

conditions

are

met:

–

Compilations

and

translations

are

required.

–

Reloading

is

enabled

for

the

Web

module.

–

Reload

interval

is

exceeded.

If

you

disable

run-time

compilation

and

a

request

arrives

for

a

JSP

file

that

does

not

have

a

matching

.class

file,

the

JSP

engine

returns

HTTP

error

501

(Not

implemented)

to

the

browser.

If

the

JSP

file

does

not

exist,

the

JSP

engine

returns

HTTP

error

404

(File

not

found)

to

the

browser.

In

both

cases,

an

exception

is

written

to

the

joblog

(sysprint)

file

if

ras_trace_outputLocation

in

was.env

file

is

set

to

SYSPRINT

or

to

CTRACE

if

ras_trace_outputLocation

is

set

to

BUFFER.

If

a

JSP

file

has

a

matching

.class

file

but

that

file

is

out

of

date,

the

JSP

engine

still

loads

the

.class

file

into

memory.

Perform

the

following

steps

to

determine

whether

the

disableJspRuntimeCompilation

option

is

enabled

in

WebSphere

Application

Server:

1.

Enable

the

Diagnostic

Trace

Service

and

set

the

trace

specification

to

com.ibm.ws.webcontainer.jsp.servlet.*=all=enabled.

Chapter

2.

Using

Web

applications

33

2.

Request

a

JSP

file.

3.

Locate

the

string,

disableJspRuntimeCompilation:true,

in

the

joblog

(sysprint)

file

if

ras_trace_outputLocation

in

was.env

file

is

set

to

SYSPRINT

or

to

CTRACE

if

ras_trace_outputLocation

is

set

to

BUFFER.

4.

Ensure

the

jspUri:

entry

matches

the

requested

JSP

file.

If

both

the

disableJspRuntimeCompilation:true

string

and

the

matching

jspUri:

entry

appear

in

the

trace,

the

disableJspRuntimeCompilation

setting

is

enabled

for

the

Web

application.

Example:

Converting

JavaScript

source

to

the

Bean

Scripting

Framework

JavaScript

code

is

one

of

the

most

popular

languages

of

Web

developers.

This

language

supports

the

following

base

objects,

plus

additional

objects

from

the

Document

Object

Model:

v

array

v

date

v

math

v

number

v

string

Server-side

JavaScript

code

supports

the

same

base

objects,

and

additional

objects

that

support

user

access

to

databases,

file

systems

and

e-mail

systems.

Like

client-side

JavaScript

code,

server-side

JavaScript

code

is

also

platform,

browser,

and

language

independent.

You

can

convert

server-side

JavaScript

applications

to

the

Bean

Scripting

Framework.

This

article

describes

how

to

perform

this

conversion.

Server-side

JavaScript

source

code

Suppose

you

have

the

following

server-side

JavaScript

application:

<html>

<head>

<title>Hello

World

server-side

JavaScript

example</title>

</head>

<body>

</body>

</html>

<server>

function

writePage()

write("<center><font

size=’6’>Hello

World</center>");

</server>

Converting

server-side

JavaScript

source

code

to

the

Bean

Scripting

Framework

(BSF)

Make

the

following

changes

to

the

JavaScript

source

code

to

enable

BSF:

<%@

page

language="javascript"

%>

<html>

<head>

<title>Hello

World

server-side

BSF/JavaScript

example</title>

</head>

<body>

34

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

</body>

</html>

<%

out.println("<center><font

size=’6’>Hello

World</center>");

%>

Review

the

other

BSF

reference

articles

for

deployment

information

and

additional

programming

examples.

Scenario:

Creating

a

Bean

Scripting

Framework

application

Scenario

description

Programming

skills

in

JavaScript

code

are

more

prevalent

than

programming

skills

using

JavaServer

Pages

(JSP)

tags.

Using

the

Bean

Scripting

Framework,

JavaScript

programmers

can

gradually

introduce

JSP

tags

in

their

JavaScript

applications

without

completely

rewriting

the

source

code.

The

BSF

method

not

only

reduces

the

potential

of

programming

errors,

but

also

provides

a

painless

way

to

learn

a

new

technology.

The

following

scenario

illustrates

how

to

implement

a

BSF

application

using

JavaScript

within

JSP

tags.

Developing

the

BSF

application

At

ABC

elementary

school,

John

Doe

teaches

third

grade

mathematics.

He

wants

to

help

his

students

memorize

their

multiplication

tables,

and

thinks

a

small

Web-based

quiz

could

help

meet

his

objective.

However,

John

Doe

only

knows

JavaScript.

Using

the

Bean

Scripting

Framework

to

help

leverage

his

JavaScript

skills,

John

Doe

creates

two

JSP

files,

multiplication_test.jsp

and

multiplication_scoring.jsp.

In

the

multiplication_test.jsp

file,

John

Doe

uses

both

client-side

and

server-side

JavaScript

code

to

generate

a

test

of

100

random

multiplication

questions,

displayed

using

a

three

minute

timer.

He

then

writes

the

multiplication_scoring.jsp

file

to

read

the

data

submitted

by

the

multiplication_test.jsp

file

and

to

generate

the

scoring

results.

John

Doe

creates

the

following

two

files:

multiplication_test.jsp:

<html>

<head>

<title>Multiplication

Practice

Test</title>

<script

language="javascript">

var

countMin=3;

var

countSec=0;

function

updateDisplay

(min,

sec)

{

var

disp;

if

(min

<=

9)

disp

=

"

0";

else

disp

=

"

";

disp

+=

(min

+

":");

if

(sec

<=

9)

disp

+=

("0"

+

sec);

else

disp

+=

sec;

return(disp);

}

Chapter

2.

Using

Web

applications

35

function

countDown()

{

countSec--;

if

(countSec

==

-1)

{

countSec

=

59;

countMin--;

}

document.multtest.counter.value

=

updateDisplay(countMin,

countSec);

if((countMin

==

0)

&&(countSec

==

0))

document.multtest.submit();

else

var

down

=

setTimeout("countDown();",

1000);

}

</script>

</head>

<body

bgcolor="#ffffff"

onLoad="countDown();">

<%@

page

language="javascript"

%>

<h1>Three

Minute

Multiplication

Drill</h1>

<hr>

<h2>Remember:

this

is

an

opportunity

to

excel!</h2>

<p>

<form

method="POST"

name="multtest"

action="multiplication_scoring.jsp">

<div

align="center">

<table>

<tr>

<td>

<h3>Time

left:

<input

type="text"

name="counter"

size="9"

value="03:00"

readonly>

</h3>

</td>

<td>

<input

type="submit"

value="Submit

for

scoring!">

</td>

</tr>

</table>

<table

border="1">

<%

var

newrow

=

0;

var

q_num

=

0;

function

addQuestion(num1,

num2)

{

if

(newrow

==

0)

out.println("<tr>");

out.println("<td>");

out.println(num1

+

"

x

"

+

num2

+

"

=

");

out.println("</td><td>");

out.print("<input

name=\""

+

q_num

+

"|"

+

num1

+

":"

+

num2

+

"\"

");

out.println("type=\"text\"

size=\"10\">");

out.println("</td>");

if

(newrow

==

3)

{

out.println("</tr>");

newrow

=

0;

}

else

newrow++;

q_num++;

}

for

(var

i

=

0;

i

<

100;

i++)

{

var

rand1

=

Math.ceil(Math.random()

*

12);

var

rand2

=

Math.ceil(Math.random()

*

12);

addQuestion(rand1,

rand2);

}

%>

</table>

</div>

</form>

</body>

</html>

multiplication_scoring.jsp:

<html>

<head>

<title>Multiplication

Practice

Test

Results</title>

</head>

36

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<body

bgcolor="#ffffff">

<%@

page

language="javascript"

%>

<h1>Multiplication

Drill

Score</h1>

<hr>

<div

align="center">

<table

border="1">

<tr><th>Problem</th><th>Correct

Answer</th><th>Your

Answer</th></tr>

<%

var

total_score

=

0;

function

score

(current,

pos1,

pos2)

{

var

multiplier

=

current.substring(pos1

+

1,

pos2);

var

multiplicand

=

current.substring(pos2

+

1,

current.length());

var

your_product

=

request.getParameterValues(current)[0];

var

true_product

=

multiplier

*

multiplicand;

out.println("<tr>");

out.println("<td>"

+

multiplier

+

"

x

"

+

multiplicand

+

"

=

</td>");

out.println("<td>"

+

true_product

+

"</td>");

if

(your_product

==

true_product)

{

total_score++;

out.print("<td

bgcolor=\"\#00ff00\">");

}

else

{

out.print("<td

bgcolor=\"\#ff0000\">");

}

out.println(your_product

+

"</td>");

out.println("</tr>");

}

var

equations

=

request.getParameterNames();

while(equations.hasMoreElements())

{

var

currElt

=

equations.nextElement();

var

splitPos1

=

currElt.indexOf("|");

var

splitPos2

=

currElt.indexOf(":");

if

(splitPos1

>=0

&&

splitPos2

>=

0)

score(currElt,

splitPos1,

splitPos2);

}

%>

</table>

<h2>Total

Score:

<%=

total_score

%></h2>

<h3>Try

again?</h3>

</div>

</body>

</html>

Follow

these

steps

to

see

how

John

Doe

uses

BSF

to

implement

JavaScript

in

a

JSP

application:

1.

Give

your

files

a

.jsp

extension.

2.

Use

server-side

JavaScript

code

in

your

application.

The

multiplication_test.jsp

file

incorporates

both

client-side

and

server-side

JavaScript.

Server-side

JavaScript

is

similar

to

client-side

JavaScript;

the

primary

difference

consists

of

using

a

different

set

of

objects.

Whereas

client-side

Javascript

programmers

invoke

document

and

window

objects,

server-side

JavaScript

programmers,

using

the

Bean

Scripting

Framework,

invoke

a

set

of

objects

provided

by

the

JSP

technology.

Also,

client-side

scripts

are

enclosed

in

<script>

tags,

but

server-side

scripts

use

JSP

scriptlet

and

expression

tags.

3.

Examine

the

following

blocks

of

code:

<script

language="javascript">

var

countMin=3;

var

countSec=0;

function

updateDisplay

(min,

sec)

{

var

disp;

if

(min

<=

9)

disp

=

"

0";

else

disp

=

"

";

disp

+=

(min

+

":");

if

(sec

<=

9)

disp

+=

("0"

+

sec);

Chapter

2.

Using

Web

applications

37

else

disp

+=

sec;

return(disp);

}

function

countDown()

{

countSec--;

if

(countSec

==

-1)

{

countSec

=

59;

countMin--;

}

document.multtest.counter.value

=

updateDisplay(countMin,

countSec);

if((countMin

==

0)

&&

(countSec

==

0))

document.multtest.submit();

else

var

down

=

setTimeout("countDown();",

1000);

}

</script>

....

<body

bgcolor="#ffffff"

onLoad="countDown();">

...

<form

method="POST"

name="multtest"

action="multiplication_scoring.jsp">

...

<input

type="text"

name="counter"

size="9"

value="03:00"

readonly>

...

The

JavaScript

code

contained

in

the

<script>

block

implements

a

timer

set

within

the

<input>

field

named

counter.

The

onLoad

event

handler

in

the

<body>

tag

causes

the

browser

to

load

and

execute

the

code

when

the

the

page

is

loaded.

The

document.multtest.submit()

statement

causes

the

form

named

multtest

to

be

submitted

when

the

timer

expires.

4.

Identify

the

code

to

the

BSF

function.

The

following

code

example,

from

the

multiplication_test.jsp

file,

displays

the

use

of

a

JSP

directive.

This

directive

tells

the

WebSphere

Application

Server

BSF

function

that

this

file

is

using

the

JavaScript

language,

and

that

the

JavaScript

code

is

enclosed

by

the

<%

...

%>

scriptlet

tags.

The

out

implicit

JSP

object

in

this

code

example,

creates

the

body

section

of

a

table

from

100

randomly

generated

questions.

...

<%@

page

language="javascript"

%>

...

<%

var

newrow

=

0;

var

q_num

=

0;

function

addQuestion(num1,

num2)

{

if

(newrow

==

0)

out.println("<tr>");

out.println("<td>");

out.println(num1

+

"

x

"

+

num2

+

"

=

");

out.println("</td><td>");

out.print("<input

name=\""

+

q_num

+

"|"

+

num1

+

":"

+

num2

+

"\"

");

out.println("type=\"text\"

size=\"10\">");

out.println("</td>");

if

(newrow

==

3)

{

out.println("</tr>");

newrow

=

0;

}

else

newrow++;

q_num++;

}

for

(var

i

=

0;

i

<

100;

i++)

{

38

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

var

rand1

=

Math.ceil(Math.random()

*

12);

var

rand2

=

Math.ceil(Math.random()

*

12);

addQuestion(rand1,

rand2);

}

%>

...

5.

Read

the

results.

To

score

the

results

of

the

practice

drill,

John

Doe

uses

the

request

implicit

JSP

object

in

the

multiplication_scoring.jsp

file

to

obtain

the

POST

data

created

within

the

<form>

tags

in

the

multiplication_test.jsp

file.

The

multiplication_scoring.jsp

file

uses

the

POST

data

to

build

an

output

file

containing

the

original

question,

the

student’s

answer,

and

the

correct

answer,

and

then

prints

the

text

in

a

table

format

using

the

out

implicit

object.

The

following

code

example

from

the

multiplication_scoring.jsp

file

illustrates

the

use

of

the

request

and

out

JSP

objects:

...

<%@

page

language="javascript"

%>

...

<%

var

total_score

=

0;

function

score

(current,

pos1,

pos2)

{

var

multiplier

=

current.substring(pos1

+

1,

pos2);

var

multiplicand

=

current.substring(pos2

+

1,

current.length());

var

your_product

=

request.getParameterValues(current)[0];

var

true_product

=

multiplier

*

multiplicand;

out.println("<tr>");

out.println("<td>"

+

multiplier

+

"

x

"

+

multiplicand

+

"

=

</td>");

out.println("<td>"

+

true_product

+

"</td>");

if

(your_product

==

true_product)

{

total_score++;

out.print("<td

bgcolor=\"\#00ff00\">");

}

else

{

out.print("<td

bgcolor=\"\#ff0000\">");

}

out.println(your_product

+

"</td>");

out.println("</tr>");

}

var

equations

=

request.getParameterNames();

while(equations.hasMoreElements())

{

var

currElt

=

equations.nextElement();

var

splitPos1

=

currElt.indexOf("|");

var

splitPos2

=

currElt.indexOf(":");

if

(splitPos1

>=0

&&

splitPos2

>=

0)

score(currElt,

splitPos1,

splitPos2);

}

%>

...

<h2>Total

Score:

<%=

total_score

%></h2>

...

Note:Although

using

separate

scriptlet

blocks

of

code

for

different

portions

of

a

conditional

expression

is

common

in

JSP

files

implemented

in

Java,

it

is

invalid

for

JSP

files

implemented

using

JavaScript

through

the

Bean

Scripting

Framework.

The

JavaScript

code

must

be

entirely

contained

within

the

scriptlet

tags.

The

following

code

example

illustrates

invalid

usage:

Chapter

2.

Using

Web

applications

39

<%

if

(pass

==

0)

%>

<i>pass

is

true</i>

<%

else

%>

<i>pass

is

not

true</i>

Deploying

the

BSF

application

You

assemble

and

deploy

BSF

applications

in

the

same

manner

as

JSP

applications.

Review

the

Assembling

applications

article

for

more

information.

Deploy

the

BSF

code

examples

in

WebSphere

Application

Server

to

view

this

applications

processing

and

output.

Use

the

following

quick

steps

to

deploy

the

application.

The

intent

of

these

″quick

steps″

is

to

provide

you

with

instant

application

output.

However,

the

supported

method

for

deployment

is

the

same

as

for

standard

JSP

files.

1.

Use

the

DefaultApplication

to

add

your

BSF

files.

Copy

your

.jsp

files

to

the

DefaultApplication

directory:

<app

server

install

directory>/installedApps/<node

name>/DefaultApplication.ear/DefaultApplication.war

2.

Start

the

application

server.

3.

Open

a

browser

and

request

your

BSF

application.

Use

the

following

URL

to

request

your

application:

http://hostName:9080/<jspFileName>.jsp

Example:

Bean

Scripting

Framework

code

example

The

following

code

examples

show

how

to

implement

JavaScript

using

the

Bean

Scripting

Framework

(BSF).

For

a

quick

demonstration

of

the

BSF

function,

copy

these

code

examples

into

2

separate

files,

and

deploy

them

in

WebSphere

Application

Server

using

the

instructions

in

the

BSF

scenario

article.

Multiplication

practice

test

<html>

<head>

<title>Multiplication

Practice

Test</title>

<!--

This

file

and

its

companion,

multiplication_score.jsp,

illustrate

the

use

of

ECMAScript

within

the

BSF

framework.

The

task

is

a

simple

timed

math

quiz,

which

is

3

minutes

in

duration.

When

the

quiz

ends,

the

score

is

computed

and

displayed.

Users

are

then

asked

if

they

wish

to

try

the

quiz

again.

-->

<!--

This

code

fragment

displays

and

updates

the

quiz

countdown

in

client

side

JavaScript

code.

-->

<script

language="javascript">

var

countMin=3;

var

countSec=0;

//

This

code

computes

the

current

countdown

time.

function

updateDisplay

(min,

sec)

{

40

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

var

disp;

if

(min

<=

9)

disp

=

"

0";

else

disp

=

"

";

disp

+=

(min

+

":");

if

(sec

<=

9)

disp

+=

("0"

+

sec);

else

disp

+=

sec;

return(disp);

}

//This

code

fragment

displays

the

current

countdown

time

in

the

user’s

//browser

window,and

submits

the

results

for

scoring

when

the

countdown

//ends.

function

countDown()

{

countSec--;

if

(countSec

==

-1)

{

countSec

=

59;

countMin--;

}

document.multtest.counter.value

=

updateDisplay(countMin,

countSec);

if((countMin

==

0)

&&

(countSec

==

0))

document.multtest.submit();

else

var

down

=

setTimeout("countDown();",

1000);

}

</script>

</head>

<body

bgcolor="#ffffff"

onLoad="countDown();">

<!--

The

body

of

the

quiz

runs

as

JavaServer

Pages

(JSP)

code

using

BSF.

The

code

outputs

the

problems

in

table

format

using

the

POST

method

and

invokes

the

scoring

module

when

the

user

chooses

to

end

the

quiz

or

when

the

countdown

ends.

-->

<%@

page

language="javascript"

%>

<h1>Three

Minute

Multiplication

Drill</h1>

<hr>

<h2>Remember:

this

is

an

opportunity

to

excel!</h2>

<p>

<form

method="POST"

name="multtest"

action="multiplication_scoring.jsp">

<div

align="center">

<table>

<tr>

<td>

<h3>Time

left:

<input

type="text"

name="counter"

size="9"

value="03:00"

readonly>

</h3>

</td>

<td>

<input

type="submit"

value="Submit

for

scoring!">

</td>

</tr>

</table>

<table

border="1">

<%

var

newrow

=

0;

var

q_num

=

0;

//

This

code

generates

a

new

random

multiplication

problem

up

to

the

number

//twelve,

and

enters

it

into

the

table

of

problems.

Chapter

2.

Using

Web

applications

41

function

addQuestion(num1,

num2)

{

if

(newrow

==

0)

out.println("<tr>");

out.println("<td>");

out.println(num1

+

"

x

"

+

num2

+

"

=

");

out.println("</td><td>");

out.print("<input

name=\""

+

q_num

+

"|"

+

num1

+

":"

+

num2

+

"\"

");

out.println("type=\"text\"

size=\"10\">");

out.println("</td>");

if

(newrow

==

3)

{

out.println("</tr>");

newrow

=

0;

}

else

newrow++;

q_num++;

}

//This

code

obtains

two

random

operands

and

formats

100

quiz

problems.

for

(var

i

=

0;

i

<

100;

i++)

{

var

rand1

=

Math.ceil(Math.random()

*

12);

var

rand2

=

Math.ceil(Math.random()

*

12);

addQuestion(rand1,

rand2);

}

%>

</table>

</div>

</form>

</body>

</html>

Multiplication

practice

test

results

<html>

<head>

<title>Multiplication

Practice

Test

Results</title>

</head>

<body

bgcolor="#ffffff">

<!--

This

JSP

code

is

invoked

when

the

user

submits

a

math

quiz

for

scoring,

or

when

the

quiz

countdown

expires.

The

JSP

code

tabulates

the

problem

list,

the

correct

answer,

the

user’s

answer,

and

scores

the

test.

It

then

offers

the

user

an

opportunity

to

try

the

quiz

again.

-->

<%@

page

language="javascript"

%>

<h1>Multiplication

Drill

Score</h1>

<hr>

<div

align="center">

<table

border="1">

<tr><th>Problem</th><th>Correct

Answer</th><th>Your

Answer</th></tr>

<%

var

total_score

=

0;

//

This

code

parses

the

submitted

form,

extracts

the

a

problem

generated

by

the

//

multiplication_test.jsp

file,

outputs

it,

computes

the

correct

answer,

//

and

displays

this

information

and

the

user

answer.

The

code

scores

//

the

quiz

using

a

running

sum

of

correct

answers.

42

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

function

score

(current,

pos1,

pos2)

{

var

multiplier

=

current.substring(pos1

+

1,

pos2);

var

multiplicand

=

current.substring(pos2

+

1,

current.length());

var

your_product

=

request.getParameterValues(current)[0];

var

true_product

=

multiplier

*

multiplicand;

out.println("<tr>");

out.println("<td>"

+

multiplier

+

"

x

"

+

multiplicand

+

"

=

</td>");

out.println("<td>"

+

true_product

+

"</td>");

if

(your_product

==

true_product)

{

total_score++;

out.print("<td

bgcolor=\"\#00ff00\">");

}

else

{

out.print("<td

bgcolor=\"\#ff0000\">");

}

out.println(your_product

+

"</td>");

out.println("</tr>");

}

//

This

is

the

main

body

of

the

scoring

application.

It

parses

the

posted

quiz,

//

and

calls

the

score()

function

to

score

remaining

problems.

var

equations

=

request.getParameterNames();

while(equations.hasMoreElements())

{

var

currElt

=

equations.nextElement();

var

splitPos1

=

currElt.indexOf("|");

var

splitPos2

=

currElt.indexOf(":");

if

(splitPos1

>=0

&&

splitPos2

>=

0)

score(currElt,

splitPos1,

splitPos2);

}

%>

</table>

<h2>Total

Score:

<%=

total_score

%></h2>

<h3>Try

again?</h3>

</div>

</body>

</html>

Web

modules

A

Web

module

represents

a

Web

application.

A

Web

module

is

created

by

assembling

servlets,

JavaServer

Pages

(JSP)

files,

and

static

content

such

as

HyperText

Markup

Language

(HTML)

pages

into

a

single

deployable

unit.

Web

modules

are

stored

in

Web

archive

(WAR)

files,

which

are

standard

Java

archive

files.

A

Web

module

contains:

v

One

or

more

servlets,

JSP

files,

and

HTML

files.

v

A

deployment

descriptor,

stored

in

an

Extensible

Markup

Language

(XML)

file.

The

file,

named

web.xml,

declares

the

contents

of

the

module.

It

contains

information

about

the

structure

and

external

dependencies

of

Web

components

in

the

module

and

describes

how

the

components

are

used

at

run

time.

You

can

create

Web

modules

as

stand-alone

applications,

or

you

can

combine

Web

modules

with

other

modules

to

create

J2EE

applications.

You

install

and

run

a

Web

module

in

the

Web

container

of

an

application

server.

Chapter

2.

Using

Web

applications

43

Assembling

Web

applications

Assemble

a

Web

module

to

contain

servlets,

JavaServer

page

(JSP)

files,

and

related

code

artifacts.

(Group

enterprise

beans,

client

code,

and

resource

adapter

code

in

separate

modules).

After

assembling

a

Web

module,

you

can

install

it

as

a

stand-alone

application

or

combine

it

with

other

modules

into

an

enterprise

application.

Use

the

Assembly

Toolkit

to

assemble

a

Web

module

in

any

of

the

following

ways:

v

Import

an

existing

Web

module

(WAR

file).

v

Create

a

new

Web

module.

v

Copy

code

artifacts

(such

as

servlets)

from

one

Web

module

into

a

new

Web

module.

Although

you

can

input

various

properties

for

Web

archives,

available

properties

are

specific

to

the

Servlet,

JSP,

and

J2EE

specification

level.

1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Migrate

WAR

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

your

WAR

files

to

the

Assembly

Toolkit.

5.

Create

a

new

Web

module.

6.

Copy

code

artifacts

(such

as

servlets)

from

one

Web

module

into

a

new

Web

module.

7.

Verify

the

contents

of

the

new

Web

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Web

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

Web

module

in

a

Navigator

view.

Using

the

AAT

to

assemble

Web

modules

If

you

want

to

use

existing

Java

2

Enterprise

Edition

(J2EE)

1.2

Web

modules

in

your

J2EE

1.3

application,

migrate

them

to

J2EE

1.3

first.

Assemble

a

Web

module

to

contain

servlets,

JSP

files,

and

related

code

artifacts.

(Group

enterprise

beans,

client

code,

and

resource

adapter

code

in

separate

modules).

A

Web

module

can

be

installed

as

a

stand-alone

application

or

can

be

combined

with

other

modules

into

an

enterprise

application.

The

Application

Assembly

Tool

(AAT)

provides

flexibility

in

assembling

Web

modules.

Options

described

below

include:

v

Importing

an

existing

Web

module

(WAR

file)

v

Creating

a

new

Web

module

44

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Copying

code

artifacts

(such

as

servlets)

from

one

Web

module

into

a

new

Web

module

Although

you

can

input

various

properties

for

Web

archives,

available

properties

are

specific

to

the

Servlet,

JSP,

and

J2EE

specification

level.

1.

Start

the

AAT.

2.

From

the

New

tab,

select

Web

Module.

Click

OK.

The

navigation

tree

now

displays

various

sets

of

properties

for

configuring

the

new

Web

module.

3.

Use

the

property

dialog

shown

in

the

AAT

workspace

to

change

the

default

file

name

and

location.

a.

It

is

recommended

that

you

change

the

display

name

so

that

it

differs

from

the

file

name.

b.

If

you

like,

change

the

temporary

location

of

the

Web

module

from

the

default

location,

install_root/bin.
4.

Add

at

least

one

Web

component

(servlet

or

JSP

file)

to

the

module.

You

must

add

at

least

one

Web

component,

using

one

of

the

following

methods.

v

Import

an

existing

WAR

file

containing

Web

components.

a.

In

the

navigation

tree,

right-click

the

Web

Components

folder.

b.

Select

Import

from

its

right-click

menu.

c.

Use

the

file

browser

to

locate

and

select

the

archive

file

for

the

module.

d.

Click

Open.

The

Web

applications

in

the

selected

archive

are

displayed.

e.

Select

a

Web

application.

Its

Web

components

are

displayed

in

the

workspace.

f.

Select

the

servlets

or

JSP

files

to

be

added

and

click

Add.

The

components

are

displayed

in

the

Selected

Components

window.

g.

Click

OK.

The

properties

associated

with

the

archive

are

also

imported.

The

property

dialog

boxes

in

the

workspace

are

populated

automatically

with

values.

h.

Double-click

the

Web

Components

icon

to

verify

that

the

servlets

or

JSP

files

are

included

in

the

module.

i.

Double-click

the

Web

Components

icon

to

verify

that

the

servlets

or

JSP

files

are

included

in

the

module.

j.

Save

the

Web

module.
v

Copy

and

paste

archive

files

from

an

existing

module

into

the

new

Web

component.

v

Create

a

new

Web

component.

a.

In

the

navigation

tree,

right-click

the

Web

Components

folder.

b.

Select

New

from

its

right-click

menu.

c.

When

the

new

module

is

displayed,

enter

a

component

name

and

choose

a

component

type.

d.

Use

the

file

browser

to

locate

and

select

the

archive

file

for

the

module.

e.

Click

the

plus

sign

(+)

to

verify

its

contents

and

enter

assembly

properties.

f.

In

the

New

Web

Component

property

dialog

box,

click

OK.

g.

Verify

that

the

Web

component

has

been

added

to

the

module

by

double-clicking

the

Web

components

icon

in

the

navigation

tree.

h.

Click

the

component

to

view

its

corresponding

property

dialog

box

in

the

bottom

portion

of

the

pane.
5.

Enter

assembly

properties

for

each

Web

component.

a.

Click

the

plus

sign

(+)

next

to

the

each

component

to

reveal

its

property

groups.

b.

Right-click

each

property

group

icon

and

click

New

to

display

properties

in

the

workspace.

Chapter

2.

Using

Web

applications

45

6.

Specify

additional

properties

for

the

Web

module.

Right-click

each

property

group’s

icon.

Choose

New

to

add

new

values,

or

edit

existing

values

in

the

property

pane.

(Click

Help

for

descriptions

of

the

settings).

Note

that

if

you

add

a

security

constraint,

you

must

add

at

least

one

Web

resource

collection.

7.

Add

any

other

files

needed

by

the

application.

v

In

the

navigation

tree,

click

the

plus

sign

(+)

next

to

the

Files

icon.

Right-click

Add

Class

Files,

Add

JAR

Files,

or

Add

Resource

Files.

Select

Add

Files.

v

Add

files,

using

the

Add

Files

dialog.
8.

Save

the

application.

Assemble

other

new

modules

of

your

choice,

if

needed:

v

Assembling

EJB

modules.

v

Assembling

application

client

modules.

v

Assembling

resource

adapter

modules.

You

can

also

migrate

existing

modules.

Another

option

is

to

proceed

directly

to

assembling

a

new

application

module.

While

assembling

an

application

module,

you

can

create

any

new

modules

that

you

need.

Context

parameters

A

servlet

context

defines

a

server’s

view

of

the

Web

application

within

which

the

servlet

is

running.

The

context

also

allows

a

servlet

to

access

resources

available

to

it.

Using

the

context,

a

servlet

can

log

events,

obtain

URL

references

to

resources,

and

set

and

store

attributes

that

other

servlets

in

the

context

can

use.

These

properties

declare

a

Web

application’s

parameters

for

its

context.

They

convey

setup

information,

such

as

a

webmaster’s

e-mail

address

or

the

name

of

a

system

that

holds

critical

data.

Security

constraints

Security

constraints

determine

how

Web

content

is

to

be

protected.

These

properties

associate

security

constraints

with

one

or

more

Web

resource

collections.

A

constraint

consists

of

a

Web

resource

collection,

an

authorization

constraint

and

a

user

data

constraint.

v

A

Web

resource

collection

is

a

set

of

resources

(URL

patterns)

and

HTTP

methods

on

those

resources.

All

requests

that

contain

a

request

path

that

matches

the

URL

pattern

described

in

the

Web

resource

collection

is

subject

to

the

constraint.

If

no

HTTP

methods

are

specified,

then

the

security

constraint

applies

to

all

HTTP

methods.

v

An

authorization

constraint

is

a

set

of

roles

that

users

must

be

granted

in

order

to

access

the

resources

described

by

the

Web

resource

collection.

If

a

user

who

requests

access

to

a

specified

URI

is

not

granted

at

least

one

of

the

roles

specified

in

the

authorization

constraint,

the

user

is

denied

access

to

that

resource.

v

A

user

data

constraint

indicates

that

the

transport

layer

of

the

client

or

server

communications

process

must

satisfy

the

requirement

of

either

guaranteeing

content

integrity

(preventing

tampering

in

transit)

or

guaranteeing

confidentiality

(preventing

reading

while

in

transit).

46

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Servlet

mappings

A

servlet

mapping

is

a

correspondence

between

a

client

request

and

a

servlet.

Servlet

containers

use

URL

paths

to

map

client

requests

to

servlets,

and

follow

the

URL

path-mapping

rules

as

specified

in

the

Java

Servlet

specification.

The

container

uses

the

URI

from

the

request,

minus

the

context

path,

as

the

path

to

map

to

a

servlet.

The

container

chooses

the

longest

matching

available

context

path

from

the

list

of

Web

applications

that

it

hosts.

Invoker

attributes

Invoker

attributes

are

used

by

the

servlet

that

implements

the

invocation

behavior.

Error

pages

Error

page

locations

allow

a

servlet

to

find

and

serve

a

URI

to

a

client

based

on

a

specified

error

status

code

or

exception

type.

These

properties

are

used

if

the

error

handler

is

another

servlet

or

JSP

file.

The

properties

specify

a

mapping

between

an

error

code

or

exception

type

and

the

path

of

a

resource

in

the

Web

application.

The

container

examines

the

list

in

the

order

that

it

is

defined,

and

attempts

to

match

the

error

condition

by

status

code

or

by

exception

class.

On

the

first

successful

match

of

the

error

condition,

the

container

serves

back

the

resource

defined

in

the

Location

property.

File

serving

File

serving

allows

a

Web

application

to

serve

static

file

types,

such

as

HTML.

File-serving

attributes

are

used

by

the

servlet

that

implements

file-serving

behavior.

Initialization

parameters

Initialization

parameters

are

sent

to

a

servlet

in

its

HttpConfig

object

when

the

servlet

is

first

started.

Servlet

caching

Dynamic

caching

can

be

used

to

improve

the

performance

of

servlet

and

JavaServer

Pages

(JSP)

files

by

serving

requests

from

an

in-memory

cache.

Cache

entries

contain

the

servlet’s

output,

results

of

the

servlet’s

execution,

and

metadata.

Web

components

A

web

component

is

a

servlet,

Java

Server

Page

(JSP),

or

HTML

file.

One

or

more

web

components

make

up

a

web

module.

Web

property

extensions

Web

property

extensions

are

IBM

extensions

to

the

standard

deployment

descriptors

for

Web

applications.

These

extensions

include

mime

filtering

and

servlet

caching.

Web

resource

collections

A

Web

resource

collection

defines

a

set

of

URL

patterns

(resources)

and

HTTP

methods

belonging

to

the

resource.

HTTP

methods

handle

HTTP-based

requests,

such

as

GET,

POST,

PUT,

and

DELETE.

A

URL

pattern

is

a

partial

Uniform

Resource

Locator

that

acts

as

a

template

for

matching

the

pattern

with

existing

full

URLs

in

an

attempt

to

find

a

valid

file.

Chapter

2.

Using

Web

applications

47

Welcome

files

A

Welcome

file

is

an

entry

point

file

(for

example,

index.html)

for

a

group

of

related

HTML

files.

Welcome

files

are

located

by

using

a

group

of

partial

URIs.

The

Web

container

uses

the

partial

URIs

to

find

a

valid

file

when

the

initial

URI

is

not

found.

Context

parameter

assembly

settings

A

servlet

context

defines

the

server

view

of

the

Web

application

within

which

the

servlet

is

running.

The

context

also

allows

a

servlet

to

access

resources

available

to

it.

Using

the

context,

a

servlet

can

log

events,

obtain

URL

references

to

resources,

and

set

and

store

attributes

that

other

servlets

in

the

context

can

use.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

Parameter

name

(Required,

String)

Specifies

the

name

of

a

parameter,

for

example,

dataSourceName.

Data

type

String

Parameter

value

(Required,

String)

Specifies

the

value

of

a

parameter,

for

example,

jdbc/sample.

Data

type

String

Description

Contains

a

description

of

the

context

parameter.

Data

type

String

Initialization

parameter

assembly

settings

Use

this

page

to

specify

the

initialization

parameters

that

are

sent

to

a

servlet

in

its

HttpConfig

object

when

the

servlet

is

first

started.

To

view

this

page

in

the

Application

Assembly

Tool,

click

Web

Modules

>

component_instance

>

Web

Components

>

component_instance

>

Initialization

Parameters

Parameter

name

(Required,

String)

Specifies

the

name

of

an

initialization

parameter.

Data

type

String

Parameter

value

(Required,

String)

Specifies

the

value

of

the

initialization

parameter.

Data

type

String

Description

Contains

text

describing

the

use

of

the

parameter.

Data

type

String

48

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Filter

assembly

settings

Use

the

Filter

panel

to

configure

your

filter

settings.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

Filter

name

Specifies

the

logical

name

of

the

filter.

This

name

maps

the

filter.

Data

type

String

Class

Specifies

the

fully

qualified

classname

of

the

filter.

Data

type

String

Description

Provides

a

description

of

the

filter.

Data

type

String

JavaServer

Pages

attribute

assembly

settings

Use

the

JavaServer

Pages

(JSP)

attributes

page

to

set

JSP

attributes

that

are

used

by

servlets

that

implement

JSP

processing

behavior.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

5.0.2

Or

use

the

Chapter

17,

“Assembling

applications

with

the

Assembly

Toolkit,”

on

page

879

to

set

the

JavaServer

Pages

attribute

assembly

settings.

JSP

Attribute

(Name)

Specifies

the

name

of

an

attribute.

Data

type

String

JSP

Attribute

(Value)

Specifies

the

value

of

an

attribute.

Data

type

String

Supported

JSP

attributes

The

WebSphere

JSP

container

supports

the

following

JSP

attributes:

classdebuginfo

Indicates

the

compiler

should

include

debugging

information

in

the

generated

classfile.

classdebuginfo

true

or

false

Default

is

false.

Chapter

2.

Using

Web

applications

49

classpath

Specifies

an

additional

classpath

for

compiling

the

generated

servlets.

classpath

classpath

or

null

Default

is

null.

deprecation

Indicates

the

compiler

should

generate

deprecation

warnings

when

compiling

the

generated

Java

source.

deprecation

true

or

false

Default

is

false.

disableJspRuntimeCompilation

Indicates

the

runtime

behavior

of

the

JSP

compiler.

If

this

option

is

set

to

true,

the

JSP

compiler

does

not

compile

or

translate

the

JSP

files,

and

the

JSP

engine

only

loads

precompiled

classfiles.

disableJspRuntimeCompilation

true

or

false

Default

is

false.

ieClassID

Indicates

the

Java

plugin

COM

class

ID

for

Internet

Explorer.

The

<jsp:plugin>

tags

use

this

value.

ieClassID

classid

Default

is

clsid:8AD9C840-044E-11D1-B3E9-00805F499D93.

javaEncoding

Indicates

the

Java

platform

encoding

to

use

to

generate

the

JSP

page

servlet.

javaEncoding

encoding

value

Default

is

UTF-8.

jspCompilerPath

Indicates

the

path

of

the

compiler

to

use

for

compiling

JSP

pages.

jspCompilerPath

path

name

or

null

Default

is

null.

keepgenerated

Indicates

the

Java

files

generated

by

the

JSP

compiler

during

the

translation

phase

of

the

processing

should

be

kept.

keepgenerated

true

or

false

Default

is

false.

50

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

largefile

Specifies

support

for

large

files.

When

the

Java

code

is

generated,

the

HTML

data

in

a

JSP

file

is

stored

separately

instead

of

being

saved

as

constant

string

data

in

the

generated

servlet.

largefile

true

or

false

Default

is

false.

mappedfile

Indicates

the

compiler

should

generate

Java

source

that

includes

a

print

statement

for

every

line

in

the

JSP

file.

Use

this

option

for

debugging

purposes

only.

It

is

not

recommended

for

production

environments

because

the

mappedfile

option

generates

too

many

out.print()

statements.

mappedfile

true

or

false

Default

is

false.

scratchdir

Specifies

the

directory

where

the

generated

classfiles

are

created.

scratchdir

directory

name.

Default

is

[WAS_INSTALL_ROOT]/temp.

Note:

The

system

property

com.ibm.websphere.servlet.temp.dir

can

be

used

to

set

the

scratchdir

option

on

a

server-wide

basis.

This

setting,

if

it

is

present,

overrides

the

system

property.

usePageTagPool

Enables

or

disables

the

reuse

of

custom

tag

handlers

on

an

individual

JavaServer

Page

basis.

usePageTagPool

true

or

false

Default

is

false.

Note:

Enabling

custom

tag

handler

reuse

might

reveal

problems

in

your

tag

handler

code

regarding

the

tags

ability

to

be

reused.

A

custom

tag

handler

should

always

do

two

things:

1.

The

release()

method

of

the

tag

handler

should

reset

its

state

and

release

any

private

resources

that

it

might

have

used.

The

JSP

engine

guarantees

the

release()

method

will

be

called

before

the

tag

handler

is

garbage

collected.

2.

In

the

doEndTag()

method,

all

instance

states

associated

with

this

instance

must

be

reset.

useThreadTagPool

Enables

or

disables

the

reuse

of

custom

tag

handlers

on

a

per

request

thread

basis.

useThreadTagPool

true

or

false

Default

is

false.

Chapter

2.

Using

Web

applications

51

The

note

in

the

usePageTagPool

attribute

description

also

applies

to

theuseThreadTagPool

attribute.

verbose

Indicates

the

compiler

should

generate

verbose

output

when

compiling

the

generated

Java

source

code.

verbose

true

or

false

Default

is

false.

Multipurpose

Internet

Mail

Extensions

(MIME)

filter

assembly

settings

Use

this

page

to

configure

Multipurpose

Internet

Mail

Extensions

(MIME)

filters.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

Component

name

(Required,

String)

Specifies

the

name

of

the

servlet

or

JavaServer

Pages(TM)

(JSP)

file.

This

name

must

be

unique

within

the

Web

module.

Data

type

String

Display

name

Specifies

a

short

name

that

is

intended

for

display

by

GUIs.

Data

type

String

Description

Contains

a

description

of

the

servlet

or

JSP

file.

Data

type

String

Component

type

Specifies

the

type

of

Web

component.

Valid

values

are

servlet

or

JSP

file.

Data

type

String

Class

name

(Required,

String)

Specifies

the

full

path

name

for

the

servlet

class.

Data

type

String

JSP

file

(Required,

String)

Specifies

the

full

path

name

for

the

JSP

file.

Data

type

String

Load

on

startup

Indicates

whether

this

servlet

loads

at

the

startup

of

the

Web

application.

The

default

is

false

(the

check

box

is

not

selected).

Also

specifies

a

positive

integer

indicating

the

order

in

which

to

load

the

servlet.

Lower

integers

are

loaded

before

52

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

higher

integers.

If

no

value

is

specified,

or

if

the

value

specified

is

not

a

positive

integer,

the

container

is

free

to

load

the

servlet

at

any

time

in

the

startup

sequence.

Data

type

String

Small

icon

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(16x16

pixels).

Use

the

image

as

an

icon

to

represent

the

Web

component

in

a

GUI.

Data

type

JPEG,

GIF

Large

icon

Specifies

a

JPEG

or

GIF

file

containing

a

large

image

(32x32

pixels).

Use

the

image

as

an

icon

to

represent

the

Web

component

in

a

GUI.

Data

type

JPEG,

GIF

Page

list

assembly

settings

Page

lists

allow

you

to

avoid

hardcoding

URLs

in

servlets

and

JSP

files.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Web

Components

Name

Specifies

the

name

of

the

markup

language--for

example,

Hypertext

Markup

Language

(HTML),

Wireless

Markup

Language

(WML),

and

Voice

Extensible

Markup

Language

(VXML).

Data

type

String

MIME

Type

Specifies

the

Multi-Purpose

Internet

Mail

Extensions

(MIME)

type

of

the

markup

language,

for

example,

text/html

and

text/x-vxml.

Data

type

String

Error

Page

Specifies

the

name

of

an

error

page.

Data

type

String

Default

Page

Specifies

the

name

of

a

default

page.

Data

type

String

Pages

-

Name

Specifies

the

name

of

the

page

to

serve,

for

example,

StockQuoteRequest.page.

Data

type

String

Chapter

2.

Using

Web

applications

53

Pages

-

URI

Specifies

the

URI

of

the

page

to

serve,

for

example,

examples/StockQuoteHTMLRequest.jsp.

Data

type

String

Security

constraint

assembly

settings

Use

the

Security

constraints

panel

to

configure

security

constraints.

To

view

this

Application

Assembly

Tool

(AAT)

panel,

open

an

existing

or

create

a

new

Web

module.

Right-click

Security

Constraints

from

the

left

navigation

menu.

Click

New.

If

multiple

security

constraints

are

specified,

the

container

uses

the

″first

match

wins″

rule

when

processing

a

request

to

determine

what

authentication

method

to

use,

or

what

authorization

to

allow

Security

constraint

name

Specifies

the

name

of

the

security

constraint.

Data

type

String

Authorization

Constraints

-

Roles

Specifies

the

user

roles

that

are

permitted

access

to

this

resource

collection.

Data

type

String

Authorization

Constraints

-

Description

Contains

a

description

of

the

authorization

constraints

Data

type

String

User

Data

Constraints

-

Transport

guarantee

Indicates

how

data

communicated

between

the

client

and

the

server

is

to

be

protected.

Specifies

that

the

protection

for

communications

between

the

client

and

server

is

None,

Integral,

or

Confidential.

v

None

means

that

the

application

does

not

require

any

transport

guarantees.

v

Integral

means

that

the

application

requires

that

the

data

sent

between

the

client

and

the

server

must

be

sent

in

such

a

way

that

it

cannot

be

changed

in

transit.

v

Confidential

means

that

the

application

requires

that

the

data

must

be

transmitted

in

a

way

that

prevents

other

entities

from

observing

the

contents

of

the

transmission.

In

most

cases,

Integral

or

Confidential

indicates

that

the

use

of

SSL

is

required.

Data

type

String

User

Data

Constraints

-

Description

Contains

a

description

of

the

user

data

constraints.

Data

type

String

54

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Servlet

mapping

assembly

settings

A

servlet

mapping

is

a

correspondence

between

a

client

request

and

a

servlet.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

URL

pattern

(Required,

String)

Specifies

the

URL

pattern

of

the

mapping.

The

URL

pattern

must

conform

to

the

Servlet

specification.

Use

the

following

syntax:

v

A

string

beginning

with

a

slash

character

(/)

and

ending

with

the

slash

and

asterisk

characters

(/*)

represents

a

path

mapping.

v

A

string

beginning

with

the

characters

*.

represents

an

extension

mapping.

v

All

other

strings

are

used

as

exact

matches

only.

v

A

string

containing

only

the

slash

character

(/)

indicates

that

the

servlet

specified

by

the

mapping

becomes

the

default

servlet

of

the

application.

In

this

case,

the

servlet

path

is

the

request

Uniform

Resource

Identifier

(URI)

minus

the

context

path,

and

the

path

information

is

null.

Data

type

String

Servlet

(Required,

String)

Specifies

the

name

of

the

servlet

associated

with

the

URL

pattern.

Data

type

String

Tag

library

assembly

settings

Use

this

page

to

define

the

tag

library

parameters.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

Java

ServerPages

(JSP)

tag

libraries

contain

classes

for

common

tasks

such

as

processing

forms

and

accessing

databases

from

JSP

files.

Tag

library

file

name

(Required,

String)

Specifies

a

file

name

relative

to

the

location

of

the

web.xml

document,

identifying

a

tag

library

used

in

the

Web

application.

Data

type

String

Tag

library

location

(Required,

String)

Contains

the

location,

as

a

resource

relative

to

the

root

of

the

Web

application,

where

you

can

find

the

Tag

Library

Definition

file

for

the

tag

library.

Data

type

String

Welcome

file

assembly

settings

Use

this

page

to

configure

your

welcome

page.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

Chapter

2.

Using

Web

applications

55

Welcome

file

(Required,

String)

The

Welcome

file

list

is

an

ordered

list

of

partial

URLs

with

no

trailing

or

leading

slash

characters

(/).

The

Web

server

appends

each

file

in

the

order

specified

and

checks

whether

a

resource

in

the

Web

archive

(WAR)

file

is

mapped

to

that

request

Uniform

Resource

Identifier

(URI).

The

container

forwards

the

request

to

the

first

resource

in

the

WAR

file

that

matches.

Data

type

String

Servlet

caching

configuration

assembly

settings

Use

this

page

to

configure

your

cache

groups.

Access

this

page

by

traversing

the

following

path

in

the

Application

AssemblyTool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

5.0.2

Or

use

the

Assembly

Toolkit

to

set

the

servlet

caching

settings.

The

properties

on

the

General

tab

define

a

cache

group

and

govern

how

long

an

entry

remains

in

the

cache.

The

properties

on

the

ID

Generation

tab

define

how

cache

IDs

are

built

and

the

criteria

used

to

cache

or

invalidate

entries.

The

properties

on

the

Advanced

tab

define

external

cache

groups

and

specify

custom

interfaces

for

handling

servlet

caching.

Caching

group

name

Specifies

a

name

for

the

group

of

servlets

or

JavaServer

Pages

(JSP)

files

to

cache.

Priority

Defines

the

default

priority

for

cached

servlets.

Specify

as

an

integer.

The

default

value

is

1.

Priority

is

an

extension

of

the

Least

Recently

Used

(LRU)

caching

algorithm.

It

represents

the

number

of

cycles

through

the

LRU

algorithm

that

an

entry

is

guaranteed

to

stay

in

the

cache.

The

priority

represents

the

length

of

time

that

an

entry

remains

in

the

cache

before

becoming

eligible

for

removal.

On

each

cycle

of

the

algorithm,

the

priority

of

an

entry

is

decremented.

When

the

priority

reaches

zero,

the

entry

is

eligible

for

invalidation.

If

an

entry

is

requested

while

in

the

cache,

its

priority

is

reset

to

the

priority

value.

Regardless

of

the

priority

value

and

the

number

of

requests,

an

entry

is

invalidated

when

its

timeout

occurs.

Consider

increasing

the

priority

of

a

servlet

or

JSP

file

when

it

is

difficult

to

calculate

the

output

of

the

servlet

or

JSP

file

or

when

the

servlet

or

JSP

file

is

executed

more

often

than

average.

Priority

values

should

be

low.

Higher

values

do

not

yield

much

improvement

but

use

extra

LRU

cycles.

Use

timeout

to

guarantee

the

validity

of

an

entry.

Use

priority

to

rank

the

relative

importance

of

one

entry

to

other

entries.

Giving

all

entries

equal

priority

results

in

a

standard

LRU

cache

that

increases

performance

significantly.

Timeout

Specifies

the

length

of

time,

in

seconds,

that

a

created

cache

entry

remains

in

the

cache.

When

this

time

elapses,

the

entry

is

removed

from

the

cache.

If

the

timeout

is

zero

or

a

negative

number,

the

entry

does

not

time

out.

It

is

removed

when

the

cache

is

full

or

programmatically,

from

within

an

application.

Invalidate

only

Specifies

that

invalidations

for

a

servlet

take

place,

but

that

no

servlet

caching

is

performed.

56

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

For

example,

you

can

use

this

property

to

prevent

caching

of

control

servlets.

Control

servlets

treat

HTTP

requests

as

commands

and

execute

those

commands.

By

default,

this

check

box

is

not

selected.

Caching

group

members

Specifies

the

names

of

the

servlets

or

JSP

files

to

cache.

The

URIs

are

determined

from

the

servlet

mappings.

Use

URIs

for

cache

ID

building

Specifies

whether

or

not

to

use

the

URI

of

the

requested

servlet

to

create

a

cache

ID.

By

default,

URIs

are

used.

Use

specified

string

Specifies

a

string

representing

a

combination

of

request

and

session

variables

to

use

for

creating

cache

IDs.

This

property

defines

request

and

session

variables,

and

the

cache

uses

the

values

of

these

variables

to

create

IDs

for

the

entries.

Variables

-

ID

Specifies

the

name

of

a

request

parameter,

request

attribute,

session

parameter,

or

cookie.

Variables

-

Type

Specifies

the

type

of

variable

inidcated

in

the

ID

field.

The

valid

values

are

Request

parameter,

Request

attribute,

Session

parameter,

or

Cookie.

Variables

-

Method

Specifies

the

name

of

a

method

in

the

request

attribute

or

session

parameter.

The

output

of

this

method

is

used

to

generate

cache

entry

IDs.

If

this

value

is

not

specified,

the

toString

method

is

used

by

default.

Variables

-

Data

ID

Specifies

a

string

that,

combined

with

the

value

of

the

variable,

generates

a

group

name

for

the

cache

entry.

The

cache

entry

is

placed

in

this

group.

You

can

invalidate

this

group.

Variables

-

Invalidate

ID

Specifies

a

string

that

is

combined

with

the

value

of

the

variable

on

the

request

or

session

to

form

a

group

name.

The

cache

invalidates

the

group

name.

Required

Specifies

whether

a

value

must

exist

in

the

request.

If

this

check

box

is

selected,

and

either

the

request

parameter,

request

attribute,

session

parameter,

or

the

method

is

not

specified,

the

request

is

not

cached.

External

cache

groups

-

Group

name

Specifies

the

name

of

the

external

cache

group

to

which

this

servlet

is

published.

ID

generator

Specifies

a

user-written

interface

for

handling

parameters,

attributes,

and

sessions.

The

value

must

represent

a

full

package

and

class

name

of

a

class

extending

com.ibm.websphere.servlet.cache.IdGenerator.

The

properties

specified

in

the

Application

Assembly

Tool

are

used

and

passed

to

the

IdGenerator

in

the

initialize

method

inside

a

com.ibm.websphere.servlet.cache.CacheConfig

object.

Data

type

String

Chapter

2.

Using

Web

applications

57

Meta

data

generator

Specifies

a

user-written

interface

for

handling

invalidation,

priority

levels,

and

external

cache

groups.

The

value

must

represent

the

full

package

and

class

name

of

a

class

extending

com.ibm.websphere.servlet.cache.MetaDataGenerator.

The

properties

specified

in

the

Application

Assembly

Tool

are

used

and

passed

to

the

MetaDataGenerator

in

the

initialize

method

inside

a

com.ibm.websphere.servlet.cache.CacheConfig

object.

Data

type

String

Web

components

assembly

settings

Use

this

page

to

set

the

assembly

properties

for

the

components

that

make

up

a

Web

module.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Web

Components

5.0.2

Or

use

the

Assembly

Toolkit

to

set

the

web

components

assembly

settings.

Component

name

Specifies

the

name

of

the

servlet

or

JavaServer

Pages(TM)

(JSP)

file.

This

name

must

be

unique

within

the

Web

module.

Data

type

String

Display

name

Specifies

a

short

name

that

is

intended

for

display

by

GUIs.

Data

type

String

Description

Contains

a

description

of

the

servlet

or

JSP

file.

Data

type

String

Component

type

Specifies

the

type

of

Web

component.

Valid

values

are

servlet

or

JSP

file.

Data

type

String

Class

name

Specifies

the

full

path

name

for

the

servlet

class.

Data

type

String

JSP

file

Specifies

the

full

path

name

for

the

JSP

file.

Data

type

String

58

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Load

on

startup

Indicates

whether

this

servlet

loads

at

the

startup

of

the

Web

application.

The

default

is

false

(the

check

box

is

not

selected).

This

field

also

specifies

a

positive

integer

indicating

the

order

in

which

the

servlet

is

to

load.

Lower

integers

are

loaded

before

higher

integers.

If

no

value

is

specified,

or

if

the

value

specified

is

not

a

positive

integer,

the

container

is

free

to

load

the

servlet

at

any

time

in

the

startup

sequence.

Data

type

Boolean

Default

False

Small

icon

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(16x16

pixels).

Use

the

image

as

an

icon

to

represent

the

Web

component

in

a

GUI.

Data

type

String

Large

icon

Specifies

a

JPEG

or

GIF

file

containing

a

large

image

(32x32

pixels).

Use

the

image

as

an

icon

to

represent

the

Web

component

in

a

GUI.

Data

type

String

Run

as

role

name

Enter

a

role

name

that

represents

the

user

account

under

which

the

servlet

executes.

The

default

role

name

is

blank,

which

indicates

the

servlet

runs

under

the

user

that

logged

into

the

application

server.

The

role

name

of

″all

role″

indicates

the

servlet

can

execute

under

different

users.

Data

type

String

Description

In

this

optional

field,

enter

a

description

that

explains

the

importance

of

the

role,

and

where

and

how

the

role

can

be

used.

Data

type

String

Run

as

role

mode

Indicates

a

security

role

that

is

defined

in

the

enterprise

application.

Data

type

String

Local

Transactions

-

Unresolved

action

Specifies

the

action

the

Web

container

must

take

if

resources

in

a

local

transaction

are

uncommitted

by

an

application.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

A

local

transaction

context

is

provided

by

the

container

in

the

absence

of

a

global

transaction

context.

Data

type

String

Default

Rollback

Range

valid

values

are

Commit

Rollback

Additional

information

about

these

settings

follows:

Chapter

2.

Using

Web

applications

59

Commit

At

end

of

the

local

transaction

context,

the

container

instructs

all

the

unresolved

local

transactions

to

commit.

Rollback

(default)

At

end

of

the

local

transaction

context,

the

container

instructs

all

the

unresolved

local

transactions

to

rollback.

Web

modules

assembly

settings

Use

this

page

to

set

the

assembly

properties

for

web

modules.

Web

modules

are

composed

of

one

or

more

web

components.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

application_instance

>

Web

Modules

File

name

Specifies

the

file

name

of

the

Web

module,

relative

to

the

top

level

of

the

application

package.

Alternative

DD

Specifies

the

file

name

for

an

alternative

deployment

descriptor

file

to

use

instead

of

the

original

deployment

descriptor

file

in

the

module’s

JAR

file.

This

file

is

the

post-assembly

version

of

the

deployment

descriptor

file.

(The

original

deployment

descriptor

file

can

be

edited

to

resolve

dependencies

and

security

information.

Directing

the

use

of

the

alternative

deployment

descriptor

allows

you

to

keep

the

original

deployment

descriptor

file

intact).

The

value

of

the

Alternative

DD

property

must

be

the

full

path

name

of

the

deployment

descriptor

file

relative

to

the

module’s

root

directory.

By

convention,

the

file

is

in

the

ALT-INF

directory.

If

this

property

is

not

specified,

the

deployment

descriptor

file

is

read

directly

from

the

module’s

JAR

file.

Context

root

Specifies

the

context

root

of

the

Web

application.

The

context

root

is

combined

with

the

defined

servlet

mapping

(from

the

WAR

file)

to

compose

the

full

URL

that

users

type

to

access

the

servlet.

For

example,

if

the

context

root

is

/gettingstarted

and

the

servlet

mapping

is

MySession,

then

the

URL

is

http://host:port/gettingstarted/MySession.

Classpath

Specifies

the

class

path

for

resources

used

by

the

Web

application,

relative

to

the

ear

file..

If

your

Web

application

requires

access

to

classes

within

an

ear

file,

specify

the

relative

path

of

the

classes

in

this

field.

Display

name

Specifies

a

short

name

that

is

intended

to

be

displayed

by

GUIs.

Description

Contains

a

description

of

the

Web

module.

Distributable

Specifies

that

this

Web

application

is

programmed

appropriately

to

deploy

into

a

distributed

servlet

container.

Small

icon

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(16x16

pixels).

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

60

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Large

icon

Specifies

a

JPEG

or

GIF

file

containing

a

large

image

(32x32

pixels).

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

Session

configuration

Indicates

that

session

configuration

information

is

present.

Checking

this

box

makes

the

Session

timeout

property

editable.

Session

timeout

Specifies

a

time

period,

in

seconds,

after

which

a

client

is

considered

inactive.

The

default

value

is

zero,

indicating

that

the

session

timeout

never

expires.

Login

configuration

--

Authentication

method

Specifies

an

authentication

method

to

use.

As

a

prerequisite

to

gaining

access

to

any

Web

resources

protected

by

an

authorization

constraint,

a

user

must

authenticate

by

using

the

configured

mechanism.

A

Web

application

can

authenticate

a

user

to

a

Web

server

by

using

one

of

the

following

mechanisms:

HTTP

basic

authentication,

HTTP

digest

authentication,

HTTPS

client

authentication,

and

form-based

authentication.

v

HTTP

basic

authentication

is

not

a

secure

protocol

because

the

user

password

is

transmitted

with

a

simple

Base64

encoding

and

the

target

server

is

not

authenticated.

In

basic

authentication,

the

Web

server

requests

a

Web

client

to

authenticate

the

user

and

passes

a

string

called

the

realm

of

the

request

in

which

the

user

is

to

be

authenticated.

v

HTTP

digest

authentication

transmits

the

password

in

encrypted

form.

v

HTTPS

client

authentication

uses

HTTPS

(HTTP

over

SSL)

and

requires

the

user

to

possess

a

public

key

certificate.

v

Form-based

authentication

allows

the

developer

to

control

the

appearance

of

login

screens.

The

Login

configuration

properties

are

used

to

configure

the

authentication

method

that

should

be

used,

the

realm

name

that

should

be

used

for

HTTP

basic

authentication,

and

the

attributes

that

are

needed

by

the

form-based

login

mechanism.

Valid

values

for

this

property

are

Unspecified,

Basic,

Digest,

Form,

and

Client

certification.

HTTP

digest

authentication

is

not

supported

as

a

login

configuration

in

this

product.

Also,

not

all

login

configurations

are

supported

in

all

of

the

product’s

global

security

authentication

mechanisms

(Local

Operating

system,

LTPA,

and

custom

pluggable

user

registry).

HTTP

basic

authentication

and

form-based

login

authentication

are

the

only

authentication

methods

supported

by

the

Local

Operating

system

user

registry.

LTPA

and

the

custom

pluggable

user

registry

are

capable

of

supporting

HTTP

basic

authentication,

form-based

login,

and

HTTPS

client

authentication.

Login

configuration

--

Realm

name

Specifies

the

realm

name

to

use

in

HTTP

basic

authorization.

It

is

based

on

a

user

name

and

password,

sent

as

a

string

(with

a

simple

Base64

encoding).

An

HTTP

realm

is

a

string

that

allows

URIs

to

be

grouped

together.

For

example,

if

a

user

accesses

a

secured

resource

on

a

Web

server

within

the

″finance

realm,″

subsequent

access

to

the

same

or

different

resource

within

the

same

realm

does

not

result

in

a

repeat

prompt

for

a

user

ID

and

password.

Login

configuration

--

Login

page

Specifies

the

location

of

the

login

form.

If

form-based

authentication

is

not

used,

this

property

is

disabled.

Chapter

2.

Using

Web

applications

61

Form

Login

Config

--

Error

page

Specifies

the

location

of

the

error

page.

If

form-based

authentication

is

not

used,

this

property

is

disabled.

Reload

interval

Specifies

a

time

interval,

in

seconds,

in

which

the

file

system

of

the

Web

application

is

scanned

for

updated

files.

The

default

is

3

seconds.

Reloading

enabled

Specifies

whether

file

reloading

is

enabled.

The

default

is

true.

Default

error

page

Specifies

a

file

name

for

the

default

error

page.

If

no

other

error

page

is

specified

in

the

application,

this

error

page

is

used.

Additional

classpath

Specifies

the

full

class

path

that

will

be

used

to

reference

classes

outside

of

those

specified

in

the

archive.

If

your

Web

application

requires

access

to

classes

not

contained

in

the

archive

file,

specify

the

full

path

for

those

classes

in

this

field.

File

serving

enabled

Specifies

whether

file

serving

is

enabled.

File

serving

allows

the

application

to

serve

static

file

types,

such

as

HTML

and

GIF.

File

serving

can

be

disabled

if

the

application

contains

only

dynamic

components.

The

default

value

is

true.

Directory

browsing

enabled

Specifies

whether

directory

browsing

is

enabled.

Directory

browsing

allows

the

application

to

browse

disk

directories.

Directory

browsing

can

be

disabled

if,

you

want

to

protect

data.

The

default

value

is

true.

Serve

servlets

by

classname

Specifies

whether

a

servlet

can

be

served

by

requesting

its

class

name.

Usually,

servlets

are

served

only

through

a

URI

reference.

The

class

name

is

the

actual

name

of

the

servlet

on

disk.

For

example,

a

file

named

SnoopServlet.java

compiles

into

SnoopServlet.class.

(This

is

the

class

name.)

SnoopServlet.class

is

normally

invoked

by

specifying

snoop

in

the

URI.

However,

if

the

Serve

servlets

by

classname

property

is

enabled,

the

servlet

is

invoked

by

specifying

SnoopServlet.

The

default

value

is

true.

Virtual

hostname

Specifies

a

virtual

host

name.

A

virtual

host

is

a

configuration

enabling

a

single

host

machine

to

resemble

multiple

host

machines.

This

property

allows

you

to

bind

the

application

to

a

virtual

host

in

order

to

enable

execution

on

that

virtual

host.

Filter

mappings

Specifies

the

filter

mapping

declarations

in

this

application.

The

container

uses

the

filter

mapping

declarations

to

decide

on

the

type

and

order

of

filters

to

apply

to

a

request.

After

the

container

matches

the

request

URI

to

a

servlet,

for

each

filter

mapping

element,

it

determines

what

filters

to

apply

based

on

the

servlet

name

or

the

URL

pattern,

depending

on

the

style

specified.

Filters

are

invoked

in

the

same

order

as

the

one

specified

in

the

list

of

filter

mapping

elements.

The

value

that

you

specify

for

the

filter

name

must

be

the

same

value

as

that

specified

in

the

<filter><filtername>

sub-element

declarations

in

the

deployment

descriptor.

62

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Assembly

property

extensions

Use

this

panel

to

configure

WebSphere

Application

Server

specific

Web

module

extensions,

or

also

referred

to

as

assembly

property

extensions.

This

panel

lists

the

extensions

that

can

be

configured

through

the

tool.

Reach

the

applicable

extension

panel

by

clicking

on

the

panel

name

in

the

navigation

at

the

left,

or

by

double-clicking

the

attribute

name

in

the

list

provided.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

Assembly

properties

for

a

Web

module

include:

v

File

serving

attributes

v

Invoker

attributes

v

JavaServer

Pages

(JSP)

attributes

v

Multipurpose

Internet

Mail

Extensions

(MIME)

filters

v

Servlet

caching

configurations

File

serving

attribute

assembly

settings

File

serving

allows

a

Web

application

to

serve

static

file

types,

such

as

HTML.

File-serving

attributes

are

used

by

the

servlet

that

implements

file-serving

behavior.

Access

this

page

by

traversing

the

following

path

in

the

Application

AssemblyTool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

File

Serving

Attribute

(Name)

Specifies

the

name

of

an

attribute.

Data

type

String

File

Serving

Attribute

(Value)

Specifies

the

value

of

an

attribute.

Data

type

String

Invoker

attribute

assembly

settings

Invoker

attributes

are

used

by

the

servlet

that

implements

the

invocation

behavior.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

>

Assembly

Property

Extensions

Invoker

Attribute

(Name)

Specifies

the

name

of

an

attribute.

Data

type

String

Invoker

Attribute

(Value)

Specifies

the

value

of

an

attribute.

Data

type

String

Chapter

2.

Using

Web

applications

63

Error

page

assembly

settings

Error

page

locations

allow

a

servlet

to

find

and

serve

a

URI

to

a

client

based

on

a

specified

error

status

code

or

exception

type.

These

properties

are

used

if

the

error

handler

is

another

servlet

or

JSP

file.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

The

error

page

properties

specify

a

mapping

between

an

error

code

or

exception

type

and

the

path

of

a

resource

in

the

Web

application.

The

container

examines

the

list

in

the

order

that

it

is

defined,

and

attempts

to

match

the

error

condition

by

status

code

or

by

exception

class.

On

the

first

successful

match

of

the

error

condition,

the

container

serves

back

the

resource

defined

in

the

Location

property.

Error

code

Indicates

that

the

error

condition

is

a

status

code.

Data

type

Integer

Error

Code

(Required,

String)

Specifies

an

HTTP

error

code,

for

example,

404.

Data

type

String

Exception

Indicates

that

the

error

condition

is

an

exception

type.

Data

type

String

Exception

type

name

(Required,

String)

Specifies

an

exception

type.

Data

type

String

Location

(Required,

String)

Contains

the

location

of

the

error-handling

resource

in

the

Web

application.

Data

type

String

Web

resource

collections

security

constraint

properties

A

Web

resource

collection

defines

a

set

of

URL

patterns

or

resources

and

HTTP

methods

belonging

to

the

resource,

which

define

the

security

constraints

for

a

Web

component.

Access

this

page

by

traversing

the

following

path

in

the

Application

Assembly

Tool:

Web

Modules

>

component_instance

HTTP

methods

handle

HTTP-based

requests,

such

as

GET,

POST,

PUT,

and

DELETE.

A

URL

pattern

is

a

partial

Uniform

Resource

Locator

that

acts

as

a

template

for

matching

the

pattern

with

existing

full

URLs

in

an

attempt

to

find

a

valid

file.

64

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Web

resource

name

Specifies

the

name

of

a

Web

resource

collection.

Data

type

String

Web

resource

description

Contains

a

description

of

the

Web

resource

collection.

HTTP

methods

Specifies

the

HTTP

methods

to

which

the

security

constraints

apply.

If

no

HTTP

methods

are

specified,

then

the

security

constraint

applies

to

all

HTTP

methods.

The

valid

values

are

GET,

POST,

PUT,

DELETE,

HEAD,

OPTIONS,

and

TRACE.

Data

type

String

URL

pattern

Specifies

URL

patterns

for

resources

in

a

Web

application.

All

requests

that

contain

a

request

path

that

matches

the

URL

pattern

are

subject

to

the

security

constraint.

Data

type

String

Troubleshooting

tips

for

Web

application

deployment

Deployment

of

a

Web

application

is

successful

if

you

can

access

the

application

by

typing

a

Uniform

Resource

Locator

(URL)

in

a

browser,

or

if

you

can

access

the

application

by

following

a

link.

If

you

cannot

access

your

application,

follow

these

steps

to

eliminate

some

common

errors

that

can

occur

during

migration

or

deployment.

Web

module

does

not

run

in

WebSphere

Application

Server

Version

5.

Symptom

Your

Web

module

does

not

run

when

you

migrate

it

to

Version

5

Problem

In

Version

4.x,

the

classpath

setting

that

affected

visibility

was

Module

Visibility

Mode.

In

Version

5,

you

must

use

class

loader

policies

to

set

visibility.

Recommended

response

Reassemble

an

existing

module,

or

change

the

visibility

settings

in

the

class

loader

policies.

in

the

class

loader

policies.

See

article

Migration

of

module

visibility

modes

from

Version

4.x

for

more

information

and

examples.

Welcome

page

is

not

visible.

Symptom

You

cannot

access

an

application

with

a

Web

path

of:

/webapp/myapp

Problem

The

default

welcome

page

for

a

Web

application

is

assumed

to

be

index.html.

You

cannot

access

the

default

page

of

the

myapp

application

unless

it

is

named

index.html.

Recommended

response

To

identify

a

different

welcome

page,

modify

the

properties

of

the

Web

module

during

assembly.

See

article

Assembling

Web

modules

for

more

information.

Chapter

2.

Using

Web

applications

65

HTML

files

are

not

found.

Symptom

Your

Web

application

ran

successfully

on

prior

versions,

but

now

you

encounter

errors

that

the

welcome

page

(typically

index.html),

or

referenced

HTML

files

are

not

found:

Error

404:

File

not

found:

Banner.html

Error

404:

File

not

found:

HomeContent.html

Problem

For

security

and

consistency

reasons,

Web

application

URLs

are

now

case-sensitive

on

all

operating

systems.

Suppose

the

content

of

the

index

page

is

as

follows:

<!DOCTYPE

HTML

PUBLIC

"-//W3C//DTD

HTML

5.0

Frameset//EN">

<HTML>

<TITLE>

Insurance

Home

Page

</TITLE>

<frameset

rows="18,80">

<frame

src="Banner.html"

name="BannerFrame"

SCROLLING=NO>

<frame

src="HomeContent.html"

name="HomeContentFrame">

</frameset>

</HTML>

However

the

actual

file

names

in

the

\WebSphere\AppServer\installedApps\...

directory

where

the

application

is

deployed

are:

banner.html

homecontent.html

Recommended

response

To

correct

this

problem,

modify

the

index.html

file

to

change

the

names

Banner.html

and

HomeContent.html

to

banner.html

and

homecontent.html

to

match

the

names

of

the

files

in

the

deployed

application.

For

current

information

available

from

IBM

Support

on

known

problems

and

their

resolution,

see

the

IBM

Support

page.

IBM

Support

has

documents

that

can

save

you

time

gathering

information

needed

to

resolve

this

problem.

Before

opening

a

PMR,

see

the

IBM

Support

page.

Modifying

the

default

Web

container

configuration

The

Web

container

is

created

initially

with

default

properties

values

suitable

for

simple

Web

applications.

However,

these

values

might

not

be

appropriate

for

more

complex

Web

applications.

Your

application

is

considered

complex

if

it

requires

any

of

the

following

features:

v

virtual

host

v

servlet

caching

v

special

client

request

loads

v

persistent

HTTP

session

support

v

special

HTTP

transport

settings

v

transaction

class

mappings

Modify

the

following

properties

if

you

have

a

complex

application:

1.

If

your

Web

application

requires

a

virtual

host,

other

than

the

default_host,

or

requires

servlet

caching,

modify

the

Web

container

General

Properties.

2.

If

your

application

requires

persistent

HTTP

session

support,

modify

the

Web

Container

Additional

Properties

>

Session

Management

setting.

66

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

3.

If

your

application

requires

one

of

the

following

HTTP

transport

settings:

v

Unique

hostname

and

port

for

client

access

v

SSL

enablement

modify

the

Web

Container

Additional

Properties

>

HTTP

transports

setting.

4.

If

your

application

requires

global

settings

for

internal

servlets

for

WAR

files

packaged

by

third-party

tools,

modify

the

Web

Container

Additional

Properties

>

Custom

Properties

setting.

5.

If

your

application

uses

transaction

class

mappings

to

classify

workload,

modify

the

Web

Container

Additional

Properties

>

Advanced

Settings.

Web

container

A

Web

container

handles

requests

for

servlets,

JavaServer

Pages

(JSP)

files,

and

other

types

of

files

that

include

server-side

code.

The

Web

container

creates

servlet

instances,

loads

and

unloads

servlets,

creates

and

manages

request

and

response

objects,

and

performs

other

servlet

management

tasks.

The

Web

server

plug-ins,

provided

by

the

WebSphere

Application

Server,

help

supported

Web

servers

pass

servlet

requests

to

Web

containers.

Web

container

settings

Use

this

page

to

configure

the

web

container

settings.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_instance

>

Web

container.

Configuration

-

General

Properties

Default

virtual

host

Specifies

a

virtual

host

that

enables

a

single

host

machine

to

resemble

multiple

host

machines.

Resources

associated

with

one

virtual

host

cannot

share

data

with

resources

associated

with

another

virtual

host,

even

if

the

virtual

hosts

share

the

same

physical

machine.

Select

a

virtual

host

option:

Default

Host

The

product

provides

a

default

virtual

host

with

some

common

aliases,

such

as

the

machine

IP

address,

short

host

name,

and

fully

qualified

host

name.

The

alias

comprises

the

first

part

of

the

path

for

accessing

a

resource

such

as

a

servlet.

For

example,

it

is

localhost:9080

in

the

request

http://localhost:9080/myServlet.

Admin

Host

This

is

another

name

for

the

application

server;

also

known

as

server1

in

the

base

installation.

This

process

supports

the

use

of

the

administrative

console.

Servlet

caching

Specifies

that

if

a

servlet

is

invoked

once

and

it

generates

output

to

be

cached,

a

cache

entry

is

created

containing

not

only

the

output,

but

also

side

effects

of

the

invocation.

These

side

effects

can

include

calls

to

other

servlets

or

Java

Server

Pages

(JSP)

files,

as

well

as

metadata

about

the

entry,

including

timeout

and

entry

priority

information.

Enable

servlet

caching

Check

this

box

to

enable

servlet

caching.

Chapter

2.

Using

Web

applications

67

Web

module

settings

Use

this

page

to

configure

Web

module

settings.

Access

this

page

by

traversing

the

following

path

in

the

administrative

console:

Applications

>

Enterprise

Application

>

application_instance

>

Web

Module

URI

Specifies

a

URI

that,

when

resolved

relative

to

the

application

URL,

specifies

the

location

of

the

module

archive

contents

on

a

file

system.

The

URI

must

match

the

ModuleRef

URI

in

the

deployment

descriptor

of

an

application

if

the

module

was

packaged

as

part

of

a

deployed

application

or

enterprise

archive

(EAR)

file.

Name

Specifies

the

unique

display

name

for

the

module.

Alternate

DD

Specifies

the

file

name

for

an

alternative

deployment

descriptor

file

to

use

instead

of

the

original

deployment

descriptor

file

in

the

module

JAR

file.

This

file

is

the

post-assembly

version

of

the

deployment

descriptor

file.

You

can

edit

the

original

deployment

descriptor

file

to

resolve

dependencies

and

security

information.

Specifying

the

use

of

the

alternative

deployment

descriptor

keeps

the

original

deployment

descriptor

file

intact.

The

value

of

the

Alternate

DD

property

must

be

the

full

path

name

of

the

deployment

descriptor

file,

relative

to

the

module

root

directory.

By

convention,

the

file

is

in

the

ALT-INF

directory.

If

this

property

is

not

specified,

the

deployment

descriptor

file

is

read

from

the

module

JAR

file.

Starting

weight

Specifies

the

order

in

which

modules

are

started.

Lower

weighted

modules

are

started

before

higher

weighted

modules.

Prefer

WEB-INF

Classes

Specifies

classes

to

load

in

WEB-INF

before

any

other

classes.

Implementing

the

application

class

loader

is

recommended

so

that

classes

and

resources

packaged

within

the

WAR

file

load

before

classes

and

resources

residing

in

container-wide

library

JAR

files.

Initial

State

Specifies

the

default

state

of

this

application

at

server

startup.

Web

Module

Deployment

settings

Use

this

page

to

configure

an

instance

of

Web

module

deployment.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Application

>

application_instance

>

Web

Modules

>

Web

Module_instance.

URI

Specifies

a

URI

that,

when

resolved

relative

to

the

application

URL,

specifies

the

location

of

the

module

archive

contents

on

a

file

system.

The

URI

must

match

the

ModuleRef

URI

in

the

deployment

descriptor

of

an

application

if

the

module

was

packaged

as

part

of

a

deployed

application

or

enterprise

archive

(EAR)

file.

Alternate

DD

Specifies

the

file

name

for

an

alternative

deployment

descriptor

file

to

use

instead

of

the

original

deployment

descriptor

file

in

the

module

JAR

file.

68

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

This

file

is

the

post-assembly

version

of

the

deployment

descriptor

file.

You

can

edit

the

original

deployment

descriptor

file

to

resolve

dependencies

and

security

information.

Specifying

the

use

of

the

alternative

deployment

descriptor

keeps

the

original

deployment

descriptor

file

intact.

The

value

of

the

Alternate

DD

property

must

be

the

full

path

name

of

the

deployment

descriptor

file,

relative

to

the

module

root

directory.

By

convention,

the

file

is

in

the

ALT-INF

directory.

If

this

property

is

not

specified,

the

deployment

descriptor

file

is

read

from

the

module

JAR

file.

Starting

weight

Specifies

the

order

in

which

modules

are

started.

Lower

weighted

modules

are

started

before

higher

weighted

modules.

Classloader

Mode

Specifies

whether

the

class

loader

should

search

in

the

parent

class

loader

or

in

the

application

class

loader

first

to

load

a

class.

The

standard

for

JDK

class

loaders

and

WebSphere

class

loaders

is

PARENT_FIRST.

By

specifying

PARENT_LAST,

your

application

can

override

classes

contained

in

the

parent

class

loader,

but

this

action

can

potentially

result

in

ClassCastException

or

LinkageErrors

if

you

have

mixed

use

of

overriden

classes

and

non-overriden

classes.

The

options

are

PARENT_FIRST

and

PARENT_LAST.

The

default

is

to

search

in

the

parent

class

loader

before

searching

in

the

application

class

loader

to

load

a

class.

Data

type

String

Default

PARENT_FIRST

Web

container

advanced

settings

Use

this

page

to

support

Web

container

advanced

settings.

This

support

includes

Network

QoS

and

transaction

class

mapping

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

name

>

Web

Container

>

Advanced

Settings.

Network

QoS

Specifies

the

parameter

that

will

be

used

to

classify

outbound

data

that

is

delivered

in

response

to

HTTP

and

HTTPS

requests.

The

classification

parameters

are

used

to

construct

an

ApplicationData

parameter

for

the

TCP/IP

network

service,

which

is

called

Quality

of

Service

(QoS).

The

ApplicationData

parameter

is

used

in

a

QoS

PolicyRule

statement.

You

can

specify

at

most

one

classification

parameter.

If

you

do

not

specify

a

classification

parameter,

the

response

data

will

not

be

classified

to

the

network

agent.

Parameter

Description

HOST

Indicates

that

the

Host

value

from

the

Host

header,

not

including

the

port,

is

to

be

used

used

to

construct

an

ApplicationData

parameter.

If

you

specify

this

parameter,

WebSphere

for

z/OS

classifies

the

outbound

response

data

by

using

the

HOST

value.

In

the

request:

http://www.mycompany.com/mywebap/myservlet

www.mycompany.com

represents

the

host

value.

Chapter

2.

Using

Web

applications

69

URI

Indicates

that

the

part

of

the

Universal

Resource

Locator

that

specifies

the

path

to

a

resource

is

to

be

used

to

construct

an

ApplicationData

parameter.

If

you

specify

this

parameter,

WebSphere

for

z/OS

classifies

the

outbound

response

data

by

using

the

URI

value.

The

path

must

be

specified

exactly

as

it

is

entered

in

a

browser

because

the

check

for

this

path

is

case

sensitive.

In

the

request:

http://www.mycompany.com/mywebap/myservlet

/mywebap/myservlet

represents

the

URI

value.

HOSTURI

Indicates

that

the

HOST

and

URI,

concatenated

together,

are

to

be

used

to

construct

an

ApplicationData

parameter.

If

you

specify

this

parameter,

WebSphere

for

z/OS

classifies

the

outbound

response

using

the

concatenated

HOST

and

URI

value.

In

the

request:

Get

request:

http://www.mycompany.com/mywebap/myservlet

www.mycompany.com/mywebap/myservlet

represents

the

concatentated

HOST

and

URI

value.

TCLASS

Indicates

that

a

valid

Workload

Management

(WLM)

transaction

class

is

to

be

used

to

construct

an

ApplicationData

parameter.

If

you

specify

this

parameter,

you

must

specify

the

fully

qualified

name

of

the

transaction

class

mapping

file

on

the

Transaction

Class

Mapping

property.

Transaction

Class

Mapping

Specifies

the

fully

qualified

name

of

the

file

that

contains

the

rules

for

classifying

the

Workload

Management

Transaction

Class

for

HTTP

or

HTTPS

requests.

The

file

name

is

class

sensitive.

For

example,

if

tclass.conf

is

the

name

of

your

transaction

class

mapping

file,

you

would

specify

the

following

for

the

value

on

this

property:

/mydir/tclass.conf

where

mydir

is

the

fully

qualified

directory

where

the

tclass.conf

file

is

located.

For

example

/mydir/tclass.conf

Web

container

custom

properties

Use

this

page

to

configure

arbitrary

name-value

pairs

of

data,

where

the

name

is

a

property

key

and

the

value

is

a

string

value

that

can

be

used

to

set

internal

system

configuration

properties.

Defining

a

new

property

enables

you

to

configure

a

setting

beyond

that

which

is

available

in

the

administrative

console.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name>

Web

Container

>

Custom

Properties.

Name

Specifies

the

name

(or

key)

for

the

property.

Data

type

String

Value

Specifies

the

value

paired

with

the

specified

name.

Data

type

String

70

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Description

Provides

information

about

the

name-value

pair.

Data

type

String

Global

settings

for

internal

servlets

Web

Archive

(WAR)

files

packaged

using

third-party

tools

cannot

specify

behavior

for

the

services

exposed

by

the

Web

container

internal

servlets.

You

can

globally

enable/disable

internal

servlets

for

all

Web

applications

at

the

Web

container

level

by

creating

name-value

pairs

such

as:

Name

Value

fileServingEnabled

true

directoryBrowsingEnabled

true

serveServletsByClassnameEnabled

true

Settings

defined

at

the

Application

Assembly

Tool

level

take

precedence

over

the

global

settings

set

through

the

custom

properties

at

the

Web

container

level.

Web

application

deployment

extensions

continue

to

hold

configuration

information

for

the

services

provided

by

the

internal

servlets,

and

take

precedence

over

the

global

settings

set

through

the

custom

properties

at

the

Web

container

level.

UTF-8

encoded

URLs

WebSphere

Application

Server

Version

5.1,

introduces

support

for

UTF-8

encoded

Uniform

Resource

Locators

(URLs)

to

support

the

double

byte

characters

in

URLs.

The

UTF-8

encoded

URL

feature

is

enabled

by

default.

You

can

prevent

the

web

container

from

explicitly

decoding

URLs

in

UTF-8

and

have

them

use

the

ISO-8859

standard

as

per

the

current

HTTP

specification

by

using

the

following

name-value

pair:

Name

Value

DecodeUrlAsUTF8

false

Web

applications:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

Web

applications.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

“Web

applications:

Resources

for

learning”

v

“Web

applications:

Resources

for

learning”

v

“Web

applications:

Resources

for

learning”

Chapter

2.

Using

Web

applications

71

Programming

model

and

decisions

v

J2EE

BluePrints

for

Web

applications

v

Redbook

on

the

design

and

implementation

of

Servlets,

JSP

files,

and

enterprise

beans

Programming

instructions

and

examples

v

Redbook

on

Servlet

and

JSP

file

Programming

v

Sun’s

JavaTM

Tutorial

on

Servlets

v

Introduction

to

JavaServer

Pages

-

Tutorial

v

Bean

Scripting

Framework

description

v

Web

delivered

samples

in

the

Samples

Gallery

Programming

specifications

v

Java

2

Software

Development

Kit

(SDK)

v

Servlet

2.3

Specification

v

JavaServer

Pages

1.2

Specification

v

Differences

between

JavaScript

and

ECMAScript

v

ISO

8859

Specifications

72

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://www-4.ibm.com/software/webservers/appserv/education.html#online
http://www.mozilla.org/rhino/bsf.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Chapter

3.

Managing

HTTP

sessions

IBM

WebSphere

Application

Server

provides

a

service

for

managing

HTTP

sessions:

Session

Manager.

The

key

activities

for

session

management

are

summarized

below.

Before

you

begin

these

steps,

make

sure

you

are

familiar

with

the

programming

model

for

accessing

HTTP

session

support

in

the

applications

following

the

Servlet

2.3

API.

1.

Plan

your

approach

to

session

management,

which

could

include

session

tracking,

session

recovery,

and

session

clustering.

2.

Create

or

modify

your

own

applications

to

use

session

support

to

maintain

sessions

on

behalf

of

Web

applications.

3.

5.0.2 +

Assemble

your

application.

4.

5.0.1

Assemble

your

application.

5.

Deploy

your

application.

6.

Ensure

the

administrator

appropriately

configures

session

management

in

the

administrative

domain.

7.

Adjust

configuration

settings

and

perform

other

tuning

activities

for

optimal

use

of

sessions

in

your

environment.

Sessions

A

session

is

a

series

of

requests

to

a

servlet,

originating

from

the

same

user

at

the

same

browser.

Sessions

allow

applications

running

in

a

Web

container

to

keep

track

of

individual

users.

For

example,

a

servlet

might

use

sessions

to

provide

″shopping

carts″

to

online

shoppers.

Suppose

the

servlet

is

designed

to

record

the

items

each

shopper

indicates

he

or

she

wants

to

purchase

from

the

Web

site.

It

is

important

that

the

servlet

be

able

to

associate

incoming

requests

with

particular

shoppers.

Otherwise,

the

servlet

might

mistakenly

add

Shopper_1’s

choices

to

the

cart

of

Shopper_2.

A

servlet

distinguishes

users

by

their

unique

session

IDs.

The

session

ID

arrives

with

each

request.

If

the

user’s

browser

is

cookie-enabled,

the

session

ID

is

stored

as

a

cookie.

As

an

alternative,

the

session

ID

can

be

conveyed

to

the

servlet

by

URL

rewriting,

in

which

the

session

ID

is

appended

to

the

URL

of

the

servlet

or

JavaServer

Pages

(JSP)

file

from

which

the

user

is

making

requests.

For

requests

over

HTTPS

or

Secure

Sockets

Layer

(SSL),

Another

alternative

is

to

use

SSL

information

to

identify

the

session.

©

Copyright

IBM

Corp.

2003

73

Migrating

HTTP

sessions

Note:

In

Version

5

default

write

frequency

mode

is

TIME_BASED_WRITES,

which

is

different

from

Version

4.0

and

3.5

default

mode

of

END_OF_SERVICE.

Migrating

from

Version

4.0

No

programmatic

changes

are

required

to

migrate

from

version

4.0

to

version

5.

Migrating

from

Version

3.5

If

you

have

Version

3.5

applications

running

in

Servlet

2.1

mode,

some

of

the

following

Version

5

differences

might

influence

how

you

choose

to

track

and

manage

sessions.

1.

During

application

development,

modify

session-related

APIs

as

needed.

Some

API

changes

are

required

in

order

to

redeploy

existing

applications

on

Version

5.

These

include

changes

to

the

HttpSession

API

itself

as

well

as

issues

associated

with

moving

to

support

for

the

Servlet

2.3

specification.

Certain

Servlet

2.1

API

methods

have

been

deprecated

in

Servlet

2.3

API

.

These

deprecated

APIs

still

work

in

Version

5.0,

but

they

may

be

removed

in

a

future

version

of

the

API.

Changes

are

summarized

in

the

following

list:

v

Replace

instances

of

getValue()

with

getAttribute()

v

Replace

instances

of

getValueNames()

with

getAttributeNames()

v

Replace

instances

of

removeValue()

with

removeAttribute()

v

Replace

instances

of

putValue()

with

setAttribute()
2.

During

application

development,

modify

Web

application

behavior

as

needed.

In

accordance

with

the

Servlet

2.3

specification,

HttpSession

objects

must

be

scoped

within

a

single

Web

application

context;

they

may

not

be

shared

between

contexts.

This

means

that

a

session

can

no

longer

span

Web

applications.

Objects

added

to

a

session

by

a

servlet

or

JSP

in

one

Web

application

cannot

be

accessed

from

another

Web

application.

The

same

session

ID

may

be

shared

(because

the

same

cookie

is

in

use),

but

each

Web

application

will

have

a

unique

session

associated

with

the

session

ID.

Version

5

provides

a

feature

that

can

be

used

to

extend

scope

of

a

session

to

enterprise

application.

3.

Use

administrative

tools

to

configure

Session

Manager

security

settings

as

needed.

Relative

to

session

security,

the

default

Session

Manager

setting

for

Integrate

Security

is

now

false.

This

is

different

from

the

default

setting

in

some

earlier

releases.

4.

Use

administrative

tools

to

configure

the

JSP

enabler

and

application

server

as

needed.

In

Version

3.5

of

the

product,

JSP

files

that

contained

the

usebean

tag

with

scope

set

to

session

did

not

always

work

properly

when

session

persistence

was

enabled.

Specifically,

the

JSP

writer

needed

to

write

a

scriplet

to

explicitly

set

the

attribute

(that

is,

to

call

setAttribute())

if

it

was

changed

as

part

of

JSP

processing.

Two

new

features

in

Version

5.0

help

address

this

problem:

v

You

can

set

dosetattribute

to

true

on

the

JSP

InitParameter.

v

You

can

set

the

Write

Contents

option

to

Write

all.

The

differences

between

the

two

solutions

are

summarized

in

the

following

table:

74

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Applies

to

Configured

at

Action

dosetattribute

set

to

true

JSP

JSP

enabler

Assures

that

JSP

session-scoped

beans

always

call

setAttribute()

Write

Contents

option

set

to

Write

all

servlet

or

JSP

application

server

All

session

data

(changed

or

unchanged)

is

written

to

the

external

location

If

session

persistence

is

enabled

and

a

class

reload

for

the

Web

application

occurs,

the

sessions

associated

with

the

Web

application

are

maintained

in

the

persistent

store

and

will

be

available

after

the

reload.

Developing

session

management

in

servlets

This

information,

combined

with

the

coding

example

SessionSample.java,

provides

a

programming

model

for

implementing

sessions

in

your

own

servlets.

1.

Get

the

HttpSession

object.

To

obtain

a

session,

use

the

getSession()

method

of

the

javax.servlet.http.HttpServletRequest

object

in

the

Java

Servlet

2.3

API.

When

you

first

obtain

the

HttpSession

object,

the

Session

Management

facility

uses

one

of

three

ways

to

establish

tracking

of

the

session:

cookies,

URL

rewriting,

or

Secure

Sockets

Layer

(SSL)

information.

Assume

the

Session

Management

facility

uses

cookies.

In

such

a

case,

the

Session

Management

facility

creates

a

unique

session

ID

and

typically

sends

it

back

to

the

browser

as

a

cookie.

Each

subsequent

request

from

this

user

(at

the

same

browser)

passes

the

cookie

containing

the

session

ID,

and

the

Session

Management

facility

uses

this

ID

to

find

the

user’s

existing

HttpSession

object.

In

Step

1

of

the

code

sample,

the

Boolean(create)

is

set

to

true

so

that

the

HttpSession

object

is

created

if

it

does

not

already

exist.

(With

the

Servlet

2.3

API,

the

javax.servlet.http.HttpServletRequest.getSession()

method

with

no

boolean

defaults

to

true

and

creates

a

session

if

one

does

not

already

exist

for

this

user.)

2.

Store

and

retrieve

user-defined

data

in

the

session.

After

a

session

is

established,

you

can

add

and

retrieve

user-defined

data

to

the

session.

The

HttpSession

object

has

methods

similar

to

those

in

java.util.Dictionary

for

adding,

retrieving,

and

removing

arbitrary

Java

objects.

In

Step

2

of

the

code

sample,

the

servlet

reads

an

integer

object

from

the

HttpSession,

increments

it,

and

writes

it

back.

You

can

use

any

name

to

identify

values

in

the

HttpSession

object.

The

code

sample

uses

the

name

sessiontest.counter.

Because

the

HttpSession

object

is

shared

among

servlets

that

the

user

might

access,

consider

adopting

a

site-wide

naming

convention

to

avoid

conflicts.

3.

(Optional)

Output

an

HTML

response

page

containing

data

from

the

HttpSession

object.

4.

Provide

feedback

to

the

user

that

an

action

has

taken

place

during

the

session.

You

may

want

to

pass

HTML

code

to

the

client

browser

indicating

that

an

action

has

occurred.

For

example,

in

step

3

of

the

code

sample,

the

servlet

Chapter

3.

Managing

HTTP

sessions

75

generates

a

Web

page

that

is

returned

to

the

user

and

displays

the

value

of

the

sessiontest.counter

each

time

the

user

visits

that

Web

page

during

the

session.

5.

(Optional)

Notify

Listeners.

Objects

stored

in

a

session

that

implement

the

javax.servlet.http.HttpSessionBindingListener

interface

are

notified

when

the

session

is

preparing

to

end

and

become

invalidated.

This

notice

enables

you

to

perform

post-session

processing,

including

permanently

saving

the

data

changes

made

during

the

session

to

a

database.

6.

End

the

session.

You

can

end

a

session:

v

Automatically

with

the

Session

Management

facility

if

a

session

is

inactive

for

a

specified

time.

The

administrators

provide

a

way

to

specify

the

amount

of

time

after

which

to

invalidate

a

session.

v

By

coding

the

servlet

to

call

the

invalidate()

method

on

the

session

object.

Example:

SessionSample.java

import

java.io.*;

import

java.util.*;

import

javax.servlet.*;

import

javax.servlet.http.*;

public

class

SessionSample

extends

HttpServlet

{

public

void

doGet

(HttpServletRequest

request,

HttpServletResponse

response)

throws

ServletException,

IOException

{

//

Step

1:

Get

the

Session

object

boolean

create

=

true;

HttpSession

session

=

request.getSession(create);

//

Step

2:

Get

the

session

data

value

Integer

ival

=

(Integer)

session.getAttribute

("sessiontest.counter");

if

(ival

==

null)

ival

=

new

Integer

(1);

else

ival

=

new

Integer

(ival.intValue

()

+

1);

session.setAttribute

("sessiontest.counter",

ival);

//

Step

3:

Output

the

page

response.setContentType("text/html");

PrintWriter

out

=

response.getWriter();

out.println("<html>");

out.println("<head><title>Session

Tracking

Test</title></head>");

out.println("<body>");

out.println("<h1>Session

Tracking

Test</h1>");

out.println

("You

have

hit

this

page

"

+

ival

+

"

times"

+

"
");

out.println

("Your

"

+

request.getHeader("Cookie"));

out.println("</body></html>");

}

}

Assembling

so

that

session

data

can

be

shared

In

accordance

with

the

Servlet

2.3

API

specification,

by

default

the

Session

Management

facility

supports

session

scoping

by

Web

module.

Only

servlets

in

the

same

Web

module

can

access

the

data

associated

with

a

particular

session.

WebSphere

Application

Server

provides

an

option

that

you

can

use

to

extend

the

scope

of

the

session

attributes

to

an

enterprise

application.

Therefore,

you

can

76

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

share

session

attributes

across

all

the

Web

modules

in

an

enterprise

application.

This

option

is

provided

as

an

IBM

extension.

Restriction:

To

use

this

option,

you

must

install

all

the

Web

modules

in

the

enterprise

application

on

a

given

server.

You

cannot

split

up

Web

modules

in

the

enterprise

application

by

servers.

For

example,

with

an

enterprise

application

containing

two

Web

modules,

you

cannot

use

this

option

when

one

Web

module

is

installed

on

one

server

and

second

Web

module

is

installed

on

a

different

server.

In

such

split

installations,

applications

might

share

session

attributes

across

Web

modules

using

distributed

sessions,

but

session

data

integrity

is

lost

when

concurrent

access

to

a

session

is

made

in

different

Web

modules.

It

also

severely

restricts

use

of

some

Session

Management

features,

like

TIME_BASED_WRITES.

For

enterprise

applications

on

which

this

option

is

enabled,

the

Session

Management

configuration

on

the

Web

module

inside

the

enterprise

application

is

ignored.

Then

Session

Management

configuration

defined

on

enterprise

application

is

used

if

Session

Management

is

overwritten

at

the

enterprise

application

level.

Otherwise,

the

Session

Management

configuration

on

the

Web

container

is

used.

Servlet

API

Behavior

Note:

If

shared

HttpSession

context

is

turned

on

in

an

enterprise

application,

HttpSession

listeners

defined

in

all

the

Web

modules

inside

the

enterprise

application

are

invoked

for

session

events.

The

order

of

listener

invocation

is

not

guaranteed.

Do

the

following

to

share

session

data

across

Web

modules

in

an

enterprise

application:

1.

Start

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT).

2.

In

the

Assembly

Toolkit,

right-click

the

application

(EAR

file)

you

want

to

share

and

click

Open

With

>

Deployment

Descriptor

Editor.In

the

AAT,

click

the

EAR

file

that

you

want

to

share

and

click

IBM

extension

tab.

3.

In

the

application

deployment

descriptor

editor

of

the

Assembly

Toolkit,

select

Shared

session

context

under

WebSphere

Extensions.In

the

AAT,

click

IBM

extension

tab

>

Shared

httpsession

context

>

Apply.

Make

sure

the

class

definition

of

attributes

put

into

session

are

available

to

all

Web

modules

in

the

enterprise

application.

4.

Save

the

application

(EAR)

file.

In

the

Assembly

Toolkit,

after

you

close

the

application

deployment

descriptor

editor,

confirm

that

you

want

to

save

changes

made

to

the

application.

Session

security

support

You

can

integrate

HTTP

sessions

and

security

in

IBM

WebSphere

Application

Server.

When

security

integration

is

enabled

in

the

Session

Management

facility

and

a

session

is

accessed

in

a

protected

resource,

you

can

access

that

session

only

in

protected

resources

from

then

on.

You

cannot

mix

secured

and

unsecured

resources

accessing

sessions

when

security

integration

is

turned

on.

Security

integration

in

the

Session

Management

facility

is

not

supported

in

form-based

login

with

SWAM.

Security

integration

rules

for

HTTP

sessions

Only

authenticated

users

can

access

sessions

created

in

secured

pages

and

are

created

under

the

identity

of

the

authenticated

user.

Only

this

authenticated

user

Chapter

3.

Managing

HTTP

sessions

77

can

access

these

sessions

in

other

secured

pages.

To

protect

these

sessions

from

unauthorized

users,

you

cannot

access

them

from

an

unsecure

page.

Programmatic

details

and

scenarios

IBM

WebSphere

Application

Server

maintains

the

security

of

individual

sessions.

An

identity

or

user

name,

readable

by

the

com.ibm.websphere.servlet.session.IBMSession

interface,

is

associated

with

a

session.

An

unauthenticated

identity

is

denoted

by

the

user

name

anonymous.

IBM

WebSphere

Application

Server

includes

the

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException

class,

which

is

used

when

a

session

is

requested

without

the

necessary

credentials.

The

Session

Management

facility

uses

the

WebSphere

Application

Server

security

infrastructure

to

determine

the

authenticated

identity

associated

with

a

client

HTTP

request

that

either

retrieves

or

creates

a

session.

WebSphere

Application

Server

security

determines

identity

using

certificates,

LPTA,

and

other

methods.

After

obtaining

the

identity

of

the

current

request,

the

Session

Management

facility

determines

whether

to

return

the

session

requested

using

a

getSession()

call

or

not.

The

following

table

lists

possible

scenarios

in

which

security

integration

is

enabled

with

outcomes

dependent

on

whether

the

HTTP

request

is

authenticated

and

whether

a

valid

session

ID

and

user

name

was

passed

to

the

Session

Management

facility.

Unauthenticated

HTTP

request

is

used

to

retrieve

a

session

HTTP

request

is

authenticated,

with

an

identity

of

″FRED″

used

to

retrieve

a

session

No

session

ID

was

passed

in

for

this

request,

or

the

ID

is

for

a

session

that

is

no

longer

valid

A

new

session

is

created.

The

user

name

is

anonymous

A

new

session

is

created.

The

user

name

is

FRED

A

session

ID

for

a

valid

session

is

passed

in.

The

current

session

user

name

is

″anonymous″

The

session

is

returned.

The

session

is

returned.

Session

Management

changes

the

user

name

to

FRED

A

session

ID

for

a

valid

session

is

passed

in.

The

current

session

user

name

is

FRED

The

session

is

not

returned.

An

Unauthorized

Session

Request

Exception

error

is

thrown*

The

session

is

returned.

A

session

ID

for

a

valid

session

is

passed

in.

The

current

session

user

name

is

BOB

The

session

is

not

returned.

An

Unauthorized

Session

Request

Exception

error

is

thrown*

The

session

is

not

returned.

An

Unauthorized

Session

Request

Exception

error

is

thrown*

*

A

com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException

error

is

thrown

to

the

servlet.

Session

management

support

WebSphere

Application

Server

provides

facilities,

grouped

under

the

heading

Session

Management,

that

support

the

javax.servlet.http.HttpSession

interface

described

in

the

Servlet

API

specification.

In

accordance

with

the

Servlet

2.3

API

specification,

the

Session

Management

facility

supports

session

scoping

by

Web

module.

Only

servlets

in

the

same

Web

module

can

access

the

data

associated

with

a

particular

session.

Multiple

requests

78

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

from

the

same

browser,

each

specifying

a

unique

Web

application,

result

in

multiple

sessions

with

a

shared

session

ID.

You

can

invalidate

any

of

the

sessions

that

share

a

session

ID

without

affecting

the

other

sessions.

You

can

configure

a

session

timeout

for

each

Web

application.

A

Web

application

timeout

value

of

0

(the

default

value)

means

that

the

invalidation

timeout

value

from

the

Session

Management

facility

is

used.

When

an

HTTP

client

interacts

with

a

servlet,

the

state

information

associated

with

a

series

of

client

requests

is

represented

as

an

HTTP

session

and

identified

by

a

session

ID.

Session

Management

is

responsible

for

managing

HTTP

sessions,

providing

storage

for

session

data,

allocating

session

IDs,

and

tracking

the

session

ID

associated

with

each

client

request

through

the

use

of

cookies

or

URL

rewriting

techniques.

Session

Management

can

store

session-related

information

in

several

ways:

v

In

application

server

memory

(the

default).

This

information

cannot

be

shared

with

other

application

servers.

v

In

a

database.

This

storage

option

is

known

as

database

persistent

sessions.

v

In

another

WebSphere

Application

Server

instance.

This

storage

option

is

known

as

memory-to-memory

sessions.

The

last

two

options

are

referred

to

as

distributed

sessions.

Distributed

sessions

are

essential

for

using

HTTP

sessions

for

failover

facility.

When

an

application

server

receives

a

request

associated

with

a

session

ID

that

it

currently

does

not

have

in

memory,

it

can

obtain

the

required

session

state

by

accessing

the

external

store

(database

or

memory-to-memory).

If

distributed

session

support

is

not

enabled,

an

application

server

cannot

access

session

information

for

HTTP

requests

that

are

sent

to

servers

other

than

the

one

where

the

session

was

originally

created.

Session

Management

implements

caching

optimizations

to

minimize

the

overhead

of

accessing

the

external

store,

especially

when

consecutive

requests

are

routed

to

the

same

application

server.

Storing

session

states

in

an

external

store

also

provides

a

degree

of

fault

tolerance.

If

an

application

server

goes

offline,

the

state

of

its

current

sessions

is

still

available

in

the

external

store.

This

availability

enables

other

application

servers

to

continue

processing

subsequent

client

requests

associated

with

that

session.

Saving

session

states

to

an

external

location

does

not

completely

guarantee

their

preservation

in

case

of

a

server

failure.

For

example,

if

a

server

fails

while

it

is

modifying

the

state

of

a

session,

some

information

is

lost

and

subsequent

processing

using

that

session

can

be

affected.

However,

this

situation

represents

a

very

small

period

of

time

when

there

is

a

risk

of

losing

session

information.

The

drawback

to

saving

session

states

in

an

external

store

is

that

accessing

the

session

state

in

an

external

location

can

use

valuable

system

resources.

Session

Management

can

improve

system

performance

by

caching

the

session

data

at

the

server

level.

Multiple

consecutive

requests

that

are

directed

to

the

same

server

can

find

the

required

state

data

in

the

cache,

reducing

the

number

of

times

that

the

actual

session

state

is

accessed

in

external

store

and

consequently

reducing

the

overhead

associated

with

external

location

access.

Chapter

3.

Managing

HTTP

sessions

79

Configuring

session

management

by

level

When

you

configure

session

management

at

the

Web

container

level,

all

applications

and

the

respective

Web

modules

in

the

Web

container

normally

inherit

that

configuration,

setting

up

a

basic

default

configuration

for

the

applications

and

Web

modules

below

it.

However,

you

can

set

up

different

configurations

individually

for

specific

applications

and

Web

modules

that

vary

from

the

Web

container

default.

These

different

configurations

override

the

default

for

these

applications

and

Web

modules

only.

Note:

When

you

overwrite

the

default

session

management

settings

on

the

application

level,

all

the

Web

modules

below

that

application

inherit

this

new

setting

unless

they

too

are

set

to

overwrite

these

settings.

1.

Open

the

Administrative

console.

2.

Select

the

level

that

this

configuration

applies

to:

v

For

the

web

container

level:

a.

Click

Servers

>

Application

Servers.

b.

Select

a

server

from

the

list

of

application

servers.

c.

Under

Additional

Properties,

click

Web

Container.
v

For

the

Web

module

level:

a.

Click

Applications

>

Enterprise

Applications.

b.

Select

an

applications

from

the

list

of

applications.

c.

Under

Related

Items,

click

Web

Modules.

d.

Select

a

Web

module

from

the

list

of

Web

modules

defined

for

this

application.
3.

Under

Additional

Properties,

click

Session

Management.

4.

Make

whatever

changes

you

need

to

manage

sessions

5.

If

you

are

working

on

the

Web

module

or

application

level

and

want

these

settings

to

override

the

inherited

Session

Management

settings,

under

General

Properties,

select

Overwrite.

6.

Click

Apply

and

Save.

Session

tracking

options

There

are

several

options

for

session

tracking,

depending

on

what

sort

of

tracking

method

you

want

to

use:

v

Session

tracking

with

cookies

v

Session

tracking

with

URL

rewriting

v

Session

tracking

with

Secure

Sockets

Layer

(SSL)

information

Session

tracking

with

cookies

Tracking

sessions

with

cookies

is

the

default.

No

special

programming

is

required

to

track

sessions

with

cookies.

Session

tracking

with

URL

rewriting

An

application

that

uses

URL

rewriting

to

track

sessions

must

adhere

to

certain

programming

guidelines.

The

application

developer

needs

to

do

the

following:

v

Program

servlets

to

encode

URLs

v

Supply

a

servlet

or

Java

Server

Pages

(JSP)

file

as

an

entry

point

to

the

application

80

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Using

URL

rewriting

also

requires

that

you

enable

URL

rewriting

in

the

Session

Management

facility.

Note:

In

certain

cases,

clients

cannot

accept

cookies.

Therefore,

you

cannot

use

cookies

as

a

session

tracking

mechanism.

Applications

can

use

URL

rewriting

as

a

substitute.

Program

session

servlets

to

encode

URLs

Depending

on

whether

the

servlet

is

returning

URLs

to

the

browser

or

redirecting

them,

include

either

encodeURL(

)

or

encodeRedirectURL(

)

in

the

servlet

code.

Examples

demonstrating

what

to

replace

in

your

current

servlet

code

follow.

Rewrite

URLs

to

return

to

the

browser

Suppose

you

currently

have

this

statement:

out.println("catalog<a>");

Change

the

servlet

to

call

the

encodeURL

method

before

sending

the

URL

to

the

output

stream:

out.println("<a

href=\"");

out.println(response.encodeURL

("/store/catalog"));

out.println("\">catalog");

Rewrite

URLs

to

redirect

Suppose

you

currently

have

the

following

statement:

response.sendRedirect

("http://myhost/store/catalog");

Change

the

servlet

to

call

the

encodeRedirectURL

method

before

sending

the

URL

to

the

output

stream:

response.sendRedirect

(response.encodeRedirectURL

("http://myhost/store/catalog"));

The

encodeURL()

and

encodeRedirectURL()

methods

are

part

of

the

HttpServletResponse

object.

These

calls

check

to

see

if

URL

rewriting

is

configured

before

encoding

the

URL.

If

it

is

not

configured,

the

calls

return

the

original

URL.

If

both

cookies

and

URL

rewriting

are

enabled

and

response.encodeURL()

or

encodeRedirectURL()

is

called,

the

URL

is

encoded,

even

if

the

browser

making

the

HTTP

request

processed

the

session

cookie.

You

can

also

configure

session

support

to

enable

protocol

switch

rewriting.

When

this

option

is

enabled,

the

product

encodes

the

URL

with

the

session

ID

for

switching

between

HTTP

and

HTTPS

protocols.

Supply

a

servlet

or

JSP

file

as

an

entry

point

The

entry

point

to

an

application

(such

as

the

initial

screen

presented)

may

not

require

the

use

of

sessions.

However,

if

the

application

in

general

requires

session

support

(meaning

some

part

of

it,

such

as

a

servlet,

requires

session

support),

then

after

a

session

is

created,

all

URLs

are

encoded

to

perpetuate

the

session

ID

for

the

servlet

(or

other

application

component)

requiring

the

session

support.

The

following

example

shows

how

you

can

embed

Java

code

within

a

JSP

file:

Chapter

3.

Managing

HTTP

sessions

81

<%

response.encodeURL

("/store/catalog");

%>

Session

tracking

with

SSL

information

No

special

programming

is

required

to

track

sessions

with

Secure

Sockets

Layer

(SSL)

information.

To

use

SSL

information,

turn

on

Enable

SSL

ID

tracking

in

the

Session

Management

property

page.

Because

the

SSL

session

ID

is

negotiated

between

the

Web

browser

and

HTTP

server,

this

ID

cannot

survive

an

HTTP

server

failure.

However,

the

failure

of

an

application

server

does

not

affect

the

SSL

session

ID

if

an

external

HTTP

Server

is

present

between

WebSphere

Application

Server

and

the

browser.

SSL

tracking

is

supported

for

the

IBM

HTTP

Server

and

iPlanet

Web

servers

only.

You

can

control

the

lifetime

of

an

SSL

session

ID

by

configuring

options

in

the

Web

server.

For

example,

in

the

IBM

HTTP

Server,

set

the

configuration

variable

SSLV3TIMEOUT

to

provide

an

adequate

lifetime

for

the

SSL

session

ID.

An

interval

that

is

too

short

can

cause

a

premature

termination

of

a

session.

Also,

some

Web

browsers

might

have

their

own

timers

that

affect

the

lifetime

of

the

SSL

session

ID.

These

Web

browsers

may

not

leave

the

SSL

session

ID

active

long

enough

to

serve

as

a

useful

mechanism

for

session

tracking.

Internal

Http

Server

of

WebSphere

also

supports

SSL

Tracking.

When

using

the

SSL

session

ID

as

the

session

tracking

mechanism

in

a

cloned

environment,

use

either

cookies

or

URL

rewriting

to

maintain

session

affinity.

The

cookie

or

rewritten

URL

contains

session

affinity

information

that

enables

the

Web

server

to

properly

route

a

session

back

to

the

same

server

for

each

request.

Configuring

session

tracking

To

configure

session

tracking,

complete

the

following:

1.

Go

to

the

appropriate

level

of

Session

Management.

2.

Specify

which

session

tracking

mechanism

you

want

to

pass

the

session

ID

between

the

browser

and

the

servlet:

v

To

track

sessions

with

cookies,

click

Enable

Cookies.

To

change

the

cookie

settings,

click

Modify.

v

To

track

sessions

with

URL

rewriting,

click

Enable

URL

Rewriting.

If

you

want

to

enable

protocol

switch

rewriting,

click

Enable

protocol

switch

rewriting.

v

To

track

sessions

with

SSL

information,

click

Enable

SSL

ID

tracking.
3.

Click

Apply.

4.

Click

Save.

5.

Define

the

session

recovery

characteristics.

Serializing

access

to

session

data

The

Servlet

API

supports

concurrent

access

to

a

session

in

a

given

server

instance.

WebSphere

Application

Server

provides

an

option

to

prevent

the

concurrent

access

to

a

session

in

a

given

server

instance

so

that

concurrent

modification

of

a

session

does

not

occur

in

a

given

server

instance.

This

prevention

is

achieved

by

synchronizing

the

requests

based

on

session.

When

this

feature

is

turned

on,

a

82

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

session

is

obtained

for

the

request

before

invoking

the

servlet

and

requests

are

synchronized

by

locking

the

session

for

the

servlet

execution

time.

Note

that

synchronization

is

based

on

the

memory

copy

of

session.

So

this

feature

cannot

serialize

requests

across

servers

based

on

session

when

session

affinity

fails.

Restriction:

Use

this

feature

only

when

concurrent

modification

of

the

same

session

data

is

possible

and

is

not

desirable

by

the

application.

This

feature

has

overhead

of

serializing

the

requests

based

on

a

session.

Do

the

following

to

synchronize

session

access:

1.

Select

the

level

of

Session

Management

on

which

you

want

to

serialize

session

access.

2.

Under

Serialize

Session

access,

click

Allow

serial

access.

3.

In

the

Maximum

wait

time

box,

type

the

amount

of

time,

in

milliseconds,

a

servlet

waits

on

a

session

before

continuing

execution.

The

default

is

120000

milliseconds

or

two

minutes.

4.

Select

Allow

access

on

timeout

if

you

want

the

servlet

to

gain

access

to

the

session

and

continue

normal

execution

even

if

the

session

is

still

locked

by

another

servlet.

If

you

do

not

select

this

box,

the

servlet

execution

will

abort

when

the

session

request

times

out.

5.

Click

Apply.

6.

Click

Save.

Session

Management

settings

Use

this

page

to

manage

HTTP

session

support.

This

support

includes

specifying

a

session

tracking

mechanism,

setting

maximum

in-memory

session

count,

controlling

overflow,

and

configuring

session

timeout.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management.

Overwrite

Session

Management

Specifies

whether

or

not

these

session

management

settings

take

precedence

over

those

normally

inherited

from

a

higher

level

for

the

current

application

or

web

module.

By

default,

web

modules

inherit

session

management

settings

from

the

application

level

above

it,

and

applications

inherit

session

management

settings

from

the

web

container

level

above

it.

Session

tracking

mechanism

Specifies

a

mechanism

for

HTTP

session

management.

Mechanism

Function

Default

Chapter

3.

Managing

HTTP

sessions

83

Enable

SSL

ID

Tracking

Specifies

that

session

tracking

uses

Secure

Sockets

Layer

(SSL)

information

as

a

session

ID.

Enabling

SSL

tracking

takes

precedence

over

cookie-based

session

tracking

and

URL

rewriting.

There

are

two

parameters

available

if

you

enable

SSL

ID

tracking:

SSLV3Timeout

and

Secure

Authentication

Service

(SAS).

SSLV3Timeout

specifies

the

time

interval

after

which

SSL

sessions

are

renegotiated.

This

is

a

high

setting

and

modification

does

not

provide

any

significant

impact

on

performance.

The

SAS

parameter

establishes

an

SSL

connection

only

if

it

goes

out

of

the

Java

Virtual

Machine

(JVM)

to

another

JVM.

If

all

the

beans

are

located

within

the

same

JVM,

the

SSL

used

by

SAS

does

not

hinder

performance.

These

are

set

by

editing

the

sas.server.properties

and

sas.client.props

files

located

in

the

install_root\properties

directory,

where

install_root

is

the

directory

where

WebSphere

Application

Server

is

installed.

9600

seconds

84

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Enable

Cookies

Specifies

that

session

tracking

uses

cookies

to

carry

session

IDs.

If

cookies

are

enabled,

session

tracking

recognizes

session

IDs

that

arrive

as

cookies

and

tries

to

use

cookies

for

sending

session

IDs.

If

cookies

are

not

enabled,

session

tracking

uses

Uniform

Resource

Identifier

(URL)

rewriting

instead

of

cookies

(if

URL

rewriting

is

enabled).

Enabling

cookies

takes

precedence

over

URL

rewriting.

Do

not

disable

cookies

in

the

Session

Management

facility

of

the

application

server

that

is

running

the

administrative

application

because

this

action

causes

the

administrative

application

not

to

function

after

a

restart

of

the

server.

As

an

alternative,

run

the

administrative

application

in

a

separate

process

from

your

applications.

Click

Modify

to

change

these

settings.

Enable

URL

Rewriting

Specifies

that

the

session

management

facility

uses

rewritten

URLs

to

carry

the

session

IDs.

If

URL

rewriting

is

enabled,

the

session

management

facility

recognizes

session

IDs

that

arrive

in

the

URL

if

the

encodeURL

method

is

called

in

the

servlet.

Enable

Protocol

Switch

Rewriting

Specifies

that

the

session

ID

is

added

to

a

URL

when

the

URL

requires

a

switch

from

HTTP

to

HTTPS

or

from

HTTPS

to

HTTP.

If

rewriting

is

enabled,

the

session

ID

is

required

to

go

between

HTTP

and

HTTPS.

Maximum

in-memory

session

count

Specifies

the

maximum

number

of

sessions

to

maintain

in

memory.

The

meaning

differs

depending

on

whether

you

are

using

in-memory

or

distributed

sessions.

For

in-memory

sessions,

this

value

specifies

the

number

of

sessions

in

the

base

session

table.

Use

the

Allow

Overflow

property

to

specify

whether

to

limit

sessions

to

this

number

for

the

entire

Session

Management

facility

or

to

allow

additional

sessions

to

be

stored

in

secondary

tables.

For

distributed

Chapter

3.

Managing

HTTP

sessions

85

sessions,

this

value

specifies

the

size

of

the

memory

cache

for

sessions.

When

the

session

cache

has

reached

its

maximum

size

and

a

new

session

is

requested,

the

Session

Management

facility

removes

the

least

recently

used

session

from

the

cache

to

make

room

for

the

new

one.

Note:

5.0.2 +

Do

not

set

this

value

to

a

number

less

than

the

maximum

thread

pool

size

for

your

server.

Overflow

Specifies

that

the

number

of

sessions

in

memory

can

exceed

the

value

specified

by

the

Max

In

Memory

Session

Count

property.

This

option

is

valid

only

in

nondistributed

sessions

mode.

Session

timeout

Specifies

how

long

a

session

can

go

unused

before

it

is

no

longer

valid.

Specify

either

Set

timeout

or

No

timeout.

Specify

the

value

in

minutes

greater

than

or

equal

to

two.

The

value

of

this

setting

is

used

as

a

default

when

the

session

timeout

is

not

specified

in

a

Web

module

deployment

descriptor.

Note

that

to

preserve

performance,

the

invalidation

timer

is

not

accurate

to

the

second.

When

the

Write

Frequency

is

time

based,

ensure

that

this

value

is

least

twice

as

large

as

the

write

interval.

Security

integration

Specifies

that

when

security

integration

is

enabled,

the

session

management

facility

associates

the

identity

of

users

with

their

HTTP

sessions

Serialize

session

access

Specifies

that

concurrent

session

access

in

a

given

server

is

not

allowed.

Maximum

wait

time

Specifies

the

maximum

amount

of

time

a

servlet

request

waits

on

an

HTTP

session

before

continuing

execution.

This

parameter

is

optional

and

expressed

in

seconds.

The

default

is

120,

or

2

minutes.

Under

normal

conditions,

a

servlet

request

waiting

for

access

to

an

HTTP

session

gets

notified

by

the

request

that

currently

owns

the

given

HTTP

session

when

the

request

finishes.

Allow

access

on

timeout

Specifies

whether

the

servlet

is

executed

normally

or

aborted

in

the

event

of

a

timeout.

If

this

box

is

checked,

the

servlet

executes

normally.

If

this

box

is

not

checked,

the

servlet

execution

aborts

and

error

logs

are

generated.

Cookie

settings

Use

this

page

to

configure

cookie

settings

for

session

management.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management

>

Enable

Cookies.

Cookie

name

Specifies

a

unique

name

for

the

session

management

cookie.

The

servlet

specification

requires

the

name

JSESSIONID.

However,

for

flexibility

this

value

can

be

configured.

86

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Secure

cookies

Specifies

that

the

session

cookies

include

the

secure

field.

Enabling

the

feature

restricts

the

exchange

of

cookies

to

HTTPS

sessions

only.

Cookie

domain

Specifies

the

domain

field

of

a

session

tracking

cookie.

This

value

controls

whether

or

not

a

browser

sends

a

cookie

to

particular

servers.

For

example,

if

you

specify

a

particular

domain,

session

cookies

are

sent

to

hosts

in

that

domain.

The

default

domain

is

the

server.

Cookie

path

Specifies

that

a

cookie

is

sent

to

the

URL

designated

in

the

path.

Specify

any

string

representing

a

path

on

the

server.

″/″

indicates

root

directory.

Specify

a

value

to

restrict

the

paths

to

which

the

cookie

will

be

sent.

By

restricting

paths,

you

prevent

the

cookie

from

going

to

certain

URLs

on

the

server.

If

you

specify

the

root

directory,

the

cookie

is

sent

no

matter

which

path

on

the

given

server

is

accessed.

Cookie

maximum

age

Specifies

the

amount

of

time

that

the

cookie

lives

on

the

client

browser.

Specify

that

the

cookie

lives

only

as

long

as

the

current

browser

session,

or

to

a

maximum

age.

If

you

choose

the

maximum

age

option,

specify

the

age

in

seconds.

This

value

corresponds

to

the

Time

to

Live

(TTL)

value

described

in

the

Cookie

specification.

Default

is

the

current

browser

session

which

is

equivalent

to

setting

the

value

to

-1.

Distributed

sessions

WebSphere

Application

Server

provides

the

following

session

mechanisms

in

a

distributed

environment:

v

Database

Session

persistence,

where

sessions

are

stored

in

the

database

specified.

v

Memory-to-memory

Session

replication,

where

sessions

are

stored

in

one

or

more

specified

WebSphere

Application

Server

instances.

When

a

session

contains

attributes

that

implement

HttpSessionActivationListener,

notification

occurs

anytime

the

session

is

activated

(that

is,

session

is

read

to

the

memory

cache)

or

passivated

(that

is,

session

leaves

the

memory

cache).

Passivation

can

occur

because

of

a

server

shutdown

or

when

the

session

memory

cache

is

full

and

an

older

session

is

removed

from

the

memory

cache

to

make

room

for

a

newer

session.

It

is

not

guaranteed

that

a

session

is

passivated

in

one

application

server

prior

to

being

activated

in

another.

Session

recovery

support

For

session

recovery

support,

WebSphere

Application

Server

provides

distributed

session

support

in

the

form

of

database

sessions

and

memory-to-memory

replication.

Use

session

recovery

support

under

the

following

conditions:

v

When

the

user’s

session

data

must

be

maintained

across

a

server

restart

v

When

the

user’s

session

data

is

too

valuable

to

lose

through

an

unexpected

server

failure

All

the

attributes

set

in

a

session

must

implement

java.io.Serializable

if

the

session

requires

external

storage.

In

general,

consider

making

all

objects

held

by

a

session

serialized,

even

if

immediate

plans

do

not

call

for

session

recovery

support.

If

the

Web

site

grows,

and

session

recovery

support

becomes

necessary,

the

transition

Chapter

3.

Managing

HTTP

sessions

87

occurs

transparently

to

the

application

if

the

sessions

only

hold

serialized

objects.

If

not,

a

switch

to

session

recovery

support

requires

coding

changes

to

make

the

session

contents

serialized.

Distributed

Environment

settings

Use

this

page

to

specify

a

type

for

saving

a

session

in

a

distributed

environment.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management

>

Distributed

Environment

Settings.

Distributed

Sessions

Specifies

the

type

of

distributed

environment

to

be

used

for

saving

sessions.

None

Specifies

that

the

session

management

facility

discards

the

session

data

when

the

server

shuts

down.

Database

Specifies

that

the

session

management

facility

stores

session

information

in

the

data

source

specified

by

the

data

source

connection

settings.

Click

Database

to

change

these

data

source

settings.

Memory

to

Memory

Replication

Specifies

that

the

session

management

facility

stores

the

session

information

in

a

data

source

in

memory.

The

session

information

is

copied

to

other

session

management

facilities

for

failure

recovery.

Click

Memory

to

Memory

Replication

to

specify

the

replicator

to

use

and

to

change

these

memory

to

memory

settings.

(For

WebSphere

Application

Server

Network

Deployment

only.)

Configuring

for

database

session

persistence

To

configure

the

session

management

facility

for

database

session

persistence,

complete

the

following:

1.

Define

a

JDBC

provider.

2.

Create

a

DB2

table

in

the

z/OS

DB2

database

that

will

be

used

for

session

persistence.

3.

Create

a

data

source

pointing

to

the

z/OS

DB2

database

containing

the

DB2

table

for

session

persistence,

using

the

JDBC

provider

that

you

defined.

The

data

source

should

be

non-JTA,

for

example,

non-XA

enabled.

Note

the

JNDI

name

of

the

data

source.

Under

Data

Sources

>

datasource_name

>

Custom

Properties,

make

sure

the

correct

database

is

entered

for

the

value

of

the

databaseName

property.

If

necessary,

contact

your

database

administrator

to

verify

the

correct

database

name.

4.

Go

to

the

appropriate

level

of

Session

Management.

5.

Click

Distributed

Environment

Settings

6.

Select

and

click

Database.

7.

Specify

the

Data

Source

JNDI

name

from

step

3.

8.

Switch

to

a

multirow

schema.

9.

Click

OK.

10.

If

you

want

to

change

the

tuning

parameters,

click

Custom

Tuning

Parameters

and

select

a

setting

or

customize

one.

88

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

11.

Click

Apply.

12.

Click

Save.

Switching

to

a

multirow

schema

By

default,

a

single

session

maps

to

a

single

row

in

the

database

table

used

to

hold

sessions.

With

this

setup,

there

are

hard

limits

to

the

amount

of

user-defined,

application-specific

data

that

WebSphere

Application

Server

can

access.

1.

Modify

the

Session

Management

facility

properties

to

switch

from

single

to

multirow

schema.

2.

Manually

drop

and

recreate

the

database

table

or

delete

all

the

rows

in

the

database

table

that

the

product

uses

to

maintain

HttpSession

objects.

See

the

DB2

UDB

for

OS/390

and

z/OS

V7

Administration

Guide

for

a

description

of

how

to

drop

a

DB2

database

table.

Creating

a

DB2

table

for

session

persistence

describes

how

to

create

a

new

DB2

database

table.

Creating

a

DB2

table

for

session

persistence

If

you

are

using

DB2

for

session

persistence,

a

DB2

table,

in

which

session

data

will

be

collected,

must

be

created

and

defined

to

the

application

server.

To

create

a

DB2

table

for

collecting

session

data,

do

the

following:

1.

Have

your

DB2

Administrator

create

a

DB2

database

table

for

storing

your

session

data.

(For

more

information

about

creating

DB2

databases

see

the

DB2

UDB

for

OS/390

and

z/OS

V7

Administration

Guide.)

The

table

space

in

which

the

database

table

is

created

must

be

defined

with

row

level

locking

(LOCKSIZE

ROW).

It

should

also

have

a

page

size

that

is

large

enough

for

the

objects

that

will

be

stored

in

the

table

during

a

session.

Following

is

an

example

of

a

table

space

definition

with

row

level

locking

specified

and

a

buffer

pool

page

size

of

32K:

CREATE

DATABASE

database_name

STOGROUP

SYSDEFLT

CCSID

EBCDIC;

CREATE

TABLESPACE

tablespace_name

IN

database_name

USING

STOGROUP

group_name

PRIQTY

512

SECQTY

1024

LOCKSIZE

ROW

BUFFERPOOL

BP32K;

The

Session

Manager

will

use

the

DB2

table

defined

within

this

table

space

to

process

the

session

data.

This

table

must

have

the

following

format:

CREATE

TABLE

database_name.table_name

(

ID

VARCHAR(95)

NOT

NULL

,

PROPID

VARCHAR(95)

NOT

NULL

,

APPNAME

VARCHAR(64)

,

LISTENERCNT

SMALLINT

,

LASTACCESS

DECIMAL(19,0),

CREATIONTIME

DECIMAL(19,0),

MAXINACTIVETIME

INTEGER

,

USERNAME

VARCHAR(256)

,

SMALL

VARCHAR(3122)

FOR

BIT

DATA

,

MEDIUM

VARCHAR(28869)

FOR

BIT

DATA

,

Chapter

3.

Managing

HTTP

sessions

89

LARGE

BLOB(2097152),

SESSROW

ROWID

NOT

NULL

GENERATED

ALWAYS

)

IN

database_name.tablespace_name;

Note:

The

length

attributes

specified

for

VARCHAR

in

this

example

are

not

necessarily

the

values

your

DB2

Administrator

should

use

for

the

DB2

table

he

is

creating.

See

the

DB2

SQL

Reference

for

the

version

of

DB2

you

will

be

using

for

guidance

in

determining

appropriate

values

for

these

length

attributes

for

your

installation.

A

unique

index

must

be

created

on

the

ID

and

PROPID

columns

of

this

table.

The

following

is

an

example

of

the

index

definition:

CREATE

UNIQUE

INDEX

database_name.index_name.

database_name.table_name

(ID

ASC,

PROPID

ASC,

APPNAME

ASC);

Note:

a.

At

run

time,

the

Session

Manager

will

access

the

target

table

using

the

identity

of

the

J2EE

server

in

which

the

owning

Web

application

is

deployed.

Any

Web

container

that

is

configured

to

use

persistent

sessions

should

be

granted

both

read

and

update

access

to

the

subject

database

table.

b.

HTTP

session

processing

uses

the

index

defined

using

the

CREATE

INDEX

statement

to

avoid

database

deadlocks.

In

some

situations,

such

as

when

a

relatively

small

table

size

is

defined

for

the

database,

DB2

may

decide

not

to

use

this

index.

When

the

index

isn’t

used,

database

deadlocks

can

occur.

If

this

situation

occurs,

see

the

DB2

Administration

Guide

for

the

version

of

DB2

you

are

using

for

recommendations

on

how

to

calculate

the

space

required

for

an

index,

and

adjust

the

size

of

the

tables

you

are

using

accordingly.

c.

It

may

be

necessary

to

tune

DB2

in

order

to

make

efficient

use

of

the

sessions

database

table

and

to

avoid

deadlocks

when

accessing

it.

Your

DB2

Administrator

should

refer

to

the

DB2

Administration

Guide

for

specific

information

about

tuning

the

version

of

DB2

you

are

using.

A

large

object

(LOB)

table

space

must

be

defined

and

an

auxiliary

table

must

be

defined

within

that

table

space.

The

following

is

an

example

of

the

LOB

table

space

definition:

CREATE

LOB

TABLESPACE

LOB_tablespace_name

IN

database_name

BUFFERPOOL

BP32K

USING

STOGROUP

group_name

PRIQTY

512

SECQTY

1024

LOCKSIZE

LOB;

CREATE

AUX

TABLE

database_name.aux_table_name

IN

database_name.LOB_tablespace_name

STORES

database_name.table_name

COLUMN

LARGE;

An

index

must

be

created

for

this

auxiliary

table.

The

following

is

an

example

of

the

index

definition:

CREATE

INDEX

database_name.aux_index_name

ON

database_name.aux_table_name;

90

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

2.

Have

your

DB2

Administrator

grant

the

the

z/OS

userID,

under

which

the

server

region

is

running,

the

appropriate

access

to

this

DB2

table.

For

example,issue

the

following

command

to

grant

z/OS

userID

CBASRU1,

under

which

the

server

region

is

running,

access

to

the

table

SESSIONS

contained

in

the

database

SESSDB:

GRANT

ALL

ON

SESSDB.SESSIONS

TO

CBASRU1;

3.

Use

the

administrative

console

to

add

the

name

of

this

DB2

table

to

the

Web

container’s

configuration

properties:

a.

Open

the

administrative

console.

b.

Click

Servers

>

Application

Servers.

c.

Select

a

server

from

the

list

of

application

servers.

d.

Under

Additional

Properties,

click

Web

Container.

e.

Under

Additional

Properties,

click

Custom

Properties.

f.

Check

SessionTableName

and

then

click

New.

g.

In

the

Value

field,

enter

the

name

of

the

DB2

Session

Table

if

you

are

not

using

the

default

value

SESSION.

The

name

must

be

in

the

form

database_name.table_name.

For

example,

if

the

database

name

is

SESSDB

and

the

table

name

is

SESSIONS,

enter

SESSDB.SESSIONS

for

Value.

Optionally,

you

can

update

the

description

of

this

table

in

the

Description

field.

For

example,

you

might

enter

″Table

name

for

HTTP

session

data.″

h.

Click

Apply

>

Save.

When

the

product

is

restarted,

the

Session

Management

facility

creates

the

new

SESSIONS

table

in

the

specified

tablespace.

Database

settings

Use

this

page

to

specify

the

settings

for

database

session

support.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management

>

Distributed

Environment

Settings

>

Database.

Datasource

JNDI

Name

Specifies

the

datasource

description

The

JNDI

name

of

the

non-XA

enabled

data

source

from

which

Session

Management

obtains

database

connections.

For

example,

if

the

JNDI

name

of

the

datasource

is

″jdbc/sessions″,

specify

″jdbc/sessions.″

The

data

source

represents

a

pool

of

database

connections

and

a

configuration

for

that

pool

(such

as

the

pool

size).

The

data

source

must

already

exist

as

a

configured

resource

in

the

environment.

User

ID

Specifies

the

user

ID

for

database

access

Password

Specifies

the

password

for

database

access

Confirm

Password

Specifies

the

password

a

second

time

to

ensure

it

recorded

correctly.

DB2

Row

Size

Specifies

the

tablespace

page

size

configured

for

the

sessions

table,

if

using

a

DB2

database.

Possible

values

are

4,

8,

16,

and

32

kilobytes

(K).

The

default

row

size

is

4K.

Chapter

3.

Managing

HTTP

sessions

91

The

default

row

size

is

4K.

In

DB2,

it

can

be

updated

to

a

larger

value.

This

can

help

database

performance

in

some

environments.

When

this

value

is

other

than

4,

you

must

specify

Table

Space

Name

to

use.

For

4K

pages,

the

Table

Space

Name

is

optional.

Table

Space

Name

Specifies

that

tablespace

to

be

used

for

the

sessions

table.

This

value

is

required

when

the

DB2

Page

Size

is

other

than

4K.

Multi

row

schema

Specifies

that

each

instance

of

application

data

be

placed

in

a

separate

row

in

the

database,

allowing

larger

amounts

of

data

to

be

stored

for

each

session.

This

action

can

yield

better

performance

in

certain

usage

scenarios.

If

using

multirow

schema

is

not

enabled,

instances

of

application

data

can

be

placed

in

the

same

row.

Multirow

schema

considerations

IBM

WebSphere

Application

Server

supports

the

use

of

a

multirow

schema

option

in

which

each

piece

of

application

specific

data

is

stored

in

a

separate

row

of

the

database.

With

this

setup,

the

total

amount

of

data

you

can

place

in

a

session

is

now

bound

only

by

the

database

capacities.

The

only

practical

limit

that

remains

is

the

size

of

the

session

attribute

object.

The

multirow

schema

potentially

has

performance

benefits

in

certain

usage

scenarios,

such

as

when

larger

amounts

of

data

are

stored

in

the

session

but

only

small

amounts

are

specifically

accessed

during

a

given

servlet

processing

of

an

HTTP

request.

In

such

a

scenario,

avoiding

unneeded

Java

object

serialization

is

beneficial

to

performance.

Understand

that

switching

between

multirow

and

single

row

is

not

a

trivial

proposition.

In

addition

to

allowing

larger

session

records,

using

multirow

schema

can

yield

performance

benefits.

However,

it

requires

a

little

work

to

switch

from

single-row

to

multirow

schema,

as

shown

in

the

instructions

below.

Coding

considerations

and

test

environment

Consider

configuring

direct

single-row

usage

to

one

database

and

multirow

usage

to

another

database

while

you

verify

which

option

suits

your

application

needs.

(Do

this

in

code

by

switching

the

data

source

used;

then

monitor

performance.)

Programming

issue

Application

scenario

Reasons

to

use

single-row

v

You

can

read

or

write

all

values

with

just

one

record

read

and

write.

v

This

takes

up

less

space

in

a

database

because

you

are

guaranteed

that

each

session

is

only

one

record

long.

Reasons

not

to

use

single-row

2-megabyte

limit

of

stored

data

per

session.

92

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Programming

issue

Application

scenario

Reasons

to

use

multirow

v

The

application

can

store

an

unlimited

amount

of

data;

that

is,

you

are

limited

only

by

the

size

of

the

database

and

a

2-megabyte-per-record

limit.

v

The

application

can

read

individual

fields

instead

of

the

whole

record.

When

large

amounts

of

data

are

stored

in

the

session

but

only

small

amounts

are

specifically

accessed

during

servlet

processing

of

an

HTTP

request,

multirow

sessions

can

improve

performance

by

avoiding

unneeded

Java

object

serialization.

Reasons

not

to

use

multirow

If

data

is

small

in

size,

you

probably

do

not

want

the

extra

overhead

of

multiple

row

reads

when

you

can

store

everything

in

one

row.

In

the

case

of

multirow

usage,

design

your

application

data

objects

not

to

have

references

to

each

other,

to

prevent

circular

references.

For

example,

suppose

you

are

storing

two

objects

A

and

B

in

the

session

using

HttpSession.put(..)

method,

and

A

contains

a

reference

to

B.

In

the

multirow

case,

because

objects

are

stored

in

different

rows

of

the

database,

when

objects

A

and

B

are

retrieved

later,

the

object

graph

between

A

and

B

is

different

than

stored.

A

and

B

behave

as

independent

objects.

Memory-to-memory

replication

WebSphere

Application

Server

supports

session

replication

to

another

WebSphere

Application

Server

instance.

This

support

is

referred

to

as

memory-to-memory

session

replication.

In

this

mode,

sessions

can

replicate

to

one

or

more

WebSphere

Application

Server

instances

to

address

HTTP

Session

single

point

of

failure

(SPOF).

This

is

a

new

alternative

in

IBM

WebSphere

Application

Server,

Version

5

to

the

existing

saving

of

HTTP

Session

to

a

database.

The

WebSphere

Application

Server

instance

in

which

the

session

is

currently

processed

is

referred

to

as

the

owner

of

the

session.

In

a

clustered

environment,

session

affinity

in

the

WebSphere

Application

Server

plug-in

routes

the

requests

for

a

given

session

to

the

same

server.

If

the

current

owner

server

instance

of

the

session

fails,

then

the

WebSphere

Application

Server

plug-in

routes

the

requests

to

another

appropriate

server

in

the

cluster.

This

server

either

retrieves

the

session

from

a

server

that

has

the

backup

copy

of

the

session

or

it

retrieves

the

session

from

its

own

backup

copy

table.

The

server

now

becomes

the

owner

of

the

session

and

affinity

is

now

maintained

to

this

server.

When

a

session

is

created

or

updated

in

a

WebSphere

Application

Server

instance,

the

session

is

transferred

(or

replicated)

through

one

of

the

replicator

entries

under

the

replication

domain

that

is

configured

with

the

session

management

facility.

This

session

potentially

gets

replicated

to

the

WebSphere

Application

Server

instances

that

are

also

connected

to

the

same

replicator

domain.

The

mode

and

partitioning

determine

whether

WebSphere

Application

Server

instances

in

the

same

replication

domain

gets

the

session.

There

are

three

possible

modes.

You

can

set

up

a

WebSphere

Application

Server

instance

to

run

in:

Chapter

3.

Managing

HTTP

sessions

93

v

Server

mode:

Only

store

backup

copies

of

other

WebSphere

Application

Server

sessions

and

not

to

send

out

copies

of

any

session

created

in

that

particular

server

v

Client

mode:

Only

broadcast

or

send

out

copies

of

the

sessions

it

owns

and

not

to

receive

backup

copies

of

sessions

from

other

servers

v

Both

mode:

Simultaneously

broadcast

or

send

out

copies

of

the

sessions

it

owns

and

act

as

a

backup

table

for

sessions

owned

by

other

WebSphere

Application

Server

instances

You

can

select

the

replication

mode

of

server,

client,

or

both

when

configuring

the

session

management

facility

for

memory-to-memory

replication.

The

default

is

both.

This

storage

option

is

controlled

by

the

mode

parameter.

With

respect

to

mode,

the

following

are

the

primary

examples

of

memory-to-memory

replication

configuration:

v

Peer-to-peer

with

a

local

replicator

v

Peer-to-peer

with

remote

replicators

v

Client/server

with

remote

replicators

v

Client/server

with

isolated

replicators

In

a

cluster,

by

default,

sessions

are

replicated

in

all

the

servers

in

the

cluster

that

are

connected

to

the

same

replicator

domain.

This

replication

can

be

redundant

if

a

large

number

of

servers

exist

in

a

cluster.

The

session

management

facility

has

an

option

to

partition

the

servers

into

groups

when

storing

sessions.

Clustered

session

support

A

clustered

environment

supports

load

balancing,

where

the

workload

is

distributed

among

the

application

servers

that

compose

the

cluster.

In

a

cluster

environment,

the

same

Web

application

must

exist

on

each

of

the

servers

that

can

access

the

session.

You

can

accomplish

this

setup

by

installing

an

application

onto

a

cluster

definition.

Each

of

the

servers

in

the

group

can

then

access

the

Web

application

In

a

clustered

environment,

the

Session

Management

facility

requires

an

affinity

mechanism

so

that

all

requests

for

a

particular

session

are

directed

to

the

same

application

server

instance

in

the

cluster.

This

requirement

conforms

to

the

Servlet

2.3

specification

in

that

multiple

requests

for

a

session

cannot

coexist

in

multiple

application

servers.

One

such

solution

provided

by

IBM

WebSphere

Application

Server

is

session

affinity

in

a

cluster;

this

solution

is

available

as

part

of

the

WebSphere

Application

Server

plug-ins

for

Web

servers.

It

also

provides

for

better

performance

because

the

sessions

are

cached

in

memory.

In

clustered

environments

other

than

WebSphere

Application

Server

clusters,

you

must

use

an

affinity

mechanism

(for

example,

IBM

WebSphere

Edge

Server

affinity).

If

one

of

the

servers

in

the

cluster

fails,

it

is

possible

for

the

request

to

reroute

to

another

server

in

the

cluster.

If

distributed

sessions

support

is

enabled,

the

new

server

can

access

session

data

from

the

database

or

another

WebSphere

Application

Server

instance.

You

can

retrieve

the

session

data

only

if

a

new

server

has

access

to

an

external

location

from

which

it

can

retrieve

the

session.

94

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Tuning

session

management

IBM

WebSphere

Application

Server

session

support

has

features

for

tuning

session

performance

and

operating

characteristics,

particularly

when

sessions

are

configured

in

a

distributed

environment.

These

options

support

the

administrator

flexibility

in

determining

the

performance

and

failover

characteristics

for

their

environment.

The

table

summarizes

the

features,

including

whether

they

apply

to

sessions

tracked

in

memory,

in

a

database,

with

memory-to-memory

replication,

or

all.

Click

a

feature

for

details

about

the

feature.

Some

features

are

easily

manipulated

using

administrative

settings;

others

require

code

or

database

changes.

Feature

or

option

Goal

Applies

to

sessions

in

memory,

database,

or

memory-to-memory

Write

frequency

Minimize

database

write

operations.

Database

and

Memory-to-Memory

Session

affinity

Access

the

session

in

the

same

application

server

instance.

All

Multirow

schema

Fully

utilize

database

capacities.

Database

Base

in-memory

session

pool

size

Fully

utilize

system

capacity

without

overburdening

system.

All

Write

contents

Allow

flexibility

in

determining

what

session

data

to

write

Database

and

Memory-to-Memory

Scheduled

invalidation

Minimize

contention

between

session

requests

and

invalidation

of

sessions

by

the

Session

Management

facility.

Minimize

write

operations

to

database

for

updates

to

last

access

time

only.

Database

and

Memory-to-Memory

Tablespace

and

row

size

Increase

efficiency

of

write

operations

to

database.

Database

(DB2

only)

Configuring

scheduled

invalidation

Instead

of

relying

on

the

periodic

invalidation

timer

that

runs

on

an

interval

based

on

the

session

timeout

parameter,

you

can

set

specific

times

for

the

session

management

facility

to

scan

for

invalidated

sessions

in

a

distributed

environment.

When

used

with

distributed

sessions,

this

feature

has

the

following

benefits:

v

You

can

schedule

the

scan

for

invalidated

sessions

for

times

of

low

application

server

activity,

avoiding

contention

between

invalidation

scans

of

database

or

another

WebSphere

Application

Server

instance

and

read

and

write

operations

to

service

HTTP

session

requests.

v

Significantly

fewer

external

write

operations

can

occur

when

running

with

the

End

of

Service

Method

Write

mode

because

the

last

access

time

of

the

session

Chapter

3.

Managing

HTTP

sessions

95

does

not

need

to

be

written

out

on

each

HTTP

request.

(Manual

Update

options

and

Time

Based

Write

options

already

minimize

the

writing

of

the

last

access

time.)

Usage

considerations

v

With

scheduled

invalidation

configured,

HttpSession

timeouts

are

not

strictly

enforced.

Instead,

all

invalidation

processing

is

handled

at

the

configured

invalidation

times.

v

HttpSessionBindingListener

processing

is

handled

at

the

configured

invalidation

times

unless

the

HttpSession.invalidate(

)

method

is

explicitly

called.

v

The

HttpSession.invalidate()

method

immediately

invalidates

the

session

from

both

the

session

cache

and

the

external

store.

v

The

periodic

invalidation

thread

still

runs

with

scheduled

invalidation.

If

the

current

hour

of

the

day

does

not

match

one

of

the

configured

hours,

sessions

that

have

exceeded

the

invalidation

interval

are

removed

from

cache,

but

not

from

the

external

store.

Another

request

for

that

session

results

in

returning

that

session

back

into

the

cache.

v

When

the

periodic

invalidation

thread

runs

during

one

of

the

configured

hours,

all

sessions

that

have

exceeded

the

invalidation

interval

are

invalidated

by

removal

from

both

the

cache

and

the

external

store.

v

The

periodic

invalidation

thread

can

run

more

than

once

during

an

hour

and

does

not

necessarily

run

exactly

at

the

top

of

the

hour.

v

If

you

specify

the

interval

for

the

periodic

invalidation

thread

using

the

HttpSessionReaperPollInterval

custom

property,

do

not

specify

a

value

of

more

than

3600

seconds

(1

hour)

to

ensure

that

invalidation

processing

happens

at

least

once

during

each

hour.

Configuring

write

contents

In

Session

Management,

you

can

configure

which

session

data

is

written

to

the

database

or

to

another

WebSphere

instance,

depending

on

whether

you

are

using

database

pesistent

sessions

or

memory

to

memory

replication.

This

flexibility

allows

for

fewer

code

changes

for

the

JSP

writer

when

the

application

will

be

operating

in

a

clustered

environment.

The

following

options

are

available

in

Session

Management

for

tuning

what

is

to

be

written

back:

v

Write

changed

(the

default)

-

Write

only

session

data

properties

that

have

been

updated

through

setAttribute()

and

removeAttribute()

method

calls.

v

Write

all

-

Write

all

session

data

properties.

The

Write

all

setting

might

benefit

servlet

and

JSP

writers

who

change

Java

objects’

states

that

reside

as

attributes

in

HttpSession

and

do

not

call

HttpSession.setAttribute().

However,

the

use

of

Write

all

could

result

in

more

data

being

written

back

than

is

necessary.

If

this

situation

applies

to

you,

consider

combining

the

use

of

Write

all

with

Time-based

write

to

boost

performance

overall.

As

always,

be

sure

to

evaluate

the

advantages

and

disadvantages

for

your

installation.

With

either

Write

Contents

setting,

when

a

session

is

first

created,

complete

session

information

is

written,

including

all

of

the

objects

bound

to

the

session.

When

using

database

session

persistence,

in

subsequent

session

requests,

what

is

written

to

the

database

depends

on

whether

a

single-row

or

multirow

schema

has

been

set

for

the

session

database,

as

follows:

96

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Write

Contents

setting

Behavior

with

single-row

schema

Behavior

with

multirow

schema

Write

changed

If

any

session

attribute

is

updated,

all

objects

bound

to

the

session

are

written.

Only

the

session

data

modified

through

setAttribute()

or

removeAttribute()

calls

is

written.

Write

all

All

bound

session

attributes

are

written.

All

session

attributes

that

currently

reside

in

the

cache

are

written.

If

the

session

has

never

left

the

cache,

all

session

attributes

are

written.

1.

Go

to

the

appropriate

level

of

Session

Management.

2.

Click

Distributed

Environment

Settings

3.

Click

Custom

Tuning

Parameters.

4.

Select

Custom

Settings,

and

click

Modify.

5.

Select

the

appropriate

write

contents

setting.

Configuring

write

frequency

In

the

Session

Management

facility,

you

can

configure

the

frequency

for

writing

session

data

to

the

database

or

to

a

WebSphere

instance,

depending

on

whether

you

use

database

distributed

sessions

or

memory-to-memory

replication.

This

flexibility

enables

you

to

weigh

session

performance

gains

against

varying

degrees

of

failover

support.

The

following

options

are

available

in

the

Session

Management

facility

for

tuning

write

frequency:

v

End

of

service

servlet-

Write

session

data

at

the

end

of

the

servlet

service()

method

call.

v

Manual

update-

Write

session

data

only

when

the

servlet

calls

the

IBMSession.sync()

method.

v

Time

based

(the

default)

-

Write

session

data

at

periodic

intervals,

in

seconds

(called

the

write

interval).

When

a

session

is

first

created,

session

information

is

always

written

at

the

end

of

the

service()

call.

Using

the

time

based

write

or

manual

update

options

can

result

in

loss

of

data

in

failover

scenarios

since

the

backup

copy

of

the

session

in

the

persistent

store

(for

example,

a

database

or

another

JVM)

may

not

be

in

sync

with

the

session

in

the

session

cache.

Base

in-memory

session

pool

size

The

base

in-memory

session

pool

size

number

has

different

meanings,

depending

on

session

support

configuration:

v

With

in-memory

sessions,

session

access

is

optimized

for

up

to

this

number

of

sessions.

v

With

distributed

sessions

(meaning,

when

sessions

are

stored

in

a

database

or

in

another

WebSphere

Application

Server

instance);

it

also

specifies

the

cache

size

and

the

number

of

last

access

time

updates

saved

in

manual

update

mode.

For

distributed

sessions,

when

the

session

cache

has

reached

its

maximum

size

and

a

new

session

is

requested,

the

Session

Management

facility

removes

the

least

recently

used

session

from

the

cache

to

make

room

for

the

new

one.

Chapter

3.

Managing

HTTP

sessions

97

General

memory

requirements

for

the

hardware

system,

and

the

usage

characteristics

of

the

e-business

site,

determines

the

optimum

value.

Note

that

increasing

the

base

in-memory

session

pool

size

can

necessitate

increasing

the

heap

sizes

of

the

Java

processes

for

the

corresponding

WebSphere

Application

Servers.

Overflow

in

nondistributed

sessions

By

default,

the

number

of

sessions

maintained

in

memory

is

specified

by

base

in-memory

session

pool

size.

If

you

do

not

wish

to

place

a

limit

on

the

number

of

sessions

maintained

in

memory

and

allow

overflow,

set

overflow

to

true.

Allowing

an

unlimited

amount

of

sessions

can

potentially

exhaust

system

memory

and

even

allow

for

system

sabotage.

Someone

could

write

a

malicious

program

that

continually

hits

your

site

and

creates

sessions,

but

ignores

any

cookies

or

encoded

URLs

and

never

utilizes

the

same

session

from

one

HTTP

request

to

the

next.

When

overflow

is

disallowed,

the

Session

Management

facility

still

returns

a

session

with

the

HttpServletRequest

getSession(true)

method

when

the

memory

limit

is

reached,

and

this

is

an

invalid

session

that

is

not

saved.

With

the

WebSphere

Application

Server

extension

to

HttpSession,

com.ibm.websphere.servlet.session.IBMSession,

an

isOverflow()

method

returns

true

if

the

session

is

such

an

invalid

session.

An

application

can

check

this

status

and

react

accordingly.

Controlling

write

operations

You

can

manually

control

when

modified

session

data

is

written

out

to

the

database

or

to

another

WebSphere

Application

Server

instance

by

using

the

sync()

method

in

the

com.ibm.websphere.servlet.session.IBMSession

interface,

which

extends

the

javax.servlet.http.HttpSession

interface.

By

calling

the

sync()

method

from

the

service()

method

of

a

servlet,

you

send

any

changes

in

the

session

to

the

external

location.

When

manual

updateis

selected

as

the

write

frequency

mode,

session

data

changes

are

written

to

an

external

location

only

if

the

application

calls

the

sync()

method.

If

the

sync()

method

is

not

called,

session

data

changes

are

lost

when

a

session

object

leaves

the

server

cache.

When

end

of

service

servlet

or

time

based

is

the

write

frequency

mode,

the

session

data

changes

are

written

out

whenever

the

sync()

method

is

called.

If

the

sync()

method

is

not

called,

changes

are

written

out

at

the

end

of

service

method

or

on

a

time

interval

basis

based

on

the

write

frequency

mode

selected.

IBMSession

iSession

=

(IBMSession)

request.getSession();

iSession.setAttribute("name",

"Bob");

//force

write

to

external

store

iSession.sync(

)

Tuning

parameter

settings

Use

this

page

to

set

tuning

parameters

for

distributed

sessions.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management

>

Distributed

Environment

Settings

>

Custom

Tuning

Parameters.

98

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Tuning

Level

Specifies

that

the

session

management

facility

provides

certain

predefined

settings

that

affect

performance.

Select

one

of

these

predefined

settings

or

customize

a

setting.

To

customize

a

setting,

select

one

of

the

predefined

settings

that

comes

closest

to

the

setting

desired,

click

Custom

settings,

make

your

changes,

and

then

click

OK.

Very

high

(optimize

for

performance)

Write

frequency

Time

based

Write

interval

300

seconds

Write

contents

Only

updated

attributes

Schedule

sessions

cleanup

true

First

time

of

day

default

0

Second

time

of

day

default

2

High

Write

frequency

Time

based

Write

interval

300

seconds

Write

Contents

All

session

attributes

Schedule

sessions

cleanup

false

Medium

Write

frequency

End

of

servlet

service

Write

Contents

Only

updated

attributes

Schedule

sessions

cleanup

false

Low

(optimize

for

failover)

Write

frequency

End

of

servlet

service

Write

Contents

All

session

attributes

Schedule

sessions

cleanup

false

Custom

settings

Write

frequency

default

Time

based

Write

interval

default

10

seconds

Write

contents

default

All

session

attributes

Schedule

sessions

cleanup

default

false

Tuning

parameter

custom

settings

Use

this

page

to

customize

tuning

parameters

for

distributed

sessions.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Web

Container

>

Session

Management

>

Distributed

Environment

Settings

>

Custom

Tuning

Parameters

>

Custom

settings.

Write

frequency

Specifies

when

the

session

is

written

to

the

persistent

store.

Chapter

3.

Managing

HTTP

sessions

99

End

of

servlet

service

A

session

writes

to

a

database

or

another

WebSphere

Application

Server

instance

after

the

servlet

completes

execution.

Manual

update

A

programmatic

sync

on

the

IBMSession

object

is

required

to

write

the

session

data

to

the

database

or

another

WebSphere

Application

Server

instance.

Time

based

Session

data

writes

to

the

database

or

another

WebSphere

Application

Server

instance

based

on

the

specified

Write

Interval

value.

Default:

10

seconds

Write

contents

Specifies

whether

updated

attributes

are

only

written

to

the

external

location

or

all

of

the

session

attributes

are

written

to

the

external

location,

regardless

of

whether

or

not

they

changed.

The

external

location

can

be

either

a

database

or

another

application

server

instance.

Only

updated

attributes

Only

updated

attributes

are

written

to

the

persistent

store.

All

session

attribute

All

attributes

are

written

to

the

persistent

store.

Schedule

sessions

cleanup

Specifies

when

to

clean

the

invalid

sessions

from

a

database

or

another

application

server

instance.

Specify

distributed

sessions

cleanup

schedule

Enables

the

scheduled

invalidation

process

for

cleaning

up

the

invalidated

HTTP

sessions

from

the

external

location.

Enable

this

option

to

reduce

the

number

of

updates

to

a

database

or

another

application

server

instance

required

to

keep

the

HTTP

sessions

alive.

When

this

option

is

not

enabled,

the

invalidator

process

runs

every

few

minutes

to

remove

invalidated

HTTP

sessions.

When

this

option

is

enabled,

specify

the

two

hours

of

a

day

for

the

process

to

clean

up

the

invalidated

sessions

in

the

external

location.

Specify

the

times

when

there

is

the

least

activity

in

the

application

servers.

An

external

location

can

be

either

a

database

or

another

application

server

instance.

First

Time

of

Day

(0

-

23)

Indicates

the

first

hour,

in

Greenwich

Mean

Time

(GMT),

during

which

the

invalidated

sessions

are

cleared

from

the

external

location.

Specify

this

value

as

a

positive

integer

between

0

and

23.

This

value

is

valid

only

when

schedule

invalidation

is

enabled.

Second

Time

of

Day

(0

-

23)

Indicates

the

second

hour,

in

Greenwich

Mean

Time

(GMT),

during

which

the

invalidated

sessions

are

cleared

from

the

external

location.

Specify

this

value

as

a

positive

integer

between

0

and

23.

This

value

is

valid

only

when

schedule

invalidation

is

enabled.

100

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Best

practices

for

using

HTTP

Sessions

v

Enable

Security

integration

for

securing

HTTP

sessions

HTTP

sessions

are

identified

by

session

IDs.

A

session

ID

is

a

pseudo-random

number

generated

at

the

runtime.

Session

hijacking

is

a

known

attack

HTTP

sessions

and

can

be

prevented

if

all

the

requests

going

over

the

network

are

enforced

to

be

over

a

secure

connection

(meaning,

HTTPS).

But

not

every

configuration

in

a

customer

environment

enforces

this

constraint

because

of

the

performance

impact

of

SSL

connections.

Due

to

this

relaxed

mode,

HTTP

session

is

vulnerable

to

hijacking

and

because

of

this

vulnerability,

WebSphere

Application

Server

has

the

option

to

tightly

integrate

HTTP

sessions

and

WebSphere

Application

Server

security.

Enable

security

in

WebSphere

Application

Server

so

that

the

sessions

are

protected

in

a

manner

that

only

users

who

created

the

sessions

are

allowed

to

access

them.

v

Release

HttpSession

objects

using

javax.servlet.http.HttpSession.invalidate()

when

finished.

HttpSession

objects

live

inside

the

Web

container

until:

–

The

application

explicitly

and

programmatically

releases

it

using

the

javax.servlet.http.HttpSession.invalidate()

method;

quite

often,

programmatic

invalidation

is

part

of

an

application

logout

function.

–

WebSphere

Application

Server

destroys

the

allocated

HttpSession

when

it

expires

(default

=

1800

seconds

or

30

minutes).

The

WebSphere

Application

Server

can

only

maintain

a

certain

number

of

HTTP

sessions

in

memory

based

on

Session

Management

settings.

In

case

of

distributed

sessions,

when

maximum

cache

limit

is

reached

in

memory,

the

Session

Management

facility

removes

the

least

recently

used

(LRU)

one

from

cache

to

make

room

for

a

session.

.

v

Avoid

trying

to

save

and

reuse

the

HttpSession

object

outside

of

each

servlet

or

JSP

file.

The

HttpSession

object

is

a

function

of

the

HttpRequest

(you

can

get

it

only

through

the

req.getSession()

method),

and

a

copy

of

it

is

valid

only

for

the

life

of

the

service()

method

of

the

servlet

or

JSP

file.

You

cannot

cache

the

HttpSession

object

and

refer

to

it

outside

the

scope

of

a

servlet

or

JSP

file.

v

Implement

the

java.io.Serializable

interface

when

developing

new

objects

to

be

stored

in

the

HTTP

session.

This

action

allows

the

object

to

properly

serialize

when

using

distributed

sessions.

Without

this

extension,

the

object

cannot

serialize

correctly

and

throws

an

error.

An

example

of

this

follows:

public

class

MyObject

implements

java.io.Serializable

{...}

Make

sure

all

instance

variable

objects

that

are

not

marked

transient

are

serializable.

v

The

HTTPSession

API

does

not

dictate

transactional

behavior

for

sessions.

Distributed

HTTPSession

support

does

not

guarantee

transactional

integrity

of

an

attribute

in

a

failover

scenario

or

when

session

affinity

is

broken.

Use

transactionally

aware

resources

like

enterprise

Java

beans

to

guarantee

the

transaction

integrity

required

by

your

application.

v

Ensure

the

Java

objects

you

add

to

a

session

are

in

the

correct

class

path.

If

you

add

Java

objects

to

a

session,

place

the

class

files

for

those

objects

in

the

correct

classpath

(the

Application

Classpath

if

utilizing

sharing

across

Web

modules

in

an

enterprise

application,

or

the

WebModule

Classpath

if

using

the

Servlet

2.2-complaint

session

sharing)

or

in

the

directory

containing

other

Chapter

3.

Managing

HTTP

sessions

101

servlets

used

in

WebSphere

Application

Server.

In

the

case

of

session

clustering,

this

action

applies

to

every

node

in

the

cluster.

Because

the

HttpSession

object

is

shared

among

servlets

that

the

user

might

access,

consider

adopting

a

site-wide

naming

convention

to

avoid

conflicts.

v

Avoid

storing

large

object

graphs

in

the

HttpSession

object.

In

most

applications

each

servlet

only

requires

a

fraction

of

the

total

session

data.

However,

by

storing

the

data

in

the

HttpSession

object

as

one

large

object,

an

application

forces

WebSphere

Application

Server

to

process

all

of

it

each

time.

v

Utilize

Session

Affinity

to

help

achieve

higher

cache

hits

in

the

WebSphere

Application

Server.

WebSphere

Application

Server

has

functionality

in

the

HTTP

Server

plug-in

to

help

with

session

affinity.

The

plug-in

will

read

the

cookie

data

(or

encoded

URL)

from

the

browser

and

helps

direct

the

request

to

the

appropriate

application

or

clone

based

on

the

assigned

session

key.

This

functionality

increases

use

of

the

in-memory

cache

and

reduces

hits

to

the

database

or

another

WebSphere

Application

Server

instance

v

Maximize

use

of

session

affinity

and

avoid

breaking

affinity.

Using

session

affinity

properly

can

enhance

the

performance

of

the

WebSphere

Application

Server.

Session

affinity

in

the

WebSphere

Application

Server

environment

is

a

way

to

maximize

the

in-memory

cache

of

session

objects

and

reduce

the

amount

of

reads

to

the

database

or

another

WebSphere

Application

Server

instance.

Session

affinity

works

by

caching

the

session

objects

in

the

server

instance

of

the

application

with

which

a

user

is

interacting.

If

the

application

is

deployed

in

multiple

servers

of

a

server

group,

the

application

can

direct

the

user

to

any

one

of

the

servers.

If

the

users

starts

on

server1

and

then

comes

in

on

server2

a

little

later,

the

server

must

write

all

of

the

session

information

to

the

external

location

so

that

the

server

instance

in

which

server2

is

running

can

read

the

database.

You

can

avoid

this

database

read

using

session

affinity.

With

session

affinity,

the

user

starts

on

server1

for

the

first

request;

then

for

every

successive

request,

the

user

is

directed

back

to

server1.

Server1

has

to

look

only

at

the

cache

to

get

the

session

information;

server1

never

has

to

make

a

call

to

the

session

database

to

get

the

information.

You

can

improve

performance

by

not

breaking

session

affinity.

Some

suggestions

to

help

avoid

breaking

session

affinity

are:

–

Combine

all

Web

applications

into

a

single

application

server

instance,

if

possible,

and

use

modeling

or

cloning

to

provide

failover

support.

–

Create

the

session

for

the

frame

page,

but

do

not

create

sessions

for

the

pages

within

the

frame

when

using

multiframe

JSP

files.

(See

discussion

later

in

this

topic.)
v

When

using

multi-framed

pages,

follow

these

guidelines:

–

Create

a

session

in

only

one

frame

or

before

accessing

any

frame

sets.

For

example,

assuming

there

is

no

session

already

associated

with

the

browser

and

a

user

accesses

a

multi-framed

JSP

file,

the

browser

issues

concurrent

requests

for

the

JSP

files.

Because

the

requests

are

not

part

of

any

session,

the

JSP

files

end

up

creating

multiple

sessions

and

all

of

the

cookies

are

sent

back

to

the

browser.

The

browser

honors

only

the

last

cookie

that

arrives.

Therefore,

only

the

client

can

retrieve

the

session

associated

with

the

last

cookie.

Creating

a

session

before

accessing

multi-framed

pages

that

utilize

JSP

files

is

recommended.

–

By

default,

JSPs

get

a

HTTPSession

using

request.getSession(true)

method.

So

by

default

JSPs

create

a

new

session

if

none

exists

for

the

client.

Each

JSP

page

in

the

browser

is

requesting

a

new

session,

but

only

one

session

is

used

per

browser

instance.

A

developer

can

use

<%

@

page

session=″false″

%>

to

turn

off

the

automatic

session

creation

from

the

JSP

files

that

will

not

access

the

session.

Then

if

the

page

needs

access

to

the

session

information,

the

102

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

developer

can

use

<%HttpSession

session

=

javax.servlet.http.HttpServletRequest.getSession(false);

%>

to

get

the

already

existing

session

that

was

created

by

the

original

session

creating

JSP

file.

This

action

helps

prevent

breaking

session

affinity

on

the

initial

loading

of

the

frame

pages.

–

Update

session

data

using

only

one

frame.

When

using

framesets,

requests

come

into

the

HTTP

server

concurrently.

Modifying

session

data

within

only

one

frame

so

that

session

changes

are

not

overwritten

by

session

changes

in

concurrent

frameset

is

recommended.

–

Avoid

using

multi-framed

JSP

files

where

the

frames

point

to

different

Web

applications.

This

action

results

in

losing

the

session

created

by

another

Web

application

because

the

JSESSIONID

cookie

from

the

first

Web

application

gets

overwritten

by

the

JSESSIONID

created

by

the

second

Web

application.
v

Secure

all

of

the

pages

(not

just

some)

when

applying

security

to

servlets

or

JSP

files

that

use

sessions

with

security

integration

enabled,

.

When

it

comes

to

security

and

sessions,

it

is

all

or

nothing.

It

does

not

make

sense

to

protect

access

to

session

state

only

part

of

the

time.

When

security

integration

is

enabled

in

the

Session

Management

facility,

all

resources

from

which

a

session

is

created

or

accessed

must

be

either

secured

or

unsecured.

You

cannot

mix

secured

and

unsecured

resources.

The

problem

with

securing

only

a

couple

of

pages

is

that

sessions

created

in

secured

pages

are

created

under

the

identity

of

the

authenticated

user.

Only

the

same

user

can

access

sessions

in

other

secured

pages.

To

protect

these

sessions

from

use

by

unauthorized

users,

you

cannot

access

these

sessions

from

an

unsecure

page.

When

a

request

from

an

unsecure

page

occurs,

access

is

denied

and

an

UnauthorizedSessionRequestException

error

is

thrown.

(UnauthorizedSessionRequestException

is

a

runtime

exception;

it

is

logged

for

you.)

v

Use

manual

update

and

either

the

sync()

method

or

time-based

write

in

applications

that

read

session

data,

and

update

infrequently.

With

END_OF_SERVICE

as

write

frequency,

when

an

application

uses

sessions

and

anytime

data

is

read

from

or

written

to

that

session,

the

LastAccess

time

field

updates.

If

database

sessions

are

used,

a

new

write

to

the

database

is

produced.

This

activity

is

a

performance

hit

that

you

can

avoid

using

the

Manual

Update

option

and

having

the

record

written

back

to

the

database

only

when

data

values

update,

not

on

every

read

or

write

of

the

record.

To

use

manual

update,

turn

it

on

in

the

Session

Management

Service.

(See

the

tables

above

for

location

information.)

Additionally,

the

application

code

must

use

the

com.ibm.websphere.servlet.session.IBMSession

class

instead

of

the

generic

HttpSession.

Within

the

IBMSession

object

there

is

a

method

called

sync().

This

method

tells

the

WebSphere

Application

Server

to

write

the

data

in

the

session

object

to

the

database.

This

activity

helps

the

developer

to

improve

overall

performance

by

having

the

session

information

persist

only

when

necessary.

Note:

An

alternative

to

using

the

manual

updates

is

to

utilize

the

timed

updates

to

persist

data

at

different

time

intervals.

This

action

provides

similar

results

as

the

manual

update

scheme.

v

Implement

the

following

suggestions

to

achieve

high

performance:

–

If

your

applications

do

not

change

the

session

data

frequently,

use

Manual

Update

and

the

sync()

function

(or

timed

interval

update)

to

efficiently

persist

session

information.

Chapter

3.

Managing

HTTP

sessions

103

–

Keep

the

amount

of

data

stored

in

the

session

as

small

as

possible.

With

the

ease

of

using

sessions

to

hold

data,

sometimes

too

much

data

is

stored

in

the

session

objects.

Determine

a

proper

balance

of

data

storage

and

performance

to

effectively

use

sessions.

–

If

using

database

sessions,

use

a

dedicated

database

for

the

session

database.

Avoid

using

the

application

database.

This

helps

to

avoid

contention

for

JDBC

connections

and

allows

for

better

database

performance.

–

If

using

memory

to

memory

sessions,

define

replicators

only

on

the

servers

and

have

the

client

attach

to

server

replicator.

–

If

using

memory

to

memory

sessions,

employ

partitioning

(either

group

or

single

replica)

as

your

clusters

grow

in

size

and

scaling

decreases.

–

Verify

that

you

have

the

latest

fix

packs

for

the

WebSphere

Application

Server.
v

Utilize

the

following

tools

to

help

monitor

session

performance.

–

Run

the

com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug

servlet.

-

To

run

this

servlet,

you

must

have

the

servlet

invoker

running

in

the

Web

application

you

want

to

run

this

from.

Or,

you

can

explicitly

configure

this

servlet

in

the

application

you

want

to

run.

–

Use

the

WebSphere

Application

Server

Resource

Analyzer

which

comes

with

WebSphere

Application

Server

to

monitor

active

sessions

and

statistics

for

the

WebSphere

Application

Server

environment.

–

Use

database

tracking

tools

such

as

″Monitoring″

in

DB2.

(See

the

respective

documentation

for

the

database

system

used.)

Managing

HTTP

sessions:

Resources

for

learning:

Use

the

following

links

to

find

relevant

supplemental

information

about

HTTP

sessions.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

Programming

model

and

decisions

v

Best

practices

v

HTTP

Session

Persistence

Best

Practices

v

Improving

session

persistence

performance

with

DB2

v

Persistent

client

state

HTTP

cookies

specification

Programming

instructions

and

examples

v

Java

Servlet

documentation,

tutorials,

and

examples

site

Programming

specifications

v

Java

Servlet

2.3

API

specification

download

site

v

J2EE

1.3

specification

download

site

104

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www7b.software.ibm.com/wsdd/zones/bp/
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html
http://www.netscape.com/newsref/std/cookie_spec.html
http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

Chapter

4.

Using

enterprise

beans

in

applications

1.

Design

a

J2EE

application

and

the

enterprise

beans

that

it

needs.

See

″Resources

for

learning″

for

links

to

design

information

that

is

specific

to

enterprise

beans.

2.

Develop

any

enterprise

beans

that

your

application

will

use.

3.

Prepare

for

assembly.

For

your

EJB

2.x-compliant

entity

beans,

decide

on

an

appropriate

access

intent

policy.

4.

Assemble

the

beans

using

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT)

into

one

or

more

EJB

modules.

This

includes

setting

security.

5.

Assemble

the

modules

into

a

J2EE

application

using

the

Assembly

ToolkitorAAT

.

6.

5.0.2 +

For

a

given

application

server,

update

the

EJB

container

configuration

if

needed

for

the

application

to

be

deployed,

and

determine

if

you

want

to

batch

commands

batch

commands

or

defer

commands

for

container

managed

persistence.

7.

Deploy

the

application

in

an

application

server.

8.

Test

the

modules.

v

As

needed,

debug

problems

with

the

container.

v

Debug

access

and

deployment

problems.

9.

Assemble

the

production

application

using

theAssembly

ToolkitorAAT.

10.

Deploy

the

application

to

a

production

environment.

11.

Manage

the

application:

a.

Manage

installed

EJB

modules.

After

an

application

has

been

installed,

you

can

manage

its

EJB

modules

individually

through

administrative

console

settings.

b.

Manage

other

aspects

of

the

J2EE

application.
12.

Update

the

module

and

redeploy

it

using

theAssembly

ToolkitorAAT.

13.

Tune

the

performance

of

the

application.

See

Best

practices

for

developing

enterprise

beans.

Enterprise

beans

An

enterprise

bean

is

a

Java

component

that

can

be

combined

with

other

resources

to

create

J2EE

applications.

There

are

three

types

of

enterprise

beans,

entity

beans,

session

beans,

and

message-driven

beans.

All

beans

reside

in

EJB

containers,

which

provide

an

interface

between

the

beans

and

the

application

server

on

which

they

reside.

Entity

beans

store

permanent

data.

Entity

beans

with

container-managed

persistence

(CMP)

require

connections

to

a

form

of

persistent

storage.

This

storage

might

be

a

database,

an

existing

legacy

application,

a

file,

or

other

types

of

persistent

storage.

Entity

beans

with

bean-managed

persistence

manage

permanent

data

in

whichever

manner

is

defined

in

the

bean

code.

This

can

include

writing

to

databases

or

XML

files,

for

example.

©

Copyright

IBM

Corp.

2003

105

Session

beans

do

not

require

database

access,

although

they

can

obtain

it

indirectly

as

needed

through

entity

beans.

Session

beans

can

also

obtain

direct

access

to

databases

(and

other

resources)

through

the

use

of

resource

references.

Session

beans

can

be

either

stateful

or

stateless.

New

in

the

Enterprise

JavaBeans

(EJB)

specification,

version

2.0,

message-driven

beans

enable

asynchronous

message

servicing.

The

EJB

container

and

a

Java

Message

Service

(JMS)

provider

work

together

to

process

messages.

When

a

message

arrives

from

another

application

component

through

JMS,

the

EJB

container

forwards

it

through

an

onMessage()

call

to

a

message-driven

bean

instance,

which

then

processes

the

message.

In

other

respects,

message-driven

beans

are

similar

to

stateless

session

beans.

Beans

that

require

data

access

use

data

sources,

which

are

administrative

resources

that

define

pools

of

connections

to

persistent

storage

mechanisms.

For

more

information

about

enterprise

beans,

see

″Resources

for

learning.″

Developing

enterprise

beans

Design

a

J2EE

application

and

the

enterprise

beans

that

it

needs.

v

For

general

design

information,

see

″Resources

for

learning.″

v

Before

developing

entity

beans

with

container-managed

persistence

(CMP),

read

″Concurrency

control.″

There

are

two

basic

approaches

to

selecting

tools

for

developing

enterprise

beans:

v

You

can

use

one

of

the

available

integrated

development

environments

(IDEs).

IDE

tools

automatically

generate

significant

parts

of

the

enterprise

bean

code

and

contain

integrated

tools

for

packaging

and

testing

enterprise

beans.

The

IBM

WebSphere

Application

Developer

product

is

the

recommended

IDE.

For

more

information,

see

the

documentation

for

that

product.

v

If

you

have

decided

to

develop

enterprise

beans

without

an

IDE,

you

need

at

least

an

ASCII

text

editor.

You

can

also

use

a

Java

development

tool

that

does

not

support

enterprise

bean

development.

You

can

then

use

tools

available

in

the

Java

Software

Development

Kit

(SDK)

and

in

this

product

to

assemble,

test,

and

deploy

the

beans.

The

following

steps

primarily

support

the

second

approach,

development

without

an

IDE.

1.

If

necessary,

migrate

any

pre-existing

code

to

the

required

version

of

the

Enterprise

JavaBeans

(EJB)

specification.

2.

Write

and

compile

the

components

of

the

enterprise

bean.

v

At

a

minimum,

an

EJB

1.1

session

bean

requires

a

bean

class,

a

home

interface,

and

a

remote

interface.

An

EJB

1.1

entity

bean

requires

a

bean

class,

a

primary-key

class,

a

home

interface,

and

a

remote

interface.

v

At

a

minimum,

an

EJB

2.0

session

bean

requires

a

bean

class,

a

home

or

local

home

interface,

and

a

remote

or

local

interface.

An

EJB

2.0

entity

bean

requires

a

bean

class,

a

primary-key

class,

a

remote

home

or

local

home

interface,

and

a

remote

or

local

interface.

The

types

of

interfaces

go

together:

If

you

implement

a

local

interface,

you

must

define

a

local

home

interface

as

well.

Note:

Optionally,

the

primary-key

class

can

be

unknown.

See

unknown

primary-key

class

for

more

information.

106

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Available

only

through

EJB

2.0,

a

message-driven

bean

requires

only

a

bean

class.
3.

For

each

entity

bean,

complete

work

to

handle

persistence

operations.

v

Create

a

database

schema

for

the

entity

bean’s

persistent

data.

–

For

entity

beans

with

container-managed

persistence(CMP),

you

must

store

the

bean’s

persistent

data

in

one

of

the

supported

databases.

The

Application

Assembly

Tool

automatically

generates

SQL

code

for

creating

database

tables

for

CMP

entity

beans.

If

your

CMP

beans

require

complex

database

mappings,

it

is

recommended

that

you

use

the

IBM

WebSphere

Studio

Application

Developer

product

to

generate

code

for

the

database

tables.

–

For

entity

beans

with

bean-managed

persistence

(BMP),

you

can

create

the

database

and

database

table

by

using

the

database

tools

or

use

an

existing

database

and

database

table.

For

more

information

on

creating

databases

and

database

tables,

consult

your

database

documentation.

v

(CMP

entity

beans

for

EJB

2.0

only)

Define

finder

queries

with

EJB

Query

Language

(EJB

QL).

With

EJB

QL,

you

define

finders

in

terms

of

CMP

fields

and

container-managed

relationships,

as

follows:

–

Public

finders

are

visible

in

the

bean’s

home

interface.

Implemented

in

the

bean

class,

they

return

only

remote

interfaces

and

collection

types.

–

Private

finders,

expressed

as

SELECT

statements,

are

used

only

within

the

bean

class.

They

can

return

both

local

and

remote

interfaces,

dependent

values,

other

CMP

field

types,

and

collection

types.
v

(CMP

entity

beans

for

EJB

1.1

only:

an

IBM

extension)

Create

a

finder

helper

interface

for

each

CMP

entity

bean

that

contains

specialized

finder

methods

(other

than

the

findByPrimaryKey

method).

The

following

logic

is

required

for

each

finder

method

(other

than

the

findByPrimaryKey

method)

contained

in

the

home

interface

of

an

entity

bean

with

CMP:

–

The

logic

must

be

defined

in

a

public

interface

named

NameBeanFinderHelper,

where

Name

is

the

name

of

the

enterprise

bean

(for

example,

AccountBeanFinderHelper).

–

The

logic

must

be

contained

in

a

String

constant

named

findMethodName

WhereClause,

where

findMethodName

is

the

name

of

the

finder

method.

The

String

constant

can

contain

zero

or

more

question

marks

(?)

that

are

replaced

from

left

to

right

with

the

value

of

the

finder

method’s

arguments

when

that

method

is

called.

5.0.1

5.0.2

Assemble

the

beans

in

one

or

more

EJB

modules.

Migrating

enterprise

bean

code

to

the

supported

specification

Support

for

Version

2.0

of

the

Enterprise

JavaBeans

(EJB)

specification

is

new

for

Version

5

of

this

product.

Migration

of

enterprise

beans

deployed

in

Version

4.0.x

of

this

product

is

not

generally

necessary;

Version

1.1

of

the

EJB

specification

is

still

supported.

Follow

these

steps

as

appropriate

for

your

application

deployment.

1.

Modify

enterprise

bean

code

for

changes

in

the

specification.

v

For

Version

1.0

beans,

migrate

at

least

to

Version

1.1.

Chapter

4.

Using

enterprise

beans

in

applications

107

v

As

stated

previously,

migration

from

Version

1.1

to

Version

2.0

of

the

EJB

specification

is

not

required

for

redeployment

on

this

version

of

the

product.

However,

if

your

application

requires

the

capabilities

of

Version

2.0,

migrate

your

Version

1.1-compliant

code.

Note:

The

EJB

Version

2.0

specification

mandates

that

prior

to

the

EJB

container’s

executing

a

findByMethod

query,

the

state

of

all

enterprise

beans

enlisted

in

the

current

transaction

be

synchronized

with

the

persistent

store.

(This

is

so

the

query

is

performed

against

current

data.)

If

Version

1.1

beans

are

reassembled

into

an

EJB

2.0-compliant

module,

the

EJB

container

synchronizes

the

state

of

Version

1.1

beans

as

well

as

that

of

Version

2.0

beans.

As

a

result,

you

might

notice

some

change

in

application

behavior

even

though

the

application

code

for

the

Version

1.1

beans

has

not

been

changed.
2.

Reassemble

and

redeploy

all

modules

to

incorporate

migrated

code.

Migrating

enterprise

bean

code

from

Version

1.0

to

Version

1.1

The

following

information

generally

applies

to

any

enterprise

bean

that

currently

complies

with

Version

1.0

of

the

Enterprise

JavaBeans

(EJB)

specification.

For

more

information

about

migrating

code

for

beans

produced

with

the

IBM

WebSphere

Studio

Application

Developer

tool,

see

the

documentation

for

that

product.

For

more

information

about

migrating

code

in

general,

see

″Resources

for

learning.″

1.

In

session

beans,

replace

all

uses

of

javax.jts.UserTransaction

with

javax.transaction.UserTransaction.

Entity

beans

may

no

longer

use

the

UserTransaction

interface

at

all.

2.

In

finder

methods

for

entity

beans,

include

FinderException

in

the

throws

clause.

3.

Remove

throws

of

java.rmi.RemoteException;

throw

javax.ejb.EJBException

instead.

However,

continue

to

include

RemoteException

in

the

throws

clause

of

home

and

remote

interfaces

as

required

by

the

use

of

Remote

Method

Invocation

(RMI).

4.

Remove

uses

of

the

finalize()

method.

5.

Replace

calls

to

getCallerIdentity()

with

calls

to

getCallerPrincipal().

The

use

of

getCallerIdentity()

is

deprecated.

6.

Replace

calls

to

isCallerInRole(Identity)

with

calls

to

isCallerinRole

(String).

The

use

of

isCallerInRole(Identity)

and

java.security.Identity

is

deprecated.

7.

Replace

calls

to

getEnvironment()

in

favor

of

JNDI

lookup.

As

an

example,

change

the

following

code:

String

homeName

=

aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");

if

(homeName

==

null)

homeName

=

"TARGET_HOME_NAME";

The

updated

code

would

look

something

like

the

following:

Context

env

=

(Context)(new

InitialContext()).lookup("java:comp/env");

String

homeName

=

(String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8.

In

ejbCreate

methods

for

an

entity

bean

with

container-managed

persistence

(CMP),

return

the

bean’s

primary

key

class

instead

of

void.

9.

Add

the

getHomeHandle()

method

to

home

interfaces.

public

javax.ejb.HomeHandle

getHomeHandle()

{return

null;}

Consider

enhancements

to

match

the

following

changes

in

the

specification:

v

Primary

keys

for

entity

beans

can

be

of

type

java.lang.String.

v

Finder

methods

for

entity

beans

return

java.util.Collection.

108

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Check

the

format

of

any

JNDI

names

being

used.

Local

name

spaces

are

also

supported.

v

Security

is

defined

by

role,

and

isolation

levels

are

defined

at

the

method

level

rather

than

at

the

bean

level.

Migrating

enterprise

bean

code

from

Version

1.1

to

Version

2.0

Enterprise

JavaBeans

(EJB)

Version

2.0-compliant

beans

may

be

assembled

only

in

an

EJB

2.0-compliant

module,

although

an

EJB

2.0-compliant

module

can

contain

a

mixture

of

Version

1.x

and

Version

2.0

beans.

The

EJB

Version

2.0

specification

mandates

that

prior

to

the

EJB

container’s

executing

a

findByMethod

query,

the

state

of

all

enterprise

beans

enlisted

in

the

current

transaction

be

synchronized

with

the

persistent

store.

(This

is

so

the

query

is

performed

against

current

data.)

If

Version

1.1

beans

are

reassembled

into

an

EJB

2.0-compliant

module,

the

EJB

container

synchronizes

the

state

of

Version

1.1

beans

as

well

as

that

of

Version

2.0

beans.

As

a

result,

you

might

notice

some

change

in

application

behavior

even

though

the

application

code

for

the

Version

1.1

beans

has

not

been

changed.

The

following

information

generally

applies

to

any

enterprise

bean

that

currently

complies

with

Version

1.1

of

the

EJB

specification.

For

more

information

about

migrating

code

for

beans

produced

with

the

IBM

WebSphere

Studio

Application

Developer

tool,

see

the

documentation

for

that

product.

For

more

information

about

migrating

code

in

general,

see

″Resources

for

learning.″

1.

In

beans

with

container-managed

persistence

(CMP)

version

1.x,

replace

each

CMP

field

with

abstract

get

and

set

methods.

In

doing

so,

you

must

make

each

bean

class

abstract.

2.

In

beans

with

CMP

version

1.x,

change

all

occurrences

of

this.field

=

value

to

setField(value).

3.

In

each

CMP

bean,

create

abstract

get

and

set

methods

for

the

primary

key.

4.

In

beans

with

CMP

version

1.x,

create

an

EJB

Query

Language

statement

for

each

finder

method.

5.

In

finder

methods

for

beans

with

CMP

version

1.x,

return

java.util.Collection

instead

of

java.util.Enumeration.

6.

Update

handling

of

non-application

exceptions.

v

To

report

non-application

exceptions,

throw

javax.ejb.EJBException

instead

of

java.rmi.RemoteException.

v

Modify

rollback

behavior

as

needed:

In

EJB

versions

1.1

and

2.0,

all

non-application

exceptions

thrown

by

the

bean

instance

result

in

the

rollback

of

the

transaction

in

which

the

instance

is

running;

the

instance

is

discarded.

In

EJB

1.0,

the

container

does

not

roll

back

the

transaction

or

discard

the

instance

if

it

throws

java.rmi.RemoteException.
7.

Update

rollback

behavior

as

the

result

of

application

exceptions.

v

In

EJB

versions

1.1

and

2.0,

an

application

exception

does

not

cause

the

EJB

container

to

automatically

roll

back

a

transaction.

v

In

EJB

Version

1.1,

the

container

performs

the

rollback

only

if

the

instance

has

called

setRollbackOnly()

on

its

EJBContext

object.

v

In

EJB

Version

1.0,

the

container

is

required

to

roll

back

a

transaction

when

an

application

exception

is

passed

through

a

transaction

boundary

started

by

the

container.

Chapter

4.

Using

enterprise

beans

in

applications

109

WebSphere

extensions

to

the

Enterprise

JavaBeans

specification

This

article

outlines

extensions

to

the

Enterprise

JavaBeans

(EJB)

specification

that

IBM

provides

with

this

product:

Inheritance

in

enterprise

beans

In

the

Java

language,

inheritance

is

the

creation

of

a

new

class

from

an

existing

class

or

a

new

interface

from

an

existing

interface.

This

product

supports

two

forms

of

inheritance:

standard

class

inheritance

and

EJB

inheritance.

In

standard

class

inheritance,

the

home

interface,

remote

interface,

or

enterprise

bean

class

inherits

properties

and

methods

from

base

classes

that

are

not

themselves

enterprise

bean

classes

or

interfaces.

By

contrast

in

enterprise

bean

inheritance,

an

enterprise

bean

inherits

properties

(such

as

container-managed

persistence

(CMP)

fields

and

container-managed

relationship

(CMR)

fields),

methods,

and

method-level

control

descriptor

attributes

from

another

enterprise

bean.

For

more

information,

see

the

documentation

for

the

IBM

WebSphere

Studio

Application

Developer

product.

Optimistic

concurrency

control

for

container-managed

persistence

This

product

supports

optimistic

concurrency

control

of

data

access.

Access

intents

for

EJB

persistence

5.0.2 +

This

product

supports

the

application

of

named

data-access

policies.

Performance

enhancements

Through

the

lifetime-in-cache

settings,

this

product

provides

a

way

for

you

to

improve

performance

for

beans

that

are

only

occasionally

updated.

For

more

information,

see

″Entity

bean

assembly

settings.″

Some

enterprise

beans

created

with

the

IBM

WebSphere

Studio

Application

Developer

product

can

utilize

read-ahead

for

loading

a

bean

and

its

related

beans

in

a

single

database

operation.

An

entire

object

graph

or

any

part

of

the

graph

can

be

preloaded

by

configuring

a

finder

method

to

use

read-ahead.

Assembly

and

deployment

extensions

5.0.1

5.0.2

This

product

supports

IBM

extensions

of

assembly

and

deployment

options.

IBM

extensions

are

clearly

marked

in

reference

topics

for

assembly

settings.

Best

practices

for

developing

enterprise

beans

Use

the

following

guidelines

when

designing

and

developing

enterprise

beans:

v

Use

a

stateless

session

bean

to

act

as

the

entry

point

for

business

logic.

For

more

information

about

using

session

facades,

see

″Resources

for

learning.″

v

Entity

beans

should

use

container-managed

persistence.

110

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

In

an

Enterprise

JavaBeans

(EJB)

Version

2.0

environment,

use

local

interfaces

to

improve

communication

between

enterprise

beans

in

the

same

Java

virtual

machine.

Local

calls

avoid

the

overhead

of

RMI/IIOP

and

use

pass-by-reference

semantics

instead

of

pass-by-value.

For

each

call,

the

caller

and

callee

beans

share

the

state

of

arguments.

EJB

2.0

beans

can

have

both

a

local

and

remote

interface

but

more

typically

have

one

or

the

other.

v

For

communicating

with

remote

clients,

provide

remote

and

remote

home

interfaces.

For

communicating

with

local

clients

like

servlets,

entity

beans,

and

message-driven

beans,

provide

local

and

local

home

interfaces.

Batch

commands

for

container

managed

persistence

From

JDBC

2.0

on,

PreparedStatement

objects

can

maintain

a

list

of

commands

that

can

be

submitted

together

as

a

batch.

Instead

of

multiple

database

round

trips,

there

can

be

only

one

database

round

trip

for

all

the

batched

persistence

requests.

The

WebSphere

Application

Server

version

5.0.2

enables

you

to

take

advantage

of

this.

You

can

turn

this

option

on

from

the

EJB

CMP

side.

When

you

choose

this

option,

the

run

time

defers

ejbStore/ejbCreate/ejbRemove

or

the

equivalent

database

persistence

requests

(insert/update/delete)

until

they

are

needed.

This

can

be

at

the

end

of

the

transaction,

or

when

a

flush

is

needed

for

finders

related

to

this

EJB

type.

When

the

persistence

operation

finally

happens,

run

time

accumulates

the

database

requests

and

uses

JDBC

PreparedStatement

batch

operation

to

make

a

single

JDBC

call

for

multiple

rows

of

the

same

operation.

Setting

the

run

time

for

batched

commands:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

Dcom.ibm.ws.pm.batch=true.

Deferred

Create

for

container

managed

persistence

The

specification

for

Enterprise

Java

Beans

(EJB)

2.x

states

that

for

Container

Managed

Persistence

(CMP)

during

the

ejbCreate,

the

container

can

create

the

representation

of

the

entity

in

the

database

immediately,

or

defer

it

to

a

later

time.

The

WebSphere

Application

Server

version

5.0.2

enables

you

to

take

advantage

of

this

specification.

You

can

turn

this

option

on

from

the

EJB

CMP

side.

When

you

choose

this

option,

the

runtime

defers

ejbCreate

(or

the

equivalent

database

persistence

request)

until

it

is

needed.

This

can

be

at

the

end

of

the

transaction,

or

when

a

flush

is

needed

for

finders

related

to

this

EJB

type.

By

doing

this

you

can

reduce

two

round

trips

for

the

newly

created

entity

(insert

and

update)

to

one

(insert).

Setting

the

run

time

for

deferred

create:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

Chapter

4.

Using

enterprise

beans

in

applications

111

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

Dcom.ibm.ws.pm.deferredcreate=true.

Explicit

invalidation

in

the

Persistence

Manager

cache

Container

managed

persistence

(CMP)

entity

beans

can

be

configured

as

long-lifetime

beans.

A

long-lifetime

bean

is

one

that

is

configured

with

Lifetime

In

Cache

Usage

equal

to

a

value

other

than

the

default

OFF

(refer

to

Entity

bean

assembly

settings).

A

value

other

than

OFF

means

that

data

for

this

bean

is

cached

beyond

the

end

of

the

transaction

in

which

the

bean

was

obtained

by

a

finder

or

other

method.

The

Lifetime

In

Cache

Usage

and

Lifetime

In

Cache

values

control

the

basic

length

of

time

the

cached

data

remains

valid.

When

the

specified

time

runs

out,

the

cached

data

is

no

longer

valid.

See

the

LifetimeInCache

help

sections

of

the

Assembly

Toolkit

(ATK)

for

more

details.

However,

there

is

also

an

API

that

lets

the

client

application

code

explicitly

invalidate

the

cached

data

of

a

bean

on

demand,

superceding

the

basic

lifetime

of

the

cache

data

as

controlled

by

the

Lifetime

In

Cache

Usage

and

Lifetime

In

Cache

settings.

This

is

useful

where

an

application

that

does

not

use

CMP

beans

modifies

the

data

that

underlies

a

CMP

bean

(for

example,

it

updates

a

database

table

to

which

a

CMP

bean

is

mapped).

Such

an

application

can

inform

WebSphere

Application

Server

that

any

cached

version

of

this

bean

data

is

stale

and

no

longer

matches

what

is

in

the

database.

The

data

should

be

invalidated

(in

essence,

discarded).

For

CMP

beans

that

cannot

tolerate

stale

data,

this

is

an

important

feature.

Because

the

PM

Cache

Invalidation

mechanism

does

consume

resources

in

exchange

for

its

benefits,

it

is

not

enabled

by

default.

To

enable

it

refer

to

Setting

Persistence

Manager

Cache

Invalidation

.

Example:

Explicit

Invalidation

in

the

Persistence

Manager

Cache:

Usage

Scenario

The

scenario

of

use

for

this

feature

begins

with

configuring

one

or

more

bean

types

to

be

long-lifetime

beans

(see

Explicit

Invalidation

in

the

Persistence

Manager

Cache,

and

configuring

the

necessary

Java

Message

Service

(JMS)

resources

(described

below).

Once

this

is

done,

the

server

is

started.

The

scenario

continues

as

follows:

1.

Assume

that

a

CMP

entity

bean

of

type

Department

has

been

configured

to

be

a

long-lifetime

bean.

2.

Transaction

1

begins.

Application

code

looks

up

Department’s

home

and

calls

a

finder

method

(such

as

findByPrimaryKey(″dept01″)

).

As

this

is

the

first

finder

to

return

Department

dept01,

a

trip

is

made

to

the

database

to

obtain

the

data.

Transaction

1

ends.

3.

Transaction

2

begins.

Application

code

calls

findByPrimaryKey(″dept01″)

again.

Because

this

is

not

the

first

finder

to

return

Department

dept01,

we

get

a

cache

hit

and

no

database

trip

is

made.

So

far

this

is

current

WebSphere

Application

Server

behavior

for

long-lifetime

beans.

Transaction

2

ends.

4.

Another

application,

which

does

not

use

the

Department

CMP

bean,

is

executed.

This

application

might

or

might

not

be

run

on

the

WebSphere

Application

Server;

it

could

be

a

legacy

application.

The

application

updates

the

database

table

that

is

mapped

to

the

Department

bean,

altering

the

row

for

dept01.

For

example,

the

budget

column

in

the

table

(mapped

to

a

Java

double

CMP

attribute

in

the

Deparment

bean)

is

changed

from

$10,000.00

to

$50,000.00.

This

application

was

designed

to

cooperate

with

WebSphere

Application

Server.

After

performing

the

update,

the

application

sends

an

invalidate

request

message

to

invalidate

the

Department

bean

dept01.

112

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

5.

Transaction

3

begins.

Application

code

looks

up

Department’s

home

and

calls

a

finder

method

(such

as

findByPrimaryKey(″dept01″)

).

Because

this

is

the

first

finder

after

Department

dept01

is

invalidated,

a

new

database

trip

is

made

to

obtain

the

data.

Transaction

3

ends.

Persistence

Manager

cache

invalidation

API

The

PM

cache

invalidation

API

is

in

the

form

of

a

JMS

message

that

the

client

sends

to

a

specially-named

JMS

topic

using

a

connection

from

a

specifically

named

JMS

TopicConnectionFactory.

The

JMS

message

must

be

an

ObjectMessage

created

by

the

client.

The

client

code

creates

a

PMCacheInvalidationRequest

object

that

describes

the

bean

data

to

invalidate.

Client

code

places

the

PMCacheInvalidationRequest

object

in

the

ObjectMessage

and

publishes

the

ObjectMessage

(for

further

details

on

the

JMS

objects

and

terms

used

here,

please

see

the

Java

Message

Service

documentation).

The

public

class

PMCacheInvalidationRequest

is

central

to

the

API,

so

we

include

a

portion

of

its

code

here

for

illustration

purposes

(if

you

see

any

differences

between

this

illustration

and

the

actual

class,

the

class

is

to

be

considered

correct):

packagecom.ibm.websphere.ejbpersistence;

/**

*An

instance

of

this

class

represents

a

request

to

invalidate

one

or

more

*CMP

beans

in

the

PMcache.When

an

invalidate

occurs,cached

datafor

this

*bean

is

removed

from

the

cache;the

next

time

an

application

tries

to

find

*this

bean,a

fresh

copy

of

the

bean

data

is

obtained

from

the

data

store.

*

*The

ability

to

invalidate

a

bean

means

that

a

CMP

bean

may

be

configured

*as

a

long-lifetime

bean

and

thus

be

cached

across

transactions

for

much

*greater

performance

on

future

attempts

to

find

this

bean.Yet

when

some

*outside

mechanism

updates

the

bean

data,sending

an

invalidation

request

*will

remove

stale

data

from

the

PMcache

so

applications

do

not

behave

falsely

*based

on

stale

data.

*/

public

class

PMCacheInvalidationRequestimplementsSerializable{

.

.

.

/**

*

Constructor

used

to

invalidate

a

single

bean

*

@param

beanHomeJNDIName

the

JNDI

name

of

the

bean

home.

This

is

the

same

value

*

used

to

look

up

the

bean

home

prior

to

calling

findByPrimaryKey,

for

example.

*

@param

beanKey

the

primary

key

of

the

bean

to

be

invalidated.

The

actual

*

object

type

must

be

the

primary

key

type

for

this

bean

type.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName,

Object

beanKey)

throws

IOException

{

.

.

.

}

/**

*

Constructor

used

to

invalidate

a

Collection

of

beans

*

@param

beanHomeJNDIName

java.lang.String

the

JNDI

name

of

the

bean

home.

*

This

is

the

same

value

used

to

look

up

the

bean

home

prior

to

calling

*

findByPrimaryKey,

for

example.

*

@param

beanKeys

a

Collection

of

the

primary

keys

of

the

beans

to

be

*

invalidated.

The

actual

type

of

each

object

in

the

Collection

must

be

the

*

primary

key

type

for

this

bean

type.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName,

Collection

beanKeys)

throws

IOException

{

.

.

.

}

/**

Chapter

4.

Using

enterprise

beans

in

applications

113

*

Constructor

used

to

invalidate

all

beans

of

a

given

type

*

@param

beanHomeJNDIName

java.lang.String

the

JNDI

name

of

the

bean

home.

*

This

is

the

same

value

used

to

look

up

the

bean

home

prior

to

calling

*

findByPrimaryKey,

for

example.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName)

{

.

.

.

}

}

If

the

client

wants

to

perform

the

invalidation

in

a

synchronous

way,

it

can

opt

to

receive

an

acknowledgement

JMS

message

when

the

invalidation

is

complete.

To

ask

for

an

acknowledgement

(ACK)

message,

the

client

sets

a

Topic

of

its

own

choosing

in

the

JMSReplyTo

field

of

the

ObjectMessage

for

the

invalidation

request

(see

JMS

documentation

for

further

details).

The

client

then

waits

(using

the

receive()

method

of

JMS)

on

receipt

of

the

acknowledgement

message

before

continuing

execution.

An

ACK

message

enables

the

caller

to

insure

there

is

not

even

a

brief

(seconds

or

less)

window

during

which

PM

cache

data

is

stale.

The

sending

of

an

acknowledgement

for

each

request

does,

of

course,

take

a

bit

more

time

and

so

is

recommended

to

be

used

only

when

needed.

The

JMS

resources

used

to

make

an

invalidation

request

(TopicConnectionFactory,

TopicDestination,

and

so

forth)

must

be

configured

by

the

user

(using

the

Administration

console

or

other

method)

if

they

want

to

use

PM

Cache

Invalidation.

In

this

way

the

user

can

chose

whichever

JMS

provider

they

prefer

(as

long

as

it

supports

pub-sub).

The

names

that

must

be

used

for

these

resources

are

defined

as

part

of

the

API,

and

use

names

unique

to

the

WebSphere

Application

Server

namespace

to

avoid

name

conflict

with

customer

JMS

resources.

The

following

are

the

names

that

must

be

used

when

the

user

configures

the

JMS

resources

(shown

as

Java

constants

for

clarity):

//

The

JNDI

name

of

the

TopicConnectionFactory

private

static

final

String

topicConnectionFactoryJNDIName

=

"com.ibm.websphere.ejbpersistence.InvalidateTCF";

//

The

JNDI

name

of

the

TopicDestination

private

static

final

String

topicDestinationJNDIName

=

"com.ibm.websphere.ejbpersistence.invalidate";

//

The

Topic

name

(part

of

the

TopicDestination)

private

static

final

String

topicString

=

"com.ibm.websphere.ejbpersistence.invalidate";

Here

are

examples

of

how

these

constants

can

be

used

in

client

code:

//

Look

up

the

TopicConnectionFactory...

InitialContext

ic

=

new

InitialContext();

TopicConnectionFactory

topicConnectionFactory

=

(TopicConnectionFactory)

ic.lookup(topicConnectionFactoryJNDIName);

...

//

Look

up

the

Topic

Topic

topic

=

(Topic)

ic.lookup(topicDestinationJNDIName);

Note

that

JMS

messages

can

be

sent

not

only

from

J2EE

application

code

(for

example,

a

SessionBean

or

BMP

entity

bean

method)

but

also

from

non-J2EE

applications

if

your

chosen

JMS

provider

allows

for

this.

For

example,

the

IBM

MQ

provider,

available

in

WebSphere

Application

Server

as

the

Embedded

Messaging

feature

(selectable

during

installation),

supports

the

use

of

MQ

classes

(or

structures

in

other

languages)

to

create

a

topic

connection

and

topic

that

are

114

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

compatible

with

the

TopicConnectionFactory

and

TopicDestination

you

configure

using

WebSphere

Application

Server

Application

Console.

Setting

Persistence

Manager

Cache

Invalidation:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

-Dcom.ibm.ws.ejbpersistence.cacheinvalidation=true.

Unknown

primary-key

class

When

writing

an

entity

bean

for

Enterprise

Java

Bean

Version

2.0,

the

minimum

requirements

usually

include

a

primary-key

class.

However,

in

some

cases

you

might

choose

not

to

specify

the

primary-key

class

for

an

entity

bean

with

container

managed

persistence

(CMP).

Perhaps

there

is

no

obvious

primary

key,

or

you

want

to

allow

the

deployer

to

select

the

primary

key

fields

at

deployment

time.

The

primary

key

type

is

usually

derived

from

the

type

used

by

the

database

system

that

stores

the

entity

objects,

and

you

might

not

know

what

this

key

is.

So,

the

unknown

key

type

is

actually

a

type

chosen

at

deployment

time,

making

it

changeable

each

time

the

bean

is

deployed.

Your

client

code

must

deal

with

this

key

as

type

Object.

Currently,

WebSphere

Application

Server

supports

top-down

mapping

and

enables

the

deployer

to

choose

String

keys

generated

at

the

application

server.

For

an

example

of

how

to

use

this

function,

see

the

Samples

library.

Using

access

intent

policies

5.0.2 +

You

can

use

access

intent

policies

to

help

the

product

run-time

environment

manage

various

aspects

of

Enterprise

JavaBeans

(EJB)

persistence.

You

apply

access

intent

policies

to

EJB

Version

2.0

entity

beans

and

their

methods

by

using

an

application

assembly

tool.

A

set

of

default

access

intent

policies

comes

with

the

Assembly

Toolkit

and

Application

Assembly

Tool

(AAT).

1.

5.0.2 +

Apply

default

access

intent

to

CMP

entity

beans.

For

more

information,

see

the

online

help

available

with

the

Assembly

Toolkit

or

the

Entity

bean

assembly

settings.

2.

Apply

access

intent

policies

to

methods

of

CMP

entity

beans.

Access

intent

policies

An

access

intent

policy

is

a

named

set

of

properties

(access

intents)

that

governs

data

access

for

Enterprise

JavaBeans

(EJB)

persistence.

You

can

assign

policies

to

an

entity

bean

and

to

individual

methods

on

an

entity

bean’s

home,

remote,

or

local

interfaces

during

assembly.

Access

intents

are

settable

only

within

EJB

Version

2.x-compliant

modules

for

entity

beans

with

CMP

Version

2.x.

This

product

supplies

a

number

of

access

intent

policies

that

specify

permutations

of

read

intent

and

concurrency

control;

the

pessimistic/update

policy

can

be

Chapter

4.

Using

enterprise

beans

in

applications

115

qualified

further.

The

selected

policy

determines

the

appropriate

isolation

level

and

locking

strategy

used

by

the

run-time

environment.

Access

intent

policies

are

specifically

designed

to

supplant

the

use

of

isolation

level

and

access

intent

method-level

modifiers

found

in

the

extended

deployment

descriptor

for

EJB

version

1.1

enterprise

beans.

You

cannot

specify

isolation

level

and

read-only

modifiers

for

EJB

version

2.0

enterprise

beans.

5.0.2 +

Access

intent

policies

configured

on

an

entity

basis

define

the

default

access

intent

for

that

entity.

The

default

access

intent

is

used

to

control

that

entity

in

the

absence

of

a

more

specific

configuration

based

upon

either

method-level

policy

configuration

or

application

profiling.

5.0.2 +

Access

intent

can

be

controlled

in

a

more

precise

way

by

using

either

application

profiling

or

by

using

method-level

access

intent

policies.

Application

profiling

is

only

available

in

the

WebSphere

Application

Server

Enterprise

product.

Method-level

access

intent

policies

are

named

and

defined

at

the

module

level.

A

module

can

have

one

or

many

such

policies.

Policies

are

assigned,

and

apply,

to

individual

methods

of

the

declared

interfaces

of

entity

beans

and

their

associated

home

interfaces.

A

method-based

policy

is

acted

upon

by

the

combination

of

the

EJB

container

and

persistence

manager

when

the

method

causes

the

entity

to

load.

For

entity

beans

that

are

backed

by

tables

with

nullable

columns,

use

an

optimistic

policy

with

caution.

Nullable

columns

are

automatically

excluded

from

overqualified

updates

at

deployment

time;

concurrent

changes

to

a

nullable

field

might

result

in

lost

updates.

When

used

with

the

IBM

WebSphere

Studio

Application

Developer

product,

this

product

provides

support

for

selecting

a

subset

of

the

nonnullable

columns

that

are

to

be

reflected

in

the

overqualified

update

statement

that

is

generated

in

the

deployment

code

to

support

optimistic

policies.

5.0.2 +

An

entity

that

is

configured

with

a

read-only

policy

that

causes

a

bean

to

be

activated

can

cause

problems

if

updates

are

attempted

within

the

same

transaction.

Those

changes

will

not

be

committed,

and

an

exception

will

be

thrown

because

data

integrity

might

be

compromised.

Concurrency

control

Concurrency

control

is

the

management

of

contention

for

data

resources.

A

concurrency

control

scheme

is

considered

pessimistic

when

it

locks

a

given

resource

early

in

the

data-access

transaction

and

does

not

release

it

until

the

transaction

is

closed.

A

concurrency

control

scheme

is

considered

optimistic

when

locks

are

acquired

and

released

over

a

very

short

period

of

time

at

the

end

of

a

transaction.

The

objective

of

optimistic

concurrency

is

to

minimize

the

time

over

which

a

given

resource

would

be

unavailable

for

use

by

other

transactions.

This

is

especially

important

with

long-running

transactions,

which

under

a

pessimistic

scheme

would

lock

up

a

resource

for

unacceptably

long

periods

of

time.

Under

an

optimistic

scheme,

locks

are

obtained

immediately

before

a

read

operation

and

released

immediately

afterwards.

Update

locks

are

obtained

immediately

before

an

update

operation

and

held

until

the

end

of

the

transaction.

To

enable

optimistic

concurrency,

this

product

uses

an

overqualified

update

scheme

to

test

whether

the

underlying

data

source

has

been

updated

by

another

transaction

since

the

beginning

of

the

current

transaction.

With

this

scheme,

the

columns

marked

for

update

and

their

original

values

are

added

explicitly

through

a

116

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

WHERE

clause

in

the

UPDATE

statement

so

that

the

statement

fails

if

the

underlying

column

values

have

been

changed.

As

a

result,

this

scheme

can

provide

column-level

concurrency

control;

pessimistic

schemes

can

control

concurrency

at

the

row

level

only.

Optimistic

schemes

typically

perform

this

type

of

test

only

at

the

end

of

a

transaction.

If

the

underlying

columns

have

not

been

updated

since

the

beginning

of

the

transaction,

pending

updates

to

container-managed

persistence

fields

are

committed

and

the

locks

are

released.

If

locks

cannot

be

acquired

or

if

some

other

transaction

has

updated

the

columns

since

the

beginning

of

the

current

transaction,

the

transaction

is

rolled

back:

All

work

performed

within

the

transaction

is

lost.

Pessimistic

and

optimistic

concurrency

schemes

require

different

transaction

isolation

levels.

Enterprise

beans

that

participate

in

the

same

transaction

and

require

different

concurrency

control

schemes

cannot

operate

on

the

same

underlying

data

connection.

Whether

or

not

to

use

optimistic

concurrency

depends

on

the

type

of

transaction.

Transactions

with

a

high

penalty

for

failure

might

be

better

managed

with

a

pessimistic

scheme.

(A

high-penalty

transaction

is

one

for

which

recovery

would

be

risky

or

resource-intensive.)

For

low-penalty

transactions,

it

is

often

worth

the

risk

of

failure

to

gain

efficiency

through

the

use

of

an

optimistic

scheme.

In

general,

optimistic

concurrency

is

more

efficient

when

update

collisions

are

expected

to

be

infrequent;

pessimistic

concurrency

is

more

efficient

when

update

collisions

are

expected

to

occur

often.

Read-ahead

hints

Read-ahead

schemes

enable

applications

to

minimize

the

number

of

database

roundtrips

by

retrieving

a

working

set

of

container-managed

persistence

(CMP)

beans

for

the

transaction

within

one

query.

Read-ahead

involves

activating

the

requested

CMP

beans

and

caching

the

data

for

their

related

beans,

which

ensures

that

data

is

present

for

the

beans

that

are

most

likely

to

be

needed

next

by

an

application.

A

read-ahead

hint

is

a

canonical

representation

of

the

related

beans

that

are

to

be

read.

It

is

associated

with

the

findByPrimaryKey

method

for

the

requested

bean

type,

which

must

be

an

EJB

2.x-compliant

CMP

entity

bean.

5.0.2 +

Read-ahead

hints

can

be

set

only

using

the

WebSphere

Application

Server

Enterprise

assembly

tool

or

through

the

Add

Access

Intent

wizard

of

the

IBM

WebSphere

Studio

Application

Developer

product.

5.0.2 +

Read-ahead

is

only

supported

for

access

intent

policies

that

can

be

applied

by

the

backend

against

which

the

application

is

deployed.

Otherwise,

the

read-ahead

hint

is

disregarded.

5.0.2 +

Currently,

only

findByPrimaryKey

methods

can

have

read-ahead

hints.

Only

beans

related

to

the

requested

beans

by

a

container-managed

relationship

(CMR),

either

directly

or

indirectly

through

other

beans,

can

be

read

ahead.

Beans

that

use

EJB

inheritance

should

not

be

used

in

a

read-ahead

hint.

A

read-ahead

hint

takes

the

form

of

a

character

string.

You

do

not

have

to

provide

the

string;

the

wizard

generates

it

for

you

based

on

CMRs

defined

for

the

bean.

The

following

example

is

provided

as

supplemental

information

only.

Suppose

a

CMP

bean

type

A

has

a

finder

method

that

returns

instances

of

bean

A.

A

read-ahead

hint

for

this

method

is

specified

using

the

following

notation:

RelB.RelC;

RelD

Chapter

4.

Using

enterprise

beans

in

applications

117

Interpret

the

preceding

notation

as

follows:

v

Bean

type

A

has

a

CMR

with

bean

types

B

and

D.

v

Bean

type

B

has

a

CMR

with

bean

type

C.

For

each

bean

of

type

A

that

is

retrieved

from

the

database,

its

directly-related

B

and

D

beans

and

its

indirectly-related

C

beans

are

also

retrieved.

The

order

of

the

retrieved

bean

data

columns

in

each

row

of

the

result

set

is

the

same

as

their

order

in

the

read-ahead

hint:

an

A

bean,

a

B

bean

(or

null),

a

C

bean

(or

null),

a

D

bean

(or

null).

For

hints

in

which

the

same

relationship

is

mentioned

more

than

once

(for

example,

RelB.RelC;RelB.RelE),

a

bean’s

data

columns

appear

only

once,

at

the

position

it

first

appears

in

the

hint.

The

tokens

shown

in

the

notation

(RelB

and

so

on)

must

be

CMR

field

names

for

the

relationships

as

defined

in

the

deployment

descriptor

for

the

bean.

In

indirect

relationships

such

as

RelB.RelC,

RelC

is

a

CMR

field

name

defined

in

the

deployment

descriptor

for

bean

type

B.

A

single

read-ahead

hint

cannot

refer

to

the

same

bean

type

in

more

than

one

relationship.

For

example,

if

a

Department

bean

has

a

relationship

employees

with

the

Employee

bean

and

also

has

a

relationship

manager

with

the

Employee

bean,

the

read-ahead

hint

cannot

specify

both

employees

and

manager.

For

more

information

about

how

to

set

read-ahead

hints,

see

the

documentation

for

the

Websphere

Studio

Application

Developer

product.

Applying

access

intent

policies

to

methods

You

apply

an

access

intent

policy

to

a

method,

or

set

of

methods,

in

an

application’s

entity

beans

through

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT).

1.

Start

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT)

.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

select

File

>

Open,

then

select

the

EAR

file.

3.

Select

EJB

Modules

>

moduleName

>

Access

Intent.

4.

To

configure

a

new

access

intent

policy,

right-click

and

select

New.

5.

On

the

New

Access

Intent

panel,

specify

a

name

and

a

description.

These

attributes

are

provided

as

a

convenience

to

the

developer

and

are

not

used

at

run

time.

6.

To

select

the

methods

to

which

the

access

intent

policy

should

apply,

click

Add

beside

the

Methods

table.

7.

From

the

Applied

access

intent

list,

select

an

access

intent

policy.

8.

To

override

an

attribute

defined

in

the

applied

policy,

click

Add

beside

the

Access

intent

attribute

overrides

table.

9.

Click

OK

to

exit

the

New

Access

Intent

panel.

10.

Save

your

configuration

by

selecting

File

>

Save.

Access

intent

exceptions

The

following

exceptions

are

thrown

in

response

to

the

application

of

access

intent

policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If

the

method

that

drives

the

ejbLoad()

method

is

configured

to

be

read-only

but

updates

are

then

made

within

the

transaction

that

loaded

the

bean’s

state,

an

exception

is

thrown

during

invocation

of

the

ejbStore()

118

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

method,

and

the

transaction

is

rolled

back.

Likewise,

the

ejbRemove()

method

cannot

succeed

in

a

transaction

that

is

set

as

read-only.

If

an

update

hint

is

applied

to

methods

of

entity

beans

with

bean-managed

persistence,

the

same

behavior

and

exception

results.

The

forwarded

exception

object

contains

the

message

string

PMGR1103E:

update

instance

level

read

only

bean

beanName

This

exception

is

also

thrown

if

the

applied

access

intent

policy

cannot

be

honored

because

a

finder,

ejbSelect,

or

container-managed

relationship

(CMR)

accessor

method

returns

an

inherently

read-only

result.

The

forwarded

exception

object

contains

the

message

string

PMGR1001:

No

such

DataAccessSpec

-

methodName

The

most

common

occurrence

of

this

error

is

when

a

custom

finder

that

contains

a

read-only

EJB

Query

Language

(EJB

QL)

statement

is

called

with

an

applied

access

intent

of

wsPessimisticUpdate

or

wsPessimisticUpdate-
Exclusive.

These

policies

require

the

use

of

a

FOR

UPDATE

clause

on

the

SQL

SELECT

statement

to

be

executed,

but

a

read-only

query

cannot

support

FOR

UPDATE.

Other

examples

of

read-only

queries

include

joins;

the

use

of

ORDER

BY,

GROUP

BY,

and

DISTINCT

keywords.

To

eliminate

the

exception,

edit

the

EJB

query

so

that

it

does

not

return

an

inherently

read-only

result

or

change

the

access

intent

policy

being

applied.

v

If

an

update

access

is

required,

change

the

applied

access

intent

setting

to

wsPessimisticUpdate-WeakestLockAtLoad

or

wsOptimisticUpdate.

v

If

update

access

is

not

truly

required,

use

wsPessimisticRead

or

wsOptimisticRead.

v

If

connection

sharing

between

entity

beans

is

required,

use

wsPessimisticUpdate-WeakestLockAtLoad

or

wsPessimisticRead.
com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If

a

lazy

collection

is

driven

after

it

is

no

longer

in

scope,

and

beyond

what

has

already

been

locally

buffered,

a

CollectionCannotBeFurtherAccessed

exception

is

thrown.

com.ibm.ws.exception.RuntimeWarning

If

an

application

is

configured

incorrectly,

a

run-time

warning

exception

is

thrown

as

the

application

starts;

startup

is

ended.

You

can

validate

an

application’s

configuration

by

choosing

the

verify

function

in

the

WebSphere

Application

Assembly

Tool.

Some

examples

of

misconfiguration

include:

v

A

method

configured

with

two

different

access

intent

policies

v

A

method

configured

with

an

undefined

access

intent

policy
javax.ejb.NoSuchEntityException

If

an

update

fails

under

optimistic

concurrency

because

fields

changed

within

another

transaction

between

load

and

store

requests,

a

NoSuchEntityException

is

raised

and

the

commit

fails.

Access

intent

assembly

settings

Access

intent

policies

contain

data-access

settings

for

use

by

the

persistence

manager.

Default

access

intent

policies

are

configured

on

the

entity

bean.

Optionally,

you

can

associate

access

intent

policies

with

one

or

more

methods.

These

settings

are

applicable

only

for

EJB

2.x-compliant

entity

beans

that

are

packaged

in

EJB

2.x-compliant

modules.

Connection

sharing

between

beans

with

bean-managed

persistence

and

those

with

container-managed

persistence

is

possible

if

they

all

use

the

same

access

intent

policy.

Chapter

4.

Using

enterprise

beans

in

applications

119

Name

Specifies

a

name

for

a

mapping

between

an

access

intent

policy

and

one

or

more

methods.

Description

Contains

text

that

describes

the

mapping.

Methods

-

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

character

(*).

The

asterisk

is

used

to

denote

all

of

the

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Methods

-

Enterprise

bean

Specifies

which

enterprise

bean

contains

the

methods

indicated

in

the

Name

setting.

Methods

-

Type

Used

to

distinguish

between

a

method

with

the

same

signature

that

is

defined

in

both

the

home

and

remote

interface.

Use

Unspecified

if

an

access

intent

policy

applies

to

all

methods

of

the

bean.

Data

type

String

Range

Valid

values

are

Home,

Remote,Local,

LocalHome

or

Unspecified

Methods

-

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

This

setting

is

used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

Applied

access

intent

Specifies

how

the

container

must

manage

data

access

for

persistence.

Configurable

both

as

a

default

access

intent

for

an

entity

and

as

part

of

a

method-level

access

intent

policy.

Data

type

String

Default

wsPessimisticUpdate-WeakestLockAtLoad.

With

Oracle,

this

is

the

same

as

wsPessimisticUpdate.

Range

Valid

settings

are

wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision,

wsPessimisticUpdate-Exclusive,

wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead,

wsOptimisticUpdate,

or

wsOptimisticRead.

Only

wsPessimisticRead

and

wsOptimisticRead

are

valid

when

class-level

caching

is

enabled

in

the

EJB

container.

This

product

supports

lazy

collections.

For

each

segment

of

a

collection,

iterating

through

the

collection

(next())

does

not

trigger

a

remote

method

call

to

retrieve

the

next

remote

reference.

Two

policies

(wsPessimisticUpdate

and

wsPessimisticUpdate-Exclusive)

are

extremely

lazy;

the

collection

increment

size

is

set

to

1

to

avoid

overlocking

the

application.

The

other

policies

have

a

collection

increment

size

of

25.

120

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

5.0.2 + If

an

entity

is

not

configured

with

an

access

intent

policy,

the

run-time

environment

typically

uses

wsPessimisticUpdate-WeakestLockAtLoad

by

default.

If,

however,

the

Lifetime

in

cache

property

is

set

on

the

bean,

the

default

value

of

Applied

access

intent

is

wsOptimisticRead;

updates

are

not

permitted.

Additional

information

about

valid

settings

follows:

Profile

name

Concurrency

control

Access

type

Transaction

isolation

wsPessimisticRead

(Note

1)

pessimistic

read

For

Oracle,

read

committed.

Otherwise,

repeatable

read

wsPessimisticUpdate

(Note

2)

pessimistic

update

For

Oracle,

read

committed.

Otherwise,

repeatable

read

wsPessimisticUpdate-

Exclusive

(Note

3)

pessimistic

update

serializable

wsPessimisticUpdate-

NoCollision

(Note

4)

pessimistic

update

read

committed

wsPessimisticUpdate-

WeakestLockAtLoad

(Note

5)

pessimistic

update

Repeatable

read

wsOptimisticRead

optimistic

read

read

committed

wsOptimisticUpdate

(Note

6)

optimistic

update

read

committed

Notes:

1.

Read

locks

are

held

for

the

duration

of

the

transaction.

2.

The

generated

SELECT

FOR

UPDATE

query

grabs

locks

at

the

beginning

of

the

transaction.

3.

SELECT

FOR

UPDATE

is

generated;

locks

are

held

for

the

duration

of

the

transaction.

4.

5.0.2 +

A

plain

SELECT

query

is

generated.

No

locks

are

held,

but

updates

are

permitted.

Use

cautiously.

This

intent

enables

execution

without

concurrency

control.

5.

5.0.2 +

Where

supported

by

the

backend,

the

generated

SELECT

query

does

not

include

FOR

UPDATE;

locks

are

escalated

by

the

persistent

store

at

storage

time

if

updates

were

made.

Otherwise,

the

same

as

wsPessimisticUpdate.

6.

Generated

overqualified-update

query

forces

failure

if

CMP

column

values

have

changed

since

the

beginning

of

the

transaction.

5.0.2 +

Be

sure

to

review

the

rules

for

forming

overqualified-update

query

predicates.

Certain

column

types

(for

example,

BLOB)

are

ineligible

for

inclusion

in

the

overqualified-update

query

predicate

and

might

affect

your

design.

Access

intent

best

practices

This

topic

outlines

issues

to

consider

when

applying

access

intent

policies

to

Enterprise

JavaBeans

(EJB)

methods.

v

5.0.2 +

Start

by

configuring

the

default

access

intent

policy

for

an

entity.

After

your

application

is

built

and

running,

you

can

more

finely

tune

certain

access

paths

in

your

application

using

application

profiling

or

method-level

access

intent.

v

5.0.2 +

Don’t

mix

access

types.

Avoid

using

both

pessimistic

and

optimistic

policies

in

the

same

transaction.

For

most

databases,

pessimistic

and

optimistic

Chapter

4.

Using

enterprise

beans

in

applications

121

policies

use

different

isolation

levels.

This

can

result

in

multiple

database

connections,

which

prevents

you

from

taking

advantage

of

the

performance

benefits

possible

through

connection

sharing.

v

Take

care

when

applying

wsPessimisticUpdate-NoCollision.

This

policy

does

not

ensure

data

integrity.

No

database

locks

are

held,

so

concurrent

transactions

can

overwrite

each

other’s

updates.

Use

this

policy

only

if

you

can

be

sure

that

only

one

transaction

will

attempt

to

update

persistent

store

at

any

given

time.

Frequently

asked

questions:

Access

intent

I

have

not

applied

any

access

intent

policies

at

all.

My

application

runs

just

fine

with

a

DB2

database,

but

it

fails

with

an

Oracle

database

with

the

following

message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:

PMGR1001E:

No

such

DataAccessSpec

:FindAllCustomers.

The

backend

datastore

does

not

support

the

SQLStatement

needed

by

this

AccessIntent:

(pessimistic

update-weakestLockAtLoad)(collections:

transaction/25)

(resource

manager

prefetch:

0)

(AccessIntentImpl@d23690a).

Why?

If

you

have

not

configured

access

intent,

all

of

your

data

is

accessed

under

the

default

access

intent

policy

(wsPessimisticUpdate-WeakestLockAtLoad).

On

DB2

databases,

the

weakest

lock

is

a

shared

one,

and

the

query

runs

without

a

FOR

UPDATE

clause.

On

Oracle

databases,

however,

the

weakest

lock

is

an

update

lock;

this

means

that

the

SQL

query

must

contain

a

FOR

UPDATE

clause.

However,

not

every

SQL

statement

necessarily

supports

FOR

UPDATE;

for

example,

if

the

query

is

being

run

against

multiple

tables

in

a

join,

FOR

UPDATE

is

not

supported.

To

avoid

this

problem,

try

either

of

the

following:

v

Modify

your

SQL

query

or

reconfigure

your

application

so

that

an

update

lock

is

supported

v

Apply

an

access

intent

policy

that

supports

optimistic

concurrency
I

am

calling

a

finder

method

and

I

get

an

InconsistentAccessIntentException

at

run

time.

Why?

This

can

occur

when

you

use

method-level

access

intent

policies

to

apply

more

control

over

how

a

bean

instance

is

loaded.

This

execption

indicates

that

the

entity

bean

was

previously

loaded

in

the

same

transaction.

This

could

happen

if

you

called

a

multifinder

method

that

returned

the

bean

instance

with

access

intent

policy

X

applied;

you

are

now

trying

to

load

the

second

bean

again

by

calling

its

findByPrimaryKey

method

with

access

intent

Y

applied.

Both

methods

must

have

the

same

access

intent

policy

applied.

Likewise,

if

the

entity

was

loaded

once

in

the

transaction

using

an

access

intent

policy

configured

on

a

finder,

you

might

have

called

a

container-managed

relationship

(CMR)

accessor

method

that

returned

the

entity

bean

configured

to

load

using

that

entity’s

default

access

intent.

To

avoid

this

problem,

ensure

that

your

code

does

not

load

the

same

bean

instance

twice

within

the

same

transaction

with

different

access

intent

policies

applied.

Avoid

the

use

of

method-level

access

intent

unless

absolutely

necessary.

I

have

two

beans

in

a

container-managed

relationship.

I

call

findByPrimaryKey()

on

the

first

bean

and

then

call

getBean2(

),

a

CMR

accessor

method,

on

the

returned

instance.

At

that

point,

I

get

an

InconsistentAccessIntentException.

Why?

You

are

probably

using

read-ahead.

When

you

loaded

the

first

bean,

you

caused

the

second

bean

to

be

loaded

under

the

access

intent

policy

applied

to

the

finder

method

for

the

first

bean.

However,

you

have

configured

your

CMR

accessor

method

from

the

first

bean

to

the

second

with

a

different

access

intent

policy.

CMR

accessor

methods

are

really

finder

122

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

methods

in

disguise;

the

run-time

environment

behaves

as

if

you

were

trying

to

change

the

access

intent

for

an

instance

you

have

already

read

from

persistent

store.

To

avoid

this

problem,

beans

configured

in

a

read-ahead

hint

are

all

driven

to

load

with

the

same

access

intent

policy

as

the

bean

to

which

the

read-ahead

hint

is

applied.

I

have

a

bean

with

a

one-to-many

relationship

to

a

second

bean.

The

first

bean

has

a

pessimistic-update

intent

policy

applied.

When

I

try

to

add

an

instance

of

the

second

bean

to

the

first

bean’s

collection,

I

get

an

UpdateCannotProceedWithIntegrityException.

Why?

The

second

bean

probably

has

a

read

intent

policy

applied.

When

you

add

the

second

bean

to

the

first

bean’s

collection,

you

are

not

updating

the

first

bean’s

state,

you

are

implicitly

modifying

the

second

bean’s

state.

(The

second

bean

contains

a

foreign

key

to

the

first

bean,

which

is

modified.)

To

avoid

this

problem,

ensure

that

both

ends

of

the

relationship

have

an

update

intent

policy

applied

if

you

expect

to

change

the

relationship

at

run

time.

EJB

modules

An

EJB

module

is

used

to

assemble

one

or

more

enterprise

beans

into

a

single

deployable

unit.

An

EJB

module

is

stored

in

a

standard

Java

archive

(JAR)

file.

An

EJB

module

contains

the

following:

v

One

or

more

deployable

enterprise

beans.

v

A

deployment

descriptor,

stored

in

an

Extensible

Markup

Language

(XML)

file.

This

file

declares

the

contents

of

the

module,

defines

the

structure

and

external

dependencies

of

the

beans

in

the

module,

and

describes

how

the

beans

are

to

be

used

at

run

time.

An

EJB

module

can

be

used

as

a

stand-alone

application,

or

it

can

be

combined

with

other

EJB

modules,

or

with

Web

modules,

to

create

a

J2EE

application.

An

EJB

module

is

installed

and

run

in

an

enterprise

bean

container.

For

more

information

about

EJB

modules,

see

″Resources

for

learning.″

Assembling

EJB

modules

Assemble

an

Enterprise

JavaBeans

(EJB)

module

to

contain

enterprise

beans

and

related

code

artifacts.

Group

Web

components,

client

code,

and

resource

adapter

code

in

separate

modules.

After

assembling

an

EJB

module,

you

can

install

it

as

a

stand-alone

application

or

combine

it

with

other

modules

into

an

enterprise

application.

To

increase

performance,

break

container-managed

persistence

(CMP)

enterprise

beans

into

several

enterprise

bean

modules

during

assembly.

The

load

time

for

hundreds

of

beans

is

improved

by

distributing

the

beans

across

several

JAR

files

and

packaging

them

to

an

EAR

file.

Load

time

is

faster

when

the

administrative

server

attempts

to

start

the

beans,

for

example,

8-10

minutes

versus

more

than

one

hour

when

one

JAR

file

is

used.

Use

the

Assembly

Toolkit

to

assemble

an

EJB

module

in

any

of

the

following

ways:

v

Import

an

existing

EJB

module

(EJB

JAR

file).

v

Create

a

new

EJB

module.

Chapter

4.

Using

enterprise

beans

in

applications

123

v

Copy

code

artifacts

(such

as

entity

beans)

from

one

EJB

module

into

a

new

EJB

module.
1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Migrate

enterprise

bean

(JAR)

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

your

enterprise

bean

files

to

the

Assembly

Toolkit.

5.

Create

a

new

EJB

module.

6.

Copy

code

artifacts

(such

as

entity

beans)

from

one

EJB

module

into

a

new

EJB

module.

7.

Verify

the

contents

of

the

new

EJB

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

EJB

module

in

a

Navigator

view.

Assembling

EJB

modules

If

you

want

to

use

existing

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.2

modules

in

your

J2EE

Version

1.3

application,

migrate

them

to

the

Version

1.3

specification

first.

Assemble

an

Enterprise

JavaBeans

(EJB)

module

to

contain

enterprise

beans

and

related

code

artifacts.

Group

Web

components,

client

code,

and

resource

adapter

code

in

separate

modules.

An

EJB

module

is

installed

as

a

stand-alone

application

or

is

combined

with

other

modules

into

an

enterprise

application.

To

increase

performance,

break

CMP

enterprise

beans

into

several

enterprise

bean

modules

during

assembly.

The

load

time

for

hundreds

of

beans

is

improved

by

distributing

the

beans

across

several

JAR

files

and

packaging

them

to

an

EAR

file.

Load

time

is

faster

when

the

administrative

server

attempts

to

start

the

beans,

for

example,

8-10

minutes

versus

more

than

one

hour

when

one

JAR

file

is

used.

The

Application

Assembly

Tool

(AAT)

provides

flexibility

in

assembling

EJB

modules.

Options

described

below

include:

v

Importing

an

existing

EJB

module

(EJB

JAR

file)

v

Creating

a

new

EJB

module

v

Copying

code

artifacts

(such

as

entity

beans)

from

one

EJB

module

into

a

new

EJB

module
1.

Start

the

AAT.

2.

From

the

New

tab,

select

EJB

Module.

Click

OK.

The

navigation

tree

displays

various

sets

of

properties

for

configuring

the

new

EJB

module.

3.

Use

the

property

dialog

shown

in

the

AAT

workspace

to

change

the

default

file

name

and

location.

a.

It

is

recommended

that

you

change

the

display

name

so

that

it

differs

from

the

file

name.

124

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

b.

If

you

like,

change

the

temporary

location

of

the

EJB

module

from

the

default

location,

install_root/bin.
4.

Add

at

least

one

EJB

component

to

the

module.

v

Add

at

least

one

enterprise

bean

to

the

EJB

component.

–

Import

an

existing

JAR

or

EAR

file

containing

EJB

components.

a.

In

the

Navigation

pane,

right-click

the

EJB

Components

icon.

b.

Select

Import

from

the

pop-up

menu.

c.

Click

Browse

to

locate

the

archive

file

to

import.

d.

Click

Open

to

display

the

contents

of

the

archive

file.

The

applications

in

the

selected

archive

file

display.

e.

Select

an

EJB

application

from

the

archive

file.

f.

Select

the

servlets

or

JSP

files

to

be

added,

and

click

Add

to

display

the

components

in

the

Selected

Components

window.

g.

Click

OK

to

add

the

selected

components.
–

Copy

and

paste

values

from

an

existing

module.

–

Create

a

new

EJB

component.

a.

In

the

Navigation

pane,

right-click

the

EJB

Components

icon.

b.

Select

New

from

the

pop-up

menu.

c.

Enter

the

component

name

and

archive

type.

d.

Select

the

class

files.

e.

Click

OK

in

the

New

EJB

Component

property

dialog.

f.

Enter

properties

for

the

EJB

component

as

needed.
5.

Enter

assembly

properties

for

each

bean.

a.

Click

the

plus

sign

(+)

next

to

the

component

instance

to

show

property

groups.

b.

Right-click

the

icon

for

a

property

group.

c.

Select

New

from

the

pop-up

menu

to

add

new

values,

or

edit

existing

values

in

the

property

pane.

If

you

change

the

session

type

(stateful

or

stateless)

of

a

session

bean,

you

must

click

Apply

before

making

any

other

changes

to

the

same

bean.

Otherwise,

certain

input

fields

on

the

GUI

become

inactive.

(You

will

know

they

are

inactive

because

they

are

grayed

out

on

the

GUI.)

After

making

all

of

your

changes,

click

Apply

again

to

commit

them.

6.

Add

any

other

files

needed

by

the

application.

a.

Right-click

the

Files

icon.

b.

Select

Add

Files

from

the

pop-up

menu.

c.

Select

Browse

to

navigate

the

directory

structure.

d.

Click

Select

to

open

an

archive.

e.

Select

the

files

to

add

and

click

Add.

f.

In

the

Selected

Files

window,

click

OK

to

add

the

files.

Assemble

any

other

new

modules

of

your

choice:

v

EJB

modules

v

Application

client

modules

v

Resource

adapter

modules

You

can

also

migrate

existing

modules.

Another

option

is

to

proceed

directly

to

assembling

a

new

application

module.

While

assembling

an

application

module,

you

can

create

any

new

modules

that

you

need.

Chapter

4.

Using

enterprise

beans

in

applications

125

Container

transactions

Container

transaction

properties

specify

how

an

EJB

container

is

to

manage

transaction

scopes

for

the

enterprise

bean’s

method

invocations.

A

transaction

attribute

is

mapped

to

one

or

more

methods.

Method

extensions

Method

extensions

are

IBM

extensions

to

the

standard

deployment

descriptors

for

enterprise

beans.

Method

extension

properties

are

used

to

define

transaction

isolation

levels

for

methods,

to

control

the

delegation

of

a

principal’s

credentials,

and

to

define

custom

finder

methods.

Method

permissions

A

method

permission

is

a

mapping

between

one

or

more

security

roles

and

one

or

more

methods

that

a

member

of

the

role

can

call.

References

References

are

logical

names

used

to

locate

external

resources

for

enterprise

applications.

References

are

defined

in

the

application’s

deployment

descriptor

file.

At

deployment,

the

references

are

bound

to

the

physical

location

(global

JNDI

name)

of

the

resource

in

the

target

operational

environment.

This

product

supports

the

following

types

of

references:

v

An

EJB

reference

is

a

logical

name

used

to

locate

the

home

interface

of

an

enterprise

bean.

v

A

resource

reference

is

a

logical

name

used

to

locate

a

connection

factory

object.

These

objects

define

connections

to

external

resources

such

as

databases

and

messaging

systems.

The

container

makes

references

available

in

a

JNDI

naming

subcontext.

By

convention,

references

are

organized

as

follows:

v

EJB

references

are

made

available

in

the

java:comp/env/ejb

subcontext.

v

Resource

references

are

made

available

as

follows:

–

JDBC

DataSource

references

are

declared

in

the

java:comp/env/jdbc

subcontext.

–

JMS

connection

factories

are

declared

in

the

java:comp/env/jms

subcontext.

–

JavaMail

connection

factories

are

declared

in

the

java:comp/env/mail

subcontext.

–

URL

connection

factories

are

declared

in

the

java:comp/env/url

subcontext.

CMP

field

assembly

settings

In

Enterprise

JavaBeans

(EJB)

Version

1.1-compliant

beans,

container-managed

persistence

(CMP)

fields

define

the

variables

in

the

bean

class

for

which

the

container

must

handle

persistence

management.

In

EJB

Version

2.0-compliant

beans,

these

are

replaced

by

abstract

get

and

set

methods;

generated

code

provides

the

implementation

of

these

abstract

methods.

Name

Specifies

a

subset

of

public

variables

in

the

enterprise

bean’s

implementation

class.

Container

transaction

assembly

settings

Container

transaction

settings

specify

how

an

EJB

container

is

to

manage

transaction

scopes

for

the

enterprise

bean’s

method

invocations.

Specify

one

or

more

methods

and

associate

a

transaction

attribute

with

each

method.

126

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Name

Specifies

a

name

for

the

mapping

between

a

transaction

attribute

and

one

or

more

methods.

Description

Contains

text

that

describes

the

mapping.

Transaction

attribute

Specifies

how

the

container

must

manage

the

transaction

boundaries

when

delegating

a

method

invocation

to

an

enterprise

bean’s

business

method.

Data

type

String

Default

Required

Range

For

all

but

message-driven

beans,

valid

values

are

Mandatory,

Never,

Not

Supported,

Required,

Requires

New,

Supports.

For

session

beans,

Bean

Managed

is

also

valid.

For

message-driven

beans,

only

Bean

Managed,

Not

Supported,

and

Required

are

valid.

Additional

information

about

valid

values

follows:

Bean

Managed

Notifies

the

container

that

the

bean

class

directly

handles

transaction

demarcation.

This

setting

can

be

specified

for

session

beans

and

(in

EJB

2.0

implementations

only)

for

message-driven

beans,

and

it

cannot

be

specified

for

individual

bean

methods.

Mandatory

Directs

the

container

to

always

call

the

bean

method

within

the

transaction

context

associated

with

the

client.

If

the

client

attempts

to

invoke

the

bean

method

without

a

transaction

context,

the

container

throws

the

javax.jts.TransactionRequiredException

exception

to

the

client.

The

transaction

context

is

passed

to

any

EJB

object

or

resource

accessed

by

an

enterprise

bean

method.

EJB

clients

that

access

these

entity

beans

must

do

so

within

an

existing

transaction.

For

other

enterprise

beans,

the

enterprise

bean

or

bean

method

must

implement

the

Bean

Managed

value

or

use

the

Required

or

Requires

New

value.

For

non-enterprise

bean

EJB

clients,

the

client

must

access

a

transaction

by

using

the

javax.transaction.UserTransaction

interface.

Never

Directs

the

container

to

invoke

bean

methods

without

a

transaction

context.

v

If

the

client

calls

a

bean

method

from

within

a

transaction

context,

the

container

throws

the

java.rmi.RemoteException

exception.

v

If

the

client

calls

a

bean

method

from

outside

a

transaction

context,

the

container

behaves

in

the

same

way

as

if

the

Not

Supported

transaction

attribute

was

set.

The

client

must

call

the

method

without

a

transaction

context.
Not

Supported

Directs

the

container

to

call

the

bean

method

without

a

transaction

context.

If

a

client

calls

a

bean

method

from

within

a

transaction

context,

the

container

suspends

the

association

between

the

transaction

and

the

current

thread

before

invoking

the

method

on

the

enterprise

bean

instance.

The

container

then

resumes

the

suspended

association

when

the

method

invocation

returns.

The

suspended

transaction

context

is

not

passed

to

any

enterprise

bean

objects

or

resources

that

are

used

by

this

bean

method.

Required

Directs

the

container

to

call

the

bean

method

within

a

transaction

context.

Chapter

4.

Using

enterprise

beans

in

applications

127

If

a

client

calls

a

bean

method

from

within

a

transaction

context,

the

container

calls

the

bean

method

within

the

client

transaction

context.

If

a

client

calls

a

bean

method

outside

a

transaction

context,

the

container

creates

a

new

transaction

context

and

calls

the

bean

method

from

within

that

context.

The

transaction

context

is

passed

to

any

enterprise

bean

objects

or

resources

that

are

used

by

this

bean

method.

Requires

New

Directs

the

container

to

always

call

the

bean

method

within

a

new

transaction

context,

regardless

of

whether

the

client

calls

the

method

within

or

outside

a

transaction

context.

The

transaction

context

is

passed

to

any

enterprise

bean

objects

or

resources

that

are

used

by

this

bean

method.

Supports

Directs

the

container

to

call

the

bean

method

within

a

transaction

context

if

the

client

calls

the

bean

method

within

a

transaction.

If

the

client

calls

the

bean

method

without

a

transaction

context,

the

container

calls

the

bean

method

without

a

transaction

context.

The

transaction

context

is

passed

to

any

enterprise

bean

objects

or

resources

that

are

used

by

this

bean

method.

Methods

-

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

character

(*).

The

asterisk

is

used

to

denote

all

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Methods

-

Enterprise

bean

Specifies

which

enterprise

bean

contains

the

methods

indicated

in

the

Name

setting.

Methods

-

Type

Used

to

distinguish

between

a

method

with

the

same

signature

that

is

defined

in

both

the

home

and

remote

interface.

Use

Unspecified

if

a

transaction

attribute

applies

to

all

methods

of

the

bean.

Data

type

String

Range

Valid

values

for

EJB

1.1

implementations

are

Home,

Remote,

or

Unspecified.

For

EJB

2.0

implementations,

Local

and

LocalHome

are

also

valid.

Methods

-

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

This

setting

is

used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

EJB

module

assembly

settings

An

EJB

module

is

used

to

assemble

enterprise

beans

into

a

single

deployable

unit.

An

EJB

module

contains

one

or

more

enterprise

beans

and

a

deployment

descriptor.

File

name

Specifies

the

file

name

of

the

EJB

module,

relative

to

the

top

level

of

the

application

package.

Alternate

DD

Specifies

a

deployment

descriptor

to

be

used

at

run

time

instead

of

the

one

installed

in

the

module.

128

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Classpath

The

path

that

contains

additional

classes

required

by

the

application

that

are

not

contained

in

the

module’s

archive

file.

The

class

loader

uses

this

path.

Specify

the

values

relative

to

the

root

of

the

EAR

file

and

separate

the

values

with

spaces.

Absolute

values

that

refer

to

files

or

directories

on

the

hard

drive

are

ignored.

To

specify

classes

that

are

not

in

JAR

files

but

are

in

the

root

of

the

EAR

file,

use

a

period

and

forward

slash

(./).

Consider

the

following

example

directory

structure

in

which

the

file

myapp.ear

contains

an

EJB

module

named

myejb.jar.

Additional

classes

reside

in

class1.jar

and

class2.zip.

A

class

named

xyz.class

is

not

packaged

in

a

JAR

file

but

is

in

the

root

of

the

EAR

file.

myapp.ear/myejb.jar

myapp.ear/class1.jar

myapp.ear/class2.zip

myapp.ear/xyz.class

Specify

class1.jar

class2.zip

./

as

the

value

of

the

Classpath

setting.

(Name

only

the

directory

for

.class

files.)

Display

name

Specifies

a

short

name

that

is

intended

to

be

displayed

by

GUIs.

Description

Contains

text

that

describes

the

module.

EJB

client

JAR

Specifies

the

location

of

a

JAR

file

that

contains

a

subset

of

deployed

classes

needed

by

the

client.

Small

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

small

image

(16x16

pixels).

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

Large

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

large

image

(32x32

pixels).

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

Generalizations

-

Subtype

Information

about

this

property

is

not

available.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Generalizations

-

Supertype

Information

about

this

property

is

not

available.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

EJB

relationships

-

Name

The

logical

name

for

a

container-managed

relationship

between

EJB

2.0-compliant

entity

beans.

Default

data

source

-

JNDI

name

Specifies

the

default

JNDI

name

for

the

data

source.

This

default

is

used

if

binding

information

is

not

specified

in

the

deployment

descriptor

for

an

individual

enterprise

bean.

Default

CMP

connection

factory

Specifies

the

JNDI

name

for

a

CMP

connection

factory.

This

setting

is

applicable

only

for

EJB

2.x-compliant

CMP

beans.

Default

authorization

-

User

ID

Specifies

the

default

user

ID

for

connecting

to

an

enterprise

bean’s

data

store.

Chapter

4.

Using

enterprise

beans

in

applications

129

Default

authorization

-

Password

Specifies

the

default

password

for

connecting

to

an

enterprise

bean’s

data

store.

Entity

bean

assembly

settings

An

entity

bean

encapsulates

persistent

data,

which

is

stored

in

a

data

source,

and

associated

methods

to

manipulate

that

data.

EJB

name

Specifies

a

logical

name

for

the

enterprise

bean.

This

name

must

be

unique

within

the

EJB

module.

There

is

no

relationship

between

this

name

and

the

JNDI

name.

Display

name

Specifies

a

short

name

that

is

intended

to

be

displayed

by

GUIs.

Description

Contains

text

that

describes

the

entity

bean.

EJB

class

Specifies

the

full

name

of

the

enterprise

bean

class

(for

example,

com.ibm.ejs.doc.account.AccountBean).

Remote

-

Home

(Required

for

EJB

1.x)

Specifies

the

full

name

of

the

enterprise

bean’s

home

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountHome).

Remote

-

Interface

(Required

for

EJB

1.x)

Specifies

the

full

name

of

the

enterprise

bean’s

remote

interface

class

(for

example,

com.ibm.ejs.doc.account.Account).

Local

interface

-

Home

(Required

for

EJB

1.x)

Specifies

the

full

name

of

the

enterprise

bean’s

local

home

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountLocalHome).

Local

interface

-

Interface

(Required

for

EJB

1.x)

Specifies

the

full

name

of

the

enterprise

bean’s

local

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountLocal).

Persistence

type

Specifies

whether

an

entity

bean

manages

its

own

persistent

storage

or

whether

storage

is

managed

by

the

container.

Data

type

String

Range

Valid

values

are

Bean

managed

and

Container

managed.

Reentrant

Specifies

whether

the

entity

bean

is

reentrant.

If

an

enterprise

bean

is

reentrant,

it

can

call

methods

on

itself

or

call

another

bean

that

calls

a

method

on

the

calling

bean.

Only

entity

beans

can

be

reentrant.

If

an

entity

bean

is

not

reentrant

and

a

bean

instance

is

executing

a

client

request

in

a

transaction

context

and

another

client

using

the

same

transaction

context

makes

a

request

on

the

same

bean

instance,

the

EJB

container

throws

the

java.rmi.RemoteException

exception

to

the

second

client.

If

a

bean

is

reentrant,

the

container

cannot

distinguish

this

type

of

illegal

loopback

call

from

a

legal

concurrent

call,

so

the

bean

must

be

coded

to

detect

illegal

loopback

calls.

130

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Primary

key

class

Specifies

the

full

name

of

the

bean’s

primary

key

class

(for

example,

com.ibm.ejs.doc.account.AccountKey).

Composite

primary

keys

map

to

multiple

fields

in

the

entity

bean

class

(or

to

data

structures

built

from

the

primitive

Java

data

types)

and

must

be

encapsulated

in

a

primary

key

class.

More

complicated

enterprise

beans

are

likely

to

have

composite

primary

keys,

with

multiple

instance

variables

representing

the

primary

key.

A

subset

of

the

container-managed

fields

is

used

to

define

the

primary

key

class

associated

with

each

instance

of

an

enterprise

bean.

Primary

key

field

Specifies

the

name

of

a

simple

primary

key.

Simple

primary

keys

map

to

a

single

field

in

the

entity

bean

class

and

are

made

up

of

primitive

Java

data

types

(such

as

integer

or

long).

If

exactly

one

CMP

field

is

the

primary

key,

it

can

be

specified

here.

Data

type

String

Range

Valid

values

are

the

name

of

any

one

CMP

field

or

Compound

key,

which

appears

when

the

primary

key

class

is

set

Version

Specifies

the

version

of

EJB

specification

with

which

a

container-managed

persistence

(CMP)

entity

bean

complies.

Data

type

String

Range

Valid

values

are

1.x

or2.x

Abstract

schema

name

Specifies

the

name

of

the

abstract

schema

type

of

an

EJB

Version

2.x

CMP

entity

bean.

It

is

used

in

EJB

Query

Language

(QL)

queries.

For

example,

the

abstract

schema

name

might

be

Order

for

an

entity

bean

whose

local

interface

is

com.acme.commerce.Order.

Small

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

small

image

(16x16

pixels).

The

image

is

used

as

an

icon

to

represent

the

entity

bean

in

a

GUI.

Large

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

large

image

(32x32

pixels).

The

image

is

used

as

an

icon

to

represent

the

entity

bean

in

a

GUI.

Security

identity

Specifies

that

a

principal’s

credential

properties

are

to

be

handled

as

indicated

in

the

Run-As

mode

property.

If

this

setting

is

enabled,

the

Run-As

mode

property

can

be

edited.

Run-As

mode

Specifies

the

credential

information

to

be

used

by

the

security

service

to

determine

the

permissions

that

a

principal

has

on

various

resources.

At

appropriate

points,

the

security

service

determines

whether

the

principal

is

authorized

to

use

a

particular

resource

based

on

the

principal’s

permissions.

If

the

method

call

is

authorized,

the

security

service

acts

on

the

principal’s

credential

properties

according

to

the

Run-As

mode

setting

of

the

enterprise

bean.

Data

type

Enumerated

integer

Chapter

4.

Using

enterprise

beans

in

applications

131

Range

Valid

values

are

Use

identity

of

caller

and

Use

identity

assigned

to

specified

role

Additional

information

about

valid

settings

follows:

Use

identity

of

caller

The

security

service

makes

no

changes

to

the

principal’s

credential

properties.

Use

identity

assigned

to

specified

role

A

principal

that

has

been

assigned

to

the

specified

security

role

is

used

for

the

execution

of

the

bean’s

methods.

This

association

is

part

of

the

application

binding

in

which

the

role

is

associated

with

a

user

ID

and

password

of

a

user

who

is

granted

that

role.

Role

name

Specifies

the

name

of

a

security

role.

If

Run-As

mode

is

set

to

Use

identity

assigned

to

specified

role,

a

principal

that

has

been

granted

this

role

is

used.

Description

Contains

further

information

about

the

security

role.

Concurrency

control

Specifies

how

the

bean

is

to

handle

concurrent

access

to

its

data.

This

setting

is

applicable

only

for

EJB

1.x-compliant

entity

beans.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Range

Valid

values

are

Optimistic

or

Pessimistic

Inheritance

root

Specifies

whether

the

enterprise

bean

is

at

the

root

of

an

inheritance

hierarchy.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Bean

Cache

-

Activate

at

Specifies

the

point

at

which

an

enterprise

bean

is

activated

and

placed

in

the

cache.

Removal

from

the

cache

and

passivation

is

also

governed

by

this

setting.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Default

Transaction

Range

Valid

values

are

Once,

Transaction,

and

Activity

session

More

information

about

valid

values

follows:

Once

Indicates

that

the

bean

activates

when

it

is

first

accessed

in

the

server

process,

and

passivates

(and

is

removed

from

the

cache)

at

the

discretion

of

the

container,

for

example,

when

the

cache

becomes

full.

Transaction

Indicates

that

the

bean

activates

at

the

start

of

a

transaction

and

passivates

(and

is

removed

from

the

cache)

at

the

end

of

the

transaction.

Activity

session

Indicates

that

the

bean

activates

and

passivates

as

follows:

v

On

an

ActivitySession

boundary,

if

an

ActivitySession

context

is

present

on

activation

v

On

a

transaction

boundary,

if

a

transaction

context

(but

no

ActivitySession

context)

is

present

on

activation

132

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Otherwise,

on

an

invocation

boundary

The

values

of

the

Activate

at

and

Load

at

settings

govern

which

commit

options

are

used,

as

follows:

v

For

commit

option

A

(implies

exclusive

database

access),

use

Activate

at

=

Once

and

Load

at

=

Activation.

This

option

reduces

database

I/O

(avoids

calls

to

the

ejbLoad

function)

but

serializes

all

transactions

accessing

the

bean

instance.

Option

A

can

increase

memory

usage

by

maintaining

more

objects

in

the

cache,

but

can

provide

better

response

time

if

bean

instances

are

not

generally

accessed

concurrently

by

multiple

transactions.

To

use

Option

A

successfully,

you

must

also

set

Concurrency

control

to

Pessimistic.

Note

for

Network

Deployment

users

Note:

When

workload

management

is

enabled,

you

cannot

use

Option

A.

You

must

use

settings

that

result

in

the

use

of

options

B

or

C.

v

For

commit

option

B

(implies

shared

database

access),

use

Activate

at

=

Once

and

Load

at

=

Transaction.

Option

B

can

increase

memory

usage

by

maintaining

more

objects

in

the

cache.

However,

because

each

transaction

creates

its

own

copy

of

an

object,

there

can

be

multiple

copies

of

an

instance

in

memory

at

any

given

time

(one

per

transaction),

requiring

database

access

at

each

transaction.

If

an

enterprise

bean

contains

a

significant

number

of

calls

to

the

ejbActivate

function,

using

Option

B

is

beneficial

because

the

required

object

is

already

in

the

cache.

Otherwise,

this

option

does

not

provide

significant

benefits

over

Option

A.

v

For

commit

option

C

(implies

shared

database

access),

use

Activate

at

=

Transaction

and

Load

at

=

Transaction.

This

option

reduces

memory

usage

by

maintaining

fewer

objects

in

the

cache;

however,

there

can

be

multiple

copies

of

an

instance

in

memory

at

any

given

time

(one

per

transaction).

This

option

can

reduce

transaction

contention

for

enterprise

bean

instances

that

are

accessed

concurrently

but

not

updated.

Bean

Cache

-

Load

at

Specifies

when

the

bean

loads

its

state

from

the

database.

The

value

of

this

setting

implies

whether

the

container

has

exclusive

or

shared

access

to

the

database.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Default

Transaction

Range

Valid

values

are

Activation

and

Transaction

Additional

information

about

valid

values

follows:

Activation

Indicates

that

the

bean

loads

when

it

is

activated

(regardless

of

Activate

at

setting)

and

implies

that

the

container

has

exclusive

access

to

the

database.

Transaction

Indicates

that

the

bean

loads

at

the

start

of

a

transaction

and

implies

that

the

container

has

shared

access

to

the

database.

The

Activate

at

and

Load

at

settings

govern

which

commit

options

are

used.

The

commit

options

are

described

in

the

Enterprise

JavaBeans

specification.

For

more

information

about

this

setting

and

achieving

a

given

commit

behavior,

see

Bean

Cache

-

Activate

at.

Chapter

4.

Using

enterprise

beans

in

applications

133

Commit

option

Specifies

which

commit

option

is

used

as

a

result

of

bean

cache

settings.

The

commit

options

are

described

in

the

Enterprise

JavaBeans

specification.

Data

type

String

Range

Valid

values

are

A,

B,

and

C

Local

Transactions

-

Unresolved

action

Specifies

the

action

that

the

EJB

container

must

take

if

resources

are

uncommitted

by

an

application

in

a

local

transaction.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

This

setting

is

applicable

only

when

Resolution

control

is

set

to

Application.

A

local

transaction

context

is

created

when

a

method

runs

in

what

the

EJB

specification

refers

to

as

an

unspecified

transaction

context.

Data

type

String

Default

Rollback

Range

Valid

values

are

Commit

and

Rollback

Additional

information

about

these

settings

follows:

Commit

At

end

of

the

local

transaction

context,

the

container

instructs

all

unresolved

local

transactions

to

commit.

Rollback

(Default)

At

end

of

the

local

transaction

context,

the

container

instructs

all

unresolved

local

transactions

to

roll

back.

Local

Transactions

-

Resolution

control

Specifies

how

the

local

transaction

is

to

be

resolved

before

the

local

transaction

context

ends:

by

the

application

through

user

code

or

by

the

EJB

container.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Range

Valid

values

are

Application

and

ContainerAtBoundary

Additional

information

about

these

settings

follows:

Application

When

this

setting

is

used,

your

code

must

either

commit

or

roll

back

the

local

transaction.

If

this

does

not

occur,

the

runtime

environment

logs

a

warning

and

automatically

commits

or

rolls

back

the

connection

as

specified

by

the

Unresolved

action

setting.

ContainerAtBoundary

When

this

setting

is

used,

the

container

takes

responsibility

for

resolving

each

local

transaction.

This

provides

you

with

a

programming

model

similar

to

global

transactions

in

which

your

code

simply

gets

a

connection

and

performs

work

within

it.

User

code

does

not

have

to

handle

local

transactions.

v

If

the

Boundary

attribute

is

set

to

ActivitySession,

then

the

local

transactions

are

enlisted

as

ActivitySession

resources

and

directed

to

complete

by

the

ActivitySession.

v

If

the

the

Boundary

attribute

is

set

to

BeanMethod,

then

the

local

transactions

are

committed

at

method

end

by

the

container.

134

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Connections

are

never

committed

automatically

by

the

resource

adapter

when

this

value

is

configured

for

the

bean

Unresolved

action

is

not

used.

An

application

cannot

call

Connection.LocalTransaction.begin()

when

using

this

policy

and

receives

an

exception

from

the

resource

adapter

if

it

does

so.

When

using

a

Resolution

control

of

ContainerAtBoundary,

applications

must

get

connection

handles

after

the

local

transaction

context

boundary

has

been

started

by

the

container.

The

application

should

close

the

connection

before

the

end

of

the

boundary,

although

any

work

performed

on

the

connection

is

not

committed

or

rolled

back

until

the

local

transaction

context

ends.

This

model

of

connection

usage

is

sometimes

referred

to

as

the

“get-use-close”

model.

This

value

is

supported

only

for

EJB

components

that

use

container-managed

transactions.

It

is

not

supported

for

web

components

or

for

enterprise

beans

that

use

bean-managed

transactions.

Local

Transactions

-

Boundary

Specifies

the

duration

of

a

local

transaction

context.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Default

BeanMethod

Range

Valid

values

are

BeanMethod

and

ActivitySession

Additional

information

about

valid

settings

follows:

BeanMethod

When

this

setting

is

used,

the

local

transaction

begins

when

the

method

begins

and

ends

when

the

method

ends.

ActivitySession

When

this

setting

is

used,

the

local

transaction

must

be

resolved

within

the

scope

of

any

ActivitySession

in

which

it

was

started

or,

if

no

ActivitySession

context

is

present,

within

the

same

bean

method

in

which

it

was

started.

This

property

can

be

changed

on

WebSphere

Application

Server

Enterprise

only.

Local

Relationship

Roles

-

Name

Within

a

local

relationship

between

EJB

1.x-compliant

entity

beans,

the

logical

name

for

the

view

an

entity

bean

presents

to

other

beans

in

the

relationship.

For

example,

in

a

relationship

between

Account

and

Customer

beans,

the

role

of

the

Account

instance

relative

to

the

Customer

instance

might

be

savingsAccount.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

This

is

separate

from

the

container-managed

relationships

defined

in

the

Enterprise

JavaBeans

specification,

Version

2.0.

Local

Relationship

Roles

-

Source

EJB

Name

The

name

of

the

entity

bean

for

which

the

role

is

defined.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Local

Relationship

Roles

-

is

Forward

Specifies

how

deployment

code

for

navigating

the

relationship

is

generated.

This

setting

is

applicable

only

for

navigable

relationships.

Chapter

4.

Using

enterprise

beans

in

applications

135

If

isForward

is

enabled

(set

to

true),

deployment

code

is

generated

in

the

source

bean.

That

is,

navigation

of

the

relationship

proceeds

forward

from

the

source

to

the

target.

Otherwise,

deployment

code

is

generated

in

the

target

bean.

That

is,

navigation

of

the

relationship

proceeds

from

the

target

to

the

source.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

For

more

information,

see

the

documentation

for

the

Deployment

Tool

for

Enterprise

JavaBeans.

Local

Relationship

Roles

-

is

Navigable

Specifies

whether

data

in

related

beans

may

be

retrieved

through

queries

to

the

source

bean.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Lifetime

in

cache

The

lifetime,

in

seconds,

of

cached

data

for

an

instance

of

this

bean

type.

This

value

indicates

how

long

the

cached

data

is

to

exist

beyond

the

end

of

the

transaction

in

which

the

data

was

retrieved.

This

might

avoid

another

retrieval

from

persistent

storage

if

the

same

bean

instance

were

to

be

used

in

later

transactions.

How

this

value

is

interpreted

depends

on

the

value

of

Lifetime

in

cache

usage.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

Long

Units

Seconds

Default

0

Range

0

to

261

-

1

Lifetime

in

cache

usage

Indicates

how

the

lifetime-in-cache

setting

is

to

be

used

by

the

caching

mechanism.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

If

your

application

uses

CMP

beans

in

which

the

underlying

data

changes

infrequently,

you

might

gain

significantly

better

performance

by

using

this

setting

with

Lifetime

in

cache.

Typically,

data

read

from

persistent

storage

is

held

temporarily

in

an

internal

cache

until

the

state

of

the

instance

is

restored.

Cached

data

normally

does

not

persist

beyond

state

restoration

or

the

end

of

the

transaction

in

which

the

finder

method

was

called.

By

setting

Lifetime

in

cache

usage

to

a

value

other

than

Off,

you

indicate

that

the

cached

data

is

to

be

held

for

a

longer

time,

potentially

hours

or

days,

before

invalidating

the

version

of

the

data

in

the

cache

and

fetching

a

new

version.

Avoiding

a

trip

to

persistent

storage

greatly

speeds

up

access

to

such

beans

by

applications.

In

addition,

the

use

of

a

value

other

than

Off

requires

that

finders

on

the

bean

have

an

access

type

of

Optimistic

Read

(if

you

are

only

reading

instances

of

the

bean)

or

Optimistic

Update

(if

you

plan

to

occasionally

update

instances

of

the

bean).

v

For

EJB

1.x-compliant

beans,

see

Access

intent

-

access

type.

v

For

EJB

2.x-compliant

beans,

see

Applied

access

intent.

Setting

Load

at

to

activation

and

Activate

at

to

Once

also

minimizes

retrievals

from

persistent

storage.

However,

this

settings

combination

might

not

be

supported

by

certain

CMP

beans

because

it

results

in

the

ejbLoad()

method

being

136

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

called

once

instead

of

at

the

beginning

of

each

transaction

in

which

they

are

used.

The

lifetime-in-cache

settings

combination

is

independent

of

CMP

bean

implementation,

though

it

does

incur

the

modest

overhead

of

calling

ejbLoad()

on

each

use.

Data

type

Enumerated

int

Units

Not

applicable

Default

0

(Off)

Range

Valid

values

are

Clock

Time,

Elapsed

Time,

Week

Time,

or

Off

Additional

information

about

valid

values

follows:

Off

When

this

value

is

used,

the

value

of

Lifetime

in

cache

is

ignored.

Beans

of

this

type

are

cached

only

in

a

transaction-scoped

cache.

The

cached

data

for

this

instance

expires

after

the

transaction

in

which

it

was

retrieved

is

completed.

Elapsed

Time

When

this

value

is

used,

the

value

of

Lifetime

in

cache

is

added

to

the

time

at

which

the

transaction

in

which

the

bean

instance

was

retrieved

is

completed.

The

resulting

value

becomes

the

time

at

which

the

cached

data

expires.

The

value

of

Lifetime

in

cache

can

add

up

to

minutes,

hours,

days,

and

so

on.

Clock

Time

When

this

value

is

used,

the

value

of

Lifetime

in

cache

represents

a

particular

time

of

day.

The

value

is

added

to

the

immediately

preceeding

or

following

midnight

to

calculate

a

future

time

value,

which

is

then

treated

as

for

Elapsed

Time.

Using

Clock

Time

enables

you

to

specify

that

all

instances

of

this

bean

type

are

to

have

their

cached

data

invalidated

at,

for

example,

3

AM,

no

matter

when

they

were

retrieved.

This

is

important

if,

for

example,

the

data

underlying

this

bean

type

is

batch-updated

at

3

AM

every

day.

The

selection

of

midnight

(preceding

or

following)

depends

on

the

value

of

Lifetime

in

cache.

If

Lifetime

in

cache

plus

the

value

that

represents

the

preceeding

midnight

is

earlier

than

the

current

time,

the

following

midnight

is

used.

When

you

use

Clock

Time,

the

value

of

Lifetime

in

cache

is

not

supposed

to

represent

more

than

24

hours.

If

it

does,

the

cache

manager

subtracts

24-hour

increments

from

it

until

a

value

less

than

or

equal

to

24

hours

is

achieved.

To

invalidate

data

at

midnight,

set

Lifetime

in

cache

to

0.

Week

Time

Usage

of

this

value

is

the

same

as

for

Clock

Time,

except

that

the

value

of

Lifetime

in

cache

is

added

to

the

preceeding

or

following

Sunday

midnight

(11:59

PM

Saturday

plus

1

minute).

When

Week

Time

is

used,

the

value

of

Lifetime

in

cache

can

represent

more

than

24

hours

but

not

more

than

7

days.

Default

Access

Intent

Specifies

the

default

access

intent

under

which

the

entity

should

load.

5.0.2 +

Data

type

String

Units

Not

applicable

Default

Not

applicable

Chapter

4.

Using

enterprise

beans

in

applications

137

Range

Valid

settings

are

wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision,

wsPessimisticUpdate-Exclusive,

wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead,

wsOptimisticUpdate,

or

wsOptimisticRead.

JNDI

name

Specifies

the

JNDI

name

of

the

bean’s

home

interface.

This

is

the

name

under

which

the

enterprise

bean’s

home

interface

is

registered

and

therefore,

is

the

name

that

must

be

specified

when

an

EJB

client

does

a

lookup

of

the

home

interface.

Data

source

-

JNDI

name

Specifies

the

JNDI

name

for

the

bean’s

data

source.

Default

Authorization

-

User

ID

Specifies

the

default

user

ID

for

connecting

to

a

data

source.

Default

Authorization

-

Password

Specifies

the

default

password

for

connecting

to

a

data

source.

CMP

Resource

-

JNDI

name

Specifies

the

JNDI

name

for

the

resource

by

which

CMP

data

is

stored.

CMP

Resource

-

Resource

authentication

Specifies

the

scope

at

which

resources

are

to

be

authenticated:

by

the

container

or

by

the

resource.

Message-driven

bean

assembly

settings

Use

this

page

to

configure

the

assembly

properties

of

message-driven

beans

For

more

information

about

the

effect

of

JMS

properties,

such

as

message

selectors

and

message

acknowledgement,

see

the

WebSphere

MQ

Using

Java

book,

SC34-5456

or

Sun’s

Java

Message

Service

(JMS)

specification

documentation

The

following

notebook

pages

are

available:

Page

tab

Description

General

properties

Specify

general

assembly

properties

for

the

message

bean.

v

EJB

name

v

Display

name

v

Description

v

EJB

class

v

Transaction

type
Advanced

properties

Specify

advanced

assembly

properties

for

the

message

bean.

v

Message

selector

v

Acknowledge

mode

v

Destination

type
Bindings

properties

Specify

bindings

assembly

properties

for

the

message

bean.

v

Listener

port

name

EJB

name

The

logical

name

for

the

message

bean

(as

an

enterprise

bean)

138

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/

The

logical

name

for

the

message

bean

(as

an

enterprise

bean).

This

name

must

be

unique

within

the

EJB

module.

There

is

no

relationship

between

this

name

and

the

JNDI

name.

Data

type

String

Display

name

A

short

name

that

is

intended

to

be

displayed

by

graphical

user

interfaces

Data

type

String

Description

A

description

of

the

message

bean,

for

administrive

use

Data

type

String

EJB

class

The

full

package

name

of

the

message

bean

class

Specify

the

full

package

name

of

the

message

bean

class,

for

example,

com.ibm.ejs.doc.account.MessageBean.

You

can

either

type

the

class

name

or

click

Browse

to

locate

an

existing

class

file.

Data

type

String

Transaction

type

Whether

the

message

bean

manages

its

own

transactions

or

the

container

manages

transactions

on

behalf

of

the

bean

Whether

the

message

bean

manages

its

own

transactions

or

the

container

manages

transactions

on

behalf

of

the

bean.

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

To

enable

the

transactional

behavior

that

you

want,

you

must

configure

the

JMS

destination

with

the

same

transactional

behavior

as

you

configure

for

the

message

bean.

Data

type

Enum

Default

Bean

Range

Bean

The

message

bean

manages

its

own

transactions

Container

The

container

manages

transactions

on

behalf

of

the

bean

Message

selector

The

JMS

message

selector

to

be

used

to

determine

which

messages

the

message

bean

receives

The

JMS

message

selector

to

be

used

to

determine

which

messages

the

message

bean

receives;

for

example:

JMSType=’car’

AND

color=’blue’

AND

weight>2500

The

selector

string

can

refer

to

fields

in

the

JMS

message

header

and

fields

in

the

message

properties.

Message

selectors

cannot

reference

message

body

values.

Data

type

String

Range

A

String

whose

syntax

is

based

on

a

subset

of

the

SQL92

conditional

syntax.

Chapter

4.

Using

enterprise

beans

in

applications

139

Acknowledge

mode

How

the

session

acknowledges

any

messages

it

receives.

This

property

applies

only

to

message-driven

beans

that

uses

bean-managed

transaction

demarcation

(Transaction

type

is

set

to

Bean).

Data

type

Enum

Default

Auto

Acknowledge

Range

Auto

Acknowledge

The

session

automatically

acknowledges

a

message

when

it

has

either

successfully

returned

from

a

call

to

receive,

or

the

message

listener

it

has

called

to

process

the

message

successfully

returns.

Dups

OK

Acknowledge

The

session

lazily

acknowledges

the

delivery

of

messages.

This

is

likely

to

result

in

the

delivery

of

some

duplicate

messages

if

JMS

fails,

so

it

should

be

used

only

by

consumers

that

are

tolerant

of

duplicate

messages.

Destination

type

Whether

the

message

bean

uses

a

queue

or

topic

destination.

Data

type

Enum

Default

Null

Range

Queue

The

message

bean

uses

a

queue

destination.

Topic

The

message

bean

uses

a

topic

destination.

Listener

port

name

The

name

of

the

listener

port

for

this

message

bean.

The

name

of

the

listener

port

for

this

message

bean

(as

defined

on

the

WebSphere

administrative

console).

Data

type

String

Method

extension

assembly

settings

Method

extensions

are

IBM

extensions

to

the

standard

J2EE

deployment

descriptors

for

Enterprise

JavaBeans

(EJB)

Version

1.x-compliant

beans.

Method

extension

settings

define

transaction

isolation

levels

for

methods

and

control

the

delegation

of

a

principal’s

credentials.

Method

type

Specifies

the

type

of

the

enterprise

bean

method.

Data

type

String

Range

Valid

values

are

Home,

Remote,

and

Unspecified.

140

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

character

(*).

The

asterisk

is

used

to

denote

all

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

Used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

Isolation

level

attributes

The

transaction

isolation

level

determines

how

isolated

one

transaction

is

from

another.

This

can

be

set

for

individual

methods

in

an

enterprise

bean

or

for

all

methods

in

the

enterprise

bean.

An

asterisk

is

used

to

indicate

all

methods

in

the

bean.

This

setting

is

not

applicable

for

EJB

2.x-compliant

beans.

Within

a

transactional

context,

the

isolation

level

associated

with

the

first

method

call

becomes

the

required

isolation

level

for

all

methods

called

within

that

transaction.

If

a

method

is

called

with

a

different

isolation

level

from

that

of

the

first

method,

the

java.rmi.RemoteException

exception

is

thrown.

Isolation

level

Specifies

the

level

of

transactional

isolation.

The

container

uses

the

transaction

isolation

level

attribute

as

follows:

v

Session

beans

and

entity

beans

with

bean-managed

persistence

(BMP):

For

each

database

connection

used

by

the

bean,

the

container

sets

the

transaction

isolation

level

at

the

start

of

each

transaction

unless

the

bean

explicitly

sets

the

isolation

level

on

the

connection.

v

Entity

beans

with

container-managed

persistence

(CMP):

The

container

generates

database

access

code

that

implements

the

specified

isolation

level.

Data

type

String

Range

Valid

values

are

Serializable,

Repeatable

read,

Read

committed,

and

Read

uncommitted

Serializable

This

level

prohibits

the

following

types

of

reads:

v

Dirty

reads,

in

which

a

transaction

reads

a

database

row

containing

uncommitted

changes

from

a

second

transaction.

v

Nonrepeatable

reads,

in

which

one

transaction

reads

a

row,

a

second

transaction

changes

the

same

row,

and

the

first

transaction

rereads

the

row

and

gets

a

different

value.

v

Phantom

reads,

in

which

one

transaction

reads

all

rows

that

satisfy

an

SQL

WHERE

condition,

a

second

transaction

inserts

a

row

that

also

satisfies

the

WHERE

condition,

and

the

first

transaction

applies

the

same

WHERE

condition

and

gets

the

row

inserted

by

the

second

transaction.
Repeatable

read

This

level

prohibits

dirty

reads

and

nonrepeatable

reads,

but

it

allows

phantom

reads.

Read

committed

This

level

prohibits

dirty

reads

but

allows

nonrepeatable

reads

and

phantom

reads.

Read

uncommitted

This

level

allows

dirty

reads,

nonrepeatable

reads,

and

phantom

reads.

Access

intent

-

Intent

type

Specifies

whether

to

load

the

enterprise

bean

as

read-only

or

for

update.

This

setting

is

applicable

only

for

EJB

1.x-compliant

beans.

Chapter

4.

Using

enterprise

beans

in

applications

141

This

setting

is

applicable

for

the

following

types

of

beans:

v

EJB

1.x-compliant

entity

beans

v

Enterprise

beans

with

CMP

version

1.x

that

are

packaged

in

EJB

2.x-compliant

modules

To

specify

the

access

intent

for

EJB

2.x-compliant

beans,

select

an

access

intent

policy.

Data

type

String

Range

Valid

values

are

Read

or

Update

Finder

descriptor

-

User

Specifies

that

the

user

has

provided

a

finder

helper

class

in

the

entity

bean’s

home

interface.

The

class

contains

specialized

finder

methods.

This

setting

is

applicable

only

for

EJB

1.x-compliant

entity

beans.

Finder

descriptor

-

EJB

QL

Describes

the

semantics

of

a

finder

method

that

uses

EJB

QL

(Enterprise

JavaBeans

query

language).

This

setting

is

applicable

only

for

EJB

1.x-compliant

entity

beans.

EJB

QL

is

a

declarative,

SQL-like

language

that

is

intended

to

be

compiled

to

the

target

language

of

the

persistent

datastore

used

by

a

persistence

manager.

The

language

is

independent

of

the

bean’s

mapping

to

a

relational

datastore

and

is

therefore

portable.

The

EJB

query

specifies

a

search

based

on

the

persistent

attributes

and

relationships

of

the

bean.

An

EJB

query

can

contain

the

following

clauses:

v

SELECT

(optional),

which

specifies

the

EJB

objects

to

return

v

FROM

(required),

which

specifies

the

collections

of

objects

to

which

the

query

is

to

be

applied

v

WHERE

(optional),

which

contains

search

predicates

over

the

collections

v

ORDER

BY

(optional),

which

specifies

the

ordering

of

the

resulting

collection

Finder

descriptor

-

Full

SELECT

Describes

the

semantics

of

a

finder

method

that

uses

an

SQL

SELECT

clause.

For

information

on

restrictions,

see

the

documentation

for

the

Deployment

Tool

for

Enterprise

JavaBeans.

Finder

descriptor

-

WHERE

clause

Describes

the

semantics

of

a

finder

method

that

uses

an

SQL

WHERE

clause.

This

clause

restricts

the

results

that

are

returned

by

the

query.

For

information

on

restrictions,

see

the

documentation

for

the

Deployment

Tool

for

Enterprise

JavaBeans.

Security

identity

Specifies

whether

a

principal’s

credential

settings

are

to

be

handled

as

indicated

in

the

Run-As

mode

setting.

If

this

is

enabled,

the

Run-As

mode

setting

can

be

edited.

Description

Contains

further

information

about

the

security

instructions.

Run-As

mode

Specifies

the

credential

information

to

be

used

by

the

security

service

to

determine

the

permissions

that

a

principal

has

on

various

resources.

At

appropriate

points,

the

security

service

determines

whether

the

principal

is

authorized

to

use

a

particular

resource

based

on

the

principal’s

permissions.

If

the

method

call

is

authorized,

the

security

service

acts

on

the

principal’s

credential

settings

according

to

the

Run-As

mode

setting

of

the

enterprise

bean.

142

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Data

type

Enumerated

integer

Range

Valid

values

are

Use

identity

of

caller,

Use

identity

of

EJB

server,

and

Use

identity

assigned

to

specified

role

Additional

information

about

valid

values

for

this

setting

follows:

Use

identity

of

caller

The

security

service

makes

no

changes

to

the

principal’s

credential

settings.

Use

identity

of

EJB

server

The

security

service

alters

the

principal’s

credential

settings

to

match

the

credential

settings

associated

with

the

EJB

server.

Use

identity

assigned

to

specified

role

A

principal

that

has

been

assigned

to

the

specified

security

role

is

used

for

the

execution

of

the

bean’s

methods.

This

association

is

part

of

the

application

binding

in

which

the

role

is

associated

with

a

user

ID

and

password

of

a

user

who

is

granted

that

role.

Role

name

Specifies

the

name

of

a

security

role.

If

Run-As

mode

is

set

to

Use

identity

assigned

to

specified

role,

a

principal

that

has

been

granted

this

role

is

used.

Description

Contains

further

information

about

the

security

role.

Method

permission

assembly

settings

A

method

permission

is

a

mapping

between

one

or

more

security

roles

and

one

or

more

methods

that

a

member

of

the

role

can

call.

Assembly

settings

for

method

permissions

include

an

optional

description,

a

list

of

security

role

names,

and

a

list

of

methods.

The

security

roles

must

be

defined,

and

the

methods

must

be

defined

in

the

enterprise

bean’s

remote

or

home

interfaces.

Method

permission

name

Specifies

a

name

for

the

mapping

between

method

permissions

and

security

roles.

Description

Contains

text

that

describes

the

mapping

between

method

permissions

and

security

roles.

Methods

-

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

(*)

character.

The

asterisk

is

used

to

denote

all

the

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Methods

-

Enterprise

bean

Specifies

the

name

of

the

enterprise

bean

that

contains

the

method.

Methods

-

Type

Distinguishes

between

a

method

with

the

same

signature

that

is

defined

in

both

the

home

and

remote

interface.

Use

Unspecified

if

a

method

permission

applies

to

all

methods

of

a

bean.

Data

type

String

Range

Valid

values

are

Unspecified,

Remote,

or

Home.

Chapter

4.

Using

enterprise

beans

in

applications

143

Methods

-

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

This

setting

is

used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

Unchecked

Specifies

whether

the

method

permission

is

checked

before

the

method

is

run.

Roles

-

Role

name

Specifies

the

name

of

the

security

role

that

must

be

granted

in

order

to

call

the

method.

Query

assembly

settings

Use

these

to

specify

a

finder

or

SELECT

query.

A

query

element

contains

the

following:

v

Optional

description

of

the

query

v

Name

of

the

finder

or

SELECT

method

that

uses

the

query

v

The

return

type

of

mapping,

if

it

is

used

v

Whether

the

query

is

for

a

SELECT

method

v

EJB

query

language

(EJB

QL)

query

string

that

defines

the

query

Queries

that

are

expressed

in

EJB

QL

must

use

the

ejb-ql

element

to

specify

the

query.

If

a

query

cannot

be

expressed

in

EJB

QL,

describe

the

semantics

of

the

query

by

using

the

description

element

and

leave

the

ejb-ql

element

empty.

Name

Contains

the

name

of

an

enterprise

bean

method

or

the

asterisk

(*)

character.

An

asterisk

in

the

method-name

element

denotes

all

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Parameters

Contains

a

list

of

the

fully-qualified

Java

names

of

the

method

parameters.

Result

type

Used

in

the

query

element

to

indicate

whether

a

returned

abstract

schema

type

for

a

SELECT

method

should

be

mapped

to

an

EJBLocalObject

or

EJBObject

type.

EJB

reference

assembly

settings

An

EJB

reference

is

a

logical

name

used

to

locate

the

home

interface

of

an

enterprise

bean

used

by

an

application.

At

deployment,

the

EJB

reference

is

bound

to

the

enterprise

bean’s

home

in

the

target

operational

environment.

The

container

makes

the

application’s

EJB

references

available

in

a

JNDI

naming

context.

It

is

recommended

that

references

to

enterprise

beans

be

organized

in

the

ejb

subcontext

of

the

application’s

environment

(in

java:comp/env/ejb).

Name

Specifies

the

JNDI

name

of

the

enterprise

bean’s

home

interface

relative

to

the

java:comp/env

context.

For

example,

if

ejb/EmplRecord

is

specified,

the

referring

code

looks

up

the

enterprise

bean’s

home

interface

at

java:comp/env/ejb/EmplRecord.

This

JNDI

name

is

an

alias

used

by

the

code

(the

actual

JNDI

name

is

specified

on

the

Binding

tab).

Description

Contains

text

that

describes

the

EJB

reference.

144

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Link

Used

to

link

an

EJB

reference

to

an

enterprise

bean

in

the

current

module

(the

same

module

as

the

one

making

the

reference)

or

in

another

module

within

the

same

J2EE

application.

This

setting

specifies

the

name

of

the

target

enterprise

bean.

The

target

enterprise

bean

can

be

in

any

EJB

module

in

the

same

J2EE

application

as

the

referring

module.

To

avoid

having

to

rename

enterprise

beans

to

have

unique

names

within

an

J2EE

application,

specify

the

path

name

of

the

EJB

archive

file

that

contains

the

referenced

enterprise

bean

and

append

the

target

bean’s

name,

separated

by

a

#

symbol

(for

example,

...products/product.jar#ProductEJB).

The

path

name

is

relative

to

the

referring

module’s

archive

file

specification.

If

a

link

is

not

specified,

the

reference

must

be

resolved

to

a

JNDI

name

during

installation.

Home

Specifies

the

fully

qualified

name

of

the

enterprise

bean’s

home

interface

(for

example,

com.ibm.ejbs.EmplRecordHome).

Remote

Specifies

the

fully

qualified

name

of

the

enterprise

bean’s

remote

interface

(for

example,

com.ibm.ejbs.EmplRecord).

Type

Specifies

the

expected

type

of

the

referenced

enterprise

bean.

Data

type

String

Default

None;

must

be

set

Range

Entity

or

Session

JNDI

name

Binding

information

that

is

used

by

the

run-time

environment

to

resolve

the

location

of

a

resource.

For

EJB

references,

the

value

of

this

setting

must

match

the

JNDI

name

of

the

enterprise

bean

as

it

was

specified

on

the

Binding

tab

for

the

EJB

module

that

contains

the

bean.

EJB

local-reference

assembly

settings

For

EJB

2.0-compliant

beans,

the

EJB

local

reference

element

declares

a

reference

to

another

enterprise

bean’s

local

home

interface.

Name

Specifies

the

name

of

an

EJB

reference.

This

is

the

JNDI

name

that

the

servlet

code

uses

to

get

a

reference

to

the

enterprise

bean.

The

following

example

illustrates

how

this

element

is

specified

in

the

deployment

descriptor:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

Description

Contains

a

description

of

the

parent

element.

This

can

include

any

information

that

the

EJB

archive-file

producer

wants

to

provide

to

the

consumer

of

the

EJB

archive

file.

Link

Used

in

the

ejb-ref

element

to

specify

that

an

EJB

reference

is

linked

to

an

enterprise

bean

in

the

encompassing

web-application

package.

Chapter

4.

Using

enterprise

beans

in

applications

145

The

value

of

the

link

element

must

be

the

EJB

name

of

an

enterprise

bean

in

the

same

web-application

package.

The

following

example

illustrates

how

this

element

is

specified

in

the

deployment

descriptor:

<ejb-link>EmployeeRecord</ejb-link>

Local

interface

Specifies

the

fully-qualified

name

of

the

enterprise

bean’s

local

interface.

Local

home

Specifies

the

fully-qualified

name

of

the

enterprise

bean’s

local

home

interface.

Type

Specifies

the

expected

type

of

the

referenced

enterprise

bean.

EJB

relation

assembly

settings

An

EJB

relation

describes

a

relationship

between

two

entity

beans

with

container-managed

persistence.

The

name

of

the

relationship,

if

specified,

is

unique

within

an

EJB

archive

file.

Description

Contains

text

to

describe

the

EJB

relationship

role.

Source

EJB

Specifies

the

source

of

the

role

that

participates

in

a

relationship.

Multiplicity

Specifies

the

multiplicity

of

the

role

that

participates

in

a

relation.

Cascade

delete

Within

a

particular

relationship,

specifies

that

the

lifetime

of

one

or

more

entity

beans

is

dependent

on

the

lifetime

of

another

entity

bean.

Cascade

delete

can

be

specified

only

for

an

EJB

relationship

role

contained

in

an

EJB

relation

in

which

the

other

EJB

relationship

role

specifies

a

multiplicity

of

one.

CMR

field

Enables

the

declaration

of

a

container-managed

relationship

(CMR)

field.

The

CMR

field

describes

the

bean

provider’s

view

of

a

relationship.

It

consists

of

an

optional

description

and

the

name

and

class

type

of

the

source

enterprise

bean’s

role

in

a

relationship.

Exclude

list

assembly

settings

The

exclude

list

indicates

which

methods

in

the

enterprise

beans

may

not

be

called.

You

should

also

configure

security

for

the

enterprise

bean

so

that

access

to

the

listed

methods

is

not

permitted.

This

capability

applies

only

to

Enterprise

JavaBeans

(EJB)

Version

2.x-compliant

beans.

For

more

information

about

exclude

lists,

see

the

EJB

specification.

Description

Provides

additional

information

about

this

exclude

list.

Methods

-

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

(*)

character.

The

asterisk

is

used

to

denote

all

the

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Methods

-

Enterprise

bean

Specifies

the

name

of

the

enterprise

bean

that

contains

the

method.

146

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Methods

-

Type

Distinguishes

between

a

method

with

the

same

signature

that

is

defined

in

both

the

home

and

remote

interface.

Use

Unspecified

if

the

exclusion

applies

to

all

methods

of

a

bean.

Data

type

String

Range

Valid

values

are

Unspecified,

Remote,

or

Home

Methods

-

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

This

setting

is

used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

Security

role

assembly

settings

A

security

role

is

a

logical

grouping

of

principals.

Access

to

operations

(such

as

enterprise-bean

methods)

is

controlled

by

granting

access

to

a

role.

Role

name

Specifies

the

name

of

a

security

role

that

is

unique

to

an

application.

This

setting

applies

only

when

you

are

specifying

security

roles

at

the

application

level

(EAR

file).

Description

Contains

text

that

describes

the

application-specific

security

role.

This

setting

applies

only

when

you

are

specifying

security

roles

at

the

application

level

(EAR

file).

Binding

-

Groups

-

Name

Specifies

the

user

groups

that

are

granted

the

application-specific

security

role.

This

setting

applies

only

when

you

are

specifying

security

roles

at

the

application

level

(EAR

file).

Binding

-

Users

-

Name

Specifies

the

users

that

are

granted

the

application-specific

security

role.

This

setting

applies

only

when

you

are

specifying

security

roles

at

the

application

level

(EAR

file).

Binding

-

Special

Subjects

-

Name

Specifies

one

of

two

special

categories

of

authenticate

users

to

which

application-specific

security

roles

can

be

granted:

Everyone

or

All.

This

setting

applies

only

when

you

are

specifying

security

roles

at

the

application

level

(EAR

file).

If

the

special

subject

All

is

granted

a

role,

any

user

who

can

authenticate

by

using

a

valid

user

ID

and

password

is

considered

to

be

granted

that

role.

If

the

special

subject

Everyone

is

granted

a

role,

all

users,

including

those

who

did

not

authenticate,

are

granted

the

role.

In

other

words,

a

method

on

an

enterprise

bean

or

a

URI

is

unprotected

if

any

of

the

required

roles

for

that

method

are

granted

to

the

special

subject

Everyone.

Data

type

String

Range

Valid

values

are

All

or

Everyone

Chapter

4.

Using

enterprise

beans

in

applications

147

Session

bean

assembly

properties

A

session

bean

encapsulates

transient

data

that

is

associated

with

a

particular

EJB

client.

Unlike

data

in

an

entity

bean,

the

data

in

a

session

bean

is

not

stored

in

a

persistent

data

source.

EJB

name

Specifies

a

logical

name

for

the

enterprise

bean.

This

name

must

be

unique

within

the

EJB

module.

There

is

no

relationship

between

this

name

and

the

JNDI

name.

Display

name

Specifies

a

short

name

that

is

intended

to

be

displayed

by

GUIs.

Description

Contains

text

that

describes

the

session

bean.

EJB

class

Specifies

the

full

name

of

the

enterprise

bean

class

(for

example,

com.ibm.ejs.doc.account.AccountBean).

Remote

-

Home

Specifies

the

full

name

of

the

enterprise

bean’s

home

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountHome).

Remote

-

Interface

Specifies

the

full

name

of

the

enterprise

bean’s

remote

interface

class

(for

example,

com.ibm.ejs.doc.account.Account).

Local

interface

-

Home

Specifies

the

full

name

of

the

enterprise

bean’s

home

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountLocalHome).

Local

interface

-

Interface

Specifies

the

full

name

of

the

enterprise

bean’s

local

interface

class

(for

example,

com.ibm.ejs.doc.account.AccountLocal).

Session

type

Specifies

whether

the

enterprise

bean

maintains

a

conversational

state

(is

stateful)

or

does

not

(is

stateless).

Data

type

String

Range

Valid

values

are

Stateful

and

Stateless

Transaction

type

Specifies

whether

the

enterprise

bean

manages

its

own

transactions

or

whether

the

container

manages

transactions

on

behalf

of

the

bean.

Data

type

String

Range

Valid

values

are

Container

or

Bean

Small

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

small

image

(16x16

pixels).

The

image

is

used

as

an

icon

to

represent

the

session

bean

in

a

GUI.

Large

icon

Specifies

the

name

of

a

JPEG

or

GIF

file

that

contains

a

large

image

(32x32

pixels).

The

image

is

used

as

an

icon

to

represent

the

session

bean

in

a

GUI.

148

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Security

identity

Specifies

whether

a

principal’s

credential

properties

are

to

be

handled

as

indicated

in

the

Run-As

mode

property.

If

this

setting

is

enabled

(that

is,

set

to

true),

the

Run-As

mode

setting

can

be

edited.

Description

Contains

further

information

about

the

security

instructions.

Run-As

mode

Specifies

the

credential

information

to

be

used

by

the

security

service

to

determine

the

permissions

that

a

principal

has

on

various

resources.

At

appropriate

points,

the

security

service

determines

whether

the

principal

is

authorized

to

use

a

particular

resource

based

on

the

principal’s

permissions.

If

the

method

call

is

authorized,

the

security

service

acts

on

the

principal’s

credential

properties

according

to

the

Run-As

mode

setting

of

the

enterprise

bean.

Data

type

Enumerated

integer

Range

Valid

values

are

Use

identity

of

caller

and

Use

identity

assigned

to

specified

role

Additional

information

about

valid

values

for

this

setting

follows:

Use

identity

of

caller

The

security

service

makes

no

changes

to

the

principal’s

credential

properties.

Use

identity

assigned

to

specified

role

A

principal

that

has

been

assigned

to

the

specified

security

role

is

used

for

the

execution

of

the

bean’s

methods.

This

association

is

part

of

the

application

binding

in

which

the

role

is

associated

with

a

user

ID

and

password

of

a

user

who

is

granted

that

role.

Role

name

Specifies

the

name

of

a

security

role.

If

Run-As

mode

is

set

to

Use

identity

assigned

to

specified

role,

a

principal

that

has

been

granted

this

role

is

used.

Description

Contains

further

information

about

the

security

role.

Timeout

This

property

applies

only

to

stateful

session

beans.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

Integer

Units

Seconds

Inheritance

root

Specifies

whether

the

enterprise

bean

is

at

the

root

of

an

inheritance

hierarchy.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Bean

Cache

-

Activate

at

Specifies

the

point

at

which

an

enterprise

bean

is

activated

and

placed

in

the

cache.

Removal

from

the

cache

and

passivation

is

also

governed

by

this

setting.

This

setting

applies

to

stateful

session

beans

only

(not

to

stateless

beans).

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Default

Once

Range

Valid

values

are

Once

and

Transaction

Chapter

4.

Using

enterprise

beans

in

applications

149

Additional

information

about

valid

values

follows:

Once

Indicates

that

the

bean

is

activated

when

it

is

first

accessed

in

the

server

process,

and

passivated

(and

removed

from

the

cache)

at

the

discretion

of

the

container,

for

example,

when

the

cache

becomes

full.

Transaction

Indicates

that

the

bean

is

activated

at

the

start

of

a

transaction

and

passivated

(and

removed

from

the

cache)

at

the

end

of

the

transaction.

Local

Transactions

-

Unresolved

action

Specifies

the

action

that

the

EJB

container

must

take

if

resources

are

uncommitted

by

an

application

in

a

local

transaction.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

This

setting

is

applicable

only

when

Resolution

control

is

set

to

Application.

A

local

transaction

context

is

created

when

a

method

runs

in

what

the

EJB

specification

refers

to

as

an

unspecified

transaction

context.

Data

type

String

Default

Rollback

Range

Valid

values

are

Commit

and

Rollback

Additional

information

about

these

settings

follows:

Commit

At

end

of

the

local

transaction

context,

the

container

instructs

all

unresolved

local

transactions

to

commit.

Rollback

(Default)

At

end

of

the

local

transaction

context,

the

container

instructs

all

unresolved

local

transactions

to

roll

back.

Local

Transactions

-

Resolution

control

Specifies

how

the

local

transaction

is

to

be

resolved

before

the

local

transaction

context

ends:

by

the

application

through

user

code

or

by

the

EJB

container.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Range

Valid

values

are

Application

and

ContainerAtBoundary

Additional

information

about

these

settings

follows:

Application

When

this

setting

is

used,

your

code

must

either

commit

or

roll

back

the

local

transaction.

If

this

does

not

occur,

the

runtime

environment

logs

a

warning

and

automatically

commits

or

rolls

back

the

connection

as

specified

by

the

Unresolved

action

setting.

ContainerAtBoundary

When

this

setting

is

used,

the

container

takes

responsibility

for

resolving

each

local

transaction.

This

provides

you

with

a

programming

model

similar

to

global

transactions

in

which

your

code

simply

gets

a

connection

and

performs

work

within

it.

User

code

does

not

have

to

handle

local

transactions.

v

If

the

Boundary

attribute

is

set

to

ActivitySession,

then

the

local

transactions

are

enlisted

as

ActivitySession

resources

and

directed

to

complete

by

the

ActivitySession.

150

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

If

the

the

Boundary

attribute

is

set

to

BeanMethod,

then

the

local

transactions

are

committed

at

method

end

by

the

container.

Connections

are

never

committed

automatically

by

the

resource

adapter

when

this

value

is

configured

for

the

bean

Unresolved

action

is

not

used.

An

application

cannot

call

Connection.LocalTransaction.begin()

when

using

this

policy

and

receives

an

exception

from

the

resource

adapter

if

it

does

so.

When

using

a

Resolution

control

of

ContainerAtBoundary,

applications

must

get

connection

handles

after

the

local

transaction

context

boundary

has

been

started

by

the

container.

The

application

should

close

the

connection

before

the

end

of

the

boundary,

although

any

work

performed

on

the

connection

is

not

committed

or

rolled

back

until

the

local

transaction

context

ends.

This

model

of

connection

usage

is

sometimes

referred

to

as

the

“get-use-close”

model.

This

value

is

supported

only

for

EJB

components

that

use

container-managed

transactions.

It

is

not

supported

for

web

components

or

for

enterprise

beans

that

use

bean-managed

transactions.

Local

Transactions

-

Boundary

Specifies

the

duration

of

a

local

transaction

context.

This

property

does

not

apply

to

stateless

session

beans.

This

property

is

an

IBM

extension

to

the

standard

J2EE

deployment

descriptor.

Data

type

String

Default

BeanMethod

Range

Valid

values

are

BeanMethod

and

ActivitySession

Additional

information

about

valid

settings

follows:

BeanMethod

When

this

setting

is

used,

the

local

transaction

begins

when

the

method

begins

and

ends

when

the

method

ends.

ActivitySession

When

this

setting

is

used,

the

local

transaction

must

be

resolved

within

the

scope

of

any

ActivitySession

in

which

it

was

started

or,

if

no

ActivitySession

context

is

present,

within

the

same

bean

method

in

which

it

was

started.

This

property

can

be

changed

on

WAS

Enterprise

only.

JNDI

name

Specifies

the

JNDI

name

of

the

bean’s

home

interface.

This

is

the

name

under

which

the

enterprise

bean’s

home

interface

is

registered

and

therefore,

is

the

name

that

must

be

specified

when

an

EJB

client

does

a

lookup

of

the

home

interface.

EJB

containers

An

Enterprise

JavaBeans

(EJB)

container

provides

a

run-time

environment

for

enterprise

beans

within

the

application

server.

The

container

handles

all

aspects

of

an

enterprise

bean’s

operation

within

the

application

server

and

acts

as

an

intermediary

between

the

user-written

business

logic

within

the

bean

and

the

rest

of

the

application

server

environment.

Chapter

4.

Using

enterprise

beans

in

applications

151

One

or

more

EJB

modules,

each

containing

one

or

more

enterprise

beans,

can

be

installed

in

a

single

container.

The

EJB

container

provides

many

services

to

the

enterprise

bean,

including

the

following:

v

Beginning,

committing,

and

rolling

back

transactions

as

necessary.

v

Maintaining

pools

of

enterprise

bean

instances

ready

for

incoming

requests

and

moving

these

instances

between

the

inactive

pools

and

an

active

state,

ensuring

that

threading

conditions

within

the

bean

are

satisfied.

v

Most

importantly,

automatically

synchronizing

data

in

an

entity

bean’s

instance

variables

with

corresponding

data

items

stored

in

persistent

storage.

By

dynamically

maintaining

a

set

of

active

bean

instances

and

synchronizing

bean

state

with

persistent

storage

when

beans

are

moved

into

and

out

of

active

state,

the

container

makes

it

possible

for

an

application

to

manage

many

more

bean

instances

than

could

otherwise

simultaneously

be

held

in

the

application

server’s

memory.

In

this

respect,

an

EJB

container

provides

services

similar

to

virtual

memory

within

an

operating

system.

Between

transactions,

the

state

of

an

entity

bean

can

be

cached.

The

EJB

container

supports

option

A,

B,

and

C

caching.

v

With

option

A

caching,

the

application

server

assumes

that

the

entity

bean

is

used

within

a

single

container.

Clients

of

that

bean

must

direct

their

requests

to

the

bean

instance

within

that

container.

The

entity

bean

has

exclusive

access

to

the

underlying

database,

which

means

that

the

bean

cannot

be

cloned

or

participate

in

workload

management

if

option

A

caching

is

used.

v

With

option

B

caching,

the

entity

bean

remains

active

in

the

cache

throughout

the

transaction

but

is

reloaded

at

the

start

of

each

method

call.

v

With

option

C

caching

(the

default),

the

entity

bean

is

always

reloaded

from

the

database

at

the

beginning

of

each

transaction.

A

client

can

attempt

to

access

the

bean

and

start

a

new

transaction

on

any

container

that

has

been

configured

to

host

that

bean.

This

is

similar

to

the

session

clustering

facility

described

for

HTTP

sessions

in

that

the

entity

bean’s

state

is

maintained

in

a

shared

database

that

can

be

accessed

from

any

server

when

required.

This

product

supports

the

cloning

of

stateful

session

bean

home

objects

among

multiple

application

servers.

However,

it

does

not

support

the

cloning

of

a

specific

instance

of

a

stateful

session

bean.

Each

instance

of

a

particular

stateful

session

bean

can

exist

in

just

one

application

server

and

can

be

accessed

only

by

directing

requests

to

that

particular

application

server.

State

information

for

a

stateful

session

bean

cannot

be

maintained

across

multiple

members

of

a

server

cluster.

For

more

information

about

EJB

containers,

see

″Resources

for

learning.″

Managing

EJB

containers

Each

application

server

can

have

a

single

EJB

container;

one

is

created

automatically

for

you

when

the

application

server

is

created.

The

following

steps

are

to

be

performed

only

as

needed

to

improve

performance

after

the

EJB

application

has

been

deployed.

1.

Adjust

EJB

container

settings.

2.

Adjust

EJB

cache

settings.

152

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

adjustments

do

not

improve

performance,

consider

adjusting

access

intent

policies

for

entity

beans,

reassembling

the

module,

and

redeploying

the

module

in

the

application.

EJB

container

settings

Use

this

page

to

configure

and

manage

a

specific

EJB

container.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

serverName

>

EJB

Container.

Passivation

directory

Specifies

the

directory

into

which

the

container

saves

the

persistent

state

of

passivated

stateful

session

beans.

Beans

are

passivated

when

the

number

of

active

bean

instances

becomes

greater

than

the

cache

size

specified

in

the

container

configuration.

When

a

stateful

bean

is

passivated,

the

container

serializes

the

bean

instance

to

a

file

in

the

passivation

directory

and

discards

the

instance

from

the

bean

cache.

If,

at

a

later

time,

a

request

arrives

for

the

passivated

bean

instance,

the

container

retrieves

it

from

the

passivation

directory,

deserializes

it,

returns

it

to

the

cache,

and

dispatches

the

request

to

it.

If

any

step

fails

(for

example,

if

the

bean

instance

is

no

longer

in

the

passivation

directory),

the

method

invocation

fails.

Inactive

pool

cleanup

interval

Specifies

the

interval

at

which

the

container

examines

the

pools

of

available

bean

instances

to

determine

if

some

instances

can

be

deleted

to

reduce

memory

usage.

Data

type

Integer

Units

Milliseconds

Range

0

to

2

147

483

674

Default

datasource

JNDI

name

Specifies

the

JNDI

name

of

a

data

source

to

use

if

no

data

source

is

specified

during

application

deployment.

This

setting

is

not

applicable

for

EJB

2.x-compliant

CMP

beans.

Servlets

and

enterprise

beans

use

data

sources

to

obtain

these

connections.

When

configuring

a

container,

you

can

specify

a

default

data

source

for

the

container.

This

data

source

becomes

the

default

data

source

used

by

any

entity

beans

installed

in

the

container

that

use

container-managed

persistence

(CMP).

The

default

data

source

for

a

container

is

secure.

When

specifying

it,

you

must

provide

a

user

ID

and

password

for

accessing

the

data

source.

Specifying

a

default

data

source

is

optional

if

each

CMP

entity

bean

in

the

container

has

a

data

source

specified

in

its

configuration.

If

a

default

data

source

is

not

specified

and

a

CMP

entity

bean

is

installed

in

the

container

without

specifying

a

data

source

for

that

bean,

applications

cannot

use

that

CMP

entity

bean.

Initial

state

Specifies

the

execution

state

requested

when

the

server

first

starts.

Data

type

String

Default

Started

Range

Valid

values

are

Started

and

Stopped

Chapter

4.

Using

enterprise

beans

in

applications

153

EJB

container

system

properties

In

addition

to

the

settings

accessible

from

the

administrative

console,

you

can

set

the

following

system

property

by

command-line

scripting:

com.ibm.websphere.ejbcontainer.poolSize

Specifies

the

size

of

the

pool

for

the

specified

bean

type.

This

property

applies

to

stateless,

message-driven

and

entity

beans.

If

you

do

not

specify

a

default

value,

the

container

defaults

of

50

and

500

are

used.

Set

the

pool

size

for

a

given

entity

bean

as

follows:

beantype=min,max[:beantype=min,max...]

beantype

is

the

J2EE

name

of

the

bean,

formed

by

concatenating

the

application

name,

the

#

character,

the

module

name,

the

#

character,

and

the

name

of

the

bean

(that

is,

the

string

assigned

to

the

<ejb-name>

field

in

the

bean’s

deployment

descriptor).

min

and

max

are

the

minimum

and

maximum

pool

sizes,

respectively,

for

that

bean

type.

Do

not

specify

the

square

brackets

shown

in

the

previous

prototype;

they

denote

optional

additional

bean

types

that

you

can

specify

after

the

first.

Each

bean-type

specification

is

delimited

by

a

colon

(:).

Use

an

asterisk

(*)

as

the

value

of

beantype

to

indicate

that

all

bean

types

are

to

use

those

values

unless

overridden

by

an

exact

bean-type

specification

somewhere

else

in

the

string,

as

follows:

*=30,100

To

specify

that

a

default

value

be

used,

omit

either

min

or

max

but

retain

the

comma

(,)

between

the

two

values,

as

follows

(split

for

publication):

SMApp#PerfModule#TunerBean=54,

:SMApp#SMModule#TypeBean=100,200

You

can

specify

the

bean

types

in

any

order

within

the

string.

EJB

cache

settings

Use

this

page

to

configure

and

manage

the

cache

for

a

specific

EJB

container.

To

determine

the

cache

absolute

limit,

multiply

the

number

of

enterprise

beans

active

in

any

given

transaction

by

the

total

number

of

concurrent

transactions

expected.

Then,

add

the

number

of

active

session

bean

instances.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

serverName

>

EJB

Container

>

EJB

Cache

Settings.

Cleanup

interval

Specifies

the

interval

at

which

the

container

attempts

to

remove

unused

items

from

the

cache

in

order

to

reduce

the

total

number

of

items

to

the

value

of

the

cache

size.

The

cache

manager

tries

to

maintain

some

unallocated

entries

that

can

be

allocated

quickly

as

needed.

A

background

thread

attempts

to

free

some

entries

while

maintaining

some

unallocated

entries.

If

the

thread

runs

while

the

application

server

is

idle,

when

the

application

server

needs

to

allocate

new

cache

entries,

it

does

not

pay

the

performance

cost

of

removing

entries

from

the

cache.

In

general,

increase

this

parameter

as

the

cache

size

increases.

Data

type

Integer

Units

Milliseconds

Range

0

to

2

147

483

674

Default

3000

154

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Cache

size

Specifies

the

number

of

buckets

in

the

active

instance

list

within

the

EJB

container.

A

bucket

can

contain

more

than

one

active

enterprise

bean

instance,

but

performance

is

maximized

if

each

bucket

in

the

table

has

a

minimum

number

of

instances

assigned

to

it.

When

the

number

of

active

instances

within

the

container

exceeds

the

number

of

buckets,

that

is,

the

cache

size,

the

container

periodically

attempts

to

reduce

the

number

of

active

instances

in

the

table

by

passivating

some

of

the

active

instances.

For

the

best

balance

of

performance

and

memory,

set

this

value

to

the

maximum

number

of

active

instances

expected

during

a

typical

workload.

Data

type

Integer

Units

Buckets

in

the

hash

table

Range

Greater

than

0.

The

container

selects

the

next

largest

prime

number

equal

to

or

greater

than

the

specified

value.

Default

2053

Container

interoperability

Container

interoperability

describes

the

ability

of

WebSphere

Application

Server

clients

and

servers

at

different

versions

to

successfully

negotiate

differences

in

native

Enterprise

JavaBeans

(EJB)

Version

1.1

finder

methods

support

and

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.3

compliance.

At

one

time,

there

were

significant

interoperability

problems

among

WebSphere

Application

Server,

versions

4.0.x

and

3.5.x

distributed,

and

Version

4.0.x

for

zSeries.

The

introduction

of

interoperable

versions

of

some

class

types

solved

these

problems

for

distributed

versions

3.5.6,

4.0.3,

and

5

as

well

as

for

zSeries

Version

4.0.x.

Older

4.0.x

and

3.5.x

client

and

application

server

versions

do

not

support

the

interoperability

classes,

which

makes

them

uninteroperable

with

versions

that

use

the

classes.

The

system

property

com.ibm.websphere.container.portable

remedies

this

situation

by

enabling

newer

versions

of

the

application

server

to

turn

off

the

interoperability

classes.

This

lets

a

more

recent

application

server

return

class

types

that

are

interoperable

with

an

older

client.

Depending

on

the

value

of

com.ibm.websphere.container.portable,

application

servers

at

versions

5,

4.0.3

and

later,

and

3.5.6

and

later,

return

different

classes

for

the

following:

v

Enumerations

and

collections

returned

by

EJB

1.1

finder

methods

v

EJBMetaData

v

Handles

to:

–

Entity

beans

–

Session

beans

–

Home

interfaces

If

the

property

is

set

to

false,

application

servers

return

the

old

class

types,

to

enable

interoperability

with

versions

3.5.5

and

earlier,

and

4.0.2

and

earlier.

If

the

property

is

set

to

true,

application

servers

return

the

new

classes.

Instructions

for

setting

the

com.ibm.websphere.container.portable

property

are

in

the

release

notes

for

versions

3.5.6

and

later,

and

4.0.3

and

later.

The

following

Chapter

4.

Using

enterprise

beans

in

applications

155

tables

show

interoperability

characteristics

for

various

version

combinations

of

application

servers

and

clients

as

well

as

default

property

values

for

each

combination.

Interoperability

of

Version

3.5.x

client

with

Version

5

application

server

Clients

at

Version

3.5.5

and

earlier

are

not

interoperable

with

Version

5

servers

when

using:

v

EJBMetaData

v

Enumerations

returned

by

EJB

1.x

finder

methods

v

Handles

to

entity

beans

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

3.5.5

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

application

server

uses

the

updated

handles

but

returns

the

enumerations

and

collections

that

were

used

in

the

earlier

clients.

To

interoperate

with

Version

5

application

servers,

you

must

upgrade

all

Version

3.5.x

clients

to

Version

3.5.6

or

later.

Interoperability

of

Version

5

client

with

Version

3.5.x

application

server

Client

at

Version

5,

using

this

function

Application

server

at

Version

3.5.6,

property

true

Application

server

at

Version

3.5.6,

property

false

(default)

Application

server

at

Version

3.5.5

and

earlier

EJBMetaData

Does

not

work

across

domains

Works

Does

not

work

Handle

to

session

bean

Works

Works

Does

not

work

Handle

to

entity

bean

Does

not

work

across

domains

Does

not

work

across

domains

Does

not

work

across

domains

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Works

Interoperability

of

Version

4.0.x

client

with

Version

5

application

server

Ideally,

all

4.0.x

clients

that

use

Version

5

application

servers

should

be

at

Version

4.0.3

or

later.

Version

5

application

servers

return

the

interoperability

class

types

by

default

(true).

This

can

cause

interoperability

problems

for

distributed

clients

at

versions

4.0.1

or

4.0.2.

In

particular,

problems

can

occur

with

collections

and

enumerations

returned

by

EJB

1.1

finder

methods.

Although

it

is

strongly

discouraged,

you

can

set

com.ibm.websphere.container.portable

to

false

on

a

Version

5

application

server.

This

causes

the

application

server

to

return

the

old

class

types,

providing

interoperability

with

clients

at

Version

4.0.2

and

earlier.

This

is

discouraged

because:

v

The

Version

5

application

server

instance

would

become

non-J2EE

1.3

compliant

with

regard

to

handles,

home

interface

handles,

and

EJBMetaData.

156

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

EJB

1.x

finder

methods

return

collection

and

enumeration

objects

that

do

not

originate

from

ejbportable.jar.

v

Interoperability

restrictions

still

exist

with

the

property

set

to

false.

v

Version

5

client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

the

server

you

set

to

false.

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

4.0.2

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

application

server

uses

the

updated

handles

but

returns

the

enumerations

and

collections

that

were

used

in

the

earlier

clients.

Interoperability

of

client

at

Version

4.0.2

and

earlier

with

Version

5

application

server

Client

at

Version

4.0.2

and

earlier,

using

this

function

Application

server

at

Version

5,

property

true

(default)

Application

server

at

Version

5,

property

false

EJBMetaData

Does

not

work

Works

for

4.0.2

client

Handle

to

session

bean

Does

not

work

Works

Handle

to

entity

bean

Does

not

work

Does

not

work

across

cells

Enumeration

returned

by

EJB

1.x

finder

method

Does

not

work

Works

Collection

returned

by

EJB

1.x

finder

method

Does

not

work

Works

Handle

to

home

interface

Does

not

work

Does

not

work

across

cells

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

3.5.5

and

earlier,

and

4.0.2

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

server

uses

the

new

Handle

classes

but

returns

the

older

enumeration

and

collection

classes.

Interoperability

of

client

at

Version

4.0.3

and

later

with

Version

5

application

server

Clients

at

Version

4.0.3

and

later

work

well

with

Version

5

application

servers.

However,

if

you

set

the

com.ibm.websphere.container.portable

to

false,

client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

the

server

you

set

to

false.

Client

at

Version

4.0.3

and

later,

using

this

function

Application

server

at

Version

5,

property

true

(default)

Application

server

at

Version

5,

property

false

EJBMetaData

Works

Works

Handle

to

session

bean

Works

Works

Handle

to

entity

bean

Works

Does

not

work

across

cells

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Works

Handle

to

home

interface

Works

Does

not

work

across

cells

Chapter

4.

Using

enterprise

beans

in

applications

157

Interoperability

of

Version

5

client

with

Version

4.0.x

application

server

Clients

at

Version

5

work

well

with

Version

4.0.3

application

servers

if

you

set

com.ibm.websphere.container.portable

to

true.

Client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

any

Version

4.0.3

server

with

com.ibm.websphere.container.portable

at

the

default

value,

false.

Version

5

client

handles

to

application

servers

at

Version

4.0.2

and

earlier

also

have

restrictions.

Client

at

Version

5,

using

this

function

Application

server

at

Version

4.0.3,

property

true

Application

server

at

Version

4.0.3,

property

false

(default)

Application

server

at

Version

4.0.2

or

earlier

EJBMetaData

Works

Works

Works

for

4.0.2

server

only

Handle

to

session

bean

Works

Works

Works

Handle

to

entity

bean

Works

Does

not

work

across

domains

Does

not

work

across

domains

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Works

Works

Handle

to

home

interface

Works

Does

not

work

across

domains

Does

not

work

across

domains

Interoperability

of

zSeries

Version

4.0.x

client

with

Version

5

application

server

The

only

valid

configuration

for

container

interoperability

with

zSeries

Version

4.0.x

clients

is

the

default

configuration

for

the

Version

5

application

server.

Interoperability

of

Version

5

client

with

zSeries

Version

4.0.x

application

server

Version

5

clients

should

work

with

a

zSeries

Version

4.0.x

application

server

with

the

correct

interoperability

fixes

described

in

the

zSeries

documentation.

The

interoperability

characteristics

should

be

the

same

as

for

a

Version

4.0.3

distributed

application

server

with

the

property

set

to

true.

Client

at

Version

5,

using

this

function

zSeries

application

server

at

Version

4.0.x

EJBMetaData

Works

Handle

to

session

bean

Works

Handle

to

entity

bean

Works

Enumeration

returned

by

EJB

1.x

finder

method

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Handle

to

home

interface

Works

158

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Deploying

EJB

modules

Assemble

one

or

more

EJB

modules,

assemble

one

or

more

Web

modules,

and

assemble

them

into

a

J2EE

application.

1.

Prepare

the

deployment

environment.

2.

Deploy

the

application.

3.

5.0.1

5.0.2

Update

the

configuration

for

each

EJB

module

as

needed

for

the

deployment

environment.

4.

For

information

about

the

EJB

deployment

tool,

see

the

EJB

deployment

tool.

The

next

step

is

to

test

and

debug

the

module.

EJB

module

collection

Use

this

page

to

manage

the

EJB

modules

deployed

in

a

specific

application.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

applicationName

>

EJB

modules.

Click

the

check

boxes

to

select

one

or

more

of

the

EJB

modules

in

your

collection.

URI

When

resolved

relative

to

the

application

URL,

this

specifies

the

location

of

the

module’s

archive

contents

on

a

file

system.

The

URI

matches

the

<ejb>

or

<web>

tag

in

the

<module>

tag

of

the

application

deployment

descriptor.

EJB

module

settings

Use

this

page

to

configure

and

manage

a

specific

deployed

EJB

module.

Note:

You

cannot

start

or

stop

an

individual

EJB

module

for

modification.

You

must

start

or

stop

the

appropriate

application

entirely.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

applicationName

>

EJB

modules

>

moduleName.

URI

When

resolved

relative

to

the

application

URL,

this

specifies

the

location

of

the

module

archive

contents

on

a

file

system.

The

URI

must

match

the

URI

of

a

ModuleRef

URI

in

the

deployment

descriptor

of

the

deployed

application

(EAR).

Alternate

DD

Specifies

a

deployment

descriptor

to

be

used

at

run

time

instead

of

the

one

installed

in

the

module.

Starting

weight

Specifies

the

order

in

which

modules

are

started

when

the

server

starts.

The

module

with

the

lowest

starting

weight

is

started

first.

Data

type

Integer

Default

5000

Range

Greater

than

0

Troubleshooting

tips

for

EJBDEPLOY

relationships

Problems

may

exist

when

EJBDeploy

creates

a

data

relationship

in

DB2

for

z/OS

Version

7.x.

EJBDeploy

creates

a

table

with

a

composite

of

the

two

primary

keys

of

Chapter

4.

Using

enterprise

beans

in

applications

159

the

EJBs

that

are

related

to

each

other.

If

the

composite

keys

are

larger

than

254

characters,

DB2

for

z/OS

V7.x

will

not

accept

this

relationship

and

the

user

will

be

conforonted

with

errors

such

as:

DSNT408I

SQLCODE

=

-613,

ERROR:

THE

PRIMARY

KEY

OR

A

UNIQUE

CONSTRAINT

IS

TOO

LONG

OR

HAS

TOO

MANY

COLUMNS

DSNT418I

SQLSTATE

=

54008

SQLSTATE

RETURN

CODE

This

problem

can

be

seen

when

the

primary

keys

that

are

created

for

the

two

related

beans

have

primary

keys

that

are

strings.

This

results

in

the

composite

being

made

up

of

2

varchar(250)

primary

keys

for

a

total

of

500,

which

is

greater

than

254

maximum

in

DB2

for

z/OS

version

7.x.

Things

to

consider

when

utilizing

top-down

mappings

to

ensure

you

do

not

experience

this

problem:

v

Top-down

mappings

are

a

guideline

and

must

be

reviewed

with

the

DBA.

v

Schemas

created

’top-down’

by

EJBDeploy

are

designed

only

for

testing,

and

as

a

guideline

for

the

actual

schema

required.

The

use

of

the

’meet-in-the-middle’

mapping

does

not

present

this

problem.

v

The

composite

key

constraint

problem

is

not

experienced

when

using

DB2

V8,

which

has

2K

max

key

lengths.

Enterprise

beans:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

enterprise

beans.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

this

product

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Planning,

business

scenarios,

and

IT

architecture

v

Programming

model

and

decisions

v

Programming

instructions

and

examples

v

Programming

specifications

Planning,

business

scenarios,

and

IT

architecture

v

Mastering

Enterprise

JavaBeans

A

comprehensive

treatment

of

Enterprise

JavaBeans

(EJB)

programming

in

nonprintable

form

(PDF).

One

must

be

registered

to

download

the

PDF,

but

registration

is

free.

Information

about

purchasing

a

hardcopy

is

available

on

the

Web

site.

v

Enterprise

JavaBeans

by

Richard

Monson-Haefel

(O’Reilly

and

Associates,

Inc.:

Third

Edition,

2001)

Programming

model

and

decisions

v

Read

all

about

EJB

2.0

A

comprehensive

overview

of

the

specification.

v

The

J2EE

Tutorial

This

set

of

articles

by

Sun

Microsystems

covers

several

EJB-related

topics,

including

the

basic

programming

models,

persistence,

and

EJB

Query

Language.

160

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jw-ejb20/
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

Programming

instructions

and

examples

v

Rules

and

Patterns

for

Session

Facades

EJB

programming

practice:

Fronting

entity

beans

with

a

session-bean

facade.

v

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

Programming

practice

for

enterprise

beans

and

other

types

of

J2EE

components.

v

Optimistic

Locking

in

IBM

WebSphere

Application

Server

4.0.2

Examples

of

the

effect

of

optimistic

concurrency

on

application

behavior.

Although

the

paper

is

based

on

a

previous

version

of

this

product,

the

data

access

issues

discussed

in

it

are

current.

This

paper

does

not

seem

to

be

available

directly

by

URL.

To

view

this

paper,

visit

the

specified

URL

and

search

on

″optimistic

locking″

Programming

specifications

v

What’s

new

in

the

Enterprise

JavaBeans

2.0

Specification?

You

can

also

download

the

specification

itself

from

this

URL.

v

JavaTM

2

Platform:

Compatibility

with

Previous

Releases

This

Sun

Microsystems

article

includes

both

source

and

binary

compatibility

issues.

EJB

method

Invocation

Queuing

Method

invocations

to

enterprise

beans

are

only

queued

for

remote

clients,

making

the

method

call.

An

example

of

a

remote

client

is

an

enterprise

Java

bean

(EJB)

client

running

in

a

separate

Java

virtual

machine

(JVM)

(another

address

space)

from

the

enterprise

bean.

In

contrast,

no

queuing

occurs

if

the

EJB

client,

either

a

servlet

or

another

enterprise

bean,

is

installed

in

the

same

JVM

on

which

the

EJB

method

runs

and

on

the

same

thread

of

execution

as

the

EJB

client.

Remote

enterprise

beans

communicate

by

using

the

Remote

Method

Invocation

over

an

Internet

Inter-Orb

Protocol

(RMI-IIOP).

Method

invocations

initiated

over

RMI-IIOP

are

processed

by

a

server-side

object

request

broker

(ORB).

The

thread

pool

acts

as

a

queue

for

incoming

requests.

However,

if

a

remote

method

request

is

issued

and

there

are

no

more

available

threads

in

the

thread

pool,

a

new

thread

is

created.

After

the

method

request

completes

the

thread

is

destroyed.

Therefore,

when

the

ORB

is

used

to

process

remote

method

requests,

the

EJB

container

is

an

open

queue,

due

to

the

use

of

unbounded

threads.

The

following

illustration

depicts

the

two

queuing

options

of

enterprise

beans.

EJB Queuing

EJB Client

Servlet

Servlet Engine

EJB Container

REMOTE

WebSphere

Application Server

WebSphere

Application Server

Chapter

4.

Using

enterprise

beans

in

applications

161

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfacades.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/j2se/1.4.1/compatibility.html

162

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

5.

Using

message-driven

beans

in

applications

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

Message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification)

extend

the

base

JMS

support

and

the

Enterprise

JavaBean

component

model

to

provide

automatic

asynchronous

messaging.

When

a

message

arrives

on

a

destination,

a

listener

passes

the

message

to

a

new

instance

of

a

user-developed

message-driven

bean

for

processing.

You

can

use

WebSphere

Studio

Application

Developer

to

develop

applications

that

use

message-driven

beans.

You

can

use

the

WebSphere

Application

Server

runtime

tools,

like

the

administrative

console,

to

deploy

and

administer

applications

that

use

message-driven

beans.

For

more

information

about

implementing

WebSphere

enterprise

applications

that

use

message-drive

beans,

see

the

following

topics:

v

An

overview

of

message-driven

beans

v

Designing

an

enterprise

application

to

use

a

message-driven

bean

v

Developing

an

enterprise

application

to

use

a

message-driven

bean

v

Deploying

an

enterprise

application

to

use

a

message-driven

bean

v

Configuring

message

listener

resources

for

message-driven

beans

v

Troubleshooting

problems

with

message-driven

beans

Message-driven

beans

-

an

overview

WebSphere

Application

Server

supports

automatic

asynchronous

messaging

with

message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification).

Messaging

with

message-driven

beans

is

shown

in

the

figure

“Message-driven

beans

-

an

overview.”

The

support

for

message-driven

beans

is

based

on

the

message

listener

service,

which

comprises

a

listener

manager

that

controls

and

monitors

one

or

more

listeners.

Each

listener

monitors

a

JMS

destination

for

incoming

messages.

When

a

message

arrives

on

the

destination,

the

listener

passes

the

message

to

a

new

instance

of

a

user-developed

message-driven

bean

(an

enterprise

bean)

for

processing.

The

listener

then

looks

for

the

next

message

without

waiting

for

the

bean

to

return.

Messages

arriving

at

a

destination

being

processed

by

a

listener

have

no

client

credentials

associated

with

them;

the

messages

are

anonymous.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

EJB

component

security.

You

are

recommended

to

develop

a

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean,

to

provide

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

©

Copyright

IBM

Corp.

2003

163

Message-driven

beans

-

components

The

WebSphere

Application

Server

support

for

message-driven

beans

is

based

on

JMS

message

listeners

and

the

message

listener

service,

and

builds

on

the

base

support

for

JMS.

The

main

components

of

WebSphere

Application

Server

support

for

message-driven

beans

are

shown

in

the

following

figure

and

described

after

the

figure:

Figure

1.

Message-driven

beans

and

the

message

listener

service.

This

figure

shows

an

incoming

message

being

passed

by

a

JMS

listener

to

a

message-driven

bean,

which

passes

the

message

on

to

a

business

logic

bean

for

business

processing.

This

messaging

is

controlled

by

the

listener

manager.

For

more

information,

see

the

text

that

accompanies

this

figure.

164

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider

and

provides

a

listener

manager,

which

controls

and

monitors

one

or

more

JMS

listeners.

Each

listener

monitors

either

a

JMS

queue

destination

(for

point-to-point

messaging)

or

a

JMS

topic

destination

(for

publish/subscribe

messaging).

A

connection

factory

is

used

to

create

connections

with

the

JMS

provider

for

a

specific

JMS

queue

or

topic

destination.

Each

connection

factory

encapsulates

the

configuration

parameters

needed

to

create

a

connection

to

a

JMS

destination.

A

listener

port

defines

the

association

between

a

connection

factory,

a

destination,

and

a

deployed

message-driven

bean.

Listener

ports

are

used

to

simplify

the

administration

of

the

associations

between

these

resources.

When

a

deployed

message-driven

bean

is

installed,

it

is

associated

with

a

listener

port

and

the

listener

for

a

destination.

When

a

message

arrives

on

the

destination,

the

listener

passes

the

message

to

a

new

instance

of

a

message-driven

bean

for

processing.

When

an

application

server

is

started,

it

initializes

the

listener

manager

based

on

the

configuration

data.

The

listener

manager

creates

a

dynamic

session

thread

pool

Figure

2.

The

main

components

for

message-driven

beans.

This

figure

shows

the

main

components

of

WebSphere

support

for

message-driven

beans,

from

JMS

provider

through

a

connection

to

a

destination,

listener

port,

then

deployed

message-driven

bean

that

processes

the

message

retrieved

from

the

destination.

Each

listener

port

defines

the

association

between

a

connection

factory,

destination,

and

a

deployed

message-driven

bean.

The

other

main

components

are

the

message

listener

service,

which

comprises

a

listener

for

each

listener

port,

all

controlled

by

the

same

listener

manager.

For

more

information,

see

the

text

that

accompanies

this

figure.

Chapter

5.

Using

message-driven

beans

in

applications

165

for

use

by

listeners,

creates

and

starts

listeners,

and

during

server

termination

controls

the

cleanup

of

listener

message

service

resources.

Each

listener

completes

several

steps

for

the

JMS

destination

that

it

is

to

monitor,

including:

v

Creating

a

JMS

server

session

pool,

and

allocating

JMS

server

sessions

and

session

threads

for

incoming

messages.

v

Interfacing

with

JMS

ASF

to

create

JMS

connection

consumers

to

listen

for

incoming

messages.

v

If

specified,

starting

a

transaction

and

requesting

that

it

is

committed

(or

rolled

back)

when

the

EJB

method

has

completed.

v

Processing

incoming

messages

by

invoking

the

onMessage()

method

of

the

specified

enterprise

bean.

Message-driven

beans

-

transaction

support

Message-driven

beans

can

handle

messages

read

from

JMS

destinations

within

the

scope

of

a

transaction.

If

transaction

handling

is

specified

for

a

JMS

destination,

the

JMS

listener

starts

a

global

transaction

before

it

reads

any

incoming

message

from

that

destination.

When

the

message-driven

bean

processing

has

finished,

the

JMS

listener

commits

or

rolls

back

the

transaction

(using

JTA

transaction

control).

Note:

v

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

If

messages

are

queued

to

be

sent

within

a

global

transaction

they

are

sent

when

the

transaction

is

committed.

If

the

processing

of

a

message

causes

the

transaction

to

be

rolled

back,

then

the

message

that

caused

the

bean

instance

to

be

invoked

is

left

on

the

JMS

destination.

You

can

configure

the

Maximum

retries

property

of

the

listener

port

to

define

the

maximum

number

of

times

the

listener

attempts

to

read

a

message

from

a

destination.

When

the

Max

retries

limit

is

reached,

the

listener

for

that

destination

is

stopped.

When

you

have

resolved

the

problem,

you

must

then

restart

the

listener.

Designing

an

enterprise

application

to

use

message-driven

beans

This

topic

describes

things

to

consider

when

designing

an

enterprise

application

to

use

message-driven

beans.

The

considerations

in

this

topic

are

based

on

a

generic

enterprise

application

that

uses

one

message-driven

bean

to

retrieve

messages

from

a

JMS

queue

destination

and

passes

the

messages

on

to

another

enterprise

bean

that

implements

the

business

logic.

To

design

an

enterprise

application

to

use

message-driven

beans,

complete

the

following

steps:

1.

Identify

the

JMS

resources

that

the

application

is

to

use.

This

helps

to

identify

the

properties

of

resources

that

need

to

be

used

within

the

application

and

configured

as

application

deployment

descriptors

or

within

WebSphere

Application

Server.

JMS

resource

type

Properties

Queue

connection

factory

Name:

SamplePtoPQueueConnectionFactory

JNDI

Name:

Sample/JMS/QCF

166

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

JMS

resource

type

Properties

Queue

destination

Name:

Q1

JNDI

Name:

Sample/JMS/Q1

Listener

port

(for

the

destination)

Name:

SamplePtoPListenerPort

Connection

Factory

JNDI

Name:

Sample/JMS/QCF

Destination

JNDI

Name:

Sample/JMS/Q1

Maximum

Sessions:

5

Maximum

Retries:

10

Maximum

Messages:

1

Message-driven

bean

(deployment

properties)

Name:

JMSppSampleMDBBean

Transaction

type:

Container

Destination

type:

Queue

Listener

port

name:

SamplePtoPListenerPort

Business

logic

bean

Name:

MyLogicBean

Ensure

that

you

use

consistent

values

where

needed;

for

example,

the

JNDI

names

for

the

connection

factory

and

destination

must

be

the

same

for

both

those

resources

and

the

equivalent

properties

of

the

listener

port.

2.

Separation

of

business

logic.

You

are

recommended

to

develop

a

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean.

This

provides

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

3.

Security

considerations.

Messages

arriving

at

a

destination

being

processed

by

a

listener

have

no

client

credentials

associated

with

them;

the

messages

are

anonymous.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

EJB

component

security.

4.

General

JMS

considerations

For

Publish/Subscribe

messaging,

choose

the

JMS

server

port

to

be

used

depending

on

your

needs

for

transactions

or

performance:

Queued

port

The

TCP/IP

port

number

of

the

listener

port

used

for

all

point-to-point

and

Publish/Subscribe

support.

Direct

port

The

TCP/IP

port

number

of

the

listener

port

used

for

direct

TCP/IP

connection

(non-transactional,

non-persistent,

and

non-durable

subscriptions

only)

for

Publish/Subscribe

support.

Note:

Message-driven

beans

cannot

use

the

direct

listener

port

for

Publish/Subscribe

support.

Therefore,

any

topic

connection

factory

configured

with

Portset

to

Direct

cannot

be

used

with

message-driven

beans.

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.

Chapter

5.

Using

message-driven

beans

in

applications

167

Developing

an

enterprise

application

to

use

message-driven

beans

Use

this

task

to

develop

an

enterprise

application

to

use

a

message-driven

bean.

The

message-driven

bean

is

invoked

by

a

JMS

listener

when

a

message

arrives

on

the

input

queue

that

the

listener

is

monitoring.

You

are

recommended

to

develop

the

message-driven

bean

to

delegate

the

business

processing

of

incoming

messages

to

another

enterprise

bean,

to

provide

clear

separation

of

message

handling

and

business

processing.

This

also

enables

the

business

processing

to

be

invoked

by

either

the

arrival

of

incoming

messages

or,

for

example,

from

a

WebSphere

J2EE

client.

Responses

can

be

handled

by

another

enterprise

bean

acting

as

a

sender

bean,

or

handled

in

the

message-driven

bean.

You

develop

an

enterprise

application

to

use

a

message-driven

bean

like

any

other

enterprise

bean,

except

that

a

message-driven

bean

does

not

have

a

home

interface

or

a

remote

interface.

This

topic

describes

how

to

develop

a

completely

new

message-driven

bean

class.

If

you

have

a

WAS

4.0

enterprise

application

that

uses

the

JMS

listener,

you

can

migrate

that

application

to

use

message-driven

beans.

For

more

information

about

writing

the

message-driven

bean

class,

see

Creating

a

message-driven

bean

in

the

WebSphere

Studio

help

bookshelf.

To

develop

an

enterprise

application

to

use

a

message-driven

bean,

complete

the

following

steps:

1.

Creating

the

Enterprise

Application

project,

as

described

in

the

WebSphere

Studio

article

.

2.

Creating

the

message-driven

bean

class.

You

can

use

the

New

Enterprise

Bean

wizard

of

WebSphere

Studio

Application

Developer

to

create

an

enterprise

bean

with

a

bean

type

of

Message-driven

bean.

The

wizard

creates

appropriate

methods

for

the

type

of

bean.

By

convention,

the

message

bean

class

is

named

nameBean,

where

name

is

the

name

you

assign

to

the

message

bean;

for

example:

public

class

MyJMSppMDBBean

implements

MessageDrivenBean,

MessageListener

The

message-driven

bean

class

must

define

and

implement

the

following

methods:

v

onMessage(message),

which

must

meet

the

following

requirements:

–

The

method

must

have

a

single

argument

of

type

javax.jms.Message.

–

The

throws

clause

must

not

define

any

application

exceptions.

–

If

the

message-driven

bean

is

configured

to

use

bean-managed

transactions,

it

must

call

the

javax.transaction.UserTransaction

interface

to

scope

the

transactions.

Because

these

calls

occur

inside

the

onMessage()

method,

the

transaction

scope

does

not

include

the

initial

message

receipt.

This

means

the

application

server

is

given

one

attempt

to

process

the

message.

To

handle

the

message

within

the

onMessage()

method

(for

example,

to

pass

the

message

on

to

another

enterprise

bean),

you

use

standard

JMS.

(This

is

known

as

bean-managed

messaging.)

v

ejbCreate()

168

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

must

define

and

implement

an

ejbCreate

method

for

each

way

in

which

you

want

a

new

instance

of

an

enterprise

bean

to

be

created.

v

ejbRemove().

This

method

is

invoked

by

the

container

when

a

client

invokes

the

remove

method

inherited

by

the

enterprise

bean’s

home

interface

from

the

javax.ejb.EJBHome

interface.

This

method

must

contain

any

code

that

you

want

to

execute

before

an

enterprise

bean

instance

is

removed

from

the

container

(and

the

associated

data

is

removed

from

the

data

source).

For

example,

the

following

code

extract

shows

how

to

access

the

text

and

the

JMS

MessageID,

from

a

JMS

message

of

type

TextMessage:

The

result

of

this

step

is

a

message-driven

bean

that

can

be

assembled

into

an

.EAR

file

for

deployment.

3.

Assembling

and

packaging

the

application

for

deployment.

You

can

use

WebSphere

Studio

to

assemble

and

package

the

application

for

deployment.

The

result

of

this

task

is

an

.EAR

file,

containing

an

application

message-driven

bean,

that

can

be

deployed

in

WebSphere

Application

Server.

After

you

have

developed

an

enterprise

application

to

use

message-driven

beans,

configure

and

deploy

the

application;

for

example,

define

the

listener

ports

for

the

message-driven

beans

and,

optionally,

change

the

deployment

descriptor

attributes

for

the

application.

For

more

information

about

configuring

and

deploying

an

application

that

uses

message-driven

beans,

see

Deploying

an

enterprise

application

to

use

message-driven

beans

public

void

onMessage(javax.jms.Message

msg)

{

String

text

=

null;

String

messageID

=

null;

try

{

text

=

((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(),

msg

text2:

"+text);

//

//

store

the

message

id

to

use

as

the

Correlator

value

//

messageID

=

msg.getJMSMessageID();

//

Call

a

private

method

to

put

the

message

onto

another

queue

putMessage(messageID,

text);

}

catch

(Exception

err)

{

err.printStackTrace();

}

return;

}

Figure

3.

Code

example:

The

onMessage()

method

of

a

message

bean.

This

figure

shows

a

code

extract

for

a

basic

onMessage()

method

of

a

sample

message-driven

bean.

The

method

unpacks

the

incoming

text

message

to

extract

the

text

and

message

identifier

and

calls

a

private

putMessage

method

(defined

within

the

same

message

bean

class)

to

put

the

message

onto

another

queue.

Chapter

5.

Using

message-driven

beans

in

applications

169

Deploying

an

enterprise

application

to

use

message-driven

beans

Use

this

task

to

deploy

an

enterprise

application

to

use

message-driven

beans.

This

task

description

assumes

that

you

have

an

.EAR

file,

which

contains

an

application

enterprise

bean

with

code

for

message-driven

beans,

that

can

be

deployed

in

WebSphere

Application

Server.

To

deploy

an

enterprise

application

to

use

message-driven

beans,

complete

the

following

steps:

1.

Use

the

WebSphere

administrative

console

to

define

the

listener

ports

for

the

application,

as

described

in

Adding

a

new

listener

port.

2.

5.0.2

For

each

message-driven

bean

in

the

application,

configure

the

deployment

attributes

to

match

the

listener

port

definitions,

as

described

in

Configuring

deployment

attributes

using

the

Assembly

Toolkit.

Alternatively,

you

can

use

the

Application

Assembly

Tool

as

described

inConfiguring

deployment

attributes

using

the

Application

Assembly

Tool.

3.

5.0.1

For

each

message-driven

bean

in

the

application,

configure

the

deployment

attributes

to

match

the

listener

port

definitions,

as

described

in

Configuring

deployment

attributes

using

the

Application

Assembly

Tool.

4.

Use

the

WebSphere

administrative

console

to

install

the

application.

This

stage

is

a

standard

WebSphere

Application

Server

task,

as

described

in

Installing

a

new

application.

When

you

install

the

application,

you

are

prompted

to

specify

the

name

of

the

listener

port

that

the

application

is

to

use

for

late

responses.

Select

the

listener

port,

then

click

OK.

Configuring

deployment

attributes

using

the

Assembly

Toolkit

Use

this

task

to

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

to

override

the

deployment

attributes

defined

within

the

application

EAR

file.

You

can

configure

the

deployment

attributes

of

an

application

by

using

the

Deployment

Descriptor

Editor

of

WebSphere

Studio

Application

Developer

or

the

Assembly

Toolkit.

This

topic

describes

the

use

of

the

Assembly

Toolkit

to

configure

the

deployment

attributes

of

an

application.

This

task

description

assumes

that

you

have

an

EAR

file,

which

contains

an

application

enterprise

bean

developed

as

a

message-driven

bean,

that

can

be

deployed

in

WebSphere

Application

Server.

For

more

details

about

using

the

Assembly

Toolkit,

see

Assembling

applications

with

the

Assembly

Toolkit.

To

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

use

the

Assembly

Toolkit

to

configure

the

deployment

attributes

of

the

application

to

match

the

listener

port

definitions:

1.

Start

the

Assembly

Toolkit.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

use

the

import

wizard

to

import

the

EAR

file

into

the

Assembly

Toolkit.

To

start

the

import

wizard:

a.

Click

File->

Import->

EAR

file

b.

Click

Next,

then

select

the

EAR

file.

170

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

c.

Click

Finish

3.

In

the

J2EE

Hierarchy

view,

right-click

the

EJB

module

for

the

message-driven

bean

,

then

click

Open

With

>

Deployment

Descriptor

Editor.

A

property

dialog

notebook

for

the

message-driven

bean

is

displayed

in

the

property

pane.

4.

Specify

general

deployment

properties.

a.

In

the

property

pane,

select

the

Beans

tab.

b.

Specify

the

following

properties:

Transaction

type

Whether

the

message

bean

manages

its

own

transactions

or

the

container

manages

transactions

on

behalf

of

the

bean.

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

To

enable

the

transactional

behavior

that

you

want,

you

must

configure

the

JMS

destination

with

the

same

transactional

behavior

as

you

configure

for

the

message

bean.

Bean

The

message

bean

manages

its

own

transactions

Container

The

container

manages

transactions

on

behalf

of

the

bean

5.

Specify

advanced

deployment

properties.

a.

Specify

the

following

properties:

Message

selector

The

JMS

message

selector

to

be

used

to

determine

which

messages

the

message

bean

receives;

for

example:

JMSType=’car’

AND

color=’blue’

AND

weight>2500

The

selector

string

can

refer

to

fields

in

the

JMS

message

header

and

fields

in

the

message

properties.

Message

selectors

cannot

reference

message

body

values.

Acknowledge

mode

How

the

session

acknowledges

any

messages

it

receives.

This

property

applies

only

to

message-driven

beans

that

uses

bean-managed

transaction

demarcation

(Transaction

type

is

set

to

Bean).

Auto

Acknowledge

The

session

automatically

acknowledges

a

message

when

it

has

either

successfully

returned

from

a

call

to

receive,

or

the

message

listener

it

has

called

to

process

the

message

successfully

returns.

Dups

OK

Acknowledge

The

session

lazily

acknowledges

the

delivery

of

messages.

This

is

likely

to

result

in

the

delivery

of

some

duplicate

messages

if

JMS

fails,

so

it

should

be

used

only

by

consumers

that

are

tolerant

of

duplicate

messages.

As

defined

in

the

EJB

specification,

clients

cannot

use

using

Message.acknowledge()

to

acknowledge

messages.

If

a

value

of

CLIENT_ACKNOWLEDGE

is

passed

on

the

createxxxSession

call,

then

messages

are

automatically

acknowledged

by

the

application

server

and

Message.acknowledge()

is

not

used.

Destination

type

Whether

the

message

bean

uses

a

queue

or

topic

destination.

Queue

The

message

bean

uses

a

queue

destination.

Topic

The

message

bean

uses

a

topic

destination.

Chapter

5.

Using

message-driven

beans

in

applications

171

Subscription

durability

Whether

a

JMS

topic

subscription

is

durable

or

non-durable.

Durable

A

subscriber

registers

a

durable

subscription

with

a

unique

identity

that

is

retained

by

JMS.

Subsequent

subscriber

objects

with

the

same

identity

resume

the

subscription

in

the

state

it

was

left

in

by

the

earlier

subscriber.

If

there

is

no

active

subscriber

for

a

durable

subscription,

JMS

retains

the

subscription’s

messages

until

they

are

received

by

the

subscription

or

until

they

expire.

Nondurable

Non-durable

subscriptions

last

for

the

lifetime

of

their

subscriber

object.

This

means

that

a

client

sees

the

messages

published

on

a

topic

only

while

its

subscriber

is

active.

If

the

subscriber

is

not

active,

the

client

is

missing

messages

published

on

its

topic.

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.

6.

Specify

bindings

deployment

properties.

a.

Specify

the

following

property:

Listener

port

name

Type

the

name

of

the

listener

port

for

this

message-driven

bean.

7.

Save

your

changes

to

the

deployment

descriptor.

a.

Close

the

deployment

descriptor

editor.

b.

When

prompted,

click

Yes

to

indicate

that

you

want

to

save

changes

to

the

deployment

descriptor.

8.

Verify

the

archive

files.

9.

Generate

code

for

deployment

for

EJB

modules

or

for

enterprise

applications

that

use

EJB

modules.

10.

Optional:

Test

your

completed

module

on

a

WebSphere

Application

Server

installation.

Right-click

a

module,

click

Run

on

Server,

and

follow

the

instructions

in

the

displayed

wizard.

Note

that

Run

on

Server

works

on

the

Windows,

Linux/Intel,

and

AIX

operating

systems

only;

you

cannot

deploy

remotely

from

the

Assembly

Toolkit

to

a

WebSphere

Application

Server

installation

on

a

UNIX

operating

system

such

as

Solaris.

Important

Important:

Use

Run

On

Server

for

unit

testing

only.

Assembly

Server

Toolkit

controls

the

WebSphere

Application

Server

installation

and,

when

an

application

is

published

remotely,

the

Toolkit

overwrites

the

server

configuration

file

for

that

server.

Do

not

use

on

production

servers.

For

instructions

on

remote

testing,

see

the

article

“Setting

Up

a

Remote

WebSphere

Application

Server

in

WebSphere

Studio

V5”

at

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html.

172

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html

After

assembling

your

application,

use

a

systems

management

tool

to

deploy

the

EAR

file

onto

the

application

server

that

is

to

run

the

application;

for

example,

using

the

administrative

console

as

described

in

Deploying

and

managing

applications.

Configuring

deployment

attributes

for

a

message-driven

bean

Use

this

task

to

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

to

override

the

deployment

attributes

defined

within

the

application

EAR

file.

This

task

description

assumes

that

you

have

an

EAR

file,

which

contains

an

application

enterprise

bean

developed

as

a

message-driven

bean,

that

can

be

deployed

in

WebSphere

Application

Server.

Note:

After

deployment

code

has

been

generated

for

an

application,

the

deployable

archive

is

renamed

with

the

prefix

Deployed_

.

Any

subsequent

changes

to

the

archive

from

within

the

Application

Assembly

Tool

are

applied

to

the

version

of

the

archive

that

existed

prior

to

code

generation.

To

see

changes

reflected

in

your

application,

you

must

regenerate

deployment

code

and

re-install

the

deployable

archive.

To

configure

the

message-driven

beans

deployment

attributes

for

an

enterprise

bean,

use

the

the

application

assembly

tool

to

configure

the

deployment

attributes

of

the

application

to

match

the

listener

port

definitions:

1.

Launch

the

Application

Assembly

Tool.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

click

File->

Open

then

select

the

the

EAR

file.

3.

In

the

navigation

pane,

select

the

message-driven

bean

instance;

for

example,

expand

ejb_module_instance->

Message-driven

beans

then

select

the

bean

instance.

A

property

dialog

notebook

for

the

message-driven

bean

is

displayed

in

the

property

pane.

4.

Specify

general

deployment

properties.

a.

In

the

property

pane,

select

the

General

tab.

b.

Specify

the

following

properties:

Transaction

type

Whether

the

message

bean

manages

its

own

transactions

or

the

container

manages

transactions

on

behalf

of

the

bean.

All

messages

retrieved

from

a

specific

destination

have

the

same

transactional

behavior.

To

enable

the

transactional

behavior

that

you

want,

you

must

configure

the

JMS

destination

with

the

same

transactional

behavior

as

you

configure

for

the

message

bean.

Bean

The

message

bean

manages

its

own

transactions

Container

The

container

manages

transactions

on

behalf

of

the

bean
5.

Specify

advanced

deployment

properties.

a.

In

the

property

pane,

select

the

Advanced

tab.

b.

Specify

the

following

properties:

Message

selector

The

JMS

message

selector

to

be

used

to

determine

which

messages

the

message

bean

receives;

for

example:

JMSType=’car’

AND

color=’blue’

AND

weight>2500

Chapter

5.

Using

message-driven

beans

in

applications

173

The

selector

string

can

refer

to

fields

in

the

JMS

message

header

and

fields

in

the

message

properties.

Message

selectors

cannot

reference

message

body

values.

Acknowledge

mode

How

the

session

acknowledges

any

messages

it

receives.

This

property

applies

only

to

message-driven

beans

that

uses

bean-managed

transaction

demarcation

(Transaction

type

is

set

to

Bean).

Auto

Acknowledge

The

session

automatically

acknowledges

a

message

when

it

has

either

successfully

returned

from

a

call

to

receive,

or

the

message

listener

it

has

called

to

process

the

message

successfully

returns.

Dups

OK

Acknowledge

The

session

lazily

acknowledges

the

delivery

of

messages.

This

is

likely

to

result

in

the

delivery

of

some

duplicate

messages

if

JMS

fails,

so

it

should

be

used

only

by

consumers

that

are

tolerant

of

duplicate

messages.

As

defined

in

the

EJB

specification,

clients

cannot

use

using

Message.acknowledge()

to

acknowledge

messages.

If

a

value

of

CLIENT_ACKNOWLEDGE

is

passed

on

the

createxxxSession

call,

then

messages

are

automatically

acknowledged

by

the

application

server

and

Message.acknowledge()

is

not

used.

Destination

type

Whether

the

message

bean

uses

a

queue

or

topic

destination.

Queue

The

message

bean

uses

a

queue

destination.

Topic

The

message

bean

uses

a

topic

destination.
Subscription

durability

Whether

a

JMS

topic

subscription

is

durable

or

non-durable.

Durable

A

subscriber

registers

a

durable

subscription

with

a

unique

identity

that

is

retained

by

JMS.

Subsequent

subscriber

objects

with

the

same

identity

resume

the

subscription

in

the

state

it

was

left

in

by

the

earlier

subscriber.

If

there

is

no

active

subscriber

for

a

durable

subscription,

JMS

retains

the

subscription’s

messages

until

they

are

received

by

the

subscription

or

until

they

expire.

Nondurable

Non-durable

subscriptions

last

for

the

lifetime

of

their

subscriber

object.

This

means

that

a

client

sees

the

messages

published

on

a

topic

only

while

its

subscriber

is

active.

If

the

subscriber

is

not

active,

the

client

is

missing

messages

published

on

its

topic.

A

non-durable

subscriber

can

only

be

used

in

the

same

transactional

context

(for

example,

a

global

transaction

or

an

unspecified

transaction

context)

that

existed

when

the

subscriber

was

created.

For

more

information

about

this

context

restriction,

see

The

effect

of

transaction

context

on

non-durable

subscribers.
6.

Specify

bindings

deployment

properties.

a.

In

the

property

pane,

select

the

Bindings

tab.

b.

Specify

the

following

property:

174

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Listener

port

name

The

name

of

the

listener

port

for

this

message-driven

bean.
7.

To

apply

the

changes

and

close

the

Application

Assembly

Tool,

click

OK.

Otherwise,

to

apply

the

values

but

keep

the

property

dialog

open

for

additional

edits,

click

Apply.

8.

To

see

changes

reflected

in

your

application,

regenerate

deployment

code

and

reinstall

the

deployable

archive.

Configuring

message

listener

resources

for

message-driven

beans

Use

the

following

tasks

to

configure

resources

needed

by

the

message

listener

service

to

support

message-driven

beans.

v

Configuring

the

message

listener

service

v

Adding

a

new

listener

port

v

Configuring

a

listener

port

v

Configuring

security

for

message-driven

beans

Configuring

the

message

listener

service

Use

this

task

to

configure

the

properties

of

the

message

listener

service

for

an

application

server.

To

configure

the

properties

of

the

message

listener

service

for

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

Specify

appropriate

properties

of

the

message

listener

service.

5.

Optional:

Specify

any

of

the

following

optional

properties

that

you

need,

as

Custom

properties

of

the

message

listener

service:

NON.ASF.RECEIVE.TIMEOUT,

MQJMS.POOLING.TIMEOUT,

MQJMS.POOLING.THRESHOLD,

MAX.RECOVERY.RETRIES,

and

RECOVERY.RETRY.INTERVAL.

For

more

information

about

these

custom

properties,

see

Custom

Properties.

6.

Click

OK.

7.

Save

your

configuration.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

Application

Server.

Message

listener

service

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider.

It

provides

a

listener

manager

that

controls

and

monitors

one

or

more

JMS

listeners,

which

each

monitor

a

JMS

destination

on

behalf

of

a

deployed

message-driven

bean.

This

panel

displays

links

to

the

Additional

Properties

pages

for

Listener

Ports

and

Custom

Properties

for

the

message

listener

service.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service

Name:

Chapter

5.

Using

message-driven

beans

in

applications

175

The

name

by

which

the

message

listener

service

is

known

for

administrative

purposes.

Data

type

String

Default

MsgLService

Description:

A

description

of

the

message

listener

service,

for

administrative

purposes

Data

type

String

Default

Null

Thread

pool:

Controls

the

maximum

number

of

threads

the

Message

Listener

Service

is

allowed

to

run.

Select

this

link

to

display

the

service

thread

pool

properties.

Adjust

this

parameter

when

multiple

message-driven

beans

are

deployed

in

the

same

application

server

and

the

sum

of

their

maximum

session

values

exceeds

the

default

value

of

10.

Data

type

Integer

Units

Not

applicable

Default

Minimum:

10,

maximum

50

Range

Not

applicable

Recommended

Set

the

minimum

to

the

sum

of

all

message-driven

beans

maximum

session

values.

Set

the

maximum

to

anything

equal

or

greater

than

the

minimum.

Custom

Properties:

An

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

message

listener

service.

You

can

use

the

Custom

properties

page

to

define

the

following

properties

for

use

by

the

message

listener

service.

v

NON.ASF.RECEIVE.TIMEOUT

v

MQJMS.POOLING.TIMEOUT

v

MQJMS.POOLING.THRESHOLD

v

MAX.RECOVERY.RETRIES

v

RECOVERY.RETRY.INTERVAL

Message

listener

service

custom

properties:

Use

this

panel

to

view

or

change

an

optional

set

of

name

and

value

pairs

for

custom

properties

of

the

message

listener

service.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service->

(In

content

pane,

under

Additional

Properties)

Custom

Properties

176

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

can

use

the

Custom

properties

page

to

define

the

following

properties

for

use

by

the

message

listener

service.

v

NON.ASF.RECEIVE.TIMEOUT

v

MQJMS.POOLING.TIMEOUT

v

MQJMS.POOLING.THRESHOLD

v

MAX.RECOVERY.RETRIES

v

RECOVERY.RETRY.INTERVAL

NON.ASF.RECEIVE.TIMEOUT:

The

timeout

in

milliseconds

for

synchronous

message

receives

performed

by

message-driven

bean

listener

sessions

in

the

non-ASF

mode

of

operation.

You

should

set

this

property

to

a

non-zero

value

only

if

you

want

to

enable

the

non-ASF

mode

of

operation

for

all

message-driven

bean

listeners

on

the

application

server.

The

message

listener

service

has

two

modes

of

operation,

Application

Server

Facilities

(ASF)

and

non-Application

Server

Facilities

(non-ASF).

v

The

ASF

mode

is

meant

to

provide

concurrency

and

transactional

support

for

applications.

For

publish/subscribe

message-drive

beans,

the

ASF

mode

provides

better

throughput

and

concurrency,

because

in

the

non-ASF

mode

the

listener

is

single-threaded.

v

The

non-ASF

mode

is

mainly

for

use

with

generic

JMS

providers

that

do

not

support

JMS

ASF,

which

is

an

optional

extension

to

the

JMS

specification.

The

non-ASF

mode

is

also

transactional

but,

because

the

path

length

is

shorter

than

the

ASF

mode,

usually

provides

improved

performance.

Use

non-ASF

if:

–

Your

generic

JMS

provider

does

not

provide

JMS

ASF

support

–

You

are

using

message-driven

beans

with

WebSphere

topic

connections

with

the

DIRECT

port,

because

the

embedded

publish/subscribe

broker

using

that

port

does

not

support

XA

transactions

or

JMS

ASF.

–

Message

order

is

a

strict

requirement

Data

type

Integer

Units

Milliseconds

Default

ASF

mode

(custom

property

not

created)

Range

0

or

greater

milliseconds

0

non-ASF

mode

is

disabled

1

or

more

The

timeout

in

milliseconds

for

non-ASF

message-driven

bean

listener

synchronous

session

receives

Chapter

5.

Using

message-driven

beans

in

applications

177

Recommended

If

a

transaction

timeout

occurs,

the

message

must

recycle

causing

extra

work.

If

you

want

to

use

the

non-ASF

mode,

set

this

property

to

lower

than

the

transaction

timeout,

but

leave

spare

at

least

the

maximum

duration

of

your

message-driven

bean’s

onMessage()

method.

For

example,

if

your

message-driven

bean’s

onMessage()

method

typically

takes

a

maximum

of

10

seconds,

and

the

transaction

timeout

is

set

to

120

seconds,

you

might

set

the

NON.ASF.RECEIVE.TIMEOUT

property

to

no

more

than

110000

(110000

milliseconds,

that

is

110

seconds).

MQJMS.POOLING.TIMEOUT:

The

number

of

milliseconds

after

which

a

connection

in

the

pool

is

destroyed

if

it

has

not

been

used.

An

MQSimpleConnectionManager

allocates

connections

on

a

most-recently-used

basis,

and

destroys

connections

on

a

least-recently-used

basis.

By

default,

a

connection

is

destroyed

if

it

has

not

been

used

for

five

minutes.

Data

type

Integer

Units

Milliseconds

Default

5

minutes

Range

MQJMS.POOLING.THRESHOLD:

The

maximum

number

of

unused

connections

in

the

pool.

An

MQSimpleConnectionManager

allocates

connections

on

a

most-recently-used

basis,

and

destroys

connections

on

a

least-recently-used

basis.

By

default,

a

connection

is

destroyed

if

there

are

more

than

ten

unused

connections

in

the

pool.

Data

type

Integer

Units

Number

of

connections

Default

10

Range

MAX.RECOVERY.RETRIES:

The

maximum

number

of

times

that

the

listener

service

tries

to

get

a

message

from

a

listener

port

before

the

associated

listener

is

stopped,

in

the

range

0

through

2147483647.

Data

type

Integer

Units

Retry

attempts

Default

0

(no

retries)

Range

0

(no

retries)

through

2147483647

RECOVERY.RETRY.INTERVAL:

178

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

time

in

seconds

between

retry

attempts

by

the

listener

service

to

get

a

message

from

a

listener

port.

Data

type

Integer

Units

Seconds

Default

10

Range

1

through

2147483647

Message

listener

port

collection:

The

message

listener

ports

configured

in

the

administrative

domain

This

panel

displays

a

list

of

the

message

listener

ports

configured

in

the

administrative

domain.

Each

listener

port

is

used

with

a

message-driven

bean

to

automatically

receive

messages

from

an

associated

JMS

destination.

You

can

use

this

panel

to

add

new

listener

ports

or

to

change

the

properties

of

existing

listener

ports.

For

more

information

about

the

property

fields

for

listener

ports,

see

Listener

port

properties.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service->

Listener

Ports

Listener

port

settings:

A

listener

port

is

used

to

simplify

administration

of

the

association

between

a

connection

factory,

destination,

and

deployed

message-driven

bean.

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

listener

port.

To

view

this

administrative

console

page,

click

Servers->

application_server->

Message

Listener

Service->

Listener

Ports->

listener_port

Name:

The

name

by

which

the

listener

port

is

known

for

administrative

purposes.

Data

type

String

Default

Null

Initial

state:

The

state

that

you

want

the

listener

port

to

have

when

the

application

server

is

next

restarted

Data

type

Enum

Units

Not

applicable

Default

Started

Chapter

5.

Using

message-driven

beans

in

applications

179

Range

Started

When

the

application

server

is

next

started,

the

listener

port

is

started

automatically.

Stopped

When

the

application

server

is

next

started,

the

listener

port

is

not

started

automatically.

If

message-driven

beans

are

to

use

this

listener

port

on

the

application

server,

the

system

administrator

must

start

the

port

manually

or

select

the

Started

value

of

this

property

then

restart

the

application

server.

Description:

A

description

of

the

listener

port,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

Connection

factory

JNDI

name:

The

JNDI

name

for

the

JMS

connection

factory

to

be

used

by

the

listener

port;

for

example,

jms/connFactory1.

Data

type

String

Default

Null

Destination

JNDI

name:

The

JNDI

name

for

the

destination

to

be

used

by

the

listener

port;

for

example,

jms/destn1.

If

the

extended

messaging

service

is

to

use

this

listener

port

to

handle

late

responses,

the

value

of

this

property

must

match

the

JMS

response

destination

on

the

output

port

used

by

the

sender

bean.

You

cannot

use

a

temporary

destination

for

late

responses.

Data

type

String

Default

Null

Maximum

sessions:

Specifies

the

maximum

number

of

concurrent

sessions

that

a

listener

can

have

with

the

JMS

server

to

process

messages.

Each

session

corresponds

to

a

separate

listener

thread

and

therefore

controls

the

number

of

concurrently

processed

messages.

Adjust

this

parameter

when

the

JMS

server

does

not

fully

use

the

available

capacity

of

the

machine

and

if

you

do

not

need

to

process

messages

in

a

specific

message

order.

180

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Data

type

Integer

Units

Sessions

Default

1

Range

1

through

2147483647

Recommended

v

If

you

want

to

process

messages

in

a

strict

message

order,

set

the

value

to

1,

so

only

one

thread

is

ever

processing

messages.

v

If

you

want

to

process

multiple

messages

simultaneously

(known

as

“message

concurrency”),

set

this

property

to

a

value

greater

than

1.

Keep

this

value

as

low

as

possible

to

prevent

overloading

client

applications.

A

good

starting

point

for

a

100%

JMS

workload

with

short

transaction

times

is

2

to

4

sessions

per

processor.

If

longer

running

transactions

exist,

you

may

need

more

sessions,

which

should

be

determined

by

experimentation.

Maximum

retries:

The

maximum

number

of

times

that

the

listener

tries

to

deliver

a

message

before

the

listener

is

stopped,

in

the

range

0

through

2147483647.

The

maximum

number

of

times

that

the

listener

tries

to

deliver

a

message

to

a

message-driven

bean

instance

before

the

listener

is

stopped.

Data

type

Integer

Units

Retry

attempts

Default

0

(no

retries)

Range

0

(no

retries)

through

2147483647

Maximum

messages:

The

maximum

number

of

messages

that

the

listener

can

process

in

one

session

with

the

JMS

server.

For

WebSphere

embedded

messaging

or

WebSphere

MQ

as

the

JMS

provider,

the

listener

processes

all

messages

in

the

session

as

one

batch

within

the

same

transaction.

For

a

generic

JMS

provider,

the

listener

processes

each

message

in

the

session

within

a

separate

transaction.

Data

type

Integer

Units

Number

of

messages

Default

1

Range

1

through

2147483647

Chapter

5.

Using

message-driven

beans

in

applications

181

Recommended

For

WebSphere

embedded

messaging

or

WebSphere

MQ

as

the

JMS

provider,

if

you

want

to

process

multiple

messages

in

a

single

transaction,

then

set

this

value

to

more

than

1.

This

enables

multiple

messages

to

be

batch-processed

into

a

single

transaction,

and

eliminates

much

of

the

overhead

of

transactions

on

JMS

messages.

CAUTION:

v

If

one

message

in

the

batch

fails

processing

with

an

exception,

the

entire

batch

of

messages

is

put

back

on

the

queue

for

processing.

v

Any

resource

lock

held

by

any

of

the

interactions

for

the

individual

messages

are

held

for

the

duration

of

the

entire

batch.

v

Depending

on

the

amount

of

processing

that

messages

need,

and

if

XA

transactions

are

being

used,

setting

a

value

greater

than

1

can

cause

the

transaction

to

time

out.

If

an

XA

transaction

does

time

out

routinely

because

processing

multiple

messages

exceeds

the

transaction

timeout,

reduce

this

property

to

1

(to

limit

processing

to

one

message

per

transaction)

or

increase

your

transaction

timeout.

Adding

a

new

listener

port

Use

this

task

to

add

a

new

listener

port

to

the

message

listener

service,

so

that

message-driven

beans

can

be

associated

with

the

port

to

retrieve

messages.

To

add

a

new

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

click

New.

6.

Specify

appropriate

properties

for

the

listener

port.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

If

enabled,

the

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

182

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuring

a

listener

port

Use

this

task

to

change

the

properties

of

an

existing

listener

port,

used

by

message-driven

beans

associated

with

the

port

to

retrieve

messages.

To

configure

the

properties

of

a

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

click

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

Click

the

listener

port

that

you

want

to

modify.

This

displays

the

properties

of

the

listener

port

in

the

content

pane.

6.

Specify

appropriate

properties

for

the

listener

port.

7.

Click

OK.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

9.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Deleting

a

listener

port

Use

this

task

to

delete

a

listener

port

from

the

message

listener

service,

to

prevent

message-driven

beans

associated

with

the

port

from

retrieving

messages.

To

delete

a

listener

port,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

select

the

checkbox

for

the

listener

port

that

you

want

to

delete.

6.

Click

Delete.

This

action

stops

the

port

(needed

to

allow

the

port

to

be

deleted)

then

deletes

the

port.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Configuring

security

for

message-driven

beans

Use

this

task

to

configure

resource

security

and

security

permissions

for

message-driven

beans.

Chapter

5.

Using

message-driven

beans

in

applications

183

Messages

arriving

at

a

listener

port

have

no

client

credentials

associated

with

them.

The

messages

are

anonymous.

To

call

secure

enterprise

beans

from

a

message-driven

bean,

the

message-driven

bean

needs

to

be

configured

with

a

RunAs

Identity

deployment

descriptor.

Security

depends

on

the

role

specified

by

the

RunAs

Identity

for

the

message-driven

bean

as

an

EJB

component.

For

more

information

about

EJB

security,

see

EJB

component

security.

For

more

information

about

configuring

security

for

your

application,

see

Assembling

secured

applications.

JMS

connections

used

by

message-driven

beans

can

benefit

from

the

added

security

of

using

J2C

container-managed

authentication.

To

enable

the

use

of

J2C

container

authentication

aliases

and

mapping,

define

a

J2C

container-managed

alias

on

the

JMS

connection

factory

definition

that

the

MDB

is

using

to

listen

upon

(defined

by

the

Connection

factory

JNDI

name

property

of

the

listener

port).

If

defined,

the

listener

uses

the

container-managed

authentication

alias

for

its

JMSConnection

security

credentials

instead

of

any

application-managed

alias.

To

set

the

container-managed

alias,

use

the

administrative

console

to

complete

the

following

steps:

1.

To

display

the

listener

port

settings,

click

Servers->

application_server->

Message

Listener

Service->

Listener

Ports->

listener_port

2.

To

get

the

name

of

the

JMS

connection

factory,

look

at

the

Connection

factory

JNDI

name

property.

3.

Display

the

JMS

connection

factory

properties.

For

example,

to

display

the

properties

of

a

queue

connection

factory

provided

by

the

embedded

WebSphere

JMS

provider,

click

Resources->

WebSphere

JMS

Provider->

(In

content

pane,

under

Additional

Properties)

WebSphere

Queue

Connection

Factories->

connection_factory

4.

Set

the

Container-managed

Authentication

Alias

property.

5.

Click

OK

Administering

listener

ports

Use

the

following

tasks

to

administer

listener

ports,

which

each

define

the

association

between

a

connection

factory,

a

destination,

and

a

message-driven

bean.

You

can

use

the

WebSphere

administrative

console

to

administer

listener

ports,

as

described

in

the

following

tasks.

v

Adding

a

new

listener

port

Use

this

task

to

create

a

new

listener

port,

to

specify

a

new

association

between

a

connection

factory,

a

destination,

and

a

message-driven

bean.

This

enables

deployed

message-driven

beans

associated

with

the

port

to

retrieve

messages

from

the

destination.

v

Configuring

a

listener

port

Use

this

task

to

view

or

change

the

configuration

properties

of

a

listener

port.

v

Starting

a

listener

port

Use

this

task

to

start

a

listener

port

manually.

v

Stopping

a

listener

port

Use

this

task

to

stop

a

listener

port

manually.

184

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Note:

If

configured

as

enabled,

a

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

You

do

not

normally

need

to

start

or

stop

a

listener

port

manually.

Starting

a

listener

port

Use

this

task

to

start

a

listener

port

on

an

application

server,

to

enable

the

listeners

for

message-driven

beans

associated

with

the

port

to

retrieve

messages.

A

listener

is

active,

that

is

able

to

receive

messages

from

a

destination,

if

the

deployed

message-driven

bean,

listener

port,

and

message

listener

service

are

all

started.

Although

you

can

start

these

components

in

any

order,

they

must

all

be

in

a

started

state

before

the

listener

can

retrieve

messages.

If

configured

as

enabled,

a

listener

port

is

started

automatically

when

a

message-driven

bean

associated

with

that

port

is

installed.

However,

you

can

start

a

listener

port

manually,

as

described

in

this

topic.

When

a

listener

port

is

started,

the

listener

manager

tries

to

start

the

listeners

for

each

message-driven

bean

associated

with

the

port.

If

a

message-driven

bean

is

stopped,

the

port

is

started

but

the

listener

is

not

started,

and

remains

stopped.

If

you

start

a

message-driven

bean,

the

related

listener

is

started.

To

start

a

listener

port

on

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

If

you

want

the

listener

for

a

deployed

message-driven

bean

to

be

able

to

receive

messages

at

the

port,

check

that

the

message-driven

bean

has

been

started.

2.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

3.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

4.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

5.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

6.

Select

the

checkbox

for

the

listener

port

that

you

want

to

start.

7.

Click

Start.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

Stopping

a

listener

port

Use

this

task

to

stop

a

listener

port

on

an

application

server,

to

prevent

the

listeners

for

message-driven

beans

associated

with

the

port

from

retrieving

messages.

When

you

stop

a

listener

port

as

described

in

this

topic,

the

listener

manager

stops

the

listeners

for

all

message-driven

beans

associated

with

the

port.

To

stop

a

listener

port

on

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Application

Servers

This

displays

a

table

of

the

application

servers

in

the

administrative

domain.

2.

In

the

content

pane,

click

the

name

of

the

application

server.

This

displays

the

properties

of

the

application

server

in

the

content

pane.

Chapter

5.

Using

message-driven

beans

in

applications

185

3.

In

the

Additional

Properties

table,

select

Message

Listener

Service

This

displays

the

Message

Listener

Service

properties

in

the

content

pane.

4.

In

the

content

pane,

select

Listener

Ports.

This

displays

a

list

of

the

listener

ports.

5.

In

the

content

pane,

select

the

listener

port

that

you

want

to

stop.

6.

Click

Stop.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

Administrative

console

window.

8.

To

have

the

changed

configuration

take

effect,

stop

then

restart

the

application

server.

Important

files

for

message-driven

beans

and

extended

messaging

The

following

files

in

the

WAS_HOME/temp

directory

are

important

for

the

operation

of

the

WebSphere

Application

Server

messaging

service,

so

should

not

be

deleted.

If

you

do

need

to

delete

the

WAS_HOME/temp

directory

or

other

files

in

it,

ensure

that

you

preserve

the

following

files.

server_name-durableSubscriptions.ser

You

should

not

delete

this

file,

because

the

messaging

service

uses

it

to

keep

track

of

durable

subscriptions

for

message-driven

beans.

If

you

uninstall

an

application

that

contains

a

message-driven

bean,

this

file

is

used

to

unsubscribe

the

durable

subscription.

server_name-AsyncMessageRequestLog.ser

You

should

not

delete

this

file,

because

the

messaging

service

uses

it

to

keep

track

of

late

responses

that

need

to

be

delivered

to

the

late

response

message

handler

for

the

extended

messaging

provider.

Troubleshooting

message-driven

beans

Use

this

overview

task

to

help

resolve

a

problem

that

you

think

is

related

to

message-driven

beans.

Message-driven

beans

support

uses

the

standard

WebSphere

Application

Server

troubleshooting

facilities.

If

you

encounter

a

problem

that

you

think

might

be

related

to

the

message-driven

beans,

complete

the

following

stages:

1.

Check

for

messages

about

message-driven

beans

in

the

application

server’s

SystemOut

log

at

was_home\logs\server\SystemOut.

Look

in

the

SystemOut

log

for

messages

that

indicate

a

problem

with

JMS

resources

for

message-driven

beans,

such

as

listener

ports.

2.

Check

for

more

messages

in

the

application

server’s

SystemOut

log.

If

the

JMS

server

is

running,

but

you

have

problems

accessing

JMS

resources,

check

the

SystemOut

log

file,

which

should

contain

more

error

messages

and

extra

details

about

the

problem.

3.

Check

the

Release

Notes

for

specific

problems

and

workarounds

The

section

Possible

Problems

and

Suggested

Fixes

of

the

Release

Notes,

available

from

the

WebSphere

Application

Server

library

web

site,

is

updated

regularly

to

contain

information

about

known

defects

and

their

workarounds.

Check

the

latest

version

of

the

Release

Notes

for

any

information

about

your

problem.

If

the

Release

Notes

does

not

contain

any

information

about

your

problem,

you

can

also

search

the

Technotes

database

on

the

WebSphere

Application

Server

web

site.

4.

Check

that

message

listener

service

has

started.

The

message

listener

service

is

an

extension

to

the

JMS

functions

of

the

JMS

provider.

It

provides

a

listener

186

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

manager

that

controls

and

monitors

one

or

more

JMS

listeners,

which

each

monitor

a

JMS

destination

on

behalf

of

a

deployed

message-driven

bean.

5.

Check

your

JMS

resource

configurations

If

the

WebSphere

Messaging

functions

seem

to

be

running

properly

(the

JMS

server

is

running

without

problems),

check

that

the

JMS

resources

have

been

configured

correctly.

For

example,

check

that

the

listener

ports

have

been

configured

correctly

and

have

been

started.

6.

Check

for

problems

with

the

WebSphere

Messaging

functions

For

more

information

about

troubleshooting

WebSphere

Messaging,

see

the

related

topics.

7.

Get

a

detailed

exception

dump

for

messaging.

If

the

information

obtained

in

the

preceding

steps

is

still

inconclusive,

you

can

enable

the

application

server

debug

trace

for

the

″Messaging″

group

to

provide

a

detailed

exception

dump.

Message-driven

beans

samples

The

following

examples

are

provided,

as

part

of

the

WebSphere

Samples

Gallery,

to

illustrate

use

of

the

message-driven

beans

support.

When

the

Samples

are

installed

on

your

local

machine,

they

are

available

to

try

out.

Locate

them

at

http://localhost:9080/WSsamples/.

(The

default

port

is

9080.)

For

more

information

about

where

to

find

the

Samples

Gallery,

see

Samples

Gallery.

v

Point-to-point

samples:

–

″Tutorial:

Creating

JMS

message

sample″

This

tutorial

is

designed

to

help

you

develop

and

deploy

a

JMS

message

sample

application

that

tests

the

WebSphere

Application

Server

message-driven

beans

support

in

a

point-to-point

scenario.

This

sample

illustrates

how

to

develop

and

deploy

an

application

that

comprises

the

following

components:

-

A

Java/JMS

program

that

writes

a

message

to

a

queue.

-

A

message-driven

bean

that

is

invoked

by

a

JMS

listener

when

a

message

arrives

on

a

defined

queue.

For

more

information

about

this

sample,

see

the

samples

article

″Tutorial:

Creating

JMS

message

sample″

that

is

installed

with

the

Samples

option.

–

″Sample:

Message

Listener

(point-to-point)″

This

sample

is

designed

to

demonstrate

the

use

and

behavior

of

message-driven

beans

for

a

simple

point-to-point

scenario.

This

sample

uses

the

JMS

message

sample

deployed

in

the

sample

above.

For

more

information

about

this

sample,

see

the

samples

article

″Sample:

Message

Listener

(Point-to-Point)″

that

is

installed

with

the

Samples

option.
v

Publish/subscribe

samples

–

″Tutorial:

Creating

JMS

message

publish/subscribe

sample″

This

tutorial

is

designed

to

help

you

develop

and

deploy

a

JMS

message

sample

application

that

tests

the

WebSphere

Application

Server

message-driven

beans

support

in

a

publish/subscribe

scenario.

This

sample

illustrates

how

to

develop

and

deploy

an

application

that

comprises

the

following

components:

-

A

client

program

that

starts

the

message

sequence

by

publishing

a

message

to

a

selected

topic.

-

A

message-driven

bean

that

is

invoked

by

a

JMS

listener

when

the

broker

passes

a

message

to

the

listener

from

a

topic

to

which

it

has

subscribed.

For

more

information

about

this

sample,

see

the

samples

article

″Tutorial:

Creating

JMS

message

publish/subscribe

sample″

that

is

installed

with

the

Samples

option.

Chapter

5.

Using

message-driven

beans

in

applications

187

–

″Sample:

Message

Listener

(publish/subscribe)″

This

sample

is

designed

to

demonstrate

the

use

and

behavior

of

message-driven

beans

for

a

simple

publish/subscribe

scenario.

This

sample

uses

the

JMS

message

sample

deployed

in

the

publish/subscribe

sample

above.

For

more

information

about

this

sample,

see

the

samples

article

″Sample:

Message

Listener

(publish/subscribe)″

that

is

installed

with

the

Samples

option.

188

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

6.

Using

application

clients

An

application

client

module

is

a

JAR

(Java

ARchive)

file

containing

a

client

for

accessing

a

Java

application.

1.

Decide

on

a

type

of

application

client.

2.

Develop

the

application

client

code.

Develop

J2EE

application

client

code.

Develop

pluggable

application

client

code.

3.

Assemble

the

application

client

using

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT).

4.

Deploy

the

application

client.

Deploy

the

application

client

on

z/OS.

Deploy

the

application

client

on

Windows.

5.

Run

the

application

client

on

z/OS

or

OS/390.

View

the

Samples

gallery

for

more

information

about

application

clients.

Application

clients

In

a

traditional

client

server

environment,

the

client

requests

a

service

and

the

server

fulfills

the

request.

Multiple

clients

use

a

single

server.

Clients

can

also

access

several

different

servers.

This

model

persists

for

Java

clients

except

now

these

requests

make

use

of

a

client

run-time

environment.

In

this

model,

the

client

application

requires

a

servlet

to

communicate

with

the

enterprise

bean,

and

the

servlet

must

reside

on

the

same

machine

as

the

WebSphere

Application

Server.

With

WebSphere

Application

Server

Version

5,

application

clients

now

consist

of

the

following

models:

v

ActiveX

application

client

v

Applet

client

v

J2EE

application

client

v

Pluggable

application

client

v

Thin

application

client

WebSphere

Application

Server

for

z/OS

and

OS/390

supports

only

two

models:

v

J2EE

application

client

v

Pluggable

application

client

The

ActiveX

application

client

model,

uses

the

Java

Native

Interface

(JNI)

architecture

to

programmatically

access

the

Java

virtual

machine

(JVM)

API.

Therefore

the

JVM

code

exists

in

the

same

process

space

as

the

ActiveX

application

(Visual

Basic,

VBScript,

or

Active

Server

Pages

(ASP))

and

remains

attached

to

the

process

until

that

process

terminates.

In

the

Applet

client

model,

a

Java

applet

embeds

in

a

HyperText

Markup

Language

(HTML)

document

residing

on

a

remote

client

machine

from

the

WebSphere

Application

Server.

With

this

type

of

client,

the

user

accesses

an

enterprise

bean

in

the

WebSphere

Application

Server

through

the

Java

applet

in

the

HTML

document.

©

Copyright

IBM

Corp.

2003

189

The

J2EE

application

client

is

a

Java

application

program

that

accesses

enterprise

beans,

Java

Database

Connectivity

(JDBC),

and

Java

Message

Service

message

queues.

The

J2EE

application

client

program

runs

on

client

machines.

This

program

follows

the

same

Java

programming

model

as

other

Java

programs;

however,

the

J2EE

application

client

depends

on

the

application

client

run

time

to

configure

its

execution

environment,

and

uses

the

Java

Naming

and

Directory

Interface

(JNDI)

name

space

to

access

resources.

The

Pluggable

and

thin

application

clients

provide

a

lightweight

Java

client

programming

model.

These

clients

are

best

suited

in

situations

where

a

Java

client

application

exists

but

the

application

needs

enhancements

to

use

enterprise

beans,

or

where

the

client

application

requires

a

thinner,

more

lightweight

environment

than

the

one

offered

by

the

J2EE

application

client.

The

difference

between

the

thin

application

client

and

the

pluggable

application

client

is

that

the

thin

application

client

includes

a

Java

virtual

machine

(JVM)

API,

and

the

pluggable

application

client

requires

the

user

to

provide

this

code.

The

pluggable

application

client

uses

the

Sun

Java

Development

Kit,

and

the

thin

application

client

uses

the

IBM

Developer

Kit

For

the

Java

Platform.

The

J2EE

application

client

programming

model

provides

the

benefits

of

the

J2EE

platform

for

the

Java

client

application.

The

J2EE

application

client

offers

the

ability

to

seamlessly

develop,

assemble,

deploy

and

launch

a

client

application.

The

tooling

provided

with

the

WebSphere

platform

supports

the

seamless

integration

of

these

stages

to

help

the

developer

create

a

client

application

from

start

to

finish.

When

you

develop

a

client

application

using

and

adhering

to

the

J2EE

platform,

you

can

put

the

client

application

code

from

one

J2EE

platform

implementation

to

another.

The

client

application

package

can

require

redeployment

using

each

J2EE

platform

deployment

tool,

but

the

code

that

comprises

the

client

application

does

not

change.

The

application

client

run

time

supplies

a

container

that

provides

access

to

system

services

for

the

client

application

code.

The

client

application

code

must

contain

a

main

method.

The

application

client

run

time

invokes

this

main

method

after

the

environment

initializes

and

runs

until

the

Java

virtual

machine

code

terminates.

The

J2EE

platform

allows

the

application

client

to

use

nicknames

or

short

names,

defined

within

the

client

application

deployment

descriptor.

These

deployment

descriptors

identify

enterprise

beans

or

local

resources

(JDBC,

Java

Message

Service

(JMS),

JavaMail

and

URL

APIs)

for

simplified

resolution

through

JNDI

use.

This

simplified

resolution

to

the

enterprise

bean

reference

and

local

resource

reference

also

eliminates

changes

to

the

client

application

code,

when

the

underlying

object

or

resource

either

changes

or

moves

to

a

different

server.

When

these

changes

occur,

the

application

client

can

require

redeployment.

The

application

client

also

provides

initialization

of

the

run-time

environment

for

the

client

application.

The

deployment

descriptor

defines

this

unique

initialization

for

each

client

application.

The

application

client

run

time

also

provides

support

for

security

authentication

to

the

enterprise

beans

and

local

resources.

The

application

client

uses

the

RMI-IIOP

protocol.

Using

this

protocol

enables

the

client

application

to

access

enterprise

bean

references

and

to

use

CORBA

services

provided

by

the

J2EE

platform

implementation.

Use

of

the

RMI-IIOP

protocol

and

the

accessibility

of

CORBA

services

assist

users

in

developing

a

client

application

that

requires

access

to

both

enterprise

bean

references

and

CORBA

object

references.

190

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

When

you

combine

the

J2EE

and

CORBA

environments

or

programming

models

in

one

client

application,

you

must

understand

the

differences

between

the

two

programming

models

to

use

and

manage

each

appropriately.

View

the

Samples

gallery

for

more

information

about

application

clients.

Before

you

run

the

basicCalculator

Sample,

ensure

the

JMS

Server

is

started.

Application

client

functions

Use

the

following

table

to

identify

the

available

functions

in

the

different

types

of

clients.

Note:

WebSphere

Application

Server

for

z/OS

supports

only

two

types

of

application

client:

v

J2EE

client

v

Pluggable

client

Available

functions

ActiveX

client

Applet

client

J2EE

client

Pluggable

client

Thin

client

Provides

all

the

benefits

of

a

J2EE

platform

Yes

No

Yes

No

No

Portable

across

all

J2EE

platforms

No

No

Yes

No

No

Provides

the

necessary

run-time

to

support

communication

between

client

and

server

Yes

Yes

Yes

Yes

Yes

Allows

the

use

of

nicknames

in

the

deployment

descriptor

files.

Note:

Although

you

can

edit

deployment

descriptor

files,

do

not

use

the

administrative

console

to

modify

them.

Yes

No

Yes

No

No

Supports

use

of

the

RMI-IIOP

protocol

Yes

Yes

Yes

Yes

Yes

Browser

based

application

No

Yes

No

No

No

Enables

development

of

client

applications

that

can

access

enterprise

bean

references

and

CORBA

object

references

Yes

Yes

Yes

Yes

Yes

Enables

the

initialization

of

the

client

application

run-time

environment

Yes

No

Yes

No

No

Supports

security

authentication

to

enterprise

beans

Yes

Limited

Yes

Yes

Yes

Supports

security

authentication

to

local

resources

Yes

No

Yes

No

No

Chapter

6.

Using

application

clients

191

Requires

distribution

of

application

to

client

machines

Yes

No

Yes

Yes

Yes

Enables

access

to

enterprise

beans

and

other

Java

classes

through

Visual

Basic,

VBScript,

and

Active

Server

Pages

(ASP)

code

Yes

No

No

No

No

Provides

a

lightweight

client

suitable

for

download

No

Yes

No

Yes

Yes

Enables

access

to

Java

Naming

and

Directory

Interface

(JNDI)

for

enterprise

bean

resolution

Yes

Yes

Yes

Yes

Yes

Runs

on

client

machines

that

use

the

Sun

Java

Runtime

Environment

No

No

No

Yes

No

Supports

CORBA

services

(using

CORBA

services

can

render

the

application

client

code

nonportable)

No

No

Yes

No

No

J2EE

application

clients

The

J2EE

application

client

programming

model

provides

the

benefits

of

Java

TM

2

Platform

for

WebSphere

Application

Server

Enterprise(J2EE).

The

J2EE

platform

offers

the

ability

to

seamlessly

develop,

assemble,

deploy

and

launch

a

client

application.

The

tooling

provided

with

the

WebSphere

platform

supports

the

seamless

integration

of

these

stages

to

help

the

developer

create

a

client

application

from

start

to

finish.

When

you

develop

a

client

application

using

and

adhering

to

the

J2EE

platform,

you

can

put

the

client

application

code

from

one

J2EE

platform

implementation

to

another.

The

client

application

package

can

require

redeployment

using

each

J2EE

platform

deployment

tool,

but

the

code

that

comprises

the

client

application

does

not

change.

The

J2EE

application

client

run

time

supplies

a

container

that

provides

access

to

system

services

for

the

application

client

code.

The

J2EE

application

client

code

must

contain

a

main

method.

The

J2EE

application

client

run

time

invokes

this

main

method

after

the

environment

initializes

and

runs

until

the

Java

virtual

machine

application

terminates.

Application

clients

can

use

nicknames

or

short

names,

defined

within

the

client

application

deployment

descriptor

with

the

J2EE

platform.

These

deployment

descriptors

identify

enterprise

beans

or

local

resources

(Java

Database

Connectivity

(JDBC),

Java

Message

Service

(JMS),

JavaMail

and

URL

APIs)

for

simplified

resolution

through

JNDI

use.

This

simplified

resolution

to

the

enterprise

bean

reference

and

local

resource

reference

also

eliminates

changes

to

the

application

client

code,

when

the

underlying

object

or

resource

either

changes

or

moves

to

a

different

server.

When

these

changes

occur,

the

application

client

can

require

redeployment.

Although

you

can

edit

deployment

descriptor

files,

do

not

use

the

administrative

console

to

modify

them.

192

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

J2EE

application

client

also

provides

initialization

of

the

run-time

environment

for

the

client

application.

The

deployment

descriptor

defines

this

unique

initialization

for

each

client

application.

The

J2EE

application

client

run

time

also

provides

support

for

security

authentication

to

the

enterprise

beans

and

local

resources.

The

J2EE

application

client

uses

the

RMI-IIOP

protocol.

Using

this

protocol

enables

the

client

application

to

access

enterprise

bean

references

and

to

use

CORBA

services

provided

by

the

J2EE

platform

implementation.

Use

of

the

RMI-IIOP

protocol

and

the

accessibility

of

CORBA

services

assist

users

in

developing

a

client

application

that

requires

access

to

both

enterprise

bean

references

and

CORBA

object

references.

When

you

combine

the

J2EE

and

the

CORBA

WebSphere

Application

Server

Enterprise

environments

or

programming

models

in

one

client

application,

you

must

understand

the

differences

between

the

two

programming

models

to

use

and

manage

each

appropriately.

Pluggable

application

clients

The

pluggable

application

client

provides

a

lightweight,

downloadable

Java

application

run

time

capable

of

interacting

with

enterprise

beans.

The

pluggable

application

client

requires

that

you

have

previously

installed

the

Sun

Java

Runtime

Environment

(JRE)

files.

In

all

other

aspects,

the

pluggable

application

client,

and

the

thin

application

client

are

similar.

Note:

The

pluggable

client

is

only

available

on

the

Windows

platform.

This

client

is

designed

to

support

those

users

who

want

a

lightweight

Java

client

application

programming

environment,

without

the

overhead

of

the

J2EE

platform

on

the

client

machine.

The

programming

model

for

this

client

is

heavily

influenced

by

the

CORBA

programming

model,

but

supports

access

to

enterprise

beans.

When

accessing

enterprise

beans

from

this

client,

the

client

application

can

consider

the

enterprise

beans

object

references

as

CORBA

object

references.

Tooling

does

not

exist

on

the

client;

however,

tooling

does

exists

on

the

server.

You

are

responsible

for

developing

the

client

application,

generating

the

necessary

client

bindings

for

the

enterprise

bean

and

CORBA

objects,

and

after

bundling

these

pieces

together,

installing

them

on

the

client

machine.

The

pluggable

application

client

provides

the

necessary

run

time

to

support

the

communication

needs

between

the

client

and

the

server.

The

pluggable

application

client

uses

the

RMI-IIOP

protocol.

Using

this

protocol

enables

the

client

application

to

access

not

only

enterprise

bean

references

and

CORBA

object

references,

but

the

protocol

also

allows

the

client

application

to

use

any

supported

CORBA

services.

Using

the

RMI-IIOP

protocol

along

with

the

accessibility

of

CORBA

services

can

assist

a

user

in

developing

a

client

application

that

needs

to

access

both

enterprise

bean

references

and

CORBA

object

references.

When

you

combine

the

J2EE

and

CORBA

environments

in

one

client

application,

you

must

understand

the

differences

between

the

two

programming

models

to

use

and

manage

each

appropriately.

Chapter

6.

Using

application

clients

193

The

pluggable

application

client

run

time

provides

the

necessary

support

for

the

client

application

for

object

resolution,

security,

Reliability

Availability

and

Serviceability

(RAS),

and

other

services.

However,

this

client

does

not

support

a

container

that

provides

easy

access

to

these

services.

For

example,

no

support

exists

for

using

nicknames

for

enterprise

beans

or

local

resource

resolution.

When

resolving

to

an

enterprise

bean

(using

either

Java

Naming

and

Directory

Interface

(JNDI)

or

CosNaming)

sources,

the

client

application

must

know

the

location

of

the

name

server

and

the

fully

qualified

name

used

when

the

reference

was

bound

into

the

name

space.

When

resolving

to

a

local

resource,

the

client

application

cannot

resolve

to

the

resource

through

a

JNDI

lookup.

Instead

the

client

application

must

explicitly

create

the

connection

to

the

resource

using

the

appropriate

API

(JDBC,

Java

Message

Service

(JMS),

and

so

on).

This

client

does

not

perform

initialization

of

any

of

the

services

that

the

client

application

might

require.

For

example,

the

client

application

is

responsible

for

the

initialization

of

the

naming

service,

either

through

CosNaming

or

JNDI

APIs.

The

pluggable

application

client

offers

access

to

most

of

the

available

client

services

in

the

J2EE

application

client.

However,

you

cannot

access

the

services

in

the

pluggable

client

as

easily

as

you

can

in

the

J2EE

application

client.

The

J2EE

client

has

the

advantage

of

performing

a

simple

Java

Naming

and

Directory

Interface

(JNDI)

name

space

lookup

to

access

the

desired

service

or

resource.

The

pluggable

client

must

code

explicitly

for

each

resource

in

the

client

application.

For

example,

looking

up

an

enterprise

bean

Home

requires

the

following

code

in

a

J2EE

application

client:

java.lang.Object

ejbHome

=

initialContext.lookup("java:/comp/env/ejb/MyEJBHome"

);

MyEJBHome

=

(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

However,

you

need

more

explicit

code

in

a

Java

pluggable

application

client:

java.lang.Object

ejbHome

=

initialContext.lookup("the/fully/qualified

/path/to/actual/home/in/namespace/MyEJBHome");

MyEJBHome

=

(MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

MyEJBHome.class);

In

this

example,

the

J2EE

application

client

accesses

a

logical

name

from

the

java:/comp

name

space.

The

J2EE

client

run

time

resolves

that

name

to

the

physical

location

and

returns

the

reference

to

the

client

application.

The

pluggable

client

must

know

the

fully

qualified

physical

location

of

the

enterprise

bean

Home

in

the

name

space.

If

this

location

changes,

the

pluggable

client

application

must

also

change

the

value

placed

on

the

lookup()

statement.

In

the

J2EE

client,

the

client

application

is

protected

from

these

changes

because

it

uses

the

logical

name.

A

change

can

require

a

redeployment

of

the

EAR

file,

but

the

actual

client

application

code

remains

the

same.

The

pluggable

application

client

is

a

traditional

Java

application

that

contains

a

main

function.

The

WebSphere

pluggable

application

client

provides

run

time

support

for

accessing

remote

enterprise

beans,

and

provides

the

implementation

for

various

services

(security,

Workload

Management

(WLM),

and

others).

This

client

can

also

access

CORBA

objects

and

CORBA

based

services.

When

using

both

environments

in

one

client

application,

you

need

to

understand

the

differences

between

the

enterprise

bean

and

CORBA

programming

models

to

manage

both

environments.

194

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

For

instance,

the

CORBA

programming

model

requires

the

CORBA

CosNaming

name

service

for

object

resolution

in

a

name

space.

The

enterprise

beans

programming

model

requires

the

JNDI

name

service.

The

client

application

must

initialize

and

properly

manage

these

two

naming

services.

Another

difference

applies

to

the

enterprise

bean

model.

Use

the

Java

Naming

and

Directory

Interface

(JNDI)

implementation

in

the

enterprise

bean

model

to

initialize

the

Object

Request

Broker

(ORB).

The

client

application

is

unaware

that

an

ORB

is

present.

The

CORBA

model,

however,

requires

the

client

application

to

explicitly

initialize

the

ORB

through

the

ORB.init()

static

method.

The

pluggable

application

client

provides

a

batch

command

that

you

can

use

to

set

the

CLASSPATH

and

JAVA_HOME

environment

variables

to

enable

the

pluggable

application

client

run

time.

Migration

tips

for

application

clients

Tips

for

migrating

thin

application

client

code:

v

The

Java

invocation

used

to

run

non-J2EE

application

clients

has

changed

in

Version

5.0.

You

must

specify

-Xbootclasspath/p:%WAS_BOOTCLASSPATH%

on

Windows

systems

.

Set

the

WAS_BOOTCLASSPATH

environment

variable

in

one

of

the

following:

–

setupClient.bat

for

Windows

systems

.

–

setupCmdLine.bat

for

Windows

systems

.

For

more

information

about

using

-Xbootclasspath,

view

sample

code

at

the

following

path

after

you

preform

the

application

client

installation:

install_root\samples\bin\ActiveXBridgeClients\VB\XJBExamples\modXJBHelpers.bas

Tips

for

migrating

J2EE

application

client

code:

v

If

your

J2EE

application

client

uses

resource

references

and

you

have

configured

those

resources

using

the

Application

Client

Resource

Configuration

Tool

(ACRCT),

you

must

run

the

ClientUpgrade

command

to

migrate

the

resource

configuration

information

in

WebSphere

Application

Server

V5.

Developing

J2EE

application

client

code

A

J2EE

application

client

program

operates

similarly

to

a

standard

J2EE

program

in

that

it

runs

its

own

ASCII

Java

Virtual

Machine

code

and

is

invoked

at

its

main

method.

This

JVM

run-time

environment

is

part

of

the

client

container,

which

provides

the

following

services

for

the

application

client:

v

Security

v

Communications

protocol

support

(for

RMI/IIOP,

HTTP,

and

so

on)

v

Naming

support

The

Java

Virtual

Machine

application

client

program

differs

from

a

standard

Java

program

because

it

uses

the

Java

Naming

and

Directory

Interface

(JNDI)

name

space

to

access

resources.

In

a

standard

Java

program,

the

resource

information

is

coded

in

the

program.

Storing

the

resource

information

separately

from

the

client

application

program

makes

the

client

application

program

portable

and

more

flexible.

1.

Writing

the

client

application

program.

Write

the

J2EE

application

client

program

on

any

development

machine.

At

this

stage,

you

do

not

require

access

to

the

WebSphere

Application

Server.

Chapter

6.

Using

application

clients

195

Rules:

If

you

are

writing

a

client

application

program

that

will

run

on

z/OS,

the

following

rules

apply:

v

Client

programs

may

start

their

own

transactions

but

cannot

join

in

or

start

transactions

in

the

WebSphere

Application

Server

for

z/OS

run-time.

v

Application

client

code

must

contain

a

main

method.

v

All

input

and

output

files

for

the

application

client

must

be

in

ASCII,

because

the

client

run-time

runs

in

an

ASCII

JVM.

Using

the

javax.naming.InitialContext

class,

the

client

application

program

uses

the

lookup

operation

to

access

the

Java

Naming

and

Directory

Interface

(JNDI)

name

space.

The

InitialContext

class

provides

the

lookup

method

to

locate

resources.

The

following

example

illustrates

how

a

client

application

program

uses

the

InitialContext

class:

import

javax.naming.*

public

class

myAppClient

{

public

static

void

main(String

argv[])

{

InitialContext

initCtx

=

new

InitialContext();

Object

homeObject

=

initCtx.lookup("java:comp/env/ejb/BasicCalculator");

BasicCalculatorHome

bcHome

=

(BasicCalculatorHome)

javax.rmi.PortableRemoteObject.narrow(homeObject,

BasicCalculatorHome.class);

BasicCalculatorHome

bc

=

bcHome.create();

...

}

}

In

this

example,

the

program

looks

up

an

enterprise

bean

called

BasicCalculator.

The

BasicCalculator

EJB

reference

is

located

in

the

client

JNDI

name

space

at

java:comp/env/ejb/BasicCalculator

.

Since

the

actual

enterprise

bean

runs

on

the

server,

the

application

client

run

time

returns

a

reference

to

the

BasicCalculator

home

interface.

If

the

client

application

program

lookup

was

for

a

resource

reference

or

an

environment

entry,

then

lookup

returns

an

instance

of

the

configured

type

as

defined

by

the

client

application

deployment

descriptor.

For

example,

if

the

program

lookup

was

a

JDBC

datasource,

the

lookup

would

return

an

instance

of

javax.sql.DataSource.

Although

you

can

edit

deployment

descriptor

files,

do

not

use

the

administrative

console

to

modify

them.

2.

Assemble

the

application

client

using

the

Assembly

Toolkitor

the

Application

Assembly

Tool

(AAT).

The

JNDI

name

space

knows

what

to

return

on

a

lookup

because

of

the

information

assembled

by

the

assembly

tool.

Assemble

the

J2EE

application

client

on

any

development

machine

with

the

assembly

tool

installed.

When

you

assemble

your

application

client,

provide

the

application

client

run

time

with

the

required

information

to

initialize

the

execution

environment

for

your

client

application

program.

Refer

to

the

Application

Assembly

Tool

description

for

implementation

details.

Keep

the

following

in

mind

when

you

configure

resources

used

by

your

client

application

program:

v

5.0.1

5.0.2

When

configuring

resource

references,

resource

environment

references,

and

EJB

references

in

the

Application

Assembly

Tool,

the

General

tab

contains

a

required

Name

field.

This

field

specifies

where

the

application

196

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

client

run

time

binds

the

reference

to

the

real

object

in

the

java:comp/env

portion

of

the

JNDI

name

space.

The

application

client

run

time

always

binds

these

references

relative

to

java:comp/env.

For

the

programming

example

above,

specify

ejb/BasicCalculator

in

the

Name

field

on

the

General

tab

of

the

Application

Assembly

Tool,

which

requires

the

program

to

perform

a

lookup

of

java:comp/env/ejb/BasicCalculator.

If

the

Name

field

is

set

to

myString,

the

resulting

lookup

is

java:comp/env/myString.

v

5.0.1

5.0.2

When

configuring

Resource

references

in

the

Application

Assembly

Tool,

the

Name

field

on

the

General

tab

is

used

for:

–

5.0.1

5.0.2

Binding

a

reference

of

that

object

type

into

the

JNDI

name

space.

–

5.0.1

5.0.2

Retrieving

client

specific

resource

configuration

information

that

was

configured

using

the

Application

Client

Resource

Configuration

Tool(ACRCT)

on

Windows,

or

the

ACRCT

scripting

tool

on

z/OS.

v

5.0.1

5.0.2

When

configuring

a

resource

reference

in

the

Application

Assembly

Tool,

the

value

in

the

Name

field

on

the

General

tab

must

match

the

value

in

the

JNDI

Name

field

on

the

General

tab

for

the

resource

in

the

Application

Client

Resource

Configuration

Tool.

v

5.0.1

5.0.2

When

configuring

URL

resources

using

the

Application

Client

Resource

Configuration

Tool,

the

URL

provider

panel

enables

you

to

specify

a

protocol

and

a

class

to

handle

that

protocol.

If

you

want

to

use

the

default

protocols,

such

as

HTTP,

you

can

leave

those

fields

blank.

v

5.0.1

5.0.2

When

configuring

resource

references

using

the

Application

Assembly

Tool,

the

General

tab

contains

a

field

called

Authorization.

You

can

set

this

field

to

either

Container

or

Application.

If

you

set

the

field

to

Container,

then

the

application

client

run

time

uses

authorization

information

configured

in

the

Application

Client

Resource

Configuration

tool

for

the

resource.

If

the

field

is

set

to

Application,

then

the

application

client

run

time

expects

the

user

application

to

provide

authorization

information

for

the

resource.

The

application

client

run

time

ignores

any

authorization

information

configured

with

the

Application

Client

Resource

Configuration

tool

for

that

resource.

v

5.0.1

5.0.2

When

configuring

resource

environment

references

using

the

Application

Assembly

Tool,

you

must

specify

the

location

of

the

actual

object

in

the

server

JNDI

namespace

using

the

Binding

tab.

A

resource

environment

reference

maps

a

logical

name

(the

Name

field

on

the

general

tab)

used

by

the

client

application

to

the

physical

name

of

an

object

(the

JNDI

Name

field

on

the

Bindings

tab).

Not

all

objects

bound

into

the

server

JNDI

namespace

are

intended

for

use

by

an

application

client.

For

example,

the

WebSphere

Application

Server

client

run-time

does

not

support

the

use

of

Java

2

Connector

(J2C)

objects

on

the

client.

The

object

needs

to

be

remotable,

and

the

client-side

implementations

must

be

made

available

on

the

application

client

run-time

classpath.

v

Resource

environment

references

are

different

than

resource

references.

Resource

environment

references

allow

your

application

client

to

use

a

logical

name

to

look-up

a

resource

bound

into

the

server

JNDI

namespace.

A

resource

reference

allows

your

application

to

use

a

logical

name

to

look-up

a

local

J2EE

resource.

The

J2EE

specification

does

not

specify

a

particular

implementation

of

a

resource.

The

following

is

a

table

of

the

supported

resource

types

and

identifies

the

resources

to

which

the

WebSphere

Application

Server

provides

a

client

implementation.

Chapter

6.

Using

application

clients

197

Resource

Type

Client

Configuration

Notes

Client

implementation

provided

by

WebSphere

Application

Server

javax.sql.DataSource

Supports

specification

of

any

Datasource

implementation

class

No

java.net.URL

Supports

specification

of

custom

protocol

handlers

Provided

by

Java

Runtime

Environment

files

javax.mail.Session

Supports

custom

protocol

configuration

Yes

-

POP3,

SMTP,

IMAP

javax.jms.QueueConnectionFactory,

javax.jms.TopicConnectionFactory,

javax.jms.Queue,

javax.jms.Topic

Supports

configuration

of

WebSphere

Embedded

Messaging,

IBM

MQ

Series

and

other

JMS

providers

Yes

-

WebSphere

Embedded

Messaging

3.

Assemble

the

Enterprise

Archive

(EAR)

file.

The

application

is

contained

in

an

enterprise

archive

or

.ear

file.

The

.ear

file

is

composed

of:

v

Enterprise

bean,

application

client,

and

user-defined

modules

or

.jar

files

v

Web

applications

or

.war

files

v

Metadata

describing

the

applications

or

application

.xml

files

You

must

assemble

the

.ear

file

on

the

server

machine.

4.

Distribute

the

EAR

file

The

client

machines

configured

to

run

this

client

must

have

access

to

the

.ear

file.

You

can

either

distribute

the

.ear

files

to

the

correct

client

machines,

or

make

them

available

on

a

network

drive.

Distributing

the

.ear

files

is

the

responsibility

of

the

system

and

network

administrator.

5.

Deploy

the

application

client.

If

you

plan

to

deploy

the

client

on

z/OS

or

OS/390,

you

have

two

options

for

running

the

Application

Client

Resource

Configuration

Tool

(ACRCT):

v

Run

the

ACRCT

on

Windows,

or

v

Run

the

ACRCT

scripting

tool

on

z/OS.

Both

of

these

options

produce

equivalent

output;

only

the

tool

interfaces

are

different.

The

ACRCT

on

Windows

presents

a

graphical

user

interface,

whereas

the

ACRCT

for

z/OS

uses

a

scripting

interface.

6.

Use

the

WebSphere

Administrative

console

to

install

the

application

client

on

z/OS

or

OS/390.

After

completing

these

steps,

launch

the

application

client.

J2EE

application

client

class

loading

When

you

run

your

J2EE

application

client,

a

hierarchy

of

class

loaders

is

created

to

load

classes

used

by

your

application.

The

following

list

describes

the

hierarchy

of

class

loaders:

198

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

The

topmost

class

loader,

the

bootstrap

class

loader,

contains

the

JAR

files

that

make

up

the

Java

Virtual

Machine

code,

such

as

rt.jar,

plus

those

JAR

files

defined

by

the

-Xbootclasspath

parameter

on

the

Java

command.

The

WebSphere

Application

client

run

time

sets

this

value

to

the

WAS_BOOTCLASSPATH

environment

variable.

v

The

extensions

class

loader

class

loader

is

a

child

to

the

bootstrap

class

loader.

This

class

loader

contains

JAR

files

in

the

java/jre/lib/ext

directory

or

those

JAR

files

defined

by

the

-Djava.ext.dirs

parameter

on

the

Java

command.

The

WebSphere

Application

Client

run

time

does

not

set

-Djava.ext.dirs

parameters,

so

it

uses

the

JAR

files

in

the

java/jre/lib/ext

directory.

v

The

system

class

loader

class

loader

contains

JAR

files

and

classes

that

are

defined

by

the

-classpath

parameter

on

the

java

command.

The

Application

Client

run

time

sets

this

parameter

to

the

WAS_CLASSPATH

environment

variable.

v

The

WebSphere

class

loader

class

loader

loads

the

WebSphere

Application

Client

run

time

and

any

classes

placed

in

the

WebSphere

Application

Client

user

directories.

The

directories

used

by

this

class

loader

are

defined

by

the

WAS_EXT_DIRS

environment

variable.

The

WAS_BOOTCLASSPATH,

WAS_CLASSPATH,

and

the

WAS_EXT_DIRS

environment

variables

are

set

in

the

installation_root/bin/setupCmdLine

command

shell

for

WebSphere

Application

Server

server

installations,

or

in

the

installation_root/bin/setupClient

command

shell

for

client

installations.

As

the

J2EE

application

client

run

time

initializes,

additional

class

loaders

are

created

as

children

of

the

WebSphere

class

loader.

If

your

client

application

uses

resources

such

as

Java

Database

Connectivity

(JDBC)

API,

Java

Message

Service

(JMS)

API,

or

Uniform

Resource

Locator

(URL),

a

different

class

loader

is

created

to

load

each

of

those

resources.

Finally,

the

application

client

run

time

sets

the

WebSphere

class

loader

to

load

classes

within

the

.ear

file

by

processing

the

client

JAR

manfest

repeatedly.

The

system

classpath,

defined

by

the

CLASSPATH

environment

variable

is

never

used

and

is

not

part

of

the

hierarchy

of

class

loaders.

To

package

your

client

application

correctly,

you

must

understand

which

class

loader

loads

your

classes.

When

Java

loads

a

class,

the

class

loader

used

to

load

that

class

is

assigned

to

it.

Any

classes

subsequently

loaded

by

that

class

will

use

that

class

loader

or

any

of

its

parents,

but

it

will

not

use

children

class

loaders.

In

some

cases

the

WebSphere

Application

Client

run

time

can

detect

when

your

client

application

class

is

loaded

by

a

different

class

loader

from

the

one

created

for

it

by

the

WebSphere

Application

Client

run

time.

When

this

detection

occurs,

you

see

the

following

message:

WSCL0205W:

The

incorrect

class

loader

was

used

to

load

[0]

This

message

occurs

when

your

client

application

class

is

loaded

by

one

of

the

parent

class

loaders

in

the

hierarchy.

This

situation

is

typically

caused

by

having

the

same

classes

in

the

.ear

file

and

on

the

hard

drive.

If

one

of

the

parent

class

loaders

locates

a

class,

that

class

loader

loads

it

before

the

application

client

run

time

class

loader.

In

some

cases,

your

client

application

will

still

function

correctly.

In

most

cases,

however,

you

receive

″class

not

found″

exceptions.

Configuring

the

classpath

fields

When

packaging

your

J2EE

client

application,

you

must

configure

various

classpath

fields.

Ideally,

you

should

package

everything

required

by

your

application

into

your

.ear

file.

This

is

the

easiest

way

to

distribute

your

J2EE

client

application

to

your

clients.

However,

you

should

not

package

such

resources

as

Chapter

6.

Using

application

clients

199

JDBC

APIs,

JMS

APIs,

or

URLs.

In

the

case

of

these

resources,

use

classpath

references

to

access

those

classes

on

the

hard

drive.

You

might

also

have

other

classes

installed

on

your

client

machines

that

you

do

not

need

to

redistribute.

In

this

case,

you

also

want

to

use

classpath

references

to

access

the

classes

on

the

hard

drive,

as

described

below.

Referencing

classes

within

the

EAR

file

WebSphere

J2EE

applications

do

not

use

the

system

class

path.

Use

the

MANIFEST

Classpath

entry

to

refer

to

other

JARs

within

the

.ear

file.

Configure

these

values

using

the

module

Classpath

fields

in

the

Application

Assembly

Tool.

For

example,

if

your

client

application

needs

to

access

the

path

of

the

enterprise

bean

JAR,

add

the

deployed

enterprise

bean

module

name

to

your

application

client

Classpath

field

in

the

Application

Assembly

Tool.

The

format

of

the

Classpath

field

for

each

of

the

different

modules

(Application

Client,

enterprise

bean,

Web)

is

the

same:

v

The

values

must

refer

to

.jar

and

.class

files

that

are

contained

within

the

.ear

file.

v

The

values

must

be

relative

to

the

root

of

the

.ear

file.

v

The

values

cannot

refer

to

absolute

paths

in

the

file

systems.

v

Multiple

values

must

be

separated

by

spaces,

not

colons

or

semi-colons.

Note:

This

is

the

Java

method

for

allowing

applications

to

function

platform-independent.

Typically,

you

add

modules

(.jar

files)

to

the

root

of

the

.ear

file.

In

this

case,

you

only

need

to

specify

the

name

of

the

module

(.jar

file)

in

the

Classpath

field.

If

you

choose

to

add

a

module

with

a

path,

you

need

to

specify

the

path

relative

to

the

root

of

the

.ear

file.

For

referencing

.class

files,

you

must

specify

the

directory

relative

to

the

root

of

the

.ear

file.

With

the

Application

Assembly

Tool

you

can

add

individual

class

files

to

the

.ear

file.

It

is

recommended

that

these

additional

class

files

are

packaged

in

a

.jar

file.

Add

this

.jar

file

to

the

module

Classpath

fields.

If

you

add

.class

files

to

the

root

of

the

.ear

file,

add

./

to

the

module

Classpath

fields.

Consider

the

following

example

directory

structure

in

which

the

file

myapp.ear

contains

an

application

client

JAR

file

named

client.jar

and

a

mybeans.jar

EJB

module.

Additional

classes

reside

in

class1.jar

and

utility/class2.zip

files.

A

class

named

xyz.class

is

not

packaged

in

a

JAR

file

but

is

in

the

root

of

the

EAR

file.

Specify

./

mybeans.jar

utility/class2.zip

class1.jar

as

the

value

of

the

Classpath

property.

The

search

order

is:

myapp.ear/client.jar

myapp.ear/xyz.class

myapp.ear/mybeans.jar

myapp.ear/utility/class2.zip

myapp.ear/class1.jar

Resource

classpaths

When

you

configure

resources

used

by

your

client

application

using

the

Application

Client

Resource

Configuration

Tool(ACRCT),

or

the

z/OS

ACRCT

scripting

tool,

you

can

specify

classpaths

that

are

required

by

the

resource.

For

example,

if

your

application

is

using

a

JDBC

to

a

DB2

database,

add

db2java.zip

to

the

classpath

field

of

the

database

provider.

These

classpath

values

are

platform-specific

and

require

semi-colons

or

colons

to

separate

multiple

values.

Developing

pluggable

application

client

code

As

you

prepare

to

install

the

pluggable

application

client,

remember

that

pluggable

clients

are

only

available

on

Windows

systems.

200

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

1.

Install

the

pluggable

application

client

from

the

WebSphere

Application

Client

CD

by

selecting

option

Pluggable

Application

Client

from

the

Custom

client

installation

panel.

2.

Set

the

Java

application

pluggable

client

environment

by

using

the

setupClient

shell,

located

in:

install_root\AppClient\bin\setupClient.bat

3.

Add

your

specific

Java

client

application

JAR

files

to

the

CLASSPATH

and

start

your

Java

client

application

from

this

environment,

after

setting

the

environment

variables.

4.

Run

the

following

Java

command

to

invoke

your

client

application:

%JAVA_HOME%/bin/java

-Xbootclasspath/p:%WAS_BOOTCLASSPATH%

-classpath

<list

of

your

application

jars

and

classes>

-Djava.ext.dirs=%WAS_EXT_DIRS%

-Djava.naming.provider.url=iiop://<your

WebSphere

server

machine

name>

-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory

%SERVER_ROOT%

%CLIENTSAS%

<fully

qualified

class

name

to

run>

$JAVA_HOME/bin/java

-Xbootclasspath/p:$WAS_BOOTCLASSPATH

-classpath

<list

of

your

application

jars

and

classes>

-Djava.ext.dirs=$WAS_EXT_DIRS

-Djava.naming.provider.url=iiop://<your

WebSphere

server

machine

name>

-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory

$SERVER_ROOT

$CLIENTSAS

<fully

qualified

class

name

to

run>

View

the

Samples

gallery

for

more

information

about

application

clients.

Before

you

run

the

basicCalculator

Sample,

ensure

the

JMS

Server

is

started.

Assembling

application

clients

Assemble

a

client

module

to

contain

application

client

code.

Group

enterprise

beans,

Web

components,

and

resource

adapter

code

in

separate

modules.

Application

client

projects

contain

programs

that

run

on

networked

client

systems.

An

application

client

project

is

deployed

as

a

JAR

file.

Use

the

Assembly

Toolkit

to

assemble

an

application

client

module

in

any

of

the

following

ways:

v

Import

an

existing

application

client

JAR

file.

v

Create

a

new

application

client

module.
1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Migrate

application

client

JAR

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

your

application

client

JAR

files

to

the

Assembly

Toolkit.

5.

Create

a

new

application

client.

6.

Verify

the

contents

of

the

new

application

client

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Application

Client

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

application

client

module

in

a

Navigator

view.

Chapter

6.

Using

application

clients

201

After

you

finish

assembling

all

of

your

application’s

modules,

you

are

ready

to

deploy

your

application:

v

On

Windows;

or

v

On

z/OS

or

OS/390.

Assembling

Application

Client

Modules

If

you

want

to

use

existing

J2EE

1.2

Web

modules

in

your

J2EE

1.3

application,

migrate

them

to

J2EE

1.3

first.

Note:

This

task

only

applies

to

J2EE

application

clients.

Assemble

a

client

module

to

contain

application

client

code.

(Group

enterprise

beans,

Web

components,

and

resource

adapter

code

in

separate

modules).

1.

Start

the

AAT.

2.

From

the

New

tab,

select

Application

Client.

Click

OK.

The

navigation

tree

now

displays

various

sets

of

properties

for

configuring

the

new

application

client.

3.

Use

the

property

dialog

shown

in

the

AAT

workspace

to

change

the

default

file

name

and

location.

a.

It

is

recommended

that

you

change

the

display

name

so

that

it

differs

from

the

file

name.

b.

If

you

like,

change

the

temporary

location

of

the

application

client

from

the

default

location,

install_root/bin.
4.

Enter

the

main

class

filename

and

location.

a.

Click

Browse

to

locate

the

class

file.

b.

Select

the

archive

containing

the

class

files,

and

click

Select.

c.

Select

the

files

you

need

from

the

archive,

and

click

OK.
5.

Define

the

assembly

properties

for

the

application

client.

a.

Right-click

the

assembly

property

in

the

navigation

pane.

b.

Select

New

in

the

right-click

menu.

c.

Enter

values

in

the

property

dialog

box.

d.

Click

OK.
6.

Add

files

for

the

application

client.

a.

Right-click

Files

in

the

navigation

pane.

b.

Select

Add

Files

from

the

right-click

menu.

c.

Locate

the

directory

where

the

files

are

located

and

click

Select.

d.

Select

the

files

to

add

and

click

Add.

e.

In

the

Selected

files

window,

click

OK.
7.

Save

the

application.

Assemble

other

new

modules

of

your

choice,

if

needed:

v

Assembling

EJB

modules.

v

Assembling

resource

adapter

modules.

Another

option

is

to

proceed

directly

to

assembling

a

new

application

module.

While

assembling

an

application

module,

you

can

create

any

new

modules

that

you

need.

After

you

finish

assembling

all

of

your

application’s

modules,

you

are

ready

to

deploy

your

application:

v

on

Windows,

or

v

on

z/OS

or

OS/390.

202

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Application

client

assembly

settings

Use

this

page

to

specify

assembly

properties

for

J2EE

application

clients.

File

name

(Required,

String)

Specifies

the

file

name

of

the

application

client

module,

relative

to

the

top

level

of

the

Enterprise

Archive

(EAR)

file.

If

this

is

a

stand-alone

module,

the

file

name

is

the

full

path

name

of

the

archive.

Alternative

DD

Specifies

the

file

name

for

an

alternative

deployment

descriptor

file

to

use

instead

of

the

original

deployment

descriptor

file

in

the

module

Java

Archive

(JAR)

file.

This

file

is

the

post-assembly

version

of

the

deployment

descriptor

file.

(Manually

edit

the

original

deployment

descriptor

file

to

resolve

dependencies

and

security

information.

Directing

the

use

of

the

alternative

deployment

descriptor

allows

you

to

keep

the

original

deployment

descriptor

file

intact).

The

value

of

the

Alternative

DD

property

must

be

the

full

path

name

of

the

deployment

descriptor

file

relative

to

the

module

root

directory.

By

convention,

the

file

is

in

the

ALT-INF

directory.

If

this

property

is

not

specified,

the

deployment

descriptor

file

is

read

directly

from

the

module

JAR

file.

Classpath

Specifies

the

full

classpath

containing

the

dependent

code

that

is

not

contained

in

the

application

client

JAR

file.

Specify

the

values

relative

to

the

root

of

the

EAR

file

and

separate

the

values

with

spaces.

Absolute

values

that

reference

files

or

directories

on

the

hard

drive

are

ignored.

To

specify

classes

that

are

not

in

JAR

files

but

are

in

the

root

of

the

EAR

file,

use

a

period

and

forward

slash

(./).

Consider

the

following

example

directory

structure

in

which

the

file

myapp.ear

contains

an

application

client

JAR

file

named

client.jar.

Additional

classes

reside

in

class1.jar

and

class2.zip

files.

A

class

named

xyz.class

is

not

packaged

in

a

JAR

file

but

is

in

the

root

of

the

EAR

file

myapp.ear/client.jar

myapp.ear/class1.jar

myapp.ear/class2.zip

myapp.ear/xyz.class.

Specify

class1.jar

class2.zip

./

as

the

value

of

the

Classpath

property.

(Name

only

the

directory

for

.class

files.)

Display

name

(Required,

String)

Specifies

a

short

name

that

is

intended

for

display

by

GUIs.

Small

icon

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(16x16

pixels).

The

image

is

used

as

an

icon

to

represent

the

application

client

in

a

GUI.

Large

icon

Specifies

a

JPEG

or

GIF

file

containing

a

large

image

(32x32

pixels).

The

image

is

used

as

an

icon

to

represent

the

application

client

in

a

GUI

Description

Contains

text

describing

the

application

client.

Main

class

(Required,

String)

Specifies

the

full

path

name

of

the

main

class

for

this

application

client.

Deploying

application

clients

on

z/OS

For

J2EE

application

clients

that

will

run

on

z/OS

or

OS/390,

you

may

use

one

of

the

following

options

to

define

resources:

v

Run

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

on

Windows.

v

Run

the

ACRCT

scripting

tool

on

z/OS.

Chapter

6.

Using

application

clients

203

Both

options

produce

identical

output

with

one

possible

exception:

the

sequence

in

which

resource

definitions

are

stored

in

the

Enterprise

Archive

(EAR)

file

of

the

application

client.

The

client

container

on

z/OS

uses

these

resource

definitions

for

resolving

and

creating

an

instance

of

the

resources

for

the

application

client.

Before

you

begin:

Make

sure

you

have

completed

the

following

tasks:

1.

Develop

the

J2EE

application

client

according

to

guidelines.

2.

Assemble

the

application

client.

3.

Find

out

what

resources

are

available

on

the

z/OS

system

on

which

you

will

install

the

client.

These

resources

include:

v

Enterprise

beans

v

JMS

message

resources

v

JDBC

databases

v

Java

Mail

providers

v

Environment

entries

(native

types)

v

URLs
4.

Decide

whether

you

want

to

provide

resource

properties

for

the

ACRCT

scripting

tool

on

the

command

line

or

through

an

input

file.

If

you

do

not

specify

required

properties,

the

ACRCT

scripting

tool

will

issue

an

error

message

to

the

MVS

console

and

will

end

its

processing.

Recommendation:

Determine

which

resource

or

provider

properties

are

required.
1.

Use

the

WebSphere

Administrative

console

to

install

the

application

client

on

z/OS

or

OS/390.

2.

(Optional)

Set

up

a

plain-text

input

file

to

provide

on

the

command

line

when

you

start

the

ACRCT

scripting

tool.

Rules:

v

Each

line

in

the

input

file

may

contain

only

one

key

and

value

pair

that

defines

a

property

of

the

resource

to

be

configured.

v

For

each

resource

to

be

configured,

determine

which

resource

or

provider

properties

are

required.

v

Follow

the

syntax

rules

explained

in

Application

Client

Resource

Configuration

Tool

(ACRCT)

Scripting

tool

for

z/OS.

v

You

may

define

your

own

properties

for

the

resource,

using

the

format

property.name=value

Sample:

Input

file

for

a

data

source

provider:

providertype=DataSourceProvider

providername=DB2UDBV7

name=″PolicyDatasource″

description=″Datasource

for

Policy

App″

jndiname=jdbc/PolicyDS

databasename=POLICYAPP

user=dbuser

password=dbpw

reenterpassword=dbpw

property.my.resource.property.one=value1

property.my.resource.property.two=value2

3.

On

z/OS

or

OS/390,

start

the

ACRCT

scripting

tool

by

invoking

the

shell

script

clientConfig

in

the

UNIX

System

Services

(USS)

environment.

Example:

/usr/lpp/WebSphere/V5R0M0/bin/clientConfig.sh

204

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Rule:

You

must

specify

the

application

client’s

Enterprise

Archive

(EAR)

file

on

the

command

line.

You

may

either

specify

resource

parameters

directly

on

the

command

line,

or

specify

an

input

file.

The

syntax

and

parameter

descriptions

appear

in

Application

Client

Resource

Configuration

Tool

(ACRCT)

Scripting

tool

for

z/OS.

v

If

the

resource

parameters

are

properly

specified,

the

ACRCT

scripting

tool

updates

the

application

client’s

client-resources.xmi

file

with

appropriate

resource

definitions.

v

If

the

resource

parameters

are

not

properly

specified

or

are

missing,

the

ACRCT

scripting

tool

issues

an

error

message

to

the

MVS

console,

and

ends

its

processing.

Tip:

If

you

receive

an

error

message

in

response

to

the

invocation,

consider

using

the

help

function

described

in

Application

Client

Resource

Configuration

Tool

(ACRCT)

Scripting

tool

for

z/OS.

When

the

scripting

tool

successfully

completes,

the

application

client’s

EAR

file

is

updated

with

the

appropriate

resource

definitions.

When

you

have

finished

defining

or

updating

the

application

client’s

resources,

launch

the

application

client.

Application

Client

Resource

Configuration

Scripting

tool

for

z/OS

This

section

describes

the

command

line

syntax

for

the

z/OS

scripting

version

of

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

The

ACRCT

scripting

tool

for

z/OS

allows

you

to:

v

Define

or

delete

resources

for

an

application

client

that

will

run

on

z/OS.

v

List

the

properties

of

a

resource

or

provider

that

is

already

defined

for

the

application

client.

For

define

and

delete

actions,

the

ACRCT

scripting

tool

alters

the

Enterprise

Archive

(EAR)

file

for

the

application

client,

as

instructed

by

options

you

specify.

If

the

ACRCT

scripting

tool

encounters

an

error

at

any

time

during

its

processing,

the

tool

issues

an

error

message

to

the

MVS

console

and

terminates

without

changing

the

original

contents

of

the

application

client

EAR

file.

When

you

use

the

ACRCT

scripting

tool,

you

may

specify:

v

More

than

one

action

(define,

delete,

or

list)

to

perform

for

a

specific

application

client.

v

More

than

one

EAR

file,

to

define

or

delete

resources

for

more

than

one

application

client

at

a

time.

The

command

line

invocation

syntax

for

the

ACRCT

scripting

tool

follows.

When

you

have

a

choice

of

one

required

keyword,

those

keywords

appear

within

brackets

[].

v

To

define

or

delete

resources:

acrct

-earfile

earfile

[-define

|

-delete]

[-provider

|

-resource]

[-f

inputfile

|

key=value]

v

To

list

resources:

acrct

-list

[-provider

|

-resource]

[-f

inputfile

|

-p

key=value]

v

To

get

help

information:

acrct

-help

Chapter

6.

Using

application

clients

205

Parameters

where:

-earfile

Is

a

required

parameter

that

indicates

the

input

filename

of

the

application

client

EAR

file.

earfilename

Identifies

the

location

and

name

of

the

EAR

file

that

contains

the

application

client.

This

path

and

filename

must

directly

follow

the

-earfile

parameter.

-define

Instructs

the

scripting

tool

to

define

a

provider

or

resource

based

on

the

input

properties.

-delete

Instructs

the

scripting

tool

to

delete

a

provider

or

resource

based

on

the

input

properties.

-list

Instructs

the

scripting

tool

to

the

properties

of

a

particular

provider

or

resource,

based

on

the

input

properties.

-help

Instructs

the

scripting

tool

to

list

basic

examples

and

guidelines

for

using

quotes

around

key

values.

-provider

Indicates

that

the

object

to

be

defined

or

deleted,

or

for

which

properties

are

to

be

listed,

is

a

provider.

-resource

Indicates

that

the

object

to

be

defined

or

deleted,

or

for

which

properties

are

to

be

listed,

is

a

resource.

-f

Indicates

that

the

input

properties

for

the

provider

or

resource

are

provided

in

an

input

file,

rather

than

specified

directly

on

the

command

line.

inputfile

Identifies

the

location

and

name

of

the

input

file

that

contains

the

provider

or

resource

properties.

This

path

and

filename

must

directly

follow

the

-f

parameter.

key=value

Specifies

an

input

property

for

the

provider

or

resource,

in

the

form

of

key

and

value

pairs.

Rules:

v

You

must

use

lowercase

for

keys.

v

You

cannot

use

blanks

within

a

key

and

value

pair;

a

blank

signals

the

end

of

one

key/value

pair.

v

Because

blanks

separate

key

and

value

pairs,

you

must

be

careful

when

a

value

you

supply

contains

blanks.

When

you

specify

a

value

that

contains

blanks,

enclose

the

value

in

single

quotes

or

double

quotes.

Because

some

shells

processes

quotes

differently,

you

might

have

to

do

some

testing

to

determine

whether

you

must

use

single

or

double

quotes.

Example:

Suppose

you

invoke

the

scripting

tool,

passing

this

input:

/WebSphere/V5R0M0/AppServer/bin:>acrct

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

providername=’WebSphere

JMS

Provider’

206

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

response

is

an

error

message

along

with

an

echo

of

the

input

string

that

the

shell

receives,

followed

by

the

input

string

as

the

scripting

tool

will

process

it:

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

providername=WebSphere

JMS

Provider

String

to

be

parsed

by

the

Scripting

Tool:

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

providername=WebSphere

JMS

Provider

Ear

file

is

missing

or

is

improperly

specified.

Invalid

syntax:

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

providername=

WebSphere

JMS

Provider

As

you

can

see

from

the

response,

the

shell

has

stripped

off

the

single

quotes,

and

passes

invalid

input

to

the

scripting

tool.

To

correct

the

problem,

you

need

to

use

double

quotes.

v

The

number

of

key

and

value

pairs

you

specify

depends

on

the

type

of

resource

or

provider

you

are

configuring.

For

each

resource

to

be

configured,

use

this

information

to

determine

which

resource

or

provider

properties

are

required.

The

following

examples

demonstrate

correct

syntax:

Defining

a

new

provider

for

an

application

client,

using

an

input

file:

acrct

-earfile

usr/lpp/myapps/applclient1.ear

-define

-provider

-f

usr/lpp/myapps/inputProvider1.def

Defining

a

new

provider

for

an

application

client,

specifying

properties

directly

on

the

command

line:

acrct

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

-p

providertype=DataSourceProvider

name=DB2UDBV7

Defining

a

new

provider

and

deleting

the

resource

it

replaces,

in

the

same

EAR

file:

acrct

-earfile

usr/lpp/myapps/applclient1.ear

-define

-provider

-f

usr/lpp/myapps/inputProvider2.def

-delete

-resource

-f

usr/lpp/myapps/inputProvider1.def

Defining

a

new

provider

in

more

than

one

EAR

file:

acrct

-earfile

usr/lpp/myapps/applclient1.ear

-define

-provider

-f

usr/lpp/myapps/inputProvider2.def

-earfile

usr/lpp/myapps/applclient2.ear

-define

-provider

-f

usr/lpp/myapps/inputProvider2.def

Determining

required

properties

for

z/OS

application

client

resources

When

you

deploy

application

clients

on

z/OS

or

OS/390,

you

need

to

determine

the

required

properties

to

specify

when

using

the

z/OS

scripting

version

of

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

Note:

This

procedure

applies

only

for

J2EE

application

clients.

Use

the

following

information

to

determine

required

properties

to

specify

for

application

client

resources.

If

the

application

uses

this

type

of

resource

or

provider:

Find

required

and

optional

properties

in

these

articles:

Data

source

v

Datasource

Provider

v

Datasource

Chapter

6.

Using

application

clients

207

If

the

application

uses

this

type

of

resource

or

provider:

Find

required

and

optional

properties

in

these

articles:

JMS

v

JMS

Provider

v

JMS

Connection

v

JMS

Destination

Mail

session

v

Mail

provider

v

Mail

session

Resource

environment

v

Resource

environment

provider

v

Resource

environment

entry

URL

v

URL

provider

v

URL

factory

WebSphere

MQ

queue

v

WebSphere

MQ

queue

connection

factory

v

WebSphere

MQ

queue

destination

factory

WebSphere

MQ

topic

v

WebSphere

MQ

topic

connection

factory

v

WebSphere

MQ

topic

destination

factory

WebSphere

queue

v

WebSphere

queue

connection

factory

v

WebSphere

queue

destination

factory

WebSphere

topic

v

WebSphere

topic

connection

factory

v

WebSphere

topic

destination

factory

Properties

for

data

source

providers

name

required

description

optional

implementation

optional

classpath

optional

Properties

for

data

sources

providertype=DataSourceProvider

required

providername

required

name

required

description

optional

jndiname

required

databasename

optional

user

optional

password

optional

providertype=DataSourceProvider

providername=DB2UDBV7

name=″PolicyDatasource″

description=″Datasource

for

Policy

App″

jndiname=jdbc/PolicyDS

databasename=POLICYAPP

user=dbuser

password=dbpw

208

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Properties

for

JMS

providers

name

required

description

optional

classpath

optional

externalinitialcontextfactory

optional

externalproviderurl

optional

Properties

for

JMS

connections

providertype=JMSProvider

required

providername

required

name

required

description

optional

jndiname

required

externaljndiname

optional

type

required

Valid

values

are:

v

QUEUE

v

TOPIC

user

optional

password

optional

Properties

for

JMS

destinations

providertype=JMSProvider

required

providername

required

name

required

description

optional

jndiname

required

externaljndiname

optional

type

required

Valid

values

are:

v

QUEUE

v

TOPIC

Properties

for

mail

providers

name

required

description

optional

classpath

optional

Properties

for

mail

sessions

providertype=MailProvider

required

providername

required

name

required

Chapter

6.

Using

application

clients

209

description

optional

jndiname

required

mailfrom

optional

mailstorehost

optional

mailstoreuser

optional

mailstorepassword

optional

mailtransporthost

optional

mailtransportprotocol

required

Valid

values

are:

v

smtp

v

imap

v

pop3

mailtransportuser

optional

mailtransportpassword

optional

debug

required

Valid

values

are

True

or

False.

Properties

for

resource

environment

providers

name

required

description

optional

classpath

optional

Properties

for

resource

environment

entries

providertype=ResourceEnvironmentProvider

required

providername

required

name

required

description

optional

jndiname

required

Properties

for

URL

providers

name

required

description

optional

protocol

optional

classpath

optional

streamhandlerclass

optional

Properties

for

URL

factories

providertype=URLProvider

required

providername

required

name

required

description

optional

210

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

jndiname

required

url

required

Properties

for

WebSphere

MQ

queue

connection

factories

providertype=JMSProvider

required

providername=″MQ

JMS

Provider″

required

name

required

description

optional

jndiname

required

transporttype

required

Valid

values

are:

v

CLIENT

v

BINDINGS

clientid

optional

user

optional

password

optional

channel

optional

ccsid

optional

Properties

for

WebSphere

MQ

queue

destination

factories

providertype=JMSProvider

required

providername=″MQ

JMS

Provider″

required

name

required

description

optional

jndiname

required

persistence

required

Valid

values

are:

v

APPLICATION_DEFINED

v

QUEUE_DEFINED

v

PERSISTENT

v

NONPERSISTENT

priority

required

Valid

values

are:

v

APPLICATION_DEFINED

v

QUEUE_DEFINED

v

specified_integer

from

0

through

9

expiry

required

Valid

values

are:

v

APPLICATION_DEFINED

v

UNLIMITED

v

specified_value

basequeuename

required

basequeuemanagername

optional

Chapter

6.

Using

application

clients

211

targetclient

required

Valid

values

are:

v

JMS

v

MQ

ccsid

optional

usenativeencoding

required

Valid

values

are:

v

True

v

False

Properties

for

WebSphere

MQ

topic

connection

factories

providertype=JMSProvider

required

providername=″MQ

JMS

Provider″

required

name

required

description

optional

jndiname

required

transporttype

required

Valid

values

are:

v

CLIENT

v

BINDINGS

clientid

optional

brokercontrolqueue

optional

brokerqueuemanager

optional

brokerpubqueue

optional

brokersubqueue

optional

brokerccsubq

optional

brokerversion

required

Valid

values

are:

v

MA0C

v

MQSI

userid

optional

password

optional

ccsid

optional

channel

optional

Properties

for

WebSphere

MQ

topic

destination

factories

providertype=JMSProvider

required

providername=″MQ

JMS

Provider″

required

name

required

description

optional

jndiname

required

212

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

persistence

required

Valid

values

are:

v

APPLICATION_DEFINED

v

QUEUE_DEFINED

v

PERSISTENT

v

NONPERSISTENT

priority

required

Valid

values

are:

v

APPLICATION_DEFINED

v

QUEUE_DEFINED

v

specified_integer

from

0

through

9

expiry

required

Valid

values

are:

v

APPLICATION_DEFINED

v

UNLIMITED

v

specified_value

basetopicname

required

targetclient

required

Valid

values

are:

v

JMS

v

MQ

brokerdursubqueue

optional

brokerccdursubqueue

optional

ccsid

optional

usenativeencoding

required

Valid

values

are:

v

True

v

False

Properties

for

WebSphere

queue

connection

factories

providertype=JMSProvider

required

providername=″WebSphere

JMS

Provider″

required

name

required

description

optional

jndiname

required

node

required

servername

required

user

optional

password

optional

Properties

for

WebSphere

queue

destination

factories

providertype=JMSProvider

required

providername=″WebSphere

JMS

Provider″

required

name

required

description

optional

jndiname

required

Chapter

6.

Using

application

clients

213

node

required

persistence

required

Valid

values

are:

v

APPLICATION_DEFINED

v

PERSISTENT

v

NONPERSISTENT

priority

required

Valid

values

are:

v

APPLICATION_DEFINED

v

specified_integer

from

0

through

9

expiry

required

Valid

values

are:

v

APPLICATION_DEFINED

v

UNLIMITED

v

specified_value

Properties

for

WebSphere

topic

connection

factories

providertype=JMSProvider

required

providername=″WebSphere

JMS

Provider″

required

name

required

description

optional

jndiname

required

servername

required

node

required

port

required

Valid

values

are:

v

QUEUED

v

DIRECT

clientid

optional

userid

optional

password

optional

Properties

for

WebSphere

topic

destination

factories

providertype=JMSProvider

required

providername=″WebSphere

JMS

Provider″

required

name

required

description

optional

jndiname

required

topic

required

persistence

required

Valid

values

are:

v

APPLICATION_DEFINED

v

PERSISTENT

v

NONPERSISTENT

214

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

priority

required

Valid

values

are:

v

APPLICATION_DEFINED

v

specified_integer

from

0

through

9

expiry

required

Valid

values

are:

v

APPLICATION_DEFINED

v

UNLIMITED

v

specified_value

Deploying

application

clients

on

workstation

platforms

After

developing

an

application

client,

deploy

this

application

on

client

machines.

Deployment

consists

of

pulling

together

the

various

artifacts

that

the

application

client

requires.

If

you

plan

to

deploy

the

client

on

z/OS

or

OS/390,

you

have

two

options:

v

Run

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

on

Windows,

or

v

Run

the

Client

Container

Resource

Configuration

Scripting

tool

on

z/OS.

Both

of

these

tools

produce

equivalent

output.

They

both

provide

resource

definitions

for

an

application

client,

which

are

stored

in

the

application

client

.ear

file.

The

application

client

run

time

(or

container)

uses

these

configurations

for

resolving

and

creating

an

instance

of

the

resources

for

the

application

client.

Note:

This

task

only

applies

to

J2EE

application

clients.

Only

perform

this

task

if

you

configured

your

J2EE

application

client

to

use

resource

references.

1.

Start

the

ACRCT

and

open

an

EAR

file.

2.

Configure

new

data

source

providers.

3.

Configure

mail

providers

and

sessions.

4.

Configure

URL

providers

and

sessions.

5.

Configure

Java

messaging

client

resources.

6.

Configure

new

environment

entries.

7.

(Optional)

Remove

application

client

resources.

8.

Save

the

EAR

file.

Starting

the

Application

Client

Resource

Configuration

Tool

and

opening

an

EAR

file

Note:

This

task

only

applies

to

J2EE

application

clients.

1.

Open

a

command

prompt

and

change

to

the

install_root\bin

directory.

2.

Run

the

clientConfig.bat

file

for

a

Windows

system

.

3.

Open

an

EAR

file

within

the

Application

Client

Resource

Configuration

Tool

(ACRCT):

v

Click

File

>

Open.

v

Select

the

file

and

click

Open.
4.

Save

your

changes

to

the

file

and

close

the

tool:

v

Click

File

>

Save.

v

Click

File

>

Exit.

Chapter

6.

Using

application

clients

215

Data

sources

for

application

clients

The

J2EE

application

client

does

not

support

looking

up

or

directly

accessing

data

sources

configured

on

WebSphere

Application

Server

because

the

J2EE

application

client

does

not

support

Java

2

Connection

Factories.

To

use

a

data

source

directly

from

the

client

application,

you

must

use

the

ACRCT

to

configure

your

data

source.

In

addition,

WebSphere

Application

Server

and

WebSphere

Application

Server

clients

do

not

provide

client

database

drivers

to

be

used

directly

from

a

J2EE

application

client.

If

your

application

client

accesses

a

database

directly,

you

must

provide

the

database

drivers

on

the

client

machine.

You

might

contact

your

database

vendor

to

acquire

client

database

driver

code

and

licenses.

Instead

of

accessing

the

database

directly,

it

is

recommended

that

your

client

application

use

an

enterprise

bean.

Accessing

a

database

through

an

enterprise

bean

eliminates

the

need

to

have

database

drivers

on

the

client

machine,

since

the

database

access

is

handled

by

the

enterprise

bean

running

on

the

WebSphere

Application

Server.

For

a

current

list

of

providers

that

are

supported

on

the

WebSphere

Application

Server

go

the

following

site:

Supported

hardware,

software,

and

APIs

Configuring

new

data

source

providers

(JDBC

providers)

for

application

clients

During

this

task,

you

create

new

data

source

providers,

also

known

as

JDBC

providers,

for

your

application

client.

In

a

separate

administrative

task,

install

the

Java

code

for

the

required

data

source

provider

on

the

client

machine

on

which

the

application

client

resides.

1.

Start

the

tool

and

open

the

EAR

file

for

which

you

want

to

configure

the

new

data

source

provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

the

JAR

file

in

which

you

want

to

configure

the

new

data

source

provider

from

the

tree.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Click

the

Data

Source

Providers

folder.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Provider.

v

Click

Edit

>

New

on

the

menu

bar.
5.

Configure

the

data

source

provider

properties

in

the

resulting

property

dialog.

6.

Click

OK

when

you

finish.

7.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Configuring

new

data

source

providers

During

this

task,

you

will

create

new

data

source

providers,

also

known

as

JDBC

drivers,

for

your

application

client.

In

a

separate

administrative

task,

install

the

Java

code

for

the

required

data

source

provider

on

the

client

machine

where

the

application

client

resides.

1.

Start

the

ACRCT,

click

File

>

Open,

and

select

the

EAR

file

for

which

you

want

to

configure

the

new

data

source

provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

the

JAR

file

in

which

you

want

to

configure

the

new

data

source

provider

from

the

tree.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Right

click

the

Data

Source

Providers

folder

and

select

New

Provider.

5.

Configure

the

data

source

provider

properties

in

the

resulting

property

dialog.

216

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

6.

Click

OK.

7.

Click

File

>

Save

to

save

your

changes.

Example:

Configuring

data

source

provider

and

data

source

settings:

The

purpose

of

this

article

is

to

help

you

to

configure

data

source

provider

and

data

source

settings.

v

Required

fields:

–

Data

Source

Provider

Properties

page:

name

–

Data

Source

Properties

page:

name,

jndiName
v

Special

cases:

–

The

user

name

and

password

fields

have

no

equivalant

xmi

tags.

You

must

specify

these

fields

in

the

custom

properties.

–

The

password

is

encrypted

when

you

use

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

If

you

do

not

use

the

ACRCT,

the

field

cannot

be

encrypted.
v

Example:

<resources.jdbc:JDBCProvider

xmi:id="JDBCProvider_1"

name="jdbcProvider:name"

description="jdbcProvider:description"

implementationClassName="jdbcProvider:

ImplementationClass">

<classpath>jdbcProvider:classPath</classpath>

<factories

xmi:type="resources.jdbc:WAS40DataSource"

xmi:id="WAS40DataSource_1"

name="jdbcFactory:name"

jndiName="jdbcFactory:jndiName"

description="jdbcFactory:description"

databaseName="jdbcFactory:databasename">

<propertySet

xmi:id="J2EEResourcePropertySet_13">

<resourceProperties

xmi:id="J2EEResourceProperty_13"

name="jdbcFactory:customName"

value="jdbcFactory:customValue"/>

<resourceProperties

xmi:id="J2EEResourceProperty_14"

name="user"

value="jdbcFactory:user"/>

<resourceProperties

xmi:id="J2EEResourceProperty_15"

name="password"

value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_14">

<resourceProperties

xmi:id="J2EEResourceProperty_16"

name="jdbcProvider:customName"

value="jdbcProvider:customeValue"/>

</propertySet>

</resources.jdbc:JDBCProvider>

Data

source

provider

settings

for

application

clients:

Use

this

page

to

create

a

data

source

under

a

JDBC

provider

which

provides

the

specific

JDBC

driver

implementation

class.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file.

Right-click

Data

Source

Providers

>

and

click

New.

The

following

fields

appear

on

the

General

tab:

Name:

Specifies

the

display

name

for

the

data

source.

For

example

you

can

set

this

field

to

Test

Data

Source.

Data

type

String

Description:

Chapter

6.

Using

application

clients

217

Specifies

a

text

description

for

the

resource.

Data

type

String

Class

Path:

A

list

of

paths

or

jarfile

names

which

together

form

the

location

for

the

resource

provider

classes.

Implementation

class:

Use

this

setting

to

perform

database

specific

functions.

Data

type

String

Default

Dependent

on

JDBC

driver

implementation

class

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Data

source

properties

for

application

clients:

Use

this

page

to

create

or

modify

the

data

sources.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

Data

Source

Providers

>

Data

source

provider

instance.

Right-click

Data

Sources

and

click

New.

The

following

fields

are

displayed

on

the

General

tab:

Name:

Specifies

the

display

name

of

this

data

source.

Data

type

String

Description:

Specifies

a

text

description

of

the

data

source.

Data

type

String

JNDI

Name:

The

application

client

run

time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Assembly

Tool.

218

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Database

Name:

The

name

of

the

database

to

which

you

want

to

connect.

User:

Use

the

user

ID

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

ID

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

Password:

Use

the

password

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Re-Enter

Password:

Confirms

the

password.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Configuring

new

data

sources

for

application

clients

During

this

task,

you

create

new

data

sources

for

your

application

client.

1.

Click

the

data

source

provider

for

which

you

want

to

create

a

data

source

in

the

tree.

Do

one

of

the

following:

v

Configure

a

new

data

source

provider.

v

Click

an

existing

data

source

provider.
2.

Expand

the

data

source

provider

to

view

its

Data

Sources

folder.

3.

Click

the

folder.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Factory.

v

Click

Edit

>

New

on

the

menu

bar.
4.

Configure

the

data

source

properties

in

the

resulting

property

dialog.

5.

Click

OK

when

you

finish.

6.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Chapter

6.

Using

application

clients

219

Configuring

mail

providers

and

sessions

for

application

clients

Use

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

to

edit

the

configurations

of

JavaMail

sessions

and

providers

for

your

application

clients

to

use.

1.

Open

the

ACRCT.

2.

Open

an

EAR

file.

3.

Locate

the

JavaMail

objects

in

the

tree

that

displays.

For

example,

if

your

file

contains

JavaMail

sessions,

expand

Resources

>

application.jar

>

JavaMail

Providers

>

java_mail_provider_instance

>

JavaMail

Sessions.

In

this

example,

java_mail_provider_instance

is

a

particular

JavaMail

provider.

The

JavaMail

session

instances

are

located

in

the

JavaMail

Sessions

folder.

Mail

provider

settings

for

application

clients

Use

this

page

to

implement

the

JavaMail

API

and

create

mail

sessions.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file.

Right-click

Mail

Providers

>

and

click

New.

The

following

fields

appear

on

the

General

tab:

Name:

The

name

of

the

JavaMail

resource

provider.

Description:

An

optional

description

for

the

resource

provider.

Class

Path:

Specifies

a

list

of

paths

or

JAR

file

names

which

together

form

the

location

for

the

resource

provider

classes.

Protocol:

Specifies

the

name

of

the

protocol.

Classname:

Specifies

the

name

of

the

class

implementing

the

protocol.

Leave

this

field

blank

if

you

want

to

use

the

default

implementation.

Type:

This

menu

contains

the

following

two

values:

TRANSPORT

or

STORE.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

run

time

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

220

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Mail

session

settings

for

application

clients

Use

this

page

to

configure

mail

session

properties.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

Mail

Providers

>

mail

provider

instance.

Right-click

Mail

Sessions

and

click

New.

The

following

fields

appear

on

the

General

tab:

Name:

Represents

the

administrative

name

of

the

JavaMail

session

object.

Description:

Provides

an

optional

description

for

your

administrative

records.

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

Mail

Transport

Host:

Specifies

the

server

to

connect

to

when

sending

mail.

Mail

Transport

Protocol:

Specifies

the

transport

protocol

to

use

when

sending

mail.

Mail

Transport

User:

Specifies

the

user

ID

to

use

when

the

mail

transport

host

requires

authentication.

Mail

Transport

Password:

Specifies

the

password

to

use

when

the

mail

transport

host

requires

authentication.

Re-Enter

Password:

Confirms

the

password.

Mail

From:

Specifies

the

mail

originator.

Mail

Store

Host:

Mail

account

host

(or

″domain″)

name.

Mail

Store

User:

The

user

ID

of

the

mail

account.

Mail

Store

Password:

Chapter

6.

Using

application

clients

221

The

password

of

the

mail

account.

Re-Enter

Password:

Confirms

the

password.

Mail

Store

Protocol:

Specifies

the

protocol

to

be

used

when

receiving

mail.

Mail

Debug:

When

true,

JavaMail

interaction

with

mail

servers,

along

with

these

mail

session

properties

will

be

printed

to

stdout.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Example:

Configuring

JavaMail

provider

and

JavaMail

session

settings

for

application

clients

The

purpose

of

this

article

is

to

help

you

configure

JavaMail

provider

and

JavaMail

session

settings.

v

Required

fields:

–

JavaMail

Provider

Properties

page:

name,

and

at

least

one

protocol

provider

–

JavaMail

Session

Properties

page:

name,

jndiName,

mail

transport

protocol,

mail

store

protocol
v

Special

cases:

–

The

password

is

encrypted

when

using

the

ACRCT

tool.

Without

the

tool,

you

cannot

encrypt

this

field.
v

Example:

<resources.mail:MailProvider

xmi:id="MailProvider_1"

name="Default

Mail

Provider"

description="IBM

JavaMail

Implementation">

<classpath>mailProvider:classpath</classpath>

<factories

xmi:type="resources.mail:MailSession"

xmi:id="MailSession_1"

name="mailSession:name"

jndiName="mailSession:jndiName"

description="mailSession:description"

mailTransportHost="mailSession:mailTransportHost"

mailTransportUser="mailSession:mailTransportUser"

mailTransportPassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="

mailFrom="mailSession:mailFrom"

mailStoreHost="mailSession:mailStoreHost"

mailStoreUser="mailSession:mailStoreUser"

mailStorePassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="

debug="true"

mailTransportProtocol="ProtocolProvider_1"

mailStoreProvider="ProtocolProvider_1">

<propertySet

xmi:id="J2EEResourcePropertySet_1">

<resourceProperties

xmi:id="J2EEResourceProperty_1"

name="mailSession:customName"

value="mailSession:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_2">

<resourceProperties

xmi:id="J2EEResourceProperty_2"

name="mailProvider:customName"

value="mailProvider:customValue"/>

</propertySet>

<protocolProviders

xmi:id="ProtocolProvider_1"

protocol="smtp"

classname="smtp:className"/>

222

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<protocolProviders

xmi:id="ProtocolProvider_2"

protocol="pop3"

classname="pop3:className"/>

<protocolProviders

xmi:id="ProtocolProvider_3"

protocol="imap"

classname="imap:className"/>

</resources.mail:MailProvider>

Configuring

new

mail

sessions

for

application

clients

During

this

task,

you

configure

new

mail

sessions

for

your

application

client.

The

mail

sessions

are

associated

with

the

pre-configured

default

mail

provider

supplied

by

the

product.

1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

and

open

the

EAR

file.

The

EAR

file

contents

are

displayed

in

a

tree

view.

2.

Select

the

JAR

file

in

which

you

want

to

configure

the

new

JavaMail

session.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Click

JavaMail

Providers

>

MailProvider

>

JavaMail

Sessions.

Complete

one

of

the

following

actions:

v

Right-click

the

JavaMail

Sessions

folder

and

select

New

Factory.

v

Click

Edit

>

New

on

the

menu

bar.
5.

Configure

the

JavaMail

session

properties

in

the

resulting

property

dialog.

6.

Click

OK.

7.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

URLs

for

application

clients

A

Uniform

Resource

Locator

(URL)

is

an

identifier

that

points

to

an

electronically

accessible

resource,

such

as

a

directory

file

on

a

machine

in

a

network,

or

a

document

stored

in

a

database.

URLs

appear

in

the

format

scheme:scheme_information.

You

can

represent

a

scheme

as

http,

ftp,

file,

or

another

term

that

identifies

the

type

of

resource

and

the

mechanism

by

which

you

can

access

the

resource.

In

a

World

Wide

Web

browser

location

or

address

box,

a

URL

for

a

file

available

using

HyperText

Transfer

Protocol

(HTTP)

starts

with

http:.

An

example

is

http://www.ibm.com.

Files

available

using

File

Transfer

Protocol

(FTP)

start

with

ftp:.

Files

available

locally

start

with

file:.

The

scheme_information

commonly

identifies

the

Internet

machine

making

a

resource

available,

the

path

to

that

resource,

and

the

resource

name.

The

scheme_information

for

HTTP,

FTP

and

File

generally

starts

with

two

slashes

(//),

then

provides

the

Internet

address

separated

from

the

resource

path

name

with

one

slash

(/).

For

example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For

HTTP

and

FTP,

the

path

name

ends

in

a

slash

when

the

URL

points

to

a

directory.

In

such

cases,

the

server

generally

returns

the

default

index

for

the

directory.

Chapter

6.

Using

application

clients

223

URL

providers

for

the

Application

Client

Resource

Configuration

Tool

A

URL

provider

implements

the

function

for

a

particular

URL

protocol,

such

as

Hyper

Text

Transfer

Protocol

(HTTP).

This

provider,

comprised

of

a

pair

of

classes,

extends

the

java.net.URLStreamHandler

and

java.net.URLConnection

classes.

Configuring

new

URL

providers

for

application

clients

During

this

task,

you

create

URL

providers

and

URLs

for

your

client

application.

In

a

separate

administrative

task,

you

must

install

the

Java

code

for

the

required

URL

provider

on

the

client

machine

on

which

the

client

application

resides.

1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

2.

Open

the

EAR

file

for

which

you

want

to

configure

the

new

URL

provider.

The

EAR

file

contents

display

in

a

tree

view.

3.

Select

the

JAR

file

in

which

you

want

to

configure

the

new

URL

provider

from

the

tree.

4.

Expand

the

JAR

file

to

view

its

contents.

5.

Click

the

folder

called

URL

Providers.

Complete

one

of

the

following

actions:

v

Right-click

the

folder

and

click

New

Provider.

v

Click

Edit

>

New

on

the

menu

bar.
6.

Configure

the

URL

provider

properties

in

the

resulting

property

dialog.

7.

Click

OK.

8.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Configuring

URL

providers

and

sessions

using

the

Application

Client

Resource

Configuration

Tool

Use

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

to

edit

the

configurations

of

URL

providers

and

URLs

to

be

used

by

your

application

clients.

1.

Open

the

ACRCT.

2.

Open

an

EAR

file.

3.

Locate

the

URL

objects

in

the

tree

that

displays.

For

example,

if

your

file

contains

URL

providers

and

URLs,

expand

Resources

->

application.jar

->

URL

Providers

->

url_provider_instance

where

url_provider_instance

is

a

particular

URL

provider.

4.

If

you

expand

the

tree

further,

you

will

also

see

the

URLs

folders

containing

the

URL

instances

for

each

URL

provider

instance.

URL

settings

for

application

clients:

Use

this

page

to

implement

the

function

for

a

particular

URL

protocol,

such

as

Hyper

Text

Transfer

Protocol

(HTTP).

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

URL

Providers

>

URL

provider

instance.

Right-click

URLs

and

click

New.

The

following

fields

appear

on

the

General

tab.

This

provider,

comprised

of

classes,

extends

the

java.net.URLStreamHandler

and

java.net.URLConnection

classes.

Name:

224

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Administrative

name

for

the

URL

Description:

Optional

description

of

the

URL,

for

your

administrative

records

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

URL:

A

Uniform

Resource

Locator

(URL)

name

that

points

to

an

internet

or

intranet

resource.

For

example:

http://www.ibm.com

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

URL

provider

settings

for

application

clients:

Use

this

page

create

new

URLs.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file.

Right-click

URL

Providers

>

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

URL

provider

implements

the

function

for

a

particular

URL

protocol,

such

as

Hyper

Text

Transfer

Protocol

(HTTP).

This

provider,

comprised

of

classes,

extends

the

java.net.URLStreamHandler

and

java.net.URLConnection

classes.

Name:

Administrative

name

for

the

URL

Description:

Optional

description

of

the

URL,

for

your

administrative

records

Class

Path:

A

list

of

paths

or

JAR

file

names

which

together

form

the

location

for

the

resource

provider

classes.

Protocol:

Protocol

supported

by

this

stream

handler.

For

example,

″nntp″,

″smtp″,

″ftp″,

and

so

on.

Chapter

6.

Using

application

clients

225

To

use

the

default

protocol,

leave

this

field

blank.

Stream

handler

class:

Fully

qualified

name

of

a

User-defined

Java

class

that

extends

java.net.URLStreamHandler

for

a

particular

URL

protocol,

such

as

FTP.

To

use

the

default

stream

handler,

leave

this

field

blank.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Example:

Configuring

URL

and

URL

provider

settings

for

application

clients

The

purpose

of

this

article

is

to

help

you

to

configure

URL

and

URL

provider

settings.

v

Required

fields:

–

URL

Properties

page:

name,

jndiName,

url

–

URL

Provider

Properties

page:

name
v

Example:

<resources.url:URLProvider

xmi:id="URLProvider_1"

name="urlProvider:name"

description="urlProvider:description"

streamHandlerClassName="urlProvider:streamHandlerClass"

protocol="urlProvider:protocol">

<classpath>urlProvider:classpath</classpath>

<factories

xmi:type="resources.url:URL"

xmi:id="URL_1"

name="urlFactory:name"

jndiName="urlFactory:jndiName"

description="urlFactory:description"

spec="urlFactory:url">

<propertySet

xmi:id="J2EEResourcePropertySet_18">

<resourceProperties

xmi:id="J2EEResourceProperty_20"

name="urlFactory:customName"

value="urlFactory:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_19">

<resourceProperties

xmi:id="J2EEResourceProperty_21"

name="urlProvider:customName"

value="urlProvider:customValue"/>

</propertySet>

</resources.url:URLProvider>

Configuring

new

URLs

with

the

Application

Client

Resource

Configuration

Tool

During

this

task,

you

create

URLs

for

your

client

application.

1.

Click

the

URL

provider

for

which

you

want

to

create

a

URL

in

the

tree.

Do

one

of

the

following:

v

Configure

a

new

URL

provider.

v

Click

an

existing

URL

provider.
2.

Expand

the

URL

provider

to

view

the

URLs

folder.

3.

Click

the

folder.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Factory.

v

Click

Edit

->

New

on

the

menu

bar.

226

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

4.

Configure

the

URL

properties

in

the

resulting

property

dialog.

5.

Click

OK

when

you

finish.

6.

Click

File

->

Save

in

the

menu

bar

to

save

your

changes.

WebSphere

asynchronous

messaging

using

the

Java

Message

Service

API

for

the

Application

Client

Resource

Configuration

Tool

WebSphere

Application

Server

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

JMS

interface

provides

a

common

way

for

Java

programs

(clients

and

J2EE

applications)

to

create,

send,

receive,

and

read

asynchronous

requests

as

JMS

messages.

This

topic

provides

an

overview

of

asynchronous

messaging

using

JMS

support

provided

by

the

WebSphere

Application

Server.

The

base

support

for

asynchronous

messaging

using

the

JMS

API

provides

the

common

set

of

JMS

interfaces

and

associated

semantics

that

define

how

a

JMS

client

can

access

the

facilities

of

a

JMS

provider.

This

support

enables

WebSphere

J2EE

applications,

as

JMS

clients,

to

exchange

messages

asynchronously

with

other

JMS

clients,

by

using

JMS

destinations

(queues

or

topics).

A

J2EE

application

can

use

JMS

queue

destinations

for

point-to-point

messaging

and

JMS

topic

destinations

for

Pub

and

Sub

messaging.

A

J2EE

application

can

explicitly

poll

for

messages

on

a

destination

then

retrieve

messages

for

processing

by

business

logic

beans

(enterprise

beans).

With

the

base

JMS/XA

support,

the

J2EE

application

uses

standard

JMS

calls

to

process

messages,

including

any

responses

or

outbound

messaging.

An

enterprise

bean

can

handle

responses

acting

as

a

sender

bean,

or

within

the

enterprise

bean

that

receives

the

incoming

messages.

Optionally,

this

process

can

use

two-phase

commit

within

the

scope

of

a

transaction.

This

level

of

function

for

asynchronous

messaging

is

called

bean-managed

messaging,

and

gives

an

enterprise

bean

complete

control

over

the

messaging

infrastructure;

for

example,

connection

and

session

pool

management.

The

common

container

has

no

role

in

bean-managed

messaging.

WebSphere

Application

Server

also

supports

automatic

asynchronous

messaging

using

message-driven

beans

(a

type

of

enterprise

bean

defined

in

the

EJB

2.0

specification)

and

JMS

listeners

(part

of

the

JMS

application

server

facilities).

Messages

are

automatically

retrieved

from

JMS

destinations,

optionally

within

a

transaction,

then

sent

to

the

message-driven

bean

in

a

J2EE

application,

without

the

application

having

to

explicitly

poll

JMS

destinations.

Configuring

Java

messaging

client

resources

In

a

separate

administrative

task,

install

the

Java

Message

Service

(JMS)

client

on

the

client

machine

where

the

application

client

resides.

The

messaging

product

vendor

must

provide

an

implementation

of

the

JMS

client.

For

more

information,

see

your

messaging

product

documentation.

During

this

task,

you

create

new

JMS

provider

configurations

for

your

application

client.

The

application

client

can

use

a

messaging

service

through

the

Java

Message

Service

APIs.

A

JMS

provider

provides

two

kinds

of

J2EE

factories.

One

is

a

JMS

connection

factory,

and

the

other

is

a

JMS

destination

factory.

1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

Chapter

6.

Using

application

clients

227

2.

Open

the

EAR

file

for

which

you

want

to

configure

the

new

JMS

provider.

The

EAR

file

contents

are

in

the

displayed

tree

view.

3.

Select

the

JAR

file

in

which

you

want

to

configure

the

new

JMS

provider

from

the

tree.

4.

Expand

the

JAR

file

to

view

its

contents.

5.

Click

the

JMS

Providers

folder

and

click

New

Provider.

6.

Configure

the

JMS

provider

properties

in

the

resulting

property

dialog.

7.

Click

OK.

8.

Click

File

>

Save.

Configuring

new

JMS

providers

with

the

Application

Client

Resource

Configuration

Tool

During

this

task,

you

will

create

new

JMS

provider

configurations

for

your

application

client.

The

application

client

can

make

use

of

a

messaging

service

through

the

Java

Message

Service

APIs.

A

JMS

provider

provides

two

kinds

of

J2EE

factories.

One

is

a

JMS

Connection

factory,

and

the

other

is

a

JMS

destination

factory.

In

a

separate

administrative

task,

you

must

install

the

JMS

client

on

the

client

machine

where

the

application

client

resides.

The

messaging

product

vendor

must

provide

an

implementation

of

the

JMS

client.

For

more

information,

see

your

messaging

product

documentation.

1.

Start

the

tool

and

open

the

EAR

file

for

which

you

want

to

configure

the

new

JMS

provider.

The

EAR

file

contents

will

be

displayed

in

a

tree

view.

2.

From

the

tree,

select

the

JAR

file

in

which

you

want

to

configure

the

new

JMS

provider.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Click

the

folder

called

JMS

Providers.

Do

one

of

the

following:

v

Right-click

the

folder

and

select

New

Provider.

v

On

the

menu

bar,

click

Edit

->

New.
5.

In

the

resulting

property

dialog,

configure

the

JMS

provider

properties.

6.

When

finished,

click

OK.

7.

On

the

menu

bar,

click

File

->

Save

to

save

your

changes.

JMS

provider

settings

for

application

clients

Use

this

page

to

configure

properties

of

the

JMS

provider,

if

you

want

to

use

a

JMS

provider

other

than

the

internal

WebSphere

JMS

provider

or

the

MQSeries

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file.

Right-click

JMS

Providers

>

click

New.

The

following

fields

appear

on

the

General

tab.

Name:

The

name

by

which

the

JMS

provider

is

known

for

administrative

purposes.

Data

type

String

Description:

228

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

A

description

of

the

JMS

provider,

for

administrative

purposes

Data

type

String

Class

Path:

A

list

of

paths

or

jarfile

names

which

together

form

the

location

for

the

resource

provider

classes.

Context

factory

class:

The

Java

classname

of

the

initial

context

factory

for

the

JMS

provider.

For

example,

for

an

LDAP

service

provider

the

value

has

the

form:

com.sun.jndi.ldap.LdapCtxFactory.

Data

type

String

Provider

URL:

The

JMS

provider

URL

for

external

JNDI

lookups.

For

example,

an

LDAP

URL

for

a

JMS

provider

has

the

form:

ldap://hostname.company.com/contextName.

Data

type

String

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

WebSphere

queue

connection

factory

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

connection

factory

for

use

with

the

internal

WebSphere

JMS

provider

that

is

installed

with

WebSphere

Application

Server.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

queue

destination.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

WAS

Queue

Connection

Factories

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

queue

connection

factory

is

used

to

create

JMS

connections

to

queue

destinations.

The

queue

connection

factory

is

created

by

the

internal

WebSphere

JMS

provider.

A

queue

connection

factory

for

the

internal

WebSphere

JMS

provider

has

the

following

properties:

Name:

Chapter

6.

Using

application

clients

229

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

User:

The

User

ID

used,

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

ID

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

User

ID

and

password

explicitly;

for

example,

if

the

calling

application

uses

the

method

createQueueConnection().

The

JMS

client

flows

the

userid

and

password

to

the

JMS

server.

Data

type

String

Password:

The

password

used,

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Re-Enter

Password:

Confirms

the

password.

Node:

The

WebSphere

node

name

of

the

administrative

node

where

the

JMS

server

runs

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

JMS

server.

Data

type

String

230

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Application

Server:

Enter

the

name

of

the

application

server.

This

name

is

not

the

host

name

of

the

machine,

but

the

name

of

the

configured

application

server.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

run

time

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

WebSphere

topic

connection

factory

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

connection

factory

for

use

with

the

internal

WebSphere

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

topic

destination.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

WAS

Topic

Connection

Factories

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

topic

connection

factory

is

used

to

create

JMS

connections

to

topic

destinations.

The

topic

connection

factory

is

created

by

the

associated

JMS

provider.

A

topic

connection

factory

for

the

internal

WebSphere

JMS

provider

has

the

following

properties.

Name:

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

Description:

A

description

of

this

topic

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

User:

Chapter

6.

Using

application

clients

231

The

user

ID

used,

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

ID

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly;

for

example,

if

the

calling

application

uses

the

method

createTopicConnection().

The

JMS

client

flows

the

userid

and

password

to

the

JMS

server.

Data

type

String

Password:

The

password

used,

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

Re-Enter

Password:

Confirms

the

password.

Node:

The

WebSphere

node

name

of

the

administrative

node

where

the

JMS

server

runs

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

JMS

server.

Data

type

Enum

Default

Null

Range

Pull-down

list

of

nodes

in

the

WebSphere

administrative

domain.

Application

Server:

Enter

the

name

of

the

application

server.

This

name

is

not

the

host

name

of

the

machine,

but

the

name

of

the

configured

application

server.

Port:

Which

of

the

two

ports

that

connections

use

to

connect

to

the

JMS

Server.

The

QUEUED

port

is

for

full-function

JMS

publish/subscribe

support,

the

DIRECT

port

is

for

non-persistent,

non-transactional,

non-durable

subscriptions

only.

Note:

Message-driven

beans

cannot

use

the

direct

listener

port

for

publish/subscribe

support.

Therefore,

any

topic

connection

factory

configured

with

Port

set

to

Direct

cannot

be

used

with

message-driven

beans.

232

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Data

type

Enum

Units

Not

applicable

Default

QUEUED

Range

QUEUED

The

listener

port

used

for

full-function

JMS-compliant,

publish/subscribe

support.

DIRECT

The

listener

port

used

for

direct

TCP/IP

connection

(non-transactional,

non-persistent,

and

non-durable

subscriptions

only)

for

publish/subscribe

support.

The

TCP/IP

port

numbers

for

these

ports

are

defined

on

the

WebSphere

Internal

JMS

Server.

Client

Id:

The

JMS

client

identifier

used

for

connections

to

the

MQSeries

queue

manager.

Data

type

String

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

WebSphere

queue

destination

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

destination

for

use

with

the

WebSphere

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

WAS

Queue

Destinations

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

queue

destination

is

used

to

configure

the

properties

of

a

JMS

queue.

Connections

to

the

queue

are

created

by

the

associated

queue

connection

factory

for

the

internal

WebSphere

JMS

provider.

A

queue

for

use

with

the

internal

WebSphere

JMS

provider

has

the

following

properties.

Name:

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Description:

Chapter

6.

Using

application

clients

233

A

description

of

the

queue,

for

administrative

purposes

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

Persistence:

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

234

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

Priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Chapter

6.

Using

application

clients

235

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

Expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

WebSphere

topic

destination

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

destination

for

use

with

the

internal

WebSphere

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

WAS

Topic

Destinations

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

topic

destination

is

used

to

configure

the

properties

of

a

JMS

topic

for

the

associated

JMS

provider.

Connections

to

the

topic

are

created

by

the

associated

topic

connection

factory.

A

topic

for

use

with

the

internal

WebSphere

JMS

provider

has

the

following

properties.

Name:

236

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

name

by

which

the

topic

is

known

for

administrative

purposes.

Data

type

String

Description:

A

description

of

the

topic,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

Topic

Name:

The

name

of

the

topic

as

defined

to

the

JMS

provider.

Data

type

String

Persistence:

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Chapter

6.

Using

application

clients

237

Default

APPLICATION_DEFINED

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

Priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

238

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

Expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

MQSeries

queue

connection

factory

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

connection

factory

for

use

with

the

MQSeries

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

queue

destination.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

MQ

Queue

Connection

Factories

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

queue

connection

factory

creates

JMS

connections

to

queue

destinations.

The

queue

connection

factory

is

created

by

the

MQSeries

JMS

provider.

A

queue

connection

factory

for

the

MQSeries

JMS

provider

has

the

following

properties.

Chapter

6.

Using

application

clients

239

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

MQSeries

for

JMS

resources.

For

more

information

about

configuring

MQSeries

JMS

resources,

see

the

MQSeries

Using

Java

book,

located

in

the

WebSphere

MQ

Family

library.

v

In

MQSeries,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

Name:

The

name

by

which

this

queue

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

connection

factories

across

the

WebSphere

administrative

domain.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

User:

The

user

ID

used,

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

ID

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly;

for

example,

if

the

calling

application

uses

the

method

createQueueConnection().

The

JMS

client

flows

the

userid

and

password

to

the

JMS

server.

Data

type

String

Password:

The

password

used,

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

240

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-3.ibm.com/software/integration/mqfamily/library/manualsa/

Re-Enter

Password:

Confirms

the

password.

Queue

Manager:

The

name

of

the

MQSeries

queue

manager

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

queue

manager.

Data

type

String

Host:

The

name

of

the

host

on

which

the

WebSphere

MQ

queue

manager

runs,

for

client

connection

only.

Data

type

String

Default

Null

Range

A

valid

TCP/IP

hostname

Port:

The

TCP/IP

port

number

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Data

type

Integer

Default

Null

Range

A

valid

TCP/IP

port

number,

configured

on

the

WebSphere

MQ

queue

manager.

Channel:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Data

type

String

Default

Null

Range

1

through

20

ASCII

characters

Transport

type:

Specifies

whether

the

WebSphere

MQ

client

connection

or

JNI

bindings

are

used

for

connection

to

the

WebSphere

MQ

queue

manager.

The

external

JMS

provider

controls

the

communication

protocols

between

JMS

clients

and

JMS

servers.

Tune

the

transport

type

when

you

are

using

non-ASF

nonpersistent,

nondurable,

nontransactional

messaging

or

when

you

want

to

satisfy

security

issues

and

the

client

is

local

to

the

queue

manager

node.

Data

type

Enum

Chapter

6.

Using

application

clients

241

Units

Not

applicable

Default

BINDINGS

Range

BINDINGS

JNI

bindings

are

used

to

connect

to

the

queue

manager.

BINDINGS

is

a

shared

memory

protocol

and

can

only

be

used

when

the

queue

manager

is

on

the

same

node

as

the

JMS

client

and

comes

at

some

security

risks

that

should

be

addressed

through

the

use

of

EJB

roles.

CLIENT

WebSphere

MQ

client

connection

is

used

to

connect

to

the

queue

manager.

CLIENT

is

a

typical

TCP-based

protocol.

DIRECT

For

WebSphere

MQ

Event

Broker

using

DIRECT

mode.

DIRECT

is

a

lightweight

sockets

protocol

used

in

nontransactional,

nondurable

and

nonpersistent

Publish/Subscribe

messasging.

DIRECT

is

only

works

for

clients

and

message-driven

beans

using

the

non-ASF

protocol.

QUEUED

QUEUED

is

a

standard

TCP

protocol.

Recommended

Queue

connection

factory

transport

type

BINDINGS

is

faster

by

30%

or

more,

but

it

lacks

security.

When

you

have

security

concerns,

BINDINGS

is

more

desirable

than

CLIENT.

Topic

connection

factory

transport

type

DIRECT

is

the

fastest

and

should

be

used

where

possible.

Use

BINDINGS

when

you

want

to

satisfy

additional

security

tasks

and

the

queue

manager

is

local

to

the

JMS

client.

QUEUED

is

fallback

for

all

other

cases.

Note,

WebSphere

MQ

5.3

before

CSD2

with

the

DIRECT

setting

can

lose

messages

when

used

with

message-driven

beans

and

under

load.

This

also

happens

with

client-side

based

applications

unless

the

broker’s

maxClientQueueSize

is

set

to

0.

You

can

set

this

to

0

with

the

command

#wempschangeproperties

WAS_nodeName_server1

-e

default

-o

DynamicSubscriptionEngine

-n

maxClientQueueSize

-v

0

-x

executionGroupUUID,

where

executionGroupUUID

can

be

found

by

starting

the

broker

and

looking

in

the

Event

Log/Applications

for

event

2201.

This

value

is

usually

ffffffff-0000-0000-000000000000.

242

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Client

ID:

The

JMS

client

identifier

used

for

connections

to

the

MQSeries

queue

manager.

Data

type

String

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

For

more

information

about

supported

CCSIDs,

and

about

converting

between

message

data

from

one

coded

character

set

to

another,

see

the

WebSphere

MQ

System

Administration

and

the

WebSphere

MQ

Application

Programming

Reference

books.

These

are

available

from

the

WebSphere

MQ

messaging

multiplatform

and

platform-specific

books

Web

pages;

for

example,

at

http://www-
3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html,

the

IBM

Publications

Center,

or

from

the

WebSphere

MQ

collection

kit,

SK2T-0730.

Message

Retention:

Select

this

check

box

to

specify

that

unwanted

messages

are

to

be

left

on

the

queue.

Otherwise,

unwanted

messages

are

dealt

with

according

to

their

disposition

options.

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Selected

Unwanted

messages

are

left

on

the

queue.

Cleared

Unwanted

messages

are

dealt

with

according

to

their

disposition

options.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Chapter

6.

Using

application

clients

243

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/crosslatest.html.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

MQSeries

topic

connection

factory

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

connection

factory

for

use

with

the

MQSeries

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

topic

destination.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

MQ

Topic

Connection

Factories

and

click

New.

A

topic

connection

factory

is

used

to

create

JMS

connections

to

topic

destinations.

The

topic

connection

factory

is

created

by

the

MQSeries

JMS

provider.

A

topic

connection

factory

for

the

MQSeries

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

MQSeries

JMS

resources.

For

more

information

about

configuring

MQSeries

JMS

resources,

see

the

MQSeries

Using

Java

book.

v

In

MQSeries,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

Name:

The

name

by

which

this

topic

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

JMS

provider.

Data

type

String

Description:

A

description

of

this

topic

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

JNDI

name

that

is

used

to

bind

the

topic

connection

factory

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

45

ASCII

characters

244

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User:

The

user

ID

used,

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly;

for

example,

if

the

calling

application

uses

the

method

createTopicConnection().

The

JMS

client

flows

the

userid

and

password

to

the

JMS

server.

Data

type

String

Password:

The

password

used,

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

Re-Enter

Password:

Confirms

the

password.

Queue

Manager:

The

name

of

the

MQSeries

queue

manager

for

this

connection

factory.

Connections

created

by

this

factory

connect

to

that

queue

manager.

Data

type

String

Host:

The

name

of

the

host

on

which

the

WebSphere

MQ

queue

manager

runs,

for

client

connection

only.

Data

type

String

Default

Null

Range

A

valid

TCP/IP

hostname

Port:

The

TCP/IP

port

number

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Chapter

6.

Using

application

clients

245

This

port

must

be

configured

on

the

WebSphere

MQ

queue

manager.

Data

type

Integer

Default

Null

Range

A

valid

TCP/IP

port

number,

configured

on

the

WebSphere

MQ

queue

manager.

Channel:

The

name

of

the

channel

used

for

connection

to

the

WebSphere

MQ

queue

manager,

for

client

connection

only.

Data

type

String

Default

Null

Range

1

through

20

ASCII

characters

Transport

Type:

Whether

MQSeries

client

connection

or

JNDI

bindings

are

used

for

connection

to

the

MQSeries

queue

manager.

Data

type

Enum

Units

Not

applicable

Default

BINDINGS

Range

CLIENT

MQSeries

client

connection

is

used

to

connect

to

the

MQSeries

queue

manager.

BINDINGS

JNDI

bindings

are

used

to

connect

to

the

MQSeries

queue

manager.

Client

Id:

The

JMS

client

identifier

used

for

connections

to

the

MQSeries

queue

manager.

Data

type

String

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Broker

Control

Queue:

The

name

of

the

broker

control

queue,

to

which

all

command

messages

(except

publications

and

requests

to

delete

publications)

are

sent

The

name

of

the

broker

control

queue.

Publisher

and

subscriber

applications,

and

other

brokers,

send

all

command

messages

(except

publications

and

requests

to

246

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

delete

publications)

to

this

queue.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

Queue

Manager:

The

name

of

the

MQSeries

queue

manager

that

provides

the

Pub/Sub

message

broker.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

Pub

Queue:

The

name

of

the

broker’s

input

queue

that

receives

all

publication

messages

for

the

default

stream

The

name

of

the

broker’s

input

queue

(stream

queue)

that

receives

all

publication

messages

for

the

default

stream.

Applications

can

also

send

requests

to

delete

publications

on

the

default

stream

to

this

queue.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

Sub

Queue:

The

name

of

the

broker

queue

from

which

non-durable

subscription

messages

are

retrieved

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved.

The

subscriber

specifies

the

name

of

the

queue

when

it

registers

a

subscription.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

CCSubQ:

The

name

of

the

broker’s

queue

from

which

non-durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

The

name

of

the

broker

queue

from

which

non-durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

Chapter

6.

Using

application

clients

247

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Broker

Version:

Specifies

whether

the

message

broker

is

provided

by

the

MQSeries

MA0C

SupportPac

or

newer

versions

of

WebSphere

message

broker

products.

Data

type

Enum

Units

Not

applicable

Default

Advanced

Range

Advanced

The

message

broker

is

provided

by

newer

versions

of

WebSphere

message

broker

products

(MQ

Integrator

and

MQ

Publish

and

Subscribe)

Basic

The

message

broker

is

provided

by

the

MQSeries

MA0C

SupportPac

(MQSeries

-

Publish/Subscribe)

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

accectable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

MQSeries

queue

destination

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

queue

destination

for

use

with

the

MQSeries

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

MQ

Queue

Destinations

and

click

New.

The

following

fields

appear

on

the

General

tab.

A

queue

destination

configures

the

properties

of

a

JMS

queue.

Connections

to

the

queue

are

created

by

the

associated

queue

connection

factory

for

the

MQSeries

JMS

provider.

A

queue

for

use

with

the

MQSeries

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

MQSeries

JMS

resources.

For

more

information

about

configuring

MQSeries

JMS

resources,

see

the

MQSeries

Using

Java

book.

v

In

MQSeries,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

Name:

248

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Description:

A

description

of

the

queue,

for

administrative

purposes

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

Persistence:

Whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

Whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Chapter

6.

Using

application

clients

249

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

Priority:

If

the

Priority

property

is

set

to

Specified,

type

here

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest)

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout)

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

250

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

Expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

here

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Base

Queue

Name:

The

name

of

the

queue

to

which

messages

are

sent,

on

the

queue

manager

specified

by

the

Base

queue

manager

name

property

Data

type

String

Base

Queue

Manager

Name:

The

name

of

the

MQSeries

queue

manager

to

which

messages

are

sent

This

queue

manager

provides

the

queue

specified

by

the

Base

queue

name

property.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

A

valid

MQSeries

Queue

Manager

name,

as

1

through

48

ASCII

characters

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

Chapter

6.

Using

application

clients

251

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Integer

encoding:

If

native

encoding

is

not

enabled,

select

whether

integer

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

integer

encoding

is

used.

REVERSED

Reversed

integer

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Decimal

encoding:

If

native

encoding

is

not

enabled,

select

whether

decimal

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

decimal

encoding

is

used.

REVERSED

Reversed

decimal

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Floating

point

encoding:

If

native

encoding

is

not

enabled,

select

the

type

of

floating

point

encoding.

Data

type

Enum

Units

Not

applicable

Default

IEEENORMAL

Range

IEEENORMAL

IEEE

normal

floating

point

encoding

is

used.

IEEEREVERSED

IEEE

reversed

floating

point

encoding

is

used.

S390

S390

floating

point

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

252

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Native

encoding:

Select

this

checkbox

to

indicate

that

the

queue

destination

should

use

native

encoding

(appropriate

encoding

values

for

the

Java

platform).

Data

type

Enum

Units

Not

applicable

Default

Cleared

Range

Cleared

Native

encoding

is

not

used,

so

specify

the

properties

below

for

integer,

decimal,

and

floating

point

encoding.

Selected

Native

encoding

is

used

(to

provide

appropriate

encoding

values

for

the

Java

platform).

For

more

information

about

encoding

properties,

see

the

MQSeries

Using

Java

document.

Target

client:

Whether

the

receiving

application

is

JMS-compliant

or

is

a

traditional

WebSphere

MQ

application

Data

type

Enum

Units

Not

applicable

Default

MQSeries

Range

MQSeries

The

target

is

a

non-JMS,

traditional

WebSphere

MQ

application.

JMS

The

target

is

a

JMS-compliant

application.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

MQSeries

topic

destination

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

topic

destination

for

use

with

the

MQSeries

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

JMS

provider

instance.

Right-click

MQ

Topic

Destinations

and

click

New.

The

following

fields

appear

on

the

General

tab.

Chapter

6.

Using

application

clients

253

A

topic

destination

is

used

to

configure

the

properties

of

a

JMS

topic

for

the

associated

JMS

provider.

Connections

to

the

topic

are

created

by

the

associated

topic

connection

factory.

A

topic

for

use

with

the

MQSeries

JMS

provider

has

the

following

properties.

Note:

v

The

property

values

that

you

specify

must

match

the

values

that

you

specified

when

configuring

MQSeries

JMS

resources.

For

more

information

about

configuring

MQSeries

JMS

resources,

see

the

MQSeries

Using

Java

book.

v

In

MQSeries,

names

can

have

a

maximum

of

48

characters,

with

the

exception

of

channels

which

have

a

maximum

of

20

characters.

Name:

The

name

by

which

the

topic

is

known

for

administrative

purposes.

Data

type

String

Description:

A

description

of

the

topic,

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

JNDI

Name:

The

application

client

run

time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

Persistence:

Specifies

whether

all

messages

sent

to

the

destination

are

persistent,

non-persistent,

or

have

their

persistence

defined

by

the

application.

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

Messages

on

the

destination

have

their

persistence

defined

by

the

application

that

put

them

onto

the

queue.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Persistent

Messages

on

the

destination

are

persistent.

Non

persistent

Messages

on

the

destination

are

not

persistent.

Priority:

254

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Specifies

whether

the

message

priority

for

this

destination

is

defined

by

the

application

or

the

Specified

priority

property.

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Range

Application

defined

The

priority

of

messages

on

this

destination

is

defined

by

the

application

that

put

them

onto

the

destination.

Queue

defined

[WebSphere

MQ

destination

only]

Messages

on

the

destination

have

their

persistence

defined

by

the

WebSphere

MQ

queue

definition

properties.

Specified

The

priority

of

messages

on

this

destination

is

defined

by

the

Specified

priority

property.If

you

select

this

option,

you

must

define

a

priority

on

the

Specified

priority

property.

Specified

Priority:

If

the

Priority

property

is

set

to

Specified,

type

the

message

priority

for

this

queue,

in

the

range

0

(lowest)

through

9

(highest).

If

the

Priority

property

is

set

to

Specified,

messages

sent

to

this

queue

have

the

priority

value

specified

by

this

property.

Data

type

Integer

Units

Message

priority

level

Default

Null

Range

0

(lowest

priority)

through

9

(highest

priority)

Expiry:

Specifies

whether

the

expiry

timeout

for

this

queue

is

defined

by

the

application

or

the

Specified

expiry

property,

or

messages

on

the

queue

never

expire

(have

an

unlimited

expiry

timeout).

Data

type

Enum

Units

Not

applicable

Default

APPLICATION_DEFINED

Chapter

6.

Using

application

clients

255

Range

Application

defined

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

application

that

put

them

onto

the

queue.

Specified

The

expiry

timeout

for

messages

on

this

queue

is

defined

by

the

Specified

expiry

property.If

you

select

this

option,

you

must

define

a

timeout

on

the

Specified

expiry

property.

Unlimited

Messages

on

this

queue

have

no

expiry

timeout,

so

those

messages

never

expire.

Specified

Expiry:

If

the

Expiry

timeout

property

is

set

to

Specified,

type

the

number

of

milliseconds

(greater

than

0)

after

which

messages

on

this

queue

expire.

Data

type

Integer

Units

Milliseconds

Default

Null

Range

Greater

than

or

equal

to

0

v

0

indicates

that

messages

never

timeout

v

Other

values

are

an

integer

number

of

milliseconds

Base

Topic

Name:

The

name

of

the

topic

to

which

messages

are

sent

Data

type

String

CCSID:

The

coded

character

set

identifier

for

use

with

the

WebSphere

MQ

queue

manager.

This

coded

character

set

identifier

(CCSID)

must

be

one

of

the

CCSIDs

supported

by

WebSphere

MQ.

Data

type

String

Integer

encoding:

If

native

encoding

is

not

enabled,

select

whether

integer

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

256

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Range

NORMAL

Normal

integer

encoding

is

used.

REVERSED

Reversed

integer

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Decimal

encoding:

If

native

encoding

is

not

enabled,

select

whether

decimal

encoding

is

normal

or

reversed.

Data

type

Enum

Units

Not

applicable

Default

NORMAL

Range

NORMAL

Normal

decimal

encoding

is

used.

REVERSED

Reversed

decimal

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Floating

point

encoding:

If

native

encoding

is

not

enabled,

select

the

type

of

floating

point

encoding.

Data

type

Enum

Units

Not

applicable

Default

IEEENORMAL

Range

IEEENORMAL

IEEE

normal

floating

point

encoding

is

used.

IEEEREVERSED

IEEE

reversed

floating

point

encoding

is

used.

S390

S390

floating

point

encoding

is

used.

For

more

information

about

encoding

properties,

see

the

WebSphere

MQ

Using

Java

document.

Native

encoding:

Select

this

check

box

to

indicate

that

the

queue

destination

should

use

native

encoding

(appropriate

encoding

values

for

the

Java

platform).

Data

type

Enum

Units

Not

applicable

Default

Cleared

Chapter

6.

Using

application

clients

257

Range

Cleared

Native

encoding

is

not

used,

so

specify

the

properties

above

for

integer,

decimal,

and

floating

point

encoding.

Selected

Native

encoding

is

used

(to

provide

appropriate

encoding

values

for

the

Java

platform).

For

more

information

about

encoding

properties,

see

the

MQSeries

Using

Java

document.

BrokerDurSubQueue:

The

name

of

the

broker

queue

from

which

durable

subscription

messages

are

retrieved.

The

name

of

the

broker

queue

from

which

durable

subscription

messages

are

retrieved.

The

subscriber

specifies

the

name

of

the

queue

when

it

registers

a

subscription.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

BrokerCCDurSubQueue:

The

name

of

the

broker

queue

from

which

durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

The

name

of

the

broker

queue

from

which

durable

subscription

messages

are

retrieved

for

a

ConnectionConsumer.

This

property

applies

only

for

use

of

the

Web

container.

Data

type

String

Units

En_US

ASCII

characters

Default

Null

Range

1

through

48

ASCII

characters

Target

Client:

Specifies

whether

the

receiving

application

is

JMS-compliant

or

is

a

traditional

MQSeries

application.

Data

type

Enum

Units

Not

applicable

Default

MQSeries

258

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Range

MQSeries

The

target

is

a

non-JMS,

traditional

MQSeries

application.

JMS

The

target

is

a

JMS-compliant

application.

Custom

Properties:

Specifies

the

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Generic

JMS

connection

factory

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

JMS

connection

factory

for

use

with

the

associated

JMS

provider.

These

configuration

properties

control

how

connections

are

created

to

the

associated

JMS

destination.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

new

JMS

Provider

instance.

Right

click

JMS

Connection

Factories

>

click

New.

The

following

fields

appear

on

the

General

tab.

A

JMS

connection

factory

creates

connections

to

JMS

destinations.

The

JMS

connection

factory

is

created

by

the

associated

JMS

provider.

A

JMS

connection

factory

for

a

generic

JMS

provider

(other

than

the

internal

WebSphere

JMS

provider

or

the

MQSeries

JMS

provider)

has

the

following

properties:

Name:

The

name

by

which

this

JMS

connection

factory

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

The

name

must

be

unique

within

the

associated

JMS

provider.

Data

type

String

Description:

A

description

of

this

connection

factory

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Default

Null

JNDI

Name:

The

application

client

run-time

uses

this

field

to

retrieve

configuration

information.

The

name

must

match

the

value

of

the

Name

field

on

the

General

tab

in

the

Application

Client

Resource

Reference

section

of

the

Application

Assembly

Tool.

User:

Chapter

6.

Using

application

clients

259

The

user

ID

used,

with

the

Password

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

The

connection

factory

User

ID

and

Password

properties

are

used

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly;

for

example,

if

the

calling

application

uses

the

method

createQueueConnection().

The

JMS

client

flows

the

userid

and

password

to

the

JMS

server.

Data

type

String

Password:

The

password

used,

with

the

User

ID

property,

for

authentication

if

the

calling

application

does

not

provide

a

userid

and

password

explicitly.

If

you

specify

a

value

for

the

User

ID

property,

you

must

also

specify

a

value

for

the

Password

property.

Data

type

String

Default

Null

Re-Enter

Password:

Confirms

the

password

entered

in

the

Password

field.

External

JNDI

Name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Connection

Type:

Whether

this

JMS

destination

is

a

queue

(for

point-to-point)

or

topic

(for

pub/sub).

Select

one

of

the

following

options:

Queue

A

JMS

queue

destination

for

point-to-point

messaging.

Topic

A

JMS

topic

destination

for

pub/sub

messaging.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

260

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Generic

JMS

destination

settings

for

application

clients

Use

this

panel

to

view

or

change

the

configuration

properties

of

the

selected

JMS

destination

for

use

with

the

associated

JMS

provider.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

JMS

Providers

>

new

JMS

Provider

instance.

Right

click

JMS

Destinations

>

click

New.

The

following

fields

appear

on

the

General

tab.

A

JMS

destination

is

used

to

configure

the

properties

of

a

JMS

destination

for

the

associated

generic

JMS

provider.

Connections

to

the

JMS

destination

are

created

by

the

associated

JMS

connection

factory.

A

JMS

destination

for

use

with

a

generic

JMS

provider

(not

the

internal

WebSphere

JMS

provider

or

MQSeries

JMS

provider)

has

the

following

properties.

Name:

The

name

by

which

the

queue

is

known

for

administrative

purposes

within

IBM

WebSphere

Application

Server.

Data

type

String

Description:

A

description

of

the

queue,

for

administrative

purposes

JNDI

Name:

The

JNDI

name

of

the

actual

(physical)

name

of

the

JMS

destination

bound

into

JNDI.

External

JNDI

Name:

The

JNDI

name

that

is

used

to

bind

the

queue

into

the

application

server’s

name

space.

As

a

convention,

use

the

fully

qualified

JNDI

name;

for

example,

in

the

form

jms/Name,

where

Name

is

the

logical

name

of

the

resource.

This

name

is

used

to

link

the

platform

binding

information.

The

binding

associates

the

resources

defined

by

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Data

type

String

Destination

Type:

Whether

this

JMS

destination

is

a

queue

(for

point-to-point)

or

topic

(for

pub/sub).

Select

one

of

the

following

options:

Chapter

6.

Using

application

clients

261

Queue

A

JMS

queue

destination

for

point-to-point

messaging.

Topic

A

JMS

topic

destination

for

pub/sub

messaging.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Example:

Configuring

JMS

Provider,

JMS

Connection

Factory

and

JMS

Destination

settings

for

application

clients

The

purpose

of

this

article

is

to

help

you

to

configure

JMS

Provider,

JMS

Connection

Factory

and

JMS

Destination

settings.

v

Required

fields:

–

JMS

Provider

Properties

page:

name,

and

at

least

one

protocol

provider

–

JMS

Connection

Factory

Properties

page:

name,

jndiName,

destination

type

–

JMS

Destination

Properties

page:

name,

jndiName,

destination

type
v

Special

cases:

–

The

destination

type

must

be

QUEUE,

or

TOPIC.
v

Example:

<resources.jms:JMSProvider

xmi:id="JMSProvider_3"

name="genericJMSProvider:name"

description="genericJMSProvider:description"

externalInitialContextFactory="genericJMSProvider:contextFactoryClass"

externalProviderURL="genericJMSProvider:providerUrl">

<classpath>genericJMSProvider:classpath</classpath>

<factories

xmi:type="resources.jms:GenericJMSDestination"

xmi:id="GenericJMSDestination_1"

name="jmsDestination:name"

jndiName="jmsDestination:jndiName"

description="jmsDestination:description"

externalJNDIName="jmsDestination:externalJndiName"

type="QUEUE">

<propertySet

xmi:id="J2EEResourcePropertySet_15">

<resourceProperties

xmi:id="J2EEResourceProperty_17"

name="jmsDestination:custonName"

value="jmsDestination:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms:GenericJMSConnectionFactory"

xmi:id="GenericJMSConnectionFactory_1"

name="jmsCF:name"

jndiName="jmsCF:jndiName"

description="jmsCF:description"

userID="jmsCF:user"

password="{xor}NTIsHBllMT4yOg=="

externalJNDIName="jmsCF:externalJndiName"

type="QUEUE">

<propertySet

xmi:id="J2EEResourcePropertySet_16">

<resourceProperties

xmi:id="J2EEResourceProperty_18"

name="jmsCF:customName"

value="jmsCF:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_17">

<resourceProperties

xmi:id="J2EEResourceProperty_19"

name="genericJMSProvider:customName"

value="genericJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring

new

connection

factories

for

application

clients

During

this

task,

you

create

a

new

JMS

connection

factory

configuration

for

your

application

client.

1.

Click

the

JMS

provider

for

which

you

want

to

create

a

connection

factory

in

the

tree.

Do

one

of

the

following:

262

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Configure

a

new

JMS

provider.

v

Click

an

existing

JMS

provider.
2.

Expand

the

JMS

provider

to

view

its

JMS

Connection

Factories

folder.

3.

Click

the

folder.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Factory.

v

Click

Edit

>

New

on

the

menu

bar.
4.

Configure

the

JMS

connection

factory

properties

in

the

resulting

property

dialog.

5.

Click

OK

when

you

finish.

6.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Configuring

new

Java

Message

Service

destinations

for

application

clients

During

this

task,

you

create

new

Java

Message

Service

(JMS)

destination

configuration

for

your

application

client.

1.

Click

the

JMS

provider

in

the

tree

for

which

you

want

to

create

a

destination.

Do

one

of

the

following:

v

Configure

a

new

JMS

provider.

v

Click

an

existing

JMS

provider.
2.

Expand

the

JMS

provider

to

view

its

JMS

Destinations

folder.

3.

Click

the

folder.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Factory.

v

Click

Edit

>

New

on

the

menu

bar.
4.

Configure

the

JMS

destination

properties

in

the

resulting

property

dialog.

5.

Click

OK

when

you

finish.

6.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Example:

Configuring

MQ

Queue

and

Topic

connection

factories

and

destination

factories

for

application

clients

The

purpose

of

this

article

is

to

help

you

configure

MQ

Queue

connection

factory,

MQ

Topic

connection

factory,

MQ

Queue

destination

factory,

and

MQ

Topic

destination

factory

settings.

v

Required

fields:

–

MQ

Queue

Connection

Factory

Properties

page:

name,

jndiName,

transport

type

–

MQ

Topic

Connection

Factory

Properties

page:

name,

jndiName,

broker

version

–

MQ

Queue

Factory

Properties

page:

name,

jndiName,

persistence,

priority,

expiry,

baseQueueName,

targetClient

–

MQ

Topic

Factory

Properties

page:

name,

jndiName,

persistence,

priority,

expiry,

baseQueueName,

targetClient
v

Special

cases:

–

The

transport

type

must

be

CLIENT,

or

BINDINGS.

–

The

Broker

Version

must

be

MA0C,

or

MQSI.

–

The

port

must

be

a

numerical

value

between

-2417483648

and

2417483647.

–

The

CCSID

must

be

a

numerical

value

between

-2417483648

and

2417483647.

–

The

persistence

value

must

be

APPLICATION_DEFINED,

QUEUE_DEFINED,

PERSISTENT

or,

NONPERSISTENT.

–

The

priority

must

be

APPLICATION_DEFINED,

QUEUE_DEFINED,

or

SPECIFIED.

–

The

expiry

must

be

APPLICATION_DEFINED,

UNLIMITED,

or

SPECIFIED.

–

The

integer

encoding

must

be

Normal,

or

Reversed.

Chapter

6.

Using

application

clients

263

–

The

decimal

encoding

must

be

Normal,

or

Reversed.

–

The

floating

encoding

must

be

IEEENormal,

IEEEReversed,

S390.

–

The

target

client

must

be

JMS

or

MQ.

–

On

the

MQ

Queue

Connection

Factory

Properites

page,

only

set

the

queueManager,

host,

and

portWhen

(required)

fields

if

the

transport

type

is

CLIENT.

–

On

the

MQ

Topic

Connection

Factory

Properites

page,

only

set

the

queueManager,

host,

and

port

(required)

fields

if

the

transport

type

is

CLIENT.

–

On

the

the

MQ

Topic

Factory

Properties,

and

the

MQ

Queue

Factory

Properties

pages,

only

set

the

Integer

encoding,

decimal

encoding,

and

floating

point

encoding

(required)

fields

if

you

do

not

set

nativeEncoding.

–

On

the

MQ

Topic

Factory

Properties,

and

the

MQ

Queue

Factory

Properties

pages,

the

specified

priority

entry

field

must

be

an

integer

between

0

and

9

if

priority

is

set

to

SPECIFIED

.

–

On

the

the

MQ

Topic

Factory

Properties,

and

the

MQ

Queue

Factory

Properties

pages,

the

specified

expiry

entry

field

must

be

a

value

greater

than

0

if

expiry

is

set

to

SPECIFIED.
v

Example:

<resources.jms:JMSProvider

xmi:id="JMSProvider_1"

name="MQ

JMS

Provider"

description="mqJMSProvider:description"

externalInitialContextFactory="mqJMSProvider:contextFactoryClass"

externalProviderURL="mqJMSProvider:providerUrl">

<classpath>mqJMSProvider:classpath</classpath>

<factories

xmi:type="resources.jms.mqseries:MQQueueConnectionFactory"

xmi:id="MQQueueConnectionFactory_1"

name="mqQCF:name"

jndiName="mqQCF:jndiName"

description="mqQCF:description"

userID="mqQCF:user"

password="{xor}Mi4OHBllMT4yOg=="

queueManager="mqQCF:queueManager"

host="mqQCF:host"

port="1"

channel="mqQCF:channel"

transportType="CLIENT"

clientID="mqQCF:clientId"

CCSID="2">

<propertySet

xmi:id="J2EEResourcePropertySet_3">

<resourceProperties

xmi:id="J2EEResourceProperty_3"

name="mqQCF:customName"

value="mqQCF:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.mqseries:MQTopicConnectionFactory"

xmi:id="MQTopicConnectionFactory_1"

name="mqTCF:name"

jndiName="mqTCF:jndiName"

description="mqTCF:description"

userID="mqTCF:user"

password="{xor}Mi4LHBllNTE7NhE+Mjo="

host="mqTCF:host"

port="1"

transportType="CLIENT"

channel="mqTCF:channel"

queueManager="mqTCF:queueManager"

brokerControlQueue="mqTCF:brokerControlQueue"

brokerQueueManager="mqTCF:brokerQueueManager"

brokerPubQueue="mqTCF:brokerPubQueue"

brokerSubQueue="mqTCF:brokerSubQueue"

brokerCCSubQ="mqTCF:brokerCCSubQ"

brokerVersion="MA0C"

clientID="mqTCF:clientId"

CCSID="2">

<propertySet

xmi:id="J2EEResourcePropertySet_4">

<resourceProperties

xmi:id="J2EEResourceProperty_4"

name="mqTCF:customName"

value="mqTCF:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.mqseries:MQQueue"

xmi:id="MQQueue_1"

name="mqQ:name"

jndiName="mqQ:jndiName"

description="mqQ:description"

persistence="APPLICATION_DEFINED"

priority="SPECIFIED"

specifiedPriority="1"

expiry="SPECIFIED"

specifiedExpiry="1"

baseQueueName="mqQ:baseQueueName"

baseQueueManagerName="mqQ:baseQueueManagerName"

CCSID="1"

integerEncoding="Normal"

decimalEncoding="Normal"

floatingPointEncoding="IEEENormal"

targetClient="JMS">

<propertySet

xmi:id="J2EEResourcePropertySet_5">

<resourceProperties

xmi:id="J2EEResourceProperty_5"

name="mqQ:customName"

value="mqQ:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.mqseries:MQTopic"

xmi:id="MQTopic_1"

name="mqT:name"

jndiName="mqT:jndiName"

description="mqT:description"

persistence="APPLICATION_DEFINED"

priority="SPECIFIED"

specifiedPriority="1"

expiry="SPECIFIED"

specifiedExpiry="2"

baseTopicName="mqT:baseTopicName"

CCSID="3"

integerEncoding="Normal"

decimalEncoding="Normal"

floatingPointEncoding="IEEENormal"

264

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

targetClient="JMS"

brokerDurSubQueue="mqT:brokerDurSubQueue"

brokerCCDurSubQueue="mqT:brokerCCDurSubQueue">

<propertySet

xmi:id="J2EEResourcePropertySet_6">

<resourceProperties

xmi:id="J2EEResourceProperty_6"

name="mqT:customName"

value="mqT:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_7">

<resourceProperties

xmi:id="J2EEResourceProperty_7"

name="mqJMSProvider:customName"

value="mqJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Example:

Configuring

WAS

Queue

and

Topic

connection

factories

and

destination

factories

for

application

clients

The

purpose

of

this

article

is

to

help

you

to

configure

WAS

Queue

connection

factory,

WAS

Topic

connection

factory,

WAS

Queue

destination

factory,

and

WAS

Topic

destination

factory

settings.

v

Required

fields:

–

JMS

Provider

Properties

page:

name

–

WAS

Queue

Connection

Factory

Properties

page:

name,

jndiName,

node

–

WAS

Topic

Connection

Factory

Properties

page:

name,

jndiName,

node,

port

–

WAS

Queue

Factory

Properties

page:

name,

jndiName,

node,

persistence,

priority,

expiry

–

WAS

Topic

Factory

Properties

page:

name,

jndiName,

topic

name,

persistence,

priority,

expiry
v

Special

cases:

–

The

port

must

be

QUEUED

or

DIRECT.

–

The

CCSID

must

be

a

numerical

value

between

-2417483648

and

2417483647.

–

The

persistence

value

must

be

APPLICATION_DEFINED,

PERSISTENT,

or

NONPERSISTENT.

–

The

priority

must

be

APPLICATION_DEFINED,

or

SPECIFIED.

–

The

expiry

must

be

APPLICATION_DEFINED,

UNLIMITED,

or

SPECIFIED.

–

On

the

WAS

Topic

Factory

Properties,

and

the

WAS

Queue

Factory

Properties

pages,

the

specified

priority

entry

field

must

be

an

integer

between

0

and

9

if

priority

is

set

to

SPECIFIED

.

–

On

the

WAS

Topic

Factory

Properties,

and

the

WAS

Queue

Factory

Properties

pages,

the

specified

expiry

entry

field

must

be

an

value

greater

than

0

if

expiry

is

set

to

SPECIFIED.
v

Example:

<resources.jms:JMSProvider

xmi:id="JMSProvider_2"

name="WebSphere

JMS

Provider"

description="wasJMSProvider:description"

externalInitialContextFactory="wasJMSProvider:contextfactoryclass"

externalProviderURL="wasJMSProvider:providerUrl">

<classpath>wasJMSProvider:classpath</classpath>

<factories

xmi:type="resources.jms.internalmessaging:WASQueueConnectionFactory"

xmi:id="WASQueueConnectionFactory_1"

name="wasQCF:name"

jndiName="wasQCF:jndiName"

description="wasQCF:description"

userID="wasQCF:user"

password="{xor}KD4sDhwZZSosOi0="

node="wasQCF:Node">

<propertySet

xmi:id="J2EEResourcePropertySet_8">

<resourceProperties

xmi:id="J2EEResourceProperty_8"

name="wasQCF:customName"

value="wasQCF:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.internalmessaging:WASTopicConnectionFactory"

xmi:id="WASTopicConnectionFactory_1"

name="wasTCF:name"

jndiName="wasTCF:jndiName"

description="wasTCF:description"

userID="wasTCF:user"

password="{xor}KD4sCxwZZTE+Mjo="

node="wasTCF:node"

port="QUEUED"

clientID="wasTCF:clientId">

<propertySet

xmi:id="J2EEResourcePropertySet_9">

<resourceProperties

xmi:id="J2EEResourceProperty_9"

name="wasTCF:customName"

Chapter

6.

Using

application

clients

265

value="wasTCF:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.internalmessaging:WASQueue"

xmi:id="WASQueue_1"

name="wasQ:name"

jndiName="wasQ:jndiName"

description="wasQ:description"

node="wasQ:node"

persistence="APPLICATION_DEFINED"

priority="SPECIFIED"

specifiedPriority="1"

expiry="SPECIFIED"

specifiedExpiry="1">

<propertySet

xmi:id="J2EEResourcePropertySet_10">

<resourceProperties

xmi:id="J2EEResourceProperty_10"

name="wasQ:customName"

value="wasQ:customValue"/>

</propertySet>

</factories>

<factories

xmi:type="resources.jms.internalmessaging:WASTopic"

xmi:id="WASTopic_1"

name="wasT:name"

jndiName="wasT:jndiName"

description="wasT:description"

topic="wasT:topicName"

persistence="APPLICATION_DEFINED"

priority="SPECIFIED"

specifiedPriority="1"

expiry="SPECIFIED"

specifiedExpiry="1">

<propertySet

xmi:id="J2EEResourcePropertySet_11">

<resourceProperties

xmi:id="J2EEResourceProperty_11"

name="wasT:customName"

value="wasT:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_12">

<resourceProperties

xmi:id="J2EEResourceProperty_12"

name="wasJMSProvider:customName"

value="wasJMSProvider:customValue"/>

</propertySet>

</resources.jms:JMSProvider>

Configuring

new

resource

environment

providers

for

application

clients

During

this

task,

you

create

new

resource

environment

provider

configurations

for

your

application

client.

To

configure

a

new

resource

environment

provider,

perform

the

following

steps:

1.

Start

the

tool

and

open

the

EAR

file

for

which

you

want

to

configure

the

new

JMS

provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

in

which

you

want

to

configure

the

new

JMS

provider.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Click

the

folder

called

Resource

Environment

Providers.

Do

one

of

the

following:

v

Right-click

the

folder

and

click

New

Provider.

v

Click

Edit

>

New

on

the

menu

bar.
5.

Configure

the

JMS

provider

properties

in

the

resulting

property

dialog.

6.

Click

OK

when

finished.

7.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Resource

environment

provider

settings

for

application

clients

Use

this

page

to

specify

resource

environment

entry

properties.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file.

Right-click

Resource

Environment

Providers

>

and

click

New.

The

following

fields

appear

on

the

General

tab:

Name:

Specifies

the

administrative

name

for

the

resource

environment

provider.

266

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Description:

Specifies

a

description

of

the

resource

environment

provider

for

your

administrative

records.

Class

Path:

Specifies

the

path

to

the

JAR

file

that

contains

the

implementation

classes

for

the

resource

environment

provider.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Configuring

new

resource

environment

entries

for

application

clients

During

this

task,

you

create

new

resource

environment

entries

for

your

client

application.

1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

2.

Open

the

EAR

file

for

which

you

want

to

configure

the

new

resource

environment

entry.

The

EAR

file

contents

are

in

the

displayed

tree

view.

3.

Click

the

desired

resource

environment

provider,

and

complete

the

following

action

to

configure

new

providers:

v

Configure

a

new

resource

environment

provider.
4.

Expand

the

resource

environment

provider

to

view

the

resource

environment

entries

folder.

5.

Click

the

folder.

Complete

one

of

the

following

actions:

v

Right-click

the

folder

and

select

New

Factory.

v

Click

Edit

>

New

on

the

menu

bar.
6.

Configure

the

data

source

properties

in

the

resulting

property

dialog.

7.

Click

OK.

8.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Resource

environment

entry

settings

for

application

clients

Use

this

page

to

specify

resource

environment

entry

properties.

To

view

this

Application

Client

Resource

Configuration

Tool

(ACRCT)

page,

click

File

>

Open.

After

you

browse

for

an

EAR

file,

click

Open.

Expand

the

selected

JAR

file

>

Resource

Environment

Providers

>

resource

environment

instance.

Right-click

Resource

environment

entry

>

and

click

New.

The

following

fields

appear

on

the

General

tab:

Name:

Specifies

the

administrative

name

for

the

resource

environment

entry.

Description:

Chapter

6.

Using

application

clients

267

Specifies

a

description

of

the

URL

for

your

administrative

records.

JNDI

Name:

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

for

the

resource,

including

any

naming

subcontexts.

Use

this

name

to

link

to

the

binding

information

of

the

platform.

The

binding

associates

the

resources

defined

in

the

deployment

descriptor

of

the

module

to

the

actual

(physical)

resources

bound

into

JNDI

by

the

platform.

Custom

Properties:

Specifies

name-value

pairs

for

setting

additional

properties

on

the

object

that

is

created

at

runtime

for

this

resource.

You

must

enter

a

name

that

is

a

public

property

on

the

object

and

a

value

that

can

be

converted

from

a

string

to

the

type

required

by

the

set

method

of

the

property.

The

acceptable

properties

and

values

depend

on

the

object

that

is

created.

Refer

to

the

object

documentation

for

a

list

of

valid

properties

and

values.

Managing

application

clients

Perform

the

following

tasks

after

deploying

application

clients.

After

deploying

application

clients

on

z/OS

or

OS/390,

you

might

want

to

or

need

to

update

the

resources

that

you

configured

for

those

clients.

To

do

so,

you

may

complete

one

of

the

following

tasks:

v

Run

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

on

Windows,

according

to

the

steps

below,

and

then

reinstall

the

application

on

z/OS;

or

v

Run

the

ACRCT

scripting

tool

on

z/OS.

Note:

This

task

only

applies

to

J2EE

application

clients.

1.

Update

data

source

and

data

source

provider

configurations.

2.

Update

URLs

and

URL

provider

configurations.

3.

Update

mail

session

configurations.

4.

Update

JMS

provider,

connection

factories,

and

destination

configurations.

5.

Update

MQ

JMS

provider,

MQ

connection

factories,

and

MQ

destination

configurations.

6.

Update

Resource

Environment

Entry

and

Resource

Environment

Provider

configurations.

7.

(Optional)

Remove

application

client

resources.

Updating

data

source

and

data

source

provider

configurations

with

the

Application

Client

Resource

Configuration

Tool

During

this

task,

you

update

the

configuration

of

an

existing

data

source

or

data

source

provider.

1.

Start

the

tool

and

open

the

EAR

file

containing

the

data

source

or

data

source

provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

containing

the

data

source

or

data

source

provider

to

update.

268

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

3.

Expand

the

JAR

file

to

view

its

contents

until

you

locate

the

particular

data

source

or

data

source

provider

to

update.

Do

one

of

the

following:

v

Right-click

the

object

and

click

Properties.

v

Click

Edit

>

Properties

on

the

menu

bar.
4.

Update

the

properties

in

the

resulting

property

dialog.

For

detailed

field

help,

go

to:

v

Data

source

provider

properties

v

Data

source

properties
5.

Click

OK

when

finished.

6.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Updating

URLs

and

URL

provider

configurations

for

application

clients

1.

Start

the

tool

and

open

the

EAR

file

containing

the

URL

or

URL

provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

containing

the

URL

or

URL

provider

to

update.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Keep

expanding

the

JAR

file

contents

until

you

locate

the

particular

URL

or

URL

provider

to

update.

Do

one

of

the

following:

a.

Right-click

the

object

and

click

Properties

b.

Click

Edit

>

Properties

on

the

menu

bar.
5.

Update

the

properties

in

the

resulting

property

dialog.

6.

Click

OK

when

finished.

7.

Click

File

>

Save

to

save

your

changes

on

the

menu

bar.

Updating

mail

session

configurations

for

application

clients

During

this

task,

you

update

the

configuration

of

an

existing

JavaMail

session.

Note:

You

cannot

update

the

name

of

the

default

JavaMail

provider.

Also,

you

cannot

delete

the

default

JavaMail

provider

from

the

tree.

1.

Start

the

tool

and

open

the

EAR

file

containing

the

JavaMail

session.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

containing

the

JavaMail

session

to

update.

3.

Expand

the

JAR

file

to

view

its

contents.

4.

Keep

expanding

the

JAR

file

contents

until

you

locate

the

particular

JavaMail

session

to

update.

Do

one

of

the

following:

a.

Right-click

the

object

and

click

Properties

b.

Click

Edit

>

Properties

from

the

menu

bar.
5.

Update

the

properties

in

the

resulting

property

dialog.

6.

Click

OK

when

finished.

7.

Select

File

>

Save

from

the

menu

bar

to

save

your

changes.

Chapter

6.

Using

application

clients

269

Updating

Jave

Message

Service

provider,

connection

factories,

and

destination

configurations

for

application

clients

During

this

task,

you

update

the

configuration

of

an

existing

Java

Message

Service

(JMS)

provider,

connection

factory,

or

destination.

1.

Start

the

tool

and

open

the

EAR

file

containing

the

JMS

provider,

connection

factory,

or

destination.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

containing

the

JMS

provider,

connection

factory,

or

destination

to

update.

3.

Expand

the

JAR

file

to

view

its

contents

until

you

locate

the

particular

JMS

provider,

connection

factory,

or

destination

to

update.

When

you

find

it,

do

one

of

the

following:

v

Right-click

the

object

and

click

Properties.

v

Click

Edit

>

Properties

on

the

menu

bar.
4.

Update

the

properties

in

the

resulting

property

dialog.

For

detailed

field

help,

see:

v

JMS

provider

properties

v

WAS

Queue

connection

factory

properties

v

WAS

Topic

connection

factory

properties

v

WAS

Queue

destination

properties

v

WAS

Topic

destination

properties
5.

Click

OK.

6.

Click

File

>

Save

to

save

your

changes.

Updating

MQ

Java

Message

Service

provider,

MQ

connection

factories,

and

MQ

destination

configurations

for

application

clients

During

this

task,

you

will

update

the

configuration

of

an

existing

MQ

JMS

provider,

MQ

connection

factory,

or

MQ

destination.

1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT).

2.

Open

the

EAR

file

containing

the

MQ

JMS

provider,

MQ

connection

factory,

or

MQ

destination.

The

EAR

file

contents

are

displayed

in

a

tree

view.

3.

Select

the

JAR

file

containing

the

MQ

JMS

provider,

MQ

connection

factory,

or

MQ

destination

to

update.

4.

Expand

the

JAR

file

to

view

its

contents

until

you

locate

the

particular

MQ

JMS

provider,

MQ

connection

factory,

or

MQ

destination

that

you

want

to

update.

Complete

one

of

the

following

actions:

v

Right-click

the

object

and

click

Properties.

v

Click

Edit

>

Properties

on

the

menu

bar.
5.

Update

the

properties

in

the

resulting

property

dialog.

For

detailed

field

help,

see:

v

JMS

provider

properties

v

MQ

Queue

connection

factory

properties

v

MQ

Topic

connection

factory

properties

v

MQ

Queue

destination

properties

v

MQ

Topic

destination

properties
6.

Click

OK.

7.

Click

File

>

Save

to

save

your

changes.

270

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Updating

Resource

Environment

Entry

and

Resource

Environment

Provider

configurations

for

application

clients

During

this

task,

you

update

the

configuration

of

an

existing

Resource

Environment

Entry

or

Resource

Environment

Provider.

1.

Start

the

tool

and

open

the

EAR

file

containing

the

Resource

Environment

Entry

or

Resource

Environment

Provider.

The

EAR

file

contents

display

in

a

tree

view.

2.

Select

from

the

tree

the

JAR

file

containing

the

Resource

Environment

Entry

or

Resource

Environment

provider

to

update.

3.

Expand

the

JAR

file

to

view

its

contents

until

you

locate

the

Resource

Environment

Entry

or

Resource

Environment

Provider

to

update.

Do

one

of

the

following:

v

Right-click

the

object

and

click

Properties.

v

Click

Edit

>

Properties

on

the

menu

bar.
4.

Update

the

properties

in

the

resulting

property

dialog.

For

detailed

field

help,

see:

v

Resource

environment

provider

properties

v

Resource

environment

entry

properties
5.

Click

OK

when

you

finish.

6.

Click

File

>

Save

on

the

menu

bar

to

save

your

changes.

Example:

Configuring

Resource

Environment

settings

The

purpose

of

this

article

is

to

help

you

configure

Resource

Environment

settings.

v

Required

fields:

–

Resource

Environment

Provider

page:

name

–

Resource

Environment

Entry

page:

name,

jndiName
v

Example:

<resources.env:ResourceEnvironmentProvider

xmi:id="ResourceEnvironmentProvider_1"

name="resourceEnvProvider:name"

description="resourceEnvProvider:description">

<classpath>resourceEnvProvider:classpath</classpath>

<factories

xmi:type="resources.env:ResourceEnvEntry"

xmi:id="ResourceEnvEntry_1"

name="resourceEnvEntry:name"

jndiName="resourceEnvEntry:jndiName"

description="resourceEnvEntry:description">

<propertySet

xmi:id="J2EEResourcePropertySet_20">

<resourceProperties

xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName"

value="resourceEnvEntry:customValue"/>

</propertySet>

</factories>

<propertySet

xmi:id="J2EEResourcePropertySet_21">

<resourceProperties

xmi:id="J2EEResourceProperty_23"

name="resourceEnvProvider:customName"

value="resourceEnvProvider:customValue"/>

</propertySet>

</resources.env:ResourceEnvironmentProvider>

Example:

Configuring

Resource

Environment

custom

settings

for

application

clients

The

purpose

of

this

article

is

to

help

you

configure

Resource

Environment

custom

settings.

v

The

custom

page

applies

to

every

resource

type.

You

can

specify

as

many

custom

names

and

values

as

you

need.

v

Example:

<propertySet

xmi:id="J2EEResourcePropertySet_20">

<resourceProperties

xmi:id="J2EEResourceProperty_22"

name="resourceEnvEntry:customName"

value="resourceEnvEntry:customValue"/>

</propertySet>

Chapter

6.

Using

application

clients

271

Removing

application

client

resources

Note:

This

task

only

applies

to

J2EE

application

clients.

To

remove

resources

for

application

clients

running

on

z/OS

or

OS/390,

you

may

complete

one

of

the

following

tasks:

v

Run

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

on

Windows,

according

to

the

steps

below,

and

then

reinstall

the

application

on

z/OS;

or

v

Run

the

ACRCT

scripting

tool

on

z/OS.
1.

Start

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

and

open

the

EAR

file

from

which

you

want

to

remove

an

object.

The

EAR

file

contents

display

in

a

tree

view.

If

you

already

have

an

EAR

file

open,

and

have

made

some

changes,

click

File

>

Save

to

save

your

work

before

preceding

to

delete

an

object.

2.

Locate

the

object

that

you

want

to

remove

in

the

tree.

3.

Right-click

the

object,

then

click

Delete.

4.

Click

File

>

Save.

The

option

to

delete

an

item

does

not

offer

a

confirmation

dialog.

As

a

safeguard,

consider

saving

your

work

right

before

you

begin

this

task.

If

you

change

your

mind

after

removing

an

item,

you

can

close

the

EAR

file

without

saving

your

changes,

canceling

your

deletion.

Remember

to

close

the

EAR

file

immediately

after

the

deletion,

or

you

also

lose

any

unsaved

work

that

you

performed

since

the

deletion.

Running

application

clients

The

J2EE

specification

requires

support

for

a

client

container

that

runs

stand-alone

Java

applications

(known

as

J2EE

application

clients)

and

provides

J2EE

services

to

the

applications.

J2EE

services

include

naming,

security,

and

resource

connections.

You

are

ready

to

run

your

application

client

using

this

tool

after

you

have:

1.

Written

the

application

client

program.

2.

Assembled

and

installed

an

application

module

(.ear

file)

in

the

application

server

run

time.

3.

Deployed

the

application

using

the

Application

Client

Resource

Configuration

Tool

(ACRCT)

on

Windows,

or

the

ACRCT

scripting

tool

on

z/OS.

Note:

This

task

only

applies

to

J2EE

application

clients.

1.

On

z/OS

or

OS/390,

invoke

the

following

script

to

launch

J2EE

application

clients

using

the

launchClient

shell:

install_root/bin/launchClient.sh

Example

invocation

on

z/OS:

/usr/lpp/WebSphere/V5R0M0/bin/launchClient.bat

The

launchClient

batch

command:

v

Initializes

the

client

run

time.

v

Loads

the

class

that

you

designated

as

the

main

class

with

the

Application

Assembly

Tool

(AAT)

or

the

Assembly

Toolkit.

v

Runs

the

main

method

of

the

application

client

program.

When

your

program

terminates,

the

application

client

run

time

cleans

up

the

environment

and

the

Java

Virtual

Machine

code

ends.

272

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

2.

Pass

parameters

to

the

launchClient

command.

You

can

pass

parameters

to

your

application

client

program

as

well.

The

launchClient

command

allows

you

to

do

both.

The

launchClient

command

requires

that

the

first

parameter

is

either:

v

An

EAR

file

specifying

the

application

client

to

launch.

v

A

request

for

launchClient

usage

information.

All

other

parameters

intended

for

the

launchClient

command

must

begin

with

the

-CC

prefix.

Parameters

that

are

not

EAR

files,

or

usage

requests,

or

that

do

not

begin

with

the

-CC

prefix,

are

ignored

by

the

application

client

run

time,

and

are

passed

directly

to

the

application

client

program.

The

launchClient

command

retrieves

parameters

from

three

places:

a.

The

command

line

b.

A

properties

file

c.

System

properties

The

parameters

are

resolved

in

the

order

listed

above,

with

command

line

values

having

the

highest

priority

and

system

properties

the

lowest.

This

prioritization

allows

you

to

set

and

override

default

values.

3.

Specify

the

server

name.

By

default,

the

launchClient

command

uses

the

environment

variable

COMPUTERNAME

for

the

BootstrapHost

property

value.

This

setting

is

effective

for

testing

your

application

client

when

it

is

installed

on

the

same

computer

as

the

server.

However,

in

other

cases

override

this

value

with

the

name

of

your

server.

You

can

override

the

BootstrapHost

value

by

invoking

launchClient

with

the

following

parameters:

launchClient

myapp.ear

-CCBootstrapHost=abc.midwest.mycompany.com

You

can

also

override

the

default

by

specifying

the

value

in

a

properties

file

and

passing

the

file

name

to

the

launchClient

shell.

Note:

Security

is

controlled

by

the

server.

You

do

not

need

to

configure

security

on

the

client

because

the

client

assumes

that

security

is

enabled.

If

security

is

not

enabled,

the

server

ignores

the

security

request,

and

the

application

client

works

as

expected.

You

can

store

launchClient

values

in

a

properties

file,

a

good

method

for

distributing

default

values.

You

can

then

override

one

or

more

values

on

the

command

line.

The

format

of

the

file

is

one

launchClient

-CC

parameter

per

line

without

the

-CC

prefix.

For

example:

verbose=true

classpath=/usr/lpp/mydir/util.jar;/usr/lpp/mydir/harness.jar;/usr/lpp

/production/G19/global.jar

BootstrapHost=abc.westcoast.mycompany.com

tracefile=/usr

/lpp/WebSphere/mylog.txt

launchClient

tool

This

section

describes

the

command

line

syntax

for

the

Java

TM2

Platform,

WebSphere

Application

Server

Enterprise

(J2EE)

launchClient

tool.

The

command

line

invocation

syntax

for

the

launchClient

tool

follows:

launchClient

[<userapp.ear>

|-help|-?]

[-CCname=value]

[app

args]

Chapter

6.

Using

application

clients

273

where

userapp.ear

is

the

path

and

the

name

of

the

EAR

file

that

contains

the

application

client,

name

is

the

name

of

the

parameter,

value

is

the

value

to

which

the

parameter

ID

is

set,

and

app

args

are

arguments

that

pass

to

the

application

client.

To

print

the

usage

information,

the

first

parameter

must

be

a

path

and

a

name

to

an

EAR

file,

-help,

or

-?.

All

other

parameters

are

optional

and

can

appear

in

any

order.

The

application

client

run

time

ignores

any

optional

parameters

that

do

not

begin

with

a

-CC

prefix,

and

passes

them

to

the

application

client.

Parameters

Supported

arguments

include:

-CCsoapConnectorPort

The

soap

connector

port.

If

you

do

not

specify

this

argument,

the

WebSphere

Application

Server

default

value

is

used.

-CCverbose

This

option

displays

additional

information

messages.

The

default

is

false.

-CCclasspath

A

class

path

value.

When

you

launch

an

application,

the

system

class

path

is

not

used.

If

you

want

to

access

classes

that

are

not

in

the

EAR

file

or

part

of

the

resource

class

paths,

specify

the

appropriate

class

path

here.

Multiple

paths

can

be

concatenated.

-CCjar

The

name

of

the

client

JAR

file

that

resides

within

the

EAR

file

for

the

application

you

wish

to

launch.

Use

this

argument

when

you

have

multiple

client

JAR

files

in

the

EAR

file.

-CCadminConnectorHost

Specifies

the

host

name

of

the

server

from

which

configuration

information

is

retrieved.

The

default

is

the

value

of

the

-CCBootstrapHost

parameter

or

the

value

of

the

local

host

if

the

-CCBootstrapHost

parameter

is

not

specified.

-CCadminConnectorPort

Indicates

the

port

number

that

the

administrative

client

function

should

use.

The

default

value

is

8880

for

SOAP

connections

and

2809

for

RMI

connections.

-CCadminConnectorType

Specifies

how

the

administrative

client

should

connect

to

the

server.

Specify

RMI

to

use

the

RMI

connection

type

or

specify

SOAP

to

use

the

SOAP

connection

type.

The

default

value

is

SOAP.

-CCadminConnectorUser

Administrative

clients

use

this

user

name

when

a

server

requires

authentication.

If

the

connection

type

is

SOAP,

and

security

is

enabled

on

the

server,

this

parameter

is

required.

The

SOAP

connector

does

not

prompt

for

authentication.

-CCadminConnectorPassword

The

password

for

the

user

name

that

the

-CCadminConnectorUser

parameter

specifies.

-CCaltDD

The

name

of

an

alternate

deployment

descriptor

file.

This

parameter

is

used

with

the

-CCjar

parameter

to

specify

the

deployment

descriptor

to

use.

Use

274

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

this

argument

when

a

client

jar

file

is

configured

with

more

than

one

deployment

descriptor.

Set

the

value

to

null

to

use

the

client

JAR

file

standard

deployment

descriptor.

-CCBootstrapHost

The

name

of

the

host

server

you

want

to

connect

to

initially.

The

format

is:

your.server.ofchoice.com

-CCBootstrapPort

The

server

port

number.

If

you

do

not

specify

this

argument,

the

WebSphere

Application

Server

default

value

is

used.

-CCproviderURL

Provides

bootstrap

server

information

that

the

initial

context

factory

can

use

to

obtain

an

initial

context.

WebSphere

Application

Server

initial

context

factory

can

use

either

a

CORBA

object

URL

or

an

IIOP

URL.

CORBA

object

URLs

are

more

flexible

than

IIOP

URLs

and

are

the

recommended

URL

format

to

use.

This

value

can

contain

more

than

one

bootstrap

server

address.

This

feature

can

be

used

when

attempting

to

obtain

an

initial

context

from

a

server

cluster.

You

can

specify

bootstrap

server

addresses,

for

all

servers

in

the

cluster,

in

the

URL.

The

operation

will

succeed

if

at

least

one

of

the

servers

is

running,

eliminating

a

single

point

of

failure.

The

address

list

does

not

process

in

a

particular

order.

For

naming

operations,

this

value

overrides

the

-CCBootstrapHost

and

-CCBootstrapPort

parameters.

An

example

of

a

CORBA

object

URL

specifying

multiple

systems

follows:

-CCproviderURL=corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany.com:2809

This

value

is

mapped

to

the

java.naming.provider.url

system

property.

-CCinitonly

Use

this

option

to

initialize

application

client

run

time

for

ActiveX

application

clients

without

launching

the

client

application.

The

default

is

false.

-CCtrace

Use

this

option

to

obtain

debug

trace

information.

You

might

need

this

information

when

reporting

a

problem

to

IBM

Service.

The

default

is

false.

-CCtracefile

The

name

of

the

file

to

write

trace

information.

The

default

is

to

output

to

the

console.

-CCpropfile

Name

of

a

properties

file

that

contains

launchClient

properties.

Specify

the

properties

without

the

-CC

prefix

in

the

file.

For

example:

verbose=true.

-CCsecurityManager

Enables

and

runs

the

WebSphere

Application

Server

with

a

security

manager.

The

default

is

disable.

-CCsecurityMgrClass

The

fully

qualified

name

of

a

class

that

implements

a

security

manager.

Only

use

this

argument

if

the

-CCsecurityManager

parameter

is

set

to

enable.

The

default

is

java.lang.SecurityManager.

-CCsecurityMgrPolicy

The

name

of

a

security

manager

policy

file.

Only

use

this

argument

if

the

-CCsecurityManager

parameter

is

set

to

enable.

When

you

enable

this

parameter,

the

java.security.policy

system

property

is

set.

The

default

is

<install_root>/

properties/client.policy.

Chapter

6.

Using

application

clients

275

-CCD

Use

this

option

to

have

the

WebSphere

Application

Server

set

the

specified

system

property

during

initialization.

Do

not

use

the

=

character

after

the

-CCD.

For

example:

-CCDcom.ibm.test.property=testvalue.

You

can

specify

multiple

-CCD

parameters.

The

general

format

of

this

parameter

is

-CCD<property

key>=<property

value>.

-CCexitVM

Use

this

option

to

have

the

WebSphere

Application

Server

call

System.exit()

after

the

client

application

completes.

The

default

is

false.

-CCdumpJavaNameSpace

Prints

out

the

Java

portion

of

the

WebSphere

Application

Server

Java

Naming

and

Directory

Interface

(JNDI)

name

space.

The

true

value

uses

the

short

format

which

prints

out

the

binding

name

and

the

type

of

the

object

bound

at

that

location.

The

long

value

uses

the

long

format

which

prints

out

the

binding

name,

bound

object

type,

local

object,

type,

and

string

representation

of

the

local

object,

for

example:

IORs,

and

string

values.

The

default

value

is

false.

-CCtraceMode

Specifies

the

trace

format

to

use

for

tracing.

If

the

valid

value,

basic,

is

not

specified

the

default

is

advanced.

Basic

tracing

format

is

a

more

compact

form

of

tracing.

The

following

examples

demonstrate

correct

syntax.

On

the

Windows

operating

system:

launchClient

c:\earfiles\myapp.ear

-CCBootstrapHost=myWASServer

-CCverbose=true

app_parm1

app_parm2

Specifying

the

directory

for

an

expanded

EAR

file

Each

time

launchClient

is

called,

it

extracts

the

EAR

file

to

a

random

directory

name

in

the

temporary

directory

on

your

hard

drive.

Then

it

sets

up

the

thread

ClassLoader

to

use

the

extracted

EAR

file

directory

and

JAR

files

included

in

the

Manifest.mf

client

JAR

file.

In

a

normal

J2EE

Java

client,

these

files

are

automatically

cleaned

up

after

the

application

exits.

This

cleanup

occurs

when

the

client

container

shutdown

hook

is

called.

To

avoid

extracting

the

EAR

file

(and

removing

the

temporary

directory)

each

time

launchClient

is

called,

complete

the

following

steps:

1.

Specify

a

directory

to

extract

the

EAR

file

by

setting

the

com.ibm.websphere.client.applicationclient.archivedir

Java

system

property.

If

the

directory

does

not

exist

or

is

empty,

the

EAR

file

is

extracted

normally.

If

the

EAR

file

was

previously

extracted,

the

launchClient

tool

reuses

the

directory.

2.

Delete

the

directory

before

running

the

launchClient

tool

again,

if

you

need

to

update

your

EAR

file.

When

you

call

the

launchClient

command,

it

extracts

the

new

EAR

file

to

the

directory.

If

you

do

not

delete

the

directory

or

change

the

system

property

value

to

point

to

a

different

directory,

launchClient

reuses

the

currently

extracted

EAR

file,

and

does

not

use

your

changed

EAR

file.

Note:

When

specifying

the

com.ibm.websphere.client.applicationclient.archivedir

property,

make

sure

that

the

directory

you

specify

is

unique

for

each

EAR

file

you

use.

For

example,

do

not

point

MyEar1.ear

and

MyEar2.ear

files

to

the

same

directory.

276

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Application

client

troubleshooting

tips

This

section

provides

some

debugging

tips

for

resolving

common

J2EE

application

client

problems.

To

use

this

troubleshooting

guide,

review

the

trace

entries

for

one

of

the

J2EE

application

client

exceptions,

and

then

locate

the

exception

in

the

guide.

Some

of

the

errors

in

the

guide

are

samples;

the

actual

error

you

receive

can

be

slightly

different

than

what

is

shown

here.

Also,

it

can

be

useful

to

rerun

the

launchClient

command

specifying

the

-CCverbose=true

option.

This

option

provides

additional

information

when

the

J2EE

application

client

run

time

is

initializing

Error:

java.lang.NoClassDefFoundError

Explanation

This

exception

is

thrown

when

Java

code

cannot

load

the

specified

class.

Possible

causes

v

Invalid

or

non-existent

class

v

Classpath

problem

v

Manifest

problem

Chapter

6.

Using

application

clients

277

Recommended

response

Check

to

determine

if

the

specified

class

exists

in

a

JAR

file

within

your

EAR

file.

If

it

does,

make

sure

the

path

for

the

class

is

correct.

For

example,

if

you

get

the

exception:

java.lang.NoClassDefFoundError:

WebSphereSamples.HelloEJB.HelloHome

ensure

the

class

HelloHome

exists

in

one

of

the

JAR

files

in

your

EAR

file.

If

it

exists,

ensure

the

path

for

the

class

is

WebSphereSamples.HelloEJB.

If

both

the

class

and

path

are

correct,

then

it

is

a

classpath

issue.

Most

likely,

you

do

not

have

the

failing

class

JAR

file

specified

in

the

client

JAR

file

manifest.

To

verify

this

situation,

perform

the

following

steps:

1.

Open

your

EAR

file

with

the

Application

Assembly

Tool

and

click

on

the

Application

Client.

2.

Add

the

names

of

the

other

JAR

files

in

the

EAR

file

to

the

Classpath

field.

This

exception

is

generally

caused

by

a

missing

EJB

module

name

from

the

Classpath

field.

If

you

have

multiple

JAR

files

to

enter

in

the

Classpath

field,

be

sure

to

separate

the

JAR

names

with

spaces.

If

you

still

have

the

problem,

you

have

a

situation

where

a

class

is

loaded

from

the

file

system

instead

of

the

EAR

file.

This

is

a

very

difficult

situation

to

debug

because

the

offending

class

is

not

the

one

specified

in

the

exception.

Instead,

another

class

is

loaded

from

the

file

system

before

the

one

specified

in

the

exception.

To

correct

this

problem,

review

the

classpaths

specified

with

the

-CCclasspath

option

and

the

classpaths

configured

with

the

Application

Client

Resource

Configuration

Tool,

or

the

Client

Container

Resource

Configuration

Scripting

tool

for

z/OS.

Look

for

classes

that

also

exist

in

the

EAR

file.

You

must

resolve

the

situation

where

one

of

the

classes

is

found

on

the

file

system

instead

of

in

the

.ear

file.

Remove

entries

from

the

classpaths,

or

include

the

.jar

files

and

classes

in

the

.ear

file

instead

of

referencing

them

from

the

file

system.

If

you

use

the

-CCclasspath

parameter

or

resource

classpaths

in

the

Application

Client

Resource

Configuration

Tool,

or

the

Client

Container

Resource

Configuration

Scripting

tool

for

z/OS,

and

you

have

configured

multiple

JAR

files

or

classes,

verify

they

are

separated

with

the

correct

character

for

your

operating

system.

Unlike

the

classpath

field

in

the

Application

Assembly

Tool,

these

classpath

fields

use

platform-specific

separator

characters,

usually

a

colon

or

a

semi-colon

(on

Windows

systems).

Note:

The

system

classpath

is

not

used

by

the

Application

Client

run

time

if

you

use

the

launchClient

batch

or

shell

files.

In

this

case,

the

system

classpath

would

not

cause

this

problem.

However,

if

you

load

the

launchClient

class

directly,

you

do

have

to

search

through

the

system

classpath

as

well.

278

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Error:

com.ibm.websphere.naming.CannotInstantiateObjectException:

Exception

occurred

while

attempting

to

get

an

instance

of

the

object

for

the

specified

reference

object.

[Root

exception

is

javax.naming.NameNotFoundException:

xxxxxxxxxx]

Explanation

This

exception

occurs

when

you

perform

a

lookup

on

an

object

that

is

not

installed

on

the

host

server.

Your

program

can

look

up

the

name

in

the

local

client

Java

Naming

and

Directory

Interface

(JNDI)

name

space,

but

received

a

NameNotFoundException

exception

because

it

is

not

located

on

the

host

server.

One

typical

example

is

looking

up

an

enterprise

bean

that

is

not

installed

on

the

host

server

that

you

access.

This

exception

might

also

occur

if

the

JNDI

name

you

configured

in

your

Application

Client

module

does

not

match

the

actual

JNDI

name

of

the

resource

on

the

host

server.

Possible

causes

v

Incorrect

host

server

invoked

v

Resource

is

not

defined

v

Resource

is

not

installed

v

Application

server

is

not

started

v

Invalid

JNDI

configuration

Recommended

response

If

you

are

accessing

the

wrong

host

server,

run

the

launchClient

command

again

with

the

-CCBootstrapHost

parameter

specifying

the

correct

host

server

name.

If

you

are

accessing

the

correct

host

server,

use

the

WebSphere

dumpnamespace

command

line

tool

to

see

a

listing

of

the

host

server

JNDI

name

space.

If

you

do

not

see

the

failing

object

name,

the

resource

is

either

not

installed

on

the

host

server

or

the

appropriate

application

server

is

not

started.

If

you

determine

the

resource

is

already

installed

and

started,

your

JNDI

name

in

your

client

application

does

not

match

the

global

JNDI

name

on

the

host

server.

Use

the

Application

Assembly

Tool

to

compare

the

JNDI

bindings

value

of

the

failing

object

name

in

the

client

application

to

the

JNDI

bindings

value

of

the

object

in

the

host

server

application.

They

must

match.

Error:

javax.naming.ServiceUnavailableException:

A

communication

failure

occurred

while

attempting

to

obtain

an

initial

context

using

the

provider

url:

″iiop://[invalidhostname]″.

Make

sure

that

the

host

and

port

information

is

correct

and

that

the

server

identified

by

the

provider

URL

is

a

running

name

server.

If

no

port

number

is

specified,

the

default

port

number

2809

is

used.

Other

possible

causes

include

the

network

environment

or

workstation

network

configuration.

Root

exception

is

org.omg.CORBA.INTERNAL:

JORB0050E:

In

Profile.getIPAddress(),

InetAddress.getByName[invalidhostname]

threw

an

UnknownHostException.

minor

code:

4942F5B6

completed:

Maybe

Explanation

This

exception

occurs

when

you

specify

an

invalid

host

server

name.

Chapter

6.

Using

application

clients

279

Possible

causes

v

Incorrect

host

server

invoked

v

Invalid

host

server

name

Recommended

response

Run

the

launchClient

command

again

and

specify

the

correct

name

of

your

host

server

with

the

-CCBootstrapHost

parameter.

Error:

javax.naming.CommunicationException:

Could

not

obtain

an

initial

context

due

to

a

communication

failure.

Since

no

provider

URL

was

specified,

either

the

bootrap

host

and

port

of

an

existing

ORB

was

used,

or

a

new

ORB

instance

was

created

and

initialized

with

the

default

bootstrap

host

of

″localhost″

and

the

default

bootstrap

port

of

2809.

Make

sure

the

ORB

bootstrap

host

and

port

resolve

to

a

running

name

server.

Root

exception

is

org.omg.CORBA.COMM_FAILURE:

WRITE_ERROR_SEND_1

minor

code:

49421050

completed:

No

Explanation

This

exception

occurs

when

you

run

the

launchClient

command

to

a

host

server

that

does

not

have

the

Application

Server

started.

You

also

receive

this

exception

when

you

specify

an

invalid

host

server

name.

This

situation

might

occur

if

you

do

not

specify

a

host

server

name

when

you

run

launchClient.

The

default

behavior

is

for

launchClient

to

run

to

localhost,

because

WebSphere

Application

Server

does

not

know

the

name

of

your

host

server.

This

default

behavior

only

works

when

you

are

running

the

client

on

the

same

computer

with

WebSphere

Application

Server

is

installed.

Possible

causes

v

Incorrect

host

server

invoked

v

Invalid

host

server

name

v

Invalid

reference

to

localhost

v

Application

server

is

not

started

v

Invalid

bootstrap

port

Recommended

response

If

you

are

not

running

to

the

correct

host

server,

run

the

launchClient

command

again

and

specify

the

name

of

your

host

server

with

the

-CCBootstrapHost

parameter.

Otherwise,

start

the

Application

Server

on

the

host

server

and

run

the

launchClient

command

again.

Error:

javax.naming.NameNotFoundException:

Name

comp/env/ejb

not

found

in

context

″java:″

Explanation

This

exception

is

thrown

when

the

Java

code

cannot

locate

the

specified

name

in

the

local

JNDI

name

space.

Possible

causes

v

No

binding

information

for

the

specified

name

v

Binding

information

for

the

specified

name

is

incorrect

v

Wrong

class

loader

was

used

to

load

one

of

the

program

classes

v

A

resource

reference

does

not

include

any

client

configuration

information

280

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Recommended

response

Open

the

EAR

file

with

the

Application

Assembly

Tool

and

check

the

bindings

for

the

failing

name.

Ensure

this

information

is

correct.

If

you

are

using

Resource

References,

open

the

EAR

file

with

the

Application

Client

Resource

Configuration

Tool,

and

make

sure

the

Resource

Reference

has

client

configuration

information

and

the

name

of

the

Resource

Reference

exactly

matches

the

JNDI

name

of

the

client

configuration.

If

it

is

correct,

you

might

have

a

class

loader

issue.

Error:

java.lang.ClassCastException:

Unable

to

load

class:

org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub

at

com.ibm.rmi.javax.rmi.PortableRemoteObject

.narrow(portableRemoteObject.java:269)

Explanation

This

exception

occurs

when

the

application

program

attempts

to

narrow

to

the

EJB

home

class

and

the

class

loaders

cannot

find

the

EJB

client

side

bindings.

Possible

causes

v

The

files,

*_Stub.class

and

_Tie.class,

are

not

in

the

EJB

.jar

file

v

Class

loader

could

not

find

the

classes

Recommended

response

Look

at

the

EJB

.jar

file

located

in

the

.ear

file

and

verify

the

class

contains

the

EJB

client

side

bindings.

These

are

class

files

whose

names

end

in

_Stub

and

_Tie.

If

these

files

are

not

present,

then

use

the

Application

Assembly

Tool

to

generate

the

binding

classes.

For

more

information,

see

article

Generating

deployment

code

for

modules.

If

the

binding

classes

are

in

the

EJB

.jar

file,

then

you

might

have

a

class

loader

issue.

Error:

WSCL0210E:

The

Enterprise

archive

file

[EAR

file

name]

could

not

be

found.

com.ibm.websphere.client.applicationclient.ClientContainerException:

com.ibm.etools.archive.exception.OpenFailureException

Explanation

This

error

occurs

when

the

application

client

run

time

cannot

read

the

Enterprise

Archive

(EAR)

file.

Possible

causes

The

most

likely

cause

of

this

error

is

that

the

system

cannot

find

the

EAR

file

cannot

be

found

in

the

path

specified

on

the

launchClient

command.

Recommended

response

Verify

that

the

path

and

file

name

specified

on

the

launchclient

command

are

correct.

If

you

are

running

on

the

Windows

operating

system

and

the

path

and

file

name

are

correct,

use

a

short

version

of

the

path

and

file

name

(8

character

file

name

and

3

character

extension).

Chapter

6.

Using

application

clients

281

The

launchClient

command

appears

to

hang

and

does

not

return

to

the

command

line

when

the

client

application

has

finished.

Explanation

When

running

your

application

client

using

the

launchClient

command

the

WebSphere

Application

Server

run

time

might

need

to

display

the

security

login

dialog.

To

display

this

dialog

the

WebSphere

Application

Server

run

time

creates

an

Abstract

Window

Toolkit

(AWT)

thread.

When

your

application

returns

from

its

main

method

to

the

application

client

run

time,

the

application

client

run

time

attempts

to

return

to

the

operating

system

and

end

the

Java

Virtual

Machine

code.

However,

since

there

is

an

AWT

thread,

the

Java

Virtual

Machine

code

will

not

end

until

System.exit

is

called.

Possible

causes

The

Java

Virtual

Machine

code

does

not

end

because

there

is

an

AWT

thread.

Java

code

requires

that

System.exit()

be

called

to

end

AWT

threads.

Recommended

response

v

Modify

your

application

to

call

System.exit(0)

as

the

last

statement.

v

Use

the

-CCexitVM=true

parameter

when

you

call

the

launchClient

command.

For

current

information

available

from

IBM

Support

on

known

problems

and

their

resolution,

see

the

IBM

Support

page.

IBM

Support

has

documents

that

can

save

you

time

gathering

information

needed

to

resolve

this

problem.

Before

opening

a

PMR,

see

the

IBM

Support

page.

282

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSC3NAD
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

Decide

if

a

Web

service

implementation

benefits

your

business

process.

This

topic

introduces

you

to

using

Web

services

that

are

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

WebSphere

Application

Server

supports

Web

services

that

are

developed

and

implemented

based

on

Web

Services

for

J2EE.

Use

Web

services

when

operating

across

a

variety

of

platforms,

including

the

J2EE

1.3

and

non-J2EE

platforms.

Web

services

benefit

your

e-business

solution

by

integrating

these

enterprise

systems,

especially

systems

that

have

developed

over

a

long

period

of

time.

Using

Web

services

makes

most

sense

if

your

application’s

clients

are

non-J2EE

applications,

unless

you

have

J2EE

applications

spread

across

the

Web.

It

is

recommended

that

you

use

J2EE

technologies

if

all

your

clients

are

J2EE

applications

because

performance

can

decrease

when

you

use

a

Web

service

in

a

J2EE

exclusive

environment.

Because

Web

services

are

easily

applied

to

existing

applications

and

information

technology

assets,

new

solutions

can

be

deployed

quickly

and

recomposed

to

address

new

opportunities.

As

Web

services

become

more

popular,

the

pool

of

services

grows,

promoting

development

of

more

robust

models

of

just-in-time

application

and

business

integration

over

the

Internet.

To

use

Web

services

applications

with

WebSphere

Application

Server:

1.

Plan

to

use

Web

services.

Review

the

Universal

Description,

Discovery,

and

Integration

(UDDI),

and

Web

Services

Invocation

Framework

concepts

to

learn

how

these

components

can

make

your

Web

services

plan

more

robust.

2.

Migrate

existing

Web

services.

3.

Develop

Web

services.

4.

Assemble

Web

services.

5.

Deploy

Web

services.

6.

Secure

Web

services.

7.

Tune

Web

services.

8.

Troubleshoot

Web

services.

The

following

is

an

example

of

how

a

business

might

use

Web

services.

The

owner

of

a

flower

shop

wants

to

start

receiving

orders

from

customers

through

the

Web.

She

starts

her

venture

by

finding

wholesale

flower

suppliers,

pricing

their

product,

and

completing

contracts

for

future

flower

orders.

Using

Web

services,

the

flower

shop

owner

can

find

wholesale

flower

suppliers.

One

way

she

finds

new

suppliers

is

to

use

a

UDDI

registry

to

search

for

potential

suppliers.

She

chooses

the

suppliers

and

the

registry

sends

back

information

on

how

to

contact

the

flower

distributors

that

meet

her

criteria.

©

Copyright

IBM

Corp.

2003

283

The

flower

shop

owner

can

request

price

lists

from

each

of

the

suppliers

by

obtaining

a

Web

Services

Description

Language

(WSDL)

file

for

each

potential

supplier.

The

WSDL

can

be

downloaded

from

the

supplier’s

Web

page,

received

through

email,

or

retrieved

from

the

supplier’s

UDDI

registry

entry.

The

WSDL

describes

the

procedure

call.

When

using

WebSphere

Application

Server,

the

procedure

call

is

a

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC),

which

helps

her

get

price

lists.

The

WSDL

file

also

specifies

the

Universal

Resource

Locator

(URL)

where

the

request

is

to

be

sent.

The

flower

shop

owner

now

has

to

compare

the

prices

she

received

back

from

each

supplier,

decide

which

suppliers

she

is

going

to

do

business

with,

and

make

arrangements

for

future

orders

to

be

filled.

The

ground

work

has

been

laid

for

the

flower

shop

to

sell

merchandise

through

the

Web

by

using

Web

services

to

communicate

with

suppliers

for

the

best

prices

and

complete

the

ordering

processes.

The

merchandise

price

lists

need

to

be

published

to

her

Web

site

and

she

needs

to

provide

a

mechanism

for

customers

to

order

flowers.

The

flower

supplier’s

Web

services

clients

are

deployed

on

the

flower

shop

server.

When

a

customer

makes

a

transaction

to

purchase

flowers

through

the

Web,

the

order

is

sent

to

the

supplier

through

JAX-RPC.

The

supplier

responds

by

sending

a

confirmation

with

the

order

number

and

shipping

date.

The

suppliers

maintain

the

inventory

and

the

flower

shop

owner

handles

billing

and

customer

order

management.

Similarly,

the

flower

shop

catalog

can

be

composed

automatically

from

the

catalogs

of

all

the

suppliers.

If

the

supplier

ships

directly

to

the

customer,

the

order

tracking

inquiries

can

pass

directly

to

the

supplier’s

order

tracking

system.

Web

services

can

also

be

used

by

the

supplier

to

send

invoices

for

orders

and

by

the

flower

shop

to

pay

the

supplier’s

invoices.

Processes

that

previously

required

forms

to

be

filled

out

manually,

and

faxed

or

mailed,

can

now

be

done

automatically,

saving

labor

costs

for

both

the

flower

shop

and

the

supplier.

Using

Web

services

is

beneficial

because

a

much

larger

inventory

is

made

available

to

the

flower

shop.

There

is

no

merchandise

maintenance

overhead,

but

the

flower

shop

can

offer

their

customers

products

that

they

otherwise

might

not

have.

Selling

flowers

through

the

Web

increases

capital

for

the

flower

shop

without

overhead

of

another

store

or

money

invested

into

additional

product.

For

a

more

detailed

scenario,

see

Web

services

scenario:

Overview

which

tells

the

story

of

a

fictional

online

garden

supply

retailer

named

Plants

by

WebSphere

and

how

they

incorporated

the

Web

services

concept.

Web

services

Web

services

are

self-contained,

modular

applications

that

you

can

describe,

publish,

locate,

and

invoke

over

a

network.

WebSphere

Application

Server

supports

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

A

typical

Web

services

scenario

is

a

business

application

requesting

a

service

from

a

given

URL

using

SOAP

messages

over

a

Hypertext

Transport

Protocol

(HTTP)

or

Java

Messaging

Service

(JMS)

transport.

The

service

receives

the

request,

processes

it,

and

returns

a

response.

Examples

of

a

simple

Web

service

include

weather

284

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

reports

and

stock

quotes.

The

method

call

is

synchronous,

that

is,

it

waits

until

the

result

is

available.

Transaction

Web

services,

supporting

quotes,

business-to-business

(B2B)

or

business-to-client

(B2C)

operations

include

airline

reservations

or

purchase

orders.

Web

services

are

Web

applications

that

allow

you

to

be

more

flexible

in

your

business

processes

by

integrating

with

applications

that

otherwise

would

not

communicate.

The

inner-library

loan

program

at

your

local

library

is

a

good

example

of

the

Web

services

concept

and

its

evolution.

The

Web

service

concept

existed

even

before

the

term;

the

concept

exploded

with

the

birth

of

the

Internet.

Before,

you

would

visit

your

library,

search

the

collections

and

check

out

your

books.

If

you

didn’t

find

the

book

you

wanted,

the

librarian

did

a

search

for

you

by

computer

or

phone

and

located

the

book

at

nearby

library.

The

librarian

ordered

the

book

for

you

and

you

picked

it

up

after

it

was

delivered

to

your

local

library.

By

incorporating

Web

services

applications,

you

can

streamline

your

library

visit.

Now,

you

can

search

the

local

library

collection

and

other

local

libraries

at

the

same

time.

When

other

libraries

provide

your

library

with

a

Web

service

to

search

their

collection

(the

service

could

have

been

provided

through

UDDI),

your

results

yield

their

resources

as

well.

Another

Web

service

application

might

enable

you

to

check

the

book

out

and

get

it

sent

to

your

home.

Using

Web

services

applications

saved

you

time

and

created

a

convenience

for

you,

as

well

as

freeing

the

librarian

to

do

other

business

tasks.

For

a

more

detailed

scenario,

see

Web

services

scenario:

Overview

which

tells

the

story

of

a

fictional

online

garden

supply

retailer

named

Plants

by

WebSphere

and

how

they

incorporated

the

Web

services

concept.

A

Web

service

can

be

the

service

itself

or

the

client

that

accesses

the

service.

Web

services

reflect

a

new,

service-oriented

architecture

approach

to

programming.

This

approach

is

based

on

the

idea

of

building

applications

by

discovering

and

implementing

network-available

services,

or

by

invoking

available

applications

to

accomplish

some

task.

Web

services

deliver

interoperability,

for

example,

the

ability

for

components

created

in

different

programming

languages

to

work

together

as

if

they

were

created

using

the

same

language.

Web

services

rely

on

existing

transport

technologies,

such

as

HTTP,

and

standard

data

encoding

techniques,

such

as

Extensible

Markup

Language

(XML),

for

invoking

the

implementation.

The

key

components

of

a

Web

service

are:

v

Web

Services

Description

Language

(WSDL)

WSDL

is

the

XML-based

file

that

describes

the

Web

service

and

allows

the

Web

service

request

to

bind

to

the

service.

v

SOAP

SOAP

is

the

XML-based

protocol

that

allows

the

Web

service

request

to

invoke

the

service.

v

Universal

Description,

Discovery

and

Integration

Protocol

(UDDI)

UDDI

is

the

registry

that

hosts

the

service

broker.

UDDI

is

similar

to

the

Yellow

Pages

in

a

phone

book.

SOAP

SOAP

is

a

specification

for

exchange

of

structured

information

in

a

decentralized,

distributed

environment.

As

such,

it

represents

the

main

way

of

communication

between

the

three

key

actors

in

a

service

oriented

architecture

(SOA):

service

provider,

service

requestor

and

service

broker.

Then

main

goal

of

its

design

is

to

be

simple

and

extensible.

A

SOAP

message

is

used

to

request

a

Web

service.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

285

SOAP

was

submitted

to

the

World

Wide

Web

Consortium

(W3C)

as

the

basis

of

the

eXtensible

Markup

Language

(XML)

Protocol

Working

Group

by

several

companies,

including

IBM

and

Lotus.

SOAP

is

an

XML-based

protocol

that

consists

of

three

parts:

an

envelope

that

defines

a

framework

for

describing

message

content

and

process

instructions,

a

set

of

encoding

rules

for

expressing

instances

of

application-defined

data

types,

and

a

convention

for

representing

remote

procedure

calls

and

responses.

SOAP

is

transport

protocol-independent

and

can

be

used

in

combination

with

a

variety

of

protocols.

In

Web

services

that

are

developed

and

implemented

for

use

with

WebSphere

Application

Server,

SOAP

is

used

in

combination

with

HyperText

Transport

Protocol

(HTTP),

HTTP

extension

framework,

and

Java

Messaging

Service

(JMS).

SOAP

is

also

operating

system

independent

and

not

tied

to

any

programming

language

or

component

technology.

Due

to

these

characteristics,

it

does

not

matter

what

technology

is

used

to

implement

the

client,

as

long

as

the

client

can

issue

XML

messages.

Similarly,

the

service

can

be

implemented

in

any

language,

as

long

as

it

can

process

XML

messages.

Also,

both

server

and

client

sides

can

reside

on

any

suitable

platform.

For

more

information

about

SOAP,

see

Web

services:

Resources

for

learning.

Planning

to

use

Web

services

based

on

Web

Services

for

J2EE

This

topic

discusses

how

to

plan

your

use

of

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2,

Enterprise

Edition

(J2EE)

specification.

Read

the

Web

services

scenario:

Overview

which

tells

the

story

of

a

fictional

online

garden

supply

retailer

named

Plants

by

WebSphere

and

how

they

incorporated

the

Web

services

concept.

To

plan

to

use

Web

services

based

on

Web

Services

for

J2EE:

1.

Design

Web

services

to

fit

your

e-business

solution.

Consider

what

you

want

to

accomplish

by

using

Web

services,

how

Web

services

fit

into

your

current

topology,

applications

and

programming

model.

Decide

how

the

Web

services

process

requests

on

the

server

and

how

the

clients

manage

and

use

the

Web

service.

Design

your

Web

services

for

reliability,

availability,

manageability

and

security.

For

example,

you

want

your

Web

services

to

process

a

transaction

in

a

reasonable

time

at

all

hours

of

the

day

and

provide

users

with

good

security

characteristics,

such

as

authentication

for

buyers.

Planning

to

use

Web

services

to

work

with

WebSphere

Application

Server

helps

to

meet

these

requirements.

To

support

Web

services,

extend

WebSphere

Application

Server

to

support

Web

services

standards.

For

interoperable

Web

services

running

on

platforms

supplied

by

multiple

vendors,

standards

are

essential.

2.

Decide

what

development

and

implementation

tools

to

use.

You

can

use

a

variety

of

manual

development

and

implementation

tasks.

Whether

you

have

an

existing

Web

service

to

implement

or

you

want

to

develop

your

own

from

a

Java

bean

or

enterprise

JavaBean

(EJB),

you

can

choose

different

tasks

respective

to

your

resources.

You

can

also

use

the

the

WebSphere

Application

Developer

Studio

to

complete

development

and

implementation

tasks.

286

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

See

Developing

Web

services

based

on

Web

Services

for

J2EE

for

information

about

developing

Web

services

based

on

the

Java

language

through

the

WebSphere

Application

Server.

To

read

more

about

the

WebSphere

Application

Developer

Studio

see

the

topic

Web

services

development

in

the

WebSphere

Application

Server

Developer

Studio

InfoCenter.

3.

Install

WebSphere

Application

Server.

4.

Review

Web

services

Samples.

Develop

a

Web

service.

Service-oriented

architecture

A

Service-oriented

architecture

(SOA)

is

a

collection

of

services

that

communicate

with

each

other,

for

example

passing

data

from

one

service

to

another

or

coordinating

an

activity

between

one

or

more

services.

Companies

have

longed

to

integrate

existing

systems

in

order

to

implement

Information

Technology

(IT)

support

for

business

processes

that

cover

the

entire

business

value

chain.

A

variety

of

designs

are

used,

ranging

from

rigid

point-to-point

electronic

data

interchange

(EDI)

interactions

to

Web

auctions.

By

using

the

Internet,

companies

make

their

IT

systems

available

to

internal

departments

or

external

customers,

but

the

interactions

are

not

flexible

and

are

without

standardized

architecture.

Because

of

this

increasing

demand

for

technologies

that

support

connecting

and

sharing

of

resources

and

data,

there

is

a

need

for

a

flexible,

standardized

architecture.

A

service-oriented

architecture

(SOA)

is

a

flexible

architecture

that

unifies

business

processes

by

structuring

large

applications

into

building

blocks,

or

small

modular

functional

units

or

services,

to

be

used

by

different

groups

of

people

in

and

outside

the

company.

The

building

blocks

can

be

one

of

three

roles:

service

provider,

service

broker,

or

service

requestor.

See

Web

services

approach

to

a

service-oriented

architecture

to

learn

more

about

these

roles.

Requirements

for

a

SOA

In

order

to

efficiently

use

a

SOA,

you

must

abide

by

the

following

requirements:

v

Interoperability

between

different

systems

and

programming

languages

.

The

most

important

basis

for

a

simple

integration

between

applications

on

different

platforms

is

a

communication

protocol,

which

is

available

for

most

systems

and

programming

languages.

v

Clear

and

unambiguous

description

language.

To

use

a

service

offered

by

a

provider,

it

is

not

only

necessary

to

be

able

to

access

the

provider

system,

but

the

syntax

of

the

service

interface

must

also

be

clearly

defined

in

a

platform-independent

fashion.

v

Retrieval

of

the

service.

To

allow

a

convenient

integration

at

design

time

or

even

system

run

time,

a

search

mechanism

is

required

to

retrieve

suitable

services.

The

services

should

be

classified

as

computer-accessible,

hierarchical

or

taxonomies

based

on

what

the

services

in

each

category

do

and

how

they

can

be

invoked.

Web

services

approach

to

a

service-oriented

architecture

Web

services

are

a

new

technology

that

implement

the

service-oriented

architecture

(SOA).

A

major

focus

of

Web

services

is

to

make

functional

building

blocks

accessible

over

standard

Internet

protocols

that

are

independent

from

platforms

and

programming

languages.

These

services

can

be

new

applications

or

just

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

287

wrapped

around

existing

legacy

systems

to

make

them

network-enabled.

A

service

can

rely

on

another

service

to

achieve

its

goals.

Each

SOA

building

block

can

play

one

or

more

of

three

roles:

v

Service

provider

The

service

provider

creates

a

Web

service

and

possibly

publishes

its

interface

and

access

information

to

the

service

registry.

Each

provider

must

decide

which

services

to

expose,

how

to

make

trade-offs

between

security

and

easy

availability,

how

to

price

the

services,

or,

if

they

are

free,

how

to

exploit

them

for

other

value.

The

provider

also

has

to

decide

what

category

the

service

should

be

listed

in

for

a

given

broker

service

and

what

sort

of

trading

partner

agreements

are

required

to

use

the

service.

v

Service

broker

The

service

broker,

also

known

as

service

registry,

is

responsible

for

making

the

Web

service

interface

and

implementation

access

information

available

to

any

potential

service

requestor.

The

implementer

of

the

broker

have

to

decide

about

the

scope

of

the

broker.

Public

brokers

are

available

all

over

the

Internet,

while

private

brokers

are

only

accessible

to

a

limited

audience,

for

example,

users

of

a

company

intranet.

Furthermore,

the

width

and

breadth

of

the

offered

information

has

to

be

decided.

Some

brokers

will

specialize

in

breadth

of

listings.

Others

offer

high

levels

of

trust

in

the

listed

services.

Some

cover

a

broad

landscape

of

services

and

others

focus

within

an

industry.

There

are

also

brokers

that

catalog

other

brokers.

Depending

on

the

business

model,

brokers

can

attempt

to

maximize

look-up

requests,

number

of

listings

or

accuracy

of

the

listings.

v

Service

provider

The

service

requestor

locates

entries

in

the

broker

registry

using

various

find

operations

and

then

binds

to

the

service

provider

in

order

to

invoke

one

of

its

Web

services.

Service

requester

Service

provider

Legacy

system

Service

broker

Client

Internet

12

3

.

Characteristics

of

the

Web

service

architecture

The

presented

SOA

employs

a

loose

coupling

between

the

participants,

which

provides

greater

flexibility

in

the

following

ways:

288

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

A

client

is

not

coupled

to

a

server,

but

to

a

service.

Therefore,

the

integration

of

the

server

takes

place

outside

the

scope

of

the

client

application

programs.

v

Old

and

new

functional

blocks,

or

applications

and

systems,

are

encapsulated

into

components

that

work

as

services.

v

Functional

components

and

their

interfaces

are

separated

allowing

new

interfaces

to

be

plugged

in

more

easily.

v

Within

complex

applications,

the

control

of

business

processes

can

be

isolated.

A

business

rule

engine

can

be

incorporated

to

control

the

workflow

of

a

defined

business

process.

Depending

on

the

state

of

the

workflow,

the

engine

calls

the

respective

services.

v

Services

can

be

incorporated

dynamically

during

run

time.

v

Bindings

are

specified

using

configuration

files

and

can

be

easily

adapted

to

new

needs.

Properties

of

a

service-oriented

architecture

The

service-oriented

architecture

offers

the

following

properties:

v

Web

services

are

self-contained.

On

the

client

side,

no

additional

software

is

required.

A

programming

language

with

XML

and

HTTP

client

support

is

enough

to

get

you

started.

On

the

server

side,

merely

a

Web

server

and

a

SOAP

server

are

required.

It

is

possible

to

Web

services

enable

an

existing

application

without

writing

a

single

line

of

code.

v

Web

services

are

self-describing.

Neither

the

client

nor

the

server

knows

or

cares

about

anything

besides

the

format

and

content

of

request

and

response

messages

(loosely

coupled

application

integration).

The

definition

of

the

message

format

travels

with

the

message;

no

external

metadata

repositories

or

code

generation

tool

are

required.

v

Web

services

can

be

published,

located,

and

invoked

across

the

Internet.

This

technology

uses

established

lightweight

Internet

standards

such

as

HTTP.

It

leverages

the

existing

infrastructure.

Some

additional

standards

that

are

required

to

do

so

include

SOAP,

WSDL,

and

UDDI.

v

Web

services

are

language-independent

and

interoperable.

Client

and

server

can

be

implemented

in

different

environments.

Existing

code

does

not

have

to

be

changed

in

order

to

be

Web

service

enabled.

In

this

redbook,

however,

we

assume

that

Java

is

the

implementation

language

for

both

the

client

and

the

server

side

of

the

Web

service.

v

Web

services

are

inherently

open

and

standard-based.

XML

and

HTTP

are

the

major

technical

foundation

for

Web

services.

A

large

part

of

the

Web

service

technology

has

been

built

using

open-source

projects.

Therefore,

vendor

independence

and

interoperability

are

realistic

goals

this

time.

v

Web

services

are

dynamic.

Dynamic

e-business

can

become

reality

using

Web

services

because,

with

UDDI

and

WSDL,

the

Web

service

description

and

discovery

can

be

automated.

v

Web

services

are

composable.

Simple

Web

services

can

be

aggregated

to

more

complex

ones,

either

using

workflow

techniques

or

by

calling

lower-layer

Web

services

from

a

Web

service

implementation.

Web

services

can

be

chained

together

to

perform

higher-level

business

functions.

This

shortens

development

time

and

enables

best-of-breed

implementations.

v

Web

services

build

on

proven

mature

technology.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

289

There

are

a

lot

of

commonalities,

as

well

as

a

few

fundamental

differences

to

other

distributed

computing

frameworks.

For

example,

the

transport

protocol

is

text

based

and

not

binary.

v

Web

services

are

loosely

coupled.

Traditionally,

application

design

has

depended

on

tight

interconnections

at

both

ends.

Web

services

require

a

simpler

level

of

coordination

that

allows

a

more

flexible

re-configuration

for

an

integration

of

the

services

in

question.

v

Web

services

provide

programmatic

access.

The

approach

provides

no

graphical

user

interface;

it

operates

at

the

code

level.

Service

consumers

need

to

know

the

interfaces

to

Web

services

but

do

not

need

to

know

the

implementation

details

of

services.

v

Web

services

provide

the

ability

to

wrap

existing

applications.

Already

existing

stand-alone

applications

can

easily

be

integrated

into

the

service-oriented

architecture

by

implementing

a

Web

service

as

an

interface.

Web

services

business

models

supported

The

properties

and

benefits

of

using

a

service-oriented

architecture

(SOA)

such

as

Web

services

is

well

suited

for

binding

small

modules

that

perform

independent

tasks

within

a

highly

heterogeneous

e-business

model.

Web

services

can

be

easily

wrapped

around

existing

applications

in

your

business

model

and

plugged

into

different

business

processes.

For

connecting

to

a

large

monolithic

system

that

does

not

allow

the

implementation

of

different

flexible

business

processes,

other

approaches

might

be

better

suited,

for

example,

to

satisfy

specialized

features,

such

as

performance

or

security.

The

following

business

models

are

easily

implemented

by

using

an

architecture

including

Web

services:

v

Business

information

Sharing

of

information

with

consumers

or

other

businesses.

Web

services

can

be

used

to

expand

the

reach

through

such

services

as

news

streams,

local

weather

reports,

integrated

travel

planning,

intelligent

agents,

and

so

forth.

v

Business

integration

Providing

transactional,

fee-based

services

for

customers.

A

global

value

network

of

suppliers

can

be

easily

created.

Web

services

can

be

implemented

in

auctions,

e-marketplaces,

reservation

systems,

and

so

forth.

v

Business

process

externalization

Web

services

can

be

used

to

model

value

chains

by

dynamically

integrating

processes

to

a

new

solution

within

an

organizational

unit

or

even

with

those

of

other

e-businesses.

This

can

be

achieved

by

dynamically

linking

internal

applications

to

new

partners

and

suppliers,

to

offer

their

services

to

complement

internal

services.

To

see

how

these

models

are

implemented

using

all

aspects

of

Web

services,

see

Web

services

scenario:

Overview

which

tells

the

story

of

a

fictional

online

garden

supply

retailer

named

Plants

by

WebSphere

and

how

they

incorporate

the

Web

services

concept.

290

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Migrating

Apache

SOAP

Web

services

to

Web

Services

for

J2EE

If

you

have

used

Web

services

based

on

Apache

SOAP

in

WebSphere

Application

Server

Version

4.0.x

through

Version

5.0.2,

and

now

want

to

develop

and

implement

Web

services

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification,

you

need

to

migrate

your

Version

4.0

and

5.0

client

applications.

To

migrate

these

client

applications

according

to

the

Web

Services

for

J2EE

standards:

1.

Plan

your

migration

strategy.

There

are

two

ways

you

can

port

an

Apache

SOAP

client

to

Java

API

for

XML-based

RPC

(JAX-RPC)

Web

services

client:

v

If

you

have,

or

can

create,

a

Web

Services

Description

Language

(WSDL)

document

for

the

service,

consider

using

the

WSDL2Java

command

tool

to

generate

bindings

for

the

Web

service.

It

is

more

work

to

adapt

an

Apache

SOAP

client

to

use

the

generated

JAX-RPC

bindings,

but

the

resulting

client

code

is

more

robust

and

easier

to

maintain.

To

follow

this

path,

see

Develop

a

Web

services

client

based

on

Web

Services

for

J2EE.

v

If

you

do

not

have

a

WSDL

document

for

the

service,

do

not

expect

the

service

to

change,

and

you

want

to

port

the

Apache

SOAP

client

with

a

minimal

work,

you

can

convert

the

code

to

use

the

JAX-RPC

dynamic

invocation

interface

(DII),

which

is

similar

to

the

Apache

SOAP

APIs.

The

DII

APIs

do

not

use

WSDL

or

generated

bindings.

You

should

be

aware

that

since

JAX-RPC

does

not

specify

a

framework

for

user-written

serializers,

the

JAX-RPC

does

not

support

the

use

of

custom

serializers.

If

your

application

cannot

conform

to

the

default

mapping

between

Java,

WSDL,

and

XML

supported

by

WebSphere

Application

Server,

you

should

not

attempt

to

migrate

the

application.

The

remainder

of

this

topic

assumes

that

you

have

decided

to

use

the

JAX-RPC

DII

APIs.

2.

Review

the

GetQuote

sample.

There

is

a

Web

services

migration

sample

in

the

Samples

Gallery.

This

sample

is

located

in

the

GetQuote.java

file,

originally

written

for

Apache

SOAP,

and

includes

an

explanation

about

the

changes

needed

to

migrate

to

the

JAX-RPC

DII

interfaces.

3.

Convert

the

client

application

from

Apache

SOAP

to

JAX-RPC

DII

The

Apache

SOAP

API

and

JAX-RPC

DII

API

structures

are

similar.

You

can

instantiate

and

configure

a

call

object,

set

up

the

parameters,

invoke

the

operation,

and

process

the

result

in

both.

You

can

create

a

generic

instance

of

a

Service

object

with

javax.xml.rpc.Service

service

=

ServiceFactory.newInstance().createService(new

QName(""));

in

JAX-RPC.

a.

Create

the

call

object.

An

instance

of

the

call

object

is

created

by

org.apache.soap.rpc.Call

call

=

new

org.apache.soap.rpc.Call

()

in

Apache

SOAP.

An

instance

of

the

call

object

is

created

by

java.xml.rpc.Call

call

=

service.createCall();

in

JAX-RPC.

b.

Set

the

endpoint

URI.

The

target

URI

for

the

operation

is

passed

as

a

parameter

to

call.invoke:

call.invoke("http://...",

"");

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

291

in

Apache

SOAP.

The

setTargetEndpointAddress

method

is

used

as

a

parameter

to

call.setTargetEndpointAddress("http://...");

in

JAX-RPC.

Apache

SOAP

has

a

setTargetObjectURI

method

on

the

call

object

that

contains

routing

information

for

the

request.

JAX-RPC

has

no

equivalent

method.

The

information

in

the

targetObjectURI

is

included

in

the

targetEndpoint

URI

for

JAX-RPC.

c.

Set

the

operation

name.

The

operation

name

is

configured

on

the

call

object

by

call.setMethodName("opName");

in

Apache

SOAP.

The

setOperationName

method,

which

accepts

a

QName

instead

of

a

String

parameter,

is

used

in

JAX-RPC

as

follows:

call.setOperationName(new

javax.xml.namespace.Qname("namespace",

"opName"));

d.

Set

the

encoding

style.

The

encoding

style

is

configured

on

the

call

object

by

call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);

in

Apache

SOAP.

The

encoding

style

is

set

by

a

property

of

the

call

object

call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY,

"http://schemas.xmlsoap.org/soap/encoding/");

in

JAX-RPC.

e.

Declare

the

parameters

and

set

the

parameter

values.

Apache

SOAP

parameter

types

and

values

are

described

by

parameter

instances,

which

are

collected

into

a

Vector

and

set

on

the

call

object

before

the

call,

for

example:

Vector

params

=

new

Vector

();

params.addElement

(new

org.apache.soap.rpc.Parameter(name,

type,

value,

encodingURI));

//

repeat

for

additional

parameters...

call.setParams

(params);

For

JAX-RPC,

the

call

object

is

configured

with

parameter

names

and

types

without

providing

their

values,

for

example:

call.addParameter(name,

xmlType,

mode);

//

repeat

for

additional

parameters

call.setReturnType(type);

Where

v

name

(type

java.lang.String)

is

the

name

of

the

parameter

v

xmlType

(type

javax.xml.namespace.QName)

is

the

XML

type

of

the

parameter

v

mode

(type

javax.xml.rpc.ParameterMode)

the

mode

of

the

parameter,

for

example,

IN,

OUT,

or

INOUT
f.

Make

the

call.

The

operation

is

invoked

on

the

call

object

by

org.apache.soap.Response

resp

=

call.invoke(endpointURI,

"");

in

Apache

SOAP.

292

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

parameter

values

are

collected

into

an

array

and

passed

to

call.invoke

as

follows:

Object

resp

=

call.invoke(new

Object[]

{parm1,

parm2,...});

in

JAX-RPC.

g.

Check

for

faults.

You

can

check

for

a

SOAP

fault

on

the

invocation

by

checking

the

response:

if

resp.generatedFault

then

{

org.apache.soap.Fault

f

=

resp.getFault;

f.getFaultCode();

f.getFaultString();

}

in

Apache

SOAP.

A

java.rmi.RemoteException

is

thrown

in

JAX-RPC

if

a

SOAP

fault

occurs

on

the

invocation.

try

{

...

call.invoke(...)

}

catch

(java.rmi.RemoteException)

...

h.

Retrieve

the

result.

In

Apache

SOAP,

if

the

invocation

was

successful

and

returns

a

result,

it

can

be

retrieved

from

the

Response

object:

Parameter

result

=

resp.getReturnValue();

return

result.getValue();

In

JAX-RPC,

the

result

of

invoke

is

the

returned

object

when

no

exception

is

thrown:

Object

result

=

call.invoke(...);

...

return

result;

Developing

a

Web

services

client

based

on

Web

Services

for

J2EE.

Test

the

Web

services-enabled

clients.

Developing

Web

services

based

on

Web

Services

for

J2EE

This

topic

explains

how

to

develop

a

Web

service

using

the

Web

Services

for

Java

2,

Enterprise

Edition

(J2EE)

specification.

Web

services

are

structured

in

a

service-oriented

architecture

(SOA)

that

makes

integrating

your

business

and

e-commerce

systems

more

flexible.

For

more

information

about

when

and

how

you

should

to

use

Web

services

see

Using

Web

services

based

on

Web

Services

for

J2EE.

You

can

read

about

several

concepts,

including

what

is

Web

services,

SOAP,

WSDL,

Web

Services

for

J2EE

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC).

If

you

would

like

to

review

a

scenario

where

Web

services

are

used,

see

Web

services

scenario:

Overview.

WebSphere

Application

Server

uses

Web

services

standards

developed

for

the

Java

language

under

the

Java

Community

Process

(JCP).

These

standards

include

the

Web

Services

for

J2EE

and

JAX-RPC

specifications.

You

can

also

use

the

WebSphere

Studio

Application

Developer

Version

5.1

graphical

user

interface

development

tools

to

develop

Web

services

that

integrate

with

WebSphere

Application

Server.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

293

Before

you

develop

a

Web

service

you

need

to

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment

and

Install

the

Web

Services

Development

Kit

for

z/OS.

Follow

the

Example:

Developing

Web

services

based

on

Web

Services

for

J2EE

for

a

step-by-step

look

at

this

task.

You

can

develop

a

Web

service

based

on

Web

Services

for

J2EE

in

one

of

four

ways:

1.

Develop

a

Web

service

using

a

Java

bean.

2.

Develop

a

Web

service

using

a

stateless

session

enterprise

bean.

3.

Develop

a

Web

service

with

an

existing

WSDL

file

using

a

Java

bean.

4.

Develop

a

Web

service

with

an

existing

WSDL

file

using

a

stateless

session

enterprise

bean.

Assemble

the

Web

service.

Example:

Developing

Web

services

based

on

Web

Services

for

J2EE

This

example

takes

you

through

the

steps

to

develop

a

Web

service

from

an

enterprise

JavaBean

(EJB)

implementation.

The

development

process

is

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

1.

Select

the

EJB

or

Java

bean

implementation

that

you

want

to

enable

as

a

Web

service.

The

implementation

must

meet

the

following

Web

Services

for

J2EE

specification

requirements:

v

It

must

have

methods

that

can

be

mapped

to

a

Service

Endpoint

Interface.

See

step

2

for

more

information.

v

It

must

be

a

stateless

session

EJB

or

a

Java

bean

without

client-specific

state,

since

the

implementation

bean

might

be

selected

to

process

a

request

from

any

client.

If

a

client-specific

state

is

required,

a

client

identifier

must

be

passed

as

a

parameter

of

the

Web

service

operation.

The

selected

methods

of

an

EJB

must

not

have

a

transaction

attribute

of

Mandatory,

because

there

is

no

standard

for

Web

services

transactions

at

this

time.

A

Java

bean

in

a

Web

container

requires

the

following:

–

A

public

default

constructor

–

Exposed

public

methods

–

It

must

not

save

a

client-specific

state

between

method

calls

–

It

must

be

a

public,

non-final,

and

non-abstract

class

–

It

must

not

define

a

finalize()

method

2.

Develop

a

Service

Endpoint

Interface.

Developing

a

Web

service

requires

a

Service

Endpoint

Interface.

If

you

are

using

an

EJB

implementation,

develop

a

Service

Endpoint

Interface

from

an

EJB

remote

interface.

If

you

are

using

a

Java

bean

implementation,

develop

a

Service

Endpoint

Interface

for

a

Java

bean

implementation.

3.

Develop

a

WSDL

file.

4.

Develop

deployment

descriptor

templates.

294

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

you

are

using

an

EJB

implementation,

develop

Web

services

deployment

descriptor

templates

from

an

EJB

implementation.

If

you

are

using

a

Java

bean

implementation,

develop

Web

services

deployment

descriptor

templates

for

a

Java

bean

implementation.

5.

Configure

the

deployment

descriptors.

By

setting

the

ejb-link

or

servlet-link

values

of

the

service-impl-bean

elements

you

can

link

to

the

EJB

or

Java

bean

that

implements

the

service.

Configure

the

webservices.xml

deployment

descriptor.

Configure

the

ibm-webservices-bnd.xmi

deployment

descriptor.

6.

Assemble

a

JAR

file

or

Assemble

a

WAR

file.

7.

Assemble

an

EAR

file

from

a

Jar

file

or

Assemble

an

EAR

file

from

a

WAR

file.

8.

Enable

the

Web

service-enabled

EAR

file.

This

step

only

applies

if

you

are

using

an

EJB

implementation.

9.

Deploy

the

Web

service

application.

10.

Publish

the

WSDL

file.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

295

Web

Services

for

J2EE

The

Web

services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification

defines

the

programming

model

and

run-time

architecture

for

implementing

Web

services

based

on

the

Java

language.

Another

name

for

Web

Services

for

J2EE

is

the

Java

Specification

Requirements

(JSR)

109.

The

specification

includes

open

standards

for

developing

and

implementing

Web

services.

WebSphere

Application

Server

Versions

5.0.2

and

later

use

Web

Services

for

J2EE

as

the

standard

for

developing

and

implementing

Web

services.

Before

Version

5.0.2,

WebSphere

Application

Server

developed

and

implemented

Web

services

based

on

Apache

SOAP.

Web

Services

for

J2EE

focuses

on

eXtensible

Markup

Language

(XML)

remote

procedure

call

(RPC)

and

the

Java

language,

including

representing

XML-based

interface

definitions

in

the

Java

language;

Java

language

definitions

in

XML-based

definition

languages,

such

as

SOAP,

and

assembling.

Service

Enpoint

Interface class

WDSLEJB

Options:

-server-side EJB

-META-INF-only

Package EJB

in EAR

1 2
3

7

5

6

9
8

Java2WDSL

4

WSDL2Java

Manually

create

endptEnabler

Install

application

EJB Jar

EJB Jar

Configured

Web services

deployment descriptor

Mapping

deployment descriptor

IBM binding

Web services

deployment descriptor

Mapping

deployment descriptor

IBM binding

EJB

Service Endpoint
Interface class

WSDL

Web services
deployment
descriptor

J2EE EAR

J2EE EAR

WebSphere Application

Server Version 5.0.x

Add Service Endpoint Interface, WSDL, deployment

descriptors to EJB JAR META-INF directory

EJB Jar

EJB Jar

Web services

support

Enable

router servlet

J2EE EAR

EJB Jar

Enable

router servlet

J2EE WAR

J2EE WAR

EJB

Service Endpoint
Interface class

WSDL

Web services
deployment
descriptor

EJB

Service Endpoint
Interface class

WSDL

Web services
deployment
descriptor

EJB

Service Endpoint
Interface class

WSDL

Web services
deployment
descriptor

296

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Web

Services

for

J2EE

is

the

preferred

platform

for

Web-based

programming

because

it

provides

open

standards

allowing

different

types

of

languages,

operating

systems

and

software

to

communicate

seamlessly

through

the

Internet.

In

order

to

achieve

the

benefits

of

using

Web

Services

for

J2EE,

the

Web

services

that

you

want

to

communicate

with

(provided

by

other

sources),

must

also

be

based

on

the

Java

language.

These

other

Web

services

can

use

other

operating

systems

and

languages,

but

the

Web

service

itself

must

be

based

on

the

Java

language.

For

a

Java

application

to

act

as

Web

service

client,

a

mapping

between

the

Web

Services

Description

Language

(WSDL)

file

and

the

Java

application

must

exist.

The

mapping

is

defined

by

the

Java

API

for

XML-based

RPC

(JAX-RPC)

specification.

You

can

use

a

Java

component

to

implement

a

Web

service

by

specifying

the

component’s

interface

and

binding

information

in

the

WSDL

file

and

designing

the

application

server

infrastructure

to

accept

the

service

request.

This

entire

process

encompassed

is

based

on

the

Web

Services

for

J2EE

specification.

Using

Web

Services

for

J2EE

in

WebSphere

Application

Server

is

based

on

J2EE

1.3.

The

same

standards

are

included

in

J2EE

1.4.

To

review

the

entire

Web

Services

for

J2EE

specification,

see

Web

services:

Resources

for

learning.

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

The

Java

API

for

XML-based

RPC

(JAX-RPC)

specification

enables

Java

language

developers

to

develop

SOAP-based

interoperable

and

portable

Web

services.

JAX-RPC

provides

core

APIs

for

developing

and

deploying

Web

services

on

a

Java

platform

and

is

a

required

part

of

the

J2EE

1.4

platform.

JAX-RPC

Web

services

can

also

be

developed

and

deployed

on

J2EE

1.3

containers.

The

JAX-RPC

standard

covers

the

programming

model

and

bindings

for

using

Web

Services

Description

Language

(WSDL)

for

Web

services

in

the

Java

language.

JAX-RPC

defines

the

mappings

between

the

WSDL

port

types

and

the

Java

interfaces,

as

well

as

between

Java

language

and

eXtensible

Markup

Language

(XML)

schema

types.

To

learn

more

about

JAX-RPC

see

Web

services:

Resources

for

learning.

Artifacts

used

to

develop

Web

services

based

on

Web

Services

for

J2EE

Development

artifacts

enable

an

enterprise

bean

or

a

Java

bean

module

to

be

a

Web

service.

This

topic

describes

artifacts

used

to

develop

Web

services

that

are

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

To

create

a

Web

service

from

an

enterprise

bean

or

a

Java

bean

module,

the

following

files

are

added

to

the

respective

Java

archive

(JAR)

or

Web

archive

(WAR)

modules

at

assembly

time:

v

Web

Services

Description

Language

(WSDL)

eXtensible

Markup

Language

(XML)

file

The

WSDL

XML

file

describes

the

Web

service

being

implemented.

v

Service

Endpoint

Interface

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

297

A

Service

Endpoint

Interface

is

the

Java

interface

corresponding

to

the

Web

service

port

type

implemented.

The

Service

Endpoint

Interface

is

defined

by

the

WSDL

1.1

W3C

Note.

v

webservices.xml

The

webservices.xml

file

contains

the

J2EE

Web

service

deployment

descriptor

specifying

how

the

Web

service

is

implemented.

The

webservices.xml

file

is

defined

in

the

Web

Services

for

J2EE

specification

available

through

Web

services:

Resources

for

learning

v

ibm-webservices-bnd.xmi

This

file

contains

WebSphere

product-specific

deployment

information

and

is

defined

in

ibm-webservices-bnd.xmi

assembly

properties.

v

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

file

The

JAX-RPC

mapping

deployment

descriptor

specifies

how

Java

elements

are

mapped

to

and

from

WSDL

file

elements.

The

following

files

are

added

to

an

application

client,

enterprise

JavaBean

(EJB),

or

Web

module

to

permit

J2EE

client

access

to

Web

services:

v

WSDL

file

The

WSDL

file

is

provided

by

the

Web

service

implementer.

v

Java

interfaces

for

the

Web

service

The

Java

interfaces

are

generated

from

the

WSDL

file

as

specified

by

the

JAX-RPC

specification.

These

bindings

are

the

Service

Endpoint

Interface

based

on

the

WSDL

port

type,

or

the

service

interface,

which

is

based

on

the

WSDL

service.

v

webservicesclient.xml

The

webservicesclient.xml

file

is

the

client-side

deployment

descriptor

describing

the

services

being

accessed.

The

webservicesclient.xml

file

is

defined

in

the

Web

Services

for

J2EE

specification,

available

through

Web

services:

Resources

for

learning.

v

ibm-webservicesclient-bnd.xmi

This

file

contains

WebSphere

product-specific

deployment

information

such

as

security

information.

v

Other

JAX-RPC

binding

files

Additional

JAX-RPC

binding

files

that

support

the

client

application

in

mapping

SOAP

to

Java

language

are

generated

from

WSDL

by

the

WSDL2Java

command

tool.

Mapping

between

Java

language,

WSDL

and

XML

This

topic

contains

the

mappings

between

the

Java

language

and

eXtensible

Markup

Language

(XML)

technologies,

including

XML

Schema,

Web

Services

Description

Language

(WSDL)

and

SOAP,

supported

by

WebSphere

Application

Server.

Most

of

these

mappings

are

specified

by

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specification.

Some

mappings

that

are

optional

or

unspecified

in

JAX-RPC

are

also

supported.

There

are

references

to

the

JAX-RPC

specification

through

this

topic.

You

can

review

the

JAX-RPC

specification

through

Web

services:

Resources

for

learning.

The

IBM

Web

Services

Developer

Kit

for

z/OS

contains

the

Java2WSDL

and

WSDL2Java

command-line

tools

needed

for

developing

and

implementing

Web

services.

See

Installing

the

IBM

Web

Services

Developer

Kit

for

z/OS

to

start

using

the

tool.

298

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Notational

conventions

The

following

table

specifies

the

namespace

prefixes

and

corresponding

namespaces

used.

Namespace

prefix

Namespace

xsd

http://www.w3.org/2001/XMLSchema

xsi

http://www.w3.org/2001/XMLSchema-instance

soapenc

http://schemas.xmlsoap.org/soap/encoding/

wsdl

http://schemas.xmlsoap.org/wsdl/

wsdlsoap

http://schemas.xmlsoap.org/wsdl/soap/

ns

user

defined

namespace

apache

http://xml.apache.org/xml-soap

wasws

http://websphere.ibm.com/webservices/

Detailed

mapping

information

The

following

sections

identify

the

supported

mappings,

including:

v

Java-to-WSDL

mapping

v

WSDL-to-Java

mapping

v

Mapping

between

WSDL

and

SOAP

messages

Java-to-WSDL

mapping

This

section

summarizes

the

Java-to-WSDL

mapping

rules.

The

Java-to-WSDL

mapping

rules

are

used

by

the

Java2WSDL

command

tool

for

bottom-up

processing.

In

bottom-up

processing,

an

existing

Java

service

implementation

is

used

to

create

a

WSDL

file

defining

the

Web

service.

The

generated

WSDL

file

can

require

additional

manual

editing

for

the

following

reasons:

v

Not

all

Java

classes

and

constructs

have

mappings

to

WSDL.

For

example,

Java

classes

that

do

not

comply

with

the

Java

bean

specification

rules

might

not

map

to

a

WSDL

construct.

v

Some

Java

classes

and

constructs

have

multiple

mappings

to

WSDL.

For

example,

a

java.lang.String

class

can

be

mapped

to

either

an

xsd:string

or

soapenc:string.

The

Java2WSDL

command

chooses

one

of

these

mappings,

but

the

WSDL

file

must

be

edited

if

a

different

mapping

is

desired.

v

There

are

multiple

ways

to

generate

WSDL

constructs.

For

example,

the

part

element

in

the

wsdl:message

can

be

generated

with

a

type

or

element

attribute.

The

Java2WSDL

command

makes

an

informed

choice

based

on

the

settings

of

the

-style

and

-use

options.

v

The

WSDL

file

describes

the

instance

data

elements

sent

in

the

SOAP

message.

If

you

want

to

modify

the

names

or

format

used

in

the

message,

the

WSDL

file

must

be

edited.

For

example,

write

a

bean

property

value

as

an

attribute

instead

of

an

element.

v

The

WSDL

file

requires

editing

if

header

or

attachment

support

is

desired.

v

The

WSDL

file

requires

editing

if

a

multipart

WSDL,

one

using

wsdl:import,

is

desired.

For

simple

services,

the

generated

WSDL

file

is

sufficient.

For

complicated

services,

the

generated

WSDL

file

is

a

good

starting

point.

General

issues

v

Package

to

namespace

mapping

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

299

The

JAX-RPC

specification

does

not

specify

the

default

mapping

of

Java

package

names

to

XML

namespaces.

The

JAX-RPC

specification

does

specify

that

each

Java

package

must

map

to

a

single

XML

namespace.

Likewise,

each

XML

namespace

must

map

to

a

single

Java

package.

A

default

mapping

algorithm

is

provided

that

constructs

the

namespace

by

reversing

the

names

of

the

Java

package

and

adding

an

http://

prefix.

For

example,

a

package

named,

com.ibm.webservice,

is

mapped

to

the

namespace

http://webservice.ibm.com.

The

default

mapping

between

XML

namespaces

and

Java

package

names

can

be

overridden

using

the

-NStoPkg

and

-PkgtoNS

options

of

the

WSDL2Java

and

Java2WSDL

commands.

v

Identifier

mapping

Java

identifiers

are

mapped

directly

to

WSDL

file

and

XML

identifiers.

Java

bean

property

names

are

mapped

to

the

WSDL

file

and

XML

identifiers.

For

example,

a

Java

bean,

with

getInfo

and

setInfo

methods,

maps

to

an

XML

construct

with

the

name,

info.

The

Service

Endpoint

Interface

method

parameter

names,

if

available,

are

mapped

directly

to

the

XML

identifiers.

See

the

WSDL2Java

command

-implClass

option

for

more

details.

v

WSDL

construction

summary

The

following

table

summarizes

the

mapping

from

a

Java

construct

to

the

related

WSDL

and

XML

construct.

Java

construct

WSDL

and

XML

construct

Service

Endpoint

Interface

wsdl:portType

Method

wsdl:operation

Parameters

wsdl:input,

wsdl:message,

wsdl:part

(1)

Return

wsdl:output,

wsdl:message,

wsdl:part

(1)

Throws

wsdl:fault,

wsdl:message,

wsdl:part

(1)

Primitive

types

xsd

and

soapenc

simple

types

Java

beans

xsd:complexType

Java

bean

properties

Nested

xsd:elements

of

xsd:complexType

Arrays

JAX-RPC

defined

array

xsd:complexType

User

defined

exceptions

xsd:complexType

Note:

The

generated

WSDL

file

is

affected

by

the

-style

and

-use

options.

A

wsdl:binding

that

conforms

to

the

generated

wsdl:portType

is

generated.

The

style

and

use

constructs

of

the

wsdl:binding

are

determined

from

the

-style

and

-use

options.

A

wsdl:service

containing

a

port

that

references

the

generated

wsdl:binding

is

generated.

The

names

and

values

of

the

wsdl:service

are

controlled

by

the

Java2WSDL

command

options.

v

Style

and

use

Use

the

-style

and

-use

options

to

generate

different

kinds

of

WSDL

files.

The

four

supported

combinations

are:

–

-style

RPC

-use

ENCODED

–

-style

DOCUMENT

-use

LITERAL

–

-style

RPC

-use

LITERAL

–

-style

DOCUMENT

-use

LITERAL

-wrapped

false

The

-use

LITERAL

option

affects

the

generated

WSDL

file

in

the

following

ways:

–

The

soap:body

elements

in

the

wsdl:binding

are

specified

as

use=″literal″.

300

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

The

soap:fault

elements

in

the

wsdl:binding

are

specified

as

use=″literal″.

–

The

soap

encoded

types

are

not

used.

–

The

soap

encoded

array

style

is

not

used.

The

maxOccurs

attribute

is

used

to

indicate

arrays.

The

-use

ENCODED

option

affects

the

generated

WSDL

file

in

the

following

ways:

–

The

soap:body

elements

in

the

wsdl:binding

are

specified

as

use=″encoded″

and

the

encodingStyle

is

set.
–

The

soap:fault

elements

in

the

wsdl:binding

are

specified

as

use=″encoded″

and

the

encodingStyle

is

set.

The

-style

RPC

option

affects

the

generated

WSDL

file

in

the

following

ways:

–

The

wsdl:part

elements

use

the

type

attribute

to

reference

XML

types.

–

The

wsdl:binding

is

specified

as

style=″rpc″.

The

-style

DOCUMENT

-wrapped

false

option

affects

the

generated

WSDL

file

in

the

following

ways:

–

The

wsdl:part

elements

use

the

type

attribute

to

reference

simple

types.

The

element

attribute

is

used

to

reference

the

root

xsd:elements

for

everything

that

is

not

a

simple

type.

–

The

wsdl:binding

is

specified

as

style=″document″.

The

-style

DOCUMENT

-wrapped

true

option

generates

a

WSDL

file

that

conforms

to

the

.NET

WSDL

file

format:

–

A

request

xsd:element

is

generated

for

each

method

in

the

Service

Endpoint

Interface

as

follows:

-

The

name

of

the

xsd:element

is

the

same

as

the

name

of

the

wsdl:operation.

-

The

xsd:element

contains

an

xsd:sequence

that

contains

xsd:elements

defining

each

parameter.

-

The

request

wsdl:message

references

the

wrapper

xsd:element

using

a

single

part:

v

The

name

of

the

part

is

parameters.

v

The

element

attribute

is

used

to

reference

the

wrapper

xsd:element.
–

A

response

xsd:element

is

generated

for

each

method

in

the

Service

Endpoint

Interface

as

follows:

-

The

name

of

the

xsd:element

is

the

same

as

the

name

of

the

wsdl:operation

appended

with

Response

-

The

xsd:element

contains

an

xsd:sequence

that

contains

xsd:elements

defining

the

return

value.

-

The

request

wsdl:message

references

this

wrapper

xsd:element

using

a

single

part.

v

The

element

attribute

is

used

to

reference

the

wrapper

xsd:element.
–

The

wsdl:binding

is

specified

as

style=″document″.

Mapping

of

standard

XML

types

from

Java

types

Some

Java

types

map

directly

to

standard

XML

types.

These

types

do

not

require

additional

XML

definitions

in

the

wsdl:types

section.

v

JAX-RPC

Java

primitive

type

mapping

The

following

table

describes

the

mapping

from

the

Java

primitive

and

standard

types

to

XML

standard

types.

For

more

information

see

the

JAX-RPC

specification.

Java

type

XML

type

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

301

int

xsd:int

long

xsd:long

short

xsd:short

float

xsd:float

double

xsd:double

boolean

xsd:boolean

byte

xsd:byte

byte[]

xsd:base64Binary

Note:

The

default

mapping

for

byte[]

is

xsd:base64Binary.

The

data

in

byte[]

is

passed

over

the

wire

as

a

text

string

encoded

in

the

base64

format.

An

alternative

format

is

xsd:hexBinary.

To

use

the

xsd:hexBinary

format:

v

Edit

the

WSDL

file

and

change

xsd:base64Binary

to

xsd:hexBinary.

java.lang.String

xsd:string

java.math.BigInteger

xsd:integer

java.math.BigDecimal

xsd:decimal

java.util.Calendar

xsd:dateTime

java.util.Date

Note:

This

mapping

is

not

covered

by

the

JAX-RPC.

xsd:date

java.lang.Boolean

xsd:boolean

xsi:nillable=true

java.lang.Float

xsd:float

xsi:nillable=true

java.lang.Double

xsd:double

xsi:nillable=true

java.lang.Long

xsd:long

xsi:nillable=true

java.lang.Integer

xsd:int

xsi:nillable=true

java.lang.Short

xsd:short

xsi:nillable=true

java.lang.Byte

xsd:byte

xsi:nillable=true

Note:

The

java.lang

wrapper

classes

in

the

last

seven

lines

of

the

table

map

to

the

same

XML

construct

as

the

corresponding

Java

primitive

type.

In

addition,

the

xsi:nillable

attribute

is

generated

to

indicate

that

such

elements

can

be

null.

v

Additional

Java

class

mappings

In

addition

to

the

standard

JAX-RPC

mapping,

the

following

classes

are

mapped

directly

to

XML

types:

Java

type

XML

type

java.util.Map

Note:

Any

classes

that

implement

java.util.Map

are

also

mapped

to

apache:Map.

apache:Map

java.util.Collection

Note:

Each

Java

array,

except

byte[],

and

every

class

that

implements

java.util.Collection

is

mapped

to

a

JAX-RPC

defined

soapenc:Array

type.

soapenc:Array

org.w3c.dom.Element

apache:Element

java.util.Vector

apache:Vector

302

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

java.awt.Image

Note:

Used

for

attachment

support.

apache:Image

javax.mail.internet.MimeMultiPart

Note:

Used

for

attachment

support.

apache:Multipart

javax.xml.transform.Source

Note:

Used

for

attachment

support.

apache:Source

javax.activation.DataHandler

Note:

Used

for

attachment

support.

apache:DataHandler

Generation

of

wsdl:types

Java

types

that

cannot

be

mapped

directly

to

standard

XML

types

are

generated

in

the

wsdl:types

section.

v

Java

arrays

Java

arrays

for

the

-use

ENCODED

option,

with

the

exception

of

byte[],

are

generated

using

the

following

format.

See

the

JAX-RPC

specification

for

more

details.

Alternative

mappings

can

be

found

in

Table

18.1

of

the

JAX-RPC

specification.

Java:

Item[]

Mapped

to:

<xsd:complexType

name="ArrayOfItem">

<xsd:complexContent>

<xsd:restriction

base="soapenc:Array">

<xsd:attribute

ref="soapenc:arrayType"

wsdl:arrayType="ns:Item"

/>

</xsd:restriction>

</xsd:complexContent

</xsd:complexType>

v

JAX-RPC

value

type

and

bean

mapping

A

Java

class

that

matches

the

Java

value

type

or

bean

pattern

is

mapped

to

an

xsd:complexType.

In

order

for

a

Java

class

to

be

mapped

to

XML,

follow

these

conditions:

–

The

class

must

have

a

public

default

constructor.

–

The

class

must

not

implement,

directly

or

indirectly,

java.rmi.Remote.

–

Public,

non-static,

non-final,

non-transient

fields

are

mapped.

The

class

can

contain

other

fields

and

methods,

but

they

are

not

mapped.

–

If

the

class

follows

the

Java

bean

pattern

and

has

public

getter

and

setter

methods,

the

property

is

mapped.

Additional

mapping

rules

can

be

found

in

the

JAX-RPC

specification.

The

following

example

indicates

the

mapping

for

sample

base

and

derived

Java

classes:

Java:

public

abstract

class

Base

{

public

Base()

{}

public

int

a;

//

mapped

private

int

b;

//

mapped

via

setter/getter

private

int

c;

//

not

mapped

private

int[]

d;

//

mapped

via

indexed

setter/getter

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

303

public

int

getB()

{

return

b;}

//

map

property

b

public

void

setB(int

b)

{this.b

=

b;}

public

int[]

getD()

{

return

d;}

//

map

indexed

property

d

public

void

setD(int[]

d)

{this.d

=

d;}

public

int

getD(int

index)

{

return

d[index];}

public

void

setB(int

index,

int

value)

{this.d[index]

=

value;}

public

void

someMethod()

{...}

//

not

mapped

}

public

class

Derived

extends

Base

{

public

int

x;

//

mapped

private

int

y;

//

not

mapped

}

Mapped

to:

<xsd:complexType

name="Base"

abstract="true">

<xsd:sequence>

<xsd:element

name="a"

type="xsd:int"

/>

<xsd:element

name="b"

type="xsd:int"

/>

<xsd:element

name="d"

minOccurs="0"

maxOccurs="unbounded"

type="xsd:int"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType

name="Derived">

<xsd:complexContent>

<xsd:extension

base="ns:Base">

<xsd:sequence>

<xsd:element

name="x"

type="xsd:int"

/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Inheritance

and

abstract

classes

The

example

contains

two

optional

JAX-RPC

features

that

are

supported

by

WebSphere

Application

Server:

1.

An

abstract

class

is

mapped

to

an

xsd:complexType

with

abstract=″true″.

2.

An

indexed

bean

property

(see

the

methods

for

d

in

Base)

are

mapped

to

a

nested

element

specified

with

maxOccurs=″unbounded″.

This

format

is

similar

to

an

XML

array,

but

the

SOAP

message

is

different.

An

XML

array

defines

an

element

for

the

array

and

nested

elements

for

each

item

in

the

array.

An

element

defined

with

maxOccurs

indicates

a

series

of

items

without

the

surrounding

array

wrapper

element.

Both

formats

are

popular.
v

JAX-RPC

enumeration

class

mapping

Section

4.2.4

of

the

JAX-RPC

specification

defines

the

mapping

from

an

XML

enumeration

to

a

Java

class.

Though

not

specifically

required

by

the

JAX-RPC,

the

Java2WSDL

command

performs

the

reverse

mapping.

If

you

have

a

class

that

has

the

same

format

as

a

JAX-RPC

enumeration

class,

it

is

mapped

to

an

XML

enumeration.

v

Holder

classes

The

JAX-RPC

specification

defines

Holder

classes

in

section

4.3.5.

A

Holder

class

is

used

to

support

in

and

out

parameter

passing.

Every

Holder

class

implements

thejavax.xml.rpc.holders.Holder

interface.

The

Java2WSDL

command

maps

Holder

classes

to

the

same

XML

type

as

the

held

type.

In

addition,

references

to

Holder

classes

affect

the

generation

of

wsdl:messages.

v

Exception

classes

304

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

a

class

extends

the

exception,

java.lang.Exception,

it

is

mapped

to

an

xsd:complexType

similar

to

the

Java

bean

mapping.

The

getter

methods

of

the

exception

are

mapped

as

nested

xsd:elements

of

the

xsd:complexType.

See

section

5.5.5

of

the

JAX-RPC

specification

for

more

details.

Note:

You

need

to

generate

implementation

specific

exception

classes

by

invoking

the

WSDL2Javacommand

on

the

resulting

WSDL

file.

v

Unsupported

classes

If

a

class

cannot

be

mapped

to

an

XML

type,

the

Java2WSDL

command

issues

a

message

and

an

xsd:anyType

reference

is

generated

in

the

WSDL

file.

In

these

situations,

modify

the

Web

service

implementation

to

use

the

JAX-RPC

compliant

classes.

v

Generation

of

root

elements

If

the

Java2WSDL

command

generates

an

xsd:complexType

or

xsd:simpleType

for

a

parameter

reference,

a

corresponding

xsd:element

is

also

generated.

The

xsd:element

has

the

same

name

as

the

xsd:complexType/xsd:simpleType

and

uses

the

type

attribute

to

reference

the

xsd:complexType/xsd:simpleType.

The

wsdl:message

part

can

use

the

element

attribute

or

the

type

attribute

to

reference

the

xsd:element

or

type.

This

choice

is

determined

by

the

-style

and

-use

options.

Generation

from

the

interface

or

implementation

class

The

class

passed

to

the

Java2WSDL

command

represents

the

interface

of

the

wsdl:service.

The

wsdl:portType

and

wsdl:message

elements

generate

from

this

interface

or

implementation

class.

v

Generation

of

the

wsdl:portType

The

name

of

the

wsdl:portType

is

the

name

of

the

class

unless

overridden

by

the

-portTypeName

option.

v

Generation

of

wsdl:operation

A

wsdl:operation

generates

for

each

public

method

in

the

interface

that

throws

the

exception,

java.rmi.RemoteException.

–

The

name

of

the

wsdl:operation

is

the

name

of

the

method.

–

The

wsdl:operation

has

a

parameterOrder

attribute,

which

defines

the

order

of

the

parameters

in

the

signature.

Specifically,

the

parameterOrder

lists

the

order

of

the

parts

of

the

request

or

response

wsdl:messages.

–

The

wsdl:operation

has

a

nested

wsdl:input

element

that

references

the

request

wsdl:message

using

the

message

attribute.

–

The

wsdl:operation

has

a

nested

wsdl:output

element

that

references

the

response

wsdl:message

using

the

message

attribute.

–

The

wsdl:operation

has

a

nested

wsdl:fault

element

that

references

the

default

wsdl:message

using

the

message

attribute.

See

sections

5.5.4

and

5.5.5

of

the

JAX-RPC

specification

for

more

information.

v

Generation

of

wsdl:message

Generating

the

wsdl:message

is

directly

related

to

the

-style

and

-use

options.

The

following

is

the

default

mapping

(-style

RPC

-use

ENCODED):

–

A

wsdl:message

is

created

to

represent

the

request.

-

A

wsdl:part

representing

each

parameter

is

added

to

the

wsdl:message.

v

The

wsdl:part

has

the

same

name

as

the

parameter.

v

The

wsdl:part

uses

the

type

attribute

to

locate

the

XML

type

of

the

parameter.
–

A

wsdl:message

is

created

to

represent

the

response:

-

A

wsdl:part

representing

the

method

return

is

created.

v

The

wsdl:part

has

the

same

name

as

the

method

with

Return

appended.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

305

Note:

The

name

of

the

part

is

not

specified

by

the

JAX-RPC

and

is

typically

not

checked

by

SOAP

engines.

v

The

wsdl:part

has

the

same

name

as

the

parameter.

v

The

wsdl:part

uses

the

type

attribute

to

locate

the

XML

type

of

the

parameter.

v

A

wsdl:part

is

created

for

each

parameter

that

is

a

Holder.

v

The

wsdl:part

has

the

same

name

as

the

parameter.

v

A

wsdl:message

is

created

to

represent

the

fault

if

the

operation

has

a

wsdl:fault.

v

A

wsdl:part

representing

the

fault

is

created.

v

The

wsdl:part

has

the

same

name

as

the

exception.

v

The

wsdl:part

uses

the

type

attribute

to

locate

the

complexType

representing

the

exception.

The

same

mapping

is

used

as

described

if

you

use

the

-style

RPC

and

-use

LITERAL

options.

It

is

also

valid

to

use

the

wsdl:part

element

attribute

instead

of

the

type

attribute

to

reference

the

XML

schema.

If

you

use

the

-style

DOCUMENT

-wrapped

false

and

-use

LITERAL

options,

the

same

mapping

is

used

as

described

except

the

wsdl:part

element

attribute

is

used

to

reference

the

XML

schema.

If

the

XML

schema

is

a

primitive

type,

like

xsd:string,

the

type

attribute

is

used

to

reference

the

XML

type.

The

-style

DOCUMENT,

-wrapped

true

and

-use

LITERAL

options

result

in

completely

different

mappings

for

the

request

and

response

messages.

For

example:

–

A

request

xsd:element

is

generated

for

each

method

in

the

Service

Endpoint

Interface.

-

The

name

of

the

xsd:element

is

the

same

as

the

name

of

the

wsdl:operation.

-

The

xsd:element

contains

an

xsd:sequence

that

contains

xsd:elements

defining

each

parameter.

-

The

request

wsdl:message

references

the

wrapper

xsd:element

using

a

single

part.

v

The

name

of

the

part

is

parameters.

v

The

element

attribute

is

used

to

reference

the

wrapper

xsd:element.
–

A

response

xsd:element

is

generated

for

each

method

in

the

Service

Endpoint

Interface.

-

The

name

of

thexsd:element

is

the

same

as

the

name

of

the

wsdl:operation

appended

with

Response.

-

The

xsd:element

contains

an

xsd:sequence

that

contains

xsd:elements

defining

the

return

value.

-

The

request

wsdl:message

references

this

wrapper

xsd:element

using

a

single

part.

v

The

element

attribute

is

used

to

reference

the

wrapper

xsd:element.
v

Generation

of

wsdl:binding

Generate

a

wsdl:binding

with

a

name

defined

by

the

Java2WSDL

-bindingName

command.

–

The

wsdlsoap:binding

style

attribute

is

set

to

rpc

if

you

use

the

-style

RPC

option;

otherwise

it

is

set

to

document.

–

A

wsdl:operation

generates

for

each

wsdl:operation

defined

in

the

wsdl:portType.

–

Each

wsdl:operation

has

corresponding

wsdl:input,

wsdl:outputand

wsdl:fault

elements.

–

The

wsdl:input,

wsdl:output

and

wsdl:fault

elements

each

contain

a

wsdlsoap:body

element.

306

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

The

wsdlsoap:body

use

attribute

is

set

to

literal

or

encoded

according

to

the

-use

argument.

Set

the

encodingStyle

attribute

to

http://schemas.xmlsoap.org/soap/encoding/

when

use

is

encoded.
v

Generation

of

the

wsdl:service

Generate

a

wsdl:service

with

a

name

defined

by

the

Java2WSDL

-serviceElement

command.

For

example:

–

The

wsdl:service

contains

a

port

with

a

name

defined

by

the

Java2WSL

-servicePortName

command.

–

The

port

references

the

generated

wsdl:binding

with

the

binding

attribute.

–

The

port

contains

a

wsdlsoap:address

element

with

a

–

The

location

attribute

is

set

to

the

value

of

the

Java2WSDL

-location

command.

WSDL-to-Java

mapping

The

WSDL2Java

command

tool

uses

the

following

rules

to

generate

Java

classes

when

developing

your

Web

services

client

and

server.

In

addition,

implementation

specific

Java

classes

are

generated

that

assist

in

the

serialization

and

deserialization,

and

invocation

of

the

Web

service.

General

issues

v

Mapping

of

namespace

to

package

The

JAX-RPC

does

not

specify

the

mapping

of

XML

namespaces

to

Java

package

names.

The

JAX-RPC

does

specify

that

each

Java

package

map

to

a

single

XML

namespace.

Likewise,

each

XML

namespace

must

map

to

a

single

Java

package.

A

default

mapping

algorithm

omits

any

protocol

from

the

XML

namespace

and

reverses

the

names.

For

example,

an

XML

namespace

http://websphere.ibm.com

becomes

a

Java

package

with

the

name

com.ibm.websphere.

The

default

mapping

of

XML

namespace

to

Java

package

disregards

the

context-root.

If

two

namespaces

are

the

same

up

until

the

first

slash,

they

map

to

the

same

Java

package.

For

example,

the

XML

namespaces

http://websphere.ibm.com/foo

and

http://websphere.ibm.com/bar

map

to

the

Java

package

com.ibm.websphere.

The

default

mapping

between

XML

namespaces

and

Java

package

names

can

be

overridden

using

the

-NStoPkg

and

-PkgtoNS

options

of

WSDL2Java

and

Java2WSDL

commands.

v

Identifier

mapping

XML

names

are

much

richer

than

Java

identifiers.

They

can

include

characters

that

are

not

permitted

in

Java

identifiers.

See

section

20

of

the

JAX-RPC

specification

for

the

rules

to

map

an

XML

name

to

a

Java

identifier.

The

mapping

rules

attempt

to

follow

accepted

Java

coding

conventions.

Class

names

always

begin

with

an

uppercase

letter.

Method

names

begin

with

a

lowercase

letter.

The

WSDL2Javacommand

generates

metadata

in

the

_Helper

class

so

that

the

values

are

serialized

or

deserialized

using

the

XML

names

specified

in

the

WSDL

file.

v

Java

construction

summary

WSDL

and

XML

Java

xsd:complexType

(struct)

Note:

The

xsd:complexType

can

also

represent

a

Java

exception

if

referenced

by

a

wsdl:message

for

a

wsdl:fault

.

Java

Bean

Class

Note:

The

classes,

_Helper,

_Ser,

and

_Deser,

generate

for

each

Java

bean

class.

These

implementation

classes

aid

serialization

and

deserialization.

nested

xsd:element/xsd:attribute

Java

bean

property

xsd:complexType

(array)

Java

array

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

307

xsd:simpleType

(enumeration)

JAX-RPC

enumeration

class

xsd:complexType

(wrapper)The

method

parameter

signature

typically

is

determined

by

the

wsdl:message.

However,

if

the

WSDL

file

is

a

.NET

wrapped

style,

the

method

parameter

signature

is

determined

by

the

wrapper

xsd:element

Service

Endpoint

Interface

method

parameter

signature

Note:

If

a

parameter

is

out

or

inout,

a

Holder

class

generates.

--

--

wsdl:messageThe

method

parameter

signature

typically

is

determined

by

the

wsdl:message.

However,

if

the

WSDL

file

is

a

.NET

wrapped

style,

the

method

parameter

signature

is

determined

by

the

wrapper

xsd:element

Service

Endpoint

Interface

method

signature

Note:

If

a

parameter

is

out

or

inout,

a

Holder

class

generates.

wsdl:portType

Service

Endpoint

Interface

wsdl:operation

Service

Endpoint

Interface

method

wsdl:binding

Stub

Note:

The

Stub

and

ServiceLocator

classes

are

implementation

specific.

wsdl:service

Service

Interface

and

ServiceLocator

Note:

The

Stub

and

ServiceLocator

classes

are

implementation

specific.

wsdl:port

Port

accessor

method

in

Service

Interface

Mapping

standard

XML

types

v

JAX-RPC

simple

XML

types

mapping

The

following

mappings

are

XML

types

to

Java

types.

For

more

information

about

these

mappings,

see

section

4.2.1

of

the

JAX-RPC

specification.

XML

type

Java

type

xsd:string

java.lang.String

xsd:integer

java.math.BigInteger

xsd:int

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

int

xsd:long

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

long

xsd:short

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

short

xsd:decimal

java.math.BigDecimal

xsd:float

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

float

xsd:double

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

double

308

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

xsd:boolean

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

boolean

xsd:byte

Note:

If

an

element

with

this

type

has

the

xsi:nillable

attribute

set

to

true,

it

is

mapped

to

the

Java

wrapper

class

of

the

primitive

type.

byte

xsd:dateTime

java.util.Calendar

xsd:date

Note:

This

mapping

is

not

supported

by

the

JAX-RPC.

java.util.Date

xsd:base64Binary

byte[]

xsd:hexBinary

byte[]

--

--

soapenc:base64

byte[]

soapenc:base64Binary

byte[]

soapenc:string

java.lang.String

soapenc:boolean

java.lang.Boolean

soapenc:float

java.lang.Float

soapenc:double

java.lang.Double

soapenc:decimal

java.math.BigDecimal

soapenc:int

java.lang.Integer

soapenc:integer

Note:

This

mapping

is

not

supported

by

the

JAX-RPC.

java.math.BigInteger

soapenc:short

java.lang.Short

soapenc:long

Note:

This

mapping

is

not

supported

by

the

JAX-RPC.

java.lang.Long

soapenc:byte

java.lang.Byte

v

JAX-RPC

optional

simple

XML

type

mapping

The

WSDL2Java

command

supports

the

following

JAX-RPC

optional

simple

XML

types.

XML

type

Java

type

xsd:qname

javax.xml.namespace.QName

v

JAX-RPC

xsd:anyType

mapping

The

WSDL2Java

command

maps

an

xsd:anyType

to

a

java.lang.Object.

This

is

an

optional

feature

of

the

JAX-RPC

specification.

The

xsd:anyType

can

be

used

to

store

any

XML

type

other

than

the

XML

primitive

type.

An

xsd:anyType

is

always

serialized

along

with

an

xsi:type

that

specifies

the

actual

type.

v

Additional

supported

mappings

The

following

mappings

are

also

supported

by

the

WSDL2Java

command.

These

mappings

are

not

defined

by

the

JAX-RPC

specification.

XML

type

Java

type

apache:PlainText

Note:

For

MIME

attachments.

java.lang.String

apache:Map

java.util.Map

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

309

apache:Element

org.w3c.dom.Element

apache:Vector

java.util.Vector

apache:Image

Note:

For

MIME

attachments.

java.awt.Image

apache:Multipart

Note:

For

MIME

attachments.

javax.mail.internet.MimeMultipart

apache:Source

Note:

For

MIME

attachments.

javax.xml.transform.Source

apache:octetStream

Note:

For

MIME

attachments.

javax.activation.DataHandler

apache:DataHandler

Note:

For

MIME

attachments.

javax.activation.DataHandler

Mapping

XML

defined

in

the

wsdl:types

section

The

WSDL2Java

command

generates

Java

types

for

the

XML

schema

constructs

defined

in

the

wsdl:types

section.

The

XML

schema

language

is

broader

than

the

required

or

optional

subset

defined

by

the

JAX-RPC

specification.

The

WSDL2Java

command

supports

all

required

mappings

and

most

optional

mappings.

In

addition,

the

command

supports

some

XML

schema

mappings

that

are

outside

the

JAX-RPC

specification.

In

general,

the

WSDL2Java

command

ignores

constructs

that

it

does

not

support.

For

example,

the

WSDL2Java

command

does

not

support

the

default

attribute.

If

an

xsd:element

is

defined

with

the

default

attribute,

the

default

attribute

is

ignored.

In

some

cases

it

maps

unsupported

constructs

to

wasws:SOAPElement.

v

Mapping

of

xsd:complexType

to

Java

bean

The

most

common

mapping

is

from

an

xsd:complexType

to

a

Java

bean

class.

–

Standard

Java

bean

mapping

The

standard

Java

bean

mapping

is

defined

in

section

4.2.3

of

the

JAX-RPC

specification

The

xsd:complexType

defines

the

type.

The

nested

xsd:elements

within

the

xsd:sequence

or

xsd:all

groups

are

mapped

to

Java

bean

properties.

For

example:

XML:

<xsd:complexType

name="Sample">

<xsd:sequence>

<xsd:element

name="a"

type="xsd:string"/>

<xsd:element

name="b"

maxOccurs="unbounded"

type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

Java:

public

class

Sample

{

//

..

public

Sample()

{}

//

Bean

Property

a

public

String

getA()

{...}

public

void

setA(String

value)

{...}

//

Indexed

Bean

Property

b

public

String[]

getB()

{...}

public

String

getB(int

index)

{...}

310

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

public

void

setB(String[]

values)

{...}

public

void

setB(int

index,

String

value)

{...}

}

–

Methods

equals()

and

hashCode()

The

generated

Java

bean

classes

contain

an

implementation

of

the

equals()

method.

The

generation

of

this

method

is

outside

the

JAX-RPC

specification.

The

equals()

method

returns

true

if

equals()

is

true

for

each

contained

bean

property.

The

implementation

accounts

for

self-referencing

loops.

This

version

of

the

equals()

method

is

typically

more

useful

than

the

″identity″

equals

provided

by

java.lang.Object.

A

corresponding

hashCode()

method

is

also

generated

in

the

Java

bean

class.

–

Properties

and

indexed

properties

In

the

standard

Java

bean

mapping

example,

the

nested

xsd:element

for

property

a

is

mapped

to

a

Java

bean

property.

In

addition,

the

WSDL2Java

command

maps

a

nested

xsd:element

with

maxOccurs

>

1

to

a

Java

bean

indexed

property.

–

Attributes

The

WSDL2Java

command

also

supports

the

xsd:attribute

element,

as

shown

in

the

following

example.

Attribute

a

is

mapped

as

a

Java

bean

property,

which

is

exactly

the

same

mapping

as

a

nested

xsd:element.

Implementation

specific

metadata

is

generated

in

the

Sample2_Helper

class

to

ensure

that

property

a

is

serialized

and

deserialized

as

an

attribute,

and

not

as

a

nested

element.

For

example:

XML:

<xsd:complexType

name="Sample2">

<xsd:sequence>

<xsd:attribute

name="a"

type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

Java:

public

class

Sample2

{

//

..

public

Sample2()

{}

//

Bean

Property

a

public

String

getA()

{...}

public

void

setA(String

value)

{...}

}

–

Qualified

versus

unqualified

names

The

WSDL2Java

command

supports

the

elementForm

and

attributeForm

schema

attributes.

This

support

is

not

specified

in

the

JAX-RPC

specification.

These

attributes

are

used

to

indicate

whether

an

element

or

attribute

is

serialized

and

deserialized

with

a

qualified

or

unqualified

name.

The

default

setting

for

elementForm

is

qualified

and

the

default

setting

for

attributeForm

is

unqualified.

These

settings

do

not

affect

the

Java

bean

class

that

is

generated,

but

the

information

is

captured

in

the

_Helper

class

metadata.

–

Extension

and

the

abstract

attribute

The

WSDL2Java

command

supports

extension

of

an

xsd:complexType

through

the

xsd:extension

element.

This

support

is

required

by

the

JAX-RPC

specification.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

311

The

WSDL2Java

command

supports

the

abstract

attribute.

This

feature

is

listed

as

optional

by

the

JAX-RPC

specification.

The

following

example

shows

the

accepted

use

of

the

extension

and

abstract

constructs.

WebSphere

Application

Server

uses

the

extension

and

abstract

constructs

to

support

polymorphism.

XML:

<xsd:complexType

name="Base"

abstract="true">

<xsd:sequence>

<xsd:element

name="a"

type="xsd:int"

/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType

name="Derived">

<xsd:complexContent>

<xsd:extension

base="ns:Base">

<xsd:sequence>

<xsd:element

name="b"

type="xsd:int"

/>

</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Java:

public

abstract

class

Base

{

//

...

public

Base()

{}

public

int

getA()

{...}

public

void

setA(int

a)

{...}

}

public

class

Derived

extends

Base

{

//

...

public

Derived()

{}

public

int

getB()

{...}

public

void

setB(int

b)

{...}

}

–

Support

for

xsd:any

The

WSDL2Java

command

supports

xsd:anyelement,

which

is

different

than

xsd:anyType.

This

feature

is

not

defined

within

the

JAX-RPC

specification

and

is

subject

to

change.

If

an

<xsd:any/>

element

is

defined

within

xsd:sequence

or

xsd:all

group,

SOAP

values

that

do

match

one

of

the

xsd:elements

are

stored

in

the

Java

bean.

Values

can

be

accessed

from

the

Java

bean

using

the

get_any()

and

set_any()

methods.
v

Mapping

of

xsd:element

An

xsd:element

is

a

construct

that

has

a

name

or

name

attribute,

and

a

type

defined

by

a

complexType

or

primitive

type.

There

are

two

different

kinds

of

xsd:elements:

–

Root:

Defined

directly

underneath

the

schema

elements

and

referenced

by

other

constructs.

–

Nested:

Nested

underneath

group

elements

and

are

not

referenced

by

other

constructs.

312

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Root

elements

are

referenced

by

the

WSDL

file

constructs,

especially

if

the

WSDL

file

is

used

to

describe

a

literal

service.

Typically,

root

elements

and

types

have

the

same

names,

which

is

allowed

in

the

schema

language.

Under

most

circumstances

the

WSDL2Java

command

can

produce

Java

artifacts

without

name

collisions.

–

Four

ways

to

reference

a

type

There

are

four

ways

that

a

nested

or

root

xsd:element

can

reference

a

type:

-

Use

the

type

attribute:

This

is

the

most

common

way

to

reference

a

type,

for

example:

<xsd:element

name="one"

type="ns:myType"

/>

The

WSDL2Java

command

recognizes

the

type

attribute

as

a

reference

to

a

complexType

or

simpleTypenamed,

myType.

The

WSDL2Java

command

generates

a

Java

type

based

on

the

characteristics

of

myType.

Support

for

the

type

attribute

is

required

by

the

JAX-RPC

specification.

-

Use

the

ref

attribute:

For

example:

<xsd:element

ref="ns:myElement"

/>

The

WSDL2Java

command

recognizes

the

ref

attribute

as

a

reference

to

another

root

element

named

myElement.

The

name

of

the

element

is

obtained

from

the

referenced

element,

such

as

myElement.

The

type

of

the

element

is

the

type

of

the

referenced

element.

The

WSDL2Java

command

generates

a

Java

type

based

on

the

characteristics

of

the

referenced

type.

The

ref

attribute

is

an

optional

feature

of

the

JAX-RPC

specification.

-

Use

no

attribute:

For

example:

<xsd:element

name="three"

/>

When

you

do

not

use

an

attribute,

the

WSDL2Java

command

recognizes

a

reference

to

the

xsd:anyType

as

defined

by

the

XML

schema

specification.

The

xsd:anyType

is

an

optional

type

of

the

JAX-RPC

specification.

-

Use

an

anonymous

type:

For

example:

<xsd:element

name="four">

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="foo"

type="xsd:string"

/>

</xsd:sequence>

</xsd:complexType>

</

xsd:element>

When

you

use

an

anonymous

type,

the

WSDL2Java

command

recognizes

a

reference

to

the

type

defined

within

the

element.

Note:

The

complexType

does

not

have

a

name.

The

WSDL2Java

command

generates

a

Java

type

based

on

the

characteristics

of

this

type.

Since

the

anonymous

type

does

not

have

a

name,

the

WSDL2Java

command

uses

the

name

of

the

container

element,

which

can

result

in

collisions

with

defined

types

and

other

anonymous

types.

The

WSDL2Java

command

automatically

detects

and

renames

classes

to

avoid

collisions.

Support

for

anonymous

types

is

not

defined

by

the

JAX-RPC

specification,

however

using

anonymous

types

is

common.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

313

Note:

An

xsd:attribute

is

like

an

xsd:element;

it

contains

a

name

and

refers

to

a

type.

An

xsd:attribute

can

refer

to

its

type

with

the

typeattribute

or

using

an

anonymous

type.
–

Element

specific

attributes

Some

attributes

can

be

applied

to

xsd:elements

and

not

to

XML

types.

The

maxOccurs

attribute

indicates

the

maximum

number

of

occurrences

of

the

element

in

the

SOAP

message.

The

default

value

is

1.

If

the

value

is

greater

than

1,

or

unbounded,

the

WSDL2Java

command

maps

the

construct

to

a

Java

array

or

bean

indexed

property.

Metadata

is

also

generated

to

properly

serialize

and

deserialize

a

series

of

elements

versus

a

normal

XML

array.

The

maxOccurs

attribute

is

an

optional

feature

of

the

JAX-RPC

specification.

The

minOccurs

attribute

indicates

the

minimum

number

of

occurrences

of

the

element

in

the

SOAP

message.

The

default

value

is

1.

The

xsi:nillable

attribute

indicates

whether

the

element

can

have

a

nil

value.

The

minOccurs

and

xsi:nillable

settings

affect

how

a

null

value

is

serialized

in

a

SOAP

message.

If

minOccurs=0,

the

null

value

is

not

serialized.

If

xsi:nillable=true,

the

value

is

serialized

with

the

xsi:nil=true

attribute.
v

Mapping

of

xsd:complexType

to

Java

array

The

WSDL2Java

command

maps

the

following

three

kinds

of

XML

formats

to

Java

arrays:

XML:

<xsd:element

name="array1"

type="soapenc:Array"

/>

Java:

Object[]

array1;

XML:

<xsd:complexType

name="arrayOfInt">

<xsd:complexContent>

<xsd:restriction

base:"soapenc:Array">

<xsd:attribute

ref:"soapenc:arrayType"

wsdl:arrayType="xsd:int[]"

/>

</xsd:restriction>

</xsd:complexContext>

</xsd:complexType>

<xsd:element

name="array2"

type="ns:arrayOfInt"

/>

Java:

int[]

array2;

XML:

<xsd:complexType

name="arrayOfInt">

<xsd:complexContent>

<xsd:restriction

base:"soapenc:Array">

<xsd:sequence>

<xsd:element

name="item"

type="xsd:int"

maxOccurs="unbounded"

/>

</xsd:sequence>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

<xsd:element

name="array3"

type="ns:arrayOfInt"

/>

Java:

int[]

array3;

v

Mapping

of

xsd:simpleType

enumeration

314

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

WSDL2Java

command

maps

the

following

XML

enumeration

to

a

JAX-RPC

specified

enumeration

class.

See

section

4.2.4

of

the

JAX-RPC

specification

for

more

details.

<xsd:simpleType

name="EyeColorType"

>

<xsd:restriction

base="xsd:string">

<xsd:enumeration

value="brown"/>

<xsd:enumeration

value="green"/>

<xsd:enumeration

value="blue"/>

</xsd:restriction>

</xsd:simpleType>

v

Mapping

of

xsd:complexType

to

exception

class

If

a

complexType

is

referenced

in

a

wsdl:message

for

a

wsdl:fault,

the

complexType

is

mapped

to

a

class

that

extends

the

exception,

java.lang.Exception.

This

mapping

is

similar

to

the

mapping

of

a

complexType

to

a

Java

bean

class,

except

a

full

constructor

is

generated,

and

only

getter

methods

are

generated.

See

section

4.3.6

of

the

JAX-RPC

specification

for

more

details.

v

Other

mappings

The

WSDL2Javacommand

supports

the

mapping

of

xsd:simpleType

and

xsd:complexTypes

that

extend

xsd:simpleTypes.

These

constructs

are

mapped

to

Java

bean

classes.

The

simple

value

is

mapped

to

a

Java

bean

property

named,

value.

This

is

an

optional

feature

of

the

JAX-RPC

specification.

Mapping

of

wsdl:portType

The

wsdl:portType

construct

is

mapped

to

the

Service

Endpoint

Interface.

The

name

of

the

wsdl:portType

is

mapped

to

the

name

of

the

class

of

the

Service

Endpoint

Interface.

Mapping

of

wsdl:operation

A

wsdl:operation

within

a

wsdl:portType

is

mapped

to

a

method

of

the

Service

Endpoint

Interface.

The

name

of

the

wsdl:operation

is

mapped

to

the

name

of

the

method.

The

wsdl:operation

contains

wsdl:input

and

wsdl:output

elements

that

reference

the

request

and

response

wsdl:message

constructs

using

the

message

attribute.

The

wsdl:operation

can

contain

a

wsdl:fault

element

that

references

a

wsdl:message

describing

the

fault.

These

faults

are

mapped

to

Java

classes

that

extend

the

exception,

java.lang.Exception

as

discussed

in

section

4.3.6

of

the

JAX-RPC

specification.

v

Effect

of

document

literal

wrapped

format

If

the

WSDL

file

uses

the

.NET

document

and

literal

wrapped

format,

the

method

parameters

are

mapped

from

the

wrapper

xsd:element.

The

.NET

document

and

literal

format

is

automatically

detected

by

the

WSDL2Java

command.

The

following

criteria

must

be

met:

–

The

WSDL

file

must

have

style=″document″

in

its

wsdl:binding

constructs.

–

The

WSDL

file

must

have

use=″literal″

in

its

wsdl:binding

constructs.

–

The

wsdl:message

referenced

by

the

wsdl:operation

input

construct

must

have

a

single

part.

–

The

part

must

use

the

element

attribute

to

reference

an

xsd:element.

–

The

referenced

xsd:element,

or

wrapper

element,

must

have

the

same

name

as

the

wsdl:operation.

–

The

wrapper

element

must

not

contain

any

xsd:attributes.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

315

In

such

cases,

each

parameter

name

is

mapped

from

a

nested

xsd:element

contained

within

wrapper

element.

The

type

of

the

parameter

is

mapped

from

the

type

of

the

nested

xsd:element.

For

example:

XML:

<xsd:element

name="myMethod"

>

<xsd:complexType>

<xsd:sequence>

<xsd:element

name="param1"

type="xsd:string"

/>

<xsd:element

name="param2"

type="xsd:int"

/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

...

<wsdl:message

name="response"

/>

<part

name="parameters"

element="ns:myMethod"

/>

</wsdl:message

name="response"

/>

<wsdl:message

name="response"

/>

...

<wsdl:operation

name="myMethod">

<input

name="input"

message="request"

/>

<output

name="output"

message="response"

/>

</wsdl:operation>

Java:

void

myMethod(String

param1,

int

param2)

...

v

Parameter

mapping

If

the

document

and

literal

wrapped

format

is

not

detected,

the

parameter

mapping

follows

the

normal

JAX-RPC

mapping

rules

set

in

section

4.3.4

of

the

JAX-RPC

specification.

Each

parameter

is

defined

by

a

wsdl:message

part

referenced

from

the

input

and

output

elements.

–

A

wsdl:part

in

the

request

wsdl:message

is

mapped

to

an

input

parameter.

–

A

wsdl:part

in

the

response

wsdl:message

is

mapped

to

the

return

value.

If

there

are

multiple

wsdl:parts

in

the

response

message,

they

are

mapped

to

output

parameters.

-

A

Holder

class

is

generated

for

each

output

parameter

as

discussed

in

section

4.3.5

of

the

JAX-RPC

specification.
–

A

wsdl:part

that

is

both

the

request

and

response

wsdl:message

is

mapped

to

an

inout

parameter.

-

A

Holder

class

is

generated

for

each

inout

parameter

as

discussed

in

section

4.3.5

of

the

JAX-RPC

specification.

-

The

wsdl:operation

parameterOrder

attribute

defines

the

order

of

the

parameters.

The

WSDL2Java

command

supports

overloaded

methods,

but

confirm

that

the

part

names

of

the

overloaded

methods

are

unique.

For

example:

XML:

<wsdl:message

name="request"

>

<part

name="param1"

type="xsd:string"

/>

<part

name="param2"

type="xsd:int"

/>

</wsdl:message

name="response"

/>

<wsdl:message

name="response"

/>

...

<wsdl:operation

name="myMethod"

parameterOrder="param1,

param2">

<input

name="input"

message="request"

/>

<output

name="output"

message="response"

/>

316

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

</wsdl:operation>

Java:

void

myMethod(String

param1,

int

param2)

...

Mapping

of

wsdl:binding

The

WSDL2Java

command

uses

the

wsdl:binding

information

to

generate

an

implementation

specific

client

side

stub.

WebSphere

Application

Server

uses

the

wsdl:binding

information

on

the

server

side

to

properly

deserialize

the

request,

invoke

the

Web

service,

and

serialize

the

response.

The

information

in

the

wsdl:binding

should

not

affect

the

generation

of

the

Service

Endpoint

Interface,

but

it

can

when

the

document

and

literal

wrapped

format

is

used

or

when

there

are

MIME

attachments.

v

MIME

attachments

For

a

WSDL

1.1

compliant

WSDL

file,

a

part

of

an

operation

message,

which

is

defined

in

the

binding

to

be

a

MIME

attachment,

becomes

a

parameter

of

the

type

of

the

attachment

regardless

of

the

part

declared.

For

example:

XML:

<wsdl:types>

<schema

...>

<complexType

name="ArrayOfBinary">

<restriction

base="soapenc:Array">

<attribute

ref="soapenc:arrayType"

wsdl:arrayType="xsd:binary[]"

/>

</restriction>

</complexType>

</schema>

</wsdl:types>

<wsdl:message

name="request">

<part

name="param1"

type="ns:ArrayOfBinary"

/>

<wsdl:message

name="response"

/>

<wsdl:message

name="response"

/>

...

<wsdl:operation

name="myMethod">

<input

name="input"

message="request"

/>

<output

name="output"

message="response"

/>

</wsdl:operation>

...

<binding

...

<wsdl:operation

name="myMethod">

<input>

<mime:multipartRelated>

<mime:part>

<mime:content

part="param1"

type="image/jpeg"/>

</mime:part>

</mime:multipartRelated>

</input>

...

</wsdl:operation>

Java:

void

myMethod(java.awt.Image

param1)

...

The

JAX-RPC

requires

support

for

the

following

MIME

types:

MIME

type

Java

type

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

317

image/gif

java.awt.Image

image/jpeg

java.awt.Image

text/plain

java.lang.String

multipart/*

javax.mail.internet.MimeMultipart

text/xml

javax.xml.transform.Source

application/xml

javax.xml.transform.Source

There

are

a

number

of

problems

with

MIME

attachments

as

they

are

defined

in

WSDL

1.1,

including:

–

The

semantics

of

the

mime:multipartRelated

clause

are

not

fully

defined

–

The

semantics

do

not

allow

for

arrays

of

MIME

attachments

Because

of

these

problems,

several

types

are

not

specified

by

the

JAX-RPC

for

MIME

attachments.

These

types

are

defined

in

the

supported

mappings

previously

discussed.

v

Headers

A

wsdl:binding

can

also

define

SOAP

headers,

for

example:

XML:

<wsdl:message

name="request">

<part

name="param1"

type="xsd:string"

/>

</wsdl:message/>

<wsdl:message

name="response"

/>

...

<wsdl:operation

name="myMethod">

<input

name="input"

message="request"

/>

<output

name="output"

message="response"

/>

</wsdl:operation>

...

<binding

...

<wsdl:operation

name="myMethod">

<input>

<soap:header

message="request"

part="param1"

use="literal"

/>

</input>

...

</wsdl:operation>

Java:

void

myMethod(String

param1)

...

This

is

an

example

of

an

explicit

header

or

a

header

with

a

value

determined

from

a

method

parameter.

Instead

of

appearing

in

the

soap:body

SOAP

message,

the

value

of

param1

now

appears

in

the

soap:header

SOAP

message.

The

WSDL2Java

command

supports

explicit

headers

and

does

not

support

implicit

headers.

Implicit

headers

have

a

value

not

determined

by

a

parameter.

For

example,

you

could

replace

the

soap:header

clause

in

the

example

with:

<soap:header

message="someOtherMsgNotAppearingInthePortType"

part="someOtherPart"

use="literal"/>

Note:

The

WSDL2Java

command

supports

explicit

headers,

but

it

is

not

considered

good

programming

practice

to

use

them.

Headers

are

typically

used

for

middleware

logic,

not

business

logic.

Explicit

headers

place

parameters

used

in

business

logic

into

the

header.

318

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Mapping

of

wsdl:service

The

wsdl:service

element

is

mapped

to

a

Generated

Service

interface.

The

Generated

Service

interface

contains

methods

to

access

each

of

the

ports

in

the

wsdl:service.

The

Generated

Service

interface

is

discussed

in

sections

4.3.9,

4.3.10,

and

4.3.11

of

the

JAX-RPC

specification.

In

addition,

the

wsdl:service

element

is

mapped

to

the

implementation-specific

ServiceLocator

class,

which

is

an

implementation

of

the

Generated

Service

interface.

Mapping

between

WSDL

and

SOAP

messages

The

WSDL

file

defines

the

format

of

the

SOAP

message

that

is

sent

over

the

wire.

The

WSDL2Java

command

and

the

WebSphere

Application

Server

run

time

use

the

information

in

the

WSDL

file

to

confirm

that

the

SOAP

message

is

properly

serialized

and

deserialized.

Document

versus

RPC,

literal

versus

encoded

If

a

wsdl:binding

indicates

a

message

is

sent

using

an

RPC

format,

the

SOAP

message

contains

an

element

defining

the

operation.

If

a

wsdl:binding

indicates

the

message

is

sent

using

a

document

format,

the

SOAP

message

does

not

contain

the

operation

element.

If

the

wsdl:part

is

defined

using

the

type

attribute,

the

name

and

type

of

the

part

are

used

in

the

message.

If

the

wsdl:part

is

defined

using

the

element

attribute,

the

name

and

type

of

the

element

are

used

in

the

message.

The

element

attribute

is

not

allowed

by

the

JAX-RPC

specification

when

use=″encoded″.

If

a

wsdl:binding

indicates

a

message

is

encoded,

the

values

in

the

message

are

sent

with

xsi:type

information.

If

a

wsdl:binding

indicates

that

a

message

is

literal,

the

values

in

the

message

are

typically

not

sent

with

xsi:type

information.

For

example:

WSDL:

<xsd:element

name="c"

type="xsd:int"

/>

...

<wsdl:message

name="request">

<part

name="a"

type="xsd:string"

/>

<part

name="b"

element="ns:c"

/>

</wsdl:message>

...

<wsdl:operation

name="method"

>

<input

message="request"

/>

...

RPC/ENCODED:

<soap:body>

<ns:method>

<a

xsi:type="xsd:string">ABC

<element

attribute

is

not

allowed

in

rpc/encoded

mode>

</ns:method>

</soap:body>

DOCUMENT/LITERAL:

<soap:body>

<a>ABC

<c>123

</soap:body>

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

319

DOCUMENT/LITERAL

wrapped:

<soap:body>

<ns:method_wrapper>

<a>ABC

<c>123

<ns:method_wrapper>

</soap:body>

The

document

and

literal

wrapped

mode

is

the

same

as

the

document

and

literal

mode.

However,

in

the

document

and

literal

wrapped

mode,

there

is

only

a

single

element

within

the

body,

and

the

element

has

the

same

name

as

the

operation.

Multi-ref

processing

If

use=encoded,

XML

types

that

are

not

simpleTypes

are

passed

in

the

SOAP

message

using

the

multi-ref

attributes,

href

and

id.

The

following

example

assumes

that

parameters

one

and

two

reference

the

same

Java

bean

named,

info

containing

fields

a

and

b:

Note:

Deserialization

produces

a

single

instance

of

the

info

class

for

the

encoded

case

and

two

instances

are

created

for

the

literal

case.

RPC/ENCODED:

<soap:body>

<ns:method>

<param1

href="#id1"

/>

<param2

href="#id2"

/>

<ns:method>

<multiref

id="id1"

xsi:type="ns:info">

<a

xsi:type="xsi:string">hello<a>

<b

xsi:type="xsi:string">world

</multiref>

</soap:body>

RPC/LITERAL:

<soap:body>

<ns:method>

<param1>

<a>hello

world

</param1>

<param2>

<a>hello

world

</param2>

<ns:method>

</soap:body>

XML

arrays

and

the

maxOccurs

attribute

A

SOAP

message

is

affected

by

whether

the

element

is

defined

by

an

XML

array

or

using

the

maxOccurs

attribute.

WSDL:

<element

name="foo"

type="ns:ArrayOfString"

/>

Literal

Instance:

<foo>

<item>A</item>

<item>B</item>

<item>C</item>

</foo>

320

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

WSDL:

<element

name="foo"

maxOccurs="unbounded"

type="xsd:string"/>

Literal

Instance:

<foo>A</foo>

<foo>B</foo>

<foo>C</foo>

minOccurs

and

nillable

attributes

An

element

specified

with

minOccurs=0

that

has

a

null

value

is

not

serialized

in

the

SOAP

message.

An

element

specifying

nillable=″true″

has

a

null

value

and

is

serialized

into

a

SOAP

message

with

the

xsi:nil=true

attribute.

For

example:

<a

xsi:nil="true"

/>

Qualified

versus

unqualified

The

XML

schema

attributeForm

and

elementForm

attributes

indicate

whether

the

attributes

and

nested

elements

are

serialized

with

qualified

or

unqualified

names.

If

a

part

name

is

serialized,

it

is

always

serialized

as

an

unqualified

name.

Installing

IBM

Web

Services

Development

Kit

for

z/OS

The

IBM

Web

Services

Developer

Kit

for

z/OS

contains

the

following

command-line

tools

that

are

used

in

developing

and

implementing

Web

services:

v

Java2WSDL

v

WSDL2Java

v

endptEnabler

The

IBM

Web

Services

Developer

Kit

for

z/OS

is

included

with

the

WebSphere

Application

Server

distributed

product

and

located

in

the

following

directory:

<WAS_HOME>/webservices/bin/waszos_dk.exe

To

install

the

IBM

Web

Services

Developer

Kit

for

z/OS:

1.

Install

and

Customize

your

WebSphere

Application

Server.

2.

Locate

the

IBM

Web

Services

Developer

Kit

for

z/OS

executable

file

in

the

<WAS_HOME>/webservices/bin/

directory.

3.

Right-click

waszos_dk.exe

>

Open

to

start

the

installation.

4.

Select

the

setup

language

and

click

OK.

5.

Follow

the

InstallWizard

prompts

to

complete

the

installation.

Develop

a

Web

service.

Java2WSDL

command

The

IBM

Web

Services

Developer

Kit

for

z/OS

contains

the

Java2WSDL

command-line

tool

needed

for

developing

and

implementing

Web

services.

See

Installing

the

IBM

Web

Services

Developer

Kit

for

z/OS

to

start

using

the

tool.

The

Java2WSDL

command

maps

a

Java

class

to

a

Web

Services

Description

Language

(WSDL)

file

by

following

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specification.

The

Java2WSDL

command

accepts

a

Java

class

as

input

and

produces

a

WSDL

file

representing

the

input

class.

If

there

is

an

existing

file

at

the

output

location,

it

is

overwritten.

The

WSDL

file

generated

by

the

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

321

Java2WSDL

command

contains

WSDL

and

XML

schema

constructs

that

are

automatically

derived

from

the

input

class.

You

can

override

these

default

values

with

command-line

arguments.

Command

line

syntax

and

arguments

The

command

line

syntax

is:

Java2WSDL

[argument...]

class

The

following

command-line

arguments

are

supported:

Required

arguments

v

class

Represents

the

fully

qualified

name

of

one

of

the

following

Java

classes:

–

Stateless

session

EJB

remote

interface

that

extends

the

javax.ejb.EJBObject

class

–

Service

Endpoint

Interface

that

extends

the

java.rmi.Remote

class

–

Java

bean

The

Java2WSDL

command

locates

the

class

in

CLASSPATH.

Important

arguments

v

-bindingName

name

Specifies

the

name

to

use

for

the

binding

element.

If

not

specified,

the

binding

name

is

the

portTypeName.

v

-help

Displays

the

help

message.

v

-helpX

Displays

the

help

message

for

extended

options.

v

HelpXoptions

–

-debug

Displays

debug

messages.

–

-outputImpl

impl-wsdl

Specifies

if

you

want

an

interface

and

implementation

WSDL

file

emitted.

–

-locationImport

location-uri

Specifies

the

location

of

the

interface

WSDL

file

if

you

use

the

-outputImpl

argument

specified.

–

-MIMEStyle

Specifies

a

style

representing

Multipurpose

Internet

Mail

Extensions

(MIME)

information.

Valid

arguments

are:

-

Axis

-

WSDL11

(default)
–

-soapAction

Valid

arguments

are:

-

DEFAULT

Sets

the

soapAction

field

according

to

deployment

information.

-

NONE

Sets

the

soapAction

field

to

″″.

-

OPERATION

Sets

the

soapAction

field

to

the

operation

name.
–

-stopClasses

parent

[,

parent]

If

the

-all

argument

is

specified,

the

Java2WSDL

command

searches

inherited

classes

and

interfaces

to

construct

the

list

of

methods

for

WSDL

file

322

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

operations.

The

Java2WSDL

command

searches

inherited

classes

and

interfaces

when

generating

extended

complexTypes.

The

search

stops

when

a

class

or

interface

is

found

within

a

package

that

begins

with

java

or

javax.

The

-stopClasses

argument

can

be

used

to

define

additional

classes

that

cause

the

search

to

stop.

–

-namespaceImpl

namespace

Specifies

the

target

namespace

for

the

implementation

WSDL

if

-outputImpl

specified.

–

-voidReturn

Valid

arguments

are:

-

ONEWAY

Methods

with

void

returns

are

one-way.

This

is

the

default

for

JMS

transport.

-

TWOWAY

Methods

with

void

returns

are

two-way.

This

the

default

for

HTTP

transport.
–

-wrapped

boolean

Specifies

if

the

WSDL

file

should

be

generated

according

to

wrapped

rules.

This

is

only

valid

if

use

is

literal.

The

option

defaults

to

true.
v

-extraClasses

classes

Specifies

other

classes

that

should

be

represented

in

the

WSDL

file.

v

-input

wsdl-uri

Specifies

the

input

WSDL

file

used

to

build

an

output

WSDL

file.

Information

from

an

existing

WSDL

file,

whose

name

is

specified

in

this

option,

is

used

with

the

input

Java

class

to

generate

the

desired

output.

v

-implClass

impl-class

The

Java2WSDL

command

uses

method

parameter

names

to

construct

the

WSDL

file

message

part

names.

The

command

automatically

obtains

the

message

names

from

the

debug

information

in

the

class.

If

the

class

is

compiled

without

debug

information,

or

if

the

class

is

an

interface,

the

method

parameter

names

are

not

available.

In

this

case,

you

can

use

the

-implClass

argument

to

provide

an

alternative

class

from

which

to

obtain

method

parameter

names.

The

impl-class

does

not

need

to

implement

the

class

if

the

class

is

an

interface,

but

it

must

implement

the

same

methods

as

class.

v

-location

location

Provides

the

location

or

Uniform

Resource

Locator

(URL)

of

the

service.

Typically,

this

value

fills

automatically

when

the

Web

service

deploys.

Use

this

argument

to

specify

the

location

if

you

want

to

generate

a

WSDL

file

containing

a

location

URL

without

deploying.

A

warning

displays

to

remind

you

that

the

generated

WSDL

file

should

not

be

published

if

the

final

location

is

not

yet

been

determined.

The

name

after

the

last

slash

or

backslash

is

the

name

of

the

service

port,

unless

the

name

is

overridden

by

the

-servicePortName

argument.

The

service

port

address

location

attribute

is

assigned

the

specified

value.

v

-namespace

targetNamespace

Indicates

the

target

namespace

for

the

WSDL

file

being

generated.

See

Mapping

between

Java,

WSDL

and

XML

for

the

algorithm

used

to

obtain

the

default

namespace.

v

-output

wsdl-uri

Indicates

the

path

and

file

name

of

the

output

WSDL

file.

If

not

specified,

the

default

file,

class.wsdl,

is

written

into

the

current

directory.

v

-PkgtoNS

package

namespace

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

323

Specifies

the

mapping

of

a

Java

package

to

a

namespace.

If

there

is

a

package

without

a

namespace,

the

Java2WSDL

command

generates

a

namespace

name.

This

argument

can

be

repeated

to

specify

mappings

for

multiple

packages.

v

-portTypeName

name

Specifies

the

name

to

use

for

the

portType

element.

If

not

specified,

the

class

name

is

used.

v

-serviceElementName

name

Specifies

the

name

of

the

service

element.

v

-servicePortName

name

Specifies

the

name

of

the

service.

If

not

specified,

the

service

name

is

derived

from

the

-location

argument.

v

-style

RPC

|

DOCUMENT

Specifies

the

WSDL

style

to

use

in

the

generated

WSDL

file.

For

more

information

about

styles,

see

Mapping

between

Java,

WSDL

and

XML.

This

argument

is

used

with

the

-use

argument.

If

RPC

is

specified

with

-use

ENCODED,

or

omitting

use,

a

style=rpc/use=encoded

WSDL

file

is

generated.

If

RPC

is

specified

with

-use

LITERAL,

a

style=rpc/use=literal

WSDL

file

is

generated.

If

DOCUMENT

is

specified

with

-use

LITERAL

or

omitting

use,

a

style=document/use=literal

WSDL

file

is

generated.

v

-transport

http

|

jms

Generates

SOAP

bindings

for

either

Hyper

Text

Transport

Protocol

(HTTP)

(default)

or

Java

Messaging

Service

(JMS).

If

jms

is

specified,

the

characters

″jms″

are

appended

to

the

WSDL

file

name

to

prevent

overwriting

an

existing

WSDL

file

for

another

transport.

The

transport

option

can

only

be

specified

once.

v

-use

LITERAL

|

ENCODED

Specifies

which

style

and

use

combinations

are

generated

into

the

WSDL

file

when

used

with

the

-style

argument.

The

combinations

are

rpc

and

encoded,

rpc

and

literal,

or

doc

and

literal.

For

more

information,

see

the

Mapping

between

Java

language,

WSDL

and

XML.

v

-verbose

Displays

verbose

messages.

WSDL2Java

command

The

IBM

Web

Services

Developer

Kit

for

z/OS

contains

the

WSDL2Java

command-line

tool

needed

for

developing

and

implementing

Web

services.

See

Installing

the

IBM

Web

Services

Developer

Kit

for

z/OS

to

start

using

the

tool.

The

WSDL2Java

command

tool

creates

Java

classes

and

deployment

descriptor

templates

from

a

Web

Services

Description

Language

(WSDL)

file

using

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

1.0

specification.

See

Mapping

between

Java

language,

WSDL

and

XML

for

more

information.

Classes

and

files

generated

The

following

kinds

of

classes

and

files

are

generated:

v

For

each

portType

in

the

WSDL

document

(<wsdl:portType>

element

tag):

–

Service

Endpoint

Interface
v

For

each

service

in

the

WSDL

document

(<wsdl:service>

element

tag):

–

Service

Interface

when

the

-role

develop-client

argument

is

specified.

–

ServiceLocator

when

the

-role

deploy-client

argument

is

specified.

This

class

is

a

WebSphere

product-specific

implementation

of

the

service

interface,

and

is

not

used

directly.

324

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

webservices.xml

deployment

descriptor

template

when

the

-role

develop-server

argument

is

specified

–

ibm-webservices-bnd.xmi

deployment

descriptor

template

when

the

-role

develop-server

argument

is

specified.

–

ibm-webservices-ext.xmi

deployment

descriptor

template

when

the

-role

develop-server

argument

is

specified.

–

wsdlfile_mapping.xml

JAX-RPC

mapping

file

when

the

-role

develop-client

or

-role

develop-server

is

specified.

–

webservicesclient.xml

deployment

descriptor

template

when

the

-role

develop-client

argument

is

specified.

–

ibm-webservicesclient-bnd.xmi

deployment

descriptor

template

when

the

-role

develop-client

argument

is

specified.

–

ibm-webservicesclient-ext.xmi

deployment

descriptor

template

when

the

-role

develop-client

argument

is

specified.

When

the

role

is

a

server

role,

the

container

argument

specifies

which

J2EE

container

the

implementation

uses.

When

the

-role

develop-server

-container

ejb

arguments

are

specified,

the

webservices.xml,

ibm-webservices-bnd.xmi,

ibm-webservicesclient-ext.xmi

and

the

mapping

file

are

generated

into

the

META-INF

subdirectory.

When

the

-role

develop-server

-container

web

arguments

are

specified,

the

files

are

generated

into

the

WEB-INF

directory.

v

For

each

binding

in

the

WSDL

file

(<wsdl:binding>

element

tag):

–

A

stub

that

implements

the

Service

Endpoint

Interface

(deploy-client

role)

–

An

implementation

template

for

an

enterprise

bean

and

templates

for

the

EJB

remote

interface

and

home

interface

generate

when

the

-role

develop-server

and

-container-ejb

arguments

are

specified.

–

An

implementation

template

for

the

Java

bean

when

the

-role

develop-server

and

-container-web

arguments

are

specified.
v

Other

classes

and

files:

–

A

Java

bean

representing

the

structure

of

the

type

when

the

-role

develop-server

or

-role

develop-client

arguments

are

specified

for

each

complexType

or

simpleType.

–

Three

classes,

*_Ser.java,

*_Deser.java,

and

*_Helper.java,

generate

for

each

complexType

to

assist

in

converting

the

bean

to

SOAP

and

back

when

the

-role

deploy-server

or

-role

deploy-client

argument

is

specified.

–

A

*Holder.java

class

generates

when

the

-role

develop-server

or

-role

develop-client

arguments

are

specified

for

each

out

and

inout

parameter.

Command

line

syntax

The

command

line

syntax

is:

WSDL2Java

[arguments]

WSDL-URI

Required

arguments

v

WSDL-URI

Specifies

the

location

of

the

input

WSDL

document

using

a

Universal

Resource

Identifier

(URI).

You

can

also

use

a

regular

file

path

if

the

WSDL

file

is

on

the

local

file

system.

Important

arguments

v

-container

j2ee-container

Indicates

the

J2EE

container

to

be

used.

Valid

arguments

are:

–

client

Indicates

client

container.

–

ejb

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

325

Indicates

enterprise

JavaBean

(EJB)

container.

–

none

Indicates

no

container.

–

web

Indicates

Web

container.

If

client

is

role,

the

default

argument

is

none.

If

server

is

role,

the

container

must

be

ejb

or

web.

The

same

container

option

must

be

used

for

both

development

and

deployment.

v

-deployScope

argument

Indicates

how

to

deploy

the

server

implementation.

Valid

arguments

are:

–

Application

Uses

one

instance

of

the

implementation

class

for

all

requests.

–

Request

Creates

a

new

instance

of

the

implementation

class

for

each

request.

–

Session

Creates

a

new

instance

of

the

implementation

class

for

each

session.
v

-genResolver

Generates

an

absolute-import

resolver

class.

The

purpose

of

this

class

is

to

record

the

contents

of

the

imported

WSDL

files

used

by

the

WSDL

URI.

This

class

is

used

by

the

runtime.

It

can

also

be

used

for

future

WSDL2Java

command

runs.

This

is

desirable

when

the

imported

WSDL

files

are

remote

and

can

be

inaccessible

or

slow

to

access.

It

also

eliminates

the

possibility

that

a

remote

WSDL

file

might

have

different

contents

at

run

time

than

it

did

at

development

time.

The

generated

class

is

named

_AbsoluteImportResolver.java.

You

should

compile

and

package

this

class

with

the

other

Java

classes

generated

by

the

WSDL2Java

command.

v

-help

Displays

a

help

message

and

exits.

v

-helpX

Displays

a

help

message

for

extended

options

and

exits.

The

options

are:

–

-all

Generates

Java

files

for

all

types,

even

those

that

are

not

referenced.

–

-debug

Prints

debugging

information.

–

-fileNStoPkg

filename

Specifies

the

file

of

namespace

to

package

mappings.

The

default

is

NStoPKG.properties.

–

-genJava

argument

Generates

Java

files.

Valid

arguments

are:

-

IfNotExists,

default

-

Overwrite

-

No
–

-genXML

argument

Generates

the

.xml

and

.xmi

files.

Valid

arguments

are:

-

IfNotExists,

default

-

Overwrite

-

No
–

-password

password

Specifies

the

login

user

password

to

access

the

WSDL

URI.

–

-testCase

Generates

the

template

for

a

JUnit

test

case

for

testing

a

Web

service.

326

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

-user

id

Specifies

the

login

user

name

to

access

the

WSDL

URI.
v

-inputMappingFile

mapping

file

Specifies

the

file

name

of

the

Java

to

WSDL

mapping

file.

v

-NStoPkg

namespace=package

By

default,

package

names

are

automatically

derived

from

the

namespace

strings

in

the

WSDL

file.

For

example,

if

the

namespace

is

of

the

form

http://x.y.com

or

urn:x.y.com,

the

corresponding

package

is

com.y.x.

You

can

provide

your

own

mapping

by

using

the

-NStoPkg

argument,

which

you

can

repeat

as

often

as

necessary,

once

for

each

unique

namespace

mapping.

For

example,

if

there

is

a

namespace

in

the

WSDL

file

called

urn:AddressFetcher2,

and

you

want

files

generated

from

the

objects

in

this

namespace

to

reside

in

the

package

samples.addr,

provide

the

-NStoPkg

urn:AddressFetcher2=samples.addr

argument

to

the

WSDL2Java

command.

v

-output

directory

Sets

the

root

directory

for

emitted

files.

v

-role

j2ee

role

Specifies

the

J2EE

development

role

that

identifies

which

files

to

generate.

Valid

arguments

are:

–

client

Combination

of

develop-client

and

deploy-client.

–

deploy-client

Generates

binding

files

for

client

deployment.

–

deploy-server

Generates

binding

files

for

server

deployment.

–

develop-client

(default)

Generates

files

for

client

development.

–

develop-server

Generates

files

for

server

development.

–

server

Combination

of

develop-server

and

deploy-server.
v

-timeout

seconds

Specifies

how

long

the

WSDL2Javacommand

should

wait,

in

seconds,

for

the

WSDL-URI

to

respond

before

giving

up.

The

default

is

45

seconds,

-1

disables

the

timeout.

v

-useResolver

resolver-class

Specifies

an

absolute-import

resolver

class

to

use

during

parsing.

This

class

must

have

been

created

during

a

previous

execution

of

the

WSDL2Java

command

using

the

-genResolver

option.

The

class

must

be

available

in

CLASSPATH.

v

-verbose

Displays

processing

information,

including

the

names

of

the

generated

files.

Setting

up

a

development

and

unmanaged

client

execution

environment

for

Web

services

based

on

Web

Services

for

J2EE

WebSphere

Application

Server

provides

command-line

tools

to

develop

Web

services

clients

and

implementations

that

are

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

WebSphere

Application

Server

also

includes

the

Assembly

Toolkit

that

can

be

downloaded

from

the

Web

site

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

327

http://www-1.ibm.com/support/docview.wss?rs=180&context

=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

Websphere

Studio

Application

Developer

Version

5.1

has

GUI-based

development

tools

to

develop

Web

services

that

integrate

with

Websphere

Application

Server

5.0.2.

Before

you

can

set

up

a

Web

services

development

and

unmanaged

client

execution

environment

within

WebSphere

Application

Server,

you

must

Install

WebSphere

Application

Server.

To

set

up

a

Web

services

development

and

unmanaged

client

execution

environment:

1.

Develop

application

code

and

run

the

setupCmdLine

script.

2.

Configure

the

path.

You

can

add

the

WebSphere

and

Java

bin

directories

to

your

path

by

typing:

On

Windows

platforms:

set

PATH=%WAS_PATH%;%PATH%

On

UNIX:

export

PATH=$WAS_PATH:$PATH

Develop

Web

services

based

on

Web

Services

for

J2EE.

Developing

a

Web

service

from

a

Java

bean

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment.

To

develop

a

Web

service

from

a

Java

bean:

1.

Access

an

existing

Java

bean

Web

archive

(WAR)

file.

2.

Develop

a

Java

bean

Service

Endpoint

Interface.

3.

Develop

a

Web

Services

Description

Language

(WSDL)

file.

4.

Develop

Web

services

deployment

descriptor

templates

for

a

Java

bean

implementation.

5.

Configure

the

webservices.xml

deployment

descriptor.

6.

Configure

the

ibm-webservices-bnd.xmi

deployment

descriptor.

7.

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

Java.

8.

Assemble

a

Web

services-enabled

WAR

into

an

EAR

file.

9.

Deploy

the

EAR

file

into

WebSphere

Application

Server.

Test

the

Web

service.

Developing

a

WSDL

file

Develop

a

Service

Endpoint

Interface.

You

need

a

Web

Services

Description

Language

(WSDL)

file

to

use

Web

services.

You

can

develop

your

own

WSDL

file

or

get

one

from

a

Web

service

provider

through

E-mail,

downloading

or

through

a

Uniform

Resource

Locator

(URL).

This

documentation

assumes

you

are

creating

your

own.

328

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

develop

a

WSDL

file:

1.

Configure

the

Service

Endpoint

Interface

class

and

referenced

classes

into

your

CLASSPATH.

v

On

Windows,

set

CLASSPATH=″%CLASSPATH%;<list

your

application

JAR

files

and

classes>″.

v

On

UNIX,

export

CLASSPATH=″$CLASSPATH:<list

your

application

JAR

files

and

classes>″.
2.

Run

the

Java2WSDL

seiInterface

command.

A

WSDL

file

named

seiInterface.wsdl

is

created.

v

Move

the

WSDL

file

to

the

META-INF/wsdl

subdirectory

if

you

are

using

an

enterprise

JavaBean

(EJB).

v

Move

the

WSDL

file

to

the

WEB-INF/wsdl

subdirectory

if

you

are

using

a

Java

bean.
3.

Edit

the

generated

WSDL

file

and

inspect

the

part

names.

The

WSDL

parts

have

names

like

arg_0_0.

Modify

the

WSDL

file

to

use

the

actual

names

of

the

Java

parameters.

4.

(Optional)

Use

the

Java2WSDL

command

tool

to

generate

the

correct

part

names

of

WSDL

file.

You

can

automatically

generate

and

set

the

correct

part

names

by

using

the

Java2WSDL

command

tool.

Generating

and

setting

the

part

names

is

done

by

providing

additional

information

to

the

Java2WSDL

command

tool

in

the

form

of

a

Java

implementation

class

that

implements

the

same

methods

as

the

Service

Endpoint

Interface

and

is

compiled

with

debug

information

on

(javac

-g).

Parameter

names

are

stored

in

the

.class

file

with

the

debug

information.

If

your

implementation

class

was

compiled

with

debug

on,

you

can

use

the

Java2WSDL

-implClass

seiImpl

seiInterface

command

to

generate

a

WSDL

file

having

the

proper

part

names.

A

WSDL

file

that

defines

the

Web

service

described

by

the

Service

Endpoint

Interface.

This

example

uses

a

JAR

file

named

AddressBook.jar

containing

a

class

named

AddressBook.class

file.

You

must

add

the

AddressBook.jar

file

to

your

CLASSPATH

to

create

the

WSDL

file.

The

JAR

file

contains

an

EJB

implementation

class

that

was

compiled

with

debugging

information

on.

Run

the

Java2WSDL

-implClass

addr.AddressBookBean

addr.AddressBook

command

to

create

a

WSDL

file

named

AddressBook.wsdl.

Develop

Web

services

deployment

descriptor

templates

from

a

WSDL

file.

WSDL:

Web

Services

Description

Language

(WSDL)

is

an

eXtensible

Markup

Language

(XML)-based

description

language

that

has

been

submitted

to

the

W3C

as

the

industry

standard

for

describing

Web

services.

The

power

of

WSDL

is

derived

from

two

main

architectural

principles:

the

ability

to

describe

a

set

of

business

operations

and

the

ability

to

separate

the

description

into

two

basic

units,

a

description

of

the

operations

and

the

details

of

how

the

operation

and

the

information

associated

with

it

are

packaged.

A

WSDL

document

allows

a

service

provider

to

specify

the

name

and

address

of

the

Web

service;

protocol

and

encoding

style

used

when

accessing

the

public

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

329

operations

of

the

Web

service;

and

the

type

information,

including

name,

operations,

parameters

and

data

comprising

the

interface

of

the

Web

service.

The

WSDL

document

is

the

engine

of

a

Java

2

platform,

Enterprise

Edition

(J2EE)

Web

service;

without

it

there

is

no

service.

The

information

within

a

WSDL

file

maps

to

the

Java

application

to

create

a

Web

service.

A

WSDL

document

defines

services

as

collections

of

network

endpoints,

or

ports.

In

WSDL,

the

abstract

definition

of

endpoints

and

messages

is

separated

from

their

concrete

network

deployment

or

data

format

bindings.

This

allows

the

reuse

of

abstract

definitions:

messages,

which

are

abstract

descriptions

of

the

data

being

exchanged,

and

port

types

which

are

abstract

collections

of

operations.

The

concrete

protocol

and

data

format

specifications

for

a

particular

port

type

constitutes

a

reusable

binding.

A

port

is

defined

by

associating

a

network

address

with

a

reusable

binding,

and

a

collection

of

ports

define

a

service.

Therefore,

a

WSDL

document

is

composed

of

several

elements.

See

WSDL

anatomy

for

more

information

and

examples

of

the

WSDL

elements.

When

creating

a

Web

service

for

WebSphere

Application

Server,

you

must

first

have

an

implementation

bean

that

includes

a

Service

Endpoint

Interface.

Then,

you

use

the

Java2WSDL

command-line

tool

to

create

a

WSDL

that

defines

the

Web

service.

To

learn

more

about

how

the

WSDL

file

is

used

in

the

development

process,

see

Developing

Web

services

based

on

Web

Services

for

J2EE.

WSDL

anatomy:

Web

Services

Description

Language

(WSDL)

files

are

written

in

eXtensible

Markup

Language

(XML).

To

learn

more

about

XML,

see

Web

services:

Resources

for

learning.

Web service

interface

definition

Web service

implementation

Port type

Messages

Types

Bindings

Service

Ports

Operation signatures

Parameter definitions

Complex type definitions

Transport protocol and payload format

Service definition element

Supported interface bindings

A

WSDL

contains

the

following

parts:

v

Web

service

interface

definition

This

is

where

the

elements

are

contained,

as

well

as

the

namespaces.

v

Web

service

implementation

This

is

where

you

find

the

definition

of

the

service

and

ports.

A

WSDL

file

describes

a

Web

service

with

the

following

elements:

330

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

portType

The

description

of

the

operations

and

their

associated

messages.

PortTypes

define

abstract

operations.

<portType

name="EightBall">

<operation

name="getAnswer">

<input

message="ebs:IngetAnswerRequest"/>

<output

message="ebs:OutgetAnswerResponse"/>

</operation>

</portType>

message

The

description

of

parameters

(input

and

output)

and

return

values.

<message

name="IngetAnswerRequest">

<part

name="meth1_inType"

type="ebs:questionType"/>

</message>

<message

name="OutgetAnswerResponse">

<part

name="meth1_outType"

type="ebs:answerType"/>

</message>

types

The

schema

for

describing

XML

complex

types

used

in

the

messages.

<types>

<xsd:schema

targetNamespace="...">

<xsd:complexType

name="questionType">

<xsd:element

name="question"

type="string"/>

</xsd:complexType>

<xsd:complexType

name="answerType">

...

</types>

binding

Bindings

describe

the

protocol

used

to

access

a

service,

as

well

as

the

data

formats

for

the

messages

defined

by

a

particular

portType.

<binding

name="EightBallBinding"

type="ebs:EightBall">

<soap:binding

style="rpc"

transport="schemas.xmlsoap.org/soap/http">

<operation

name="ebs:getAnswer">

<soap:operation

soapAction="urn:EightBall"/>

<input>

<soap:body

namespace="urn:EightBall"

...

/>

...

The

remaining

parts,

services

and

ports,

indicate

where

you

can

find

the

WSDL.

Service

Contains

the

Web

service

name

and

a

list

of

the

ports.

Ports

Contains

the

location

of

the

Web

service

and

the

binding

to

used

to

access

the

service.

<service

name="EightBall">

<port

binding="ebs:EightBallBinding"

name="EightBallPort">

<soap:address

location="localhost:8080/axis/EightBall"/>

</port>

</service>

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

331

Publishing

WSDL

files:

To

publish

a

Web

Services

Description

Language

(WSDL)

file

you

need

an

enterprise

application,

also

known

as

an

enterprise

archive

(EAR)

file,

that

contains

a

Web

services-enabled

module

and

has

been

deployed

into

WebSphere

Application

Server.

See

Deploying

Web

services

based

on

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE).

The

WSDL

files

for

each

Web

services-enabled

module

are

published

to

the

file

system

location

you

specify.

You

can

provide

these

WSDL

files

to

clients

that

want

to

invoke

your

Web

services.

You

can

publish

WSDL

files

for

the

deployed

EAR

file

in

one

of

three

ways:

1.

Publish

a

WSDL

file

with

the

administrative

console.

2.

Publish

a

WSDL

file

with

the

wsadmin

command

tool.

3.

Publish

a

WSDL

file

through

a

URL.

Publishing

WSDL

files

with

the

administrative

console:

When

publishing

Web

Services

Description

Language

(WSDL)

files

with

the

administrative

console,

you

can

specify

default

or

custom

HTTP

URL

prefixes.

You

can

also

specify

a

Java

Message

Service

(JMS)

URL

prefix.

To

publish

a

WSDL

file

with

the

administrative

console:

1.

Open

the

administrative

console.

2.

Click

Applications>

Enterprise

Applications

>

application.

Under

Additional

Properties,

click

Publish

WSDL

which

brings

you

to

the

Publish

WSDL

files

for

Web

Services

panel.

3.

Specify

the

default

URL

prefixes

for

the

Web

service.

a.

Select

HTTP

URL

prefix.

b.

Select

an

entry

from

the

drop

down

list.

If

you

have

multiple

application

modules,

select

the

application

module’s

checkbox

on

the

module

table.

c.

Click

Apply.

The

URL

prefix

is

copied

to

the

selected

module

HTTP

URL

prefix

field.

d.

Click

OK.

e.

Click

the

exported

WSDL_zip_file

listed

on

the

Export

WSDL

Zip

file

panel.

f.

Download

the

zip

file.

Follow

your

browser’s

instructions

to

download

the

zip

file.
4.

Specify

custom

URL

prefixes

for

the

Web

service.

a.

Select

Custom

HTTP

URL

prefix.

b.

Type

the

name

of

the

URL

prefix

in

the

Custom

HTTP

URL

prefix

field.

The

entry

must

be

of

the

form

http|https://<host_name>:<port_number>.

For

example:

http://myHost:999

If

you

have

multiple

application

modules,

select

the

application

module’s

checkbox

on

the

module

table.

c.

Click

Apply.

The

URL

prefix

is

copied

to

the

selected

module

HTTP

URL

prefix

field.

d.

Click

OK.

e.

Click

the

exported

WSDL_zip_file

listed

on

the

Export

WSDL

Zip

file

panel.

332

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

f.

Download

the

zip

file.

Follow

your

browser’s

instructions

to

download

the

zip

file.
5.

Specify

a

JMS

URL

prefix.

a.

Select

the

application

module.

b.

Type

the

JMS

URL

prefix

into

the

JMS

URL

prefix

field.

The

entry

must

be

of

the

form:

jms:/[queue|topic]?destination=<queue

or

topic_jndi_name>&connectionFactory=<connection_factory_jndi_name>.

For

example:

jms:/queue?destination=jms/Q1&connectionFactory=jms/QCF1

c.

Click

OK.

d.

Click

the

exported

WSDL_zip_file

listed

on

the

Export

WSDL

Zip

file

panel.

e.

Download

the

zip

file.

Follow

your

browser’s

instructions

to

download

the

zip

file.

Publishing

WSDL

files

using

the

wsadmin

command:

The

Web

Services

Description

Language

(WSDL)

files

in

each

Web

services-enabled

module

are

published

to

the

file

system

location

you

specify.

You

can

provide

these

WSDL

files

to

the

clients

that

want

to

invoke

your

Web

services.

The

scripting

client,

wsadmin,

can

publish

the

WSDL

files

in

either

local,

for

example,

-conntype

NONE,

or

remote

mode.

However,

in

local

mode,

the

target

application

should

be

located

at

the

same

node

where

the

wsadmin

command

is

invoked.

The

steps

below

assume

that

the

application

has

been

deployed

and

that

the

application

server

is

running.

To

publish

a

WSDL

file

with

the

wsadmin

command:

1.

From

a

command

prompt,

start

install_root\bin\wsadmin

if

you

are

using

Windows

or

install_root/bin/wsadmin

if

you

are

using

UNIX.

2.

At

the

wsadmin

command

prompt,

enter

one

of

the

two

commands:

v

$AdminApp

publishWSDL

app_Name

path_Name

v

$AdminApp

publishWSDL

app_Name

path_Name

{{module

{{binding

url-prefix}}}}

Where

v

app_Name

is

the

application

name

v

path_Name

is

the

absolute

path

to

the

zip

file

that

will

contain

the

published

WSDL

files.

The

zip

file

is

saved

on

the

machine

running

WebSphere

Application

Server,

therefore,

if

the

server

is

running

on

a

different

machine,

you

need

to

obtain

the

zip

file

from

that

machine.

The

directory

structure

of

the

resulting

zip

file

is

based

on

the

following

information:

Application

file

name

module

file

name

META-INF/

or

WEB-INF/

wsdl/

WSDL

file

name

See

the

usage

scenario

for

an

example

of

this

directory

structure.

v

binding

is

either

http

or

jms

(both

are

in

lower

case)

v

url-prefix

is

the

partial

SOAP

address

for

the

associated

SOAP

binding.

For

an

HTTP

binding

the

form

is

http://host:port/

or

https://host:port.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

333

For

Java

Message

Service

(JMS)

bindings,

the

form

is

jms:/queue?destination=dest&connectionFactory=cf

or

jms:/topic?destination=dest&connectionFactory=cf

The

$AdminApp

publishWSDL

app_Name

path_Name

command

updates

the

WSDL

SOAP

address

prefixes

using

the

default

values.

If

you

do

not

want

to

update

the

WSDL

SOAP

address

prefixes,

use

the

other

command,

instead

of

the

default

values.

The

$AdminApp

publishWSDL

app_Name

path_Name

{{module

{{binding

url-prefix}}}}

command

allows

you

to

customize

the

WSDL

SOAP

address

for

each

module.

You

can

specify

a

different

address

prefix

for

each

SOAP

binding.

The

WSDL

files

from

Web

services

are

published

to

a

specified

zip

file.

You

can

hand

the

zip

file

to

the

client

and

the

client

can

use

the

published

WSDL

files

to

create

a

Web

services

client

that

accesses

the

deployed

service.

The

command

to

publish

WSDL

files

for

a

Web

service

named

WebServicesSamples

could

be

$AdminApp

publishWSDL

WebServicesSamples

c:/temp/samplesWsdl.zip

or

$AdminApp

publishWSDL

WebServicesSamples

c:/temp/sampleswsdl.zip

{

{AddressBookJ2WB.war

{{http

http://localhost:9080}}}

{StockQuote.jar

{{http

https://localhost:9443}}}

}

The

directory

structure

for

this

created

zip

files

is

WebServicesSamples.ear/StockQuote.jar/META-INF/wsdl/StockQuoteFetcher.wsdl

WebServicesSamples.ear/AddressBookW2JE.jar/META-INF/wsdl/AddressBookW2JE.wsdl

WebServicesSamples.ear/AddressBookJ2WE.jar/META-INF/wsdl/AddressBookJ2WE.wsdl

WebServicesSamples.ear/AddressBookJ2WB.war/WEB-INF/wsdl/AddressBookJ2WB.wsdl

WebServicesSamples.ear/AddressBookW2JB.war/WEB-INF/wsdl/AddressBookW2JB.wsdl

Publishing

WSDL

files

using

a

URL:

Before

you

can

publish

a

Web

Services

Description

Language

(WSDL)

file

using

a

URL,

the

Web

services-enabled

application

should

be

installed

and

running.

The

files

referenced

by

the

<wsdl-file>

element

in

the

webservices.xml

file

can

or

cannot

import

other

WSDL

or

XSD

files.

Typically,

all

WSDL

or

XSD

files

are

originally

placed

into

the

META-INF/wsdl

directory

when

using

enterprise

JavaBeans

(EJBs)

or

the

WEB-INF/wsdl

directory

when

using

Java

beans.

If

your

WSDL

or

XSD

files

are

not

placed

in

one

of

these

directories,

the

file

referenced

by

the

<wsdl-file>

and

its

imported

files

are

located

at

the

same

directory

and

copied

to

the

wsdl/

directory

for

publishing

purposes.

Note:

EJB-based

Web

service

applications

must

have

an

HTTP

router

or

a

Web

module.

Only

HTTP

URLs

are

supported

for

publishing.

To

publish

a

WSDL

file

using

a

URL:

1.

Retrieve

the

outer-most

WSDL

file.

The

outer-most

WSDL

file

is

the

WSDL

file

defined

by

the

<wsdl-file>

element

in

the

webservices.xml

file.

Each

Web

service

has

an

endpoint

address,

like

http://example.com/services/stockquote.

You

can

retrieve

the

outer-most

WSDL

file

(defined

by

the

<wsdl-file>

element

within

the

webservices.xml

file)

334

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

by

appending

the

string

″/wsdl″

or

″/wsdl/″

to

the

endpoint

address,

for

example,http://example.com/services/stockquote/wsdl.

2.

Retrieve

the

imported

WSDL

files.

When

the

outer-most

WSDL

file

imports

other

WSDL

or

XSD

files,

these

imported

files

can

be

retrieved

by

appending

the

relative

path

to

the

URL,

which

is

used

to

retrieve

the

outer-most

WSDL

file.

This

is

also

true

for

WSDL

files

that

import

other

files.

This

process

is

similar

to

the

use

of

relative

hyperlinks

in

HTML

documents.

If

an

HTML

document

contains

a

hyperlink

to

other

documents,

the

relative

path

is

appended

to

create

the

URL

to

access

the

hyperlinked

documents.

Suppose

you

have

an

application

with

the

following

directory

structure:

<module-root>/

META-INF/

WEB-INF/

webservices.xml/*

define

Foo

service,

the

<wsdl-file>

element

points

to

"/wsdl/fooImpl.wsdl"

*/

web.xml

ibm-webservices-bnd.xml

<jaxrpc-mapping-file>

wsdl/

fooImpl.wsdl/*

importing

foo.wsdl

which

is

an

interface

wsdl

*/

foo.wsdl

/*

importing

type

definition

for

the

interface

*/

fooTypes.xsd

If

the

SOAP

address

for

the

foo

service

is

http://examples.com:9080/services/foo,

the

simple

way

to

retrieve

the

foo’s

outer-most

WSDL,

is

with

the

following

form

http://examples.com:9090/services/foo/wsdl

or

http://examples.com:9090/services/foo/wsdl/.

The

URL

is

redirected

to

http://examples.com:9090/services/foo/wsdl/fooImpl.wsdl,

where

fooImpl.wsdl

is

the

name

of

the

outer-most

WSDL

file.

Since

the

fooImpl.wsdl

file

has

the

import

<import

namespace=″http://examples.com/foo″

location=″a/b/foo.wsdl>,

use

the

URL

http://examples.com:9090/services/foo/wsdl/a/b/foo.wsdl

to

obtain

the

foo.wsdl

file.

Publish

WSDL

files

settings:

Use

this

page

to

publish

Web

Services

Description

Language

(WSDL)

files.

To

view

this

administrative

console

page,

click

Applications

>Enterprise

Applications

>

application_instance

>

Publish

WSDL.

When

you

click

OK,

a

zip

file

of

all

the

Web

services-enabled

modules

in

the

application

is

produced.

The

name

of

the

published

zip

file

is

application_name_WSDLFiles.zip.

In

the

published

zip

file,

the

directory

structure

is

application_name/module_name/[META-INF|WEB-INF]/wsdl/wsdl_file_name.

In

a

published

WSDL

file,

the

location

attribute

of

a

service

soap:address

stanza

contains

the

URL

through

which

the

Web

service

is

accessed.

You

can

specify

the

portion

of

the

URL

to

be

used

for

the

Web

services

in

each

module.

You

can

access

the

Web

services

in

a

module

through

a

HTTP

transport

or

JMS

transport,

or

both.

You

can

specify

URL

information

for

both

types

of

transports.

Specify

URL

prefixes

for

Web

Services:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

335

Specifies

the

protocol

(either

http

or

https),

host_name,

and

port_number

to

be

used

in

the

URL.

The

URL

prefix

format

is

protocol://host_name:port_number,

for

example,

http://myHost:9045.

The

actual

URL

that

appears

in

a

published

WSDL

file

consists

of

the

prefix

prepended

to

the

module’s

context-root

and

the

Web

service

url-pattern,

for

example,

http://myHost:9045/services/myService

.

Select

HTTP

URL

prefix:

Specifies

the

drop

down

list

associated

with

a

default

list

of

URL

prefixes.

This

list

is

the

intersection

of

the

set

of

ports

for

the

module’s

virtual

host

and

the

set

of

ports

for

the

module’s

application

server.

Use

items

from

this

list

if

the

Web

services

application

server

is

accessed

directly.

To

set

an

HTTP

prefix,

select

either

the

HTTP

URL

prefix

or

Custom

HTTP

URL

prefix,

enter

the

value,

select

the

check

box

of

the

modules

that

are

to

use

the

prefix,

and

click

Apply.

When

you

click

Apply,

the

entry

in

the

Select

HTTP

URL

prefix

or

Custom

HTTP

URL

prefix

fields,

depending

on

which

is

selected,

is

copied

into

the

HTTP

URL

prefix

field

of

any

module

whose

check

box

(in

the

leftmost

column)

is

selected.

The

HTTP

prefix

is

not

applied

to

the

fields

in

the

JMS

URL

prefix

column.

Custom

HTTP

URL

prefix:

Specifies

the

protocol,

host,

and

port_number

of

the

intermediate

service

if

the

Web

services

in

a

module

are

accessed

through

an

intermediate

node,

for

example

the

Web

services

gateway

or

an

IHS

server.

To

set

an

HTTP

prefix,

select

either

the

HTTP

URL

prefix

or

Custom

HTTP

URL

prefix,

enter

the

value,

select

the

check

box

of

the

modules

that

are

to

use

the

prefix,

and

click

Apply.

When

you

click

Apply,

the

entry

in

the

Select

HTTP

URL

prefix

or

Custom

HTTP

URL

prefix

fields,

depending

on

which

is

selected,

is

copied

into

the

HTTP

URL

prefix

field

of

any

module

whose

check

box

(in

the

leftmost

column)

is

selected.

The

HTTP

prefix

is

not

applied

to

the

fields

in

the

JMS

URL

prefix

column.

JMS

URL

prefix:

Specifies

the

JMS

URL

prefix

string

used

for

each

module.

The

URL

prefix

specified

must

contain

the

destination

and

connectionFactory

properties.

It

can

contain

other

property-value

pairs,

but

it

must

not

contain

the

targetService

property,

which

is

added

by

the

system

when

the

published

WSDL

files

are

created.

The

format

of

the

JMS

URL

prefix

is

jms:/[queue&topic]?destination

=target_queue_or_topic_jndi_name&connectionFactory=factory_jndi_name,

for

example,

jms:/queue?destination=jms/Q1&connectionFactory=jms/QCF.

The

actual

URL

that

appears

in

a

published

WSDL

file

consists

of

the

prefix

prepended

to

the

Web

service

targetService,

for

example,

jms:/queue?destination=jms/

Q1&connectionFactory=jms/QCF&targetService=StockQuote.

Multipart

WSDL

best

practices:

WebSphere

Application

Server

supports

deployment

of

Web

services

using

a

multipart

Web

Services

Description

Language

(WSDL)

file.

That

is,

WSDL

files

import

other

WSDL

files

when

the

WSDL

file

listed

in

the

<wsdl-file>

element

of

the

webservices.xml

deployment

descriptor

336

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

contains

all

<wsdl:service>

and

<wsdl:port>

elements.

The

WSDL

file

is

divided

into

an

implementation

WSDL

and

an

interface

WSDL.

The

<wsdl:import>

element

indicates

a

reference

to

another

WSDL

file.

If

the

<wsdl:import>

element

location

attribute

does

not

contain

a

URL,

that

is,

it

contains

only

a

file

name,

and

does

not

begin

with

http://,

https://

or

file://,

the

imported

file

must

be

located

in

the

same

directory

and

must

not

contain

a

relative

path

component.

For

example,

if

META-INF/wsdl/A_Impl.wsdl

is

in

your

module

and

contains

the

import

statement

<wsdl:import=″A.wsdl″

namespace=″...″/>

,

the

file,

A.wsdl

must

also

be

located

in

the

module

META-INF/wsdl

directory.

It

is

recommended

that

all

WSDL

files

be

placed

in

either

the

META-INF/wsdl

directory,

if

you

are

using

enterprise

JavaBeans

(EJBs),

or

the

WEB-INF/wsdl

directory,

if

you

are

using

Java

beans,

even

if

there

are

relative

imports

within

the

WSDL

files.

Otherwise,

there

are

implications

with

the

WSDL

publication

when

you

use

a

path

like

the

following

<location=″../interfaces/A_Interface.wsdl″namespace=″...″/>.

Using

a

path

like

this

fails

because

the

presence

of

the

relative

path,

regardless

of

whether

the

file

is

located

at

that

path

or

not.

If

the

location

is

a

URL,

it

must

be

readable

at

both

deployment

and

server

startup.

WSDL

publication

The

files

located

in

the

META-INF/wsdl

or

WEB-INF/wsdl

directory

can

be

published

through

either

a

URL

or

file,

including

WSDL

or

XSD

files.

For

example,

if

the

file

referenced

in

the

<wsdl:file>

element

of

the

webservices.xml

deployment

descriptor

is

located

in

the

META-INF/wsdl

or

WEB-INF/wsdl

directory,

it

is

publishable.

If

the

files

imported

by

the

<wsdl:file>

are

located

in

the

wsdl/

directory

or

its

subdirectory,

they

are

publishable.

If

the

WSDL

file

referenced

by

the

<wsdl:file>

element

is

located

in

a

directory

other

than

wsdl,

or

its

subdirectories,

the

file

and

its

imported

files,

either

WSDL

or

XSD

files,

which

are

in

the

same

directory,

are

copied

to

the

wsdl

directory

without

modification

when

the

application

is

installed.

These

types

of

files

can

also

be

published.

If

the

<wsdl:file>

imports

a

file

located

in

a

different

directory,

the

file

is

not

copied

to

the

wsdl

directory

and

not

available

for

publishing.

Developing

a

Service

Endpoint

Interface

for

a

Java

bean

implementation

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment.

The

Service

Endpoint

Interface

defines

the

methods

for

a

particular

Web

service.

The

Java

bean

implementation

must

implement

methods

having

the

same

signature

as

the

methods

on

the

Service

Endpoint

Interface.

There

are

a

number

of

restrictions

on

which

types

to

use

as

parameters

and

results

of

Service

Endpoint

Interface

methods.

These

restrictions

are

documented

in

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specification,

which

is

available

through

Web

services:

Resources

for

learning.

You

can

also

create

a

Service

Endpoint

Interface

by

using

the

Assembly

Toolkit,

which

is

a

component

of

the

Application

Assembly

Toolkit.

The

steps

are

similar

except

the

Assembly

Toolkit

automatically

compiles

the

interface

when

you

save

it.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

337

To

develop

a

Service

Endpoint

Interface

for

a

Java

bean

implementation:

1.

Create

a

Java

interface

containing

the

methods

to

include

in

the

Service

Endpoint

Interface.

The

interface

should

extend

the

java.rmi.Remote

interface.

Each

method

throws

the

exception,

java.rmi.RemoteException.

If

you

start

with

an

existing

Java

interface,

remove

any

methods

that

do

not

conform

to

JAX-RPC.

2.

Compile

the

interface.

A

Service

Endpoint

Interface

which

you

can

use

to

develop

a

Web

service.

This

example

uses

a

Java

interface

called

AddressBook.

The

following

example

depicts

the

AddressBook

interface:

package

addr;

public

interface

AddressBook

{

/**

*

Retrieve

an

entry

from

the

AddressBook.

*

*@param

name

the

name

of

the

entry

to

look

up.

*@return

the

AddressBook

entry

matching

name

or

null

if

none.

*@throws

java.rmi.RemoteException

if

communications

failure.

*/

public

addr.Address

getAddressFromName(java.lang.String

name);

}

You

use

the

AddressBook

Java

interface

to

create

the

Service

Endpoint

Interface:

1.

Begin

with

the

remote

interface,

AddressBook.java.

2.

Make

a

copy

of

the

remote

interface

named

AddressBook_SEI.java

and

use

it

as

a

template

for

the

Service

Endpoint

Interface.

3.

Change

the

interface

to

extend

the

java.rmi.Remote

interface.

4.

Modify

each

method

declaration

to

add

a

throws

clause

for

java.rmi.RemoteException.

5.

Compile

the

interface.

Use

the

Service

Endpoint

Interface

to

Develop

a

Web

Services

Description

Language

(WSDL)

file.

Developing

Web

services

deployment

descriptor

templates

for

a

Java

bean

implementation

To

develop

the

deployment

descriptor

templates

from

a

Web

Services

Description

Language

(WSDL)

file,

you

must

obtain

the

Uniform

Resource

Locator

(URL)

of

the

WSDL

file

to

use.

If

it

is

a

local

file

and

you

are

running

the

Windows

platform,

the

URL

looks

like

this:

file:drive:\path\file_name.wsdl.

If

you

are

using

the

UNIX

platform,

the

URL

looks

like

this:

file:/path/file_name.wsdl.

You

can

also

specify

local

files

using

the

absolute

or

relative

file

system

path.

When

the

Web

service

implementation

is

a

Java

bean

in

a

Web

module,

the

webservices.xml,

ibm-webservices-bnd.xmi

and

ibm-webservices.ext.xmi

deployment

descriptors

and

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

file

are

generated

in

the

WEB-INF

subdirectory.

To

develop

deployment

descriptor

templates:

Run

the

WSDL2Java

-verbose

-role

develop-server

-container

web

-genJava

no

wsdlURL

command

to

generate

the

server

deployment

descriptor

templates

and

338

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

mapping

file

into

the

WEB-INF

subdirectory.

If

the

-verbose

option

is

specified,

a

list

of

all

generated

files

displays

when

the

command

runs.

Deployment

descriptor

templates

that

are

required

to

implement

or

use

a

Web

service.

The

following

example

uses

a

WSDL

file

named

AddressBookJ2WB.wsdl:

1.

Generate

the

template

files:

v

WSDL2Java

-verbose

-role

develop-server

-container

web

-genJava

no

AddressBookJ2WB.wsdl

The

deployment

descriptor

templates

and

mapping

file

are

generated

into

the

WEB-INF

subdirectory

as

follows:

Parsing

XML

file:

AddressBookJ2WB.wsdl

Generating:

WEB-INF\webservices.xml

Generating:

WEB-INF\ibm-webservices-bnd.xmi

Generating:

WEB-INF\ibm-webservices-ext.xmi

Generating:

WEB-INF\AddressBookJ2WB_mapping.xml

Developing

a

Web

service

using

a

stateless

session

enterprise

bean

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment.

To

use

an

enterprise

bean

as

the

basis

for

a

Web

service

implementation,

follow

these

requirements:

v

The

enterprise

bean

must

be

a

stateless

session

bean.

v

Web

service

method

parameters

must

be

serializable

and

cannot

be

object

references.

v

Web

service

method

parameters

must

be

one

of

the

supported

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

types.

These

requirements

are

documented

in

the

JAX-RPC

specification

available

through

Web

services:

Resources

for

learning.

Create

the

artifacts

that

enable

the

enterprise

bean

to

be

a

Web

service

and

assemble

the

artifacts

into

the

enterprise

application

as

follows:

1.

Access

an

existing

Java

archive

(JAR)

file

to

be

used

as

a

Web

service.

Make

sure

that

the

enterprise

bean

meets

the

requirements.

2.

Develop

an

EJB

Service

Endpoint

Interface.

The

Service

Endpoint

Interface

defines

which

enterprise

bean

methods

should

be

made

available

as

a

Web

service.

3.

Develop

a

Web

Services

Description

Language

(WSDL)

file.

4.

Develop

Web

services

deployment

descriptor

templates

from

an

EJB

implementation.

5.

Assemble

a

Web

services-enabled

JAR

file.

6.

Configure

the

webservices.xml

deployment

descriptor.

7.

Configure

the

ibm-webservices-bnd.xmi

deployment

descriptor.

8.

Assemble

a

Web

services-enabled

enterprise

archive

(EAR)

file.

9.

Enable

the

EAR

file.

When

the

EAR

file

contains

EJB

modules,

it

must

have

the

Web

services

endpoint

Web

archive

(WAR)

file

added

with

the

endptEnabler

tool

before

it

is

deployed.

10.

Deploy

the

EAR

file

into

WebSphere

Application

Server.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

339

A

Web

service

from

a

stateless

session

enterprise

bean.

Developing

a

Service

Endpoint

Interface

from

an

EJB

remote

interface

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment.

The

Service

Endpoint

Interface

defines

the

Web

services

methods.

The

enterprise

JavaBean

(EJB)

that

implements

the

Web

service

must

implement

methods

having

the

same

signature

as

the

methods

of

the

Service

Endpoint

Interface.

There

are

a

number

of

restrictions

on

which

types

to

use

as

parameters

and

results

of

Service

Endpoint

Interface

methods.

These

restrictions

are

documented

in

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specification,

which

is

available

through

Web

services:

Resources

for

learning.

The

easiest

method

for

creating

the

Service

Endpoint

Interface

for

an

EJB

Web

service

implementation

is

from

the

EJB

remote

interface.

You

can

also

create

a

Service

Endpoint

Interface

by

using

the

Assembly

Toolkit,

which

is

a

component

of

the

Application

Server

Toolkit.

The

steps

are

similar

except

the

Assembly

Toolkit

automatically

compiles

the

interface

when

you

save

it.

To

develop

a

Service

Endpoint

Interface:

1.

Create

a

Java

interface

containing

the

methods

to

include

in

the

Service

Endpoint

Interface.

The

interface

should

extend

the

java.rmi.Remote

interface.

Each

method

throws

the

exception,

java.rmi.RemoteException.

If

you

start

with

an

existing

Java

interface,

remove

any

methods

that

do

not

conform

to

JAX-RPC.

2.

Compile

the

interface.

A

Service

Endpoint

Interface

which

you

can

use

to

develop

a

Web

service.

This

example

uses

an

EJB

remote

interface

called

AddressBook_RI.

package

addr;

public

interface

AddressBook_RI

extends

javax.ejb.EJBObject

{

/**

*

Retrieve

an

entry

from

the

AddressBook.

*

*@param

name

the

name

of

the

entry

to

look

up.

*@return

the

AddressBook

entry

matching

name

or

null

if

none.

*@throws

java.rmi.RemoteException

if

communications

failure.

*/

public

addr.Address

getAddressFromName(java.lang.String

name)

throws

java.rmi.RemoteException;

}

You

use

the

AddressBook_RI

remote

interface

to

create

the

Service

Endpoint

Interface:

1.

Begin

with

the

remote

interface,

AddressBook_RI.java:

2.

Make

a

copy

of

the

remote

interface

named

AddressBook.java

and

use

it

as

a

template

for

the

Service

Endpoint

Interface.

3.

Change

the

interface

to

extend

the

java.rmi.Remote

interface,

instead

of

the

javax.ejb.EJBObject

Service

Endpoint

Interface.

4.

Compile

the

AddressBook.java

Service

Endpoint

Interface.

Use

the

Service

Endpoint

Interface

to

Develop

a

WSDL

file.

340

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Developing

Web

services

deployment

descriptor

templates

for

an

EJB

implementation

To

develop

the

deployment

descriptor

templates

from

a

Web

Services

Description

Language

(WSDL)

file,

you

must

obtain

the

Uniform

Resource

Locator

(URL)

of

the

WSDL

file

to

use.

If

it

is

a

local

file

and

you

are

running

the

Windows

platform,

the

URL

looks

like

this:

file:drive:\path\file_name.wsdl.

If

you

are

using

the

UNIX

platform,

the

URL

looks

like

this:

file:/path/file_name.wsdl.

You

can

also

specify

local

files

using

the

absolute

or

relative

file

system

path.

When

the

Web

service

implementation

is

an

enterprise

Java

bean

(EJB)

in

an

EJB

module,

the

webservices.xml,

ibm-webservices-bnd.xmi

and

ibm-webservices-
ext.xmi

deployment

descriptors,

and

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

file

are

generated

in

the

META-INF

subdirectory.

To

develop

deployment

descriptor

templates:

Run

the

WSDL2Java

-verbose

-role

develop-server

-container

ejb

-genJava

no

wsdlURL

command

to

generate

the

server

deployment

descriptor

templates

and

mapping

file

into

the

META-INF

subdirectory.

If

the

-verbose

option

is

specified,

a

list

of

all

generated

files

displays

when

the

command

runs.

Deployment

descriptor

templates

that

are

required

to

implement

a

Web

service.

The

following

example

uses

a

WSDL

file

named

AddressBookJ2WE.wsdl:

1.

Generate

the

template

files:

v

WSDL2Java

-verbose

-role

develop-server

-container

ejb

-genJava

no

AddressBookJ2WE.wsdl

The

deployment

descriptor

templates

are

generated

into

the

META-INF

subdirectory

as

follows:

Parsing

XML

file:

AddressBookJ2WE.wsdl

Generating:

META-INF\webservices.xml

Generating:

META-INF\ibm-webservices-bnd.xmi

Generating:

META-INF\ibm-webservices-ext.xmi

Generating:

META-INF\AddressBookJ2WE_mapping.xml

Completing

the

EJB

implementation

Develop

EJB

implementation

templates

and

bindings

from

a

Web

Services

Description

(WSDL)

file.

To

complete

the

EJB

implementation:

1.

Inspect

the

enterprise

EJB

remote

interface

template,

portType_RI.java.

If

necessary,

modify

the

template.

portType

is

the

name

of

the

<wsdl:portType>

element

in

the

WSDL

file.

2.

Inspect

the

EJB

home

interface

template,

portTypeHome.java.

If

necessary,

modify

the

template.

3.

Edit

the

EJB

implementation

template,

bindingImpl.java.

binding

is

the

name

of

the

<wsdl:binding>

element

in

the

WSDL

file.

a.

Complete

the

implementation

of

the

methods

in

the

template.

b.

(Optional)

Make

changes

if

necessary.

c.

(Optional)

Change

the

class

name

if

the

binding

name

is

not

acceptable.
4.

Compile

all

the

Java

classes.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

341

5.

Assemble

an

EJB

Java

archive

(JAR)

file.

Assemble

all

the

Java

classes

into

an

EJB

JAR

file

using

the

typical

EJB

assembly

tools.

Include

all

of

the

classes

generated

from

running

the

WSDL2Java

command

tool

when

developing

implementation

templates

and

bindings

from

a

WSDL

file.

An

EJB

JAR

file

containing

an

EJB

and

supporting

classes

created

from

a

WSDL

file.

Configure

the

webservices.xml

deployment

descriptor

.

Configuring

the

webservices.xml

deployment

descriptor

Create

an

enterprise

JavaBean

(EJB)

Java

archive

(JAR)

file

or

Web

archive

(WAR)

file

containing

webservices.xml:

v

Assemble

a

Web

services-enabled

EJB

JAR

file

when

starting

from

Java

code.

v

Assemble

a

Web

services-enabled

EJB

JAR

file

from

WSDL.

v

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

Java

code.

v

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

WSDL.

Do

one

of

the

following

based

on

whether

your

implementation

is

an

EJB

JAR

file

or

Web

module

WAR

file:

v

Develop

Web

services

Java

bean

deployment

descriptor

templates

from

a

WSDL

file.

v

Develop

Web

services

EJB

deployment

descriptor

templates

from

a

WSDL

file.

This

topic

explains

how

to

configure

the

webservices.xml

deployment

descriptor

with

the

Assembly

Toolkit

which

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

For

more

information

about

completing

tasks

with

the

Assembly

Toolkit,

click

Help

>

Help

in

the

Assembly

Toolkit

graphical

user

interface

(GUI).

To

configure

the

webservices.xml

deployment

descriptor:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file

or

WAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

containing

the

webservicesclient.xml

file

in

the

Project

Navigator

pane.

6.

Expand

the

directories

under

the

project

until

the

META-INF

or

WEB-INF

directory

and

its

contents

appear.

7.

Right-click

the

webservices.xml

file.

8.

Select

Open.

The

Web

Services

editor

opens.

9.

Expand

the

Web

service

descriptions

section.

a.

Select

the

service

you

want

to

configure.
10.

Expand

the

Web

service

description

implementation

details

section.

a.

Verify

the

Web

service

description

name

field

is

unique

among

all

the

Web

service

descriptions

in

the

editor.

b.

Verify

that

the

WSDL

file

field

indicates

there

is

an

existing

WSDL

file

in

the

module.

This

file,

by

convention,

should

be

located

in

the

342

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

META-INF/wsdl

directory

for

an

enterprise

bean

JAR

file

and

in

the

WEB-INf/wsdl

directory

for

a

WAR

file.

c.

Verify

the

JAX-RPC

mapping

file

field

indicates

an

existing

mapping

file

within

the

module.

This

file,

by

convention,

should

be

located

in

the

META-INF

directory

for

an

enterprise

bean

JAR

file

and

in

the

WEB-INF

directory

for

a

WAR

file.
11.

Expand

the

Port

components

section.

a.

Verify

there

are

port

component

entries

corresponding

to

the

used

WSDL

ports

in

the

Port

components

section.
12.

Select

a

port_component

to

open

the

editor

for

that

port

component.

The

Port

Components

editor

opens.

13.

Expand

the

Port

component

implementation

details

section.

a.

Verify

the

WSDL

Port

Namespace

URL

and

WSDL

Port

Local

part

fields

are

set

to

the

namespace

and

local

name

of

the

corresponding

port

in

the

WSDL

file.

These

fields

are

configured

by

the

WSDL2Java

command

tool

when

the

webservices.xml

file

is

generated.
14.

Verify

the

Service

endpoint

interface

field

names

the

fully

qualified

Service

Endpoint

Interface

class.

This

field

is

configured

by

the

WSDL2Java

command

when

the

webservices.xml

file

is

generated.

15.

Locate

the

Service

implementation

bean

field.

a.

Configure

this

field

to

indicate

the

EJB

or

servlet

that

implements

the

Web

service.

Configure

by

selecting

EJB

link

for

an

enterprise

bean

module

or

Servlet

link

for

a

Web

module.

Use

the

drop

down

list

in

the

Service

implementation

bean

field

to

select

the

enterprise

bean

or

servlet

used

to

implement

the

Web

service.

The

choices

in

the

drop

down

menu

come

from

the

enterprise

beans

defined

in

the

ejb-jar.xml

file

for

an

enterprise

bean

module

or

the

servlets

defined

in

the

web.xml

file

for

a

Web

module.

Configuring

the

ibm-webservices-bnd.xmi

deployment

descriptor

Develop

implementation

templates

and

bindings

for

the

ibm-webservices-bnd.xmi

from

the

Web

Services

Description

Language

(WSDL)

file.

Do

one

of

the

following

based

on

whether

your

implementation

is

an

EJB

Java

archive

(JAR)

file

or

Web

module

Web

archive

(WAR)

file:

v

Assemble

a

Web

services-enabled

JAR

file

when

starting

from

Java

code.

v

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

Java

code.

v

Assemble

a

Web

services-enabled

JAR

file

when

starting

from

WSDL.

v

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

WSDL.

This

topic

explains

how

to

configure

bindings

using

the

Assembly

Toolkit

which

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

For

more

information

about

completing

tasks

with

the

Assembly

Toolkit,

click

Help

>

Help

in

the

Assembly

Toolkit

graphical

user

interface.

.

To

configure

the

ibm-webservices-bnd.xmi

deployment

descriptor

with

the

Assembly

Toolkit:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file

or

WAR

file

into

the

Assembly

Toolkit.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

343

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>

J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

containing

the

webservices.xml

file

in

the

Project

Navigator

pane.

6.

Expand

the

directories

under

the

project

until

the

META-INF

or

WEB-INF

directory

and

its

contents

appear.

7.

Right-click

the

webservices.xml

file.

8.

Select

Open.

The

Web

Services

editor

opens.

9.

Click

the

Bindings

tab

located

at

the

bottom

of

the

editor

pane.

The

Web

Services

Bindings

editor

opens.

10.

Verify

the

wsdescNameLink

element

settings.

a.

Expand

the

Web

services

description

bindings

section.

Verify

that

the

value

of

the

<webservice-description-name>

element

in

the

webservices.xml

deployment

descriptor

is

listed

in

the

section.

If

the

value

is

not

listed:

b.

(Optional)

Click

Add,

choose

the

correct

Web

services

name

and

click

OK.

You

do

not

need

to

complete

this

step

is

you

have

verified

that

the

correct

Web

services

name

is

listed

in

the

Web

Services

Description

Bindings

tab.
11.

Verify

the

pcnameLink

attribute

settings.

a.

Expand

the

Web

Service

Description

Bindings

section.

Verify

that

the

correct

service

is

selected.

If

the

correct

service

is

not

listed:

b.

(Optional)

Expand

Port

Component

Binding.

Verify

the

correct

Web

services

name

is

selected

in

the

Web

Service

Description

Bindings

section.

This

selection

is

a

prerequisite

to

creating

a

pcnameLink

attribute.

c.

In

the

Port

Component

Binding

section,

click

Add.

You

need

to

make

a

selection

in

the

Web

Service

Description

Bindings

section

before

you

can

create

the

port

component

binding

in

the

Port

Component

Binding

section.

The

Port

Component

Bindings

Dialog

opens.

d.

Select

the

desired

port

from

the

drop

down

list

in

the

PC

Name

Link

field.

e.

Click

OK.

f.

Click

the

Binding

Configurations

tab

to

view

the

bindings

for

your

port.

g.

Save

the

bindings

file.
12.

Click

File

>

Export

to

export

the

JAR

file,

or

continue

using

the

Assembly

Toolkit

for

configuration

and

assembly

tasks.

13.

Click

ctrl-s

to

save

your

changes.

The

ibm-webservices-bnd.xmi

deployment

descriptor

is

configured

for

the

Web

service

implementation

module.

ibm-webservices-bnd.xmi

assembly

properties

ibm-webservices-bnd.xmi

properties

The

ibm-webservices-bnd.xmi

file

is

a

deployment

descriptor

for

a

Web

Services-enabled

Web

module

or

enterprise

JavaBean

(EJB)

module.

It

contains

information

for

the

Web

services

runtime

that

is

either

WebSphere

product-specific

or

was

not

specified

by

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

You

can

edit

these

properties

using

the

Assembly

Toolkit.

See

Configuring

the

ibm-webservices-bnd.xmi

deployment

descriptor

for

instructions.

344

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

following

user-definable

assembly

properties

are

supported:

v

wsDescNameLink

Attribute

of

the

wsdescBindings

element

that

specifies

the

link

to

the

corresponding

<webservice-description-name>

in

webservices.xml.

v

pc-name-link

Attribute

of

the

pcBindings

element

that

specifies

the

link

to

the

<port-component-name>

in

the

webservices.xml

file.

v

scope

Attribute

of

the

pcBindings

element

that

specifies

when

new

instances

of

implementation

beans

are

created.

Possible

values

are

Request,

Session,

and

Application.

The

value

of

scope

for

a

deployed

Web

service

can

be

changed

using

the

administrative

console.

Using

application

management,

navigate

to

the

Web

module

of

the

Web

service

application

and

select

Web

Services

Implementation

Scope.

Example

bindings

file

The

following

examples

demonstrate

the

spelling

and

position

of

the

various

attributes.

You

cannot

cut

and

paste

these

examples

because

they

do

not

contain

the

required

ID

attributes.

If

you

add

elements

to

a

binding

file

template

generated

by

the

WSDL2Java

command,

you

must

confirm

that

each

element

has

an

ID

attribute

whose

value

is

a

unique

string.

Review

the

template

xmi

files

generated

by

the

WSDL2Java

command

for

examples

of

ID

strings.

<com.ibm.etools.webservice.wsbnd:WSBinding

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsbnd=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">

<wsdescBindings

wsDescNameLink="AddressBookService">

<pcBindings

pcNameLink="AddressBook"

scope="Application"/>

</wsdescBindings>

</com.ibm.etools.webservice.wsbnd:WSBinding>

Configuring

the

webservices.xml

deployment

descriptor

for

Handler

classes

This

topic

explains

how

to

use

the

Assembly

Toolkit

to

configure

the

webservices.xml

deployment

descriptor

for

user-provided

Handler

classes.

The

Assembly

Toolkit

is

a

component

of

the

Application

Server

Toolkit.

For

more

information

about

completing

tasks

with

the

Assembly

Toolkit,

click

Help

>

Help

in

the

Assembly

Toolkit

graphical

user

interface

(GUI).

You

should

have

an

enterprise

archive

(EAR)

file

for

the

applications

you

want

to

configure.

For

some

handler

use,

such

as

logging

or

tracing,

only

the

server

or

client

application

needs

to

be

configured.

For

other

handler

use,

including

sending

information

in

SOAP

headers,

the

client

and

server

applications

must

be

configured

with

symmetrical

handlers.

The

modules

in

the

EAR

file

should

contain

the

handler

classes

being

configured.

These

classes

implement

the

javax.xml.rpc.handler.Handler

interface.

For

more

information

on

writing

handler

classes,

see

Chapter

6

of

the

Web

Services

for

J2EE

1.0

specification

and

chapter

12

of

the

JAX-RPC

1.0

specification

available

through

Web

services:

Resources

for

learning.

The

application

modules

must

contain

the

webservices.xml(for

server)

and

webservicesclient.xml

(for

client)

deployment

descriptors.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

345

To

configure

a

handler

in

the

webservices.xml

deployment

descriptor:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

and

import

the

EAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>J2EE.

4.

Click

the

Project

Navigator

tab

to

switch

to

the

Project

Navigator

pane.

5.

Locate

the

project

that

contains

the

webservices.xml

deployment

descriptor.

Expand

the

directories

under

the

project

until

the

META-INF

or

WEB-INF

directory

and

its

contents,

including

the

webservices.xml

file,

are

visible.

6.

Right-click

the

webservices.xml

file.

7.

Click

Open.

The

Web

Services

editor

opens.

8.

Expand

the

Web

services

descriptions

section.

a.

Select

the

service

for

which

you

want

to

configure

the

handler.

9.

Expand

the

Port

components

section.

10.

Select

a

port_component

for

which

you

want

the

editor

to

open.

The

Port

Components

editor

opens.

11.

Expand

the

Port

component

handlers

section.

12.

Click

Add

at

the

bottom

of

the

Port

component

handlers

section.

A

Class

browser

opens.

13.

Browse

for

the

name

of

the

Handler

class

in

the

module.

When

it

displays

in

the

Matching

types

field,

select

the

class

and

click

OK.

The

Class

browser

window

closes

after

you

click

OK

and

the

Handlers

pane

of

the

Web

Services

Editor

opens.

14.

(Optional)

Configure

properties

in

the

Handlers

pane.

See

Handler

class

properties

for

a

list

of

the

properties

you

can

configure

in

this

step.

15.

Type

ctrl-s

to

save

the

changes.

Developing

a

new

Web

service

with

an

existing

WSDL

file

using

a

Java

bean

Locate

the

Web

Services

Description

Language

(WSDL)

file

that

defines

the

Web

service

to

be

implemented.

You

can

develop

a

WSDL

or

obtain

one

from

an

existing

Web

service

through

e-mail,

downloading

or

a

Uniform

Resource

Locator

(URL).

To

develop

a

new

Web

service

with

an

existing

WSDL

file

using

a

Java

bean:

1.

Develop

Java

bean

implementation

templates

and

bindings

from

a

WSDL

file.

2.

Complete

the

Java

bean

implementation.

3.

Assemble

a

Web

services-enabled

Web

archive

(WAR)

file

when

starting

from

a

WSDL

file.

4.

Configure

the

webservices.xml

deployment

descriptor.

5.

Configure

the

ibm-webservices-bnd.xmi

deployment

descriptor.

6.

Assemble

a

Web

services-enabled

WAR

into

an

EAR

file.

7.

Deploy

the

EAR

file

into

WebSphere

Application

Server.

Develop

Web

services

deployment

descriptor

templates

from

a

WSDL

file.

You

can

either

develop

Web

services

deployment

descriptor

templates

for

a

Java

bean

implementation

or

develop

Web

services

deployment

descriptor

templates

for

an

EJB

implementation.

346

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Developing

Web

services

deployment

descriptor

templates

for

a

Java

bean

implementation

To

develop

the

Java

bean

implementation

templates

and

bindings

from

a

Web

Services

Description

(WSDL)

file,

you

must

obtain

the

Uniform

Resource

Locator

(URL)

of

the

WSDL

file

to

use.

If

it

is

a

local

file

and

you

are

running

the

Windows

platform,

the

URL

looks

like

this:

file:drive:\path\file_name.wsdl.

If

you

are

using

the

UNIX

platform,

the

URL

looks

like

this:

file:/path/file_name.wsdl.

You

can

also

specify

local

files

using

the

absolute

or

relative

file

system

path.

Implementation

templates

are

generated

using

the

-role

develop-server

option

of

the

WSDL2Java

command.

The

WSDL2Java

command

also

generates

bindings

and

deployment

descriptors.

To

develop

Java

bean

implementation

templates

and

bindings

from

a

WSDL

file:

Run

the

WSDL2Java

-verbose

-role

develop-server

-container

web

wsdlURL

command.

Since

the

verbose

option

is

specified,

a

list

of

all

generated

files

is

displayed

when

the

command

runs.

Templates

for

the

implementation

and

deployment

descriptors

required

to

implement

a

Web

service,

as

well

as

bindings

files.

These

templates

are

partially

filled

with

information

from

the

WSDL

file.

The

following

example

uses

an

Java

bean

named

AddressBook

and

a

WSDL

file

named

AddressBook.wsdl.

After

generating

the

template

files

from

the

WSDL2Java

-verbose

-role

develop-server

-container

web

AddressBook.wsdl

command,

the

following

files

are

generated:

Parsing

XML

file:

file:e:/example/app/topdown/step1/AddressBook.wsdl

WSWS3185I:

Info:

Parsing

XML

file:

AddressBook.wsdl

WSWS3282I:

Info:

Generating

addr\Address.java.

WSWS3282I:

Info:

Generating

addr\Phone.java.

WSWS3282I:

Info:

Generating

addr\StateType.java.

WSWS3282I:

Info:

Generating

addr\AddressBook.java.

WSWS3282I:

Info:

Generating

addr\AddressBookSoapBindingImpl.java..

WSWS3282I:

Info:

Generating

WEB-INF\webservices.xml.

WSWS3282I:

Info:

Generating

WEB-INF\ibm-webservices-bnd.xmi.

WSWS3282I:

Info:

Generating

WEB-INF\AddressBook_mapping.xml.

WSWS3282I:

Info:

Generating

WEB-INF\ibm-webservices-ext.xmi.

The

generated

file

named

AddressBookSOAPBindingImpl.java

is

the

template

for

the

implementation

bean.

It

is

named

after

the

port

in

the

WSDL

file.

Generally,

this

class

is

renamed

to

a

more

meaningful

name.

Complete

the

Java

bean

implementation.

Completing

the

Java

bean

implementation

Develop

Java

bean

implementation

templates

and

bindings

from

a

Web

Services

Description

Language

(WSDL)

file.

1.

Edit

the

Java

bean

implementation

template,

bindingImpl.java.

binding

is

the

name

of

the

<wsdl:binding>

element

in

the

WSDL

file.

a.

Complete

the

implementation

of

the

methods

in

the

template.

b.

(Optional)

Make

changes

if

necessary.

c.

(Optional)

Change

the

class

name

if

the

binding

name

is

not

acceptable.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

347

2.

Compile

all

the

Java

classes.

3.

Assemble

a

Web

archive

(WAR)

file.

Assemble

all

the

Java

classes

into

a

WAR

file

using

typical

Web

module

assembly

tools.

Include

all

of

the

classes

generated

from

running

the

WSDL2Java

command

tool

when

developing

implementation

templates

and

bindings

from

a

WSDL

file.

A

Java

archive

(JAR)

file

containing

a

Java

bean

and

supported

classes

created

from

the

WSDL

file.

Configure

the

webservices.xml

deployment

descriptor.

Developing

a

new

Web

service

from

an

existing

WSDL

file

using

a

stateless

session

enterprise

bean

Set

up

a

Web

services

development

and

unmanaged

client

execution

environment.

Locate

the

Web

Services

Description

Language

(WSDL)

file

that

defines

the

Web

service

to

implement.

The

SOAP

address

URI

is

not

required

because

it

is

updated

when

your

new

implementation

is

deployed.

Create

the

enterprise

bean

and

artifacts

that

enable

the

enterprise

bean

to

be

a

Web

service

and

assemble

those

artifacts

into

the

enterprise

application

as

follows:

1.

Develop

implementation

templates

and

bindings

from

a

WSDL

file.

2.

Complete

the

enterprise

bean

implementation.

3.

Assemble

a

Web

services-enabled

enterprise

EJB

Java

archive

(JAR)

file.

4.

Configure

the

webservices.xml

deployment

descriptor.

5.

Configure

the

ibm-webservices-bnd.xmi

deployment

descriptor.

6.

Assemble

a

Web

services-enabled

EJB

JAR

into

an

EAR

file.

7.

Enable

the

EAR

file.

When

the

EAR

file

contains

EJB

modules,

it

must

have

the

Web

services

endpoint

Web

archive

(WAR)

file

added

with

the

endptEnabler

command

or

Assembly

Toolkit

before

deployment.

8.

Deploy

the

EAR

file

into

WebSphere

Application

Server.

An

EJB

implementation

of

a

Web

service

defined

in

the

WSDL

file.

Developing

EJB

implementation

templates

and

bindings

from

a

WSDL

file

To

develop

enterprise

JavaBean

(EJB)

implementation

templates

and

bindings

from

a

Web

Services

Description

(WSDL)

file,

you

must

obtain

the

Uniform

Resource

Locator

(URL)

of

the

WSDL

file

to

use.

If

it

is

a

local

file

and

you

are

running

the

Windows

platform,

the

URL

looks

like

this:

file:drive:\path\file_name.wsdl.

If

you

are

using

the

UNIX

platform,

the

URL

looks

like

this:

file:/path/file_name.wsdl.

You

can

also

specify

local

files

using

the

absolute

or

relative

file

system

path.

Implementation

templates

are

generated

using

the

-role

develop-server

option

of

the

WSDL2Java

command.

Templates

are

generated

for

an

EJB

implementation

for

the

following:

v

EJB

v

EJB

remote

interface

348

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

EJB

Home

The

WSDL2Java

command

also

generates

bindings

and

deployment

descriptors.

To

develop

implementation

templates

and

bindings

from

a

WSDL

file:

Run

the

WSDL2Java

-verbose

-role

develop-server

-container

ejb

wsdlURL

command.

Since

the

verbose

option

is

specified,

a

list

of

all

generated

files

is

displayed

when

the

command

runs.

Templates

for

the

implementation

and

deployment

descriptors

required

to

implement

a

Web

service,

as

well

as

bindings

files.

These

templates

are

partially

filled

with

information

from

the

WSDL

file.

The

following

example

uses

an

enterprise

bean

named

AddressBook

and

a

WSDL

file

named

AddressBook.wsdl.

After

generating

the

template

files

from

the

WSDL2Java

-verbose

-role

develop-server

-container

EJB

AddressBook.wsdl

command,

the

following

files

are

generated:

Parsing

XML

file:

file:e:/example/app/topdown/step1/AddressBook.wsdl

WSWS3185I:

Info:

Parsing

XML

file:

AddressBook.wsdl

WSWS3282I:

Info:

Generating

addr\Address.java.

WSWS3282I:

Info:

Generating

addr\Phone.java.

WSWS3282I:

Info:

Generating

addr\StateType.java.

WSWS3282I:

Info:

Generating

addr\AddressBook.java.

WSWS3282I:

Info:

Generating

addr\AddressBookSoapBindingImpl.java.

WSWS3282I:

Info:

Generating

addr\AddressBook_RI.java.

WSWS3282I:

Info:

Generating

addr\AddressBookHome.java.

WSWS3282I:

Info:

Generating

META-INF\webservices.xml.

WSWS3282I:

Info:

Generating

META-INF\ibm-webservices-bnd.xmi.

WSWS3282I:

Info:

Generating

META-INF\AddressBook_mapping.xml.

WSWS3282I:

Info:

Generating

META-INF\ibm-webservices-ext.xmi.

Complete

the

EJB

implementation.

Web

services

implementation

scope

Use

this

page

to

view

and

manage

the

scope

of

the

ports

of

a

Web

Service

bean.

To

view

this

administrative

console

page,

click

Applications

>Enterprise

Applications

>

application_instance

>

Web

Modules

>

module_instance>Web

Services

Implementation

Scope.

Port

Specifies

a

port

name

for

a

Web

service.

A

module

can

contain

one

or

more

Web

services,

each

of

which

can

contain

one

or

more

ports.

Web

Service

Specifies

the

name

of

the

Web

service.

A

module

can

contain

one

or

more

Web

services.

URI

Specifies

the

Uniform

Resource

Identifier

(URI)

of

the

binding

file

that

defines

the

scope.

The

URI

is

relative

to

the

Web

module.

Scope

Specifies

the

scope

of

a

port.

The

scope

determines

when

a

new

instance

of

a

service

implementation

is

created

for

the

Web

service

ports

in

a

module.

An

application

scope

causes

the

same

instance

of

the

implementation

to

be

used

for

all

requests

on

the

application.

A

session

scope

causes

the

same

instance

to

be

used

for

all

requests

on

each

session.

A

request

scope

causes

a

new

instance

to

be

used

on

every

request.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

349

Default

Port

Mapping

Definitions

collection

Use

this

page

to

view

and

manage

a

default

port

type

mapping

for

a

Web

service.

To

view

this

page

of

the

Administrative

Console,

click

Applications

>Enterprise

Application

>

application_instance

>

Web

Modules

>

module_instance>Web

Services

Client

Bindings

>

Edit

>

default_port_instance.

For

EJB

modules,

click

Applications

>Enterprise

Application

>

application_instance

>

EJB

Modules

>

module_instance>Web

Services

Client

Bindings

>

Edit

>

default_port_instance.

Specify

the

default

port

of

a

service

when

a

particular

port

type

is

requested.

The

port

type

is

described

by

its

local

name

and

namespace.

A

getPort

method

specifying

only

the

port

type

gets

the

port

named

by

the

default

port

local

name

and

namespace.

Port

Type

Local

Name

Specifies

the

name

of

this

Web

service.

Port

Type

Namespace

Specifies

the

local

name

describing

the

port

type

to

be

mapped.

Default

Port

Local

Name

Specifies

the

namespace

describing

the

port

type

to

be

mapped.

Default

Port

Namespace

Specifies

the

namespace

of

the

port

to

map

to.

Default

Port

Type

Mapping

Properties

settings

Use

this

page

to

view

and

manage

a

default

port

type

mapping

for

a

Web

service.

To

view

this

page

of

the

Administrative

Console,

click

Applications

>Enterprise

Application

>

application_instance

>

Web

Modules

>

module_instance>Web

Services

Client

Bindings

>

Edit

>

default_port_instance.

For

EJB

modules,

click

Applications

>Enterprise

Application

>

application_instance

>

EJB

Modules

>

module_instance>Web

Services

Client

Bindings

>

Edit>

default_port_instance.

Specify

the

default

port

of

a

service

when

a

particular

port

type

is

requested.

The

port

type

is

described

by

its

local

name

and

namespace.

A

getPort

method

specifying

only

the

port

type

gets

the

port

named

by

the

default

port

local

name

and

namespace.

Port

Type

Local

Name

Specifies

the

local

name

of

the

port

type

to

be

mapped.

Port

Type

Namespace

Specifies

the

namespace

of

port

type

to

be

mapped.

Default

Port

Local

Name

Specifies

the

local

name

of

the

port

to

map

to.

Default

Port

Namespace

Specifies

the

namespace

of

the

port

to

map

to.

350

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Developing

Web

services

clients

based

on

Web

Services

for

J2EE

This

topic

explains

how

to

develop

a

Web

services

client

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

Before

you

begin

this

task,

locate

the

Web

Services

Description

Language

(WSDL)

file

that

defines

the

Web

service

to

access.

To

create

the

client

code

and

artifacts

that

enable

the

application

client

to

access

a

Web

service:

1.

Develop

client

bindings

from

a

WSDL

file.

The

client-side

bindings

and

deployment

descriptors

are

generated.

2.

Complete

the

client

implementation.

3.

(Optional)

Assemble

a

Web

services-enabled

client

Java

archive

(JAR)

file.

Complete

this

step

if

you

are

developing

a

managed

client

that

runs

in

the

J2EE

client

container.

4.

(Optional)

Assemble

a

Web

services-enabled

client

Web

archive

(WAR)

file.

Complete

this

step

if

you

are

developing

a

managed

client

that

runs

in

the

J2EE

client

container.

5.

(Optional)

Configure

the

webservicesclient.xml

deployment

descriptor.

Complete

this

step

if

you

are

developing

a

managed

client

that

runs

in

the

J2EE

client

container.

6.

(Optional)

Configure

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor.

Complete

this

step

if

you

are

deploying

a

managed

client

that

runs

in

the

J2EE

client

container

and

you

want

to

override

the

default

client

settings.

See

ibm-webservicesclient-bnd.xmi

assembly

properties

for

more

information

about

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor.

7.

Test

the

Web

services-enabled

client

application.

You

have

created

and

tested

a

Web

services

client

application.

For

step-by-step

information

see

Example:

Developing

Web

services

clients

based

on

Web

Services

for

J2EE.

Example:

Developing

Web

services

clients

based

on

Web

Services

for

J2EE

This

example

takes

you

through

the

steps

to

develop

a

Web

service

client.

The

development

process

is

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

and

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specification.

For

a

Java

or

J2EE

application

to

act

as

a

client

of

a

Web

service,

you

must

map

the

WSDL

file

to

the

Java

code.

The

JAX-RPC

specification

defines

the

mapping

between

a

WSDL

file,

Java

code

and

XML

Schema

types.

Steps

for

this

example

task

1.

Obtain

the

Web

Services

Description

Language

(WSDL)

document

for

the

Web

service

that

you

want

to

access.

You

can

obtain

the

WSDL

document

from

the

service

provider

by

e-mail

or

by

looking

it

up

in

a

Universal

Description,

Discovery

and

Integration

(UDDI)

registry.

2.

Develop

client

bindings

from

your

WSDL

file.

The

WSDL

document

is

used

to

generate

all

the

information

needed

to

invoke

the

Web

service,

including

the

Service

Endpoint

Interface

and

implementations;

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

351

generated

service

interface;

webservicesclient.xml

and

ibm-
webservicesclient-bnd.xmi

and

ibm-webservicesclient-ext.xmi

deployment

descriptors.

The

WSDL2Java

command-line

tool

is

run

against

your

WSDL

file

to

develop

client

bindings.

3.

Implement

the

client.

See

Chapter

4

of

the

JSR-109

specification.

You

can

access

the

specification

through

Web

services:

Resources

for

learning.

You

can

also

review

the

GetQuote

sample

available

in

the

Samples

Gallery.

4.

Assemble

the

module.

Assemble

the

client

JAR

file

into

an

EAR

file

or

assemble

the

client

WAR

file

into

an

EAR

file.

5.

Configure

the

deployment

descriptors.

Configure

the

webservicesclient.xml

deployment

descriptor.

Configure

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor.

6.

7.

Test

the

Web

services

client.

You

should

test

the

client

to

make

sure

it

correctly

operates

and

binds

to

the

Web

service.

Developing

client

bindings

from

a

WSDL

file

To

develop

the

client

bindings

from

a

Web

Services

Description

(WSDL)

file,

you

must

obtain

the

Uniform

Resource

Locator

(URL)

of

the

WSDL

file

to

use.

If

it

is

a

local

file

and

you

are

running

the

Windows

platform,

the

URL

looks

like

this:

file:drive:\path\file_name.wsdl.

If

you

are

using

the

UNIX

platform,

the

URL

looks

like

this:

file:/path/file_name.wsdl.

You

can

also

specify

local

files

using

the

absolute

or

relative

file

system

path.

Client

bindings

are

generated

using

the

-role

develop-client

option

in

combination

with

the

-container

option

of

the

WSDL2Java

command.

The

-container

option

takes

the

following

parameters:

v

-container

client

Generates

bindings

and

deployment

descriptors

for

a

client

residing

the

application

client

container.

v

-container

ejb

Generates

bindings

and

deployment

descriptors

for

a

client

that

is

an

EJB

in

the

EJB

module.

v

-container

web

Generates

bindings

and

deployment

descriptors

for

a

client

residing

in

the

Web

container.

To

develop

client

bindings

from

a

WSDL

file:

Run

the

WSDL2Java

-verbose

-role

develop-client

-container

type

wsdlURL

command.

Where

type

is

ejb

for

an

enterprise

JavaBean

(EJB)

client,

web

for

a

Java

bean

client,

or

client

for

an

application

client.

Note:

You

can

have:

v

-container

web

352

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

-container

ejb

v

-container

client

Since

the

verbose

option

is

specified,

a

list

of

all

generated

files

is

displayed

when

the

command

runs.

The

bindings

and

deployment

descriptors

needed

by

a

client

to

use

a

Web

service.

The

following

example

uses

an

enterprise

bean

named

AddressBook

and

a

WSDL

file

named

AddressBook.wsdl.

After

generating

the

bindings

from

the

WSDL2Java

-verbose

-role

develop-client

-container

client

AddressBook.wsdl

command,

the

following

files

are

generated:

Parsing

XML

file:

file:e:/example/app/topdown/step1/AddressBook.wsdl

WSWS3185I:

Info:

Parsing

XML

file:

AddressBook.wsdl

WSWS3282I:

Info:

Generating

addr\Address.java.

WSWS3282I:

Info:

Generating

addr\Phone.java.

WSWS3282I:

Info:

Generating

addr\StateType.java.

WSWS3282I:

Info:

Generating

addr\AddressBook.java.

WSWS3282I:

Info:

Generating

addr\AddressBookService.java.

WSWS3282I:

Info:

Generating

META-INF\webservicesclient.xml.

WSWS3282I:

Info:

Generating

META-INF\ibm-webservicesclient-bnd.xmi.

WSWS3282I:

Info:

Generating

META-INF\AddressBook_mapping.xml.

WSWS3282I:

Info:

Generating

META-INF\ibm-webservicesclient-ext.xmi.

Complete

the

client

implementation.

Assemble

a

Web

services-enabled

client

JAR

and

EAR

file.

Assembling

a

Web

services-enabled

client

JAR

file

into

an

EAR

file

You

need

the

following

artifacts:

v

Assembled

client

module,

containing

the

implementation,

all

classes

generated

by

the

WSDL2Java

command-line

tool,

MANIFEST.MF

and

deployment

descriptor.

This

module

can

be:

–

An

application

client

module

containing

META-INF/application-client.xml

–

An

enterprise

JavaBean

(EJB)

module

containing

META-INF/ejb-jar.xml
v

Web

Services

Description

Language

(WSDL)

file

used

to

develop

the

client

v

Templates

for

webservicesclient.xml

and

ibm-webservicesclient-ext.xmi

deployment

descriptors,

if

used.

v

Generated

JAX-RPC

mapping

deployment

descriptor

You

can

use

the

Assembly

Toolkit

to

assemble

Web

service-enabled

client

applications.

To

assemble

the

client

code

and

artifacts

that

enable

the

application

client

to

access

a

Web

service:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file,

App

Client

JAR

file,

or

WAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

for

the

file

you

just

imported

in

the

Project

Navigator

pane.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

353

6.

Expand

the

ejbModule

(for

an

EJB

JAR

file)

or

the

appClientModule

(for

the

application

client

JAR

file)

entry

so

the

META-INF

directory

is

displayed.

Expand

the

META-INF

directory.

7.

Right-click

the

META-INF

directory

and

select

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

META-INF

directory.

a.

Copy

the

WSDL

file

to

the

META-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

b.

Copy

the

webservicesclient.xml

and

the

JAX-RPC

mapping

file

in

the

META-INF

subdirectory

in

the

same

manner

you

copied

the

WSDL

file.

The

JAX-RPC

mapping

file

is

indicated

by

the

<jaxrpc-mapping-file>

element

in

the

webservicesclient.xml

file.

c.

(Optional)

Place

the

ibm-webservicesclient-ext.xmi

and

the

ibm-webservicesclient-bnd.xmi

file

in

the

META-INF

subdirectory,

if

used.
8.

Assemble

the

JAR

file

into

an

EAR

file

using

typical

assembly

techniques

if

the

client

runs

in

a

container.

9.

Right-click

on

the

WEB-INF

directory

and

select

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

WEB-INF

directory.

a.

Copy

the

WSDL

file

to

the

WEB-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

b.

Copy

the

webservicesclient.xml

and

the

JAX-RPC

mapping

file

in

the

WEB-INF

subdirectory

in

the

same

manner

you

copied

the

WSDL

file.

The

JAX-RPC

mapping

file

is

indicated

by

the

<jaxrpc-mapping-file>

element

in

the

webservicesclient.xml

file.

c.

(Optional)

Place

the

ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

file

in

the

WEB-INF

subdirectory,

if

used.

The

artifacts

required

to

enable

the

client

module

to

use

Web

services

are

added

to

the

module.

This

example

uses

a

JAR

file

named

AddressBookClient.jar

and

an

EAR

file

named

AddressBookClient.ear:

META-INF/MANIFEST.MF

META-INF/application-client.xml

META-INF/wsdl/AddressBook.wsdl

META-INF/webservicesclient.xml

META-INF/AddressBook_mapping.xml

com/ibm/websphere/samples/webservices/addr/Address.class

com/ibm/websphere/samples/webservices/addr/AddressBook.class

com/ibm/websphere/samples/webservices/addr/AddressBookClient.class

com/ibm/websphere/samples/webservices/addr/AddressBookService.class

...other

generated

classes...

After

assembling

the

AddressBookClient.jar

file

into

the

AddressBookClient.ear

file,

the

AddressBookClient.ear

file

contains

the

following

files:

META-INF/MANIFEST.MF

AddressBookClient.jar

META-INF/application.xml

Configure

the

webservicesclient.xml

deployment

descriptor

.

354

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Assembling

a

Web

services-enabled

client

WAR

file

into

an

EAR

file

You

need

the

following

artifacts:

v

Assembled

client

Web

archive

(WAR)

module,

containing

the

implementation,

all

classes

generated

by

the

WSDL2Java

command-line

tool,

MANIFEST.MF

and

deployment

descriptor.

v

Web

Services

Description

Language

(WSDL)

file

used

to

develop

the

client

v

Templates

for

webservicesclient.xml,

ibm-webservicesclient-bnd.xmi

and

ibm-webservicesclient-ext.xmi

deployment

descriptors,

if

used.

v

Generated

JAX-RPC

mapping

deployment

descriptor

You

can

use

the

Assembly

Toolkit

to

assemble

Web

service-enabled

client

applications.

To

assemble

the

client

code

and

artifacts

that

enable

the

application

client

to

access

a

Web

service:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

WAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

for

the

file

you

just

imported

in

the

Project

Navigator

pane.

6.

Expand

the

webContemt

entry

so

the

WEB-INF

directory

is

displayed.

Expand

the

WEB-INF

directory.

7.

Right-click

on

the

WEB-INF

directory

and

select

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

WEB-INF

directory.

a.

Copy

the

WSDL

file

to

the

WEB-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

b.

Copy

the

webservicesclient.xml

and

the

JAX-RPC

mapping

file

in

the

WEB-INF

subdirectory

in

the

same

manner

you

copied

the

WSDL

file.

The

JAX-RPC

mapping

file

is

indicated

by

the

<jaxrpc-mapping-file>

element

in

the

webservicesclient.xml

file.

c.

(Optional)

Place

the

ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

file

in

the

WEB-INF

subdirectory,

if

used.
8.

Assemble

the

WAR

file

into

an

EAR

file

using

typical

assembly

techniques.

The

artifacts

required

to

enable

the

client

module

to

use

Web

services

are

added

to

the

module.

This

example

uses

a

WAR

file

named

AddressBookWeb.war

and

an

EAR

file

named

AddressBook.ear:

WEB-INF/MANIFEST.MF

WEB-INF/web.xml

WEB-INF/wsdl/AddressBook.wsdl

WEB-INF/webservicesclient.xml

WEB-INF/AddressBook_mapping.xml

WEB-INF/ibm-webservicesclient-ext.xmi

(optional)

WEB-INF/ibm-webservicesclient-bnd.xmi

com/ibm/websphere/samples/webservices/addr/Address.class

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

355

com/ibm/websphere/samples/webservices/addr/AddressBook.class

com/ibm/websphere/samples/webservices/addr/AddressBookClient.class

com/ibm/websphere/samples/webservices/addr/AddressBookService.class

...other

generated

classes...

After

assembling

the

AddressBookWeb.war

file

into

the

AddressBook.ear

file,

the

AddressBook.ear

file

contains

the

following

files:

WEB-INF/MANIFEST.MF

AddressBookWeb.war

WEB-INF/application.xml

Configure

the

webservicesclient.xml

deployment

descriptor

.

Configuring

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor

This

topic

explains

how

to

configure

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor

file

using

the

Assembly

Toolkit,

which

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

configure

theibm-webservicesclient-bnd.xmi

deployment

descriptor

file:

1.

Start

the

Assembly

Toolkit

2.

Locate

the

webservicesclient.xml

file

in

the

module.

3.

Double-click

the

webservices.xml

file

to

open

the

Web

Services

Client

editor.

4.

Access

the

Web

Services

Client

Bindings

editor

through

the

Client

Binding

tab

at

the

bottom

of

the

editor

pane.

5.

Verify

the

componentNameLink

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Expand

the

Component

scoped

references

section.

c.

Click

Add.

d.

Select

the

component

scoped

references

defined

in

the

webservicesclient.xml

file

from

the

list.

6.

Verify

the

serviceRefLink

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Click

the

Services

References

tab.

c.

Click

Add.

d.

Select

the

service

references

defined

in

the

webservicesclient.xml

file

from

the

list.

7.

Verify

the

deploydWSDLFile

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Select

the

service

references

or

component

scoped

reference

desired.

c.

Expand

the

Service

reference

details

section.

d.

Click

Browse

on

the

Deployed

WSDL

file

field.

e.

Select

the

new

WSDL

file.

f.

Click

OK.

The

deployedWSDLFile

element

of

a

deployed

Web

service

can

also

be

changed

using

the

administrative

console.

Using

application

management,

navigate

to

the

Web

module

or

EJB

module

of

the

Web

service

application

and

select

Web

Services

Client

Bindings.

356

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

8.

Verify

the

defaultMappings

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Click

Default

Mappings.

c.

Click

Add.

d.

Edit

the

entries

in

the

newly

added

row

to

establish

a

mapping

between

a

portType

and

port

in

the

WSDL

file.

There

can

only

be

one

entry

for

each

portType.

e.

Select

the

new

WSDL

file.

f.

Click

OK.

The

defaultMappings

of

a

deployed

Web

service

can

also

be

changed

using

the

administrative

console.

Using

application

management,

navigate

to

the

Web

module

or

EJB

module

of

the

Web

service

application

and

select

Web

Services

Client

Bindings.

9.

Access

the

Web

Services

Client

Port

Bindings

editor

through

the

Port

Bindings

tab

at

the

bottom

of

the

editor

pane.

10.

Verify

the

syncTimeout

element

settings.

a.

Create

a

Port

Qualified

Name

Bindings

for

the

port.

b.

Open

the

Web

Services

Client

Bindings

editor.

c.

Confirm

that

a

service

reference

is

selected

in

either

the

Component

scoped

references

or

Service

references

section.

d.

Expand

the

Port

qualified

name

bindings

section.

e.

Click

Add.

A

new

entry

is

now

added

to

the

Port

qualified

name

bindings

list.

f.

Click

the

new

Port

qualified

name

bindings

entry.

The

Web

Services

Client

Port

Bindings

editor

opens.

g.

Expand

the

Port

qualified

name

bindings

details

section.

h.

Type

the

namespace

of

the

WSDL

file

port

you

want

to

configure,

in

the

Port

Namespace

Link

field.

i.

Type

the

local_name

of

the

WSDL

file

port

you

want

to

configure

in

the

Port

Local

Name

Linkfield.

The

name

displayed

in

the

Port

qualified

name

bindings

list

is

the

local

name

of

the

WSDL

file

port.

j.

Click

OK.
a.

Configure

the

syncTimeout

property

by

locating

the

Synchronization

timeout

field

and

enter

the

desired

value.
11.

Verify

the

basicAuth

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Expand

the

Basic

authentication

section.

c.

Type

the

desired

value

in

the

User

ID

and

Password

fields.

d.

Click

OK.
12.

Verify

the

sslConfig

element

settings.

a.

Open

the

Web

Services

Client

Bindings

editor.

b.

Expand

the

SSL

Configuration

section.

c.

Type

the

desired

value

in

the

Name

field.

d.

Click

OK.
13.

After

editing

the

properties,

type

ctrl-s

on

your

keyboard

to

save

the

changes.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

357

ibm-webservicesclient-bnd.xmi

assembly

properties

The

ibm-webservicesclient-bnd.xmi

file

contains

information

for

the

Web

services

runtime

that

is

WebSphere

product-specific.

You

can

edit

these

properties

using

the

Assembly

Toolkit.

See

Configuring

the

ibm-webservicesclient-bnd.xmi

deployment

descriptor

for

instructions.

Assembly

properties

The

following

user-definable

assembly

properties

are

supported:

v

componentNameLink

Attribute

of

the

componentScopedRefs

element

that

specifies

the

link

to

the

corresponding

<component-scoped-refs>

element

in

webservicesclient.xml

file.

This

property

is

used

only

when

the

Web

service

client

is

an

EJB.

v

serviceRefLink

Attribute

of

the

serviceRefs

element

that

specifies

the

link

to

the

<service-ref-name>

in

the

webservicesclient.xml

file.

You

can

edit

this

property

in

the

Assembly

Toolkit:

v

deployedWSDLFile

Attribute

of

the

serviceRefs

element

is

optional

and

permits

an

alternate

WSDL

file

to

be

used

other

than

that

specified

in

the

<wsdl-file>

element

of

webservicesclient.xml

file.

If

this

attribute

is

specified,

the

alternate

WSDL

file

must

be

packaged

in

the

same

module

and

must

be

compatible

with

the

development

WSDL

file.

The

deployedWSDLFile

property

is

used

to

supply

a

new

WSDL

file

containing

a

different

endpoint

URL

than

the

original

WSDL

file.

v

defaultMappings

element

Identifies

which

port

should

be

used

for

a

given

portType

when

none

is

explicitly

selected

by

the

client.

This

element

has

the

following

attributes:

portTypeNamespace,

portTypeLocalName,

portNamespace,

portLocalName.

These

attributes

identify

which

wsdl:port

should

be

used

for

a

wsdl:portType.

v

syncTimeout

Attribute

of

the

portQnameBindings

element

that

specifies

how

long,

in

seconds,

to

wait

for

a

response

from

a

synchronous

call.

v

basicAuth

Element

of

the

portQnameBindings

element

that

can

be

used

to

authenticate

a

service

client

to

the

service

endpoint,

independent

of

the

underlying

transport

that

includes,

HTTP,

HTTPS,

and

JMS.

Set

the

user

ID

and

password

attributes

as

needed.

v

sslConfig

Element

of

the

portQnameBindings

element

that

specifies

the

Secure

Sockets

Layer

(SSL)

configuration

of

an

HTTPS

outbound

request.

The

name

attribute

is

the

name

of

a

SSL

configuration

entry

or

alias

defined

in

the

SSL

Configuration

Repertoire.

Note:

This

attribute

is

only

used

when

the

client

is

running

in

the

WebSphere

Application

Server.

Example

bindings

file

The

following

example

demonstrate

the

spelling

and

position

of

the

various

attributes.

You

cannot

cut

and

paste

these

examples

because

they

do

not

contain

the

required

ID

attributes.

If

you

add

elements

to

a

binding

file

template

generated

by

the

WSDL2Java

command,

you

must

confirm

that

each

element

has

an

ID

358

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

attribute

whose

value

is

a

unique

string.

Review

the

template

xmi

files

generated

by

the

WSDL2Java

command

for

examples

of

ID

strings.

<com.ibm.etools.webservice.wscbnd:ClientBinding

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscbnd=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

<componentScopedRefs

componentNameLink="myComponent

ref"/>

<serviceRefs

serviceRefLink="myService

ref"

deployedWSDLFile="META-INF/wsdl/alternate.wsdl">

<defaultMappings

portTypeLocalName="AddressBook"

portTypeNamespace="http://www.com.ibm"

portLocalName="AddressBookPort"

portNamespace="http://www.com.ibm"/>

<portQnameBindings

portQnameNamespaceLink="http://www.com.ibm"

portQnameLocalNameLink="AddressBookPort"

syncTimeout="99">

<basicAuth

userid="myId"

password="myPassword"/>

<sslConfig

name="mynode/DefaultSSLSettings"/>

</portQnameBindings>

</serviceRefs>

</com.ibm.etools.webservice.wscbnd:ClientBinding>

Configuring

the

webservicesclient.xml

deployment

descriptor

You

should

have

an

enterprise

JavaBean

(EJB)

Java

archive

(JAR)

file,

Web

archive

(WAR)

file

or

an

application

client

file

that

you

can

import

into

the

Assembly

Toolkit.

This

topic

explains

how

to

configure

the

webservicesclient.xml

deployment

descriptor

with

the

Assembly

Toolkit.

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

For

more

information

about

completing

tasks

with

the

Assembly

Toolkit,

click

Help

>

Help

in

the

Assembly

Toolkit

graphical

user

interface

(GUI).

To

configure

the

webservicesclient.xml

deployment

descriptor

with

the

Assembly

Toolkit:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file,

WAR

file

or

application

client

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

containing

the

webservicesclient.xml

file

in

the

Project

Navigator

pane.

6.

Expand

the

directories

under

the

project

until

the

META-INF

or

WEB-INF

directory

and

its

contents

appear.

7.

Right-click

on

the

webservicesclient.xml

file.

8.

Select

Open.

The

Web

Services

Client

editor

opens.

9.

Expand

the

Service

references

section.

10.

Select

the

service_reference

that

you

want

to

configure.

11.

Expand

the

Service

reference

overview

section.

12.

Type

the

name

of

the

service

for

which

the

client

accesses

in

the

Description

field.

13.

Expand

the

Service

reference

implementation

details

section.

a.

Type

the

name

that

the

Java

Naming

Directory

Interface

(JNDI)

uses

to

locate

the

service

in

the

Service

references

name

field.

The

JNDI

lookup

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

359

string

for

this

service

is

java:comp/env/service-ref-name.

By

convention,

the

service

reference

name

always

begins

with

service/.

b.

Type

the

class

name,

including

package,

of

the

generated

Java

interface

that

is

the

Service

Interface

for

this

Web

service

in

the

Service

interface

name

field.

c.

Type

the

WSDL

file

name

used

by

the

client,

relative

to

the

root

of

the

module,

in

the

WSDL

file

field.

d.

Type

the

file

name

of

the

Java

mapping

file,

relative

to

the

root

of

the

module,

in

the

JAX

RPC

mapping

file

field.
14.

Click

ctrl-s

to

save

the

changes.

The

webservicesclient.xml

deployment

descriptor

is

configured.

Configuring

the

webservicesclient.xml

deployment

descriptor

for

Handler

classes

This

topic

explains

how

to

use

the

Assembly

Toolkit

to

configure

the

webservicesclient.xml

deployment

descriptor

for

user-provided

Handler

classes.

The

Assembly

Toolkit

is

a

component

of

the

Application

Server

Toolkit.

For

more

information

about

completing

tasks

with

the

Assembly

Toolkit,

click

Help

>

Help

in

the

Assembly

Toolkit

graphical

user

interface

(GUI).

You

should

have

an

Enterprise

archive

(EAR)

file

for

the

applications

you

want

to

configure.

For

some

handler

use,

such

as

logging

or

tracing,

only

the

server

or

client

application

needs

to

be

configured.

For

other

handler

use,

including

sending

information

in

SOAP

headers,

the

client

and

server

applications

must

be

configured

with

symmetrical

handlers.

The

modules

in

the

EAR

file

should

contain

the

handler

classes

being

configured.

These

classes

implement

the

javax.xml.rpc.handler.Handler

interface.

For

more

information

on

writing

handler

classes,

see

Chapter

6

of

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

1.0

specification

and

chapter

12

of

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

1.0

specification

available

through

Web

services:

Resources

for

learning.

The

application

modules

must

contain

the

webservices.xml(for

server)

and

webservicesclient.xml

(for

client)

deployment

descriptors.

To

configure

a

handler

in

the

webservicesclient.xml

deployment

descriptor:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

and

import

the

EAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>J2EE.

4.

Click

the

Project

Navigator

tab

to

switch

to

the

Project

Navigator

pane.

5.

Locate

the

project

that

contains

the

webservicesclient.xml

deployment

descriptor.

Expand

the

directories

under

the

project

until

the

META-INF

or

WEB-INF

directory

and

its

contents,

including

the

webservicesclient.xml

file,

are

visible.

6.

Right-click

the

webservicesclient.xml

file.

7.

Click

Open.

The

Service

References

pane

of

the

Web

Services

Client

editor

opens.

8.

Expand

the

Service

references

section.

a.

Select

the

service_reference

for

which

you

want

to

configure

the

handler.

360

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

9.

Expand

the

Handlers

section.

10.

Click

Add

at

the

bottom

of

the

Handlers

section.

A

Class

browser

opens.

11.

Browse

for

the

name

of

the

Handler

class

in

the

module.

When

it

displays

in

the

Matching

types

field,

select

the

class

and

click

OK.

The

Class

browser

window

closes

after

you

click

OK

and

the

Handlers

pane

of

the

Web

Services

Editor

opens.

12.

(Optional)

Configure

properties

in

the

Handlers

pane.

See

Handler

class

properties

for

a

list

of

the

properties

you

can

configure

in

this

step.

13.

Type

ctrl-s

to

save

the

changes.

Handler

class

properties

You

can

configure

the

following

Handler

class

properties

through

the

Assembly

Toolkit.

See

Configuring

the

webservices.xml

deployment

descriptor

for

Handler

classes

or

Configuring

the

webservicesclient.xml

deployment

descriptors

for

Handler

classes

for

instructions

on

how

to

configure

the

properties.

Description

Standard

Java

2

platform,

Enterprise

Editioin

(J2EE)

technology

descriptor

field.

Display

name

Standard

J2EE

technology

descriptor

field.

Small

icon

Standard

J2EE

technology

descriptor

field.

Large

icon

Standard

J2EE

technology

descriptor

field.

Handler

name

The

name

of

the

handler.

This

name

must

be

unique

within

the

module.

Handler

class

The

fully

qualified

name

of

the

Handler

class.

Initially,

it

is

set

by

the

Assembly

Toolkit’s

class

browser.

Initial

parameters

Property

names

and

values

to

be

made

available

to

the

handler.

SOAP

headers

Qnames

of

the

SOAP

headers

that

are

processed

by

this

handler.

See

section

12.2.2

of

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

1.0

specification,

available

through

Web

services:

Resources

for

learning,

for

more

information

about

setting

this

property.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

361

SOAP

roles

URIs

containing

the

SOAP

actor

names

for

which

the

handler

acts

in

the

role

of.

See

section

12.2.2

of

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

1.0

specification,

available

through

Web

services:

Resources

for

learning,

for

more

information

about

setting

this

property.

Example:

Configuring

Handler

classes

for

Web

services

deployment

descriptors

This

scenario

explains

how

to

add

trivial

client

and

server

Handler

classes

to

a

sample

application

named

WebServicesSamples.ear.

The

Handler

classes

display

messages

when

given

a

request

or

response

to

handle.

The

code

for

the

client

Handler

class

is:

package

samples;

public

class

ClientHandler

implements

javax.xml.rpc.handler.Handler

{

public

ClientHandler()

{

}

public

boolean

handleRequest(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ClientHandler:

In

handleRequest");

return

true;

}

public

boolean

handleResponse(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ClientHandler:

In

handleResponse");

return

true;

}

public

boolean

handleFault(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ClientHandler:

In

handleFault");

return

true;

}

public

void

init(javax.xml.rpc.handler.HandlerInfo

config)

{

}

public

void

destroy()

{

}

public

javax.xml.namespace.QName[]

getHeaders()

{

return

null;

}

}

The

code

for

the

server

Handler

class

is:

package

sample;

public

class

ServerHandler

implements

javax.xml.rpc.handler.Handler

{

public

ServerHandler()

{

}

public

boolean

handleRequest(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ServerHandler:

In

handleRequest");

return

true;

}

public

boolean

handleResponse(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ServerHandler:

In

handleResponse");

return

true;

}

public

boolean

handleFault(javax.xml.rpc.handler.MessageContext

context)

{

System.out.println("ServerHandler:

In

handleFault");

return

true;

}

public

void

init(javax.xml.rpc.handler.HandlerInfo

config)

{

}

362

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

public

void

destroy()

{

}

public

javax.xml.namespace.QName[]

getHeaders()

{

return

null;

}

}

1.

Compile

these

classes

using

%JAVA_HOME%\bin\java

-extdirs

%WAS_EXT_DIRS%

ClientHandler.java

ServerHandler.java

(on

Windows)

$JAVA_HOME/bin/java

-extdirs

$WAS_EXT_DIRS

ClientHandler.java

ServerHandler.java

(on

Unix)

2.

Open

the

Assembly

Toolkit

and

import

the

two

sample

EAR

files:

v

%WAS_HOME%\samples\lib\WebServicesSamples\WebServicesSamples.ear

on

Windows

or

$WAS_HOME/samples/lib/WebServicesSamples/WebServicesSamples.ear

on

Unix.

v

%WAS_HOME%\samples\lib\WebServicesSamples\ApplicationClients.ear

on

Windows

or

$WAS_HOME/samples/lib/WebServicesSamples/ApplicationClients.ear

on

Unix..

3.

Import

the

compiled

handler

classes

into

the

projects

for

the

sample

modules:

v

Import

sample.ClientHandler

into

the

appClientModule

directory

of

the

AddressBookClient

project.

v

Import

sample.ServerHandler

into

the

ejbModule

directory

of

the

AddressBookW2JE

project.

4.

Configure

the

webservicesclient.xml

deployment

descriptor

for

Handler

classes.

5.

Configure

the

webservices.xml

deployment

descriptor

for

Handler

classes.

6.

Save

your

changes

and

export

the

EAR

files.

7.

Uninstall

the

WebServicesSamples.ear

application

from

your

server

if

it

is

already

installed.

8.

Install

the

new

WebServicesSamples.ear

application.

9.

Start

the

server.

10.

Run

the

client:

launchClient

ApplicationClients.ear

-CCjar=AddressBookClient.jar

When

the

client

executes,

the

console

output

is

as

shown

below.

The

messages

from

the

handlers

are

shown

in

bold.

IBM

WebSphere

Application

Server,

Release

5.1

J2EE

Application

Client

Tool

Copyright

IBM

Corp.,

1997-2003

WSCL0012I:

Processing

command

line

arguments.

WSCL0013I:

Initializing

the

J2EE

Application

Client

Environment.

WSCL0035I:

Initialization

of

the

J2EE

Application

Client

Environment

has

completed.

WSCL0014I:

Invoking

the

Application

Client

class

com.ibm.websphere.samples.webservices.addr.AddressBookClient

>>

Querying

address

for

’Purdue

Boilermaker’

using

port

AddressBookW2JE

ClientHandler:

In

handleRequest

ClientHandler:

In

handleResponse

>>

Response

is:

1

University

Drive

West

Lafayette,

IN

47907

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

363

Phone:

(765)

555-4900

>>

Querying

address

for

’Purdue

Boilermaker’

using

port

AddressBookJ2WE

ClientHandler:

In

handleRequest

ClientHandler:

In

handleResponse

>>

Response

is:

2

University

Drive

West

Lafayette,

IN

47907

Phone:

(765)

555-4900

>>

Querying

address

for

’Purdue

Boilermaker’

using

port

AddressBookJ2WB

ClientHandler:

In

handleRequest

ClientHandler:

In

handleResponse

>>

Response

is:

3

University

Drive

West

Lafayette,

IN

47907

Phone:

(765)

555-4900

>>

Querying

address

for

’Purdue

Boilermaker’

using

port

AddressBookW2JB

ClientHandler:

In

handleRequest

ClientHandler:

In

handleResponse

>>

Response

is:

4

University

Drive

West

Lafayette,

IN

47907

Phone:

(765)

555-4900

For

the

client,

the

Handler

class

is

configured

for

each

service

reference,

not

for

each

port.

The

AddressBook

sample

has

four

ports,

but

only

one

service

reference,

therefore

the

ClientHandler

handles

requests

and

responses

on

all

ports.

When

the

server

log

file

is

examined,

it

contains:

[9/24/03

16:39:22:661

CDT]

4deec1c6

WebGroup

I

SRVE0180I:

[HTTP

router

for

AddressBookW2JE.jar]

[/AddressBookW2JE]

[Servlet.LOG]:

AddressBook:

init

[9/24/03

16:39:23:161

CDT]

4deec1c6

SystemOut

O

ServerHandler:

In

handleRequest

[9/24/03

16:39:23:211

CDT]

4deec1c6

SystemOut

O

ServerHandler:

In

handleResponse

What

to

do

next

Install

and

test

the

application.

Testing

Web

services-enabled

clients

Before

testing

your

Java

client,

confirm

that

the

server

endpoint

specified

in

the

client

Web

Services

Description

Language

(WSDL)

file

is

running

and

available.

The

following

steps

and

examples

assume

that

you

are

testing

a

system

that

has

WebSphere

Application

Server

installed,

and

that

you

have

configured

your

environment

as

described

in

Setting

up

a

Web

services

development

and

unmanaged

client

execution

environment.

Tests

are

run

differently

depending

on

whether

the

client

module

has

client

container

deployment

information,

which

consists

of

the

application-client.xml

and

webservicesclient.xml

files,

as

well

as

the

JAX-RPC

mapping

file

and

WSDL

file.

The

client

enterprise

archive

(EAR)

files

discussed

in

this

topic

are

referred

to

as

managed

because

they

contain

the

deployment

information.

The

client

Java

archive

(JAR)

files

discussed

are

referred

to

as

unmanaged

because

they

that

do

not

contain

the

deployment

information.

To

test

Web

services-enabled

clients:

364

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

1.

Test

an

unmanaged

client

JAR

file.

a.

Execute

your

application

with

the

java

command.

On

Windows

platforms:

"%JAVA_HOME%\bin\java"

"-Xbootclasspath/p:%WAS_BOOTCLASSPATH%"

-Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf"

-Djava.ext.dirs="%WAS_EXT_DIRS%"

-classpath

"%WAS_CLASSPATH%;<list

your

application

JAR

files

and

classes>"

<fully

qualified

class

name

to

run><your

application

parameters>

On

UNIX:

"$JAVA_HOME/bin/java"

"-Xbootclasspath/p:$WAS_BOOTCLASSPATH"

-Djava.security.auth.login.config="$WAS_HOME/properties/wsjaas_client.conf"

-Djava.ext.dirs="$WAS_EXT_DIRS"

-classpath

"$WAS_CLASSPATH;<list

of

your

application

JAR

files

and

classes>

<fully

qualified

class

name

to

run><your

application

parameters>

The

unmanaged

client

application

runs.

2.

Test

a

managed

client

EAR

file.

a.

Execute

your

client

application

with

the

launchClient

command.

An

example

of

using

the

command

is

as

follows:

launchClient

clientEar

Web

services-enabled

clients

that

have

been

tested.

Troubleshoot

your

Web

services

application.

Web

services

client

bindings

Use

this

page

to

specify

the

Web

Service

Description

Language

(WSDL)

file

name

and

default

port

type

mappings

for

the

Web

services

in

a

module.

To

view

this

page,

click

Applications

>Enterprise

Applications

>

application_instance

>

Web

Modules

>

module_instance>Web

Services

Client

Bindings.

For

EJB

modules,

click

Applications

>Enterprise

Applications

>

application_instance

>

EJB

Modules

>

module_instance>Web

Services

Client

Bindings

Web

Service

Specifies

the

name

of

this

Web

service.

A

module

can

contain

one

or

more

Web

services.

URI

Specifies

the

Uniform

Resource

Identifier

(URI)

of

the

binding

file

that

defines

the

scope.

The

URI

is

relative

to

the

module.

WSDL

Filename

Specifies

the

WSDL

file

name,

which

is

relative

to

the

module.

A

Web

service

can

specify

the

relative

path

within

the

module

of

a

compatible

WSDL

file

containing

the

actual

URL

to

be

used

for

requests.

This

is

needed

only

if

the

original

WSDL

file

does

not

contain

a

URL

or

when

a

different

URL

is

needed.

For

a

service

endpoint

with

multiple

ports

defined,

a

default

port

mapping

specifies

the

port

to

use

for

a

port

type.

Default

Port

Mappings

Specifies

and

manages

the

default

port

type

mapping

for

a

Web

service

when

a

particular

port

type

is

requested.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

365

Assembling

Web

services

applications

based

on

Web

Services

for

J2EE

This

topic

explains

how

to

assemble

a

Web

services

application

that

is

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

You

can

assemble

Web

Services

for

J2EE

modules

with

the

Assembly

Toolkit

which

replaces

the

Application

Assembly

Tool

(AAT).

The

Assembly

Toolkit

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

.

To

assemble

Web

services

applications:

1.

Start

the

Assembly

Toolkit.

2.

Assemble

a

Web

services-enabled

EJB

JAR

file.

3.

Assemble

a

Web

services-enabled

EJB

JAR

file

into

an

EAR

file.

4.

(Optional)

Enable

the

EAR

file.

When

the

EAR

file

contains

EJB

modules,

it

must

have

the

Web

services

endpoint

WAR

file

added

with

the

endptEnabler

command-line

tool

or

Assembly

Toolkit

before

deployment.

5.

Assemble

a

Web

services-enabled

WAR

file.

6.

Assemble

a

Web

services-enabled

WAR

file

into

an

EAR

file.

A

Web

services-enabled

EAR

file

that

you

can

deploy

into

WebSphere

Application

Server.

Deploy

the

Web

services-enabled

EAR

file

into

WebSphere

Application

Server.

Assembling

a

Web

services-enabled

EJB

JAR

file

You

can

assemble

a

Web

services-enabled

enterprise

JavaBean

(EJB)

Java

archive

(JAR)

file

in

one

of

two

ways:

1.

Assemble

a

Web

services-enabled

EJB

JAR

file

when

starting

from

Java

code.

2.

Assemble

a

Web

services-enabled

EJB

JAR

file

when

starting

from

Web

Services

Description

Language

(WSDL).

An

assembled

Web

services-enabled

EJB

JAR

file.

Configure

the

webservices.xml

deployment

descriptor

.

Assembling

a

Web

services-enabled

EJB

JAR

file

when

starting

from

Java

code

You

need

the

following

artifacts:

v

Assembled

Enterprise

JavaBean

(EJB)

Java

archive

(JAR)

file

(not

enabled

for

Web

services)

v

Compiled

Java

class

for

the

Service

Endpoint

Interface

v

Web

Services

Description

Language

(WSDL)

file

v

Complete

webservices.xml,ibm-webservices-bnd.xmi,

ibm-webservices-ext.xmi

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

deployment

descriptors.

This

topic

explains

how

to

assemble

a

Web

service-enabled

EJB

JAR

file

with

the

Assembly

Toolkit.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT)

and

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

366

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

assemble

an

Web

services-enabled

EJB

JAR

file

when

starting

from

Java

code:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>

J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

containing

the

JAR

file

you

just

imported

in

the

Project

Navigator

pane.

6.

Expand

the

ejbModule

entry

until

the

META-INF

directory

displays.

Expand

the

META-INF

directory.

7.

Right-click

the

META-INF

directory

and

click

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

META-INF

directory.

8.

Copy

the

WSDL

file

to

the

META-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

9.

Copy

the

JAX-RPC

mapping

file,

webservices.xml,

ibm-webservices-bnd.xmi,

and

ibm-webservices-ext.xmi

files

into

the

META-INF

directory.

10.

Import

the

Service

Endpoint

Interface

class

so

its

package

begins

in

the

ejbModule

directory.

You

can

import

either

the

source

file

or

compiled

class

file.

If

you

import

the

source

file

it

automatically

compiles.

The

artifacts

required

to

Web

service-enable

an

EJB

module

for

Web

services

are

added

to

the

JAR

file.

After

assembling

a

JAR

file

named

AddressBook.jar,

the

JAR

file

contains

the

following

files.

The

files

added

in

this

task

are

in

bold:

META-INF/MANIFEST.MF

META-INF/ejb-jar.xml

addr/Address.class

addr/AddressBook_RI.class

addr/AddressBookBean.class

addr/AddressBookHome.class

addr/Phone.class

addr/StateType.class

addr/AddressBook.class

META-INF/wsdl/AddressBook.wsdl

META-INF/ibm-webservices-bnd.xmi

META-INF/ibm-webservices-ext.xmi

META-INF/webservices.xml

META-INF/AddressBook_mapping.xml

Configure

the

webservices.xml

deployment

descriptor

.

Assembling

Web

services-enabled

EJB

JAR

file

when

starting

from

WSDL

You

need

the

following

artifacts:

v

An

assembled

Enterprise

JavaBean

(EJB)

Java

archive

(JAR)

file

containing

the

EJB

implementation

and

all

classes

generated

by

the

WSDL2Java

command

tool

when

the

role

argument

is

develop-server

and

the

container

argument

is

EJB.

v

A

Web

Services

Description

Language

(WSDL)

file

v

Complete

webservices.xml,

ibm-webservices-bnd.xmi,

ibm-webservices-ext.xmi,

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

deployment

descriptors.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

367

You

can

use

the

Assembly

Toolkit

to

assemble

Web

services-enabled

JAR

files.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

assemble

a

Web

services-enabled

EJB

JAR

file

when

starting

from

WSDL:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

EJB

JAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>

J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

for

the

JAR

file

you

just

imported

in

the

Project

Navigator

pane.

6.

Expand

the

ejbModule

entry

so

the

META-INF

directory

is

displayed.

Expand

the

META-INF

directory.

7.

Right-click

the

META-INF

directory

and

select

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

META-INF

directory.

8.

Copy

the

WSDL

file

to

the

META-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

9.

Copy

the

JAX-RPC

mapping

file

as

specified

by

the

deployment

descriptor

<jaxrpc-mapping-file>

element

of

webservices.xml.

10.

Copy

webservices.xml,

ibm-webservices-bnd.xmi

and

ibm-webservices-
ext.xmi

into

the

META-INF

subdirectory

in

the

same

manner.

The

artifacts

required

to

enable

an

EJB

module

for

Web

services

are

added

to

the

JAR

file.

After

assembling

a

JAR

file

named

AddressBook.jar

contains

the

following

files.

The

files

added

in

this

task

are

in

bold:

META-INF/MANIFEST.MF

META-INF/ejb-jar.xml

addr/Address.class

addr/AddressBook_RI.class

addr/AddressBookSoapBindingImpl.class

addr/AddressBookHome.class

addr/Phone.class

addr/StateType.class

addr/AddressBook.class

META-INF/wsdl/AddressBook.wsdl

META-INF/ibm-webservices-bnd.xmi

META-INF/ibm-webservices-ext.xmi

META-INF/webservices.xml

META-INF/AddressBook_mapping.xml

Configure

the

webservices.xml

deployment

descriptor

.

Assembling

a

Web

services-enabled

WAR

file

You

can

assemble

a

Web

services-enabled

Web

archive

(WAR)

file

in

one

of

two

ways:

1.

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

Java

code.

2.

Assemble

a

Web

services-enabled

WAR

file

when

starting

from

WSDL.

A

Web

services-enabled

WAR

file

is

assembled.

368

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Assembling

a

Web

services-enabled

WAR

file

when

starting

from

Java

code

You

need

the

following

artifacts:

v

An

assembled

Web

archive

(WAR)

file

containing

web.xml,

but

not

Web

services-enabled

v

The

Java

class

for

the

Service

Endpoint

Interface

v

A

Web

Services

Description

Language

(WSDL)

file

v

Complete

webservices.xml,ibm-webservices-bnd.xmi,

ibm-webservices-ext.xmi,

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

deployment

descriptors.

You

can

use

the

Assembly

Toolkit

to

assemble

a

Web

services-enabled

WAR

file.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

assemble

a

Web

services-enabled

WAR

file

when

starting

from

Java

code:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

WAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>

J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

for

the

WAR

file

you

just

imported

in

the

Project

Navigator

pane.

6.

Expand

the

WebContent

directory

so

the

WEB-INF

directory

is

displayed.

Expand

the

WEB-INF

directory

7.

Confirm

that

the

WEB-INF/web.xml

descriptor

for

the

Web

module

contains

a

<servlet-class>

element

indicating

the

Java

bean

class

that

is

implementing

the

service.

Confirm

by:

a.

Double-click

Web

Deployment

Descriptor.

b.

In

the

Web

Deployment

Descriptor

editor,

click

the

Servlets.

c.

Enter

the

full

path

name

of

the

Java

bean

class

implementing

the

Web

service

in

the

Servlet

class

field.

d.

Close

the

editor

window

to

save

your

changes.

8.

Right-click

the

WEB-INF

directory

and

click

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

WEB-INF

directory.

9.

Copy

the

WSDL

file

to

the

WEB-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

10.

Copy

the

JAX-RPC

mapping

file

as

specified

by

the

deployment

descriptor

<jaxrpc-mapping-file>

element

of

webservices.xml.

11.

Copy

webservices.xml,ibm-webservices-bnd.xmi

and

ibm-webservices-
ext.xmi

into

the

WEB-INF

subdirectory

in

the

same

manner.

12.

Import

the

Service

Endpoint

Interface

class

so

that

its

package

begins

in

the

JavaSource

directory.

When

you

import

the

source

file

it

is

automatically

compiled.

The

artifacts

required

to

Web

service-enable

the

Web

module

are

added

to

the

WAR

file.

Assemble

a

Web

services-enabled

WAR

into

an

EAR

file.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

369

Assembling

a

Web

services-enabled

WAR

file

when

starting

from

WSDL

You

need

the

following

artifacts:

v

Assembled

Web

archive

(WAR)

file

containing

the

enterprise

JavaBean

(EJB)

implementation,

all

classes

generated

by

the

WSDL2Java

command

tool

and

a

Web

deployment

descriptor,

web.xml.

v

A

Web

Services

Description

Language

(WSDL)

file

v

Complete

webservices.xml,

ibm-webservices-bnd.xmi,

ibm-webservices-ext.xmi,

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

deployment

descriptors.

You

can

use

the

Assembly

Toolkit

to

assemble

Web

services-enabled

WAR

files.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

assemble

a

Web

services-enabled

WAR

file

when

starting

from

WSDL:

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import

to

import

the

WAR

file

into

the

Assembly

Toolkit.

3.

Open

the

J2EE

perspective

by

clicking

Windows

>Open

Perspective

>

Other

>

J2EE.

4.

Switch

to

the

Project

Navigator

pane

by

clicking

the

Project

Navigator

tab.

5.

Locate

the

project

for

the

WAR

file

you

just

imported

in

the

Project

Navigator

pane.

6.

Expand

the

WebContent

directory

so

the

WEB-INF

directory

is

displayed.

Expand

the

WEB-INF

directory

7.

Confirm

that

the

WEB-INF/web.xml

deployment

descriptor

for

the

Web

module

contains

a

<servlet>

element

including

the

<servlet-name>

element.

To

confirm:

a.

Double-click

Web

Deployment

Descriptor.

b.

In

the

Web

Deployment

Descriptor

editor

click

the

Servlets

tab.

c.

Enter

the

full

path

name

of

the

Java

bean

class

implementing

the

Web

service

in

the

Servlet

class

field.

d.

Close

the

editor

window

to

save

your

change.

8.

Right-click

the

WEB-INF

directory

and

select

New

>

Folder.

Create

a

subfolder

named

wsdl

in

the

WEB-INF

directory.

9.

Copy

the

WSDL

file

to

the

WEB-INF\wsdl

directory

by

right-clicking

on

the

wsdl

directory

and

click

File

>

Import

>

File

system.

Browse

the

WSDL

file

for

this

Web

service

and

click

Finish.

10.

Copy

the

JAX-RPC

mapping

file

as

specified

by

the

deployment

descriptor

<jaxrpc-mapping-file>

element

of

webservices.xml.

11.

Copy

the

webservices.xml,

ibm-webservices-ext.xmi,

ibm-webservices-
bnd.xmi

deployment

descriptors

in

the

WEB-INF

subdirectory.

The

artifacts

required

to

Web

service-enable

the

Web

module

is

added

to

the

WAR

file.

Assemble

a

Web

services-enabled

WAR

into

an

EAR

file.

370

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Assembling

a

Web

services-enabled

EJB

JAR

into

an

EAR

file

Before

assembling

a

Web

services-enabled

enterprise

archive

(EAR)

file

Assemble

a

Web

services-enabled

EJB

Java

archive

(JAR)

file.

You

can

assemble

a

Web

services-enabled

EAR

file

with

the

Assembly

Toolkit.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

assemble

a

Web

services-enabled

EAR

file:

1.

Start

the

Assembly

Toolkit.

2.

Assemble

the

Web

services-enabled

JAR

file

into

an

EAR

file.

The

EAR

file

can

contain

an

enterprise

bean

or

application

client

JAR

files,

WAR

files,

Web

applications,

and

metadata

describing

the

applications

or

application.xml

files.

A

Web

services-enabled

EAR

file.

In

the

following

example,

there

is

an

application.xml

deployment

descriptor

packaged

with

a

Web

services-enabled

JAR

file

called

AddressBook.jar

that

is

packaged

into

an

EAR

file

called

AddressBook.ear.

The

EAR

file

contains:

META-INF/MANIFEST.MF

META-INF/application.xml

AddressBook.jar

An

example

of

the

application.xml

deployment

descriptor

is

as

follows:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

application

PUBLIC

"-//Sun

Microsystems,

Inc.//DTD

J2EE

Application

1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">

<application

id="Application_ID">

<display-name>AddressBookJ2WEE</display-name>

<description>AddressBook

EJB

Example

from

Java</description>

<module

id="EjbModule_1">

<ejb>AddressBook.jar</ejb>

</module>

</application>

Enable

the

EAR

file.

Then,

deploy

the

EAR

file

into

WebSphere

Application

Server.

Assembling

a

Web

services-enabled

WAR

into

an

EAR

file

Before

assembling

a

Web

services-enabled

enterprise

archive

(EAR)

fileAssemble

a

Web

services-enabled

Web

archive

(WAR)

file.

This

topic

explains

how

to

assemble

a

Web

services-enabled

WAR

file

into

and

EAR

file

using

the

Assembly

Toolkit.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT)

and

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

To

assemble

a

Web

services-enabled

WAR

file

into

an

EAR

file:

1.

Start

the

Assembly

Toolkit.

2.

Assemble

the

Web

services-enabled

WAR

file

into

an

EAR

file.

Now

assemble

the

EAR

file

that

contains

the

JAR

or

WAR

files.

The

EAR

file

can

contain

an

enterprise

bean

or

application

client

JAR

files;

Web

applications

or

WAR

files;

and

metadata

describing

the

applications

or

application.xml

files.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

371

A

Web

services-enabled

EAR

file.

In

the

following

example,

there

is

an

application.xml

deployment

descriptor

packaged

with

a

Web

services-enabled

JAR

file

called

AddressBook.jar

that

is

packaged

into

an

EAR

file

called

AddressBook.ear.

The

EAR

file

contains:

META-INF/MANIFEST.MF

META-INF/application.xml

AddressBook.war

An

example

of

the

application.xml

deployment

descriptor

is

as

follows:

<?xml

version="1.0"

encoding="UTF-8"?>

<!DOCTYPE

application

PUBLIC

"-//Sun

Microsystems,

Inc.//DTD

J2EE

Application

1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">

<application

id="Application_ID">

<display-name>AddressBook</display-name>

<description>AddressBook

Example

from

Java

bean</description>

<module

id="WebModule_1">

<web>

<web-uri>AddressBook.war</web-uri>

<context-root>/AddressBook</context-root>

</web>

</module>

</application>

Deploy

Web

services

based

on

Web

Services

for

J2EE.

Enabling

a

Web

services-enabled

EAR

file

Before

doing

this

task,

you

need

to

Assemble

a

Web

services-enabled

EJB

JAR

into

an

enterprise

archive

(EAR)

file.

You

can

add

router

modules

to

your

Web

services-enabled

application,

also

known

as

an

EAR

file

with

the

endptEnabler

command

or

the

Assembly

Toolkit.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Toolkit

(AAT)

and

is

a

component

of

the

Application

Server

Toolkit

(ASTK)

product.

These

tools

add

one

or

more

router

modules

to

the

EAR

file

for

each

EJB

JAR

module

within

the

EAR

file.

A

router

module

provides

an

endpoint

for

the

Web

services

in

a

particular

enterprise

JavaBean

(EJB)

Java

archive

(JAR)

module.

Each

router

module

supports

a

specific

transport

such

as

HyperText

Transport

Protocol

(HTTP)

or

Java

Messaging

Service

(JMS).

If

there

are

no

EJB

JAR

modules

in

the

EAR

file,

it

is

not

necessary

to

use

these

tools.

1.

Enable

an

EAR

file

with

the

endptEnabler

command-line

tool.

2.

Enable

an

EAR

file

with

the

Assembly

Toolkit.

Deploy

the

EAR

file

into

WebSphere

Application

Server.

Enabling

a

Web

services-enabled

EAR

file

with

the

endptEnabler

command

Before

doing

this

task,

you

need

to

assemble

a

Web

services-enabled

EJB

JAR

into

an

enterprise

archive

(EAR)

file.

372

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

endptEnabler

command-line

tool

adds

one

or

more

router

modules

to

the

EAR

file

for

each

EJB

JAR

module

within

the

EAR

file.

A

router

module

provides

an

endpoint

for

the

Web

services

in

a

particular

Enterprise

JavaBean

(EJB)

Java

archive

(JAR)

module.

Each

router

module

supports

a

specific

transport

such

as

HyperText

Transport

Protocol

(HTTP)

or

Java

Messaging

Service

(JMS).

If

there

are

no

EJB

JAR

modules

in

the

EAR

file,

it

is

not

necessary

to

use

these

tools.

To

enable

an

EAR

file

with

the

endptEnabler

command:

1.

Invoke

the

endptEnabler

command

from

the

install_root\bin

directory.

If

you

are

using

UNIX,

invoke

the

command

from

the

install_root/bin

directory.

2.

Enter

the

name

of

the

EAR

file,

when

prompted.

3.

Enter

various

input

values

as

they

are

requested

by

the

endptEnabler

command.

You

are

prompted

for

various

input

values

for

each

Web

services-enabled

EJB

JAR

module

in

the

EAR

file.

Typically,

you

should

accept

the

defaults

for

each

prompt.

See

endptEnabler

prompts

and

commands

for

more

information

about

endptEnabler

command

prompts.

An

HTTP

or

JMS

router

module

is

added

to

the

EAR

file

for

each

Web

services-enabled

EJB

JAR

module

contained

in

the

EAR

file.

For

HTTP,

a

context-root

is

configured

for

the

application

so

the

Web

service

can

be

invoked

through

a

URL.

The

URL

used

to

invoke

the

Web

service

is:

http://host[:port]/context-root/services/port-component-name

Deploy

the

EAR

file

into

WebSphere

Application

Server.

endptEnabler

command:

The

IBM

Web

Services

Developer

Kit

for

z/OS

contains

the

endptEnabler

command-line

tool

needed

for

developing

and

implementing

Web

services.

See

Installing

the

IBM

Web

Services

Developer

Kit

for

z/OS

to

start

using

the

tool.

The

endptEnabler

command

enables

a

set

of

Web

services

within

an

enterprise

archive

(EAR)

file.

You

can

add

one

or

more

router

modules

to

the

EAR

file

that

include

a

Web

service-enabled

EJB

JAR

file.

Each

router

module

provides

a

Web

service

endpoint

for

a

particular

transport.

For

example,

an

HyperText

Transport

Protocol

(HTTP)

router

module

can

be

added

so

that

the

Web

service

can

receive

requests

over

the

HTTP

transport,

and

a

Java

Messaging

Service

(JMS)

router

module

can

be

added

so

that

the

Web

service

can

receive

requests

from

a

JMS

queue

or

topic.

In

its

interactive

mode,

the

endptEnabler

command

guides

you

through

the

required

steps

to

enable

one

or

more

services

within

an

application.

The

endptEnabler

command

makes

a

backup

copy

of

your

original

EAR

file

in

the

event

that

you

need

to

remove

or

add

services

at

a

later

time.

If

your

EAR

file

contains

a

Web

service-enabled

EJB

JAR

file,

you

must

run

the

endptEnabler

command

before

the

EAR

file

is

deployed.

Otherwise,

you

do

not

need

to

run

the

command.

endptEnabler

usage

syntax

Invoke

the

endptEnabler

command

from

the

WebSphere

Application

Server

bin

directory.

The

command

syntax

is

as

follows:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

373

endptEnabler

[-verbose|-v]

[-quiet|-q]

[-help|-h|-?]

[-properties|-p

<properties-filename>]

[-transport|-t

<default-transports>]

[-enableHttpRouterSecurity]

[<ear-filename>]

All

parameters

are

optional

and

described

as

follows:

v

-verbose,

-v

Detailed

progress

messages

are

displayed

as

the

tool

processes

the

EAR

file.

This

command-line

option

is

mapped

to

the

verbose

global

property.

v

-quiet,

-q

No

per-module

progress

messages

are

displayed

as

the

tool

processes

the

EAR

file.

This

command-line

option

is

mapped

to

the

quiet

global

property.

v

-help,

-h,

-?

A

brief

help

message

is

displayed

explaining

the

various

options.

v

-properties,

-p

<properties-filename>

Properties

from

the

file

<properties-filename>

are

read

and

used

to

control

the

behavior

of

the

tool.

v

-transport,

-t

<default-transports>

Specifies

the

default

list

of

transports

for

which

router

modules

should

be

created

for

each

EJB

JAR

file

contained

in

the

EAR

file.

This

command-line

option

is

mapped

to

the

defaultTransports

global

property.

Examples

are:

-transport

http

(the

default)

-transport

jms

-t

http,jms

v

-enableHttpRouterSecurity

Enables

you

to

add

a

security

policy

for

all

authenticated

users

to

protect

the

HTTP

router

module

if

all

the

EJB’s

are

secured

in

the

EJB

JAR

file.

This

command-line

option

is

mapped

to

the

http.enableRouterSecurity

global

property.

v

<ear-filename>

Specifies

the

name

of

the

EAR

file

to

be

processed.

If

the

<ear-filename>

parameter

is

not

entered

on

the

command

line,

the

interactive

mode

is

used.

In

interactive

mode,

you

are

prompted

for

the

EAR

file

name,

router

module

names

and

other

important

values

as

the

processing

occurs.

The

following

dialog

is

an

example

of

the

endptEnabler

interactive

mode:

Note:

In

this

dialog,

user

input

is

in

fixed

width

font,

and

endptEnabler

output

is

in

bold.
endptEnabler<enter>

WSWS2004I:

IBM

WebSphere

Application

Server

Release

5

WSWS2005I:

Web

Services

Enterprise

Archive

Endpoint

Enabler

Tool.

WSWS2007I:

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

WSWS2006I:

Please

enter

the

name

of

your

EAR

file:

AddressBook.ear<enter>

WSWS2003I:

Backing

up

EAR

file

to:

AddressBook.ear~

WSWS2016I:

Loading

EAR

file:

AddressBook.ear

WSWS2017I:

Found

EJB

Module:

AddressBookEJB.jar

WSWS2029I:

Enter

http

router

name

for

EJB

Module

AddressBookEJB

[AddressBookEJB_HTTPRouter.war]:<enter>

WSWS2030I:

Enter

http

context

root

for

EJB

Module

AddressBookEJB

[/AddressBookEJB]:<enter>

374

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

WSWS2024I:

Adding

http

router

for

EJB

Module

AddressBookEJB.jar.

WSWS2036I:

Saving

EAR

file

AddressBook.ear...

WSWS2037I:

Finished

saving

the

EAR

file.

WSWS2018I:

Finished

processing

EAR

file

AddressBook.ear.

If

the

<ear-filename>

parameter

is

entered

on

the

command

line,

the

non-interactive

mode

is

used.

In

non-interactive

mode,

router

module

names

and

other

important

values

are

determined

from

user-specified

properties

or

default

values.

endptEnabler

properties

The

endptEnabler

command

allows

you

to

control

its

run

time

behavior

by

specifying

a

set

of

properties

with

the

-properties

command-line

option.

These

properties

fall

into

two

categories:

global

and

per-module.

Global

properties

affect

the

overall

behavior

of

the

tool

as

it

processes

multiple

EJB

JAR

modules

within

the

EAR

file.

Per-module

properties

affect

the

processing

of

a

particular

EJB

JAR

module.

Global

properties

The

following

table

describes

the

global

properties

supported

by

the

endptEnabler

command:

Property

name

Description

Default

value

verbose

Displays

detailed

progress

messages.

False

quiet

Displays

only

brief

progress

messages.

False

http.enableRouterSecurity

Enables

you

to

add

a

security

policy

for

all

authenticated

users

to

protect

the

HTTP

router

module

if

all

the

EJB’s

are

secured

in

the

EJB

JAR

file.

False

http.routerModuleNameSuffix

Specifies

the

suffix

used

to

construct

default

HTTP

router

module

names.

The

.war

extension

is

added

by

the

endptEnabler

command.

_HTTPRouter

jms.routerModuleNameSuffix

Specifies

the

suffix

used

to

construct

default

JMS

router

module

names.

The

.jar

extension

is

added

by

the

endptEnabler

command.

_JMSRouter

jms.listenerInputPortNameSuffix

Specifies

the

suffix

used

to

construct

default

Listener

Input

Port

names.

_ListenerPort

jms.defaultDestinationType

Specifies

the

default

destination

type

to

use

for

all

JMS

router

modules

added

to

the

EAR

file.

This

should

be

either

queue

or

topic.

queue

defaultTransports

Specifies

the

default

list

of

transports

for

which

router

modules

should

be

created.

The

list

can

contain

the

values

http

and

jms.

Multiple

values

are

separated

by

a

comma.

Examples

are:

http,

jms

and

http,jms.

http

Per-module

properties

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

375

The

following

table

describes

the

per-module

properties

supported

by

the

endptEnabler

command.

<ejbJarName>

refers

to

the

name

of

an

EJB

JAR

module

within

the

EAR

file,

without

the

.jar

extension.

Property

name

Description

Default

value

<ejbJarName>.transports

Lists

the

transports

for

which

router

modules

should

be

created

for

a

particular

EJB

JAR

file.

The

list

can

contain

the

values

http

and

jms.

Multiple

values

are

separated

by

a

comma.

Examples

are:

http,

jms

and

http,jms.

http

<ejbJarName>.http.skip

Specifies

the

flag

which

bypasses

the

addition

of

an

HTTP

router

module

even

if

it

would

otherwise

be

added

(based

on

other

properties).

Valid

values

are

true

and

false.

False

<ejbJarName>.http

.routerModuleName

Specifies

the

name

of

the

HTTP

router

module

for

a

particular

EJB

JAR

file.

<ejbJarName>_HTTPRouter

<ejbJarName>.http.contextRoot

Specifies

the

context

root

associated

with

the

HTTP

router

module

for

a

particular

EJB

JAR

file.

/<ejbJarName>

<ejbJarName>.jms.skip

Specifies

the

Flag

which

bypasses

the

addition

of

an

HTTP

router

module

even

if

it

would

otherwise

be

added

(based

on

other

properties).

Valid

values

are

true

and

false.

false

<ejbJarName>.jms.routerModuleName

Specifies

the

name

of

the

JMS

router

module

for

a

particular

EJB

JAR

file.

<ejbJarName>_JMSRouter

<ejbJarName>.jms

.listenerInputPortName

Specifies

the

name

of

the

Listener

Input

Port

to

be

associated

with

the

JMS

router

module.

<ejbJarName>_ListenerPort

<ejbJarName>.ejbJarName>

.jms.destinationType

Specifies

the

JMS

destination

type

associated

with

the

JMS

router.

Valid

values

are

queue

and

topic.

queue

Properties

example

Suppose

an

EAR

file

contains

an

EJB

JAR

file

named,

StockQuoteEJB.jar

that

contains

Web

services.

The

following

set

of

properties

might

be

used

to

control

the

endptEnabler

command

runtime

behavior

as

it

processes

the

EAR

file:

StockQuoteEJB.transports=http,jms

StockQuoteEJB.http.routerModuleName=StockQuoteEJB_HTTP

StockQuoteEJB.http.contextRoot=/StockQuote

StockQuoteEJB.jms.routerModuleName=StockQuoteEJB_JMS

StockQuoteEJB.jms.listenerInputPortName=StockQuote_LP

StockQuoteEJB.jms.destinationType=queue

endptEnabler

examples

376

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

following

commands

are

examples

of

how

the

endptEnabler

command

can

be

used:

endptEnabler

MyApp.ear

endptEnabler

-t

jms,http

MyApp.ear

endptEnabler

-v

-properties

MyApp.props

MyApp.ear

endptEnabler

-q

-t

jms

MyApp.ear

Enabling

a

Web

services-enabled

EAR

file

with

the

Assembly

Toolkit

Before

doing

this

task,

you

need

to

Assemble

a

Web

services-enabled

EJB

JAR

into

an

enterprise

archive

(EAR)

file.

You

can

add

one

or

more

router

modules

to

your

Web

services-enabled

application,

also

known

as

an

EAR

file

with

the

Assembly

Toolkit.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Toolkit

(AAT)

and

is

a

component

of

the

Application

Server

Toolkit

(ASTK)

product.

A

router

module

provides

an

endpoint

for

the

Web

services

in

a

particular

Enterprise

JavaBean

(EJB)

Java

archive

(JAR)

module.

Each

router

module

supports

a

specific

transport

such

as

HyperText

Transport

Protocol

(HTTP)

or

Java

Messaging

Service

(JMS).

If

there

are

no

EJB

JAR

modules

in

the

EAR

file,

it

is

not

necessary

to

use

these

tools.

To

enable

a

Web

services-enabled

EAR

file

with

the

Assembly

Toolkit:

1.

Start

the

Assembly

Toolkit.

2.

Right-click

on

the

EJB

project

to

be

enabled.

3.

Click

Web

Services

>

Endpoint

Enabler.

4.

Specify

the

transport

and

router

module

names

in

the

corresponding

fields.

5.

Click

OK.

An

HTTP

or

JMS

router

module

is

added

to

the

EAR

file

for

each

Web

services-enabled

EJB

JAR

module

contained

in

the

EAR

file.

For

HTTP,

a

context-root

is

configured

for

the

application

so

the

Web

service

can

be

invoked

through

a

URL.

The

URL

used

to

invoke

the

Web

service

is:

http://host[:port]/context-root/services/port-component-name

Deploy

the

EAR

file

into

WebSphere

Application

Server.

Deploying

Web

services

based

on

Web

Services

for

J2EE

To

deploy

Web

services

that

are

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification,

you

need

an

enterprise

application,

also

known

as

an

enterprise

archive

(EAR)

file

that

has

been

configured

and

enabled

for

Web

services.

You

can

use

either

the

administrative

console

or

the

wsadmin

scripting

interface

to

deploy

an

EAR

file.

If

you

are

installing

an

application

containing

Web

services

by

using

the

wsadmin

command,

specify

the

-deployws

option.

If

you

are

installing

an

application

containing

Web

services

by

using

the

administrative

console,

select

Deploy

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

377

WebServices

during

step

1

of

the

Install

New

Application

wizard.

For

more

information

about

installing

applications

using

the

administrative

console

see

Installing

a

new

application.

Note:

If

the

Web

services

in

the

application

is

previously

deployed

with

the

wsdeploy

command,

it

is

not

necessary

to

specify

Web

services

deployment

during

installation.

Use

the

following

steps

to

deploy

the

EAR

file

with

the

wsadmin

command:

1.

Start

install_root\bin\wsadmin

from

a

command

prompt.

If

you

are

using

UNIX

start

install_root/bin/wsadmin.

2.

Enter

the

$AdminApp

install

EARfile

″-usedefaultbindings

-deployws″

command

at

the

wsadmin

prompt.

The

Web

service

is

installed

into

the

application

server.

Secure

Web

services.

wsdeploy

command

This

topic

explains

how

to

use

the

wsdeploy

command-line

tool

with

Web

services

that

are

based

on

the

Web

Services

for

J2EE

specification.

The

wsdeploy

command

adds

Websphere

product-specific

deployment

classes

to

a

Web

services

compatible

enterprise

application

enterprise

archive

(EAR)

file

or

an

application

client

Java

archive

(JAR)

file.

These

classes

include:

v

Stubs

v

Serializers

and

deserializers

v

Implementations

of

service

interfaces

This

deployment

step

must

be

performed

at

least

once,

and

can

be

performed

more

than

once.

Deployment

can

be

performed

separately

using

the

wsdeploy

command,

the

Assembly

Toolkit,

or

when

the

application

is

installed.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

It

is

one

of

the

tools

available

with

the

Application

Server

Toolkit

product.

When

using

the

wsadmin

command

for

installation,

specify

the

-deployws

option.

When

using

the

administrative

console

for

installation,

select

the

Deploy

Web

services

check

box.

When

using

the

Assembly

Toolkit,

Right-click

the

module

and

select

Web

Services

>Deploy

Web

Services

from

the

pop-up

menu.

You

can

download

the

Assembly

Toolkit

from

the

Web

site

http://www-1.ibm.com/support/docview.wss?rs

=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en.

The

wsdeploy

command

operates

as

follows:

v

Each

module

in

the

enterprise

application

or

JAR

file

is

examined

v

If

the

module

contains

Web

services

implementations,

indicated

by

the

presence

of

the

webservices.xml

deployment

descriptor,

the

associated

Web

Services

Description

Language

(WSDL)

files

are

located

and

the

WSDL2Java

command

is

run

with

the

role

deploy-server.

v

If

the

module

contains

Web

services

clients,

indicated

by

the

presence

of

the

webservicesclient.xml

deployment

descriptor,

the

associated

WSDL

files

are

located

and

the

WSDL2Java

command

is

run

with

the

role

deploy-client.

v

The

files

generated

by

the

WSDL2Java

command

are

compiled

and

repackaged.

See

WSDL2Java

command

for

more

information

about

the

files

that

are

generated

for

deployment.

378

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

When

the

generated

files

are

compiled,

they

can

reference

application-specific

classes

outside

the

EAR

or

JAR

file

if

the

EAR

or

JAR

file

is

not

self-contained.

In

this

case,

use

either

the

-jardir

or

-cp

option

to

specify

additional

JAR

or

zip

files

to

be

added

to

CLASSPATH

when

the

generated

files

are

compiled.

wsdeploy

command

syntax

The

command

syntax

is

as

follows:

wsdeploy

Input_filename

Output_filename

[options]

Required

options:

v

Input_filename

Specifies

the

path

to

the

EAR

or

JAR

file

to

be

deployed.

v

Output_filename

Specifies

the

path

of

the

deployed

EAR

or

JAR

file.

If

output_filename

already

exists,

it

is

silently

overwritten.

The

output_filename

can

be

the

same

as

the

input_filename.

Other

options:

v

-jardir

directory

Specifies

a

directory

containing

JAR

or

zip

files.

All

JAR

and

zip

files

in

this

directory

are

added

to

the

CLASSPATH

used

to

compile

the

generated

files.

This

option

can

be

specified

zero

or

more

times.

v

-cp

entries

Specifies

entries

to

be

added

to

CLASSPATH

when

the

generated

classes

are

compiled.

Multiple

entries

are

separated

the

same

as

they

would

be

in

the

CLASSPATH

environment

variable,

with

a

semicolon

on

Windows

platforms

and

a

colon

for

UNIX

platforms.

v

-codegen

Specifies

that

deployment

code

is

to

be

generated,

but

not

compiled.

This

option

implicitly

specifies

the

-keep

option.

v

-debug

Includes

debugging

information

when

compiling,

that

is,

use

javac

-g

to

compile.

v

-help

Displays

a

help

message

and

exit.

v

-ignoreerrors

Do

not

stop

deployment

if

validation

or

compilation

errors

are

encountered.

v

-keep

Do

not

delete

working

directories

containing

generated

classes.

A

message

is

displayed

indicating

the

name

of

the

working

directory

that

is

retained.

v

-novalidate

Do

not

validate

the

Web

services

deployment

descriptors

in

the

input

file.

v

-trace

Displays

processing

information,

including

the

names

of

the

generated

files.

Example

wsdeploy

x.ear

x_deployed.ear

-trace

-keep

Processing

web

service

module

x_client.jar.

Keeping

directory:

f:\temp\Base53383.tmp

for

module:

x_client.jar.

Parsing

XML

file:f:\temp\Base53383.tmp\WarDeploy.wsdl

Generating

f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java

Generating

f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java

Generating

f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

379

Compiling

f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.

Compiling

f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.

Compiling

f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.

Done

processing

module

x_client.jar.

Messages

v

Flag

-f

is

not

valid

Option

f

was

not

recognized

as

being

a

valid

option.

v

Flag

-c

is

ambiguous

Options

may

be

abbreviated,

but

the

abbreviation

must

be

unique.

In

this

case,

the

wsdeploy

command

can

not

determine

which

option

was

intended.

v

Flag

-c

is

missing

parameter

-p

A

required

parameter

for

an

option

was

omitted.

v

Missing

p

parameter

A

required

option

was

omitted.

Using

the

Java

Messaging

Service

to

transport

Web

services

requests

WebSphere

Application

Server

offers

support

for

using

a

Java

Messaging

Service

(JMS)

transport

layer,

in

addition

to

the

existing

HTTP

transport.

Using

JMS

transport

allows

your

Web

service

clients

and

servers

to

communicate

through

JMS

queues

and

topics

instead

of

HTTP

connections.

One-way

and

synchronous

two-way

requests

are

supported.

Note:

A

Web

service

must

be

implemented

as

an

enterprise

JavaBean

(EJB)

to

be

accessed

through

the

JMS

transport.

The

benefits

of

using

JMS

as

an

alternative

to

HTTP,

include:

v

Request

and

response

messages

are

sent

through

reliable

messaging.

v

One-way

requests

allow

clients

and

servers

to

be

more

loosely-coupled.

For

example,

the

server

does

not

have

to

be

active

when

the

client

sends

the

one-way

request.

v

One-way

requests

can

be

sent

to

multiple

servers

simultaneously

through

the

use

of

a

topic.

To

use

JMS

as

a

transport

for

Web

services

requests:

1.

Add

a

JMS

binding

and

a

SOAP

address

to

the

Web

Services

Description

Language

(WSDL)

file.

The

WSDL

file

of

a

Web

service

must

include

a

JMS

binding

and

a

SOAP

address,

which

specifies

a

JMS

endpoint

URL

string,

in

order

to

be

accessible

on

the

JMS

transport.

A

JMS

binding

is

a

wsdl:binding

element

containing

a

wsdlsoap:binding

element

whose

transport

attribute

ends

in

soap/jms,

rather

than

the

typical

soap/http

value.

In

addition

to

the

JMS

binding,

a

wsdl:port

element

referencing

the

JMS

binding

must

be

included

in

the

wsdl:service

element

within

the

WSDL

file.

The

wsdl:port

element

should

contain

a

wsdlsoap:address

element

whose

location

attribute

specifies

a

JMS

endpoint

URL

string.

Note:

The

specification

of

the

actual

JMS

endpoint

URL

string

can

be

deferred

until

you

publish

the

WSDL

file.

When

you

develop

the

Web

service,

a

placeholder

such

as

file:/unspecified_location

can

be

used

for

the

endpoint

URL

string.

2.

Decide

on

the

names

and

types

of

JMS

objects

that

your

application

uses

Before

your

application

can

be

installed,

you

need

to:

380

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

a.

Decide

whether

your

Web

service

receives

its

requests

from

a

queue

or

a

topic.

b.

Decide

whether

to

use

a

secure

destination

(queue

or

topic)

or

a

nonsecure

destination.

c.

Decide

on

the

names

for

your

destination,

connection

factory

and

listener

port.

The

following

list

provides

examples

of

the

names

that

might

be

used

for

the

mythical

StockQuote

Web

service:

v

Queue:

StockQuote_Q

(JNDI

name:

jms/StockQuote_Q)

v

Connection

factory:

StockQuote_CF

(JNDI

name:

jms/StockQuote_CF)

v

Listener

port:

StockQuoteEJB_ListenerPort
3.

Define

the

JMS

administered

objects.

Once

you

have

decided

on

the

names

and

types

of

the

JMS

objects,

use

the

administrative

console

or

the

wsadmin

scripting

interface

to

define

the

JMS

objects.

4.

Add

the

JMS

endpoints

to

your

EAR

file

using

the

endptEnabler

command

tool.

You

must

run

the

endptEnabler

command

to

add

a

JMS

endpoint

or

router

module

for

each

Web

service-enabled

EJB

JAR

file

contained

in

the

EAR

file.

By

default,

the

endptEnabler

command

adds

only

HTTP

endpoints,

but

the

-transport

jms

option

can

be

used

to

request

the

addition

of

JMS

endpoints.

5.

Deploy

the

Web

services

application.

During

the

install

process

you

are

prompted

for

two

types

of

information

for

each

Web

service-enabled

EJB

JAR

contained

in

your

EAR

file:

v

The

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

connection

factory

to

be

used

by

the

EJB

JAR

file

message

driven

bean

(MDB)

listener

for

sending

reply

messages.

If

your

Web

service

contains

two-way

operations,

the

MDB

listener,

defined

inside

the

JMS

endpoint

added

by

endptEnabler

command,

needs

to

access

a

queue

connection

factory

in

order

to

add

a

reply

message

to

the

reply

queue.

The

MDB

listener

uses

a

resource

environment

reference

of

java:comp/env/jms/WebServicesReplyQCF.

Therefore,

during

the

application

install

process,

you

must

provide

the

actual

JNDI

name

of

the

queue

connection

factory

that

should

be

used

by

the

MDB

listener

for

that

Web

service.

You

might

want

to

use

the

same

connection

factory

that

you

defined

for

use

by

clients

in

step

2.

v

The

name

of

the

listener

port

to

be

used

by

the

MDB

listener.

A

listener

port

is

an

object

used

to

associate

a

JMS

connection

factory

with

a

JMS

destination

(queue

or

topic).

When

deployed,

an

MDB

is

configured

with

the

correct

listener

port

so

that

messages

from

the

desired

queue

or

topic

are

properly

delivered

to

the

MDB.

During

deployment,

you

can

modify

the

name

of

the

listener

port

associated

with

each

MDB

listener.

The

listener

port

name

contained

in

the

input

EAR

file

displays

as

a

default

value.

If

you

specify

the

correct

listener

port

name

to

the

endptEnabler

command,

perhaps

through

the

use

of

properties,

during

step

3,

you

can

accept

the

default

value.

Otherwise,

enter

the

correct

listener

port

name.

Hint:

By

default,

the

endptEnabler

command

produces

listener

port

names

of

the

form

<ejb-jar-name>_ListenerPort.

To

simplify

this

step,

define

the

listener

ports

that

follow

this

naming

convention

during

step

2.
6.

Publish

the

WSDL

file.

In

this

step,

you

enter

the

JMS

endpoint

URL

string

to

use

for

each

Web

service-enabled

EJB

JAR

file

belonging

to

the

application.

The

JMS

endpoint

URLs

are

then

written

to

the

published

WSDL

files

for

use

by

clients.

For

example,

suppose

that

an

application

called

StockQuoteService

contains

an

EJB

JAR

file

named

StockQuoteEJB,

which

contains

one

or

more

Web

services

accessible

on

the

JMS

transport.

Suppose

that,

in

step

2,

you

defined

a

queue

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

381

with

the

JNDI

name

jms/StockQuote_Q

and

a

connection

factory

with

the

JNDI

name

jms/StockQuote_CF

to

be

used

by

your

application.

In

this

example,

you

would

specify

the

following

string

as

the

JMS

URL

prefix

within

the

Publish

WSDL

user

interface:

jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The

WSDL

publisher

uses

this

partial

URL

string

to

produce

the

actual

JMS

URL

for

each

port

component

defined

in

the

EJB

JAR

file.

The

published

WSDL

file

can

be

used

by

clients

needing

to

invoke

the

Web

service.

Java

Messaging

Service

endpoint

URL

syntax

A

Java

Messaging

Service

(JMS)

endpoint

URL

is

used

to

access

a

Web

service

with

the

JMS

transport.

This

URL

specifies

the

JMS

destination

and

connection

factory,

as

well

as

the

port

component

name

for

the

Web

service

request.

This

is

similar

to

the

HTTP

endpoint

URL,

which

specifies

the

host

and

port,

as

well

as

the

context

root

and

port

component

name.

A

JMS

endpoint

URL

has

the

following

general

form:

jms:/[queue|topic]?<property>=<value>&<property=<value>&...

The

URL

consists

of

the

transport

type,

jms:,

followed

by

either

/queue

or

/topic

to

indicate

the

JMS

destination

type,

followed

by

the

query

string

containing

a

list

of

property

and

value

pairs

used

to

specify

the

JMS

endpoint

information.

The

properties

supported

in

the

URL

string

are

described

as

follows:

Destination-related

properties

(required)

Property

name

Description

destination

Specifies

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

destination

queue

or

topic.

connectionFactory

Specifies

the

JNDI

name

of

the

connection

factory.

targetService

Specifies

the

name

of

the

port

component

to

which

the

request

is

dispatched.

JNDI-related

properties

(optional)

Property

name

Description

initialContextFactory

Specifies

the

name

of

the

initial

context

factory

to

use

which

is

mapped

to

the

java.naming.factory.initial

property.

jndiProviderURL

Specifies

the

JNDI

provider

URL

which

is

mapped

to

the

java.naming.provider.url

property.

JMS-related

properties

(optional)

Property

name

Description

382

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

deliveryMode

Indicates

whether

the

request

message

should

be

persistent

or

not.

The

valid

values

are

1

for

nonpersistent

and

2

for

persistent.

The

default

value

is

1.

timeToLive

Specifies

the

lifetime,

in

milliseconds,

of

the

request

message.

A

value

of

0

indicates

an

infinite

lifetime.

priority

Specifies

the

JMS

priority

associated

with

the

request

message.

Valid

values

are

between

0

to

9.

The

default

value

is

4.

The

required

properties,

destination,

connectionFactory,

and

targetService,

must

appear

in

the

JMS

endpoint

URL

string.

The

rest

of

the

properties

are

optional.

You

can

set

any

of

the

properties

on

the

client

Stub

object.

This

means

that

the

various

properties

can

be

specified

by

including

them

as

part

of

the

endpoint

URL

or

they

can

be

set

programmatically

by

the

client

on

the

Stub

object.

Properties

specified

on

the

client

Stub

object

take

precedence

over

properties

specified

as

part

of

a

JMS

endpoint

URL

string.

Securing

Web

services

based

on

WS-Security

Web

services

security

for

WebSphere

Application

Server

is

based

on

standards

included

in

the

Web

services

security

(WS-Security)

specification.

These

standards

address

how

to

provide

protection

for

messages

exchanged

in

a

Web

service

environment.

The

specification

defines

the

core

facilities

for

protecting

the

integrity

and

confidentiality

of

a

message

and

provides

mechanisms

for

associating

security-related

claims

with

the

message.

Web

services

security

is

a

message-level

standard

based

on

securing

SOAP

messages

through

XML

digital

signature,

confidentiality

through

XML

encryption,

and

credential

propagation

through

security

tokens.

Use

the

deprecated

″Securing

Apache

SOAP

Web

services″

topics

in

the

WebSphere

Application

Server,

Version

5

documentation

if

you

are

still

using

Apache

SOAP

Version

2.3.

To

secure

Web

services,

you

must

consider

a

broad

set

of

security

requirements,

including

authentication,

authorization,

privacy,

trust,

integrity,

confidentiality,

secure

communications

channels,

federation,

delegation,

and

auditing

across

a

spectrum

of

application

and

business

topologies.

One

of

the

key

requirements

for

the

security

model

in

today’s

business

environment

is

the

ability

to

interoperate

between

formerly

incompatible

security

technologies

(such

as

public

key

infrastructure,

Kerberos

and

so

on.)

in

heterogeneous

environments

(such

as

Microsoft

.NET

and

Java

2

Platform,

Enterprise

Edition

(J2EE)).

The

complete

Web

services

security

protocol

stack

and

technology

roadmap

is

described

in

Security

in

a

Web

Services

World:

A

Proposed

Architecture

and

Roadmap.

Specification:

Web

Services

Security

(WS-Security)

proposes

a

standard

set

of

SOAP

extensions

that

you

can

use

to

build

secure

Web

services.

These

standards

confirm

integrity

and

confidentiality,

which

are

generally

provided

with

digital

signature

and

encryption

technologies.

In

addition,

Web

services

security

provides

a

general

purpose

mechanism

for

associating

security

tokens

with

messages.

A

typical

example

of

the

security

token

is

a

user

name

and

password

token,

in

which

a

user

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

383

http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.ibm.com/developerworks/library/ws-secure/

name

and

password

are

included

as

text.

Web

services

security

defines

how

to

encode

binary

security

tokens

using

methods

such

as

X.509

certificates

and

Kerberos

tickets.

An

administrator

can

use

any

of

the

following

methods

to

integrate

message-level

security

into

a

WebSphere

Application

Server

environment:

v

Secure

Web

services

using

XML

digital

signature

v

Secure

Web

services

using

XML

encryption

v

Secure

Web

services

using

basicauth

authentication

v

Secure

Web

services

using

identity

assertion

authentication

v

Secure

Web

services

using

signature

authentication

v

Secure

Web

services

using

a

pluggable

token

Web

services

security

specification-

a

chronology

This

document

describes

the

process

used

to

develop

the

Web

services

security

specifications.

Non-OASIS

activities

In

April

2002,

IBM,

Microsoft,

and

VeriSign

proposed

the

Web

Services

Security

(WS-Security)

specification

on

their

Web

sites.

This

specification

included

the

basic

ideas

of

security

token,

XML

signature,

and

XML

encryption.

The

specification

also

defined

the

format

for

username

tokens

and

encoded

binary

security

tokens.

After

some

discussion

and

an

interoperability

test

based

on

the

specification,

the

following

issues

were

noted:

v

The

specification

requires

that

the

Web

services

security

processors

understand

the

schema

correctly

so

that

the

processor

distinguishes

between

the

ID

attribute

for

XML

signature

and

XML

encryption.

v

The

freshness

of

the

message,

which

indicates

whether

the

message

complies

with

predefined

time

constraints,

cannot

be

determined.

v

Digested

password

strings

do

not

strengthen

security.

In

August

2002,

IBM,

Microsoft,

and

VeriSign

published

the

Web

Services

Security

Addendum,

which

attempted

to

address

the

previously

listed

issues.

The

following

solutions

were

put

in

the

addendum:

v

Require

a

global

ID

attribute

for

XML

signature

and

XML

encryption

v

Use

time

stamp

header

elements

that

indicate

the

time

of

the

creation,

receipt,

or

expiration

of

the

message

v

Use

password

strings

that

are

digested

with

a

time

stamp

and

nonce

(randomly

generated

token)

OASIS

activities

In

June

2002,

the

Organization

for

the

Advancement

of

Structured

Information

Standards

(OASIS)

received

a

proposed

Web

services

security

specification

from

IBM,

Microsoft,

and

Verisign.

The

Web

Services

Security

Technical

Committee

(WSS

TC)

was

organized

at

OASIS

soon

after

the

submission.

The

technical

committee

included

many

companies

including

IBM,

Microsoft,

VeriSign,

Sun

Microsystems,

and

BEA

Systems.

In

September

2002,

WSS

TC

published

its

first

specification,

Web

Services

Security

Core

Specification,

Working

Draft

01.

This

specification

included

the

contents

of

both

the

original

Web

services

security

specification

and

its

addendum.

384

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

coverage

of

the

technical

committee

became

larger

as

the

discussion

proceeded.

Since

the

Web

Services

Security

Core

Specification

allows

arbitrary

types

of

security

tokens,

proposals

were

published

as

profiles.

The

profiles

described

the

method

for

embedding

tokens,

including

Security

Assertion

Markup

Language

(SAML)

tokens

and

Kerberos

tokens

imbedded

into

the

Web

services

security

messages.

Subsequently,

the

definitions

of

the

usage

for

user

name

tokens

and

X.509

binary

security

tokens,

which

were

defined

in

the

original

Web

Services

Security

Specification,

were

divided

into

the

profiles.

WebSphere

Application

Server

supports

the

following

specifications:

v

Web

Services

Security:

SOAP

Message

Security

Draft

13

(formerly

Web

Services

Security

Core

Specification)

v

Web

Services

Security:

Username

Token

Profile

Draft

2

The

following

figure

shows

the

various

Web

services

security-related

specifications.

As

indicated

in

the

figure,

the

current

support

level

for

Web

services

security:

SOAP

message

security

is

based

on

Draft

13

from

May

2003.

The

current

support

level

for

Web

services

security

User

name

token

profiles,

is

based

on

Draft

2

from

February

2003.

Web

services

security

support

WebSphere

Application

Server,

Versions

4.x,

5,

and

5.0.1

support

digital

signature

for

Apache

Simple

Object

Access

Protocol

(SOAP)

Version

2.x.

Beginning

with

WebSphere

Application

Server,

Version

5.0.2,

IBM

supports

Web

services

security,

which

is

an

extension

of

the

IBM

Web

services

engine

to

provide

a

quality

of

service.

The

IBM

implementation

is

based

on

the

Web

services

security

specification,

″Web

Services

Security

(WS-Security)″,

originally

proposed

by

IBM,

Microsoft,

and

VeriSign

in

April

2002.

Early

versions

of

the

proposed

draft

specification

can

be

found

in

Web

Services

Security

(WS-Security)

Version

1.0

05

April

2002

and

Web

Services

Security

Addendum

18

August

2002.

The

WebSphere

Application

Server

implementation

is

based

on

the

Organization

for

the

Advancement

of

Structured

Information

Standards

(OASIS)

working

Draft

13

specification.

(See

the

OASIS

Web

Services

Security

TC

Web

site

for

the

latest

working

specification.)

However,

not

all

the

features

in

the

OASIS

working

Draft

13

specification

are

implemented.

May 2003

WSS: Soap Message

Sec. Draft 13

February 2003

WSS: Username Token

Profile Draft 2

OASIS

activites

April 2002

WS-Security August 2002

WS-Security

Addendum
September 2002

WS-Core Draft 1

Figure

4.

Web

services

security

specification

support

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

385

WebSphere

Application

Server

security

infrastructure

fully

integrates

Web

services

security

with

Java

2

Platform,

Enterprise

Edition

(J2EE)

security.

When

a

user

ID

and

password

are

embedded

in

a

request

message,

authentication

is

performed

with

the

user

ID

and

password.

If

authentication

is

successful,

a

user

identity

is

established

and

further

resource

access

is

authorized

based

on

that

identity.

After

the

user

ID

and

password

are

authenticated

by

the

Web

services

security

run

time,

a

J2EE

container

performs

authorization.

WebSphere

Application

Server

provides

an

implementation

of

the

key

features

of

Web

services

security

based

on

the

following

specifications:

v

Specification:

Web

Services

Security

(WS-Security)

Version

1.0

05

April

2002

v

Web

Services

Security

Addendum

18

August

2002

v

Web

Services

Security:

SOAP

Message

Security

Working

13

May

2003

v

Web

Services

Security:

Username

Token

Profile

Draft

The

following

table

provides

a

summary

of

Web

services

security

elements

supported

by

WebSphere

Application

Server:

Table

1.

Web

services

security

elements

Element

Notes

UsernameToken

Both

the

user

name

and

password

for

the

BasicAuth

authentication

method

and

the

user

name

for

the

identity

assertion

authentication

method

are

supported.

WebSphere

Application

Server,

Version

5.0.2

does

not

support

the

Password

Digest,

Nonce,

and

Created

attributes.

BinarySecurityToken

X.509

certificates

and

Lightweight

Third

Party

Authentication

(LTPA)

can

be

embedded,

but

there

is

no

implementation

to

embed

Kerberos

tickets.

However,

the

binary

token

generation

and

validation

are

pluggable

and

are

based

on

the

Java

Authentication

and

Authorization

Service

(JAAS)

Application

Programming

Interfaces

(APIs).

You

can

extend

this

implementation

to

generate

and

validate

other

types

of

binary

security

tokens.

Signature

The

X.509

certificate

is

embedded

as

a

binary

security

token

and

can

be

referenced

by

the

SecurityTokenReference.

WebSphere

Application

Server

does

not

support

shared,

key-based

signature.

Encryption

Both

the

EncryptedKey

and

ReferenceList

XML

tags

are

supported.

KeyIdentifier

specifies

public

keys

and

KeyName

identifies

the

secret

keys.

WebSphere

Application

Server

has

the

capability

to

map

an

authenticated

identity

to

a

key

for

encryption

or

use

the

signer

certificate

to

encrypt

the

response

message.

386

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-106.ibm.com/developerworks/webservices/library/ws-secureadd.html
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/apps/group_public/download.php/1003/documents/documents/WSS-Username-02-0223-merged.pdf

Table

1.

Web

services

security

elements

(continued)

Element

Notes

Timestamp

WebSphere

Application

Server

supports

the

Created

and

Expires

attributes.

The

freshness

of

the

message,

which

indicates

whether

the

message

complies

with

predefined

time

constraints,

is

checked

only

if

the

Expires

attribute

is

present

in

the

message.

WebSphere

Application

Server

does

not

support

the

Received

attribute,

which

is

defined

in

the

addendum.

Instead,

WebSphere

Application

Server

uses

the

TimestampTrace

Received

attribute,

which

is

defined

in

the

OASIS

specification.

XML

based

token

You

can

insert

and

validate

an

arbitrary

format

of

XML

tokens

into

a

message.

This

format

mechanism

is

based

on

the

JAAS

APIs.

Signing

and

encrypting

attachments

is

not

supported

by

WebSphere

Application

Server.

The

namespaces

used

for

sending

a

message

were

published

by

OASIS

in

draft

13

(http://schemas.xmlsoap.org/ws/2003/06/secext).

However,

the

Web

services

security

run

time

in

WebSphere

Application

Server

can

accept

any

of

the

following

namespaces:

April

2002

specification

http://schemas.xmlsoap.org/ws/2002/04/secext

August

2002

addendum

http://schemas.xmlsoap.org/ws/2002/07/secext

http://schemas.xmlsoap.org/ws/2002/07/utility

OASIS

draft

published

on

draft

13

May

2003

http://schemas.xmlsoap.org/ws/2003/06/secext

http://schemas.xmlsoap.org/ws/2003/06/utility

WebSphere

Application

Server

provides

the

following

capabilities

for

Web

services

security:

v

Integrity

of

the

message

v

Authenticity

of

the

message

v

Confidentiality

of

the

message

v

Privacy

of

the

message

v

Transport

level

security:

provided

by

Secure

Sockets

Layer

(SSL)

v

Security

token

propagation

(pluggable)

v

Identity

assertion

See

the

previous

table

titled,

″Web

services

security

elements,″

for

a

description

of

capabilities

that

are

not

supported.

Web

services

security

and

Java

2

Platform,

Enterprise

Edition

security

relationship

This

document

describes

the

relationship

between

Web

services

security

(message

level

security)

and

Java

2

Platform,

Enterprise

Edition

(J2EE)

platform

security.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

387

http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2002/04/secext
http://schemas.xmlsoap.org/ws/2002/07/secext
http://schemas.xmlsoap.org/ws/2002/07/utility
http://schemas.xmlsoap.org/ws/2003/06/secext
http://schemas.xmlsoap.org/ws/2003/06/utility

WebSphere

Application

Server

supports

Java

Specification

Requests

(JSR)

101

and

JSR

109

(see

Developing

Web

services

for

more

information).

These

JSRs

define

Web

services

for

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

architecture

so

that

you

can

develop

and

run

Web

services

on

the

J2EE

component

architecture.

″Web

services

security″

refers

to

the

″Web

services

security:

SOAP

Message

Security″

specification

(see

Web

services

security

support

for

more

information).

Important

Note:

″Web

services

security″

refers

to

the

″Web

services

security:

SOAP

Message

Security″

specification

(see

Web

services

security

support

for

more

information).

Securing

Web

services

with

WebSphere

Application

Server

security

(J2EE

role-based

security)

You

can

secure

Web

services

using

the

existing

security

infrastructure

of

WebSphere

Application

Server,

J2EE

role-based

security,

and

Secure

Sockets

Layer

(SSL)

transport

level

security.

The

Web

services

endpoint

can

be

secured

using

J2EE

role-based

security.

The

Web

services

sender

sends

the

basic

authentication

data

using

the

HTTP

header.

SSL

(HTTPS)

can

be

used

to

secure

the

transport.

When

the

WebSphere

Application

Server

receives

the

SOAP

message,

the

Web

container

authenticates

the

user

(in

this

example,

user1)

and

sets

the

security

context

for

the

call.

After

the

security

Authentication

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

HTTP Basic

<user1: password>

User 1

Authentication
mechanism

SWAM LTPA

User Registry

LocalOS LDAP Custom

Authenticate

user1 / password

Figure

5.

Simple

object

access

protocol

message

flow

using

existing

security

infrastructure

of

WebSphere

Application

Server

388

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

context

is

set,

the

SOAP

router

servlet

sends

the

request

to

the

implementation

of

the

Web

services

(the

implementation

can

be

JavaBeans

or

enterprise

bean

files).

For

enterprise

bean

implementations,

the

EJB

container

performs

an

authorization

check

against

the

identity

of

user1.

The

Web

services

endpoint

also

can

be

secured

using

the

J2EE

role.

Then,

authorization

is

performed

by

the

Web

container

before

the

SOAP

request

is

dispatched

to

the

Web

services

implementation.

Securing

Web

services

with

Web

services

security

at

the

message

level

You

can

also

secure

Web

services

using

Web

services

security

at

the

message

level.

In

this

case,

you

can

digitally

sign

or

encrypt

a

certain

part

of

the

message.

Web

services

security

also

supports

security

token

propagation

within

the

SOAP

message.

The

following

scenario

assumes

that

the

Web

services

endpoint

is

not

secured

with

J2EE

role-based

security

and

the

enterprise

bean

is

secured

with

J2EE

role-based

security.

In

this

case,

the

Web

services

endpoint

is

not

secured

with

J2EE

role-based

security.

The

Web

services

engine

processes

the

SOAP

message

before

the

client

sends

the

message

to

the

Web

services

endpoint.

The

Web

services

security

run

time

acts

on

Authentication

WebSphere

Application Server

SOAP / HTTP(s)

SOAP / HTTP(s)

wsse: Username Token

<user1: password>

User 1

Authentication
mechanism

User Registry

Authenticate user1 / password

RPC

router

EJB

container

EJB

Java

bean

RMI / IIOP

User1

User1

User1

User1

User1

User1

User1

Web

container

Web

Services

engine

Security

handler

Web

Services

engine

Security

handler

WCCM
(deployment
descriptor)

WCCM

(deployment

descriptor)

SWAM LTPA LocalOS LDAP Custom

Figure

6.

Simple

Object

Access

Protocol

message

flow

using

Web

services

security

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

389

the

security

constraints,

such

as

digitally

signing,

encrypting,

or

generating

(and

inserting)

a

security

token

in

the

SOAP

header.

In

this

case

<wsse:UsernameToken>

is

generated

using

user1

and

the

password.

On

the

server-side

(receiving),

the

Web

services

process

the

incoming

message

and

Web

services

security

enforces

security

constraints.

This

enforcement

includes

making

sure

that

messages

are

properly

signed,

properly

encrypted,

and

decrypted,

authenticating

the

security

token,

and

setting

up

the

security

context

with

the

authenticated

identity.

(In

this

case,

user1

is

the

authenticated

identity.)

Finally,

the

SOAP

message

is

dispatched

to

the

Web

services

implementation

(if

the

implementation

is

an

enterprise

beans

file,

the

EJB

container

performs

an

authorization

check

against

user1).

SSL

also

might

be

used

in

this

scenario.

Mixing

the

two

The

second

scenario

shows

that

Web

services

security

can

complement

J2EE

role-based

security.

For

example,

SSL

can

be

enabled

at

the

transport

level

to

provide

a

secure

channel.

Furthermore,

if

the

Web

services

implementation

is

an

enterprise

beans

file,

you

can

leverage

the

EJB

role-based

authorization

by

performing

authorization

checks.

Web

services

security

run

time

leverages

the

security

infrastructure

to

set

the

authenticated

identity

in

the

security

context.

The

authenticated

identity

can

be

used

in

the

downstream

call

to

J2EE

resources

(or

other

resource

types).

There

are

subtle

consequences

of

combining

the

two

scenarios.

For

example,

if

the

HTTP

transport

is

sending

basic

authentication

data

with

user1

and

password

in

the

HTTP

header,

but

<wsse:UsernameToken>

with

user99

and

letmein

also

is

inserted

into

the

SOAP

header.

In

the

previous

scenarios,

there

are

two

authentications

performed.

One

authentication

is

performed

by

the

Web

container

for

authenticating

user1,

and

the

other

is

performed

by

Web

services

security

for

authenticating

user99.

The

Web

services

security

run

time

runs

after

the

Web

container

runs

and

user99

is

the

authenticated

identity

that

is

set

in

the

security

context.

Web

services

security

can

also

propagate

security

tokens

from

the

sender

to

the

receiver

for

SOAP

over

a

Java

Message

Service

(JMS)

transport.

Related

concepts

“Web

services

security

specification-

a

chronology”

on

page

384

“Web

services

security

model

in

WebSphere

Application

Server”

Related

tasks

“Web

services

security

support”

on

page

385

“Developing

Web

services

based

on

Web

Services

for

J2EE”

on

page

293

Web

services

security

model

in

WebSphere

Application

Server

The

Web

services

security

model

used

by

WebSphere

Application

Server

is

the

declarative

model.

WebSphere

Application

Server

does

not

include

any

application

programming

interfaces

(APIs)

for

programmatically

interacting

with

Web

services

security.

However,

a

few

Server

Provider

Interfaces

(SPIs)

are

available

for

extending

some

security-related

behaviors.

390

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

security

constraints

for

Web

services

security

are

specified

in

IBM

deployment

descriptor

extensions

for

Web

services.

The

Web

services

security

run

time

acts

on

the

constraints

to

enforce

Web

services

security

for

the

Simple

Object

Access

Protocol

(SOAP)

message.

The

scope

of

the

IBM

deployment

descriptor

extension

is

at

the

enterprise

bean

(EJB)

or

Web

module

level.

Bindings

are

associated

with

each

of

the

following

IBM

deployment

descriptor

extensions:

Client

(Might

be

either

a

J2EE

Client

(Application

Client

Container)

or

Web

services

acting

as

a

client)

ibm-webservicesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Server

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

It

is

recommended

that

you

use

the

tools

provided

by

IBM

(the

Assembly

Toolkit

and

WebSphere

Studio

Application

Developer)

to

create

the

IBM

deployment

descriptor

extension

and

bindings.

After

the

bindings

are

created,

you

can

use

the

administrative

console,

the

Assembly

Toolkit,

or

the

WebSphere

Studio

Application

Developer

to

specify

the

bindings.

Important

Note:

The

binding

information

is

collected

after

application

deployment

rather

than

during

application

deployment.

The

alternative

is

to

specify

the

required

binding

information

before

deploying

your

application.

Web services

implemented

as an EJB file

EJB module

Enterprise application 1

ibm-webserviecesclient-ext.xmi

ibm-webservicesclient-bnd.xmi

Security

handler

Enterprise application 2

EJB module

ibm-webservices-ext.xmi

ibm-webservices-bnd.xmi

Security

handler

Web services

implemented

as an EJB file

Figure

7.

Web

services

security

model

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

391

The

Web

services

security

run

time

enforces

Web

services

security

based

on

the

defined

security

constraints

in

the

deployment

descriptor

and

binding

files.

Web

services

security

has

the

following

four

points

where

it

intercepts

the

message

and

acts

on

the

security

constraints

defined:

Message

points

Description

Request

sender

(defined

in

the

ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

files)

v

Applies

the

appropriate

security

constraints

to

the

SOAP

message

(such

as

signing

or

encryption)

before

the

message

is

sent,

generating

the

time

stamp

or

the

required

security

token.

Request

receiver

(defined

in

the

ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi

files)

v

Verifies

that

the

Web

services

security

constraints

are

met.

v

Verifies

the

freshness

of

the

message

based

on

the

time

stamp.

The

freshness

of

the

message

indicates

whether

the

message

complies

with

predefined

time

constraints.

v

Verifies

the

required

signature.

v

Verifies

that

the

message

is

encrypted

and

decrypts

the

message

if

encrypted.

v

Validates

the

security

tokens

and

sets

up

the

security

context

for

the

downstream

call.

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure

8.

Web

services

security

message

interpretation

392

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Message

points

Description

Response

sender

(defined

in

the

ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi

files)

v

Applies

the

appropriate

security

constraints

to

the

SOAP

message

response,

like

signing

the

message,

encrypting

the

message,

or

generating

the

time

stamp.

Response

receiver

(defined

in

the

ibm-webservicesclient-ext.xmi

or

ibm-webservicesclient-bnd.xmi

files)

v

Verifies

that

the

Web

services

security

constraints

are

met.

v

Verifies

the

freshness

of

the

message

based

on

the

time

stamp.

The

freshness

of

the

message

indicates

whether

the

message

complies

with

predefined

time

constraints.

v

Verifies

the

required

signature.

v

Verifies

that

the

message

is

encrypted

and

decrypts

the

message,

if

encrypted.

Web

services

security

property

collection

Use

this

page

to

a

view

a

list

of

additional

properties

for

the

configuration.

There

are

several

ways

to

view

a

Web

services

security

property

collection

panel.

Complete

the

following

steps

to

view

one

of

these

administrative

console

pages:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators

>

key_locator_name.

3.

Under

Additional

Properties,

click

Properties.

4.

Click

New

to

create

a

new

property.

5.

Click

Delete

to

a

delete

a

property

that

you

specified

previously.

Name

Specifies

the

name

of

the

property.

Value

Specifies

the

value

for

the

property.

Web

services

security

property

configuration

settings

Use

this

page

to

configure

additional

properties.

There

are

several

ways

to

view

a

Web

services

security

property

configuration

settings

panel.

Complete

the

following

steps

to

view

one

of

these

administrative

console

pages:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators

>

key_locator_name.

3.

Under

Additional

Properties,

click

Properties

>

New.

Property

Name

Specifies

the

name

of

the

property.

Data

type:

String

Property

Value

Specifies

the

value

for

the

property.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

393

Data

type:

String

Usage

scenario

for

propagating

security

tokens

A

sample

scenario

This

document

describes

a

usage

scenario

for

Web

services

security.

In

scenario

1,

Client

1

invokes

Web

services

1.

Then

Web

services

1

calls

EJB

file

2.

EJB

file

2

calls

Web

services

3

and

Web

services

3

calls

Web

services

4.

The

previous

scenario

shows

how

to

propagate

security

tokens

using

Web

services

security,

the

security

infrastructure

of

the

WebSphere

Application

Server,

and

Java

2

Platform,

Enterprise

Edition

(J2EE)

security.

Web

services

1

is

configured

to

accept

<wsse:UsernameToken>

only

and

use

the

BasicAuth

authentication

method.

However,

Web

services

4

is

configured

to

accept

either

<wsse:UsernameToken>

using

the

BasicAuth

authentication

method

or

Lightweight

Third

Party

Authentication

(LTPA)

as

<wsse:BinarySecurityToken>.

The

following

steps

describe

the

scenario

shown

in

the

previous

figure:

1.

Client

1

sends

a

SOAP

message

to

Web

services

1

with

user1

and

password

in

the

<wsse:UsernameToken>

element.

2.

The

user1

and

password

values

are

authenticated

by

the

Web

services

security

run

time

and

set

in

the

current

security

context

as

the

Java

Authentication

and

Authorization

Service

(JAAS)

Subject.

3.

Web

services

1

invokes

EJB

file

2

using

the

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI/IIOP)

protocol.

4.

The

user1

identity

is

propagated

to

the

downstream

call.

5.

The

EJB

container

of

EJB

file

2

performs

an

authorization

check

against

user1.

6.

EJB

file

2

calls

Web

services

3

and

Web

services

3

is

configured

to

accept

LTPA

tokens.

Client 1

Client 2

Remote Method Invocation over

the Internet / Inter-ORB Protocol

(RM I / I IOP)

User1

EJB file 2

RunAs user2

wsse: UsernameToken

< user1: password >

wsse: UsernameToken

< user2: password >

wsse: UsernameToken

< user1: password >

wsse: BinarySecurityToken

< LTPA token bytes of user2 >

Web service 1

Web service 3

Web service 4

Simple Object

Access Protocol

(SOAP)/ HTTP/ HTTPS

SOAP/ HTTP/ HTTPS SOAP / HTTP / HTTPS

SOAP / HTTP / HTTPS

Figure

9.

Propagating

security

tokens

394

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

7.

The

RunAs

role

of

EJB

file

2

is

set

to

user2.

8.

The

LTPA

CallbackHandler

implementation

extracts

the

LTPA

token

from

the

current

JAAS

Subject

in

the

security

context

and

Web

services

security

run

time

inserts

the

token

as

<wsse:

BinarySecurityToken>

in

the

SOAP

header.

9.

The

Web

services

security

run

time

in

Web

services

3

calls

the

JAAS

login

configuration

to

validate

the

LTPA

token

and

set

it

in

the

current

security

context

as

the

JAAS

Subject.

10.

Web

services

3

is

configured

to

send

LTPA

security

to

Web

services

4.

In

this

case,

assume

that

the

RunAs

role

is

not

configured

for

Web

services

3.

The

LTPA

token

of

user2

is

propagated

to

Web

services

4.

11.

Client

2

uses

the

<wsse:UsernameToken>

element

to

propagate

the

basic

authentication

data

to

Web

services

4.

Web

services

security

complements

the

WebSphere

Application

Server

security

run

time

and

the

J2EE

role-based

security.

This

scenario

demonstrates

how

to

propagate

security

tokens

across

multiple

resources

such

as

Web

services

and

EJB

files.

Configurations

The

Web

services

security

model

used

by

WebSphere

Application

Server

is

the

declarative

model.

No

Application

Programming

Interfaces

(APIs)

exist

in

WebSphere

Application

Server

for

programmatically

interacting

with

Web

services

security.

However,

Service

Provider

Programming

Interfaces

(SPIs)

are

available

for

extending

some

security

run-time

behaviors.

You

can

secure

an

application

with

Web

services

security

by

defining

security

constraints

in

the

IBM

extension

deployment

descriptors

and

in

IBM

extension

bindings.

The

development

life

cycle

of

a

Web

services

security-enabled

application

is

similar

to

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

model.

See

the

following

figure

for

more

details.

The

Web

services

security

constraints

are

defined

by

the

assembler

during

the

application

assembly

phase

if

the

J2EE

application

is

Web

services-enabled.

Create,

define,

and

edit

the

Web

services

security

constraints

with

the

Assembly

Toolkit,

which

can

be

downloaded

from

the

following

location:

http://www.ibm.com

/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid

=swg24005125&loc=en_US&cs=utf-8&lang=en+en

Creation Assembly Deployment

Deploy
Component

provider

creates the

application

Assembler

assembles

and declares

Web service

security

constraints

Deployer

deploys

and gathers

binding

information

J2EE

module

Web services

(JSR-109)

enabled J2EE

application with

Web services

security

J2EE

application

server

Components

Figure

10.

Application

development

life

cycle

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

395

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

Web

services

security

constraints

The

security

constraints

for

Web

services

security

are

specified

in

the

IBM

deployment

descriptor

extension

for

Web

services.

The

assembler

defines

these

constraints

during

the

application

assembly

phase,

if

the

J2EE

application

is

Web

services

enabled.

Define

the

Web

services

security

constraints

using

the

Assembly

Toolkit.

The

Web

services

security

run

time

acts

on

the

constraints

to

enforce

Web

services

security

for

the

SOAP

message.

The

scope

of

the

IBM

deployment

descriptor

extension

is

at

the

EJB

module

or

Web

module

level.

There

also

are

bindings

associated

with

each

of

the

following

IBM

deployment

descriptor

extensions:

Client

(might

be

either

a

J2EE

client

(application

client

container)

or

Web

services

acting

as

a

client)

v

ibm-webservicesclient-ext.xmi

v

ibm-webservicesclient-bnd.xmi

Server

v

ibm-webservices-ext.xmi

v

ibm-webservices-bnd.xmi

The

IBM

extension

deployment

descriptor

and

bindings

are

associated

with

each

EJB

module

or

Web

module.

See

Figure

2

for

more

information.

If

Web

services

is

acting

as

a

client,

then

it

contains

the

client

IBM

extension

deployment

descriptors

and

bindings

in

the

EJB

module

or

Web

module.

Web services

implemented

as an EJB file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

EJB module

Enterprise application 1

Enterprise application 2ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented as

a JavaBean file

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web module ibm-webserviecesclient-bnd.xmi

ibm-webservicesclient-ext.xmi

Web services

implemented

as an EJB file

Web

services

security

handler

ibm-webservices-bnd.xmi

ibm-webservices-ext.xmi

Web

services

security

handler

Web

services

security

handler

EJB module

396

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

Web

services

security

handler

acts

on

the

security

constraints

defined

in

the

IBM

extension

deployment

descriptor

and

enforces

the

security

constraints

accordingly.

There

are

outbound

and

inbound

configurations

in

both

the

client

and

server

security

constraints.

In

a

SOAP

request,

the

following

message

points

exist:

v

Sender

outbound

v

Receiver

inbound

v

Receiver

outbound

v

Sender

inbound

These

message

points

correspond

to

the

following

four

security

constraints:

v

Request

sender

(sender

outbound)

v

Request

receiver

(receiver

inbound)

v

Response

sender

(receiver

outbound)

v

Response

receiver

(sender

inbound)

The

security

constraints

of

request

sender

and

request

receiver

must

match.

Also,

the

security

constraints

of

the

response

sender

and

response

receiver

must

match.

For

example,

if

you

specify

integrity

as

a

constraint

in

the

request

receiver,

then

you

must

configure

the

request

sender

to

have

integrity

applied

to

the

SOAP

message.

Otherwise,

the

request

is

denied

because

the

SOAP

message

does

not

include

the

integrity

specified

in

the

request

constraint.

The

four

security

constraints

are

shown

in

the

following

figure

of

Web

services

security

constraints.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

397

Sample

configuration

WebSphere

Application

Server

provides

the

following

sample

key

stores

for

sample

configurations.

These

sample

key

stores

are

for

testing

and

sample

purposes

only.

Do

not

use

them

a

in

production

environment.

v

{USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks

–

The

keystore

password

is

client

–

Trusted

certificate

with

alias

name,

soapca

–

Personal

certificate

with

alias

name,

soaprequester

and

key

password

client

issued

by

intermediary

certificate

authority

Int

CA2,

which

is,

in

turn,

issued

by

soapca

v

{USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

–

The

keystore

password

is

server

–

Trusted

certificate

with

alias

name,

soapca

–

Personal

certificate

with

alias

name,

soapprovider

and

key

password

server,

issued

by

intermediary

certificate

authority

Int

CA2,

which

is,

in

turn,

issued

by

soapca

v

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

–

The

keystore

password

is

storepass

–

Secret

key

CN=Group1,

alias

name

Group1,

and

key

password

keypass

–

Public

key

CN=Bob,

O=IBM,

C=US,

alias

name

bob,

and

key

password

keypass

Deployment descriptor

and service bindings

Deployment descriptor

and service bindings

Configuration Configuration

Client Application Server

Security handler

• Security token generation

• Digital signature generation

• Encrypt message

• Decrypt message

• Digital signature validation

• Security token validation

and setup security context

Simple Object

Access Protocol

request

+

web services

security headers

[transport headers]

Request

Security handler

EJB file,

servlet,

JavaBean

file

Request

Response

• Decrypt message

• Digital signature validation

• Digital signature generation

• Encrypt message

Response

Figure

11.

Web

services

security

constraints

398

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

Private

key

CN=Alice,

O=IBM,

C=US,

alias

name

alice,

and

key

password

keypass

v

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

–

The

keystore

password

is

storepass

–

Secret

key

CN=Group1,

alias

name

Group1,

and

key

password

keypass

–

Private

key

CN=Bob,

O=IBM,

C=US,

alias

name

bob,

and

key

password

keypass

–

Public

key

CN=Alice,

O=IBM,

C=US,

alias

name

alice,

and

key

password

keypass

v

{USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

–

The

intermediary

certificate

authority

is

Int

CA2.

Default

binding

(cell

and

server

level)

WebSphere

Application

Server

provides

the

following

default

binding

information:

Trust

anchors

Used

to

validate

the

trust

of

the

signer

certificate.

v

SampleClientTrustAnchor

is

used

by

the

response

receiver

to

validate

the

signer

certificate.

v

SampleServerTrustAnchor

is

used

by

the

request

receiver

to

validate

the

signer

certificate.

Collection

Certificate

Store

Used

to

validate

the

certificate

path.

v

SampleCollectionCertStore

is

used

by

the

response

receiver

and

the

request

receiver

to

validate

the

signer

certificate

path.

Key

Locators

Used

to

locate

the

key

for

signature,

encryption,

and

decryption.

v

SampleClientSignerKey

is

used

by

the

requesting

sender

to

sign

the

SOAP

message.

The

signing

key

name

is

clientsignerkey,

which

can

be

referenced

in

the

signing

information

as

the

signing

key

name.

v

SampleServerSignerKey

is

used

by

the

responding

sender

to

sign

the

SOAP

message.

The

signing

key

name

is

serversignerkey,

which

can

be

referenced

in

the

signing

information

as

the

signing

key

name.

v

SampleSenderEncryptionKeyLocator

is

used

by

the

sender

to

encrypt

the

SOAP

message.

It

is

configured

to

use

the

{USER_INSTALL_ROOT}/etc/ws-
security/samples/enc-sender.jceks

keystore

and

the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

keystore

key

locator.

v

SampleReceiverEncryptionKeyLocator

is

used

by

the

receiver

to

decrypt

the

encrypted

SOAP

message.

The

implementation

is

configured

to

use

the

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

keystore

and

the

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

keystore

key

locator.

The

implementation

is

configured

for

symmetric

encryption

(DES

or

TRIPLEDES).

However,

to

use

it

for

asymmetric

encryption

(RSA),

you

must

add

the

private

key

CN=Bob,

O=IBM,

C=US,

alias

name

bob,

and

key

password

keypass.

v

SampleResponseSenderEncryptionKeyLocator

is

used

by

the

response

sender

to

encrypt

the

SOAP

response

message.

It

is

configured

to

use

the

{USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks

keystore

and

the

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator

key

locator.

This

key

locator

maps

an

authenticated

identity

(of

the

current

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

399

thread)

to

a

public

key

for

encryption.

By

default,

WebSphere

Application

Server

is

configured

to

map

to

public

key

alice,

and

you

must

change

WebSphere

Application

Server

to

the

appropriate

user.

The

SampleResponseSenderEncryptionKeyLocator

key

locator

also

can

set

a

default

key

for

encryption.

By

default,

this

key

locator

is

configured

to

use

public

key

alice.

Trusted

ID

Evaluator

Used

to

establish

trust

before

asserting

to

the

identity

in

identity

assertion.

SampleTrustedIDEvaluator

is

configured

to

use

the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

implementation.

The

default

implementation

of

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

contains

a

list

of

trusted

identities.

The

list

is

defined

as

properties

with

trustedId_*

as

the

key

and

the

value

as

the

trusted

identity.

Define

this

information

for

the

server

level

in

the

administration

console

by

completing

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server1.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trusted

ID

Evaluators

>

SampleTrustedIDEvaluator

For

the

cell

level,

click

Security

>

Web

Services

>

Trusted

ID

Evaluators

>

SampleTrustedIDEvaluator.

Login

Mapping

Used

to

authenticate

the

incoming

security

token

in

the

Web

services

security

SOAP

header

of

a

SOAP

message.

v

The

BasicAuth

authentication

method

is

used

to

authenticate

user

name

security

token

(user

name

and

password).

v

The

signature

authentication

method

is

used

to

map

a

distinguished

name

(DN)

into

a

WebSphere

Application

Server

Java

Authentication

and

Authorization

Server

(JAAS)

Subject.

v

The

IDAssertion

authentication

method

is

used

to

map

a

trusted

identity

into

a

WebSphere

Application

Server

JAAS

Subject

for

identity

assertion.

v

The

Lightweight

Third

Party

Authentication

(LTPA)

authentication

method

is

used

to

validate

a

LTPA

security

token.

The

previous

default

bindings

for

trust

anchors,

collection

certificate

stores,

and

key

locators

are

for

testing

or

sample

purpose

only.

Do

not

use

them

for

production.

A

sample

configuration

The

following

examples

demonstrate

what

IBM

deployment

descriptor

extensions

and

bindings

can

do.

The

unnecessary

information

was

removed

from

the

examples

to

improve

clarity.

Do

not

copy

and

paste

these

examples

into

your

application

deployment

descriptors

or

bindings.

These

examples

serve

as

reference

only

and

are

not

representative

of

the

recommended

configuration.

Use

the

following

tools

to

create

or

edit

IBM

deployment

descriptor

extensions

and

bindings:

v

Use

the

Assembly

Toolkit

to

create

or

edit

the

IBM

deployment

descriptor

extensions.

400

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Use

the

Assembly

Toolkit

or

the

administrative

console

to

create

or

edit

the

bindings

file.

The

following

example

illustrates

a

scenario

that:

v

Signs

the

SOAP

body,

time

stamp,

and

security

token.

v

Encrypts

the

body

content

and

user

name

token.

v

Sends

the

user

name

token

(basic

authentication

data).

v

Generates

the

time

stamp

for

the

request.

For

the

response,

the

SOAP

body

and

time

stamp

are

signed,

the

body

content

is

encrypted,

and

the

SOAP

message

freshness

is

checked

using

the

time

stamp.

The

freshness

of

the

message

indicates

whether

the

message

complies

with

predefined

time

constraints.

The

request

sender

and

the

request

receiver

are

a

pair.

Similarly,

the

response

sender

and

the

response

receiver

are

a

pair.

Tip:

It

is

recommended

that

you

use

the

WebSphere

Application

Server

variables

for

specifying

the

path

to

the

key

stores.

In

the

administrative

console,

click

Environment

>

Manage

WebSphere

Variables.

These

variables

often

help

with

platform

differences

such

as

file

system

naming

conventions.

In

the

following

examples,

${USER_INSTALL_ROOT}

is

used

for

specifying

the

path

to

the

key

stores.

Client-side

IBM

deployment

descriptor

extension

The

client-side

IBM

deployment

descriptor

extension

describes

the

following

constraints:

Request

Sender

v

Signs

the

SOAP

body,

time

stamp

and

security

token

v

Encrypts

the

body

content

and

user

name

token

v

Sends

the

basic

authentication

token

(user

name

and

password)

v

Generates

the

time

stamp

to

expire

in

three

minutes

Response

Receiver

v

Verifies

that

the

SOAP

body

and

time

stamp

are

signed

v

Verifies

that

the

SOAP

body

content

is

encrypted

v

Verifies

that

the

time

stamp

is

present

(also

check

for

message

freshness)

Example

1:

Sample

client

IBM

deployment

descriptor

extension

The

xmi:id

statements

are

removed

for

readability.

These

statements

must

be

added

for

this

example

to

work.

<?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi">

<serviceRefs

serviceRefLink="service/myServ">

<portQnameBindings

portQnameLocalNameLink="Port1">

<clientServiceConfig

actorURI="myActorURI">

<securityRequestSenderServiceConfig

actor="myActorURI">

<integrity>

<references

part="body"/>

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

401

<references

part="timestamp"/>

<references

part="securitytoken"/>

</integrity>

<confidentiality>

<confidentialParts

part="bodycontent"/>

<confidentialParts

part="usernametoken"/>

</confidentiality>

<loginConfig

authMethod="BasicAuth"/>

<addCreatedTimeStamp

flag="true"

expires="PT3M"/>

</securityRequestSenderServiceConfig>

<securityResponseReceiverServiceConfig>

<requiredIntegrity>

<references

part="body"/>

<references

part="timestamp"/>

</requiredIntegrity>

<requiredConfidentiality>

<confidentialParts

part="bodycontent"/>

</requiredConfidentiality>

<addReceivedTimeStamp

flag="true"/>

</securityResponseReceiverServiceConfig>

</clientServiceConfig>

</portQnameBindings>

</serviceRefs>

</com.ibm.etools.webservice.wscext:WsClientExtension>

Client-side

IBM

extension

bindings

Example

2

shows

the

client-side

IBM

extension

binding

for

the

security

constraints

described

previously

in

the

discussion

on

client-side

IBM

deployment

descriptor

extensions.

The

signer

key

and

encryption

(decryption)

key

for

the

message

can

be

obtained

from

the

keystore

key

locator

implementation

(com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator).

The

signer

key

is

used

for

encrypting

the

response.

The

sample

is

configured

to

use

the

Java

Certification

Path

API

to

validate

the

certificate

path

of

the

signer

of

the

digital

signature.

The

user

name

token

(basic

authentication)

data

is

collected

from

the

standard

in

(stdin)

prompts

using

one

of

the

default

Java

Authentication

and

Authorization

Service

(JAAS)

implementations

:javax.security.auth.callback.CallbackHandler

implementation

(com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler).

Example

2:

Sample

client

IBM

extension

binding

<?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wscbnd:ClientBinding

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscbnd=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

<serviceRefs

serviceRefLink="service/MyServ">

<portQnameBindings

portQnameLocalNameLink="Port1">

<securityRequestSenderBindingConfig>

<signingInfo>

<signatureMethod

algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<signingKey

name="clientsignerkey"

locatorRef="SampleClientSignerKey"/>

<canonicalizationMethod

algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<digestMethod

algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

</signingInfo>

<keyLocators

name="SampleClientSignerKey"

classname="com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

<keyStore

storepass="{xor}PDM2OjEr"

402

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks"

type="JKS"/>

<keys

alias="soaprequester"

keypass="{xor}PDM2OjEr"

name="clientsignerkey"/>

</keyLocators>

<encryptionInfo

name="EncInfo1">

<encryptionKey

name="CN=Bob,

O=IBM,

C=US"

locatorRef="SampleSenderEncryptionKeyLocator"/>

<encryptionMethod

algorithm=

"http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<keyEncryptionMethod

algorithm=

"http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

</encryptionInfo>

<keyLocators

name="SampleSenderEncryptionKeyLocator"

classname="com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

<keyStore

storepass="{xor}LCswLTovPiws"

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks"

type="JCEKS"/>

<keys

alias="Group1"

keypass="{xor}NDomLz4sLA=="

name="CN=Group1"/>

</keyLocators>

<loginBinding

authMethod="BasicAuth"

callbackHandler="com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

</securityRequestSenderBindingConfig>

<securityResponseReceiverBindingConfig>

<signingInfos>

<signatureMethod

algorithm=

"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<certPathSettings>

<trustAnchorRef

ref="SampleClientTrustAnchor"/>

<certStoreRef

ref="SampleCollectionCertStore"/>

</certPathSettings>

<canonicalizationMethod

algorithm=

"http://www.w3.org/2001/10/xml-exc-c14n#"/>

<digestMethod

algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

</signingInfos>

<trustAnchors

name="SampleClientTrustAnchor">

<keyStore

storepass="{xor}PDM2OjEr"

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks"

type="JKS"/>

</trustAnchors>

<certStoreList>

<collectionCertStores

provider="IBMCertPath"

name="SampleCollectionCertStore">

<x509Certificates

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer"/>

</collectionCertStores>

</certStoreList>

<encryptionInfos

name="EncInfo2">

<encryptionKey

locatorRef="SampleReceiverEncryptionKeyLocator"/>

<encryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<keyEncryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

</encryptionInfos>

<keyLocators

name="SampleReceiverEncryptionKeyLocator"

classname="com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

<keyStore

storepass="{xor}PDM2OjEr"

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-sender.ks"

type="JKS"/>

<keys

alias="soaprequester"

keypass="{xor}PDM2OjEr"

name="clientsignerkey"/>

</keyLocators>

</securityResponseReceiverBindingConfig>

</portQnameBindings>

</serviceRefs>

</com.ibm.etools.webservice.wscbnd:ClientBinding>

Server-side

IBM

deployment

descriptor

extension

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

403

The

client-side

IBM

deployment

descriptor

extension

describes

the

following

constraints:

Request

Receiver

(ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi)

v

Verifies

that

the

SOAP

body,

time

stamp,

and

security

token

are

signed.

v

Verifies

that

the

SOAP

body

content

and

user

name

token

are

encrypted.

v

Verifies

that

the

basic

authentication

token

(user

name

and

password)

is

in

the

Web

services

security

SOAP

header.

v

Verifies

that

the

time

stamp

is

present

(also

check

for

message

freshness).

The

freshness

of

the

message

indicates

whether

the

message

complies

with

predefined

time

constraints.

Response

Sender

(ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi)

v

Signs

the

SOAP

body

and

time

stamp

v

Encrypts

the

SOAP

body

content

v

Generates

the

time

stamp

to

expire

in

3

minutes

Example

3:

Sample

server

IBM

deployment

descriptor

extension

<?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi">

<wsDescExt

wsDescNameLink="MyServ">

<pcBinding

pcNameLink="Port1">

<serverServiceConfig

actorURI="myActorURI">

<securityRequestReceiverServiceConfig>

<requiredIntegrity>

<references

part="body"/>

<references

part="timestamp"/>

<references

part="securitytoken"/>

</requiredIntegrity>

<requiredConfidentiality">

<confidentialParts

part="bodycontent"/>

<confidentialParts

part="usernametoken"/>

</requiredConfidentiality>

<loginConfig>

<authMethods

text="BasicAuth"/>

</loginConfig>

<addReceivedTimestamp

flag="true"/>

</securityRequestReceiverServiceConfig>

<securityResponseSenderServiceConfig

actor="myActorURI">

<integrity>

<references

part="body"/>

<references

part="timestamp"/>

</integrity>

<confidentiality>

<confidentialParts

part="bodycontent"/>

</confidentiality>

<addCreatedTimestamp

flag="true"

expires="PT3M"/>

</securityResponseSenderServiceConfig>

</serverServiceConfig>

</pcBinding>

</wsDescExt>

</com.ibm.etools.webservice.wsext:WsExtension>

Server-side

IBM

extension

bindings

The

following

binding

information

reuses

some

of

the

default

binding

information

defined

either

at

the

server

level

or

the

cell

level,

which

depends

upon

the

404

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

installation.

For

example,

request

receiver

is

referencing

the

SampleCollectionCertStore

certification

store

and

the

SampleServerTrustAnchor

trust

store

is

defined

in

the

default

binding.

However,

the

encryption

information

in

the

request

receiver

is

referencing

a

SampleReceiverEncryptionKeyLocator

key

locator

defined

in

the

application-level

binding

(the

same

ibm-webservices-bnd.xmi

file).

The

response

sender

is

configured

to

use

the

signer

key

of

the

digital

signature

of

the

request

to

encrypt

the

response

using

one

of

the

default

key

locator

(com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator)

implementations.

Example

4:

Sample

server

IBM

extension

binding

<?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wsbnd:WSBinding

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsbnd="

http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">

<wsdescBindings

wsDescNameLink="MyServ">

<pcBindings

pcNameLink="Port1"

scope="Session">

<securityRequestReceiverBindingConfig>

<signingInfos>

<signatureMethod

algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<certPathSettings>

<trustAnchorRef

ref="SampleServerTrustAnchor"/>

<certStoreRef

ref="SampleCollectionCertStore"/>

</certPathSettings>

<canonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<digestMethod

algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

</signingInfos>

<encryptionInfos

name="EncInfo1">

<encryptionKey

locatorRef="SampleReceiverEncryptionKeyLocator"/>

<encryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<keyEncryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

</encryptionInfos>

<keyLocators

name="SampleReceiverEncryptionKeyLocator"

classname="com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator">

<keyStore

storepass="{xor}LCswLTovPiws"

path="${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-receiver.jceks"

type="JCEKS"/>

<keys

alias="Group1"

keypass="{xor}NDomLz4sLA=="

name="CN=Group1"/>

<keys

alias="bob"

keypass="{xor}NDomLz4sLA=="

name="CN=Bob,

O=IBM,

C=US"/>

</keyLocators>

</securityRequestReceiverBindingConfig>

<securityResponseSenderBindingConfig>

<signingInfo>

<signatureMethod

algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

<signingKey

name="serversignerkey"

locatorRef="SampleServerSignerKey"/>

<canonicalizationMethod

algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>

<digestMethod

algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

</signingInfo>

<encryptionInfo

name="EncInfo2">

<encryptionKey

locatorRef="SignerKeyLocator"/>

<encryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<keyEncryptionMethod

algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

</encryptionInfo>

<keyLocators

name="SignerKeyLocator"

classname="com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator"/>

</securityResponseSenderBindingConfig>

</pcBindings>

</wsdescBindings>

<routerModules

transport="http"

name="StockQuote.war"/>

</com.ibm.etools.webservice.wsbnd:WSBinding>

View

Web

services

client

deployment

descriptor

Use

this

page

to

view

your

client

deployment

descriptor.

To

view

this

administrative

console

page,

complete

the

following

steps:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

405

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

View

Web

Services

Client

Deployment

Descriptor.

Application-level

and

server-level

bindings

are

the

two

levels

of

bindings

that

WebSphere

Application

Server

offers.

Application-level,

server-level,

and

cell-level

are

the

three

levels

of

bindings

that

WebSphere

Application

Server

Network

Deployment

offers.

The

information

in

the

following

implementation

descriptions

indicates

how

to

configure

your

application-level

bindings.

If

the

Web

server

is

acting

as

a

client,

the

default

bindings

are

used.

To

configure

the

server-level

bindings,

which

are

the

defaults,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

3.

To

configure

the

cell-level

bindings,

click

Security

>

Web

Services.

If

you

are

using

any

of

the

following

configurations,

verify

that

the

deployment

descriptor

is

configured

properly:

v

Request

signing

v

Request

encryption

v

BasicAuth

authentication

v

Identity

(ID)

Assertion

authentication

v

Identity

(ID)

Assertion

authentication

with

the

signature

TrustMode

v

Response

digital

signature

verification

v

Response

decryption

Request

signing

If

the

integrity

constraints

(digital

signature)

are

specified,

verify

that

you

configured

the

signing

information

in

the

binding

files.

To

configure

the

signing

parameters,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

Web

Services:

Client

Security

Bindings

.

3.

In

the

Response

Receiver

Binding

column,

click

Edit

>

Signing

Information

>

New.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Request

encryption

If

the

confidentiality

constraints

(encryption)

are

specified,

verify

that

you

configured

the

encryption

information

in

the

binding

files.

To

configure

the

encryption

parameters,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Client

Security

Bindings

.

406

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

3.

In

the

Response

Receiver

Binding

column,

click

Edit

>

Encryption

Information

>

New.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

BasicAuth

authentication

If

BasicAuth

authentication

is

configured

as

the

required

security

token,

specify

the

CallbackHandler

in

the

binding

file

to

collect

the

basic

authentication

data.

The

following

list

contains

the

CallBack

support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

This

implementation

prompts

for

BasicAuth

information

(user

name

and

password)

in

an

interface.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This

implementation

reads

the

BasicAuth

information

from

the

binding

file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This

implementation

prompts

for

a

user

name

and

password

using

the

standard

in

(stdin)

prompt.

To

configure

the

login

binding

information,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

Under

Request

Sender

Bindings,

click

Edit

>

Login

Binding.

Identity

(ID)

Assertion

authentication

with

BasicAuth

TrustMode

Configure

a

login

binding

in

the

bindings

file

with

a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

implementation.

Specify

a

BasicAuth

user

ID

and

password

that

a

TrustedIDEvaluator

on

a

downstream

server

trusts.

To

configure

the

login

binding

information,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>URI_file_name>

Web

Services:

Client

Security

Bindings.

3.

Under

Request

Sender

Bindings,

click

Edit

>

Login

Binding.

Identity

(ID)

Assertion

authentication

with

the

Signature

TrustMode

Configure

the

signing

information

in

the

bindings

file

with

a

signing

key

pointing

to

a

key

locator.

The

key

locator

contains

the

X.509

certificate

that

is

trusted

by

the

downstream

server.

To

configure

ID

assertion,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings

>

IDAssertion.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

407

To

configure

the

login

binding

information,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

Under

Request

Sender

Bindings,

click

Edit

>

Login

Binding.

Response

digital

signature

verification

If

the

integrity

constraints

(signature

required)

are

defined,

verify

that

you

configured

the

signing

information

in

the

binding

files.

To

configure

the

signing

parameters,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Client

Security

Bindings

.

3.

In

the

Response

Receiver

Binding

column,

click

Edit

>

Signing

Information

>

New.

To

configure

the

trust

anchors,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors

>

New.

To

configure

the

collection

certificate

store,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store

>

New.

Response

decryption

If

the

confidentiality

constraints

(encryption)

are

specified,

verify

that

you

defined

the

encryption

information.

To

configure

the

encryption

information,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

><URI_file_name

>

Web

Services:

Client

Security

Bindings

.

3.

In

the

Response

Receiver

Binding

column,

click

Edit

>

Encryption

Information

>

New.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

View

Web

services

server

deployment

descriptor

Use

this

page

to

view

your

server

deployment

descriptor

settings.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

View

Web

Services

Server

Deployment

Descriptor.

408

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

WebSphere

Application

Server

has

two

levels

of

bindings:

application-level

and

server-level.

WebSphere

Application

Server

Network

Deployment

has

three

levels

of

bindings:

application-level,

server-level,

and

cell-level.

The

information

in

the

following

implementation

descriptions

indicate

how

to

configure

your

application-level

bindings.

To

configure

the

server-level

bindings,

which

are

the

defaults,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

To

configure

the

cell-level

bindings,

click

Security

>

Web

Services.

v

Request

digital

signature

verification

v

Request

decryption

v

BasicAuth

authentication

v

Identity

(ID)

Assertion

authentication

v

Identity

(ID)

Assertion

authentication

with

the

signature

TrustMode

v

Response

signing

v

Response

encryption

Request

digital

signature

verification

If

the

integrity

constraints

(signature

required)

are

defined,

verify

that

you

configured

the

signing

information

in

the

binding

files.

To

configure

the

signing

parameters,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

In

the

Request

Receiver

Binding

column,

click

Edit

>

Signing

Information.

To

configure

the

trust

anchor,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors.

To

configure

the

collection

certificate

store,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Request

decryption

If

the

confidentiality

constraints

(encryption)

are

specified,

verify

that

the

encryption

information

is

defined.

To

configure

the

encryption

information

parameters,

complete

the

following

steps:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Module.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

409

3.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings.

Under

Request

Receiver

Binding,

click

Edit

>

Encryption

Information.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

BasicAuth

authentication

If

BasicAuth

authentication

is

configured

as

the

required

security

token,

specify

the

CallbackHandler

in

the

binding

file

to

collect

the

basic

authentication

data.

The

following

list

contains

CallBack

support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler

The

implementation

prompts

for

BasicAuth

information

(user

name

and

password)

in

an

interface

panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This

implementation

reads

the

BasicAuth

information

from

the

binding

file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler

This

implementation

prompts

for

a

user

name

and

password

using

the

standard

in

(stdin)

prompt.

To

configure

the

login

mapping

information,

complete

the

following

steps:

1.

Click

Server

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings.

Identity

(ID)

Assertion

authentication

with

the

BasicAuth

TrustMode

Configure

a

login

binding

in

the

bindings

file

with

a

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

implementation.

Specify

a

BasicAuth

user

ID

and

password

that

a

TrustedIDEvaluator

on

a

downstream

server

trusts.

To

configure

the

login

mapping

information,

complete

the

following

steps:

1.

Click

Server

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings.

Identity

(ID)

Assertion

authentication

with

the

Signature

TrustMode

Configure

the

signing

information

in

the

bindings

file

with

a

signing

key

pointing

to

a

key

locator.

The

key

locator

contains

the

X.509

certificate

that

is

trusted

by

the

downstream

server.

To

configure

the

login

mapping

information,

complete

the

following

steps:

1.

Click

Server

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings.

The

Java

Authentication

and

Authorization

Service

(JAAS)

uses

WSLogin

as

the

name

of

the

login

configuration.

To

configure

JAAS,

click

Security

>

JAAS

Configuration

>

Application

Logins.

410

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

value

of

the

<TrustedIDEvaluatorRef>

tag

in

the

binding

must

match

the

value

of

the

<TrustedIDEvaluator>

name.

To

configure

the

trusted

ID

evaluators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Services,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trusted

ID

Evaluators.

Response

signing

If

the

integrity

constraints

(digital

signature)

are

defined,

verify

that

you

have

the

signing

information

configured

in

the

binding

files.

To

specify

the

signing

information,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Server

Security

Bindings

.

3.

In

the

Request

Receiver

Binding

column,

click

Edit

>

Signing

Information.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Response

encryption

If

the

confidentiality

constraints

(encryption)

are

specified,

verify

that

the

encryption

information

is

defined.

To

specify

the

encryption

information,

complete

the

following

steps:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Module.

3.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings.

4.

Under

Request

Receiver

Binding,

click

Edit

>

Encryption

Information.

To

configure

the

key

locators,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Authentication

method

overview

The

Web

services

security

implementation

for

WebSphere

Application

Server

supports

the

following

authentication

methods:

BasicAuth,

Lightweight

Third

Party

Authentication

(LTPA),

digital

signature,

and

identity

assertion.

When

the

WebSphere

Application

Server

is

configured

to

use

the

BasicAuth

authentication

method,

the

sender

attaches

the

LTPA

token

as

a

BinarySecurityToken

from

the

current

security

context

or

from

basic

authentication

data

configuration

in

the

binding

file

in

the

SOAP

message

header.

The

Web

services

security

message

receiver

authenticates

the

sender

by

validating

the

user

name

and

password

against

the

configured

user

registry.

With

the

LTPA

method,

the

sender

attaches

the

LTPA

BinarySecurityToken

it

previously

received

in

the

SOAP

message

header.

The

receiver

authenticates

the

sender

by

validating

the

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

411

LTPA

token

and

the

token

expiration

time.

With

the

Digital

Signature

authentication

method,

the

sender

attaches

a

BinarySecurityToken

from

a

X509

certificate

to

the

Web

services

security

message

header

along

with

a

digital

signature

of

the

message

body,

time

stamp,

security

token,

or

any

combination

of

the

three.

The

receiver

authenticates

the

sender

by

verifying

the

validity

of

the

X.509

certificate

and

the

digital

signature

using

the

public

key

from

the

verified

certificate.

The

identity

assertion

authentication

method

is

different

from

the

other

three

authentication

methods.

This

method

establishes

the

security

credential

of

the

sender

based

on

the

trust

relationship.

You

can

use

the

identity

assertion

authentication

method,

for

example,

when

an

intermediary

server

must

invoke

a

service

from

a

downstream

server

on

behalf

of

the

client,

but

does

not

have

the

client

authentication

information.

The

intermediary

server

might

establish

a

trust

relationship

with

the

downstream

server

and

then

assert

the

client

identity

to

the

same

downstream

server.

Web

Services

Security

supports

the

following

trust

modes:

v

BasicAuth

v

Digital

signature

v

Presumed

trust

When

you

use

the

BasicAuth

and

digital

signature

trust

modes,

the

intermediary

server

passes

its

own

authentication

information

to

the

downstream

server

for

authentication.

The

presumed

trust

mode

establishes

a

trust

relationship

using

some

external

mechanism.

For

example,

the

intermediary

server

might

pass

SOAP

messages

through

a

Secure

Socket

Layers

(SSL)

connection

with

the

downstream

server

and

transport

layer

client

certificate

authentication.

The

Web

services

security

implementation

for

WebSphere

Application

Server

validates

the

trust

relationship

by

following

this

procedure:

1.

The

downstream

server

validates

the

authentication

information

of

the

intermediary

server.

2.

The

downstream

server

verifies

whether

the

authenticated

intermediary

server

is

authorized

for

identity

assertion.

For

example,

the

intermediary

server

must

be

in

the

trust

list

for

the

downstream

server.

The

client

identity

might

be

represented

by

a

name

string,

a

distinguished

name

(DN),

or

an

X.509

certificate.

The

client

identity

is

attached

in

the

Web

services

security

message

in

a

UsernameToken

with

just

a

user

name,

DN,

or

in

a

BinarySecurityToken

of

a

certificate.

The

following

table

summarizes

the

type

of

security

token

that

is

required

for

each

authentication

method.

Table

2.

Authentication

methods

and

their

security

tokens

Authentication

method

Security

token

BasicAuth

BasicAuth

requires

<wsse:UsernameToken>

with

<wsse:Username>

and

<wsse:Password>.

Signature

Signature

requires

<ds:Signature>

and

<wsse:BinarySecurityToken>.

412

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Table

2.

Authentication

methods

and

their

security

tokens

(continued)

Authentication

method

Security

token

IDAssertion

IDAssertion

requires

<wsse:UsernameToken>

with

<wsse:Username>

or

<wsse:BinarySecurityToken>

with

a

X.509

certificate

for

client

identity

depending

on

<idType>.

This

method

also

requires

other

security

tokens

according

to

the

<trustMode>:

v

If

the

<trustMode>

is

BasicAuth,

IDAssertion

requires

<wsse:UsernameToken>

with

<wsse:Username>

and

<wsse:Password>.

v

If

the

<trustMode>

is

Signature,

IDAssertion

requires

<wsse:BinarySecurityToken>.

LTPA

LTPA

requires

<wsse:BinarySecurityToken>

with

an

LTPA

token.

A

Web

service

can

support

multiple

authentication

methods

simultaneously.

The

receiver

side

of

the

Web

services

deployment

descriptor

can

specify

all

the

authentication

methods

that

are

supported

in

the

ibm-webservices-ext.xmi

XML

file.

The

Web

services

receiver-side,

as

shown

in

the

following

example,

is

configured

to

accept

all

the

authentication

methods

described

previously:

<loginConfig

xmi:id="LoginConfig_1052760331326">

<authMethods

xmi:id="AuthMethod_1052760331326"

text="BasicAuth"/>

<authMethods

xmi:id="AuthMethod_1052760331327"

text="IDAssertion"/>

<authMethods

xmi:id="AuthMethod_1052760331336"

text="Signature"/>

<authMethods

xmi:id="AuthMethod_1052760331337"

text="LTPA"/>

</loginConfig>

<idAssertion

xmi:id="IDAssertion_1052760331336"

idType="Username"

trustMode="Signature"/>

You

can

define

only

one

authentication

method

in

the

sender-side

Web

services

deployment

descriptor.

A

Web

service

client

can

use

any

of

the

authentication

methods

that

are

supported

by

the

particular

Web

services

application.

The

following

example

illustrates

an

identity

assertion

authentication

method

configuration

in

the

ibm-webservicesclient-ext.xmi

deployment

descriptor

extension

of

the

Web

service

client:

<loginConfig

xmi:id="LoginConfig_1051555852697">

<authMethods

xmi:id="AuthMethod_1051555852698"

text="IDAssertion"/>

</loginConfig>

<idAssertion

xmi:id="IDAssertion_1051555852697"

idType="Username"

trustMode="Signature"/>

As

shown

in

the

previous

example,

the

client

identity

type

is

Username

and

the

trust

mode

is

digital

signature.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

413

The

sender

security

handler

invokes

the

handle()

method

of

an

implementation

of

the

javax.security.auth.callback.CallbackHandler

interface.

The

javax.security.auth.callback.CallbackHandler

interface

creates

the

security

token

and

passes

it

back

to

the

sender

security

handler.

The

sender

security

handler

constructs

the

security

token

based

on

the

authentication

information

in

the

callback

array

and

inserts

the

security

token

into

the

Web

services

security

message

header.

The

receiver

security

handler

compares

the

token

type

in

the

message

header

with

the

expected

token

types

configured

in

the

deployment

descriptor.

If

none

of

the

expected

token

types

are

found

in

the

Web

services

security

header

of

the

SOAP

message,

the

request

is

rejected

with

a

SOAP

fault

exception.

Otherwise,

the

token

type

is

used

to

map

to

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

for

validating

the

token.

If

the

authentication

is

successful,

a

JAAS

Subject

is

created

and

associated

with

the

running

thread.

Otherwise,

the

request

is

rejected

with

a

SOAP

fault

exception.

XML

digital

signature

XML-Signature

Syntax

and

Processing

(XML

signature)

is

a

specification

that

defines

XML

syntax

and

processing

rules

to

sign

and

verify

digital

signatures

for

digital

content.

The

specification

was

developed

jointly

by

the

World

Wide

Web

Consortium

(W3C)

and

the

Internet

Engineering

Task

Force

(IETF).

XML

signature

does

not

introduce

new

cryptographic

algorithms.

WebSphere

Application

Server

uses

XML

signature

with

existing

algorithms

such

as

RSA,

HMAC,

and

SHA1.

XML

signature

defines

many

methods

for

describing

key

information

and

enables

the

definition

of

a

new

method.

Security Token

generation

CallbackHandlerconfiguration

security

token

Sender

security handler

Simple Object Access

Protocol request

+

web services

security headers

Deployment descriptor

and service bindings

XML configuration

Deployment descriptor

and service bindings

XML configuration

Receiver

security handler

Request

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configurationsecurity token

JAAS

subject

Request

414

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

XML

canonicalization

(c14n)

is

often

needed

when

you

use

XML

signature.

Information

can

be

represented

in

various

ways

within

serialized

XML

documents.

For

example,

although

their

octet

representations

are

different,

the

following

examples

are

identical:

v

<person

first="John"

last="Smith"/>

v

<person

last="Smith"

first="John"></person>

C14n

is

a

process

used

to

canonicalize

XML

information.

Select

an

appropriate

c14n

algorithm

because

the

information

that

is

canonicalized

is

dependent

upon

this

algorithm.

One

of

the

major

c14n

algorithms,

Exclusive

XML

Canonicalization,

canonicalizes

the

character

encoding

scheme,

attribute

order,

namespace

declarations,

and

so

on.

The

algorithm

does

not

canonicalize

white

space

outside

tags,

namespace

prefixes,

or

data

type

representation.

XML

signature

in

the

Web

Services

Security-Core

specification

The

Web

Services

Security-Core

(WSS-Core)

specification

defines

a

standard

way

for

Simple

Object

Access

Protocol

(SOAP)

messages

to

incorporate

an

XML

signature.

You

can

use

almost

all

of

the

XML

signature

features

in

WSS-Core

except

enveloped

signature

and

enveloping

signature.

However,

WSS-Core

has

some

recommendations

such

as

exclusive

canonicalization

for

the

c14n

algorithm

and

some

additional

features

such

as

SecurityTokenReference

and

KeyIdentifier.

By

including

XML

signature

in

SOAP

messages,

the

following

are

realized:

Message

integrity

A

message

receiver

can

confirm

that

attackers

or

accidents

have

not

altered

parts

of

the

message

after

these

parts

are

signed

by

a

key.

Authentication

You

can

assume

that

a

valid

signature

is

proof

of

possession.

A

message

with

a

digital

certificate

issued

by

a

certificate

authority

and

a

signature

in

the

message

that

is

validated

successfully

by

a

public

key

in

the

certificate,

is

proof

that

the

signer

has

the

corresponding

private

key.

The

receiver

can

authenticate

the

signer

by

checking

the

trustworthiness

of

the

certificate.

XML

signature

in

the

current

implementation

XML

signature

is

supported

in

Web

services

security,

however,

an

application

programming

interface

(API)

is

not

available.

The

current

implementation

has

many

hardcoded

behaviors

and

has

some

user-operable

configuration

items.

To

configure

the

client

for

digital

signature,

see

Configuring

the

client

for

response

digital

signature

verification:

Verifying

the

message

parts.

To

configure

the

server

for

digital

signature,

see

Configuring

the

server

for

request

digital

signature

verification:

Verifying

the

message

parts.

Security

considerations

In

a

replay

attack,

an

attacker

taps

the

lines,

receives

a

signed

message,

and

then

returns

the

message

to

the

receiver.

In

this

case,

the

receiver

receives

the

same

message

twice

and

might

process

both

of

them

if

the

signatures

are

valid.

Processing

both

messages

can

cause

damage

to

the

receiver

if

the

message

is

a

claim

for

money.

If

you

have

the

signed

generation

time

stamp

and

the

signed

expiration

time

in

a

message

replay,

attacks

might

be

reduced.

However,

this

is

not

a

complete

solution.

A

message

must

have

a

nonce

value

to

prevent

these

attacks

and

the

receiver

must

reject

a

message

that

contains

a

processed

nonce.

The

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

415

current

implementation

does

not

provide

a

standard

way

to

generate

and

check

nonces

in

messages.

Applications

handle

nonces

(such

as

serial

numbers)

and

they

need

to

be

signed.

Signing

information

collection

Use

this

page

to

view

a

list

of

signing

parameters.

Signing

information

is

used

to

sign

and

validate

parts

of

a

message

including

the

body,

time

stamp,

and

user

name

token.

You

can

also

use

these

parameters

for

X.509

validation

when

the

authentication

method

is

IDAssertion

and

the

ID

type

is

X509Certificate

in

the

server-level

configuration.

In

such

cases,

you

must

fill

in

the

certificate

path

fields

only.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Server

Security

Bindings

.

3.

In

the

Request

Receiver

Binding

column,

click

Edit

>

Signing

Information.

4.

Click

New

to

create

a

signing

parameter.

Click

Delete

to

delete

a

signing

parameter.

Signature

Method:

Specifies

the

unique

name

of

the

signature

method.

Signing

information

configuration

settings

Use

this

page

to

configure

new

signing

parameters.

The

specifications

listed

on

this

page

for

the

signature

method,

digest

method,

and

canonicalization

method

are

located

in

the

W3C

document

entitled,

″XMLSignature

Syntax

and

Specification:

W3C

Recommendation

12

Feb

2002″.

To

view

this

administrative

console

page:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

In

the

Request

Receiver

Binding

column,

click

Edit

>

Signing

Information.

4.

Click

New

to

create

a

signing

parameter

or

click

Delete

to

delete

a

signing

parameter.

Signature

Method:

Specifies

the

algorithm

Uniform

Resource

Identifiers

(URI)

of

the

signature

method.

This

method

contains

the

actual

value

of

the

digital

signature

encoded

using

base64.

The

following

algorithms

are

supported:

v

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest

Method:

Specifies

the

algorithm

URI

of

the

digest

method.

The

http://www.w3.org/2000/09/xmldsig#sha1

algorithm

is

supported.

Canonicalization

Method:

416

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Specifies

the

algorithm

URI

of

the

canonicalization

method.

The

following

algorithms

are

supported:

v

http://www.w3.org/2001/10/xml-exc-c14n#

v

http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v

http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing

Key:

Specifies

the

key

information

that

is

used

for

signing.

These

fields

are

ignored

in

receiver-side

configuration.

If

you

specify

a

Key

Name

and

a

Key

Locator

Reference,

select

None

for

the

Certificate

Path.

Certificate

Path:

Specifies

the

settings

for

the

certificate

path

validation.

When

you

select

Trust

Any,

this

validation

is

skipped

and

all

the

incoming

certificates

are

trusted.

These

fields

are

ignored

in

sender-side

configuration.

If

you

click

Trust

Any

or

select

a

Trust

Anchor

and

a

Certificate

Store,

select

None

for

the

Signing

Key

in

the

previous

field.

Trust

Anchor

The

selections

available

for

Trust

Anchor

are

specified

by

clicking

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors.

Certificate

Store

The

selections

available

for

the

Collection

Store

are

specified

by

clicking

Servers

>

Application

Servers

>server_name.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

Signing

parameter

configuration

settings

Use

this

page

to

configure

new

signing

parameters.

The

specifications

listed

on

this

page

for

the

signature

method,

digest

method,

and

canonicalization

method

are

located

in

the

World

Wide

Web

Consortium

(W3C)

document

entitled,

XMLSignature

Syntax

and

Specification:

W3C

Recommendation

12

Feb

2002.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

In

the

Request

Sender

Binding

column,

click

Edit

>

Signing

Information.

If

the

signing

information

is

not

available,

select

None.

If

the

signing

information

is

available,

select

Dedicated

Signing

Information

and

specify

the

configuration

in

the

following

fields:

Signature

Method:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

417

Specifies

the

algorithm

Uniform

Resource

Identifiers

(URI)

of

the

signature

method.

This

method

contains

the

actual

value

of

the

digital

signature

encoded

using

base64.

The

following

algorithms

are

supported:

v

http://www.w3.org/2000/09/xmldsig#rsa-sha1

v

http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest

Method:

Specifies

the

algorithm

URI

of

the

digest

method.

The

http://www.w3.org/2000/09/xmldsig#sha1

algorithm

is

supported.

Canonicalization

Method:

Specifies

the

algorithm

URI

of

the

canonicalization

method.

The

following

algorithms

are

supported:

v

http://www.w3.org/2001/10/xml-exc-c14n#

v

http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v

http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v

http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing

Key:

Specifies

the

key

information

that

is

used

for

signing.

These

fields

are

ignored

in

receiver-side

configuration.

If

the

signing

key

is

not

available,

select

None.

Certificate

Path:

Specifies

the

settings

for

the

certificate

path

validation.

When

you

select

Trust

Any,

this

validation

is

skipped

and

all

the

incoming

certificates

are

trusted.

These

fields

are

ignored

in

sender-side

configuration.

If

there

is

not

a

certificate

path,

select

None.

If

there

is

a

certificate

path,

select

Trust

Any

or

select

a

Trust

Anchor

and

a

Certificate

Store.

Trust

Anchor

Specify

the

selections

for

the

Trust

Anchor

field

by

clicking

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors.

Certificate

Store

Specify

the

selections

for

the

Collection

Store

field

by

clicking

Servers

>

Application

Serversserver_name.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

418

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Securing

Web

services

using

XML

digital

signature

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

Extensible

Markup

Language

(XML)

digital

signature

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

XML

digital

signature

provides

both

message

integrity

and

authentication

capabilities

when

it

is

used

with

SOAP

messages.

A

message

receiver

can

verify

that

attackers

or

accidents

have

not

altered

parts

of

the

message

after

the

message

was

signed

by

a

key.

If

a

message

has

a

digital

certificate

issued

by

a

certificate

authority

(CA)

and

a

signature

in

the

message

is

validated

successfully

by

a

public

key

in

the

certificate,

it

is

proof

that

the

signer

has

the

corresponding

private

key.

To

use

XML

digital

signature

to

secure

Web

services,

complete

the

following

steps:

1.

Define

the

security

constraints

or

extensions.

To

configure

the

security

constraints,

you

must

use

the

Application

Server

Toolkit,

which

is

available

at

the

following

Web

site:

http://www.ibm.com/support

/docview.wss?rs=180&context=SSEQTP&q

=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

a.

Configure

the

client

to

digitally

sign

a

message

request.

To

configure

the

client,

complete

the

following

steps

to

specify

which

parts

of

the

SOAP

message

to

digitally

sign

and

define

the

method

used

to

digitally

sign

the

message.

The

client

in

these

steps

is

the

request

sender.

1)

Specify

the

message

parts

by

following

the

steps

found

in

Configuring

the

client

for

request

signing:

digitally

signing

message

parts.

2)

Select

the

method

used

to

digitally

sign

the

request

message.

You

can

select

the

digital

signature

method

by

following

the

steps

in

Configuring

the

client

for

request

signing:

choosing

the

digital

signature

method.
b.

Configure

the

server

to

verify

the

digital

signature

that

is

used

in

the

message

request.

To

configure

the

server,

you

must

specify

which

parts

of

the

SOAP

message,

sent

by

the

request

sender,

contain

digitally

signed

information

and

which

method

was

used

to

digitally

sign

the

message.

The

settings

chosen

for

the

request

receiver,

or

the

server

in

this

step,

must

match

the

settings

chosen

for

the

request

sender

in

the

previous

step.

1)

Define

the

message

parts

by

following

the

steps

found

in

Configuring

the

server

for

request

digital

signature

verification:

verifying

message

parts.

2)

Select

the

same

method

used

by

the

request

sender

to

digitally

sign

the

message.

You

can

select

the

digital

signature

method

by

following

the

steps

in

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method
c.

Configure

the

server

to

digitally

sign

a

message

response.

To

configure

the

server,

complete

the

following

steps

to

specify

which

parts

of

the

SOAP

message

to

digitally

sign

and

define

the

method

used

to

digitally

sign

the

message.

The

sender

in

these

steps

is

the

response

sender.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

419

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

1)

Specify

which

message

parts

to

digitally

sign

by

following

the

steps

found

in

Configuring

the

server

for

response

signing:

digitally

signing

message

parts.

2)

Select

the

method

used

to

digitally

sign

the

response

message.

You

can

select

the

digital

signature

method

by

following

the

steps

in

Configuring

the

server

for

response

signing:

choosing

the

digital

signature

method
d.

Configure

the

client

to

verify

the

digital

signature

that

is

used

in

the

message

response.

To

configure

the

client,

you

must

specify

which

parts

of

the

SOAP

message

sent

by

the

response

sender

contain

digitally

signed

information

and

which

method

was

used

to

digitally

sign

the

message.

The

settings

chosen

for

the

response

receiver,

or

client

in

this

step,

must

match

the

settings

chosen

for

the

response

sender

in

the

previous

step.

1)

Define

the

message

parts

by

following

the

steps

found

in

Configuring

the

client

for

response

digital

signature

verification:

verifying

message

parts

2)

Select

the

same

method

used

by

the

response

sender

to

digitally

sign

the

message.

You

can

select

the

digital

signature

method

by

following

the

steps

in

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method
2.

Define

the

client

security

bindings.

To

configure

the

client

security

bindings,

complete

the

steps

in

either

of

the

following

topics:

v

Configuring

the

client

security

bindings

using

the

Application

Server

Toolkit

v

Configuring

the

client

security

bindings

using

the

administrative

console
3.

Define

the

server

security

bindings.

To

configure

the

server

security

bindings,

complete

the

steps

in

either

of

the

following

topics:

v

Configuring

the

server

security

bindings

using

the

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

After

completing

these

steps,

you

have

secured

your

Web

services

using

XML

digital

signature.

Transport

level

security

Transport

level

security

is

based

on

Secure

Sockets

Layer

(SSL)

or

Transport

Layer

Security

(TLS)

that

runs

beneath

HTTP.

SSL

and

TLS

provide

security

features

including

authentication,

data

protection,

and

cryptographic

token

support

for

secure

HTTP

connections.

To

run

with

HTTPS,

the

service

endpoint

address

must

be

in

the

form

https://.

The

integrity

and

confidentiality

of

transport

data,

including

SOAP

messages

and

HTTP

basic

authentication,

is

confirmed

when

you

use

SSL

and

TLS.

See

Secure

Sockets

Layer

for

more

information.

Web

services

applications

can

also

use

Federal

Information

Processing

Standard

(FIPS)

approved

ciphers

for

more

secure

TLS

connections.

WebSphere

Application

Server

uses

the

Java

Secure

Sockets

Extension

(JSSE)

package

to

support

SSL

and

TLS.

HTTP

SSL

Configuration

collection

Use

this

page

to

configure

transport-level

Secure

Sockets

Layer

(SSL)

security.

You

can

use

this

configuration

when

a

Web

service

is

a

client

to

another

Web

service.

You

can

use

transport-level

security

to

enable

HTTP

SSL

(or

HTTPS).

Transport-level

security

can

be

enabled

or

disabled

independently

from

420

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

message-level

security.

Because

transport-level

security

provides

minimal

security,

use

message-level

security

when

security

is

essential

to

the

Web

service

application.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

Under

HTTP

SSL

Configuration,

click

Edit.

HTTP

SSL

Enabled:

Specifies

secure

socket

communications

for

the

HTTP

transport

for

this

port.

When

enabled,

WebSphere

Application

Server

uses

the

HTTP

SSL

Configuration

setting.

HTTP

SSL

Configuration:

Specifies

which

alias

of

the

SSL

configuration

to

use

with

the

HTTP

transport

for

this

port.

This

option

is

used

if

you

select

HTTP

SSL

Enabled.

SSL

aliases

are

defined

in

the

Secure

Sockets

Layer

configuration

repertoire,

which

you

can

configure

by

clicking

Security

>

SSL.

HTTP

basic

authentication

HTTP

basic

authentication

uses

a

user

name

and

password

to

authenticate

a

service

client

to

a

secure

endpoint.

WebSphere

Application

Server

can

have

several

resources,

including

Web

services,

protected

by

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

security

model.

A

simple

way

to

provide

authentication

data

for

the

service

client

is

to

authenticate

to

the

protected

service

endpoint

to

the

HTTP

basic

authentication.

The

basic

authentication

is

located

in

the

HTTP

header

that

carries

the

SOAP

request.

When

the

application

server

receives

the

HTTP

request,

the

user

name

and

password

are

retrieved

and

verified

using

the

authentication

mechanism

specific

to

the

server.

Although

the

basic

authentication

data

is

base64-encoded,

sending

data

over

HTTPS

is

recommended.

The

integrity

and

confidentiality

of

the

data

can

be

protected

by

the

Secure

Sockets

Layer

(SSL)

protocol.

In

some

cases,

a

firewall

is

present

using

the

pass-thru

HTTP

proxy

server.

The

HTTP

proxy

server

forwards

the

basic

authentication

data

into

the

J2EE

application

server.

The

proxy

server

can

also

be

protected.

Applications

can

specify

the

proxy

data

by

setting

properties

in

a

stub

object.

HTTP

basic

authentication

collection

Use

this

page

to

specify

a

user

ID

and

password

for

transport-level

basic

authentication

security

for

this

port.

You

can

use

this

configuration

when

a

Web

service

is

a

client

to

another

Web

service.

You

can

use

transport-level

security

to

enable

basic

authentication.

Transport-level

security

can

be

enabled

or

disabled

independently

from

message-level

security.

Because

transport-level

security

provides

minimal

security,

use

message-level

security

when

security

is

essential

to

the

Web

service

application.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

421

2.

Under

Related

Items,

click

Web

Module

>

URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

Under

HTTP

Basic

Authentication,

click

Edit.

Basic

Authentication

ID:

Specifies

the

user

ID

for

the

HTTP

basic

authentication

for

this

port.

Basic

Authentication

Password:

Specifies

the

password

for

the

HTTP

basic

authentication

for

this

port.

Default

configuration

for

WebSphere

Application

Server

Network

Deployment

In

the

WebSphere

Application

Server

Network

Deployment

installation,

the

ws-security.xml

file

is

at

the

cell

level

and

defines

the

default

binding

information

for

Web

services

security

for

the

entire

cell.

But

each

application

server

can

have

its

own

ws-security.xml

file

to

override

the

cell

default;

similarly,

each

Web

service

can

override

the

default

in

its

binding

files.

The

following

list

contains

the

defaults

defined

in

ws-security.xml

file:

Trust

anchors

Identifies

the

trusted

root

certificates

for

signature

verification.

Collection

certificate

stores

Contains

certificate

revocation

lists

(CRLs)

and

nontrusted

certificates

for

verification.

Key

locators

Locates

the

keys

for

digital

signature

and

encryption.

Trusted

ID

evaluators

Evaluates

the

trust

of

the

received

identity

before

identity

assertion.

Login

mappings

Contains

the

Java

Authentication

and

Authorization

Service

(JAAS)

configurations

for

AuthMethod

token

validation.

The

Web

services

security

run

time

reads

the

configuration

from

the

application

bindings

first,

then

tries

the

server-level,

and

finally

tries

the

cell

level.

The

following

figure

depicts

the

run-time

configuration

process.

422

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Default

binding:

The

default

binding

information

is

defined

in

the

ws-security.xml

file

and

can

be

administered

by

either

the

administrative

console

or

by

scripting.

Certain

applications

can

share

certain

binding

information.

This

information

includes

truststores,

keystores,

and

authentication

methods

(token

validation).

WebSphere

Application

Server

provides

support

for

default

binding

information.

Administrators

can

define

binding

information

at

the

server

level

and

at

the

cell

level,

and

applications

can

refer

to

this

binding

information.

You

can

define

the

following

binding

information

in

the

ws-security.xml

file:

Trust

anchors

(truststore)

v

Trust

anchors

contain

key

store

configuration

information

that

has

the

root-trusted

certificates.

Trust

anchors

are

used

for

certificate

path

validation

of

the

incoming

X.509-formatted

security

tokens.

v

The

Trust

Anchor

Name

is

used

in

the

binding

file

(ibm-webservices-bnd.xmi

and

ibm-webservicesclient-bnd-xmi

when

Web

services

is

running

as

a

client)

to

refer

to

the

trust

anchor

defined

in

the

default

binding

information.

The

trust

anchor

name

must

be

unique

in

the

trust

anchor

collection.

Collection

certificate

store

v

The

collection

certificate

store

specifies

a

list

of

untrusted,

intermediate

certificates

and

is

used

for

certificate

path

validation

of

incoming

X.509-formatted

security

tokens.

The

default

provider

is

IBMCertPath.

v

The

Certificate

Store

Name

is

used

in

the

binding

file

(ibm-webservices-bnd.xmi

and

ibm-webservicesclient-bnd-xmi

when

Web

services

is

running

as

a

client)

to

refer

to

the

certificate

store

defined

in

the

default

binding

information.

The

Certificate

Store

Name

must

be

unique

to

the

collection

certificate

store

collection.

My cell

My node

Server1

ws-security.xml

file

ws-security.xml

file

ibm-services-bnd.xml

file

Default configuration for server1

Cell-level default binding

application-level binding

overrides

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure

12.

Run-time

configuration

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

423

Key

locators

v

Key

locators

specify

implementation

of

the

com.ibm.wsspi.wssecurity.config.KeyLocator

interface.

This

interface

is

used

to

retrieve

keys

for

signature

or

encryption.

Customer

implementations

can

extend

the

key

locator

interface

to

retrieve

keys

using

other

methods.

WebSphere

Application

Server

provides

implementations

to

retrieve

a

key

from

the

key

store,

map

an

authenticated

identity

to

a

key

in

the

key

store,

or

retrieve

a

key

from

the

signer

certificate

(mapping

and

retrieving

actions

are

used

for

encrypting

the

response).

v

The

Key

Locator

Name

is

used

in

the

binding

file

(ibm-webservices-bnd.xmi

and

ibm-webservicesclient-bnd-xmi

when

Web

services

is

running

as

a

client)

to

refer

to

the

key

locator

defined

in

the

default

binding

information.

The

Key

Locator

Name

must

be

unique

to

the

key

locators

collection

in

the

default

binding

information.

Trusted

ID

evaluators

v

Trusted

ID

evaluators

are

an

implementation

of

the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface.

This

interface

is

used

to

make

sure

the

identity

(ID)-asserting

authority

is

trusted.

Additionally,

you

can

extend

the

trusted

identity

evaluator

to

validate

the

trust.

WebSphere

Application

Server

provides

a

default

implementation

for

validating

trust

based

on

a

predefined

list

of

identities.

v

The

Trusted

ID

Evaluator

Name

is

used

in

the

binding

file

(ibm-webservices-
bnd.xmi)

to

refer

to

the

trusted

identity

evaluator

defined

in

the

default

binding

information.

The

Trusted

ID

Evaluator

Name

must

be

unique

to

the

Trusted

ID

Evaluator

collection.

Login

mappings

v

Login

mappings

define

the

mapping

of

the

authentication

method

to

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration.

The

mappings

are

used

to

authenticate

the

incoming

security

token

embedded

in

the

Web

services

security

Simple

Object

Access

Protocol

(SOAP)

message

header.

The

JAAS

login

configuration

is

defined

in

the

administrative

console

under

Security

>

JAAS

Configuration

>

Application

Logins.

v

WebSphere

Application

Server

defines

the

following

authentication

methods:

BasicAuth

Authenticates

user

name

and

password.

Signature

Maps

the

subject

distinguished

name

(DN)

in

the

certificate

to

a

WebSphere

Application

Server

credential.

IDAssertion

Maps

the

identity

to

a

WebSphere

Application

Server

credential.

LTPA

Authenticates

a

Lightweight

Third

Party

Authentication

(LTPA)

token.

After

identity

authentication,

the

associated

credential

is

used

in

the

downstream

call.

v

This

method

can

be

extended

to

authenticate

custom

security

tokens

by

providing

a

custom

JAAS

login

configuration

and

by

using

the

com.ibm.wsspi.wssecurity.auth.module.WSSecurityMappingModule

to

create

the

principal

and

credential

required

by

WebSphere

Application

Server.

v

If

LoginConfig

(AuthMethod)

is

defined

in

the

IBM

extension

deployment

descriptor

(ibm-webservices-ext.xmi),

but

there

are

no

login

mapping

bindings

424

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

(ibm-webservices-bnd.xmi)

defined

for

the

AuthMethod,

Web

services

security

run

time

uses

the

login

mapping

defined

in

the

default

binding

information.

WebSphere

Application

Server

In

the

WebSphere

Application

Server,

each

server

has

a

copy

of

the

ws-security.xml

file

(default

binding

information

for

Web

services

security).

There

is

no

cell-level

copy

of

the

ws-security.xml

file,

which

is

only

available

in

the

WebSphere

Application

Server

Network

Deployment

installation.

To

navigate

to

the

server-level

default

binding

in

the

administrative

console,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server1.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

Web

services

security

run

time

uses

the

binding

information

in

the

application

Enterprise

JavaBeans

(EJB)

or

Web

module

binding

file

(ibm-webservices-bnd.xmi

or

ibm-webservicesclient-bnd.xmi

if

Web

services

is

acting

as

a

client

on

the

server)

if

the

binding

information

is

defined

in

the

application-level

binding

file.

For

example,

if

key

locator

K1

is

defined

in

both

the

application-level

binding

file

and

the

default

binding

file

(ws-security.xml),

the

K1

in

the

application-level

binding

file

is

used.

WebSphere

Application

Server

Network

Deployment

When

the

WebSphere

Application

Server

is

federated

to

a

Network

Deployment

cell,

the

default

binding

file

(ws-security.xml)

of

the

server

is

added

to

the

new

cell

(with

other

server

level

configuration

information).

If

you

use

the

cell-level

default

binding,

the

entries

of

the

server

level

default

binding

must

be

removed.

There

is

a

cell-level

default

binding

(ws-security.xml)

for

Network

Deployment

installation.

Furthermore,

for

Network

Deployment

installation

server-level

binding

My cell

My node

Server1

ws-security.xml

file
ibm-services-bnd.xml

file

Default configuration for server1

application-level binding

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure

13.

Web

services

security

application-level

bindings

and

server-level

default

binding

information

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

425

is

optional.

To

navigate

to

the

cell-level

default

binding

in

the

administrative

console,

click

Security

>

Web

Services.

The

server-level

binding

is

described

in

WebSphere

Application

Server.

The

order

of

the

default

binding

information

is

application-level

binding,

server-level,

and

cell-level

default

binding.

Web

services:

default

bindings

for

the

Web

services

security

collection:

Use

this

page

to

configure

the

settings

for

nonce

on

the

server

level

and

to

manage

the

default

bindings

for

trust

anchors,

the

collection

certificate

store,

key

locators,

trusted

ID

evaluators,

and

login

mappings.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

Read

the

Web

services

documentation

before

you

begin

defining

the

default

bindings

for

Web

services

security.

To

define

the

server

bindings,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Server

Security

Bindings.

To

define

the

client

bindings,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>URI_file_name

>

Web

Services:

Client

Security

Bindings.

My cell

My node

Server1

ws-security.xml

file

ws-security.xml

file

ibm-services-bnd.xml

file

Default configuration for server1

Cell-level default binding

application-level binding

overrides

overrides

EJB module

ibm-webservices-ext.xmi

Web services

implemented

as an EJB file

Figure

14.

Web

services

security

application-level,

cell-level,

and

server-level

default

binding

information

426

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

default

binding

configuration

provides

a

central

location

where

reusable

binding

information

is

defined.

The

application

binding

file

can

reference

the

information

contained

in

the

default

binding

configuration.

Nonce

Cache

Timeout:

Specifies

the

timeout

value,

in

seconds,

for

the

nonce

cached

on

the

server.

Nonce

is

a

randomly

generated

value.

The

Nonce

Cache

Timeout

field

is

required

for

the

base

WebSphere

Application

Server

environment.

If

you

make

changes

to

the

nonce

cache

timeout

value,

you

must

restart

WebSphere

Application

Server

for

the

changes

to

take

effect.

Default

600

seconds

Minimum

300

seconds

Nonce

Maximum

Age:

Specifies

the

default

time,

in

seconds,

before

the

nonce

time

stamp

expires.

Nonce

is

a

randomly

generated

value.

The

maximum

value

cannot

exceed

the

number

of

seconds

specified

in

the

Nonce

Cache

Timeout

field

for

the

server

level.

The

value

set

for

this

server-level

Nonce

Maximum

Age

field

must

not

exceed

Nonce

Maximum

Age

value

set

for

the

cell

level,

which

you

can

access

by

clicking

Security

>

Web

Services

>

Properties.

The

Nonce

Maximum

Age

field

is

required

for

the

base

WebSphere

Application

Server

environment.

Default

300

seconds

Range

300

to

Nonce

Cache

Timeout

seconds

Nonce

Clock

Skew:

Specifies

the

default

clock

skew

value,

in

seconds,

to

consider

when

WebSphere

Application

Server

checks

the

timeliness

of

the

message.

Nonce

is

a

randomly

generated

value.

The

maximum

value

cannot

exceed

the

number

of

seconds

specified

in

the

Nonce

Maximum

Age

field.

The

Nonce

Clock

Skew

field

is

required

for

the

base

WebSphere

Application

Server

environment.

Default

0

seconds

Range

0

to

Nonce

Maximum

Age

seconds

Trust

Anchors:

Specifies

a

list

of

keystore

objects

that

contain

the

trusted

root

certificates,

self-signed

or

issued

by

a

certificate

authority

(CA).

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

427

The

certificate

authority

authenticates

a

user

and

issues

a

certificate.

After

the

certificate

is

issued,

the

keystore

objects,

which

contain

these

certificates,

use

the

certificate

for

certificate

path

or

certificate

chain

validation

of

incoming

X.509-formatted

security

tokens.

Collection

Certificate

Store:

Specifies

a

list

of

the

untrusted,

intermediate

certificate

files.

The

collection

certificate

store

contains

a

chain

of

untrusted,

intermediate

certificates.

The

CertPath

API

attempts

to

validate

these

certificates,

which

are

based

on

the

trust

anchor.

Key

Locators:

Specifies

a

list

of

key

locator

objects

that

retrieves

the

keys

for

digital

signature

and

encryption

from

a

keystore

file

or

a

repository.

The

key

locator

maps

a

name

or

logical

name

to

an

alias

or

maps

an

authenticated

identity

to

a

key.

This

logical

name

is

used

to

locate

a

key

in

a

key

locator

implementation.

Trusted

ID

Evaluators:

Specifies

a

list

of

trusted

ID

evaluators

that

determines

whether

to

trust

the

identity-asserting

authority

or

the

message

sender.

The

trusted

ID

evaluators

are

used

to

authenticate

additional

identities

from

one

server

to

another

server.

For

example,

a

client

sends

the

identity

of

user

A

to

server

1

for

authentication.

Server

1

calls

downstream

to

server

2,

asserts

the

identity

of

user

A,

and

includes

the

user

ID

and

password

of

server

1.

Server

2

attempts

to

establish

trust

with

server

1

by

authenticating

its

user

ID

and

password

and

checking

the

trust

based

on

the

TrustedIDEvaluator

implementation.

If

the

authentication

process

and

the

trust

check

are

successful,

server

2

trusts

that

server

1

authenticated

user

A

and

a

credential

is

created

for

user

A

on

server

2

to

invoke

the

request.

Login

Mappings:

Specifies

a

list

of

configurations

for

validating

tokens

within

incoming

messages.

Login

mappings

map

the

authentication

method

to

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration.

To

configure

JAAS,

use

the

administrative

console

and

click

Security

>

JAAS

Configuration.

Web

Services:

Client

security

bindings

collection:

Use

this

page

to

view

a

list

of

client-side

binding

configurations

for

Web

services

security.

These

bindings

are

used

when

a

Web

service

is

a

client

to

another

Web

service.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Module

>

URI_file_name

>

Web

Services:

Client

Security

Bindings.

428

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Port:

Specifies

the

port

used

to

send

and

receive

messages

from

a

server.

Web

Service:

Specifies

the

name

of

the

Web

service.

Request

Sender

Binding:

Specifies

the

binding

configuration

used

to

send

request

messages

to

the

request

receiver.

Click

Edit

to

configure

the

signing

information,

encryption

information,

and

the

login

bindings

for

the

request

sender

and

to

view

a

listing

of

key

locators

in

the

key

store.

The

binding

information

for

the

request

sender

that

is

specified

for

the

client

must

match

the

binding

information

for

the

request

receiver

that

is

specified

for

the

server.

Response

Receiver

Binding:

Specifies

the

binding

configuration

used

to

receive

response

messages

from

the

response

sender.

Click

Edit

to

configure

the

signing

and

encryption

information,

and

to

view

a

list

of

trust

anchors,

intermediate

certificates

found

in

the

collection

certificate

store,

and

the

key

locator

objects

for

the

response

receiver.

The

binding

information

for

the

response

receiver

that

is

specified

for

the

client

must

match

the

binding

information

for

the

response

sender

that

is

specified

for

the

server.

HTTP

Basic

Authentication:

Specifies

the

user

ID

and

password

to

use

for

this

port

with

HTTP

transport-level

basic

authentication.

You

can

enable

transport-level

authentication

security

independently

of

message-level

security.

Click

Edit

to

configure

the

basic

authentication

ID

and

password

for

transport-level

authentication.

HTTP

SSL

Configuration:

Enables

and

configures

transport-level

Secure

Socket

Layer

(SSL)

security

for

this

port.

You

can

enable

transport-level

SSL

security

independently

of

message-level

security.

Click

Edit

to

specify

the

settings

for

transport-level

HTTP

SSL

configuration

for

this

port.

Web

services:

Server

security

bindings

collection:

Use

this

page

to

view

a

list

of

server-side

binding

configurations

for

Web

services

security.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

429

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Enterprise

Applications

>

application_name.

2.

Under

Related

Items,

click

Web

Module

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

Port:

Specifies

the

port

in

which

messages

are

received

from

the

request

sender.

Web

Service:

Specifies

the

name

of

the

Web

service.

Request

Receiver

Binding:

Specifies

the

binding

configuration

used

to

receive

request

messages

from

the

request

sender.

Click

Edit

to

configure

the

signing

information

and

encryption

information

and

view

a

listing

of

trust

anchors,

intermediate

certificates

in

the

collection

certificate

store,

key

locators,

trusted

ID

evaluators,

and

login

mappings.

The

binding

information

(for

the

request

receiver)

specified

for

the

server

must

match

the

binding

information

(for

the

request

sender)

specified

for

the

client.

Response

Sender

Binding:

Specifies

the

binding

configuration

used

to

send

request

messages

to

the

response

receiver.

Click

Edit

to

configure

the

signing

and

encryption

information,

and

to

view

a

list

of

key

locator

objects

for

the

response

sender.

The

binding

information

(for

the

response

sender)

specified

for

the

server

must

match

the

binding

information

(for

the

response

receiver)

specified

for

the

client.

Trust

anchors

A

trust

anchor

specifies

key

stores

that

contain

trusted

root

certificates

that

validate

the

signer

certificate.

These

key

stores

are

used

by

the

request

receiver

(as

defined

in

the

ibm-webservices-bnd.xmi

file)

and

the

response

receiver

(as

defined

in

the

ibm-webservicesclient-bnd.xmi

file

when

Web

services

is

acting

as

client)

to

validate

the

signer

certificate

of

the

digital

signature.

The

key

stores

are

critical

to

the

integrity

of

the

digital

signature

validation.

If

they

are

tampered

with,

the

result

of

the

digital

signature

verification

is

doubtful

and

comprised.

Therefore,

it

is

recommended

that

you

secure

these

key

stores.

The

binding

configuration

specified

for

the

request

receiver

in

the

ibm-webservices-bnd.xmi

file

must

match

the

binding

configuration

for

the

response

receiver

in

the

ibm-webservicesclient-
bnd.xmi

file.

The

trust

anchor

is

defined

as

javax.security.cert.TrustAnchor

in

the

Java

CertPath

application

programming

interface

(API).

The

Java

CertPath

API

uses

the

trust

anchor

and

the

certificate

store

to

validate

the

incoming

X.509

certificate

that

is

embedded

in

the

SOAP

message.

430

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

Web

services

security

implementation

in

WebSphere

Application

Server

supports

this

trust

anchor.

In

WebSphere

Application

Server,

the

trust

anchor

is

represented

as

a

Java

key

store

object.

The

type,

path,

and

password

of

the

key

store

are

passed

to

the

implementation

through

the

administrative

console

or

by

scripting.

Configuring

trust

anchors

using

the

Assembly

Toolkit

This

document

describes

how

to

configure

trust

anchors

or

trust

stores

at

the

application

level.

It

does

not

describe

how

to

configure

trust

anchors

at

the

server

or

cell

level.

Trust

anchors

defined

at

the

application

level

have

a

higher

precedence

over

trust

anchors

defined

at

the

server

or

cell

level.

You

can

configure

an

application-level

trust

anchor

using

the

Assembly

Toolkit

or

the

administrative

console.

This

document

describes

how

to

configure

the

application-level

trust

anchor

using

the

Assembly

Toolkit.

For

more

information

on

creating

and

configuring

trust

anchors

at

the

server

or

cell

level,

see

either

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

or

Configuring

the

server

security

bindings

using

the

administrative

console.

A

trust

anchor

specifies

key

stores

that

contain

trusted

root

certificates,

which

validate

the

signer

certificate.

These

key

stores

are

used

by

the

request

receiver

(as

defined

in

the

ibm-webservices-bnd.xmi

file)

and

the

response

receiver

(as

defined

in

the

ibm-webservicesclient-bnd.xmi

file

when

Web

services

is

acting

as

client)

to

validate

the

signer

certificate

of

the

digital

signature.

The

key

stores

are

critical

to

the

integrity

of

the

digital

signature

validation.

If

they

are

tampered

with,

the

result

of

the

digital

signature

verification

is

doubtful

and

comprised.

Therefore,

it

is

recommended

that

you

secure

these

key

stores.

The

binding

configuration

specified

for

the

request

receiver

in

the

ibm-webservices-bnd.xmi

file

must

match

the

binding

configuration

for

the

response

receiver

in

the

ibm-webservicesclient-
bnd.xmi

file.

The

steps

in

this

document

assume

that

you

have

already

created

a

Web

services-enabled

Java

2

Platform,

Enterprise

Edition

(J2EE)

with

Java

Specification

Requests

(JSR)

109

enterprise

application.

If

you

have

not

created

a

Web

services-enabled

J2EE

with

JSR

109

enterprise

application,

see

Developing

Web

services.

Also,

see

either

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

or

Configuring

the

server

security

bindings

using

the

administrative

console

for

an

introduction

on

how

to

manage

Web

services

security

binding

information

on

the

server.

1.

Configure

the

client-side

response

receiver,

which

is

defined

in

the

ibm-webservicesclient-bnd.xmi

bindings

extensions

file.

a.

Launch

the

Assembly

Toolkit

and

click

Windows

>

Open

Perspective

>

J2EE.

b.

Select

the

Web

services-enabled

Enterprise

JavaBeans

(EJB)

or

Web

module.

c.

In

the

Package

Explorer

window,

click

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

d.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor,

and

click

the

Web

Services

Client

Binding

tab.

The

Web

Services

Client

Binding

editor

is

displayed.

e.

Locate

the

Port

Qualified

Name

Binding

section

and

either

select

an

existing

entry

or

click

Add,

to

add

a

new

port

binding.

The

Web

Services

Client

Port

Binding

editor

displays

for

the

selected

port.

f.

Locate

the

Trust

Anchor

section

and

click

Add.

The

Trust

Anchor

dialog

box

is

displayed.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

431

1)

Enter

a

unique

name

within

the

port

binding

for

the

Trust

anchor

name.

The

name

is

used

to

reference

the

trust

anchor

that

is

defined.

2)

Enter

the

key

store

password,

path,

and

key

store

type.

The

supported

key

store

types

are

Java

Cryptography

Extension

(JCE)

and

JCEKS.

Click

Edit

to

edit

the

selected

trust

anchor.

Click

Remove

to

remove

the

selected

trust

anchor.

When

you

start

the

application,

the

configuration

is

validated

in

the

run

time

while

the

binding

information

is

loading.

g.

Save

the

changes.
2.

Configure

the

server-side

request

receiver,

which

is

defined

in

the

ibm-webservices-bnd.xmi

bindings

extensions

file.

a.

Launch

the

Assembly

Toolkit

and

click

Windows

>

Open

Perspective

>

J2EE.

b.

Select

the

Web

services

enabled

EJB

or

Web

module.

c.

In

the

Package

Explorer

window,

click

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

d.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor,

and

click

the

Bindings

tab.

The

Web

Services

Bindings

editor

is

displayed.

e.

Locate

the

Web

Service

Description

Bindings

section

and

either

select

an

existing

entry

or

click

Add

to

add

a

new

Web

services

descriptor.

f.

Click

Binding

Configurations.

The

Web

Services

Binding

Configurations

editor

is

displayed

for

the

selected

Web

services

descriptor.

g.

Locate

the

Trust

Anchor

section

and

click

Add.

The

Trust

Anchor

dialog

box

is

displayed.

1)

Enter

a

unique

name

within

the

binding

for

the

Trust

anchor

name.

This

unique

name

is

used

to

reference

the

trust

anchor

defined.

2)

Enter

the

key

store

password,

path,

and

key

store

type.

The

supported

key

store

types

are

JCE

and

JCEKS.

Click

Edit

to

edit

the

selected

trust

anchor.

Click

Remove

to

remove

the

selected

trust

anchor.

When

you

start

the

application,

the

configuration

is

validated

in

the

run

time

while

the

binding

information

is

loading.

h.

Save

the

changes.

This

procedure

defines

trust

anchors

that

can

be

used

by

the

request

receiver

or

the

response

receiver

(if

the

Web

services

is

acting

as

client)

to

verify

the

signer

certificate.

The

request

receiver

or

the

response

receiver

(if

the

Web

service

is

acting

as

a

client)

uses

the

defined

trust

anchor

to

verify

the

signer

certificate.

The

trust

anchor

is

referenced

using

the

trust

anchor

name.

To

complete

the

signing

information

configuration

process

for

request

receiver,

complete

the

following

tasks:

432

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

1.

Configure

the

server

for

request

digital

signature

verification:

Verifying

the

message

parts

2.

Configure

the

server

for

request

digital

signature

verification:

Choosing

the

verification

method

To

complete

the

process

for

the

response

receiver,

if

the

Web

services

is

acting

as

a

client,

complete

the

following

tasks:

1.

Configure

the

client

for

response

digital

signature

verification:

Verifying

the

message

parts

2.

Configure

the

client

for

response

digital

signature

verification:

Choosing

the

verification

method

Configuring

trust

anchors

using

the

administrative

console

This

document

describes

how

to

configure

trust

anchors

or

trust

stores

at

the

application

level.

It

does

not

describe

how

to

configure

trust

anchors

at

the

server

or

cell

level.

For

more

information

on

creating

and

configuring

trust

anchors

at

the

server

or

cell

level,

see

either

Configuring

the

server

security

bindings

using

the

Application

Server

Toolkit

or

Configuring

the

server

security

bindings

using

the

administrative

console.

Important:

Trust

anchors

defined

at

the

application

level

have

a

higher

precedence

over

trust

anchors

defined

at

the

server

or

cell

level.

You

can

configure

an

application-level

trust

anchor

using

the

Application

Server

Toolkit

or

the

administrative

console.

This

document

describes

how

to

configure

the

application-level

trust

anchor

using

the

administrative

console.

A

trust

anchor

specifies

key

stores

that

contain

trusted

root

certificates,

which

validate

the

signer

certificate.

These

key

stores

are

used

by

the

request

receiver

(as

defined

in

the

ibm-webservices-bnd.xmi

file)

and

the

response

receiver

(as

defined

in

the

ibm-webservicesclient-bnd.xmi

file

when

Web

services

is

acting

as

client)

to

validate

the

signer

certificate

of

the

digital

signature.

The

keystores

are

critical

to

the

integrity

of

the

digital

signature

validation.

If

they

are

tampered

with,

the

result

of

the

digital

signature

verification

is

doubtful

and

comprised.

Therefore,

it

is

recommended

that

you

secure

these

keystores.

The

binding

configuration

specified

for

the

request

receiver

in

the

ibm-webservices-bnd.xmi

file

must

match

the

binding

configuration

for

the

response

receiver

in

the

ibm-webservicesclient-
bnd.xmi

file.

The

steps

in

this

document

assume

that

you

have

already

created

a

Web

services-enabled

Java

2

Platform,

Enterprise

Edition

(J2EE)

with

Java

Specification

Requests

(JSR)

109

enterprise

application.

If

not

you

have

not

created

a

Web

services-enabled

J2EE

with

JSR

109

enterprise

application,

see

Developing

Web

services.

Also,

see

either

Configuring

the

server

security

bindings

using

the

Application

Server

Toolkit

or

Configuring

the

server

security

bindings

using

the

administrative

console

for

an

introduction

on

how

to

manage

server

Web

services

security

binding

information.

Important:

Before

completing

the

following

steps,

it

is

assumed

that

a

Web

services-enabled

enterprise

application

was

deployed

to

the

WebSphere

Application

Server.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

433

The

following

steps

are

for

the

client-side

response

receiver,

which

is

defined

in

the

ibm-webservicesclient-bnd.xmi

file

and

the

server-side

request

receiver,

which

is

defined

in

the

ibm-webservices-bnd.xmi

file.

1.

Click

Applications

>

Enterprise

Applications

>

enterprise_application.

2.

In

the

Related

Links

section,

click

either

EJB

Modules

or

Web

Modules

and

then

click

the

Web

services-enabled

module

in

the

Uri

field.

3.

Under

Additional

Properties,

click

Web

Services:

Client

Security

Bindings

to

edit

the

response

receiver

binding

information,

if

Web

services

is

acting

as

client.

a.

Under

Response

Receiver

Binding,

click

Edit.

b.

Under

Additional

Properties,

click

Trust

Anchors.

c.

Click

New

to

create

a

new

trust

anchor.

Enter

a

unique

name

within

the

request

receiver

binding

for

the

Trust

anchor

name

field.

The

name

is

used

to

reference

the

trust

anchor

that

is

defined.

Enter

the

key

store

password,

path,

and

key

store

type.

Click

the

trust

anchor

name

link

to

edit

the

selected

trust

anchor.

Click

Remove

to

remove

the

selected

trust

anchor

or

anchors.

When

you

start

the

application,

the

configuration

is

validated

in

the

run

time

while

the

binding

information

is

loading.
4.

Return

to

Web

services-enabled

module

panel

accessed

in

step

2.

5.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings

to

edit

the

request

receiver

binding

information.

a.

Under

Request

Receiver

Binding,

click

Edit.

b.

Under

Additional

Properties,

click

Trust

Anchors.

c.

Click

New

to

create

a

new

trust

anchor

Enter

a

unique

name

within

the

request

receiver

binding

for

the

Trust

anchor

name

field.

The

name

is

used

to

reference

the

trust

anchor

that

is

defined.

Enter

the

key

store

password,

path,

and

key

store

type.

Click

the

trust

anchor

name

link

to

edit

the

selected

trust

anchor.

Click

Remove

to

remove

the

selected

trust

anchor

or

anchors.

When

you

start

the

application,

the

configuration

is

validated

in

the

run

time

while

the

binding

information

is

loading.
6.

Save

the

changes.

This

procedure

defines

trust

anchors

that

can

be

used

by

the

request

receiver

or

the

response

receiver

(if

the

Web

services

is

acting

as

client)

to

verify

the

signer

certificate.

The

request

receiver

or

the

response

receiver

(if

the

Web

service

is

acting

as

a

client)

uses

the

defined

trust

anchor

to

verify

the

signer

certificate.

The

trust

anchor

is

referenced

using

the

trust

anchor

name.

To

complete

the

signing

information

configuration

process

for

request

receiver,

complete

the

following

tasks:

1.

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

2.

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method

434

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

complete

the

process

for

the

response

receiver,

if

the

Web

services

is

acting

as

client,

complete

the

following

tasks:

1.

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

2.

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method

Trust

anchors

collection:

Use

this

page

to

view

a

list

of

keystore

objects

that

contain

trusted

root

certificates.

These

objects

are

used

for

certificate

path

validation

of

incoming

X.509-formatted

security

tokens.

Keystore

objects

within

trust

anchors

contain

trusted

root

certificates

used

by

the

CertPath

API

to

validate

the

trust

of

a

certificate

chain.

To

create

the

keystore

file,

use

the

key

tool

located

in

the

install_dir\java\jre\bin\keytool

directory.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors.

Click

New

to

create

a

new

trust

anchor.

Click

Delete

to

a

delete

trust

anchor.

If

you

click

Update

runtime,

the

Web

services

security

run

time

is

updated

with

the

default

binding

information,

which

is

contained

in

the

ws-security.xml

file

that

was

previously

saved.

If

you

make

changes

on

this

panel,

you

must

complete

the

following

steps:

1.

Save

your

changes

by

clicking

Save

at

the

top

of

the

administrative

console.

When

you

click

Save,

you

are

returned

to

the

administrative

console

home

panel.

2.

Return

to

the

Trust

Anchors

collection

panel

and

click

Update

runtime.

Important:

When

you

click

Update

runtime,

the

configuration

changes

made

to

the

other

Web

services

also

are

updated

in

the

Web

services

security

run

time.

Trust

Anchor

Name:

Specifies

the

unique

name

used

to

identify

the

trust

anchor.

Key

Store

Path:

Specifies

the

location

of

the

keystore

file

that

contains

the

trust

anchors.

Key

Store

Type:

Specifies

the

type

of

keystore

file.

The

value

for

this

field

is

either

JKS

or

JCEKS.

Trust

anchor

configuration

settings:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

435

Use

this

information

to

configure

a

trust

anchor.

Trust

anchors

point

to

key

stores

that

contain

trusted

root

or

self-signed

certificates.

This

information

enables

you

to

specify

a

name

for

the

trust

anchor

and

the

information

needed

to

access

a

key

store.

The

application

binding

uses

this

name

to

reference

a

predefined

trust

anchor

definition

in

the

binding

file

(or

the

default).

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

Anchors

>

New.

Trust

Anchor

Name:

Specifies

the

unique

name

used

by

the

application

binding

to

reference

a

predefined

trust

anchor

definition

in

the

default

binding.

Key

Store

Password:

Specifies

the

password

needed

to

access

the

keystore

file.

Key

Store

Path:

Specifies

the

location

of

the

keystore

file.

Use

${USER_INSTALL_ROOT}

as

this

path

expands

to

the

WebSphere

Application

Server

path

on

your

machine.

Key

Store

Type:

Specifies

the

type

of

key

store

file.

The

value

in

this

field

is

either

JKS

or

JCEKS.

JKS

Specify

this

option

if

you

are

not

using

Java

Cryptography

Extensions

(JCE).

JCEKS

Specify

this

option

if

you

are

using

Java

Cryptography

Extensions.

Although

the

JCEKS

key

store

format

is

more

secure,

it

decreases

performance.

Data

type

String

Default

JKS

Range

JKS,

JCEKS

Collection

certificate

store

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

The

collection

certificate

stores

are

utilized

when

processing

a

received

SOAP

message.

They

are

configured

in

the

securityRequestReceiverBindingConfig

section

of

the

binding

file

for

servers

and

in

the

securityResponseReceiverBindingConfig

section

of

the

binding

file

for

clients.

436

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

A

collection

certificate

store

is

one

kind

of

certificate

store.

A

certificate

store

is

defined

as

javax.security.cert.CertStore

in

the

Java

CertPath

Application

Programming

Interface

(API).

The

Java

CertPath

API

defines

the

following

types

of

certificate

stores:

Collection

certificate

store

A

collection

certificate

store

accepts

the

certificates

and

CRLs

as

Java

collection

objects.

Lightweight

Directory

Access

Protocol

(LDAP)

certificate

store

The

LDAP

certificate

store

accepts

certificates

and

CRLs

as

LDAP

entries.

The

CertPath

API

uses

the

certificate

store

and

the

trust

anchor

to

validate

the

incoming

X.509

certificate

that

is

embedded

in

the

SOAP

message.

The

Web

services

security

implementation

in

the

WebSphere

Application

Server

supports

the

collection

certificate

store.

Each

certificate

and

CRL

is

passed

as

a

encoded

file.

This

configuration

is

done

using

either

the

administration

console

or

by

scripting.

Configuring

the

client-side

collection

certificate

store

using

the

Application

Server

Toolkit

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

You

can

configure

the

collection

certificate

either

by

using

the

WebSphere

Application

Server

Toolkit

or

the

WebSphere

Application

Server

administrative

console.

Complete

the

following

steps

to

configure

the

client-side

collection

certificate

store

using

the

WebSphere

Application

Server

Toolkit.

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

clickWindows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

5.

Click

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit.

The

Web

Services

Client

Port

Binding

window

displays.

6.

Select

one

of

the

Port

Qualified

Name

Binding

entries.

7.

Expand

the

Security

Response

Receiver

Binding

Configuration

>

Certificate

Store

List

>

Collection

Certificate

Store

section.

8.

Click

Add

to

create

a

new

collection

certificate

store,

Edit

to

edit

an

existing

certificate

store,

or

Remove

to

delete

an

existing

certificate

store.

9.

Enter

a

name

in

the

Name

field.

This

is

a

name

that

is

referenced

in

the

Certificate

store

reference

field

in

the

Signing

info

dialog

box.

10.

Leave

the

Provider

field

as

IBMCertPath.

11.

Click

Add

to

enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer.

If

you

have

additional

certificate

store

paths,

click

Add

to

add

the

paths.

12.

Click

OK

when

you

are

done

adding

paths.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

437

Configuring

the

client-side

collection

certificate

store

using

the

administrative

console

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

You

can

configure

the

collection

certificate

either

by

using

the

WebSphere

Application

Server

Toolkit

or

the

WebSphere

Application

Server

administrative

console.

Complete

the

following

steps

to

configure

the

client-side

collection

certificate

store

using

the

administrative

console.

1.

Connect

to

the

WebSphere

Application

Server

administrative

console.

You

can

connect

to

the

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Applications

>

Enterprise

Applications

>

application_name.

3.

Under

Related

Items,

click

either

Web

Modules

or

EJB

Modules

depending

on

the

type

of

module

you

are

securing.

4.

Click

the

name

of

the

module

you

are

securing.

5.

Under

Additional

Properties,

click

either

Web

Services:

Client

Security

Bindings

to

add

the

collection

certificate

store

to

the

client

security

bindings.

If

you

do

not

see

any

entries,

return

to

the

WebSphere

Application

Server

Toolkit

and

configure

the

security

extensions

for

either

the

client

or

the

server.

To

configure

the

security

extensions

for

the

client,

see

the

following

topics:

v

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

v

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method

6.

Click

Edit

under

Response

Receiver

Binding

to

edit

the

client

security

bindings.

7.

Click

Collection

Certificate

Store.

8.

Click

a

Certificate

Store

Name

to

edit

an

existing

certificate

store

or

click

New

to

add

a

new

certificate

store

name.

9.

Enter

a

name

in

the

Certificate

Store

Name

field.

The

name

entered

in

this

field

is

a

name

that

is

referenced

in

the

Certificate

Store

field

on

the

Signing

information

configuration

page.

10.

Leave

the

Certificate

Store

Provider

field

as

IBMCertPath.

11.

Click

Apply.

12.

Under

Additional

Properties,

click

X.509

Certificates

>

New.

13.

Enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer.

If

you

have

any

additional

certificate

store

paths

to

enter,

click

New

and

add

the

path

names.

14.

Click

OK.

Configuring

the

server-side

collection

certificate

store

using

the

Assembly

Toolkit

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

438

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

can

configure

the

collection

certificate

either

by

using

the

Assembly

Toolkit

or

the

WebSphere

Application

Server

administrative

console.

Complete

the

following

steps

to

configure

the

server-side

collection

certificate

store

using

the

Assembly

Toolkit.

1.

Launch

the

Assembly

Toolkit

and

clickWindows

>

Open

Prospective

>

J2EE.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

5.

Click

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

Assembly

Toolkit.

The

Web

Service

Binding

Configuration

window

displays.

6.

Select

one

of

the

Web

service

description

binding

entries

under

the

Port

Component

Binding

section.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Certificate

Store

List

>

Collection

Certificate

Store

section.

8.

Click

Add

to

create

a

new

collection

certificate

store,

Edit

to

edit

an

existing

certificate

store,

or

Remove

to

delete

an

existing

certification

store.

9.

Enter

a

name

in

the

Name

field.

This

is

a

name

that

is

referenced

in

the

Certificate

store

reference

field

in

the

Signing

info

dialog.

10.

Leave

the

Provider

field

as

IBMCertPath.

11.

Click

Add

to

enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:${USER_INSTALL_ROOT]/etc/ws-security/samples/intca2.cer.

If

you

have

additional

certificate

store

paths,

click

Add

to

add

the

paths.

12.

Click

OK

when

you

are

done

adding

paths.

Collection

certificate

store

collection:

Use

this

page

to

view

a

list

of

certificate

stores

containing

untrusted,

intermediary

certificate

files

awaiting

validation.

Validation

might

consist

of

checking

to

see

if

the

certificate

is

on

a

certificate

revocation

list

(CRL),

checking

that

the

certificate

has

not

expired,

and

checking

that

the

certificate

was

issued

by

a

trusted

signer.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

server_name.

2.

Under

Related

Items,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

3.

Click

New

to

specify

a

store

name

and

provider

for

a

new

collection

certificate

store.

4.

Click

Delete

to

delete

a

collection

certificate

store.

Using

this

panel,

complete

the

following

steps:

1.

Specify

a

certificate

store

name

and

certificate

store

provider.

2.

Save

your

changes

by

clicking

Save

at

the

top

of

the

administrative

console.

When

you

click

Save,

you

are

returned

to

the

administrative

console

home

panel.

3.

Return

to

the

collection

certificate

store

collection

panel

and

click

Update

runtimeto

update

the

Web

services

security

run

time

with

the

default

binding

information,

which

is

found

in

the

ws_security.xml

file.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

439

Important:

When

you

click

Update

runtime,

the

configuration

changes

made

to

the

other

Web

services

also

are

updated

in

the

Web

services

security

run

time.

Certificate

Store

Name:

Specifies

the

name

of

the

certificate

store.

Certificate

Store

Provider:

Specifies

the

provider

of

the

certificate

store.

Collection

certificate

store

configuration

settings:

Use

this

page

to

specify

the

name

and

provider

of

a

certificate

store.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store

>

New.

Certificate

Store

Name:

Specifies

the

name

for

the

certificate

store.

The

application

binding

uses

the

certificate

store

name

to

reference

a

predefined

binding.

Certificate

Store

Provider:

Specifies

the

provider

for

the

certificate

store

implementation.

Data

type

String

Default

IBM

CertPath

X.509

certificates

collection:

Use

this

page

to

view

a

list

of

X.509

certificates.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

3.

On

the

Collection

Certificate

Store

page

under

Additional

Properties,

click

X.509

Certificates.

Click

New

to

create

a

new

path

to

an

X.509

certificate.

Click

Delete

to

delete

a

path

to

an

X.509

certificate.

X509

Certificate

Path:

Specifies

the

location

of

the

X.509

certificate.

X.509

certificate

configuration

settings:

Use

this

page

to

specify

the

location

of

your

X.509

certificates.

440

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

3.

On

the

Collection

Certificate

Store

page,

under

Additional

Properties,

click

X.509

Certificates

>

New.

X509

Certificate

Path:

Specifies

the

location

of

the

X.509

certificate.

Configuring

the

server-side

collection

certificate

store

using

the

administrative

console

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

You

can

configure

the

collection

certificate

either

by

using

the

WebSphere

Application

Server

Toolkit

or

the

WebSphere

Application

Server

administrative

console.

Complete

the

following

steps

to

configure

the

server-side

collection

certificate

store

using

the

administrative

console.

1.

Connect

to

the

WebSphere

Application

Server

administrative

console.

You

can

connect

to

the

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Applications

>

Enterprise

Applications

>

application_name.

3.

Under

Related

Items,

click

either

Web

Modules

or

EJB

Modules

depending

on

the

type

of

module

you

are

securing.

4.

Click

the

name

of

the

module

you

are

securing.

5.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings

to

add

the

collection

certificate

store

to

the

server

security

bindings.

If

you

do

not

see

any

entries,

return

to

the

WebSphere

Application

Server

Toolkit

and

configure

the

security

extensions

for

the

server.

To

configure

the

security

extensions

for

the

server,

see

the

following

topics:

v

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

v

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method

6.

Click

Edit

under

Request

Receiver

Binding

to

edit

the

server

security

bindings.

7.

Click

Collection

Certificate

Store.

8.

Click

a

Certificate

Store

Name

to

edit

an

existing

certificate

store

or

click

New

to

add

a

new

certificate

store

name.

9.

Enter

a

name

in

the

Certificate

Store

Name

field.

The

name

entered

in

this

field

is

a

name

that

is

referenced

in

the

Certificate

Store

field

on

the

Signing

information

configuration

page.

10.

Leave

the

Certificate

Store

Provider

field

as

IBMCertPath.

11.

Click

Apply.

12.

Under

Additional

Properties,

click

X.509

Certificates

>

New.

13.

Enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer.

If

you

have

any

additional

certificate

store

paths

to

enter,

click

New

and

add

the

path

names.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

441

14.

Click

OK.

Configuring

default

collection

certificate

stores

at

the

server

level

in

the

WebSphere

Application

Server

administrative

console

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

A

certificate

store

typically

refers

to

a

certificate

store

located

in

the

file

system.

The

location

of

the

certificate

store

can

vary

from

machine

to

machine

so

you

might

configure

a

default

collection

certificate

store

for

a

specific

machine

and

reference

it

from

within

the

signing

information.

The

signing

information

is

found

within

the

binding

configurations

of

any

application

installed

on

the

machine.

This

suggestion

enables

you

to

define

a

single

collection

certificate

store

for

all

of

the

applications

that

need

to

use

the

same

certificates.

You

also

can

specify

the

default

binding

information

at

the

cell

level.

Complete

the

following

steps

to

configure

the

default

collection

certificate

store

at

the

server

level

using

the

WebSphere

Application

Server

administration

console:

1.

Connect

to

administrative

console.

You

can

access

the

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Servers

>

Application

Servers

>

server1.

3.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Collection

Certificate

Store.

4.

Enter

a

name

in

the

Certificate

Store

Name

field.

This

is

a

name

that

is

referenced

in

the

Certificate

Store

field

on

the

Signing

information

configuration

page.

5.

Leave

the

Certificate

Store

Provider

field

as

IBMCertPath.

6.

Click

Apply.

7.

Under

Additional

Properties,

click

X.509

Certificates

>

New.

8.

Enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer.

If

you

have

any

additional

certificate

store

paths

to

enter,

click

New

and

add

the

path

names.

9.

Click

OK.

Configuring

default

collection

certificate

stores

at

the

cell

level

in

the

WebSphere

Application

Server

administrative

console

A

collection

certificate

store

is

a

collection

of

non-root,

certificate

authority

(CA)

certificates

and

certificate

revocation

lists

(CRLs).

This

collection

of

CA

certificates

and

CRLs

are

used

to

check

the

signature

of

a

digitally

signed

SOAP

message.

A

certificate

store

typically

refers

to

a

certificate

store

located

in

the

file

system.

The

location

of

the

certificate

store

can

vary

from

machine

to

machine

so

you

might

configure

a

default

collection

certificate

store

for

a

specific

machine

and

reference

it

from

within

the

signing

information.

The

signing

information

is

found

within

the

binding

configurations

of

any

application

installed

on

the

machine.

This

suggestion

enables

you

to

define

a

single

collection

certificate

store

for

all

of

the

applications

that

need

to

use

the

same

certificates.

You

also

can

specify

the

default

binding

information

at

the

server

level.

442

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Complete

the

following

steps

to

configure

the

default

collection

certificate

store

at

the

cell

level

using

the

WebSphere

Application

Server

administration

console:

1.

Connect

to

administrative

console.

You

can

access

the

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Security

>

Web

Services

>

Collection

Certificate

Store.

3.

Click

a

listed

Certificate

Store

Name

to

edit

an

existing

store,

or

click

New

to

add

a

new

store.

This

is

a

name

that

is

referenced

in

the

Certificate

Store

field

on

the

Signing

information

configuration

page.

4.

Leave

the

Certificate

Store

Provider

field

as

IBMCertPath.

5.

Click

Apply.

6.

Under

Additional

Properties,

click

X.509

Certificates

>

New.

7.

Enter

the

path

to

your

certificate

store.

For

example,

the

path

might

be:

${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer

If

you

have

any

additional

certificate

store

paths

to

enter,

click

New

and

add

the

path

names.

8.

Click

OK.

Key

locator

A

key

locator

(com.ibm.wsspi.wssecurity.config.KeyLocator)

is

a

abstraction

of

the

mechanism

that

retrieves

the

key

for

digital

signature

and

encryption.

You

can

use

any

of

the

following

infrastructure

from

which

to

retrieve

the

keys

depending

upon

the

implementation:

v

Java

keystore

file

v

Database

v

LDAP

server

Key

locators

search

the

key

using

some

type

of

a

clue.

The

following

types

of

clues

are

allowed:

v

A

string

label

of

the

key,

which

is

explicitly

passed

through

the

application

programming

interface

(API).

The

relationships

between

each

key

and

its

name

(string

label)

is

maintained

inside

the

key

locator.

v

The

execution

context

of

the

key

locator;

explicit

information

is

not

passed

to

the

key

locator.

A

key

locators,

by

itself,

determines

the

appropriate

key

according

to

their

execution

context.

For

example,

key

locators

can

obtain

the

identity

of

the

caller

from

the

context

and

can

retrieve

the

public

key

of

the

caller

for

response

encryption.

Restriction:

Current

versions

of

key

locators

do

not

support

the

retrieval

of

verification

keys

because

current

Web

services

security

implementations

do

not

support

the

secret

key-based

signature.

Since

the

key

locators

support

the

public

key-based

signature

only,

the

key

for

verification

is

embedded

in

the

X.509

certificate

as

a

<BinarySecurityToken>

element

in

the

incoming

message.

Usage

scenarios

This

section

describes

the

usage

scenarios

for

key

locators.

Signing

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

443

The

name

of

the

signing

key

is

specified

in

the

Web

services

security

configuration.

This

value

is

passed

to

the

key

locator

and

the

actual

key

is

returned.

The

corresponding

X.509

certificate

also

can

be

returned.

Verification

As

described

previously,

key

locators

are

not

used

in

signature

verification.

Encryption

The

name

of

the

encryption

key

is

specified

in

the

Web

services

security

configuration.

This

value

is

passed

to

the

key

locator

and

the

actual

key

is

returned.

Decryption

The

Web

services

security

specification

recommends

the

usage

of

the

key

identifier

instead

of

the

key

name.

However,

while

the

algorithm

for

computing

the

identifier

for

the

public

keys

is

defined

in

Internet

Engineering

Task

Force

(IETF)

Request

for

Comment

(RFC)

3280,

there

is

no

agreed

upon

algorithm

for

the

secret

keys.

Therefore,

the

current

implementation

of

Web

services

security

uses

the

identifier

only

when

public

key-based

encryption

is

performed.

Otherwise,

the

ordinal

key

name

is

used.

When

you

use

public

key-based

encryption,

the

value

of

key

identifier

is

embedded

in

the

incoming

encrypted

message.

Then,

the

Web

services

security

implementation

searches

for

all

the

keys

managed

by

the

key

locator

and

decrypts

the

message

using

the

key

whose

identifier

value

matches

the

one

in

the

message.

When

you

use

secret

key-based

encryption,

the

value

of

key

name

is

embedded

in

the

incoming

encrypted

message.

The

Web

services

security

implementation

asks

the

key

locator

for

the

key

whose

name

matches

the

one

in

the

message

and

decrypts

the

message

using

the

key.

Key

locator

collection:

Use

this

page

to

view

a

list

of

available

key

locators.

Key

locators

identify

the

keys

needed

for

digital

signature

and

encryption.

A

key

locator

must

implement

the

com.ibm.wsspi.wssecurity.config.KeyLocator

interface.

The

two

default

implementations

are:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

and

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

3.

Click

New

to

create

a

key

locator.

Click

Delete

to

delete

a

key

locator.

Using

this

panel,

complete

the

following

steps:

1.

Specify

a

key

locator

name

and

key

locator

class

name

on

the

panel

2.

Save

your

changes

by

clicking

Save

at

the

top

of

the

administrative

console.

When

you

click

Save,

you

return

to

the

administrative

console

home

panel.

444

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

3.

After

saving

your

changes,

return

to

the

Key

Locator

collection

panel

to

update

the

Web

services

security

run

time

with

the

default

binding

information,

which

is

found

in

the

ws_security.xml

file.

4.

To

update

the

Web

services

security

run

time,

click

Update

runtime.

When

you

click

Update

runtime,

the

configuration

changes

made

to

the

other

Web

services

also

are

updated

in

the

Web

services

security

run

time.

5.

Once

you

define

key

locators,

click

the

key

locator

name

to

specify

additional

properties

and

keys

under

Additional

Properties.

Key

Locator

Name:

Specifies

the

unique

name

of

the

key

locator.

Key

Locator

Classname:

Specifies

the

class

name

of

the

key

locator

in

the

keystore

file.

Key

locator

configuration

settings:

Use

this

page

to

specify

the

settings

for

key

locators.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators

>

New.

Key

Locator

Name:

Specifies

the

name

of

the

key

locator.

Data

type

String

Key

Locator

Classname:

Specifies

the

name

for

the

key

locator

class

implementation.

WebSphere

Application

Server

has

the

following

default

key

locator

class

implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This

class,

used

by

the

response

sender,

maps

an

authenticated

identity

to

a

key.

If

encryption

is

used,

this

class

is

used

to

locate

a

key

to

encrypt

the

response

message.

The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

class

has

the

capability

to

map

an

authenticated

identity

from

the

invocation

credential

of

the

current

thread

to

a

key

that

is

used

to

encrypt

the

message.

If

an

authenticated

identity

is

present

on

the

current

thread,

the

class

maps

the

ID

to

the

mapped

name.

For

example,

user1

is

mapped

to

mappedName_1.

Otherwise,

name=″default″.

When

a

matching

key

is

not

found,

the

authenticated

identity

is

mapped

to

the

default

key

specified

in

the

binding

file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This

class,

used

by

the

response

receiver,

request

sender,

and

request

receiver,

maps

a

name

to

an

alias.

The

encryption

process

uses

this

class

to

obtain

a

key

to

encrypt

a

message

and

the

digital

signature

process

uses

this

class

to

obtain

a

key

to

sign

a

message.

The

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

445

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

class

maps

a

logical

name

to

a

key

alias

in

the

keystore

file.

For

example,

key

#105115176771

is

mapped

to

CN=Alice,

O=IBM,

c=US.

Data

type

String

Defaults

com.ibm.wsspi

.wssecurity.config

.KeyStoreKeyLocator

com.ibm.wsspi

.wssecurity.config

.WSldKeyStoreMayKeyLocator

Key

Store

Password:

Specifies

the

password

used

to

access

the

keystore

file.

Key

Store

Path:

Specifies

the

location

of

the

keystore

file.

Use

${USER_INSTALL_ROOT}

as

this

path

expands

to

the

WebSphere

Application

Server

path

on

your

machine.

Key

Store

Type:

Specifies

the

type

of

the

keystore

file.

The

value

for

this

field

is

either

JKS

or

JCEKS:

JKS

Use

this

option

if

you

are

not

using

Java

Cryptography

Extensions

(JCE).

JCEKS

Use

this

option

if

you

are

using

Java

Cryptography

Extensions.

Default

JKS

Range

JKS,

JCEKS

Keys

Keys

are

used

for

XML

signature

and

encryption.

Largely,

there

two

kinds

of

keys

are

used

in

the

current

Web

services

security

implementation:

v

Public

key

-

such

as

RSA

and

DSA

v

Secret

key

-

such

as

DES

In

public-key-based

signature,

a

message

is

signed

using

sender

private

key

and

is

verified

using

the

sender

public

key.

In

public

key-based

encryption,

a

message

is

encrypted

using

receiver

public

key

and

is

decrypted

using

the

receiver

private

key.

In

secret

key-based

signature

and

encryption,

the

same

key

is

used

by

both

parties.

While

the

current

implementation

of

Web

services

security

can

deal

with

both

kinds

of

keys,

there

are

a

few

things

to

be

noted:

v

Secret

key-based

signature

is

not

supported.

v

The

format

of

the

message

differ

slightly

between

public

key-based

encryption

and

secret

key-based

encryption.

Key

collection:

446

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Use

this

page

to

view

a

list

of

logical

names

that

are

mapped

to

a

key

alias

in

the

keystore

file.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators

>

key_locator_name.

3.

Under

Additional

Properties,

click

Keys.

4.

Click

New

to

create

a

new

key

object

in

the

keystore

file.

5.

Click

Delete

to

a

delete

a

mapping

of

a

key

object

within

the

keystore

file.

Key

Name:

Specifies

the

name

of

the

key

object

found

in

the

keystore

file.

Key

Alias:

Specifies

an

alias

for

the

key

object.

The

alias

is

used

when

the

key

locator

searches

for

the

key

objects

in

the

keystore.

Key

configuration

settings:

Use

this

page

to

define

a

mapping

of

a

logical

name

to

a

key

alias

in

a

keystore

file.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators

>

key_locator_name.

3.

Under

Additional

Properties,

click

Keys

>

New.

Key

Name:

Specifies

the

name

of

the

key

object.

This

name

is

used

by

the

key

locator

to

find

the

key

within

the

keystore

file.

Key

Alias:

Specifies

the

alias

for

the

key

object

contained

in

the

keystore

file.

Key

Password:

Specifies

the

password

needed

to

access

the

key

object

within

the

keystore

file.

Web

services

security

service

provider

programming

interfaces

Several

Service

Provider

Programming

Interfaces

(SPIs)

are

provided

to

extend

the

capability

of

the

Web

services

security

run

time.

The

following

is

a

list

of

SPIs

that

are

available

for

WebSphere

Application

Server:

v

com.ibm.wsspi.wssecurity.config.KeyLocator

is

an

abstract

for

obtaining

the

keys

for

digital

signature

and

encryption.

The

following

are

the

default

implementations:

–

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

447

Implements

the

Java

keystore.

–

com.ibm.wsspi.wssecurity.config.WSIdKeyStoreMapKeyLocator

Provides

a

mapping

of

authenticated

identity

to

a

key

for

encryption

or

use

the

default

key

specified.

This

is

typically

used

in

the

response

sender

configuration.

–

com.ibm.wsspi.wssecurity.config.CertInRequestKeyLocator

Provides

the

capability

of

using

the

signer

key

for

encryption

in

the

response

message.

This

is

typically

used

in

the

response

sender

configuration.
v

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

is

an

interface

that

used

to

evaluate

the

trust

for

identity

assertion.

The

following

is

the

default

implementation:

–

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

Enables

you

to

define

a

list

of

trusted

identities.
v

The

JAAS

CallbackHandler

Application

Programming

Interfaces

(APIs)

are

used

for

token

generation

by

the

request

sender.

This

can

be

extended

to

generate

custom

token

to

be

inserted

in

the

Web

services

security

header.

The

following

are

the

default

implementations

are

provided

by

WebSphere

Application

Server:

–

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

Presents

a

login

prompt

to

gather

the

basic

authentication

data.

Use

this

implementation

in

the

client

environment

only.

–

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

Collects

the

basic

authentication

data

in

the

standard

in

(stdin)

prompt.

Use

this

implementation

in

the

client

environment

only.

–

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

Reads

the

basic

authentication

data

from

the

application

binding

file.

This

might

be

used

on

the

server

side

to

generate

a

user

name

token.

–

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

Generates

Lightweight

Third

Party

Authentication

(LTPA)

token

in

the

Web

services

security

header

as

binary

security

token.

If

there

is

basic

authentication

data

defined

in

the

application

binding

file,

it

is

used

to

perform

a

login,

extract

the

LTPA

token

from

the

WebSphere

credentials,

and

insert

the

token

in

the

Web

services

security

header.

Otherwise,

it

will

extract

the

LTPA

security

token

from

the

invocation

credentials

(run

as

identity)

and

insert

the

token

in

the

Web

services

security

header.

The

JAAS

LoginModule

API

is

used

for

token

validation

on

the

request

receiver

side

of

the

message.

You

can

implement

a

custom

LoginModule

to

perform

validation

of

the

custom

token

on

the

request

receiver

of

the

message.

Once

the

token

is

verified

and

validated,

the

token

is

set

as

the

caller,

run

as

identity

in

the

WebSphere

run

time,

and

the

identity

is

used

for

authorization

checks

by

the

containers

before

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

resource

is

invoked.

The

following

are

the

default

″AuthMethod″

configurations

provided

by

WebSphere

Application

Server:

BasicAuth

Validates

a

user

name

token

Signature

Maps

a

distinguished

name

(DN)

of

a

verified

certificate

to

a

Java

Authentication

and

Authorization

Service

(JAAS)

subject.

IDAssertion

Maps

a

trusted

identity

to

a

JAAS

subject.

448

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

LTPA

Validates

an

LTPA

token

received

in

the

message

and

creates

a

JAAS

subject.

Configuring

key

locators

using

the

Assembly

Toolkit

This

task

provides

instructions

on

how

to

configure

key

locators

using

the

Assembly

Toolkit.

You

can

configure

key

locators

in

various

locations

within

the

Assembly

Toolkit.

This

task

provides

instructions

how

to

configure

key

locators

at

any

of

these

locations

because

the

concept

is

the

same.

1.

Launch

the

Assembly

Toolkit

and

click

Windows

>

Open

Prospective

>

J2EE.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file

and

click

Open

With

>

Web

Services

Client

Editor

or

right-click

the

webservices.xml

file

and

click

Open

With

>

Web

Services

Editor.

5.

Click

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit

or

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

Assembly

Toolkit.

6.

Expand

one

of

the

Binding

Configuration

sections.

7.

Expand

the

Key

Locators

section.

8.

Click

Addto

create

a

new

key

locator,

Edit

to

edit

an

existing

key

locator,

or

Remove

to

delete

an

existing

key

locator.

9.

Enter

a

key

locator

name.

The

name

entered

for

the

Key

locator

name

is

used

to

refer

to

the

key

locator

from

the

Encryption

information

and

Signing

Information

sections.

10.

Enter

a

key

locator

class.

The

key

locator

class

is

the

implementation

of

the

KeyLocator

interface.

When

using

default

implementations,

select

a

class

from

the

menu

11.

Determine

whether

to

click

Use

key

store.

Select

this

option

when

you

use

the

default

implementations

as

they

use

key

stores.

If

you

click

Use

key

store,

complete

the

following

steps:

a.

Enter

a

value

in

the

key

store

storepass

field.

The

key

store

storepass

is

the

password

used

to

access

the

key

store.

b.

Enter

a

path

name

in

the

key

store

path

field.

The

key

store

path

is

the

location

on

the

file

system

where

the

key

store

resides.

Make

sure

that

the

location

can

be

found

wherever

you

deploy

the

application.

c.

Enter

a

type

value

in

the

key

store

type

field.

The

valid

types

to

enter

are

JKS

and

JCEKS.

JKS

is

used

when

you

are

not

using

Java

Cryptography

Extensions

(JCE).

JCEKS

is

used

when

you

are

using

JCE.

Although

the

JCEKS

type

is

more

secure,

it

might

decrease

performance.

d.

Click

Add

to

create

an

entry

for

a

key

in

the

key

store.

1)

Enter

a

value

in

the

Alias

field.

The

key

alias

is

a

reference

to

this

particular

key

from

the

Signing

Information

section.

2)

Enter

a

value

in

the

Key

pass

field.

The

key

pass

is

the

password

associated

with

the

certificate

when

created

using

Java

Development

Kit,

keytool.exe.

3)

Enter

a

value

in

the

Key

name

field.

The

key

name

refers

to

the

alias

of

the

certificate

as

found

in

the

key

store.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

449

12.

Click

Add

to

create

a

custom

property.

The

property

can

be

used

by

custom

implementations

of

KeyLocator.

For

example,

you

can

use

properties

with

the

WSIdKeyStoreMapKeyLocator

default

implementation.

The

KeyLocator

has

the

following

property

names:

v

id_,

which

maps

to

a

credential

user

ID.

v

mappedName_

,

which

maps

to

the

key

alias

to

use

for

this

user

name.

v

default,

which

maps

to

a

key

alias

to

use

when

a

credential

does

not

have

an

associated

id_

entry

A

typical

set

of

properties

for

this

key

locator

might

be:

id_1=user1,

mappedName_1=key1,

id_2=user2,

mappedName_2=key2,

default=key3.

If

user1

or

user2

authenticates,

then

the

associated

key1

or

key2

is

used,

respectively.

However,

if

none

of

the

user

properties

authenticate

or

the

user

is

not

user1

or

user2,

then

key3

is

used.

a.

Enter

a

name

in

the

Name

field.

The

name

entered

is

the

property

name.

b.

Enter

a

value

in

the

Value

field.

This

value

entered

is

the

property

value.

Configuring

key

locators

using

the

administrative

console

This

task

provides

instructions

on

how

to

configure

key

locators

using

the

WebSphere

Application

Server

administrative

console.

You

can

configure

binding

information

in

the

administrative

console,

but

for

extensions,

you

must

use

the

Application

Server

Toolkit.

The

following

steps

are

used

to

configure

a

key

locator

in

the

administrative

console

for

a

specific

application:

1.

Connect

to

administrative

console

by

typing

http://:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Applications

>

Enterprise

Applications

>

application_name.

3.

Under

Related

Items,

click

either

Web

Modules

or

EJB

Modules,

depending

on

the

type

of

module

you

are

securing.

4.

Click

the

name

of

the

module

you

are

securing.

5.

Under

Additional

Properties,

click

either

Web

Services:

Client

Security

Bindings

or

Web

Services:

Server

Security

Bindings

depending

on

whether

you

are

adding

the

key

locator

to

the

client

security

bindings

or

the

server

security

bindings.

If

you

do

not

see

any

entries,

return

to

the

WebSphere

Application

Server

Toolkit

and

configure

the

Security

Extensions.

6.

Edit

the

Request

Sender

Binding,

Response

Receiver

Binding,

Request

Receiver

Binding,

or

Response

Sender

Binding

v

If

you

are

editing

your

client

security

bindings,

click

Edit

for

either

the

Request

Sender

Binding

or

Response

Receiver

Binding.

v

If

you

are

editing

your

server

security

bindings,

click

Edit

for

either

the

Request

Receiver

Binding

or

Response

Sender

Binding.
7.

Click

Key

Locators.

8.

Click

New

to

configure

a

new

key

locator;

select

the

box

next

to

a

key

locator

name

and

click

Delete

to

delete

a

key

locator;

or

click

the

name

of

a

key

locator

to

edit

its

configuration.

If

you

are

configuring

a

new

key

locator

or

editing

an

existing

one,

complete

the

following

steps:

a.

Specify

a

name

for

the

key

locator

in

the

Key

Locator

Name

field.

b.

Specify

a

name

for

the

key

locator

class

implementation

in

the

Key

Locator

Classname

field.

WebSphere

Application

Server

has

the

following

default

key

locator

class

implementations:

450

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This

class,

used

by

the

response

sender,

maps

an

authenticated

identity

to

a

key.

If

encryption

is

used,

this

class

is

used

to

locate

a

key

to

encrypt

the

response

message.

The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

class

has

the

capability

to

map

an

authenticated

identity

from

the

invocation

credential

of

the

current

thread

to

a

key

that

is

used

to

encrypt

the

message.

If

an

authenticated

identity

is

present

on

the

current

thread,

the

class

maps

the

ID

to

the

mapped

name.

For

example,

user1

is

mapped

to

mappedName_1.

Otherwise,

name="default".

When

a

matching

key

is

not

found,

the

authenticated

identity

is

mapped

to

the

default

key

specified

in

the

binding

file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This

class,

used

by

the

response

receiver,

request

sender,

and

request

receiver,

maps

a

name

to

an

alias.

Encryption

uses

this

class

to

obtain

a

key

to

encrypt

a

message

and

digital

signature

uses

this

class

to

obtain

a

key

to

sign

a

message.

The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

class

maps

a

logical

name

to

a

key

alias

in

the

key

store

file.

For

example,

key

#105115176771

is

mapped

to

CN=Alice,

O=IBM,

c=US.
c.

Specify

the

password

used

to

access

the

keystore

password

in

the

Key

Store

Password

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

d.

Specify

the

path

name

used

to

access

the

keystore

in

the

Key

Store

Path

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

${USER_INSTALL_ROOT}

as

this

path

expands

to

the

WebSphere

Application

Server

path

on

your

machine.

e.

Select

a

keystore

type

from

the

Key

Store

Type

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

the

JKS

option

if

you

are

not

using

Java

Cryptography

Extensions

(JCE)

and

use

JCEKS

if

you

are

using

JCE.

Configuring

server

and

cell

level

key

locators

using

the

administrative

console

A

key

locator

typically

locates

a

key

store

in

the

file

system.

The

location

of

key

stores

can

vary

from

machine

to

machine

so

it

is

often

helpful

to

configure

a

default

key

locator

for

a

specific

machine

and

reference

it

from

within

the

encryption

or

signing

information.

This

information

is

found

within

the

binding

configurations

of

any

application

installed

on

the

machine.

This

suggestion

enables

you

to

define

a

single

key

locator

for

all

applications

that

need

to

use

the

same

keys.

In

a

Network

Deployment

environment,

you

also

can

specify

the

default

binding

information

at

the

cell

level.

This

task

provides

instructions

on

how

to

configure

server

and

cell-level

key

locators

for

a

specific

application

using

the

WebSphere

Application

Server

administrative

console.

You

can

configure

binding

information

in

the

administrative

console,

but

for

extensions,

you

must

use

the

Application

Server

Toolkit.

v

Configure

default

key

locators

at

the

server

level

1.

Connect

to

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Servers

>

Application

Servers

>server1.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

451

3.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

4.

Click

New

to

configure

a

new

key

locator;

select

the

box

next

to

a

key

locator

name

and

click

Delete

to

delete

a

key

locator;

or

click

the

name

of

a

key

locator

to

edit

its

configuration.

If

you

are

configuring

a

new

key

locator

or

editing

an

existing

one,

complete

the

following

steps:

a.

Specify

a

name

for

the

key

locator

in

the

Key

Locator

Name

field.

b.

Specify

a

name

for

the

key

locator

class

implementation

in

the

Key

Locator

Classname

field.

WebSphere

Application

Server

has

the

following

default

key

locator

class

implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This

class,

used

by

the

response

sender,

maps

an

authenticated

identity

to

a

key.

If

encryption

is

used,

this

class

is

used

to

locate

a

key

to

encrypt

the

response

message.

The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

class

has

the

capability

to

map

an

authenticated

identity

from

the

invocation

credential

of

the

current

thread

to

a

key

that

is

used

to

encrypt

the

message.

If

an

authenticated

identity

is

present

on

the

current

thread,

the

class

maps

the

ID

to

the

mapped

name.

For

example,

user1

is

mapped

to

mappedName_1.

Otherwise,

name="default".

When

a

matching

key

is

not

found,

the

authenticated

identity

is

mapped

to

the

default

key

specified

in

the

binding

file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This

class,

used

by

the

response

receiver,

request

sender,

and

request

receiver,

maps

a

name

to

an

alias.

Encryption

uses

this

class

to

obtain

a

key

to

encrypt

a

message

and

digital

signature

uses

this

class

to

obtain

a

key

to

sign

a

message.

The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

class

maps

a

logical

name

to

a

key

alias

in

the

key

store

file.

For

example,

key

#105115176771

is

mapped

to

CN=Alice,

O=IBM,

c=US.
c.

Specify

the

password

used

to

access

the

keystore

password

in

the

Key

Store

Password

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

d.

Specify

the

path

name

used

to

access

the

keystore

in

the

Key

Store

Path

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

${USER_INSTALL_ROOT}

as

this

path

expands

to

the

WebSphere

Application

Server

path

on

your

machine.

e.

Select

a

keystore

type

from

the

Key

Store

Type

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

the

JKS

option

if

you

are

not

using

Java

Cryptography

Extensions

(JCE)

and

use

JCEKS

if

you

are

using

JCE.
v

Configure

default

key

locators

at

the

cell

level.

1.

Connect

to

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

2.

Click

Security

>

Web

Services

>

Key

Locators.

3.

Click

New

to

configure

a

new

key

locator;

select

the

box

next

to

a

key

locator

name

and

click

Delete

to

delete

a

key

locator;

or

click

the

name

of

a

452

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

key

locator

to

edit

its

configuration.

If

you

are

configuring

a

new

key

locator

or

editing

an

existing

one,

complete

the

following

steps:

a.

Specify

a

name

for

the

key

locator

in

the

Key

Locator

Name

field.

b.

Specify

a

name

for

the

key

locator

class

implementation

in

the

Key

Locator

Classname

field.

WebSphere

Application

Server

has

the

following

default

key

locator

class

implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

This

class,

used

by

the

response

sender,

maps

an

authenticated

identity

to

a

key.

If

encryption

is

used,

this

class

is

used

to

locate

a

key

to

encrypt

the

response

message.

The

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator

class

has

the

capability

to

map

an

authenticated

identity

from

the

invocation

credential

of

the

current

thread

to

a

key

that

is

used

to

encrypt

the

message.

If

an

authenticated

identity

is

present

on

the

current

thread,

the

class

maps

the

ID

to

the

mapped

name.

For

example,

user1

is

mapped

to

mappedName_1.

Otherwise,

name="default".

When

a

matching

key

is

not

found,

the

authenticated

identity

is

mapped

to

the

default

key

specified

in

the

binding

file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

This

class,

used

by

the

response

receiver,

request

sender,

and

request

receiver,

maps

a

name

to

an

alias.

Encryption

uses

this

class

to

obtain

a

key

to

encrypt

a

message

and

digital

signature

uses

this

class

to

obtain

a

key

to

sign

a

message.

The

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator

class

maps

a

logical

name

to

a

key

alias

in

the

key

store

file.

For

example,

key

#105115176771

is

mapped

to

CN=Alice,

O=IBM,

c=US.
c.

Specify

the

password

used

to

access

the

keystore

password

in

the

Key

Store

Password

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

d.

Specify

the

path

name

used

to

access

the

keystore

in

the

Key

Store

Path

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

${USER_INSTALL_ROOT}

as

this

path

expands

to

the

WebSphere

Application

Server

path

on

your

machine.

e.

Select

a

keystore

type

from

the

Key

Store

Type

field.

This

field

is

optional

is

the

key

locator

does

not

use

a

keystore.

Use

the

JKS

option

if

you

are

not

using

Java

Cryptography

Extensions

(JCE)

and

use

JCEKS

if

you

are

using

JCE.

Trusted

ID

evaluator

Trusted

ID

evaluator

(com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator)

is

a

abstraction

of

the

mechanism

that

evaluates

whether

the

given

ID

name

is

trusted.

Depending

upon

the

implementation,

you

can

use

various

types

of

infrastructure

to

store

a

list

of

the

trusted

IDs,

such

as:

v

Plain

text

file

v

Database

v

Lightweight

Directory

Access

Protocol

(LDAP)

server

The

trusted

ID

evaluator

is

typically

used

by

the

ultimate

receiver

in

a

multi-hop

environment.

The

Web

services

security

implementation

invokes

the

trusted

ID

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

453

evaluator

and

passes

the

identity

name

of

the

intermediary

as

a

parameter.

If

the

identity

is

evaluated

and

deemed

trustworthy,

the

procedure

continues.

Otherwise,

an

exception

is

thrown

and

the

procedure

is

aborted.

Trusted

ID

evaluator

collection:

Use

this

page

to

view

a

list

of

trusted

identity

(ID)

evaluators.

The

trusted

ID

evaluator

determines

whether

to

trust

the

identity-asserting

authority.

Once

the

ID

is

trusted,

the

WebSphere

Application

Server

issues

the

proper

credentials,

which

are

used

in

a

downstream

call

for

invoking

resources.

The

trusted

ID

evaluator

implements

the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Services,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trusted

ID

Evaluators.

Click

New

to

create

a

trusted

ID

evaluator.

Click

Delete

to

a

delete

a

trusted

ID

evaluator.

Using

this

panel,

complete

the

following

steps:

1.

Specify

a

trusted

ID

evaluator

name

and

trusted

ID

evaluator

class

name.

2.

Save

your

changes

by

clicking

Save

at

the

top

of

the

administrative

console.

When

you

click

Save,

you

return

to

the

administrative

console

home

panel.

3.

Return

to

the

Trusted

ID

Evaluator

collection

panel

to

update

the

Web

services

security

run

time

with

the

default

binding

information,

which

is

found

in

the

ws_security.xml

file.

4.

Click

Update

runtime.

The

configuration

changes

made

to

the

other

Web

services

also

are

updated

in

the

Web

services

security

run

time.

Trusted

ID

Evaluator

Name:

Specifies

the

unique

name

of

the

trusted

ID

evaluator.

Trusted

ID

Evaluator

Classname:

Specifies

the

class

name

of

the

trusted

ID

evaluator.

Trusted

ID

evaluator

configuration

settings:

Use

this

information

to

configure

trust

identity

(ID)

evaluators.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Trust

ID

Evaluators

>

New.

You

must

specify

the

name

and

value

properties

for

the

default

trusted

ID

evaluator

to

create

the

trusted

ID

list

for

evaluation.

Trusted

ID

Evaluator

Name:

454

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Specifies

the

unique

name

used

by

the

application

binding

to

refer

to

a

trusted

identity

(ID)

evaluator

defined

in

the

default

binding.

You

must

specify

the

trusted

ID

evaluator

name

in

the

form,

trustedId_n,

where_n

is

an

integer

from

0

to

n.

Trusted

ID

Evaluator

Class

Name:

Specifies

the

class

name

of

the

trusted

ID

evaluator.

Default

com.ibm.wsspi.wssecurity.

id.TrustedIDEvaluatorImpl

Login

mappings

Login

mappings,

found

in

the

ibm-webservices-bnd.xmi

eXtended

Markup

Language

(XML)

file,

contains

a

mapping

configuration.

This

mapping

configuration

defines

how

the

Web

services

security

handler

maps

the

token

<ValueType>

element,

contained

within

the

security

token

extracted

from

the

message

header,

to

the

corresponding

authentication

method.

The

token

<ValueType>

element

is

contained

within

the

security

token

extracted

from

a

SOAP

message

header.

The

sender-side

Web

services

security

handler

generates

and

attaches

security

tokens

based

on

<AuthMethods>

element

specified

in

the

deployment

descriptor.

For

example,

if

the

authentication

method

is

BasicAuth,

the

sender-side

security

handler

generates

and

attaches

UsernameToken

(with

both

user

name

and

password)

to

the

SOAP

message

header.

Web

services

security

run

time

uses

the

Java

Authentication

and

Authorization

Service

(JAAS)

javax.security.auth.callback.CallbackHandler

interface

as

a

security

provider

to

generate

security

tokens

on

the

client

side

(or

when

Web

services

is

acting

as

client).

The

sender

security

handler

invokes

the

handle()

method

of

a

javax.security.auth.callback.CallbackHandler

interface

implementation.

This

implementation

creates

the

security

token

and

passes

the

token

back

to

the

sender

security

handler.

The

senders

security

handler

constructs

the

security

token

based

on

the

authentication

information

in

the

callback

array.

The

security

handler

then

inserts

the

security

token

into

the

Web

Services

Security

message

header.

The

CallbackHandlerinterface

implementation

you

use

to

generate

the

required

security

token

is

defined

in

the

<loginBinding>

element

in

the

ibm-webservicesclient-bnd.xmi

web

services

security

binding

file.

For

example,

<loginBinding

xmi:id="LoginBinding_1052760331526"

authMethod="BasicAuth"

callbackHandler=

"com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler"/>

The

<loginBinding>

element

associates

the

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

interface

with

the

BasicAuth

authentication

method.

WebSphere

Application

Server

provides

the

following

set

of

CallbackHandler

interface

implementations

you

can

use

to

create

various

security

token

types:

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

If

there

is

no

basic

authentication

data

defined

in

the

login

binding

information

(this

is

not

the

same

as

the

HTTP

basic

authentication

information),

the

previous

token

type

prompts

for

user

name

and

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

455

password

through

a

GUI

login

panel.

It

uses

the

basic

authentication

data

defined

in

the

login

binding

if

it

is

defined.

Use

this

CallbackHandler

with

the

BasicAuth

authentication

method.

Attention:

Do

not

use

this

CallbackHandler

on

the

server

because

it

prompts

you

for

login

binding

information.

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

If

basic

authentication

data

is

not

defined

in

the

login

binding

(this

is

not

the

same

as

the

HTTP

basic

authentication

information),

it

prompts

for

the

user

name

and

password

using

standard

in

(stdin).

It

uses

the

basic

authentication

data

defined

in

the

login

binding

if

it

is

defined.

Use

this

CallbackHandler

with

BasicAuth

authentication

method.

Attention:

Do

not

use

this

CallbackHandler

on

the

server

because

it

prompts

you

for

login

binding

information.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This

CallbackHandler

does

not

prompt.

Rather,

it

uses

the

basic

authentication

data

defined

in

the

login

binding

(this

is

not

the

same

as

the

HTTP

basic

authentication

information).

This

CallbackHandler

is

meant

to

be

used

with

BasicAuth

authentication

method.

This

can

be

used

when

Web

services

is

running

as

a

client

and

needs

to

send

basic

authentication

(<wsse:UsernameToken>)

to

the

downstream

call.

Attention:

You

must

define

the

basic

authentication

data

in

the

login

binding

information

for

this

CallbackHandler.

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

The

CallbackHandler

generates

Lightweight

Third

Party

Authentication

(LTPA)

tokens

from

the

run

as

JAASSubject

(invocation

Subject)

of

the

current

WebSphere

Application

Server

security

context.

However,

if

there

is

basic

authentication

data

defined

in

the

login

binding

information

(this

is

not

the

same

as

the

HTTP

basic

authentication

information),

it

uses

the

basic

authentication

data

and

LTPA

token

generated.

The

Web

services

security

run

time

inserts

the

LTPA

token

as

a

binary

security

token

(<wsse:BinarySecurityToken>)

into

the

message

SOAP

header.

The

value

type

is

mandatory.

(See

LTPA

for

more

information).

Use

this

CallbackHandler

with

the

LTPA

authentication

method.

Attention:

The

Token

Type

URI

and

Token

Type

Local

Name

must

be

defined

in

the

login

binding

information

for

this

CallbackHandler.

The

token

value

type

is

used

to

validate

the

token

to

the

request

sender

and

request

receiver

binding

configuration.

Figure.1

shows

the

sender

security

handler

in

the

request

sender

message

process.

456

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

receiver-side

security

server

can

be

configured

to

support

multiple

authentication

methods

and

multiple

types

of

security

tokens.

Upon

receiving

a

message,

the

receiver

Web

services

security

handler

compares

the

token

type

(in

the

message

header)

with

the

expected

token

types

configured

in

the

deployment

descriptor.

The

Web

services

security

handler

extracts

the

security

token

form

the

message

header

and

maps

the

token

<ValueType>

element

to

the

corresponding

authentication

method.

The

mapping

configuration

is

defined

in

the

<loginMappings>

element

in

the

ibm-webservices-bnd.xmi

XML

file.

For

example:

<loginMappings

xmi:id="LoginMapping_1051977980074"

authMethod="LTPA"

configName="WSLogin">

<callbackHandlerFactory

xmi:id="CallbackHandlerFactory_1051977980081"

classname="com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl"/>

<tokenValueType

xmi:id="TokenValueType_1051977980081"

uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

localName="LTPA"/>

</loginMappings>

The

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

interface

is

a

factory

for

javax.security.auth.callback.CallbackHandler.

The

Web

services

security

run

time

initiates

the

factory

implementation

class

and

passes

the

authentication

information

from

Web

services

security

header

to

the

factory

class

through

the

set

methods.

The

Web

services

security

run

time

then

invokes

the

newCallbackHandler()

method

to

obtain

the

javax.security.auth.CallbackHandler

object,

which

generates

the

required

security

token).

When

the

security

handler

receives

an

LTPA

BinarySecurityToken,

it

uses

the

WSLogin

JAAS

login

configuration

and

the

newCallbackHandler()

method

to

validate

the

security

token.

If

none

of

the

expected

token

types

are

found

in

the

SOAP

message

Web

services

security

header,

the

request

is

rejected

with

an

SOAP

fault.

Otherwise,

the

token

type

is

used

to

map

to

a

JAAS

login

configuration

for

token

validation.

If

Security Token

generation

CallbackHandler
configuration

security token:

Sender

security handler

Request

<Property> - as HashMap

<BasicAuth> - as user name

and password

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

Deployment descriptor

and service bindings

XML configuration

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

457

authentication

is

successful,

a

JAAS

Subject

is

created

and

associated

with

the

thread

of

execution.

Otherwise,

the

request

is

rejected

with

an

SOAP

fault.

Figure.2

shows

the

receiver

security

handler

in

the

request

receiver

message

process.

The

following

table

shows

the

authentication

methods

and

JAAS

login

configurations.

Authentication

method

JAAS

login

configuration

BasicAuth

WSLogin

Signature

system.wssecurity.Signature

LTPA

WSLogin

IDAssertion

system.wssecurity.IDAssertion

The

default

<LoginMapping>

is

defined

in

the

cell-level

ws-security.xml

and

server-level

ws-security.xml

files.

If

nothing

is

defined

in

the

binding

file

JAAS subject:

com.ibm.websphere.security.auth.WSPrincipal

com.ibm.websphere.security.cred.WSCredential

<wsse:UsernameToken>ifjavax.security.auth.callback.NameCallback

and/or javax.security.auth.callbackPasswordCallback is populated with data.

OR

<wsse:BinarySecurityToken> encoded token from

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

and the ValueType is generated from <TokenValueType> defined

in the binding information.

OR

XML-based token is created based on the DOM element returns

from the com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback.

• Security Token validation

• Set the JAAS subject

caller and runAs identity

JAAS login configuration

Security token

javax.security.auth.callback.NameCallback

javax.security.auth.callback.PasswordCallback

com.ibm.ws.spi.wssecurity.auth.callback.XMLTokenCallback

com.ibm.websphere.security.auth.callback.WSCredTokenCallback

<!ELEMENT AuthMethod (#PCDATA)>

<!ELEMENT TokenValueType EMPTY>

<!ATTLIST TokenValueType uri CDATA #REQUIRED localName CDATA #REQUIRED>

<!ELEMENT ConfigName (#PCDATA)>

<!ELEMENT CallbackHandlerFactory(Property*)>

<!ATTLIST CallbackHandlerFactory classname %TYPE_CLASS; #REQUIRED>

Sender

security handler

Request

Deployment descriptor

and service bindings

XML configuration

458

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

information,

the

ws-security.xml

default

is

used.

However,

an

administrator

can

override

the

default

by

defining

a

new

<LoginMapping>

element

in

the

binding

file.

The

client

reads

the

default

binding

information

in

the

${WAS_HOME}/properties/Web

Services

Security.xml

file.

The

server

run-time

component

loads

the

cell-level

Web

Services

Security.xml

and

server-level

Web

Services

Security.xml

files

if

they

exist.

The

two

files

are

merged

in

the

run

time

to

form

one

effective

set

of

default

binding

information.

On

a

base

application

server

the

server

run

time

component

only

loads

the

server-level

Web

Services

Security.xml

file.

The

server-side

Web

Services

Security.xml

file

and

application

Web

services

security

binding

information

are

managed

by

the

administrative

console

and

also

by

WSADMIN.

You

can

specify

the

binding

information

during

application

deployment

either

through

the

administrative

console

or

WSADMIN.

The

Web

services

security

policy

is

defined

in

the

deployment

descriptor

extension

(ibm-webservicesclient-
ext.xmi)

and

the

bindings

are

stored

in

the

IBM

binding

extension

(ibm-webservicesclient-bnd.xmi).

However,

${WAS_HOME}/properties/Web

Services

Security.xml

defines

the

default

binding

value

for

the

client.

If

the

binding

information

is

not

specified

in

the

binding

file,

the

run

time

reads

the

binding

information

from

the

default

${WAS_HOME}/properties/Web

Services

Security.xml

file.

Login

mappings

collection:

Use

this

page

to

view

a

list

of

configurations

for

validating

security

tokens

within

incoming

messages.

Login

mappings

map

an

authentication

method

to

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

to

validate

the

security

token.

Four

authentication

methods

are

predefined

in

the

WebSphere

Application

Server:

BasicAuth,

Signature,

IDAssertion,

and

LTPA.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Server

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings.

Click

New

to

create

a

login

mapping.

Click

Delete

to

delete

a

login

mapping.

If

you

click

Update

runtime,

the

Web

services

security

run

time

is

updated

with

the

default

binding

information,

which

is

contained

in

the

ws-security.xml

file

that

was

previously

saved.

After

you

specify

the

authentication

method,

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration

name,

and

the

Callback

Handler

Factory

class

name

on

this

panel,

you

must

complete

the

following

steps:

Click

Save

at

the

top

of

the

administrative

console.

When

you

click

Save,

you

return

to

the

administrative

console

home

panel.

Return

to

the

Login

Mappings

collection

panel

and

click

Update

runtime.

Important:

When

you

click

Update

runtime,

the

configuration

changes

made

to

the

other

Web

services

also

are

updated

in

the

Web

services

security

run

time.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

459

Authentication

Method:

Specifies

the

authentication

method

used

for

validating

the

security

tokens.

The

following

authentication

methods

are

available:

BasicAuth

Basic

authentication

includes

both

a

user

name

and

password

in

the

security

token.

The

information

in

the

token

is

authenticated

by

the

receiving

server

and

used

to

create

a

credential.

Signature

When

the

authentication

method

is

signature,

an

X.509

certificate

is

sent

as

a

security

token.

For

Lightweight

Directory

Access

Protocol

(LDAP)

registries,

the

distinguished

name

(DN)

is

mapped

to

a

credential,

which

is

based

on

the

LDAP

certificate

filter

settings.

For

local

OS

registries,

the

first

attribute

of

the

certificate,

usually

the

common

name

(CN)

is

mapped

directly

to

a

user

ID

in

the

registry.

IDAssertion

Identity

assertion

maps

a

trusted

identity

(ID)

to

a

WebSphere

credential.

This

authentication

method

only

includes

a

user

name

in

the

security

token.

An

additional

token

is

included

in

the

message

for

trust

purposes.

Once

the

additional

token

is

trusted,

the

IDAssertion

token

user

name

is

mapped

to

a

credential.

LTPA

Lightweight

Third

Party

Authentication

(LTPA)

validates

an

LTPA

token.

JAAS

Configuration

Name:

Specifies

the

name

of

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration.

Callback

Handler

Factory

Class

Name:

Specifies

the

name

of

the

factory

for

the

CallbackHandler

class.

Login

mapping

configuration

settings:

Use

this

page

to

specify

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

settings

used

to

validate

security

tokens

within

incoming

messages.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Servers

>

Application

Servers

>

server_name.

2.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Login

Mappings

>

New.

Authentication

Method:

Specifies

the

method

of

authentication.

You

can

use

any

string,

but

the

string

must

match

the

element

in

the

service-level

configuration.

The

following

words

are

reserved

and

have

special

meanings:

BasicAuth

Uses

both

a

user

name

and

a

password

IDAssertion

Uses

only

a

user

name,

but

requires

that

additional

trust

is

established

on

the

receiving

server

using

a

TrustedIDEvaluator

460

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Signature

Uses

the

distinguished

name

(DN)

of

the

signer.

LTPA

Validates

a

token

JAAS

Configuration

Name:

Specifies

the

name

of

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration.

Specify

your

JAAS

configurations

using

the

administrative

console

by

clicking

Security

>

JAAS

Configuration

>

Application.

Callback

Handler

Factory

Class

Name:

Specifies

the

name

of

the

factory

for

the

CallbackHandler

class.

You

must

implement

the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

class

in

this

field.

Default:

com.ibm.wsspi.wssecurity.auth.

callback.CallbackHandlerFactory

Token

Type

URI:

Specifies

the

namespace

Uniform

Resource

Identifiers

(URI),

which

denotes

the

type

of

security

token

accepted.

If

binary

security

tokens

are

accepted,

the

value

denotes

the

ValueType

attribute

in

the

element.

The

ValueType

element

identifies

the

type

of

security

token

and

its

namespace.

If

eXtensible

Markup

Language

(XML)

tokens

are

accepted,

the

value

denotes

the

top-level

element

name

of

the

XML

token.

If

the

reserved

words

are

specified

previously

in

the

Authentication

Method

field,

this

field

is

ignored.

Data

type:

Unicode

characters

except

for

non-ASCII

characters,

but

including

the

number

sign

(#),

the

percent

sign

(%),

and

the

square

brackets

([

]).

Token

Type

Local

Name:

Specifies

the

local

name

of

the

security

token

type,

for

example,

X509v3.

If

binary

security

tokens

are

accepted,

the

value

denotes

the

ValueType

attribute

in

the

element.

The

ValueType

attribute

identifies

the

type

of

security

token

and

its

namespace.

If

eXtensible

Markup

Language

(XML)

tokens

are

accepted,

the

value

denotes

the

top-level

element

name

of

the

XML

token.

If

the

reserved

words

are

specified

previously

in

the

Authentication

Method

field,

this

field

is

ignored.

Nonce

Maximum

Age:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

461

Specifies

the

time,

in

seconds,

before

the

nonce

time

stamp

expires.

Nonce

is

a

randomly

generated

value.

You

must

specify

a

minimum

of

300

seconds

for

the

Nonce

Maximum

Age

field.

However,

the

maximum

value

cannot

exceed

the

number

of

seconds

specified

in

the

Nonce

Cache

Timeout

field

for

either

the

server

level

or

the

cell

level.

You

can

specify

the

Nonce

Maximum

Age

value

for

the

server

level

by

clicking

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

You

can

specify

the

Nonce

Maximum

Age

value

for

the

cell

level

by

clicking

Security

>

Web

Services

>

Properties.

Important:

The

Nonce

Maximum

Age

field

on

this

panel

is

optional

and

only

valid

if

the

BasicAuth

authentication

method

is

specified.

If

you

specify

another

authentication

method

and

attempt

to

specify

values

for

this

field,

the

following

error

message

displays

and

you

must

remove

the

specified

value:

Nonce

is

not

supported

for

authentication

methods

other

than

BasicAuth.

If

you

specify

BasicAuth,

but

do

not

specify

values

for

the

Nonce

Maximum

Age

field,

the

Web

services

security

run

time

searches

for

a

Nonce

Maximum

Age

value

on

the

server

level.

If

a

value

is

not

found

on

the

server

level,

the

run

time

searches

the

cell

level.

If

a

value

is

not

found

on

either

the

server

level

or

the

cell

level,

the

default

is

300

seconds.

Default

300

seconds

Range

300

to

Nonce

Cache

Timeout

seconds

Nonce

Clock

Skew:

Specifies

the

clock

skew

value,

in

seconds,

to

consider

when

WebSphere

Application

Server

checks

the

freshness

of

the

message.

Nonce

is

a

randomly

generated

value.

You

must

specify

a

minimum

of

0

seconds

for

the

Nonce

Clock

Skew

field.

However,

the

maximum

value

cannot

exceed

the

number

of

seconds

specified

in

the

Nonce

Maximum

Age

on

this

Login

Mappings

panel.

Important:

The

Nonce

Clock

Skew

field

on

this

panel

is

optional

and

only

valid

if

the

BasicAuth

authentication

method

is

specified.

If

you

specify

another

authentication

method

and

attempt

to

specify

values

for

this

field,

the

following

error

message

displays

and

you

must

remove

the

specified

value:

Nonce

is

not

supported

for

authentication

methods

other

than

BasicAuth.

If

you

specify

BasicAuth,

but

do

not

specify

values

for

the

Nonce

Clock

Skew

field,

the

Web

services

security

run

time

searches

for

a

Nonce

Clock

Skew

value

on

the

server

level.

If

a

value

is

not

found

on

the

server

level,

the

run

time

searches

the

cell

level.

If

a

value

is

not

found

on

either

the

server

level

or

the

cell

level,

the

default

is

0

seconds.

Default

0

seconds

Range

0

to

Nonce

Maximum

Age

seconds

462

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit.

v

Configuring

the

client

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

message

parts

to

digitally

sign

when

configuring

the

client

for

request

signing:

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

clickWindows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

5.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit.

6.

Expand

Request

Sender

Configuration

>

Integrity.

Integrity

refers

to

digital

signature

while

confidentiality

refers

to

encryption.

Integrity

decreases

the

risk

of

data

modification

while

the

data

is

transmitted

across

the

Internet.

For

more

information

on

digitally

signing

SOAP

messages,

see

XML

digital

signature.

7.

Select

the

parts

of

the

message

in

which

to

sign

by

clicking

Add

and

selecting

one

of

the

following

three

parts:

body,

timestamp,

or

SecurityToken

The

following

is

a

list

and

description

of

the

message

parts

Body

This

is

the

user

data

portion

of

the

message.

Timestamp

The

timestamp

determines

if

the

message

is

valid

based

on

the

time

the

message

was

sent

and

then

received.

If

timestamp

is

selected,

proceed

to

the

next

step

to

Add

Created

Time

Stamp

to

the

message.

Securitytoken

The

security

token

authenticates

the

client.

If

securitytoken

is

selected,

the

message

is

signed.

You

can

choose

to

digitally

sign

the

message

using

a

time

stamp

if

Add

Created

Time

Stamp

is

selected

and

configured.

You

can

digitally

sign

the

message

using

a

security

token

if

a

login

configuration

authentication

method

is

selected.

8.

Optional:

Expand

the

Add

Created

Time

Stamp

section

and

select

this

option

if

you

want

a

time

stamp

added

to

the

message

You

can

specify

an

expiration

time

for

the

time

stamp,

which

helps

defend

against

replay

attacks.

The

lexical

representation

for

duration

is

the

[ISO

8601]

extended

format

PnYnMnDTnHnMnS,

where:

v

nY

represents

the

number

of

years

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

463

v

nM

represents

the

number

of

months

v

nD

represents

the

number

of

days

v

T

is

the

date

and

time

separator

v

nH

represents

the

number

of

hours

v

nM

represents

the

number

of

minutes

v

nS

represents

the

number

of

seconds.

The

number

of

seconds

can

include

decimal

digits

to

arbitrary

precision.

For

example,

to

indicate

a

duration

of

1

year,

2

months,

3

days,

10

hours,

and

30

minutes,

the

format

is:

P1Y2M3DT10H30M.

Typically,

configure

a

message

time

stamp

for

about

10

to

30

minutes,

which

is

P0Y0M0DT0H10M0S.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actorfield.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

message

parts

to

digitally

sign

when

the

client

sends

a

message

to

a

server.

Once

you

have

specified

which

message

parts

to

digitally

sign,

you

must

specify

which

method

is

used

to

digitally

sign

the

message.

See

Configuring

the

client

for

request

signing:

choosing

the

digital

signature

method

for

more

information.

464

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuring

the

client

for

request

signing:

choosing

the

digital

signature

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

client

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Also,

you

must

specify

which

parts

of

the

message

sent

by

the

client

must

be

digitally

signed.

See

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

for

more

information.

Complete

the

following

steps

to

specify

which

message

parts

to

digitally

sign

when

configuring

the

client

for

request

signing:

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

clickWindows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

5.

Click

the

Port

Binding

tab.

6.

Expand

Security

Request

Sender

Binding

Configuration

>

Signing

Information.

7.

Select

Edit

to

view

the

signing

information

and

select

a

digital

signature

method

from

the

Signature

method

algorithm

field.

The

following

table

describes

the

purpose

of

this

information.

Some

of

these

definitions

are

based

on

the

XML-Signature

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmldsig-core.

Name

Purpose

Canonicalization

method

algorithm

The

canonicalization

method

algorithm

is

used

to

canonicalize

the

<SignedInfo>

element

before

it

is

digested

as

part

of

the

signature

operation.

Digest

method

algorithm

The

digest

method

algorithm

is

the

algorithm

applied

to

the

data

after

transforms

are

applied,

if

specified,

to

yield

the

<DigestValue>

element.

The

signing

of

the

<DigestValue>

element

binds

resource

content

to

the

signer

key.

The

algorithm

selected

for

the

client

request

sender

configuration

must

match

the

algorithm

selected

in

the

server

request

receiver

configuration.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

465

Name

Purpose

Signature

method

algorithm

The

signature

method

is

the

algorithm

that

is

used

to

convert

the

canonicalized

<SignedInfo>

element

into

the

<SignatureValue>

element.

The

algorithm

selected

for

the

client

request

sender

configuration

must

match

the

algorithm

selected

in

the

server

request

receiver

configuration.

Signing

key

name

The

signing

key

name

represents

the

key

entry

associated

with

the

signing

key

locator.

The

key

entry

refers

to

an

alias

of

the

key,

which

is

used

to

sign

the

request.

Signing

key

locator

The

signing

key

locator

represents

a

reference

to

a

key

locator

implementation.

The

signing

key

name

refers

to

a

key

entry

associated

with

the

signing

key

locator.

The

key

entry

has

an

alias,

which

is

found

in

the

key

store

or

wherever

the

certificates

are

stored

based

upon

the

key

locator

implementation.

The

signing

key

locator

references

the

implementation

class

that

locates

the

correct

keystore

where

the

alias

and

certificate

exists.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actorfield.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

466

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

method

is

used

to

digitally

sign

a

message

when

the

client

sends

a

message

to

a

server.

Once

you

have

configured

the

client

to

digitally

sign

the

message,

you

must

configure

the

server

to

verify

the

digital

signature.

See

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

for

more

information.

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

server

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

You

can

use

these

two

tabs

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Also,

you

must

specify

which

parts

of

the

message

sent

by

the

client

must

be

digitally

signed.

See

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

to

determine

which

message

parts

are

digitally

signed.

The

message

parts

specified

for

the

client

request

sender

must

match

the

message

parts

specified

for

the

server

request

receiver.

Complete

the

following

steps

to

configure

the

server

for

request

digital

signature

verification.

The

steps

describe

how

to

modify

the

extensions

to

indicate

which

parts

of

the

request

to

verify.

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

click

Windows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

5.

Click

the

Security

Extensions

tab

in

the

Web

Services

Editor.

6.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Required

Integrity

section.

Required

integrity

refers

to

the

parts

of

the

message

that

require

digital

signature

verification.

The

purpose

of

digital

signature

verification

is

to

make

sure

that

the

message

parts

have

not

been

modified

while

it

was

transmitted

across

the

Internet.

7.

Select

the

parts

of

the

message

to

verify

by

clicking

Add

and

selecting

one

of

the

following

three

parts:

body,

timestamp,

or

SecurityToken.

You

can

determine

which

parts

of

the

message

to

verify

by

looking

at

the

Web

Service

Request

Sender

Configuration

in

the

client

application.

To

view

the

Web

Service

Request

Sender

Configuration

information

in

the

Web

Services

Client

Editor,

click

the

Security

Extensions

tab

and

expand

Request

Sender

Configuration

>

Integrity.

The

following

information

is

a

list

and

description

of

the

message

parts:

Body

This

is

the

user

data

portion

of

the

message.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

467

Timestamp

The

timestamp

determines

if

the

message

is

valid

based

on

the

time

the

message

is

sent

and

then

received.

If

timestamp

is

selected,

proceed

to

the

next

step

to

Add

Created

Time

Stamp

to

the

message.

Securitytoken

The

security

token

authenticates

the

client.

If

securitytoken

is

selected,

the

message

is

signed.
8.

Optional:

Expand

the

Add

Received

Time

Stamp

section.

The

Add

Received

Time

Stamp

indicates

to

validate

the

Add

Created

Time

Stamp

configured

by

the

client.

You

must

select

option

this

if

you

selected

Add

Created

Time

Stamp

on

the

client.

The

time

stamp

ensures

message

integrity

by

indicating

the

freshness

of

the

request.

This

option

helps

to

defend

against

replay

attacks.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

message

parts

are

digitally

signed

and

must

be

verified

by

the

server

when

the

client

sends

a

message

to

a

server.

After

you

have

specified

what

message

parts

contain

a

digital

signature

that

must

be

verified

by

the

server,

you

must

configure

the

server

to

recognize

the

digital

468

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

signature

method

used

to

digitally

sign

the

message.

See

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method

for

more

information.

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

server

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

You

can

use

these

two

tabs

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Also,

you

must

specify

which

message

parts

contain

digital

signature

information

that

must

be

verified

by

the

server.

See

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

to

specify

which

message

parts

are

digitally

signed

by

the

client

and

must

be

verified

by

the

server.

The

message

parts

specified

for

the

client

request

sender

must

match

the

message

parts

specified

for

the

server

request

receiver.

Likewise,

the

digital

signature

method

chosen

for

the

client

must

match

the

digital

signature

method

used

by

the

server.

Complete

the

following

steps

to

configure

the

server

for

request

digital

signature

verification.

The

steps

describe

how

to

modify

the

extensions

to

indicate

which

digital

signature

method

the

server

will

use

during

verification.

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

click

Windows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

5.

Click

the

Binding

Configurations

tab.

6.

Expand

the

Security

Request

Receiver

Binding

Configuration

Details

>

Signing

Information

section.

7.

Click

Edit

to

edit

the

signing

information.

The

signing

info

dialog

displays

and

either

select

or

enter

the

following

information:

v

Canonicalization

method

algorithm

v

Digest

method

algorithm

v

Signature

method

algorithm

v

Use

certificate

path

reference

v

Trust

anchor

reference

v

Certificate

store

reference

v

Trust

any

certificate

For

more

conceptual

information

on

digitally

signing

SOAP

messages,

see

XML

digital

signature.

The

following

table

describes

the

purpose

for

each

of

these

selections.

Some

of

the

following

definitions

are

based

on

the

XML-Signature

specification,

which

can

be

found

at:

http://www.w3.org/TR/xmldsig-core.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

469

http://www.w3.org/TR/xmldsig-core

Name

Purpose

Canonicalization

method

algorithm

The

canonicalization

method

algorithm

is

used

to

canonicalize

the

<SignedInfo>

element

before

it

is

digested

as

part

of

the

signature

operation.

The

algorithm

selected

for

the

server

request

receiver

configuration

must

match

the

algorithm

selected

in

the

client

request

sender

configuration.

Digest

method

algorithm

The

digest

method

algorithm

is

the

algorithm

applied

to

the

data

after

transforms

are

applied,

if

specified,

to

yield

the

<DigestValue>.

The

signing

of

the

<DigestValue>

binds

resource

content

to

the

signer

key.

The

algorithm

selected

for

the

server

request

receiver

configuration

must

match

the

algorithm

selected

in

the

client

request

sender

configuration.

Signature

method

algorithm

The

signature

method

is

the

algorithm

that

is

used

to

convert

the

canonicalized

<SignedInfo>

element

into

the

<SignatureValue>

element.

The

algorithm

selected

for

the

server

request

receiver

configuration

must

match

the

algorithm

selected

in

the

client

request

sender

configuration.

Use

certificate

path

reference

or

Trust

any

certificate

When

a

message

is

signed,

the

public

key

used

to

sign

it

is

sent

with

the

message.

This

public

key

or

certificate

might

not

be

validated

at

the

receiving

end.

By

selecting

User

certificate

path

reference,

you

must

configure

a

trust

anchor

reference

and

a

certificate

store

reference

to

validate

the

certificate

sent

with

the

message.

By

selecting

Trust

any

certificate,

the

signature

is

validated

by

the

certificate

sent

with

the

message

without

the

certificate

itself

being

validated.

Use

certificate

path

reference:

Trust

anchor

reference

A

trust

anchor

is

a

configuration

that

refers

to

a

key

store

that

contains

trusted,

self-signed

certificates

and

certificate

authority

(CA)

certificates.

These

certificates

are

trusted

certificates

that

you

can

use

with

any

applications

in

your

deployment.

Use

certificate

path

reference:

Certificate

store

reference

A

certificate

store

is

a

configuration

that

has

a

collection

of

X.509

certificates.

These

certificates

are

not

trusted

for

all

applications

in

your

deployment,

but

might

be

used

as

an

intermediary

to

validate

certificates

for

an

application.

See

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

470

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

method

the

server

uses

to

verify

the

digital

signature

in

the

message

parts.

After

you

configure

the

client

for

request

signing

and

the

server

for

request

digital

signature

verification,

you

must

configure

the

server

and

the

client

to

handle

the

response.

Next,

specify

the

response

signing

for

the

server.

See

Configuring

the

server

for

response

signing:

digitally

signing

message

parts

for

more

information.

Configuring

the

server

for

response

signing:

digitally

signing

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

server

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

message

parts

to

digitally

sign

when

configuring

the

server

for

response

signing:

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

clickWindows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

471

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

5.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit.

6.

Expand

Response

Sender

Service

Configuration

Details

>

Integrity.

Integrity

refers

to

digital

signature

while

confidentiality

refers

to

encryption.

Integrity

decreases

the

risk

of

data

modification

while

the

data

is

transmitted

across

the

Internet.

For

more

information

on

digitally

signing

SOAP

messages,

see

XML

digital

signature.

7.

Select

the

parts

of

the

message

in

which

to

sign

by

clicking

Add

and

selecting

Body,

Timestamp,

or

Securitytoken.

Body

The

body

is

the

user

data

portion

of

the

message.

Timestamp

The

timestamp

determines

if

the

message

is

valid

based

on

the

time

that

the

message

is

sent

and

then

received.

If

timestamp

if

selected,

proceed

to

the

next

step

to

Add

Created

Time

Stamp

to

the

message.

Securitytoken

If

security

token

is

selected,

the

authentication

information

is

added

to

the

message.
8.

Optional:

Expand

the

Add

Created

Time

Stamp

section.

Select

this

option

if

you

want

to

add

a

time

stamp

to

the

message.

Also,

you

can

specify

an

expiration

time

for

the

time

stamp,

which

helps

defend

against

replay

attacks.

The

lexical

representation

for

duration

is

the

ISO

8601

extended

format,

PnYnMnDTnHnMnS,

where:

v

nY

represents

the

number

of

years.

v

nM

represents

the

number

of

months.

v

nD

represents

the

number

of

days.

v

T

is

the

date

and

time

separator.

v

nH

represents

the

number

of

hours.

v

nM

represents

the

number

of

minutes.

v

nS

represents

the

number

of

seconds.

The

number

of

seconds

can

include

decimal

digits

to

arbitrary

precision.

For

example,

if

you

want

to

indicate

a

duration

of

1

year,

2

months,

3

days,

10

hours,

and

30

minutes,

write:

P1Y2M3DT10H30M.

Typically,

a

message

time

stamp

is

configured

for

about

10

to

30

minutes.

10

minutes

is

represented

as:

P0Y0M0DT0H10M0S.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

472

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

message

parts

to

digitally

sign

when

the

server

sends

a

response

to

the

client.

Once

you

have

specified

which

message

parts

to

digitally

sign,

you

must

specify

which

method

is

used

to

digitally

sign

the

message.

See

Configuring

the

server

for

response

signing:

choosing

the

digital

signature

method

for

more

information.

Configuring

the

server

for

response

signing:

choosing

the

digital

signature

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

server

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

digital

signature

method

to

use

when

configuring

the

server

for

response

signing:

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

click

Windows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

5.

Click

the

Binding

Configurations

tab.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

473

6.

Expand

Response

Sender

Binding

Configuration

Details

>

Signing

Information.

7.

Click

Edit

to

choose

a

signing

method.

The

signing

info

dialog

displays

and

either

select

or

enter

the

following

information:

v

Canonicalization

method

algorithm

v

Digest

method

algorithm

v

Signature

method

algorithm

v

Signing

key

name

v

Signing

key

locator

The

following

table

describes

the

purpose

of

this

information.

Some

of

these

definitions

are

based

on

the

XML-Signature

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmldsig-core.

Name

Purpose

Canonicalization

method

algorithm

The

canonicalization

method

algorithm

is

used

to

canonicalize

the

<SignedInfo>

element

before

it

is

digested

as

part

of

the

signature

operation.

The

same

algorithm

used

here

should

also

be

used

on

the

client

response

receiver.

The

algorithm

selected

for

the

server

response

sender

configuration

must

match

the

algorithm

selected

in

the

client

response

receiver

configuration.

Digest

method

algorithm

The

digest

method

algorithm

is

the

algorithm

applied

to

the

data

after

transforms

are

applied,

if

specified,

to

yield

the

<DigestValue>

element.

The

signing

of

the

DigestValue

binds

resource

content

to

the

signer

key.

The

algorithm

selected

for

the

server

response

sender

configuration

must

match

the

algorithm

selected

in

the

client

response

receiver

configuration.

Signature

method

algorithm

The

signature

method

is

the

algorithm

that

is

used

to

convert

the

canonicalized

<SignedInfo>

element

into

the

<SignatureValue>

element.

The

algorithm

selected

for

the

server

response

sender

configuration

must

match

the

algorithm

selected

in

the

client

response

receiver

configuration.

Signing

key

name

The

signing

key

name

represents

the

key

entry

associated

with

the

signing

key

locator.

The

key

entry

refers

to

an

alias

of

the

key,

which

is

used

to

sign

the

request.

Signing

key

locator

The

signing

key

locator

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

see

any

of

the

following

files:

v

Configuring

key

locators

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

key

locators

using

the

administrative

console

v

Configuring

server

and

cell

level

key

locators

using

the

administrative

console

474

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/xmldsig-core

The

Signing

key

name

refers

to

a

key

entry

associated

with

the

signing

key

locator.

The

key

entry

has

an

alias,

which

is

found

in

the

keystore

or

wherever

the

certificates

are

stored

based

upon

the

key

locator

implementation.

The

Signing

key

locator

references

the

implementation

class

that

locates

the

correct

key

store

where

the

alias

and

certificate

exists.

You

have

specified

which

method

is

used

to

digitally

sign

a

message

when

the

server

sends

a

message

to

a

client.

Once

you

have

configured

the

server

to

digitally

sign

the

response

message,

you

must

configure

the

client

to

verify

the

digital

signature

contained

in

the

response

message.

See

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

for

more

information.

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

becomes

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Servers

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Configuring

the

client

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

configure

the

client

for

response

digital

signature

verification.

The

steps

describe

how

to

modify

the

extensions

to

indicate

which

parts

of

the

response

to

verify.

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

click

Windows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

5.

Click

the

Security

Extensions

tab.

6.

Expand

the

Response

Receiver

Configuration

>

Required

Integrity

section.

Required

Integrity

refers

to

parts

that

require

digital

signature

verification.

Digital

signature

verification

decreases

the

risk

that

the

message

parts

have

been

modified

while

the

message

is

transmitted

across

the

Internet.

7.

Select

the

parts

of

the

message

that

must

be

verified.

You

can

determine

which

parts

of

the

message

to

select

by

looking

at

the

Web

service

response

sender

configuration.

To

add

parts

of

the

message,

click

Add

and

select

one

of

the

following

three

parts:

Body

This

is

the

user

data

portion

of

the

message.

Timestamp

The

time

stamp

determines

if

the

message

is

valid

based

on

the

time

the

message

was

sent

and

then

received.

If

timestamp

is

selected,

proceed

to

the

next

step

to

Add

Received

Time

Stamp

to

the

message.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

475

Securitytoken

The

security

token

authenticates

the

client.

If

Securitytoken

is

selected,

the

message

is

signed.
8.

Optional:

Expand

the

Add

Received

Time

Stamp

section.

Select

Add

Received

Time

Stamp

to

add

the

received

time

stamp

to

the

message.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

message

parts

are

digitally

signed

and

must

be

verified

by

the

client

when

the

server

sends

a

response

message

to

the

client.

After

you

have

specified

which

message

parts

contain

a

digital

signature

that

must

be

verified

by

the

client,

you

must

configure

the

client

to

recognize

the

digital

signature

method

used

to

digitally

sign

the

message.

See

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method

for

more

information.

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Editor

within

the

Application

Server

Toolkit:

476

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Configuring

the

server

security

bindings

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

You

can

use

these

two

tabs

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Also,

you

must

specify

which

message

parts

contain

digital

signature

information

that

must

be

verified

by

the

client.

See

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

to

specify

which

message

parts

are

digitally

signed

by

the

server

and

must

be

verified

by

the

client.

The

message

parts

specified

for

the

server

response

sender

must

match

the

message

parts

specified

for

the

client

response

receiver.

Likewise,

the

digital

signature

method

chosen

for

the

server

must

match

the

digital

signature

method

used

by

the

client.

Complete

the

following

steps

to

configure

the

client

for

response

digital

signature

verification.

The

steps

describe

how

to

modify

the

extensions

to

indicate

which

digital

signature

method

the

client

will

use

during

verification.

1.

Launch

the

WebSphere

Application

Server

Toolkit

and

either

click

Windows

>

Open

Prospective

>

Java

or

Windows

>

Open

Prospective

>

Resource.

2.

Select

the

Web

services

enabled

EJB

or

Web

module.

3.

In

the

Package

Explorer

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

4.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

5.

Click

the

Port

Binding

tab.

6.

Expand

the

Security

Response

Receiver

Binding

Configuration

>

Signing

Information

section.

7.

Click

Edit

to

select

a

digital

signature

method.

The

signing

info

dialog

displays

and

either

select

or

enter

the

following

information:

v

Canonicalization

method

algorithm

v

Digest

method

algorithm

v

Signature

method

algorithm

v

Signing

key

name

v

Signing

key

locator

For

more

conceptual

information

on

digitally

signing

SOAP

messages,

see

XML

digital

signature.

The

following

table

describes

the

purpose

for

each

of

these

selections.

Some

of

the

following

definitions

are

based

on

the

XML-Signature

specification,

which

can

be

found

at:

http://www.w3.org/TR/xmldsig-core.

Name

Purpose

Canonicalization

method

algorithm

The

canonicalization

method

algorithm

is

used

to

canonicalize

the

<SignedInfo>

element

before

it

is

digested

as

part

of

the

signature

operation.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

477

http://www.w3.org/TR/xmldsig-core

Name

Purpose

Digest

method

algorithm

The

digest

method

algorithm

is

the

algorithm

applied

to

the

data

after

transforms

are

applied,

if

specified,

to

yield

the

<DigestValue>.

The

signing

of

the

<DigestValue>

binds

resource

content

to

the

signer

key.

The

algorithm

selected

for

the

client

response

receiver

configuration

must

match

the

algorithm

selected

in

the

server

response

sender

configuration.

Signature

method

algorithm

The

signature

method

is

the

algorithm

that

is

used

to

convert

the

canonicalized

<SignedInfo>

element

into

the

<SignatureValue>

element.

The

algorithm

selected

for

the

client

response

receiver

configuration

must

match

the

algorithm

selected

in

the

server

response

sender

configuration.

Use

certificate

path

reference

or

Trust

any

certificate

When

a

message

is

signed,

the

public

key

used

to

sign

it

is

transmitted

with

the

message.

To

validate

this

public

key

at

the

receiving

end,

configure

a

certificate

path

reference.

By

selecting

User

certificate

path

reference,

you

must

configure

a

trust

anchor

reference

and

certificate

store

reference

to

validate

the

certificate

sent

with

the

message.

By

selecting

trust

any

certificate,

the

signature

is

validated

by

the

certificate

sent

with

the

message

without

the

certificate

itself

being

validated.

Use

certificate

path

reference:

Trust

anchor

reference

A

trust

anchor

is

a

configuration

that

refers

to

a

keystore

that

contains

trusted,

self-signed

certificates

and

certificate

authority

(CA)

certificates.

These

certificates

are

trusted

certificates

that

you

can

use

with

any

applications

in

your

deployment.

Use

certificate

path

reference:

Certificate

store

reference

A

certificate

store

is

a

configuration

that

has

a

collection

of

X.509

certificates.

These

certificates

are

not

trusted

for

all

applications

in

your

deployment,

but

might

be

used

as

an

intermediary

to

validate

certificates

for

an

application.

Important:

If

you

configure

the

client

and

server

signing

information

correctly,

but

receive

a

Soap

body

not

signed

error

when

executing

the

client,

you

might

need

to

configure

the

actor.

You

can

configure

the

actor

in

the

following

locations

on

the

client

in

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Client

Service

Configuration

Details

and

indicate

the

actor

information

in

the

Actor

URI

field.

v

Click

Security

Extensions

>

Request

Sender

Configuration

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

You

must

configure

the

same

actor

strings

for

the

Web

service

on

the

server,

which

processes

the

request

and

sends

the

response

back.

478

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configure

the

actor

in

the

following

locations

in

the

Web

Services

Editor

within

the

WebSphere

Application

Server

Toolkit:

v

Click

Security

Extensions

>

Server

Service

Configuration.

v

Click

Security

Extensions

>

Response

Sender

Service

Configuration

Details

>

Details

and

indicate

the

actor

information

in

the

Actor

field.

The

actor

information

on

both

the

client

and

server

must

refer

to

the

same

exact

string.

When

the

actor

fields

on

the

client

and

server

match,

the

request

or

response

is

acted

upon

instead

of

being

forwarded

downstream.

The

actor

fields

might

be

different

when

you

have

Web

services

acting

as

a

gateway

to

other

Web

services.

However,

in

all

other

cases,

make

sure

that

the

actor

information

matches

on

the

client

and

server.

When

Web

services

are

acting

as

a

gateway

and

they

do

not

have

the

same

actor

configured

as

the

request

passing

through

the

gateway,

Web

services

do

not

process

the

message

from

a

client.

Instead,

these

Web

services

send

the

request

downstream.

The

downstream

process

that

contains

the

correct

actor

string

processes

the

request.

The

same

situation

occurs

for

the

response.

Therefore,

it

is

important

that

you

verify

that

the

appropriate

client

and

server

actor

fields

are

synchronized.

You

have

specified

which

method

the

client

uses

to

verify

the

digital

signature

in

the

message

parts.

After

you

configure

the

server

for

response

signing

and

the

client

for

request

digital

signature

verification,

verify

that

you

have

configured

the

client

and

the

server

to

handle

the

message

request.

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

When

configuring

a

client

for

Web

services

security,

the

bindings

describe

how

to

execute

the

security

specifications

found

in

the

extensions.

Use

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit

to

include

the

binding

information

in

the

client

enterprise

archive

(EAR)

file.

You

can

configure

the

client-side

bindings

from

a

pure

client

accessing

a

Web

service

or

from

a

Web

service

accessing

a

downstream

Web

service.

This

document

focuses

on

the

pure

client

situation.

However,

the

concepts,

and

in

most

cases

the

steps,

also

apply

when

a

Web

service

is

configured

to

communicate

downstream

to

another

Web

service

that

has

client

bindings.

Complete

the

following

steps

to

edit

the

security

bindings

on

a

pure

client

(or

server

acting

as

a

client)

using

the

Assembly

Toolkit:

1.

Import

the

Web

services

client

EAR

file

into

the

Assembly

Toolkit.

When

you

edit

the

client

bindings

on

a

server

acting

as

a

client,

the

same

basic

steps

apply.

Complete

the

following

steps

to

import

your

client

EAR

file

into

the

Assembly

Toolkit.

Refer

to

the

Assembly

Toolkit

documentation

for

additional

information.

a.

Download

and

install

the

Assembly

Toolkit.

You

can

download

the

Assembly

Toolkit

from

the

following

Web

site:

http://www.ibm.com

/support/docview.wss?rs=180&context=SSEQTP&q=

ASTK&uid=swg24005125&loc=

en_US&cs

=utf-8&lang=en+en

b.

Start

the

Assembly

Toolkit

and

open

the

Java

Perspective

by

selecting

Window

>

Open

Perspective

>

J2EE.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

479

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

c.

Import

the

client

EAR

file

by

selecting

File

>

Import

>

EAR

file.

d.

Click

Next.

e.

Enter

the

path

name

to

the

EAR

file

in

the

EAR

File

field

or

click

Browse

to

locate

the

file.

f.

Enter

the

project

name

in

the

Project

name

field.

g.

Click

Finish.
2.

Open

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit

to

begin

editing

the

client

bindings.

To

access

the

client

bindings

using

the

Assembly

Toolkit,

complete

the

following

steps:

a.

Open

the

Navigator

by

clicking

Window

>

Show

View

>

Navigator.

b.

Expand

your

application

Java

archive

(JAR)

from

the

Navigator.

c.

Expand

the

J2EE

client

application

(appClientModule,

ejbModule,

or

WebContent),

which

should

be

part

of

the

client

JAR

package

that

you

selected.

d.

Expand

the

META-INF

directory

and

locate

the

webservicesclient.xml

file.

e.

Right-click

the

webservicesclient.xml

file

and

click

Open

With

>

Web

Services

Client

Editor.

In

the

Web

Services

Client

Editor

(for

webservicesclient.xml

and

outbound

requests

and

inbound

responses

Web

services

configuration),

there

are

several

tabs

at

the

bottom

of

the

editor

including

Service

References,

Handlers,

Security

Extensions,

Web

Services

Client

Binding,

and

Port

Binding.

The

security

extensions

are

edited

using

the

Security

Extensions

tab.

The

security

bindings

are

edited

using

the

Port

Binding

tab.
3.

On

the

Security

Extensions

tab,

select

the

port

qualified

name

bindings

that

you

want

to

configure.

The

Web

services

security

extensions

are

configured

for

outbound

requests

and

inbound

responses.

You

need

to

configure

the

following

information

for

Web

services

security

extensions.

These

topics

are

discussed

in

more

detail

in

other

sections

of

the

documentation.

Request

sender

configuration

details

Details

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

Integrity

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

Confidentiality

Configuring

the

client

for

request

encryption:

encrypting

the

message

parts

Login

Config

BasicAuth

Configuring

the

client

for

basicauth

authentication:

specifying

the

method

IDAssertion

Configuring

the

client

for

identity

assertion

authentication:

specifying

the

method

Signature

Configuring

the

client

for

signature

authentication:

specifying

the

method

480

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

LTPA

Configuring

the

client

for

LTPA

token

authentication:

specifying

LTPA

token

authentication

ID

Assertion

Configuring

the

client

for

identity

assertion

authentication:

specifying

the

method

Add

Created

Time

Stamp

Configuring

the

client

for

request

signing:

digitally

signing

message

parts

Response

receiver

configuration

details

Required

Integrity

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts

Required

Confidentiality

Configuring

the

client

for

response

decryption:

decrypting

message

parts

Add

Received

Time

Stamp

Configuring

the

client

for

response

digital

signature

verification:

verifying

the

message

parts
4.

From

the

Port

Binding

tab,

select

the

port

qualified

name

binding

that

you

want

to

configure.

The

Web

services

security

bindings

are

configured

for

outbound

requests

and

inbound

responses.

You

need

to

configure

the

following

information

for

Web

services

security

bindings.

These

topics

are

discussed

in

more

details

in

other

sections

of

the

documentation.

Security

request

sender

binding

configuration

Signing

information

Configuring

the

client

for

request

signing:

choosing

the

digital

signature

method

Encryption

information

Configuring

the

client

for

request

encryption:

choosing

the

encryption

method

Key

locators

Configuring

key

locators

using

the

Assembly

Toolkit

Login

binding

Basic

auth

Configuring

the

client

for

basicauth

authentication:

collecting

the

authentication

information

ID

assertion

Configuring

the

client

for

identity

assertion:

Collecting

the

authentication

method

Signature

Configuring

the

client

for

signature

authentication:

collecting

the

authentication

information

LTPA

Configuring

the

client

for

LTPA

token

authentication:

Collecting

the

authentication

method

information

Security

response

receiver

binding

configuration

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

481

Signing

information

Configuring

the

client

for

response

digital

signature

verification:

choosing

the

verification

method

Encryption

information

Configuring

the

client

for

response

decryption:

choosing

a

decryption

method

Trust

anchor

Configuring

trust

anchors

using

the

Assembly

Toolkit

Certificate

store

list

Configuring

the

client-side

collection

certificate

store

using

the

Application

Server

Toolkit

Key

locators

Configuring

key

locators

using

the

Assembly

Toolkit

Important:

When

configuring

the

Security

Request

Sender

Binding

Configuration,

you

must

synchronize

the

information

used

to

perform

the

specified

security

with

the

Security

Request

Receiver

Binding

Configuration,

which

is

configured

in

the

server

EAR

file.

These

two

configurations

must

be

synchronized

in

all

respects

as

there

is

no

negotiation

during

run

time

to

figure

out

the

requirements

of

the

server.

For

example,

when

configuring

the

encryption

information

in

the

Security

Request

Sender

Binding

Configuration,

you

must

use

the

public

key

from

the

server

for

encryption.

Therefore,

the

key

locator

that

you

choose

must

contain

the

public

key

from

the

server

configuration.

The

server

must

contain

the

private

key

to

decrypt

the

message.

This

is

an

example

of

how

the

client

and

server

configuration

are

tightly

coupled.

Additionally,

when

configuring

the

Security

Response

Receiver

Binding

Configuration,

the

server

must

send

the

response

using

security

information

known

by

this

client

Security

Response

Receiver

Binding

Configuration.

The

following

table

shows

the

related

configurations

between

the

client

and

server.

The

client

request

sender

and

server

request

receiver

are

relative

configurations

that

must

be

synchronized

with

each

other.

The

server

response

sender

and

client

response

receiver

are

related

configurations

that

must

be

synchronized

with

each

other.

Note

that

related

configurations

are

end

points

for

any

request

or

response.

One

end

point

must

communicate

its

actions

with

the

other

end

point

because

they

do

not

negotiate

any

run

time

requirements.

Table

3.

Related

configurations

Client

configuration

Server

configuration

Request

sender

Request

receiver

Response

receiver

Response

sender

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

When

configuring

a

client

for

Web

services

security,

the

bindings

describe

how

to

execute

the

security

specifications

found

in

the

extensions.

Use

the

Web

Services

Client

Editor

within

the

WebSphere

Application

Server

Toolkit

to

include

the

binding

information

in

the

client

enterprise

archive

(EAR)

file.

482

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

can

configure

the

client-side

bindings

from

a

pure

client

accessing

a

Web

service

or

from

a

Web

service

accessing

a

downstream

Web

service.

Complete

the

following

steps

to

find

the

location

in

which

to

edit

the

client

bindings

from

a

Web

service

that

is

running

on

the

server.

When

a

Web

service

communicates

with

another

Web

service,

you

must

configure

client

bindings

to

access

the

downstream

Web

service.

1.

Deploy

the

Web

service

using

the

WebSphere

Application

Server

administrative

console

by

clicking

Applications

>

Install

New

Application.

You

can

access

the

administrative

console

by

typing

http://localhost:9090/admin

in

your

Web

browser

unless

you

have

changed

the

port

number.

For

more

information

on

installing

an

application,

see

Installing

a

new

application

2.

Click

Applications

>

Enterprise

Applications

>

application_name.

3.

Under

Related

Items,

click

either

Web

Modules

or

EJB

Modules

depending

upon

which

type

of

service

is

the

client

to

the

downstream

service.

v

For

Web

Modules,

click

the

Web

Archive

(WAR)

file

that

you

configured

as

the

client.

v

For

EJB

Modules,

click

the

Java

Archive

(JAR)

file

that

you

configured

as

the

client.
4.

Click

the

name

of

the

WAR

or

JAR

file.

5.

Under

Additional

Properties,

click

Web

Services:

Client

Security

Bindings.

A

table

displays

with

the

following

columns:

v

Component

Name

v

Port

v

Web

Service

v

Request

Sender

Binding

v

Request

Receiver

Binding

v

HTTP

Basic

Authentication

v

HTTP

SSL

Configuration

For

Web

services

security,

you

must

edit

the

Request

Sender

Binding

and

Response

Receiver

Binding

configurations.

You

can

use

the

defaults

for

some

of

the

information

at

the

server

level

(and

at

the

cell

level

for

some

information).

Default

bindings

are

convenient

because

you

can

configure

commonly

reused

elements

such

as

key

locators

once

and

then

reference

their

aliases

in

the

application

bindings.

6.

View

the

default

bindings

for

the

server

using

the

Administrative

Console

by

clicking

Servers

>

Application

Server

>

server1.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security.

You

can

configure

the

following

sections.

These

topics

are

discussed

in

more

detail

in

other

sections

of

the

documentation.

v

Request

sender

binding

–

Signing

information

–

Encryption

information

–

Key

locators

–

Login

bindings
v

Response

receiver

binding

–

Signing

information

–

Encryption

information

–

Trust

anchors

–

Collection

certificate

store

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

483

–

Key

locators

Important:

When

configuring

the

Security

Request

Sender

Binding

Configuration,

you

must

synchronize

the

information

used

to

perform

the

specified

security

with

the

Security

Request

Receiver

Binding

Configuration,

which

is

configured

in

the

server

EAR

file.

These

two

configurations

must

be

synchronized

in

all

respects

as

there

is

no

negotiation

during

run

time

to

figure

out

the

requirements

of

the

server.

For

example,

when

configuring

the

encryption

information

in

the

Security

Request

Sender

Binding

Configuration,

you

must

use

the

public

key

from

the

server

for

encryption.

Therefore,

the

key

locator

that

you

choose

must

contain

the

public

key

from

the

server

configuration.

The

server

must

contain

the

private

key

to

decrypt

the

message.

This

is

an

example

of

how

the

client

and

server

configuration

are

tightly

coupled.

Additionally,

when

configuring

the

Security

Response

Receiver

Binding

Configuration,

the

server

must

send

the

response

using

security

information

known

by

this

client

Security

Response

Receiver

Binding

Configuration.

The

following

table

shows

the

related

configurations

between

the

client

and

server.

The

client

request

sender

and

server

request

receiver

are

relative

configurations

that

must

be

synchronized

with

each

other.

The

server

response

sender

and

client

response

receiver

are

related

configurations

that

must

be

synchronized

with

each

other.

Note

that

related

configurations

are

end

points

for

any

request

or

response.

One

end

point

must

communicate

its

actions

with

the

other

end

point

because

they

do

not

negotiate

any

run

time

requirements.

Table

4.

Related

configurations

Client

configuration

Server

configuration

Request

sender

Request

receiver

Response

receiver

Response

sender

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

Create

an

enterprise

JavaBean

(EJB)

file

Java

archive

(JAR)

file

or

Web

archive

(WAR)

file

containing

the

security

binding

file

(ibm-webservices-bnd.xmi)

and

the

security

extension

file

(ibm-webservices-ext.xmi).

If

this

archive

is

acting

as

a

client

to

a

downstream

service,

you

also

need

the

client-side

binding

file

(ibm-webservicesclient-bnd.xmi)

and

the

client-side

extension

file

(ibm-webservicesclient-ext.xmi).

These

files

are

generated

using

the

WSDL2Java

command.

You

can

edit

these

files

using

the

Web

Services

Editor

in

the

Assembly

Toolkit.

When

configuring

server-side

security

for

Web

services

security,

the

security

extensions

configuration

specifies

what

security

is

to

be

performed

while

the

security

bindings

configuration

indicates

how

to

perform

what

is

specified

in

the

security

extensions

configuration.

You

can

use

the

defaults

for

some

elements

at

the

cell

and

server

levels

in

the

bindings

configuration,

including

key

locators,

trust

anchors,

the

collection

certificate

store,

trusted

ID

evaluators,

and

login

mappings

and

reference

them

from

the

WAR

and

JAR

binding

configurations.

Prior

to

importing

the

Web

services

enterprise

archive

(EAR)

file

into

the

Assembly

Toolkit,

make

sure

that

you

have

already

run

the

wsdl2java

command

on

your

Web

service

to

enable

your

J2EE

application.

You

must

import

the

Web

services

484

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-3.ibm.com/software/webservers/appserv/was/support/
http://www-3.ibm.com/software/webservers/appserv/was/support/

enterprise

archive

(EAR)

file

into

the

Assembly

Toolkit.

Complete

the

following

steps

to

import

your

EAR

file

into

the

Assembly

Toolkit:

1.

Download,

install,

and

launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Import

the

application

EAR

file

by

clicking

File

>

Import

>

EAR

file.

4.

Click

Next

and

indicate

both

the

EAR

file

name

in

the

EAR

File

field

and

the

project

name

in

the

Project

name

field.

5.

Click

Finish.

Refer

to

Assembly

Toolkit

documentation

for

more

information.

Open

the

Web

Services

Editor

in

the

Assembly

Toolkit

to

begin

editing

the

server

security

extensions

and

bindings.

The

following

steps

will

help

you

locate

the

server

security

extensions

and

bindings.

Other

tasks

specify

how

to

configure

each

section

of

the

extensions

and

bindings

in

more

detail.

1.

Expand

your

application

module

from

the

Navigator.

If

the

Navigator

is

not

shown,

you

can

open

it

by

clicking

Window

>

Show

View

>

Navigator.

2.

If

your

application

is

a

Web

application

(WAR)

file,

the

following

steps

apply:

a.

Expand

the

WebContent

>

WEB-INF

section.

b.

Locate

the

webservices.xml

file.

The

webservices.xml

file

represents

the

server-side

(inbound)

Web

services

configuration.

The

webservicesclient.xml

file

represents

the

client-side

(outbound)

Web

services

configuration.

1)

To

configure

the

server

for

inbound

requests

and

outbound

responses

security

configuration,

right-click

the

webservices.xml

file

and

click

Open

With

>

Web

Services

Editor.

2)

To

configure

the

client

for

outbound

requests

and

inbound

responses

security

configuration,

right-click

the

webservicesclient.xml

file

and

click

Open

With

>

Web

Services

Client

Editor.

For

more

information,

see

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit.
3.

If

your

application

is

an

EJB

Application

(JAR),

the

following

steps

apply:

a.

Expand

the

ejbModule

>

META-INF

section.

b.

Locate

the

webservices.xml

file.

The

webservices.xml

file

represents

the

server-side

(inbound)

Web

services

configuration.

The

webservicesclient.xml

file

represents

the

client-side

(outbound)

Web

services

configuration.

1)

To

configure

the

server

for

inbound

requests

and

outbound

responses

security

configuration,

right-click

the

webservices.xml

file

and

click

Open

With

>

Web

Services

Editor.

2)

To

configure

the

client

for

outbound

requests

and

inbound

responses

security

configuration,

right-click

the

webservicesclient.xml

file

and

click

Open

With

>

Web

Services

Client

Editor.

For

more

information,

see

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit.
4.

In

the

Web

Services

Editor

(for

webservices.xml

and

inbound

requests

and

outbound

responses

Web

services

configuration),

there

are

several

tabs

at

the

bottom

of

the

editor

including

Web

Services,

Port

Components,

Handlers,

Security

Extensions,

Bindings,

and

Binding

Configurations.

The

security

extensions

are

edited

using

the

Security

Extensions

tab.

The

security

bindings

are

edited

using

the

Security

Bindings

tab.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

485

a.

On

the

Security

Extensions

tab,

select

the

port

component

binding

that

you

want

to

edit.

The

Web

services

security

extensions

are

configured

for

inbound

requests

and

outbound

responses.

You

need

to

configure

the

following

information

for

Web

services

security

extensions.

These

topics

are

discussed

in

more

detail

in

other

sections

of

the

documentation.

Request

receiver

service

configuration

details

Required

integrity

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

Required

confidentiality

Configuring

the

server

for

request

decryption:

decrypting

message

parts

Login

config

Basic

auth

Configuring

the

server

to

handle

basicauth

authentication

ID

assertion

Configuring

the

server

to

handle

identity

assertion

authentication

Signature

Configuring

the

server

to

handle

signature

authentication

LTPA

Configuring

the

server

to

handle

LTPA

token

authentication

Add

received

time

stamp

Configuring

the

server

for

request

digital

signature

verification:

verifying

the

message

parts

Response

sender

service

configuration

details

Details

Configuring

the

server

for

response

signing:

digitally

signing

message

parts

Integrity

Configuring

the

server

for

response

signing:

digitally

signing

message

parts

Confidentiality

Configuring

the

server

for

response

encryption:

encrypting

message

parts

Add

created

time

stamp-

Configuring

the

server

for

response

signing:

digitally

signing

message

parts
b.

On

the

Binding

Configurations

tab,

select

the

port

component

binding

that

you

want

to

edit.

The

Web

services

security

bindings

are

configured

for

inbound

requests

and

outbound

responses.

You

need

to

configure

the

following

information

for

Web

services

security

bindings.

These

topics

are

discussed

in

more

details

in

other

sections

of

the

documentation.

Response

receiver

binding

configuration

details

Signing

Information

Configuring

the

server

for

request

digital

signature

verification:

choosing

the

verification

method

486

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Encryption

Information

Configuring

the

server

for

request

decryption:

choosing

the

decryption

method

Trust

Anchor

Configuring

trust

anchors

using

the

Assembly

Toolkit

Certificate

Store

List

Configuring

the

server-side

collection

certificate

store

using

the

Assembly

Toolkit

Key

Locators

Configuring

key

locators

using

the

Assembly

Toolkit

Login

Mapping

Basic

auth

Configuring

the

server

to

validate

basicauth

authentication

information

ID

assertion

Configuring

the

server

to

validate

identity

assertion

authentication

information

Signature

Configuring

the

server

to

validate

signature

authentication

information

LTPA

Configuring

the

server

to

validate

LTPA

token

authentication

information

Trusted

ID

Evaluator

Trusted

ID

Evaluator

Reference

Response

sender

binding

configuration

details

Signing

information

Configuring

the

server

for

response

signing:

choosing

the

digital

signature

method

Encryption

information

Configuring

the

server

for

response

encryption:

choosing

the

encryption

method

Key

Locators

Configuring

key

locators

using

the

Assembly

Toolkit

Configuring

the

server

security

bindings

using

the

Administrative

Console

Create

an

enterprise

JavaBean

(EJB)

file

Java

archive

(JAR)

file

or

Web

archive

(WAR)

file

containing

the

security

binding

file

(ibm-webservices-bnd.xmi)

and

the

security

extension

file

(ibm-webservices-ext.xmi).

If

this

archive

is

acting

as

a

client

to

a

downstream

service,

you

also

need

the

client-side

binding

file

(ibm-webservicesclient-bnd.xmi)

and

the

client-side

extension

file

(ibm-webservicesclient-ext.xmi).

These

files

are

generated

using

the

WSDL2Java

command.

You

can

edit

these

files

using

the

Web

Services

Editor

in

the

Assembly

Toolkit.

When

configuring

server-side

security

for

Web

services

security,

the

security

extensions

configuration

specifies

what

security

is

to

be

performed

while

the

security

bindings

configuration

indicates

how

to

perform

what

is

specified

in

the

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

487

http://www-3.ibm.com/software/webservers/appserv/was/support/
http://www-3.ibm.com/software/webservers/appserv/was/support/

security

extensions

configuration.

You

can

use

the

defaults

for

some

elements

at

the

cell

and

server

levels

in

the

bindings

configuration,

including

key

locators,

trust

anchors,

the

collection

certificate

store,

trusted

ID

evaluators,

and

login

mappings

and

reference

them

from

the

WAR

and

JAR

binding

configurations.

The

following

steps

describe

how

to

edit

bindings

for

a

Web

service

after

they

are

deployed

on

a

server.

When

one

Web

service

communicates

with

another

Web

service,

you

also

must

configure

the

client

bindings

to

access

the

downstream

Web

service.

1.

Deploy

the

Web

service

using

the

WebSphere

Application

Server

Administrative

Console.

The

Administrative

Console

is

accessible

by

typing

http://localhost:9090/admin

in

a

Web

browser.

Once

you

have

logged

into

the

Administration

Console,

click

Applications

>

Install

New

Application

to

deploy

the

Web

service.

For

more

information,

see

Installing

a

new

application.

2.

Once

you

have

deployed

the

Web

service,

click

Applications

>

Enterprise

Applications

>

application

_name.

3.

Under

Related

Items,

click

either

Web

Modules

or

EJB

Modules

depending

on

which

service

you

want

to

configure.

a.

If

you

select

Web

Modules,

click

the

WAR

file

that

you

want

to

edit.

b.

If

you

select

EJB

Modules,

click

the

JAR

file

that

you

want

to

edit.
4.

Once

you

select

a

WAR

or

JAR

file,

under

Additional

Properties,

click

Web

Services:

Client

Security

Bindings

for

outbound

requests

and

inbound

responses

or

click

Web

Services:

Server

Security

Bindings

for

inbound

requests

and

outbound

responses.

5.

If

you

click

Web

Services:

Server

Security

Bindings,

the

following

sections

can

be

configured.

These

topics

are

discussed

in

more

details

in

other

sections

of

the

documentation.

v

Request

receiver

binding

–

Signing

Information

–

Encryption

Information

–

Trust

anchors

–

Collection

certificate

store

–

Key

locators

–

Trusted

ID

evaluators

–

Login

mappings
v

Response

sender

binding

–

Signing

Information

–

Encryption

Information

–

Key

locators

XML

encryption

XML

Encryption

is

a

specification

developed

by

W3C

in

2002

that

contains

the

steps

to

encrypt

data;

the

steps

to

decrypt

encrypted

data;

the

XML

syntax

to

represent

encrypted

data;

the

information

used

to

decrypt

the

data;

and

a

list

of

encryption

algorithms

such

as

triple

DES,

AES,

and

RSA.

You

can

apply

XML

encryption

to

an

XML

element,

XML

element

content,

and

arbitrary

data,

including

an

XML

document.

For

example,

suppose

that

you

need

to

encrypt

the

CreditCard

element

shown

in

the

example

1.

Example

1:

Sample

XML

document

488

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<CreditCard

Limit=’5,000’

Currency=’USD’>

<Number>4019

2445

0277

5567</Number>

<Issuer>Example

Bank</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PaymentInfo>

Example

2:

XML

document

with

a

common

secret

key

Example

2

shows

the

XML

document

after

encryption.

The

EncryptedData

element

represents

the

encrypted

CreditCard

element.

The

EncryptionMethod

element

describes

the

applied

encryption

algorithm,

which

is

triple

DES

in

this

example.

The

KeyInfo

element

contains

the

information

to

retrieve

a

decryption

key,

which

is

a

KeyName

element

in

this

example.

The

CipherValue

element

contains

the

ciphertext

obtained

by

serializing

and

encrypting

the

CreditCard

element.

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<EncryptedData

Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo

xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<KeyName>John

Smith</KeyName>

</KeyInfo>

<CipherData>

<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>

</EncryptedData>

</PaymentInfo>

Example

3:

XML

document

encrypted

with

the

public

key

of

the

recipient

In

example

2,

it

is

assumed

that

both

the

sender

and

recipient

have

a

common

secret

key.

If

the

recipient

has

a

public

and

private

key

pair,

which

is

a

most

likely

the

case,

the

CreditCard

element

can

be

encrypted

as

shown

in

example

3.

The

EncryptedData

element

is

the

same

as

the

EncryptedData

element

found

in

example

2.

However,

the

KeyInfo

element

contains

an

EncryptedKey.

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<EncryptedData

Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo

xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<EncryptedKey

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

<KeyInfo

xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<KeyName>Sally

Doe</KeyName>

</KeyInfo>

<CipherData>

<CipherValue>yMTEyOTA1M...</CipherValue>

</CipherData>

</EncryptedKey>

</KeyInfo>

<CipherData>

<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>

</EncryptedData>

</PaymentInfo>

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

489

XML

Encryption

in

WSS-Core

WSS-Core

is

a

specification

under

development

by

OASIS.

The

specification

describes

enhancements

to

SOAP

messaging

to

provide

quality

of

protection

through

message

integrity,

message

confidentiality,

and

single

message

authentication.

The

message

confidentiality

is

realized

by

encryption

based

on

XML

Encryption.

The

WSS-Core

specification

allows

encryption

of

any

combination

of

body

blocks,

header

blocks,

their

sub-structures,

and

attachments

of

a

SOAP

message.

The

specification

also

requires

that

when

you

encrypt

parts

of

a

SOAP

message,

you

must

prepend

a

reference

from

the

security

header

block

to

the

encrypted

parts

of

the

message.

The

reference

can

be

a

clue

for

a

recipient

to

identify

which

encrypted

parts

of

the

message

to

decrypt.

The

XML

syntax

of

the

reference

varies

according

to

what

information

is

encrypted

and

how

it

is

encrypted.

For

example,

suppose

that

the

CreditCard

element

in

example

4

is

encrypted

with

either

a

common

secret

key

or

the

public

key

of

the

recipient.

Example

4:

Sample

SOAP

message

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

<SOAP-ENV:Body>

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<CreditCard

Limit=’5,000’

Currency=’USD’>

<Number>4019

2445

0277

5567</Number>

<Issuer>Example

Bank</Issuer>

<Expiration>04/02</Expiration>

</CreditCard>

</PaymentInfo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

resulting

SOAP

messages

are

shown

in

examples

5

and

6.

In

these

example,

the

ReferenceList

and

EncryptedKey

elements

are

used

as

references,

respectively.

Example

5:

SOAP

message

encrypted

with

a

common

secret

key

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

<SOAP-ENV:Header>

<Security

SOAP-ENV:mustUnderstand=’1’

xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

<ReferenceList

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<DataReference

URI=’#ed1’/>

</ReferenceList>

</Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<EncryptedData

Id=’ed1’

Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<KeyInfo

xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<KeyName>John

Smith</KeyName>

490

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

</KeyInfo>

<CipherData>

<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>

</EncryptedData>

</PaymentInfo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Example

6:

SOAP

message

encrypted

with

public

key

of

the

recipient

<SOAP-ENV:Envelope

SOAP-ENV:encodingStyle=’http://schemas.xmlsoap.org/soap/encoding/’

xmlns:SOAP-ENV=’http://schemas.xmlsoap.org/soap/envelope/’>

<SOAP-ENV:Header>

<Security

SOAP-ENV:mustUnderstand=’1’

xmlns=’http://schemas.xmlsoap.org/ws/2003/06/secext’>

<EncryptedKey

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#rsa-1_5’/>

<KeyInfo

xmlns=’http://www.w3.org/2000/09/xmldsig#’>

<KeyName>Sally

Doe</KeyName>

</KeyInfo>

<CipherData>

<CipherValue>yMTEyOTA1M...</CipherValue>

</CipherData>

<ReferenceList>

<DataReference

URI=’#ed1’/>

</ReferenceList>

</EncryptedKey>

</Security>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<PaymentInfo

xmlns=’http://example.org/paymentv2’>

<Name>John

Smith</Name>

<EncryptedData

Id=’ed1’

Type=’http://www.w3.org/2001/04/xmlenc#Element’

xmlns=’http://www.w3.org/2001/04/xmlenc#’>

<EncryptionMethod

Algorithm=’http://www.w3.org/2001/04/xmlenc#tripledes-cbc’/>

<CipherData>

<CipherValue>ydUNqHkMrD...</CipherValue>

</CipherData>

</EncryptedData>

</PaymentInfo>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Relationship

to

Digital

Signature

The

WSS-Core

specification

also

provides

message

integrity,

which

is

realized

by

digital

signature

based

on

XML-Signature.

CAUTION:

A

combination

of

encryption

and

digital

signature

over

common

data

introduces

cryptographic

vulnerabilities.

Securing

Web

services

using

XML

encryption

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

eXtensible

Markup

Language

(XML)

encryption

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

491

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

XML

encryption

enables

you

to

encrypt

an

XML

element,

the

content

of

an

XML

element,

or

arbitrary

data

such

as

a

XML

document.

Like

XML

digital

signature,

a

message

is

sent

by

the

client

as

the

request

sender

to

the

server

as

the

request

receiver.

The

response

is

sent

by

the

server

as

the

response

sender

to

the

client

as

the

request

receiver.

Unlike

XML

digital

signature,

which

verifies

the

authenticity

of

the

sender,

XML

encryption

scrambles

the

message

content

using

a

key,

which

can

be

unscrambled

by

a

receiver

that

possess

the

same

key.

You

can

use

XML

encryption

in

conjunction

with

XML

digital

signature;

scrambling

the

content

while

verifying

the

authenticity

of

the

message

sender.

To

use

XML

encryption

to

secure

Web

services,

complete

the

following

tasks.

You

must

use

the

WebSphere

Application

Server

Toolkit,

which

is

available

at

the

following

Web

site:

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q

=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

1.

Specify

the

encryption

settings

for

the

request

sender.

The

message

parts

and

encryption

method

settings

chosen

for

the

request

sender

on

the

client

must

match

the

message

parts

and

method

settings

chosen

for

the

request

receiver

on

the

server.

To

specify

the

encryption

settings

for

the

request

sender,

complete

the

following

steps:

a.

Configure

the

client

for

request

encryption:

encrypting

the

message

parts.

b.

Configure

the

client

for

request

encryption:

choosing

the

encryption

method.
2.

Specify

the

encryption

settings

for

the

request

receiver.

Remember:

The

decryption

settings

chosen

for

the

request

receiver

must

match

the

encryption

settings

chosen

for

the

request

sender.

To

specify

the

decryption

settings

for

the

request

receiver,

complete

the

following

steps:

a.

Configure

the

server

for

request

decryption:

decrypting

message

parts.

b.

Configure

the

server

for

request

decryption:

choosing

the

decryption

method.
3.

Specify

the

encryption

settings

for

the

response

sender.

The

message

parts

and

encryption

method

settings

chosen

for

the

response

sender

on

the

server

must

match

the

message

parts

and

method

settings

chosen

for

the

response

receiver

on

the

client.

To

specify

the

encryption

settings

for

the

response

sender,

complete

the

following

steps:

a.

Configure

the

server

for

response

encryption:

encrypting

message

parts.

b.

Configure

the

server

for

response

encryption:

choosing

the

encryption

method.
4.

Specify

the

encryption

settings

for

the

response

receiver.

Remember:

The

decryption

settings

chosen

for

the

response

receiver

must

match

the

encryption

settings

chosen

for

the

response

sender.

To

specify

the

decryption

settings

for

the

response

receiver,

complete

the

following

steps:

a.

Configure

the

client

for

response

decryption:

decrypting

message

parts.

492

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

b.

Configure

the

client

for

response

decryption:

choosing

the

decryption

method.

After

completing

these

steps,

you

have

secured

your

Web

services

using

XML

encryption.

Encryption

information

collection

Use

this

page

to

specify

the

configuration

for

the

encrypting

and

decrypting

parameters.

This

configuration

is

used

to

encrypt

and

decrypt

parts

of

the

message,

including

the

body

and

user

name

token.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Enterprise

Applications>

application_name.

2.

Under

Related

Items,

Click

Web

Module.

3.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings.

4.

Under

Request

Receiver

Binding,

click

Edit

>

Encryption

Information.

5.

Click

New

to

create

an

encryption

method.

6.

Click

Delete

to

delete

an

encryption

method.

Encryption

Information:

Specifies

the

name

of

the

encryption

information.

Encryption

information

configuration

settings

Use

this

page

to

configure

the

encryption

and

decryption

parameters.

You

can

use

these

parameters

to

encrypt

and

decrypt

various

parts

of

the

message

including

the

body

and

user

name

token.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>application_name.

Under

Related

Items,

click

Web

Module

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

Under

Request

Receiver

Binding,

click

Edit

>

Encryption

Information

>

New.

Encryption

Information

Name:

Specifies

the

name

for

the

encryption

information.

Key

Locator

Reference:

Specifies

the

name

used

to

reference

the

key

locator.

To

specify

key

locator

references,

click

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Encryption

Key

Name:

Specifies

the

name

of

the

encryption

key,

which

is

resolved

to

the

actual

key

by

the

specified

key

locator.

Key

Encryption

Algorithm:

Specifies

the

algorithm

Uniform

Resource

Identifier

(URI)

of

the

key

encryption

method.

The

following

algorithms

are

supported:

v

http://www.w3.org/2001/04/xmlenc#rsa-1_5

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

493

v

http://www.w3.org/2001/04/xmlenc#kw-tripledes

Data

Encryption

Algorithm:

Specifies

the

algorithm

URI

of

the

data

encryption

method.

The

following

algorithm

is

supported:

v

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

Encryption

information

configuration

settings

Use

this

page

to

configure

the

encryption

and

decryption

parameters.

The

specifications

listed

on

this

page

for

the

signature

method,

digest

method,

and

canonicalization

method

are

located

in

the

World

Wide

Web

Consortium

(W3C)

document

entitled,

XML

Encryption

Syntax

and

Processing:

W3C

Recommendation

10

Dec

2002.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

Under

Response

Sender

Binding,

click

Edit

>

Encryption

Information.

4.

If

the

encryption

information

is

not

available,

select

None.

5.

If

the

encryption

information

is

available,

select

Dedicated

Encryption

Information.

Then,

specify

the

configuration

in

the

following

fields:

Encryption

Information

Name:

Specifies

the

name

for

the

encryption

information.

Key

Locator

Reference:

Specifies

the

name

used

to

reference

the

key

locator.

To

specify

key

locator

references,

click

Servers

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Web

Services:

Default

bindings

for

Web

Services

Security

>

Key

Locators.

Encryption

Key

Name:

Specifies

the

name

of

the

encryption

key,

which

is

resolved

to

the

actual

key

by

the

specified

key

locator.

Key

Encryption

Algorithm:

Specifies

the

algorithm

URI

of

the

key

encryption

method.

The

following

algorithms

are

supported:

v

http://www.w3.org/2001/04/xmlenc#rsa-1_5

v

http://www.w3.org/2001/04/xmlenc#kw-tripledes

By

default

the

Java

Cryptography

Extension

(JCE)

is

shipped

with

restricted

or

limited

strength

ciphers.

To

use

192-bit

and

256-

bit

Advanced

Encryption

Standard

(AES)

encryption

algorithms,

you

must

apply

unlimited

jurisdiction

policy

files.

494

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Before

downloading

these

policy

files,

back

up

the

existing

policy

files

(local_policy.jar

and

US_export_policy.jar

in

the

jre/lib/security/

directory)

prior

to

overwriting

them

in

case

you

want

to

restore

the

original

files

later.

To

download

the

policy

files,

complete

either

of

the

following

sets

of

steps:

v

For

WebSphere

Application

Server

platforms

using

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.1,

including

the

AIX,

Linux,

and

Windows

platforms,

you

can

obtain

unlimited

jurisdiction

policy

files

by

completing

the

following

steps:

–

Go

to

the

following

Web

site:

http://www.ibm.com/developerworks/java/jdk/security/index.html

–

Click

Policy

Files.

The

unrestrict.jar

file

is

downloaded

onto

your

machine.
v

For

WebSphere

Application

Server

platforms

using

the

Sun-based

Java

Development

Kit

(JDK)

Version

1.4.1,

including

the

Solaris

environments

and

the

HP-UX

platform,

you

can

obtain

unlimited

jurisdiction

policy

files

by

completing

the

following

steps:

–

Go

to

the

following

Web

site:

http://java.sun.com/j2se/1.4.1/download.html

–

Go

to

the

bottom

of

the

Web

page

and

click

Download,

which

is

next

to

Java

Cryptography

Extension

(JCE)

Unlimited

Strength

Jurisdiction

Policy

Files

1.4.1.

The

jce_policy-1_4_1.zip

file

is

downloaded

onto

your

machine.

After

following

either

of

these

sets

of

steps,

two

Java

Archive

(JAR)

files

are

placed

in

the

JVM

jre/lib/security/

directory.

Data

Encryption

Algorithm:

Specifies

the

algorithm

Uniform

Resource

Identifiers

(URI)

of

the

data

encryption

method.

The

following

algorithm

is

supported:

v

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

By

default

the

JCE

is

shipped

with

restricted

or

limited

strength

ciphers.

To

use

192-bit

and

256-

bit

AES

encryption

algorithms,

you

must

apply

unlimited

jurisdiction

policy

files.

Login

bindings

configuration

settings

Use

this

page

to

configure

the

encryption

and

decryption

parameters.

The

pluggable

token

uses

the

Java

Authentication

and

Authorization

Service

(JAAS)

CallBackHandler

(javax.security.auth.callback.CallBackHandler)

interface

to

generate

the

token

that

is

inserted

into

the

message.

The

following

list

describes

the

CallBack

support

implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

This

implementation

is

used

for

generating

binary

tokens

inserted

as

<wsse:BinarySecurityToken/@ValueType>

in

the

message.

javax.security.auth.callback.NameCallback

and

javax.security.auth.callback.NameCallback

This

implementation

is

used

for

generating

user

name

tokens

inserted

as

<wsse:UsernameToken>

in

the

message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback

This

implementation

is

used

to

generate

eXtensible

Markup

Language

(XML)

tokens

and

is

inserted

as

the

<SAML:

Assertion>

element

in

the

message.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

495

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

This

implementation

is

used

to

obtain

properties

specified

in

the

binding

file.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Module

>URI_file_name

>

Web

Services:

Client

Security

Bindings

.

3.

Under

Request

Sender

Bindings,

click

Edit

>

Login

Binding.

If

the

encryption

information

is

not

available,

select

None.

If

the

encryption

information

is

available,

select

Dedicated

Login

Binding

and

specify

the

configuration

in

the

following

fields:

Authentication

Method:

Specifies

the

unique

name

for

the

authentication

method.

Callback

Handler:

Specifies

the

name

of

the

callback

handler.The

callback

handler

must

implement

the

javax.security.auth.callback.CallbackHandler

interface.

Basic

Auth

User

ID:

Specifies

the

user

name

for

basic

authentication.

The

Basic

Auth

authentication

method

provides

the

capability

to

define

a

user

ID

and

password

in

the

binding

file.

Basic

Auth

Password:

Specifies

the

password

for

basic

authentication.

Token

Type

URI:

Specifies

the

Uniform

Resource

Identifiers

(URI)

for

the

token

type.

This

information

is

inserted

as

<wsse:BinarySecurityToken>/ValueType

for

the

XML

token

<SAML:

Assertion>.

Token

Type

Local

Name:

Specifies

the

local

name

for

the

token

type.

This

information

is

inserted

as

<wsse:BinarySecurityToken>/ValueType

for

the

XML

token

<SAML:

Assertion>.

Request

sender

The

security

handler

on

the

request

sender

side

of

the

SOAP

message

enforces

the

security

constraints,

located

in

the

ibm-webservicesclient-ext.xmi

file,

and

bindings,

located

in

the

ibm-webservicesclient-bnd.xmi

file.

These

constraints

and

bindings

apply

both

to

J2EE

application

clients

or

when

Web

services

is

acting

as

a

client.

The

security

handler

acts

on

the

security

constraints

before

sending

the

SOAP

message.

For

example,

the

security

handler

might

digitally

sign

the

message,

encrypt

the

message,

create

a

time

stamp,

or

insert

a

security

token.

The

security

handler

on

the

request

sender

side

of

the

SOAP

message

enforces

the

security

constraints,

located

in

the

ibm-webservicesclient-ext.xmi

file,

and

bindings,

located

in

the

ibm-webservicesclient-bnd.xmi

file.

These

constraints

496

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

and

bindings

apply

both

to

J2EE

application

clients

or

when

Web

services

is

acting

as

a

client.

The

security

handler

acts

on

the

security

constraints

before

sending

the

SOAP

message.

For

example,

the

security

handler

might

digitally

sign

the

message,

encrypt

the

message,

create

a

time

stamp,

or

insert

a

security

token.

You

can

specify

the

following

security

requirements

for

the

request

sender

and

apply

them

to

the

SOAP

message:

Integrity

(digital

signature)

You

can

select

multiple

parts

of

a

message

to

be

digitally

signed.

The

following

is

a

list

of

integrity

options:

v

Body

v

Time

stamp

v

Security

token

Confidentiality

(encryption)

You

can

select

multiple

parts

of

a

message

to

be

encrypted.

The

following

is

a

list

of

confidentiality

options:

v

Body

content

v

Username

token

Security

token

You

can

insert

only

one

token

into

the

message.

The

following

is

a

list

of

security

token

options:

v

Basic

authentication,

which

requires

both

a

user

name

and

password

v

Identity

assertion,

which

requires

a

user

name

only

v

X.509

binary

security

token

v

LTPA

binary

security

token

v

Custom

token

,

which

is

pluggable

and

allows

custom-defined

tokens

to

be

inserted

into

the

SOAP

message

Timestamp

You

can

have

a

time

stamp

for

indicating

the

freshness

of

the

message.

v

Timestamp

Note:

Request

sender

security

constraints

apply

to

the

SOAP

message

and

must

match

the

security

constraint

requirements

defined

in

request

receiver.

Request

sender

binding

collection:

Use

this

page

to

specify

the

binding

configuration

to

send

request

messages

for

Web

services

security.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Client

Security

Bindings.

3.

Under

Request

Sender

Binding,

click

Edit.

Signing

Information:

Specifies

the

configuration

for

the

signing

parameters.

Signing

information

is

used

to

sign

and

validate

parts

of

the

message

including

the

body

and

time

stamp.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

497

You

can

also

use

these

parameters

for

X.509

validation

when

Authentication

Method

is

IDAssertion

and

ID

Type

is

X509Certificate

in

the

server-level

configuration.

In

such

cases,

you

must

fill

in

the

Certificate

Path

fields

only.

Encryption

Information:

Specifies

the

configuration

for

the

encrypting

and

decrypting

parameters.

Encryption

information

is

used

for

encrypting

and

decrypting

various

parts

of

a

message

including

the

body

and

user

name

token.

Key

Locators:

Specifies

a

list

of

key

locator

objects

that

retrieve

the

keys

for

digital

signature

and

encryption

from

a

keystore

file

or

a

repository.

The

key

locator

maps

a

name

or

logical

name

to

an

alias

or

maps

an

authenticated

identity

to

a

key.

This

logical

name

is

used

to

locate

a

key

in

a

key

locator

implementation.

Login

Mappings:

Specifies

a

list

of

configurations

for

validating

tokens

within

incoming

messages.

Login

mappings

map

the

authentication

method

to

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration.

To

configure

JAAS,

use

the

administrative

console

and

click

Security

>

JAAS

Configuration.

Configuring

the

client

for

request

encryption:

Encrypting

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

familiarize

yourself

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

message

parts

to

encrypt

when

configuring

the

client

for

request

encryption:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

Request

Sender

Configuration

>

Confidentiality.

Confidentiality

refers

to

encryption

while

integrity

refers

to

digital

signing.

Confidentiality

498

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

reduces

the

risk

of

someone

being

able

to

understand

the

message

flowing

across

the

Internet.

With

confidentiality

specifications,

the

message

is

encrypted

before

it

is

sent

and

decrypted

when

it

is

received

at

the

correct

target.

For

more

information

on

encrypting

,

see

XML

encryption.

8.

Select

the

parts

of

the

message

that

you

want

to

encrypt

by

clicking

Add.

You

can

select

one

of

the

following

parts:

Bodycontent

User

data

portion

of

the

message

Usernametoken

Basic

authentication

information,

if

selected

Once

you

have

specified

which

message

parts

to

encrypt,

you

must

specify

which

method

to

use

to

encrypt

the

request

message.

See

Configuring

the

client

for

reqiuest

encryption:

Choosing

the

encryption

method

for

more

information.

Configuring

the

client

for

request

encryption:

Choosing

the

encryption

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

familiarize

yourself

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

encryption

method

to

use

when

configuring

the

client

for

request

encryption:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

Security

Request

Sender

Binding

Configuration

>

Encryption

Information.

8.

Select

an

encryption

option

and

click

Edit

to

view

the

encryption

information

or

click

Add

to

add

another

option.

The

following

table

describes

the

purpose

of

this

information.

Some

of

these

definitions

are

based

on

the

XML-Encryption

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmlenc-core

Encryption

name

The

encryption

name

refers

to

the

name

of

the

encryption

information

entry.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

499

http://www.w3.org/TR/xmlenc-core

Data

encryption

method

algorithm

The

data

encryption

method

algorithms

are

designed

for

encrypting

and

decrypting

data

in

fixed

size,

multiple

octet

blocks.

Key

encryption

method

algorithm

The

key

encryption

method

algorithms

are

public

key

encryption

algorithms

that

are

specified

for

encrypting

and

decrypting

keys.

Encryption

key

name

The

encryption

key

name

represents

a

Subject

(Owner

field

of

the

certificate)

from

a

certificate

found

by

the

encryption

key

locator,

which

is

used

by

the

key

encryption

method

algorithm

to

encrypt

the

private

key.

The

private

key

is

used

to

encrypt

the

data.

Note:

The

key

chosen

must

be

a

public

key

of

the

target.

Encryption

must

be

done

using

the

public

key

and

decryption

must

be

done

by

the

target

using

the

private

key

(the

personal

certificate

of

the

target).

Encryption

key

locator

The

encryption

key

locator

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

The

encryption

key

name

chosen

must

refer

to

a

public

key

of

the

target.

For

the

encryption

key

name,

use

the

Subject

(Owner

field

of

the

certificate)

of

the

public

key

certificate,

typically

a

Distinguished

Name

(DN).

The

name

chosen

is

used

by

the

default

key

locator

to

find

the

key.

If

you

write

a

custom

key

locator

,

the

encryption

key

name

might

be

anything

used

by

the

key

locator

to

find

the

correct

encryption

key.

The

encryption

key

locator

references

the

implementation

class

that

locates

the

correct

key

store

where

this

alias

and

certificate

exists.

For

more

information,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

You

must

specify

which

parts

of

the

request

message

to

encrypt.

See

Configuring

the

client

for

request

encryption:

Encrypting

the

message

parts

if

you

have

not

previously

specified

this

information.

Request

receiver

The

security

handler

on

the

request

receiver

side

of

the

SOAP

message

enforces

the

security

specifications

defined

in

the

IBM

extension

deployment

descriptor

(ibm-webservices-ext.xmi)

and

bindings

(ibm-webservices-bnd.xmi).

The

request

receiver

defines

the

security

requirement

of

the

SOAP

message.

If

the

incoming

SOAP

message

does

not

meet

all

the

security

requirements

defined,

then

the

request

is

rejected

with

the

appropriate

fault

code

returned

to

the

sender.

For

security

tokens,

the

token

is

validated

using

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

and

authenticated

identity

is

set

as

the

identity

for

the

downstream

invocation.

The

security

handler

on

the

request

receiver

side

of

the

SOAP

message

enforces

the

security

specifications

defined

in

the

IBM

extension

deployment

descriptor

(ibm-webservices-ext.xmi)

and

bindings

(ibm-webservices-bnd.xmi).

The

request

receiver

defines

the

security

requirement

of

the

SOAP

message.

If

the

incoming

SOAP

message

does

not

meet

all

the

security

requirements

defined,

then

the

request

is

rejected

with

the

appropriate

fault

code

returned

to

the

sender.

For

security

tokens,

the

token

is

validated

using

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

and

authenticated

identity

is

set

as

the

identity

for

the

downstream

invocation.

500

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

For

example,

if

there

is

a

security

requirement

to

have

the

SOAP

body

digitally

signed

by

Joe

Smith

and

if

the

SOAP

body

of

the

incoming

SOAP

message

is

not

signed

by

Joe

Smith,

then

the

request

is

rejected.

You

can

define

the

following

security

requirements

for

request

receiver:

Required

integrity

(digital

signature)

You

can

select

multiple

parts

of

a

message

to

be

digitally

signed.

The

following

is

a

list

of

integrity

options:

v

Body

v

Time

stamp

v

Security

token

Required

confidentiality

(encryption)

You

can

select

multiple

parts

of

a

message

to

be

encrypted.

The

following

is

a

list

of

confidentiality

options:

v

Body

content

v

Token

You

can

have

multiple

security

tokens.

The

following

is

a

list

of

security

token

options:

v

Basic

authentication,

which

requires

both

a

user

name

and

password

v

Identity

assertion,

which

requires

a

user

name

only

v

X.509

binary

security

token

v

LAP

binary

security

token

v

Custom

token,

which

is

pluggable

and

allows

custom-defined

tokens

to

be

validated

by

the

JAAS

login

configuration

Received

time

stamp

You

can

have

a

time

stamp

for

checking

the

freshness

of

the

message.

v

Time

stamp

Note:

The

security

constraint

for

request

sender

must

match

the

security

requirement

of

the

request

receiver

for

the

request

to

be

accepted

by

the

server.

Request

receiver

binding

collection:

Use

this

page

to

specify

the

binding

configuration

to

receive

request

messages

for

Web

services

security.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

Under

Request

Receiver

Binding,

click

Edit.

Signing

Information:

Specifies

the

configuration

for

the

signing

parameters.

Signing

information

is

used

to

sign

and

validate

parts

of

a

message

including

the

body,

time

stamp,

and

user

name

token.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

501

You

also

can

use

these

parameters

for

X.509

certificate

validation

when

Authentication

Method

is

IDAssertion

and

ID

Type

is

X509Certificate

in

the

server-level

configuration.

In

such

cases,

you

must

fill

in

the

Certificate

Path

fields

only.

Encryption

Information:

Specifies

the

configuration

for

the

encrypting

and

decrypting

parameters.

This

configuration

is

used

to

encrypt

and

decrypt

parts

of

the

message

that

include

the

body

and

user

name

token.

Trust

Anchors:

Specifies

a

list

of

keystore

objects

that

contain

the

trusted

root

certificates

that

are

issued

by

a

certificate

authority

(CA).

The

certificate

authority

authenticates

a

user

and

issues

a

certificate.

The

CertPath

API

uses

the

certificate

to

validate

the

certificate

chain

of

incoming,

X.509-formatted

security

tokens

or

trusted,

self-signed

certificates.

Collection

Certificate

Store:

Specifies

a

list

of

the

untrusted,

intermediate

certificate

files.

The

collection

certificate

store

contains

a

chain

of

untrusted,

intermediate

certificates.The

CertPath

API

attempts

to

validate

these

certificates,

which

are

based

on

the

trust

anchor.

Key

Locators:

Specifies

a

list

of

key

locator

objects

that

retrieve

the

keys

for

digital

signature

and

encryption

from

a

keystore

file

or

a

repository.

The

key

locator

maps

a

name

or

logical

name

to

an

alias

or

maps

an

authenticated

identity

to

a

key.

This

logical

name

is

used

to

locate

a

key

in

a

key

locator

implementation.

Trusted

ID

Evaluators:

Specifies

a

list

of

trusted

ID

evaluators

that

determine

whether

to

trust

the

identity-asserting

authority

or

message

sender.

The

trusted

ID

evaluators

are

used

to

authenticate

additional

identities

from

one

server

to

another

server.

For

example,

a

client

sends

the

identity

of

user

A

to

server

1

for

authentication.

Server

1

calls

downstream

to

server

2,

asserts

the

identity

of

user

A,

and

includes

the

user

ID

and

password

of

server

1.

Server

2

attempts

to

establish

trust

with

server

1

by

authenticating

its

user

ID

and

password

and

checking

the

trust

based

on

the

TrustedIDEvaluator

implementation.

If

the

authentication

process

and

the

trust

check

are

successful,

server

2

trusts

that

server

1

authenticated

user

A

and

a

credential

is

created

for

user

A

on

server

2

to

invoke

the

request.

Login

Mappings:

Specifies

a

list

of

configurations

for

validating

tokens

within

incoming

messages.

Login

mappings

map

the

authentication

method

to

the

Java

Authentication

and

Authorization

Service

(JAAS)

configuration.

502

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

configure

JAAS,

use

the

administrative

console

and

click

Security

>

JAAS

Configuration.

Configuring

the

server

for

request

decryption:

decrypting

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Complete

this

task

to

specify

which

parts

of

the

request

message

must

be

decrypted

by

the

server.

You

must

know

which

parts

of

the

request

message

the

client

encrypts

because

the

server

must

decrypt

the

same

message

parts.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Required

Confidentiality

section.

8.

Select

the

parts

of

the

message

to

decrypt

The

message

parts

selected

for

the

request

decryption

on

the

server

must

match

the

message

parts

selected

for

the

message

encryption

on

the

client.

Click

Add

and

select

either

of

the

following

message

parts:

bodycontent

The

user

data

section

of

the

message.

usernametoken

This

token

is

the

basic

authentication

information.

Once

you

have

specified

which

parts

of

the

request

message

to

decrypt,

you

must

specify

the

method

used

to

decrypt

the

message.

See

Configuring

the

server

for

request

decryption:

choosing

the

decryption

method

for

more

information.

Configuring

the

server

for

request

decryption:

choosing

the

decryption

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

503

Complete

this

task

to

specify

which

decryption

method

is

used

by

the

server

to

decrypt

the

request

message.

You

must

know

which

decryption

method

the

client

uses

because

the

server

must

use

the

same

method.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Encryption

Information

section.

8.

Click

Edit

to

view

the

encryption

information.

The

following

table

describes

the

purpose

for

each

of

these

selections.

Some

definitions

take

from

the

XML-Encryption

specification

,

which

can

be

found

at:

http://www.w3.org/TR/xmlenc-core

Encryption

name

Encryption

name

is

the

name

of

this

encryption

information

entry.

This

is

an

alias

for

the

entry.

Data

encryption

method

algorithm

Data

encryption

method

algorithms

are

designed

for

encrypting

and

decrypting

data

in

fixed

size,

multiple

octet

blocks.

This

algorithm

must

be

the

same

as

the

algorithm

selected

in

the

client

request

sender

configuration.

Key

encryption

method

algorithm

Key

encryption

method

algorithms

are

public

key

encryption

algorithms

specified

for

encrypting

and

decrypting

keys.

This

algorithm

must

be

the

same

as

the

algorithm

selected

in

the

client

request

sender

configuration.

Encryption

key

name

Encryption

key

name

represents

a

Subject

(from

a

certificate)

found

by

the

encryption

key

locator.

the

Subject

is

used

by

the

key

encryption

method

algorithm

to

decrypt

the

secret

key,

and

the

secret

key

is

used

to

decrypt

the

data.

Attention:

The

key

chosen

here

should

be

a

private

key

in

the

keystore

configured

by

the

key

locator.

The

key

should

have

the

same

Subject

used

by

the

client

to

encrypt

the

data.

Encryption

must

be

done

using

the

public

key

and

decryption

by

the

private

key

(personal

certificate).

To

ensure

that

the

client

encrypts

the

data

with

the

correct

public

or

private

key,

you

must

extract

the

public

key

from

the

server

keystore

and

add

it

to

the

keystore

specified

in

the

encryption

configuration

information

for

the

client

request

sender.

For

example,

the

personal

certificate

of

a

server

is

CN=Bob,

O=IBM,

C=US.

Therefore

the

server

contains

the

public

and

private

key

pair.

The

client

sending

the

request

should

encrypt

the

data

using

the

public

key

for

CN=Bob,

O=IBM,

C=US.

The

server

decrypts

the

data

using

the

private

key

for

CN=Bob,

O=IBM,

C=US.

504

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/xmlenc-core

Encryption

key

locator

This

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

go

to

the

following

sections:

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

It

is

important

to

note

that

for

decryption,

the

encryption

key

name

chosen

must

refer

to

a

personal

certificate

that

can

be

located

by

the

key

locator

of

the

server

referenced

in

the

encryption

information.

Enter

the

Subject

of

the

personal

certificate

here,

which

is

typically

a

Distinguished

Name

(DN).

The

Subject

uses

the

default

key

locator

to

find

the

key.

If

a

custom

key

locator

is

written,

the

encryption

key

name

can

be

anything

used

by

the

key

locator

to

find

the

correct

encryption

key.

The

encryption

key

locator

references

the

implementation

class

that

finds

the

correct

key

store

where

this

alias

and

certificate

exist.

Refer

to

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console

for

more

information.

You

must

specify

which

parts

of

the

request

message

to

decrypt.

See

Configuring

the

server

for

request

decryption:

decrypting

the

message

parts

if

you

have

not

previously

specified

this

information.

Response

sender

The

response

sender

defines

the

security

requirements

of

the

SOAP

response

message.

The

security

handler

acts

on

the

security

constraints

defined

for

the

response

in

the

IBM

extension

deployment

descriptors,

located

in

the

ibm-webservices-ext.xmi

file

and

bindings,

located

in

the

ibm-webservices-
bnd.xmi

file.

The

security

handler

signs,

encrypts,

or

generates

the

time

stamp

for

the

SOAP

response

message

before

the

response

is

send

to

the

caller.

The

response

sender

defines

the

security

requirements

of

the

SOAP

response

message.

The

security

handler

acts

on

the

security

constraints

defined

for

the

response

in

the

IBM

extension

deployment

descriptors,

located

in

the

ibm-webservices-ext.xmi

file

and

bindings,

located

in

the

ibm-webservices-
bnd.xmi

file.

The

security

handler

signs,

encrypts,

or

generates

the

time

stamp

for

the

SOAP

response

message

before

the

response

is

send

to

the

caller.

Integrity

constraints

(digital

signature)

You

can

select

multiple

parts

of

the

message

to

be

digitally

signed.

v

Body

v

Time

stamp

Confidentiality

(encryption)

You

can

encrypt

the

body

content

of

the

message

Time

stamp

You

can

have

a

time

stamp

for

checking

the

freshness

of

the

message.

Note:

The

security

constraints

that

apply

to

the

SOAP

response

message

must

match

the

security

requirements

defined

in

the

response

receiver.

Otherwise,

the

response

is

rejected

by

the

response

receiver

(caller).

Response

sender

binding

collection:

Use

this

page

to

specify

the

binding

configuration

for

sender

response

messages

for

Web

services

security.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

505

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

Under

Response

Sender

Binding,

click

Edit.

Signing

Information:

Specifies

the

configuration

for

the

signing

parameters.

You

also

can

use

these

parameters

for

X.509

certificate

validation

when

Authentication

Method

is

IDAssertion

and

ID

Type

is

X509Certificate

in

the

server-level

configuration.

In

such

cases,

you

must

fill-in

the

Certificate

Path

fields

only.

Encryption

Information:

Specifies

the

configuration

for

the

encrypting

and

decrypting

parameters.

Key

Locators:

Specifies

a

list

of

key

locator

objects

that

retrieve

the

keys

for

digital

signature

and

encryption

from

a

keystore

file

or

a

repository.

The

key

locator

maps

a

name

or

logical

name

to

an

alias

or

maps

an

authenticated

identity

to

a

key.

This

logical

name

is

used

to

locate

a

key

in

a

key

locator

implementation.

Configuring

the

server

for

response

encryption:

encrypting

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

parts

of

the

response

message

to

encrypt

when

configuring

the

server

for

response

encryption:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

Response

Sender

Service

Configuration

Details

>

Confidentiality.

Confidentiality

refers

to

encryption

while

integrity

refers

to

digital

signing.

Confidentiality

reduces

the

risk

of

someone

being

able

to

understand

the

message

flowing

across

the

Internet.

With

confidentiality

specifications,

the

response

is

encrypted

before

it

is

sent

and

decrypted

when

it

is

received

at

the

correct

target.

For

more

information

on

encrypting,

see

XML

encryption.

506

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

8.

Select

the

parts

of

the

response

that

you

want

to

encrypt

by

clicking

Add

and

selecting

Bodytoken

or

Usernametoken.

The

following

information

describes

the

message

parts:

Bodycontent

User

data

portion

of

the

message.

Usernametoken

Basic

authentication

information,

if

selected.

A

user

name

token

does

not

appear

in

the

response.

You

do

not

need

to

select

this

option

for

the

response.

If

you

select

this

option,

make

sure

that

you

also

select

it

for

the

client

response

receiver.

If

you

do

not

select

it,

make

sure

that

you

do

not

select

it

for

the

client

response

receiver

either.

Once

you

have

specified

which

message

parts

to

encrypt,

you

must

specify

which

method

is

used

to

encrypt

the

message.

See

Configuring

the

server

for

response

encryption:

choosing

the

encryption

method

for

more

information.

Configuring

the

server

for

response

encryption:

Choosing

the

encryption

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Binding

Configurations

tab

in

the

Web

Services

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

Services

Security

extensions

and

Web

Services

Security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

method

the

server

uses

to

encrypt

the

response

message:

1.

Launch

the

Assembly

Toolkit.

2.

Click

Windows

>

Open

Perspective

>

J2EE

to

access

the

Assembly

Toolkit

perspective.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

Response

Sender

Binding

Configuration

Details

>

Encryption

Information.

8.

Click

Edit

to

view

the

encryption

information.

The

following

table

describes

the

purpose

of

this

information.

Some

of

these

definitions

are

based

on

the

XML-Encryption

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmlenc-core

Encryption

name

The

encryption

name

refers

to

the

name

of

the

encryption

information

entry.

Data

encryption

method

algorithm

The

data

encryption

method

algorithms

are

designed

for

encrypting

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

507

http://www.w3.org/TR/xmlenc-core

and

decrypting

data

in

fixed

size,

multiple

octet

blocks.

The

algorithm

selected

for

the

server

response

sender

configuration

must

match

the

algorithm

selected

in

the

client

response

receiver

configuration.

Key

encryption

method

algorithm

The

key

encryption

method

algorithms

are

public

key

encryption

algorithms

that

are

specified

for

encrypting

and

decrypting

keys.

The

algorithm

selected

for

the

server

response

sender

configuration

must

match

the

algorithm

selected

in

the

client

response

receiver

configuration.

Encryption

key

name

The

encryption

key

name

represents

a

Subject

from

a

certificate

found

by

the

encryption

key

locator,

which

is

used

by

the

key

encryption

method

algorithm

to

encrypt

the

private

key.

The

private

key

is

used

to

encrypt

the

data.

Important:

The

key

name

chosen

in

the

server

response

sender

encryption

information

must

be

the

public

key

of

the

key

configured

in

the

client

response

receiver

encryption

information.

Encryption

by

the

response

sender

must

be

done

using

the

public

key

and

decryption

must

be

done

by

the

response

receiver

using

the

associated

private

key

(the

personal

certificate

of

the

response

receiver).

Encryption

key

locator

The

encryption

key

locator

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

The

encryption

key

name

chosen

must

refer

to

a

public

key

of

the

response

receiver.

For

the

encryption

key

name,

use

the

Subject

of

the

public

key

certificate,

typically

a

Distinguished

Name

(DN).

The

name

chosen

is

used

by

the

default

key

locator

to

find

the

key.

If

you

write

a

custom

key

locator

,

the

encryption

key

name

might

be

anything

used

by

the

key

locator

to

find

the

correct

encryption

key

(a

public

key).

The

encryption

key

locator

references

the

implementation

class

that

finds

the

correct

key

store

where

the

alias

and

certificate

exist.

For

more

information,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

You

must

specify

which

parts

of

the

response

message

to

encrypt.

See

Configuring

the

server

for

response

encryption:

encrypting

the

message

parts

if

you

have

not

previously

specified

this

information.

Response

receiver

The

response

receiver

defines

the

security

requirements

of

the

response

received

from

a

request

to

a

Web

service.

The

security

handler

enforces

the

security

constraints

based

on

the

security

requirements

defined

in

the

IBM

extension

deployment

descriptor,

located

in

the

ibm-webservicesclient-ext.xmi

file

and

in

the

bindings,

located

in

the

ibm-webservicessclient-bnd.xmi

file.

The

response

receiver

defines

the

security

requirements

of

the

response

received

from

a

request

to

a

Web

service.

The

security

handler

enforces

the

security

constraints

based

on

the

security

requirements

defined

in

the

IBM

extension

deployment

descriptor,

located

in

the

ibm-webservicesclient-ext.xmi

file

and

in

the

bindings,

located

in

the

ibm-webservicessclient-bnd.xmi

file.

508

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

For

example,

the

security

requirement

might

be

to

have

the

response

SOAP

body

encrypted.

If

the

SOAP

body

of

the

SOAP

message

is

not

encrypted,

the

response

is

rejected

and

the

appropriate

fault

code

is

communicated

back

to

the

caller

of

the

Web

services.

You

can

specify

the

following

security

requirements

for

response

receiver:

Required

integrity

(digital

signature)

You

can

select

multiple

parts

of

a

message

to

be

digitally

signed.

The

following

is

a

list

of

integrity

options:

v

Body

v

Time

stamp

Required

confidentiality

(encryption)

You

can

encrypt

the

body

content

of

the

message.

Received

time

stamp

You

can

have

a

time

stamp

for

checking

the

freshness

of

the

message.

Note:

The

security

constraints

for

response

sender

must

match

the

security

requirements

of

the

response

receiver.

If

the

constraints

do

not

match,

the

response

is

not

accepted

by

the

caller

or

sender.

Response

receiver

binding

collection:

Use

this

page

to

specify

the

binding

configuration

for

receiver

response

messages

for

Web

services

security.

To

view

this

administrative

console

page,

complete

the

following

steps:

1.

Click

Applications

>

Enterprise

Applications

>application_name.

2.

Under

Related

Items,

click

Web

Modules

>

URI_file_name

>

Web

Services:

Server

Security

Bindings.

3.

Under

Response

Sender

Binding,

click

Edit.

Signing

Information:

Specifies

the

configuration

for

the

signing

parameters.

Signing

information

is

used

to

sign

and

validate

parts

of

the

message

including

the

body

and

time

stamp.

You

can

also

use

these

parameters

for

X.509

validation

when

Authentication

Method

is

IDAssertion

and

ID

Type

is

X509Certificate

in

the

server-level

configuration.

In

such

cases,

you

must

fill

in

the

Certificate

Path

fields

only.

Encryption

Information:

Specifies

the

configuration

for

the

encrypting

and

decrypting

parameters.

Encryption

information

is

used

for

encrypting

and

decrypting

various

parts

of

a

message

including

the

body

and

user

name

token.

Trust

Anchors:

Specifies

a

list

of

keystore

objects

that

contain

the

trusted

root

certificates,

that

are

self-signed

or

issued

by

a

certificate

authority.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

509

The

certificate

authority

authenticates

a

user

and

issues

a

certificate.

After

the

certificate

is

issued,

the

key

store

objects,

which

contain

these

certificates,

use

the

certificate

for

certificate

path

or

certificate

chain

validation

of

incoming

X.509-formatted

security

tokens.

Collection

Certificate

Store:

Specifies

a

list

of

the

untrusted,

intermediate

certificate

files.

The

collection

certificate

store

contains

a

chain

of

untrusted,

intermediate

certificates.The

CertPath

API

attempts

to

validate

these

certificates,

which

are

based

on

the

trust

anchor.

Key

Locators:

Specifies

a

list

of

key

locator

objects

that

retrieve

the

keys

for

digital

signature

and

encryption

from

a

key

store

file

or

a

repository.

The

key

locator

maps

a

name

or

logical

name

to

an

alias

or

maps

an

authenticated

identity

to

a

key.

This

logical

name

is

used

to

locate

a

key

in

a

key

locator

implementation.

Configuring

the

client

for

response

decryption:

decrypting

the

message

parts

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

response

message

parts

to

decrypt

when

configuring

the

client

for

response

decryption.

The

server

response

encryption

and

client

response

decryption

configurations

must

match.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Response

Receiver

Configuration

>

Required

Confidentiality

section.

8.

Select

the

parts

of

the

message

that

you

must

decrypt

by

clicking

Add

and

selecting

either

Bodycontent

or

Usernametoken.

The

following

information

describes

these

message

parts:

Bodycontent

The

user

data

portion

of

the

message.

510

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Usernametoken

The

basic

authentication

information,

if

selected.

The

information

selected

in

this

step

is

encrypted

by

the

server

in

the

response

sender.

Important:

A

username

token

is

typically

not

sent

in

the

response.

Thus,

you

usually

do

not

need

to

select

username

token.

Once

you

have

specified

which

message

parts

to

decrypt,

you

must

specify

which

method

to

use

when

decrypting

the

response

message.

See

Configuring

the

client

for

response

decryption:

choosing

a

decryption

method

for

more

information.

Configuring

the

client

for

response

decryption:

choosing

a

decryption

method

Prior

to

completing

these

steps,

read

either

of

the

following

topics

to

become

familiar

with

the

Security

Extensions

tab

and

the

Port

Binding

tab

in

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit:

v

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

These

two

tabs

are

used

to

configure

the

Web

services

security

extensions

and

Web

services

security

bindings,

respectively.

Complete

the

following

steps

to

specify

which

decryption

method

to

use

when

the

client

decrypts

the

response

message.

The

server

response

encryption

and

client

response

decryption

configurations

must

match.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Security

Response

Receiver

Binding

Configuration

>

Encryption

Information

section.

For

more

information

on

encrypting

and

decrypting

SOAP

messages,

see

XML

encryption.

8.

Click

Edit

to

view

the

encryption

information.

The

following

table

describes

the

purpose

for

this

information.

Some

of

these

definitions

are

based

on

the

XML-Encryption

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmlenc-core

Encryption

name

The

encryption

name

refers

to

the

alias

used

for

the

encryption

information

entry.

Data

encryption

method

algorithm

The

data

encryption

method

algorithms

are

designed

for

encrypting

and

decrypting

data

in

fixed

size,

multiple

octet

blocks.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

511

http://www.w3.org/TR/xmlenc-core

Key

encryption

method

algorithm

The

key

encryption

method

algorithms

are

public

key

encryption

algorithms

specified

for

encrypting

and

decrypting

keys.

Encryption

key

name

The

encryption

key

name

represents

a

Subject

from

a

certificate

found

by

the

encryption

key

locator.

The

Subject

is

used

by

the

key

encryption

method

algorithm

to

decrypt

the

secret

key.

The

secret

key

is

used

to

decrypt

the

data.

Important:

The

key

chosen

must

be

a

private

key

of

the

client.

Encryption

must

be

done

using

the

public

key

and

decryption

must

be

done

by

the

private

key

(personal

certificate).

For

example,

the

personal

certificate

of

the

client

is:

CN=Alice,

O=IBM,

C=US.

Therefore,

the

client

contains

the

public

and

private

key

pair.

The

target

server

that

sends

the

response

encrypts

the

secret

key

using

the

public

key

for

CN=Alice,

O=IBM,

C=US.

The

client

decrypts

the

secret

key

using

the

private

key

for

CN=Alice,

O=IBM,

C=US.

Encryption

key

locator

The

encryption

key

locator

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

For

decryption,

the

encryption

key

name

chosen

must

refer

to

a

personal

certificate

that

can

be

located

by

the

client

key

locator.

The

Subject

(owner

field

of

the

certificate)

of

the

personal

certificate

should

be

entered

in

the

Encryption

key

name,

this

is

typically

a

Distinguished

Name

(DN).

The

default

key

locator

uses

the

Encryption

key

name

to

find

the

key

within

the

keystore.

If

you

write

a

custom

key

locator,

the

encryption

key

name

can

be

anything

used

by

the

key

locator

to

find

the

correct

encryption

key.

The

encryption

key

locator

references

the

implementation

class

that

locates

the

correct

key

store

where

this

alias

and

certificate

exists.

For

more

information,

see

Configuring

key

locators

using

the

Assembly

Toolkit

and

Configuring

key

locators

using

the

Administrative

Console.

You

must

specify

which

parts

of

the

request

message

to

decrypt.

See

the

topicConfiguring

the

client

for

response

decryption:

decrypting

the

message

parts

if

you

have

not

previously

specified

this

information.

Securing

Web

services

using

basicauth

authentication

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

eXtensible

Markup

Language

(XML)

digital

signature

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

With

the

basicauth

authentication

method,

the

request

sender

generates

a

basicauth

security

token

using

a

callback

handler.

The

request

receiver

retrieves

the

basicauth

512

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

security

token

from

the

SOAP

message

and

validates

it

using

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

Trust

is

established

using

user

name

and

password

validation.

To

use

basicauth

authentication

to

secure

Web

services,

complete

the

following

tasks:

1.

Secure

the

client

for

basicauth

authentication.

a.

Configure

the

client

for

basicauth

authentication:

specifying

the

method

b.

Configure

the

client

for

basicauth

authentication:

collecting

the

authentication

information
2.

Secure

the

server

for

basicauth

authentication.

a.

Configure

the

server

to

handle

basicauth

authentication

b.

Configure

the

server

to

validate

basicauth

authentication

information

After

completing

these

steps,

you

have

secured

your

Web

services

using

basicauth

authentication.

Configuring

the

client

for

basic

authentication:

Specifying

the

method

BasicAuth

refers

to

the

user

ID

and

password

of

a

valid

user

in

the

registry

of

the

target

server.

Collection

of

BasicAuth

information

can

occur

in

many

ways

including

through

a

GUI

prompt,

a

standard

in

(Stdin)

prompt,

or

specified

in

the

bindings,

which

prevents

user

interaction.

For

more

information

on

BasicAuth

authentication,

see

BasicAuth

authentication

method.

Complete

the

following

steps

to

specify

BasicAuth

as

the

authentication

method:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

module

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Sender

Configuration

>

Login

Config

section.

The

only

valid

login

configuration

choices

for

a

pure

client

are

BasicAuth

and

Signature.

8.

Select

BasicAuth

to

authenticate

the

client

using

a

user

ID

and

password.

This

user

ID

and

password

must

be

specified

in

the

target

user

registry.

The

other

choice,

Signature,

attempts

to

authenticate

the

client

using

the

certificate

used

to

digitally

sign

the

message.

For

more

information

on

getting

started

with

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit,

see

either

of

the

following

topics:

v

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

security

bindings

on

a

server

acting

as

a

client

using

the

administrative

console

Once

you

have

specified

BasicAuth

as

the

authentication

method,

you

must

specify

how

to

collect

the

authentication

information.

See

Configuring

the

client

for

basic

authentication:

collecting

the

authentication

information.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

513

BasicAuth

authentication

method:

When

you

use

the

BasicAuth

authentication

method,

the

security

token

that

is

generated

is

a

<wsse:UsernameToken>

element

with

<wsse:Username>

and

<wsse:Password>

elements.

WebSphere

Application

Server

supports

text

passwords

but

not

password

digest

because

passwords

are

not

stored

and

cannot

be

retrieved

from

the

server.

On

the

request

sender

side,

a

callback

handler

is

invoked

to

generate

the

security

token.

On

the

request

receiver

side,

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

module

is

used

to

validate

the

security

token.

These

two

operations,

token

generation

and

token

validation,

are

described

in

the

following

sections.

BasicAuth

token

generation

The

request

sender

generates

a

BasicAuth

security

token

using

a

callback

handler.

The

security

token

returned

by

the

callback

handler

is

inserted

in

the

SOAP

message.

The

callback

handler

that

is

used

is

specified

in

the

<LoginBinding>

element

of

the

bindings

file,

ibm-webservicesclient-
bnd.xmi

.

The

following

callback

handler

implementations

are

provided

with

WebSphere

Application

Server

and

can

be

used

with

the

BasicAuth

authentication

method:

v

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

v

com.ibm.wsspi.wssecurity.auth.callback.StdinPromptCallbackHandler

v

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You

can

add

your

own

callback

handlers

that

implement

javax.security.auth.callback.CallbackHandler.

BasicAuth

token

validation

The

request

receiver

retrieves

the

BasicAuth

security

token

from

the

SOAP

message

and

validates

it

using

a

JAAS

login

module.

The

<wsse:Username>

and

<wsse:Password>

elements

in

the

security

token

are

used

to

perform

the

validation.

If

the

validation

is

successful,

the

login

module

returns

a

JAAS

Subject.

This

Subject

then

is

set

as

the

identity

of

the

thread

of

execution.

If

the

validation

fails,

the

request

is

rejected

with

a

SOAP

fault

exception.

The

JAAS

login

configuration

is

specified

in

the

<LoginMapping>

element

of

the

bindings

file.

There

are

default

bindings

specified

in

the

ws-security.xml

file.

However,

you

can

override

these

bindings

using

the

application-specific

ibm-webservices-bnd.xmi

file.

The

configuration

information

consists

of

a

CallbackHandlerFactory

and

a

ConfigName.

The

CallbackHandlerFactory

specifies

the

name

of

a

class

that

is

used

for

creating

the

JAAS

CallbackHandler

object.

WebSphere

Application

Server

provides

the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

CallbackHandlerFactory

implementation.

The

ConfigName

specifies

a

JAAS

configuration

name

entry.

WebSphere

Application

Server

searches

the

security.xml

file

for

a

matching

configuration

name

entry.

If

a

match

is

not

found,

it

searches

the

wsjaas.conf

file

for

a

match.

WebSphere

Application

Server

provides

the

WSLogin

default

configuration

entry,

which

is

suitable

for

the

BasicAuth

authentication

method.

514

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuring

the

client

for

basic

authentication:

collecting

the

authentication

information

BasicAuth

refers

to

the

user

ID

and

password

of

a

valid

user

in

the

registry

of

the

target

server.

Collection

of

BasicAuth

information

can

occur

in

many

ways

including

through

a

GUI

prompt,

a

standard

in

(Stdin)

prompt,

or

specified

in

the

bindings,

which

prevents

user

interaction.

For

more

information

on

BasicAuth

authentication,

see

BasicAuth

authentication

method.

Complete

this

task

to

specify

the

authentication

information

needed

for

BasicAuth

authentication:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Security

Request

Sender

Binding

Configuration

>

Login

Binding

section.

8.

Click

Edit

or

Enable

to

view

the

Login

Binding

information.

The

login

binding

information

displays

and

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

will

occur.

Select

BasicAuth

to

use

basic

authentication.

Token

value

type

URI

and

Token

value

type

local

name

When

you

select

BasicAuth,

you

cannot

edit

the

token

value

type

URI

and

local

name

values.

These

values

are

specifically

for

custom

authentication

types.

For

BasicAuth

authentication,

you

do

not

need

to

enter

any

information.

Callback

handler

The

callback

handler

specifies

the

Java

Authentication

and

Authorization

Server

(JAAS)

callback

handler

implementation

for

collecting

the

BasicAuth

information.

You

can

use

the

following

default

implementations

for

the

callback

handler:

v

com.ibm.wsspi.wssecurity.auth.callback

.StdinPromptCallbackHandler

This

implementation

is

used

for

non-GUI

console

prompts.

v

com.ibm.wsspi.wssecurity.auth.callback.GUIPromptCallbackHandler

This

implementation

is

used

for

GUI

panel

prompts.

v

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This

implementation

is

used

when

you

plan

to

always

enter

the

user

ID

and

password

in

the

BasicAuth

user

ID

and

password

section

that

follows.

Basic

Authentication

user

ID

and

Basic

Authentication

password

When

values

for

BasicAuth

user

ID

and

password

are

entered,

regardless

of

the

default

callback

handler

indicated

previously,

these

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

515

user

ID

and

password

values

are

used

to

authenticate

to

the

server

for

the

Web

services

security

authentication.

If

you

leave

these

values

blank,

use

either

the

GUIPromptCallbackHandler

or

the

StdinPromptCallbackHandler

implementation,

but

only

on

a

pure

client.

Always

fill-in

these

values

for

any

Web

service

that

acts

as

a

client

to

another

Web

service

and

you

want

to

specify

BasicAuth

for

authentication

downstream.

If

you

want

the

client

identity

of

the

originator

to

flow

downstream,

configure

the

Web

service

client

to

use

either

ID

assertion

or

Lightweight

Third

Party

Authentication

(LTPA).

To

configure

ID

assertion,

see

Configuring

the

client

for

identity

assertion

authentication:

Specifying

method,Configuring

the

client

for

identity

assertion

authentication:

Collecting

the

authentication

method,

Configuring

the

client

for

LTPA

token

authentication:

Specifying

the

LTPA

token

authentication

information,

and

Configuring

the

client

for

LTPA

token

authentication:

Collecting

the

authentication

information.

Property

This

field

enables

you

to

enter

properties

and

name

and

value

pairs

for

use

by

custom

callback

handlers.

For

BasicAuth

authentication,

you

do

not

need

to

enter

any

information.

To

enter

a

new

property,

click

Add

and

enter

the

new

property

and

value.

Attention:

There

is

a

basic

authentication

entry

in

the

Port

Qualified

Name

Binding

Details

section.

This

entry

is

used

for

HTTP

transport

authentication,

which

might

be

required

if

the

router

servlet

is

protected.

Information

specified

in

the

Web

services

security

basic

authentication

section

overrides

the

basic

authentication

information

specified

in

the

Port

Qualified

Name

Binding

Details

section

for

authorizing

the

Web

service.

For

a

server

that

acts

as

a

client,

do

not

specify

a

GUI

or

non-GUI

prompt

callback

handler.

To

configure

BasicAuth

authentication

from

one

Web

service

to

a

downstream

Web

service,

select

the

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHander

implementation

and

explicitly

specify

the

BasicAuth

user

ID

and

password.

If

you

want

the

client

identity

of

the

originator

to

flow

downstream,

configure

the

Web

service

client

to

use

ID

assertion.

To

configure

ID

assertion,

see

Configuring

the

client

for

identity

assertion

authentication:

Specifying

method

and

Configuring

the

client

for

identity

assertion

authentication:

Collecting

the

authentication

method.

To

use

the

BasicAuth

authentication

method,

you

must

specify

the

method

in

the

Login

Config

section

of

the

Assembly

Toolkit.

See

Configuring

the

client

for

basicauth

authentication:

specifying

the

method

if

you

have

not

previously

specified

this

information.

Identity

assertion

authentication

method:

When

using

the

Identity

Assertion

(IDAssertion)

authentication

method,

the

security

token

generated

is

a

<wsse:UsernameToken>

element

that

contains

a

<wsse:Username>

element.

On

the

request

sender

side,

a

callback

handler

is

invoked

to

generate

the

security

token.

On

the

request

receiver

side,

the

security

token

is

validated.

These

two

operations,

token

generation

and

token

validation,

are

described

in

the

following

sections.

Identity

assertion

token

validation:

516

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

request

receiver

retrieves

the

IDAssertion

security

token

from

the

SOAP

message

and

validates

it

using

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

With

identity

assertion,

special

processing

is

required

to

establish

trust

before

asserting

the

identity

as

the

established

identity

of

the

thread

of

execution.

This

special

processing

is

defined

by

the

<IDAssertion>

element

in

the

deployment

descriptor

file,

ibm-webservices-ext.xmi.

If

all

the

validation

checks

are

successful,

the

asserted

identity

is

set

as

the

identity

of

the

thread

of

execution.

If

the

validation

fails,

the

request

is

rejected

with

a

SOAP

fault

exception.

The

JAAS

login

configuration

is

specified

in

the<LoginMapping>

element

of

the

bindings

file.

There

are

default

bindings

specified

in

the

ws-security.xml

file.

However,

you

can

override

these

bindings

using

the

application

specific

ibm-webservices-bnd.xmi

file.

The

configuration

information

consists

of

a

CallbackHandlerFactory

and

a

ConfigName.

The

CallbackHandlerFactory

specifies

the

name

of

a

class

that

is

used

for

creating

the

JAAS

CallbackHandler

object.

WebSphere

Application

Server

provides

the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl

CallbackHandlerFactory

implementation.

The

ConfigName

specifies

a

JAAS

configuration

name

entry.

WebSphere

Application

Server

searches

the

security.xml

file

for

a

matching

configuration

name

entry.

If

a

match

is

not

found

it

searches

the

wsjaas.conf

file.

WebSphere

Application

Server

provides

the

system.wssecurity.IDAssertion

default

configuration

entry,

which

is

suitable

for

the

identity

assertion

authentication

method.

The

<IDAssertion>

element

in

the

ibm-webservices-ext.xmi

deployment

descriptor

file

specifies

the

special

processing

required

when

using

the

identity

assertion

authentication

method.

The

<IDAssertion>

element

is

composed

of

two

sub-elements:

<IDType>

and

<TrustMode>.

The

<IDType>

element

specifies

the

method

for

asserting

the

identity.

The

supported

values

for

asserting

the

identity

are:

v

Username

v

Distinguished

name

(DN)

v

X.509

certificate

When

<IDType>

is

username,

a

username

token

(for

example,

Bob)

is

provided.

This

user

name

is

mapped

to

a

user

in

the

user

registry

and

is

the

asserted

identity

after

successful

trust

validation.

When

the

<IDType>

is

DN,

a

user

name

token

containing

a

distinguished

name

is

provided

(for

example,

cn=Bob

Smith,

o=ibm,

c=us).

This

DN

is

mapped

to

a

user

in

the

user

registry

and

this

user

is

the

asserted

identity

after

successful

trust

validation.

When

the

<IDType>

is

X509Certificate,

a

binary

security

token

containing

an

X509

certificate

is

provided

and

the

SubjectDN

from

the

certificate

(for

example,

cn=Bob

Smith,

o=ibm,

c=us)

is

extracted.

This

SubjectDN

is

mapped

to

a

user

in

the

user

registry

and

this

user

is

the

asserted

identity

after

successful

trust

validation.

The

<TrustMode>

element

specifies

how

the

trust

authority,

or

asserting

authority,

provides

trust

information.

The

supported

values

are:

v

Signature

v

BasicAuth

v

No

value

specified

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

517

When

<TrustMode>

is

Signature,

the

signature

is

validated.

Then,

the

signer

(for

example,

cn=IBM

Authority,

o=ibm,

c=us)

is

mapped

to

an

identity

in

the

user

registry

(for

example,

IBMAuthority).

To

ensure

that

the

asserting

authority

is

trusted,

the

mapped

identity

(for

example,

IBMAuthority)

is

validated

against

a

list

of

trusted

identities.

When

the

<TrustMode>

is

BasicAuth,

there

is

a

user

name

token

with

a

user

name

and

password,

which

is

the

user

name

and

password

of

the

asserting

authority.

The

user

name

and

password

are

validated.

If

they

are

successfully

validated,

that

user

name

(for

example,

IBMAuthority)

is

validated

against

a

list

of

trusted

identities.

If

a

value

is

not

specified

for

<TrustMode>,

trust

is

presumed

and

additional

trust

validation

is

not

performed.

This

type

of

identity

assertion

is

called

presumed

trust

mode.

Use

the

presumed

trust

mode

only

in

an

environment

where

the

trust

is

established

using

some

other

mechanism.

If

all

the

validations

described

previously

succeed,

the

asserted

identity

(for

example,

Bob)

is

set

as

the

identity

of

the

thread

of

execution.

If

any

of

the

validations

fail,

the

request

is

rejected

with

a

SOAP

fault

exception.

Configuring

the

server

to

handle

BasicAuth

authentication

information

BasicAuth

refers

to

the

user

ID

and

password

of

a

valid

user

in

the

registry

of

the

target

server.

Once

a

request

is

received

that

contains

basic

authentication

information,

the

server

needs

to

log

in

to

form

a

credential.

The

credential

is

used

for

authorization.

If

the

user

ID

and

password

supplied

is

invalid,

an

exception

is

thrown

and

the

request

ends

without

invoking

the

resource.

For

more

information

on

BasicAuth

authentication,

see

BasicAuth.

Complete

the

following

steps

to

configure

the

server

to

handle

BasicAuth

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Login

Config

section.

The

options

you

can

select

are:

v

BasicAuth

v

Signature

v

ID

assertion

v

LTPA

.

8.

Select

BasicAuth

to

authenticate

the

client

using

a

user

ID

and

password.

The

client

must

specify

a

valid

user

ID

and

password

in

the

server

user

registry.

Important:

You

can

select

multiple

login

configurations,

which

means

that

different

types

of

security

information

might

be

received

at

the

server.

The

order

in

which

the

login

configurations

are

added

decides

the

order

in

which

they

are

processed

when

a

request

is

received.

This

can

cause

problems

if

you

have

multiple

login

518

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

configurations

added

that

have

security

tokens

in

common.

For

example,

ID

assertion

contains

a

BasicAuth

token.

For

ID

assertion

to

work

properly,

list

ID

assertion

ahead

of

BasicAuth

in

the

processing

list

or

the

BasicAuth

processing

overrides

the

IDAssertion

processing.

Once

you

have

specified

how

the

server

will

handle

BasicAuth

authentication

information,

you

must

specify

how

the

server

validates

the

authentication

information.

See

Configuring

the

server

to

validate

basicauth

authentication

information

for

more

information.

Configuring

the

server

to

validate

BasicAuth

authentication

information

BasicAuth

refers

to

the

user

ID

and

password

of

a

valid

user

in

the

registry

of

the

target

server.

Once

a

request

is

received

that

contains

basic

authentication

information,

the

server

needs

to

log

in

to

form

a

credential.

The

credential

is

used

for

authorization.

If

the

user

ID

and

password

supplied

is

invalid,

an

exception

is

thrown

and

the

request

ends

without

invoking

the

resource.

For

more

information

on

BasicAuth

authentication,

see

BasicAuth.

Complete

the

following

steps

to

specify

how

the

server

validates

the

BasicAuth

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Login

Mapping

section.

8.

Click

Edit

to

view

the

login

mapping

information

or

click

Add

to

add

new

login

mapping

information.

The

login

mapping

dialog

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

BasicAuth

to

use

basic

authentication.

Configuration

name

This

specifies

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

name.

For

the

BasicAuth

authentication

method,

enter

WSLogin

for

the

JAAS

login

Configuration

name.

Use

token

valid

type

The

Use

token

value

type

option

determines

if

you

want

to

specify

a

custom

token

type.

For

the

default

Authentication

method

selections,

you

do

not

need

to

specify

this

option.

Token

value

type

URI

and

Token

value

type

URI

local

name

When

you

select

BasicAuth,

you

cannot

edit

the

token

value

type

URI

and

local

name

values.

These

values

are

specified

for

custom

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

519

authentication

types.

For

BasicAuth

authentication,

you

do

not

need

to

enter

any

information

for

these

fields.

Callback

handler

factory

class

name

This

class

name

creates

a

JAAS

CallbackHandler

implementation

that

understands

the

following

callbacks:

v

javax.security.auth.callback.NameCallback

v

javax.security.auth.callback.PasswordCallback

v

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

Callback

handler

factory

property

name

and

Callback

handler

factory

property

value

This

property

is

used

to

specify

callback

handler

properties

for

custom

callback

handler

factory

implementations.

You

do

not

need

to

specify

any

properties

for

the

default

callback

handler

factory

implementation.

For

BasicAuth,

you

do

not

need

to

enter

any

property

values.

Login

mapping

property

name

and

Login

mapping

property

value

This

property

is

used

to

specify

properties

for

a

custom

login

mapping

to

use.

For

the

default

implementations

including

BasicAuth,

you

do

not

need

to

enter

any

property

values.

You

must

specify

how

the

server

will

handle

the

BasicAuth

authentication

method.

See

Configuring

the

server

to

handle

BasicAuth

authentication

information

if

you

have

not

previously

specified

this

information.

Identity

assertion

Identity

assertion

is

a

method

for

expressing

the

identity

of

the

sender

(for

example,

user

name)

in

a

SOAP

message.

When

identity

assertion

is

used

as

a

authentication

method,

the

authentication

decision

is

performed

based

only

on

the

name

of

the

identity,

but

not

on

other

information

such

as

passwords

and

certificates.

Identity

assertion

is

a

method

for

expressing

the

identity

of

the

sender

(for

example,

user

name)

in

a

SOAP

message.

When

identity

assertion

is

used

as

a

authentication

method,

the

authentication

decision

is

performed

based

only

on

the

name

of

the

identity,

but

not

on

other

information

such

as

passwords

and

certificates.

ID

type

The

Web

Services

Security

implementation

in

WebSphere

Application

Server

can

handle

the

following

three

types

of

identity.

User

name

Denotes

the

user

name,

such

as

the

one

in

the

local

operating

system

(for

example,

″alice″).

This

name

is

embedded

in

the

<Username>

element

within

the

<UsernameToken>

element.

DN

Denotes

the

distinguished

name

(DN)

for

the

user,

such

as

″CN=alice,

O=IBM,

C=US″.

This

name

is

embedded

in

the

<Username>

element

within

the

<UsernameToken>

element.

X.509

certificate

Represents

the

identity

of

the

user

as

a

X.509

certificate

instead

of

a

string

name.

This

certificate

is

embedded

in

the

<BinarySecurityToken>

element.

520

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Managing

trust

The

intermediary

host

in

the

SOAP

message

itinerary

can

assert

the

initial

sender’s

claimed

identity.

Two

methods

(called

trust

mode)

are

supported

for

this

assertion:

Basic

authentication

The

intermediary

adds

its

user

name

and

password

pair

to

the

message.

Signature

The

intermediary

digitally

signs

the

<UsernameToken>

element

of

the

initial

sender.

Note:

This

trust

mode

does

not

support

the

X.509

certificate

ID

type.

Typical

scenario

ID

assertion

is

typically

used

in

the

multi-hop

environment

where

the

SOAP

message

passes

through

one

or

more

intermediary

hosts.

The

intermediary

host

authenticates

the

initial

sender.

The

following

scenario

describes

the

process:

1.

The

initial

sender

sends

a

SOAP

message

to

the

intermediary

host

with

some

embedded

authentication

information.

This

authentication

information

might

be

a

user

name

and

password

pair

and

an

LTPA

token.

2.

The

intermediary

host

authenticates

the

initial

sender

according

to

the

embedded

authentication

information.

3.

The

intermediary

host

removes

the

authentication

information

from

the

SOAP

message

and

replaces

it

with

the

<UsernameToken>

element,

which

contains

a

user

name.

4.

The

intermediary

host

asserts

the

trust

according

to

the

trust

mode.

5.

The

intermediary

host

sends

the

updated

SOAP

message

to

the

ultimate

receiver.

6.

The

ultimate

receiver

checks

the

trust

against

the

intermediary

host

information

according

to

the

configured

trust

mode.

Also,

the

trusted

ID

evaluator

is

invoked.

7.

If

trust

is

established

by

the

ultimate

receiver,

it

invokes

the

Web

service

under

the

authorization

of

the

user

name

(that

is,

the

initial

sender)

in

the

SOAP

message.

Securing

Web

services

using

identity

assertion

authentication

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

eXtensible

Markup

Language

(XML)

digital

signature

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

521

With

the

identity

assertion

authentication

method,

the

security

token

generates

a

<wsee:Username

Token>

element

that

contains

a

<wsse:Username>

element.

On

the

request

sender

side,

a

callback

handler

is

invoked

to

generate

the

security

token.

On

the

request

receiver

side,

the

security

token

is

validated.

Unlike

basicauth

authentication,

trust

is

established

through

the

use

of

a

security

token

rather

than

through

user

name

and

password

validation.

To

use

identity

assertion

authentication

to

secure

Web

services,

complete

the

following

tasks:

1.

Secure

the

client

for

identity

assertion

authentication.

a.

Configure

the

client

for

identity

assertion

authentication:

specifying

the

method.

b.

Configure

the

client

for

identity

assertion

authentication:

collecting

the

authentication

information.
2.

Secure

the

server

for

identity

assertion

authentication.

a.

Configure

the

server

to

handle

identity

assertion

authentication.

b.

Configure

the

server

to

validate

identity

assertion

authentication

information.

After

completing

these

steps,

you

have

secured

your

Web

services

using

identity

assertion

authentication.

Configuring

the

client

for

identity

assertion:

specifying

the

method

This

task

is

used

to

configure

identity

assertion

authentication.

The

purpose

of

identity

assertion

is

to

assert

the

authenticated

identity

of

the

originating

client

from

a

Web

service

to

a

downstream

Web

service.

Do

not

attempt

to

configure

identity

assertion

from

a

pure

client.

Identity

assertion

works

only

when

you

configure

on

the

client-side

of

a

Web

service

acting

as

a

client

to

a

downstream

Web

service.

In

order

for

the

downstream

Web

service

to

accept

the

identity

of

the

originating

client

(just

the

user

name),

you

must

supply

a

special

trusted

BasicAuth

credential

that

the

downstream

Web

service

trusts

and

can

authenticate

successfully.

You

must

specify

the

user

ID

of

the

special

BasicAuth

credential

in

a

trusted

ID

evaluator

on

the

downstream

Web

service

configuration.

For

more

information

on

trusted

ID

evaluators,

see

Trusted

ID

evaluators.

Complete

the

following

steps

to

specify

identity

assertion

as

the

authentication

method:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Sender

Configuration

>

Login

Config

section.

8.

Select

IDAssertion

as

the

authentication

method.

For

more

conceptual

information

on

identity

assertion

authentication,

see

ID

assertion.

522

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

9.

Expand

the

IDAssertion

section.

10.

For

the

ID

Type,

select

Username.

This

works

with

all

registry

types

and

originating

authentication

methods.

11.

For

the

Trust

Mode,

select

either

BasicAuth

or

Signature.

v

By

selecting

BasicAuth,

you

must

include

basic

authentication

information

(user

ID

and

password),

which

the

downstream

Web

service

has

specified

in

the

trusted

ID

evaluator

as

a

trusted

user

ID.

See

Configuring

the

client

for

signature

authentication:

Collecting

the

authentication

information

to

specify

the

user

ID

and

password

information.

v

By

selecting

Signature

,

the

certificate

configured

in

the

Signature

information

section

used

to

sign

the

data

also

is

used

as

the

trusted

subject.

The

Signature

is

used

to

create

a

credential

and

the

user

ID,

which

the

certificate

mapped

to

the

downstream

registry,

is

used

in

the

trusted

ID

evaluator

as

a

trusted

user

ID.

See

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit

for

more

information

on

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

Once

you

have

specified

identity

assertion

as

the

authentication

method

used

by

the

client,

you

must

specify

how

to

collect

the

authentication

information.

See

Configuring

the

client

for

identity

assertion

authentication:

collecting

the

authentication

information

for

more

information.

Configuring

the

client

for

identity

assertion:

Collecting

the

authentication

method

This

task

is

used

to

configure

identity

assertion

authentication.

The

purpose

of

identity

assertion

is

to

assert

the

authenticated

identity

of

the

originating

client

from

a

Web

service

to

a

downstream

Web

service.

Do

not

attempt

to

configure

identity

assertion

from

a

pure

client.

Identity

assertion

works

only

when

you

configure

on

the

client-side

of

a

Web

service

acting

as

a

client

to

a

downstream

Web

service.

In

order

for

the

downstream

Web

service

to

accept

the

identity

of

the

originating

client

(just

the

user

name),

you

must

supply

a

special

trusted

BasicAuth

credential

that

the

downstream

Web

service

trusts

and

can

authenticate

successfully.

You

must

specify

the

user

ID

of

the

special

BasicAuth

credential

in

a

trusted

ID

evaluator

on

the

downstream

Web

service

configuration.

For

more

information

on

trusted

ID

evaluators,

see

Trusted

ID

evaluators.

Complete

the

following

steps

to

specify

how

the

client

collects

the

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

523

7.

Expand

the

Security

Request

Sender

Binding

Configuration

>

Login

Binding

section.

8.

Click

Edit

to

view

the

login

binding

information

and

select

IDAssertion.

The

login

binding

dialog

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

IDAssertion

to

use

identity

assertion.

Token

value

type

URI

and

Token

value

type

Local

name

When

you

select

IDAssertion,

you

cannot

edit

the

token

value

type

URI

and

the

local

name.

These

values

are

specifically

for

custom

authentication

types.

For

IDAssertion

authentication,

you

do

not

need

to

enter

any

information.

Callback

handler

The

callback

handler

specifies

the

Java

Authentication

and

Authorization

Service

(JAAS)

callback

handler

implementation

for

collecting

the

BasicAuth

information.

Specify

the

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

implementation

for

IDAssertion.

Basic

authentication

User

ID

and

Basic

authentication

Password

If

the

trust

mode

entered

in

the

extensions

is

BasicAuth,

you

must

specify

the

trusted

user

ID

and

password

in

these

fields.

The

user

ID

specified

must

be

an

ID

that

is

trusted

by

the

downstream

Web

service.

The

Web

service

trusts

the

user

ID

if

it

is

entered

as

a

trusted

ID

in

a

trusted

ID

evaluator

in

the

downstream

Web

service

bindings.

If

the

trust

mode

entered

in

the

extensions

is

Signature,

you

do

not

need

to

specify

any

information

in

this

field.

Property

Name

and

Property

Value

This

field

enables

you

to

enter

properties

and

name

and

value

pairs,

for

use

by

custom

callback

handlers.

For

IDAssertion,

you

do

not

need

to

specify

any

information

in

this

field.

To

use

the

identity

assertion

authentication

method,

you

must

specify

the

method

in

the

Security

Extentions

section

of

the

Assembly

Toolkit.

See

Configuring

the

client

for

identity

assertion

authentication:

specifying

the

method

if

you

have

not

previously

specified

this

information.

Configuring

the

server

to

handle

identity

assertion

authentication

Use

this

task

to

configure

identity

assertion

authentication.

The

purpose

of

identity

assertion

is

to

assert

the

authenticated

identity

of

the

originating

client

from

a

Web

service

to

a

downstream

Web

service.

Do

not

attempt

to

configure

identity

assertion

from

a

pure

client.

For

the

downstream

Web

service

to

accept

the

identity

of

the

originating

client

(user

name

only),

you

must

supply

a

special

trusted

BasicAuth

credential

that

the

downstream

Web

service

trusts

and

can

authenticate

successfully.

You

must

specify

the

user

ID

of

the

special

BasicAuth

credential

in

a

trusted

ID

evaluator

on

the

downstream

Web

service

configuration.

For

more

information

on

trusted

ID

evaluators,

see

Trusted

ID

evaluators.

The

server

side

passes

the

special

BasicAuth

credential

into

the

trusted

ID

evaluator,

which

returns

true

or

false

that

this

ID

is

trusted.

Once

it

is

trusted,

the

user

name

of

the

client

is

mapped

to

the

credential,

which

is

used

for

authorization.

524

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Complete

the

following

steps

to

configure

the

server

to

handle

identity

assertion

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Login

Config

section.

The

options

you

can

select

are:

v

BasicAuth

v

Signature

v

ID

assertion

v

LTPA

8.

Select

IDAssertion

to

authenticate

the

client

using

the

identity

assertion

data

provided.

This

user

ID

of

the

client

must

be

in

the

target

user

registry

configured

in

WebSphere

Application

Server

global

security.

You

can

select

global

security

in

the

Administrative

Console

by

clicking

Security

>

Global

security.

You

can

select

multiple

login

configurations,

which

means

that

different

types

of

security

information

can

be

received

at

the

server.

The

order

in

which

the

login

configurations

are

added

decides

the

order

in

which

they

are

processed

when

a

request

is

received.

This

can

cause

problems

if

you

have

multiple

login

configurations

added

that

have

security

tokens

in

common.

For

example,

ID

assertion

contains

a

BasicAuth

token,

which

is

the

token

that

is

being

trusted.

For

ID

assertion

to

work

properly,

you

must

list

ID

assertion

ahead

of

BasicAuth

in

the

list

or

BasicAuth

processing

overrides

ID

assertion

processing.

9.

Expand

the

IDAssertion

section.

You

need

to

select

both

the

ID

Type

and

Trust

Mode.

a.

For

ID

Type,

the

options

are:

v

Username

v

Distinguished

name

(DN)

v

X509certificate

These

choices

are

just

preferences

and

are

not

guaranteed.

Most

of

the

time

Username

is

used.

You

must

choose

the

same

ID

Type

as

the

client.

b.

For

Trust

Mode,

the

options

are:

v

BasicAuth

v

Signature

The

Trust

Mode

refers

to

the

information

sent

by

the

client

as

the

trusted

ID.

1)

If

you

select

Signature,

the

client

signing

certificate

is

sent.

This

certificate

must

be

mappable

to

the

configured

user

registry.

For

Local

OS,

the

common

name

(CN)

of

the

distinguished

name

(DN)

is

mapped

to

a

user

ID

in

the

registry.

For

LDAP,

the

DN

is

mapped

to

the

registry

for

the

ExactDN

mode.

If

it

is

in

the

CertificateFilter

mode,

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

525

attributes

are

mapped

accordingly.

In

addition,

the

user

name

from

the

credential

generated

must

be

in

the

Trusted

ID

Evaluator

trust

list.

2)

If

you

select

BasicAuth,

the

client

sends

basic

authentication

data

(user

ID

and

password).

This

basicauth

data

is

authenticated

to

the

configured

user

registry.

Once

the

authentication

occurs

successfully,

the

user

ID

must

be

part

of

the

trusted

ID

evaluator

trust

list.

For

more

information

on

getting

started

with

the

Web

Services

Editor

within

the

Assembly

Toolkit

,

see

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit.

Once

you

have

specified

how

the

server

will

handle

identity

assertion

authentication

information,

you

must

specify

how

the

server

validates

the

authentication

information.

See

Configuring

the

server

to

validate

identity

assertion

authentication

information

for

more

information.

Configuring

the

server

to

validate

identity

assertion

authentication

information

Use

this

task

to

configure

identity

assertion

authentication.

The

purpose

of

identity

assertion

is

to

assert

the

authenticated

identity

of

the

originating

client

from

a

Web

service

to

a

downstream

Web

service.

Do

not

attempt

to

configure

identity

assertion

from

a

pure

client.

For

the

downstream

Web

service

to

accept

the

identity

of

the

originating

client

(user

name

only),

you

must

supply

a

special

trusted

BasicAuth

credential

that

the

downstream

Web

service

trusts

and

can

authenticate

successfully.

You

must

specify

the

user

ID

of

the

special

BasicAuth

credential

in

a

trusted

ID

evaluator

on

the

downstream

Web

service

configuration.

For

more

information

on

trusted

ID

evaluators,

see

Trusted

ID

evaluators.

The

server

side

passes

the

special

BasicAuth

credential

into

the

trusted

ID

evaluator,

which

returns

true

or

false

that

this

ID

is

trusted.

Once

it

is

trusted,

the

user

name

of

the

client

is

mapped

to

the

credential,

which

is

used

for

authorization.

Complete

the

following

steps

to

validate

the

identity

assertion

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Login

Mapping

section.

8.

Click

Edit

to

view

the

login

mapping

information.

Click

Add

to

add

new

login

mapping

information.

The

login

mapping

dialog

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

IDAssertion

to

use

basic

authentication.

526

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuration

name

This

specifies

the

JAAS

login

configuration

name.

For

the

IDAssertion

authentication

method,

enter

system.wssecurity.IDAssertion

for

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

name.

Use

token

value

type

The

Use

token

value

type

option

determines

if

you

want

to

specify

a

custom

token

type.

For

the

default

authentication

method

selections,

you

do

not

need

to

specify

this

option.

Token

value

type

URI

and

Token

value

type

local

name

When

you

select

ID

assertion,

you

cannot

edit

the

token

value

type

URI

and

local

name

values.

These

values

are

specifically

for

custom

authentication

types.

For

the

ID

assertion

authentication

method,

you

do

not

need

to

enter

any

information

in

these

fields.

Callback

Handler

Factory

Class

name

This

class

name

creates

a

JAAS

CallbackHandler

implementation

that

understands

the

following

callbacks:

v

javax.security.auth.callback.NameCallback

v

javax.security.auth.callback.PasswordCallback

v

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v

com.ibm.wsspi.wssecurity.auth.callback

.XMLTokenReceiverCallback

v

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For

any

of

the

default

Authentication

methods

(BasicAuth,

IDAssertion,

and

Signature),

use

the

callback

handler

factory

default

implementation.

Enter

the

following

class

name

for

any

of

the

default

Authentication

methods

including

IDAssertion:

com.ibm.wsspi.wssecurity

.auth.callback.WSCallbackHandlerFactoryImpl

This

implementation

creates

the

correct

callback

handler

for

the

default

implementations.

Callback

handler

factory

property

name

and

Callback

handler

factory

property

value

This

property

is

used

to

specify

callback

handler

properties

for

Custom

callback

handler

factory

implementations.

The

default

callback

handler

factory

implementation

does

not

need

any

properties

to

be

specified.

For

ID

assertion,

you

do

not

need

to

enter

any

values

for

this

property.

Login

mapping

property

name

and

Login

mapping

property

value

This

option

is

used

to

specify

properties

for

a

custom

login

mapping.

For

the

default

implementations

including

IDAssertion,

you

do

not

need

to

enter

any

properties

for

this

option.

9.

Expand

the

Trusted

ID

Evaluator

section.

10.

Click

Edit

to

see

a

dialog

displaying

all

the

trusted

ID

evaluator

information.

The

following

table

describes

the

purpose

of

this

information.

Class

name

The

class

name

refers

to

the

implementation

of

the

trusted

ID

evaluator

that

you

want

to

use.

Enter

the

default

implementation

as

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl.

If

you

want

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

527

to

implement

your

own

trusted

ID

evaluator,

you

must

implement

the

com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator

interface.

Property

name

The

name

is

the

name

of

this

configuration.

Enter

BasicIDEvaluator

for

lack

of

a

better

reference.

Property

value

The

property

defines

name

and

value

pairs

that

can

be

used

by

the

trusted

ID

evaluator

implementation.

For

the

default

implementation,

the

trusted

list

is

defined

here.

When

a

request

comes

in

and

the

trusted

ID

is

verified,

the

user

ID,

as

it

appears

in

the

user

registry,

must

be

listed

in

this

property.

Specify

the

property

as

a

name

and

value

pair

where

the

name

is

trunstedId_n.

n

is

an

integer

starting

from

0

and

the

value

is

the

user

ID

associated

with

that

name.

An

example

list

with

the

trusted

names

include

two

properties.

For

example:

trustedId_0

=

user1,

trustedId_1

=

user2.

The

previous

example

means

that

both

user1

and

user2

are

trusted.

user1

and

user2

must

be

listed

in

the

configured

user

registry.
11.

Expand

the

Trusted

ID

Evaluator

Reference

section.

12.

Click

Enable

to

add

a

new

entry.

The

text

you

enter

for

the

Trusted

ID

Evaluator

Reference

must

be

the

same

as

the

name

entered

previously

in

the

Trusted

ID

Evaluator.

Make

sure

that

the

name

matches

exactly

as

the

information

is

case

sensitive.

If

an

entry

is

already

specified,

you

can

change

it

by

clicking

Edit.

You

must

specify

how

the

server

will

handle

the

identity

assertion

authentication

method.

See

Configuring

the

server

to

handle

identity

assertion

authentication

if

you

have

not

previously

specified

this

information.

Securing

Web

services

using

signature

authentication

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

eXtensible

Markup

Language

(XML)

digital

signature

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

With

the

signature

authentication

method,

the

request

sender

generates

a

signature

security

token

using

a

callback

handler.

The

security

token

returned

by

the

callback

handler

is

inserted

in

the

SOAP

message.

The

request

receiver

retrieves

the

Signature

security

token

from

the

SOAP

message

and

validates

it

using

a

JAAS

login

module.

To

use

signature

authentication

to

secure

Web

services,

complete

the

following

tasks:

1.

Secure

the

client

for

signature

authentication.

a.

Configure

the

client

for

signature

authentication:

specifying

the

method.

b.

Configure

the

client

for

signature

authentication:

collecting

the

authentication

information.
2.

Secure

the

server

for

signature

authentication.

528

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

a.

Configure

the

server

to

handle

signature

authentication.

b.

Configure

the

server

to

validate

signature

authentication

information.

After

completing

these

steps,

you

have

secured

your

Web

services

using

signature

authentication.

Configuring

the

client

for

signature

authentication:

specifying

the

method

This

task

is

used

to

configure

signature

authentication.

A

signature

refers

to

the

use

of

an

X.509

certificate

to

login

on

the

target

server.

For

more

information

on

signature

authentication,

see

Signature

authentication

method.

Complete

the

following

steps

to

specify

signature

as

the

authentication

method:

1.

Launch

the

Assembly

Toolkit.

2.

Click

Windows

>

Open

Perspective

>

J2EE

to

access

the

Assembly

Toolkit

perspective.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Sender

Configuration

>

Login

Config

section.

The

following

valid

login

configuration

options

for

a

managed

client

and

Web

services

acting

as

a

client

are:

BasicAuth

You

can

use

this

option

for

a

managed

client.

Signature

You

can

use

this

option

for

a

managed

client.

IDAssertion

You

can

use

this

option

for

Web

services

acting

as

a

client.
8.

Select

Signature

to

authenticate

the

client

using

the

certificate

used

to

digitally

sign

the

request.

For

more

information

on

getting

started

with

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit

,

see

Configuring

the

client

security

bindings

using

the

Assembly

Toolkit.

Once

you

have

specified

signature

as

the

authentication

method,

you

must

specify

how

to

collect

the

authentication

information.

See

Configuring

the

client

for

signature

authentication:

collecting

the

authentication

information

for

more

information.

Signature

authentication

method:

When

using

the

signature

authentication

method,

the

security

token

is

generated

with

a

<ds:Signature>

and

a

<wsse:BinarySecurityToken>

element.

On

the

request

sender

side,

a

callback

handler

is

invoked

to

generate

the

security

token.

On

the

request

receiver

side,

a

Java

Authentication

and

Authorization

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

529

Service

(JAAS)

login

module

is

used

to

validate

the

security

token.

These

two

operations,

token

generation

and

token

validation,

are

described

in

the

following

sections.

Signature

token

generation

The

request

sender

generates

a

Signature

security

token

using

a

callback

handler.

The

security

token

returned

by

the

callback

handler

is

inserted

in

the

SOAP

message.

The

callback

handler

is

specified

in

the

<LoginBinding>

element

of

the

bindings

file,

ibm-webservicesclient-bnd.xmi.

WebSphere

Application

Server

provides

the

following

callback

handler

implementation

that

can

be

used

with

the

Signature

authentication

method:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

You

can

add

your

own

callback

handlers

that

implement

javax.security.auth.callback.CallbackHandler.

Security

token

validation

The

request

receiver

retrieves

the

Signature

security

token

from

the

SOAP

message

and

validates

it

using

a

JAAS

login

module.

The

<ds:Signature>

and

<wsse:BinarySecurityToken>

elements

in

the

security

token

are

used

to

perform

the

validation.

If

the

validation

is

successful,

the

login

module

returns

a

JAAS

Subject.

This

Subject

then

is

set

as

the

identity

of

the

thread

of

execution.

If

the

validation

fails,

the

request

is

rejected

with

a

SOAP

fault

exception.

The

JAAS

login

configuration

is

specified

in

the

<LoginMapping>

element

of

the

bindings

file.

There

are

default

bindings

specified

in

the

ws-security.xml

file.

However,

you

can

override

these

bindings

using

the

application-specific

ibm-webservices-bnd.xmi

file.

The

configuration

information

consists

of

a

CallbackHandlerFactory

and

a

ConfigName.

The

CallbackHandlerFactory

specifies

the

name

of

a

class

that

is

used

for

creating

the

JAAS

CallbackHandler

object.

WebSphere

Application

Server

provides

the

com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImp

CallbackHandlerFactory

implementation.

The

ConfigName

specifies

a

JAAS

configuration

name

entry.

WebSphere

Application

Server

searches

in

the

security.xml

file

for

a

matching

configuration

name

entry.

If

a

match

is

not

found,

it

searches

the

wsjaas.conf

file.

WebSphere

Application

Server

provides

the

system.wssecurity.Signature

default

configuration

entry,

which

is

suitable

for

the

signature

authentication

method.

Configuring

the

client

for

signature

authentication:

collecting

the

authentication

information

This

task

is

used

to

configure

signature

authentication.

A

signature

refers

to

the

use

of

an

X.509

certificate

to

login

on

the

target

server.

For

more

information

on

signature

authentication,

see

Signature

authentication

method.

Complete

the

following

steps

to

specify

how

the

client

collects

the

authentication

information

for

signature

authentication:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

530

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Security

Request

Sender

Binding

Configuration

>

Signing

Information

and

click

Edit

to

modify

the

signing

key

name

and

signing

key

locator.

To

create

new

signing

information,

click

Enable.

The

certificate

that

is

sent

to

login

at

the

server

is

the

one

configured

in

the

Signing

Information

section.

Review

the

section

on

Key

locators

to

understand

how

the

signing

key

name

maps

to

a

key

within

the

key

locator

entry.

The

following

list

describes

the

purpose

of

this

information.

Some

of

these

definitions

are

based

on

the

XML-Signature

specification,

which

is

located

at

the

following

address:

http://www.w3.org/TR/xmldsig-core

Canonicalization

method

algorithm

The

canonicalization

method

algorithm

is

used

to

canonicalize

the

SignedInfo

element

before

it

is

digested

as

part

of

the

signature

operation.

Digest

mehod

algorithm

The

digest

method

algorithm

is

the

algorithm

applied

to

the

data

after

transforms

are

applied,

if

specified,

to

yield

the

<DigestValue>.

The

signing

of

the

DigestValue

binds

resource

content

to

the

signer

key.

The

algorithm

selected

for

the

client

request

sender

configuration

must

match

the

algorithm

selected

in

the

server

request

receiver

configuration.

Signature

method

algorithm

The

signature

method

is

the

algorithm

that

is

used

to

convert

the

canonicalized

<SignedInfo>

into

the

<SignatureValue>.

The

algorithm

selected

for

the

client

request

sender

configuration

must

match

the

algorithm

selected

in

the

server

request

receiver

configuration.

Signing

key

name

The

signing

key

name

represents

the

key

entry

associated

with

the

signing

key

locator.

The

key

entry

refers

to

an

alias

of

the

key,

which

is

used

to

sign

the

request.

Signing

key

locator

The

signing

key

locator

represents

a

reference

to

a

key

locator

implementation.

For

more

information

on

configuring

key

locators,

see

Key

locators.
8.

Expand

the

Security

Request

Sender

Binding

Configuration

>

Login

Binding

section.

9.

Click

Edit

to

view

the

Login

Binding

information.

The

login

binding

information

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

Signature

to

use

signature

authentication.

Token

value

type

URI

and

Token

value

type

URI

local

name

When

you

select

Signature,

you

cannot

edit

the

Token

value

type

URI

and

Local

name

values.

These

values

are

specifically

for

custom

authentication

types.

For

signature

authentication,

you

do

not

need

to

enter

any

information.

Callback

handler

The

callback

handler

specifies

the

Java

Authentication

and

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

531

http://www.w3.org/TR/xmldsig-core

Authorization

Server

(JAAS)

callback

handler

implementation

for

collecting

signature

information.

Enter

the

following

callback

handler

for

signature

authentication:

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler

This

callback

handler

is

used

because

signature

does

not

require

user

interaction.

Basic

authentication

User

ID

and

Basic

authentication

Password

Do

not

enter

anything

in

the

BasicAuth

fields

when

Signature

authentication

is

desired.

Property

name

and

property

value

This

field

enables

you

to

enter

properties

and

name

and

value

pairs

for

use

by

custom

callback

handlers.

For

signature

authentication,

you

do

not

need

to

enter

any

information.

Important:

There

is

a

basic

authentication

entry

in

the

Port

Qualified

Name

Binding

Details

section.

This

entry

is

used

for

HTTP

transport

authentication,

which

might

be

required

if

the

router

servlet

is

protected.

Information

specified

in

the

Web

services

security

signature

authentication

section

overrides

the

basic

authentication

information

specified

in

the

Port

Qualified

Name

Binding

Details

section

for

authorizing

the

Web

service.

To

use

the

signature

authentication

method,

you

must

specify

the

authentication

method

in

the

Login

Config

section

of

the

Assembly

Toolkit.

See

Configuring

the

client

for

signature

authentication:

specifying

the

method

if

you

have

not

previously

specified

this

information.

Configuring

the

server

to

handle

signature

authentication

This

task

is

used

to

configure

signature

authentication

at

the

server.

Signature

refers

to

the

an

X.509

certificate

sent

by

the

client

to

the

server.

The

certificate

is

used

to

authenticate

to

the

user

registry

configured

at

the

server.

Once

a

request

is

received

by

the

server

that

contains

certificate,

the

server

needs

to

log

in

to

form

a

credential.

The

credential

is

used

for

authorization.

If

the

certificate

supplied

cannot

be

mapped

to

an

entry

in

the

user

registry,

an

exception

is

thrown

and

the

request

ends

without

invoking

the

resource.

For

more

information

on

signature

authentication,

see

Signature

authentication

method.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Login

Config

section.

You

can

select

from

the

following

options:

v

BasicAuth

v

Signature

v

ID

assertion

532

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

LTPA

8.

Select

Signature

to

authenticate

the

client

using

an

X509

certificate.

The

certificate

that

is

sent

from

the

client

is

the

certificate

used

for

signing

the

message.

You

must

be

able

to

map

this

certificate

to

the

configured

user

registry.

For

Local

OS,

the

common

name

(cn)

of

the

distinguished

name

(DN)

is

mapped

to

a

user

ID

in

the

registry.

For

LDAP,

you

can

configure

multiple

mapping

modes:

v

EXACT_DN

is

the

default

mode

that

directly

maps

the

DN

of

the

certificate

to

an

entry

in

the

LDAP

server.

v

CERTIFICATE_FILTER

is

the

mode

that

allows

the

the

LDAP

advanced

configuration

to

have

a

place

to

specify

a

filter

that

maps

specific

attributes

of

the

certificate

to

specific

attributes

of

the

LDAP

server.

For

more

information

on

getting

started

with

the

Web

Services

Editor

within

the

Assembly

Toolkit,

see

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit.

Once

you

have

specified

how

the

server

will

handle

signature

authentication

information,

you

must

specify

how

the

server

validates

the

authentication

information.

See

Configuring

the

server

to

validate

signature

authentication

information

for

more

information.

Configuring

the

server

to

validate

signature

authentication

information

This

task

is

used

to

configure

signature

authentication

at

the

server.

Signature

refers

to

the

an

X.509

certificate

sent

by

the

client

to

the

server.

The

certificate

is

used

to

authenticate

to

the

user

registry

configured

at

the

server.

Once

a

request

is

received

by

the

server

that

contains

certificate,

the

server

needs

to

log

in

to

form

a

credential.

The

credential

is

used

for

authorization.

If

the

certificate

supplied

cannot

be

mapped

to

an

entry

in

the

user

registry,

an

exception

is

thrown

and

the

request

ends

without

invoking

the

resource.

For

more

information

on

signature

authentication,

see

Signature

authentication

method.

Complete

the

following

steps

to

configure

the

server

to

validate

signature

authentication:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Login

Mapping

section.

8.

Click

Edit

to

view

the

login

mapping

information

or

click

Add

to

add

new

login

mapping

information.

The

login

mapping

dialog

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

will

occur.

Select

Signature

to

use

signature

authentication.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

533

Configuration

name

This

specifies

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

name.

For

the

signature

authentication

method,

enter

system.wssecurity.Signature

for

the

JAAS

login

configuration

name.

This

specification

logs

in

with

the

com.ibm.wsspi.wssecurity.auth.module.SignatureLoginModule

JAAS

login

module.

Use

token

value

type

This

determines

if

you

want

to

specify

a

custom

token

type.

For

the

default

Authentication

method

selections,

you

don’t

need

to

specify

this.

URI

and

local

name

When

you

select

Signature,

you

cannot

edit

the

token

value

type

URI

and

local

name

values.

These

values

are

specifically

for

custom

authentication

types.

For

signature

authentication,

you

do

not

need

to

enter

any

information

here.

Callback

handler

factory

class

name

This

class

name

creates

a

JAAS

CallbackHandler

implementation

that

understands

the

following

callback

handlers:

v

javax.security.auth.callback.NameCallback

v

javax.security.auth.callback.PasswordCallback

v

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For

any

of

the

default

Authentication

methods

(BasicAuth,

IDAssertion,

Signature),

use

the

callback

handler

factory

default

implementation.

Enter

the

following

class

name

for

any

of

the

default

Authentication

methods

including

signature:

com.ibm.wsspi.wssecurity

.auth.callback.WSCallbackHandlerFactoryImpl.

This

implementation

creates

the

correct

callback

handler

for

the

default

implementations.

Callback

handler

factory

property

name

and

callback

handler

factory

property

value

This

field

is

used

to

specify

callback

handler

properties

for

custom

callback

handler

factory

implementations.

You

do

not

need

to

specify

any

properties

for

the

default

callback

handler

factory

implementation.

For

signature,

you

do

not

need

to

enter

any

properties

for

this

field.

Login

mapping

property

name

and

login

mapping

property

value

This

field

is

used

to

specify

properties

for

a

custom

login

mapping

to

use.

For

the

default

implementations

including

signature,

you

do

not

need

to

enter

any

properties

for

this

field.

You

must

specify

how

the

server

will

handle

the

signature

authentication

method.

See

Configuring

the

server

to

handle

signature

authentication

if

you

have

not

previously

specified

this

information.

Token

type

overview

A

username

token

consists

of

a

user

name

and,

optionally,

password

information.

You

can

include

a

username

token

directly

in

the

<Security>

header

within

the

message.

Binary

tokens,

such

as

X.509

certificates,

Kerberos

tickets,,

Lightweight

534

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Third-party

Authentication

(LTPA)

tokens,

or

other

non-XML

formats,

require

a

special

encoding

for

inclusion.

The

Web

services

security

specification

describes

how

to

encode

binary

security

tokens

such

as

X.509

certificates

and

Kerberos

tickets;

and

how

to

include

opaque

encrypted

keys.

The

specification

also

includes

extensibility

mechanisms

that

you

can

use

to

further

describe

the

characteristics

of

the

credentials

that

are

included

with

a

message.

The

proposed

Web

services

security

draft

defined

two

types

of

security

tokens:

v

Username

token

v

Binary

security

token

A

username

token

consists

of

a

user

name

and,

optionally,

password

information.

You

can

include

a

username

token

directly

in

the

<Security>

header

within

the

message.

Binary

tokens,

such

as

X.509

certificates,

Kerberos

tickets,,

Lightweight

Third-party

Authentication

(LTPA)

tokens,

or

other

non-XML

formats,

require

a

special

encoding

for

inclusion.

The

Web

services

security

specification

describes

how

to

encode

binary

security

tokens

such

as

X.509

certificates

and

Kerberos

tickets;

and

how

to

include

opaque

encrypted

keys.

The

specification

also

includes

extensibility

mechanisms

that

you

can

use

to

further

describe

the

characteristics

of

the

credentials

that

are

included

with

a

message.

WebSphere

Application

Server,

Version

5.0.2

supports

user

name

tokens,

which

include

both

user

name

and

password

for

basic

authentication

and

user

name,

which

are

used

for

identity

assertion.

The

WebSphere

Application

Server,

Version

5.0.2

binary

security

token

implementation

supports

both

X.509

certificates

and

LTPA

binary

security.

You

can

extended

the

implementation

to

generate

other

type

of

tokens.

However,

Kerberos

tickets

are

not

supported

in

WebSphere

Application

Server,

Version

5.0.2.

Each

type

of

token

is

processed

by

a

corresponding

token

generation

and

validation

module.

The

binary

token

generation

and

validation

modules

are

pluggable,

which

is

based

on

the

Java

Authentication

and

Authorization

Service

(JAAS)

framework.

For

example,

arbitrary

XML-based

tokenformat

is

supported

using

the

JAAS

pluggable

framework.

WebSphere

Application

Server,

Version

5.0.2

does

not

support

an

XML-based

token

that

is

used

in

SecurityTokenReference.

You

can

define

the

types

of

tokens

that

the

message

can

accept

in

the

deployment

descriptor

extension

file,

ibm.webservices-ext.xmi.

A

message

receiver

might

support

one

or

more

types

of

security

tokens.

The

following

example

shows

that

the

receiver

supports

four

types

of

security

tokens:

?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wsext:WsExtension

xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wsext="http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsext.xmi"

xmi:id="WsExtension_1052760331306"

routerModuleName="StockQuote.war">

<wsDescExt

xmi:id="WsDescExt_1052760331306"

wsDescNameLink="StockQuoteFetcher">

<pcBinding

xmi:id="PcBinding_1052760331326"

pcNameLink="urn:xmltoday-delayed-quotes"

scope="Session">

<serverServiceConfig

xmi:id="ServerServiceConfig_1052760331326"actorURI="myActorURI">

<securityRequestReceiverServiceConfig

xmi:id="SecurityRequestReceiverServiceConfig_1052760331326">

<loginConfig

xmi:id="LoginConfig_1052760331326">

<authMethods

xmi:id="AuthMethod_1052760331326"

text="BasicAuth"/>

<authMethods

xmi:id="AuthMethod_1052760331327"

text="IDAssertion"/>

<authMethods

xmi:id="AuthMethod_1052760331336"

text="Signature"/>

<authMethods

xmi:id="AuthMethod_1052760331337"

text="LTPA"/>

</loginConfig>

<idAssertion

xmi:id="IDAssertion_1052760331336"

idType="Username"

trustMode="Signature"/>

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

535

The

message

sender

might

choose

one

of

the

token

types

that

are

supported

by

the

receiver

when

sending

a

message.

You

can

define

the

type

of

token

to

be

used

by

the

sending

side

in

the

client

descriptor

extension

file,

ibm-webservicesclient-
ext.xmi.

The

following

example

shows

that

the

sender

chooses

to

send

a

UsernameToken

to

the

receiver:

<?xml

version="1.0"

encoding="UTF-8"?>

<com.ibm.etools.webservice.wscext:WsClientExtension

xmi:version="2.0"

mlns:xmi="http://www.omg.org/XMI"

xmlns:com.ibm.etools.webservice.wscext=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscext.xmi"

xmi:id="WsClientExtension_1052760331496">

<ServiceRefs

xmi:id="ServiceRef_1052760331506"

serviceRefLink="service/StockQuoteService">

<portQnameBindings

xmi:id="PortQnameBinding_1052760331506"

portQnameLocalNameLink="StockQuote">

<clientServiceConfig

xmi:id="ClientServiceConfig_1052760331506"

actorURI="myActorURI">

<securityRequestSenderServiceConfig

xmi:id="SecurityRequestSenderServiceConfig_1052760331506"

actor="myActorURI">

<loginConfig

xmi:id="LoginConfig_1052760331506"

authMethod="BasicAuth"/>

Username

token

You

can

use

the

UsernameToken

to

propagate

a

user

name

and,

optionally,

password

information.

Also,

you

can

use

this

token

type

to

carry

basic

authentication

information.

Both

a

user

name

and

password

are

used

to

authenticate

the

message.

A

UsernameToken

containing

the

user

name

is

used

in

identity

assertion,

which

establishes

the

identity

of

the

user

based

on

the

trust

relationship.

The

following

example

shows

the

the

syntax

of

the

UsernameToken

element:

<UsernameToken

Id="...">

<Username>...</Username>

<Password

Type="...">...</Password>

</UsernameToken>

The

Web

services

security

specification

defines

the

following

password

types:

wsse:PasswordText

(default)

This

type

is

the

actual

password

for

the

user

name.

wsse:PasswordDigest

The

type

is

the

digest

of

the

password

for

the

user

name.

The

value

is

a

base64-encoded

SHA1

hash

value

of

the

UTF8-encoded

password.

WebSphere

Application

Server

supports

the

default

PasswordText

type.

However,

it

does

not

support

password

digest

because

most

user

registry

security

policies

do

not

expose

the

password

to

the

application

software.

The

following

illustrates

the

use

of

the

<UsernameToken>

element:

<S:Envelope

xmlns:S="http://www.w3.org/2001/12/soap-envelope"

xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">

<S:Header>

...

<wsse:Security>

<wsse:UsernameToken>

<wsse:Username>Joe</wsse:Username>

<wsse:Password>ILoveJava</wsse:Password>

</wsse:UsernameToken>

</wsse:Security>

</S:Header>

</S:Envelope>

536

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Binary

security

token

The

ValueType

attribute

identifies

the

type

of

the

security

token,

for

example,

an

LTPA

token.

The

EncodingType

indicates

how

the

security

token

is

encoded,

for

example,

Base64Binary.

The

BinarySecurityToken

element

defines

a

security

token

that

is

binary

encoded.

The

encoding

is

specified

using

the

EncodingType

attribute.

The

value

type

and

space

are

specified

using

the

ValueType

attribute.

The

Web

services

security

implementation

for

WebSphere

Application

Server,

Version

5.0.2

supports

both

LTPA

and

X.509

certificate

binary

security

tokens.

A

binary

security

token

has

the

following

attributes

that

are

used

to

interpret

it:

v

Value

type

v

Encoding

type

The

ValueType

attribute

identifies

the

type

of

the

security

token,

for

example,

an

LTPA

token.

The

EncodingType

indicates

how

the

security

token

is

encoded,

for

example,

Base64Binary.

The

BinarySecurityToken

element

defines

a

security

token

that

is

binary

encoded.

The

encoding

is

specified

using

the

EncodingType

attribute.

The

value

type

and

space

are

specified

using

the

ValueType

attribute.

The

Web

services

security

implementation

for

WebSphere

Application

Server,

Version

5.0.2

supports

both

LTPA

and

X.509

certificate

binary

security

tokens.

The

following

is

an

example

of

an

LTPA

binary

security

token

in

a

Web

services

security

message

header:

wsse:BinarySecurityToken

xmlns:ns7902342339871340177=

"http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

EncodingType="wsse:Base64Binary"

ValueType="ns7902342339871340177:LTPA">

MIZ6LGPt2CzXBQfio9wZTo1VotWov0NW3Za6lU5K7Li78DSnIK6iHj3hxXgrUn6p4wZI

8Xg26havepvmSJ8XxiACMihTJuh1t3ufsrjbFQJOqh5VcRvI+AKEaNmnEgEV65jUYAC9

C/iwBBWk5U/6DIk7LfXcTT0ZPAd+3D3nCS0f+6tnqMou8EG9mtMeTKccz/pJVTZjaRSo

msu0sewsOKfl/WPsjW0bR/2g3NaVvBy18VlTFBpUbGFVGgzHRjBKAGo+ctkl80nlVLIk

TUjt/XdYvEpOr6QoddGi4okjDGPyyoDxcvKZnReXww5UsoqlpfXwN4KG9as=

</wsse:BinarySecurityToken></wsse:Security></soapenv:Header>

As

shown

in

the

example,

the

token

is

Base64Binary

encoded.

XML

token

XML

tokens

are

offered

in

two

formats,

Security

Assertion

Markup

Language

(SAML)

and

eXtensible

rights

Markup

Language

(XrML).

XML-based

security

tokens

are

growing

in

popularity.

Two

well-known

formats

are:

v

Security

Assertion

Markup

Language

(SAML)

v

eXtensible

rights

Markup

Language

(XrML)

The

extensibility

of

the

<wsse:Security>

header

in

XML-based

security

tokens

enables

you

to

directly

insert

these

security

tokens

into

the

header.

SAML

assertions

are

attached

to

Web

services

security

messages

using

Web

Services

by

placing

assertion

elements

inside

the

<wsse:Security>

header.

The

following

example

illustrates

a

Web

services

security

message

with

a

SAML

assertion

token.

S:Envelope

xmlns:S="...">&

<wsse:Security

xmlns:wsse="...">

<saml:Assertion

MajorVersion="1"

MinorVersion="0"

AssertionID="SecurityToken-ef375268"

Issuer="elliotw1"

IssueInstant="2002-07-23T11:32:05.6228146-07:00"

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

537

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

...

</saml:Assertion>

</wsse:Security>

</S:Header>

<S:Body>

...

</S:Body>

</S:Envelope>

For

more

information

on

SAML

and

XrML,

see

Resources

for

learning.

Security

token

A

security

token

represents

a

set

of

claims

made

by

a

client

that

might

include

a

name,

password,

identity,

key,

certificate,

group,

privilege,

and

so

on.

Web

services

security

provides

a

general-purpose

mechanism

to

associate

security

tokens

with

messages

for

single

message

authentication.

A

specific

type

of

security

token

is

not

required

by

Web

services

security.

Web

services

security

is

designed

to

be

extensible

and

support

multiple

security

token

formats

to

accommodate

a

variety

of

authentication

mechanisms.

For

example,

a

client

might

provide

proof

of

identity

and

proof

that

they

have

a

particular

business

certification.

A

security

token

is

embedded

in

the

SOAP

message

within

the

SOAP

header.

The

security

token

within

in

the

SOAP

header

is

propagated

from

the

message

sender

to

the

intended

message

receiver.

On

the

receiving

side,

the

WebSphere

Application

Server

security

handler

authenticates

the

security

token

and

sets

up

the

caller

identity

on

the

thread

of

execution.

Securing

Web

services

using

a

pluggable

token

WebSphere

Application

Server

provides

several

different

methods

to

secure

your

Web

services;

a

pluggable

token

is

one

of

these

methods.

You

might

secure

your

Web

services

using

any

of

the

following

methods:

v

XML

digital

signature

v

XML

encryption

v

Basicauth

authentication

v

Identity

assertion

authentication

v

Signature

authentication

v

Pluggable

token

Complete

the

following

steps

to

secure

your

Web

services

using

a

pluggable

token:

1.

Generate

a

security

token

using

the

JAAS

CallbackHandler

interface.

The

Web

services

security

run

time

uses

the

Java

Authentication

and

Authorization

Service

(JAAS)

CallbackHandler

interface

as

a

plug-in

to

generate

security

tokens

on

the

client

side

or

when

Web

services

is

acting

as

client.

2.

Configure

your

pluggable

token.

To

use

pluggable

tokens

to

secure

your

Web

services,

you

must

configure

both

the

client

request

sender

and

the

server

request

receiver.

You

can

configure

your

pluggable

tokens

using

either

the

WebSphere

Application

Server

administrative

console

or

the

WebSphere

Application

Server

Toolkit.

For

more

information,

see

the

following

topics:

v

Configuring

pluggable

tokens

using

the

WebSphere

Application

Server

Toolkit

v

Configuring

pluggable

tokens

using

the

administrative

console

538

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configuring

pluggable

tokens

using

the

Assembly

Toolkit

Prior

to

completing

these

steps,

it

is

assumed

that

you

have

already

created

a

Web

services-enabled

Java

2

Platform,

Enterprise

Edition

(J2EE)

with

a

Web

Services

for

J2EE

(JSR

109)

enterprise

application.

If

not,

see

Developing

Web

services

to

create

Web

services-enabled

J2EE

with

a

JSR

109

enterprise

application.

See

either

of

the

following

topics

for

an

introduction

of

how

to

manage

Web

services

security

binding

information

for

the

server:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

This

document

describes

how

to

configure

a

pluggable

token

in

the

request

sender

(ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

file)

and

request

receiver

(ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi

file).

Important:

The

pluggable

token

is

required

for

the

request

sender

and

request

receiver

as

they

are

a

pair.

The

request

sender

and

the

request

receiver

must

match

for

a

request

to

be

accepted

by

the

receiver.

You

must

specify

the

security

constraints

in

the

ibm-webservicesclient-ext.xmi

and

ibm-webservices-ext.xmi

files

for

the

required

tokens

using

the

Assembly

Toolkit.

Complete

the

following

steps

to

configure

the

request

sender

using

the

ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

files:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Package

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab.

The

Web

Service

Client

Security

Extensions

editor

displays.

a.

Under

Service

References,

select

an

existing

service

reference

or

click

Add

to

create

a

new

one.

b.

Under

Port

Qname

Bindings,

select

an

existing

port

qualified

name

for

the

selected

service

reference

or

click

Add

to

create

a

new

port

name

binding.

c.

Under

Request

Sender

Configuration:

Login

Config,

select

an

exiting

authentication

method

or

type

in

a

new

one

in

the

editable

list

box

(Lightweight

Third-Party

Authorization

(LTPA)

is

a

supported

token

generation

when

Web

services

is

acting

as

client).

d.

Click

File

>

Save

to

save

the

changes.
7.

Click

the

Web

Services

Client

Binding

tab.

The

Web

Services

Client

Binding

editor

displays.

a.

Under

Port

Qualified

Name

Binding,

select

an

existing

entry

or

click

Add

to

add

a

new

port

name

binding.

The

Web

Services

Client

Binding

editor

displays

for

the

selected

port.

b.

Under

Login

Binding,

click

Edit

or

Enable.

This

Login

Binding

dialog

box

displays.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

539

1)

In

the

Authentication

Method

field,

enter

the

authentication

method.

The

authentication

method

that

you

enter

in

this

field

must

match

the

authentication

method

defined

on

the

Security

Extension

tab

for

the

same

Web

service

port.

This

field

is

mandatory.

2)

(Optional)

Enter

the

token

value

type

information

in

the

URI

and

Local

name

fields.

These

fields

are

ignored

for

the

BasicAuth,

Signature,

and

IDAssertion

authentication

methods,

but

required

for

other

authentication

methods.

The

token

value

type

information

is

inserted

into

the

<wsse:BinarySecurityToken>@ValueType

element

for

binary

security

token

and

is

used

as

the

namespace

for

the

XML-based

token.

3)

Enter

an

implementation

of

the

Java

Authentication

and

Authorization

Service

(JAAS)

javax.security.auth.callback.CallbackHandler

interface.

This

is

a

mandatory

field.

4)

Enter

the

basic

authentication

information

in

the

User

ID

and

Password

fields.

The

basic

authentication

information

is

passed

to

the

construct

of

the

CallbackHandler

implementation.

The

usage

of

the

basic

authentication

information

is

up

to

the

implementation

of

the

CallbackHandler.

5)

In

the

Property

field,

add

name

and

value

pairs.

These

pairs

are

passed

to

the

construct

of

the

CallbackHandler

implementation

as

java.util.Map.

6)

Click

OK.

Click

Disable

under

Login

Binding

on

the

Web

Services

Client

Port

Binding

tab

to

remove

the

authentication

method

login

binding.

c.

Click

File

>

Save

to

save

the

changes.
8.

In

the

Package

Explorer

window,

right-click

the

webservices.xml

file

and

select

Open

With

>

Web

Services

Editor.

The

Web

Services

window

displays.

a.

Click

the

Security

Extensions

tab.

The

Web

Service

Security

Extensions

editor

displays.

1)

Under

Web

Service

Description

Extension,

select

an

existing

service

reference

or

click

Add

to

create

a

new

extension.

2)

Under

Port

Component

Binding,

select

an

existing

port

qualified

name

of

the

selected

service

reference

or

click

Add

to

create

a

new

one.

3)

Under

Request

Receiver

Service

Configuration

Details:

Login

Config,

select

an

exiting

authentication

method

or

click

Add

and

enter

a

new

method

in

the

Add

AuthMethod

field

that

displays.

You

can

select

multiple

authentication

methods

for

the

request

receiver.

The

security

token

of

the

incoming

message

is

authenticated

against

the

authentication

methods

in

the

order

that

they

are

specified

in

the

list.

Click

Remove

to

remove

the

selected

authentication

method

or

methods.
b.

Click

File

>

Save

to

save

the

changes.

c.

Click

the

Bindings

tab.

The

Web

Services

Bindings

editor

displays.

1)

Under

Web

Service

Description

Bindings,

select

an

existing

entry

or

click

Add

to

add

a

new

Web

services

descriptor.

2)

Click

the

Binding

Configurations

tab.

The

Web

Services

Binding

Configurations

editor

displays

for

the

selected

Web

services

descriptor.

3)

Under

Request

Receiver

Binding

Configuration

Details:

Login

Mapping,

click

Add

to

create

a

new

login

mapping

or

click

Edit

to

edit

existing

selected

login

mapping.

The

Login

mapping

dialog

displays.

a)

In

the

Authentication

method

field,

enter

the

authentication

method.

The

information

entered

in

this

field

must

match

the

authentication

540

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

method

defined

on

the

Security

Extensions

tab

for

the

same

Web

service

port.

This

is

a

mandatory

field.

b)

In

the

Configuration

name

field,

enter

a

JAAS

login

configuration

name.

You

must

define

the

JAAS

login

configuration

name

in

the

WebSphere

Application

Server

Administrative

Console

under

Security

>

JAAS

Configuration

>

Application

Logins).

This

is

a

mandatory

field.

For

more

information,

see

Configuring

Java

Authentication

and

Authorization

Service

login.

c)

(Optional)

Select

Use

Token

value

type

and

enter

the

token

value

type

information

in

the

URI

and

Local

name

fields.

This

information

is

optional

for

BasicAuth,

Signature

and

IDAssertion

authentication

methods,

but

required

for

any

other

authentication

method.

The

token

value

type

is

used

to

validate

the

<wsse:BinarySecurityToken>@ValueType

element

for

binary

security

tokens

and

to

validate

the

namespace

of

the

XML-based

token.

d)

Under

Callback

Handler

Factory,

enter

an

implementation

of

the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

interface

in

the

Class

name

field.

This

field

is

mandatory.

e)

Under

Callback

Handler

Factory

Property,

click

Add

and

enter

the

name

and

value

pairs

for

the

Callback

Handler

Factory

Property.

These

name

and

value

pairs

are

passed

as

java.util.Map

to

the

com.ibm.wsspi.wssecurity.auth.callback

.CallbackHandlerFactory.init()

method.

The

usage

of

these

name

and

value

pairs

is

determined

by

the

CallbackHandlerFactory

implementation

chosen.

f)

Under

Login

Mapping

Property,

click

Add

and

enter

the

name

and

value

pairs

for

the

Login

Mapping

Property.

These

name

and

value

pairs

are

available

to

the

JAAS

Login

Module

or

Modules

through

thecom.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

JAAS

Callback

interface.

Click

Remove

to

delete

selected

login

mapping.

g)

Click

OK.
d.

Click

File

>

Save

to

save

the

changes.

The

previous

steps

define

how

to

configure

the

request

sender

to

create

security

tokens

in

the

Simple

Object

Access

Protocol

(SOAP)

message

and

the

request

receiver

to

validate

the

security

tokens

found

in

the

incoming

SOAP

message.

WebSphere

Application

Server

supports

pluggable

security

tokens.

You

can

use

the

authentication

method

defined

in

the

login

bindings

and

login

mappings

to

generate

security

tokens

in

the

request

sender

and

validate

security

tokens

in

the

request

receiver.

Once

you

have

configured

pluggable

tokens,

you

must

configure

both

the

client

and

the

server

to

support

pluggable

tokens.

See

the

following

topics

to

configure

the

client

and

the

server:

v

Configuring

the

client

for

LTPA

token

authentication:

specifying

LTPA

token

authentication

v

Configuring

the

client

for

LTPA

token

authentication:

collecting

the

authentication

information

v

Configuring

the

server

to

handle

LTPA

token

authentication

v

Configuring

the

server

to

validate

LTPA

token

authentication

information

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

541

Configuring

pluggable

tokens

using

the

administrative

console

Prior

to

completing

these

steps,

it

is

assumed

that

you

have

already

created

a

Web

services-enabled

Java

2

Platform,

Enterprise

Edition

(J2EE)

with

a

Web

Services

for

J2EE

(JSR

109)

enterprise

application.

If

not,

see

Developing

Web

services

to

create

Web

services-enabled

J2EE

with

a

JSR

109

enterprise

application.

See

either

of

the

following

topics

for

an

introduction

of

how

to

manage

Web

services

security

binding

information

for

the

server:

v

Configuring

the

server

security

bindings

using

the

Assembly

Toolkit

v

Configuring

the

server

security

bindings

using

the

administrative

console

This

document

describes

how

to

configure

a

pluggable

token

in

the

request

sender

(ibm-webservicesclient-ext.xmi

and

ibm-webservicesclient-bnd.xmi

file)

and

request

receiver

(ibm-webservices-ext.xmi

and

ibm-webservices-bnd.xmi

file).

Important:

The

pluggable

token

is

required

for

the

request

sender

and

request

receiver

as

they

are

a

pair.

The

request

sender

and

the

request

receiver

must

match

for

a

request

to

be

accepted

by

the

receiver.

Complete

the

following

steps

to

configure

the

client-side

request

sender

(ibm-webservicesclient-bnd.xmi

file)

or

server-side

request

receiver

(ibm-webservices-bnd.xmi

file)

using

the

WebSphere

Application

Server

Administrative

Console.

1.

Click

Applications

>

Enterprise

Applications

>

enterprise_application.

2.

Under

Related

Items,

click

either

EJB

Modules

>

Uri

or

Web

Modules

>

Uri.

.

The

Uri

is

the

Web

services-enabled

module

3.

Under

Additional

Properties,

click

Web

Services:

Client

Security

Bindings

to

edit

the

response

sender

binding

information,

if

Web

services

is

acting

as

client.

4.

Under

Response

Sender

Binding,

click

Edit.

5.

Under

Additional

Properties,

click

Login

Binding.

6.

Select

Dedicated

Login

Binding

to

define

a

new

login

binding

or

select

None

to

deselect

the

login

binding.

a.

Enter

the

authentication

method

in

the

Authentication

Method

field.

This

entry

must

match

the

authentication

method

defined

in

IBM

extension

deployment

descriptor.

The

authentication

method

must

be

unique

in

the

binding

file.

b.

Enter

an

implementation

of

the

JAAS

javax.security.auth.callback.CallbackHandler

interface

in

the

Callback

Handlerfield.

c.

Optional:

Enter

the

basic

authentication

user

ID

and

password

in

the

Basic

Auth

User

ID

and

Basic

Auth

Password

fields,

respectively.

The

basic

authentication

information

is

passed

to

the

construct

of

the

CallbackHandler

implementation.

The

usage

of

the

basic

authentication

information

is

up

to

the

implementation

of

the

CallbackHandler.

d.

Enter

the

token

value

type

Uniform

Resource

Identifier

(URI)

and

local

name

in

the

Token

Type

URI

and

Token

Type

Local

Name

fields.

This

information

is

optional

for

the

BasicAuth,

Signature

and

IDAssertion

authentication

methods,

but

required

for

any

other

authentication

method.

The

token

value

type

is

inserted

into

the

<wsse:BinarySecurityToken>@ValueType

for

binary

security

token

and

used

as

the

namespace

of

the

XML

based

token.

e.

Click

Apply.

542

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

7.

Under

Additional

Properties,

click

Properties.

Define

the

property

with

name

and

value

pairs.

These

pairs

are

passed

to

the

construct

of

the

CallbackHandler

implementation

as

java.util.Map.

8.

Click

Applications

>

Enterprise

Applications

>

enterprise_application.

9.

Under

Related

Items,

click

either

EJB

Modules

>

Uri

or

Web

Modules

>Uri..

The

Uri

is

the

Web

services-enabled

module

10.

Under

Additional

Properties,

click

Web

Services:

Server

Security

Bindings

to

edit

the

request

receiver

binding

information.

11.

Under

Request

Receiver

Binding,

click

Edit.

12.

Under

Additional

Properties,

click

Login

Mappings.

13.

Click

New

to

create

new

login

mapping.

You

also

can

edit

an

existing

login

mapping

by

clicking

on

the

name

or

delete

a

login

mapping

by

selecting

the

box

next

to

the

login

mapping

name

and

clicking

Remove.

a.

Enter

the

authentication

method

in

the

Authentication

Method

field.

This

entry

must

match

the

authentication

method

defined

in

the

IBM

extension

deployment

descriptor.

The

authentication

method

must

be

unique

in

the

login

mapping

collection

of

the

binding

file.

b.

Select

a

JAAS

Login

Configuration

name

from

the

JAAS

Configuration

Name

menu.

The

JAAS

Login

Configuration

must

be

defined

in

Security

>

JAAS

Configuration

>

Application

Logins.

For

more

information,

see

Configuring

Java

Authentication

and

Authorization

Service

login.

c.

Enter

an

implementation

of

the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

interface

in

the

Callback

Handler

Factory

Classname

field.

This

is

a

mandatory

field.

d.

Enter

the

token

value

type

Uniform

Resource

Identifier

(URI)

and

local

name

in

the

Token

Type

URI

and

Token

Type

Local

Name

fields.

This

information

is

optional

for

the

BasicAuth,

Signature

and

IDAssertion

authentication

methods,

but

required

for

any

other

authentication

method.

The

token

value

type

is

inserted

into

the

<wsse:BinarySecurityToken>@ValueType

for

binary

security

token

and

used

as

the

namespace

of

the

XML

based

token.

e.

Click

Apply.
14.

Under

Additional

Properties,

click

Properties.

15.

Click

New

and

enter

the

name

and

value

pairs

in

the

Property

Name

and

Property

Value

fields.

These

name

and

value

pairs

are

available

to

the

JAAS

Login

Module

or

Modules

by

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

JAAS

Callback.

These

pairs

are

available

when

editing

existing

login

mappings,

but

not

when

creating

new

login

mappings.

16.

Return

to

the

Additional

Properties

heading

and

click

Callback

Handler

Factory

Property.

The

Callback

Handler

Factory

Property

option

is

located

on

the

same

menu

where

you

previously

clicked

Properties.

17.

Click

New

and

enter

the

name

and

value

pairs

in

the

Property

Name

and

Property

Value

fields.

These

name

and

value

pairs

are

passed

as

java.util.Map

to

the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory.init()

method.

The

usage

of

these

name

and

value

pairs

is

up

to

the

CallbackHandlerFactory

implementation.

18.

Click

Save

in

the

upper-left

section

of

the

administrative

console.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

543

The

previous

steps

define

how

to

configure

the

request

sender

to

create

security

tokens

in

the

Simple

Object

Access

Protocol

(SOAP)

message

and

the

request

receiver

to

validate

the

security

tokens

found

in

the

incoming

SOAP

message.

WebSphere

Application

Server

supports

pluggable

security

tokens.

You

can

use

the

authentication

method

defined

in

the

login

bindings

and

login

mappings

to

generate

security

tokens

in

the

request

sender

and

validate

security

tokens

in

the

request

receiver.

Once

you

have

configured

pluggable

tokens,

you

must

configure

both

the

client

and

the

server

to

support

pluggable

tokens.

See

the

following

topics

to

configure

the

client

and

the

server:

v

Configuring

the

client

for

LTPA

token

authentication:

specifying

LTPA

token

authentication

v

Configuring

the

client

for

LTPA

token

authentication:

collecting

the

authentication

information

v

Configuring

the

server

to

handle

LTPA

token

authentication

v

Configuring

the

server

to

validate

LTPA

token

authentication

information

Pluggable

token

support

You

can

extend

the

WebSphere

Application

Server

login

mapping

mechanism

to

handle

new

types

of

authentication

tokens.WebSphere

Application

Server

provides

a

pluggable

framework

to

generate

security

tokens

on

the

sender-side

of

the

message

and

to

validate

the

security

token

on

the

receiver-side

of

the

message.

The

framework

is

based

on

the

Java

Authentication

and

Authorization

Service

(JAAS)

Application

Programming

Interfaces

(APIs).

Pluggable

security

token

support

provides

plug-in

points

to

support

customer

security

token

types

including

token

generation,

token

validation,

and

mapping

a

client

identity

to

a

WebSphere

Application

Server

identity

that

is

used

by

the

Java

2,

Enterprise

Edition

(J2EE)

authorization

engine.

Moreover,

the

pluggable

token

generation

and

validation

framework

allows

XML-based

tokens

to

be

inserted

into

the

Web

service

message

header

and

validated

on

the

receiver

side.

You

can

extend

the

WebSphere

Application

Server

login

mapping

mechanism

to

handle

new

types

of

authentication

tokens.WebSphere

Application

Server

provides

a

pluggable

framework

to

generate

security

tokens

on

the

sender-side

of

the

message

and

to

validate

the

security

token

on

the

receiver-side

of

the

message.

The

framework

is

based

on

the

Java

Authentication

and

Authorization

Service

(JAAS)

Application

Programming

Interfaces

(APIs).

Pluggable

security

token

support

provides

plug-in

points

to

support

customer

security

token

types

including

token

generation,

token

validation,

and

mapping

a

client

identity

to

a

WebSphere

Application

Server

identity

that

is

used

by

the

Java

2,

Enterprise

Edition

(J2EE)

authorization

engine.

Moreover,

the

pluggable

token

generation

and

validation

framework

allows

XML-based

tokens

to

be

inserted

into

the

Web

service

message

header

and

validated

on

the

receiver

side.

Users

can

use

the

javax.security.auth.callback.CallbackHandler

implementation

to

create

a

new

type

of

security

token

following

these

guidelines:

v

Use

a

constructor

that

takes

a

user

name

(a

string

or

null,

if

not

defined),

password

(a

char[]

or

null,

if

not

defined)

and

java.util.Map

(empty,

if

properties

are

not

defined).

v

Use

handle()

methods

that

can

process

the

javax.security.auth.callback.NameCallback,

javax.security.auth.callback.PasswordCallback,

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback,

and

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

544

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

implementations.

If

either

thejavax.security.auth.callback.NameCallback

or

the

javax.security.auth.callback.PasswordCallback

implementation

is

populated

with

data,

then

a

<wsse:UsernameToken>

element

is

created.

Otherwise,

if

om.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

is

populated,

the

<wsse:BinarySecurityToken>

element

is

created

from

the

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl

implementation.

Lastly,

if

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenCallback

is

populated,

a

XML-based

token

is

created

based

on

the

Document

Object

Model

(DOM)

element

that

is

returned

from

the

XMLTokenCallback.

Encode

the

token

byte

by

using

the

security

handler

and

not

by

using

the

javax.security.auth.callback.CallbackHandler

implementation.

You

can

implement

the

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

interface,

which

is

a

factory

for

instantiating

the

javax.security.auth.callback.CallbackHandler.

For

your

own

implementation,

you

must

provide

the

javax.security.auth.callback.CallbackHandler

interface.

The

Web

service

security

run

time

instantiates

the

factory

implementation

class

and

passes

the

authentication

information

from

the

Web

services

message

header

to

the

factory

class

through

the

setter

methods.

The

Web

services

security

run

time

then

invokes

the

newCallbackHandler()

method

of

the

factory

implementation

class

to

obtain

an

instance

of

the

javax.security.auth.CallbackHandler

object.

The

object

is

passed

to

the

JAAS

login

configuration.

The

following

is

the

definition

of

the

CallbackHandlerFactory

interface:

public

interface

com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

{

public

void

setUsername(String

username);

public

void

setRealm(String

realm);

public

void

setPassword(String

password);

public

void

setHashMap(Map

properties);

public

void

setTokenByte(byte[]

token);

public

void

setXMLToken(Element

xmlToken);

public

CallbackHandler

newCallbackHandler();

Configuring

the

client

for

LTPA

token

authentication:

specifying

LTPA

token

authentication

Use

this

task

to

configure

Lightweight

Third-Party

Authentication

(LTPA)

token

authentication.

Do

not

configure

the

client

for

LTPA

token

authentication

unless

the

authentication

mechanism

configured

in

WebSphere

Application

Server

is

LTPA.

When

a

client

authenticates

to

a

WebSphere

Application

Server,

the

credential

created

contains

an

LTPA

token.

When

a

Web

service

calls

a

downstream

Web

service,

you

can

configure

the

first

Web

service

to

send

the

LTPA

token

from

the

originating

client.

Do

not

attempt

to

configure

LTPA

from

a

pure

client.

LTPA

works

only

when

you

configure

the

client-side

of

a

Web

service

acting

as

a

client

to

a

downstream

Web

service.

In

order

for

the

downstream

Web

service

to

validate

the

LTPA

token,

the

LTPA

keys

on

both

servers

must

be

the

same.

Complete

the

following

steps

to

specify

LTPA

token

as

the

authentication

method:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

545

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Sender

Configuration

>

Login

Config

section.

8.

Select

LTPA

as

the

authentication

method.

For

more

conceptual

information

on

LTPA

authentication,

see

LTPA.

Once

you

have

specified

LTPA

token

as

the

authentication

method,

you

must

specify

how

to

collect

the

LTPA

token

information.

See

Configuring

the

client

for

LTPA

token

authentication:

collecting

the

authentication

information

for

more

information.

Configuring

the

client

for

LTPA

token

authentication:

Collecting

the

authentication

method

information

Use

this

task

to

configure

Lightweight

Third-Party

Authentication

(LTPA)

token

authentication.

Do

not

configure

the

client

for

LTPA

token

authentication

unless

the

authentication

mechanism

configured

in

WebSphere

Application

Server

is

LTPA.

When

a

client

authenticates

to

a

WebSphere

Application

Server,

the

credential

created

contains

an

LTPA

token.

When

a

Web

service

calls

a

downstream

Web

service,

you

can

configure

the

first

Web

service

to

send

the

LTPA

token

from

the

originating

client.

Do

not

attempt

to

configure

LTPA

from

a

pure

client.

LTPA

works

only

when

you

configure

the

client-side

of

a

Web

service

acting

as

a

client

to

a

downstream

Web

service.

In

order

for

the

downstream

Web

service

to

validate

the

LTPA

token,

the

LTPA

keys

on

both

servers

must

be

the

same.

Complete

the

following

steps

to

specify

how

to

collect

the

LTPA

token

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservicesclient.xml

file,

select

Open

With

>

Web

Services

Client

Editor.

6.

Click

the

Port

Binding

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Security

Request

Sender

Binding

Configuration

>

Login

Binding

section.

8.

Click

Edit

to

view

the

login

binding

information

and

select

LTPA.

If

LTPA

is

not

already

there,

enter

it

as

an

option.

The

login

binding

dialog

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

LTPA

to

use

identity

assertion.

Token

value

type

URI

and

token

value

type

local

name

When

you

select

LTPA,

you

must

edit

the

token

value

type

URI

and

the

local

name

fields.

These

values

are

specifically

for

custom

546

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

authentication

types,

which

are

authentication

methods

not

mentioned

in

the

specification.

For

the

token

value

type

URI

field,

enter

the

following

string:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2.

For

the

local

name

field,

enter

the

following

string:

LTPA.

Callback

handler

The

callback

handler

specifies

the

Java

Authentication

and

Authorization

Service

(JAAS)

callback

handler

implementation

for

collecting

the

LTPA

information.

Specify

the

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

implementation

for

LTPA.

Basic

authentication

user

ID

and

basic

authentication

password

For

LTPA,

you

can

leave

these

fields

empty.

Property

name

and

property

value

For

LTPA,

you

can

leave

these

fields

empty.

See

Configuring

the

client

for

LTPA

token

authentication:

specifying

LTPA

token

authentication

if

you

have

not

previously

specified

this

information.

Configuring

the

server

to

handle

LTPA

token

authentication

information

This

task

is

used

to

configure

Lightweight

Third-Party

Authentication

(LTPA).

LTPA

is

a

type

of

authentication

mechanism

in

WebSphere

Application

Server

security

that

defines

a

particular

token

format.

The

purpose

of

the

LTPA

token

authentication

is

to

flow

the

LTPA

token

from

the

first

Web

service,

which

authenticated

the

originating

client,

to

the

downstream

Web

service.

Do

not

attempt

to

configure

LTPA

from

a

pure

client.

Once

the

downstream

Web

service

receives

the

LTPA

token,

it

validates

the

token

to

verify

that

the

token

has

not

been

modified

and

has

not

expired.

For

validation

to

be

successful,

the

LTPA

keys

used

by

both

the

sending

and

receiving

servers

must

be

the

same.

Complete

the

following

steps

to

specify

that

LTPA

is

authentication

method.

The

authentication

method

indicated

in

these

steps

must

match

the

authentication

method

specified

for

the

client.

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Security

Extensions

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Service

Configuration

Details

>

Login

Configuration

section.

You

can

select

from

the

following

options:

v

BasicAuth

v

Signature

v

ID

assertion

v

LTPA
8.

Select

LTPA

to

authenticate

the

client

using

the

LTPA

token

received

from

the

request.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

547

Once

you

have

specified

the

authentication

method,

you

must

specify

the

information

that

the

server

must

validate.

See

Configuring

the

server

to

validate

LTPA

token

authentication

information

for

more

information.

Configuring

the

server

to

validate

LTPA

token

authentication

information

This

task

is

used

to

configure

Lightweight

Third-Party

Authentication

(LTPA).

LTPA

is

a

type

of

authentication

mechanism

in

WebSphere

Application

Server

security

that

defines

a

particular

token

format.

The

purpose

of

the

LTPA

token

authentication

is

to

flow

the

LTPA

token

from

the

first

Web

service,

which

authenticated

the

originating

client,

to

the

downstream

Web

service.

Do

not

attempt

to

configure

LTPA

from

a

pure

client.

Once

the

downstream

Web

service

receives

the

LTPA

token,

it

validates

the

token

to

verify

that

the

token

has

not

been

modified

and

has

not

expired.

For

validation

to

be

successful,

the

LTPA

keys

used

by

both

the

sending

and

receiving

servers

must

be

the

same.

Complete

the

following

steps

to

specify

how

the

server

must

validate

the

LTPA

token

authentication

information:

1.

Launch

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

by

clicking

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Select

the

Web

services

enabled

EJB

or

Web

module.

4.

In

the

Project

Navigator

window,

locate

the

META-INF

directory

for

an

EJB

module

or

the

WEB-INF

directory

for

a

Web

module.

5.

Right-click

the

webservices.xml

file,

select

Open

With

>

Web

Services

Editor.

6.

Click

the

Binding

Configurations

tab,

which

is

located

at

the

bottom

of

the

Web

Services

Client

Editor

within

the

Assembly

Toolkit.

7.

Expand

the

Request

Receiver

Binding

Configuration

Details

>

Login

Mapping

section.

8.

Click

Edit

to

view

the

Login

Mapping

information.

The

login

mapping

information

displays

and

either

select

or

enter

the

following

information:

Authentication

method

The

authentication

method

specifies

the

type

of

authentication

that

occurs.

Select

LTPA

to

use

LTPA

token

authentication.

Configuration

name

This

name

specifies

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

name.

For

the

LTPA

authentication

method,

enter

WSLogin

for

the

JAAS

login

configuration

name.

This

configuration

understands

how

to

validate

an

LTPA

token.

Use

token

value

type

This

option

determines

if

you

want

to

specify

a

custom

token

type.

For

LTPA

authentication,

you

must

select

this

option

because

LTPA

is

considered

a

custom

type.

LTPA

is

not

in

the

Web

Services

Security

Specification.

Token

value

type

URI

and

local

name

If

you

select

Use

Token

value

type

you

must

enter

data

into

the

Token

value

Type

URI

and

local

name

fields.

For

URI,

enter

the

following

string:

http://www.ibm.com/websphere/appserver/tokentype/5.0.2.

For

local

name,

enter

the

following

string:

LTPA

548

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Callback

handler

factory

class

name

This

classname

creates

a

JAAS

CallbackHandler

implementation

that

understands

the

following

callback

handlers:

v

javax.security.auth.callback.NameCallback

v

javax.security.auth.callback.PasswordCallback

v

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback

v

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenReceiverCallback

v

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback

For

any

of

the

default

Authentication

methods

(BasicAuth,

IDAssertion,

Signature,

LTPA),

use

the

callback

handler

factory

default

implementation.

Enter

the

following

class

name

for

any

of

the

default

authentication

methods

including

LTPA:

com.ibm.wsspi.wssecurity

.auth.callback.WSCallbackHandlerFactoryImpl

This

implementation

creates

the

correct

callback

handler

for

the

default

implementations.

Callback

handler

factory

property

This

field

is

used

to

specify

callback

handler

properties

for

custom

callback

handler

factory

implementations.

The

default

callback

handler

factory

implementation

does

not

need

you

to

specify

any

properties.

For

LTPA,

you

do

not

need

to

enter

any

properties

for

this

field.

Login

mapping

property

This

field

is

used

to

specify

properties

for

a

custom

login

mapping.

For

the

default

implementations

including

LTPA,

you

do

not

need

to

enter

any

properties

for

this

field.

See

Configuring

the

server

to

handle

LTPA

token

authentication

if

you

have

not

previously

specified

this

information.

Lightweight

Third

Party

Authentication:

When

you

use

the

lightweight

third

party

authentication

(LTPA)

method,

the

security

token

generated

is

<wsse:BinarySecurityToken>.

On

the

request

sender

side,

the

security

token

is

generated

by

invoking

a

callback

handler.

On

the

request

receiver

side,

the

security

token

is

validated

by

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

The

token

generation

and

token

validation

operations

are

described

below.

LTPA

token

generation

The

request

sender

uses

a

callback

handler

to

generate

an

LTPA

security

token.

The

callback

handler

returns

a

security

token

that

is

inserted

in

the

SOAP

message.

Specify

the

appropriate

callback

handler

in

the

<LoginBinding>

element

of

the

bindings

file

(ibm-webservicesclient-
bnd.xmi).

The

following

is

a

callback

handler

implementation

that

can

be

used

with

the

LTPA

authentication

method:

com.ibm.wsspi.wssecurity.auth.callback.LTPATokenCallbackHandler

You

can

add

your

own

callback

handlers

that

implement

javax.security.auth.callback.CallbackHandler.

When

using

the

LTPA

authentication

method

(or

any

authentication

method

other

than

BasicAuth,

Signature

or

IDAssertion),

the

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

549

TokenValueType

attribute

of

the

<LoginBinding>

element

in

the

bindings

file

(ibm-webservicesclient-bnd.xmi)

must

be

specified.

The

values

to

use

for

the

LTPA

TokenValueType

are:

uri="http://www.ibm.com/websphere/appserver/tokentype/5.0.2"

localName="LTPA"

LTPA

token

validation

The

request

receiver

retrieves

the

LTPA

security

token

from

the

SOAP

message

and

validates

it

using

a

JAAS

login

module.

The

security

token,

<wsse:BinarySecurityToken>,

is

used

to

perform

the

validation.

If

the

validation

is

successful,

the

login

module

returns

a

JAAS

Subject.

Subsequently,

this

Subject

is

set

as

the

identity

of

the

thread

of

execution.

If

the

validation

fails,

the

request

is

rejected

with

a

SOAP

fault.

The

appropriate

JAAS

login

configuration

to

use

is

specified

in

the

bindings

file

<LoginMapping>

element.

There

are

default

bindings

specified

in

the

ws-security.xml

file,

but

these

can

be

overridden

using

the

application-specific

ibm-webservices-bnd.xmi

file.

The

configuration

information

consists

of

a

CallbackHandlerFactory,

ConfigName

and

TokenValueType.

The

CallbackHandlerFactory

specifies

the

name

of

a

class

to

use

to

create

the

JAAS

CallbackHandler

object.

A

CallbackHandlerFactory

implementation

is

provided

(com.ibm.wsspi.wssecurity.auth.callback.WSCallbackHandlerFactoryImpl).

The

ConfigName

specifies

a

JAAS

configuration

name

entry.

The

Web

services

security

run

time

first

searches

the

security.xml

file

for

a

matching

entry

and

if

a

matching

entry

is

not

found,

the

run

time

searches

the

wsjaas.conf

file.

A

default

configuration

entry

suitable

for

the

LTPA

authentication

method

is

provided

(WSLogin).

There

is

an

appropriate

TokenValueType

element

in

the

LTPA

LoginMapping

section

of

the

default

ws-security.xml

file.

Tuning

Web

services

based

on

Web

Services

for

J2EE

Performance

considerations

are

the

same

for

Web

services

applications

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

and

regular

J2EE

applications.

See

Tuning

performance

for

more

information

about

analyzing

and

tuning

J2EE

applications.

You

can

use

the

Performance

Monitoring

Infrastructure

(PMI)

to

measure

the

time

required

to

process

Web

services

requests.

To

monitor

Web

services

application

performance:

1.

Enable

PMI

services

in

application

server

through

the

administrative

console.

Select

the

Web

Service

module,

named

webServicesModule,

in

step

7.

2.

Monitor

performance

with

Tivoli

Performance

Viewer

In

the

left-hand

pane

of

the

performance

view,

expand

the

host

and

server

and

select

Web

Services.

Run

the

Web

services

client

application.

Measurements

are

available

for

the

following

items:

v

Number

of

Web

services

loaded

by

the

application

server

v

Number

of

requests

received

v

Number

of

requests

dispatched

to

an

implementation

bean

v

Number

of

requests

dispatched

with

successful

replies

v

Average

time

in

milliseconds

between

receiving

the

request

and

returning

the

reply

v

Average

time

in

milliseconds

between

receiving

the

request

and

dispatching

it

to

the

bean

550

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Average

time

in

milliseconds

between

dispatch

and

receipt

of

reply

from

the

bean

v

Average

time

in

milliseconds

between

receipt

of

reply

from

bean

to

return

of

result

to

client

v

Average

size

of

request

and

reply

v

Average

size

of

request

v

Average

size

of

reply

Troubleshooting

Web

services

based

on

Web

Services

for

J2EE

Select

the

Web

services

topic

area

you

want

to

troubleshoot:

v

Command-line

tools

v

Java

compiler

errors

v

Runtime

errors

and

exceptions

v

Client

runtime

errors

and

exceptions

v

Serialization

or

deserialization

errors

Troubleshooting

command-line

tools

for

Web

services

based

on

Web

Services

for

J2EE

This

topic

discusses

troubleshooting

command-line

tools

for

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

WSDL2Java

command-line

tool

Emitter

failure

error

occurs

when

running

the

WSDL2Java

command

on

a

WSDL

document

containing

a

JMS-style

endpoint

URL

If

you

run

the

WSDL2Java

command-line

tool

on

a

WSDL

document

that

contains

a

JMS-style

endpoint

URL

,

for

example

jms:/...,

the

urlprotocols.jar

file

that

contains

the

custom

protocol

handler

for

the

JMS

protocol

must

be

in

the

CLASSPATH.

The

error

WSWS3099E:

Error:

Emitter

failure.

Invalid

endpoint

address

in

port

<x>

in

service

<y>:

<jms-url-string>

can

be

avoided

by

making

sure

the

urlprotocols.jar

file

is

in

the

CLASSPATH.

To

add

the

urlprotocols.jar

file

to

the

CLASSPATH:

On

Windows

platforms,

edit

the

install_root\bin\setupCmdLine.bat

and

locate

the

line

which

sets

the

WAS_CLASSPATH

environment

variable.

Add

%install_root%\lib\urlprotocols.jar

to

the

end

of

the

line

that

sets

the

WAS_CLASSPATH

environment

variable.

On

UNIX

platforms,

edit

the

install_root/bin/setupCmdLine.sh

file

and

add

$install_root/lib/urlprotocols.jar

to

the

end

of

the

line

that

sets

the

WAS_CLASSPATH

environment

variable.

Make

sure

to

use

the

proper

deliminator

character

for

your

platform,

for

example,

use

a

semi-colon

(;)

for

Windows

platforms

and

a

colon

(:)

for

UNIX

platforms.

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

551

Troubleshooting

compiled

bindings

for

Web

services

based

on

Web

Services

for

J2EE

This

topic

discusses

troubleshooting

compiled

bindings

of

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

Context

root

not

recognized

when

mapping

the

default

XML

namespace

to

a

Java

package

When

you

map

the

default

XML

namespace

to

a

Java

package

the

context

root

is

not

recognized.

If

two

namespaces

are

the

same

up

to

the

first

slash,

they

are

mapped

to

the

same

Java

package.

For

example,

the

XML

namespaces

http://www.ibm.com/foo

and

http://www.ibm.com/bar

both

map

to

the

Java

package

www.ibm.com.

Use

the

-NStoPkg

option

of

the

Java2WSDL

command

to

specify

the

package

for

the

fully

qualified

namespace.

Java

code

to

WSDL

mapping

cannot

be

reversed

back

to

the

original

Java

code

If

you

find

that

a

WSDL

file

you

created

with

the

Java2WSDL

command-line

tool

cannot

be

compiled

when

regenerated

into

Java

code

using

the

WSDL2Java

command-line

tool

it

is

because

the

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

mapping

from

Java

code

to

WSDL

is

not

reversible

back

to

the

original

Java

code.

To

troubleshoot

this

problem

review

the

WSDL

file

that

was

generated

by

the

Java2WSDL

tool

using

the

information

in

Mapping

between

Java,

WSDL

and

XML

and

the

JAX-RPC

specification

available

through

Web

services:

Resources

for

learning.

Use

this

information

to

determine

which

elements

in

the

WSDL

file

are

causing

the

problem.

You

can

modify

the

WSDL

file,

or

the

original

Java

interface

used

to

generate

the

WSDL

file,

and

run

the

Java2WSDL

command

again.

Troubleshooting

the

run

time

of

Web

services

based

on

Web

Services

for

J2EE

This

topic

discusses

troubleshooting

the

run

time

of

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

You

can

troubleshoot

run

time

errors

and

exceptions

as

follows:

v

Trace

SOAP

messages

v

Trace

the

components

of

Web

services

based

Web

Services

for

J2EE

Tracing

SOAP

messages

This

topic

discusses

tracing

SOAP

messages

that

request

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

You

can

trace

the

SOAP

messages

exchanged

between

a

client

and

the

server

using

the

TCPMon

command

tool.

The

TCPMon

command

redirects

messages

from

one

port

to

another

and

records

them.

The

WebSphere

Application

Server

listens

on

port

9080.

To

trace

messages

sent

to

the

application

server,

the

TCPMon

command

is

configured

to

listen

on

port

9088

and

redirect

them

to

9080.

The

client

is

redirected

to

use

port

9088

to

access

the

Web

service.

552

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Redirecting

an

application

client

to

a

different

port

is

most

easily

done

by

changing

the

SOAP

address

in

the

client’s

Web

Services

Description

Language

(WSDL)

file

to

use

port

9088

and

then

running

the

wsdeploy

command-line

tool

on

the

client

enterprise

archive

(EAR)

file

to

regenerate

the

service

implementation.

You

should

confirm

that

the

server

providing

the

Web

service

is

running.

The

following

task

is

performed

on

the

machine

providing

the

Web

service.

To

trace

SOAP

messages

in

Web

services:

1.

Set

up

a

development

and

unmanaged

client

execution

environment

for

Web

services

based

on

Web

Services

for

J2EE

2.

Run

the

java

-Djava.ext.dirs=%WAS_EXT_DIRS%

command.

A

window

labeled

TCPMonitor

displays.

3.

Configure

the

TCPMonitor

to

listen

on

port

9088

and

forward

messages

to

port

9080.

a.

In

the

Listen

Port

#

field,

enter

9088.

b.

Click

Listener

c.

In

the

TargetHostname

field,

enter

localhost.

d.

In

the

Target

Port

#

field,

enter

9080.

e.

Click

Add.

f.

Click

on

the

Port

9088

tab

that

displays

on

the

top

of

the

page.

The

messages

exchanged

between

the

client

and

server

appear

in

the

TCPMonitor

Request

and

Response

pane.

Save

the

message

data

and

analyze

it.

Tracing

Web

services

components

based

on

Web

Services

for

J2EE

The

following

are

tasks

in

which

you

can

enable

trace

for

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

1.

Enable

trace

for

a

Web

services

unmanaged

client.

a.

Create

a

trace

properties

file

by

copying

%install_root%\WebSphere\AppServer\properties\TraceSettings.properties

file

to

the

same

directory

as

your

client

application

Java

archive

(JAR)

file.

b.

Edit

the

properties

file

and

change

the

value

of

traceFileName

to

output

the

trace

data.

For

example,

traceFileName=c:\\temp\\myAppClient.trc.

c.

Edit

the

properties

file

to

remove

com.ibm.ejs.ras.*=all=enabled

and

add

com.ibm.ws.webservices.*=all=enabled.

d.

Add

the

option

-DtraceSettingsFile=<trace_properties_file>

to

the

Java

command-

line

used

to

run

the

client,

where

trace_properties_file

represents

the

name

of

the

properties

file

created

in

steps

1-2.

For

example,

java

-DtraceSettingsFile=TraceSettings.properties

myApp.myAppMainClass.
2.

Enable

trace

for

a

Web

services

managed

client.

a.

Invoke

the

launchClient

command-line

tool

with

the

following

options:

-CCtrace=com.ibm.ws.webservices.*=all=enabled-CCtracefile=traceFileName

For

example:

%install_root%\bin\launchClient

MyAppClient.ear-
CCtrace=com.ibm.ws.webservices.*=all=enabled

-CCtracefile=myAppClient.trc

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

553

See

launchClient

tool

for

more

information.

3.

Enable

trace

for

a

Web

Services

for

J2EE

server

application.

a.

Start

WebSphere

Application

Server.

b.

Open

the

administrative

console.
a.

Click

Servers

>Application

Servers

>

server.
a.

Click

Diagnostic

Trace

Service.
a.

In

the

Trace

Specification

field,

delete

the

text

*=all=enabled

and

add

com.ibm.ws.webservices.*=all=enabled.

b.

Click

Save

and

Apply.

Troubleshooting

the

run

time

for

a

Web

services

client

based

on

Web

Services

for

J2EE

This

topic

discusses

troubleshooting

Web

services

clients

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

Malformed

URL

exception

displays

when

running

a

client

that

uses

a

JMS-style

endpoint

URL

If

you

are

using

the

launchClient

command

to

run

a

managed

or

unmanaged

client

that

uses

a

JMS-style

endpoint

URL,

the

urlprotocols.jar

file

that

contains

the

custom

protocol

handler

for

the

JMS

protocol

must

be

in

the

CLASSPATH.

The

malformed

URL

exception

can

be

avoided

by

making

sure

the

urlprotocols.jar

file

is

in

the

CLASSPATH.

To

add

the

urlprotocols.jar

file

to

the

CLASSPATH:

On

Windows

platforms,

edit

the

install_root\bin\setupCmdLine.bat

and

locate

the

line

which

sets

the

WAS_CLASSPATH

environment

variable.

Add

%install_root%\lib\urlprotocols.jar

to

the

end

of

the

line

that

sets

the

WAS_CLASSPATH

environment

variable.

On

UNIX

platforms,

edit

the

install_root/bin/setupCmdLine.sh

file

and

add

$install_root/lib/urlprotocols.jar

to

the

end

of

the

line

that

sets

the

WAS_CLASSPATH

environment

variable.

Troubleshooting

serialization

and

deserializaton

in

Web

services

based

on

Web

Services

for

J2EE

The

following

are

problems

you

might

encounter

performing

serialization

and

deserialization

in

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform

Enterprise

Edition

(J2EE)

specification.

Time

zone

information

in

deserialized

java.util.Calendar

is

not

as

expected

When

the

client

and

server

are

based

on

Java

code

and

a

java.util.Calendar

is

received,

the

time

zone

in

the

received

java.util.Calendar

instance

might

be

different

from

that

of

the

java.util.Calendar

instance

that

was

sent.

This

occurs

because

java.util.Calendar

is

encoded

as

an

xsd:dateTime

for

transmission.

An

xsd:dateTime

is

required

to

encode

the

correct

time

(base

time

plus

or

minus

a

time

zone

offset),

but

is

not

required

to

preserve

locale

information,

including

the

original

time

zone.

554

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

fact

that

the

time

zone

for

the

current

locale

is

not

preserved

needs

to

be

accounted

for

when

comparing

Calendar

instances.

The

java.util.Calendar

class

equals

method

checks

that

the

time

zones

are

the

same

when

determining

equality.

Since

the

time

zone

in

a

deserialized

Calendar

instance

might

not

match

the

current

locale,

the

before

and

after

comparison

methods

should

be

used

to

test

that

two

Calendars

refer

to

the

same

date

and

time

as

shown

below:

java.util.Calendar

c1

=

...//

Date

and

time

in

time

zone

1

java.util.Calendar

c2

=

...//

Same

date

and

equivalent

time,

but

in

time

zone

2

//

c1

and

c2

are

not

equal

because

their

time

zones

are

different

if

(c1.equals

(c2))

System.out.println("c1

and

c2

are

equal");

//

but

c1

and

c2

do

compare

as

"not

before

and

not

after"

since

they

represent

the

same

date

and

time

if

(!c1.after(c2)

&

!c1.before(c2)

{

System.out.println("c1

and

c2

are

equivalent");

}

Mixing

Web

services

client

and

server

bindings

causes

exceptions

Web

Services

for

J2EE

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

do

not

support

″round-trip″

mapping

between

Java

code

and

a

Web

Services

Description

Language

(WSDL)

document

for

all

Java

types.

For

example,

you

cannot

turn

(serialize)

a

Java

Date

into

XML

code

and

then

turn

it

back

(deserialize)

into

a

Java

Date.

It

deserializes

as

Java

Calendar.

If

you

have

a

Java

implementation

that

you

create

a

WSDL

document

from,

and

you

generate

client

bindings

from

the

WSDL

document,

the

client

classes

can

be

different

from

the

server

classes

even

though

the

client

classes

have

the

same

package

and

class

names.

The

Web

service

client

classes

must

be

kept

separate

from

the

Web

service

server

classes.

For

example,

do

not

place

the

Web

service

server

bindings

classes

in

a

utility

Java

archive

(JAR)

file

and

then

include

a

Web

service

client

JAR

file

that

references

the

same

utility

JAR

file.

If

you

do

not

keep

the

Web

service

client

and

server

classes

separate,

a

variety

of

exceptions

can

occur,

depending

on

the

Java

classes

used.

The

following

is

a

sample

stack

trace

error

that

can

occur:

com.ibm.ws.webservices.engine.PivotHandlerWrapper

TRAS0014I:

The

following

exception

was

loggedjava.lang.NoSuchMethodError:

com.ibm.wssvt.acme.websvcs.ExtWSPolicyData:

method

getStartDate()Ljava/util/Date;

not

found

at

com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.addElements(ExtWSPolicyData_Ser.java:

210)

at

com.ibm.wssvt.acme.websvcs.ExtWSPolicyData_Ser.serialize

(ExtWSPolicyData_Swer.java:29)

at

com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.serializeActual

(SerializationContextImpl.java

719)

at

com.ibm.ws.webservices.engine.encoding.SerializationContextImpl.serialize

(SerializationContextImpl.java:

463)

The

problem

is

caused

by

using

an

interface

like

the

following

for

the

Service

Endpoint

Interface

in

the

service

implementation:

package

server:

public

interface

Test_SEI

extends

java.rmi.Remote

{

public

java.util.Calendar

getCalendar

()

throws

java.rmi.RemoteException;

public

java.util.Date

getDate()

throws

java.rmi.RemoteException;

}

When

this

interface

is

compiled

and

run

through

the

Java2WSDL

command-line

tool,

the

WSDL

document

maps

the

methods

as

follows:

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

555

<wsdl:message

name="getDateResponse">

<wsdl:part

name="getDateReturn"

type="xsd:dateTime"/>

</wsdl:message>

<wsdl:message

name="getCalendarResponse">

<wsdl:part

name="getCalendarReturn"

type="xsd:dateTime"/>

</wsdl:message>

The

JAX-RPC

mapping

implemented

by

the

Java2WSDL

tool

has

mapped

both

java.util.Date

and

java.util.Calendar

to

the

XML

type

xsd:dateTime.

The

next

step

is

to

use

the

generated

WSDL

file

to

create

a

client

for

the

Web

service.

When

you

run

the

WSDL2Java

command-line

tool

on

the

generated

WSDL,

the

generated

classes

include

a

different

version

of

server.Test_SEI,

for

example:

package

server;

public

interface

Test_SEI

extends

java.rmi.Remote

{

public

java.util.Calendar

getCalendar()

throws

java.rmi.RemoteException;

public

java.util.Date

getDate()

throws

java.rmi.RemoteException;

}

Note:

The

client

version

of

the

service.Test_SEI

interface

is

different

from

the

server

version

in

that

both

getCalendar

and

getDate

methods

return

java.util.Calendar.

The

serialization

and

deserilazation

code

that

the

client

expects

is

the

client

version

of

the

SEI.

If

the

server

version

inadvertently

appears

in

the

client’s

CLASSPATH,

at

either

compilation

or

execution

time,

an

exception

occurs.

In

addition

to

theNoSuchMethod

error,

the

IncompatibleClassChangeError

and

ClassCastException

can

occur,

however,

almost

any

run-time

exception

can

occur.

The

best

practice

is

to

be

diligent

about

separating

client

Web

services

bindings

classes

from

server

Web

services

bindings

classes.

The

client

bindings

classes

and

server

bindings

classes

should

never

be

placed

in

the

same

module

and,

if

they

are

in

the

same

application,

should

not

have

bindings

classes

in

utility

JAR

files

that

are

shared

between

modules.

Frequently

asked

questions

about

Web

services

based

on

Web

Services

for

J2EE

This

topic

presents

frequently

asked

questions

about

Web

services

that

are

developed

and

implemented

based

on

the

Web

Services

for

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

v

What

IBM

development

tools

work

with

Web

Services

for

J2EE?

v

Is

Web

Services

for

J2EE

part

of

the

J2EE

specification?

v

What

is

the

relationship

between

Web

Services

for

J2EE

and

the

Web

Service

Invocation

Framework

(WSIF)?

v

What

is

the

relationship

between

Apache

SOAP

2.3

and

Web

Services

for

J2EE?

v

What

is

the

relationship

between

the

Apache

Axis

component

of

the

Web

services

technology

preview

available

with

WebSphere

Application

Server

5.0

and

Web

Services

for

J2EE?

v

What

standards

does

the

Web

Services

for

J2EE

component

of

WebSphere

Application

Server

5.0.

support?

v

Does

Web

Services

for

J2EE

interoperate

with

other

SOAP

implementations,

like

.NET?

v

Why

can

I

not

use

a

JavaBean

to

implement

a

SOAP

Java

Messaging

Service

(JMS)

service?

v

Does

the

SOAP

JMS

support

interoperate

with

other

vendors?

v

How

does

two-way

messaging

with

SOAP

JMS

work?

Can

it

support

multiple

clients

making

simultaneous

requests?

556

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

What

IBM

development

tools

work

with

Web

Services

for

J2EE?

WebSphere

Studio

Application

Developer

Version

5.1

and

the

Assembly

Toolkit

Version

5.1

both

support

the

use

of

Web

Services

for

J2EE.

The

Application

Assembly

Tool,

included

with

Websphere

Application

Server,

and

Websphere

Studio

Application

Developer

versions

earlier

than

Version

5.01,

do

not

support

Web

Services

for

J2EE.

Is

Web

Services

for

J2EE

part

of

the

J2EE

specification?

For

WebSphere

Application

Server

5.0.2,

the

Web

Services

for

J2EE

Version

1.0

specification

is

an

addition

to

J2EE

1.3.

J2EE

1.4

requires

support

for

Web

Services

for

J2EE

Version

1.1.

There

are

minor

differences

between

the

J2EE

1.3

Version

(JSR-109

Version

1.0)

and

the

J2EE

1.4

Version

(JSR-109

Version

1.1).

What

is

the

relationship

between

Web

Services

for

J2EE

and

the

Web

Service

Invocation

Framework

(WSIF)?

Web

Services

for

J2EE

and

WSIF

represent

two

different

programming

models

for

accessing

Web

services.

Web

Services

for

J2EE

is

standard,

Java-centric,

and

more

statically

bound

to

WSDL

documents

due

to

the

use

of

generated

stubs.

WSIF

directly

models

Web

Services

Description

Language

(WSDL)

documents.

WSIF

is

more

suitable

when

dynamically

interpreting

WSDL.

Future

versions

of

WebSphere

Application

server

will

leverage

both

technologies

to

achieve

dynamic,

high

performing

standards-based

Web

services

implementations.

What

is

the

relationship

between

Apache

SOAP

2.3

and

Web

Services

for

J2EE?

Apache

SOAP

shipped

with

WebSphere

Application

Server

Versions

4.0

and

5.0.

It

continues

to

co-exist

with

Web

Services

for

J2EE.

Apache

SOAP

is

a

proprietary

API

and

applications

written

for

it

are

not

portable

to

other

SOAP

implementations.

Applications

written

for

Web

Services

for

J2EE

should

be

portable

to

any

vendor’s

implementation

that

supports

Web

Services

for

J2EE.

What

is

the

relationship

between

the

Apache

Axis

component

of

the

Web

services

technology

preview

available

with

WebSphere

Application

Server

5.0

and

Web

Services

for

J2EE?

The

Web

services

technology

preview

leveraged

the

work

that

IBM

contributed

to

the

Apache

Axis

code

base.

The

Web

Services

for

J2EE

support

included

with

WebSphere

Application

Server

5.0.2

is

derived

from

Apache

Axis,

but

has

diverged

and

contains

many

IBM-specific

features

to

enhance

performance,

scalability,

reliability,

interoperability,

and

integration

with

the

WebSphere

Application

Server.

What

standards

does

the

Web

Services

for

J2EE

component

of

WebSphere

Application

Server

5.0.

support?

The

following

standards

are

supported

by

the

Web

Services

for

J2EE

component

of

WebSphere

Application

Server

5.0:

v

SOAP

Version

1.1

v

Web

Services

Description

Language

(WSDL)

Version

1.1

v

Web

Services

for

J2EE

(JSR-109)

Version

1.0

v

Java

API

for

XML-Based

RPC

(JAX-RPC)

Version

1.0

v

SOAP

with

attachments

API

for

Java

(SAAJ)

Version

1.1

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

557

Does

Web

Services

for

J2EE

interoperate

with

other

SOAP

implementations,

like

.NET?

WebSphere

Application

Server

Version

5.0.2

and

Version

5.1

support

Web

services

that

are

consistent

with

the

the

WS-I

Basic

Profile

1.0,

and

should

interoperate

with

any

other

vendor

conforming

to

this

specification.

Why

can

I

not

use

a

Java

bean

to

implement

a

SOAP

Java

Messaging

Service

(JMS)

service?

The

SOAP

JMS

support

uses

Message

Driven

Beans

(MDB)

to

implement

the

JMS

endpoint.

MDBs

can

only

be

used

in

the

EJB

container

and

delegate

to

an

enterprise

bean.

If

you

want

to

use

a

Java

bean

instead

of

an

enterprise

bean

to

implement

the

service

endpoint,

you

must

create

a

″facade″

enterprise

bean

that

delegates

to

the

Java

bean.

Does

the

SOAP

JMS

support

interoperate

with

other

vendors?

No.

There

is

currently

no

specification

for

SOAP

JMS,

therefore

each

vendor

chooses

its

own

implementation

technique.

How

does

two-way

messaging

with

SOAP

JMS

work?

Can

it

support

multiple

clients

making

simultaneous

requests?

Before

a

client

issues

a

two-way

request,

it

creates

a

temporary

JMS

queue

to

receive

the

response.

This

temporary

queue

is

specified

as

the

replyTo

destination

in

the

outgoing

JMS

request

message.

After

the

server

processes

the

request,

it

directs

the

response

to

the

replyTo

destination

specified

in

the

request

message.

The

client

deletes

the

temporary

queue

after

the

response

has

been

received.

The

server

is

able

to

handle

simultaneous

requests

from

multiple

clients

since

each

incoming

request

message

contains

the

destination

to

which

the

reply

should

be

sent.

Web

services:

Resources

for

learning

This

topic

provides

relevant

supplemental

information

about

the

following

Web

services-related

topics:

v

Web

services

overview

Including

the

WebSphere

Version

5

Web

Services

Handbook

v

Developing

Web

services:

Including

developing

Web

services

based

on

the

Java

2

platform,

Enterprise

Edition

(J2EE)

and

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC)

specifications.

v

Universal

Description

Discovery

and

Integration

(UDDI)

Including

an

overview

about

UDDI

and

information

about

the

UDDI

Java

API.

v

Web

Services

Invocation

Framework

(WSIF)

A

look

into

the

Apache

Software

Foundation

and

its

maintenance

of

WSIF.

v

SOAP

Including

an

overview

about

SOAP

and

information

about

the

SOAP

syntax

and

processing

rules.

v

Security

Including

a

roadmap

to

security,

the

WS-Security

specification,

best

practices,

a

profile

of

the

OASIS

Security

Assertion

Markup

Language

(SAML)

and

more.

v

Samples

558

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Includes

WebSphere

Application

Server

Samples

Gallery

and

Samples

Central

for

Web

services

gateway,

UDDI

and

WSIF.

v

Other

references

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

Web

services

overview

v

WebSphere

Version

5

Web

Services

Handbook

This

IBM

Redbook

describes

the

new

concept

of

Web

services

from

various

perspectives.

It

presents

the

major

building

blocks

Web

services

rely

on.

Well-defined

standards

and

new

concepts

are

presented

and

discussed.

v

IBM

Web

Services

architecture

debuts

Introducing

IBM

Web

services,

a

distributed

software

architecture

of

service

components.

This

brief

overview

and

in-depth

interview

on

IBM

DeveloperWorks

cover

the

fundamental

concepts

of

Web

services

architecture

and

what

they

mean

for

developers.

The

interview

with

IBM

professional

Rod

Smith

explores

which

types

of

developers

Web

services

targets,

how

Web

services

reduces

development

time,

what

developers

could

be

doing

with

Web

services

now,

and

takes

a

glance

at

the

economics

of

dynamically

discoverable

services.

v

Web

services

(r)evolution,

Part

1

This

article

focuses

on

the

benefits

and

challenges

of

building

Web

services

applications.

Web

services

might

be

an

evolutionary

step

in

designing

distributed

applications,

however,

they

are

not

without

their

problems.

Outlined

are

the

difficulties

developers

face

in

creating

a

truly

workable

distributed

system

of

Web

services.

This

article

also

outlines

author

Graham

Glass’

plan

for

building

peer-to-peer

Web

applications.

Developing

Web

services

v

JSR

109:

Implementing

Enterprise

Web

services

This

document

describes

the

Java

2

platform,

Enterprise

Edition

(J2EE)

specification.

v

Java

API

for

XML-based

RPC

(JAX-RPC):

Core

Web

services

API

in

the

Java

platform

This

document

reviews

the

JAX-RPC

specification

which

enables

Java

technology

developers

to

develop

SOAP-based

interoperable

and

portable

Web

services.

v

Web

Services

Description

Language

This

article

is

a

detailed

overview

of

Web

Services

Description

Language

(WSDL),

which

includes

programming

specifications.

UDDI

v

Universal

Description,

Discovery

and

Integration

This

article

is

a

detailed

overview

of

Universal

Description,

Discovery

and

Integration

(UDDI).

v

UDDI4J:

Matchmaking

for

Web

services

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

559

http://w3.itso.ibm.com/itsoapps/Redbooks.nsf/RedbookAbstracts/sg246891.html?Open
http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices
http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/xml/jaxrpc/
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/wsdl
http://www.uddi.org/about.html
http://www-106.ibm.com/developerworks/library/ws-uddi4j

Reviewed

in

this

article

are

the

basics

of

UDDI,

the

Java

API

to

UDDI,

and

how

you

can

use

this

technology

to

start

building,

testing,

and

deploying

your

own

Web

services.

WSIF

v

The

Apache

Software

Foundation.

The

Apache

Software

Foundation

provides

support

for

the

Apache

community

of

open-source

software

projects.

Of

particular

interest

is

the

Apache

Web

services

project.

The

WSIF

source

code

has

been

donated

by

IBM

to

the

Apache

Software

Foundation,

and

is

maintained

here

as

an

Apache

project.

SOAP

v

SOAP

This

article

is

a

detailed

overview

of

SOAP,

which

includes

programming

specifications.

v

SOAP

Security

Extensions:

Digital

Signature

This

document

specifies

the

syntax

and

processing

rules

of

a

SOAP

header

entry

to

carry

digital

signature

information

within

a

SOAP

1.1

Envelope

Security

v

Security

in

a

Web

Services

World:

A

Proposed

Architecture

and

Roadmap

This

document

describes

a

proposed

model

for

addressing

security

within

a

Web

service

environment.

It

defines

a

comprehensive

Web

Services

Security

model

that

supports,

integrates,

and

unifies

several

popular

security

models,

mechanisms,

and

technologies,

including

both

symmetric

and

public

key

technologies,

in

a

way

that

enables

a

variety

of

systems

to

securely

interoperate

in

a

platform

and

language-neutral

manner.

It

also

describes

a

set

of

specifications

and

scenarios

that

show

how

these

specifications

can

be

used

together.

v

Web

Services

Security

(WS-Security)

The

Web

Services

Security

specifications

describe

enhancements

to

SOAP

messaging

to

provide

quality

of

protection

through

message

integrity,

message

confidentiality,

and

single

message

authentication.

These

mechanisms

can

be

used

to

accommodate

a

wide

variety

of

security

models

and

encryption

technologies.

Web

Services

Security

also

provides

a

general-purpose

mechanism

for

associating

security

tokens

with

messages.

Additionally,

Web

Services

Security

describes

how

to

encode

binary

security

tokens.

Specifically,

the

specification

describes

how

to

encode

X.509

certificates

and

Kerberos

tickets,

as

well

as

how

to

include

opaque

encrypted

keys.

It

also

includes

extensibility

mechanisms

that

can

be

used

to

further

describe

the

characteristics

of

the

credentials

that

are

included

with

a

message.

v

SOAP

Security

Extensions:

Digital

Signature

This

document

specifies

the

syntax

and

processing

rules

of

a

SOAP

header

entry

to

carry

digital

signature

information

within

a

SOAP

1.1

Envelope

v

Web

Services

Security

Addendum

This

document

describes

clarifications,

enhancements,

best

practices,

and

errata

of

the

Web

Services

Security

specification.

v

WS-Security

Profile

of

the

OASIS

Security

Assertion

Markup

Language

(SAML)

Working

Draft

04,

10

September

2002

This

document

proposes

a

set

of

standards

for

SOAP

extensions

used

to

increase

message

confidentiality.

v

Web

Services

Security:

SOAP

Message

Security

Working

Draft

12,

Monday

21

April

2003

560

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.apache.org
http://ws.apache.org
http://ws.apache.org/wsif/
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP-dsig
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/
http://www-106.ibm.com/developerworks/library/ws-secure/
http://www.w3.org/TR/SOAP-dsig
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf

This

document

describes

the

support

for

multiple

token

formats,

trust

domains,

signature

formats,

and

encyrption

technologies.

v

JSR

55:Certification

Path

API

This

document

provides

a

short

description

of

the

certification

path

API.

v

XML-Signature

Syntax

and

Processing

This

document

specifies

XML

digital

signature

processing

rules

and

syntax.

XML

signatures

provide

integrity,

message

authentication,

or

signer

authentication

services

for

data

of

any

type,

whether

located

within

the

XML

that

includes

the

signature

or

elsewhere.

v

Canonical

XML

Version

1.0

This

specification

describes

a

method

for

generating

a

physical

representation,

the

canonical

form,

of

an

XML

document

that

accounts

for

the

permissible

changes.

v

Exclusive

XML

Canonicalization

Version

1.0

Canonical

XML

[XML-C14N]

specifies

a

standard

serialization

of

XML

that,

when

applied

to

a

subdocument,

includes

the

subdocument’s

ancestor

context

including

all

of

the

namespace

declarations

and

attributes

in

the

″xml:″namespace.

v

XML

Encryption

Syntax

and

Processing

This

document

specifies

a

process

for

encrypting

data

and

representing

the

result

in

XML.

v

Decryption

Transform

for

XML

Signature

This

document

specifies

an

XML

Signature

″decryption

transform″

that

enables

XML

Signature

applications

to

distinguish

between

those

XML

Encryption

structures

that

were

encrypted

before

signing,

and

must

not

be

decrypted,

and

those

that

were

encrypted

after

signing,

and

must

be

decrypted,

for

the

signature

to

validate.

v

WS-Security

This

document

specifies

resources

for

the

April

2002

Web

Services

Security

Specification.

The

following

addenda

and

drafts

are

available:

–

http://schemas.xmlsoap.org/ws/2002/07/secext/

–

http://schemas.xmlsoap.org/ws/2002/07/utility/

–

OASIS

draft

12

for

secext

–

OASIS

draft

12

for

utility
v

XML

Encryption

Syntax

and

Processing

W3C

Recommendation

10

December

2002

v

XML-Signature

Syntax

and

Processing

W3C

Recommendation

12

February

2002

v

Web

Services

Security

Addendum

v

Web

Services

Security

Core

Specification

Working

Draft

01,

20

September

2002

v

Web

Services

Security:

SOAP

Message

Security

Working

Draft

13,

Thursday,

01

May

2003

v

Internet

X.509

Public

Key

Infrastructure

Certificate

and

Certificate

Revocation

List

(CRL)

Profile,

RFC3280,

April

2002

v

OASIS

Web

Services

Security

Technical

Committee

Samples

v

Samples

Gallery

v

Samples

Central.

Samples

and

associated

documentation

for

the

following

Web

services

components

are

available

through

the

Samples

Central

page

of

the

IBM

WebSphere

Developer

Domain

Web

site:

–

The

IBM

private

UDDI

registry.

–

The

Web

Services

Invocation

Framework

(WSIF).

Chapter

7.

Using

Web

services

based

on

Web

Services

for

J2EE

561

http://jcp.org/en/jsr/detail?id=55
http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-decrypt
http://schemas.xmlsoap.org/ws/2002/04/secext/
http://schemas.xmlsoap.org/ws/2002/07/secext/
http://schemas.xmlsoap.org/ws/2002/07/utility/
http://schemas.xmlsoap.org/ws/2003/06/secext/
http://schemas.xmlsoap.org/ws/2003/06/utility/
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmlenc-core-20021210
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://www.ibm.com/developerworks/library/secureadd.html
http://www.oasis-open.org/committees/wss/documents/WSS-Core-01-0920.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.oasis-open.org/committees/download.php/2314/WSS-SOAPMessageSecurity-13-050103-merged.pdf
http://www.ietf.org/rfc/rfc3280.txt
http://www.ietf.org/rfc/rfc3280.txt
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www.ibm.com/websphere/developer/library/samples/AppServer.html

Other

references

v

The

Apache

Software

Foundation.

The

Apache

Software

Foundation

provides

support

for

the

Apache

community

of

open-source

software

projects.

Of

particular

interest

is

the

Apache

Web

services

project.

v

Web

services

insider,

Part

1:

Reflections

on

SOAP

What

is

the

current

state

of

the

Web

services

revolution?

Find

out

at

this

Web

site

that

features

the

column

Web

services

insider,

Part

1.

The

author

answers

this

question

by

reviewing

the

tools

and

technologies

that

have

emerged

over

the

past

year,

highlighting

their

differences

and

similarities.

v

The

Web

services

insider,

Part

2:

A

summary

of

the

W3C

Web

Services

Workshop

This

is

a

brief

summary

of

a

W3C

Web

services

workshop.

562

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.apache.org
http://ws.apache.org
http://www-106.ibm.com/developerworks/webservices/library/ws-ref1
http://www-106.ibm.com/developerworks/webservices/library/ws-ref2
http://www-106.ibm.com/developerworks/webservices/library/ws-ref2

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

The

Web

Services

Invocation

Framework

(WSIF)

is

a

WSDL-oriented

Java

API.

You

use

this

API

to

invoke

Web

services

dynamically,

regardless

of

the

service

implementation

format

(for

example

enterprise

bean

(EJB))

or

the

service

access

mechanism

(for

example

Java

Messaging

Service

(JMS)).

Using

WSIF,

you

can

move

away

from

the

usual

Web

services

programming

model

of

working

directly

with

the

SOAP

APIs,

towards

a

model

where

you

interact

with

representations

of

the

services.

You

can

therefore

work

with

the

same

programming

model

regardless

of

how

the

service

is

implemented

and

accessed.

If

you

want

to

know

more

about

the

issues

that

WSIF

addresses,

see

Goals

of

WSIF.

If

you

want

to

know

how

WSIF

addresses

these

issues,

see

An

overview

of

WSIF.

To

use

WSIF,

see

the

following

topics:

v

Using

WSIF

to

invoke

Web

services.

v

WSIF

system

management

and

administration.

v

WSIF

API.

For

more

information

about

working

with

WSIF,

visit

the

Web

sites

listed

in

Web

services:

Resources

for

Learning.

Goals

of

WSIF

SOAP

bindings

for

Web

services

are

part

of

the

WSDL

specification,

therefore

when

most

developers

think

of

using

a

Web

service,

they

immediately

think

of

assembling

a

SOAP

message

and

sending

it

across

the

network

to

the

service

endpoint,

using

a

SOAP

client

API.

For

example:

using

Apache

SOAP

the

client

creates

and

populates

a

Call

object

that

encapsulates

the

service

endpoint,

the

identification

of

the

SOAP

operation

to

invoke,

the

parameters

to

send,

and

so

on.

While

this

process

works

for

SOAP,

it

is

limited

in

its

use

as

a

general

model

for

invoking

Web

services

for

the

following

reasons:

v

Web

services

are

more

than

just

SOAP

services.

v

Tying

client

code

to

a

particular

protocol

implementation

is

restricting.

v

Incorporating

new

bindings

into

client

code

is

hard.

v

Multiple

bindings

can

be

used

in

flexible

ways.

v

A

freer

Web

services

environment

enables

intermediaries.

The

goals

of

the

Web

Services

Invocation

Framework

(WSIF)

are

therefore:

v

To

give

a

binding-independent

mechanism

for

Web

service

invocation.

v

To

free

client

code

from

the

complexities

of

any

particular

protocol

used

to

access

a

Web

service.

v

To

enable

dynamic

selection

between

multiple

bindings

to

a

Web

service.

v

To

help

the

development

of

Web

service

intermediaries.

©

Copyright

IBM

Corp.

2003

563

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

WSIF

-

Web

services

are

more

than

just

SOAP

services

You

can

deploy

as

a

Web

service

any

application

that

has

a

WSDL-based

description

of

its

functional

aspects

and

access

protocols.

If

you

are

using

the

Java

2

platform,

Enterprise

Edition

(J2EE)

environment,

then

the

application

is

available

over

multiple

transports

and

protocols.

For

example,

you

can

take

a

database-stored

procedure,

expose

it

as

a

stateless

session

bean,

then

deploy

it

into

a

SOAP

router

as

a

SOAP

service.

At

each

stage,

the

fundamental

service

is

the

same.

All

that

changes

is

the

access

mechanism:

from

Java

Database

Connectivity

(JDBC)

to

Remote

Method

Invocation

over

Internet

Inter-Orb

Protocol

(RMI-IIOP)

and

then

to

SOAP.

The

WSDL

specification

defines

a

SOAP

binding

for

Web

services,

but

you

can

add

binding

extensions

to

the

WSDL

so

that,

for

example,

you

can

offer

an

enterprise

bean

as

a

Web

service

using

RMI-IIOP

as

the

access

protocol.

You

can

even

treat

a

single

Java

class

as

a

Web

service,

with

in-thread

Java

method

invocations

as

the

access

protocol.

With

this

broader

definition

of

a

Web

service,

you

need

a

binding-independent

mechanism

for

service

invocation.

WSIF

-

Tying

client

code

to

a

particular

protocol

implementation

is

restricting

If

your

client

code

is

tightly

bound

to

a

client

library

for

a

particular

protocol

implementation,

it

can

become

hard

to

maintain.

For

example,

if

you

move

from

Apache

SOAP

to

Java

Messaging

Service

(JMS)

or

enterprise

bean,

the

process

can

take

a

lot

of

time

and

effort.

To

avoid

these

problems,

you

need

a

protocol

implementation-independent

mechanism

for

service

invocation.

WSIF

-

Incorporating

new

bindings

into

client

code

is

hard

As

is

explained

in

Web

services

are

not

just

SOAP

services,

if

you

want

to

make

an

application

that

uses

a

custom

protocol

work

as

a

Web

service,

you

can

add

extensibility

elements

to

WSDL

to

define

the

new

bindings.

But

in

practice,

achieving

this

capability

is

hard.

For

example

you

have

to

design

the

client

APIs

to

use

this

protocol.

If

your

application

uses

just

the

abstract

interface

of

the

Web

service,

you

have

to

write

tools

to

generate

the

stubs

that

enable

an

abstraction

layer.

These

tasks

can

take

a

lot

of

time

and

effort.

What

you

need

is

a

service

invocation

mechanism

that

allows

you

to

update

existing

bindings,

and

to

add

new

bindings.

WSIF

-

Multiple

bindings

can

be

used

in

flexible

ways

Imagine

that

you

have

successfully

deployed

an

application

that

uses

a

Web

service

which

offers

multiple

bindings.

For

example,

imagine

that

you

have

a

SOAP

binding

for

the

service

and

a

local

Java

binding

that

lets

you

treat

the

local

service

implementation

(a

Java

class)

as

a

Web

service.

The

local

Java

binding

for

the

service

can

only

be

used

if

the

client

is

deployed

in

the

same

environment

as

the

service.

In

this

case,

it

is

more

efficient

to

communicate

with

the

service

by

making

direct

Java

calls

than

by

using

the

SOAP

binding.

If

your

clients

could

switch

the

actual

binding

used

based

on

run-time

information,

they

could

choose

the

most

efficient

available

binding

for

each

situation.

To

take

advantage

of

Web

services

that

offer

multiple

bindings,

you

need

a

service

564

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

invocation

mechanism

that

can

switch

between

the

available

service

bindings

at

run-time,

without

having

to

generate

or

recompile

a

stub.

WSIF

-

Enabling

a

freer

Web

services

environment

promotes

intermediaries

Web

services

offer

application

integrators

a

loosely-coupled

paradigm.

In

such

environments,

intermediaries

can

be

very

powerful.

Intermediaries

are

applications

that

intercept

the

messages

that

flow

between

a

service

requester

and

a

target

Web

service,

and

perform

some

mediating

task

(for

example

logging,

high-availability

or

transformation)

before

passing

on

the

message.

They

can

be

as

small

as

a

simple

Web

service,

or

as

large

as

the

Web

services

gateway.

The

Web

Services

Invocation

Framework

(WSIF)

is

designed

to

make

building

intermediaries

both

possible

and

simple.

Using

WSIF,

intermediaries

can

add

value

to

the

service

invocation

without

needing

transport-specific

programming.

An

overview

of

WSIF

The

Web

Services

Invocation

Framework

(WSIF)

provides

a

Java

API

for

invoking

Web

services,

independent

of

the

format

of

the

service

or

the

transport

protocol

through

which

it

is

invoked.

This

framework

addresses

all

of

the

issues

identified

in

the

goals

of

WSIF.

WSIF

provides

the

following

features:

v

An

API

that

provides

binding-independent

access

to

any

Web

service.

v

A

close

relationship

with

WSDL,

so

it

can

invoke

any

service

that

you

can

describe

in

WSDL.

v

A

stubless

and

completely

dynamic

invocation

of

a

Web

service.

v

The

capability

to

plug

a

new

or

updated

implementation

of

a

binding

into

WSIF

at

run-time.

v

The

option

to

defer

the

choice

of

a

binding

until

run-time.

WSIF

is

designed

to

work

both

in

an

unmanaged

environment

(stand-alone)

and

inside

a

managed

container.

You

can

use

the

Java

Naming

and

Directory

Interface

(JNDI)

to

find

the

WSIF

service,

or

you

can

use

the

location

described

in

the

WSDL.

For

more

conceptual

information

about

WSIF

and

WSDL,

see

the

following

topics:

v

WSIF

and

WSDL

v

WSIF

architecture

v

Using

WSIF

with

Web

services

that

offer

multiple

bindings

v

WSIF

usage

scenarios

v

Dynamic

invocation

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

565

WSIF

architecture

The

Web

Services

Invocation

Framework

(WSIF)

architecture

is

shown

in

the

figure.

The

components

of

this

architecture

include:

WSDL

document

The

Web

service

WSDL

document

contains

the

location

of

the

Web

service.

The

binding

document

defines

the

protocol

and

format

for

operations

and

messages

defined

by

a

particular

portType.

WSIF

service

The

WSIFService

interface

is

responsible

for

generating

an

instance

of

the

WSIFOperation

interface

to

use

for

a

particular

invocation

of

a

service

operation.

For

more

information,

see

Finding

a

port

factory

or

service

WSIF

operation

The

run-time

representation

of

an

operation,

called

WSIFOperation

is

responsible

for

invoking

a

service

based

on

a

particular

binding.

For

more

information,

see

WSIF

API

reference:

Using

ports.

WSIF

provider

A

WSIF

provider

is

an

implementation

of

a

WSDL

binding

that

can

run

a

WSDL

operation

through

a

binding-specific

protocol.

WSIF

includes

SOAP

providers,

JMS

providers,

Java

providers

and

EJB

providers.

For

more

information,

see

Using

the

WSIF

providers.

Using

WSIF

with

Web

services

that

offer

multiple

bindings

Using

WSIF,

a

client

application

can

choose

dynamically

the

optimal

binding

to

use

for

invoking

Web

service

operations.

For

example,

a

Web

service

might

offer

a

SOAP

binding,

and

also

a

local

Java

binding

so

that

you

can

treat

the

local

service

implementation

(a

Java

class)

as

a

Web

service.

If

a

client

application

is

deployed

in

the

same

environment

as

the

service,

then

this

client

can

use

the

local

Java

binding

for

the

service.

This

provides

more

efficient

communication

between

the

client

and

the

service

by

making

direct

Java

calls

rather

than

indirect

calls

using

the

SOAP

binding.

For

more

information

on

how

to

configure

a

client

to

dynamically

select

between

multiple

bindings,

see

Developing

a

WSIF

service.

WSIF

and

WSDL

WSDL

is

the

acronym

for

Web

Services

Description

Language.

In

WSDL

a

service

is

defined

in

three

distinct

sections:

v

The

portType.

This

section

defines

the

abstract

interface

offered

by

the

service.

A

portType

defines

a

set

of

operations.

Each

operation

can

be

In-Out

(request-response),

In-Only,

Out-Only

and

Out-In

(Solicit-Response).

Each

566

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl

operation

defines

the

input

and/or

output

messages.

A

message

is

defined

as

a

set

of

parts,

and

each

part

has

a

schema-defined

type.

v

The

binding.

This

section

defines

how

to

map

between

the

abstract

portType

and

a

real

service

format

and

protocol.

For

example

the

SOAP

binding

defines

the

encoding

style,

the

SOAPAction

header,

the

namespace

of

the

body

(the

targetURI),

and

so

on.

v

The

port.

This

section

defines

the

actual

location

(endpoint)

of

the

available

service.

For

example,

the

HTTP

Web

address

at

which

a

SOAP

service

is

available.

Currently

in

WSDL,

each

port

has

one

and

only

one

binding,

and

each

binding

has

a

single

portType.

But

(more

importantly)

each

service

(portType)

can

have

multiple

ports,

each

of

which

represents

an

alternative

location

and

binding

for

accessing

that

service.

The

Web

Services

Invocation

Framework

(WSIF)

follows

the

semantics

of

WSDL

as

much

as

possible:

v

The

WSIF

dynamic

invocation

API

directly

exposes

run-time

equivalents

of

the

model

from

WSDL.

For

example,

invocation

of

an

operation

involves

executing

an

operation

with

an

input

message.

v

WSDL

has

extension

points

that

support

the

addition

of

new

ports

and

bindings.

This

enables

WSDL

to

describe

new

systems.

The

equivalent

concept

in

WSIF

is

a

provider,

that

enables

WSIF

to

understand

a

class

of

extensions

and

thereby

to

support

a

new

service

implementation

type.

As

a

metadata-based

invocation

framework,

WSIF

follows

the

design

of

the

metadata.

As

WSDL

is

extended,

WSIF

is

updated

to

follow.

The

implicit

and

primary

type

system

of

WSIF

is

XML

schema.

WSIF

supports

invocation

using

dynamic

proxies,

which

in

turn

support

Java

type

systems,

but

when

you

use

the

WSIFMessage

interface

it

is

your

responsibility

to

populate

WSIFMessage

objects

with

data

based

on

the

XML

schema

types

as

defined

in

the

WSDL

document.

You

should

define

your

object

types

by

a

canonical

and

fixed

mapping

from

schema

types

into

the

run-time.

For

more

information

on

WSDL,

see

Web

services:

Resources

for

learning.

WSIF

usage

scenarios

This

topic

describes

two

brief

scenarios

that

illustrate

the

role

WSIF

plays

in

the

emerging

Web

services

environment.

Scenario:

Redevelopment

and

redeployment

When

you

first

implement

a

Web

service,

you

create

a

simple

prototype.

When

you

want

to

move

a

prototype

Web

service

into

production,

you

often

need

to

redevelop

and

redeploy

it.

The

Web

Services

Invocation

Framework

(WSIF)

uses

the

same

API

calls

irrespective

of

the

underlying

technologies,

therefore

if

you

use

WSIF:

v

You

can

reimplement

and

redeploy

your

services

without

changing

the

client

code.

v

You

can

use

existing

reliable

and

high-performance

infrastructures

like

Remote

Method

Invocation

over

Internet

Inter-Orb

Protocol

(RMI-IIOP)

and

Java

Messaging

Service

(JMS)

without

sacrificing

the

location-independence

that

the

Web

service

model

offers.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

567

http://www.w3.org/TR/SOAP

Scenario:

Service

Flow

composition

A

service

flow

typically

invokes

a

Web

service,

then

passes

the

response

from

one

Web

service

to

the

next

Web

service,

perhaps

performing

some

transformation

in

the

middle.

There

are

two

key

aspects

to

this

flow

that

WSIF

provides:

v

A

representation

of

the

service

invocation

based

on

the

metadata

in

WSDL.

v

The

ability

to

build

invocations

based

solely

on

the

portType,

which

can

therefore

be

used

in

any

implementation.

For

example,

imagine

that

you

build

a

meta-service

that

uses

a

number

of

services

to

build

a

process.

Initially,

several

of

those

services

are

simple

Java

bean

prototypes

that

are

written

and

exposed

through

SOAP,

but

you

plan

to

reimplement

some

of

them

as

EJB

components,

and

to

out-source

others.

If

you

use

SOAP,

it

ties

up

multiple

threads

for

every

onward

invocation,

because

they

pass

through

the

Web

server

and

servlet

engine

and

on

to

the

SOAP

router.

If

you

use

WSIF

to

call

the

beans

directly,

you

get

much

better

performance

compared

to

SOAP

and

you

do

not

lose

access

or

location

transparency.

Using

WSIF,

you

can

replace

the

Java

bean

implementations

with

EJB

implementations

without

changing

the

client

code.

To

move

some

of

the

Web

services

from

local

implementations

to

external

SOAP

services,

you

just

update

the

WSDL.

Dynamic

invocation

For

the

Web

Services

Invocation

Framework

(WSIF),

dynamic

invocation

means

providing

the

following

levels

of

support

when

invoking

Web

services:

1.

Support

for

WSDL

extensions

and

bindings

that

were

not

known

at

build

time.

2.

Support

for

Web

services

that

were

not

known

at

build

time.

WSIF

supports

(1)

through

the

use

of

providers.

The

providers

support

(2)

by

using

the

WSDL

description

to

access

the

target

service.

Using

WSIF

to

invoke

Web

services

You

invoke

a

Web

service

dynamically

by

using

the

WSIF

API

directly.

You

only

specify

the

location

of

the

WSDL

file

for

the

service,

the

name

of

the

operation

to

invoke,

and

any

operation

arguments.

All

the

information

needed

to

access

the

Web

service

(the

abstract

interface,

the

binding,

and

the

service

endpoint)

is

available

through

the

WSDL.

This

kind

of

invocation

does

not

require

stub

classes

and

does

not

need

a

separate

compilation

cycle.

More

information

on

using

the

Web

Services

Invocation

Framework

(WSIF)

to

invoke

Web

services

is

provided

in

the

following

topics:

v

Using

the

WSIF

providers.

v

Developing

a

WSIF

service.

v

Using

complex

types.

v

Using

the

Java

Naming

and

Directory

Interface

(JNDI).

v

5.0.2 +

Passing

SOAP

messages

with

attachments

using

WSIF.

v

Interacting

with

the

J2EE

container

in

WebSphere

Application

Server.

568

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

v

Running

WSIF

as

a

client.

Using

the

WSIF

providers

A

Web

Services

Invocation

Framework

(WSIF)

provider

is

an

implementation

of

a

WSDL

binding

that

can

run

a

WSDL

operation

through

a

binding-specific

protocol.

Providers

implement

the

interface

between

the

WSIF

API

and

the

actual

implementation

of

a

service.

Providers

are

pluggable

within

the

WSIF

framework,

and

are

registered

according

to

the

namespace

of

the

WSDL

extension

that

they

implement.

Some

providers

use

the

Java

2

platform,

Enterprise

Edition

(J2EE)

programming

model

to

utilize

J2EE

services.

If

a

provider

is

available,

but

its

required

class

libraries

are

not,

then

the

provider

is

disabled.

WebSphere

Application

Server

includes

the

following

WSIF

providers:

v

SOAP

(over

HTTP)

provider.

v

JMS

providers

(SOAP

over

JMS,

and

native

JMS).

v

Java

provider.

v

EJB

provider.

Note:

v

v

Using

the

SOAP

provider

The

SOAP

provider

allows

WSIF

stubs

and

dynamic

clients

to

invoke

SOAP

services.

The

Web

Services

Invocation

Framework

(WSIF)

SOAP

provider

supports

SOAP

1.1

over

HTTP.

The

SOAP

provider

uses

Apache

SOAP

2.3

for

parsing

and

creating

SOAP

messages,

but

it

is

not

limited

to

invoking

services

from

Apache

SOAP.

The

WSIF

SOAP

provider

supports:

v

SOAP-ENC

encoding.

v

5.0.1

Remote

Procedure

Call

(RPC)

style

SOAP

messages.

v

5.0.2 +

RPC

style

and

Document

style

SOAP

messages.

v

5.0.2 +

SOAP

messages

with

attachments.

The

SOAP

provider

is

not

transactional.

If

you

have

a

Web

service

that

you

expect

multiple

clients

to

use

connecting

over

SOAP,

then

before

you

deploy

the

service

you

must

set

up

your

application

deployment

descriptor

file

dds.xml

to

handle

multiple

connections

correctly.

For

more

information,

see

WSIF

troubleshooting

tips.

For

an

example

of

the

sort

of

code

changes

that

need

to

be

made

in

the

WSDL

file

for

a

SOAP

provider,

see

the

following

topics:

v

The

SOAP

over

JMS

provider

-

writing

the

WSDL

extension.

v

5.0.2 +

SOAP

messages

with

attachments

-

Writing

the

WSDL

extensions.

Using

the

JMS

providers

The

JMS

providers

enable

a

WSIF

service

to

be

invoked

through

JMS.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

569

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/SOAP/

The

Java

Messaging

Service

(JMS)

is

an

API

for

transport

technology.

The

mapping

to

a

JMS

destination

is

defined

during

deployment

and

maintained

by

the

container.

The

JMS

destination

endpoint

for

a

Web

service

can

be

realized

in

any

of

the

following

ways:

v

The

JMS

destination

for

the

queue

can

be

the

Web

service

implementation.

v

The

JMS

destination

can

be

(but

is

not

required

to

be)

associated

with

a

message-driven

bean

by

the

EJB

container,

thereby

allowing

the

message-driven

bean

to

be

the

Web

service

implementation.

v

(For

SOAP

over

JMS)

The

JMS

destination

can

unwrap

the

JMS

message

and

route

the

SOAP

message

to

a

Web

service

that

is

implemented

as

a

stateless

session

bean.

The

JMS

destination

endpoint

must

respect

the

interaction

model

expected

by

the

client

and

defined

by

the

WSDL.

It

must

return

a

response

if

one

is

required.

When

the

JMS

destination

endpoint

creates

the

JMS

response

message

the

following

rules

must

be

followed:

v

The

response

message

must

be

sent

to

JMSReplyTo

from

the

incoming

request.

v

The

JMSCorrelationID

value

of

the

response

message

must

be

set

to

the

JMSMessageID

value

from

the

request

message.

v

The

response

must

be

sent

with

a

deliveryMode

value

equal

to

the

JMSDeliveryMode

value

of

the

request

message.

v

The

response

must

be

sent

with

a

priority

value

equal

to

the

JMSPriority

value

of

the

request

message.

v

The

timetolive/JMSExpiration

value

must

be

set

to

a

value

that

equals

the

JMSExpiration

value

of

the

request

message.

The

client

does

not

see

any

of

these

headers.

The

container

receives

the

JMS

message

and

(for

SOAP

over

JMS)

removes

the

SOAP

message

to

send

to

the

client.

See

also

the

following

topics:

v

Using

the

SOAP

over

JMS

provider

v

Using

the

native

JMS

provider

v

The

JMS

providers

-

Configuring

the

client

and

server

Using

the

SOAP

over

JMS

provider:

For

information

on

working

with

the

Java

Messaging

Service

(JMS)

API,

see

Using

the

JMS

providers.

The

SOAP

message,

including

the

SOAP

envelope,

is

wrapped

with

a

JMS

message

and

put

on

the

appropriate

queue.

The

container

receives

the

JMS

message

and

removes

the

SOAP

message

to

send

to

the

client.

For

detailed

implementation

information,

see

the

following

topics:

v

The

SOAP

over

JMS

provider

-

writing

the

WSDL

extension

v

The

JMS

providers

-

Configuring

the

client

and

server

The

SOAP

over

JMS

provider

-

Writing

the

WSDL

extension:

If

a

SOAP

message

contains

only

XML,

then

it

can

be

carried

on

the

Java

Messaging

Service

(JMS)

transport

with

the

JMS

message

body

type

TextMessage.

570

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

The

WSDL

binding

extension

for

SOAP

over

JMS

varies

only

slightly

from

the

SOAP

over

HTTP

binding.

Selecting

the

SOAP

over

JMS

binding

You

set

the

transport

attribute

of

the

<soap:binding>

tag

to

indicate

that

JMS

is

used.

If

you

also

set

the

style

attribute

to

rpc

(Remote

Procedure

Call),

then

the

Web

Services

Invocation

Framework

(WSIF)

assumes

that

an

operation

is

invoked

on

the

Web

service

endpoint:

<soap:binding

style=“rpc”

transport=“http://schemas.xmlsoap.org/soap/jms”/>

Setting

the

JMS

address

For

SOAP

over

JMS,

the

<wsdl:port>

tag

must

contain

a

<jms:address>

element.

This

element

provides

the

information

required

for

a

client

to

connect

correctly

to

the

Web

service

using

the

JMS

programming

model.

Typically,

it

is

the

stubs

generated

to

support

the

SOAP

over

JMS

binding

that

act

as

the

JMS

client.

Alternatively,

the

Web

service

client

can

use

the

JMS

programming

model

directly.

The

<jms:address>

element

takes

this

form:

<jms:address

destinationStyle=“queue”

jmsVendorURI=“http://ibm.com/ns/mqseries”?

initialContextFactory=“com.ibm.NamingFactory”?

jndiProviderURL=“iiop://something:900/wherever”?

jndiConnectionFactoryName=“orange”

jndiDestinationName=“fred”

/>

where

attributes

marked

with

a

question

mark

(?)

are

optional.

The

optional

jmsVendorURI

attribute

is

a

string

that

uniquely

identifies

the

JMS

implementation.

WSIF

ignores

this

URI,

which

is

used

by

the

client

developer

and

perhaps

the

client

implementation

to

determine

if

it

has

access

to

the

correct

JMS

provider

in

the

client

run-time.

The

optional

attributes

initialContextFactory

and

jndiProviderURL

can

only

be

omitted

if

the

run-time

has

a

default

Java

Naming

and

Directory

Interface

(JNDI)

provider

configured.

The

jndiConnectionFactoryName

attribute

gives

the

name

of

a

JMS

ConnectionFactory

object,

which

can

be

looked

up

within

the

JNDI

context

given

by

the

jndiContext

attribute.

This

ConnectionFactory

object

is

used

to

create

a

JMS

connection

to

the

JMS

provider

instance

that

owns

the

queue.

In

a

simple

configuration,

the

same

ConnectionFactory

object

is

used

by

the

server

message

listener

and

by

the

clients.

However

the

server

and

the

clients

can

use

different

ConnectionFactory

objects,

provided

that

they

all

create

connections

to

the

same

JMS

provider

instance.

Setting

the

JMS

headers

and

properties

You

use

the

<jms:property>

tag

to

set

the

JMS

headers

and

properties.

This

tag

maps

either

a

message

part,

or

a

literal

value,

into

a

JMS

property:

<jms:property

name=“Priority”

{part=“requestPriority”

|

value=“fixedValue”}/>

If

the

<jms:property>

has

a

literal

value,

then

it

can

also

be

nested

within

the

<jms:address>

tag:

<jms:property

name=“Priority”

value=“fixedValue”

/>

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

571

This

form

of

the

<jms:property>

tag

is

also

used

in

the

native

JMS

binding.

Here

is

an

example

of

a

WSDL

that

defines

a

SOAP

over

JMS

binding:

<!--

Example:

SOAP

over

JMS

Text

Message

-->

<?xml

version="1.0"

encoding="UTF-8"?>

<wsdl:definitions

name="StockQuoteInterfaceDefinitions"

targetNamespace="urn:StockQuoteInterface"

xmlns:tns="urn:StockQuoteInterface"

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message

name="GetQuoteInput">

<part

name="symbol"

type="xsd:string"/>

</wsdl:message>

<wsdl:message

name="GetQuoteOutput">

<part

name="value"

type="xsd:float"/>

</wsdl:message>

<wsdl:portType

name="StockQuoteInterface">

<wsdl:operation

name="GetQuote">

<wsdl:input

message="tns:GetQuoteInput"/>

<wsdl:output

message="tns:GetQuoteOutput"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding

name="StockQuoteSoapJMSBinding"

type="tns:StockQuoteInterface">

<soap:binding

style="rpc"

transport="http://schemas.xmlsoap.org/soap/jms"/>

<wsdl:operation

name="GetQuote">

<soap:operation

soapAction="urn:StockQuoteInterface#GetQuote"/>

<wsdl:input>

<soap:body

use="encoded"

namespace="urn:StockQuoteService"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:input>

<wsdl:output>

<soap:body

use="encoded"

namespace="urn:StockQuoteService"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service

name="StockQuoteService">

<wsdl:port

name="StockQuoteServicePort"

binding="sqi:StockQuoteSoapJMSBinding">

<jms:address

destinationStyle=“queue”

jndiConnectionFactoryName="myQCF"

jndiDestinationName=“myQ”

initialContextFactory=“com.ibm.NamingFactory”

jndiProviderURL=“iiop://something:900/”

/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Using

the

native

JMS

provider:

Using

the

native

JMS

provider,

WSIF

clients

can

treat

a

JMS

destination

as

a

Web

service.

For

information

on

working

with

the

Java

Messaging

Service

(JMS)

API,

see

Using

the

JMS

providers.

For

detailed

implementation

information,

see

the

following

topics:

v

The

native

JMS

provider

-

Writing

the

WSDL

extension

572

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

The

JMS

providers

-

Configuring

the

client

and

server

The

native

JMS

provider

-

Writing

the

WSDL

extension:

The

WSDL

extensions

for

the

Java

Messaging

Service

(JMS)

are

identified

with

the

namespace

prefix

jms.

For

example,

<jms:binding>.

Operations

The

supported

operations

are

either

one-way

operations

(send

for

JMS

point-to-point

messaging,

or

publish

for

JMS

publish

and

subscribe

messaging)

or

request-response

operations

(send

and

receive

for

JMS

point-to-point

messaging).

The

WSDL

operations

therefore

specify

either

an

input

message

only,

or

an

input

and

an

output

message.

Fault

messages

Operations

that

describe

message

interfaces

with

a

native

JMS

binding

do

not

have

fault

messages.

No

assumptions

are

made

about

the

message

schema

or

the

semantics

of

message

properties,

therefore

no

distinction

can

be

made

between

output

and

fault

messages.

Setting

the

JMS

message

body

type

You

use

the

<jms:binding>

extension

to

specify

the

JMS

message

body

type:

<wsdl:binding

...

>

<jms:binding

type="messageBodyType"

/>

...

</wsdl:binding>

where

messageBodyType

is

either

ObjectMessage

or

TextMessage.

Specifying

the

parts

to

use

for

the

input

and

output

messages

For

JMS

text

messages

and

JMS

object

messages

created

from

one

or

more

WSDL

message

parts,

you

use

the

<jms:input>

and

<jms:output>

extensions

to

specify

the

message

parts

to

use

for

the

JMS

messages:

<wsdl:input

...

>

<jms:input

parts="part1

part2

..."

/>

</wsdl:input>

<wsdl:output

...

>

<jms:output

parts="part1

part2

..."

/>

</wsdl:output>

In

the

next

example,

the

WSDL

message

has

just

one

part

that

contains

the

complete

message

body.

This

message

body

might

result

from

a

mapping

of

some

other

representation

(see

Mapping

data

types).

<wsdl:input

...

>

<jms:input

parts="part1"

/>

</wsdl:input>

If

no

parts

are

defined,

then

all

the

message

parts

are

used.

Mapping

data

types

You

use

the

<format>

extensions

to

map

data

types:

<wsdl:binding

...

>

<jms:binding

type="..."

/>

<format:typeMapping

encoding="Java"

style="Java">

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

573

<format:typeMap

typeName="..."

formatType="targetType"/>

</format:typemapping>

...

</wsdl:binding>

The

value

of

targetType

is

dependent

on

the

JMS

message

body

type

(see

Setting

the

JMS

message

body

type).

For

JMS

object

messages,

the

target

data

type

implements

the

java.io.Serializable

class.

For

JMS

text

messages,

the

target

data

type

is

always

java.lang.String.

The

<format>

extensions

are

also

used

in

other

bindings

that

deal

with

Java

interfaces.

Setting

the

JMS

headers

and

properties

JMS

does

not

make

assumptions

about

message

headers.

For

example,

if

the

JMS

provider

is

MQSeries

then

each

JMS

message

carries

an

RFH2

header.

However

you

can

access

data

in

this

message

header

indirectly,

by

getting

and

setting

JMS

message

properties.

When

you

want

your

application

to

pass

a

property

into

the

Web

Services

Invocation

Framework

(WSIF)

as

a

part

on

the

WSIF

message,

you

use

a

<jms:property>

tag.

When

you

want

to

hard

code

an

actual

property

value

into

the

WSDL,

you

use

a

<jms:propertyValue>

tag.

The

<jms:propertyValue>

tag

contains

a

specification

of

a

literal

value

and

its

associated

XML

schema

type.

You

can

specify

<jms:property>

and

<jms:propertyValue>

extensions

within

the

<wsdl:input>

tag

in

the

binding

operation,

and

also

within

the

<jms:address>

tag.

For

the<wsdl:output>

tag

in

the

binding

operation,

you

can

only

specify

the

<jms:property>

extension.

Property

values

that

are

set

in

the

<jms:property>

tag

take

precedence

over

values

set

in

the

<<jms:propertyValue>

tag,

and

property

values

that

are

set

in

the

binding

operation

(in

the

<input>

and

<output>

tags)

take

precedence

over

values

set

in

the

<jms:address>

tag.

Here

is

an

example

of

the

<jms:property>

and

<jms:propertyValue>

tags

nested

within

the

<input>

and

<output>

tags:

<wsdl:input

...

>

<jms:property

name="propertyName"

part="partName"

/>

<jms:propertyValue

name="propertyName"

type="xsdType"

value="actualValue"

/>

</wsdl:input>

<wsdl:output

...

>

<jms:property

name="propertyName"

part="partName"

/>

</wsdl:output>

where

propertyName

identifies

the

JMS

property

that

is

associated

with

the

header

field,

and

partName

identifies

the

message

part

that

is

associated

with

the

property.

The

JMS

property

identified

by

propertyName

can

be

user-defined,

or

it

can

be

one

of

the

following

predefined

JMS

message

header

fields:

574

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Value

Java

type

JMSMessageId

java.lang.String

JMSTimeStamp

long

JMSCorrelationId

byte

[

]

or

java.lang.String

JMSReplyTo

javax.jms.Destination

JMSDestination

javax.jms.Destination

JMSDeliveryMode

int

JMSRedelivered

boolean

JMSType

java.lang.String

JMSExpiration

long

See

the

JMS

specification

for

restrictions

that

apply

when

setting

JMS

header

field

values.

Attempts

to

set

restricted

values

are

ignored.

For

application-defined

JMS

message

properties,

the

Java

types

used

in

the

native

JMS

binding

implementation

(used

for

calls

to

the

corresponding

JMS

methods)

are

derived

from

the

XML

schema

type

in

the

abstract

interface

(<wsdl:part>

tag),

and

from

the

type

mapping

information

in

the

format

binding

(<format:typemap>

tag).

Handling

transactions

Independent

of

other

JMS

properties,

the

asynchronous

processing

of

request-response

operations

has

implications

for

callers

running

in

a

transaction

scope.

The

send

request

part

and

the

receive

response

part

are

separated

into

two

transactions,

because

the

send

needs

to

be

committed

in

order

for

the

request

message

to

become

visible.

Implementations

that

process

WSDL

for

asynchronous

request-response

operations

(such

as

WSIF)

must

therefore

take

the

following

additional

actions:

v

They

must

ensure

that

the

send

request

transaction

returns

a

correlation

ID

to

the

user,

and

provides

a

callback

with

which

users

can

pass

in

the

response

message

to

process

the

receive

response

transaction.

v

They

might

implement

their

own

response

message

“listener”

in

order

to

recognize

the

arrival

of

response

messages,

and

to

manage

the

correlation

to

the

request

message.

The

JMS

text

message

contains

a

java.lang.String.

In

this

example,

the

WSDL

message

contains

only

one

part

that

represents

the

whole

message

body:

<!--

Example

1:

JMS

Text

Message

-->

<wsdl:definitions

...

>

<!--

simple

or

complex

types

for

input

and

output

message

-->

<wsdl:types>

...

</wsdl:types>

<wsdl:message

name="JmsOperationRequest">

...

</wsdl:message>

<wsdl:message

name="JmsOperationResponse">

...

</wsdl:message>

<wsdl:portType

name="JmsPortType">

<wsdl:operation

name="JmsOperation">

<wsdl:input

name="Request"

message="tns:JmsOperationRequest"/>

<wsdl:output

name="Response"

message="tns:JmsOperationResponse"/>

</wsdl:operation>

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

575

</wsdl:portType>

<wsdl:binding

name=“JmsBinding”

type=“JmsPortType”>

<jms:binding

type=“TextMessage”

/>

<format:typemapping

style="Java"

encoding="Java">

<format:typemap

name="xsd:String"

formatType="String"

/>

</format:typemapping>

<wsdl:operation

name=“JmsOperation”>

<wsdl:input

message=“JmsOperationRequest”>

<jms:input

parts=“requestMessageBody”

/>

</wsdl:input>

<wsdl:output

message=“JmsOperationResponse”>

<jms:output

parts=“responseMessageBody”

/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service

name="JmsService">

<wsdl:port

name="JmsPort"

binding="JmsBinding">

<jms:address

destinationStyle="queue"

jndiConnectionFactoryName="myQCF"

jndiDestinationName="myDestination"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

As

an

extension

to

the

previous

JMS

message

example,

the

following

example

WSDL

describes

a

request-response

operation

in

which

specific

JMS

property

values

of

the

request

and

response

message

are

set

for

the

request

message

and

retrieved

from

the

response

message.

The

JMS

properties

in

the

request

message

are

set

according

to

the

values

in

the

input

message.

Likewise,

selected

JMS

properties

of

the

response

message

are

copied

to

the

corresponding

values

of

the

output

message.

The

direction

of

the

mapping

is

determined

by

the

appearance

of

the

<jms:property>

tag

in

the

input

or

output

section,

respectively.

<!--

Example

2:

JMS

Message

with

JMS

Properties

-->

<wsdl:definitions

...

>

<!--

simple

or

complex

types

for

input

and

output

message

-->

<wsdl:types>

...

</wsdl:types>

<wsdl:message

name="JmsOperationRequest">

<wsdl:part

name="myInt"

type="xsd:int"/>

...

</wsdl:message>

<wsdl:message

name="JmsOperationResponse">

<wsdl:part

name="myString"

type="xsd:String"/>

...

</wsdl:message>

<wsdl:portType

name="JmsPortType">

<wsdl:operation

name="JmsOperation">

<wsdl:input

name="Request"

message="tns:JmsOperationRequest"/>

<wsdl:output

name="Response"

message="tns:JmsOperationResponse"/>

</wsdl:operation>

</wsdl:portType>

576

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<wsdl:binding

name=“JmsBinding”

type=“JmsPortType”>

<!--

the

JMS

message

type

may

be

any

of

the

above

-->

<jms:binding

type=“...”

/>

<format:typemapping

style="Java"

encoding="Java">

<format:typemap

name="xsd:int"

formatType="int"

/>

...

</format:typemapping>

<wsdl:operation

name=“JmsOperation”>

<wsdl:input

message=“JmsOperationRequest”>

<jms:property

message=“tns:JmsOperationRequest”

parts=“myInt”

/>

<jms:propertyValue

name=“myLiteralString”

type=“xsd:string”

value=“Hello

World”

/>

...

</wsdl:input>

<wsdl:output

message=“JmsOperationResponse”>

<jms:property

message=“tns:JmsOperationResponse”

parts=“myString”

/>

...

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service

name="JmsService">

<wsdl:port

name="JmsPort"

binding="JmsBinding">

<jms:address

destinationStyle="queue"

jndiConnectionFactoryName="myQCF"

jndiDestinationName="myDestination"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

The

JMS

providers

-

Configuring

the

client

and

server:

This

topic

assumes

that

you

installed

a

Java

Messaging

Service

(JMS)

provider

when

you

installed

WebSphere

Application

Server

(either

the

JMS

provider

that

is

embedded

in

WebSphere

Application

Server,

or

another

provider

such

as

WebSphere

MQ).

If

not,

install

one

now

as

described

in

Installing

and

configuring

a

JMS

provider.

To

enable

a

service

to

be

invoked

through

JMS

by

a

Web

Services

Invocation

Framework

(WSIF)

client

application,

complete

the

following

steps:

1.

Use

the

administrative

console

to

create

and

configure

a

queue

connection

factory

and

a

queue

destination

as

described

in

Configuring

JMS

provider

resources.

2.

Use

the

administrative

console

to

add

the

new

queue

destination

to

the

list

of

JMS

Server

destination

names

for

your

application

server

as

described

in

Managing

WebSphere

internal

JMS

servers.

Ensure

that

the

Initial

State

is

started.

3.

Put

the

JNDI

names

of

the

queue

destination

and

queue

connection

factory,

as

well

as

your

JNDI

configuration,

in

the

WSDL

file.

You

should

also

understand

the

specific

ways

in

which

WSIF

interacts

with

JMS:

v

Only

input

JMS

properties

are

supported.

v

WSIF

needs

two

queues

when

invoking

an

operation:

one

for

the

request

message

and

one

for

the

reply.

The

replyTo

queue

is

by

default

a

temporary

queue,

which

WSIF

creates

on

behalf

of

the

application.

You

can

specify

a

permanent

queue

by

setting

the

JMSReplyTo

property

to

the

JNDI

name

of

a

queue.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

577

v

WSIF

uses

the

default

values

for

properties

set

by

the

JMS

implementation.

However

in

MQSeries

and

in

some

other

JMS

implementations,

messages

are

persistent

by

default,

and

the

default

temporary

queue

is

of

type

temporary

dynamic

and

cannot

have

persistent

messages

written

to

it.

Therefore

your

JMS

listener

can

fail

to

write

a

persistent

response

message

to

the

temporary

replyTo

queue.

Note:

If

you

are

using

MQSeries,

you

need

to

create

a

temporary

model

queue

that

is

of

type

permanent

dynamic,

then

pass

this

model

as

the

tempmodel

of

your

queue

connection

factory.

This

will

ensure

that

persistent

messages

are

written

to

a

temporary

replyTo

queue

that

is

of

type

permanent

dynamic.

Using

the

Java

provider

Using

the

WSIF

Java

provider,

WSIF

can

invoke

Java

code.

This

means

that,

in

a

thin-client

environment

such

as

a

Java

Virtual

Machine

(JVM)

or

Tomcat

test

run-time,

you

can

define

shortcuts

to

local

Java

programs.

The

Web

Services

Invocation

Framework

(WSIF)

Java

provider

is

not

intended

for

use

in

a

Java

2

platform,

Enterprise

Edition

(J2EE)

environment.

There

is

a

difference

between

a

client

using

the

WSIF

Java

provider

to

invoke

a

Java

component,

and

implementing

a

Web

service

as

a

Java

component

on

the

server

side.

The

Java

binding

exploits

the

format

binding

for

type

mapping.

Using

the

format

binding,

your

WSDL

can

define

the

mapping

between

XML

schema

types

and

Java

types.

The

Java

provider

requires

that

the

targeted

Java

classes

reside

in

the

class

path

of

the

client.

The

Java

method

is

invoked

synchronously,

in-process,

in-thread,

with

the

current

thread

and

Object

Request

Broker

(ORB)

contexts.

The

Java

provider

is

not

transactional.

For

examples

of

the

code

changes

that

need

to

be

made

in

the

WSDL

file,

see

The

Java

provider

-

Writing

the

WSDL

extension.

The

Java

provider

-

Writing

the

WSDL

extension:

The

Java

provider

supports

the

invocation

of

a

method

on

a

local

Java

object.

To

use

the

Java

provider,

you

need

the

following

binding

specified

in

the

WSDL:

<!--

Java

binding

-->

<binding

....

>

<java:binding

/>

<format:typeMapping

style="Java"

encoding="Java"/>?

<format:typeMap

name="qname"

formatType="nmtoken"/>*

</format:typeMapping>

<operation>*

<java:operation

methodName="nmtoken"

parameterOrder="nmtoken"

returnPart="nmtoken"?

methodType="instance|constructor"

/>

<input

name="nmtoken"?

/>?

578

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<output

name="nmtoken"?

/>?

<fault

name="nmtoken"?

/>?

</operation>

</binding>

In

this

example:

v

A

question

mark

(?)

means

optional,

and

an

asterisk

(*)

means

0

or

more.

v

The

name

attribute

of

the

<format:typeMap>

element

is

a

qualified

name

of

a

simple

or

complex

type

used

by

one

of

the

Java

operations.

v

The

formatType

attribute

of

the

<format:typeMap>

element

is

the

fully

qualified

class

name

for

the

Java

class

to

which

the

element

specified

by

name

maps.

v

The

methodName

attribute

of

the

<java:operation>

element

is

the

name

of

the

method

on

the

Java

object

that

is

called

by

the

operation.

v

The

parameterOrder

attribute

of

the

<java:operation>

element

contains

a

white

space-separated

list

of

part

names

that

define

the

order

in

which

they

are

passed

to

the

Java

object

method.

v

The

methodType

attribute

of

the

<java:operation>

element

must

be

set

to

either

instance

or

constructor.

The

value

specifies

whether

the

method

that

is

invoked

on

the

object

is

an

instance

method

or

a

constructor

for

the

object.

In

the

next

example,

the

className

attribute

of

the

<java:address>

element

specifies

the

fully

qualified

class

name

of

the

object

containing

the

method

to

invoke:

<service

...

>

<port>*

<java:address

className="nmtoken"/>

</port>

</service>

Using

the

EJB

provider

Using

the

EJB

provider,

WSIF

clients

can

invoke

enterprise

beans.

The

EJB

client

JAR

file

must

be

available

in

the

client

run-time

with

the

current

provider.

The

enterprise

bean

is

invoked

using

normal

EJB

invocation

methods,

using

Remote

Method

Invocation

over

Internet

Inter-Orb

Protocol

(RMI-IIOP),

with

the

current

security

and

transaction

contexts.

If

the

EJB

provider

is

invoked

within

a

transaction,

the

transaction

is

passed

to

the

onward

service

and

the

standard

EJB

transaction

attribute

applies.

If

there

are

multiple

implementations

of

the

service,

it

is

up

to

the

service

providers

to

make

sure

that

every

implementation

offers

the

same

semantics.

For

example,

in

the

case

of

transactions,

the

bean

deployer

must

specify

TX_REQUIRES_NEW

to

force

a

new

transaction.

For

examples

of

the

code

changes

that

need

to

be

made

in

the

WSDL

file,

see

The

EJB

provider

-

Writing

the

WSDL.

The

EJB

provider

-

Writing

the

WSDL

extension:

The

EJB

provider

supports

the

invocation

of

an

enterprise

bean

through

Remote

Method

Invocation

over

Internet

Inter-Orb

Protocol

(RMI-IIOP).

To

use

the

EJB

provider,

you

need

the

following

binding

specified

in

the

WSDL:

<!--

EJB

binding

-->

<binding

....

>

<ejb:binding

/>

<format:typeMapping

style="Java"

encoding="Java"/>?

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

579

<format:typeMap

name="qname"

formatType="nmtoken"/>*

</format:typeMapping>

<operation>*

<ejb:operation

methodName="nmtoken"

parameterOrder="nmtoken"

returnPart="nmtoken"?

interface="remote|home"

/>

<input

name="nmtoken"?

/>?

<output

name="nmtoken"?

/>?

<fault

name="nmtoken"?

/>?

</operation>

</binding>

In

this

example:

v

A

question

mark

(?)

means

optional,

and

an

asterisk

(*)

means

0

or

more.

v

The

name

attribute

of

the

<format:typeMap>

element

is

a

qualified

name

of

a

simple

or

complex

type

used

by

one

of

the

EJB

operations.

v

The

formatType

attribute

of

the

<format:typeMap>

element

is

the

fully

qualified

class

name

for

the

Java

class

to

which

the

element

specified

by

name

maps.

v

The

methodName

attribute

of

the

<ejb:operation>

element

is

the

name

of

the

method

on

the

enterprise

bean

that

is

called

by

the

operation.

v

The

parameterOrder

attribute

of

the

<ejb:operation>

element

contains

a

white

space-separated

list

of

part

names

that

define

the

order

in

which

they

are

passed

to

the

EJB

method.

v

The

interface

attribute

of

the

<ejb:operation>

element

must

be

set

to

either

remote

or

home.

The

value

specifies

the

interface

of

the

enterprise

bean

on

which

the

method

named

by

the

methodName

attribute

is

accessible.

In

the

next

example:

v

The

className

attribute

of

the

<ejb:address>

element

specifies

the

fully

qualified

class

name

of

the

home

interface

class

of

the

enterprise

bean.

v

The

jndiName

attribute

of

the

<ejb:address>

element

specifies

the

full

Java

Naming

and

Directory

Interface

(JNDI)

name

that

is

used

to

look

up

the

enterprise

bean.

v

The

initialContextFactory

attribute

of

the

<ejb:address>

element

is

optional

and

specifies

the

initial

context

factory

class.

v

The

jndiProviderURL

attribute

of

the

<ejb:address>

element

is

optional

and

specifies

the

JNDI

provider

Web

address.

<service

...

>

<port>*

<ejb:address

className="nmtoken"

jndiName="nmtoken"

initialContextFactory="nmtoken"

?

jndiProviderURL="nmtoken"

?

/>

</port>

</service>

Developing

a

WSIF

service

A

Web

Services

Invocation

Framework

(WSIF)

service

is

a

Web

service

that

uses

WSIF.

To

develop

a

WSIF

service,

develop

the

Web

service

(or

use

an

existing

Web

service),

then

develop

the

WSIF

client

based

on

the

WSDL

document

for

that

Web

service.

580

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

There

are

also

two

pre-built

WSIF

Samples

available

for

download

from

the

Samples

Central

page

of

the

IBM

WebSphere

Developer

Domain

Web

site:

v

The

Address

Book

Sample.

v

The

Stock

Quote

Sample.

For

more

information

on

using

the

pre-built

Samples,

see

the

documentation

that

is

included

in

the

download

package.

To

develop

a

WSIF

service,

complete

the

following

steps:

1.

Develop

the

Web

service.

Use

Web

services

tools

to

discover,

create,

and

publish

the

Web

service.

You

can

develop

Java

bean,

enterprise

bean,

and

URL

Web

services.

You

can

use

Web

service

tools

to

create

skeleton

Java

code

and

a

sample

application

from

a

WSDL

document.

For

example,

an

enterprise

bean

can

be

offered

as

a

Web

service,

using

Remote

Method

Invocation

over

Internet

Inter-Orb

Protocol

(RMI-IIOP)

as

the

access

protocol.

Or

you

can

use

a

Java

class

as

a

Web

service,

with

native

Java

invocations

as

the

access

protocol.

You

can

use

the

WebSphere

Studio

Application

Developer

to

create

a

Web

service

from

a

Java

application,

as

described

in

its

StockQuote

service

tutorial.

The

Java

application

that

you

use

in

this

scenario

returns

the

last

trading

price

from

the

Internet

Web

site

www.xmltoday.com,

given

a

stock

symbol.

Using

the

Web

service

wizard,

you

generate

a

binding

WSDL

document

named

StockQuoteService-binding.wsdl

and

a

service

WSDL

document

named

StockQuoteService-service.wsdl

from

the

StockQuoteService.java

bean.

You

then

deploy

the

Web

service

to

a

Web

server,

generate

a

client

proxy

to

the

Web

service,

and

generate

a

sample

application

that

accesses

the

StockQuoteService

through

the

client

proxy.

You

test

the

StockQuote

Web

service,

publish

it

using

the

IBM

UDDI

Explorer,

and

then

discover

the

StockQuote

Web

service

in

the

IBM

UDDI

Test

Registry.

2.

Develop

the

WSIF

client.

The

information

you

need

to

develop

a

WSIF

client

is

provided

in

the

following

topics:

v

Developing

the

WSIF

client

-

the

Address

Book

Sample

gives

example

code

to

show

how

you

define

a

Web

service

in

WSDL.

v

Using

the

WSIF

providers

describes

the

available

providers,

and

gives

example

code

of

how

their

WSDL

extensions

are

coded.

v

WSIF

API

defines

the

main

interfaces

that

your

client

uses

to

support

the

invocation

of

Web

services

defined

in

WSDL.

The

Address

Book

Sample

is

written

for

synchronous

interaction.

If

you

are

using

a

JMS

provider,

your

WSIF

client

might

need

to

act

asynchronously.

WSIF

provides

two

main

features

that

meet

this

requirement:

v

A

correlation

service

that

assigns

identifiers

to

messages

so

that

the

request

can

match

up

with

the

(eventual)

response.

v

A

response

handler

that

picks

up

the

response

from

the

Web

service

at

a

later

time.

For

more

information,

see

the

WSIF

API

topic

WSIFOperation

-

Asynchronous

interactions

reference.

Developing

the

WSIF

client

-

the

Address

Book

Sample

The

code

fragments

in

this

topic

show

you

how

to

use

the

Web

Services

Invocation

Framework

(WSIF)

API

to

invoke

the

AddressBook

Sample

Web

service

dynamically.

This

is

example

code

for

dynamic

invocation

of

the

AddressBook

sample

Web

service

using

WSIF:

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

581

http://www.ibm.com/websphere/developer/library/samples/AppServer.html

try

{

String

wsdlLocation="clients/addressbook/AddressBookSample.wsdl";

//

The

starting

point

for

any

dynamic

invocation

using

wsif

is

a

//

WSIFServiceFactory.

We

create

ourselves

one

via

the

newInstance

//

method.

WSIFServiceFactory

factory

=

WSIFServiceFactory.newInstance();

//

Once

we

have

a

factory,

we

can

use

it

to

create

a

WSIFService

object

//

corresponding

to

the

AddressBookService

service

in

the

wsdl

file.

//

Note:

since

we

only

have

one

service

defined

in

the

wsdl

file,

we

//

do

not

need

to

use

the

namespace

and

name

of

the

service

and

can

pass

//

null

instead.

This

also

applies

to

the

port

type,

although

values

have

//

been

used

below

for

illustrative

purposes.

WSIFService

service

=

factory.getService(

wsdlLocation,

//

location

of

the

wsdl

file

null,

//

service

namespace

null,

//

service

name

“http://www.ibm.com/namespace/wsif/samples/ab”,

//

port

type

namespace

“AddressBookPT”

//

port

type

name

);

//

The

AddressBook.wsdl

file

contains

the

definitions

for

two

complexType

//

elements

within

the

schema

element.

We

will

now

map

these

complexTypes

//

to

Java

classes.

These

mappings

are

used

by

the

Apache

SOAP

provider

service.mapType(

new

javax.xml.namespace.QName(

“http://www.ibm.com/namespace/wsif/samples/ab/types”,

“address”),

Class.forName(“com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress”));

service.mapType(

new

javax.xml.namespace.QName(

“http://www.ibm.com/namespace/wsif/samples/ab/types”,

“phone”),

Class.forName(“com.ibm.www.namespace.wsif.samples.ab.types.WSIFPhone”));

//

We

now

have

a

WSIFService

object.

The

next

step

is

to

create

a

WSIFPort

//

object

for

the

port

we

wish

to

use.

The

getPort(String

portName)

method

//

allows

us

to

generate

a

WSIFPort

from

the

port

name.

WSIFPort

port

=

null;

if

(portName

!=

null)

{

port

=

service.getPort(portName);

}

if

(port

==

null)

{

//

If

no

port

name

was

specified,

attempt

to

create

a

WSIFPort

from

//

the

available

ports

for

the

port

type

specified

on

the

service

port

=

getPortFromAvailablePortNames(service);

}

//

Once

we

have

a

WSIFPort,

we

can

create

an

operation.

We

are

going

to

execute

//

the

addEntry

operation

and

therefore

we

attempt

to

create

a

WSIFOperation

//

corresponding

to

it.

The

addEntry

operation

is

overloaded

in

the

wsdl

ie.

//

there

are

two

versions

of

it,

each

taking

different

parameters

(parts).

//

This

overloading

requires

that

we

specify

the

input

and

output

message

//

names

for

the

operation

in

the

createOperation

method

so

that

the

correct

//

operation

can

be

resolved.

//

Since

the

addEntry

operation

has

no

output

message,

we

use

null

for

its

name.

WSIFOperation

operation

=

port.createOperation("addEntry",

"AddEntryWholeNameRequest",

null);

//

Create

messages

to

use

in

the

execution

of

the

operation.

This

should

//

be

done

by

invoking

the

createXXXXXMessage

methods

on

the

WSIFOperation.

WSIFMessage

inputMessage

=

operation.createInputMessage();

WSIFMessage

outputMessage

=

operation.createOutputMessage();

WSIFMessage

faultMessage

=

operation.createFaultMessage();

//

Create

a

name

and

address

to

add

to

the

addressbook

582

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

String

nameToAdd="Chris

P.

Bacon";

WSIFAddress

addressToAdd

=

new

WSIFAddress

(1,

"The

Waterfront",

"Some

City",

"NY",

47907,

new

WSIFPhone

(765,

"494",

"4900"));

//

Add

the

name

and

address

to

the

input

message

inputMessage.setObjectPart("name",

nameToAdd);

inputMessage.setObjectPart("address",

addressToAdd);

//

Execute

the

operation,

obtaining

a

flag

to

indicate

its

success

boolean

operationSucceeded

=

operation.executeRequestResponseOperation(

inputMessage,

outputMessage,

faultMessage);

if

(operationSucceeded)

{

System.out.println("Successfully

added

name

and

address

to

addressbook\n");

}

else

{

System.out.println("Failed

to

add

name

and

address

to

addressbook);

}

//

Start

from

fresh

operation

=

null;

inputMessage

=

null;

outputMessage

=

null;

faultMessage

=

null;

//

This

time

we

will

lookup

an

address

from

the

addressbook.

//

The

getAddressFromName

operation

is

not

overloaded

in

the

//

wsdl

and

therefore

we

can

simply

specify

the

operation

name

//

without

any

input

or

output

message

names.

operation

=

port.createOperation("getAddressFromName");

//

Create

the

messages

inputMessage

=

operation.createInputMessage();

outputMessage

=

operation.createOutputMessage();

faultMessage

=

operation.createFaultMessage();

//

Set

the

name

to

find

in

the

addressbook

String

nameToLookup="Chris

P.

Bacon";

inputMessage.setObjectPart("name",

nameToLookup);

//

Execute

the

operation

operationSucceeded

=

operation.executeRequestResponseOperation(

inputMessage,

outputMessage,

faultMessage);

if

(operationSucceeded)

{

System.out.println("Successful

lookup

of

name

’"+nameToLookup+"’

in

addressbook");

//

We

can

obtain

the

address

that

was

found

by

querying

the

output

message

WSIFAddress

addressFound

=

(WSIFAddress)

outputMessage.getObjectPart("address");

System.out.println("The

address

found

was:");

System.out.println(addressFound);

}

else

{

System.out.println("Failed

to

lookup

name

in

addressbook");

}

}

catch

(Exception

e)

{

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

583

System.out.println("An

exception

occurred

when

running

the

sample:

");

e.printStackTrace();

}

}

The

preceding

code

refers

to

the

following

Sample

method:

WSIFPort

getPortFromAvailablePortNames(WSIFService

service)

throws

WSIFException

{

String

portChosen

=

null;

//

Obtain

a

list

of

the

available

port

names

for

the

service

Iterator

it

=

service.getAvailablePortNames();

{

System.out.println("Available

ports

for

the

service

are:

");

while

(it.hasNext())

{

String

nextPort

=

(String)

it.next();

if

(portChosen

==

null)

portChosen

=

nextPort;

System.out.println("

-

"

+

nextPort);

}

}

if

(portChosen

==

null)

{

throw

new

WSIFException("No

ports

found

for

the

service!");

}

System.out.println("Using

port

"

+

portChosen

+

"\n");

//

An

alternative

way

of

specifying

the

port

to

use

on

the

service

//

is

to

use

the

setPreferredPort

method.

Once

a

preferred

port

has

//

been

set

on

the

service,

a

WSIFPort

can

be

obtained

via

getPort

//

(no

arguments).

If

a

preferred

port

has

not

been

set

and

more

than

//

one

port

is

available

for

the

port

type

specified

in

the

WSIFService,

//

an

exception

is

thrown.

service.setPreferredPort(portChosen);

WSIFPort

port

=

service.getPort();

return

port;

}

The

Web

service

uses

the

following

classes:

WSIFAddress:

public

class

WSIFAddress

implements

Serializable

{

//instance

variables

private

int

streetNum;

private

java.lang.String

streetName;

private

java.lang.String

city;

private

java.lang.String

state;

private

int

zip;

private

WSIFPhone

phoneNumber;

//constructors

public

WSIFAddress

()

{

}

public

WSIFAddress

(int

streetNum,

java.lang.String

streetName,

java.lang.String

city,

java.lang.String

state,

int

zip,

WSIFPhone

phoneNumber)

{

this.streetNum

=

streetNum;

this.streetName

=

streetName;

this.city

=

city;

this.state

=

state;

this.zip

=

zip;

this.phoneNumber

=

phoneNumber;

584

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

}

public

int

getStreetNum()

{

return

streetNum;

}

public

void

setStreetNum(int

streetNum)

{

this.streetNum

=

streetNum;

}

public

java.lang.String

getStreetName()

{

return

streetName;

}

public

void

setStreetName(java.lang.String

streetName)

{

this.streetName

=

streetName;

}

public

java.lang.String

getCity()

{

return

city;

}

public

void

setCity(java.lang.String

city)

{

this.city

=

city;

}

public

java.lang.String

getState()

{

return

state;

}

public

void

setState(java.lang.String

state)

{

this.state

=

state;

}

public

int

getZip()

{

return

zip;

}

public

void

setZip(int

zip)

{

this.zip

=

zip;

}

public

WSIFPhone

getPhoneNumber()

{

return

phoneNumber;

}

public

void

setPhoneNumber(WSIFPhone

phoneNumber)

{

this.phoneNumber

=

phoneNumber;

}

}

WSIFPhone:

public

class

WSIFPhone

implements

Serializable

{

//instance

variables

private

int

areaCode;

private

java.lang.String

exchange;

private

java.lang.String

number;

//constructors

public

WSIFPhone

()

{

}

public

WSIFPhone

(int

areaCode,

java.lang.String

exchange,

java.lang.String

number)

{

this.areaCode

=

areaCode;

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

585

this.exchange

=

exchange;

this.number

=

number;

}

public

int

getAreaCode()

{

return

areaCode;

}

public

void

setAreaCode(int

areaCode)

{

this.areaCode

=

areaCode;

}

public

java.lang.String

getExchange()

{

return

exchange;

}

public

void

setExchange(java.lang.String

exchange)

{

this.exchange

=

exchange;

}

public

java.lang.String

getNumber()

{

return

number;

}

public

void

setNumber(java.lang.String

number)

{

this.number

=

number;

}

}

WSIFAddressBook:

public

class

WSIFAddressBook

{

private

Hashtable

name2AddressTable

=

new

Hashtable();

public

WSIFAddressBook()

{

}

public

void

addEntry(String

name,

WSIFAddress

address)

{

name2AddressTable.put(name,

address);

}

public

void

addEntry(String

firstName,

String

lastName,

WSIFAddress

address)

{

name2AddressTable.put(firstName+"

"+lastName,

address);

}

public

WSIFAddress

getAddressFromName(String

name)

throws

IllegalArgumentException

{

if

(name

==

null)

{

throw

new

IllegalArgumentException("The

name

argument

must

not

be

"

+

"null.");

}

return

(WSIFAddress)name2AddressTable.get(name);

}

}

The

following

code

is

the

corresponding

WSDL

file

for

the

Web

service:

<?xml

version="1.0"

?>

<definitions

targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab"

xmlns:tns="http://www.ibm.com/namespace/wsif/samples/ab"

xmlns:typens="http://www.ibm.com/namespace/wsif/samples/ab/types"

586

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"

xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"

xmlns:ejb="http://schemas.xmlsoap.org/wsdl/ejb/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<xsd:schema

targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab/types"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType

name="phone">

<xsd:element

name="areaCode"

type="xsd:int"/>

<xsd:element

name="exchange"

type="xsd:string"/>

<xsd:element

name="number"

type="xsd:string"/>

</xsd:complexType>

<xsd:complexType

name="address">

<xsd:element

name="streetNum"

type="xsd:int"/>

<xsd:element

name="streetName"

type="xsd:string"/>

<xsd:element

name="city"

type="xsd:string"/>

<xsd:element

name="state"

type="xsd:string"/>

<xsd:element

name="zip"

type="xsd:int"/>

<xsd:element

name="phoneNumber"

type="typens:phone"/>

</xsd:complexType>

</xsd:schema>

</types>

<message

name="AddEntryWholeNameRequestMessage">

<part

name="name"

type="xsd:string"/>

<part

name="address"

type="typens:address"/>

</message>

<message

name="AddEntryFirstAndLastNamesRequestMessage">

<part

name="firstName"

type="xsd:string"/>

<part

name="lastName"

type="xsd:string"/>

<part

name="address"

type="typens:address"/>

</message>

<message

name="GetAddressFromNameRequestMessage">

<part

name="name"

type="xsd:string"/>

</message>

<message

name="GetAddressFromNameResponseMessage">

<part

name="address"

type="typens:address"/>

</message>

<portType

name="AddressBookPT">

<operation

name="addEntry">

<input

name="AddEntryWholeNameRequest"

message="tns:AddEntryWholeNameRequestMessage"/>

</operation>

<operation

name="addEntry">

<input

name="AddEntryFirstAndLastNamesRequest"

message="tns:AddEntryFirstAndLastNamesRequestMessage"/>

</operation>

<operation

name="getAddressFromName">

<input

name="GetAddressFromNameRequest"

message="tns:GetAddressFromNameRequestMessage"/>

<output

name="GetAddressFromNameResponse"

message="tns:GetAddressFromNameResponseMessage"/>

</operation>

</portType>

<binding

name="SOAPHttpBinding"

type="tns:AddressBookPT">

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

587

<soap:binding

style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation

name="addEntry">

<soap:operation

soapAction=""/>

<input

name="AddEntryWholeNameRequest">

<soap:body

use="encoded"

namespace="http://www.ibm.com/namespace/wsif/samples/ab"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

</operation>

<operation

name="addEntry">

<soap:operation

soapAction=""/>

<input

name="AddEntryFirstAndLastNamesRequest">

<soap:body

use="encoded"

namespace="http://www.ibm.com/namespace/wsif/samples/ab"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

</operation>

<operation

name="getAddressFromName">

<soap:operation

soapAction=""/>

<input

name="GetAddressFromNameRequest">

<soap:body

use="encoded"

namespace="http://www.ibm.com/namespace/wsif/samples/ab"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output

name="GetAddressFromNameResponse">

<soap:body

use="encoded"

namespace="http://www.ibm.com/namespace/wsif/samples/ab"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>

</binding>

<binding

name="JavaBinding"

type="tns:AddressBookPT">

<java:binding/>

<format:typeMapping

encoding="Java"

style="Java">

<format:typeMap

typeName="typens:address"

formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap

typeName="xsd:string"

formatType="java.lang.String"/>

</format:typeMapping>

<operation

name="addEntry">

<java:operation

methodName="addEntry"

parameterOrder="name

address"

methodType="instance"/>

<input

name="AddEntryWholeNameRequest"/>

</operation>

<operation

name="addEntry">

<java:operation

methodName="addEntry"

parameterOrder="firstName

lastName

address"

methodType="instance"/>

<input

name="AddEntryFirstAndLastNamesRequest"/>

</operation>

<operation

name="getAddressFromName">

<java:operation

methodName="getAddressFromName"

parameterOrder="name"

methodType="instance"

returnPart="address"/>

<input

name="GetAddressFromNameRequest"/>

<output

name="GetAddressFromNameResponse"/>

</operation>

</binding>

<binding

name="EJBBinding"

type="tns:AddressBookPT">

<ejb:binding/>

588

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<format:typeMapping

encoding="Java"

style="Java">

<format:typeMap

typeName="typens:address"

formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap

typeName="xsd:string"

formatType="java.lang.String"/>

</format:typeMapping>

<operation

name="addEntry">

<ejb:operation

methodName="addEntry"

parameterOrder="name

address"

interface="remote"/>

<input

name="AddEntryWholeNameRequest"/>

</operation>

<operation

name="addEntry">

<ejb:operation

methodName="addEntry"

parameterOrder="firstName

lastName

address"

interface="remote"/>

<input

name="AddEntryFirstAndLastNamesRequest"/>

</operation>

<operation

name="getAddressFromName">

<ejb:operation

methodName="getAddressFromName"

parameterOrder="name"

interface="remote"

returnPart="address"/>

<input

name="GetAddressFromNameRequest"/>

<output

name="GetAddressFromNameResponse"/>

</operation>

</binding>

<service

name="AddressBookService">

<port

name="SOAPPort"

binding="tns:SOAPHttpBinding">

<soap:address

location="http://localhost/wsif/samples/addressbook/soap/servlet/rpcrouter"/>

</port>

<port

name="JavaPort"

binding="tns:JavaBinding">

<java:address

className="services.addressbook.WSIFAddressBook"/>

</port>

<port

name="EJBPort"

binding="tns:EJBBinding">

<ejb:address

className="services.addressbook.ejb.AddressBookHome"

jndiName="ejb/samples/wsif/AddressBook"

classLoader="services.addressbook.ejb.AddressBook.ClassLoader"/>

</port>

</service>

</definitions>

Using

complex

types

WSIF

supports

user-defined

complex

types

through

the

mapping

of

complex

types

to

Java

classes.

You

specify

this

mapping

manually

or

automatically

as

described

in

the

following

sections:

v

Manual

mapping

of

complex

types.

v

5.0.2 +

Automatic

mapping

of

complex

types.

Any

calls

to

the

WSIFService

mapType

and

mapPackage

methods

used

for

manual

mapping

override

any

equivalent

mapping

information

that

is

produced

automatically.

This

override

helps

to

maintain

backwards

compatibility,

and

also

accommodates

less

standard

mappings.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

589

Manual

mapping

of

complex

types

The

method

to

use

when

you

create

these

mappings

manually

depends

on

the

provider

that

is

used.

For

the

Java

and

EJB

providers,

the

mappings

are

specified

in

the

WSDL

file

in

the

binding

element.

The

following

example

provides

the

syntax

for

specifying

the

mapping:

<binding

....

>

<ejb:binding|java:binding/>

<format:typeMapping

style=“Java”

encoding=“Java”/>?

<format:typeMap

name=“qname”

formatType=“nmtoken”/>*

</format:typeMapping>

...

</binding>

In

this

example:

v

A

question

mark

(“?”)

means

“optional”

and

an

asterisk

(“*”)

means

“0

or

more”.

v

The

format:typeMap

name

attribute

is

a

qualified

name

of

a

complex

type

or

simple

type

used

by

one

of

the

operations.

v

The

format:typeMap

formatType

attribute

is

the

fully

qualified

class

name

for

the

Java

class

to

which

the

element

specified

by

name

maps.

If

you

use

the

Apache

SOAP

provider

then

you

specify

the

mapping

of

a

complex

type

to

a

Java

class

in

the

client

code

through

two

methods

on

the

org.apache.wsif.WSIFService

interface:

public

void

mapType(QName

elementType,

Class

javaType)

and

public

void

mapPackage(String

namespaceURI,

String

packageName)

Use

the

mapType

method

to

specify

a

mapping

between

an

XML

schema

element

and

a

Java

class.

The

method

takes

a

QName

representing

the

complex

type

or

simple

type,

and

the

corresponding

Java

class

to

which

it

maps.

Use

the

mapPackage

method

to

specify

a

more

general

mapping

between

a

namespace

and

a

Java

package.

Any

custom,

complex

or

simple

type

whose

namespace

matches

that

of

the

mapping

is

mapped

to

a

Java

class

in

the

corresponding

package.

The

name

of

the

actual

class

is

derived

from

the

name

of

the

complex

type

using

standard

XML

to

Java

naming

conventions.

Automatic

mapping

of

complex

types 5.0.2 +

For

complex

types

defined

in

the

WSDL,

where

a

generated

bean

is

used

to

represent

this

type

in

Java,

the

Web

Services

Invocation

Framework

(WSIF)

programming

model

requires

that

a

call

is

made

to

the

WSIFService.mapType()

method.

This

call

tells

WSIF

the

package

and

class

name

of

the

bean

representing

the

XML

schema

type

that

is

identified

with

a

QName.

To

make

things

easier,

the

WSIFService.mapPackage()

method

provides

a

mechanism

to

specify

a

wildcard

version

of

this,

where

any

class

within

a

specified

package

is

mapped

to

the

namespace

of

a

QName.

This

is

a

mechanism

for

manually

mapping

an

XML

schema

type

to

a

Java

class

and

back

again

(one

mapping

entry

provides

a

bidirectional

mapping).

590

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

There

are

many

ways

to

convert

a

QName

representing

an

XML

schema

type

name

to

a

Java

package

name

and

class.

To

enable

automatic

type

mapping,

set

the

WSIF_FEATURE_AUTO_MAP_TYPES

feature

on

the

WSIFServiceFactory

instance:

WSIFServiceFactory

factory

=

WSIFServiceFactory.newInstance();

factory.setFeature(WSIFConstants.WSIF_FEATURE_AUTO_MAP_TYPES,

new

Boolean(true));

WSIF

maps

types

by

converting

the

URI

part

of

the

XML

schema

type

<tt>QName</tt>

to

a

package

name,

and

converting

the

local

part

to

a

class

name.

WSIF

does

this

mapping

using

the

WSIFUtils

methods

<tt>getPackageNameFromNamespaceURI</tt>

and

<tt>getJavaClassNameFromXMLName</tt>.

Using

the

Java

Naming

and

Directory

Interface

(JNDI)

This

example

task

shows

you

how

to

use

WSIF

to

bind

a

reference

to

a

Web

service,

then

look

up

the

reference

using

JNDI.

You

access

a

Web

service

through

information

provided

in

the

WSDL

document

for

the

service.

If

you

do

not

know

where

to

find

the

WSDL

document

for

the

service,

but

you

know

that

it

has

been

registered

in

a

UDDI

registry,

then

you

look

it

up

in

the

registry.

Java

programs

access

Java

objects

and

resources

in

a

similar

manner,

but

using

a

JNDI

interface.

The

following

example

shows

how,

using

the

Web

Services

Invocation

Framework

(WSIF),

you

can

bind

a

reference

to

a

Web

service

then

look

up

the

reference

using

JNDI.

Specifying

the

argument

values

for

the

Web

service

The

Web

service

is

represented

in

WSIF

by

an

instance

of

the

org.apache.wsif.naming.WSIFServiceRef

class.

This

simple

Referenceable

object

has

the

following

constructor:

public

WSIFServiceRef(

String

WSDL,

String

sNS,

String

sName,

String

ptNS,

String

ptName)

{

[...]

}

In

this

example

v

WSDL

is

the

location

of

the

WSDL

file

containing

the

definition

of

the

service.

v

sNS

is

the

full

namespace

for

the

service

definition

(you

can

specify

null

if

only

one

service

is

defined

in

the

WSDL

file).

v

sName

is

the

local

name

for

the

service

definition

(you

can

specify

null

if

only

one

service

is

defined

in

the

WSDL

file).

v

ptNS

is

the

full

namespace

for

the

port

type

within

the

service

that

you

want

to

use

(you

can

specify

null

if

only

one

port

type

is

available

for

the

service).

v

ptName

is

the

local

name

for

the

port

type

(you

can

specify

null

if

only

one

port

type

is

available

for

the

service).

For

example,

if

the

WSDL

file

for

the

Web

service

is

available

from

the

Web

address

http://localhost/WSDL/Example.WSDL

and

contains

the

following

service

and

port

type

definitions:

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

591

<definitions

targetNamespace="http://hostname/namespace/example"

xmlns:abc="http://hostname/namespace/abc"

[...]

<portType

name="ExamplePT">

<operation

name="exampleOp">

<input

name="exampleInput"

message="tns:ExampleInputMsg"/>

</operation>

</portType>

[...]

<service

name="abc:ExampleService">

[...]

</service>

[...]

</definitions>

You

can

specify

the

following

argument

values

for

the

WSIFServiceRef

class:

v

WSDL

is

http://localhost/WSDL/Example.WSDL

v

sNS

is

http://hostname/namespace/abc

v

sName

is

ExampleService

v

ptNS

is

http://hostname/namespace/example

v

ptName

is

ExamplePT

Binding

the

service

using

JNDI

To

bind

the

service

reference

in

the

naming

directory

using

JNDI,

you

can

use

the

com.ibm.websphere.naming.JndiHelper

class

in

WebSphere

Application

Server:

[...]

import

com.ibm.websphere.naming.JndiHelper;

import

org.apache.wsif.naming.*;

[...]

try

{

Context

startingContext

=

new

InitialContext();

WSIFServiceRef

ref

=

new

WSIFServiceRef(“http://localhost/WSDL/Example.WSDL”,

“http://hostname/namespace/abc”

“ExampleService”,

“http://hostname/namespace/example”,

“ExamplePT”);

JndiHelper.recursiveRebind(startingContext,

“myContext/mySubContext/myServiceRef”,

ref);

}

catch

(NamingException

e)

{

//

Handle

error.

}

[...]

Looking

up

the

service

using

JNDI

The

following

code

fragment

shows

the

lookup

of

a

service

using

JNDI:

[...]

try

{

[...]

InitialContext

ic

=

new

InitialContext();

WSIFService

myService

=

(WSIFService)

ic.lookup(“myContext/mySubContext/myServiceRef”);

[...]

}

catch

(NamingException

e)

{

//

Handle

error.

}

[...]

592

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Passing

SOAP

messages

with

attachments

using

WSIF

The

W3C

SOAP

Messages

with

Attachments

document

describes

a

standard

way

to

associate

a

SOAP

message

with

one

or

more

attachments

in

their

native

format

(for

example

GIF

or

JPEG)

by

using

a

multipart

MIME

structure

for

transport.

It

defines

specific

use

of

the

“Multipart/Related”

MIME

media

type,

and

rules

for

the

use

of

URI

references

to

entities

bundled

within

the

MIME

package.

It

thereby

outlines

a

technique

for

carrying

a

SOAP

1.1

message

within

a

MIME

multipart/related

message

in

such

a

way

that

the

SOAP

processing

rules

for

a

standard

SOAP

message

are

not

changed.

The

Web

Services

Invocation

Framework

(WSIF)

supports

passing

attachments

in

a

MIME

message

using

the

SOAP

provider.

The

attachment

is

a

javax.activation.DataHandler

object.

The

mime:multipartRelated,

mime:part

and

mime:content

tags

are

used

to

describe

the

attachment

in

the

WSDL.

For

more

information,

see

the

following

topics:

v

SOAP

messages

with

attachments

-

Writing

the

WSDL

extensions.

v

SOAP

messages

with

attachments

-

Passing

attachments

to

WSI.

v

SOAP

messages

with

attachments

-

Working

with

types

and

type

mappings.

The

following

scenarios

are

not

supported:

v

Using

DIME.

v

Passing

in

javax.xml.transform.Source

and

javax.mail.internet.MimeMultipart.

v

Using

the

mime:mimeXml

WSDL

tag.

v

Nesting

a

mime:multipartRelated

tag

inside

a

mime:part

tag.

v

Using

types

that

extend

DataHandler,

Image,

and

so

on.

v

Using

types

that

contain

DataHandler,

Image,

and

soon.

v

Using

Arrays

or

Vectors

of

DataHandlers,

Images,

and

so

on.

v

Using

multiple

in/out

or

output

attachments.

The

MIME

headers

from

the

incoming

message

are

not

preserved

for

referenced

attachments.

The

outgoing

message

contains

new

MIME

headers

for

Content-Type,

Content-Id

and

Content-Transfer-Encoding

that

are

created

by

WSIF.

SOAP

messages

with

attachments

-

Writing

the

WSDL

extensions

The

following

example

WSDL

illustrates

a

simple

operation

that

has

one

attachment

called

attch:

<binding

name="MyBinding"

type="tns:abc"

>

<soap:binding

style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation

name="MyOperation">

<soap:operation

soapAction=""/>

<input>

<mime:multipartRelated>

<mime:part>

<soap:body

use="encoded"

namespace="http://mynamespace"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</mime:part>

<mime:part>

<mime:content

part="attch"

type="text/html"/>

</mime:part>

</mime:multipartRelated>

</input>

</operation>

</binding>

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

593

http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP/

In

this

type

of

WSDL

extension:

v

There

must

be

a

part

attribute

(in

this

example

attch)

on

the

input

message

for

the

operation

(in

this

example

MyOperation).

There

can

be

other

input

parts

to

MyOperation

that

are

not

attachments.

v

In

the

binding

input

there

must

either

be

a

<soap:body>

tag

or

a

<mime:multipartRelated>

tag,

but

not

both.

v

For

MIME

messages,

the

<soap:body>

tag

is

inside

a

<mime:part>

tag.

There

must

only

be

one

<mime:part>

tag

that

contains

a

<soap:body>

tag

in

the

binding

input

and

that

must

not

contain

a

<mime:content>

tag

as

well,

because

a

content

type

of

text/xml

is

assumed

for

the

<soap:body>

tag.

v

There

can

be

multiple

attachments

in

a

MIME

message,

each

described

by

a

<mime:part>

tag.

v

Each

<mime:part>

tag

that

does

not

contain

a

<soap:body>

tag

contains

a

<mime:content>

tag

that

describes

the

attachment

itself.

The

type

attribute

inside

the

<mime:content>

tag

is

not

checked

or

used

by

the

Web

Services

Invocation

Framework

(WSIF).

It

is

there

to

suggest

to

the

application

using

WSIF

what

the

attachment

contains.

Multiple

<mime:content>

tags

inside

a

single

<mime:part>

tag

means

that

the

backend

service

expects

a

single

attachment

with

a

type

specified

by

one

of

the

<mime:content>

tags

inside

that

<mime:part>

tag.

v

The

parts=″...″

attribute

(optional)

inside

the

<soap:body>

tag

is

assumed

to

contain

the

names

of

all

the

MIME

parts

as

well

as

the

names

of

all

the

SOAP

parts

in

the

message.

SOAP

messages

with

attachments

-

Passing

attachments

to

WSIF

The

following

code

fragment

can

invoke

the

service

described

by

the

example

WSDL

in

the

topic

writing

the

WSDL

extensions:

import

javax.activation.DataHandler;

.

.

.

DataHandler

dh

=

new

DataHandler(new

FileDataSource(“myimage.jpg”));

WSIFServiceFactory

factory

=

WSIFServiceFactory.newInstance();

WSIFService

service

=

factory.getService(“my.wsdl”,null,null,“http://mynamespace”,“abc”);

WSIFOperation

op

=

service.getPort().createOperation(“MyOperation”);

WSIFMessage

in

=

op.createInputMessage();

in.setObjectPart(“attch”,dh);

op.executeInputOnlyOperation(in);

The

associated

type

mapping

in

the

DeploymentDescriptor.xml

file

depends

upon

your

SOAP

server.

For

example

if

you

use

Tomcat

with

SOAP

2.3,

then

the

DeploymentDescriptor.xml

file

contains

the

following

type

mapping:

<isd:mappings>

<isd:map

encodingStyle=“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:x=“http://mynamespace”

qname=“x:datahandler”

javaType=“javax.activation.DataHandler”

java2XMLClassName=“org.apache.soap.encoding.soapenc.MimePartSerializer”

xml2JavaClassName=“org.apache.soap.encoding.soapenc.MimePartSerializer”

/>

</isd:mappings>

In

this

case,

the

backend

service

is

invoked

with

the

following

signature:

public

void

MyOperation(DataHandler

dh);

You

can

also

use

stubs

to

pass

attachments

into

the

Web

Services

Invocation

Framework

(WSIF):

594

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

DataHandler

dh

=

new

DataHandler(new

FileDataSource(“myimage.jpg”));

WSIFServiceFactory

factory

=

WSIFServiceFactory.newInstance();

WSIFService

service

=

factory.getService(“my.wsdl”,null,null,“http://mynamespace”,“abc”);

MyInterface

stub

=

(MyInterface)service.getStub(MyInterface.class);

stub.MyOperation(dh);

Attachments

can

also

be

returned

from

an

operation,

but

at

present

only

one

attachment

can

be

returned

as

the

return

parameter.

SOAP

messages

with

attachments

-

Working

with

types

and

type

mappings

By

default,

attachments

are

passed

into

the

Web

Services

Invocation

Framework

(WSIF)

as

DataHandler

objects.

If

the

part

on

the

message

that

is

the

DataHandler

object

maps

to

a

<mime:part>

tag

in

the

WSDL,

then

WSIF

automatically

maps

the

fully

qualified

name

of

the

WSDL

type

to

the

DataHandler

class

and

sets

up

that

type

mapping

with

the

SOAP

provider.

In

your

WSDL,

you

might

have

defined

a

schema

for

the

attachment

(for

instance

as

a

binary[]

type).

WSIF

silently

ignores

this

mapping

and

treats

the

attachment

as

a

DataHandler

object,

unless

you

explicitly

issue

a

mapType()

method.

WSIF

lets

the

SOAP

provider

set

the

MIME

content

type

based

on

the

type

of

the

DataHandler

object,

instead

of

the

type

attribute

specified

for

the

<mime:content>

tag

in

the

WSDL.

Interacting

with

the

J2EE

container

in

WebSphere

Application

Server

Interaction

with

a

container

is

limited

to

the

following

aspects:

v

Using

the

application

server

administrative

console

to

define

Web

services

to

WebSphere

Application

Server.

This

task

is

described

in

Using

the

Java

Naming

and

Directory

Interface

(JNDI)

and

WSIF

system

management

and

administration.

As

part

of

the

definition

of

a

service,

the

administrator

might

define

a

“preferred

port”.

v

Using

the

Web

Services

Invocation

Framework

(WSIF)

to

make

log

and

trace

calls

to

the

JRAS

services

in

WebSphere

Application

Server,

as

described

in

Trace

and

logging

for

WSIF.

v

Using

WSIF

providers

to

access

Java

2

platform,

Enterprise

Edition

(J2EE)

services.

For

example

using

the

EJB

provider

to

access

the

Java

Naming

and

Directory

Interface

(JNDI)

and

make

calls

to

remote

enterprise

beans.

v

Using

WSIF

to

wrap

the

use

of

container

services

so

that,

when

WSIF

is

run

in

an

unmanaged

(thin)

environment,

the

operation

can

succeed.

Running

WSIF

as

a

client

The

Web

Services

Invocation

Framework

(WSIF)

runs

in

the

WebSphere

Application

Server

application

client

container,

and

in

similar

clients

from

other

suppliers.

To

simplify

the

process

of

launching

client

applications

in

the

WebSphere

Application

Server

application

client,

use

the

launchClient

tool

as

described

in

Running

application

clients.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

595

http://www.w3.org/TR/SOAP

WSIF

system

management

and

administration

The

Web

Services

Invocation

Framework

(WSIF)

is

provided

as

a

stand-alone

JAR

file

named

wsif.jar.

The

JAR

file

contains

the

core

WSIF

classes,

and

the

Java,

EJB,

SOAP

over

HTTP

and

SOAP

over

JMS

providers.

Additional

providers

are

packaged

as

separate

JAR

files.

When

you

install

WebSphere

Application

Server,

the

wsif.jar

file

is

put

on

the

WebSphere

or

Java

Virtual

Machine

(JVM)

class

path.

WSIF

requires

no

further

configuration.

WSIF

is

a

thin

abstraction

layer

between

application

code

and

the

relevant

invocation

infrastructure.

For

specific

information

on

other

aspects

of

managing

your

WSIF

system,

see

the

following

topics:

v

Maintaining

the

WSIF

properties

file

v

Enabling

security

for

WSIF

v

Trace

and

logging

for

WSIF

v

Troubleshooting

the

Web

Services

Invocation

Framework

v

WSIF

(Web

Services

Invocation

Framework)

messages

Maintaining

the

WSIF

properties

file

The

Web

Services

Invocation

Framework

(WSIF)

properties

are

stored

in

the

wsif.jar

file,

in

a

properties

file

named

wsif.properties.

This

properties

file

is

kept

on

the

class

path,

so

that

WSIF

can

find

it

and

the

client

administrator

can

use

it

to

configure

WSIF.

Here

is

a

copy

of

the

initial

contents

of

the

wsif.properties

file.

All

the

possible

properties

are

listed

and

described.

#

Two

properties

are

used

to

override

which

WSIFProvider

is

selected

when

there

#

exists

multiple

providers

supporting

the

same

namespace

URI.

These

properties

are:

#

#

wsif.provider.default.CLASSNAME=N

#

wsif.provider.uri.M.CLASSNAME=URI

#

#

CLASSNAME

is

the

WSIFProvider

class

name

#

N

is

the

number

of

following

default

wsif.provider.uri.M.CLASSNAME

properties

#

M

is

a

number

from

1

to

N

to

uniquely

identify

each

wsif.provider.uri.M.CLASSNAME

#

property

key.

#

For

example

the

following

two

properties

would

override

the

default

SOAP

provider

#

to

be

the

Apache

SOAP

provider:

#

#

wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1

#

wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\

#

http://schemas.xmlsoap.org/wsdl/soap/

#

#

maximum

number

of

milliseconds

to

wait

for

a

response

to

a

synchronous

request.

#

Default

value

if

not

defined

is

to

wait

forever.

wsif.syncrequest.timeout=10000

#

maximum

number

of

seconds

to

wait

for

a

response

to

an

async

request.

#

if

not

defined

on

invalid

defaults

to

no

timeout

wsif.asyncrequest.timeout=60

596

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

Enabling

security

for

WSIF

The

Web

Services

Invocation

Framework

(WSIF)

interacts

with

a

security

manager

in

the

following

ways:

v

WSIF

runs

in

the

Java

2

platform,

Enterprise

Edition

(J2EE)

security

context

without

modification.

v

When

WSIF

is

run

under

a

J2EE

container,

port

implementations

can

use

the

security

context

to

pass

on

security

tokens

or

credentials

as

necessary.

v

WSIF

implementations

can

automatically

convert

J2EE

security

context

into

appropriate

context

for

onward

services.

For

WSIF

to

interact

effectively

with

the

WebSphere

Application

Server

security

manager,

you

must

set

the

following

permissions

in

the

server.policy

file:

Permission

Required

by

SOAP

and

Java

portion?

Required

by

EJB

portion?

Additional

notes

FilePermission

to

load

the

WSDL

-

-

This

permission

is

only

required

when

a

WSDL

file

is

referred

to

using

the

file:///

protocol

RuntimePermission

“getClassLoader”

for

the

context

class

loader

for

the

current

thread

Yes

No

RuntimePermission

“accessDeclaredMembers”

Yes

Yes

This

permission

is

required

by

both

portions

for

handling

enterprise

beans

PropertyPermission

for

system

properties

Yes

(read

and

write

access)

Yes

(write

access

only)

This

permission

is

required

by

SOAP

and

many

others

NetPermission

“specifyStreamHandler”

Yes

Yes

This

permission

must

be

in

either

the

SOAP

and

Java

portion,

or

the

EJB

portion,

but

it

need

not

be

in

both.

SocketPermission

“host_name”,

“resolve”

No

Yes

Where

host_name

is

your

host

name

(for

example

localhost)

SocketPermission

“host_name:port_no”,

“connect”

Yes

Yes

Where

host_name

is

your

host

name

(for

example

localhost)

and

port_no

is

your

port

number

(for

example

9080).

Troubleshooting

the

Web

Services

Invocation

Framework

For

information

on

resolving

WebSphere-level

problems,

see

Diagnosing

and

fixing

problems.

To

identify

and

resolve

Web

Services

Invocation

Framework

(WSIF)-related

problems,

you

can

use

the

standard

WebSphere

Application

Server

trace

and

logging

facilities.

If

you

encounter

a

problem

that

you

think

might

be

related

to

WSIF,

you

can

check

for

error

messages

in

the

WebSphere

Application

Server

administrative

console,

and

in

the

application

server

stdout.log

file.

You

can

also

enable

the

application

server

debug

trace

to

provide

a

detailed

exception

dump.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

597

http://www.w3.org/TR/SOAP

A

list

of

the

WSIF

run-time

system

messages,

with

details

of

what

each

message

means,

is

provided

in

Message

reference

for

WSIF.

Here

is

a

checklist

of

major

WSIF

activities,

with

advice

on

common

problems

associated

with

each

activity:

Create

service

Handcrafted

WSDL

can

cause

numerous

problems.

To

help

ensure

that

your

WSDL

is

valid,

use

a

tool

such

as

WebSphere

Studio

to

create

your

service.

Define

transport

mechanism

For

the

Java

Messaging

Service

(JMS),

check

that

you

have

set

up

the

Java

Naming

and

Directory

Interface

(JNDI)

correctly,

and

created

the

necessary

connection

factories

and

queues.

For

SOAP,

make

sure

that

the

deployment

descriptor

file

dds.xml

is

correct

-

preferably

by

creating

it

using

WebSphere

Studio

or

similar

tooling.

Create

client

-

Java

code

Follow

the

correct

format

for

creating

a

WSIF

service,

port,

operation

and

message.

For

examples

of

correct

code,

see

the

Address

Book

Sample.

Compile

code

(client

and

service)

Check

that

the

build

path

against

code

is

correct,

and

that

it

contains

the

correct

levels

of

JAR

files.

Create

a

valid

EAR

file

for

your

service

in

preparation

for

deployment

to

a

Web

server.

Deploy

service

When

you

install

and

deploy

the

service

EAR

file,

check

carefully

any

messages

given

when

the

service

is

deployed.

Server

setup

and

start

Make

sure

that

the

WebSphere

Application

Server

server.policy

file

(in

the

/properties

directory)

has

the

correct

security

settings.

For

more

information,

see

Enabling

security

for

WSIF.

WSIF

setup

Check

that

the

wsif.properties

file

is

correctly

set

up.

For

more

information,

see

Maintaining

the

WSIF

properties

file.

Run

client

Either

check

that

you

have

defined

the

class

path

correctly

to

include

references

to

your

client

classes,

WSIF

JAR

files

and

any

other

necessary

JAR

files,

or

(preferably)

run

your

client

using

the

WebSphere

Application

Server

launchClient

tool.

Here

is

a

list

of

common

errors,

and

information

on

their

probable

causes:

v

“No

class

definition”

errors

received

when

running

client

code.

This

problem

usually

indicates

an

error

in

the

class

path

setup.

Check

that

the

relevant

JAR

files

are

included.

v

“Cannot

find

WSDL”

error.

Some

likely

causes

are:

–

The

application

server

is

not

running.

–

The

server

location

and

port

number

in

the

WSDL

are

not

correct.

–

The

WSDL

is

badly

formed

(check

the

error

messages

in

the

application

server

stdout.log

file).

–

The

application

server

has

not

been

restarted

since

the

service

was

installed.

You

might

also

try

the

following

checks:

–

Can

you

load

the

WSDL

into

your

Web

browser

from

the

location

specified

in

the

error

message?

598

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

–

Can

you

load

the

corresponding

WSDL

binding

files

into

your

Web

browser?
v

Your

Web

service

EAR

file

does

not

install

correctly

onto

the

application

server.

It

is

likely

that

the

EAR

file

is

badly

formed.

Verify

the

installation

by

completing

the

following

steps:

–

For

an

EJB

binding,

run

the

WebSphere

Application

Server

tool

\bin\dumpnamespace.

This

tool

lists

the

current

contents

of

the

JNDI

directory.

–

For

a

SOAP

over

HTTP

binding,

open

the

http://pathToServer/WebServiceName/admin/list.jsp

page

(if

you

have

the

SOAP

administration

pages

installed).

This

page

lists

all

currently

installed

Web

services.

–

For

a

SOAP

over

JMS

binding,

complete

the

following

checks:

-

Check

that

the

queue

manager

is

running.

-

Check

that

the

necessary

queues

are

defined.

-

Check

the

JNDI

setup.

-

Use

the

“display

context”

option

in

the

jmsadmin

tool

to

list

the

current

JNDI

definitions.

-

Check

that

the

Remote

Procedure

Call

(RPC)

router

is

running.
v

There

is

a

permissions

problem

or

security

error.

Check

that

the

WebSphere

Application

Server

server.policy

file

(in

the

/properties

directory)

has

the

correct

security

settings.

For

more

information,

see

Enabling

security

for

WSIF.

v

Using

WSIF

with

multiple

clients

causes

a

SOAP

parsing

error.

Before

you

deploy

a

Web

service

to

WebSphere

Application

Server,

you

must

decide

on

the

scope

of

the

Web

service.

The

deployment

descriptor

file

dds.xml

for

the

Web

service

includes

the

following

line:

<isd:provider

type="java"

scope="Application"

......

You

can

set

the

Scope

attribute

to

Application

or

Session.

The

default

setting

is

Application,

and

this

value

is

correct

if

each

request

to

the

Web

service

does

not

require

objects

to

be

maintained

for

longer

than

a

single

instance.

If

Scope

is

set

to

Application

the

objects

are

not

available

to

another

request

during

the

execution

of

the

single

instance,

and

they

are

released

on

completion.

If

your

Web

service

needs

objects

to

be

maintained

for

multiple

requests,

and

to

be

unique

within

each

request,

you

must

set

the

scope

to

Session.

If

Scope

is

set

to

Session,

the

objects

are

not

available

to

another

request

during

the

life

of

the

session,

and

they

are

released

on

completion

of

the

session.

If

scope

is

set

to

Application

instead

of

Session,

you

might

get

the

following

SOAP

error:

SOAPException:

SOAP-ENV:ClientParsing

error,

response

was:

FWK005

parse

may

not

be

called

while

parsing.;

nested

exception

is:

[SOAPException:

faultCode=SOAP-ENV:Client;

msg=Parsing

error,

response

was:

FWK005

parse

may

not

be

called

while

parsing.;

targetException=org.xml.sax.SAXException:

FWK005

parse

may

not

be

called

while

parsing.]

Trace

and

logging

for

WSIF

If

you

want

to

enable

trace

for

the

Web

Services

Invocation

Framework

(WSIF)

API

within

WebSphere

Application

Server,

and

have

trace,

stdout

and

stderr

for

the

application

server

written

to

a

well-known

location,

see

Setting

up

component

trace

(CTRACE).

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

599

WSIF

offers

trace

points

at

the

opening

and

closing

of

ports,

the

invocation

of

services,

and

the

responses

from

services.

To

trace

the

WSIF

API,

you

need

to

specify

the

following

trace

string:

wsif=all=enabled

WSIF

also

includes

a

SimpleLog

utility

through

which

you

can

run

trace

when

using

WSIF

outside

of

WebSphere

Application

Server.

To

enable

this

utility,

complete

the

following

steps:

1.

Create

a

file

named

commons-logging.properties

with

the

following

contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl

org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2.

Create

a

file

named

simplelog.properties

with

the

following

contents:

org.apache.commons.logging.simplelog.defaultlog=trace

org.apache.commons.logging.simplelog.showShortLogname=true

org.apache.commons.logging.simplelog.showdatetime=true

3.

Put

both

these

files,

and

the

commons-logging.jar

file,

on

the

class

path.

The

SimpleLog

uitility

writes

trace

to

the

System.err

file.

WSIF

(Web

Services

Invocation

Framework)

messages

This

topic

contains

a

list

of

the

WSIF

run-time

system

messages,

with

details

of

what

each

message

means.

WebSphere

system

messages

are

logged

from

a

variety

of

sources,

including

application

server

components

and

applications.

Messages

logged

by

application

server

components

and

associated

IBM

products

start

with

a

unique

message

identifier

that

indicates

the

component

or

application

that

issued

the

message.

WSIF0001E:

An

extension

registry

was

not

found

for

the

element

type

“{0}”

Explanation:

Parameters:

{0}

element

type.

No

extension

registry

was

found

for

the

element

type

specified.

User

Response:

Add

the

appropriate

extension

registry

to

the

port

factory

in

your

code.

WSIF0002E:

A

failure

occurred

in

loading

WSDL

from

“{0}”

Explanation:

Parameters:

{0}

location

of

the

WSDL

file.

The

WSDL

file

could

not

be

found

at

the

location

specified

or

did

not

parse

correctly

User

Response:

Check

that

the

location

of

the

WSDL

file

is

correct.

Check

that

any

network

connections

required

are

available.

Check

that

the

WSDL

file

contains

valid

WSDL.

WSIF0003W:

An

error

occurred

finding

pluggable

providers:

{0}

Explanation:

Parameters:

{0}

specific

details

about

the

error.

There

was

a

problem

locating

a

WSIF

pluggable

provider

using

the

J2SE

1.3

JAR

file

extensions

to

support

service

providers

architecture.

The

WSIF

trace

file

will

contain

the

full

exception

details.

User

Response:

Verify

that

a

META-
INF/services/org.apache.wsif.spi.WSIFProvider

file

exists

in

a

provider

jar,

that

each

class

referenced

in

the

META-INF

file

exists

in

the

class

path,

and

that

each

class

implements

org.apache.wsif.spi.WSIFProvider.

The

class

in

error

will

be

ignored

and

WSIF

will

continue

locating

other

pluggable

providers.

WSIF0004E:

WSDL

contains

an

operation

type

“{0}”

which

is

not

supported

for

“{1}”

Explanation:

Parameters:

{0}

name

of

the

operation

type

specified.

{1}

name

of

the

portType

for

the

operation.

An

operation

type

which

is

not

supported

has

been

specified

in

the

WSDL.

600

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

Remove

any

operations

of

the

unsupported

type

from

the

WSDL.

If

the

operation

is

required

then

make

sure

all

messages

have

been

correctly

specified

for

the

operation.

WSIF0005E:

An

error

occurred

when

invoking

the

method

“{1}”

.

(“{0}”

)

Explanation:

Parameters:

{0}

name

of

communication

type.

For

example

EJB

or

Apache

SOAP.

{1}

name

of

the

method

that

failed.

An

error

was

encountered

when

invoking

a

method

on

the

Web

service

using

the

communication

shown

in

brackets.

User

Response:

Check

that

the

method

exists

on

the

Web

service

and

that

the

correct

parts

have

been

added

to

the

operation

as

described

in

the

WSDL.

Network

problems

might

be

a

cause

if

the

method

is

remote

and

so

check

any

required

connections.

WSIF0006W:

Multiple

WSIFProvider

found

supporting

the

same

namespace

URI

“{0}”

.

Found

(“{1}”

)

Explanation:

Parameters:

{0}

the

namespace

URI.

{1}

a

list

of

the

WSIFProvider

found..

There

are

multiple

org.apache.wsif.spi.WSIFProvider

classes

in

the

service

provider

path

that

support

the

same

namespace

URI.

User

Response:

A

following

WSIF0007I

message

will

be

issued

notifying

which

WSIPFProvider

will

be

used.

Which

WSIFProvider

is

chosen

is

based

on

settings

in

the

wsif.properties

file,

or

if

not

defined

in

the

properties,

the

last

WSIFProvider

found

will

be

used.

See

the

wsif.properties

file

for

more

details

on

how

to

define

which

provider

should

be

used

to

support

a

namespace

URI.

WSIF0007I:

Using

WSIFProvider

“{0}”

for

namespaceURI

“{1}”

Explanation:

Parameters:

{0}

the

classname

of

the

WSIFProvider

being

used.

{1}

the

namespaceURI

the

provider

will

be

used

to

support..

Either

a

previous

WSIF0006W

message

has

been

issued

or

the

SetDynamicWSIFProvider

method

has

been

used

to

override

the

provider

used

to

support

a

namespaceURI.

User

Response:

None.

See

also

WSIF0006W.

WSIF0008W:

WSIFDefaultCorrelationService

removing

correlator

due

to

timeout.

ID:“{0}”

Explanation:

Parameters:

{0}

the

ID

of

the

correlator

being

removed

from

the

correlation

service.

A

stored

correlator

is

being

removed

from

the

correlation

service

due

to

its

timeout

expiring.

User

Response:

Determine

why

no

response

has

been

received

for

the

asynchronous

request

within

the

timeout

period.

The

wsif.asyncrequest.timeout

property

of

the

wsif.properties

file

defines

the

length

of

the

timeout

period.

WSIF0009I:

Using

correlation

service

-

“{0}”

Explanation:

Parameters:

{0}

the

name

of

the

correlation

service

being

used.

This

identifies

the

name

of

the

correlation

service

that

will

be

used

to

process

asynchronous

requests.

User

Response:

None.

If

a

correlation

service

other

than

the

default

WSIF

supplied

one

is

required,

ensure

that

it

is

correctly

registered

in

the

JNDI

java:comp/wsif/WSIFCorrelationService

namespace.

WSIF0010E:

Exception

thrown

while

processing

asynchronous

response

-

“{0}”

Explanation:

Parameters:

{0}

the

error

message

string

of

the

exception.

While

processing

the

response

from

an

executeRequestResponseAsync

call

an

exception

was

thrown.

User

Response:

Use

the

exception

error

message

string

to

determine

the

cause

of

the

error.

The

WSIF

trace

will

have

more

details

on

the

error

including

the

exception

stack

trace.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

601

WSIF0011I:

Preferred

port

“{0}”

was

not

available

Explanation:

Parameters:

{0}

the

user’s

preferred

port.

The

preferred

port

set

by

the

user

on

org.apache.wsif.WSIFService

is

not

available

User

Response:

None

unless

this

message

appears

for

long

periods

of

time

in

which

case

the

user

might

want

to

pick

a

different

port

as

their

preferred

port.

WSIF

API

The

Web

Services

Invocation

Framework

(WSIF)

API

supports

the

invocation

of

services

defined

in

WSDL.

WSIF

is

intended

for

use

in

both

WSIF

clients

and

Web

service

intermediaries.

The

WSIF

API

is

driven

by

the

abstract

service

description

in

WSDL;

it

is

completely

independent

of

the

actual

binding

used.

This

independence

makes

the

API

more

natural

to

work

with

because

it

uses

WSDL

terms

to

refer

to

message

parts,

operations,

and

so

on.

The

WSIF

API

was

designed

for

the

WSDL

usage

model:

Pick

a

port

that

supports

the

port

type

needed,

then

invoke

the

operation

by

providing

the

necessary

abstract

input

message

consisting

of

the

required

parts,

without

worrying

about

how

the

message

is

mapped

to

a

specific

binding

protocol.

Other

Web

service

APIs,

for

example

SOAP

APIs,

are

not

designed

on

WSDL,

but

for

a

specific

binding

protocol

with

its

associated

syntax;

for

example,

target

URIs

and

encoding

styles.

The

WSIF

API

main

interfaces

are

described

in

the

following

topics:

v

Creating

a

message

for

sending

to

a

port

(the

WSIFMessage

interface).

v

WSIF

API

reference:

Finding

a

port

factory

or

service

(the

WSIFService

interface

and

the

WSIFServiceFactory

class).

v

WSIF

API

reference:

Using

ports

(the

WSIFPort

interface

and

the

WSIFOperation

interface).

Note:

You

must

ensure

that

your

application

uses

only

one

thread

to

call

WSIF.

For

additional

technical

details

of

the

WSIF

API,

see

the

WSIF

Javadoc.

WSIF

API

reference:

Creating

a

message

for

sending

to

a

port

For

message

management

(that

is,

message

construction

and

parsing)

the

underlying

API

is

modeled

on

WSDL

semantics.

There

is

a

simple

and

direct

mapping

from

the

WSDL

model

to

the

Web

Services

Invocation

Framework

(WSIF)

classes.

In

WSDL,

a

message

describes

the

abstract

type

of

the

input

or

output

to

an

operation.

The

corresponding

WSIF

class

is

WSIFMessage,

which

represents

in

memory

the

actual

input

or

output

of

an

operation.

A

WSIFMessage

class

is

a

container

for

a

set

of

named

parts.

The

WSIFMessage

interface

separates

the

actual

representation

of

the

data

from

the

abstract

type

defined

by

WSDL.

WSDL

defines

messages

as

XML

schema

types.

There

are

two

natural

ways

to

represent

a

WSDL

message

in

a

run-time

environment:

v

The

generated

Java

class,

based

on

a

WSDL

to

Java

mapping

such

as

that

provided

by

a

Java

API

for

XML-based

remote

procedure

call

(JAX-RPC).

v

The

XML

representation

of

the

data,

for

example

using

SOAP

Encoding.

602

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP

Each

option

offers

benefits

in

different

scenarios.

The

Java

class

is

the

natural

approach

when

WSIF

is

used

in

a

standard

Java

client.

However,

in

other

scenarios

where

WSIF

is

used

in

an

intermediary,

it

might

be

more

efficient

to

keep

a

WSDL

message

in

the

SOAP

encoded

format.

The

style

used

to

define

messages

must

be

consistent

within

the

message,

so

all

the

parts

in

one

message

must

be

consistent.

A

string

-

getRepresentationStyle()

-

always

returns

null.

This

indicates

that

parts

on

this

WSIFMessage

class

are

represented

as

Java

objects.

You

add

parts

to

a

WSIFMessage

class

with

the

setObjectPart

or

setTypePart

methods.

Each

part

is

named.

Part

names

within

a

message

are

unique.

If

you

set

a

part

more

than

once,

the

last

setting

is

the

one

that

is

used.

You

retrieve

parts

by

name

from

a

WSIFMessage

class

with

the

getObjectPart

or

getTypePart

methods.

If

the

named

part

does

not

exist,

the

method

returns

a

WSIFException

exception.

You

can

use

Iterators

to

retrieve

parts

from

the

message

through

the

getParts()

and

getPartNames()

methods.

The

order

in

which

you

set

the

parts

is

not

important,

but

the

message

implementation

might

be

more

efficient

if

the

parts

are

set

in

the

parameter

order

specified

by

WSDL.

WSIFMessage

classes

are

cloneable

and

serializable.

If

the

parts

set

are

not

cloneable,

the

implementation

can

try

to

clone

them

using

serialization.

If

the

parts

are

not

serializable

either,

then

a

CloneNotSupportedException

exception

is

thrown

if

cloning

is

attempted.

WSIFMessage

classes

can

be

sent

between

Java

Virtual

Machines

(JVMs).

In

addition

to

the

containing

parts,

a

WSIFMessage

class

also

has

a

message

name.

This

is

required

for

operation

overloading,

which

is

supported

by

WSDL

and

WSIF.

Here

is

the

Javadoc

for

the

WSIFMessage

interface.

WSIF

API

reference:

Finding

a

port

factory

or

service

To

find

a

port

you

use

the

WSIFService

interface,

which

is

a

factory

for

ports.

The

port

factory

models

and

supports

the

WSDL

approach

in

which

a

service

is

available

on

one

or

more

ports.

The

factory

hides

the

implementation

of

the

port

from

the

user.

The

Web

Services

Invocation

Framework

(WSIF)

supports

dynamic

ports

that

are

based

on

a

particular

protocol

and

transport,

and

configured

using

the

WSDL

at

run-time.

For

example,

the

dynamic

SOAP

port

can

invoke

any

SOAP

service

based

on

the

WSDL

description

of

that

service.

Using

this

service

you

can

hide

and

modify

the

set

of

available

ports

at

run-time.

Here

is

the

WSIFService

interface.

To

find

a

service

from

a

WSDL

document

at

a

Web

address,

or

from

a

code-generated

code

base,

you

can

use

the

WSIFServiceFactory

class.

WSIFService

interface

The

WSIFService

interface

is

responsible

for

generating

an

instance

of

the

WSIFOperation

interface

to

use

for

a

particular

invocation

of

a

service

operation.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

603

http://www.w3.org/TR/SOAP

The

Web

Services

Invocation

Framework

(WSIF)

service

stores

a

list

of

providers

that

can

each

generate

a

WSIF

operation

for

a

particular

WSDL

binding.

This

service

looks

up

providers

by

the

provider

type.

For

example

the

service

knows

about

one

provider

that

handles

SOAP

ports

and

other

providers

that

handle

Java

ports

that

you

define.

In

a

managed

environment,

the

container

can

configure

the

WSIFService

interface.

Here

is

the

Javadoc

for

the

WSIFService

interface.

A

WSIFService

implementation

can

choose

a

preferred

port

based

on

a

number

of

criteria.

The

WSIFService

implementation

can

set

the

preferred

port,

or

it

can

be

set

by

calling

the

setPreferredPort

method.

The

getPort

method

returns

an

instance

of

the

WSIFPort

class

that

is

used

to

invoke

a

service

on

the

port.

Variants

of

the

getPort

method

are

used

to

define

the

characteristics

of

the

port

to

be

created:

v

the

getPort

method

with

no

arguments

returns

the

preferred

port.

v

the

getPort

method

with

a

string

argument

returns

the

port

named

by

the

string

containing

the

WSDL

identifier

for

the

selected

port.

The

return

value

is

null

if

the

port

name

is

not

valid.

If

a

port

is

chosen

(either

by

the

WSIFService

implementation,

or

by

the

setPreferredPort

method),

then

the

WSIFService

implementation

validates

that

the

relevant

provider

exists

and

is

configured.

If

the

provider

fails

this

validation

check,

the

WSIFService

interface

chooses

any

other

port

for

which

a

provider

is

defined.

For

example,

if

the

preferred

port

is

SOAP

over

JMS

but

the

JMS

libraries

are

not

available,

then

WSIF

chooses

another

port.

If

no

preferred

port

is

set,

or

the

preferred

port

is

not

available,

the

WSIF

implementation

chooses

the

first

available

port

listed

in

the

WSDL.

The

getAvailablePortNames()

method

returns,

as

an

iteration

of

strings,

the

list

of

WSDL

port

names

filtered

by

the

set

of

available

providers.

The

getDefinition()

method

returns

the

WSDL

definition

for

the

service.

If

the

WSDL

definition

is

not

available,

this

method

returns

null.

WSIFServiceFactory

class

To

find

a

service

from

a

WSDL

document

at

a

Web

address,

or

from

a

code-generated

code

base,

you

can

use

the

WSIFServiceFactory

class.

Note:

When

you

create

a

WSIFService

interface

from

a

WSIFServiceFactory

class,

you

can

specify

a

ClassLoader

object

to

use

in

locating

the

WSDL

file.

You

need

to

specify

this

object

when

the

WSDL

file

is

in

a

JAR

file.

In

such

a

case,

specify

the

location

of

the

WSDL

file

relative

to

the

root

of

the

JAR

file,

using

forward

slashes

(/)

with

the

preceding

slash

removed.

For

example:

com/myCompany/wsdl/MyWSDLFile.wsdl

rather

than

/com/myCompany/wsdl/MyWSDLFile.wsdl

Here

is

the

Javadoc

for

the

WSIFServiceFactory

class.

604

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

The

WSIFServiceFactory

class

returns

null

if

no

service

is

found

with

that

identifier.

WSIF

API

reference:

Using

ports

A

WSIFPort

interface

handles

the

details

of

invoking

an

operation.

The

port

provides

access

to

the

actual

implementation

of

the

service.

A

WSDL

document

can

provide

many

different

WSDL

bindings,

and

these

bindings

can

drive

multiple

ports.

The

client

can

choose

a

port,

the

service

stub

can

choose

a

port,

or

the

Web

Services

Invocation

Framework

(WSIF)

can

choose

a

default

port.

The

port

offers

an

interface

to

retrieve

an

Operation

object.

A

WSIFOperation

interface

offers

the

ability

to

execute

the

given

operation.

If

the

port

is

serialized

and

deserialized

at

a

later

time,

then

WSIF

ensures

that

the

client

provides

the

correct

information

to

the

server

to

identify

the

instance.

If

the

server

instance

is

no

longer

available,

then

it

is

up

to

the

server

to

decide

whether

to

throw

a

fault

or

provide

a

new

instance.

That

behavior

can

depend

on

the

type

of

service.

For

example,

for

an

enterprise

bean

the

WSIFPort

interface

stores

the

EJB

Home,

and

uses

it

to

select

the

bean

before

each

invocation.

It

is

the

responsibility

of

the

client

to

serialize

or

maintain

the

port

instance

if

it

wants

instance

support.

The

client

must

create

a

new

operation

and

messages

for

each

invocation.

Here

is

the

WSIFPort

interface.

Here

is

the

WSIFOperation

interface.

WSIFPort

interface

The

port

implements

a

factory

method

for

the

WSIFOperation

interface.

Here

is

the

Javadoc

for

the

WSIFPort

interface.

The

createOperation(String)

method

returns

a

new

instance

of

a

WSIFOperation

object.

If

the

operationName

value

is

not

valid

or

the

operation

is

overloaded,

then

the

method

throws

an

exception.

The

createOperation(String,

String,

String)

method

supports

overloaded

WSDL

operations.

You

can

overload

based

on

the

input

parameters,

but

not

on

the

output

parameters.

It

is

the

duty

of

the

client

to

call

the

close

method

when

a

port

is

no

longer

in

use.

In

many

cases,

where

the

transport

is

sessionless,

like

HTTP,

this

has

no

effect.

However,

if

the

port

is

using

a

session-based

protocol

such

as

MQSeries,

Java

Messaging

Service

(JMS),

or

External

Call

Interface

(ECI),

this

supports

the

port

in

caching

an

open

connection

to

the

server

and

then

closing

it

as

required.

Responsibly-written

applications

will

call

the

close

method

if

appropriate.

WSIFOperation

interface

You

use

the

WSIFOperation

interface

to

invoke

a

service

based

on

a

particular

binding.

The

WSIFOperation

interface

is

the

run-time

representation

of

an

operation.

This

interface

provides

methods

to

create

input,

output,

and

fault

messages,

and

to

invoke

the

operation.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

605

Here

is

the

Javadoc

for

the

WSIFOperation

interface.

createInputMessage,

createOutputMessage

and

createFaultMessage

These

are

factory

methods

to

create

the

messages

required

by

the

invocation

methods.

All

invocation

methods

require

an

input

message.

executeRequestResponseOperation

This

method

invokes

“In

Out”

operations.

executeInputOnlyOperation

This

method

invokes

“In

only”

operations.

executeRequestResponseOperation

If

this

method

is

used

for

invocation,

then

an

output

and

a

fault

message

are

instantiated

and

passed

on

the

call

to

the

method.

If

the

method

returns

true,

then

the

output

message

contains

the

response

message.

If

the

message

returns

false,

then

a

fault

occurred

and

is

returned

in

the

fault

message.

executeRequestResponseAsync

This

method

allows

“In

Out”

operations

to

be

invoked

with

the

reply

handled

using

an

alternate

thread.

Use

of

this

method

is

discussed

further

in

WSIFOperation

-

Asynchronous

interactions.

setContext

and

getContext

Use

of

these

methods

is

discussed

in

WSIFOperation

-

Context.

All

of

the

executeNnnn

methods

fail

with

an

exception

if

there

is

an

error

in

processing

the

request

in

the

WSIF

provider.

Setting

the

timeouts

for

synchronous

and

asynchronous

operations

is

discussed

in

WSIFOperation

-

Synchronous

and

asynchronous

timeouts.

WSIFOperation

-

Context:

Although

WSDL

does

not

define

context,

a

number

of

uses

of

the

Web

Services

Invocation

Framework

(WSIF)

require

the

ability

to

pass

context

to

the

port

that

is

invoking

the

service.

For

example,

a

SOAP

over

HTTP

port

might

require

an

HTTP

user

name

and

password.

This

information

is

specific

to

the

invocation,

but

is

not

a

parameter

of

the

service.

In

general,

context

is

defined

as

a

set

of

name-value

pairs.

However,

because

Web

services

tend

to

define

the

types

of

data

using

XML

schema

types,

WSIF

represents

the

name-value

pairs

of

the

context

using

the

same

representation

that

WSIFMessage

classes

use;

that

is

a

set

of

named

parts,

each

of

which

equates

to

an

instance

of

an

XML

schema

type.

You

use

the

WSIFOperation

interface

setContext

and

getContext

methods

to

pass

context

information

to

the

binding.

The

port

implementation

can

use

this

context,

for

example

to

update

a

SOAP

header.

There

is

no

definition

of

how

a

port

can

utilize

the

context.

The

parameter

of

the

setContext

and

getContext

methods

is

a

WSIFMessage

interface,

and

this

interface

has

named

parts

defining

the

context

information.

The

WSIFConstants

class

defines

constants

for

the

part

names

that

can

be

set

in

a

context

WSIFMessage

interface.

The

following

code

fragment

shows

how

to

set

the

user

name

and

password

for

HTTP

basic

authentication:

//

set

a

basic

authentication

header

WSIFMessage

headers

=

new

WSIFDefaultMessage();

headers.setObjectPart(

WSIFConstants.CONTEXT_HTTP_USER,

“user

name”

);

headers.setObjectPart(

WSIFConstants.CONTEXT_HTTP_PSWD,

“password”

);

operation.setContext(

headers

);

606

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.w3.org/TR/SOAP

The

WSIFOperation

interface

ignores

context

parts

that

it

does

not

support.

For

example,

the

previous

code

is

ignored

by

the

WSIF

Java

provider.

The

WSIFConstants

class

includes

the

following

constants

that

can

be

used

for

context

part

names:

v

CONTEXT_HTTP_USER

v

CONTEXT_HTTP_PSWD

v

CONTEXT_SOAP_HEADERS

The

HTTP

header

values

are

expected

to

be

of

type

String,

and

the

SOAP

header

value

is

expected

to

be

of

type

java.util.List,

which

should

contain

entries

of

type

org.w3c.dom.Element.

WSIFOperation

-

Asynchronous

interactions

reference:

The

Web

Services

Invocation

Framework

(WSIF)

supports

asynchronous

operation.

In

this

mode

of

operation,

the

client

puts

the

request

message

as

part

of

one

transaction,

and

carries

on

with

the

thread

of

execution.

The

response

message

is

then

handled

by

a

different

thread,

with

a

separate

transaction.

The

SOAP

over

JMS

and

native

JMS

providers

are

the

only

WSIF

providers

that

currently

support

asynchronous

operation.

The

WSIFPort

class

uses

the

supportsAsync

method

to

test

if

asynchronous

operation

is

supported.

An

asynchronous

operation

is

initiated

with

the

WSIFOperation

interface

executeRequestResponseAsync

method.

This

method

lets

a

Remote

Procedure

Call

(RPC)

method

be

invoked

asynchronously.

The

method

returns

before

the

operation

is

completed,

and

the

thread

of

execution

continues.

The

response

to

the

asynchronous

request

is

processed

by

the

WSIFOperation

interface

fireAsyncResponse

or

processAsyncResponse

methods.

To

initiate

the

request,

there

are

two

forms

of

the

executeRequestResponseAsync

method:

public

WSIFCorrelationId

executeRequestResponseAsync

(WSIFMessage

input,

WSIFResponseHandler

handler)

and

public

WSIFCorrelationId

executeRequestResponseAsync

(WSIFMessage

input)

executeRequestResponseAsync(WSIFMessage

input,

WSIFResponseHandler

handler)

This

method

takes

an

input

message

and

a

WSIFResponseHandler

handler.

The

handler

is

invoked

on

another

thread

when

the

operation

completes.

When

using

this

method

the

client

listener

calls

the

fireAsyncResponse

method,

which

then

calls

the

WSIFResponseHandler

interface

executeAsyncResponse

method.

Here

is

the

Javadoc

for

the

WSIFResponseHandler

interface.

executeRequestResponseAsync(WSIFMessage

input)

This

method

only

takes

an

input

message,

and

does

not

use

a

response

handler.

The

client

listener

processes

the

response

by

calling

the

WSIFOperation

interface

processAsyncResponse

method.

This

process

updates

the

WSIFMessage

output

and

fault

messages

with

the

result

of

the

request.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

607

http://www.w3.org/TR/SOAP

WSIF

supports

correlation

between

the

asynchronous

request

and

response.

When

the

request

is

sent,

the

WSIFOperation

object

is

serialized

into

the

WSIFCorrelationService

object.

The

executeRequestResponseAsync

methods

return

a

WSIFCorrelationId

object

which

identifies

the

serialized

WSIFOperation

object.

The

client

listener

can

use

this

to

match

a

response

to

a

particular

request.

The

correlation

service

is

located

with

the

WSIFCorrelationServiceLocator

class

getCorrelationService()

method

in

the

org.apache.wsif.utils

package.

In

a

managed

container

a

default

correlation

service

is

defined

in

the

default

Java

Naming

and

Directory

Interface

(JNDI)

namespace

using

the

name:

java:comp/wsif/WSIFCorrelationService.

If

this

correlation

service

is

not

available,

then

WSIF

uses

the

WSIFDefaultCorrelationService.

Here

is

the

Javadoc

for

the

WSIFCorrelationService

interface.

and

this

is

the

correlator

ID:

public

interface

WSIFCorrelator

extends

Serializable

{

public

String

getCorrelationId();

}

The

client

must

implement

its

own

response

message

listener

or

message

data

base

so

that

it

can

recognize

the

arrival

of

response

messages.

This

client

implementation

manages

the

correlation

of

the

response

message

to

the

request

and

call

of

one

of

the

asynchronous

response

processing

methods.

As

an

example

of

the

requirement

for

a

client

listener,

the

following

code

fragment

shows

what

can

be

in

the

onMessage

method

of

a

Java

Messaging

Service

(JMS)

listener:

public

void

onMessage(Message

msg)

{

WSIFCorrelationService

cs

=

WSIFCorrelationServiceLocator.getCorrelationService();

WSIFCorrelationId

cid

=

new

JmsCorrelationId(

msg.getJMSCorrelationID()

);

WSIFOperation

op

=

cs.get(

cid

);

op.fireAsyncResponse(

msg

);

}

WSIFOperation

-

Synchronous

and

asynchronous

timeouts

reference:

When

you

use

the

Web

Services

Invocation

Framework

(WSIF)

with

the

Java

Messaging

Service

(JMS)

you

can

set

timeouts

for

synchronous

and

asynchronous

operations.

Default

values

for

these

timeouts

are

defined

in

the

WSIF

properties

file:

#

maximum

number

of

milliseconds

to

wait

for

response

to

synchronous

request.

#

Default

value

if

not

defined

is

to

wait

forever.

wsif.syncrequest.timeout=10000

#

maximum

number

of

seconds

to

wait

for

a

response

to

an

async

request.

#

if

not

defined

on

invalid

defaults

to

no

timeout

wsif.asyncrequest.timeout=60

If

you

use

these

default

values,

a

synchronous

request

(such

as

a

WSIFOperation

interface

executeRequestResponseOperation

method

call)

times

out

after

ten

seconds,

and

an

asynchronous

request

(such

as

a

WSIFOperation

interface

executeRequestResponseAsync

method

call)

times

out

after

sixty

seconds.

Note:

608

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

code

that

processes

both

of

these

timeout

values

uses

milliseconds

as

its

unit

of

time.

The

WSIFProperties

class

getAsyncTimeout

method

multiplies

the

wsif.asyncrequest.timeout

value

by

1000,

to

convert

the

value

from

seconds

to

milliseconds.

You

can

override

these

default

values

for

a

given

request

by

setting

a

JMS

property

on

the

operation

request

with

the

<jms:property>

and

<jms:propertyValue>

WSDL

elements.

Set

the

name

of

the

property

to

be

the

name

of

the

timeout

from

the

WSIF

properties

file.

The

following

example

sets

synchronous

requests

to

time

out

after

two

minutes

(120

seconds):

<jms:propertyValue

name=“wsif.syncrequest.timeout”

type=“xsd:string”

value=“120000”/>

and

the

following

example

disables

asynchronous

timeouts

(a

value

of

zero

means

wait

forever):

<jms:propertyValue

name=“wsif.asyncrequest.timeout”

type=“xsd:string”

value=“0”/>

When

an

asynchronous

timeout

expires,

no

listener

or

message

data

base

waiting

for

the

response

is

notified.

The

asynchronous

timeout

is

only

used

to

tell

the

correlation

service

that

the

stored

WSIFOperation

can

be

deleted.

Chapter

8.

Web

Services

Invocation

Framework

(WSIF):

Enabling

Web

services

609

610

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

9.

IBM

WebSphere

UDDI

Registry

Welcome

to

the

IBM

WebSphere

UDDI

Registry.

Use

the

table

of

contents

(on

the

left

and

below)to

view

the

various

topics

for

a

specific

product

or

technology.

Select

the

topic

you

are

interested

in

to

either

open

documentation

locally

or

find

information

about

how

to

locate

documentation.

v

Terminology

v

Definitions

v

Overview

of

UDDI

Registries

v

Installing

the

UDDI

Registry

Component

v

Use

of

a

remote

DB2

Database

v

Reinstalling

the

UDDI

Registry

Component

v

Removing

the

UDDI

Registry

application

from

a

deployment

manager

cell

v

Removing

the

UDDI

Registry

application

from

a

single

appserver

v

Configuring

the

UDDI

Registry

v

Administering

the

UDDI

Registry

v

The

UDDI

user

console

v

5.0.2 +

5.0.2 +

Custom

Taxonomy

Support

in

the

UDDI

Registry

v

The

SOAP

Application

Programming

Interface

v

The

application

programming

interface

v

The

EJB

Interface

v

UDDI4J

v

Problem

determination

v

Messages

v

Samples

v

Installation

Verification

Program

(IVP)

v

Reporting

Problems

with

the

IBM

WebSphere

UDDI

Registry

v

Feedback

UDDI

Registry

terminology

The

directory

location

of

the

WebSphere

Application

Server

is

referred

to

as

<AppServer-install-dir>

and

the

directory

location

of

the

WebSphere

Deployment

manager

as

<DeploymentManager-install-dir>.

The

default

locations

are:

Windows

<AppServer-install-dir>

C:\Progra~1\WebSphere\AppServer\

<DeploymentManager-install-dir>

C:\Progra~1\WebSphere\DeploymentManager\

5.0.1 +

Linux/Solaris/HP

Platforms

<AppServer-install-dir>

/opt/WebSphere/AppServer/

<DeploymentManager-install-dir>

/opt/WebSphere/DeploymentManager/

AIX

Platform

<AppServer-install-dir>

/usr/WebSphere/AppServer/

©

Copyright

IBM

Corp.

2003

611

<DeploymentManager-install-dir>

/usr/WebSphere/DeploymentManager/

z/OS

Platform

<AppServer-install-dir>

/WebSphere390/V5R0M0/AppServer/

<DeploymentManager-install-dir>

/WebSphere390/V5R0M0/DeploymentManager/

UDDI

Registry

definitions

bindingTemplate

Technical

information

about

a

service

entry

point

and

construction

specifications.

businessEntity

Information

about

the

party

who

publishes

information

about

a

family

of

services.

businessService

Descriptive

information

about

a

particular

service.

publisherAssertion

Information

about

a

relationship

between

two

parties,

asserted

by

one

or

both.

tModel

Short

for

technical

model.

A

tModel

is

a

data

structure

representing

a

reusable

concept,

such

as

a

Web

service

type,

a

protocol

used

by

Web

services,

or

a

category

system.

tModel

keys

within

a

service

description

are

a

technical

″fingerprint″

that

you

can

use

to

trace

the

compatibility

origins

of

a

given

service.

They

provide

a

common

point

of

reference

that

allows

you

to

identify

compatible

services.

tModels

are

used

to

establish

the

existence

of

a

variety

of

concepts

and

to

point

to

their

technical

definitions.

tModels

that

represent

value

sets

such

as

category,

identifier,

and

relationship

systems

are

used

to

provide

additional

data

to

the

UDDI

core

entities

to

facilitate

discovery

along

a

number

of

dimensions.

This

additional

data

is

captured

in

keyedReferences

that

reside

in

category

Bags,

identifierBags,

or

publisherAssertions.

The

tModelKey

attributes

in

these

keyedReferences

refer

to

the

value

set

that

relates

to

the

concept

or

namespace

being

represented.

The

keyValues

contain

the

actual

values

from

that

value

set.

In

some

cases

keyNames

are

significant,

such

as

for

describing

relationships

and

when

using

the

general

keywords

value

set.

In

all

other

cases,

however,

keyNames

are

used

to

provide

a

human

readable

version

of

what

is

in

the

keyValue.

An

overview

of

IBM

UDDI

Registries

The

Universal

Description,

Discovery

and

Integration

(UDDI)

specification

defines

a

way

to

publish

and

discover

information

about

Web

services.

The

term

’Web

service’

describes

specific

business

functionality

exposed

by

a

company,

usually

through

an

Internet

connection,

to

allow

another

company,

or

its

subsidiaries,

or

software

program

to

use

the

service.

Universal

Business

Registries

(IBM

UBR)

The

IBM

Universal

Business

Registry

is

one

of

a

group

of

Web-based

registries

that

expose

information

about

a

business

or

other

entity

and

its

technical

interfaces

(or

612

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

APIs).

These

registries

are

run

by

multiple

Operator

Sites,

and

can

be

used

by

anyone

who

wants

to

make

information

available

about

one

or

more

businesses

or

entities,

as

well

as

anyone

who

wants

to

find

that

information.

Although

there

are

Universal

Business

Registries

(sometimes

referred

to

as

’public

UDDI

registries’)

hosted

worldwide,

including

one

hosted

by

IBM,

enterprises

may

wish

to

host

their

own

internal

registries

behind

their

firewall

to

better

manage

their

internal

implementation

of

Web

services.

For

more

detailed

information

about

UDDI

in

general

visit

http://www.uddi.org

IBM

WebSphere

UDDI

Registry

The

IBM

WebSphere

UDDI

Registry

is

a

directory

for

Web

services

that

is

implemented

using

the

UDDI

specifications.

In

contrast

with

the

IBM

UBR,

this

component

of

WebSphere

Network

Deployment

is

a

product

offering

for

companies

or

industries

to

implement.

A

critical

component

of

IBM’s

dynamic

e-business

infrastructure,

IBM

WebSphere

UDDI

Registry

solves

the

problem

of

discovery

of

technical

components

for

an

enterprise

and

its

partners

by:

v

Providing

control,

flexibility

and

confidentiality

so

that

an

enterprise

can

protect

its

e-business

investments

v

Increasing

efficiency

by

making

it

easier

to

identify

technical

assets

v

Leveraging

existing

infrastructures

For

example,

the

IBM

WebSphere

UDDI

Registry

could

be

used

in

the

following

way

within

a

large

enterprise:

A

company

has

a

legacy

application

that

provides

telephone

numbers

and

Human

Resources

(HR)

information

of

employees.

This

is

turned

into

a

Web

service

and

published

to

the

registry.

A

developer

in

the

same

company

needs

to

write

an

application

for

a

procurement

function

that

also

needs

to

provide

HR

information

to

the

supplier.

The

application

should

allow

the

supplier

to

have

access

to

the

employee

account

codes

once

the

employee

provides

his

name

or

serial

number.

Before

Web

Services,

the

developer

had

three

choices:

1.

Would

not

have

known

about

the

similar

application

2.

Knew

about

it

but

could

not

reuse

due

to

technical

barriers

3.

Knew

about

it

and

reused

only

after

significant

time

and

negotiation

With

UDDI,

the

developer

can

search

for

the

″web

service″

and

reuse

the

existing

technical

component

in

their

new

application

for

the

supplier

in

a

matter

of

minutes.

The

developer

saves

time

and

gets

the

application

up

and

running

sooner

than

they

would

have

otherwise

--

increasing

efficiency

and

saving

the

company

time

and

money.

The

IBM

WebSphere

UDDI

Registry

is

the

first

version

2

standard-compliant

UDDI

registry

for

private

enterprise

work.

The

IBM

WebSphere

UDDI

Registry:

v

Supports

the

public

UDDI

V2.0

standard

v

Leverages

the

proven,

reliable

WebSphere

Application

Server

technology

v

Uses

a

relational

database,

such

as

DB2,

for

its

persistent

store.

Chapter

9.

IBM

WebSphere

UDDI

Registry

613

http://www.uddi.org

Installing

and

setting

up

a

UDDI

Registry

If

you

wish

to

use

the

UDDI

User

Console

using

Internet

Explorer

as

your

Web

browser,

and

using

SSL,

you

must

use

Internet

Explorer

V5.5

with

SP2

and

security

fix

Q321232

(which

must

be

applied

in

that

order),

or

later.

Choice

of

database

product

to

be

used

as

the

persistence

store

Cloudscape

Restriction

Cloudscape

Network

Server

Version

5.1

requires

a

WebSphere

Version

5

datasource

to

utilize

the

multiple

connection

features.

As

IBM

WebSphere

UDDI

Registry

uses

a

WebSphere

Version

4

datasource,

this

precludes

other

connections

to

the

Cloudscape

database

when

the

UDDI

Registry

application

is

in

the

started

state.

The

UDDI

Registry

application

can

use

either

DB2

or

Cloudscape

as

the

persistence

store

for

the

registry

data.

However,

in

a

z/OS

environment,

you

should

use

DB2.

If

you

use

Cloudscape,

you

must

restrict

the

WLM

policy

to

the

server

to

allow

only

one

servant

process.

Steps

for

this

task

You

are

given

the

option

to

install

the

UDDI

Registry

as

part

of

the

IBM

WebSphere

Application

Server

for

z/OS

ISPF

Customization

Dialog.

See

WebSphere

Application

Server

for

z/OS

V5

Installation

and

Customization

for

more

information

on

how

to

install

the

UDDI

Registry.

The

latest

version

of

this

publication

is

available

on

the

product

library

page

at

URLhttp://www.ibm.com/software/webservers/appserv/zos_os390/library.html

In

most

cases

you

will

probably

choose

option

1,

and

install

the

UDDI

Registry

into

a

deployment

manager

cell,

but

you

might

find

that

option

2,

to

install

the

UDDI

Registry

into

a

standalone

application

server,

is

useful

for

development

or

test

purposes.

Note:

1.

Several

WebSphere

commands

are

used

during

the

following

procedures,

some

of

which

must

execute

on

the

DeploymentManager

and

some

of

which

must

execute

on

the

target

Application

server.

The

instructions

distinguish

which

is

appropriate

for

each

command.

The

WebSphere

commands

are

in

the

bin

subdirectory

of

the

appropriate

WebSphere

install

tree.

To

ensure

correct

operation

of

these

commands,

do

one

of

the

following:

v

Ensure

that

the

appropriate

bin

subdirectory

is

in

your

path

prior

to

executing

the

command

v

Change

directory

to

the

appropriate

bin

subdirectory

v

Fully

qualify

the

path

to

the

commands
2.

It

is

also

recommended

that

you

execute

setupCmdline.bat

(on

Windows)

or

./setupCmdline.sh

(on

Unix

platforms)

prior

to

executing

any

WebSphere

commands.

The

following

table

lists

the

UDDI

Registry

files,

and

the

locations

into

which

they

are

placed

by

the

installation.

The

Location

column

shows

the

subdirectory

under

the

WebSphere

DeploymentManager

install

directory.

For

example,

if

you

had

installed

IBM

WebSphere

Application

Server

with

Network

Deployment

option

onto

a

machine

running

Windows,

and

had

used

the

default

directory,

then

a

614

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

location

of

installableApps

would

mean

that

the

file

had

been

placed

into

the

C:\Progra~1\WebSphere\DeploymentManager\installableApps

directory.

For

Windows

platforms,

read

the

“/”

directory

separator

in

the

location

column

as

a

“\”

directory

separation

character.

Files

Purpose

Location

uddi.ear

The

UDDI

Registry

application

itself,

which

is

packaged

and

runs

as

an

enterprise

application

installableApps

uddi.properties

Provides

configuration

properties

for

the

UDDI

Registry

application

properties

uddiresourcebundles.jar

Contains

system

messages

for

the

UDDI

Registry

application

lib

uddicloudscapeuserfunc.jar

Contains

functions

that

are

used

by

Cloudscape

if

the

Cloudscape

database

is

used

with

the

UDDI

Registry

lib

setupuddi.jacl

Administrative

script

to

create

a

JDBC

driver

and

datasource

for

the

UDDI

Registry,

and

to

install

the

UDDI

Registry

application

in

a

DeploymentManager

Cell

UDDIReg/scripts

setupuddimessages.jar

Contains

setup

and

install

messages

for

the

UDDI

Registry

application

lib

removeuddi.jacl

Administrative

script

to

undo

the

effects

of

setupuddi.jacl

UDDIReg/scripts

appserverremoveuddi.jacl

Administrative

script

to

undo

the

effects

of

appserversetupuddi.jacl

UDDIReg/scripts

appserversetupuddi.jacl

Administrative

script

to

create

a

JDBC

driver

and

datasource

for

the

UDDI

Registry,

and

to

install

the

UDDI

Registry

application

in

a

single,

stand-alone,

application

server

UDDIReg/scripts

SetupDB2UDDI.jar

The

’UDDI

DB2

Setup

Wizard’,

to

create

and

pre-load

the

UDDI

Registry

database

if

DB2

is

to

be

used

as

the

persistence

store

UDDIReg/scripts

UDDI20

(directory)

Cloudscape

directory

containing

the

UDDI

Registry

tables

and

pre-loaded

data

bin

uddiejbclient.jar

Class

library

for

use

when

writing

an

EJB

client

to

access

the

UDDI

Registry

UDDIReg/ejb

Various

javadoc

files

JAVADOC

to

describe

the

EJB

interface

to

the

UDDI

Registry

UDDIReg/ejb/javadoc

UDDITaxonomyTools.jar

Provides

tools

for

supporting

custom

taxonomies

with

the

UDDI

Registry

UDDIReg/scripts

CustomTaxonomy.properties

Provides

configuration

properties

to

be

used

the

the

UDDITaxonomyTools

UDDIReg/scripts

UDDIUtilityTools.jar

Provides

support

for

import/export

of

UDDI

entities

UDDIReg/scripts

UDDIUtilityTools.properties

Provides

configuration

properties

for

the

UDDI

Utility

Tools

UDDIReg/scripts

If

you

intend

to

run

in

a

Deployment

Manager

Cell

then

complete

the

following

task

-

Installing

the

UDDI

Registry

into

a

deployment

manager

cell

Chapter

9.

IBM

WebSphere

UDDI

Registry

615

If

you

intend

to

run

in

a

single

WebSphere

Application

server,

then

complete

the

following

task

-

Installing

the

UDDI

Registry

into

a

single

WebSphere

Application

Server

Continue

with

Configuring

the

UDDI

Registry.

Installing

the

UDDI

Registry

into

a

deployment

manager

cell

The

diagram

following

shows

the

configuration

used

for

the

Deployment

Manager

example

configurations

that

follow:

DMGR

server

Server = server1Server = serverX

UDDI

database

UDDI

tcpip = myhome.headoffice.xyz.com

tcpip = myriad.headoffice.xyz.com

In

this

configuration,

several

nodes

are

federated

to

the

Deployment

Manager

(dmgr)

on

myhome.headoffice.xyz.com,

from

which

UDDI

is

deployed

to

the

host

myriad.headoffice.xyz.com.

These

instructions

assume

that

the

installation

has

been

performed

into

a

clean

environment.

If

you

are

installing

into

an

existing

deployment

manager

cell

skip

to

step

6.

1.

Install

the

WebSphere

Application

Server

for

z/OS

product.

2.

Install

one

or

more

base

application

servers

which

will

form

the

cell

of

servers.

One

of

these

should

be

the

application

server

in

which

you

plan

to

run

an

instance

of

the

UDDI

Registry.

You

can

run

more

than

one

instance

of

the

UDDI

Registry

within

a

cell

of

servers:

the

UDDI

Registry

application

name

is

suffixed

with

the

target

node

and

server

names

to

make

it

unique

within

the

cell

(See

also

″Advanced

use

of

setupuddi.jacl″),

but

you

can

only

run

one

UDDI

instance

within

each

application

server.

3.

Ensure

that

the

target

application

server

is

stopped.

4.

Issue

the

following

command

from

the

install_root/bin

directory:

START

dmgr_proc_name,JOBNAME=server_short_name,

ENV=cell_short_name.node_short_name.server_short_name

Note:

You

must

enter

this

command

on

a

single

line.

It

is

split

here

for

display

purposes.

5.

Run

addNode

(addNode.sh

on

Unix

and

Linux

platforms)

on

each

of

the

application

server(s)

to

add

it

as

a

node

into

the

cell.

(How

to

run

addNode

is

616

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

described

elsewhere

in

the

Information

Center

-

see

addNode

command).

For

example:

addnode

myhome-

where

myhome

is

the

IP

name

of

your

deployment

manager

host.

6.

Copy

the

uddiejbclient.jar

file

and

the

EJB

javadoc

directory

tree

from

the

UDDIReg/ejb

subdirectory

of

the

deployment

manager

install

tree

onto

any

machine(s)

where

you

will

be

creating

EJB

clients

to

access

the

UDDI

Registry.

7.

If

you

have

any

global

configuration

properties

that

are

common

to

any

UDDI

Registries

that

you

install

into

this

cell,

you

can

edit

the

uddi.properties

file

in

the

properties

subdirectory

of

the

deployment

manager

install

tree

to

set

them

up.

(See

the

section

on

Configuring

global

UDDI

properties

for

more

details

about

the

global

configuration

properties).

8.

If

required,

edit

the

security

permissions

for

the

UDDI

Registry

application.

You

should

only

do

so

if

you

have

a

thorough

understanding

of

Java

2

security

issues,

and

the

way

in

which

security

permissions

are

used

by

WebSphere.

The

permissions

for

the

UDDI

Registry

application

are

set

within

the

was.policy

file,

which

is

part

of

the

uddi.ear.

To

see

and

change

the

contents

of

this

file

you

should:

a.

On

the

deployment

manager,

copy

the

uddi.ear

file

from

the

installableApps

subdirectory

of

the

deployment

manager

install

tree

into

a

temporary

directory.

b.

Un-jar

the

uddi.ear

file

(that

is

unpack

uddi.ear

using

the

’jar

-x’

command).

For

example:

jar

-x

uddi.ear

c.

You

will

find

the

was.policy

file

under

the

META-INF

subdirectory

that

is

created.

This

will

allow

you

to

see

the

permissions

which

have

been

granted

to

the

UDDI

Registry

application,

and

to

make

any

changes

that

are

necessary.

Please

note

that

if

you

make

any

errors

in

changing

this

file,

then

the

UDDI

Registry

application

might

either

fail

to

start,

or

will

encounter

errors

when

trying

to

execute

UDDI

requests.

d.

Re-jar

the

uddi.ear

file

using

the

jar

command.

For

example:

jar

-cf

uddi.ear

.

Note:

NOTE

the

space

and

the

dot

after

uddi.ear)

(This

uses

the

jar

command

in

the

<DeploymentManager-install-
dir>\java\bin

subdirectory

of

the

deployment

manager,

so

you

might

need

to

fully

qualify

the

path

to

the

jar

command.)

e.

Copy

the

new

uddi.ear

back

to

the

installableApps

directory.

9.

Note

that

if

the

target

application

server

is

running,

this

step

will

stop

and

restart

it.

If

you

are

planning

to

use

Cloudscape

for

the

database

in

which

the

UDDI

Registry

will

be

held,

please

read

the

section

″Setting

up

the

UDDI

Registry

to

use

Cloudscape

within

a

deployment

manager

cell″

and

then

return

to

this

point.

If

however,

you

plan

to

use

DB2,

then

please

refer

to

the

section

″Setting

up

the

UDDI

Registry

to

use

DB2

within

a

deployment

manager

cell″

and

then

return

to

this

point.

10.

Ensure

that

the

UDDI

Registry

is

configured

appropriately

for

your

installation,

as

described

in

the

section

on

Configuring

the

UDDI

Registry.

Chapter

9.

IBM

WebSphere

UDDI

Registry

617

11.

Start,

or

stop

and

restart,

the

target

application

server.

This

should

also

start

the

UDDI

Registry

application.

If

not,

use

the

administrative

console

on

the

deployment

manager

to

do

so.

On

z/OS

platforms

run

the

db2profile

script

before

issuing

the

START

command.

This

script

is

located

within

the

DB2

instance’s

home

directory

under

SQLLIB

and

you

can

invoke

it

by

typing:

″.

/home/db2inst1/sqllib/db2profile″

Note:

In

the

above

example,

notice

that

the

’.’

is

followed

by

a

single

space

character.

Note:

On

Unix

and

Linux

platforms

the

DB2

user

must

have

a

db2profile

at

$HOME/sqllib/db2profile.

12.

Your

UDDI

application

is

now

ready

to

use.

Go

to

the

User

Console

section

within

this

Information

Center

or

any

of

the

API

sections.

Advanced

use

of

setupuddi.jacl

A

number

of

symbols

are

defined

at

the

top

of

the

setupuddi.jacl

script.

These

allow

you

to

control

the

amount

of

logging

that

is

performed,

and

to

install

multiple

instances

of

the

UDDI

Registry

within

the

same

cell.

The

symbols

that

you

can

edit

are

as

follows:

v

logEnabled

-

default

setting

is

1,

which

causes

the

progress

of

the

script

to

be

logged.

Setting

this

symbol

to

0

causes

information

logging

to

be

suppressed,

with

only

error

messages

being

output.

v

overwriteExisting

-

default

setting

is

1

which

causes

any

existing

installation

of

the

UDDI

Registry

application

to

be

overwritten.

Setting

this

symbol

to

0

would

cause

the

existing

installation

to

be

left

as

is,

but

would

allow

other

files

used

by

the

UDDI

Registry

to

be

updated.

You

are

recommended

to

only

change

this

setting

under

the

guidance

of

IBM

Service.

v

appName

-

default

setting

is

UDDIRegistry,

which

is

the

first

part

of

the

name

used

for

the

UDDI

Registry

application

installed

into

the

target

server.

To

ensure

uniqueness

of

application

names

within

the

cell,

the

full

application

name

that

will

be

used

is

<appName>.<nodeName>.<server>,

where

<nodeName>

is

the

name

of

the

target

node

and

<server>

is

the

name

of

the

target

server.

You

can

change

the

first

part

of

this

(the

<appName>)

portion

by

changing

the

setting

of

this

symbol

before

running

setupuddi.jacl,

although

it

is

generally

recommended

that

you

do

not

change

this

value.

Continue

with

Configuring

the

UDDI

Registry.

Setting

up

the

UDDI

Registry

to

use

Cloudscape

within

a

deployment

manager

cell

If

you

plan

to

use

Cloudscape

for

the

database

in

which

the

UDDI

Registry

data

will

be

held,

perform

this

task

to

setup

and

install

the

UDDI

Registry

database

to

use

the

supplied

Cloudscape

database.

See

″Choice

of

database

product

to

be

used

as

the

persistence

store″

to

decide

which

database

product

you

should

use

as

your

persistence

store

before

proceeding

further

with

this

task.

This

task

is

part

of

a

parent

task:

Installing

the

UDDI

Registry

into

a

deployment

manager

cell.

You

should

complete

this

task

at

the

appropriate

step

in

the

parent

task.

618

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

This

task

configures

Cloudscape

on

the

host

where

you

want

to

run

the

UDDI

Registry.

Cloudscape

is

supplied

with

WebSphere

Application

Server.

In

this

task

you

will

invoke

a

script

called

setupuddi.jacl,

specifying

the

target

node

and

application

server

into

which

the

UDDI

Registry

is

to

be

deployed.

If

the

target

application

server

is

running

when

you

invoke

setupuddi.jacl,

the

script

stops

the

server

and

restarts

the

server

after

it

has

completed

its

operations.

1.

Copy

the

UDDI20

directory

tree

from

the

bin

subdirectory

of

the

deployment

manager

tree

into

the

bin

subdirectory

of

the

target

application

server’s

installation

tree.

2.

Create

a

JDBC

driver

and

datasource

to

provide

access

to

the

UDDI20

Cloudscape

database,

and

install

the

UDDI

Registry

application.

This

is

done

using

the

wsadmin

tool,

using

as

input

the

setupuddi.jacl

script

from

the

UDDIReg/scripts

subdirectory

of

the

Deployment

Manager.

Note

that

this

script

must

be

run

on

the

deployment

manager

node.

You

should

either

run

this

script

from

the

UDDIReg/scripts

subdirectory

where

it

is

located,

or

copy

it

to

some

other

suitable

directory.

Note

that

the

wsadmin

command

is

located

in

the

bin

subdirectory

of

the

deployment

manager

node.The

syntax

for

calling

this

script

for

Cloudscape

is:

wsadmin

-f

setupuddi.jacl

deploymgrpath

servername

nodename

discoveryURLprefix

pathtodb

>

setupuddi.log

where

v

deploymgrpath

is

the

fully

qualified

pathname

of

the

deployment

manager

install

directory,

specified

using

forward

slashes

regardless

of

platform;

for

example

for

Windows,

this

might

be

C:/Progra~1/WebSphere/DeploymentManager

for

Windows,

or,

for

Unix

platforms

it

might

be

/opt/WebSphere/DeploymentManager.

v

servername

is

the

name

of

the

target

server

on

which

you

wish

to

deploy

the

UDDI

Registry,

such

as

server1.

Note

the

the

server

name

entered

is

case

sensitive.

v

nodename

is

the

name

of

the

WebSphere

node

on

which

the

target

server

runs.

Note

the

the

node

name

entered

is

case

sensitive.

v

discoveryURLprefix

is

the

URL

prefix

to

be

used

for

discovery

URLs.

Typically

this

will

be

of

the

form

http://<ip-address>:9080/uddisoap/

-

an

example

of

a

discoveryURLprefix

value

might

be

http://mynode.mylocation.mycompany.com:9080/uddisoap/

v

pathtodb

is

the

path

to

the

UDDI20

database

within

the

bin

subdirectory

of

your

WebSphere

AppServer

installation,

specified

using

forward

slashes

regardless

of

platform;

for

example

for

Windows,

this

might

be

C:/Progra~1/WebSphere/AppServer/bin/UDDI20

and

for

Unix

platforms:

/opt/WebSphere/AppServer/bin/UDDI20

v

>

setupuddi.log

is

an

optional

parameter

to

direct

the

output

to

a

log

file

as

opposed

to

the

default

(which

is

to

the

screen)

For

example

on

Windows

(shown

here

on

multiple

lines

for

publication):

wsadmin

-f

setupuddi.jacl

"C:/Progra~1/WebSphere/DeploymentManager/"

server1

myriad

"http://myriad.headoffice.xyz.com:9080/uddisoap/"

"C:/Progra~1/WebSphere/Appserver/bin/UDDI20"

or,

on

Unix

platforms

(shown

here

on

multiple

lines

for

publication):

Chapter

9.

IBM

WebSphere

UDDI

Registry

619

.

/wsadmin.sh

-f

setupuddi.jacl

"/opt/WebSphere/DeploymentManager/"

server1

myriad

"http://myriad.headoffice.xyz.com:9080/uddisoap/"

"/opt/WebSphere/Appserver/bin/UDDI20"

installs

the

UDDI

Registry

application

into

the

server

server1

running

on

node

myriad,

and

sets

it

up

to

access

the

Cloudscape

UDDI20

database

located

in

the

bin

subdirectory

of

the

application

server.

The

setupuddi.jacl

script:

a.

Creates

a

JDBC

driver

named

UDDI.JDBC.Driver.<nodeName>.<server>

and

a

datasource

named

UDDI.Datasource.<nodeName>.<server>

(where

<nodeName>

is

the

name

of

the

target

node

and

<server>

is

the

name

of

the

target

server,

and

will

replace

any

existing

driver

and

datasource

of

that

name.

b.

Checks

whether

the

UDDI

Registry

application

is

already

installed

and,

if

so,

stop

it

and

uninstall

it.

c.

Updates

the

uddi.properties

configuration

property

file

to

configure

the

discoveryURLprefix

value

that

you

have

specified

and

set

the

persister

property

as

’Cloudscape’,

and

place

this

file

into

the

location

config/cells/<currentcell>/nodes/<nodename>/servers/<servername>/uddi.properties.

d.

Places

a

number

of

files

that

are

needed

by

the

UDDI

Registry

into

the

WebSphere

configuration

repository,

and

updates

the

ws.ext.dirs

list

to

reference

these

files.

e.

Installs

the

UDDI

Registry.

This

script

deploys

the

UDDI

Registry

into

the

configuration

under

the

deployment

manager,

and

then

do

a

Synchronization

to

install

it

into

the

specified

server.

Note:

The

setup

script,

setupuddi.jacl,

cannot

be

used

to

install

the

UDDI

Registry

application

into

a

clustered

application

server.

It

is

possible

to

cluster

the

UDDI

Registry

application

by

installing

UDDI

into

an

unclustered

application

server

using

the

setup

script,

and

then

cluster

that

application

server.

Return

to

the

next

step

in

the

parent

task

Installing

the

UDDI

Registry

into

a

deployment

manager

cell.

Setting

up

the

UDDI

Registry

to

use

DB2

within

a

deployment

manager

cell

To

decide

which

database

product

you

should

use

as

your

persistence

store,

see

″Choice

of

database

product

to

be

used

as

the

persistence

store″.

This

task

is

part

of

a

parent

task:

Installing

the

UDDI

Registry

into

a

deployment

manager

cell.

You

should

complete

this

task

at

the

appropriate

step

in

the

parent

task.

If

you

plan

to

use

DB2

for

the

database

in

which

the

UDDI

Registry

will

be

held,

ensure

that

the

correct

prerequisite

fix

packs

have

been

applied

as

listed

at

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

otherwise

the

startup

of

the

UDDI

DB2

setup

wizard

will

fail.

If

you

plan

to

use

DB2

for

the

database

in

which

the

UDDI

Registry

data

will

be

held,

use

this

task

to

create

and

load

the

UDDI

Registry

database

using

DB2,

and

to

setup

and

install

the

UDDI

Registry

application

to

use

the

DB2

database.

620

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

The

following

steps

should

be

carried

out

on

the

system

on

which

the

target

application

server

is

located

(referred

to

as

the

’target

system’).

In

this

task

you

will

invoke

a

script

called

setupuddi.jacl,

specifying

the

target

node

and

application

server

into

which

the

UDDI

Registry

is

to

be

deployed.

If

the

target

application

server

is

running

when

you

invoke

setupuddi.jacl,

the

script

stops

the

server

and

restarts

the

server

after

it

has

completed

its

operations.

Before

starting

this

task,

ensure

that

you

have

created

an

appropriate

DB2

userid

and

password.

This

same

userid

and

password

must

be

used

throughout

the

following

steps

where

the

DB2

userid

and

password

is

requested.

1.

Create

and

load

the

UDDI

Registry

database.

Note:

5.0.1 +

It

is

recommended

you

use

the

SetupDB2UDDI.jar

command

from

IBM

WebSphere

Application

Server

Version

5.0.1

or

later.

This

is

essential

for

non-English

users.

Note:

5.0.1 +

If

you

have

a

copy

of

the

file

SetupDB2UDDI.jar

in

your

application

server

directory,

then

the

application

of

the

base

and

Network

Deployment

PTFs

will

not

update

SetupDB2UDDI.jar

in

your

application

server

directory.

You

must

apply

the

PTF

for

Network

Deployment

to

your

DeploymentManager

file

structure

to

update

the

SetupDB2UDDI.jar

located

there

(in

the

/UDDIReg/scripts

subdirectory),

and

then

manually

copy

this

jar

file

to

any

application

server

you

may

wish

to

run

it

on.

If

you

are

planning

to

use

a

remote

DB2

system

on

another

host

machine,

copy

the

SetupDB2UDDI.jar

file

to

the

remote

system

and

run

it

on

that

system

to

create

and

load

the

UDDI

Registry

database

following

the

instructions

within

this

step

and

continue

with

the

next

step

(which

states

″If

using

a

remote

DB2

system

on

another

host

machine..″)

on

the

local

host.

5.0.1 +

Information

on

how

to

do

this

and

where

to

obtain

the

PTF

can

be

found

here.

To

create

the

database

you

use

the

UDDI

DB2

setup

wizard,

which

is

supplied

as

a

shell

script

called

SetupDB2UDDI.sh

in

the

UDDIReg/bin

subdirectory,

by

following

these

steps:

a.

Temporarily

set

your

path

by

typing:

v

On

Windows:

set

path=%WAS_PATH%;%path%

v

On

Unix

or

Linux

platforms:

export

PATH=$WAS_PATH:$PATH

b.

If

necessary,

check

the

log

files

for

the

wizard.

A

log

file

called

UDDIloadDB.log

is

written

to

the

directory

from

which

the

wizard

is

run

(but

note

that

on

Windows

platforms,

if

you

have

decided

not

to

overwrite

an

existing

UDDI20

database,

then

this

fact

is

not

logged,

and

the

log

file

is

not

be

created).

c.

Gather

the

following

information

about

your

DB2

z/OS

configuration

from

your

DB2

administrator:

1)

The

location

of

the

DB2

system

where

you

want

to

persist

the

UDDI

directory.

Chapter

9.

IBM

WebSphere

UDDI

Registry

621

2)

The

name

of

the

DB2

database

that

will

be

used

for

the

UDDI

directory.

If

a

database

does

not

already

exist,

the

UDDI

DB2

setup

wizard

will

create

one

for

you.

3)

The

name

of

the

DB2

tablespace

that

will

be

used

for

the

UDDI

directory.

If

a

tablespace

does

not

already

exist,

the

UDDI

DB2

setup

wizard

will

create

one

for

you.

4)

The

name

of

the

DB2

storage

group

that

will

hold

the

UDDI

directory.

5)

The

name

of

the

volume

on

which

the

DB2

database

should

be

created.

6)

The

name

of

the

alias

of

the

VSAM

catalog

for

DB2

datasets.
d.

Run

the

UDDI

DB2

setup

wizard

The

UDDI

DB2

setup

wizard

supports

two

modes

of

operation:

1)

Create

and

load

To

initiate

this

mode

of

operation,

issue

the

following

command

from

an

MVS

command

line

prompt:

/install_root/UDDIReg/bin/SetupDB2UDDI.sh

DB2_location_name

DB2_database_name

DB2_tablespace_name

create

DB2_storage_group_name

volume_name

VSAM_catalog_name

This

command

should

be

entered

all

on

a

single

line.

It

was

split

here

for

formatting

purposes.

This

mode

of

operation

requires

you

to

specify

all

of

the

parameters

on

the

shell

script.

This

enables

the

DB2

database

and

tablespace

to

be

created.

The

newly

created

database

will

be

primed

for

use

by

the

UDDI

Registry.

Note:

If

you

use

the

create

and

load

mode

of

operation,

you

must

run

the

wizard

using

a

USERID

that

has

the

authority

to

create

or

update

DB2

databases,

storage

groups,

ect.

Also,

that

USERID

will

be

used

as

the

SQLID

of

the

resulting

DB2

tables.

2)

Load

To

initiate

this

mode

of

operation,

issue

the

followiing

command

from

an

OMVS

command

line

prompt:

/install_root/UDDIReg/bin/SetupDB2UDDI.sh

DB2_location_name

DB2_database_name

DB2_tablespace_name

skip

This

command

should

be

entered

all

on

a

single

line.

It

was

split

here

for

formatting

purposes.

This

mode

of

operation

does

not

require

you

to

specify

the

DB2_storage_group_name

volume_name

and

VSAM_catalog_nameparameters

on

the

shell

script.

This

mode

uses

the

existing

DB2

database

and

tablespace

and

only

primes

that

database

for

use

by

the

UDDI

Registry.

The

output

from

the

UDDI

DB2

wizard

will

be

placed

in

a

file

called

setupDB2UDDI.tracelog.

Errorsthat

occur

will

be

writtento

the

user’s

telnet

session.
2.

If

using

a

remote

DB2

system

on

another

host

machine,

refer

to

″Use

of

a

remote

DB2

database″

and

then

return

to

this

point

and

continue

with

the

following

instructions.

3.

Create

a

JBDC

driver

and

datasource

to

provide

access

to

the

UDDI20

DB2

database,

and

install

the

UDDI

Registry

application.

This

is

done

using

the

622

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

wsadmin

tool,

using

as

input

the

setupuddi.jacl

script

from

the

UDDIReg/scripts

subdirectory

of

the

deployment

manager.

This

script

must

be

run

on

the

deployment

manager

node.

Either

run

this

script

from

the

UDDIReg/scripts

subdirectory

where

it

is

located,

or

copy

it

to

some

other

suitable

directory.

Note

that

the

wsadmin

command

is

located

in

the

bin

subdirectory

of

the

deployment

manager

node.The

syntax

for

this

script

for

DB2

is:

wsadmin

-f

setupuddi.jacl

deploymgrpath

servername

nodename

discoveryURLprefix

dbname

db2ziplocation

>

setupuddi.log

where:

v

deploymgrpath

is

the

fully

qualified

pathname

of

the

deployment

manager

install

directory,

specified

using

forward

slashes

regardless

of

platform;

for

example

for

Windows,

this

might

be

c:/Progra~1/WebSphere/DeploymentManager

and,

for

Unix

platforms

it

might

be

/opt/WebSphere/DeploymentManager/

v

servername

is

the

name

of

the

target

application

server

on

which

you

wish

to

deploy

the

UDDI

Registry,

such

as

server1.

The

server

name

is

case

sensitive.

v

nodename

is

the

name

of

the

WebSphere

node

on

which

the

target

application

server

runs.

Typically,

this

is

the

same

as

the

machine

name.

The

node

name

is

case

sensitive.

v

discoveryURLprefix

is

the

URL

prefix

to

be

used

for

discovery

URLs.

Typically

this

will

be

of

the

form

http://<ip-address>:9080/uddisoap/

so

an

example

of

a

discoveryURLprefix

value

might

be

http://mynode.mylocation.mycompany.com:9080/uddisoap/

v

dbname

is

the

name

of

the

UDDI

Registry

database

under

DB2.

For

this

parameter,

you

should

specify

the

database

name

you

specified

when

you

ran

the

UDDI

DB2

setup

wizard.

Note:

If

a

remote

DB2

system

is

being

used

the

dbname

stated

here

must

be

the

alias

created

when

access

to

the

remote

database

was

set

up

on

the

local

system

v

db2ziplocation

is

the

path

to

the

db2java

zip

file

on

your

system,

specified

using

forward

slashes

regardless

of

platform;

for

example

for

Windows,

this

might

be

C:/Progra~1/SQLLIB/java/db2java.zip

or,

for

Unix

platforms

it

might

be

/home/db2inst1/sqllib/java12/db2java.zip

v

>

setupuddi.log

is

an

optional

parameter

to

direct

the

output

to

a

log

file

as

opposed

to

the

default

(which

is

to

the

screen)

For

example:

On

Windows

the

command

is

(shown

here

on

multiple

lines

for

publication):

wsadmin

-f

setupuddi.jacl

"C:/Progra~1/WebSphere/DeploymentManager/"

server1

myriad

"http://myriad.headoffice.xyz.com:9080/uddisoap/"

UDDI20

db2admin

secretpwd

"C:/Progra~1/SQLLIB/java/db2java.zip"

>

setupuddi.log

On

Unix

platforms

the

command

is

(shown

here

on

multiple

lines

for

publication):

wsadmin.sh

-f

setupuddi.jacl

"/opt/WebSphere/DeploymentManager/"

server1

myriad

"http://myriad.headoffice.xyz.com:9080/uddisoap/"

UDDI20

db2admin

secretpwd

"/home/db2inst1/sqllib/java12/db2java.zip"

>

setupuddi.log

Chapter

9.

IBM

WebSphere

UDDI

Registry

623

This

installs

the

UDDI

Registry

application

into

the

server

server1

running

on

node

myriad,

and

set

it

up

to

access

the

DB2

UDDI20

database

using

the

userid

’db2admin’

and

password

’secretpwd’.

The

setupuddi.jacl

script:

a.

Creatse

a

JDBC

driver

named

UDDI.JDBC.Driver.<nodeName>.<server>

and

a

datasource

named

UDDI.Datasource.<nodeName>.<server>

(where

<nodeName>

is

the

name

of

the

target

node

and

<server>

is

the

name

of

the

target

server>,

and

replaces

any

existing

driver

and

datasource

of

that

name.

b.

Checks

whether

the

UDDI

Registry

application

is

already

installed

and,

if

so,

stop

it

and

uninstall

it.

c.

Updates

the

uddi.properties

configuration

file

to

configure

the

discoveryURLprefix

value

that

you

have

specified,

and

to

set

the

persister

property

as

’DB2’,

and

places

the

uddi.properties

file

into

the

location

config/cells/<currentcell>/nodes/<nodename>/servers/<servername>.

d.

Places

a

number

of

files

that

are

needed

by

the

UDDI

Registry

into

the

WebSphere

configuration

repository,

and

update

the

ws.ext.dirs

list

to

reference

these

files.

e.

Installs

the

UDDI

Registryapplication

into

the

server

server1

running

on

node

myriad,

and

set

it

up

to

access

the

DB2

database..

Note:

The

setup

script,

setupuddi.jacl,

cannot

be

used

to

install

the

UDDI

Registry

application

into

a

clustered

application

server.

It

is

possible

to

cluster

the

UDDI

Registry

application

by

installing

UDDI

into

an

unclustered

application

server

using

the

setup

script,

and

then

cluster

that

application

server.

Return

to

the

next

step

in

the

parent

task

Installing

the

UDDI

Registry

into

a

deployment

manager

cell.

Installing

the

UDDI

Registry

into

a

single

appserver

If

you

intend

to

run

in

a

single

WebSphere

Application

server,

then

complete

the

following

task.

When

you

select

the

UDDI

Registry

option,

then

the

installation

will

place

all

files

that

are

needed

to

run

a

UDDI

Registry

onto

the

deployment

manager

install

tree

on

the

machine

on

which

you

are

installing

IBM

WebSphere

Application

Server

for

Network

Deployment.

To

be

able

to

run

the

UDDI

Registry

in

a

single

application

server

instance

in

your

network

space

you

must

copy

these

files

over

to

the

application

server

and

then

deploy

the

UDDI

Registry.

You

can

do

this

as

follows:

1.

Stop

the

application

server

on

which

you

plan

to

run

the

UDDI

Registry;

for

example,

by

issuing

the

following

command

from

the

bin

directory:

STOP

appserver_proc_name,JOBNAME=server_short_name1,

ENV=cell_short_name.node_short_name.server_short_name

Note:

This

command

must

be

entered

on

a

single

line.

It

is

split

here

for

display

purposes.

2.

Copy

the

uddi.ear

file

from

the

installableApps

subdirectory

of

the

deployment

manager

install

tree

into

the

installableApps

subdirectory

of

the

target

application

server’s

install

tree.

624

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

3.

Copy

the

uddi.properties

file

from

the

properties

subdirectory

of

the

deployment

manager

install

tree

into

the

properties

subdirectory

of

the

target

application

server’s

install

tree.

In

a

subsequent

step,

you

configure

the

UDDI

Registry

using

the

properties

in

the

uddi.properties

file.

4.

Copy

both

the

uddiresourcebundles.jar

and

the

setupuddimessages.jar

files

from

the

lib

subdirectory

of

the

deployment

manager

install

tree

into

the

lib

subdirectory

of

the

target

application

server’s

install

tree.

5.

Optionally,

if

you

are

going

to

write

or

run

code

that

uses

the

EJB

interface

to

UDDI

on

another

machine,

then

copy

the

uddiejbclient.jar

file

and

the

EJB

javadoc

directory

tree

from

the

UDDIReg/ejb

subdirectory

of

the

deployment

manager

install

tree

onto

a

location

of

your

choice

on

any

machines

where

you

will

be

creating

EJB

clients

to

access

the

UDDI

Registry.

6.

Configure

database

support

for

the

UDDI

Registry

database,

in

which

the

UDDI

Registry

will

be

held.

To

do

this,

complete

one

of

the

following

tasks

then

return

this

point:

v

Setting

up

the

UDDI

Registry

to

use

Cloudscape

in

a

single

AppServer

v

Setting

up

the

UDDI

Registry

to

use

DB2

in

a

single

AppServer

Note:

If

you

set

up

the

UDDI

Registry

application

with

a

JDBC

driver

and

datasource

that

reference

Cloudscape,

but

set

the

persister

property

in

uddi.properties

to

specify

DB2,

or

vice

versa,

then

some

unexpected

behavior

will

result,

such

as

a

fatal

error

on

deleting

an

entity.

If

this

happens,

you

should

check

that

the

above

details

are

not

in

conflict.

This

only

applies

to

a

UDDI

Registry

installation

on

a

single

appserver.

7.

Ensure

that

the

UDDI

Registry

is

configured

appropriately

for

your

installation,

as

described

in

the

section

on

Configuring

the

UDDI

Registry.

8.

Stop

and

then

restart

the

application

server.

On

z/OS

platforms

you

must

remember

to

run

the

db2profile

script

before

issuing

the

START

appserver_proc_name

command.

This

script

is

located

within

the

DB2

instance’s

home

directory

under

SQLLIB

and

can

be

invoked,

for

example,

by

typing:

.

/home/db2inst1/sqllib/db2profile

Note:

In

the

above

example,

it

should

be

noticed

that

the

’.’

is

followed

by

a

single

space

character.

Note:

On

Unix

and

Linux

platforms

the

DB2

user

must

have

a

db2profile

at

$HOME/sqllib/db2profile.

Continue

with

Configuring

the

UDDI

Registry.

Setting

up

the

UDDI

Registry

to

use

Cloudscape

in

a

single

application

server

To

decide

which

database

product

you

should

use

as

your

persistence

store,

see

″Choice

of

database

product

to

be

used

as

the

persistence

store″.

If

you

plan

to

use

Cloudscape

for

the

database

in

which

the

UDDI

Registry

data

is

held,

use

this

task

to

set

up

and

install

the

UDDI

Registry

application

to

use

the

supplied

Cloudscape

database.

This

task

configures

Cloudscape

on

the

host

where

you

want

to

run

the

UDDI

Registry.

Chapter

9.

IBM

WebSphere

UDDI

Registry

625

This

task,

to

configure

Cloudscape

for

the

UDDI

Registry

database,

is

part

of

a

parent

task

Installing

and

Setting

up

a

UDDI

Registry.

You

should

complete

this

task

at

the

appropriate

step

in

the

parent

task.

1.

Copy

the

UDDI20

directory

tree

from

the

bin

subdirectory

of

the

deployment

manager

tree

into

the

bin

subdirectory

of

the

target

application

server’s

install

tree.

2.

Copy

the

uddicloudscapeuserfunc.jar

file

from

the

lib

subdirectory

of

the

deployment

manager

install

tree

to

the

lib

subdirectory

of

the

target

application

server’s

install

tree.

3.

Ensure

that

the

persister

property

in

the

uddi.properties

file

is

set

to

persister=Cloudscape

4.

Copy

the

appserversetupuddi.jacl

script

from

the

UDDIReg/scripts

subdirectory

of

the

deployment

manager

install

tree

to

the

WebSphere

Application

Server

bin

subdirectory.

5.

Change

directory

to

the

WebSphere

Application

Server

bin

subdirectory.

6.

Start

the

application

server

on

which

the

UDDI

Registry

is

to

run.

For

example,

enter:

startServer

server1

for

Windows

.

/startServer.sh

server1

for

Unix

platforms

7.

Create

a

JDBC

driver

and

datasource

to

provide

access

to

the

UDDI20

Cloudscape

database,

and

install

the

UDDI

Registry

application.

To

do

this

run

the

wsadmin

tool

with

the

script

appserversetupuddi.jacl

as

input,

on

the

target

application

server,

using

the

following

command

syntax:

(You

should

either

run

this

script

from

the

UDDIReg/scripts

subdirectory

where

it

is

located,

or

copy

it

to

some

other

suitable

directory.

Note

that

the

wsadmin

tool

is

located

in

the

WebSphere

bin

subdirectory.)

wsadmin

-f

appserversetupuddi.jacl

uddi-ear-location

servername

nodename

WebSphere-lib-subdirectory

cloudscapedbname

>

setupuddi.log

Where:

v

uddi-ear-location

is

the

fully-qualified

path

to

the

uddi.ear

file

in

the

installableApps

subdirectory,

specified

using

forward

slashes

regardless

of

platform.

For

example,

on

Windows:

C:/Progra~1/WebSphere/AppServer/installableApps/uddi.ear

and

on

Unix

platforms:

/opt/WebSphere/AppServer/installableApps/uddi.ear

v

servername

is

the

name

of

the

application

server

on

which

the

UDDI

registry

is

to

run;

for

example:

server1.

Note

that

the

server

name

entered

is

case

sensitive.

v

nodename

is

the

name

of

the

WebSphere

node

on

which

the

application

server,

servername,

is

running.

Typically

this

is

the

machine

name.

Note

that

the

node

name

entered

is

case

sensitive.

v

WebSphere-lib-subdirectory

is

the

fully-qualified

path

to

the

WebSphere

Application

Server

lib

subdirectory,

specified

using

forward

slashes

regardless

of

platform.

For

example

on

Windows:

C:/Progra~1/WebSphere/AppServer/lib

and

on

Unix

platforms:

626

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

/opt/WebSphere/AppServer/lib

v

cloudscapedbname

is

the

fully-qualified

path

to

the

UDDI20

database

within

the

bin

subdirectory

of

your

WebSphere

AppServer

installation,

specified

using

forward

slashes

regardless

of

platform.

For

example

on

Windows:

C:/Progra~1/WebSphere/AppServer/bin/UDDI20

and

on

Unix

platforms

/opt/WebSphere/AppServer/bin/UDDI20

v

>

setupuddi.log

is

an

optional

parameter

to

direct

the

output

to

a

log

file

as

opposed

to

the

default

(which

is

to

the

screen)

The

appserversetupuddi.jacl

script

completes

the

following

actions:

a.

Creates

a

JDBC

driver

named

UDDI.JDBC.Driver.<nodeName>.<server>

and

a

datasource

named

UDDI.Datasource.<nodeName>.<server>

(where

<nodeName>

is

the

name

of

the

target

node

and

<server>

is

the

name

of

the

target

server,

and

will

replace

any

existing

driver

and

datasource

of

that

name.

b.

Checks

whether

the

WebSphere

UDDI

Registry

application

is

already

installed

and,

if

so,

stop

the

application

and

uninstall

it.

c.

Installs

the

WebSphere

UDDI

Registry,

then

starts

it.

Note:

The

setup

script,

appserversetupuddi.jacl,

cannot

be

used

to

install

the

UDDI

Registry

application

into

a

clustered

application

server.

It

is

possible

to

cluster

the

UDDI

Registry

application

by

installing

UDDI

into

an

unclustered

application

server

using

the

setup

script,

and

then

clustering

that

application

server.

Return

to

the

next

step

in

the

parent

task

Installing

the

UDDI

Registry

into

a

single

appserver.

Setting

up

the

UDDI

Registry

to

use

DB2

in

a

single

application

server

To

decide

which

database

product

you

should

use

as

your

persistence

store,

see

″Choice

of

database

product

to

be

used

as

the

persistence

store″.

If

you

plan

to

use

DB2

for

the

database

in

which

the

UDDI

Registry

is

held,

ensure

that

the

correct

prerequisite

fix

packs

have

been

applied

as

listed

at

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

otherwise

the

startup

of

the

UDDI

DB2

setup

wizard

will

fail.

If

you

plan

to

use

DB2

for

the

database

in

which

the

UDDI

Registry

data

will

be

held,

use

this

task

to

create

and

load

the

UDDI

Registry

database

using

DB2,

and

to

setup

and

install

the

UDDI

Registry

application

to

use

the

database.

This

task

uses

the

UDDI

DB2

setup

wizard

to

configure

DB2

on

the

system

where

you

want

to

run

the

UDDI

Registry.

Before

starting

this

task,

ensure

that

DB2

is

installed

and

running

on

that

system.

Copy

the

UDDIReg

directory

tree

from

the

deployment

manager

to

the

target

application

server

where

DB2

will

run.

The

following

steps

should

be

carried

out

on

the

system

on

which

the

target

application

server

is

located

(referred

to

below

as

the

’target

system’).

1.

Create

and

load

the

UDDI

Registry

database.

Chapter

9.

IBM

WebSphere

UDDI

Registry

627

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Note:

5.0.1 +

It

is

recommended

you

use

the

setupDB2UDDI.jacl

command

from

IBM

WebSphere

Application

Server

Version

5.0.1

or

later.

This

is

essential

for

non-English

users.

Note:

5.0.1 +

If

you

have

a

copy

of

the

file

SetupDB2UDDI.jar

in

your

application

server

directory,

then

the

application

of

the

base

and

Network

Deployment

PTFs

will

not

update

SetupDB2UDDI.jar

in

your

application

server

directory.

You

must

apply

the

PTF

for

Network

Deployment

to

your

DeploymentManager

file

structure

to

update

the

SetupDB2UDDI.jar

located

there

(in

the

/UDDIReg/scripts

subdirectory),

and

then

manually

copy

this

jar

file

to

any

application

server

you

may

wish

to

run

it

on.

If

you

are

planning

to

use

a

remote

DB2

system

on

another

host

machine,

copy

the

SetupDB2UDDI.jar

file

to

the

remote

system

and

run

it

on

that

system

to

create

and

load

the

UDDI

Registry

database

following

the

instructions

within

this

step

and

continue

with

the

next

step

(which

states

″If

using

a

remote

DB2

system

on

another

host

machine

....″)

on

the

local

host.

To

create

the

database

you

use

the

UDDI

DB2

setup

wizard:

a.

Change

directory

to

the

directory

containing

the

file

SetupDB2UDDI.sh

(that

is,

either

the

UDDIReg/bin

subdirectory,

or

a

directory

on

the

target

system

into

which

you

have

copied

it).

b.

To

run

the

wizard,

you

need

to

first

ensure

that

you

have

access

from

your

command

line

to

the

JVM

supplied

with

WebSphere.

This

is

done

as

follows:

v

At

a

command

line,

enter

one

of

the

following

commands:

–

If

you

are

using

bash:

.

<AppServer-install-dir>/bin/setupCmdLine.sh

–

If

you

are

using

csh:

source

/<AppServer-install-dir>/bin/setupCmdLine.sh

c.

Temporarily

set

your

path

by

typing:

v

On

Windows:

set

path=%WAS_PATH%;%path%

v

On

Unix

or

Linux

platforms:

export

PATH=$WAS_PATH:$PATH

d.

In

the

same

command

window,

start

the

UDDI

DB2

setup

wizard

by

issuing

the

following

command:

SetupDB2UDDI.sh

e.

Follow

the

prompts

to

work

through

the

wizard

panels

or

command

prompts.

f.

If

necessary,

check

the

log

files

for

the

wizard.

A

log

file

called

UDDIloadDB.log

is

written

into

the

directory

from

which

the

wizard

is

run

(but

note

that,

on

Windows

platforms,

if

you

have

decided

not

to

overwrite

an

existing

UDDI20

database,

this

fact

is

not

logged,

and

the

log

file

is

not

created).
2.

If

using

a

remote

DB2

system

on

another

host

machine,

refer

to

″Use

of

a

remote

DB2

database″

and

then

return

to

this

point

and

continue

with

the

next

step.

3.

Ensure

that

the

persister

property

in

the

uddi.properties

file

is

set

to

persister=DB2.

628

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

4.

On

Unix,

run

the

db2profile

script

to

set

up

the

environment

for

the

DB2

instance

that

the

UDDI

Registry

is

using:

.

/home/db2inst1/sqllib/db2profile

5.

Start

the

application

server

on

which

the

UDDI

Registry

is

to

run.

For

example:

On

Windows:

On

Unix

platforms:

START

appserver_proc_name,JOBNAME=server1,

ENV=cell_short_name.node_short_name.server1

Note:

This

command

must

be

entered

on

a

single

line.

It

is

split

here

for

display

purposes.

6.

Copy

the

appserversetupuddi.jacl

script

from

the

UDDIReg/scripts

subdirectory

of

the

deployment

manager

install

tree

to

the

WebSphere

Application

Server

bin

subdirectory.

7.

Change

directory

to

the

WebSphere

Application

Server

bin

subdirectory.

8.

Create

a

JDBC

driver

and

datasource

to

provide

access

to

the

database,

and

install

the

UDDI

Registry

application.

To

do

this

run

the

wsadmin

tool

with

the

script

appserversetupuddi.jacl

as

input,

on

the

target

application

server,

using

the

following

command

syntax.

(Either

run

this

script

from

the

UDDIReg/scripts

subdirectory

where

it

is

located,

or

copy

it

to

some

other

suitable

directory.

Note

that

the

wsadmin

tool

is

located

in

the

WebSphere

bin

subdirectory.)

wsadmin

-f

appserversetupuddi.jacl

uddi-ear-location

servername

nodename

WebSphere-lib-subdirectory

dbname

db2userid

db2pwd

db2ziplocation

>

setupuddi.log

where

v

uddi-ear-location

is

the

fully-qualified

path

to

the

uddi.ear

file

in

the

installableApps

subdirectory,

specified

using

forward

slashes

regardless

of

platform.

For

example,

on

Windows:

and

on

Unix

platforms

/opt/WebSphere/AppServer/installableApps/uddi.ear

v

servername

is

the

name

of

the

application

server

on

which

the

UDDI

registry

is

to

run;

for

example:

server1.

Note

that

the

name

of

the

server

is

case

sensitive.

v

nodename

is

the

name

of

the

WebSphere

node

on

which

the

application

server,

servername,

is

running.

Typically,

this

will

be

the

same

as

the

machine

name.

Note

that

the

name

of

the

node

is

case

sensitive.

Typically

this

is

the

machine

name.

v

WebSphere-lib-subdirectory

is

the

fully-qualified

path

to

the

WebSphere

Application

Server

lib

subdirectory,

specified

using

forward

slashes

regardless

of

platform.

For

example:

–

On

Windows:

C:/Progra~1/WebSphere/AppServer/lib

–

On

Unix:

/opt/WebSphere/AppServer/lib

–

On

Unix

or

z/OS:

/opt/WebSphere/AppServer/lib
v

dbname

is

the

name

of

the

UDDI

Registry

database

under

DB2.

You

should

specify

UDDI20

for

this

parameter

Chapter

9.

IBM

WebSphere

UDDI

Registry

629

Note:

If

a

remote

DB2

system

is

being

used

the

dbname

must

be

the

alias

created

when

access

to

the

remote

database

was

set

up

on

the

local

system.

v

db2userid

and

db2pwd

are

a

valid

DB2

userid

and

password

with

administrative

privileges,

as

specified

in

an

earlier

step.

v

db2ziplocation

is

the

path

under

which

you

have

installed

DB2,

specified

using

forward

slashes

regardless

of

platform..

For

example,

for

Windows,

this

might

be

C:/Progra~1/SQLLIB/java/db2java.zip

or,

for

Unix

platforms

it

might

be

/opt/SQLLIB/java//db2java.zip.

v

>

setupuddi.log

is

an

optional

parameter

to

direct

the

output

to

a

log

file

as

opposed

to

the

default

(which

is

to

the

screen)

The

appserversetupuddi.jacl

completes

the

following

actions:

a.

Creates

a

JDBC

driver

named

UDDI.JDBC.Driver.<nodeName>.<server>

and

a

datasource

named

UDDI.Datasource.<nodeName>.<server>

(where

<nodeName>

is

the

name

of

the

target

node

and

<server>

is

the

name

of

the

target

server>,

and

will

replace

any

existing

driver

and

datasource

of

that

name.

b.

Checks

whether

the

WebSphere

UDDI

Registry

application

is

already

installed

and,

if

so,

stop

the

application

and

uninstall

it.

c.

Installs

the

WebSphere

UDDI

Registry,

then

starts

it.

Note:

The

setup

script,

appserversetupuddi.jacl,

cannot

be

used

to

install

the

UDDI

Registry

application

into

a

clustered

application

server.

It

is

possible

to

cluster

the

UDDI

Registry

application

by

installing

UDDI

into

an

unclustered

application

server

using

the

setup

script,

and

then

clustering

that

application

server.

Return

to

the

next

step

in

the

parent

task

Installing

and

Setting

up

a

UDDI

Registry.

Reinstalling

the

UDDI

Registry

application

If

you

wish

to

reinstall

the

UDDI

Registry,

follow

the

appropriate

section

below.

Reinstalling

into

a

deployment

manager

cell

If

you

wish

to

reinstall

the

UDDI

Registry

into

the

target

application

server,

for

example

because

you

wish

to

alter

certain

aspects

of

its

configuration

using

AAT,

rerun

the

setupuddi.jacl

script

(described

in

the

appropriate

link

as

follows):

v

″Setting

up

the

UDDI

Registry

to

use

Cloudscape

within

a

deployment

cell″

v

″Setting

up

the

UDDI

Registry

to

use

DB2

within

a

deployment

cell″

Note:

If

you

decide

to

change

from

using

Cloudscape

as

your

persistence

store

to

DB2,

or

vice

versa,

first

remove

UDDI

from

the

application

server

using

removeuddi.jacl.

You

can

then

run

setupuddi.jacl

to

reinstall

UDDI

with

the

new

type

of

persistence

store.

If

you

make

such

a

change,

then

any

data

that

you

had

previously

stored

is

no

longer

be

accessible.

Reinstalling

into

a

single

appserver

Remove

the

UDDI

Registry

application

in

the

same

manner

as

any

other

Enterprise

Application

and

then

install

as

described

in

the

appropriate

link:

630

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Setting

up

the

UDDI

Registry

to

use

Cloudscape

in

a

single

AppServer

v

Setting

up

the

UDDI

Registry

to

use

DB2

in

a

single

AppServer

Note:

If

you

decide

to

change

from

using

Cloudscape

as

your

persistence

store

to

DB2,

or

vice

versa,

first

remove

UDDI

from

the

application

server

using

appserverremoveuddi.jacl.

You

can

then

run

appserversetupuddi.jacl

to

reinstall

UDDI

with

the

new

type

of

persistence

store.

If

you

make

such

a

change,

then

any

data

that

you

had

previously

stored

is

no

longer

accessible.

Removing

the

UDDI

Registry

application

from

a

deployment

manager

cell

To

completely

remove

the

UDDI

Registry

application

from

the

target

application

server

in

the

deployment

manager

cell,

run

the

wsadmin

(wsadmin.sh

on

Unix

Platforms)

script

removeuddi.jacl,

which

is

located

in

the

UDDIReg/scripts

directory

of

the

deployment

manager

install

tree.

If

the

target

server

specified

on

invoking

removeuddi.jacl

is

running

at

the

same

time,

the

script

stops

the

server

and

restarts

the

server

when

it

has

completed

its

operations.

At

a

command

promp

enter:

wsadmin

-f

removeuddi.jacl

servername

nodename

>

removeuddi.log

Where

servername

and

nodename

are

the

server

and

node

where

you

have

deployed

the

UDDI

Registry

application.

By

default

output

will

go

to

the

screen,

but,

optionally,

you

can

specify

’>

removeuddi.log’

to

direct

output

to

a

log

file.

For

example,

wsadmin

-f

removeuddi.jacl

server1

myriad

will

remove

the

UDDI

Registry

application

and

related

files

from

server

server1

running

in

node

myriad,

and

will

send

any

messages

to

the

screen.

Removing

the

UDDI

Registry

application

from

a

single

application

server

To

completely

remove

the

UDDI

Registry

application

from

a

stand-alone

application

server

run

the

wsadmin

script

appserverremoveuddi.jacl,

which

was

installed

into

the

UDDIReg/scripts

directory

when

you

installed

the

UDDI

Registry

as

part

of

a

Network

Deployment

install.

At

a

command

prompt

enter:

wsadmin

-f

appserverremoveuddi.jacl

servername

nodename

>

removeuddi.log

where

v

servername

and

nodename

are

the

name

of

the

stand-alone

application

node

in

which

it

runs

(these

are

the

names

that

you

specify

when

you

run

appserversetupuddi.jacl

to

install

the

UDDI

Registry

application).

Chapter

9.

IBM

WebSphere

UDDI

Registry

631

v

by

default

output

will

go

to

the

screen,

but,

optionally,

you

can

specify

’>

removeuddi.log’

to

direct

the

output

to

a

log

file.

For

example:

wsadmin

-f

appserverremoveuddi.jacl

server1

monolith

will

remove

the

UDDI

Registry

application

and

related

files

from

server

server1

running

in

node

monolith,

and

will

send

any

messages

to

the

screen.

Configuring

the

UDDI

Registry

The

UDDI

Registry

is

supplied

as

a

J2EE

application

file,

uddi.ear.

This

is

installed

into

the

WebSphere

Application

Server

during

installation.

If

you

want

to

change

any

of

its

configuration

properties

using

Application

Assembly

Tool

(AAT)

see

″Configuring

SOAP

properties

with

the

AAT″.

You

can

configure

the

following

aspects

of

the

UDDI

Registry:

v

Configuring

global

UDDI

properties

v

Modifying

the

database

userid

and

password

v

Configuring

security

properties

v

Configuring

the

UDDI

User

Console

(GUI)

for

multiple

language

encoding

support

v

Customizing

the

UDDI

User

Console

(GUI)

v

Configuring

SOAP

interface

properties

v

5.0.1

5.0.2 +

Configuring

SOAP

properties

with

the

Application

Assembly

Tool

v

Configuring

SOAP

properties

in

the

deployment

descriptor

Configuring

global

UDDI

properties

To

modify

any

of

the

global

UDDI

properties,

edit

the

file

called

uddi.properties.

More

than

one

version

of

this

file

exists

and

the

version

you

need

to

edit

depends

on:

v

whether

you

are

in

the

installation

phase

or

are

updating

the

properties

as

a

post

installation

step

v

whether

you

are

configured

for

a

deployment

manager

or

base

application

server

environment

The

location

of

the

file

you

should

edit

will

be

one

of

the

following:

Deployment

Manager

Configurations

1.

If

you

are

in

the

process

of

installing

the

UDDI

Registry

application

for

the

first

time

into

a

deployment

manager

cell

and

wish

to

make

some

generic

changes

before

deploying

it

in

the

cell,

the

uddi.properties

file

will

be

located

in

the

<DeploymentManager-install-dir>/properties

directory.

If

you

are

reinstalling

the

UDDI

Registry

application

into

a

deployment

manager

cell,

then

you

should

edit

the

file

in

the

location

described

in

step

2.

Note:

In

a

deployment

manager

configuration

some

properties

(such

as

persister

and

getServletURLprefix)

are

dynamically

set

up

in

the

uddi.properties

file,

during

subsequent

installation

processing.

2.

If

the

UDDI

Registry

is

already

configured

into

an

application

server

within

a

Deployment

Manager

cell

(that

is

you

are

undertaking

post

installation

configuration

changes),

the

uddi.properties

file

you

should

edit

is

located

in

the

configuration

repository,

under

the

deployment

manager

filing

system;

that

is

632

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

in

<DeploymentManager-install-
dir>config/cells/<cellname>/nodes/<nodename>/servers/<servername>,

where

<cellname>

is

the

name

of

the

deployment

manager

cell,

<nodename>

is

the

name

of

the

node

in

which

the

application

server

is

installed,

and

<servername>

is

the

name

of

the

application

server

in

which

you

have

installed

the

UDDI

Registry.

Application

Server

Configurations

1.

If

you

are

in

the

process

of

installing

the

UDDI

Registry

application

into

an

application

server

only

environment

you

will

be

advised

during

the

installation

process

when

to

make

changes

to

the

uddi.properties

file.

Note:

In

contrast

with

the

deployment

manager

configuration,

UDDI

properties

are

not

dynamically

set

during

installation

processing.

2.

If

the

UDDI

Registry

is

already

configured

into

a

single

application

server

that

is

not

part

of

a

deployment

manager

cell

(i.e.

you

are

undertaking

post

installation

configuration

changes),

then

the

uddi.properties

file

will

be

located

in

the

properties

subdirectory

of

the

WebSphere

Application

Server

in

which

you

have

installed

the

UDDI

Registry

application,

that

is

<ApplicationServer-install-
dir>/properties

directory.

The

properties

that

can

be

changed

within

uddi.properties

are

as

follows:

v

The

dbMaxResultCount,

which

is

the

limit

on

the

number

of

rows

of

information

that

should

be

returned

on

Find

requests,

and

will

apply

if

the

request

does

not

specify

a

maxRows

limit

itself

(or

if

it

specifies

a

limit

that

exceeds

this

value).

The

initial

value

for

this

in

uddi.properties

is

100.

v

The

persister,

which

indicates

what

database

is

to

be

used

as

the

persistence

store

for

the

UDDI

Registry

database.

If

you

have

installed

the

UDDI

Registry

into

an

application

server

within

a

deployment

manager

cell,

then

the

persister

property

will

have

been

set

to

the

correct

value

for

you.

If

you

change

this

value,

you

must

also

ensure

that

you

have

a

UDDI

Registry

database

created

using

the

chosen

database

product

(for

more

details

about

the

UDDI

Registry

database,

refer

to

the

section

on

″Installing

the

UDDI

Registry″).

You

should

also

be

aware

that

any

data

published

to

the

UDDI

Registry

with

one

setting

of

the

persister

property

will

not

be

accessible

when

running

the

UDDI

Registry

application

with

a

different

setting

for

the

persister

property.

The

valid

values

for

the

persister

property

are:

–

persister=DB2

indicating

that

DB2

is

to

be

used

as

the

persistence

store

–

persister=Cloudscape

indicating

that

Cloudscape

is

to

be

used

as

the

persistence

store

The

initial

value

for

this

in

uddi.properties

is

Cloudscape.

Note:

This

property

is

dynamically

set

by

the

setupuddi.jacl

script

when

installing

into

a

deployment

manager

cell

so

in

this

case

you

should

not

need

to

modify

it.

v

The

default

language

to

be

used

on

a

publish

request

as

the

xml:lang

attribute

when

one

is

not

specified.

The

initial

value

for

this

in

uddi.properties

is

en-US.

This

property

must

contain

one

of

the

valid

xml:lang

values.

v

The

UDDI

site

operator

name.

This

is

a

string

that

is

stored

in

every

registry

object,

to

indicate

the

operator

of

the

UDDI

Registry.

The

initial

value

for

this

in

uddi.properties

is

www.mycompany.com/uddi.

This

property

does

not

have

any

particular

functional

use,

so

its

value

can

be

set

to

any

string

that

you

feel

is

suitable.

Chapter

9.

IBM

WebSphere

UDDI

Registry

633

v

The

maximum

number

of

search

keys

that

can

be

used

on

find

API

requests.

The

initial

value

for

this

in

uddi.properties

is

5.

v

The

getServletURLprefix

and

getServletname

name,

used

to

build

up

the

discovery

URL.

The

initial

values

for

these

are

http://localhost:9080/uddisoap/

and

get.

If

you

have

installed

the

UDDI

Registry

into

an

application

server

within

a

deployment

manager

cell,

then

the

getServletURLPrefix

property

will

have

been

set

for

you

using

the

value

you

specified

as

a

parameter

to

the

setup

script.

You

are

recommended

to

set

suitable

values

for

these

properties

before

you

first

use

the

UDDI

Registry.

Note:

This

property

is

dynamically

set

by

the

setupuddi.jacl

script

when

installing

into

a

deployment

manager

cell

so

in

this

case

you

should

not

need

to

modify

it.

Applying

these

changes

to

your

system

For

your

changes

to

take

effect,

you

must

do

one

of

the

following:

v

If

you

are

in

the

process

of

installing

the

UDDI

Registry

application

for

the

first

time,

return

to

the

original

topic

and

complete

the

installation

steps.

Any

changes

you

have

made

are

picked

up

during

this

subsequent

processing.

v

If

you

have

made

post

installation

changes

in

a

base

application

server

only

environment,

you

should

stop

and

restart

the

UDDI

Registry

application

using

the

WebSphere

administrative

console.

v

If

you

have

made

post

installation

changes

in

a

deployment

manager

environment

you

should:

1.

Run

a

Full

Resynchronization

for

the

node

where

the

UDDI

Registry

runs.

This

can

be

done

from

the

WebSphere

Network

Deployment

Administrative

Console

under

section

Systems

Administration

==>

Nodes.

Select

your

node,

and

then

click

’Full

Resynchronization’.

It

is

important

that

you

do

a

’Full

Resynchronization’

and

not

just

a

’Synchronize’.

2.

Stop

and

restart

the

UDDI

Registry

application

using

the

WebSphere

administrative

console

Modifying

the

database

userid

and

password

If

you

use

DB2

as

the

persistence

store

for

the

UDDI

Registry,

and

you

need

to

change

the

database

userid

and/or

password,

alter

the

user

and

password

values

in

the

custom

properties

of

the

’UDDI

Datasource’,

which

can

be

edited

from

the

WebSphere

administrative

console.

The

UDDI.Datasource

is

under

datasources

within

the

UDDI.JDBC.Driver,

which

is

itself

found

under

JDBC

Providers

under

Resources.

Do

not

alter

the

databaseName.

Configuring

security

roles

Each

interface

to

the

UDDI

Registry

(either

through

SOAP,

EJB

or

the

GUI)

is

supplied

with

two

roles:

Publish

role

mapped

to

AllAuthenticatedUsers.

By

default,

this

is

configured

to

use

SSL

(that

is

HTTPS),

but

this

only

applies

when

WebSphere

security

is

enabled.

Inquiry

role

mapped

to

Everyone.

By

default,

this

is

configured

to

use

HTTP

(that

is

not

SSL).

634

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

security

roles

and

use

of

SSL

can

be

altered

by

users

through

the

Administration

Console.

Authentication

uses

the

standard

WebSphere

facilities

and

there

is

no

separate

registration

function

for

the

Registry.

If

WebSphere

security

is

enabled,

the

you

will

need

to

supply

your

WebSphere

userid

and

password

for

Publish

functions

(unless

you

have

changed

the

supplied

Publish

role).

You

will

need

to

set

up

WebSphere

security

configuration

to

be

used

by

UDDI.

For

information

on

achieving

this,

refer

to

Configuring

Secure

Sockets

Layer:

WebSphere

Application

Server

within

this

Information

Center.

It

is

expected

that,

for

development

use,

security

will

be

disabled

and

security

will

be

enabled

for

production

environments.

The

SOAP

interface

also

supports

the

UDDI

API

for

get_authToken

and

discard_authToken

API

but

use

of

this

is

optional.

v

If

security

is

disabled

and

get_authToken

is

not

called,

the

default

user,

UNAUTHENTICATED,

is

used.

v

If

security

is

disabled

and

get_authToken

is

called,

the

specified

userid

is

used

(but

the

password

is

not

checked).

v

If

WebSphere

security

is

enabled,

it

takes

priority

over

UDDI

authentication,

but

if

the

Publish

role

is

mapped

to

Everyone,

get_authToken

must

be

used

and

the

userid

and

password

will

be

checked

by

WebSphere.

The

Security

Roles

provided

with

the

UDDI

Registry

are

as

follows:

v

GUI_Publish_User

v

GUI_Inquiry_User

v

SOAP_Publish_User

v

SOAP_Inquiry_user

v

EJB_Inquiry_Role

v

EJB_Publish_Role

Configuring

the

UDDI

User

Console

(GUI)

for

multiple

language

encoding

support

If

you

want

to

use

multiple

language

encoding

support

in

the

User

Console

(GUI),

you

must

configure

the

application

server

into

which

the

UDDI

Registry

application

is

installed

with

UTF-8

encoding

enabled.

To

do

this,

refer

to

″Configuring

application

servers

for

UTF-8

encoding″

elsewhere

in

the

WebSphere

Information

Center.

Customizing

the

UDDI

User

Console

(GUI)

The

look

and

feel

of

the

UDDI

console

is

determined

by

the

styles

defined

in

the

uddi_gui.css

file

which

is

located

in

the

/gui.war/theme

directory

of

the

installed

UDDI

Registry

application

directory.

The

UDDI

Registry

application

directory

will

be

one

of

the

following,

depending

on

where

you

have

installed

the

UDDI

Registry:

v

If

you

have

installed

the

UDDI

Registry

into

an

application

server

within

a

deployment

manager

cell,

the

directory

is

install_root/installedApps/current_cell/UDDIRegistry.node.server.ear/gui.war

v

If

you

have

installed

the

UDDI

Registry

into

a

single

application

server

which

is

not

part

of

a

deployment

manager

cell,

the

directory

is

UDDIRgistry.ear

under

Chapter

9.

IBM

WebSphere

UDDI

Registry

635

the

installedApps

directory

of

the

WebSphere

Application

Server

in

which

you

have

installed

the

UDDI

registry

application

as

shown

in

the

example

below.

The

contents

of

this

file

can

be

edited

to

change

the

colors,

fonts

and

font

sizes

according

to

the

user’s

preference.

The

content

and

layout

of

the

UDDI

User

Console

is

provided

by

Java

Server

Pages

(JSP),

which

can

be

customized

by

a

programmer

who

is

familiar

with

JSPs.

The

JSP

pages

are

found

in

the

uddi.ear

enterprise

application,

which

is

under

the

installedApps

subdirectory

of

the

WebSphere

AppServer

installation.

To

locate

the

JSPs,

expand

the

UDDI_Registry.ear,

open

the

gui.war,

and

they

are

located

under

WEB-INF

in

the

pages

subdirectory.

So,

on

a

Windows

system

that

has

WebSphere

installed

in

the

default

location,

the

JSP

files

will

be

found

in

<AppServer-install-dir>\installedApps\<nodename>\UDDI_Registry.ear\gui.war\WEB-INF\pages

These

JSP

pages

also

contain

some

application

logic

(as

opposed

to

presentation

logic)

that

should

not

be

changed.

Configuring

SOAP

interface

properties

You

can

configure

the

following

SOAP

interface

properties:

v

defaultPoolSize

-

the

number

of

SOAP

parsers

with

which

to

initialize

the

parser

pool

for

the

SOAP

interface.

You

can

set

this

independently

for

the

Publish

(uddipublish)

and

Inquiry

(uddi)

APIs.

For

example,

if

you

expect

more

inquiries

than

publish

requests

via

the

SOAP

interface,

you

can

set

a

larger

pool

size

for

the

Inquiry

API.

The

default

initial

size

for

both

APIs

is

10.

v

The

context

root

used

for

the

Publish

and

Inquiry

APIs,

which

forms

a

part

of

the

URL

by

which

they

are

accessed.

By

default

this

is

/uddisoap.

v

Whether

the

API

is

to

be

secure

(via

HTTPS)

or

insecure

(via

HTTP).

The

default

is

to

use

HTTPS.

To

configure

the

following

SOAP

interface

properties,

use

either

of

the

following

methods:

v

Configuring

SOAP

properties

with

the

Application

Assembly

Tool

(the

recommended

option,

especially

for

a

production

environment)

v

Configuring

SOAP

properties

in

the

deployment

descriptor

for

the

SOAP

module

in

the

UDDI

application

directly.

This

option

is

faster

and

may

be

the

preferred

method

in

a

test

environment.

Configuring

SOAP

properties

with

the

Application

Assembly

ToolWebSphere

Assembly

Toolkit

or

the

Application

Assembly

Tool

To

configure

SOAP

properties

by

using

the

Application

Assembly

ToolWebSphere

Assembly

Toolkit

or

the

Application

Assembly

Tool,

complete

the

following

steps:

v

Select

Update

and

click

on

the

Application

icon.

v

Select

the

uddi.ear

file

(this

is

placed,

by

the

UDDI

installation,

into

the

UDDI

install

directory

(e.g.

C:\WebSphere\installableApps\uddi.ear).

v

Expand

the

uddi.ear

icon

on

the

left-hand

pane

in

the

AAT.

v

Expand

the

Web

Modules

tree.

v

Expand

the

uddi

Soap

tree

v

To

change

the

defaultPoolSize,

expand

Web

Components

and

then

uddipublish

(for

the

publish

API)

or

uddi

(for

the

inquiry

API).

636

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

Click

on

Initialization

Parameters

which

will

show

the

defaultPoolSize

parameter

in

the

upper

right-hand

pane.

This

can

be

edited

in

the

lower

right-hand

pane.
v

To

change

the

context

root,

click

on

UDDI

Soap

which

displays

general

information

about

the

SOAP

module

in

the

lower

right-hand

pane

in

AAT.

The

context

root

can

be

edited

in

this

pane.

v

To

change

the

publish

API

to

use

HTTP

(instead

of

HTTPS),

click

on

Security

Constraints

and

change

the

Transport

Guarantee

from

Confidential

to

none.

v

Having

made

any

changes

above,

you

must

now

save

them.

To

do

this,

click

on

File

->

Save

(or

Save

As)

to

save

your

changes.

v

Redeploy

the

uddi.ear

to

WebSphere,

by

first

removing

it

and

reinstalling

it

via

the

Administrator’s

Console.

Configuring

SOAP

properties

in

an

application

that

is

already

deployed

To

configure

SOAP

properties

after

the

UDDI

application

has

been

installed:

1.

Edit

the

deployment

descriptor

for

the

SOAP

module

(web.xml).

This

file

is

located

in

the

WEB-INF

subdirectory

of

the

uddi.ear

application

in

the

installed

applications

within

the

WebSphere

install

directory

(for

example,

<WebSphere-install-dir>\installableApps\uddi.ear\soap.war\WEB-INF).

2.

Stop

and

restart

the

application

server

for

the

changes

to

take

effect.

Administering

the

UDDI

Registry

Perform

the

following

tasks

to

administer

the

UDDI

Registry:

v

Running

the

UDDI

Registry

v

Backing

up

and

restoring

the

UDDI

Registry

database

Running

the

UDDI

Registry

Starting

the

WebSphere

Application

Server

in

which

the

UDDI

Registry

is

deployed

After

a

reboot,

or

at

any

time

required,

the

server

can

be

started

by

running

startServer

(on

Windows)

or

startServer.sh

(on

Unix

and

Linux

platforms).

On

Unix

and

Linux

platforms

run

the

db2profile

script

before

issuing

the

startServer.sh

server1

command.

This

script

is

located

within

the

DB2

instance

home

directory

under

sqllib

and

is

invoked

by

typing:

.

/home/db2inst1/sqllib/db2profile

Note:

In

the

above

example,

notice

that

the

’.’

is

followed

by

a

single

space

character.

Note:

On

Unix

and

Linux

platforms

the

DB2

user

must

have

a

db2profile

at

$HOME/sqllib/db2profile

By

default,

the

UDDI

Registry

is

started

automatically

when

the

application

server

is

started.

In

order

to

stop

and

restart

it,

use

the

administrative

console.

You

can

also

use

the

administrative

console

to

change

this

default

behavior.

Chapter

9.

IBM

WebSphere

UDDI

Registry

637

Backing

up

and

restoring

the

UDDI

Registry

database

If

you

want

to

protect

the

data

in

your

UDDI

Registry

database,

you

can

back

up

and

restore

the

database

using

the

facilities

of

the

database

product.

For

DB2,

you

can

do

this

by

using

the

export

and

import

utilities

of

the

DB2

Control

Center.

For

Cloudscape

you

can

simply

use

operating

system

tools

to

copy

the

database

directory.

Refer

to

the

database

product

information

for

more

details.

DB2

allows

for

dynamic

backup,

but,

if

you

are

using

static

backup,

stop

any

UDDIReg

applications

beforehand.

The

UDDI

Registry

database

is

called

UDDI20,

and

the

tables

that

should

be

backed

up

are:

v

ADDRESS

v

ADDRLINE

v

BSERVICE

v

BTEMPLATE

v

BUSINESS

v

CATEGORY

v

CATEGORYBAG

v

CONTACT

v

DESCR

v

DISCOVERYURL

v

EMAIL

v

EXTCATEGORY

v

IDENTIFIERBAG

v

INSTANCEDETAIL

v

NAMEELEMENT

v

OVERVIEWDOC

v

PHONE

v

PUBLISHERASSERTION

v

SERVICEPROJECTION

v

TMODEL

v

VALIDATIONCACHE

v

VALIDATIONSERVICES

UDDI

user

console

This

topic

describes

the

layout

of

the

UDDI

user

console

(also

referred

to

as

the

Graphical

User

Interface

(GUI)),

which

you

can

use

to

interact

with

the

IBM

WebSphere

UDDI

Registry.

For

information

about

how

to

display

the

UDDI

user

console,

see

Displaying

the

user

console.

If

you

will

be

using

the

UDDI

console,

it

is

recommended

that

you

configure

the

application

server

into

which

you

have

installed

the

UDDI

Registry

for

UTF-8

encoding

support:

see

″Configuring

the

UDDI

User

Console

for

multiple

language

encoding

support″.

v

The

user

console

provides

a

graphical

user

interface

to

the

majority

of

the

UDDI

Version

2

API.

It

is

not

intended

to

support

the

full

API

set:

there

is

some

focus

on

inquiry

operations,

as

the

main

purpose

of

the

UDDI

user

console

is

to

allow

users

to

issue

inquiry

requests

and

to

familiarize

themselves

with

general

UDDI

638

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

concepts.

This

section

documents

those

areas

for

which

support

through

the

user

console

is

not

provided,

together

with

other

known

restrictions

to

the

user

console.

–

General

-

Help

is

provided

in

the

form

of

explanatory

text

on

the

screens.

-

Maximum

rows

cannot

be

specified

on

finds.

The

single

maximum

rows

value

for

the

registry

can

be

set

through

the

dbMaxResultCount

global

configuration

property.

For

more

information

on

setting

this

property

see

Configuring

global

UDDI

properties
–

Find

business

-

The

business

identifier

feature

is

not

supported.
–

Find

service

type

-

The

business

identifier

feature

is

not

supported.
–

Add

business

-

You

must

supply

the

business

contact

as

a

name

and

role

(no

other

information

is

supported).
–

Add

service

type

-

You

can

enter

the

overview

URL,

but

only

with

one

description

in

English.
–

Add

service

-

There

is

no

support

for

entering

a

Hosting

Redirector,

nor

for

adding

an

overviewURL.
v

Note:

The

UDDI

Version

2

specification

states

that

when

a

tModel

is

deleted,

it

should

not

be

physically

deleted.

This

allows

the

tModel

to

be

reinstated.

One

effect

of

this

is

that,

if

you

delete

a

tModel

using

the

UDDI

user

console,

the

tModel

is

still

visible

through

the

Show

Owned

Entities

display.

The

UDDI

user

console

is

split

into

three

distinct

areas.

At

the

top

of

the

screen

are

buttons

that

activate

various

functions

in

the

areas

below

this

bar.

These

buttons

are:

Home

Returns

you

to

the

IBM

WebSphere

UDDI

Registry

welcome

page

Find

Activates

the

Find

tab

on

the

frame

below

to

the

left

Publish

Similarly

activates

the

Publish

tab

on

the

frame

below

to

the

left

Below

the

WebSphere

UDDI

Registry

banner

the

screen

is

split

into

two

parts.

On

the

left

are

the

two

tabs

mentioned

above,

the

Find

and

Publish

tabs.

Find

tab

The

Find

tab

is

in

two

parts.

At

the

top,

a

Quick

Find

service

is

provided.

There

are

three

radio

buttons

to

enable

a

choice

of

’service’,

’business’

and

’technical

model’

finds.

Below

these

radio

buttons

is

a

text

entry

box

for

entering

the

name

to

search

for

and,

beneath

this,

a

’Find’

link

to

start

the

search.

Comments

are

provided

to

show

the

user

the

wildcard

character.

The

results

of

clicking

on

the

’Find’

link

are

shown

in

the

detail

frame

to

the

right.

Beneath

the

Quick

Find

is

a

section

for

Advanced

Find

functions

which

enables

the

user

to

choose

which

entity

they

want

to

perform

an

advanced

search

on.

There

are

three

links:

Find

services,

Find

businesses

and

Find

technical

models.

Clicking

one

of

these

links

displays

the

corresponding

advanced

search

form

in

the

frame

to

the

right,

which

the

user

may

use

to

enter

search

criteria.

To

initiate

a

Find,

the

user

must

first

enter

a

search

path

(the

%

wildcard

may

be

used)

and

then

click

the

blue

Add

link

to

enter

the

search.

Then

click

on

the

’Find

Services’

(or

’Find

Businesses/Find

technical

models)

link

below

to

initiate

the

Find

operation.The

Locator

section

has

a

link

(marked

in

blue

with

the

words

″Show

category

tree″)

which

displays

the

tree

from

which

the

user

can

select

categories

Chapter

9.

IBM

WebSphere

UDDI

Registry

639

(or

taxonomies).

This

is

shown

in

the

left-hand

frame.

In

the

advanced

search

form

there

are

two

links

to

start

the

search

(mid-way

down

and

at

the

bottom).

The

results

of

clicking

either

of

the

two

links

to

start

the

search

are

displayed

in

the

same

detail

frame.

Publish

tab

The

Publish

link

on

the

top

banner

activates

the

Publish

tab

in

the

navigation

frame

to

the

left.

The

Publish

tab

is

split

into

three

distinct

sections.

1.

Quick

Publish

Function

The

top

part

is

a

Quick

Publish

section

to

allow

the

user

to

publish

a

business

or

technical

model

by

name

only.

There

are

two

radio

buttons

to

enable

a

choice

of

’business’

or

’technical

model’.

Below

these

radio

buttons

is

a

text

entry

box

for

entering

the

name

to

assign

to

the

selected

entity

and,

beneath

this,

a

blue

’Publish

now’

link

to

publish

the

entity.

The

results

of

clicking

on

the

Publish

now

link

are

shown

in

the

detail

frame

to

the

right.

2.

Advanced

Publish

Functions

To

publish

an

entity

with

more

detail,

such

as

with

multiple

names,

descriptions

and

categories,

use

the

Advanced

Publish

section

below

this.

The

comments

below

each

link

(’Add

a

business’

and

’Add

a

technical

model’)

describe

individual

functions.

Clicking

one

of

these

links

displays

the

corresponding

advanced

publish

form

in

the

detail

frame

where

the

user

may

enter

details

about

the

entity

they

want

to

publish.

As

in

the

Advanced

Find

functions

described

above,

there

are

two

links

to

publish

a

business

or

technical

model

(one

towards

the

top

of

the

form

and

the

other

at

the

bottom).

Similarly

the

Locator

section

allows

taxonomies

to

be

shown

in

the

left

frame

from

which

the

user

can

select

categories.

Following

entry

of

the

relevant

details

on

the

Advanced

Publish

section,

the

user

must

click

on

the

Publish

Business

bar

in

order

for

the

business

to

be

published

to

the

UDDI

Registry.

3.

Registered

Information

Below

the

Advanced

Publish

section

is

a

Registered

Information

section

which

has

a

link

to

Show

Owned

Entities

in

order

to

show

the

businesses,

services

and

technical

models

registered

to

the

individual

user,

and

pending

business

relationships.

Clicking

the

Show

Owned

Entities

link

displays

the

Show

Owned

Entities

page

in

the

detail

frame

at

the

right.

The

Show

Owned

Entities

page

is

organized

in

three

sections:

Registered

Businesses,

Pending

Business

Relationships

and

Registered

Technical

Models.

Each

section

shows

the

number

of

registered

items.

Edit

and

Delete

Businesses

Users

can

Edit

or

Delete

businesses

owned

by

them

by

clicking

the

appropriate

links

in

the

Actions

column.

After

an

Edit

or

Delete

function

has

been

completed,

the

user

must

click

on

the

Update

Business

bar

in

order

to

publish

the

changes

to

the

UDDI

Registry.

After

Deleting

a

Business

the

user

must

confirm

the

deletion

by

clicking

on

the

’Delete

this

Business’

link.

Adding

a

Service

to

a

Business

Services

are

added

to

a

business

by

clicking

the

Add

a

Service

link

in

the

Services

column

of

the

Registered

Businesses

section.

After

the

Add

a

Service

function

is

complete,

users

must

click

on

the

Publish

Service

bar

in

order

to

publish

the

service

to

the

UDDI

Registry.

Referencing

a

Service

from

a

Business

640

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Services

can

also

be

’referenced’

by

a

business

as

if

the

business

was

the

owner

of

the

service.

This

’service

projection’

is

performed

by

clicking

the

Reference

a

service

link

in

the

Services

column.

Services

associated

with

a

business,

whether

they

are

owned

or

referenced,

can

be

displayed

by

clicking

the

Show

services

link.

This

acts

as

a

toggle

between

displaying

services

available

for

editing

or

deleting,

and

hiding

them.

Adding

a

relationship

to

another

Business

A

business

can

be

associated

with

another

business

in

the

UDDI

Registry

and

this

function

is

performed

by

clicking

the

Add

a

relationship

link

in

the

Actions

column

of

the

Registered

Businesses

section.

Clicking

the

Show

related

businesses

link

in

the

Actions

column

displays

a

list

of

any

completed

business

relationships.

The

Pending

Business

Relationships

section

shows

all

incomplete

publisher

assertions,

where

only

one

party

has

asserted

a

relationship

and

is

waiting

for

the

other

party

to

make

the

same

assertion.

This

section

reminds

the

user

of

any

relationships

that

involve

their

businesses.

Once

both

parties

have

asserted

the

same

relationship

between

two

businesses,

the

relationship

moves

from

the

Pending

Business

Relationships

section

and

appears

in

the

list

of

relationships

displayed

after

clicking

the

Show

related

businesses

link

in

the

Registered

Businesses

section.

Technical

Models

Technical

Models

owned

by

the

user

are

shown

in

the

bottom

Registered

Technical

Models

section.

As

for

businesses,

users

can

Edit

or

Delete

technical

models

owned

by

them

by

clicking

the

appropriate

links

in

the

Actions

column.

Note:

Users

should

take

note

that

deletion

of

Technical

Models

(tModels)

does

not

cause

them

to

be

physically

deleted,

but

hidden.

This

is

in

accordance

with

the

UDDI

Registry

V2.0

specifications.

After

deletion

Technical

Models

are

shown

under

the

″Shown

Owned

Entities″

link

on

the

publish

page

but

not

via

the

Find

links

on

the

Find

page.

ALL

other

entities

are

deleted

from

the

UDDI

Registry

in

the

normal

way.

Example

of

publishing

a

Business,

Service

and

tModel

with

the

User

Console

For

the

example,

here,

we

will

assume

a

business

called

Mondeo

Cars

that

sells

used

cars

1.

Add

the

Business

Click

on

the

Publish

tab

in

the

left

hand

navigation

frame.

Then

click

on

’Add

a

business’

in

the

Advanced

Publish

in

the

left

pane.

This

takes

you

to

a

’Publish

Business’

pane

on

the

right.

Start

by

adding

your

Business

Name

in

the

text

field

labelled

(Mondeo

Cars

in

this

example)

and

select

a

language

and

then

click

on

the

blue

Add

link

to

the

right.

This

adds

the

business

name

(but

the

business

is

not

yet

published

-

more

about

which

is

explained

later).

Below

the

Business

Name

is

an

area

called

Descriptions

-

it

allows

free

text

to

be

added

to

describe

the

business

-

if

you

enter

anything

here

you

must

click

on

the

blue

Add

link

to

the

right

to

insert

the

description.

The

next

section/area

is

the

Locator

area

which

can

be

used

to

describe

the

business

according

to

what

categories

it

falls

into.

This

example

uses

a

Used

car

dealership.

Within

the

NAICS

taxonomy

(which

you

may

view

by

clicking

on

’Show

category

tree’

and

then

expanding

NAICS)

this

is

a

Retail

Trade

[44]

entry

which,

on

expansion,

has

Motor

Vehicle

and

Parts

Dealers

[441]

and,

again

on

expansion,

has

automobile

Dealers

[4411]

and

Used

Car

Dealers

[44112].

This

fits

the

Business

perfectly,

so

clicking

on

Used

Car

Dealers

will

Chapter

9.

IBM

WebSphere

UDDI

Registry

641

enter

the

Key

Name

and

Key

Value

into

the

business.

For

Checked

Categorizations

(such

as

NAICS)

the

Key

name

is

not

checked

but

the

Key

Value

is

checked.

It

should

be

noticed

that

for

unchecked

categorizations

(such

as

’other’

or

unspsc’)

the

Key

value

is

not

checked

either.

If

the

locator

field

has

been

added,

then

the

blue

Add

link

must

be

clicked.

The

final

area

is

Contacts,

which

can

have

names

and

role

information

added

if

required.

Again,

the

blue

Add

link

must

be

clicked

after

adding

the

relevant

information.

Once

all

the

fields

are

filled

in

to

the

required

level,

the

final

action

is

to

click

on

the

Publish

Business

at

the

bottom

of

the

form

or

at

the

top.

This

causes

the

business

to

be

published

to

the

UDDI

Registry

and

a

page

is

displayed

showing

the

business

details.

2.

Add

a

Service

From

the

Publish

tab,

there

is

a

’Show

owned

entities’

link.

This

shows

the

businesses

owned

by

the

current

user

in

the

Registry

and

the

language

to

be

used

for

a

particular

user.

For

Mondeo

Cars,

the

user

will

see

a

’Add

service’

button.

Clicking

this

button

shows

the

Publish

Service

form.

The

top

part

of

the

form

is

the

Service

Name

field.

After

adding

this

name,

the

user

must

click

on

the

blue

Add

link

to

enter

the

name.

As

in

the

Adding

the

Business

form,

each

subsequent

part

must

end

with

the

blue

Add

link

being

clicked

to

add

that

part

of

the

information

to

the

service.

The

sections

are

(from

top

to

bottom,

Description

(a

free

text

area),

Access

Points

(to

add

link

points

to

the

Service),

Locator

(to

add

references

to

taxonomies

to

the

service),

and

Technical

Models

(to

associate

existing

tModels

to

the

Service).

After

completion

of

those

areas

required,

clicking

on

the

’Publish

Service’

button

will

Publish

the

service

to

the

UDDI

Registry

with

the

current

form

contents.

3.

Adding

a

new

technical

model

Clicking

on

the

’Add

a

technical

model’

link

in

the

left

frame

opens

up

the

Publish

Technical

Model

form

on

the

right.

A

tModel

can

only

have

one

name

-

hence

the

lack

of

a

blue

Add

link

next

to

the

Technical

Model

Name

field.

Beneath

this

field

are

other

fields

-

Description

(a

free

text

area

to

describe

the

technical

model),

Locator

(to

describe

the

technical

model

with

taxonomies,

and

an

Overview

URL

(which

gives

a

URL

pointing

to

an

overview

document,

a

description

of

the

document

and

a

Language

field).

For

each

of

these

fields

there

is

a

blue

Add

link

which

must

be

clicked

to

add

the

relevant

data.

At

the

bottom

of

the

form

is

a

’Publish

Technical

Model’

link

which

will

create

the

technical

model

in

the

UDDI

Registry.

There

is

a

Publish

link

at

the

top

of

the

frame

in

each

case

also

-

after

the

Name

section.
v

Displaying

the

user

console

Displaying

the

user

console

Access

without

authentication

enabled

This

topic

describes

how

to

display

the

UDDI

Registry

user

console

(also

referred

to

as

the

GUI).

By

default

two

URLs

are

supplied,

one

for

inquiry

(non-SSL)

and

one

for

publish

(via

SSL).

This

section

describes

the

default

behavior.

v

For

inquiry

you

can

access

the

UDDI

User

Console

by

using

the

following

URL

in

your

Web

browser:

http://<hostname>:9080/uddigui

v

For

publish

you

can

access

the

UDDI

user

console

by

using

the

following

URL

in

your

Web

browser:

https://<hostname>:9443/uddigui

642

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Note:

With

WebSphere

security

disabled,

all

the

publish

operations

are

performed

using

a

userid

of

UNAUTHENTICATED.

Also,

if

you

select

a

publish

action

on

the

GUI

you

will

automatically

be

redirected

to

the

SSL

port.

Access

with

authentication

enabled.

If

you

have

WebSphere

security

enabled,

you

can

access

the

UDDI

User

Console

through

the

two

URLs

as

above,

however,

for

publish

request,

you

will

be

prompted

for

a

WebSphere

uid

and

password.

The

user

console

displays

the

default

frameset

containing

the

header

frame,

navigation

frame

showing

find

options,

and

details

frame.

When

you

click

the

link

to

show

the

publish

options

in

the

navigation

frame,

you

are

challenged

for

a

userid

and

password.

If

WebSphere

security

is

enabled

and

you

try

to

access

a

publish

action

via

an

unsecured

link,

e.g.

clicking

the

publish

link

on

the

navigation

frame

where

the

user

console

was

opened

with:

http://<hostname>:9080/uddigui

you

are

redirected

to

a

secure

logon

screen.

Inquire

functions

work

as

expected.

The

uDDI

Registry

supports

a

number

of

security

roles,

including

two

for

the

user

console.

See

Configuring

Security

Roles

within

this

Information

Center

for

more

details

on

this

topic.

Custom

Taxonomy

Support

in

the

UDDI

Registry

The

IBM

WebSphere

UDDI

Registry

is

supplied

with

six

published

taxonomies

(or

categorization

schemes)

in

the

taxonomy

data.

Taxonomies

can

be

either

checked

or

unchecked,

and

this

is

indicated

via

a

keyedReference

in

the

categoryBag

of

the

tModel

that

represents

a

taxonomy

(a

″categorization

tModel″).

These

keyedReferences

have

the

tModel

key

for

uddi-org:types

and

are

added

to

the

categoryBag

to

further

describe

the

behavior

of

the

categorization

tModel,

as

follows:

checked

Marking

a

tModel

with

this

classification

asserts

that

it

represents

a

categorization,

identifier,

or

namespace

tModel

that

has

a

validation

service

to

check

that

category

values

are

present

in

a

specified

value

set.

unchecked

Marking

a

tModel

with

this

classification

asserts

that

it

represents

a

categorization,

identifier,

or

namespace

tModel

that

does

not

have

a

validation

service.

Of

these

six

published

taxonomies,

four

are

checked.

In

the

IBM

WebSphere

UDDI

Registry

and

also

in

the

IBM

UDDI

Business

Registry

(UBR),

the

validation

of

categories

in

checked

taxonomies

is

performed

against

locally

managed

taxonomy

data.

The

published

taxonomies

are:

Taxonomy

name

Checked

Description

tModel

key

Chapter

9.

IBM

WebSphere

UDDI

Registry

643

ntis-gov:naics:1997

Yes

Business

Taxonomy:

NAICS

(1997

Release)

uuid:C0B9FE13-179F-413D-8A5B-
5004DB8E5BB2

uddi-org:iso-ch:3166-
1999

Yes

ISO

3166-1:1997

and

3166-2:1998.

Codes

for

names

of

countries

and

their

subdivisions.

Part

1:

Country

codes.

Part

2:

Country

subdivision

codes.

Update

newsletters

include

ISO

3166-1

V-1

(1998-02-05),

V-2

(1999-10-01),

ISO

3166-2

I-1

(1998)

uuid:4E49A8D6-D5A2-4FC2-93A0-
0411D8D19E88

unspsc-org:unspsc

Yes

Product

Taxonomy:

UNSPSC

uuid:CD153257-086A-4237-B336-
6BDCBDCC6634

unspsc-org:unspsc:3-1

No

Product

Taxonomy:

UNSPSC

(Version

3.1)

uuid:DB77450D-9FA8-45D4-A7BC-
04411D14E384

uddi-org:types

Yes

UDDI

Type

Taxonomy

uuid:C1ACF26D-9672-4404-9D70-
39B756E62AB4

uddi-
org:general_keywords

No

Special

taxonomy

consisting

of

namespace

identifiers

and

the

keywords

associated

with

the

namespaces

uuid:A035A07C-F362-44DD-8F95-
E2B134BF43B4

Taxonomy

data

is

provided

in

the

IBM

WebSphere

UDDI

Registry

for

all

the

above

taxonomies,

apart

from

the

general

keywords

taxonomy

(which

is

unchecked).

The

UDDI

User

Console

(GUI)

provided

with

the

IBM

WebSphere

UDDI

Registry

uses

a

shortened

label

for

taxonomies

when

displayed

in

the

taxonomy

tree

view,

or

in

a

pull-down

list

of

available

taxonomies

as

follows:

Taxonomy

Name

(published)

Taxonomy

name

(as

displayed

in

the

UDDI

user

console)

ntis-gov:naics:1997

naics

uddi-org:iso-ch:3166-1999

geo

unspsc-org:unspsc

unspsc7

unspsc-org:unspsc:3-1

unspsc

uddi-org:types

udditype

uddi-org:general_keywords

other

644

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

This

release

of

IBM

WebSphere

UDDI

Registry

(included

with

IBM

WebSphere

Application

Server,

Version

5.0.2)

introduces

the

ability

to

add

user-defined

taxonomies,

with

available

allowed

values

presented

in

the

existing

GUI

taxonomy

tree

display.

IBM

WebSphere

Studio

Application

Developer,

Version

5.1

has

a

Web

Services

Explorer

user

interface

that

also

allows

addition

and

display

of

custom

checked

taxonomies.

The

publisher

of

a

custom

taxonomy’s

categorization

tModel

may

specify

a

’display

name’

for

use

in

GUI

implementations.

Procedure

for

adding

a

Custom

taxonomy

To

add

a

custom

taxonomy

to

the

IBM

WebSphere

UDDI

Registry

requires

you

to

perform

two

tasks:

load

the

custom

taxonomy

data

and

publish

a

categorization

tModel.

Only

when

both

are

complete

will

the

checked

taxonomy

be

of

practical

use.

Taxonomy

data

must

be

provided

for

validating

checked

taxonomies.

Taxonomy

data

may

also

be

used

by

GUIs

for

unchecked

taxonomies,

but

it

is

not

a

requirement

and

is

usually

only

used

for

presentation

of

deprecated

taxonomies,

such

as

unspsc-org:unspsc.

If

the

taxonomy

is

checked,

then

any

publish

requests

that

have

a

categoryBag

containing

keyedReferences

with

the

new

categorization

tModel

will

be

validated.

If

there

is

taxonomy

data

corresponding

to

the

categorization

tModel

in

the

registry

database

then

only

valid

values

will

be

accepted.

If

there

is

no

taxonomy

data

in

the

database

then

all

values

will

be

rejected,

and

the

publish

request

will

fail.

If

the

categorization

tModel

is

unchecked,

all

values

will

be

allowed,

regardless

of

whether

there

is

corresponding

taxonomy

data

present

in

the

UDDI

Registry

database.

Suggested

approach

The

suggested

way

of

introducing

a

new

taxonomy

is

to:

1.

Load

custom

taxonomy

data

into

the

UDDI

Registry

database

using

the

UDDITaxonomyTools.jar

utility

(described

below)

2.

Publish

the

categorization

tModel

with

a

keyedReference

of

type

’general

keywords’

with

keyname

of

’customTaxonomy:key’

and

a

keyValue

matching

the

taxonomy

name

in

the

taxonomy

data

file

(described

below

also)

Note:

the

SOAP

and

EJB

interfaces

will

be

able

to

make

use

of

categorization

tModels

as

soon

as

they

are

published.

However,

the

UDDI

Registry

GUI

will

currently

require

a

restart

of

the

UDDI

application

because

it

currently

gathers

its

list

of

categorizations

for

use

in

the

taxonomy

tree

display

when

the

application

starts.

Loading

Custom

Taxonomy

Data

Custom

Taxonomy

Data

File

Format

Taxonomy

data

is

identified

by

a

common

taxonomy

name,

a

unique

code

value,

an

optional

description

and

a

parent

code

that

specifies

its

relationship

with

other

code

values.

Taxonomy

data

must

adhere

to

this

format:

Column

name

Maximum

length

Description

of

use

name

8

Uniquely

identifies

the

taxonomy

within

the

registry

Chapter

9.

IBM

WebSphere

UDDI

Registry

645

code

32

Unique

value

within

the

taxonomy

used

for

validation

description

128

Typically

used

by

GUIs

and

optionally

in

the

keyedReference

as

the

keyName

value

parentcode

32

Indicates

which

existing

code

is

the

logical

parent

of

this

one,

and

is

used

in

tree

displays

Typically

columns

are

delimited

in

the

taxonomy

data

file

by

’#’

characters

as

in

this

example:

food#00#Food#00

food#10#Fruit#00

food#101#Apples#10

food#102#Oranges#10

food#103#Pears#10

food#1031#Anjou#103

food#1032#Conference#103

food#1033#Bosc#103

food#104#Pomegranates#10

food#20#Vegetables#00

food#201#Carrots#20

food#202#Potatoes#20

food#203#Peas#20

food#204#Sprouts#20

In

the

example,

’Food’

is

the

description

for

the

root

node

with

child

nodes

of

’Fruit’

and

’Vegetables’

(both

of

these

have

parentcode

values

the

same

as

the

code

value

for

’Food’).

The

taxonomy

data

in

the

example

file

could

then

be

rendered

in

a

tree

like

this:

Food

Fruit

Apples

Oranges

Pears

Anjou

Conference

Bosc

Pomegranates

Vegetables

Carrots

Potatoes

Peas

Sprouts

The

file

must

be

saved

in

UTF-8

format.

The

following

taxonomy

names

are

reserved

within

the

IBM

WebSphere

UDDI

Registry

and

should

not

be

used

for

custom

taxonomy

files:

naics,

geo,

unspsc,

unspsc7,

other,

udditype.

Any

attempts

to

publish

a

categorization

tModel

using

these

values

for

a

customTaxonomy:key

are

rejected.

If

these

names

are

used

in

custom

data

files

and

the

data

is

imported

it

is

indistinguishable

from

taxonomy

data

with

the

same

name.

UDDITaxonomyTools.jar

A

utility

is

provided

to

load

taxonomy

data

into

the

IBM

WebSphere

UDDI

Registry,

rename

existing

taxonomy

data

and

remove

existing

taxonomy

data,

for

both

IBM

DB2

and

Cloudscape

databases.

The

usage

for

each

database

and

platform

is

identical:

646

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Usage:

java

-jar

UDDITaxonomyTools.jar

{function}

[options]

function:

-load

<path>

Load

taxonomy

data

from

specified

file

-rename

<old>

<new>

Rename

existing

taxonomy

-unload

<name>

Unload

existing

taxonomy

options:

-properties

<path>

Specify

location

of

configuration

file

Note:

Ensure

that

the

command

window

from

which

the

UDDITaxonomyTools.jar

is

run

is

using

a

suitable

codepage

and

font

for

displaying

the

characters

contained

in

the

taxonomy

name.

Use

of

an

incorrect

codepage/font

may

result

in

unclear

messages

on

a

successful

load,

and

create

difficulty

using

the

-unload

and

-rename

options.

UDDITaxonomyTools.jar

is

located,

by

default,

in

the

<DeploymentManager-install-
dir>/UDDIReg/scripts

directory.

The

following

section

explains

in

more

detail

how

to

use

the

utility’s

commands

and

parameters.

The

configuration

file,

if

specified

by

the

optional

properties

parameter,

determines

the

database

driver,

authentication

information

and

delimiters.

The

contents

are

as

follows

(typical

data

for

DB2

installation

shown):

Property

and

example

data

(for

DB2)

Comments

classpath=

″c:/program

files/sqllib/java12/db2java.zip;

c:/tools/UDDITaxonomyTools.jar″

Classpath

including

database

driver

and

the

UDDITaxonomyTools.jar*

database.driver.className=COM.ibm.db2.jdbc.app.DB2Driver

Fully

qualified

classname

of

the

database

driver

class

database.url=jdbc:db2:UDDI20

JDBC

URL

of

the

database

database.userName=db2admin

Database

userid

(DB2

only)

database.password=db2admin

Database

password

(DB2

only)

column.delimiter=#

Column

delimiter

used

in

taxonomy

data

files

string.delimiter=\″

Field

delimiter

(must

be

different

to

the

column.delimiter

value)

*

the

classpath

needs

to

be

enclosed

in

quotes

if

the

path

includes

space

characters.

Also,

the

UDDITaxonomyTools.jar

filepath

itself

must

be

appended

to

the

classpath

(if

the

working

directory

is

the

same

as

the

location

of

the

UDDITaxonomyTools.jar

then

just

the

name

is

sufficient)

Filepath

names

should

include

the

use

of

the

forward-slash

character

(/)

for

all

platforms.

For

Cloudscape

database

users,

the

values

of

the

following

properties

would

be

likely

to

be:

v

classpath=c:/websphere/appserver/lib/db2j.jar;

UDDITaxonomyTools.jar

v

database.driver.className=com.ibm.db2j.jdbc.DB2jDriver

v

database.url=jdbc:db2j:c:/

websphere/appserver/bin/uddi20

The

string.delimiter

is

typically

used

where

a

description

value

contains

the

same

character

as

the

column

delimiter

character.

For

example,

if

the

column.delimiter

was

set

to

’,’

(comma),

and

there

was

a

taxonomy

description

value

of

’Fruits,

citrus’,

you

could

include

this

in

the

taxonomy

data

file

by

setting

the

Chapter

9.

IBM

WebSphere

UDDI

Registry

647

string.delimiter

to

″(double

quote)

and

enclosing

the

description

in

quotes:

’Fruits,

citrus’.

Note

that

the

quote

character

is

escaped

with

a

backslash

to

indicate

the

literal

character

is

to

be

used.

If

a

properties

parameter

is

not

specified,

the

utility

looks

for

and

uses

configuration

data

set

in

a

file

called

customTaxonomy.properties.

This

file

is

located,

by

default,

in

the

<DeploymentManager-install-dir>/UDDIReg/scripts

directory.

Note:

to

make

updates

to

taxonomy

data

in

a

Cloudscape

database,

the

IBM

WebSphere

Application

Server

must

be

stopped

to

release

the

connection

to

the

database.

Note:

There

is

currently

a

limitation

with

UDDITaxonomyTools.jar

when

used

with

a

DB2

UDDI

database

and

multi-byte

characters

such

as

Chinese,

Japanese

and

Korean.

The

maximum

number

of

multi-byte

characters

is

the

maximum

value

specified

earlier

for

name,

code,

description

and

parentcode

divided

by

3.

For

example,

name

can

only

contain

values

up

to

8

characters

in

length

so

the

maximum

number

of

Korean

characters

is

2.

If

the

taxonomy

file

is

found

to

have

values

that

exceed

the

limits,

a

message

is

displayed

by

the

tool

indicating

the

line

number

and

column

where

the

problem

occurs.

This

limitation

does

not

affect

use

with

a

Cloudscape

UDDI

database.

Publishing

a

Checked

Categorization

tModel

This

section

describes

how

to

publish

a

checked

categorization

tModel

with

the

’customTaxonomy’

keyedReferences

to

specify

which

custom

taxonomy

data

to

use

and

a

display

name.

Note:

to

specify

an

unchecked

categorization

substitute

the

’checked’

keyValue

with

’unchecked’

or,

more

simply,

omit

the

keyedReference.

Publish

a

tModel

to

the

IBM

WebSphere

UDDI

Registry

with

a

categoryBag

containing

keyedReferences

as

follows:

Note

tModelKey

KeyName

KeyValue

1

(uddi-org:types)

<optional>

categorization

2

(uddi-org:types)

<optional>

checked

3

(general

keywords)

urn:x-ibm:uddi:customTaxonomy:key

<custom

taxonomy

name>

4

(general

keywords)

urn:x-ibm:uddi:customTaxonomy:displayName

<custom

taxonomy

displayName>

1.

Indicates

this

tModel

is

a

categorization

tModel

(required)

2.

Indicates

use

of

the

tModel

will

be

checked

against

a

list

of

valid

data

(required).

(Omitting

this

keyedReference,

or

explicitly

specifying

a

value

of

’unchecked’

will

indicate

this

categorization

is

unchecked).

3.

Indicates

special

use

of

the

general

keywords

taxonomy,

with

a

proprietary

urn

as

the

keyName

value,

defines

the

value

used

by

the

UDDI

Registry

to

look

up

taxonomy

data

in

its

database.

The

value

must

be

1-8

(inclusive)

characters

long

and

corresponds

directly

with

the

name

value

in

the

custom

taxonomy

data

file.

Therefore,

it

must

be

unique

within

the

registry.

4.

Indicates

special

use

of

the

general

keywords

taxonomy,

with

a

proprietary

urn

as

the

keyName

value,

defines

a

name

for

the

custom

taxonomy

that

is

648

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

intended

for

use

in

GUI

implementations

where

the

full

tModel

name

might

be

too

long*.

The

value

can

be

1-255

characters

(inclusive)

long.

If

this

keyedReference

is

not

supplied,

the

name

of

the

tModel

should

be

used

by

the

GUI

implementation.

*

The

displayName

is

intended

to

provide

a

way

to

label

a

taxonomy

such

that,

when

the

UDDI

GUI

displays

it

in

a

taxonomy

tree

or

in

a

pull-down

list

of

available

taxonomies,

the

meaning

is

clear

to

the

user

without

being

restricted

to

8

characters

and

without

needing

to

be

the

same

as

the

published

tModelName,

which

could

be

as

long

as

255

characters.

An

example

is

shown:

Uniqueness

of

the

urn:x-ibm:uddi:customTaxonomy:key

value

is

validated

at

the

time

a

categorization

tModel

is

published.

If

it

is

not

unique,

a

UDDIInvalidValueException

is

returned.

If

using

a

GUI

to

publish

the

tModel,

an

appropriate

message

is

displayed

indicating

the

likely

cause

of

the

problem.

The

urn:x-ibm:uddi:customTaxonomy:displayName

should

be

unique

if

only

to

avoid

confusion

when

displayed

in

GUIs

but

this

is

not

validated.

The

relationship

between

the

various

keyedReferences,

the

custom

taxonomy

data

files

and

use

in

GUIs

for

a

categorization

tModel

is

shown

below:

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

Categories:

Search Modifiers

Search behavior

Show category tree

Natural Foods

test1

udditype

unspec

geo

naics

other

unspsc7

Natural Foods

Locator

Type Key name

display name

Chapter

9.

IBM

WebSphere

UDDI

Registry

649

As

a

further

example,

to

display

the

label

’Delicious

Victuals’

in

GUI

displays,

the

categorization

tModel

would

have

a

keyedReference

like

this:

type

keyName

keyValue

other

urn:x-
ibm:uddi:customTaxonomy:displayName

Delicious

Victuals

And

to

link

a

categorization

tModel

to

a

custom

taxonomy

datafile

with

a

taxonomy

name

of

’goodfood’

the

tModel’s

categoryBag

must

have

a

keyedReference

like

this:

type

keyName

keyValue

other

urn:x-ibm:uddi:customTaxonomy:key

goodfood

To

publish

a

new

categorization

tModel

using

SOAP,

the

message

would

be:

<save_tModel

generic="2.0"

xmlns="urn:uddi-org:api_v2">

<authInfo></authInfo>>

<tModel

tModelKey="">

<name>Natural

Foods

tModel</name>

<categoryBag>

<keyedReference

tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"

keyValue="categorization"/>

<keyedReference

tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"

keyValue="checked"/>

<keyedReference

tModelKey="uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4"

keyName="urn:x-ibm:uddi:customTaxonomy:key"

keyValue="food"/>

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

food#00Food#00

food#10Fruit#00

food#101#Apples#10

food#102#Oranges#10

food#103#Pears#10

food#1031#Anjou#103

food#1032#Conference#103

food#1033#Bosc#103

food#104#Pomegranates#10

food#201#Carrots#20

food#202#Potatoes#20

food#203#Peas#20

food#204#Sprouts#20

tModel name

category type* keyName keyValue

tModel

My Food tModel

udditype

udditype

other

other

urn:x-ibm:uddi:customTaxonomy:displayName

urn:x-ibm:uddi:customTaxonomy:key

categorization

checked

Natural Foods

food

* (shorthand notation, where ‘udditype’ is uddi-org:types and ‘other’ is uddi-org:general_keywords)

650

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<keyedReference

tModelKey="uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4"

keyName="urn:x-ibm:uddi:customTaxonomy:displayName"

keyValue="Natural

Foods"/>

</categoryBag>

</tModel>

</save_tModel>

Note:

’uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4’

is

the

tModel

key

for

uddi-org:types

and

’uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4’

is

the

tModel

key

for

uddi-org:general_keywords.

Validation

and

Error

Handling

For

a

DB2-based

IBM

WebSphere

UDDI

Registry,

custom

taxonomy

data

can

be

loaded,

removed

and

renamed

using

the

provided

utility

without

restarting

the

application

(if

you

are

using

Cloudscape

the

application

server

must

be

stopped

to

make

database

updates).

Removing

data

for

which

there

is

a

corresponding

checked

categorization

tModel

will

cause

any

use

of

that

categorization’s

data

to

be

reported

as

invalid.

Note:

If

an

attempt

is

made

to

add

data

with

a

name

that

matches

any

of

the

’internal’

taxonomies,

such

as

naics,

geo,

and

so

on,

the

request

is

rejected.

If

an

attempt

is

made

to

rename

or

remove

one

of

the

internal

taxonomies,

a

warning

message

is

returned.

Likewise

if

the

user

tries

to

rename

a

taxonomy

to

one

of

the

reserved

taxonomies,

that

is

rejected.

The

UDDI

Registry

user

console

performs

validation

while

a

save

tModel

request

is

being

built,

that

is,

before

the

publish

occurs.

For

example,

if

a

categorization

tModel

with

a

customTaxonomy:key

keyValue

of

’food’

already

exists

(in

a

published

categorization

tModel),

and

the

user

tries

to

add

a

keyedReference

with

the

same

value

to

the

current

list

of

keyedReferences,

the

following

message

is

displayed:

Advice:

The

’urn:x-ibm:uddi:customTaxonomy:key’

value

of

’food’

is

already

in

use

by

another

categorization

tModel.

Enter

a

unique

value

Similarly,

only

one

of

each

of

the

customTaxonomy:key

and

customTaxonomy:displayName

keyedReferences

are

allowed.

For

example,

if

the

user

tries

to

add

two

customTaxonomy:displayName

keyedReferences

the

following

message

is

displayed:

Advice:

Only

one

’urn:x-ibm:uddi:customTaxonomy:displayName’

key

name

is

allowed

for

the

’Other’

taxonomy

If

the

customTaxonomy:key

keyedReference

is

valid

and

unique

at

the

time

it

is

added

to

the

save_tModel

request,

the

keyedReference

is

further

validated

when

the

user

makes

the

publish

request,

to

ensure

that

another

session

has

not

successfully

published

a

categorization

tModel

with

the

same

customTaxonomy:key.

In

this

case,

the

user

is

returned

to

the

Publish

Technical

Model

page.

If

a

keyedReference

containing

a

keyName

value

that

starts

with

’urn:x-ibm:uddi:customTaxonomy:’

is

followed

by

anything

other

than

’key’

or

’displayName’,

the

following

message

is

displayed:

Advice:

Only

key

name

values

of

’urn:x-ibm:uddi:customTaxonomy:displayName’

and

’urn:x-ibm:uddi:customTaxonomy:key’

are

supported.

For

SOAP,

UDDI4J,

and

EJB

initiated

requests

where

the

save_tModel

message

may

have

multiple

tModels,

if

any

one

of

the

tModels

is

a

categorization

tModel

Chapter

9.

IBM

WebSphere

UDDI

Registry

651

and

it

fails

validation,

the

request

fails

with

a

UDDIInvalidValueException

(plus

additional

information

explaining

the

likely

cause),

and

none

of

the

tModels

is

published.

For

example,

if

a

publish

request

includes

a

customTaxonomy:key

keyedReference

with

a

keyValue

that

matches

the

customTaxonomy:key

keyValue

of

an

existing

categorization

tModel,

the

following

UDDIInvalidValueException

is

thrown,

with

the

message:

E_invalidValue

(20200)

A

value

that

was

passed

in

a

keyValue

attribute

did

not

pass

validation.

This

applies

to

checked

categorizations,

identifiers

and

other

validated

code

lists.

The

error

text

will

clearly

indicate

the

key

and

value

combination

that

failed

validation.

Invalid

’customTaxonomy:dbKey’

keyValue

[naics]

in

keyedReference.

KeyValue

already

in

use

by

tModelKey[UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

The

customTaxonomy:key

and

customTaxonomy:displayName

keyValue

values

are

validated.

For

example,

a

publish

categorization

tModel

request

with

a

keyedReference

including

a

customTaxonmy:key

of

’toolongdbkey’

was

attempted,

the

following

UDDIInvalidValueException

is

thrown,

with

the

message:

E_invalidValue

(20200)

A

value

that

was

passed

in

a

keyValue

attribute

did

not

pass

validation.

This

applies

to

checked

categorizations,

identifiers

and

other

validated

code

lists.

The

error

text

will

clearly

indicate

the

key

and

value

combination

that

failed

validation.

Invalid

’customTaxonomy:key’

keyValue

[toolongdbkey]

in

keyedReference.

tModelKey[]

If

a

categorization

tModel

is

edited

in

the

user

console,

or

republished

via

SOAP,

UDDI4J

or

EJB,

such

that

it

is

no

longer

a

categorization

tModel

(ie

the

categorization

keyedReference

is

removed),

then

that

tModel

is

removed

from

the

internal

store

of

categorization

tModels,

and

its

customTaxonomy:key

value,

if

present,

is

available

for

use

by

new

categorization

tModels.

SOAP

application

programming

interface

for

the

UDDI

Registry

Access

to

the

SOAP

API

will

by

default

be

available

at:

http://localhost:9080/uddisoap/inquiryapi

or

https://localhost:9443/uddisoap/publishapi

Where

’localhost’

is

the

address

by

which

your

WebSphere

server

is

known.

If

security

is

enabled

on

your

WebSphere

server,

the

publishapi

will

also

be

protected

by

basic-authentication.

By

default,

when

security

is

enabled,

the

publishapi

is

restricted

to

HTTPS,

this

is

to

ensure

the

confidentiality

and

security

of

your

data

whilst

in

transit

to

UDDI.

If

you

do

not

wish

to

use

SSL,

when

security

is

enabled,

modify

the

jar

file

using

AAT

to

remove

the

CONFIDENTIAL

restriction

placed

upon

the

publish

URLs.

For

more

information

about

this

topic,

see

the

section

on

Configuring

SOAP

properties

with

the

Application

Assembly

Tool.

If

you

normally

access

your

WebSphere

server

via

a

Web

server,

ensure

the

plugin

configuration

for

the

WebSphere

plugin

on

the

Web

server

has

been

updated

since

installing

UDDI.

This

allows

access

to

the

UDDI

SOAP

API

through

the

URLs

:

http://localhost/uddisoap/inquiryapi

or

https://localhost/uddisoap/publishapi

652

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Where

’localhost’

is

the

address

by

which

your

Web

server

is

accessed.

Note

that

if

you

plan

on

accessing

UDDI

via

a

Web

server

in

this

manner,

that

the

samples

will

require

modification

to

inform

them

of

the

SSL

certificates

used

by

your

Web

server,

so

that

the

samples

can

make

SSL

connections

to

the

Web

server.

It

is

beyond

the

scope

of

this

document

to

cover

the

many

variants

available

on

Web

server/WebSphere/java

SSL

configurations

v

Using

the

SOAP

API

v

Handling

Errors

as

a

User

of

the

SOAP

API

Programming

the

SOAP

API

To

use

the

SOAP

API

construct

a

properly

formed

UDDI

message

within

the

body

of

a

SOAP

request,

and

send

it

using

HTTP

POST

to

the

URL

of

the

API

that

the

request

relates

to.

The

response

is

returned

within

the

body

of

the

HTTP

reply.

Although

the

samples

are

written

in

Java,

you

can

use

other

programming

languages

to

create

your

SOAP

client,

providing

you

still

send

requests

compliant

to

the

SOAP

specification.

Valid

UDDI

requests

should

conform

to

the

UDDI

schema,

and

be

as

detailed

within

the

UDDI

standard

documentation:

http://www.uddi.org/

For

more

information

on

using

the

SOAP

API,

refer

to

″The

UDDI

Registry

application

programming

interface″.

SOAP

API

error

handling

tips

in

the

UDDI

Registry

When

using

the

SOAP

API

there

are

three

main

categories

that

can

cause

an

error

to

be

returned:

v

An

incorrect

request

being

sent

to

the

SOAP

API.,

for

example:

–

incorrectly

formed

XML

–

badly

formed

UDDI

requests

–

non-schema

compliant

requests
v

Incorrect

business

logic

within

a

SOAP

API

request,

for

example

attempting

to

delete

a

business

that

does

not

exist.

v

Problems

occurring

while

processing

a

valid

request.,

for

example

server

connection

to

database

failure.

In

each

of

these

cases,

an

error

is

returned

to

the

client

that

made

the

request,

which

attempts

to

explain

further

what

the

problem

was.

UDDI

Registry

Application

Programming

Interface

The

IBM

WebSphere

UDDI

Registry

fully

supports

the

application

programming

interface

(API)

specification,

which

can

be

viewed

by

visiting

http://www.uddi.org/pubs/ProgrammersAPI_v2.pdf.

Any

changes

from

this

specification

are

documented

within

the

IBM

WebSphere

UDDI

Registry

information.

v

The

Inquiry

API

v

The

Publish

API

Inquiry

API

for

the

UDDI

Registry

The

Inquiry

API

provides

four

forms

of

query

that

follow

broadly

used

conventions

that

match

the

needs

of

software

traditionally

used

within

registries.

Chapter

9.

IBM

WebSphere

UDDI

Registry

653

rwsu_api.html
rwsu_api.html

v

The

browse

pattern

v

The

drill-down

pattern

v

The

invocation

pattern

v

Inquiry

API

functions

Browse

pattern

for

the

UDDI

Registry

Software

that

allows

people

to

explore

and

examine

data

-

especially

hierarchical

data

-

requires

browse

capabilities.

The

browse

pattern

characteristically

involves

starting

with

some

broad

information,

performing

a

search,

finding

general

result

sets

and

then

selecting

more

specific

information

for

drill-down.

The

UDDI

API

specifications

accommodate

the

browse

pattern

by

way

of

the

find_xx

API

calls.

These

calls

form

the

search

capabilities

provided

by

the

API

and

are

matched

with

summary

return

messages

that

return

overview

information

about

the

registered

information

that

is

associated

with

the

inquiry

message

type

and

the

search

criteria

specified

in

the

inquiry.

A

typical

browse

sequence

might

involve

finding

whether

a

particular

business

you

know

about

has

any

information

registered.

This

sequence

would

start

with

a

call

to

find_business,

perhaps

passing

the

first

few

characters

of

a

business

name

that

you

already

know.

This

returns

a

businessList

result.

This

result

is

overview

information

(keys,

names

and

descriptions)

derived

from

the

registered

businessEntity

information,

matching

on

the

name

fragment

that

you

provided.

If

you

spot

the

business

you

are

looking

for

within

this

list,

you

can

drill

down

into

the

corresponding

businessService

information,

looking

for

particular

technical

models

(for

example

purchasing,

shipping,

and

so

on)

using

the

find_service

API

call.

Similarly,

if

you

know

the

technical

fingerprint

(tModel

signature)

of

a

particular

software

interface

and

want

to

see

if

the

business

you

have

chosen

provides

a

Web

service

that

supports

that

interface,

you

can

use

the

find_binding

inquiry

message.

Drilldown

pattern

for

the

UDDI

Registry

When

you

have

a

key

for

one

of

the

four

main

data

types

managed

by

a

UDDI

registry,

you

can

use

that

key

to

access

the

full

registered

details

for

a

specific

data

instance.

The

UDDI

data

types

are

businessEntity,

businessService,

bindingTemplate

and

tModel.

You

can

access

the

full

registered

information

for

any

of

these

structures

by

passing

a

relevant

key

type

to

one

of

the

get_xx

API

calls.

Continuing

the

example

from

the

Browse

pattern

for

the

UDDI

Registry,

one

of

the

data

items

returned

by

all

of

the

find_x

return

sets

is

key

information.

In

the

case

of

the

business

we

were

interested

in,

the

businessKey

value

returned

within

the

contents

of

a

businessList

structure

can

be

passed

as

an

argument

to

get_businessDetail.

The

successful

return

to

this

message

is

a

businessDetail

message

containing

the

full

registered

information

for

the

entity

whose

key

value

was

passed.

This

will

be

a

full

businessEntity

structure.

Invocation

pattern

for

the

UDDI

Registry

To

prepare

an

application

to

take

advantage

of

a

remote

Web

service

that

is

registered

within

the

UDDI

registry

by

other

businesses

or

entities,

you

must

prepare

that

application

to

use

the

information

found

in

the

registry

for

the

specific

service

being

invoked.

The

bindingTemplate

data

obtained

from

the

UDDI

registry

represents

the

specific

details

about

an

instance

of

a

given

interface

type,

including

the

location

at

which

654

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

a

program

starts

interacting

with

the

service.

The

calling

application

or

program

should

cache

this

information

and

use

it

to

contact

the

service

at

the

registered

address

whenever

the

calling

application

needs

to

communicate

with

the

service

instance.

In

previously

popular

remote

procedure

technologies

tools

have

automated

the

tasks

associated

with

caching

(or

hard

coding)

location

information.

Problems

arise

however

when

a

remote

service

is

moved

without

any

knowledge

on

the

part

of

the

callers.

Moves

occur

for

a

variety

of

reasons,

including

server

upgrades,

disaster

recovery,

and

service

acquisition

and

business

name

changes.

When

a

call

fails

using

cached

information

previously

obtained

from

a

UDDI

Registry,

the

proper

behavior

is

to

query

the

UDDI

Registry

for

fresh

bindingTemplate

information.

If

the

data

returned

is

different

from

the

cached

information,

the

service

invocation

should

automatically

retry

the

invocation

using

the

fresh

information.

If

the

result

of

this

retry

is

successful,

the

new

information

should

replace

the

cached

information.

By

using

this

pattern

with

Web

services,

a

business

using

a

UDDI

Registry

can

automate

the

recovery

of

a

large

number

of

partners

without

undue

communication

and

coordination

costs.

For

example,

if

a

business

has

activated

a

disaster

recovery

site,

most

of

the

calls

from

partners

fail

when

they

try

to

invoke

services

at

the

failed

site.

By

updating

the

UDDI

information

with

the

new

address

for

the

service,

partners

who

use

the

invocation

pattern

automatically

locate

the

new

service

information

and

recover

without

further

administrative

action.

Inquiry

API

functions

in

the

UDDI

Registry

These

messages

represent

inquiries

that

can

be

made

of

the

UDDI

Registry.

These

messages

all

behave

synchronously.

The

queries

available

are:

find_binding

Locates

specific

bindings

within

a

registered

businessService.

Returns

a

bindingDetail

message

that

contains

zero

or

more

bindingTemplate

structures

matching

the

criteria

specified

in

the

argument

list.

find_business

Locates

information

about

one

or

more

businesses.

Returns

a

businessList

message

that

matches

the

conditions

specified

in

the

arguments.

find_relatedBusinesses

Locates

information

about

businessEntity

registrations

that

are

related

to

a

specific

business

entity

whose

key

is

passed

in

the

inquiry.

The

Related

Businesses

feature

is

used

to

manage

registration

of

business

units

and

subsequently

relate

them

based

on

organizational

hierarchies

or

business

partner

relationships.

Returns

a

relatedBusinessList

message

containing

results

that

match

the

conditions

specified

in

the

arguments.

find_service

Locates

specific

services

within

a

registered

businessEntity.

Returns

a

serviceList

message

that

matches

the

conditions

specified

in

the

arguments.

find_tModel

Locates

a

list

of

tModels

that

match

a

set

of

specified

criteria.

The

response

will

be

a

list

of

abbreviated

information

about

registered

tModel

data

that

matches

the

criteria

specified.

The

result

will

be

returned

in

a

tModelList

message.

get_bindingDetail

Requests

the

run-time

bindingTemplate

information

for

the

purpose

of

invoking

a

registered

business

API.

Returns

a

bindingDetail

message.

Chapter

9.

IBM

WebSphere

UDDI

Registry

655

get_businessDetail

Returns

complete

businessEntity

information

for

one

or

more

specified

businessEntity

registrations

matching

on

the

businessKey

values

specified.

Returns

a

businessDetail

message.

get_businessDetailExt

Returns

extended

businessEntity

information

for

one

or

more

specified

businessEntity

registrations.

This

message

returns

exactly

the

same

information

as

the

get_businessDetail

message,

but

may

contain

additional

attributes

if

the

source

is

an

external

registry

with

the

API

specification.

get_serviceDetail

Requests

full

information

about

a

known

businessService

structure.

Returns

a

serviceDetail

message.

get_tModelDetail

Gets

full

details

for

a

given

set

of

registered

tModel

data.

Returns

a

tModelDetail

message.

Publish

API

for

the

UDDI

Registry

The

messages

in

this

section

represent

commands

that

are

used

to

publish,

delete

and

update

information

contained

in

a

UDDI

registry.

The

messages

defined

in

this

section

all

behave

synchronously.

The

Publishing

API

calls

defined

that

UDDI

operators

support

are:

add_publisherAssertions

Causes

one

or

more

publisherAssertions

to

be

added

to

an

individual

publisher’s

assertion

collection.

delete_binding

Causes

one

or

more

instances

of

bindingTemplate

data

to

be

deleted

from

the

UDDI

registry.

delete_business

Removes

one

or

more

business

registrations

and

all

direct

contents

from

a

UDDI

registry.

delete_publisherAssertions

Causes

one

or

more

publisherAssertion

elements

to

be

removed

from

a

publisher’s

assertion

collection.

delete_service

Removes

one

or

more

businessService

elements

from

the

UDDI

registry

and

from

its

containing

businessEntity

parent.

delete_tModel

Logically

deletes

one

or

more

tModel

structures.

Logical

deletion

hides

the

deleted

tModels

from

find_tModel

result

sets

but

does

not

physically

delete

them,

so

they

are

returned

on

a

get_registeredInfo

request.

discard_authToken

Informs

an

operator

site

that

the

authentication

token

is

to

be

discarded,

effectively

ending

the

session.

Subsequent

calls

that

use

the

same

authToken

will

be

rejected.

This

message

is

optional

for

operator

sites

that

do

not

manage

session

state

or

that

do

not

support

the

get_authToken

message.

get_assertionStatusReport

Provides

administrative

support

for

determining

the

status

of

current

and

outstanding

publisher

assertions

that

involve

any

of

the

business

registrations

managed

by

the

individual

publisher

account.

Using

this

message,

a

publisher

can

see

the

status

of

assertions

that

they

have

made,

as

well

as

see

assertions

that

others

have

made

that

involve

businessEntity

structures

controlled

by

the

calling

publisher

account.

656

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

get_authToken

Obtains

an

authentication

token.Authentication

tokens

are

opaque

values

that

are

required

for

all

other

publisher

API

calls.

This

message

is

not

required

for

operator

sites

that

have

an

external

mechanism

defined

for

users

to

get

an

authentication

token.

This

API

is

provided

for

implementations

that

do

not

have

some

other

method

of

obtaining

an

authentication

token

or

certificate,

or

that

choose

to

use

userid

and

password

based

authentication.

get_publisherAssertions

Obtains

the

full

set

of

publisher

assertions

that

are

associated

with

an

individual

publisher

account.

Publisher

assertions

are

used

to

control

publicly

visible

business

relationships.

get_registeredInfo

Gets

an

abbreviated

list

of

all

businessEntity

and

tModel

data

that

are

controlled

by

the

individual

associated

with

the

credentials

passed.

save_binding

Saves

or

updates

a

complete

bindingTemplate

element.

this

message

can

be

used

to

add

or

update

one

or

more

bindingTemplate

elements

as

well

as

the

container/contained

relationship

that

each

bindingTemplate

has

with

one

or

more

existing

businessService

elements.

save_business

Saves

or

updates

information

about

a

complete

businessEntity

element.

This

API

has

the

broadest

scope

of

all

the

save_xx

API

calls

in

the

publisher

API,

and

can

be

used

to

make

sweeping

changes

to

the

published

information

for

one

or

more

businessEntity

elements

controlled

by

an

individual.

save_service

Adds

or

updates

one

or

more

businessService

elements

exposed

by

a

specified

businessEntity.

save_tModel

Adds

or

updates

one

or

more

registered

tModel

elements.

set_publisherAssertions

Manages

all

of

the

tracked

relationship

assertions

associated

with

an

individual

publisher

account.

For

full

details

of

the

syntax

of

the

above

queries,

refer

to

the

API

specification

at

http://www.uddi.org/pubs/ProgrammersAPI_v2.pdf.

UDDI

EJB

Interface

for

the

UDDI

Registry

This

section

describes

how

to

use

the

EJB

application

programming

interface

(API)

of

the

IBM

WebSphere

UDDI

Registry

component

to

publish,

find

and

delete

UDDI

entries.

The

necessary

client

classes

are

contained

in

the

uddiejbclient.jar

file

in

the

ejb

subdirectory

of

the

UDDIReg

directory

under

the

WebSphere

application

server

directory

tree.

The

Javadoc

for

the

EJB

API

is

contained

in

the

javadoc

directory

tree

under

the

ejb

subdirectory

of

the

UDDIReg

directory

under

the

WebSphere

appserver

directory

tree.

The

EJB

API

is

contained

in

two

stateless

session

beans,

one

for

the

Inquiry

API

(com.ibm.uddi.ejb.InquiryBean)

and

one

for

the

Publish

API

(com.ibm.uddi.ejb.PublishBean),

whose

public

methods

form

an

EJB

interface

for

Chapter

9.

IBM

WebSphere

UDDI

Registry

657

the

UDDI

Registry.

All

the

public

methods

on

the

InquiryBean

correspond

to

UDDI

Inquiry

API

functions,

and

all

the

public

methods

on

the

PublishBean

correspond

to

UDDI

Publish

API

functions.

(Not

all

UDDI

API

functions

are

implemented,

for

example

get_authToken,

discard_authToken,

get_businessDetailExt,

and

so

on)

For

Version

1

of

the

UDDI

registry,

the

EJB

component

supports

only

UDDI

v2.0.

The

two

EJBs

use

container-managed

transactions.

The

transaction

attribute

for

the

methods

of

the

InquiryBean

is

NotSupported,

and

for

the

methods

of

the

PublishBean

it

is

Required.

You

must

not

change

the

transaction

attributes

as

this

could

result

in

undesirable

behavior.

Within

each

interface

there

are

groups

of

overloaded

methods

that

correspond

to

the

operations

in

the

UDDI

2.0

specification.

There

is

a

separate

method

for

each

major

variation

in

function.

For

example,

the

single

UDDI

2.0

operation

find_business

is

represented

by

10

variations

of

findBusiness

methods,

with

different

variations

for

finding

by

name,

finding

by

categoryBag

and

so

on.

The

arguments

for

the

EJB

interface

methods

are

java

objects

in

the

package

com.ibm.uddi.datatypes.

Roughly

speaking,

there

is

a

one-one

correspondence

between

classes

in

this

package

and

elements

of

the

UDDI

V2.0

XML

schema.

Exceptions

to

this

are,

for

example,

where

UDDI

XML

elements

can

be

represented

by

a

single

String.

(See

Package

com.ibm.uddi.datatypes

below

for

more

information.)

Enabling

an

EJB

Client

This

section

is

written

on

the

assumption

that

WebSphere

Application

Server

V5.0,

a

supported

database

and

the

IBM

WebSphere

UDDI

Registry

have

already

been

installed.

Classpaths

Add

the

following

jar

files

and

folders

to

your

CLASSPATH:

For

Windows

<WebSphere-install-dir>\lib\j2ee.jar

<WebSphere-install-dir>\lib\naming.jar

<WebSphere-install-dir>\lib\namingclient.jar

<WebSphere-install-dir>\lib\ecutils.jar

<WebSphere-install-dir>\lib\sas.jar

<WebSphere-install-dir>\properties

For

Unix

Platforms,

and

also

including

z/OS

<WebSphere-install-dir>/lib/j2ee.jar

<WebSphere-install-dir>/lib/naming.jar

<WebSphere-install-dir>/lib/namingclient.jar

<WebSphere-install-dir>/lib/ecutils.jar

<WebSphere-install-dir>/lib/sas.jar

<WebSphere-install-dir>/properties

658

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

In

addition

to

these

jars,

there

is

also

the

jar

file

that

contains

all

of

the

UDDI

specific

API

for

the

EJB

interface,

which

can

be

found

at:

For

Windows

<DeploymentManager-install-dir>\UDDIReg\ejb\uddiejbclient.jar

where

<DeploymentManager-install-dir>

is

the

install

location

for

WebSphere

Application

Server

for

Network

Deployment,

which

by

default

is

C:\Progra~1\WebSphere\DeploymentManager.

For

Unix

Platforms,

and

also

including

z/OS

<DeploymentManager-install-dir>/UDDIReg/ejb/uddiejbclient.jar

where

<DeploymentManager-install-dir>

is

the

install

location

for

WebSphere

Application

Server

for

Network

Deployment,

which

by

default

is

/opt/WebSphere/DeploymentManager

for

Linux/Solaris

systems

or

/usr/WebSphere/DeploymentManager

for

AIX

systems.

The

Path

Ensure

that

your

PATH

statement

starts

with

<WebSphere-install-dir>\java\bin

Creating

an

EJB

Client

If

you

want

to

read

about

creating

EJB

Clients

in

more

detail,

then

please

read

the

″Sun

Microsystems

Enterprise

JavaBeansTM

Specification

Version

2.0″

Finding

the

EJB

Reference

An

EJB

Client

can

be

a

stand-alone

Java

application,

an

applet,

servlet

or

a

JSP.

This

document

only

covers

writing

a

stand-alone

Java

application.

In

order

to

invoke

an

enterprise

java

bean

(EJB)

that

has

been

deployed

into

WebSphere

on

the

server

side,

the

Client

must

do

two

things:

find

the

EJB

on

the

server,

and

then

create

a

Client

side

reference

to

that

EJB.

When

this

Client

side

reference

has

been

created,

the

Client

can

invoke

methods

upon

the

EJB

as

if

it

was

a

local

object.

Clients

cannot

reference,

or

invoke,

and

EJB

directly.

Any

calls

made

to

the

EJB

must

be

made

through

the

interfaces

that

the

EJB

provides.

The

interface

that

is

used

to

create

a

local

reference

to

the

EJB

is

called

the

home

interface.

When

an

EJB

is

deployed

in

WebSphere,

this

home

interface

is

made

available

to

Clients

by

means

of

a

searchable

namespace.

This

means

that

a

Client

can

look

up

an

address

on

the

namespace.

If

there

is

a

home

interface

at

that

address,

and

it

is

the

home

interface

to

the

EJB

that

they

were

looking

for,

then

the

Client

can

create

a

local

instance

of

that

home

interface,

and

then,

from

that,

a

local

reference

to

the

EJB

can

be

created.

What

code

is

needed

in

the

Client?

The

following

code

fragment

illustrates

how

to

Find

and

Create

a

local

instance

of

the

Inquiry

EJB

only.

The

same

must

be

done

to

Find

and

Create

a

local

copy

of

the

Publish

EJB.

private

com.ibm.uddi.ejb.Inquiry

inquiry

=

null;

//

This

private

variable,

"inquiry"

is

going

to

be

the

local

reference

to

the

EJB

in

WebSphere

//

declaring

it

outside

the

scope

of

a

method

means

that

this

same

reference

can

be

Chapter

9.

IBM

WebSphere

UDDI

Registry

659

//

used

throughout

the

client,

without

having

to

query

the

namespace

again.

public

void

homeLookup()

{

//

These

variables

simply

determine

the

address

of

the

JNDI

namespace,

and

the

//

address

of

the

home

interface

within

that

namespace.

//

String

naming_factory

=

"com.ibm.ejs.ns.jndi.CNInitialContextFactory";

//WAS

4.0.2

Naming

Factory

String

naming_factory

=

"com.ibm.websphere.naming.WsnInitialContextFactory";

//WAS

5.0

Naming

Factory

String

namespace_address

=

"iiop://localhost:2809/";

//The

address

of

the

namespace

String

home_address

=

"com/ibm/uddi/ejb/InquiryHome";

//The

address

of

the

home

interface

within

the

JNDI

namespace

java.util.Hashtable

environment

=

new

java.util.Hashtable();

environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

naming_factory);

environment.put(javax.naming.Context.PROVIDER_URL,

namespace_address);

try

{

javax.naming.InitialContext

ic

=

new

javax.naming.InitialContext(environment);

//

Create

a

context

using

the

details

above

to

connect

to

the

namespace

Object

o

=

ic.lookup(home_address);

//

Do

a

lookup

to

see

if

there

is

an

ejb_home

at

the

address

specified

above

//

Now

create

a

valid

home

instance

for

the

EJB

type

we

want

to

create

com.ibm.uddi.ejb.InquiryHome

home

=

(com.ibm.uddi.ejb.InquiryHome)(javax.rmi.PortableRemoteObject.narrow(o,

com.ibm.uddi.ejb.InquiryHome.class));

inquiry

=

home.create();

//

Now

create

a

local

reference

of

the

EJB,

by

using

the

home.create()

method.

//

Any

business

method

that

is

intended

for

the

EJB

in

Websphere

//

must

me

invoked

against

this

inquiry

object.

}

catch

(javax.naming.NamingException

ne)

{ne.printStackTrace();}

//

This

is

thrown

if

there

was

a

problem

connecting

to

the

namespace,

or

finding

//

the

home_address

in

the

namespace

catch

(java.rmi.RemoteException

re)

{re.printStackTrace();}

//

This

usually

indicates

some

sort

of

system

failure,

either

WebSphere

is

//

not

running,

or

there

is

a

communications

problem

catch

(javax.ejb.CreateException

ce)

{ce.printStackTrace();}

//

This

is

thrown

if

the

EJB

reference

cannot

be

created

from

the

home

instance.

}

Writing

Client

code

to

use

the

EJB

API

When

the

reference

to

the

EJB

has

been

created

(the

Inquiry

Object,

in

the

code

shown

in

the

previous

paragraph),

then

the

reference

can

be

treated

like

any

other

Java

object.

This

is

an

example

method

using

the

UDDI

EJB

API

-

the

only

important

point

to

remember

is

that,

although

the

Inquiry

Object

has

been

created

as

a

local

reference,

it

is

still

referring

to

a

remote

EJB

Object

in

a

different

server,

possibly

even

in

a

different

country.

This

means

that

at

the

very

least

a

javax.rmi.RemoteException

must

be

caught

on

each

method

call

that

is

made

to

the

EJB.

public

void

findBusiness()

{

System.out.println("Find

Business:");

NameList

names

=

new

NameList();

names.add(new

Name("IBM

Corporation"));

//Create

the

list

of

names

to

find

in

the

UDDI

Registry,

here

just

one

is

used,

"IBM

Corporation"

try

660

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

{

BusinessList

list

=

inquiry.findBusiness(names);

//This

is

the

call

to

the

inquiry

EJB

that

searches

through

the

UDDI

Registry

//Now

display

the

amount

of

business

found,

and

for

each

one,

get

the

BusinessKey,

//

the

BusinessName

and

the

amount

of

Services

that

Business

has

System.out.println("There

are

"+

list.getBusinessInfos().size()+

"

matching

Businesses

in

this

registry");

for

(int

i=0;i<list

getBusinessInfos().size();i++)

{

BusinessInfo

business

=

list.getBusinessInfos().get(i);

System.out.println("\nBusinessKey

=

"+business.getBusinessKey());

System.out.println("BusinessName

=

"+business.getNames().get(0).getNameString());

System.out.println("This

Business

Has

"+

business.getServiceInfos().size()+

"

Services\n");

}

}

//

This

is

a

UDDI

specific

exception,

and

will

be

thrown

if

for

example

an

//invalid

name

was

used

as

the

search

criteria

catch

(com.ibm.uddi.datatypes.DispositionReportException

e)

{

this.handleDispositionReportException(e);}

catch

(java.rmi.RemoteException

re)

{re.printStackTrace();}

//

This

is

the

RemoteException

that

is

thrown

if

there

has

been

a

system

//

failure

or

a

connection

problem.

}

What

new

code

is

needed

on

the

client?

Just

as

each

EJB

has

an

interface

listed

on

the

JNDI

namespace,

the

javax.transaction.UserTransaction

class

also

has

an

interface

listed.

This

means

that

the

same

method

used

to

get

a

local

instance

of

an

EJB

can

be

applied

to

get

a

local

instance

of

the

UserTransaction

class.

Again,

this

code

can

be

used

to

find

the

UserTransaction

reference

on

the

namespace,

in

addition

to

the

code

required

to

find

the

Inquiry

EJB

and

the

Publish

EJB,

or,

alternatively,

there

is

a

slightly

more

elegant

method

used

in

the

TransactionEJBClientSample.java.

public

void

txLookup()

{

private

javax.transaction.UserTransaction

tx

=

null;

//

This

is

the

private

variable

that

will

be

used

to

hold

the

UserTransaction

Object

//

declaring

it

outside

the

scope

of

a

method

means

that

this

same

reference

can

be

//

used

throughout

the

client,

without

having

to

query

the

namespace

again.

//

These

variables

simply

determine

the

address

of

the

JNDI

namespace,

//

and

the

address

of

the

home

interface

within

that

namespace.

//

String

naming_factory

=

"com.ibm.ejs.ns.jndi.CNInitialContextFactory";

//WAS

4.0.2

Naming

Factory

String

naming_factory

=

"com.ibm.websphere.naming.WsnInitialContextFactory";

//WAS

5.0

Naming

Factory

String

namespace_address

=

"iiop://localhost:2809/";

//The

address

of

the

namespace

String

transaction_address

=

"jta/usertransaction";

//The

address

of

the

UserTransaction

interface

within

the

JNDI

namespace

java.util.Hashtable

environment

=

new

java.util.Hashtable();

environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

naming_factory);

environment.put(javax.naming.Context.PROVIDER_URL,

namespace_address);

Chapter

9.

IBM

WebSphere

UDDI

Registry

661

try

{

javax.naming.InitialContext

ic

=

new

javax.naming.InitialContext(environment);

//

Create

a

context

using

the

details

above

to

connect

to

the

namespace

Object

remote_object

=

ic.lookup(transaction_address);

//

Do

a

lookup

to

see

if

there

is

a

UserTransaction

Object

at

the

address

specified

above

tx

=

(javax.transaction.UserTransaction)remote_object;

//

Convert

the

remote

object

found

into

a

UserTransaction

Object,

and

assign

//

to

the

private

variable

}

catch

(javax.naming.NamingException

ne)

{ne.printStackTrace();}

//

This

is

thrown

if

there

was

a

problem

connecting

to

the

namespace,

or

finding

//

the

transaction_address

in

the

namespace

}

Writing

Client

code

to

use

the

EJB

API

with

a

Client

transaction

To

perform

an

Inquiry,

a

Publish

or

a

Delete

upon

the

IBM

WebSphere

UDDI

Registry

with

client-side

transactional

support

requires

very

little

additional

code

compared

to

doing

the

same

operations

without

client

side

transactional

support.

Using

the

same

code

that

is

listed

previously

(in

″Writing

Client

Code

to

use

the

EJB

API″),

this

example

illustrates

how

easy

client

side

transactions

are

to

implement.

The

additional

lines

of

code

needed

are

in

bold

type.

This

code

also

assumes

that

there

is

a

variable

called

tx

that

has

been

declared

at

the

class

scope.

public

void

findBusiness()

{

//Just

as

there

are

UDDI

and

RMI

specific

exceptions

thrown,

//

5

more

exceptions

need

to

be

caught.

try

{

tx.begin();

//This

begins

the

transaction

context

System.out.println("Find

Business:");

NameList

names

=

new

NameList();

names.add(new

Name("IBM

Corporation"));

//Create

the

list

of

names

to

find

in

the

UDDI

Registry,

here

just

one

is

//used,

"IBM

Corporation"

try

{

BusinessList

list

=

inquiry.findBusiness(names);

//This

is

the

call

to

the

inquiry

EJB

that

searches

through

the

UDDI

Registry

//Now

display

the

amount

of

business

found,

and

for

each

one,

get

the

BusinessKey,

//the

BusinessName

and

the

amount

of

Services

that

Business

has

System.out.println("There

are

"+list.getBusinessInfos().size()+

"

matching

Businesses

in

this

registry");

for

(int

i=0;i<list.getBusinessInfos().size();i++)

{

BusinessInfo

business

=

list.getBusinessInfos().get(i);

System.out.println("\nBusinessKey

=

"+business.getBusinessKey());

System.out.println("BusinessName

=

"+business.getNames().get(0).getNameString());

System.out.println("This

Business

Has

"+

business.getServiceInfos().size()+"

Services\n");

}

}

//

This

is

a

UDDI

specific

exception,

and

will

be

thrown

if

for

example

an

//

invalid

name

was

used

as

the

search

criteria

catch

(com.ibm.uddi.datatypes.DispositionReportException

e)

{

this.handleDispositionReportException(e);}

catch

(java.rmi.RemoteException

re)

{re.printStackTrace();}

662

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

//

This

is

the

RemoteException

that

is

thrown

if

there

has

been

a

system

//

failure

or

a

connection

problem.

tx.commit();

//This

ends

the

transaction

context

}

catch

(javax.transaction.NotSupportedException

nse)

{

nse.printStackTrace();}

catch

(javax.transaction.RollbackException

rbe)

{

rbe.printStackTrace();}

catch

(javax.transaction.SystemException

se)

{

se.printStackTrace();}

catch

(javax.transaction.HeuristicMixedException

hme)

{

hme.printStackTrace();}

catch

(javax.transaction.HeuristicRollbackException

hrbe)

{

hrbe.printStackTrace();}

}

v

The

datatypes

package

v

Methods

in

the

EJB

Interface

Datatypes

package

in

the

UDDI

Registry

The

following

table

lists

the

classes

in

the

com.ibm.uddi.datatypes

package,

the

elements

in

the

UDDI

v2.0

XML

schema,

and

the

correspondence

between

the

two.

com.ibm.uddi.datatypes

Class

Corresponding

UDDIv2.0

XML

Schema

Element

Notes

on

DatatypeClass

AccessPoint

accessPoint

Address

address

String

addressLine

AdressLineList

Encapsulates

a

vector

of

addressLine

Strings

AddressList

Encapsulates

a

vector

of

Address

objects

AssertionStatusItem

assertionStatusItem

AssertionStatusItemList

Encapsulates

a

vector

of

AssertionStatusItem

objects

AssertionStatusReport

assertionStatusReport

(response

message)

String

authInfo

AuthToken

Object

containing

authInfo

String

and

operator

name

String

bindingKey

BindingDetail

bindingDetail

(response

message)

BindingTemplate

bindingTemplate

BindingTemplateList

bindingTemplates

Encapsulates

a

vector

of

Bindingtemplate

objects

BusinessDetail

businessDetail

(response

message)

BusinessDetailExt

businessDetailExt

(Response

message)

**

BusinessEntity

businessEntity

BusinessEntityExt

businessEntityExt

**

BusinessEntityExtList

Encapsulates

a

vector

of

BusinessEntityExt

objects

**

BusinessEntityList

Encapsulates

a

vector

of

BusinessEntity

objects

BusinessInfo

businessInfo

Chapter

9.

IBM

WebSphere

UDDI

Registry

663

BusinessInfoList

businessInfo

Encapsulates

a

vector

of

businessInfo

objects

String

businessKey

BusinessList

businessList

(response

message)

BusinessService

businessService

BusinessServiceList

businessServices

Encapsulates

a

Vector

of

BusinessService

objects

CategoryBag

categoryBag

String

completionStatus

Contact

contact

ContactList

contacts

Encapsulates

a

vector

of

Contact

objects

Description

description

DescriptionList

Encapsulates

a

vector

of

Description

objects

DiscoveryUrl

discoveryURL

DiscoveryUrlList

discoveryURLs

Encapsulates

a

vector

of

DiscoveryURL

objects

DispositionReport

dispositionReport

DispositionreportException

Exception

thrown

by

EJB

interface

functions

when

an

error

occurs

Email

email

EmailList

Encapsulates

a

vector

of

Email

objects

EndPoint

Used

as

baseclass

for

AccessPoint

and

HostingRedirector

providing

mutual

exclusivity

ErrInfo

errInfo

findQualifier

FindQualifier

findQualifiers

String

fromKey

HostingRedirector

hostingRedirector

IdentifierBag

identifierbag

InquiryOptions

Encapsulates

a

FindQualifiers

object

and

a

maxrows

field.

Used

in

find_*

API

calls

to

specify

search

options

InstanceDetails

instanceDetails

String

instanceParms

String

keyValue

KeyedReference

keyedReference

keysOwned

keysOwned

LanguageString

Abstract

class,

extended

by

some

of

the

datatypes,

which

represents

a

string

that

can

optionally

be

tagged

with

xml:lang.

Name

name

NameList

Encapsulates

a

vector

of

Name

objects

OverviewDoc

overviewDoc

String

overviewURL

String

personName

Phone

phone

664

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

PhoneList

Encapsulates

a

vector

of

Phone

objects

PublisherAssertion

publisherAssertion

PublisherAssertionList

Encapsulates

a

vector

of

Publisher

Assertion

objects

PublisherAssertions

publisherAssertions

(response

message)

RegisteredInfo

registeredInfo

(response

message)

relatedBusinessInfo

Not

used

relatedBusinessInfos

Not

used

RelatesBusinessesList

relatedBusinessesList

RelatedBusinessInfo

relatedBusinessInfo

RelatedBusinessInfos

relatedBusinessInfos

Result

result

ResultList

Encapsulates

a

Vector

of

Result

objects

ServiceDetail

serviceDetail

(response

message)

ServiceInfo

serviceInfo

ServiceInfoList

serviceInfos

Encapsulates

a

vector

of

serviceInfo

objects

String

serviceKey

ServiceList

serviceList

(response

message)

sharedRelationships

Not

used

SharedRelationships

sharedRelationships

Tmodel

tModel

TModelBag

tModelBag

TModelDetail

tModelDetail

(response

message)

TModelInfo

tModelInfo

TModelInfoList

tModelInfos

Encapsulates

a

vector

of

TModelInfo

objects

TModelInstanceInfo

tModelInstanceInfo

TModelInstanceInfoList

tModelInstanceDetails

Encapsulates

a

vector

of

TModelInstanceInfo

objects

String

tModelKey

TModelList

tModelList

(response

message)

TModels

Encapsulates

a

vector

of

TModel

objects

String

toKey

String

uploadRegister

UploadRegisterList

Encapsulates

a

vector

of

uploadRegister

strings

**

Used

in

UDDI

API

functions

relating

to

BusinessDetailExtension.

These

UDDI

API

functions

are

not

implemented

in

Version

1

of

the

IBM

WebSphere

UDDI

Registry.

In

general,

a

datatype

called

DatatypeList

contains

a

vector

of

Datatype

objects.

Often

these

correspond

to

XML

schema

elements

with

plural

names.

(For

example

the

datatype

Contact

corresponds

to

XML

element

contact,

and

ContactList

Chapter

9.

IBM

WebSphere

UDDI

Registry

665

corresponds

to

contacts.)

Where

there

is

no

″plural″

XML

schema

element

for

a

particular

Datatype,

often

there

is

still

a

DatatypeList

where

it

is

useful

to

have

one,

for

example

AddressList.

The

exceptions

to

this

naming

convention

occur

when

there

is

an

existing

XML

schema

element

ending

in

″List″.

The

exceptions

are:

TModelList,

ServiceList,

BusinessList.

In

these

cases,

the

corresponding

datatypes

are

given

the

same

names

as

the

XML

schema

elements,

and

the

datatypes

that

would

have

had

these

names

are

called:

TModels,

BusinessServiceList,

BusinessEntityList.

EJB

interface

methods

in

the

UDDI

Registry

Inquiry

findBinding

findBusiness

findRelatedBusinesses

findService

findTModel

getBindingDetail

getBusinessDetail

getServiceDetail

getTModelDetail

Publish

addPublisherAssertions

deleteBinding

deleteBusiness

deletePublisherAssertions

deleteService

deleteTModel

getAssertionStatusReport

getRegisteredInfo

getPublisherASsertions

saveBinding

saveBusiness

saveService

saveTModel

setPublisherAssertions

Each

method

is

overloaded

and

can

take

various

combinations

of

arguments.

The

Javadoc

information

contains

detailed

information

about

each

method.

Note

that

the

get_authToken

and

discard_authtoken

methods

are

not

implemented,

as

WebSphere

security

is

used

instead.

UDDI

troubleshooting

tips

When

the

IBM

WebSphere

UDDI

Registry

is

running,

it

might

issue

messages

to

report

events

or

errors.

You

can

use

these

messages,

described

in

Messages

as

your

first

aid

to

problem

determination.

If

you

need

more

details

about

the

causes

of

a

problem,

you

can

turn

on

tracing

for

UDDI,

as

described

in:

v

Turning

on

UDDI

trace
v

Common

causes

of

errors

Below

are

a

few

of

the

common

causes

of

errors

that

might

be

found

and

their

suggested

solutions.

–

If

you

set

up

the

UDDI

Registry

application

with

a

JDBC

driver

and

datasource

that

reference

Cloudscape,

but

set

the

persister

property

in

uddi.properties

to

specify

DB2,

or

vice

versa,

then

some

unexpected

behavior

666

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

results,

such

as

a

fatal

error

on

deleting

an

entity.

If

this

happens,

you

should

check

that

the

above

details

are

not

in

conflict.

This

only

applies

to

a

UDDI

Registry

installation

on

a

single

appserver.

–

If

you

get

a

message

″The

application

failed

to

initialize″

when

trying

to

access

the

UDDI

User

console

and

you

are

using

DB2

as

the

persistence

store

for

the

UDDI

Registry,

a

likely

cause

of

the

problem

is

that

you

specified

the

wrong

userid

and/or

password

when

you

ran

the

script

to

install

the

UDDI

Registry

application.

If

this

occurs

rerun

the

script

ensuring

you

use

the

correct

userid

and

password.

Alternatively,

on

Unix

platforms,

you

may

not

have

run

the

db2profile

before

deploying

the

UDDIReg

application

or

before

starting

the

application

server.

–

You

might

find

that,

after

uninstalling

and

reinstalling

the

UDDI

Registry,

you

get

errors

from

the

UDDI

User

Console

of

the

form:

"Error

500:

JSPG0059E:

Unable

to

compile

class

for

JSP".

If

this

occurs,

then

you

should

clear

out

the

temp

directory

of

the

WebSphere

AppServer.

–

When

running

one

of

the

UDDI

setup

scripts

setupuddi.jacl

or

removeuddi.jacl,

if

you

get

an

error

such

as:

WASX7017E:

Exception

received

while

running

file

"setupuddi.jacl";

exception

information:

com.ibm.bsf.BSFException:

error

while

eval’ing

Jacl

expression:

java.util.MissingResourceException:

Can’t

find

resource

for

bundle

java.util.PropertyResourceBundle,

key

ErrMsgIncorrectNumArgs

ensure

that

the

file

setupuddimessages.jar

is

located

in

the

lib

subdirectory

of

the

WebSphere

deployment

manager

or

application

server

under

which

you

are

running

the

script.

–

When

running

the

DB2

Setup

Wizard,

if

you

get

an

error

stating

″Invalid

userid

and

password″,

it

could

be

caused

by

any

of

the

following

situations:

-

You

have

supplied

an

invalid

userid

or

password

-

re-enter

with

a

valid

userid

and

password.

-

The

supplied

userid

does

not

have

the

necessary

privileges

-

retry

with

a

userid

that

has

appropriate

privileges.

-

DB2

is

stopped

when

you

run

the

wizard

-

start

DB2

and

retry

the

wizard.

-

The

UDDI20

database

already

exists

and

has

been

removed

previously

and,

as

such,

is

not

catalogued.

The

DB2

wizard

does

not

recognize

this

situation

and

gives

the

error.

You

now

have

two

options.

1.

To

use

the

existing

database,

catalogue

it,

and

there

is

no

need

to

rerun

the

Wizard.

2.

To

create

a

new

database,

recatalog

the

database

and

re-run

the

DB2

wizard

and

choose

the

option

to

overwrite

the

database.

(Any

existing

data

WILL

be

lost.)

5.0.1 +

v

Catalog

the

database

by:

–

On

Windows:

>db2cmd

>db2cat

-d

uddi20

–

On

Unix

platforms

>su

db2inst1

(or

name

of

your

db2

instance)

>db2

CATALOG

DATABASE

UDDI20

-

5.0.1 +

ensure

that,

if

you

are

using

a

non-English

installation

of

DB2,

you

have

applied

PTF501.

Chapter

9.

IBM

WebSphere

UDDI

Registry

667

Note:

5.0.1 +

If

you

have

a

copy

of

the

file

SetupDB2UDDI.jar

in

your

appserver

directory,

the

application

of

the

base

and

Network

Deployment

PTFs

will

not

update

SetupDB2UDDI.jar

in

your

appserver

directory.

You

must

apply

the

PTF

for

Network

Deployment

to

your

DeploymentManager

file

structure

to

update

the

SetupDB2UDDI.jar

located

there

(in

the

/IDDIReg/scripts

subdirectory),

and

then

manually

copy

this

jar

file

to

any

application

server

you

may

wish

to

run

it

on.

–

There

is

a

limitation

concerning

URL

rewriting

causing

JavaScript

syntax

errors

on

several

Web

pages

in

the

UDDI

User

Console.

Because

of

this,

cookies

must

be

enabled

in

client

browsers,

the

application

server

must

have

cookies

enabled

as

the

session

tracking

mechanism,

and

URL

rewriting

must

be

disabled.

–

If

you

have

an

existing

DB2

version

of

the

UDDI

Registry

database,

and

you

use

the

UDDI

DB2

setup

wizard

to

replace

this

database

with

a

new

one,

and

if

the

database

is

in

use

at

the

time

that

you

run

the

UDDI

DB2

setup

wizard,

then

the

existing

database

is

not

overwritten.

–

When

running

the

UDDI

DB2

setup

wizard,

as

part

of

the

installation

step

″Setting

up

the

UDDI

Registry

to

use

DB2

within

a

deployment

manager

cell″

or

″Setting

up

the

UDDI

Registry

to

use

DB2

in

a

single

application

server″,

in

addition

to

running

the

was_install\bin\setupcmdline.bat

directory,

you

should

also

enter

either

set

PATH=%WAS_PATH%

(for

Windows

platforms)

or

export

PATH=/opt/WebSphere/AppServer/java/bin:$PATH

(for

Unix

platforms)

to

ensure

that

you

have

access

to

Java.

–

UDDI

user

console

″Page

cannot

be

displayed″

errors

with

Internet

Explorer.

If

you

use

Internet

Explorer

with

the

option

″Show

friendly

HTTP

error

messages″

enabled

and

you

have

WebSphere

Application

Server

security

enabled

(user

ID

and

password

authentication

enabled),

you

might

experience

intermittent

errors

on

the

browser,

such

as

″Page

cannot

be

displayed″,

when

navigating

the

UDDI

user

console.

This

might

be

particularly

noticeable

when

accessing

the

publish

actions.

To

avoid

such

errors,

disable

the

″Show

friendly

HTTP

error

messages″

option

on

Internet

Explorer.

This

option

is

found

under

Tools

>

Internet

options

>

Advanced

Tab

>

Browsing

Section

–

When

using

SOAP

or

UDDI4J,

it

is

sometimes

necessary

to

call

setServiceKey

(″″)

before

saving

your

changes,

except

with

the

EJB

interface

where

this

might

result

in

an

error.

–

There

are

known

problems

with

inquiries

issued

against

the

UDDI

Registry

if

IBM

Cloudscape

is

used

as

the

persistence

store

for

the

registry

data.

Certain

complex

inquiries

might

produce

unexpected

results,

or

could

fail.

If

your

application

needs

to

make

inquiries

of

this

nature,

consider

using

DB2

as

the

persistence

store.

Note:

DB2

must

be

used

for

production

purposes.

The

IBM

Cloudscape

support

is

only

provided

for

development

and

test

use.

–

You

might

see

errors

if

you

specify

requests

that

specify

more

than

5

category

values,

more

than

5

identifier

values,

or

more

than

5

technical

model

(tModel)

values.

–

If

you

stop

and

restart

the

UDDI

Registry

application

from

the

administrative

console,

and

then

try

to

access

the

Registry

through

the

user

console,

an

″Error

500

-

object

is

not

an

instance

of

a

declaring

class″

displays

on

the

user

console,

and

the

error

message

″SRVE0026E″

displays

in

the

system

log.

You

cannot

access

the

UDDI

Registry

until

you

restart

the

WebSphere

Application

Server.

To

avoid

this

problem

when

restarting

the

UDDI

Registry,

you

should

set

Prefer

WEB-INF

classes

on

the

panel

navigated

to

by

the

following

steps:

Applications

>

Manage

Applications

>

UDDIRegistry

>

Web

Modules

defined

for

this

Application

>

gui.war.

668

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

–

It

is

possible

that

a

scripting

error

displays

when

you

are

running

the

wsadmin

appserversetupuddi.jacl

command.

During

installation,

if

you

see

the

following

error

at

the

end

of

running

the

appserversetupuddi.jacl

command,

you

can

safely

ignore

the

error.

It

is

recommended

that

you

start

(or

stop

and

restart)

the

application

server

and

then

continue.

Here

is

an

example

of

the

error:

UDIN2041I:

Starting

UDDI

application.

UDIN8019E:

startApplication

command

for

appname

caught

exception

Exc.

Values

are:

appname=UDDIRegistry,

Exc=com.ibm.ws.scripting.Scripting

Exception:

com.ibm.websphere.management.exception.Connector

Exception:

ADMC0009E:

Failed

to

make

the

SOAP

RPC

call:

invoke

–

If

you

find

that

the

UDDI

user

console

is

giving

unexpected

results,

in

particular

if

you

have

installed

a

FixPack

but

are

not

seeing

all

of

the

fixes,

then

you

should

clear

out

the

compiled

UDDI

JSP

files

from

the

temp

directory

of

the

WebSphere

Application

Server.

These

files

will

be

in

a

directory

identified

by

the

name

of

the

UDDI

Registry

located

beneath

the

temp

directory.

–

If

attempting

to

use

a

remote

DB2

database

and

you

are

experiencing

problems

attaching

to

the

remote

system,

one

of

the

possible

causes

might

be

IP

addressing.

You

should

not

have

this

problem

if

the

remote

system

is

using

a

static

IP

address.

If,

however,

the

remote

system

is

using

DHCP,

the

two

systems

must

be

aware

of

each

others

subnet

mask.

For

Windows,

the

subnet

mask

can

be

found

by

starting

a

Command

Prompt

and

entering

″ipconfig″

on

the

remote

system.

On

the

host

system,

the

WINS

might

need

to

be

edited

to

add

the

remote

subnet

mask.

To

do

this

on

Windows

go

to

the

following

commands:

1.

START

=>

Network

and

Dial-up

Connections

=>

Local

Area

Network

Connection

2

=>

Internet

Protocol

(TCP/IP)

and

click

on

Properties

2.

Click

on

″Advanced″.

3.

Click

on

the

WINS

tab

and

add

the

new

subnet

mask

4.

Move

the

new

subnet

mask

to

the

top

of

the

list

by

highlighting

it

and

pressing

the

″Up″

arrow

until

it

is

the

top

of

the

list

of

WINS

addresses

On

Unix

platforms,

you

can

use

ifconfig

to

determine

the

subnet

mask.
v

Known

limitations

with

UDDI

Utility

Tools

and

workarounds

There

are

known

limitations

with

the

UDDI

Utility

Tools

and

a

workaround

for

each:

–

Referenced

businesses

in

service

projections

are

not

added

automatically

to

the

EDF

in

the

same

manner

as

referenced

tModels.

Workaround:

Add

the

referenced

business

that

will

’own’

the

projected

service

to

the

EDF.

If

the

business

is

not

present

in

the

target

registry,

it

should

be

placed

before

the

service’s

owning

business

in

the

EDF.

–

Cycle

detection

for

service

projections

are

not

detected

in

the

same

manner

as

for

referenced

tModels.

Workaround:

If

a

circular

reference

is

present

between

two

or

more

service

projections,

break

the

cycle

by

removing

one

of

the

projections

temporarily,

perform

the

import

and

update

the

changed

entity

to

reestablish

the

cycle

in

the

target

registry.

–

tModels

that

were

deleted

(in

the

logical

sense)

in

the

source

registry

are

imported

and

promoted

as

undeleted

in

the

target

registry.

This

is

because,

in

the

UDDI

Version

2

specification,

the

deleted

state

of

tModels

is

not

exposed

as

API

calls.

Chapter

9.

IBM

WebSphere

UDDI

Registry

669

Workaround:

After

importing

the

tModel,

perform

a

delete.

This

is

done

using

the

UDDI

Utility

Tools

delete

function,

or

any

other

UDDI

Registry

API

access

method.

–

BindingTemplates

referenced

by

hostingRedirectors

are

not

added

automatically

to

the

EDF

in

the

same

manner

as

referenced

tModels.

Workaround:

Add

the

referenced

bindingTemplate

to

the

EDF.

–

Businesses

referenced

by

an

’owningBusiness’

keyedReference

are

not

automatically

added

to

the

EDF.

Workaround:

Import

the

referenced

business

into

the

target

registry

before

importing

the

tModel

that

references

it.

–

The

JSSE

provider

class,

when

security

is

enabled,

is

not

configurable.

It

must

be

com.ibm.jsse.IBMJSSEProvider.

–

A

few

combinations

of

command

line

arguments

are

not

validated

and

prevented,

for

example,

it

is

possible

to

specify

-import

with

-keysFile

<path

to

file>

in

the

same

command,

although

the

‑keysFile

is

ignored.

Turning

on

UDDI

trace

You

enable

UDDI-specific

trace

in

the

same

way

as

you

enable

other

tracing

in

the

WebSphere

Application

Server.

The

following

is

a

list

of

trace

strings

that

you

can

use:

v

com.ibm.uddi.api

v

com.ibm.uddi.config

v

com.ibm.uddi.datatypes

v

com.ibm.uddi.dom

v

com.ibm.uddi.ejb

v

com.ibm.uddi.exception

v

com.ibm.uddi.exceptions

v

com.ibm.uddi.gui

v

com.ibm.uddi.gui.inquire

v

com.ibm.uddi.gui.publish

v

com.ibm.uddi.persistence

v

com.ibm.uddi.persistence.jdbc

v

com.ibm.uddi.persistence.jdbc.cloudscape

v

com.ibm.uddi.persistence.jdbc.db2

v

com.ibm.uddi.ras

v

com.ibm.uddi.security

v

com.ibm.uddi.soap

v

com.ibm.uddi.uuid

v

com.ibm.uddi.validation

v

com.ibm.uddi.xml

For

example,

to

trace

the

UDDI

user

console:

’com.ibm.uddi.gui=all=enabled’

This

enables

all

types

of

trace

for

the

gui.

Messages

When

the

IBM

WebSphere

UDDI

Registry

is

running,

it

issues

messages

to

report

events

or

errors.

The

messages

are

in

the

form

UDxxnnnns

where:

xx

is

a

two

character

descriptor

identifying

which

component

is

involved

nnnn

is

the

error

code

670

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

s

is

either

I

(Information)

or

E

(Error)

The

prefix

UDxxnnnns:

is

followed

by

text

that

describes

the

event

or

error.

For

some

messages,

the

first

word

of

the

text

is

one

of

the

form

(MSN=SSSS).

The

SSSS

provides

a

message

sequence

number

(or

MSN),

which

identifies

the

unique

circumstance

in

which

the

message

was

issued,

and

is

of

use

where

the

same

message

can

be

issued

in

more

than

one

circumstance.

To

help

you

diagnose

problems

and

minimize

the

need

to

enable

trace

in

any

of

the

above

components,

view

the

messages

table.

You

can

view

the

messages

by

prefix

or

component,

whichever

is

easiest

for

you

to

find

in

the

table.

All

messages

are

documented

with

user/system

action

and

explanation.

The

text

for

the

UDDI

messages

is

contained

in

a

file

uddiresourcebundles.jar

which

is

placed,

by

the

installation

process,

into

the

\lib

subdirectory

(Windows)

of

the

WebSphere

application

server

into

which

the

UDDI

Registry

was

installed.

If

you

will

be

running

a

console

or

log

analyzer

from

another

process;

for

example,

to

analyze

the

activity

log,

you

must

place

a

copy

of

uddiresourcebundles.jar

into

a

directory

that

is

within

the

classpath

of

that

process.

Otherwise,

the

message

lookup

for

the

UDDI

messages

will

fail.

UDDI

Components

Message

Prefix

Table

Click

on

individual

links

for

message

documentation

for

the

component

UDAI

API

UDCF

Configuration

UDDA

Datatypes

UDDM

DOM

UDEJ

EJB

Interface

UDEX

Exceptions

UDIN

Installation

UDLC

Local

API

UDPR

Persistence

UDRS

Logging

UDSC

Security

UDSP

SOAP

Interface

UDUC

User

Console

UDUU

UUID

UDAI

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDCF

(Web

Services

UDDI)

messages

UDCF0001E:

Exception

occurred

while

getting

int

value

of

configuration

property

″<property>″,

exception:

″<exception>″

Explanation:

This

message

is

issued

when

an

attempt

to

read

the

value

of

a

configuration

property

from

the

uddi.properties

file

and

convert

it

to

integer

has

failed

with

the

indicated

exception.

User

Response:

Check

that

the

uddi.properties

file

contains

a

value

for

the

indicated

configuration

property,

and

that

the

value

is

valid.

Check

also

Chapter

9.

IBM

WebSphere

UDDI

Registry

671

that

the

indicated

configuration

property

is

a

legal

property.

Refer

to

the

InfoCenter

for

further

information

about

global

configuration

properties

and

the

uddi.properties

file.

UDCF0002E:

Exception

occurred

while

getting

long

value

of

configuration

property

″<property>″,

exception:

″<exception>″

Explanation:

This

message

is

issued

when

an

attempt

to

read

the

value

of

a

configuration

property

from

the

uddi.properties

file

and

convert

it

to

long

has

failed

with

the

indicated

exception.

User

Response:

Check

that

the

uddi.properties

file

contains

a

value

for

the

indicated

configuration

property,

and

that

the

value

is

valid.

Check

also

that

the

indicated

configuration

property

is

a

legal

property.

Refer

to

the

InfoCenter

for

further

information

about

global

configuration

properties

and

the

uddi.properties

file.

UDCF0003E:

Exception

occurred

while

getting

boolean

value

of

configuration

property

″<property>″,

exception:

″<exception>″

Explanation:

This

message

is

issued

when

an

attempt

to

read

the

value

of

a

configuration

property

from

the

uddi.properties

file

and

convert

it

to

boolean

has

failed

with

the

indicated

exception

User

Response:

Check

that

the

uddi.properties

file

contains

a

value

for

the

indicated

configuration

property,

and

that

the

value

is

valid.

Check

also

that

the

indicated

configuration

property

is

a

legal

property.

Refer

to

the

InfoCenter

for

further

information

about

global

configuration

properties

and

the

uddi.properties

file.

UDCF0004E:

Failed

to

load

UDDI

global

properties

file.

Explanation:

This

message

is

issued

when

the

UDDI

global

configuration

properties

file,

uddi.properties,

cannot

be

loaded.

Default

values

for

the

global

configuration

properties

will

be

set,

but

these

defaults

may

not

be

adequate

for

many

of

the

properties,

so

you

should

investigate

and

resolve

this

problem.

User

Response:

Check

that

the

uddi.properties

file

exists

and

is

in

the

correct

directory.

Refer

to

the

InfoCenter

for

further

information

about

global

configuration

properties

and

the

uddi.properties

file.

UDCF0005E:

Exception

occurred

while

loading

UDDI

global

configuration

properties,

exception:

″<exception>″

Explanation:

This

message

is

issued

when

an

attempt

to

load

the

UDDI

global

configuration

properties

from

the

uddi.properties

has

failed

with

the

indicated

exception.

Default

values

for

the

global

configuration

properties

will

be

set,

but

these

defaults

may

not

be

adequate

for

many

of

the

properties,

so

you

should

investigate

and

resolve

this

problem.

User

Response:

Check

that

the

uddi.properties

file

exists

and

contains

valid

values

for

each

of

the

configuration

properties.

Refer

to

the

InfoCenter

for

further

information

about

global

configuration

properties

and

the

uddi.properties

file.

UDDA

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDDM

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDEJ

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

672

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDEX

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDIN

(Web

Services

UDDI)

messages

UDIN0001I:

Assuming

hard

coded

defaults.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None..

UDIN0002I:

Cloudscape

classpath

is

clpath.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0003I:

Looking

for

childtype

childname

under

parenttype

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0004I:

Looking

for

childtype

childname

under

parenttype

parentname

and

parenttype2

parentname2.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0005I:

Conflict

found

with

existing

childtype

childname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0006I:

Not

creating

requested

childtype.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0007I:

Seeking

parenttype

with

requested

id

of

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0008I:

Seeking

parenttype

with

requested

id

of

parentname

under

parenttype2

parentname2.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0009I:

Attempting

to

create

childtype

under

parenttype

of

parentID.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0010I:

Create

command

that

will

be

issued

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0011I:

childtype

childId

was

successfully

created.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

Chapter

9.

IBM

WebSphere

UDDI

Registry

673

User

Response:

None.

UDIN0012I:

Looking

for

builtin_rra.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0013I:

List

for

J2CResourceAdapter

returned

N

members.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0014I:

Hunting

J2CResourceAdapter

associated

with

Node

nodename.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0015I:

Using

rraID

as

builtin_rra.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0016I:

Using

provider

class

of

implclass

with

a

classpath

of

clpath.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0017I:

Installing

to

server

servername,

node

nodename

using

database

type

of

dbtype.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0018I:

Attempting

to

create

UDDI

JDBCProvider.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0019I:

Attempting

to

create

UDDI

Datasource.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0020I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0021I:

Attempting

to

install

UDDI

Registry

application.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0022I:

Checking

for

installed

UDDI

Registry

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

674

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN0023W:

Application

of

name

appname

is

not

present.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0024I:

ApplicationManager

not

running,

so

application

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0025I:

Stopping

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0026W:

stopApplication

command

for

application

appname

caught

exception

Exc.

Application

might

not

have

been

running

on

this

server.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0027I:

Application

appname

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0028I:

Removing

application

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0029I:

Application

appname

removed

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0030I:

Adding

resource

bundles

to

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0031I:

Adding

Cloudscape

user

functions

to

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0032I:

UDDI

configuration

properties

file

already

exists.

Only

the

persister

and

getServletURLPrefix

properties

will

be

overwritten.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0033I:

Editing

UDDI

configuration

properties

file

propsfile.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0034I:

Url

prefix

found.

Updating

it

to

discoveryURL.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

Chapter

9.

IBM

WebSphere

UDDI

Registry

675

User

Response:

None.

UDIN0035I:

Persister

property

found.

Updating

it

to

dbtype.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0036I:

Adding

UDDI

configuration

properties

file

to

repository

for

cell

cellname

under

target

node

and

server.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0037I:

ws.ext.dir

processing

starting.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0038I:

serverID

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0039I:

JVM

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0040I:

Out

of

N

properties

we

located

M

matches

at

positions

poslist.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0041I:

Building

new

ws.ext.dirs

properties.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0042I:

SYSPROP

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0043I:

ws.ext.dir

has

been

set

with

new

sysprop.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0044I:

ws.ext.dir

update

skipped,

required

changes

already

present.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0045I:

ws.ext.dir

processing

step

complete.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

676

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN0046I:

Cleaning

up

temporary

version

of

properties

file

temppropsfile.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0047I:

Issuing

nodeSync.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0048I:

UDDI

Registry

successfully

installed.

Please

restart

server

servername

to

activate

configuration

changes.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0049I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0050I:

Server

is

not

running,

so

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0051I:

Stopping

server

servername

under

node

nodename.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0052I:

Server

servername

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0053I:

Restarting

application

server

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0054I:

Application

server

servername

restarted

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0055I:

Please

ignore

any

errors

concerning

the

serverStartupSyncEnabled

attribute.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0101I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0102I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

Chapter

9.

IBM

WebSphere

UDDI

Registry

677

User

Response:

None.

UDIN0103I:

Changes

were

not

saved

on

this

call.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0104I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0105I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0106I:

Attempting

to

save

ws.ext.dir

changes.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0107I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0108I:

Attempting

final

save

of

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN0109I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:

None.

UDIN1001I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1002I:

Server

is

not

running,

so

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1003I:

Stopping

server

servername

under

node

nodename.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1004I:

Server

servername

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1005I:

Resource

bundles

file

will

be

removed

from

repository

if

present.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

678

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN1006I:

Removing

resource

bundles

from

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1007I:

Resource

bundles

successfully

removed

from

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1008I:

Cloudscape

user

functions

file

will

be

removed

from

repository

if

present.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1009I:

Removing

Cloudscape

user

functions

from

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1010I:

Cloudscape

user

functions

successfully

removed

from

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1011I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1012I:

Checking

for

installed

UDDI

Registry

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1013W:

Application

of

name

appname

is

not

present.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1014I:

ApplicationManager

not

running,

so

application

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1015I:

Stopping

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1016W:

stopApplication

command

for

application

appname

caught

exception

Exc.

Application

might

not

have

been

running

on

this

server.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

Chapter

9.

IBM

WebSphere

UDDI

Registry

679

UDIN1017I:

Application

appname

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1018I:

Removing

application

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1019I:

Application

appname

removed

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1020I:

UDDI

datasource

will

be

removed

from

server

servername

in

node

nodename

if

present.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1021I:

Removing

UDDI

datasource.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1022I:

UDDI

datasource

successfully

removed.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1023I:

UDDI

JDBC

driver

will

be

removed

from

server

servername

in

node

nodename

if

present.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1024I:

Removing

UDDI

JDBC

driver.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1025I:

UDDI

JDBC

driver

successfully

removed.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1026I:

UDDI

configuration

properties

file

will

be

removed

from

repository

if

present.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1027I:

Removing

configuration

properties

file

from

cell

cellname,

node

nodename

and

server

servername.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

680

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN1028I:

Configuration

properties

file

successfully

removed

from

repository.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1029I:

Issuing

nodeSync.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1030I:

UDDI

Registry

application,

JDBC

driver

and

datasource

removed

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1031I:

Restarting

application

server.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1032I:

Application

server

servername

restarted

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1033I:

Please

ignore

any

errors

concerning

the

serverStartupSyncEnabled

attribute.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1034I:

ws.ext.dir

processing

starting.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1035I:

serverID

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1036I:

JVM

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1037I:

Out

of

N

properties

we

located

M

matches

at

positions

poslist.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1038I:

Removing

UDDI

values

from

ws.ext.dirs

properties.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1039I:

ws.ext.dir

has

been

set

with

new

sysprop.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

Chapter

9.

IBM

WebSphere

UDDI

Registry

681

User

Response:

None.

UDIN1040I:

ws.ext.dir

update

skipped,

required

changes

already

present.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1041I:

ws.ext.dir

processing

step

complete.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1101I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1102I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1103I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1104I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1105I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1106I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1107I:

Attempting

final

save

of

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1108I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1109I:

Attempting

to

save

ws.ext.dir

changes.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

UDIN1110I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:

None.

682

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN2001I:

Assuming

hard

coded

defaults.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2002I:

Listing

members

of

type

parenttype.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2003I:

List

for

type

parenttype

returned

N

members.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2004I:

Seeking

parenttype

with

requested

id

of

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2005I:

Checking

parentID

with

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2006I:

Using

this

as

parenttype

of

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2007I:

Checking

for

existing

childtype

under

parentname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2008I:

List

for

childtype

returned

N

members.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2009I:

No

existing

childtype

present.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2010I:

N

existing

objects

of

type

childtype

found,

examining

for

conflict

with

childname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2011I:

Checking

childID

with

name

childname.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2012I:

Conflict

found

with

existing

childtype

of

id

childID.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

Chapter

9.

IBM

WebSphere

UDDI

Registry

683

UDIN2013I:

Not

creating

requested

object

of

type

childtype.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2014I:

Conflict

found

with

existing

childtype,

removing

existing

childtype.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2015I:

Removal

of

childtype

was

successful.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2016I:

Not

in

conflict.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2017I:

Attempting

to

create

childtype

under

parentname

of

parentID.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2018I:

Create

command

that

will

be

issued

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2019I:

childtype

childID

was

successfully

created.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2020I:

No

matches

found.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2021I:

Looking

for

builtin_rra.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2022I:

List

for

J2CResourceAdapter

returned

N

members.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2023I:

Hunting

J2CResourceAdapter

associated

with

Node

nodename.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2024I:

Using

rraID

as

builtin_rra.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

684

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDIN2025I:

Using

provider

class

of

implclass

with

a

classpath

of

clpath.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2026I:

Installing

to

node

nodename

using

database

type

of

dbtype.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2027I:

Attempting

to

create

UDDI

JDBCProvider.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2028I:

Attempting

to

create

UDDI

Datasource.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2029I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2030I:

Attempting

to

install

UDDI

Registry

application.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2031I:

Checking

for

installed

UDDI

Registry

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2032I:

List

for

Applications

returned

N

members.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2033W:

Application

of

name

appname

is

not

present.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2034I:

ApplicationManager

not

running,

so

application

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2035I:

Stopping

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2036W:

stopApplication

command

for

application

appname

caught

exception

Exc.

Application

might

not

have

been

running

on

this

server.

Values

Chapter

9.

IBM

WebSphere

UDDI

Registry

685

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2037I:

Application

appname

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2038I:

Removing

application

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2039I:

Application

appname

removed

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2040I:

Attempting

to

install

application

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2041I:

Starting

UDDI

application.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2042I:

Application

appname

started

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2101I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2102I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2103I:

Changes

were

not

saved

on

this

call.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2104I:

Attempting

to

save

post

installation

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2105I:

Changes

saved

successfully

for

UDDI

Registry.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN2106I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

686

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDIN2107I:

Changes

saved

successfully

for

UDDI

Registry.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:

None.

UDIN3001I:

Application

Manager

appmgr

found.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3002I:

Checking

for

installed

UDDI

Registry

application.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3003I:

List

for

Applications

returned

N

members.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3004W:

Application

of

name

appname

is

not

present.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3005I:

ApplicationManager

not

running,

so

application

will

not

need

to

be

stopped.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3006I:

Stopping

application

of

name

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3007W:

stopApplication

command

for

application

appname

caught

exception

Exc.

Application

might

not

have

been

running

on

this

server.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3008I:

Application

appname

stopped

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3009I:

Removing

application

appname.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3010I:

Application

appname

removed

successfully.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

Chapter

9.

IBM

WebSphere

UDDI

Registry

687

UDIN3011I:

UDDI

datasource

will

be

removed

from

server

servername

in

node

nodename

if

present.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3012I:

Removing

UDDI

datasource.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3013I:

UDDI

datasource

successfully

removed.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3014I:

UDDI

JDBC

driver

will

be

removed

from

server

servername

in

node

nodename

if

present.

Values

are:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3015I:

Removing

UDDI

JDBC

driver

from

node

nodename.

Value

is:

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3016I:

UDDI

JDBC

driver

successfully

removed.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3017I:

UDDI

Registry

application,

JDBC

driver

and

datasource

removed

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3101I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3102I:

Changes

to

remove

UDDI

Registry

have

been

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3103I:

Attempting

to

save

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3104I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN3105I:

Attempting

final

save

of

new

configuration.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

688

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDIN3106I:

Changes

saved

successfully.

Explanation:

This

is

an

informational

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:

None.

UDIN6001E:

This

script

must

be

run

in

a

Deployment

Manager

environment.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6002E:

To

install

in

a

standalone

application

server,

use

appserversetupuddi.jacl.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6003E:

Incorrect

number

of

arguments

passed

to

script.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6004E:

Usage

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

The

text

following

’Usage

is:’

gives

the

syntax

for

calling

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6005E:

(<db2userid>

<db2password>

<db2ziplocation>

are

only

required

if

setting

up

to

use

DB2).

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6006E:

Use

all

forward

(’/’)

slashes

to

avoid

problems

with

escaping

back

(’\\’)

slashes.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6007E:

Removal

of

childtype

childname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6008E:

An

exception

Exc

occurred

while

creating

childtype.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6009E:

Unable

to

find

requested

parentype

of

parentname.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6010E:

List

command

for

J2CResourceAdapter

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

Chapter

9.

IBM

WebSphere

UDDI

Registry

689

UDIN6011E:

No

J2CResourceAdapter

objects

available.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6012E:

An

error

occurred

during

execution

of

setupuddi.jacl.

Please

check

the

parameters

and

try

again.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6013E:

Uninstall

of

application

appname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6014E:

Install

of

UDDI

application

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6015E:

Could

not

get

JVM.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6016E:

Cannot

find

nodeSync

MBean.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6017E:

nodeSync

failed.

UDDI

Application

may

not

be

fully

installed.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6018E:

stopServer

command

for

server

servername

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6019E:

startServer

command

for

server

servername

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6101E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6102E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

690

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN6103E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN6104E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

setupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7001E:

This

script

must

be

run

in

a

Deployment

Manager

environment.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7002E:

To

remove

from

a

standalone

application

server,

use

appserverremoveuddi.jacl.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7003E:

Incorrect

number

of

arguments

passed

to

script.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7004E:

Usage

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

The

text

following

’Usage

is:’

gives

the

syntax

for

calling

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7005E:

stopServer

command

for

server

servername

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7006E:

Removal

of

resource

bundles

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7007E:

Removal

of

Cloudscape

user

functions

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7008E:

Uninstall

of

application

appname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7009E:

Removal

of

UDDI

datasource

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

Chapter

9.

IBM

WebSphere

UDDI

Registry

691

UDIN7010E:

Removal

of

UDDI

JDBC

driver

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7011E:

Removal

of

configuration

properties

file

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7012E:

Cannot

find

nodeSync

MBean.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7013E:

nodeSync

failed.

UDDI

Application

may

not

be

fully

uninstalled.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7014E:

startServer

command

for

server

servername

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7015E:

Could

not

get

JVM.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7101E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7102E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7103E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7104E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN7105E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

removeuddi.jacl.

692

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:This

message

is

self-explanatory.

UDIN8001E:

This

script

must

be

run

on

a

standalone

application

server.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8002E:

To

install

in

a

Deployment

Manager

Environment,

use

setupuddi.jacl.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8003E:

Incorrect

number

of

arguments

passed

to

script.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8004E:

Usage

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

The

text

following

’Usage

is:’

gives

the

syntax

for

calling

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8005E:

(<db2userid>

<db2password>

<db2ziplocation>

are

only

required

if

setting

up

to

use

DB2).

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8006E:

Use

all

forward

(’/’)

slashes

to

avoid

problems

with

escaping

back

(’\\’)

slashes.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8007E:

List

command

for

type

parenttype

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8008E:

No

objects

of

type

parenttype

available.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8009E:

List

command

for

childtype

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8001E:

This

script

must

be

run

on

a

standalone

application

server.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8010E:

Error

during

remove

of

existing

childtype,

exception

Exc

caught.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

Chapter

9.

IBM

WebSphere

UDDI

Registry

693

UDIN8011E:

Create

command

for

childtype

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8012E:

Unable

to

find

requested

parentype

of

parentname.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8013E:

List

command

for

J2CResourceAdapter

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8014E:

No

J2CResourceAdapter

objects

available.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8015E:

An

error

occurred

during

execution

of

appserversetupuddi.jacl.

Please

check

the

parameters

and

try

again.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8016E:

List

command

for

Applications

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8017E:

Uninstall

of

application

appname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8018E:

Install

of

UDDI

application

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8019E:

startApplication

command

for

appname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8101E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN8102E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

694

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDIN8103E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserversetupuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9001E:

This

script

must

be

run

on

a

standalone

application

server.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9002E:

To

remove

from

a

deployment

manager

environment,

use

removeuddi.jacl.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9003E:

Incorrect

number

of

arguments

passed

to

script.

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9004E:

Usage

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9005E:

List

command

for

Applications

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9006E:

Uninstall

of

application

appname

caught

exception

Exc.

Values

are:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9007E:

Removal

of

UDDI

datasource

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9008E:

Removal

of

UDDI

JDBC

driver

caught

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9101E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDIN9102E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

Chapter

9.

IBM

WebSphere

UDDI

Registry

695

UDIN9103E:

Error

saving

configuration,

changes

not

saved

due

to

exception

Exc.

Value

is:

Explanation:

This

is

an

error

message

issued

by

the

UDDI

setup

script

appserverremoveuddi.jacl.

User

Response:This

message

is

self-explanatory.

UDLC

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDPR

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDRS

(Web

Services

UDDI)

messages

UDRS0001E:

Exception

″<exception>″

occurred

while

attempting

to

get

UDDI

Message

Logger.

Explanation:

This

message

is

issued

to

stderr

when

an

attempt

to

get

the

UDDI

Message

Logger

fails

with

the

indicated

exception.

Since

the

attempt

to

get

the

message

logger

failed,

the

message

cannot

be

logged.

No

messages

can

be

logged

by

this

instance

of

the

IBM

WebSphere

UDDI

Registry.

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDRS0002E:

Exception

″<exception>″

occurred

while

attempting

to

get

UDDI

Trace

Logger

for

″<component>″.

Explanation:

This

message

is

logged

when

an

attempt

to

get

the

UDDI

Trace

Logger

for

the

specified

component

(or

package)

fails

with

the

indicated

exception.

No

trace

entries

can

be

logged

for

this

component

or

package

of

the

IBM

WebSphere

UDDI

Registry.

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSC

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

UDSP

(Web

Services

UDDI)

messages

UDSP0001E:

ParserPool

found

empty

whilst

attempting

to

process

request.

Request

unsatisfied

Explanation:

A

SOAP

request

was

received,

but

was

unable

to

be

dealt

with,

as

there

were

no

free

Parsers

within

the

ParserPool.

User

Response:

Consider

increasing

the

number

of

Parsers

within

the

ParserPool

by

modifying

the

Init

Parameter

on

the

SOAP

servlets.

UDSP0002E:

Error

locating

schemas

required

for

UDDI

processing.

SOAP

Servlets

unworkable.

Explanation:

The

SOAP

servlet

was

unable

to

locate

the

schemas

it

requires

in

order

to

process

SOAP

requests.

Without

these,

the

servlet

cannot

process

SOAP

requests.

696

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

Check

installation

of

UDDI

was

performed

correctly.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSP0003W:

Servlet

unable

to

locate

init

parameter

’defaultPoolSize’.

Using

internal

defaults.

Explanation:

The

SOAP

servlet

was

unable

to

locate

the

init

parameter

which

sets

the

default

size

of

the

ParserPool.

It

will

fall

back

to

an

internal

default.

User

Response:

If

this

message

occured

after

attempting

to

make

changes

to

the

defaultPoolSize

init

parameter,

ensure

the

changes

were

correct.

If

this

message

has

appeared

after

installed,

ensure

installation

was

performed

correctly.

UDSP0004W:

Servlet

unable

to

understand

init

parameter

’defaultPoolSize’.

Using

internal

defaults.

Explanation:

The

SOAP

servlet

was

unable

to

parse

the

init

parameter

which

sets

the

default

size

of

the

ParserPool.

It

will

fall

back

to

an

internal

default.

User

Response:

If

this

message

occured

after

attempting

to

make

changes

to

the

defaultPoolSize

init

parameter,

ensure

the

changes

were

correct.

If

this

message

has

appeared

after

installed,

ensure

installation

was

performed

correctly.

UDSP0005E:

Error

occurred

during

parser

creation.

Explanation:

An

unspecified

error

occured

during

the

creation

of

a

SOAP

parser

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSP0006E:

Internal

configuration

error.

Explanation:

This

error

may

occur

if

there

was

a

failure

creating

a

Parser,

with

accompanying

message

UDSP0005.

It

may

also

occur

if

there

was

a

problem

acquiring

the

Persistence

layer.

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSP0007E:

Error

during

servlet

acquisition

of

persistence

layer.

Explanation:

The

SOAP

servlet

was

unable

to

acquire

the

persistence

layer

required

for

it

to

communicate

with

the

UDDI

datasource

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSP0008E:

Error

during

servlet

release

of

persistence

layer.

Explanation:

The

persistence

layer

reported

a

problem

when

the

SOAP

servlet

attempted

to

release

it.

User

Response:

Restart

the

UDDI

registry.

If

the

error

persists,

examine

the

WebSphere

logs

for

information

on

its

cause.

If

the

problem

cannot

be

resolved,

then

please

contact

the

IBM

Customer

Service

Center.

UDSP0009E:

Error

during

sending

of

response

to

client.

Explanation:

An

error

occured

when

sending

a

SOAP

response

message

back

to

a

client.

The

client

may

not

have

received

the

response

User

Response:

This

error

is

recorded

to

enable

logging

of

failed

responses

to

clients.

The

error

may

be

the

fault

of

the

client

disconnecting

before

the

Chapter

9.

IBM

WebSphere

UDDI

Registry

697

reply

could

be

sent,

or

may

indicate

a

network

problem.

Examine

the

WebSphere

logs

for

more

information

on

its

cause.

UDUC

(Web

Services

UDDI)

messages

UDUC0001I:

IBM

WebSphere

UDDI

Registry

user

console

starting

initialization.

Explanation:

The

user

console

control

servlet

is

starting.

User

Response:

None.

UDUC0002I:

IBM

WebSphere

UDDI

Registry

user

console

finished

initialization.

Explanation:

The

user

console

control

servlet

has

completed

startup.

User

Response:

None.

UDUC0003I:

Reading

init

parameters.

Explanation:

The

user

console

control

servlet

has

started

reading

external

parameters

in

its

init

method

User

Response:

None.

UDUC0004I:

Finished

reading

init

parameters.

Explanation:

The

user

console

control

servlet

has

finished

reading

external

parameters

in

its

init

method.

This

message

indicates

the

user

console

is

ready

to

accept

client

requests.

User

Response:

None.

UDUC0005E:

A

serious

error

has

occurred.

Error

message:

<Message>

error:

<Throwable>.

More

information:

<Additional

information>.

Explanation:

This

error

message

indicates

an

unexpected

error

has

occurred.

The

<Message>

describes

the

error

that

has

occurred

and

the

<Throwable>

is

the

type

of

error

that

was

caught.

<Additional

information>

may

provide

further

information,

if

available.

User

Response:

A

trace

of

the

gui

component

is

recommended.

Contact

IBM

support

with

this

information.

UDUC0006E:

A

persistence

error

has

occurred.

Error

message:

<Message>

error:

<Throwable>.

More

information:

<Additional

information>.

Explanation:

An

error

occurred

while

performing

a

database

operation.

The

<Message>

describes

the

error

that

occurred

and

the

<Throwable>

is

the

type

of

error

that

was

caught.

<Additional

information>

may

provide

further

information,

if

available.

User

Response:

Check

database

connections

and

state.

Please

provide

IBM

support

with

a

trace,

including

the

gui

and

persistence

components.

UDUC0007E:

A

User

mismatch

error

has

occurred.

Error

message:

<Message>

error:

<Throwable>.

More

information:

<Additional

information>.

Explanation:

The

user

id

provided

does

not

match

the

user

id

required

or

expected

whilst

performing

an

operation

that

requires

authentication.

The

<Message>

describes

the

error

that

occurred

and

the

<Throwable>

is

the

type

of

error

that

was

caught.

<Additional

information>

may

provide

further

information,

if

available.

User

Response:

Check

the

user

has

authority

for

the

operation

being

requested.

If

necessary,

contact

IBM

support

detailing

the

actions

taken

to

recreate

the

problem.

UDUC0008E:

An

invalid

key

was

passed.

Error

message:

<Message>

error:

<Throwable>.

More

information:

<Additional

information>.

Explanation:

The

requested

operation

is

trying

to

retrieve

information

about

an

entity

with

a

key

that

is

invalid.

This

may

occur

if

the

entity

has

been

deleted

by

another

session.

The

<Message>

describes

the

error

that

698

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

occurred

and

the

<Throwable>

is

the

type

of

error

that

was

caught.

<Additional

information>

may

provide

further

information,

if

available.

User

Response:

Ask

the

client

to

close

existing

sessions

and

attempt

the

operation

in

a

new

browser

session.

If

the

problem

persists,

please

provide

IBM

support

with

a

trace

of

the

gui

and

api

components.

UDUC0009E:

An

invalid

value

was

supplied.

Error

message:

<Message>

error:

<Throwable>.

More

information:

<Additional

information>

Explanation:

An

invalid

value

was

passed

to

an

API

call.

The

>Message>

describes

the

error

that

occurred

and

the

<Throwable>

is

the

type

of

error

that

was

caught.

<Additional

information>

may

provide

further

information,

if

available.

User

Response:

Contact

IBM

support

with

a

trace

of

the

gui

and

api

components.

UDUC0010E:

Failed

to

introspect

ActionForm

properties.

Exception:

<Exception>.

Explanation:

String

properties

of

a

form

object

could

not

be

introspected

which

means

that

the

form

contents

cannot

be

checked

for

invalid

characters.

User

Response:

Please

contact

IBM

support

with

details

of

the

Exception

and

a

trace

of

the

gui

component.

UDUC0011E:

Failed

to

invoke

reflected

methods

in

ActionForm.

Exception:

<Exception>.

Explanation:

A

form

object’s

declared

public

method

for

setting

or

getting

a

String

value

could

not

be

invoked.

This

method

is

required

to

check

for

invalid

characters.

User

Response:

Please

contact

IBM

support

with

details

of

the

Exception

and

a

trace

of

the

gui

component.

UDUC0012E:

User

console

initialization

failed

to

connect

to

UDDI

database.

Exception:

<Exception>.

Explanation:

During

user

console

initialization,

connection

to

the

database

failed,

and

threw

the

exception

specified.

User

Response:

Check

the

connection

to

the

UDDI

database.

The

included

exception

message

may

yield

some

clues

to

help

you

resolve

the

problem.

If

unresolved,

please

contact

IBM

support

with

a

trace

of

the

gui

component

during

startup.

UDUC0013E:

User

console

initialization

failed

to

initialize

tModels.

Exception:

<Exception>.

Explanation:

Indicates

that

an

error

has

occurred

during

initialization

of

ActionServlet,

specifically

when

reading

tModels

(invoking

init

method

in

class

TModelNames).

User

Response:

Check

the

state

of

the

UDDI

database.

Visually

inspect

the

TMODEL

table

and

confirm

it

is

populated

with

valid

data.

The

included

exception

message

may

yield

some

clues

to

help

you

resolve

the

problem.

If

unresolved,

please

contact

IBM

support

with

a

trace

of

the

gui

component

during

startup.

UDUC0014E:

User

console

initialization

failed

to

initialize

taxonomies.

Exception:

<Exception>.

Explanation:

Indicates

that

an

error

has

occurred

during

initialization

of

ActionServlet,

specifically

when

reading

taxonomy

data

(invoking

init

method

of

CategoryTaxonomyTree).

Chapter

9.

IBM

WebSphere

UDDI

Registry

699

User

Response:

Check

the

state

of

the

UDDI

database.

The

included

exception

message

may

yield

some

clues

to

help

you

resolve

the

problem.

If

unresolved,

please

contact

IBM

support

with

a

trace

of

the

gui

component

during

startup.

UDUT

UDDI

Utility

Tools

messages

UDUT0001I:

Usage:

java

-jar

UDDIUtilityTools.jar

’{’function’}’

[options]

function:

-promote

entity

source

Promote

entities

between

registries

-export

entity

source

Extract

entities

from

registry

to

XML

-delete

entity

source

Delete

entities

from

registry

-import

Create

entities

from

XML

to

registry

where

entity

source

is

one

of:

-tmodel|-business|-service|-binding

key

Specify

single

entity

type

and

key

-keysFile

|

-f

filename

Specify

file

containing

entity

types

and

keys

options:

-properties

filename

Specify

path

to

configuration

file

-overwrite

|

-o

Overwrite

an

entity

if

it

already

exists

-log

|

-v

Output

verbose

messages

-definitionFile

filename

Specify

path

to

UDDI

entity

definition

file

-importReferenced

Import

entities

referenced

by

source

entities

The

following

options

override

property

settings

in

configuration

file:

-overwrite

-log

-definitionFile

-importReferenced

Example:

java

-jar

UDDIUtilityTools.jar

-promote

-keysFile

C:/uddikeys.txt

Explanation:

This

is

the

usage

message

displayed

at

the

command

line

when

the

user

has

entered

an

invalid

combination

of

arguments

or

options.

User

Response:

Enter

the

command

according

to

the

usage

message..

UDUT0002I:

Starting

UDDI

Utility

Tools

Explanation:

This

message

is

used

as

a

marker

in

the

message

log

file

to

indicate

tool

start

points.

User

Response:

None.

UDUT0003I:

Promoting

entityType<entity

type>

key<entity

key>...

Explanation:

Indicates

which

entity

type

(business,

tModel

and

so

on)

is

being

promoted,

and

it’s

key

value.

User

Response:

None.

UDUT0004I:

Bad

entityType:

received<incorrect

entity

type>,

expected

<tModel|business|service|binding>

Explanation:

The

user

entered

an

incorrect

entity

type.

User

Response:

Use

an

entity

type

of

tModel,

business,

service

or

binding.

UDUT0005I:

Promotion

successful.

Explanation:

Indicates

the

promote

function

completed

successfully.

User

Response:

None.

UDUT0006I:

Import

successful.

Explanation:

Indicates

the

import

function

completed

successfully.

User

Response:

None.

UDUT0007I:

Export

successful.

Explanation:

Indicates

the

export

function

completed

successfully.

700

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDUT0008I:

Delete

successful.

Explanation:

Indicates

the

delete

function

completed

successfully.

User

Response:

None.

UDUT0009I:

Exporting

entities

...

Explanation:

Indicates

the

export

function

has

started.

User

Response:

None.

UDUT0010I:

Exporting

business,

businessKey[<business

key].

Explanation:

Indicates

that

the

businessEntity

with

the

specified

key

is

being

exported.

User

Response:

None.

UDUT0011I:

Exporting

service,

serviceKey[<service

key>].

Explanation:

Indicates

that

the

businessService

with

the

specified

key

is

being

exported.

User

Response:

None.

UDUT0012I:

Exporting

binding,

bindingKey[<binding

key>].

Explanation:

Indicates

that

the

bindingTemplate

with

the

specified

key

is

being

exported.

User

Response:

None.

UDUT0013I:

Exporting

tModel,

tModelKey[<tModel

key>].

Explanation:

Indicates

that

the

tModel

with

the

specified

key

is

being

exported.

User

Response:

None.

UDUT0014I:

Exporting

referenced

tModel,

tModelKey[<tModel

key>].

Explanation:

Indicates

that

the

referenced

tModel

with

the

specified

key

is

being

exported.

User

Response:

None.

UDUT0015I:

Exported

<entity

count>

entities.

Explanation:

Indicates

that

the

export

function

completed,

and

shows

the

number

of

entities

exported.

User

Response:

None.

UDUT0016I:

Importing

entities

...

Explanation:

Indicates

the

import

function

has

started.

User

Response:

None.

UDUT0017I:

Importing

business,

businessKey[<business

key>].

Explanation:

Indicates

that

the

businessEntity

with

the

specified

key

is

being

imported.

User

Response:

None.

UDUT0018I:

Importing

service,

serviceKey[<service

key>].

Explanation:

Indicates

that

the

businessService

with

the

specified

key

is

being

imported.

User

Response:

None.

UDUT0019I:

Importing

binding,

bindingKey[<binding

key>]

Explanation:

Indicates

that

the

bindingTemplate

with

the

specified

key

is

being

imported.

User

Response:

None.

UDUT0020I:

Importing

tModel,

tModelKey[<tModel

key>].

Explanation:

Indicates

that

the

tModel

with

the

specified

key

is

being

imported..

Chapter

9.

IBM

WebSphere

UDDI

Registry

701

User

Response:

None.

UDUT0021I:

Importing

referenced

tModel,

tModelKey[<tModel

key>].

Explanation:

Indicates

that

the

referenced

tModel

with

the

specified

key

is

being

imported.

User

Response:

None.

UDUT0022I:

Imported

<entity

count>

entities.

Explanation:

Indicates

that

the

import

function

completed,

and

shows

the

number

of

entities

imported.

User

Response:

None.

UDUT0023I:

Deleting

entities

...

Explanation:

Indicates

the

delete

function

has

started.

User

Response:

None.

UDUT0024I:

Deleting

business,

businessKey[<business

key>].

Explanation:

Indicates

that

the

businessEntity

with

the

specified

key

is

being

deleted.

User

Response:

None.

UDUT0025I:

Deleting

service,

serviceKey[<service

key>].

Explanation:

Indicates

that

the

businessService

with

the

specified

key

is

being

deleted.

User

Response:

None.

UDUT0026I:

Deleting

binding,

bindingKey[<binding

key>].

Explanation:

Indicates

that

the

bindingTemplate

with

the

specified

key

is

being

deleted.

User

Response:

None.

UDUT0027I:

Deleting

tModel,

tModelKey[<tModel

key>].

Explanation:

Indicates

that

the

tModel

with

the

specified

key

is

being

deleted.

User

Response:

None.

UDUT0028I:

Deleted

<entity

count>

entities.

Explanation:

Indicates

that

the

delete

function

completed,

and

shows

the

number

of

entities

deleted.

User

Response:

None.

UDUT0029I:

Serializing

...

Explanation:

Indicates

that

generation

of

the

Entity

Definition

File

has

started.

User

Response:

None.

UDUT0030I:

Serialized

entities.

Explanation:

Indicates

that

generation

of

the

Entity

Definition

File

completed

successfully.

User

Response:

None.

UDUT0031I:

Deserializing

...

Explanation:

Indicates

that

reading

of

the

Entity

Definition

File

and

creation

of

UDDI

entities

has

started.

User

Response:

None.

UDUT0032I:

Deserialized

entities.

Explanation:

Indicates

that

reading

of

the

Entity

Definition

File

and

creation

of

UDDI

entities

completed

successfully.

User

Response:

None.

UDUT0033I:

Function

’<function>’

completed

successfully.

Explanation:

Indicates

the

requested

function

completed

successfully.

702

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDUT0034W:

Function

’<function>’

did

not

complete

successfully.

See

message

log

for

further

information.

Explanation:

Indicates

the

requested

function

did

not

complete

successfully.

User

Response:

The

message

log

may

yield

further

information

if

the

verbose

option

is

on.

Check

the

configuration

properties

file

setting

are

correct.

If

that

does

not

identify

the

problem,

try

running

with

trace

logging

enabled.

If

that

does

not

yield

a

solution,

contact

your

IBM

support

center.

UDUT0035W:

Parser

error:

{0}

Explanation:

The

XML

parser

reports

a

warning

about

the

content

of

the

Entity

Definition

File.

User

Response:

Based

on

the

context

of

the

warning

message,

check

the

validity

of

the

Entity

Definition

File.

UDUT0036E:

Parser

error

{0}

Explanation:

The

XML

parser

reports

an

error

about

the

content

of

the

Entity

Definition

File.

User

Response:

Based

on

the

context

of

the

error

message,

check

the

validity

of

the

Entity

Definition

File.

UDUT0037E:

Unrecognized

parser

feature:

<feature>

Explanation:

A

parser

feature

set

by

the

UDDI

Utility

Tools

is

not

recognized

by

the

parser.

User

Response:

Check

you

are

using

the

correct

type

and

level

of

XML

parser.

If

correct,

contact

your

IBM

support

center.

UDUT0038E:

Unsupported

parser

feature:

<feature>

Explanation:

A

parser

feature

set

by

the

UDDI

Utility

Tools

is

not

supported

by

the

parser.

User

Response:

Check

you

are

using

the

correct

type

and

level

of

XML

parser.

If

correct,

contact

your

IBM

support

center.

UDUT0039E:

Unrecognized

parser

property:

<property>,

value:

<value>

Explanation:

A

parser

property

set

by

the

UDDI

Utility

Tools

is

not

recognized

by

the

parser.

User

Response:

Check

you

are

using

the

correct

type

and

level

of

XML

parser.

If

correct,

contact

your

IBM

support

center.

UDUT0040E:

Unsupported

parser

property:

<property>,

value:

<value>

Explanation:

A

parser

property

set

by

the

UDDI

Utility

Tools

is

not

supported

by

the

parser.

User

Response:

Check

you

are

using

the

correct

type

and

level

of

XML

parser.

If

correct,

contact

your

IBM

support

center.

UDUT0041I:

<message>

Explanation:

This

is

a

placeholder

message

used

during

development

only.

User

Response:

None.

UDUT0042E:

Unable

to

find

the

configuration

file:

<filepath>

Explanation:

UDDI

Utility

Tools

cannot

locate

the

specified

configuration

file.

User

Response:

UDDI

Utility

Tools

looks

for

a

default

configuration

properties

with

the

file

name

’UDDIUtilityTools.properties’

in

the

current

directory.

Check

that

the

configuration

file

has

this

name,

or

that

the

argument

value

supplied

with

the

’-properties’

option

is

pointing

at

a

file

that

exists.

Chapter

9.

IBM

WebSphere

UDDI

Registry

703

UDUT0043E:

An

Exception

occurred

trying

to

read

the

configuration

file.

Explanation:

The

configuration

file

could

not

be

read.

User

Response:

Check

the

file

path

points

to

a

valid

file

and

that

the

file

does

not

have

the

’hidden’

attribute

set.

UDUT0044W:

Configuration

file

is

missing

the

’<property

name>’

property.

Explanation:

A

required

property

is

missing

from

the

configuration

file.

User

Response:

Add

the

missing

property

name

and

value

to

the

configuration

file.

Check

that

the

property

name

is

not

misspelled.

UDUT0045W:

Property:

’<property

name>’

has

value

’<property

value>’.

It

must

be

either

’true’

or

’false’.

Explanation:

A

value

was

given

to

a

property

other

than

’true’

or

’false’.

User

Response:

Set

the

property

value

to

’true’

or

’false’.

UDUT0046W:

Property:

’<property

name>’

has

value

’<property

value>’.

It

must

be

an

integer

value.

Explanation:

A

value

was

given

to

a

property

other

than

an

integer

value.

User

Response:

Set

the

property

value

to

an

integer

value.

UDUT0047E:

Unable

to

find

the

keyFile

file:

<keys

file

path>

Explanation:

The

keys

file

could

not

be

located

at

the

specified

path.

User

Response:

Check

the

file

name

and

path

and

correct

and

that

the

file

exists.

UDUT0048E:

Unable

to

read

the

keyFile

file:

<keys

file

path>

Explanation:

The

keys

file

could

not

be

read

due

to

an

IO

error.

User

Response:

Check

the

file’s

hidden

attribute

is

not

set.

UDUT0049E:

Unable

to

write

to

entity

definition

file:

<entity

definition

file

path>

Explanation:

During

initialization,

the

Entity

Definition

File

could

not

be

written

to.acl.

User

Response:

Check

the

file’s

read

only

attribute

is

not

set.

UDUT0050E:

Unable

to

find

UDDI

Entity

definition

file:

<entity

definition

file

path>

Explanation:

The

Entity

Definition

File

could

not

be

found

at

the

specified

file

path.

User

Response:

Check

the

file

path

is

correct

and

that

the

file

exists.

UDUT0051E:

Unable

to

read

UDDI

Entity

definition

file:

<entity

definition

file

path>

Explanation:

The

Entity

Definition

File

could

not

be

read

due

to

an

IO

error.

User

Response:

Check

the

file’s

hidden

attribute

is

not

set.

UDUT0052E:

Unable

to

close

the

message

file:

<file

path>

Explanation:

The

attempt

to

close

the

message

file

failed.

User

Response:

The

disk

might

be

full.

If

so,

clear

some

space

or

direct

log

output

to

a

different

disk.

UDUT0053E:

Unable

to

close

the

trace

file:

<file

path>

Explanation:

The

attempt

to

close

the

trace

log

file

failed.

User

Response:

The

disk

might

be

full.

If

so,

clear

some

space

or

direct

log

output

to

a

different

disk.

UDUT0054E:

The

logger

was

unable

to

find

the

file:

<file

path>

Explanation:

The

UDDI

Utility

Tools

logger

could

not

find

the

specvified

file.

User

Response:

None.

UDUT0055E:

ERROR

OCCURRED

...

Explanation:

General

purpose

error

message

used

in

development

only.

704

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDUT0056E:

Exception:

Explanation:

General

purpose

message

prefix

used

for

reporting

exceptions.

User

Response:

None.

UDUT0057W:

Only

one

function

may

be

specified

on

the

command

line.

Explanation:

Multiple

function

commands

were

entered

on

the

command

line.

User

Response:

Specify

one

function

in

accordance

with

the

usage

message.

UDUT0058W:

No

function

was

specified.

Explanation:

UDDI

Utility

Tools

was

invoked

with

no

function

specified.

User

Response:

Specify

one

function

in

accordance

with

the

usage

message.

UDUT0059W:

The

function:

<function>

was

not

recognized.

Explanation:

The

function

value

did

not

match

any

of

the

allowed

functions.

User

Response:

Specify

one

function

in

accordance

with

the

usage

message.

UDUT0060W:

The

argument

’<argument>’

was

not

recognized.

Explanation:

The

argument

value

does

not

match

any

of

the

allowed

arguments.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0061W:

There

was

a

missing

value

for

<argument>

argument.

Explanation:

An

expected

value

for

the

specified

argument

was

not

supplied.

User

Response:

Specify

a

value

for

the

argument

in

accordance

with

the

usage

message.

UDUT0062W:

Enexpected

argument:

<argument>

(entity

key

file

is

already

specified).

Explanation:

The

entity

type

argument

cannot

be

specified

if

the

keysFile

argument

is

already

specified.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0063W:

Unexpected

argument:

<argument>

(entity

key

is

already

specified).

Explanation:

The

keysFile

argument

cannot

be

specified

if

an

entity

type

argument

and

key

value

has

already

been

specified.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0064W:

Argument:

<argument>

cannot

be

specified

more

than

once.

Explanation:

An

argument

was

specified

twice

in

the

same

command.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0065E:

No

entity

keys

were

specified.

Explanation:

A

keys

file

or

an

entity

type

and

key

value

must

be

specified

for

functions

using

keys.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0066E:

Could

not

load

Database

driver:

dbDriver<database

driver>.

Explanation:

The

specified

database

driver

could

not

be

loaded.

User

Response:

Check

the

database

driver

value

in

the

configuration

file

is

valid,

and

the

driver’s

class

is

present

in

the

classpath

property.

Chapter

9.

IBM

WebSphere

UDDI

Registry

705

UDUT0067E:

Could

not

create

database

connection:

dbUrl<database

URL.

dbUser:<database

userid>,

(dbPasswd

not

shown).

Explanation:

A

connection

could

not

be

established

with

the

database

at

the

specified

URL

with

the

specified

userid.

User

Response:

Check

the

database

URL,

userid

and

password

values

are

correct

n

the

configuration

file,

and

that

the

database

manager

is

running.

UDUT0068E:

Could

not

close

the

database

connection.

Explanation:

An

attempt

to

close

the

database

connection

failed.

User

Response:

If

the

problem

persists,

contact

your

IBM

support

center.

UDUT0069E:

Could

not

create

minimal

entity

to

tModel.

Explanation:

The

minimal

data

necessary

for

a

valid

tModel

could

not

be

inserted

in

the

target

UDDI

registry

database.

User

Response:

Check

the

database

URL,

userid

and

password

values

are

correct

in

the

configuration

file,

and

that

the

database

manager

is

running.

UDUT0070E:

Could

not

create

minimal

entity

for

Service.

Explanation:

The

minimal

data

necessary

for

a

valid

businessService

could

not

be

inserted

in

the

target

UDDI

registry

database.

User

Response:

Check

the

database

URL,

userid

and

password

values

are

correct

in

the

configuration

file,

and

that

the

database

manager

is

running.

UDUT0071E:

Could

not

create

minimal

entity

for

Business.

Explanation:

The

minimal

data

necessary

for

a

valid

businessEntity

could

not

be

inserted

in

the

target

UDDI

registry

database.

User

Response:

Check

the

database

URL,

userid

and

password

values

are

correct

in

the

configuration

file,

and

that

the

database

manager

is

running.

UDUT0072E:

Could

not

create

minimal

entity

for

Binding.

Explanation:

The

minimal

data

necessary

for

a

valid

bindingTemplate

could

not

be

inserted

in

the

target

UDDI

registry

database.

User

Response:

Check

the

database

URL,

userid

and

password

values

are

correct

in

the

configuration

file,

and

that

the

database

manager

is

running.

UDUT0073E:

There

was

an

error

while

trying

to

create

an

XML

Document.

Explanation:

An

attempt

to

create

the

Entity

Definition

File

failed.

User

Response:

Check

the

file

path

specified

in

the

configuration

file

for

the

Entity

Definition

File

is

valid

and

is

not

set

to

read

only.

UDUT0074E:

There

was

an

error

parsing

the

entity

definition

file.

Explanation:

An

unspecified

error

occurred

when

parsing

the

Entity

Definition

File.

User

Response:

Check

the

entity

definition

file

content

is

valid

according

to

the

UDDI

Utility

Tools

schema

file,

promoter.xsd.

UDUT0075E:

One

or

more

errors

occurred

while

parsing

the

entity

definition

file.

See

message

log

for

details.

Explanation:

Errors

occurred

when

parsing

the

Entity

Definition

File.

User

Response:

Check

the

entity

definition

file

content

is

valid

according

to

the

UDDI

Utility

Tools

schema

file,

promoter.xsd.

UDUT0076W:

One

or

more

warnings

were

raised

while

parsing

the

entity

definition

file.

See

message

log

for

details.

Explanation:

Warnings

occurred

when

parsing

the

Entity

Definition

File.

User

Response:

Check

the

entity

definition

file

content

is

valid

according

to

the

UDDI

Utility

Tools

schema

file,

promoter.xsd.

UDUT0078E:

Unable

to

obtain

authinfo.

Explanation:

EEE.

706

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

User

Response:

None.

UDUT0079E:

The

inquiryURL

is

malformed:

<inquiry

URL>.

Explanation:

The

inquiry

URL

specified

in

the

configuration

file

is

not

valid.

User

Response:

Correct

the

value

for

the

inquiry

URLs

(fromInquityURL

and

toInquiryURL)

in

the

configuration

file.

UDUT0080E:

The

publisherURL

is

malformed:

<publish

URL>

Explanation:

The

publish

URL

specified

in

the

configuration

file

is

not

valid.

User

Response:

Correct

the

value

for

the

publish

URL

(toPublishURL)

in

the

configuration

file.

UDUT0081E:

Could

not

get

tModel

detail

for

tModelKey[<tModel

key>].

Explanation:

The

get

tModel

operation

failed

on

the

source

registry.

User

Response:

Check

the

key

exists

in

the

source

registry.

UDUT0082E:

Could

not

get

service

detail

for

serviceKey[<service

key>].

Explanation:

The

get

service

operation

failed

on

the

source

registry.

User

Response:

Check

the

key

exists

in

the

source

registry.

UDUT0083E:

Could

neet

get

business

detail

for

businessKey[<business

key>].

Explanation:

The

get

business

operation

failed

on

the

source

registry.

User

Response:

Check

the

key

exists

in

the

source

registry.

UDUT0084E:

Could

not

get

binding

detail

for

bindingKey[<binding

key>].

Explanation:

The

get

binding

operation

failed

on

the

source

registry.

User

Response:

check

the

key

exists

in

the

source

registry.

UDUT0085E:

Could

not

save

tModel

for

tModelKey[<tModel

key>].

Explanation:

The

publish

operation

failed

at

the

target

registry.

User

Response:

Check

the

tModel

is

not

referencing

another

entity

(such

as

a

tModel)

that

is

not

present

in

the

target

registry.

This

may

occur

if

the

’importReferenced’

property

is

set

to

false.

Specify

referenced

tModels

in

the

referencedtModels

section

of

the

Entity

Definition

File

and

set

’importReferenced’

property

in

the

configuration

file

to

’true’.

UDUT0086E:

Could

not

save

business

for

businessKey[<business

key>].

Explanation:

The

publish

operation

failed

at

the

target

registry.

User

Response:

Check

the

businessEntity

is

not

referencing

another

entity

(such

as

a

tModel)

that

is

not

present

in

the

target

registry.

This

may

occur

if

the

’importReferenced’

property

is

set

to

false.

Specify

referenced

tModels

in

the

referencedtModels

section

of

the

Entity

Definition

File

and

set

’importReferenced’

property

in

the

configuration

file

to

’true’.

UDUT0087E:

Could

not

save

service

for

parent

businessKey[<business

key>].

Explanation:

The

publish

operation

failed

at

the

target

registry.

User

Response:

Check

the

businessEntity

specified

as

the

parent

of

the

businessService

exists

in

the

target

registry.

UDUT0088E:

Could

not

save

binding

for

parent

serviceKey[<service

key>].

Explanation:

The

publish

operation

failed

at

the

target

registry.

User

Response:

Check

the

businessService

specified

as

the

parent

of

the

bindingTemplate

exists

in

the

target

directory.

UDUT0089W:

Did

not

save

service

for

serviceKey[<service

key>].

Explanation:

The

parent

business

for

the

specified

businessService

does

not

exist.

User

Response:

Check

the

key

value

for

the

parent

entity

is

correct

in

the

Entity

Definition

File,

and

that

the

entity

exists

in

the

target

registry.

Chapter

9.

IBM

WebSphere

UDDI

Registry

707

UDUT0090W:

Did

not

save

binding

for

bindingKey[<binding

key>].

Explanation:

The

parent

service

for

the

specified

bindingTemplate

does

not

exist.

User

Response:

Check

the

key

value

for

the

parent

entity

is

correct

in

the

Entity

Definition

File,

and

that

the

entity

exists

in

the

target

registry.

UDUT0091E:

Could

not

delete

business

for

businessKey[<businness

key>].

Explanation:

The

UDDI4J

operation

to

delete

the

businessEntity

with

the

specified

key

failed.

User

Response:

Check

the

userid

and

password

property

values

in

the

configuration

file

and

that

the

entity

exists

in

the

target

UDDI

registry.

UDUT00921E:

Could

not

delete

service

for

serviceKey[<tModel

key>].

Explanation:

The

UDDI4J

operation

to

delete

the

businessService

with

the

specified

key

failed.

User

Response:

Check

the

userid

and

password

property

values

in

the

configuration

file

and

that

the

entity

exists

in

the

target

UDDI

registry.

UDUT0093E:

Could

not

delete

binding

for

bindingKey[<binding

key>].

Explanation:

The

UDDI4J

operation

to

delete

the

bindingTemplate

with

the

specified

key

failed.

User

Response:

Check

the

userid

and

password

property

values

in

the

configuration

file

and

that

the

entity

exists

in

the

target

UDDI

registry.

UDUT0094E:

Could

not

delete

tModel

for

tModelKey[<tModel

key>].

Explanation:

The

UDDI4J

operation

to

delete

the

tModel

with

the

specified

key

failed.

User

Response:

Check

the

userid

and

password

property

values

in

the

configuration

file

and

that

the

entity

exists

in

the

target

UDDI

registry.

UDUT0096W:

<entity

type><key

value>

is

not

a

valid

UUID.

Explanation:

The

key

value

entered

does

not

comply

with

the

format

specified

for

a

UUID

in

the

UDDI

specification.

User

Response:

Enter

a

valid

UUID

key.

UDUT0097W:

Did

not

save

tModel

for

tModelKey[<tModel

key>]

as

it

already

exists.

Use

the

-overwrite

argument

to

overwrite

the

tModel.

Explanation:

The

tModel

was

not

saved

because

the

overwrite

property

is

false

User

Response:

If

the

desired

action

is

to

overwrite

existing

entities,

specify

-overwrite

on

the

command

line

or

set

the

overwrite

property

in

the

configuration

file

to

true.

UDUT0098W:

Did

not

save

business

for

businessKey[<business

key>]

as

it

already

exists.

Use

the

-overwrite

argument

to

overwrite

the

tModel.

Explanation:

The

businessEntity

was

not

saved

because

the

overwrite

property

is

false

User

Response:

If

the

desired

action

is

to

overwrite

existing

entities,

specify

-overwrite

on

the

command

line

or

set

the

overwrite

property

in

the

configuration

file

to

true.

UDUT0099W:

Did

not

save

service

for

serviceKey[<service

key

key>]

as

it

already

exists.

Use

the

-overwrite

argument

to

overwrite

the

tModel.

Explanation:

The

businessService

was

not

saved

because

the

overwrite

property

is

false

User

Response:

If

the

desired

action

is

to

overwrite

existing

entities,

specify

-overwrite

on

the

command

line

or

set

the

overwrite

property

in

the

configuration

file

to

true.

708

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDUT0100W:

Did

not

save

binding

for

bindingKey[<binding

key

key>]

as

it

already

exists.

Use

the

-overwrite

argument

to

overwrite

the

tModel.

Explanation:

The

bindingTemplate

was

not

saved

because

the

overwrite

property

is

false

User

Response:

If

the

desired

action

is

to

overwrite

existing

entities,

specify

-overwrite

on

the

command

line

or

set

the

overwrite

property

in

the

configuration

file

to

true.

UDUT0101W:

Bad

entity

type:

received<entity

type>,

expected<tModel|business|service|binding>.

Explanation:

The

entered

entity

type

was

not

recognized.

User

Response:

Specify

arguments

in

accordance

with

the

usage

message.

UDUT0102E:

Promotion

failed.

Explanation:

The

promote

function

failed

to

complete.

User

Response:

Check

the

configuration

properties

file

has

correct

settings.

UDUT0106E:

Unable

to

commit

transaction.

Explanation:

The

insertion

of

minimal

entity

data

during

the

import

function

failed

to

commit

to

the

database.

User

Response:

Check

the

database

configuration.

If

necessary,

turn

on

trace

logging

and

look

for

the

SQLException

that

is

recorded.

UDUT0107E:

Unable

to

set

auto-commit

off

on

the

database

connection.

Explanation:

UDDI

Utility

Tools

needs

to

control

commits

of

data

changes,

however

the

attempt

to

turn

off

auto-commit

failed.

User

Response:

Check

the

database

configuration.

If

necessary,

turn

on

trace

logging

and

look

for

the

SQLExecption

that

is

recorded.

UDUT0109E:

The

import

function

requires

a

UDDI

entity

definition

file

to

be

specified.

Explanation:

A

required

argument

value

was

not

specified.

User

Response:

Specify

-definition

<path

to

Entity

Definition

File>

on

the

command

line,

or

set

the

value

of

the

UDDIEntityDefinitionFile

property

in

the

configuration

file

to

the

path

to

the

Entity

Definition

File.

UDUT0110E:

A

cyclic

dependency

exists

in

the

referenced

tModels.

The

reference

from

tModel

with

key

[<tModel

key>]

to

the

tModel

with

key

[<tModel

key>]

completes

the

detected

cycle.

Explanation:

A

cycle

has

been

detected

such

that

a

tModel

is

being

referenced

by

a

tModel

that

it

directly

or

indirectly

references.

This

would

cause

the

UDDI

Utility

Tools

to

enter

an

infinite

loop

trying

to

import

referenced

tModels,

so

the

process

is

halted.

User

Response:

Edit

the

Entity

Definition

File

and

temporarily

remove

the

reference

to

the

tModel

in

the

cycle,

taking

a

note

of

the

referenced

details.

After

the

import

has

successfully

completed,

update

the

tModel

in

the

target

registry

to

reintroduce

the

reference

you

previously

removed.

this

can

be

done

using

the

UDDI

User

Console,

UDDI4J,

or

by

creating

a

new

Entity

Definition

File

with

just

the

tModel

to

be

updated,

and

running

the

UDDI

Utility

Tools

with

the

import

function.

UDUT0112E:

An

unexpected

exception

has

occurred:

<Exception

message>.

Explanation:

An

unexpected

error

occurred.

User

Response:

Check

configuration

file

settings

and

all

registries

and

databases

are

active.

If

necessary,

contact

your

IBM

support

center.

UDUT0113E:

Could

not

get

a

response

from

UDDI

registry

at

URL:

<URL>.

Explanation:

A

TransPortException

occurred

while

performing

an

UDDI4J

operation

on

the

UDDI

registry

at

the

specified

URL.

Chapter

9.

IBM

WebSphere

UDDI

Registry

709

User

Response:

Check

configuration

properties

for

the

UDDI

registry

in

question

and

ensure

the

UDDI

registry

is

active.

UDUT0114E:

An

IOException

occurred

trying

to

invoke

’java’.

Explanation:

When

UDDI

Utility

Tools

was

invoked

using

the

java

-jar

syntax,

the

invocation

of

the

second

JVM

failed.

User

Response:

Check

configuration

property

’classpath’

value

is

correct,

and

that

Java

is

configured

to

run

from

the

command

line.

UDUT0115I:

Imported

<entity

count>

entities

and

<referenced

entity

count>

referenced

entities.

Explanation:

Indicate

that

the

import

step

of

the

import

or

promote

function

has

completed,

showing

the

number

of

entities

imported.

User

Response:

None.

UDUT0116W:

Not

all

minimal

entities

could

be

removed.

The

following

remain

in

the

database:

Explanation:

A

publish

step

was

not

successful

which

may

have

left

one

or

more

minimal

entities

in

the

target

registry

database.

UDDI

Utility

Tools

attempts

to

remove

these

minimal

entities

but

in

this

case,

the

removal

has

failed.

Following

messages

will

indicate

which

minimal

entities

are

left

in

the

target

registry.

User

Response:

You

can

attempt

to

remove

the

minimal

entites

using

normal

methods,

such

as

the

user

console,

UDDI4J,

or

using

the

delete

function

of

the

UDDI

Utility

Tools.

UDUT0117W:

Business

minimal

entities

with

businessKey

[<business

key>]

has

not

been

removed

from

the

database.

Explanation:

A

business

minimal

entity

was

orphaned

in

the

target

registry

database

and

attempts

to

remove

it

failed.

User

Response:

Identify

the

orphaned

minimal

entity

in

the

target

and

attempt

to

remove

using

normal

UDDI

methods,

or

by

using

the

delete

function

of

the

UDDI

Utility

Tools.

UDUT0118W:

Service

minimal

entity

with

serviceKey

[<service

key>]

has

not

been

removed

from

the

database.

Explanation:

A

service

minimal

entity

was

orphaned

in

the

target

registry

database

and

attempts

to

remove

it

failed.

User

Response:

Identify

the

orphaned

minimal

entity

in

the

target

registry

and

attempt

to

remove

using

normal

UDDI

delete

methods,

or

by

using

the

delete

function

of

the

UDDI

Utility

Tools.

UDUT0119W:

Binding

Template

minimal

entity

with

bindingKey

[<binding

key>]

has

not

been

removed

from

the

database.

Explanation:

A

binding

minimal

entity

was

orphaned

in

the

target

registry

database

and

attempts

to

remove

it

failed.

User

Response:

Identify

the

orphaned

minimal

entity

in

the

target

registry

and

attempt

to

remove

using

normal

UDDI

delete

methods,

or

by

using

the

delete

function

of

the

UDDI

Utility

Tools.

UDUT0120W:

TModel

minimal

entity

with

tModelKey

[<tModel

key>]

has

not

been

removed

from

the

database.

Explanation:

A

tModel

minimal

entity

was

orphaned

in

the

target

registry

database

and

attempts

to

remove

it

failed.

User

Response:

Identify

the

orphaned

minimal

entity

in

the

target

registry

and

attempt

to

remove

using

normal

UDDI

delete

methods,

or

by

using

the

delete

function

of

the

UDDI

Utility

Tools.

710

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

UDUT0121I:

Created

business

minimal

entity

with

businessKey

[<business

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

businessEntity

has

successfully

been

inserted

in

the

target

UDDI

registry

database.

User

Response:

None.

UDUT0122I:

Created

service

minimal

entity

with

serviceKey

[<service

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

businessService

has

successfully

been

inserted

in

the

target

UDDI

registry

database.

User

Response:

None.

UDUT0123I:

Created

binding

template

minimal

entity

with

bindingKey

[<binding

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

bindingTemplate

has

successfully

been

inserted

in

the

target

UDDI

registry

database.

User

Response:

None.

UDUT0124I:

Created

tModel

minimal

entity

with

tModelKey

[<tModel

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

tModel

has

successfully

been

inserted

in

the

target

UDDI

registry

database.

User

Response:

None.

UDUT0125I:

Deleted

business

minimal

entity

with

businessKey

[<business

key>].

Explanation:

Indicates

the

minimal

data

inserted

for

a

businessEntity

was

successfully

removed

from

the

target

UDDI

registry

database.

This

would

normally

happen

after

a

publish

operation

has

failed.

User

Response:

None.

UDUT0126I:

Deleted

service

minimal

entity

with

serviceKey

[<service

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

businessService

was

successfully

removed

from

the

target

UDDI

registry

database.

This

would

normally

happen

after

a

publish

operation

has

failed.

User

Response:

None.

UDUT0127I:

Deleted

binding

template

minimal

entity

with

bindingKey

[<binding

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

bindingTemplate

was

successfully

removed

from

the

target

UDDI

registry

database.

This

would

normally

happen

after

a

publish

operation

has

failed.

User

Response:

None.

UDUT0128I:

Deleted

tModel

minimal

entity

with

tModelKey

[<tModel

key>].

Explanation:

Indicates

the

minimal

data

required

for

a

tModel

was

successfully

removed

from

the

target

UDDI

registry

database.

This

would

normally

happen

after

a

publish

operation

has

failed.

User

Response:

None.

UDUT0129E:

Find

related

businesses

failed.

Explanation:

The

UDDI4J

find

related

businesses

operation

did

not

complete.

User

Response:

Check

the

configuration

properties

for

the

source

registry,

such

as

fromInquiryURL.

UDUT0130E:

Find

businesses

failed.

Explanation:

The

UDDI4J

find

businesses

operation

did

not

complete.

User

Response:

Check

the

configuration

properties

for

the

source

registry,

such

as

fromInquiryURL.

UDUT0131E:

Find

services

failed.

Explanation:

The

UDDI4J

find

services

operation

did

not

complete.

Chapter

9.

IBM

WebSphere

UDDI

Registry

711

User

Response:

Check

the

configuration

properties

for

the

source

registry,

such

as

fromInquiryURL.

UDUT0132E:

Find

tModels

failed.

Explanation:

The

UDDI4J

find

tModels

operation

did

not

complete.

User

Response:

Check

the

configuration

properties

for

the

source

registry,

such

as

fromInquiryURL.

UDUT0133E:

Find

bindings

failed.

Explanation:

The

UDDI4J

find

bindings

operation

did

not

complete.

User

Response:

Check

the

configuration

properties

for

the

source

registry,

such

as

fromInquiryURL.

UDUT0134I:

Performing

inquiry

request

...

Explanation:

Indicated

the

find

operation

for

selecting

keys

has

started.

User

Response:

None.

UDUT0135I:

Extracted

keys

from

inquiry

results.

Explanation:

Indicates

the

find

operation

to

select

keys

has

completed

successfully.

User

Response:

None

UDUU

(Web

Services

UDDI)

messages

There

are

no

messages

issued

by

this

component.

Running

the

UDDI

samples

The

UDDI

samples,

and

documentation

on

how

to

use

them,

are

available

through

the

Web

Services

UDDI

samples

link

on

the

Samples

Central

page

of

the

IBM

WebSphere

Developer

Domain

Web

site.

Installation

Verification

Program

(IVP)

There

are

some

samples

available

on

the

WebSphere

Developer

Domain

(WSDD)

web

site

(at

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html)

that

are

intended

to

provide

an

optional

Installation

Verification

test,

or

IVP,

for

the

UDDI

Registry

component.

This

topic

describes

how

to

run

these

installation

verification

programs

(IVPs)

to

verify

that

the

IBM

UDDI

Registry

has

been

installed

correctly.

There

are

two

IVP

SOAP

samples:

SOAPSampleIVPa

and

SOAPSampleIVPb.

They

are

intended

to

verify

the

successful

installation

of

the

product,

and

should

be

used

in

conjunction

with

the

UDDI

Users

Console

(GUI).

SOAPSampleIVPa

saves

some

data

to

the

registry

which

you

can

then

find

using

the

GUI.

Finally

you

can

delete

the

data

by

running

SOAPSampleIVPb.

The

IVP

samples

are

installed

into

the

same

target

directory

as

the

other

SOAP

samples

and

they

use

the

same

XML

files

as

the

basic

Java

SOAP

samples.

SOAPSampleIVPa

saves

three

businesses,

six

services

(2

per

business)

and

three

tModels.

The

data

structures

are

very

basic

and

consist

only

of

a

name.

The

keys

returned

by

the

save_*

UDDI

API

calls

are

then

written

to

a

file,

SOAPSampleIVPa.out.

SOAPSampleIVPb

then

reads

in

these

keys

from

the

file

to

delete

the

saved

data

from

the

UDDI

registry.

712

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.ibm.com/websphere/developer/library/samples/AppServer.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html

Note:

Each

time

you

run

SOAPSampleIVPa,

it

overwrites

the

output

file

SOAPSampleIVPa.out

so,

if

you

wish

to

use

SOAPSampleIVPb

to

delete

the

data,

you

must

run

this

before

you

next

run

SOAPSampleIVPa.

Note:

As

supplied,

the

IVP

programs

are

written

to

work

on

a

system

without

authentication.

It

is

possible

to

configure

the

IVPs

to

work

with

authentication

(see

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html),

however,

if

possible

it

is

recommended

you

run

them

on

a

non-authenticated

system.

Steps

for

this

task

Perform

the

following

steps

on

the

same

system

as

the

UDDI

Registry:

1.

Ensure

that

DB2

and

the

WebSphere

Administrative

Server

are

started.

2.

Start

the

WebSphere

Administrator’s

Console

and

ensure

the

default

server

is

started

and

the

UDDI

Registry

Application

is

started.

3.

For

SOAP

samples

to

work,

you

need

to

ensure

that

the

Client

Developer

Kit

for

Java

is

either

the

one

shipped

with

IBM

WebSphere

Application

Server

or

a

later

IBM

Developer

Kit

for

Java.:

v

For

Windows

-

ensure

that

<WebSphere-install-dir>\java\bin

is

present

in

the

PATH

statement

before

any

other

Developer

Kits

for

Java

v

For

Unix

Platforms

-

ensure

that

<WebSphere-install-dir>/java/bin

is

present

in

the

PATH

statement

before

any

other

Developer

Kits

for

Java

Note:

You

must

use

the

IBM

WebSphere

supplied

Developer

Kit

for

Java

or

a

later

level

of

the

IBM

Developer

Kit

for

Java.

For

Windows,

the

default

system

path

can

be

set

via

Control

Panel

...->

Settings

...->

System

...->

Advanced

Properties

...->

Environment

Variables

Alternatively,

this

can

be

accomplished

just

for

the

shell

where

you

plan

to

run

the

samples

by

modifying

the

path

within

the

shell:

v

For

Windows

-

set

path=<WebSphere-install-dir>\java\bin;%path%

v

For

Unix

Platforms

-

export

PATH=<WebSphere-install-dir>/java/bin:$PATH
4.

Copy

the

samples

and

*.xml

files

to

a

directory

5.

Compile

both

SOAPSampleIVPa

and

SOAPSampleIVPb

by

entering

(from

a

command

prompt):

’javac

SOAPSampleIVPa.java’

and

’javac

SOAPSampleIVPb’

6.

Run

SOAPSampleIVPa

by

entering

’java

SOAPSampleIVPa’.

This

should

publish

a

number

of

businesses

and

services

and

technical

models

into

the

registry.

7.

Start

your

Web

browser

on

the

same

system

as

the

UDDI

Registry.

8.

To

display

the

UDDI

GUI

home

page,

enter

the

following

URL:

v

http://localhost:9080/uddigui
9.

On

the

find

page,

complete

the

following

steps:

a.

Select

the

business

radio

button

b.

In

the

data

entry

field,

enter

%

(the

wild

card

symbol)

c.

Click

Find

Chapter

9.

IBM

WebSphere

UDDI

Registry

713

http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html

You

should

get

a

results

page

returned

with

three

businesses

(mybusiness1,

mybusiness2,

and

mybusiness3).

This

demonstrates

that

the

API

and

the

UDDI

user

console

are

working

correctly.
10.

To

see

the

services

that

are

available

for

a

business,

click

the

″Show

Services″

option

next

to

the

business.

11.

To

delete

all

of

the

IVP

data,

run

SOAPSampleIVPb

(from

the

command

prompt

as

before

-

by

entering

’java

SOAPSampleIVPb’)

12.

On

the

find

page,

complete

the

following

steps:

a.

Select

the

business

radio

button

b.

In

the

data

entry

field,

enter

%

(the

wild

card

symbol)

c.

Click

Find

You

should

get

an

empty

results

page

returned.

Reporting

problems

with

the

IBM

WebSphere

UDDI

Registry

If

you

report

a

problem

with

the

IBM

WebSphere

UDDI

Registry

component

to

IBM,

supply

the

following

information:

1.

A

detailed

description

of

the

problem.

2.

The

build

date

and

time

of

the

version

you

are

using.

This

can

be

obtained

as

follows:

v

In

the

installedApps

subdirectory

of

the

WebSphere

installation

location,

you

will

find

a

subdirectory

called

UDDI_Registry.<nodename>.<servername>.ear,

where

<nodename>

is

the

name

of

the

node

into

which

the

UDDI

Registry

application

is

installed,

and

<servername>

is

the

name

of

the

server.

Within

that

subdirectory,

you

will

find

a

file

called

version.txt.

Include

the

contents

of

this

file

as

part

of

your

information.

v

If

the

UDDI

Registry

has

been

started

with

tracing

enabled

for

the

UDDI

component,

you

should

find

a

trace

entry

in

the

WebSphere

trace

log

that

includes

the

strings

″getUDDIMessageLogger″

and

″UDDI

Build

:″

followed

by

the

build

date

and

time,

and

the

build

system.

Also

include

this

information.
3.

Any

relevant

log

files

and

trace

files.

v

If

the

problem

occurred

while

setting

up

and

installing

the

UDDI

Registry

application

using

one

of

the

setup

scripts,

setupuddi.jacl

or

appserversetupuddi.jacl,

supply

the

log

output

from

running

the

script.

(If

you

did

not

redirect

the

output

from

the

script

file

to

a

log

file,

rerun

the

script,

this

time

redirecting

the

output

as

described

in

the

section

’Installing

and

Setting

up

a

UDDI

Registry’.)

The

log

file

is

written

to

the

directory

from

which

you

ran

the

setup

script.

v

If

the

problem

occurred

while

removing

the

UDDI

Registry

application

using

one

of

the

remove

scripts,

removeuddi.jacl

or

appserverremoveuddi.jacl,

supply

the

log

output

from

running

the

script.

(If

you

did

not

redirect

the

output

from

the

script

file

to

a

log

file,

rerun

the

script,

this

time

redirecting

the

output

as

described

in

the

section

’Removing

the

UDDI

Registry

from

a

deployment

manager

cell’

or

’Removing

the

UDDI

Registry

application

from

a

single

appserver’.)

The

log

file

is

written

to

the

directory

from

which

you

ran

the

remove

script.

v

If

the

problem

occurred

while

creating

the

UDDI

Registry

database

using

the

UDDI

DB2

Setup

Wizard,

supply

the

log

file

UDDIloadDB.log,

which

is

written

to

the

directory

from

which

the

wizard

was

run.

v

If

the

problem

occurred

while

running

the

UDDI

Registry,

enable

UDDI

tracing

(if

not

already

enabled)

and

supply

the

trace

log

from

the

logs

directory

of

the

application

server

on

which

the

UDDI

Registry

was

running.

See

’Turning

on

UDDI

Trace’

for

details

on

how

to

enable

UDDI

tracing.

714

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Also

supply

the

WebSphere

log

files

system.out

and

system.err.

v

Supply

details

of

the

version

of

IBM

WebSphere

Application

Server

you

are

running

by

executing

the

command

versioninfo

(Windows)

or

versioninfo.sh

(Unix

platforms)

on

both

the

application

server

and

deployment

manager

nodes

and

directing

the

output

to

a

log

file.
4.

If

appropriate,

any

application

code

that

you

are

using

and

the

output

produced

by

the

application

code.

In

addition

to

the

above,

it

is

useful

to

run

the

WebSphere

collector

tool

and

send

the

resulting

jar

file(s)

(two

files

if

run

from

base

application

server

AND

DeploymentManager)

to

IBM.

See

Running

the

collector

tool

Feedback

See

the

section

on

″Obtaining

help

from

IBM″

elsewhere

in

this

InfoCenter

for

details

on

seeking

assistance.

Chapter

9.

IBM

WebSphere

UDDI

Registry

715

716

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

10.

Class

loading

Class

loaders

affect

the

packaging

of

applications

and

the

run-time

behavior

of

packaged

applications

deployed

on

application

servers.

1.

Read

about

class

loaders.

The

article

″“Class

loading:

Resources

for

learning”

on

page

723″

points

to

additional

sources.

2.

If

necessary,

migrate

class-loader

Module

Visibility

Mode

settings

for

Version

4.0.x

applications

to

Version

5.0

application

or

WAR

class-loader

policies.

3.

5.0.1

5.0.2

When

assembling

an

enterprise

application

resource

(EAR)

file

that

has

EJB

modules,

set

the

class

path

for

the

class

loader

to

use

during

packaging.

4.

If

an

application

module

uses

a

resource,

create

a

resource

provider

that

specifies

the

directory

name

of

the

resource

drivers.

Do

not

specify

the

resource

JAR

file

names.

All

JAR

files

in

the

specified

directory

will

be

added

into

the

class

path

of

the

WebSphere

Application

Server

extensions

class

loader.

5.

Configure

class

loaders

of

an

application

server

for

the

run-time

environment.

a.

Click

Servers

>

Application

Servers

>server_name

and,

on

the

settings

page

for

an

application

server,

set

the

application

class-loader

policy

and

application

class-loader

mode.

The

application

class-loader

policy

controls

the

isolation

of

applications

running

in

the

system.

When

set

to

SINGLE,

applications

are

not

isolated;

a

single

application

class

loader

is

used

to

contain

all

EJB

modules,

dependency

JAR

files,

and

shared

libraries

in

the

system.

When

set

to

MULTIPLE,

applications

are

isolated

from

each

other;

each

application

receives

its

own

class

loader

to

load

that

application’s

EJB

modules,

dependency

JAR

files,

and

shared

libraries.

The

application

class-loader

mode

specifies

the

class-loader

mode

when

the

application

class-loader

policy

is

SINGLE.

PARENT_FIRST

causes

the

class

loader

to

first

delegate

the

loading

of

classes

to

its

parent

class

loader

before

attempting

to

load

the

class

from

its

local

class

path.

PARENT_LAST

causes

the

class

loader

to

first

attempt

to

load

classes

from

its

local

class

path

before

delegating

the

class

loading

to

its

parent.

This

allows

an

application

class

loader

to

override

and

provide

its

own

version

of

a

class

that

exists

in

the

parent

class

loader.

b.

On

the

settings

page

for

an

application

server,

click

Classloader.

On

the

Classloader

page,

click

New.

c.

On

the

settings

page

for

a

class

loader,

specify

the

class-loader

mode.

PARENT_FIRST

causes

the

class

loader

to

delegate

the

loading

of

classes

to

its

parent

class

loader

before

attempting

to

load

the

class

from

its

local

classpath.

PARENT_LAST

causes

the

class

loader

to

attempt

to

load

classes

from

its

local

class

path

before

delegating

the

class

loading

to

its

parent.

Then,

click

OK.

d.

On

the

settings

page

for

a

class

loader,

click

Libraries.

From

the

Library

Ref

page,

click

Add.

On

the

settings

page

for

a

library

reference,

specify

variables

for

the

library

reference

as

needed

and

click

OK.

Repeat

the

previous

step

until

you

define

a

library

reference

instance

for

each

library

file

that

your

application

needs.

To

define

a

library

reference,

you

must

first

define

one

or

more

shared

libraries.
6.

When

configuring

an

installed

Web

module

for

deployment

in

the

run-time

environment,

set

the

class-loader

mode.

©

Copyright

IBM

Corp.

2003

717

Class

loaders

Class

loaders

are

part

of

the

Java

virtual

machine

(JVM)

code

and

are

responsible

for

finding

and

loading

class

files.

Class

loaders

affect

the

packaging

of

applications

and

the

run-time

behavior

of

packaged

applications

deployed

on

application

servers.

The

run-time

environment

of

WebSphere

Application

Server

uses

the

following

class

loaders

to

find

and

load

new

classes

for

an

application

in

the

following

order:

1.

The

bootstrap,

extensions,

and

CLASSPATH

class

loaders

created

by

the

JVM.

The

bootstrap

class

loader

uses

the

boot

classpath

(typically

classes

in

jre/lib)

to

find

and

load

classes.

The

extensions

class

loader

uses

the

system

property

java.ext.dirs

(typically

jre/lib/ext)

to

find

and

load

classes.

The

CLASSPATH

class

loader

uses

the

CLASSPATH

environment

variable

to

find

and

load

classes.

The

CLASSPATH

class

loader

contains

the

J2EE

APIs

of

the

WebSphere

Application

Server

product

(inside

j2ee.jar).

Because

the

J2EE

APIs

are

in

this

class

loader,

you

can

add

libraries

that

depend

on

J2EE

APIs

to

the

classpath

system

property

to

extend

a

server’s

classpath.

However,

a

preferred

method

of

extending

a

server’s

classpath

is

to

add

a

shared

library.

2.

A

WebSphere-specific

extensions

class

loader.

The

WebSphere

extensions

class

loader

loads

the

WebSphere

run-time

and

J2EE

classes

that

are

required

at

run

time.

The

extensions

class

loader

uses

a

ws.ext.dirs

system

property

to

determine

the

path

used

to

load

classes.

Each

directory

in

the

ws.ext.dirs

classpath

and

every

JAR

file

or

ZIP

file

in

these

directories

is

added

to

the

classpath

used

by

this

class

loader.

The

WebSphere

extensions

class

loader

also

loads

resource

provider

classes

into

a

server

if

an

application

module

installed

on

the

server

refers

to

a

resource

that

is

associated

with

the

provider

and

if

the

provider

specifies

the

directory

name

of

the

resource

drivers.

3.

One

or

more

application

module

class

loaders

that

load

elements

of

enterprise

applications

running

in

the

server.

The

application

elements

can

be

Web

modules,

EJB

modules,

resource

adapters,

and

dependency

JAR

files.

Application

class

loaders

follow

J2EE

class-loading

rules

to

load

classes

and

JAR

files

from

an

enterprise

application.

The

WebSphere

run

time

enables

you

to

associate

a

shared

library

classpath

with

an

application.

Each

class

loader

is

a

child

of

the

class

loader

above

it.

That

is,

the

application

module

class

loaders

are

children

of

the

WebSphere-specific

extensions

class

loader,

which

is

a

child

of

the

CLASSPATH

Java

class

loader.

Whenever

a

class

needs

to

be

loaded,

the

class

loader

usually

delegates

the

request

to

its

parent

class

loader.

If

none

of

the

parent

class

loaders

can

find

the

class,

the

original

class

loader

attempts

to

load

the

class.

Requests

can

only

go

to

a

parent

class

loader;

they

cannot

go

to

a

child

class

loader.

If

the

WebSphere

class

loader

is

requested

to

find

a

class

in

a

J2EE

module,

it

cannot

go

to

the

application

module

class

loader

to

find

that

class

and

a

ClassNotFoundException

occurs.

Once

a

class

is

loaded

by

a

class

loader,

any

new

classes

that

it

tries

to

load

reuse

the

same

class

loader

or

go

up

the

precedence

list

until

the

class

is

found.

Class-loader

isolation

policies

The

number

and

function

of

the

application

module

class

loaders

depends

on

the

class-loader

policies

specified

in

the

server

configuration.

Class

loaders

provide

718

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

multiple

options

for

isolating

applications

and

modules

to

enable

different

application

packaging

schemes

to

run

on

an

application

server.

Two

class-loader

policies

control

the

isolation

of

applications

and

modules:

Application

class-loader

policy

Application

class

loaders

consist

of

EJB

modules,

dependency

JAR

files,

resource

adapters,

and

shared

libraries.

Depending

on

the

application

class-loader

policy,

an

application

class

loader

can

be

shared

by

multiple

applications

(SINGLE)

or

unique

for

each

application

(MULTIPLE).

The

application

class-loader

policy

controls

the

isolation

of

applications

running

in

the

system.

When

set

to

SINGLE,

applications

are

not

isolated.

When

set

to

MULTIPLE,

applications

are

isolated

from

each

other.

WAR

class-loader

policy

By

default,

Web

module

class

loaders

load

the

contents

of

the

WEB-INF/classes

and

WEB-INF/lib

directories.

The

application

class

loader

is

the

parent

of

the

Web

module

class

loader.

You

can

change

the

default

behavior

by

changing

the

application’s

WAR

class-loader

policy.

The

WAR

class-loader

policy

controls

the

isolation

of

Web

modules.

If

this

policy

is

set

to

APPLICATION,

then

the

Web

module

contents

also

are

loaded

by

the

application

class

loader

(in

addition

to

the

EJB

files,

RAR

files,

dependency

JAR

files,

and

shared

libraries).

If

the

policy

is

set

to

MODULE,

then

each

web

module

receives

its

own

class

loader

whose

parent

is

the

application

class

loader.

Note:

WebSphere

server

class

loaders

never

load

application

client

modules.

For

each

application

server

in

the

system,

you

can

set

the

application

class-loader

policy

to

SINGLE

or

MULTIPLE.

When

the

application

class-loader

policy

is

set

to

SINGLE,

then

a

single

application

class

loader

loads

all

EJB

modules,

dependency

JAR

files,

and

shared

libraries

in

the

system.

When

the

application

class-loader

policy

is

set

to

MULTIPLE,

then

each

application

receives

its

own

class

loader

used

for

loading

that

application’s

EJB

modules,

dependency

JAR

files,

and

shared

libraries.

This

application

class

loader

can

load

each

application’s

Web

modules

if

that

WAR

module’s

class-loader

policy

is

also

set

to

APPLICATION.

If

the

WAR

module’s

class-loader

policy

is

set

to

APPLICATION,

then

the

application’s

loader

loads

the

WAR

module’s

classes.

If

the

WAR

class-loader

policy

is

set

to

MODULE,

then

each

WAR

module

receives

its

own

class

loader.

The

following

example

shows

that

when

the

application

class-loader

policy

is

set

to

SINGLE,

a

single

application

class

loader

loads

all

EJB

modules,

dependency

JAR

files,

and

shared

libraries

of

all

applications

on

the

server.

The

single

application

class

loader

can

also

load

Web

modules

if

an

application

has

its

WAR

class-loader

policy

set

to

APPLICATION.

Applications

having

a

WAR

class-loader

policy

set

to

MODULE

use

a

separate

class

loader

for

Web

modules.

Application

class-loader

policy:

SINGLE

Application

1

Module:

EJB1.jar

Module:

WAR1.war

MANIFEST

Class-Path:

Dependency1.jar

WAR

Classloader

Policy

=

MODULE

Application

2

Chapter

10.

Class

loading

719

Module:

EJB2.jar

MANIFEST

Class-Path:

Dependency2.jar

Module:

WAR2.war

WAR

Classloader

Policy

=

APPLICATION

WebSphere extensions classloader

Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb1.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The

following

example

shows

that

when

the

application

class-loader

policy

of

an

application

server

is

set

to

MULTIPLE,

each

application

on

the

server

has

its

own

class

loader.

An

application

class

loader

also

loads

its

Web

modules

if

the

application’s

WAR

class-loader

policy

is

set

to

APPLICATION.

If

the

policy

is

set

to

MODULE,

then

a

Web

module

uses

its

own

class

loader.

Application

class-loader

policy:

MULTIPLE

Application

1

Module:

EJB1.jar

Module:

WAR1.war

MANIFEST

Class-Path:

Dependency1.jar

WAR

Classloader

Policy

=

MODULE

Application

2

Module:

EJB2.jar

MANIFEST

Class-Path:

Dependency2.jar

Module:

WAR2.war

WAR

Classloader

Policy

=

APPLICATION

720

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

WebSphere extensions classloader

Application classloader Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Class-loader

modes

There

are

two

possible

values

for

a

class-loader

mode:

PARENT_FIRST

The

PARENT_FIRST

class-loader

mode

causes

the

class

loader

to

first

delegate

the

loading

of

classes

to

its

parent

class

loader

before

attempting

to

load

the

class

from

its

local

classpath.

This

is

the

default

for

class-loader

policy

and

for

standard

JVM

class

loaders.

PARENT_LAST

The

PARENT_LAST

class-loader

mode

causes

the

class

loader

to

first

attempt

to

load

classes

from

its

local

classpath

before

delegating

the

class

loading

to

its

parent.

This

policy

allows

an

application

class

loader

to

override

and

provide

its

own

version

of

a

class

that

exists

in

the

parent

class

loader.

The

following

settings

determine

a

class

loader’s

mode:

v

If

the

application

class-loader

policy

of

an

application

server

is

SINGLE,

the

application

class-loader

policy

of

an

application

server

defines

the

mode

for

an

application

class

loader.

v

If

the

application

class-loader

policy

of

an

application

server

is

MULTIPLE,

the

class-loader

mode

of

an

application

defines

the

mode

for

an

application

class

loader.

v

If

the

WAR

class-loader

policy

of

an

application

is

MODULE,

the

WAR

class-loader

policy

of

a

Web

module

defines

the

mode

for

a

WAR

class

loader.

Class

loader

collection

Use

this

page

to

manage

class-loader

instances

on

an

application

server.

A

class

loader

determines

whether

an

application

class

loader

or

a

parent

class

loader

finds

and

loads

Java

class

files

for

an

application.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name>

Classloader.

Chapter

10.

Class

loading

721

Classloader

ID

States

a

string

unique

to

the

server

identifying

the

class-loader

instance.

The

product

assigns

the

identifier.

Classloader

Mode

Specifies

the

class-loader

mode

when

the

application

class-loader

policy

is

SINGLE.

PARENT_FIRST

causes

the

class

loader

to

delegate

the

loading

of

classes

to

its

parent

class

loader

before

attempting

to

load

the

class

from

its

local

class

path.

PARENT_LAST

causes

the

class

loader

to

attempt

to

load

classes

from

its

local

class

path

before

delegating

the

class

loading

to

its

parent;

this

allows

an

application

class

loader

to

override

and

provide

its

own

version

of

a

class

that

exists

in

the

parent

class

loader.

Class

loader

settings

Use

this

page

to

configure

a

class

loader

for

applications

that

reside

on

an

application

server.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>server_name

>

Classloader

>class_loader_ID.

Classloader

ID

States

a

string

unique

to

the

server

identifying

the

class-loader

instance.

The

product

assigns

the

identifier.

Data

type

String

Classloader

Mode

Specifies

the

class-loader

mode

when

the

application

class-loader

policy

is

SINGLE.

PARENT_FIRST

causes

the

class

loader

to

delegate

the

loading

of

classes

to

its

parent

class

loader

before

attempting

to

load

the

class

from

its

local

class

path.

PARENT_LAST

causes

the

class

loader

to

attempt

to

load

classes

from

its

local

class

path

before

delegating

the

class

loading

to

its

parent;

this

allows

an

application

class

loader

to

override

and

provide

its

own

version

of

a

class

that

exists

in

the

parent

class

loader.

Data

type

String

Default

PARENT_FIRST

Migrating

the

class-loader

Module

Visibility

Mode

setting

WebSphere

Application

Server

Version

4.0.x

had

a

server-wide

configuration

setting

called

Module

Visibility

Mode.

For

Version

5.0,

you

use

application

or

WAR

class-loader

policies

instead

of

module

visibility

modes.

The

Version

5.0

policies

provide

additional

flexibility

because

you

can

configure

applications

running

in

a

server

for

an

application

class-loader

policy

of

SINGLE

or

MULTIPLE

and

for

a

WAR

class-loader

policy

of

APPLICATION

or

MODULE.

To

migrate

module

visibility

modes

in

your

Version

4.0.x

applications

to

their

equivalents

in

Version

5.0,

change

the

settings

for

your

Version

4.0.x

applications

and

modules

to

the

Version

5.0

values

shown

in

the

table

below.

Version

4.0.x

module

visibility

mode

Version

5.0

application

class-loader

policy

Version

5.0

WAR

class-loader

policy

Server

SINGLE

APPLICATION

722

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Compatibility

SINGLE

MODULE

Application

MULTIPLE

APPLICATION

Module*

MULTIPLE

MODULE

J2EE

MULTIPLE

MODULE

*There

is

no

exact

equivalent

for

the

Version

4.0.x

Module

mode

because

it

isolated

EJB

modules

within

an

application.

Class

loading:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

class

loaders.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

For

current

information

available

from

IBM

Support

on

known

problems

and

their

resolution,

see

the

IBM

Support

page.

IBM

Support

has

documents

that

can

save

you

time

gathering

information

needed

to

resolve

this

problem.

Before

opening

a

PMR,

see

the

IBM

Support

page.

View

links

to

additional

information

about:

v

Programming

model

and

decisions

v

Programming

instructions

and

examples

v

Programming

specifications

Programming

model

and

decisions

v

J2EE

Class

Loading

Demystified

v

Understanding

J2EE

Application

Server

Class

Loading

Architectures

Programming

instructions

and

examples

v

Developing

and

Deploying

Modular

J2EE

Applications

with

WebSphere

Studio

Application

Developer

and

WebSphere

Application

Server

v

IBM

WebSphere

Application

Server

Programming

Programming

specifications

v

Sun’s

J2EETM

Platform

Specification

v

Sun’s

J2EETM

Extension

Mechanism

Architecture

Chapter

10.

Class

loading

723

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVS24
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www.theserverside.com/resources/article.jsp?l=ClassLoading
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www.mcgraw-hill.co.uk/html/0072224592.html
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

724

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

11.

Using

EJB

query

The

EJB

query

language

is

used

to

specify

a

query

over

container-managed

entity

beans.

The

language

is

similar

to

SQL.

An

EJB

query

is

independent

of

the

bean’s

mapping

to

a

persistent

store.

An

EJB

query

can

be

used

in

three

situations:

v

To

define

a

finder

method

of

an

EJB

entity

bean.

v

To

define

a

select

method

of

an

EJB

entity

bean.

v

To

dynamically

specify

a

query

using

the

executeQuery()

dynamic

API.

Finder

and

select

queries

are

specified

in

the

bean’s

deployment

descriptor

using

the

<ejb-ql>

tag.

Queries

specified

in

the

deployment

descriptor

are

compiled

into

SQL

during

deployment.

Dynamic

queries

require

the

interface

provided

by

WebSphere

Application

Server

Enterprise.

WebSphere’s

EJB

query

language

is

compliant

with

the

EJB

QL

defined

in

Sun’s

EJB

2.0

specification

and

has

additional

capabilities

as

listed

in

the

topic

Comparison

of

EJB

2.0

specification

and

WebSphere

Query

Language.

In

your

WebSphere

application,

you

can

define

an

EJB

query

in

the

following

ways:

v

Application

Assembly

Tool.

When

assembling

an

EJB

2.0

entity

bean,

specify

the

<ejb-ql>

tag

for

the

finder()

or

select()

method.

v

WebSphere

Studio

Application

Developer.

When

defining

an

entity

bean,

specify

the

<ejb-ql>

tag

for

the

finder

or

select

method.

v

Dynamic

query

service.

Add

the

executeQuery()

method

to

your

application.

The

dynamic

query

API

is

provided

as

an

Enterprise

Extension

to

WebSphere

Application

Server.

Before

using

EJB

query,

familiarize

yourself

with

query

language

concepts,

starting

with

the

topic,

EJB

Query

Language.

See

the

topic

Example:

EJB

queries.

EJB

query

language

An

EJB

query

is

a

string

that

contains

the

following

elements:

v

a

SELECT

clause

that

specifies

the

EJBs

or

values

to

return;

v

a

FROM

clause

that

names

the

bean

collections;

v

an

optional

WHERE

clause

that

contains

search

predicates

over

the

collections;

v

an

optional

GROUP

BY

and

HAVING

clause

(see

Aggregation

functions);

v

an

optional

ORDER

BY

clause

that

specifies

the

ordering

of

the

result

collection.

The

SELECT

clause

is

optional

in

order

to

maintain

compatibility

with

WebSphere

Application

Server

Version

4.

Collections

of

entity

beans

are

identified

in

EJB

queries

through

the

use

of

their

abstract

schema

name

in

the

query

FROM

clause.

The

elements

of

EJB

query

language

are

discussed

in

more

detail

in

the

following

related

topics.

©

Copyright

IBM

Corp.

2003

725

Example:

EJB

queries

Here

is

an

example

EJB

schema,

followed

by

a

set

of

example

queries:

Table

5.

DeptBean

schema

Entity

bean

name

(EJB

name)

DeptEJB

(not

used

in

query)

Abstract

schema

name

DeptBean

Implementation

class

com.acme.hr.deptBean

(not

used

in

query)

Persistent

attributes

(cmp

fields)

v

deptno

-

Integer

(key)

v

name

-

String

v

budget

-

BigDecimal

Relationships

v

emps

-

1:Many

with

EmpEJB

v

mgr

-

Many:1

with

EmpEJB

Table

6.

EmpBean

schema

Entity

bean

name

(EJB

name)

EmpEJB

(not

used

in

query)

Abstract

schema

name

EmpBean

Implementation

class

com.acme.hr.empBean

(not

used

in

query)

Persistent

attributes

(cmp

fields)

v

empid

-

Integer

(key)

v

name

-

String

v

salary

-

BigDecimal

v

bonus

-

BigDecimal

v

hireDate

-

java.sql.Date

v

birthDate

-

java.util.Calendar

v

address

-

com.acme.hr.Address

Relationships

v

dept

-

Many:1

with

DeptEJB

v

manages

-

1:Many

with

DeptEJB

Address

is

a

serializable

object

used

as

cmp

field

in

EmpBean.

The

definition

of

address

is

as

follows:

public

class

com.acme.hr.Address

extends

Object

implements

Serializable

{

public

String

street;

public

String

state;

public

String

city;

public

Integer

zip;

public

double

distance

(String

start_location)

{

...

}

;

public

String

format

(

)

{

...

}

;

}

The

following

query

returns

all

departments:

SELECT

OBJECT(d)

FROM

DeptBean

d

The

following

query

returns

departments

whose

name

begins

with

the

letters

″Web″.

Sort

the

result

by

name:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

d.name

LIKE

’Web%’

ORDER

BY

d.name

The

keywords

SELECT

and

FROM

are

shown

in

uppercase

in

the

examples

but

are

case

insensitive.

If

a

name

used

in

a

query

is

a

reserved

word,

the

name

must

be

enclosed

in

double

quotes

to

be

used

in

the

query.

There

is

a

list

of

reserved

words

later

in

this

document.

Identifiers

enclosed

in

double

quotes

are

case

sensitive.

This

example

shows

how

to

use

a

cmp

field

that

is

a

reserved

word:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

d."select"

>

5

726

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

following

query

returns

all

employees

who

are

managed

by

Bob.

This

example

shows

how

to

navigate

relationships

using

a

path

expression:

SELECT

OBJECT

(e)

FROM

EmpBean

e

WHERE

e.dept.mgr.name=’Bob’

A

query

can

contain

a

parameter

which

referes

to

the

corresponding

value

of

the

finder

or

select

method.

Query

parameters

are

numbered

starting

with

1:

SELECT

OBJECT

(e)

FROM

EmpBean

e

WHERE

e.dept.mgr.name=

?1

This

query

shows

navigation

of

a

multivalued

relationship

and

returns

all

departments

that

have

an

employee

that

earns

at

least

50000

but

not

more

than

90000:

SELECT

OBJECT(d)

FROM

DeptBean

d,

IN

(d.emps)

AS

e

WHERE

e.salary

BETWEEN

50000

and

90000

There

is

a

join

operation

implied

in

this

query

between

each

department

object

and

its

related

collection

of

employees.

If

a

department

has

no

employees,

the

department

does

not

appear

in

the

result.

If

a

department

has

more

than

one

employee

that

earns

more

than

50000,

that

department

appears

multiple

times

in

the

result.

The

following

query

eliminates

the

duplicate

departments:

SELECT

DISTINCT

OBJECT(d)

from

DeptBean

d,

IN

(d.emps)

AS

e

WHERE

e.salary

>

50000

Find

employees

whose

bonus

is

more

than

40%

of

their

salary:

SELECT

OBJECT(e)

FROM

EmpBean

e

where

e.bonus

>

0.40

*

e.salary

Find

departments

where

the

sum

of

salary

and

bonus

of

employees

in

the

department

exceeds

the

department

budget:

SELECT

OBJECT(d)

FROM

DeptBean

d

where

d.budget

<

(

SELECT

SUM(e.salary+e.bonus)

FROM

IN(d.emps)

AS

e

)

A

query

can

contain

DB2

style

date-time

arithmetic

expressions

if

you

use

java.sql.*

datatypes

as

CMP

fields

and

your

datastore

is

DB2.

Find

all

employees

who

have

worked

at

least

20

years

as

of

January

1st,

2000:

SELECT

OBJECT(e)

FROM

EmpBean

e

where

year(

’2000-01-01’

-

e.hireDate

)

>=

20

If

the

datastore

is

not

DB2

or

if

you

prefer

to

use

java.util.Calendar

as

the

CMP

field,

then

you

can

use

the

java

millsecond

value

in

queries.

The

following

query

finds

all

employees

born

before

Jan

1,

1990:

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.birthDate

<

631180800232

Find

departments

with

no

employees:

SELECT

OBJECT(d)

from

DeptBean

d

where

d.emps

IS

EMPTY

Find

all

employees

whose

earn

more

than

Bob:

SELECT

OBJECT(e)

FROM

EmpBean

e,

EmpBean

b

WHERE

b.name

=

’Bob’

AND

e.salary

+

e.bonus

>

b.salary

+

b.bonus

Find

the

employee

with

the

largest

bonus:

SELECT

OBJECT(e)

from

EmpBean

e

WHERE

e.bonus

=

(SELECT

MAX(e1.bonus)

from

EmpBean

e1)

The

above

queries

all

return

EJB

objects.

A

finder

method

query

must

always

return

an

EJB

Object

for

the

home.

A

select

method

query

can

in

addition

return

CMP

fields

or

other

EJB

Objects

not

belonging

to

the

home.

Chapter

11.

Using

EJB

query

727

The

following

would

be

valid

select

method

queries

for

EmpBean.

Return

the

manager

for

each

department:

SELECT

d.mgr

FROM

DeptBean

d

Return

department

42

manager’s

name:

SELECT

d.mgr.name

FROM

DeptBean

d

WHERE

d.deptno

=

42

Return

the

names

of

employees

in

department

42:

SELECT

e.name

FROM

EmpBean

e

WHERE

e.dept.deptno=42

Another

way

to

write

the

same

query

is:

SELECT

e.name

from

DeptBean

d,

IN

(d.emps)

AS

e

WHERE

d.deptno=42

Finder

and

select

queries

allow

only

a

single

CMP

field

or

EJBObject

in

the

SELECT

clause.

FROM

clause

The

FROM

clause

specifies

the

collections

of

objects

to

which

the

query

is

to

be

applied.

Each

collection

is

identified

either

by

an

abstract

schema

name

and

an

identification

variable,

called

a

range

variable,

or

by

a

collection

member

declaration

that

identifies

a

multivalued

relationship

and

an

identification

variable.

Conceptually,

the

semantics

of

the

query

is

to

first

form

a

temporary

collection

of

tuples

R.

Tuples

are

composed

of

elements

from

the

collections

identified

in

the

FROM

clause.

Each

tuple

contains

one

element

from

each

of

the

collections

in

the

FROM

clause.

All

possible

combinations

are

formed

subject

to

the

constraints

imposed

by

the

collection

member

declarations.

If

any

schema

name

identifies

a

collection

for

which

there

are

no

records

in

the

persistent

store,

then

the

temporary

collection

R

will

be

empty.

Example:

FROM

clause

DeptBean

contains

records

10,

20

and

30

in

the

persistent

store.

EmpBean

contains

records

1,

2

and

3

that

are

related

to

department

10

and

records

4,

5

that

are

related

to

department

20.

Department

30

has

no

related

employees.

FROM

DeptBean

d,

EmpBean

e

This

forms

a

temporary

collection

R

that

contains

15

tuples.

FROM

DeptBean

d,

DeptBean

d1

This

forms

a

temporary

collection

R

that

contains

9

tuples.

FROM

DeptBean

d,

IN

(d.emps)

AS

e

This

forms

a

temporary

collection

R

that

contains

5

tuples.

Department

30

because

it

contains

no

employees

will

not

be

in

R.

Department

10

will

be

contained

in

R

three

times

and

department

20

will

be

contained

in

R

twice.

After

forming

the

temporary

collection

the

search

conditions

of

the

WHERE

clause

will

be

applied

to

R

and

this

will

yield

a

new

temporary

collection

R1.

The

ORDER

BY

and

SELECT

clauses

are

applied

to

R1

to

yield

the

final

result

set.

An

identification

variable

is

a

variable

declared

in

the

FROM

clause

using

the

operator

IN

or

the

optional

AS.

FROM

DeptBean

AS

d,

IN

(d.emps)

AS

e

728

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

is

equivalent

to:

FROM

DeptBean

d,

IN

(d.emps)

e

An

identification

variable

that

is

declared

to

be

an

abstract

schema

name

is

called

a

range

variable.

In

the

query

above

″d″

is

a

range

variable.

An

identification

variable

that

is

declared

to

be

a

multivalued

path

expression

is

called

a

collection

member

declaration.

″d″

and

″e″

in

the

example

above

are

collection

member

declarations.

Note

that

the

following

path

expression

is

illegal

as

a

collection

member

declaration

because

it

is

not

multivalued:

e.dept.mgr

Inheritance

in

EJB

query

If

an

EJB

inheritance

hierarchy

has

been

defined

for

an

abstract

schema,

using

the

abstract

schema

name

in

a

query

statement

implies

the

collection

of

objects

for

that

abstract

schema

as

well

as

all

subtypes.

Example:

Inheritance

Suppose

that

bean

ManagerBean

is

defined

as

a

subtype

of

EmpBean

and

ExecutiveBean

is

a

subtype

of

ManagerBean

in

an

EJB

inheritance

hierarchy.

The

following

query

returns

employees

as

well

as

managers

and

executives:

SELECT

OBJECT(e)

FROM

EmpBean

e

Path

expressions

An

identification

variable

followed

by

the

navigation

operator

(

.

)

and

a

cmp

or

relationship

name

is

a

path

expression.

A

path

expression

that

leads

to

a

cmr

field

can

be

further

navigated

if

the

cmr

field

is

single-valued.

If

the

path

expression

leads

to

a

multi-valued

relationship,

then

the

path

expression

is

terminal

and

cannot

be

further

navigated.

If

the

path

expression

leads

to

a

cmp

field

whose

type

is

a

value

object,

it

is

possible

to

navigate

to

attributes

of

the

value

object.

Example:

Value

object

Assume

that

address

is

a

cmp

field

for

EmpBean,

which

is

a

value

object.

SELECT

object(e)

FROM

EmpBean

e

WHERE

e.address.distance(’San

Jose’)

<

10

and

e.address.zip

=

95037

It

is

best

to

use

the

composer

pattern

to

map

value

object

attributes

to

relational

columns

if

you

intend

to

search

on

value

attributes.

If

you

store

value

objects

in

serialized

format,

then

each

value

object

must

be

retrieved

from

the

database

and

deserialized.

Value

object

methods

can

only

be

done

in

dynamic

queries.

A

path

expression

can

also

navigate

to

a

bean

method.

The

method

must

be

defined

on

either

the

remote

or

local

bean

interface.

Methods

can

only

be

used

in

dynamic

queries.

You

cannot

mix

both

remote

and

local

methods

in

a

single

query

statement.

If

the

query

contains

remote

methods,

the

dynamic

query

must

be

executed

using

the

query

remote

interface.

Using

the

query

remote

interface

causes

the

query

service

to

activate

beans

and

create

instances

of

the

remote

bean

interface

Chapter

11.

Using

EJB

query

729

Likewise,

a

query

statement

with

local

bean

methods

must

be

executed

with

the

query

local

interface.

This

causes

the

query

service

to

activate

beans

and

local

interface

instances.

Do

not

use

get

methods

to

access

cmp

and

cmr

fields

of

a

bean.

If

a

method

has

overloaded

definitions,

the

overloaded

methods

must

have

different

number

of

parameters.

Methods

must

have

non-void

return

types

and

method

arguments

and

return

types

must

be

either

primitive

types

byte,

short,

int,

long,

float,

double,

boolean,

char

or

wrapper

types

from

the

following

list:

Byte,

Short,

Integer,

Long,

Float,

Double,

BigDecimal,

String,

Boolean,

Character,

java.util.Calendar,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp,

java.util.Date

If

any

input

argument

to

a

method

is

NULL,

it

is

assumed

the

method

returns

a

NULL

value

and

the

method

is

not

invoked.

A

collection

valued

path

expression

can

be

used

in

the

FROM

clause

as

a

collection

member

declaration,

and

with

the

IS

EMPTY,

MEMBER

OF,

and

EXISTS

predicates

in

the

WHERE

clause.

FROM

EmpBean

e

WHERE

e.dept.mgr.name=’Bob’

OK

FROM

EmpBean

e

WHERE

e.dept.emps.name=’BOB’

INVALID

--

cannot

navigate

through

emps

because

it

is

multivalued

FROM

EmpBean

e,

IN

(e.dept.emps)

e1

WHERE

e1.name=’BOB’

OK

FROM

EmpBean

e

WHERE

e.dept.emps

IS

EMPTY

OK

WHERE

clause

The

WHERE

clause

contains

search

conditions

composed

of

the

following:

v

literal

values

v

input

parameters

v

expressions

v

basic

predicates

v

quantified

predicates

v

BETWEEN

predicate

v

IN

predicate

v

LIKE

predicate

v

NULL

predicate

v

EMPTY

collection

predicate

v

MEMBER

OF

predicate

v

EXISTS

predicate

v

IS

OF

TYPE

predicate

If

the

search

condition

evaluates

to

TRUE,

the

tuple

is

added

to

the

result

set.

Literals

A

string

literal

is

enclosed

in

single

quotes.

A

single

quote

that

occurs

within

a

string

literal

is

represented

by

two

single

quotes;

For

example:

’Tom’’s’.

A

string

literal

cannot

exceed

the

maximum

length

that

is

supported

by

the

underlying

persistent

datastore.

730

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

A

numeric

literal

can

be

any

of

the

following:

v

an

exact

value

such

as

57,

-957,

+66

v

any

value

supported

by

Java

long

v

a

decimal

literal

such

as

57.5,

-47.02

v

an

approximate

numeric

value

such

as

7E3,

-57.4E-2

A

decimal

or

approximate

numeric

value

must

be

in

the

range

supported

by

the

underlying

persistent

datastore.

A

boolean

literal

can

be

the

keyword

TRUE

or

FALSE

and

is

case

insensitive.

Input

parameters

Input

parameters

are

designated

by

the

question

mark

followed

by

a

number;

For

example:

?2

Input

parameters

are

numbered

starting

at

1

and

correspond

to

the

arguments

of

the

finder

or

select

method;

therefore,

a

query

must

not

contain

an

input

parameter

that

exceeds

the

number

of

input

arguments.

An

input

parameter

can

be

a

primitive

type

of

byte,

short,

int,

long,

float,

double,

boolean,

char

or

wrapper

types

of

Byte,

Short,

Integer,

Long,

Float,

Double,

BigDecimal,

String,

Boolean,

Char,

java.util.Calendar,

java.util.Date,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp

or

an

EJBObject.

An

input

parameter

must

not

have

a

NULL

value.

To

search

for

the

occurrence

of

a

NULL

value

the

NULL

predicate

should

be

used.

Expressions

Conditional

expressions

can

consist

of

comparison

operators

and

logical

operators

(AND,

OR,

NOT).

Arithmetic

expressions

can

be

used

in

comparison

expressions

and

can

be

composed

of

arithmetic

operations

and

functions,

path

expressions

that

evaluate

to

a

numeric

value

and

numeric

literals

and

numeric

input

parameters.

String

expressions

can

be

used

in

comparison

expressions

and

can

be

composed

of

string

functions,

path

expressions

that

evaluate

to

a

string

value

and

string

literals

and

string

input

parameters.

A

cmp

field

of

type

char

is

handled

as

if

it

were

a

string

of

length

1.

Boolean

expressions

can

be

used

with

=

and

<>

comparison

and

can

be

composed

of

path

expressions

that

evaluate

to

a

boolean

value

and

TRUE

and

FALSE

keywords

and

boolean

input

parameters.

Reference

expressions

can

be

used

with

=

and

<>

comparison

and

can

be

composed

of

path

expressions

that

evaluate

to

a

cmr

field,

an

identification

variable

and

an

input

parameter

whose

type

is

an

EJB

reference

Four

different

expression

types

are

supported

for

working

with

date-time

types.

For

portability

the

java.util.Calendar

type

should

be

used.

DB2

style

date,

time

and

timestamp

expressions

are

supported

if

the

datastore

is

DB2

and

the

CMP

field

is

of

type

java.util.Date,

java.sql.Date,

java.sql.Time

or

java.sql.Timestamp.

A

Calendar

type

can

be

compared

to

another

Calendar

type,

an

exact

numeric

literal

or

input

parameter

of

type

long

whose

value

is

the

standard

Java

long

millisecond

value.

Chapter

11.

Using

EJB

query

731

The

following

query

finds

all

employees

born

before

Jan

1,

1990:

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.birthDate

<

631180800232

Date

expressions

can

be

used

in

comparison

expressions

and

can

be

composed

of

operators

+

-

,

date

duration

expressions

and

date

functions,

path

expressions

that

evaluate

to

a

date

value,

string

representation

of

a

date

and

date

input

parameters.

Time

expressions

can

be

used

in

comparison

expressions

and

can

be

composed

of

operators

+

-

,

time

duration

expressions

and

time

functions,

path

expressions

that

evaluate

to

a

time

value,

string

representation

of

time

and

time

input

parameters.

Timestamp

expressions

can

be

used

in

comparison

expressions

and

can

be

composed

of

operators

+

-

,

timestamp

duration

expressions

and

timestamp

functions,

path

expressions

that

evaluate

to

a

timestamp

value,

string

representation

of

a

timestamp

and

timestamp

input

parameters.

Standard

bracketing

(

)

for

ordering

expression

evaluation

is

supported.

The

operators

and

their

precedence

order

from

highest

to

lowest

are:

v

Navigation

operator

(

.

)

v

Arithmetic

operators

in

precedence

order:

–

+

-

unary

–

*

/

multiply,

divide

–

+

-

add,

subtract
v

Comparison

operators:

=,

>,

<,

>=,

<=,

<>(not

equal)

v

Logical

operator

NOT

v

Logical

operator

AND

v

Logical

operator

OR

In

some

datastores,

a

zero

length

string

value

(

’’

)

is

treated

as

a

null

value

and

affects

the

results

of

queries.

Some

datastores

perform

division

between

two

integer

values

using

integer

arithmetic

rules

and

other

datastores

use

non

integer

rules.

This

also

can

affect

the

results

of

queries.

For

portability,

avoid

the

use

of

zero

length

string

values

and

division

of

integer

values

in

an

EJB

query.

Null

value

semantics:

The

following

describe

the

semantics

of

NULL

values:

v

Comparison

or

arithmetic

operations

with

an

unknown

(NULL)

value

yield

an

unknown

value

v

Path

expressions

that

contain

NULL

evaluate

to

NULL

v

The

IS

NULL

and

IS

NOT

NULL

operators

can

be

applied

to

path

expressions

and

return

TRUE

or

FALSE.

Boolean

operators

AND,

OR

and

NOT

use

three

valued

logic.

AND

True

False

Unknown

True

True

False

Unknown

False

False

False

False

Unknown

Unknown

False

Unknown

OR

True

False

Unknown

True

True

True

True

False

True

False

Unknown

Unknown

True

Unknown

Unknown

732

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

NOT

True

False

False

True

Unknown

Unknown

Example:

Null

value

semantics

select

object(e)

from

EmpBean

where

e.salary

>

10

and

e.dept.budget

>

100

If

salary

is

NULL

the

evaluation

of

e.salary

>

10

returns

unknown

and

the

employee

object

is

not

returned.

If

the

cmr

field

dept

or

budget

is

NULL

evalution

of

e.dept.budget

>

100

returns

unknown

and

the

employee

object

is

not

returned.

select

object(e)

from

EmpBean

where

e.dept.budget

is

null

If

dept

or

budget

is

NULL

evaluation

of

e.dept.budget

is

null

returns

TRUE

and

the

employee

object

is

returned.

select

object(e)

from

EmpBean

e

,

in

(e.dept.emps)

e1

where

e1.salary

>

10

If

dept

is

NULL,

then

the

multivalued

path

expression

e.dept.emps

results

in

an

empty

collection

(not

a

collection

that

contains

a

NULL

value).

An

employee

with

a

null

dept

value

will

not

be

returned.

select

object(e)

from

EmpBean

e

where

e.dept.emps

is

empty

If

dept

is

NULL

the

evaluation

of

the

predicate

in

unknown

and

the

employee

object

is

not

returned.

select

object(e)

from

EmpBean

e

,

EmpBean

e1

where

e

member

of

e1.dept.emps

If

dept

is

NULL

evaluation

of

the

member

of

predicate

returns

unknown

and

the

employee

is

not

returned.

Date

time

arithmetic

and

comparisons:

DATE,

TIME

and

TIMESTAMP

values

may

be

compared

with

another

value

of

the

same

type.

Comparisons

are

chronological.

Date

time

values

can

also

be

incremented,

decremented,

and

subtracted.

If

the

datastore

is

DB2,

then

DB2

string

representation

of

DATE,

TIME

and

TIMESTAMP

types

can

also

be

used.

A

string

representation

of

a

date

or

time

can

use

ISO,

USA,

EUR

or

JIS

format.

A

string

representation

of

a

timestamp

uses

ISO

format.

Format

Date

format

Date

examples

Time

format

Time

examples

ISO

yyyy-mm-dd

1987-02-24

1987-2-24

hh.mm.ss

13.50.00

13.50

USA

mm/dd/yyyy

2/24/1987

hh:mm

AM

or

PM

1:50

pm

02:10

AM

EUR

dd.mm.yyyy

24.02.1987

24.2.1987

hh.mm.ss

13.50.00

13.55

JIS

yyyy-mm-dd

1987-02-24

hh:mm:ss

13:50

13:50:05

Chapter

11.

Using

EJB

query

733

Example

1:

Date

time

arithmetic

comparisons

e.hiredate

>

’1990-02-24’

The

timestamp

of

February

24th,

1990

1:50

pm

can

be

represented

as

follows:

’1990-02-24-13.50.00.000000’

or

’1990-02-24-13.50.00’

If

the

datastore

is

DB2,

DB2

decimal

durations

can

be

used

in

expressions

and

comparisons.

A

date

duration

is

a

decimal(8,0)

number

that

represents

the

difference

between

two

dates

in

the

format

YYYYMMDD.

A

time

duration

is

a

decimal(6,0)

number

that

represents

the

difference

between

two

time

values

as

HHMMSS.

A

timestamp

duration

is

a

decimal(20,6)

number

representing

the

differences

between

two

timestamp

values

as

YYYYMMDDHHMMSS.ZZZZZZ

(ZZZZZZ

is

the

number

of

microseconds

and

is

to

the

right

of

the

decimal

point

)

.

Two

date

values

(or

time

values

or

timestamp

values)

can

be

subtracted

to

yield

a

duration.

If

the

second

operand

is

greater

than

the

first

the

duration

is

a

negative

decimal

number.

A

duration

can

be

added

or

subtracted

from

a

datetime

value

to

yield

a

new

datetime

value.

Example

2:

Date

time

arithmetic

comparisons

DATE(’3/15/2000’)

-

’12/31/1999’

results

in

a

decimal

number

215

which

is

a

duration

of

0

years,

2

months

and

15

days.

Durations

are

really

decimal

numbers

and

can

be

used

in

arithmetic

expressions

and

comparisons.

(

DATE(’3/15/2000’)

-

’12/31/1999’

)

+

14

>

215

evaluates

to

TRUE.

DATE(’12/31/1999’)

+

DECIMAL(215,8,0)

results

in

a

date

value

3/15/2000.

TIME(’11:02:26’)

-

’00:32:56’

results

in

a

decimal

number

102930

which

is

a

time

duration

of

10

hours,

29

minutes

and

30

seconds.

TIME(’00:32:56’)

+

DECIMAL(102930,6,0)

results

in

a

time

value

of

11:02:26.

TIME(’00:00:59’)

+

DECIMAL(240000,6,0)

results

in

a

time

value

of

00:00:59.

e.hiredate

+

DECIMAL(500,8,0)

>

’2000-10-01’

means

compare

the

hiredate

plus

5

months

to

the

date

10/01/2000.

Basic

predicates

Basic

predicates

can

be

of

two

forms

expression-1

comparison-operator

expression-2

expression-3

comparison-operator

(

subselect

)

The

subselect

must

not

return

more

than

one

value

and

the

subselect

can

not

return

a

type

of

an

EJB

reference.

Boolean

types

and

reference

types

only

support

=

and

<>

comparisons.

Example:

Basic

predicates

d.name=’Java

Development’

e.salary

>

20000

e.salary

>

(

select

avg(e.salary)

from

EmpBean

e)

734

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Quantified

predicates

A

quantified

predicate

compares

a

value

with

a

set

of

values

produced

by

a

subselect.

expression

comparison-operator

SOME

|

ANY

|

ALL

(

subselect

)

The

expression

must

not

evaluate

to

a

reference

type.

When

SOME

or

ANY

is

specified

the

result

of

the

predicate

is

as

follows:

v

TRUE

if

the

comparison

is

true

for

at

least

one

value

returned

by

the

subselect.

v

FALSE

if

the

subselect

is

empty

or

if

the

comparison

is

false

for

every

value

returned

by

the

subselect.

v

UNKNOWN

if

the

comparison

is

not

true

for

all

of

the

values

returned

by

the

subselect

and

at

least

one

of

the

comparisons

is

unknown

because

of

a

null

value.

When

ALL

is

specified

the

result

of

the

predicate

is

as

follows:

v

TRUE

if

the

subselect

returns

empty

or

if

the

comparison

is

true

to

every

value

returned

by

the

subselect.

v

FALSE

if

the

comparison

is

false

for

at

least

one

value

returned

by

the

subselect.

v

UNKNOWN

if

the

comparison

is

not

false

for

all

values

returned

by

the

subselect

and

at

least

one

comparison

is

unknown

because

of

a

null

value.

BETWEEN

predicate

The

BETWEEN

predicate

determines

whether

a

given

value

lies

between

two

other

given

values.

expression

[NOT]

BETWEEN

expression-2

AND

expression-3

Example:

BETWEEN

predicate

e.salary

BETWEEN

50000

AND

60000

is

equivalent

to:

e.salary

>=

50000

AND

e.salary

<=

60000

e.name

NOT

BETWEEN

’A’

AND

’B’

is

equivalent

to:

e.name

<

’A’

OR

e.name

>

’B’

IN

predicate

The

IN

predicate

compares

a

value

to

a

set

of

values

and

can

have

one

of

two

forms:

expression

[NOT]

IN

(

subselect

)

expression

[NOT]

IN

(

value1,

value2,

....

)

ValueN

can

either

be

a

literal

value

or

an

input

parameter.

The

expression

can

not

evaluate

to

a

reference

type.

Example:

IN

predicate

e.salary

IN

(

10000,

15000

)

is

equivalent

to

(

e.salary

=

10000

OR

e.salary

=

15000

)

e.salary

IN

(

select

e1.salary

from

EmpBean

e1

where

e1.dept.deptno

=

10)

is

equivalent

to

Chapter

11.

Using

EJB

query

735

e.salary

=

ANY

(

select

e1.salary

from

EmpBean

e1

where

e1.dept.deptno

=

10)

e.salary

NOT

IN

(

select

e1.salary

from

EmpBean

e1

where

e1.dept.deptno

=

10)

is

equivalent

to

e.salary

<>

ALL

(

select

e1.salary

from

EmpBean

e1

where

e1.dept.deptno

=

10)

LIKE

predicate

The

LIKE

predicate

searches

a

string

value

for

a

certain

pattern.

string-expression

[NOT]

LIKE

pattern

[

ESCAPE

escape-character

]

The

pattern

value

is

a

string

literal

or

parameter

marker

of

type

string

in

which

the

underscore

(

_

)

stands

for

any

single

character

and

percent

(

%

)

stands

for

any

sequence

of

characters

(

including

empty

sequence

).

Any

other

character

stands

for

itself.

The

escape

character

can

be

used

to

search

for

character

_

and

%.

The

escape

character

can

be

specified

as

a

string

literal

or

an

input

parameter.

If

the

string-expression

is

null,

then

the

result

is

unknown.

If

both

string-expression

and

pattern

are

empty,

then

the

result

is

true.

Example:

LIKE

predicate

v

’’

LIKE

’’

is

true

v

’’

LIKE

’%’

is

true

v

e.name

LIKE

’12%3’

is

true

for

’123’

’12993’

and

false

for

’1234’

v

e.name

LIKE

’s_me’

is

true

for

’some’

and

’same’,

false

for

’soome’

v

e.name

LIKE

’/_foo’

escape

’/’

is

true

for

’_foo’,

false

for

’afoo’

v

e.name

LIKE

’//_foo’

escape

’/’

is

true

for

’/afoo’

and

for

’/bfoo’

v

e.name

LIKE

’///_foo’

escape

’/’

is

true

for

’/_foo’

but

false

for

’/afoo’

NULL

predicate

The

NULL

predicate

tests

for

null

values.

single-valued-path-expression

IS

[NOT]

NULL

Example:

NULL

predicate

e.name

IS

NULL

e.dept.name

IS

NOT

NULL

e.dept

IS

NOT

NULL

EMPTY

collection

predicate

To

test

if

a

multivalued

relationship

is

empty,

use

the

following

syntax:

collection-valued-path-expression

IS

[NOT]

EMPTY

Example:

Empty

collection

predicate

To

find

all

departments

with

no

employees:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

d.emps

IS

EMPTY

MEMBER

OF

predicate

This

expression

tests

whether

the

object

reference

specified

by

the

single

valued

path

expression

or

input

parameter

is

a

member

of

the

designated

collection.

If

the

collection

valued

path

expression

designates

an

empty

collection

the

value

of

the

MEMBER

OF

expression

is

FALSE.

{single-valued-path-expression

|

input_parameter}

[NOT]

MEMBER

[OF]

collection-valued-path-expression

736

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Example:

MEMBER

OF

predicate

Find

employees

that

are

not

members

of

a

given

department

number:

SELECT

OBJECT(e)

FROM

EmpBean

e

,

DeptBean

d

WHERE

e

NOT

MEMBER

OF

d.emps

AND

d.deptno

=

?1

Find

employees

whose

manager

is

a

member

of

a

given

department

number:

SELECT

OBJECT(e)

FROM

EmpBean

e,

DeptBean

d

WHERE

e.dept.mgr

MEMBER

OF

d.emps

and

d.deptno=?1

EXISTS

predicate

The

exists

predicate

tests

for

the

presence

or

absence

of

a

condition

specified

by

a

subselect.

EXISTS

(

subselect

)

EXISTS

collection-valued-path-expression

The

result

of

EXISTS

is

true

if

the

subselect

returns

at

least

one

value

or

the

path

expression

evaluates

to

a

nonempty

collection,

otherwise

the

result

is

false.

To

negate

an

EXISTS

predicate,

precede

it

with

the

logical

operator

NOT.

Example:

EXISTS

predicate

Return

departments

that

have

at

least

one

employee

earning

more

than

1000000:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

EXISTS

(

SELECT

1

FROM

IN

(d.emps)

e

WHERE

e.salary

>

1000000

)

Return

departments

that

have

no

employees:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

NOT

EXISTS

(

SELECT

1

FROM

IN

(d.emps)

e)

The

above

query

can

also

be

written

as

follows:

SELECT

OBJECT(d)

FROM

DeptBean

d

WHERE

NOT

EXISTS

d.emps

IS

OF

TYPE

predicate

The

IS

OF

TYPE

predicate

is

used

to

test

the

type

of

an

EJB

reference.

It

is

similar

in

function

to

the

Java

instance

of

operator.

IS

OF

TYPE

is

used

when

several

abstract

beans

have

been

grouped

into

an

EJB

inheritance

hierarchy.

The

type

names

specified

in

the

predicate

are

the

bean

abstract

names.

The

ONLY

option

can

be

used

to

specify

that

the

reference

must

be

exactly

this

type

and

not

a

subtype.

identification-variable

IS

OF

TYPE

(

[ONLY]

type-1,

[ONLY]

type-2,

.....

)

Example:

IS

OF

TYPE

predicate

Suppose

that

bean

ManagerBean

is

defined

as

a

subtype

of

EmpBean

and

ExecutiveBean

is

a

subtype

of

ManagerBean

in

an

EJB

inheritance

hierarchy.

The

following

query

returns

employees

as

well

as

managers

and

executives:

SELECT

OBJECT(e)

FROM

EmpBean

e

If

you

are

interested

in

objects

which

are

employees

and

not

managers

and

not

executives:

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e

IS

OF

TYPE(

ONLY

EmpBean

)

Chapter

11.

Using

EJB

query

737

If

you

are

interested

in

object

which

are

managers

or

executives:

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e

IS

OF

TYPE(

ManagerBean)

The

above

query

is

equivalent

to

the

following

query:

SELECT

OBJECT(e)

FROM

ManagerBean

e

If

you

are

interested

in

managers

only

and

not

executives:

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e

IS

OF

TYPE(

ONLY

ManagerBean)

or:

SELECT

OBJECT(e)

FROM

ManagerBean

e

WHERE

e

IS

OF

TYPE

(ONLY

ManagerBean)

Scalar

functions

EJB

query

contains

scalar

built-in

functions

for

doing

type

conversions,

string

manipulation,

and

for

manipulating

date-time

values.

The

list

of

scalar

functions

is

documented

in

the

topic

EJB

query:

Scalar

functions.

Example:

Scalar

functions

Find

employees

hired

in

1999:

SELECT

OBJECT(e)

FROM

EmpBean

e

where

YEAR(e.hireDate)

=

1999

The

only

scalar

functions

that

are

guaranteed

to

be

portable

across

backend

datastore

vendors

are

the

following:

v

ABS

v

SQRT

v

CONCAT

v

LENGTH

v

LOCATE

v

SUBSTRING

The

other

scalar

functions

should

be

used

only

when

DB2

is

the

backend

datastore.

EJB

query:

Scalar

functions

EJB

query

contains

scalar

built-in

functions,

as

listed

below,

for

doing

type

conversions,

string

manipulation,

and

for

manipulating

date-time

values.

Numeric

functions

ABS

(

<

any

numeric

datatype

>

)

->

<

any

numeric

datatype

>

SQRT

(

<

any

numeric

datatype

>

)

->

Double

Type

conversion

functions

CHAR

(

<

any

numeric

datatype

>

)

->

string

CHAR

(

<

string

>

)

->

string

CHAR

(

<

any

datetime

datatype

>

[,

Keyword

k

])

->

string

Datetime

datatype

is

converted

to

its

string

representation

in

a

format

specified

by

the

keyword

k.

The

valid

keywords

values

are

ISO,

USA,

EUR

or

JIS.

If

k

is

not

specified

the

default

is

ISO.

BIGINT

(

<

any

numeric

datatype

>

)

->

Long

BIGINT

(

<

string

>

)

->

Long

The

following

function

converts

the

argument

to

an

integer

n

by

truncation

and

returns

the

date

that

is

n-1

days

after

January

1,

0001:

738

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

DATE

(

<

date

string

>

)

->

Date

DATE

(

<

any

numeric

datatype>)

->

Date

The

following

function

returns

date

portion

of

a

timestamp:

DATE(

timestamp

)

->

Date

DATE

(

<

timestamp-string

>

)

->

Date

The

following

function

converts

number

to

decimal

with

optional

precision

p

and

scale

s.

DECIMAL

(

<

any

numeric

datatype

>

[,

p

[

,s

]

]

)

->

Decimal

The

following

function

converts

string

to

decimal

with

optional

precision

p

and

scale

s.

DECIMAL

(

<

string

>

[

,

p

[

,

s

]

]

)

->

Decimal

DOUBLE

(

<

any

numeric

datatype

>

)

->

Double

DOUBLE

(

<

string

>

)

->

Double

FLOAT

(

<

any

numeric

datatype

>

)

->

Double

FLOAT

(

<

string

>

)

->

Double

Float

is

a

synonym

for

DOUBLE.

INTEGER

(

<

any

numeric

datatype

>

)

->

Integer

INTEGER

(

<

string

>

)

->

Integer

REAL

(

<

any

numeric

datatype

>

)

->

Float

SMALLINT

(

<

any

numeric

datatype

)

->

Short

SMALLINT

(

<

string

>

)

->

Short

TIME

(

<

time

>

)

->

Time

TIME

(

<

time-string

>

)

->

Time

TIME

(

<

timestamp

>

)

->

Time

TIME

(

<

timestamp-string

>

)

->

Time

TIMESTAMP

(

<

timestamp

>

)

->

Timestamp

TIMESTAMP

(

<

timestamp-string

>

)

->

Timestamp

String

functions

CONCAT

(

<string>,

<string>

)

->

String

The

following

function

returns

a

character

string

representing

absolute

value

of

the

argument

not

including

its

sign

or

decimal

point.

For

example,

digits(

-42.35)

is

″4235″.

DIGITS

(

Decimal

d

)

->

String

The

following

function

returns

the

length

of

the

argument

in

bytes.

If

the

argument

is

a

numeric

or

datetime

type,

it

returns

the

length

of

internal

representation.

LENGTH

(

<

string

>

)

->

Integer

The

following

function

returns

a

copy

of

the

argument

string

where

all

upper

case

characters

have

been

converted

to

lower

case.

LCASE

(

<

string

>

)

->

String

The

following

function

returns

the

starting

position

of

the

first

occurrence

of

argument

1

inside

argument

2

with

optional

start

position.

If

not

found,

it

returns

0.

LOCATE

(

String

s1

,

String

s2

[,

Integer

start

]

)

->

Integer

Chapter

11.

Using

EJB

query

739

The

following

function

returns

a

substring

of

s

beginning

at

character

m

and

containing

n

characters.

If

n

is

omitted,

the

substring

contains

the

remainder

of

string

s.

The

result

string

is

padded

with

blanks

if

needed

to

make

a

string

of

length

n.

SUBSTRING

(

String

s

,

Integer

m

[

,

Integer

n

]

)

->

String

The

following

function

returns

a

copy

of

the

argument

string

where

all

lower

case

characters

have

been

converted

to

upper

case.

UCASE

(

<

string

>

)

->

String

Date

-

time

functions

The

following

function

returns

the

day

portion

of

its

argument.

For

a

duration,

the

return

value

can

be

-99

to

99.

DAY

(

Date

)

->

Integer

DAY

(

<

date-string

>

)

->

Integer

DAY

(

<

date-duration

>

)

->

Integer

DAY

(

Timestamp

)

->

Integer

DAY

(

<

timestamp-string

>

)

->

Integer

DAY

(

<

timestamp-duration

>

)

->

Integer

The

following

function

returns

one

more

than

number

of

days

from

January

1,

0001

to

its

argument.

DAYS

(

Date

)

->

Integer

DAYS

(

<

Date-string

>

)

->

Integer

DAYS

(

Timestamp

)

->

Integer

DAYS

(

<

timestamp-string

>

)

->

Integer

The

following

function

returns

the

hour

part

of

its

argument.

For

a

duration,

the

return

value

can

be

-99

to

99.

HOUR

(

Time

)

->

Integer

HOUR

(

<

time-string

>

)

->

Integer

HOUR

(

<

time-duration

>

)

->

Integer

HOUR

(

Timestamp

)

->

Integer

HOUR

(

<

timestamp-string

>

)

->

Integer

HOUR

(

<

timestamp-duration

>

)

->

Integer

The

following

function

returns

the

microsecond

part

of

its

argument.

MICROSECOND

(

Timestamp

)

->

Integer

MICROSECOND

(

<

timestamp-string

>

)

->

Integer

MICROSECOND

(

<

timestamp-duration

>

)

->

Integer

The

following

function

returns

the

minute

part

of

its

argument.

For

a

duration,

the

return

value

can

be

-99

to

99.

MINUTE

(

Time

)

->

Integer

MINUTE

(

<

time-string

>

)

->

Integer

MINUTE

(

<

time-duration

>

)

->

Integer

MINUTE

(

Timestamp

)

->

Integer

MINUTE

(

<

timestamp-string

>

)

->

Integer

MINUTE

(

<

timestamp-duration

>

)

->

Integer

The

following

function

returns

the

month

portion

of

its

argument.

For

a

duration,

the

return

value

can

be

-99

to

99.

MONTH

(

Date

)

->

Integer

MONTH

(

<

date-string

>

)

->

Integer

MONTH

(

<

date-duration

>

)

->

Integer

MONTH

(

Timestamp

)

->

Integer

MONTH

(

<

timestamp-string

>

)

->

Integer

MONTH

(

<

timestamp-duration

>

)

->

Integer

740

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

following

function

returns

the

second

part

of

its

argument.

For

a

duration,

the

return

value

can

be

-99

to

99.

SECOND

(

Time

)

->

Integer

SECOND

(

<

time-string

>

)

->

Integer

SECOND

(

<

time-duration

>

)

->

Integer

SECOND

(

Timestamp

)

->

Integer

SECOND

(

<

timestamp-string

>

)

->

Integer

SECOND

(

<

timestamp-duration

>

)

->

Integer

The

following

function

returns

the

year

portion

of

its

argument.

For

a

duration,

the

return

value

can

be

-9999

to

9999.

YEAR

(

Date

)

->

Integer

YEAR

(

<

date-string

>

)

->

Integer

YEAR

(

<

date-duration

>

)

->

Integer

YEAR

(

Timestamp

)

->

Integer

YEAR

(

<

timestamp-string

>

)

->

Integer

YEAR

(

<

timestamp-duration

>

)

->

Integer

Aggregation

functions

Queries

that

return

aggregate

values

can

only

be

used

with

the

dynamic

query

interface

available

in

WebSphere

Application

Server

Enterprise.

However,

aggregation

functions

can

be

used

in

non-dynamic

queries

if

the

aggregation

function

is

used

in

a

subselect

or

HAVING

clause.

Aggregation

functions

operate

on

a

set

of

values

to

return

a

single

scalar

value.

The

following

is

an

example

of

an

aggregation:

SELECT

SUM

(e.salary

+

e.bonus)

FROM

EmpBean

e

WHERE

e.dept.deptno

=20

This

computes

the

total

salary

and

bonus

for

department

20.

The

aggregation

functions

are

avg,

count,

max,

min

and

sum.

The

syntax

of

an

aggregation

function

is

as

follows:

aggregation-function

(

[

ALL

|

DISTINCT

]

expression

)

or:

COUNT(

*

)

The

DISTINCT

option

eliminates

duplicate

values

before

applying

the

function.

ALL

is

the

default

and

does

not

eliminate

duplicates.

Null

values

are

ignored

in

computing

the

aggregate

function

except

for

COUNT(*)

which

returns

a

count

of

all

elements

in

the

set.

MAX

and

MIN

can

apply

to

any

numeric,

string

or

datetime

datatype

and

returns

the

same

datatype.

SUM

and

AVG

take

a

numeric

type

as

input.

SUM

and

AVG

return

numeric

type.

The

actual

numeric

type

returned

by

SUM

and

AVG

depends

on

the

underlying

datastore.

COUNT

can

take

any

datatype

and

returns

an

integer.

If

you

are

using

an

Informix

datastore,

the

argument

to

COUNT

must

be

an

asterisk

or

a

single

valued

path

expression.

The

argument

to

SUM,

AVG,

MIN,

or

MAX

used

with

DISTINCT

must

be

a

single

valued

path

expression.

The

set

of

values

that

is

used

for

the

aggregate

function

is

determined

by

the

collection

that

results

from

the

FROM

and

WHERE

clause

of

the

subquery.

This

set

can

be

divided

into

groups

and

the

aggregation

function

applied

to

each

group.

This

is

done

by

using

a

GROUP

BY

clause

in

the

subquery.

The

GROUP

BY

clause

defines

grouping

members

which

is

a

list

of

path

expressions.

Each

path

Chapter

11.

Using

EJB

query

741

expression

specifies

a

field

that

is

a

primitive

type

of

byte,

short,

int,

long,

float,

double,

boolean,

char,

or

a

wrapper

type

of

Byte,

Short,

Integer,

Long,

Float,

Double,

BigDecimal,

String,

Boolean,

Character,

java.util.Calendar,

java.util.Date,

java.sql.Date,

java.sql.Time

or

java.sql.Timestamp.

Finder

or

select

queries

can

not

return

aggregation

function

values.

In

other

words,

aggregation

functions

can

not

appear

in

the

top

level

SELECT

of

a

finder

or

select

query

but

can

be

used

in

subqueries.

Example:

Aggregation

functions

SELECT

e.dept.deptno,

AVG

(

e.salary)

FROM

EmpBean

e

GROUP

BY

e.dept.deptno

The

above

query

computes

the

average

salary

for

each

department.

In

dividing

a

set

into

groups,

a

NULL

value

is

considered

equal

to

another

NULL

value.

Just

as

the

WHERE

clause

filters

tuples

from

the

FROM

clause,

the

groups

can

be

filtered

using

a

HAVING

clause

that

tests

group

properties

involving

aggregate

functions

or

grouping

members:

SELECT

e.dept.deptno,

AVG

(

e.salary)

FROM

EmpBean

e

GROUP

BY

e.dept.deptno

HAVING

COUNT(*)

>

3

AND

e.dept.deptno

>

5

This

query

returns

average

salary

for

departments

that

have

more

than

3

employees

and

the

department

number

is

greater

than

5.

It

is

possible

to

have

a

HAVING

clause

without

a

GROUP

BY

clause

in

which

case

the

entire

set

is

treated

as

a

single

group

to

which

the

HAVING

clause

is

applied.

SELECT

clause

For

finder

and

select

queries,

the

syntax

of

the

SELECT

clause

is

as

follows:

SELECT

[

ALL

|

DISTINCT

]

{

single-valued-path-expression

|

OBJECT

(

identification-variable

)

}

The

SELECT

clause

consists

of

either

a

single

identification

variable

that

is

defined

in

the

FROM

clause

or

a

single

valued

path

expression

that

evaluates

to

a

object

reference

or

CMP

value.

The

keyword

DISTINCT

can

be

used

to

eliminate

duplicate

references.

For

a

query

that

defines

a

finder

method

the

query

must

return

an

object

type

consistent

with

the

home

for

which

the

finder

method

associated

with

the

query.

In

other

words,

a

finder

method

for

a

department

home

can

not

return

employee

objects.

A

scalar-subselect

is

a

subselect

that

returns

a

single

value.

Example:

SELECT

clause

Find

all

employees

that

earn

more

than

John:

SELECT

OBJECT(e)

FROM

EmpBean

ej,

EmpBean

e

WHERE

ej.name

=

’John’

and

e.salary

>

ej.salary

Find

all

departments

that

have

one

or

more

employees

who

earn

less

than

20000:

SELECT

DISTINCT

e.dept

FROM

EmpBean

e

where

e.salary

<

20000

742

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

A

select

method

query

can

have

a

path

expression

that

evaluates

to

an

arbitrary

value:

SELECT

e.dept.name

FROM

EmpBean

e

where

e.salary

<

2000

The

above

query

returns

a

collection

of

name

values

for

those

departments

having

employees

earning

less

than

20000.

ORDER

BY

clause

The

ORDER

BY

clause

specifies

an

ordering

of

the

objects

in

the

result

collection:

ORDER

BY

[

order_element

,]*

order_element

order_element

::=

{

path-expression

|

integer

}

[

ASC

|

DESC

]

The

path

expression

must

specify

a

single

valued

field

that

is

a

primitive

type

of

byte,

short,

int,

long,

float,

double,

char

or

a

wrapper

type

of

Byte,

Short,

Integer,

Long,

Float,

Double,

BigDecimal,

String,

Character,

java.util.Calendar,

java.util.Date,

java.sql.Date,

java.sql.Time,

java.sql.Timestamp.

ASC

specifies

ascending

order

and

is

the

default.

DESC

specifies

descending

order.

Integer

refers

to

a

selection

expression

in

the

SELECT

clause.

Example:

ORDER

BY

clause

Return

department

objects

in

decreasing

deptno

order:

SELECT

OBJECT(d)

FROM

DeptBean

d

ORDER

BY

d.deptno

DESC

Return

employee

objects

sorted

by

department

number

and

name:

SELECT

OBJECT(e)

FROM

EmpBean

e

ORDER

BY

e.dept.deptno

ASC,

e.name

DESC

Subqueries

A

subquery

can

be

used

in

quantified

predicates,

EXISTS

predicate

or

IN

predicate.

A

subquery

should

only

specify

a

single

element

in

the

SELECT

clause.

When

a

path

expression

appears

in

a

subquery,

the

identification

variable

of

the

path

expression

must

be

defined

either

in

the

subquery,

in

one

of

the

containing

subqueries,

or

in

the

outer

query.

A

scalar

subquery

is

a

subquery

that

returns

one

value.

A

scalar

subquery

can

be

used

in

a

basic

predicate

and

in

the

SELECT

clause

of

a

dynamic

query.

Example:

Subqueries

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.salary

>

(

SELECT

AVG(e1.salary)

FROM

EmpBean

e1)

The

above

query

returns

employees

who

earn

more

than

average

salary

of

all

employees.

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.salary

>

(

SELECT

AVG(e1.salary)

FROM

IN

(e.dept.emps)

e1

)

The

above

query

returns

employees

who

earn

more

than

average

salary

of

their

department.

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.salary

=

(

SELECT

MAX(e1.salary)

FROM

IN

(e.dept.emps)

e1

)

The

above

query

returns

employees

who

earn

the

most

in

their

department.

Chapter

11.

Using

EJB

query

743

SELECT

OBJECT(e)

FROM

EmpBean

e

WHERE

e.salary

>

(

SELECT

AVG(e.salary)

FROM

EmpBean

e1

WHERE

YEAR(e1.hireDate)

=

YEAR(e.hireDate)

)

The

above

query

returns

employees

who

earn

more

than

the

average

of

employees

hired

in

same

year.

EJB

query

restrictions

An

EJB

query

is

compiled

into

an

SQL

query

and

executed

against

the

underlying

datastore

based

on

schema

mapping

of

the

abstract

bean

to

the

datastore

schema.

The

semantics

of

comparison

and

arithmetic

operations

are

that

of

the

underlying

datastore.

In

the

case

of

SQL,

note

that

two

strings

are

equal

if

the

shorter

string

padded

with

blanks

equals

the

longer

string.

For

example,

’A’

is

equal

to

’A

’.

This

differs

from

the

equality

of

strings

in

the

Java

language.

Arithmetic

overflow

operations

are

an

error

in

SQL.

A

cmp

field

can

not

be

used

in

comparison

operations

or

predicates

(except

for

LIKE)

if

that

cmp

field

is

mapped

to

a

long

varchar

or

large

objects

(LOB)

column

or

any

other

column

type

for

which

the

database

server

does

not

support

predicates

or

comparison

operations.

A

cmp

field

of

any

type

can

be

used

in

a

SELECT

clause.

Fields

that

can

be

used

in

predicates,

grouping,

or

ordering

operations

must

be

of

the

types

listed

below:

v

Primitive

types

:

byte,

short,

int,

long,

float,

double,

boolean,

char

v

Object

types:

Byte,

Short,

Integer,

Long,

Float,

Double,

BigDecimal,

String,

Boolean,

Char,

java.util.Calendar

,

java.util.Date

v

JDBC

types:

java.sql.Date,

java.sql.Time,

java.sql.Timestamp

The

field

must

be

mapped

to

a

table

column

that

is

compatible

in

type

either

by

using

a

″top-down″

default

mapping

generated

by

the

WebSphere

deploy

tool,

or

using

a

″meet-in-the-middle″

mapping

between

compatible

types.

In

order

to

search

on

attributes

of

a

cmp

field

that

is

a

user-defined

value

object,

you

should

use

a

″meet-in-the-middle″

mapping

and

use

a

composer

to

map

each

attribute

to

a

compatible

column.

The

default

″top-down″

mapping

stores

the

object

as

a

serialized

object

in

a

column

of

type

blob,

which

does

not

allow

searching.

If

a

cmp

field

is

mapped

to

a

column

using

a

″meet-in-the-middle″

mapping

with

a

converter,

that

field

can

only

be

used

with

the

NULL

predicate

or

with

basic

predicates

of

the

following

form:

path-expression

<comparison>

literal_value

path-expression

<comparison>

input_parameter

In

this

situation,

the

converter

method

toData(

)

is

called

to

convert

the

right-hand

side

of

the

predicate

to

an

SQL

value.

Example

of

allowable

predicate

on

a

cmp

field

with

user

defined

converter:

e.name

=

’Chris’

e.name

>

?1

e.name

IS

NULL

Examples

of

unallowable

predicates:

substring(

e.name,

1,

3

)

=

’ABC’

e.salary

>

d.budget

744

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

A

converter

should

preserve

equality,

collating

sequence

and

null

values

when

doing

a

conversion.

Otherwise

cmp

fields

created

by

the

converter

should

not

be

used

in

WHERE,

GROUP,

HAVING

or

ORDER

clauses

of

a

query.

EJB

Query:

Reserved

words

The

following

words

are

reserved

in

WebSphere

EJB

query:

all,

as,

distinct,

empty,

false,

from,

group,

having,

in,

is,

like,

select,

true,

union,

where

Avoid

using

identifiers

that

start

with

underscore

(for

example,

_integer

)

as

these

are

also

reserved.

EJB

query:

BNF

syntax

EJB

QL

::=

[select_clause]

from_clause

[where_clause]

[group_by_clause]

[having_clause]

[order_by_clause]

from_clause::=FROM

identification_variable_declaration

[,identification_variable_declaration]*

identification_variable_declaration::=collection_member_declaration

|

range_variable_declaration

collection_member_declaration::=

IN

(

collection_valued_path_expression

)

[AS]

identifier

range_variable_declaration::=abstract_schema_name

[AS]

identifier

single_valued_path_expression

::=

{single_valued_navigation

|

identification_variable}.

(

cmp_field

|

method

|

cmp_field.value_object_attribute

|

cmp_field.value_object_method

)

|

single_valued_navigation

single_valued_navigation::=

identification_variable.[

single_valued_cmr_field.

]*

single_valued_cmr_field

collection_valued_path_expression

::=

identification_variable.[

single_valued_cmr_field.

]*

collection_valued_cmr_field

select_clause::=

SELECT

{

ALL

|

DISTINCT

}

{single_valued_path_expression

|

identification_variable

|

OBJECT

(

identification_variable)

}

select_clause_eex

::=

SELECT

{

ALL

|

DISTINCT

}

[

selection

,

]*

selection

selection

::=

{

expression

[[AS]

id

]

|

subselect

}

order_by_clause::=

ORDER

BY

[

{single_valued_path_expression

|

integer}

[ASC|DESC],]*

{single_valued_path_expression

|

integer}[ASC|DESC]

where_clause::=

WHERE

conditional_expression

conditional_expression

::=

conditional_term

|

conditional_expression

OR

conditional_term

conditional_term

::=

conditional_factor

|

conditional_term

AND

conditional_factor

conditional_factor

::=

[NOT]

conditional_primary

conditional_primary::=simple_cond_expression

|

(conditional_expression)

simple_cond_expression

::=

comparison_expression

|

between_expression

|

like_expression

|

in_expression

|

null_comparison_expression

|

empty_collection_comparison_expression

|

quantified_expression

|

exists_expression

|

is_of_type_expression

|

collection_member_expression

between_expression

::=

expression

[NOT]

BETWEEN

expression

AND

expression

in_expression

::=

single_valued_path_expression

[NOT]

IN

{

(subselect)

|

(

atom

,]*

atom)

}

atom

=

{

string-literal

|

numeric-constant

|

input-parameter

}

Chapter

11.

Using

EJB

query

745

like_expression

::=

expression

[NOT]

LIKE

{string_literal

|

input_parameter}

[ESCAPE

{string_literal

|

input_parameter}]

null_comparison_expression

::=

single_valued_path_expression

IS

[

NOT

]

NULL

empty_collection_comparison_expression

::=

collection_valued_path_expression

IS

[NOT]

EMPTY

collection_member_expression

::=

{

single_valued_path_expression

|

input_paramter

}

[

NOT

]

MEMBER

[

OF

]

collection_valued_path_expression

quantified_expression

::=

expression

comparison_operator

{SOME

|

ANY

|

ALL}

(subselect)

exists_expression

::=

EXISTS

{collection_valued_path_expression

|

(subselect)}

subselect

::=

SELECT

[{

ALL

|

DISTINCT

}]

expression

from_clause

[where_clause]

[group_by_clause]

[having_clause]

group_by_clause::=

GROUP

BY

[single_valued_path_expression,]*

single_valued_path_expression

having_clause

::=

HAVING

conditional_expression

is_of_type_expression

::=

identifier

IS

OF

TYPE

([[ONLY]

abstract_schema_name,]*

[ONLY]

abstract_schema_name)

comparison_expression

::=

expression

comparison_operator

{

expression

|

(

subquery

)

}

comparison_operator

::=

=

|

>

|

>=

|

<

|

<=

|

<>

method

::=

method_name(

[[expression

,

]*

expression

]

)

expression

::=

term

|

expression

{+|-}

term

term

::=

factor

|

term

{*|/}

factor

factor

::=

{+|-}

primary

primary

::=

single_valued_path_expression

|

literal

|

(

expression

)

|

input_parameter

|

functions

functions

::=

ABS(expression)

|

AVG([ALL|DISTINCT]

expression)

|

BIGINT(expression)

|

CHAR({expression

[,{ISO|USA|EUR|JIS}]

)

|

CONCAT

(expression

,

expression

)

|

COUNT({[ALL|DISTINCT]

expression

|

*})

|

DATE(expression)

|

DAY({expression

)

|

DAYS(

expression)

|

DECIMAL(

expression

[,integer[,integer]])

DIGITS(

expression)

|

DOUBLE(

expression

)

|

FLOAT(

expression)

|

HOUR

(

expression

)

|

INTEGER(

expression

)

|

LCASE

(

expression)

|

LENGTH(expression)

|

LOCATE(

expression,

expression

[,

expression]

)

|

MAX([ALL|DISTINCT]

expression)

|

MICROSECOND(

expression

)

|

MIN([ALL|DISTINCT]

expression)

|

MINUTE

(

expression

)

|

MONTH(

expression

)

|

REAL(

expression)

|

SECOND(

expression

)

|

SMALLINT(

expression

)

|

SQRT

(

expression)

|

SUBSTRING(

expression,

expression[,

expression])

|

SUM([ALL|DISTINCT]

expression)

|

746

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

TIME(

expression

)

|

TIMESTAMP(

expression

)

|

UCASE

(

expression)

|

YEAR(

expression

)

Comparison

of

EJB

2.0

specification

and

WebSphere

query

language

Item

EJB

2.0

specification

WebSphere

Query

WebSphere

Enterprise

(Dynamic)

Query

Bean

methods

no

no

yes

Calendar

comparisons

yes

yes

yes

Delimited

identifiers

no

yes

yes

Dependent

Value

attributes

no

yes

yes

Dependent

Value

methods

no

no

yes

Dynamic

Query

APIs

no

no

yes

EXISTS

predicate

no

yes

yes

Inheritance

no

yes

yes

Multiple

element

select

clauses

no

no

yes

Order

by

no

yes

yes

Scalar

functions

yes

*

yes

yes

Select

clause

required

optional

optional

SQL

Date/time

expressions

no

yes

yes

String

comparisons

=

and

<>

only

=

<>

>

<

=

<>

>

<

Subqueries,

aggregations,

group

by,

and

having

clauses

no

yes

yes

*

EJB

2.0

defines

the

following

scalar

functions:

abs,

sqrt,

concat,

length,

locate

and

substring.

WebSphere

query

and

dynamic

query

support

additional

scalar

functions

as

listed

in

the

topic,

EJB

query:

Scalar

functions.

Chapter

11.

Using

EJB

query

747

748

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

12.

Internationalizing

applications

For

your

application

to

be

used

in

multiple

regions

around

the

world,

its

user

interfaces

will

need

to

support

multiple

locales

and

time

zones.

IBM

WebSphere

Application

Server

supports

the

maintenance

and

deployment

of

centralized

message

catalogs

for

the

output

of

properly

formatted,

language-specific

(localized)

interface

strings.

v

If

you

are

new

to

internationalization,

read

″Internationalization″

before

you

continue.

v

For

general

information

about

internationalization,

see

″Resources

for

learning.″
1.

Identify

localizable

text

in

your

application.

2.

Create

the

message

catalogs

necessary

for

the

locales

to

be

supported

by

your

application.

3.

In

your

application

code,

compose

the

language-specific

strings

for

output.

4.

Assemble

your

application

code

as

one

or

more

application

components.

5.

Prepare

the

localizable-text

package

for

deployment

with

your

localized

application.

In

this

step,

you

create

a

deployment

JAR.

6.

5.0.2 +

Using

the

Assembly

Toolkit,

assemble

the

application

modules

and

the

deployment

JAR

into

a

J2EE

application.

7.

5.0.1

Using

the

Application

Assembly

Tool

(AAT),

assemble

the

application

modules

and

the

deployment

JAR

into

a

J2EE

application.

8.

Deploy

and

manage

the

application.

Internationalization

An

application

that

can

present

information

to

users

according

to

regional

cultural

conventions

is

said

to

be

internationalized:

The

application

can

be

configured

to

interact

with

users

from

different

localities

in

culturally

appropriate

ways.

In

an

internationalized

application,

a

user

in

one

region

sees

error

messages,

output,

and

interface

elements

in

the

requested

language.

Date

and

time

formats,

as

well

as

currencies,

are

presented

appropriately

for

users

in

the

specified

region.

A

user

in

another

region

sees

output

in

the

conventional

language

or

format

for

that

region.

Historically,

the

creation

of

internationalized

applications

has

been

restricted

to

large

corporations

writing

complex

systems.

Internationalization

techniques

have

traditionally

been

expensive

and

difficult

to

implement,

so

they

have

been

applied

only

to

major

development

efforts.

However,

given

the

rise

in

distributed

computing

and

in

the

use

of

the

World

Wide

Web,

application

developers

have

been

pressured

to

internationalize

a

much

wider

variety

of

applications.

This

requires

making

internationalization

techniques

much

more

accessible

to

application

developers.

In

an

application

that

is

not

internationalized,

the

interface

that

the

user

sees

is

unalterably

written

into

the

application

code.

On

the

other

hand,

localizing

the

displayed

strings

adds

a

layer

of

abstraction

into

the

design

of

the

application.

Instead

of

simply

printing

an

error

message,

an

internationalized

application

represents

the

error

message

with

some

language-neutral

information;

in

the

simplest

case,

each

error

condition

corresponds

to

a

key.

To

print

a

usable

error

message,

then,

the

application

looks

up

the

key

in

the

configured

message

catalog.

Each

message

catalog

is

a

list

of

keys

with

associated

strings.

Different

message

catalogs

provide

strings

for

the

different

languages

supported.

The

application

©

Copyright

IBM

Corp.

2003

749

looks

up

the

key

in

the

appropriate

catalog,

retrieves

the

corresponding

error

message

in

the

requested

language,

and

prints

this

string

for

the

user.

Localization

of

text

can

be

used

for

far

more

than

translating

error

messages.

For

example,

by

using

keys

to

represent

each

element

in

a

graphical

user

interface

(GUI)

and

by

providing

the

appropriate

message

catalogs,

the

GUI

itself

(buttons,

menus,

and

so

on)

can

support

multiple

languages.

Extending

support

to

additional

languages

requires

that

you

provide

message

catalogs

for

those

languages;

in

many

cases,

the

application

itself

needs

no

further

modification.

Internationalization

of

an

application

is

driven

by

two

variables,

the

time

zone

and

the

locale.

The

time

zone

indicates

how

to

compute

the

local

time

as

an

offset

from

a

standard

time

like

Greenwich

Mean

Time.

The

locale

is

a

collection

of

information

about

language,

currency,

and

the

conventions

for

presenting

information

like

dates.

In

a

localized

application,

the

locale

also

indicates

the

message

catalog

from

which

an

application

is

to

retrieve

message

strings.

A

time

zone

can

cover

many

locales,

and

a

single

locale

can

span

time

zones.

With

both

time

zone

and

locale,

the

date,

time,

currency,

and

language

for

users

in

a

specific

region

can

be

determined.

Identifying

localizable

text

1.

Determine

which

elements

of

the

application

need

to

be

translated.

Good

candidates

for

localization

include

the

following:

v

Graphical

user

interfaces:

window

titles,

menus

and

menu

items,

buttons,

on-screen

instructions

v

Prompts

in

command-line

interfaces

v

Application

output:

messages

and

logs
2.

Assign

a

unique

key

to

each

element

for

use

in

message

catalogs

for

the

application.

The

key

provides

a

language-neutral

link

between

the

application

and

language-specific

strings

in

the

message

catalogs.

Establishing

a

naming

convention

for

keys

before

creating

the

catalogs

can

make

writing

code

with

these

keys

much

more

intuitive

for

interface

programmers.

Suppose

you

are

localizing

the

GUI

for

a

banking

system,

and

the

first

window

contains

a

pull-down

list

to

be

used

for

selecting

a

type

of

account.

The

labels

for

the

list

and

the

account

types

in

the

list

are

good

choices

for

localization.

Three

elements

require

keys:

the

list

itself

and

two

items

in

the

list.

Create

message

catalogs

for

the

language-specific

strings.

Creating

message

catalogs

Identify

strings

that

need

to

be

localized.

You

can

create

a

catalog

as

either

a

subclass

of

java.util.ResourceBundle

or

a

Java

properties

file.

The

properties-file

approach

is

more

common,

because

properties

files

can

be

prepared

by

people

without

programming

experience

and

swapped

in

without

modifying

the

application

code.

1.

For

each

string

identified

for

localization,

add

a

line

to

the

message

catalog

that

lists

the

string’s

key

and

value

in

the

current

language.

In

a

properties

file,

each

line

has

the

following

structure:

key

=

string

associated

with

the

key

750

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

2.

Save

the

catalog,

giving

it

a

locale-specific

name.

To

enable

resolution

to

a

specific

properties

file,

the

Java

API

specifies

naming

conventions

for

the

properties

files

in

a

resource

bundle

as

bundleName_localeID.properties.

Give

the

set

of

message

catalogs

a

collective

name,

for

example,

BankingResources.

For

information

about

locale

IDs

that

are

recognized

by

the

Java

APIs,

see

″Resources

for

learning.″

The

following

English

catalog

(BankingResources_en.properties)

supports

the

labels

for

the

list

and

its

two

list

items:

accountString

=

Accounts

savingsString

=

Savings

checkingString

=

Checking

The

corresponding

German

catalog

(BankingResources_de.properties)

supports

the

labels

as

follows:

accountString

=

Konten

savingsString

=

Sparkonto

checkingString

=

Girokonto

Write

code

to

compose

the

language-specific

strings.

Composing

language-specific

strings

Create

message

catalogs

for

the

language-specific

strings.

1.

In

application

code,

create

a

LocalizableTextFormatter

instance,

passing

in

required

localization

values.

2.

Set

other

localization

values

as

needed

for

more

complex

situations.

3.

Generate

a

properly

formatted,

language-specific

string.

When

the

application

is

finished,

deploy

your

application.For

more

information,

see

“Preparing

the

localizable-text

package

for

deployment”

on

page

758.

Localization

API

support

The

package

com.ibm.websphere.i18n.localizabletext

contains

classes

and

interfaces

for

localizing

text.

This

package

makes

extensive

use

of

the

internationalization

features

of

the

standard

Java

APIs

from

Sun

Microsystems,

including

the

following:

v

java.util.Locale

v

java.util.TimeZone

v

java.util.ResourceBundle

v

java.text.MessageFormat

For

more

information

about

the

standard

Java

APIs,

see

″Resources

for

learning.″

The

WebSphere

localizable-text

package

wraps

the

Java

support

and

extends

it

for

efficient

and

simple

use

in

a

distributed

environment.

The

primary

class

used

by

application

programmers

is

LocalizableTextFormatter.

Instances

of

this

class

are

usually

created

in

server

programs,

but

client

programs

can

also

create

them.

Formatter

instances

are

created

for

specific

resource-bundle

names

and

keys.

Client

programs

that

receive

a

LocalizableTextFormatter

instance

call

its

format

method.

This

method

uses

the

locale

of

the

client

application

to

retrieve

the

appropriate

resource

bundle

and

compose

a

locale-specific

message

based

on

the

key.

For

example,

suppose

that

a

distributed

application

supports

both

French

and

English

locales;

the

server

is

using

an

English

locale

and

the

client,

a

French

locale.

Chapter

12.

Internationalizing

applications

751

The

server

creates

two

resource

bundles,

one

each

for

English

and

French.

When

the

client

makes

a

request

that

triggers

a

message,

the

server

creates

a

LocalizableTextFormatter

instance

that

contains

the

name

of

the

resource

bundle

and

the

key

for

the

message

and

passes

the

instance

back

to

the

client.

When

the

client

receives

the

LocalizableTextFormatter

instance,

it

calls

the

object’s

format

method.

By

using

the

locale

and

name

of

the

resource

bundle,

the

format

method

determines

the

name

of

the

resource

bundle

that

supports

the

French

locale

and

retrieves

the

message

that

corresponds

to

the

key

from

the

French

resource

bundle.

Formatting

of

the

message

is

transparent

to

the

client.

In

this

simple

example,

the

resource

bundles

reside

centrally

with

the

server.

They

do

not

have

to

exist

with

the

client.

Part

of

what

the

localizable-text

package

provides

is

the

infrastructure

to

support

centralized

catalogs.

This

implementation

uses

an

enterprise

bean

(a

stateless

session

bean

provided

with

the

localizable-text

package)

to

access

the

message

catalogs.

When

the

client

calls

the

format

method

on

the

LocalizableTextFormatter

instance,

the

following

events

occur:

1.

The

client

application

sets

the

time-zone

and

locale

values

in

the

LocalizableTextFormatter

instance,

either

by

passing

them

explicitly

or

through

default

values.

2.

A

call,

LocalizableTextFormatterEJBFinder,

is

made

to

retrieve

a

reference

to

the

formatter

bean.

3.

Information

from

the

LocalizableTextFormatter

instance,

including

the

client’s

time

zone

and

locale,

is

sent

to

the

formatting

bean.

4.

The

formatting

bean

uses

the

name

of

the

resource

bundle,

the

message

key,

the

time

zone,

and

the

locale

to

compose

a

language-specific

message.

5.

The

formatter

bean

returns

the

formatted

message

to

the

client.

6.

The

formatted

message

is

inserted

into

the

LocalizableTextFormatter

instance

and

returned

by

the

format

method.

A

call

to

the

format

method

requires

at

most

one

remote

call,

to

contact

the

formatter

bean.

As

an

alternative,

the

LocalizableTextFormatter

instance

can

cache

formatted

messages,

eliminating

the

remote

call

for

subsequent

uses.

In

addition,

you

can

set

a

fallback

string

so

that

the

application

can

return

a

readable

string

even

if

it

cannot

access

the

appropriate

message

catalog.

The

resource

bundles

can

be

stored

locally.

The

localizable-text

package

provides

a

static

variable

that

indicates

whether

the

bundles

are

stored

locally

(LocalizableConfiguration.LOCAL)

or

remotely

(LocalizableConfiguration.REMOTE).

However,

the

setting

of

this

variable

applies

to

all

applications

running

within

the

same

Java

virtual

machine.

LocalizableTextFormatter

class

The

LocalizableTextFormatter

class,

found

in

the

package

com.ibm.websphere.i18n.localizabletext,

is

the

primary

programming

interface

for

using

the

localizable-text

package.

Instances

of

this

class

contain

the

information

needed

to

create

language-specific

strings

from

keys

and

resource

bundles.

LocalizableTextFormatter

extends

java.lang.Object

and

implements

the

following

interfaces:

v

java.io.Serializable

v

com.ibm.websphere.i18n.localizabletext.LocalizableText

v

com.ibm.websphere.i18n.localizabletext.LocalizableTextL

v

com.ibm.websphere.i18n.localizabletext.LocalizableTextTZ

v

com.ibm.websphere.i18n.localizabletext.LocalizableTextLTZ

752

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Creation

and

initialization

of

class

instances

LocalizableTextFormatter

supports

the

following

constructors:

v

LocalizableTextFormatter()

v

LocalizableTextFormatter(String

resourceBundleName,

String

patternKey,

String

appName)

v

LocalizableTextFormatter(String

resourceBundleName,

String

patternKey,

String

appName,

Object[]

args)

The

LocalizableTextFormatter

instance

must

have

certain

values,

such

as

resource-bundle

name,

key,

and

the

name

of

the

formatting

application.

If

you

do

not

pass

these

values

in

by

using

the

second

constructor

listed

previously,

you

can

set

them

separately

by

making

the

following

calls:

v

setResourceBundleName(String

resourceBundleName)

v

setPatternKey(String

patternKey)

v

setApplicationName(String

appName)

You

can

use

a

fourth

method,

setArguments(Object[]

args),

to

set

optional

localization

values

after

construction.

See

Processing

of

application-specific

values

at

the

end

of

this

article.

For

a

usage

example,

see

″Composing

complex

strings.″

API

for

formatting

text

The

formatting

methods

in

LocalizableTextFormatter

generate

a

string

from

a

set

of

message

keys

and

resource

bundles,

based

on

some

combination

of

locale

and

time-zone

values.

Each

method

corresponds

to

one

of

the

four

localizable-text

interfaces

implemented.

The

following

list

indicates

the

interface

in

which

each

formatting

method

is

defined:

v

LocalizableText.format()

v

LocalizableTextL.format(java.util.Locale

locale)

v

LocalizableTextTZ.format(java.util.TimeZone

timeZone)

v

LocalizableTextLTZ.format(java.util.Locale

locale,

java.util.TimeZone

timeZone)

The

format

method

with

no

arguments

uses

the

locale

and

time-zone

values

set

as

defaults

for

the

Java

virtual

macine.

All

four

methods

throw

LocalizableException

objects.

Location

of

message

catalogs

and

the

appName

value

Applications

written

with

the

localizable-text

package

can

access

message

catalogs

locally

or

remotely.

In

a

distributed

environment,

use

of

remote,

centrally

located

message

catalogs

is

appropriate.

All

clients

can

use

the

same

catalogs,

and

maintenance

of

the

catalogs

is

simplified.

Local

formatting

is

useful

in

test

situations

and

apppropriate

under

some

circumstances.

In

order

to

support

either

local

or

remote

formatting,

a

LocalizableTextFormatter

instance

must

indicate

the

name

of

the

formatting

application.

For

example,

when

an

application

formats

a

message

by

using

remote

catalogs,

the

message

is

actually

formatted

by

an

enterprise

bean

on

the

server.

Although

the

localizable-text

package

contains

the

code

to

automate

the

lookup

of

the

formatter

bean

and

the

issue

of

a

call

to

it,

the

application

needs

to

know

the

name

of

the

formatter

bean.

Several

methods

in

the

LocalizableTextFormatter

class

use

a

value

described

as

appName;

this

refers

to

the

name

of

the

formatting

application,

which

is

not

necessarily

the

name

of

the

application

in

which

the

value

is

set.

Chapter

12.

Internationalizing

applications

753

Caching

of

messages

LocalizableTextFormatter

can

optionally

cache

formatted

messages

so

that

they

do

not

have

to

be

reformatted

when

needed

again.

By

default,

caching

is

not

enabled,

but

use

LocalizableTextFormatter.setCacheSetting(true)

to

enable

caching.

When

caching

is

enabled

and

the

format

method

is

called,

the

method

determines

whether

the

message

has

already

been

formatted.

If

so,

the

cached

message

is

returned.

If

the

message

is

not

found

in

the

cache,

the

message

is

formatted

and

returned

to

the

caller,

and

a

copy

of

the

message

is

cached

for

future

use.

If

caching

is

disabled

after

messages

have

been

cached,

those

messages

remain

in

the

cache

until

the

cache

is

cleared

by

a

call

to

LocalizableTextformatter.clearCache().

You

can

clear

the

cache

at

any

time;

the

cache

is

automatically

cleared

when

any

of

the

following

methods

is

called:

v

setResourceBundleName(String

resourceBundleName)

v

setPatternKey(String

patternKey)

v

setApplicationName(String

appName)

v

setArguments(Object[]

args)

API

for

providing

fallback

information

Under

some

circumstances,

it

can

be

impossible

to

format

a

message.

The

localizable-text

package

implements

a

fallback

strategy,

making

it

possible

to

get

some

information

even

if

a

message

cannot

be

formatted

correctly

into

the

requested

language.

The

LocalizableTextFormatter

instance

can

optionally

store

fallback

values

for

a

message

string,

the

time

zone,

and

the

locale.

These

can

be

ignored

unless

the

LocalizableTextFormatter

instance

throws

an

exception.

To

set

fallback

values,

call

the

following

methods

as

appropriate:

v

setFallBackString(String

message)

v

setFallBackLocale(Locale

locale)

v

setFallBackTimeZone(TimeZone

timeZone)

For

a

usage

example,

see

″Generating

localized

text.″

Processing

of

application-specific

values

The

localizable-text

package

provides

native

support

for

localization

based

on

time

zone

and

locale,

but

one

can

construct

messages

on

the

basis

of

other

values

as

well.

If

you

need

to

consider

variables

other

than

locale

and

time

zone

in

formatting

localized

text,

write

your

own

formatter

class.

Your

formatter

class

can

extend

LocalizableTextFormatter

or

independently

implement

some

or

all

of

the

same

localizable-text

interfaces.

As

a

minimum,

your

class

must

implement

java.io.Serializable

and

at

least

one

of

the

localizable-text

interfaces

and

its

corresponding

format

method.

If

your

class

implements

more

than

one

localizable-text

interface

and

format

method,

the

order

of

evaluation

of

the

interfaces

is

as

follows:

1.

LocalizableTextLTZ

2.

LocalizableTextL

3.

LocalizableTextTZ

4.

LocalizableText

As

an

example,

the

localizable-text

package

provides

a

class

that

reports

the

time

and

date

(LocalizableTextDateTimeArgument).

In

that

class,

date

and

time

formatting

is

localized

in

accordance

with

three

values:

locale,

time

zone,

and

style.

754

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Creating

a

formatter

instance

Server

programs

typically

create

LocalizableTextFormatter

instances

that

are

sent

to

clients

as

the

result

of

some

operation;

clients

format

the

objects

at

the

appropriate

time.

Less

typically,

client

programs

create

LocalizableTextFormatter

objects

locally.

1.

If

needed

for

your

application,

write

your

own

formatter

class.

For

more

information

about

implementation,

see

″LocalizableTextFormatter

class.″

2.

In

application

code,

call

the

appropriate

constructor

for

the

formatter

class

and

set

required

localization

values.

Some

localization

values,

such

as

resource

bundle

name,

key

and

formatting

application,

must

be

set,

either

through

a

constructor

or

soon

after

construction.

Other

localization

values

can

be

set

only

as

needed.

For

more

information

about

the

API,

see

the

related

reference.

The

following

code

creates

a

LocalizableTextFormatter

instance

by

using

the

default

constructor

and

then

sets

the

required

localization

values:

import

com.ibm.websphere.i18n.localizabletext.LocalizableException;

import

com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;

import

java.util.Locale;

public

void

drawAccountNumberGUI(String

accountType)

{

...

LocalizableTextFormatter

ltf

=

new

LocalizableTextFormatter();

ltf.setPatternKey("accountNumber");

ltf.setResourceBundleName("BankingSample.BankingResources");

ltf.setApplicationName("BankingSample");

...

}

The

application

that

is

requesting

a

localized

message

can

specify

the

locale

and

time

zone

for

which

the

message

is

to

be

formatted,

or

the

application

can

use

the

default

values

set

for

the

Java

virtual

machine.

For

example,

a

GUI

can

enable

users

to

select

the

language

in

which

to

display

the

interface.

A

default

value

must

be

set

initially

so

that

the

GUI

can

be

created

properly

when

the

application

first

starts,

but

users

can

then

change

the

locale

for

the

GUI

to

suit

their

needs.

The

following

code

shows

how

to

change

the

locale

used

by

an

application

based

on

the

selection

of

a

menu

item:

import

java.awt.event.ActionListener;

import

java.awt.event.ActionEvent;

...

import

java.util.Locale;

public

void

actionPerformed(ActionEvent

event)

{

String

action

=

event.getActionCommand();

...

if

(action.equals("en_us"))

{

applicationLocale

=

new

Locale("en",

"US");

...

}

if

(action.equals("de_de"))

{

applicationLocale

=

new

Locale("de",

"DE");

...

}

if

(action.equals("fr_fr"))

{

applicationLocale

=

new

Locale("fr",

"FR");

...

}

...

}

Chapter

12.

Internationalizing

applications

755

For

more

information,

see

″Generating

localized

text.″

Set

optional

localization

values.

Setting

optional

localization

values

In

addition

to

setting

localization

values

that

are

required

by

LocalizableTextFormatter,

you

can

set

a

number

of

optional

values

in

application

code,

either

through

the

constructor

or

by

calling

any

of

several

methods

for

that

purpose.

With

optional

values,

you

can

do

the

following:

v

Compose

complex

strings

from

variable

substrings

v

Customize

the

formatting

of

strings,

taking

into

account

variables

other

than

time

zone

and

locale
1.

In

application

code,

add

the

optional

values

into

an

array

of

type

Object.

Object[]

arg

=

{new

String(getAccountNumber())};

2.

Pass

the

array

into

a

LocalizableTextFormatter

instance.

You

can

pass

the

array

through

the

appropriate

constructor

or

by

calling

the

setArguments(Object[])

method.

For

a

usage

example,

see

″Composing

complex

strings.″

Note:

Because

the

array

is

passed

by

value

rather

than

by

reference,

any

updates

to

the

array

variable

after

this

point

are

not

reflected

in

the

LocalizableTextFormatter

instance

unless

it

is

reset

by

calling

the

setArguments(Object[])

method.

Write

code

to

generate

the

localized

text.

Composing

complex

strings

Identify

strings

that

need

to

be

localized.

The

localized-text

package

supports

the

substitution

of

variable

substrings

into

a

localized

string

that

is

retrieved

from

the

message

catalog

by

key.

1.

In

the

message

catalog,

specify

the

location

of

the

substitution

in

the

string

to

be

retrieved

by

key.

Variable

components

are

designated

by

curly

braces

(for

example,

{0}).

2.

In

application

code,

create

a

LocalizableTextFormatter

instance,

passing

in

an

array

that

contains

the

variable

value.

If

the

variable

substring

must

itself

be

localized,

you

can

create

a

nested

LocalizableTextFormatter

instance

for

it

and

pass

the

instance

in

instead

of

a

value.

3.

Generate

a

localized

string.

When

a

format

method

is

called

on

a

formatter

instance,

the

formatter

takes

each

element

of

the

array

passed

in

the

previous

step

and

substitutes

it

for

the

placeholder

with

the

matching

index

in

the

string

retrieved

from

the

message

catalog.

For

example,

the

value

at

index

0

in

the

array

replaces

the

{0}

variable

in

the

retrieved

string.

The

following

line

from

an

English

message

catalog

shows

a

string

with

a

single

substitution:

successfulTransaction

=

The

operation

on

account

{0}

was

successful.

The

same

key

in

message

catalogs

for

other

languages

has

a

translation

of

this

string

with

the

variable

at

the

appropriate

location

for

each

language.

The

following

code

shows

the

creation

of

a

single-element

argument

array

and

the

creation

and

use

of

a

LocalizableTextFormatter

instance:

756

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

public

void

updateAccount(String

transactionType)

{

...

Object[]

arg

=

{new

String(this.accountNumber)};

...

LocalizableTextFormatter

successLTF

=

new

LocalizableTextFormatter

("BankingResources",

"successfulTransaction",

"BankingSample",

arg);

...

successLTF.format(this.applicationLocale);

...

}

Nesting

formatter

instances

for

localized

substrings:

Identify

strings

that

need

to

be

localized.

The

ability

to

substitute

variable

substrings

into

the

strings

retrieved

from

message

catalogs

adds

a

level

of

flexibility

to

the

localizable-text

package,

but

this

capability

is

of

limited

use

unless

the

variable

value

itself

can

be

localized.

You

can

do

this

by

nesting

LocalizableTextFormatter

instances.

1.

In

the

message

catalog,

add

entries

that

correspond

to

potential

values

for

the

variable

substring.

2.

In

application

code,

create

a

LocalizableTextFormatter

instance

for

the

variable

substring,

setting

required

localization

values.

3.

Create

a

LocalizableTextFormatter

instance

for

the

primary

string,

passing

in

an

array

that

contains

the

formatter

instance

for

the

variable

substring.

The

following

line

from

an

English

message

catalog

shows

a

string

entry

with

two

substitutions

and

entries

to

support

the

localizable

variable

at

index

0

(the

second

variable

in

the

string,

the

account

number,

does

not

need

to

be

localized):

successfulTransaction

=

The

{0}

operation

on

account

{1}

was

successful.

depositOpString

=

deposit

withdrawOpString

=

withdrawal

The

following

code

shows

the

creation

of

the

nested

formatter

instance

and

its

insertion

(with

the

account

number

variable)

into

the

primary

formatter

instance:

public

void

updateAccount(String

transactionType)

{

...

//

Successful

deposit

LocalizableTextFormatter

opLTF

=

new

LocalizableTextFormatter("BankingResources",

"depositOpString",

"BankingSample");

Object[]

args

=

{opLTF,

new

String(this.accountNumber)};

...

LocalizableTextFormatter

successLTF

=

new

LocalizableTextFormatter

("BankingResources",

"successfulTransaction",

"BankingSample",

args);

...

successLTF.format(this.applicationLocale);

...

}

Chapter

12.

Internationalizing

applications

757

Generating

localized

text

Create

a

formatter

instance

and

set

localization

values

as

needed.

1.

If

needed,

customize

the

formatting

behavior.

2.

In

application

code,

call

the

appropriate

format

method.

You

can

provide

fallback

behavior

for

use

if

the

appropriate

message

catalog

is

not

available

at

formatting

time.

The

following

code

generates

a

localized

string.

If

the

formatting

fails,

the

application

retrieves

and

uses

a

fallback

string

instead

of

the

localized

string:

import

com.ibm.websphere.i18n.localizabletext.LocalizableException;

import

com.ibm.websphere.i18n.localizabletext.LocalizableTextFormatter;

import

java.util.Locale;

public

void

drawAccountNumberGUI(String

accountType){

...

LocalizableTextFormatter

ltf

=

new

LocalizableTextFormatter();

...

ltf.setFallBackString("Enter

account

number:

");

try

{

msg

=

new

Label(ltf.format(this.applicationLocale),

Label.CENTER);

}

catch

(LocalizableException

le)

{

msg

=

new

Label(ltf.getFallBackString(),

Label.CENTER);

}

...

}

When

the

application

is

finished,

deploy

your

application.For

more

information,

see

“Preparing

the

localizable-text

package

for

deployment.”

Customizing

the

behavior

of

a

formatting

method

You

can

customize

formatting

behavior

by

passing

your

own

formatter

classes

into

a

LocalizableTextFormatter

instance

through

an

array

of

optional

values.

This

enables

you

to

take

variables

other

than

locale

and

time

zone

into

account

when

formatting

localized

text.

1.

Write

your

own

formatter

class.

For

more

information

about

implementation,

see

″LocalizableTextFormatter

class.″

2.

In

application

code,

create

an

instance

of

your

formatter

class

as

appropriate

and

pass

it

with

any

other

optional

localization

values

into

an

instance

of

LocalizableTextFormatter.

When

the

LocalizableTextFormatter

instance

reads

the

instance

that

has

been

passed

in,

it

attempts

to

call

format()

on

the

passed-in

instance.

The

string

returned

is

then

processed

with

any

other

elements

in

the

array.

The

localizable-text

package

provides

an

example

of

a

user-defined

class,

called

LocalizableTextDateTimeArgument.

This

class

enables

date

and

time

information

to

be

selectively

formatted

according

to

the

style

values

defined

in

java.text.DateFormat

as

well

as

constants

defined

within

LocalizableTextDateTimeArgument

itself.

Preparing

the

localizable-text

package

for

deployment

Write

code

to

compose

the

language-specific

strings.

758

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

LocalizableTextEJBDeploy

tool

is

used

to

create

a

deployment

JAR

for

the

Localizable

Text

service.

You

must

deploy

the

enterprise

bean

in

each

enterprise

application

that

requires

support

for

localized

text.

1.

Make

sure

the

LocalizableTextEJBDeploy

tool

(ltext.jar)

exists

in

the

lib

directory

under

the

product’s

installation

root

directory.

2.

Set

up

a

working

directory

for

the

LocalizableTextEJBDeploy

tool

to

use.

You

will

need

to

pass

this

location

to

the

tool

through

a

command-line

interface.

3.

Run

the

LocalizableTextEJBDeploy

tool.

You

might

be

asked

if

you

want

to

regenerate

deployment

code

for

the

LocalizableText

bean.

Do

not

redeploy

the

bean;

if

you

do,

the

generated

JNDI

name

will

be

incorrect.

To

deploy

the

bean

on

multiple

hosts

and

servers,

run

the

tool

for

each

host/server

combination.

This

generates

a

unique

JNDI

name

for

each

deployment.

After

the

tool

is

run,

a

deployment

JAR

is

located

in

the

working

directory

you

specified.

5.0.2 +

Using

the

Assembly

Toolkit,

assemble

the

deployment

JAR

in

an

enterprise

application

with

other

application

components.

5.0.1

Using

the

Application

Assembly

Tool

(AAT),

assemble

the

deployment

JAR

in

an

enterprise

application

with

other

application

components.

As

part

of

preparing

for

deployment,

verify

the

following:

v

Add

the

resource

bundles

for

your

application

to

the

EAR

as

files.

v

Add

the

location

of

the

EAR

to

the

server’s

class

path.

This

is

so

the

resource

bundles

can

be

located

on

the

virtual

host

and

server.

The

same

deployment

JAR

can

be

included

in

several

enterprise

applications.

LocalizableTextEJBDeploy

command

This

topic

describes

the

command-line

syntax

for

the

LocalizableTextEJBDeploy

tool.

The

file

that

contains

this

tool

(ltext.jar)

must

be

located

in

the

lib

directory

of

the

product

installation

root.

LocalizableTextEJBDeploy

-a

applicationName

-h

virtualHostName

-i

installationDirectory

-s

serverName

-w

workingDirectory

Parameters

The

required

parameters,

which

can

be

specified

in

any

order,

follow:

applicationName

The

name

of

the

formatting

session

bean.

This

name

is

used

in

LocalizableTextFormatter

instances

to

specify

where

the

actual

formatting

takes

place.

If

the

name

cannot

be

resolved

at

run

time,

the

format

method

throws

an

exception.

virtualHostName

The

name

of

the

virtual

host

on

which

the

formatting

session

bean

is

deployed.

This

value

is

case-sensitive

on

all

operating

platforms.

installationDirectory

The

location

at

which

the

application

server

product

is

installed.

Chapter

12.

Internationalizing

applications

759

serverName

The

name

of

the

application

server.

If

this

argument

is

not

specified,

the

default

server

name

for

the

product

is

used.

workingDirectory

A

location

for

the

tool

to

use

temporarily.

Internationalization:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

internationalization.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

this

product

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Programming

instructions

and

examples

v

Programming

specifications

Programming

instructions

and

examples

v

Java

internationalization

tutorial

An

online

tutorial

that

explains

how

to

use

the

Java

2

SDK

Internationalization

API.

Programming

specifications

v

Java

2

SDK,

Standard

Edition

Documentation:

Internationalization

The

Java

internationalization

documentation

from

Sun

Microsystems,

including

a

list

of

supported

locales

and

encodings.

v

Making

the

WWW

truly

World

Wide

The

W3C’s

effort

to

make

World

Wide

Web

technology

work

with

the

many

writing

systems,

languages,

and

cultural

conventions

of

the

global

community:

v

developerWorks

-

Unicode

Articles

on

various

subjects

relating

to

Unicode,

from

IBM’s

developerWorks.

760

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://java.sun.com/j2se/1.4.1/docs/guide/intl/
http://www.w3.org/International/
http://www.ibm.com/developerworks/unicode/

Chapter

13.

Using

the

transaction

service

These

topics

provide

information

about

using

transactions

with

WebSphere

applications

WebSphere

applications

can

use

transactions

to

coordinate

multiple

updates

to

resources

as

atomic

units

(as

indivisible

units

of

work)

such

that

all

or

none

of

the

updates

are

made

permanent.

In

WebSphere

Application

Server,

transactions

are

handled

by

three

main

components:

v

A

transaction

manager

that

supports

the

enlistment

of

recoverable

XAResources

and

ensures

that

each

such

resource

is

driven

to

a

consistent

outcome

either

at

the

end

of

a

transaction

or

after

a

failure

and

restart

of

the

application

server.

In

addition,

WebSphere

Application

Server

for

z/OS

V5

supports

the

coordination

of

resource

managers

through

RRS

(z/OS

resource

recovery

services).

v

A

container

in

which

the

J2EE

application

runs.

The

container

manages

the

enlistment

of

XAResources

on

behalf

of

the

application

when

the

application

performs

updates

to

transactional

resource

managers

(for

example,

databases).

Optionally,

the

container

can

control

the

demarcation

of

transactions

for

enterprise

beans

configured

for

container-managed

transactions.

v

An

application

programming

interface

(UserTransaction)

that

is

available

to

bean-managed

enterprise

beans

and

servlets.

This

allows

such

application

components

to

control

the

demarcation

of

their

own

transactions.

For

more

information

about

using

transactions

with

WebSphere

applications,

see

the

following

topics:

v

Transaction

support

in

WebSphere

Application

Server

v

Using

local

transactions

v

Developing

a

WebSphere

application

to

use

transactions

v

Classifying

WebSphere

transaction

workload

for

WLM

v

Configuring

transaction

properties

for

an

application

server

v

Managing

active

transactions

v

v

Interoperating

transactionally

between

application

servers

v

Troubleshooting

transactions

v

Transaction

service

exceptions

v

UserTransaction

interface

-

methods

available

Transaction

support

in

WebSphere

Application

Server

A

transaction

is

unit

of

activity

within

which

multiple

updates

to

resources

can

be

made

atomic

(as

an

indivisible

unit

of

work)

such

that

all

or

none

of

the

updates

are

made

permanent.

For

example,

multiple

SQL

statements

to

a

relational

database

are

committed

atomically

by

the

database

during

the

processing

of

an

SQL

COMMIT

statement.

In

this

case,

the

transaction

is

contained

entirely

within

the

database

manager

and

can

be

thought

of

as

a

resource

manager

local

transaction

(RMLT).

In

some

contexts,

a

transaction

is

referred

to

as

a

logical

unit

of

work

(LUW).

The

way

that

applications

use

transactions

depends

on

the

type

of

application

component,

as

follows:

©

Copyright

IBM

Corp.

2003

761

v

A

session

bean

can

either

use

container-managed

transactions

(where

the

bean

delegates

management

of

transactions

to

the

container)

or

bean-managed

transactions

(where

the

bean

manages

transactions

itself).

v

Entity

beans

use

container-managed

transactions.

v

Web

components

(servlets)

use

bean-managed

transactions.

WebSphere

Application

Server

is

a

transaction

manager

that

supports

the

coordination

of

resource

managers

through

their

XAResource

interface

and

participates

in

distributed

global

transactions

with

other

OTS

1.2

compliant

transaction

managers

(for

example

J2EE

1.3

application

servers).

WebSphere

applications

can

also

be

configured

to

interact

with

databases,

JMS

queues,

and

JCA

connectors

through

their

local

transaction

support

when

distributed

transaction

coordination

is

not

required.

In

addition

to

supporting

the

coordination

of

XAResource-based

resource

managers,

WebSphere

Application

Server

for

z/OS

V5

supports

the

coordination

of

resource

managers

through

RRS

(z/OS

resource

recovery

services).

RRS-compliant

resource

managers

include

DB2,

MQSeries,

IMS,

and

CICS.

IBM

WebSphere

Application

Server

for

z/OS

is

capable

of

coordinating

a

mix

of

RRSTransactional

resource

managers

and

XA

capable

resource

managers

under

the

same

global

transaction.

Resource

managers

that

offer

transaction

support

can

be

categorized

into

those

that

support

two-phase

coordination

(by

offering

an

XAResource

interface

or

by

supporting

RRS)

and

those

that

support

only

one-phase

coordination

(for

example

through

a

LocalTransaction

interface).

The

WebSphere

Application

Server

transaction

support

provides

coordination,

within

a

transaction,

for

any

number

of

two-phase

capable

resource

managers.

It

also

enables

a

single

one-phase

capable

resource

manager

to

be

used

within

a

transaction

in

the

absence

of

any

other

resource

managers,

although

a

WebSphere

transaction

is

not

necessary

in

this

case.

You

can

use

transaction

classes

to

classify

client

workload

for

workload

management.

The

workload

is

different

WebSphere

transactions

targeted

to

separate

servant

regions,

each

with

goals

defined

by

appropriate

service

classes.

Each

transaction

is

dispatched

in

its

own

WLM

enclave

in

a

servant

region

process,

and

is

managed

according

to

the

goals

of

its

service

class.

The

server

controller,

which

workload

management

views

as

a

queue

manager,

uses

the

enclave

associated

with

a

client

request

to

manage

the

priority

of

the

work.

If

the

work

has

a

high

priority,

workload

management

can

direct

the

work

to

a

high-priority

servant

in

the

server.

If

the

work

has

a

low

priority,

workload

management

can

direct

the

work

to

a

low-priority

servant.

The

effect

is

to

partition

the

work

according

to

priority

within

the

same

server.

Under

normal

circumstances

you

cannot

mix

one-phase

commit

capable

resources

and

two-phase

commit

capable

resources

in

the

same

global

transaction,

because

one-phase

commit

resources

cannot

support

the

prepare

phase

of

two-phase

commit.

There

are

some

special

circumstances

where

it

is

possible

to

include

mixed-capability

resources

in

the

same

global

transaction:

v

In

scenarios

where

there

is

only

a

single

one-phase

commit

resource

provider

that

participates

in

the

transaction

and

where

all

the

two-phase

commit

resource-providers

that

participate

in

the

transaction

are

used

in

a

read-only

fashion.

In

this

case,

the

two-phase

commit

resources

all

vote

read-only

during

the

prepare

phase

of

two-phase

commit.

Because

the

one-phase

commit

resource

provider

is

the

only

provider

to

actually

perform

any

updates,

the

one-phase

commit

resource

does

not

need

to

be

prepared.

762

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

In

scenarios

where

there

is

only

a

single

one-phase

commit

resource

provider

that

participates

in

the

transaction

with

one

of

more

two-phase

commit

resource

providers

and

where

last

participant

support

is

available.

Last

participant

support

(of

WBI

Server

Foundation)

enables

the

use

of

a

single

one-phase

commit

capable

resource

with

any

number

of

two-phase

commit

capable

resources

in

the

same

global

transaction.

Resource

manager

local

transaction

(RMLT)

A

resource

manager

local

transaction

(RMLT)

is

a

resource

manager’s

view

of

a

local

transaction;

that

is,

it

represents

a

unit

of

recovery

on

a

single

connection

that

is

managed

by

the

resource

manager.

Resource

managers

include:

v

Enterprise

Information

Systems

that

are

accessed

through

a

resource

adapter,

as

described

in

the

J2EE

Connector

Architecture

1.0.

v

Relational

databases

that

are

accessed

through

a

JDBC

datasource.

v

JMS

queue

and

topic

destinations.

Resource

managers

offer

specific

interfaces

to

enable

control

of

their

RMLTs.

J2EE

connector

resource

adapters

that

include

support

for

local

transactions

provide

a

LocalTransaction

interface

to

enable

applications

to

request

that

the

resource

adapter

commit

or

rollback

RMLTs.

JDBC

datasources

provide

a

Connection

interface

for

the

same

purpose.

The

boundary

at

which

all

RMLTs

must

be

complete

is

defined

in

WebSphere

Application

Server

by

a

local

transaction

containment

(LTC).

Global

transactions

If

an

application

uses

two

or

more

resources,

then

an

external

transaction

manager

is

needed

to

coordinate

the

updates

to

both

resource

managers

in

a

global

tansaction.

Global

transaction

support

is

available

to

web

and

enterprise

bean

J2EE

components.

Enterprise

bean

components

can

be

subdivided

into

beans

that

exploit

container-managed

transactions

(CMT)

or

bean-managed

transactions

(BMT).

BMT

enterprise

beans

and

web

components

can

use

the

Java

Transaction

API

(JTA)

UserTransaction

interface

to

define

the

demarcation

of

a

global

transaction.

The

UserTransaction

interface

is

obtained

by

a

JNDI

lookup

of

java:comp/UserTransaction.

The

UserTransaction

is

not

available

to

the

following

components:

v

CMT

enterprise

beans.

Any

attempt

by

such

beans

to

obtain

the

interface

results

in

an

exception

in

accordance

with

the

EJB

specification.

v

Client

applications

running

outside

the

Web

and

EJB

containers.

Ensure

that

programs

that

perform

a

JNDI

lookup

of

the

UserTransaction

interface,

use

an

InitialContext

that

resolves

to

a

local

implementation

of

the

interface.

Also

ensure

that

such

programs

use

a

JNDI

location

appropriate

for

the

EJB

version.

Before

the

EJB

1.1

specification,

the

JNDI

location

of

the

UserTransaction

interface

was

not

specified.

Each

EJB

container

implementor

defined

it

in

an

implementation-specific

manner.

Earlier

versions

of

WebSphere

Application

Server,

up

to

and

including

Version

3.5.x

(without

EJB

1.1),

bind

the

UserTransaction

interface

to

a

JNDI

location

of

jta/usertransaction.

WebSphere

Application

Server

Version

4,

and

later

releases,

bind

the

UserTransaction

interface

at

the

location

defined

by

EJB

1.1,

which

is

java:comp/UserTransaction.

WebSphere

Application

Chapter

13.

Using

the

transaction

service

763

http://java.sun.com/j2ee/connector/index.html

Server,

Version

5

no

longer

provides

the

jta/usertransaction

binding

within

Web

and

EJB

containers

to

applications

at

a

J2EE

level

of

1.3

or

later.

For

example,

EJB

2.0

applications

can

use

only

the

java:comp/UserTransaction

location.

Local

transaction

containment

(LTC)

A

local

transaction

containment

(LTC)

is

used

to

define

the

application

server

behavior

in

an

unspecified

transaction

context.

(Unspecified

transaction

context

is

defined

in

the

Enterprise

JavaBeans

2.0

Specification.)

A

LTC

is

a

bounded

unit-of-work

scope

within

which

zero,

one,

or

more

resource

manager

local

transactions

(RMLTs)

can

be

accessed.

The

LTC

defines

the

boundary

at

which

all

RMLTs

must

be

complete;

any

incomplete

RMLTs

are

resolved,

according

to

policy,

by

the

container.

An

LTC

is

local

to

a

bean

instance;

it

is

not

shared

across

beans

even

if

those

beans

are

managed

by

the

same

container.

LTCs

are

started

by

the

container

before

dispatching

a

method

on

a

J2EE

component

(such

as

an

enterprise

bean

or

servlet)

whenever

the

dispatch

occurs

in

the

absence

of

a

global

transaction

context.

LTCs

are

completed

by

the

container

depending

on

the

application-configured

LTC

boundary;

for

example

at

the

end

of

the

method

dispatch.

There

is

no

programmatic

interface

to

the

LTC

support;

rather

LTCs

are

managed

exclusively

by

the

container

and

configured

by

the

application

deployer

through

transaction

attributes

in

the

application

deployment

descriptor.

A

local

transaction

containment

cannot

exist

concurrently

with

a

global

transaction.

If

application

component

dispatch

occurs

in

the

absence

of

a

global

transaction,

the

container

always

establishes

an

LTC.

The

only

exceptions

to

this

behavior

is

when

an

application

component

dispatch

occurs

without

container

interposition;

for

example,

for

a

stateless

session

bean

create.

Local

and

global

transaction

considerations

Applications

use

resources,

such

as

JDBC

data

sources

or

connection

factories,

that

are

configured

through

the

Resources

view

of

the

WebSphere

Application

Server

Administrative

Console.

How

these

resources

participate

in

a

global

transaction

depends

on

the

underlying

transaction

support

of

the

resource

provider.

For

example,

most

JDBC

providers

can

provide

either

XA

or

non-XA

versions

of

a

data

source.

A

non-XA

data

source

can

support

only

resource

manager

local

transactions

(RMLTs),

but

an

XA

data

source

can

support

two-phase

commit

coordination,

as

well

as

local

transactions.

Additionally,

some

JDBC

Providers

such

as

the

DB2

for

z/OS

Local

JDBC

Provider

support

the

use

of

z/OS

Resource

Recovery

Service

(RRS)

to

coordinate

transaction

processing.

This

type

of

JDBC

Provider

is

RRSTransactional.

When

RRS

is

used,

both

local

and

global

transactions

are

supported.

If

an

application

uses

two

or

more

resource

providers

that

support

only

RMLTs,

then

atomicity

cannot

be

assured

because

of

the

one-phase

nature

of

these

resources.

To

ensure

atomic

behavior,

the

application

should

use

resources

that

support

XA

coordination

or

RRS

coordination

and

should

access

them

within

a

global

transaction.

If

an

application

uses

only

one

RMLT,

the

atomic

behavior

can

be

guaranteed

by

the

resource

manager,

which

can

be

accessed

under

a

local

transaction

containment

context.

764

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/2.0.html

An

application

can

also

access

a

single

resource

manager

under

a

global

transaction

context,

even

if

that

resource

manager

does

not

support

the

XA

coordination.

An

application

can

do

this,

because

WebSphere

Application

Server

performs

an

“only

resource

optimization”

and

interacts

with

the

resource

manager

under

a

RMLT.

Within

a

global

transaction

context,

any

attempt

to

use

more

than

one

resource

provider

that

supports

only

RMLTs

causes

the

global

transaction

to

be

rolled

back.

At

any

moment,

an

instance

of

an

enterprise

bean

can

have

work

outstanding

in

either

a

global

transaction

context

or

a

local

transaction

containment

context,

but

never

both.

An

instance

of

an

enterprise

bean

can

change

from

running

under

one

type

of

context

to

the

other

(in

either

direction),

if

all

outstanding

work

in

the

original

context

is

complete.

Any

violation

of

this

principle

causes

an

exception

to

be

thrown

when

the

enterprise

bean

tries

to

start

the

new

context.

Developing

components

to

use

transactions

These

topics

provide

information

about

developing

WebSphere

application

components

to

use

transactions

The

way

that

applications

use

transactions

depends

on

the

type

of

application

component,

as

follows:

v

A

session

bean

can

either

use

container-managed

transactions

(where

the

bean

delegates

management

of

transactions

to

the

container)

or

bean-managed

transactions

(where

the

bean

manages

transactions

itself).

v

Entity

beans

use

container-managed

transactions.

v

Web

components

(servlets)

use

bean-managed

transactions.

You

configure

whether

a

component

uses

container-

or

bean-managed

transactions

by

setting

an

appropriate

value

on

the

Transaction

type

deployment

attribute,

as

described

in

Configuring

transactional

deployment

attributes

using

the

Assembly

ToolkitorConfiguring

transactional

deployment

attributes

using

the

Application

Assembly

Tool.

You

can

also

configure

other

transactional

deployment

descriptor

attributes.

If

you

want

a

session

bean

to

manage

its

own

transactions,

you

must

write

the

code

that

explicitly

demarcates

the

boundaries

of

a

transaction

as

described

in

Using

bean-managed

transactions.

Similarly,

if

you

want

a

Web

component

to

use

transactions,

you

must

write

the

code

that

explicitly

demarcates

the

boundaries

of

a

transaction

as

described

in

Using

bean-managed

transactions.

Configuring

transactional

deployment

attributes

using

the

Assembly

Toolkit

Use

this

task

to

configure

the

transactional

deployment

descriptor

attributes

associated

with

an

EJB

or

Web

module,

to

enable

a

J2EE

application

to

use

transactions.

This

topic

describes

the

use

of

the

Assembly

Toolkit

to

configure

the

deployment

attributes

of

an

application.

This

task

description

assumes

that

you

have

an

EAR

file

for

an

application

component,

that

can

be

deployed

in

WebSphere

Application

Server.

For

more

details

about

using

the

Assembly

Toolkit,

see

Assembling

applications

with

the

Assembly

Toolkit.

Chapter

13.

Using

the

transaction

service

765

To

set

transactional

attributes

in

the

deployment

descriptor

for

an

application

component

(enterprise

bean

or

servlet),

complete

the

following

steps:

1.

Start

the

Assembly

Toolkit.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

use

the

import

wizard

to

import

the

EAR

file

into

the

Assembly

Toolkit.

To

start

the

import

wizard:

a.

Click

File->

Import->

EAR

file

b.

Click

Next,

then

select

the

EAR

file.

c.

Click

Finish.

3.

In

the

J2EE

Hierarchy

view,

right-click

the

component

instance,

then

click

Open

With

>

Deployment

Descriptor

Editor.

For

example:

v

For

a

session

bean,

expand

EJB

Modules->

ejb_module_instance->

Session

Beans

then

select

the

bean

instance.

v

For

a

servlet,

expand

Web

Modules->

web_application->

web

component

then

select

the

servlet

instance.

A

property

dialog

notebook

for

the

component

is

displayed

in

the

property

pane.

4.

Set

the

Transaction

type

attribute,

which

defines

the

transactional

manner

in

which

the

container

invokes

a

method.

You

can

set

this

attribute

to

Container

or

Bean,

as

follows:

v

For

a

session

bean

to

use

container-managed

transactions,

set

Container

v

For

a

session

bean

to

use

bean-managed

transactions,

set

Bean

v

For

an

entity

bean,

set

Container

v

For

a

Web

component

(servlet),

set

Bean

5.

In

the

property

pane,

select

the

IBM

Extensions

tab.

6.

Under

WebSphere

Extensions,

configure

J2EE

component

extensions

attributes

for

extended

local

transaction

containment.

To

enable

management

of

local

transaction

containments,

configure

the

following

EJB

extensions

attributes.

These

attributes

configure,

for

the

component,

the

behavior

of

the

container’s

local

transaction

containment

(LTC)

environment

that

the

container

establishes

whenever

a

global

transaction

is

not

present.

Boundary

Specifies

the

duration

of

a

local

transaction

context.

You

can

set

this

attribute

to

either

Bean

method.

Resolver

Specifies

how

the

local

transaction

is

to

be

resolved

before

the

local

transaction

context

ends:

by

the

application

through

user

code

or

by

the

EJB

container.

You

can

set

this

attribute

to

either

Application

or

ContainerAtBoundary.

Unresolved

action

Specifies

the

action

that

the

container

must

take

when

the

local

transaction

context

scope

ends,

if

resources

are

uncommitted

by

an

application

in

a

local

transaction

and

the

Resolution

control

is

set

to

Application.

You

can

set

this

attribute

to

either

Commit

or

Rollback.

7.

[For

EJB

components

only]

For

container-managed

transactions,

configure

how

the

container

must

manage

the

transaction

boundaries

when

delegating

a

method

invocation

to

an

enterprise

bean’s

business

method:

a.

In

the

navigation

pane,

click

the

Assembly

Descriptor

tab.

The

Container

Transactions

box

displays

a

table

of

the

methods

for

enterprise

beans.

b.

For

each

method

of

the

enterprise

bean

set

the

Transaction

attribute

attribute

to

an

appropriate

value.

8.

Save

your

changes

to

the

deployment

descriptor.

766

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

a.

Close

the

deployment

descriptor

editor.

b.

When

prompted,

click

Yes

to

indicate

that

you

want

to

save

changes

to

the

deployment

descriptor.

9.

Verify

the

archive

files.

10.

Generate

code

for

deployment

for

EJB

modules

or

for

enterprise

applications

that

use

EJB

modules.

11.

Optional:

Test

your

completed

module

on

a

WebSphere

Application

Server

installation.

Right-click

a

module,

click

Run

on

Server,

and

follow

the

instructions

in

the

displayed

wizard.

Note

that

Run

on

Server

works

on

the

Windows,

Linux/Intel,

and

AIX

operating

systems

only;

you

cannot

deploy

remotely

from

the

Assembly

Toolkit

to

a

WebSphere

Application

Server

installation

on

a

UNIX

operating

system

such

as

Solaris.

Important

Important:

Use

Run

On

Server

for

unit

testing

only.

Assembly

Server

Toolkit

controls

the

WebSphere

Application

Server

installation

and,

when

an

application

is

published

remotely,

the

Toolkit

overwrites

the

server

configuration

file

for

that

server.

Do

not

use

on

production

servers.

For

instructions

on

remote

testing,

see

the

article

“Setting

Up

a

Remote

WebSphere

Application

Server

in

WebSphere

Studio

V5”

at

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html.

After

assembling

your

application,

use

a

systems

management

tool

to

deploy

the

EAR

file

onto

the

application

server

that

is

to

run

the

application;

for

example,

using

the

administrative

console

as

described

in

Deploying

and

managing

applications.

Configuring

transactional

deployment

attributes

using

the

Application

Assembly

Tool

Use

this

task

to

configure

the

transactional

deployment

descriptor

attributes

associated

with

an

EJB

or

Web

module,

to

enable

a

J2EE

application

to

use

transactions.

To

set

transactional

attributes

in

the

deployment

descriptor

for

an

application

component

(enterprise

bean

or

servlet),

complete

the

following

steps:

1.

Start

the

Application

Assembly

Tool.

2.

Create

or

edit

the

application

EAR

file.

For

example,

to

change

attributes

of

an

existing

application,

click

File->

Open

then

select

the

EAR

file.

3.

In

the

navigation

pane,

select

the

component

instance;

for

example:

v

For

a

session

bean,

expand

ejb_module_instance->

Session

beans

then

select

the

bean

instance.

v

For

a

servlet,

expand

web_application->

Web

Components

then

select

the

servlet

instance.

A

property

dialog

notebook

for

the

component

is

displayed

in

the

property

pane.

4.

In

the

property

pane,

select

the

Advanced

tab.

5.

Set

the

Transaction

type

attribute,

which

defines

the

transactional

manner

in

which

the

container

invokes

a

method.

You

can

set

this

attribute

to

Container

or

Bean,

as

follows:

v

For

a

session

bean

to

use

container-managed

transactions,

set

Container

v

For

a

session

bean

to

use

bean-managed

transactions,

set

Bean

Chapter

13.

Using

the

transaction

service

767

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html

v

For

an

entity

bean,

set

Container

v

For

a

Web

component

(servlet),

set

Bean
6.

In

the

property

pane,

select

the

IBM

Extensions

tab.

7.

Configure

J2EE

component

extensions

attributes

for

extended

local

transaction

containment.

To

enable

management

of

local

transaction

containments,

configure

the

following

EJB

extensions

attributes.

These

attributes

configure,

for

the

component,

the

behavior

of

the

container’s

local

transaction

containment

(LTC)

environment

that

the

container

establishes

whenever

a

global

transaction

is

not

present.

Boundary

Specifies

the

duration

of

a

local

transaction

context.

You

can

set

this

attribute

to

either

Bean

method,

as

described

in

Entity

bean

assembly

settings.

Resolution

control

Specifies

how

the

local

transaction

is

to

be

resolved

before

the

local

transaction

context

ends:

by

the

application

through

user

code

or

by

the

EJB

container.

You

can

set

this

attribute

to

either

Application

or

ContainerAtBoundary,

as

described

in

Entity

bean

assembly

settings.

Unresolved

action

Specifies

the

action

that

the

container

must

take

when

the

local

transaction

context

scope

ends,

if

resources

are

uncommitted

by

an

application

in

a

local

transaction

and

the

Resolution

control

is

set

to

Application.

You

can

set

this

attribute

to

either

Commit

or

Rollback,

as

described

in

Entity

bean

assembly

settings.
8.

[For

EJB

components

only]

For

container-managed

transactions,

configure

how

the

container

must

manage

the

transaction

boundaries

when

delegating

a

method

invocation

to

an

enterprise

bean’s

business

method:

a.

In

the

navigation

pane,

select

Container

Transactions.

This

displays

a

table

of

the

methods

for

enterprise

beans.

b.

For

each

method

of

the

enterprise

bean

set

the

Transaction

attribute

attribute

to

an

appropriate

value,

as

defined

in

Container

transaction

assembly

settings.

Using

bean-managed

transactions

This

topic

describes

how

to

enable

a

session

bean

or

servlet

to

use

bean-managed

transactions,

to

manage

its

own

transactions

directly

instead

of

letting

the

container

manage

the

transactions.

Note:

Entity

beans

cannot

manage

transactions

(so

cannot

use

bean-managed

transactions).

To

enable

a

session

bean

or

servlet

to

use

bean-managed

transactions,

complete

the

following

steps:

1.

5.0.2 +

Set

the

Transaction

type

attribute

in

the

component’s

deployment

descriptor

to

Bean,

as

described

in

Setting

transactional

attributes

in

the

deployment

descriptor.

2.

5.0.1

Set

the

Transaction

type

attribute

in

the

component’s

deployment

descriptor

to

Bean,

as

described

in

Setting

transactional

attributes

in

the

deployment

descriptor.

3.

Write

the

component

code

to

actively

manage

transactions

When

writing

the

code

required

by

a

component

to

manage

its

own

transactions,

remember

the

following

basic

rules:

768

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

An

instance

of

a

stateless

session

bean

cannot

reuse

the

same

transaction

context

across

multiple

methods

called

by

an

EJB

client.

v

An

instance

of

a

stateful

session

bean

can

reuse

the

same

transaction

context

across

multiple

methods

called

by

an

EJB

client.

The

following

code

extract

shows

the

standard

code

required

to

obtain

an

object

encapsulating

the

transaction

context.

There

are

three

basics

steps

involved:

v

The

component

class

must

set

the

value

of

the

javax.ejb.SessionContext

object

reference

in

the

setSessionContext

method.

v

A

javax.transaction.UserTransaction

object

is

created

by

calling

a

lookup

on

″java:comp/UserTransaction″.

v

The

UserTransaction

object

is

used

to

participate

in

the

transaction

by

calling

transaction

methods

such

as

begin

and

commit

as

needed.

If

an

enterprise

bean

begins

a

transaction,

it

must

also

complete

that

transaction

either

by

invoking

the

commit

method

or

the

rollback

method.

Code

example:

Getting

an

object

that

encapsulates

a

transaction

context

...

import

javax.transaction.*;

...

public

class

MyStatelessSessionBean

implements

SessionBean

{

private

SessionContext

mySessionCtx

=null;

...

public

void

setSessionContext

(SessionContext

ctx)throws

EJBException

{

mySessionCtx

=ctx;

}

...

public

float

doSomething(long

arg1)throws

FinderException,EJBException

{

UserTransaction

userTran

=

(UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");

...

//User

userTran

object

to

call

transaction

methods

userTran.begin

();

//Do

transactional

work

...

userTran.commit

();

...

}

...

}

Classifying

WebSphere

transaction

workload

for

WLM

This

topic

describes

how

to

use

transaction

classes

to

classify

client

workload

for

workload

management.

The

workload

is

different

WebSphere

transactions

targeted

to

separate

servant

regions,

each

with

goals

defined

by

appropriate

service

classes.

Each

transaction

is

dispatched

in

its

own

WLM

enclave

in

a

servant

region

process,

and

is

managed

according

to

the

goals

of

its

service

class.

This

topic

describes

steps

to

classify

transaction

workload

as

a

way

of

managing

the

workload

service

objectives.

You

also

need

to

define

the

service

objectives

(goals)

for

the

service

classes

used.

In

addition,

you

must

define

the

service

objectives

of

the

WebSphere

for

z/OS

servers

and

your

business

application

servers.

For

more

information

about

defining

service

objectives

(goals)

for

each

service

class,

see

the

z/OS

MVS

Planning:

Workload

Management

book,

SA22-7602,

for

Chapter

13.

Using

the

transaction

service

769

example

at

http://publibz.boulder.ibm.com/epubs/pdf/iea2w131.pdf,

or

the

z/OS

WLM

Web

page

at

http://www.ibm.com/servers/eserver/zseries/zos/wlm/.

You

can

classify

your

WebSphere

work

using

the

WLM

CB-type

classification

criteria:

v

Server

name

(CN)

v

Server

instance

name

(SI)

v

User

ID

assigned

to

the

transaction

(UI)

v

Transaction

class

(TC)

Note:

To

get

started,

you

do

not

need

to

define

special

classification

rules

and

work

qualifiers,

but

you

may

want

to

do

this

for

your

production

system.

To

classify

work

using

server

and

userid

criteria,

you

use

a

combination

of

the

WLM

Workload

Classification

rules

in

the

WLM

ISPF

dialog

panels.

For

more

information

about

defining

WLM

Classification

rules,

see

the

section

“Workload

management

and

WebSphere

for

z/OS”

in

the

Installation

and

Customization

Guide,

which

includes

an

example

of

classification

rules.

To

classify

work

using

transaction

classes,

you

define

and

use

transaction

class

mappings,

as

described

in

this

task.

The

steps

to

classify

work

using

transaction

classes

are:

1.

Define

transaction

class

mappings

based

on

the

HTTP

virtual

host

name,

port

number,

and

URI

(Universal

Resource

Identifier

-

encoded

address

for

any

resource

on

the

Web)

provided

with

each

work

HTTP

or

HTTPS

request.

a.

Create

a

Transaction

Class

mapping

file

(as

a

simple

text

file).

For

example:

/wasconfig/t5was/MyTrMapFile.txt

b.

Edit

the

Transaction

Class

mapping

file

to

define

each

transaction

class

mapping

that

you

want

to

use.

Define

each

mapping

on

a

separate

line,

using

the

following

syntax:

TransClassMap

host:port

uritemplate

tclass

Note:

In

the

host

or

port

fields,

you

can

use

wildcard

characters

only

for

the

entire

field

as

shown

in

the

following

example.

This

syntax

is

the

same

syntax

as

for

WebSphere

for

z/OS

Version

4.0.1.

For

more

information

about

this

syntax,

see

Transaction

class

mapping

file

entries.

For

example:

TransClassMap

wsc4.washington.ibm.com:9080

/MyIVT/index.*

TCLMYIVT

TransClassMap

wsc4.washington.ibm.com:9080

/MyIVT/ivtejb

TCLMYEJB

TransClassMap

wsc4.washington.ibm.com:*

/SuperSnoop*

TCLSNOOP

TransClassMap

wsc4.washington.ibm.com:*

/ssb/*

TCLSSB

TransClassMap

:

/admin*

TCLADMIN

2.

Specify

the

Transaction

Class

mapping

file

on

the

administrative

properties

for

each

server

that

is

to

handle

work

classified

by

transaction

class.

To

specify

the

Transaction

Class

mapping

file

for

a

server,

use

the

administrative

console

to

complete

the

following

steps:

a.

In

the

navigation

pane,

click

Servers

>

Application

Servers.

b.

In

the

content

pane,

select

the

server

instance,

server_name.

c.

In

the

Additional

Properties

list

in

the

contents

pane,

select

Web

Container.

d.

In

the

Additional

Properties

list

for

the

Web

container,

select

Advanced

Settings.

770

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://publibz.boulder.ibm.com/epubs/pdf/iea2w131.pdf
http://www.ibm.com/servers/eserver/zseries/zos/wlm/

e.

In

the

Transaction

Class

Mapping

field,

type

the

name

of

the

Transaction

Class

mapping

file

that

you

edited

in

an

earlier

step.

For

example:

/wasconfig/t5was/MyTrMapFile.txt

This

sets

the

following

variable

in

the

server’s

was.env

file:

protocol_http_transport_class_mapping_file=/wasconfig/t5was/MyTrMapFile.txt

f.

If

you

want

to

use

a

transaction

class

to

classify

outbound

data

that

is

delivered

in

response

to

HTTP

and

HTTPS

requests,

select

the

TCLASS

option

in

the

Network

QoS

field.

If

you

specify

TCLASS,

WebSphere

for

z/OS

uses

the

transaction

class

value

that

was

used

to

classify

the

inbound

request

to

the

z/OS

Workload

Manager.

The

following

table

shows

classification

rules

for

CB-type

work

in

which

the

default

service

class

is

WSMED

and

has

a

reporting

class

of

RWSDEFLT.

Work

run

in

the

WSPROD

WebSphere

server

is

classified

as

WSMED

with

a

reporting

class

of

RWSPROD,

unless

it

has

a

transaction

class

of

TCLASS1,

TCLASS2,

or

TCLASS2

assigned

through

the

transaction

class

mapping

file

below.

Qualifier

Qualifier

Start

Service

Report

#

type

name

position

Class

Class

-

Default:

WSMED

RWSDEFLT

1

CN

WSPROD

1

WSMED

RWSPROD

2

.

TC

.

TCLASS1

WSFAST

RWSPRD1

2

.

TC

.

TCLASS2

WSMED

RWSPRD2

2

.

TC

.

TCLASS5

WSSLOW

RWSPRD5

1

CN

WSTEST

1

WSSLOW

RTSTEST

2

.

UI

.

USER1

WSMED

RTSTSTU2

2

.

TC

.

TCLASS5

WSSLOW

RTSTST5

The

following

table

shows

how

work

can

be

assigned

a

transaction

class

based

on

its

host

name,

port

number,

or

URI.

For

example,

a

web

request

of

http://ibm.com:80/Webap1/myservlet

handled

by

the

WSPROD

server

would

be

assigned

a

transaction

class

of

TCLASS1,

a

service

class

of

WSFAST,

and

a

reporting

class

of

RWSPRD1

by

the

classification

rules

shown

above.

TransClassMap

www.ibm.com:80

/Webap1/myservlet

TCLASS1

TransClassMap

www.ibm.com:*

/Webap1/myservlet

TCLASS2

TransClassMap

*:443

*

TCLASS3

TransClassMap

:

/Webap1/myservlet

TCLASS4

TransClassMap

www.ibm.com:*

/Webap5/*

TCLASS5

TransClassMap

*

*

TCLASS6

Configuring

transaction

properties

for

an

application

server

Use

this

task

to

configure

the

transaction

properties

for

an

application

server;

for

example,

to

define

the

location

of

the

directory

that

contains

the

transaction

log

or

to

change

default

timeouts

associated

with

transactions.

To

configure

the

transaction

properties

for

an

application

server,

complete

the

following

steps:

1.

Start

the

Administrative

console

2.

In

the

navigation

pane,

select

Servers->

Manage

Application

Servers->

your_app_server

This

displays

the

properties

of

the

application

server,

your_app_server,

in

the

content

pane.

3.

Select

the

Transaction

Service

tab,

to

display

the

properties

page

for

the

transaction

service,

as

two

notebook

pages:

Chapter

13.

Using

the

transaction

service

771

Configuration

The

values

of

properties

defined

in

the

configuration

file.

If

you

change

these

properties,

the

new

values

are

applied

when

the

application

server

next

starts.

Runtime

The

runtime

values

of

properties.

If

you

change

these

properties,

the

new

values

are

applied

immediately,

but

are

overwritten

with

the

Configuration

values

when

the

application

server

next

starts.
4.

Select

the

Configuration

tab,

to

display

the

transaction-related

configuration

properties.

5.

In

the

Total

transaction

lifetime

timeout

field,

type

the

number

of

seconds

a

transaction

can

remain

inactive

before

it

is

ended

by

the

transaction

service.

A

value

of

0

(zero)

indicates

that

there

is

no

timeout

limit.

6.

In

the

Maximum

transaction

timeout

field,

type

the

number

of

seconds

for

which

a

transaction

started

by

or

propagated

into

this

application

server

may

execute

before

it

is

ended

by

the

transaction

service.

A

value

of

0

(zero)

indicates

that

there

is

no

timeout

limit.

7.

In

the

Client

inactivity

timeout

field,

type

the

number

of

seconds

after

which

a

client

is

considered

inactive

and

the

transaction

service

ends

any

transactions

associated

with

that

client.

A

value

of

0

(zero)

indicates

that

there

is

no

timeout

limit.

8.

Click

OK.

9.

Stop

then

restart

the

application

server.

If

you

change

the

transaction

log

directory

configuration

property

to

an

incorrect

directory

name,

the

application

server

will

restart

but

be

unable

to

open

the

transaction

logs.

You

should

change

the

configuration

property

to

a

valid

directory

name,

then

restart

the

application

server.

Transaction

service

settings

Use

this

page

to

modify

transaction

service

settings.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Transaction

Service.

Transaction

log

directory

Specifies

the

location

of

the

JTA

Partner

Log.

This

log

is

used

for

recovery

of

XA

resources.

When

the

application

that

runs

on

the

WebSphere

product

accesses

XA

resources,

the

WebSphere

product

stores

information

about

the

resource

to

enable

XA

transaction

recovery.

Syntax

[location

type

URL

tag]

location

specification

where

v

location

type

URL

tag

specifies

the

optional

location

type

for

the

JTA

Partner

Log:

–

dir://

specifies

that

the

JTA

Partner

Log

location

is

in

a

fully

qualified

HFS

directory

specified

by

location

specification.

dir://

is

the

default.
v

location

specification

specifies

the

location

name

for

the

JTA

Partner

Log:

–

If

the

location

type

URL

tag

is

dir://,

use

a

fully

qualified

HFS

directory

for

the

location

specification.

The

complete

name

of

the

directory

must

be

unique

within

the

WebSphere

node.
Default

dir://install

root/tranlog/server

name

772

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

For

additional

information,

see

the

WebSphere

Application

Server

for

z/OS

V5.0

Installation

and

Customization

manual.

Total

transaction

lifetime

timeout

Specifies

the

maximum

duration,

in

seconds,

for

container

managed

transactions

started

by

this

application

server.

Component

managed

transactions

that

do

not

have

a

time-out

explicitly

set

are

also

assigned

this

value.

Any

transaction

that

is

not

requested

to

complete

before

this

time-out

is

rolled

back.

If

set

to

0,

only

the

maximum

transaction

timeout

configuration

value

applies.

Data

type

Integer

Units

Seconds

Default

120

Range

0

to

2

147

040

Client

inactivity

timeout

Specifies

the

maximum

duration,

in

seconds,

between

transactional

requests

from

a

remote

client.

Any

period

of

client

inactivity

that

exceeds

this

timeout

results

in

the

transaction

rolling

back

in

this

application

server.

If

set

to

0,

there

is

no

timeout

limit.

Data

type

Integer

Units

Seconds

Default

60

Range

0

to

2

147

483

647

Enable

logging

for

heuristic

reporting

Select

this

property

to

enable

the

application

server

to

log

″about

to

commit

one-phase

resource″

events

from

transactions

that

involve

a

one-phase

commit

resource

and

two-phase

commit

resources.

This

property

enables

logging

for

heuristic

reporting.

If

applications

are

configured

to

allow

one-phase

commit

resources

to

participate

in

two-phase

commit

transactions,

reporting

of

heuristic

outcomes

that

occur

at

application

server

failure

requires

extra

information

to

be

written

to

the

transaction

log.

If

enabled,

one

additional

log

write

is

performed

for

any

transaction

that

involves

both

one-

and

two-phase

commit

resources.

No

additional

records

are

written

for

transactions

that

do

not

involve

a

one-phase

commit

resource.

Maximum

Transaction

Timeout

Specifies

the

maximum

duration,

in

seconds,

that

transactions

started

by

or

propagated

into

this

application

server

are

allowed

to

execute.

This

value

limits

the

upper

bound

of

all

other

transaction

related

time-outs.

For

example,

assume

a

component

attempts

to

set

a

transaction

time-out

of

360

seconds,

and

the

Maximum

Transaction

Timeout

setting

is

300

seconds.

The

Maximum

Transaction

Time-out

setting

of

300

seconds

is

used.

Data

type

Integer

Units

Seconds

Default

300

Range

0

to

2

147

040

Chapter

13.

Using

the

transaction

service

773

http://www.ibm.com/software/webservers/appserv/zos_os390/library.html
http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

Using

local

transactions

Local

transaction

containment

(LTC)

support,

and

its

configuration

through

local

transaction

extended

deployment

descriptors,

gives

IBM

WebSphere

Application

Server

application

programmers

a

number

of

advantages.

This

topic

describes

those

advantages

and

how

they

relate

to

the

settings

of

the

local

transaction

extended

deployment

descriptors.

This

topic

also

describes

points

to

consider

to

help

you

best

configure

transaction

support

for

some

example

scenarios

that

use

local

transactions.

Develop

an

enterprise

bean

or

servlet

that

accesses

one

or

more

databases

that

are

independent

and

require

no

coordination.

If

an

enterprise

bean

does

not

need

to

use

global

transactions,

it

is

often

more

efficient

to

deploy

the

bean

with

the

Container

Transaction

deployment

descriptor

Transaction

attribute

set

to

Not

supported

instead

of

Required.

With

the

extended

local

transaction

support

of

IBM

WebSphere

Application

Server,

applications

can

perform

the

same

business

logic

in

an

unspecific

transaction

context

as

they

can

under

a

global

transaction.

An

enterprise

bean,

for

example,

runs

under

an

unspecified

transaction

context

if

it

is

deployed

with

a

Transaction

attribute

of

Not

supported

or

Never.

The

extended

local

transaction

support

provides

a

container-managed,

implicit

local

transaction

boundary

within

which

application

updates

can

be

committed

and

their

connections

cleaned

up

by

the

container.

Applications

can

then

be

designed

with

a

greater

degree

of

independence

from

deployment

concerns.

This

makes

using

a

Transaction

attribute

of

Supports

much

simpler,

for

example,

when

the

business

logic

may

be

called

either

with

or

without

a

global

transaction

context.

An

application

can

follow

a

get-use-close

pattern

of

connection

usage

regardless

of

whether

or

not

the

application

runs

under

a

transaction.

The

application

can

depend

on

the

close

behaving

in

the

same

way

and

not

causing

a

rollback

to

occur

on

the

connection

if

there

is

no

global

transaction.

There

are

many

scenarios

where

ACID

coordination

of

multiple

resource

managers

is

not

needed.

In

such

scenarios

running

business

logic

under

a

Transaction

policy

of

Not

supported

performs

better

than

if

it

had

been

run

under

a

Required

policy.

This

benefit

is

exploited

through

the

Local

Transactions

-

Resolution-control

extended

deployment

setting

of

ContainerAtBoundary.

With

this

setting,

application

interactions

with

resource

providers

(such

as

databases)

are

managed

within

implicit

RMLTs

that

are

both

started

and

ended

by

the

container.

The

RMLTs

are

committed

by

the

container

at

the

configured

Local

Transactions

-

Boundary;

for

example

at

the

end

of

a

method.

If

the

application

returns

control

to

the

container

by

an

exception,

the

container

rolls

back

any

RMLTs

that

it

has

started.

This

usage

applies

to

both

servlets

and

enterprise

beans.

Use

local

transactions

in

a

managed

environment

that

guarantees

clean-up.

Applications

that

want

to

control

RMLTs,

by

starting

and

ending

them

explicitly,

can

use

the

default

Local

Transactions

-

Resolution-control

extended

deployment

setting

of

Application.

In

this

case,

the

container

ensures

connection

cleanup

at

the

boundary

of

the

local

transaction

context.

J2EE

specifications

that

describe

application

use

of

local

transactions

do

so

in

the

manner

provided

by

the

default

setting

of

Local

Transactions

-

774

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Resolution-control=Application

and

Local

Transactions

-

Unresolved-action=Rollback.

By

configuring

the

Local

Transactions

-

Unresolved-action

extended

deployment

setting

to

Commit,

then

any

RMLTs

started

by

the

application

but

not

completed

when

the

local

transaction

containment

ends

(for

example,

when

the

method

ends)

are

committed

by

the

container.

This

usage

applies

to

both

servlets

and

enterprise

beans.

To

determine

how

best

to

configure

the

transaction

support

for

an

application,

depending

on

what

you

want

to

do

with

transactions,

consider

the

following

points.

General

points

v

You

want

to

start

and

end

global

transactions

explicitly

in

the

application

(BMT

session

beans

and

servlets

only).

For

a

session

bean,

set

the

Transaction

type

to

Bean

(to

use

bean-managed

transactions)

in

the

component’s

deployment

descriptor.

(You

do

not

need

to

do

this

for

servlets.)

v

You

want

to

access

several

XA

resources

atomically

across

one

or

more

bean

methods.

In

the

Container

transaction

deployment

descriptor,

set

Transaction

to

Required,

Requires

new,

or

Mandatory.

v

You

want

to

access

several

non-XA

resources

in

a

method

and

want

to

manage

them

independently.

In

the

component’s

deployment

descriptor,

set

Local

Transactions

-

Resolution-control

to

Application

and

set

Local

Transactions

-

Unresolved-action

to

Rollback.

In

the

Container

transaction

deployment

descriptor,

set

Transaction

to

Not

supported.
Points

specific

to

WBI

Server

Foundation

v

You

want

to

use

a

single

non-XA

resource

and

one

or

more

XAResources.

Use

the

Last

Participant

Support

of

WBI

Server

Foundation.
Points

specific

to

WebSphere

Application

Server

for

z/OS

v

You

want

to

use

a

non-XA

resource

along

with

multiple

two-phase

RRS

resources.

A

non-XA

resource

in

a

transaction

along

with

RRS

resources

is

supported

any

time

a

global

transaction

is

active.

A

global

transaction

is

active

when

the

deployment

descriptor

has

Transaction

set

to

Supports,

Required,

Requires

New,

or

Mandatory.

Global

transactions

also

are

active

for

Bean-Managed

deployments.

Managing

active

transactions

Use

this

task

to

manage

transactions

that

are

active

on

an

application

server.

You

can

use

this

task

to

display

a

snapshot

of

all

the

transactions

currently

running

on

an

application

server.

For

each

transaction,

the

following

properties

are

shown:

its

local

ID,

global

ID,

and

current

status.

The

transaction

status

is

shown

as

an

integer

value.

The

values

correspond

to

the

following

status:

0

-

active

1

-

marked

for

rollback

2

-

prepared

3

-

committed

4

-

rolled

back

5

-

unknown

Chapter

13.

Using

the

transaction

service

775

6

-

none

7

-

preparing

8

-

committing

9

-

rolling

back

You

can

also

choose

to

finish

transactions

manually.

Under

normal

circumstances,

transactions

should

run

and

complete

(commit

or

rollback)

automatically,

without

the

need

for

intervention.

However,

in

some

circumstances,

you

may

need

to

finish

a

transaction

manually.

For

example,

you

may

want

to

finish

a

transaction

that

has

become

stuck

polling

a

resource

manager

that

you

know

will

not

become

available

again

within

the

desired

timeframe.

Note:

If

you

choose

to

finish

a

transaction

on

an

application

server,

it

is

recorded

as

having

completed

in

the

transaction

service

logs

for

that

server,

so

will

not

be

eligible

for

recovery

during

server

start

up.

If

you

finish

a

transaction,

you

are

responsible

for

cleaning

up

any

in-doubt

transactions

on

the

resource

managers

affected.

To

manage

the

active

transactions

for

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

In

the

navigation

pane,

select

Servers->

Manage

Application

Servers

This

displays

a

list

of

application

servers

in

the

content

pane.

2.

In

the

content

pane,

click

your_app_server

This

displays

the

properties

of

the

application

server,

your_app_server.

3.

In

the

content

pane,

click

the

Runtime

tab.

This

displays

the

runtime

properties

of

the

application

server.

4.

In

the

Additional

Properties

table,

select

Transaction

Service

This

displays

the

runtime

properties

of

the

Transaction

Service.

5.

Click

Manage

Transactions.

This

displays

a

snapshot

of

all

the

transactions

currently

running

on

the

server.

For

each

transaction,

the

following

properties

are

shown:

its

local

ID,

current

status,

and

global

ID.

6.

If

you

want

to

finish

one

or

more

transactions,

select

the

checkbox

provided

on

the

entry

for

the

transaction,

then

click

Finish.

Alternatively,

to

finish

all

transactions,

select

the

checkbox

in

the

header

of

the

transactions

table,

then

click

Finish.

Interoperating

transactionally

between

application

servers

This

topic

describes

some

considerations

and

actions

that

you

can

take

to

interoperate

transactionally

between

different

types

of

application

servers.

To

interoperate

transactionally

with

a

non-WebSphere

application

server,

WebSphere

Application

Server

switches

dynamically

between

native

transaction

contexts

and

interoperable

OTS

contexts

depending

on

the

capability

of

the

partner

with

which

it

is

interoperating.

WebSphere

for

z/OS

always

interoperates

with

other

OTS

contexts.

Troubleshooting

transactions

Use

this

overview

task

to

help

resolve

a

problem

that

you

think

is

related

to

the

Transaction

service.

776

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

identify

and

resolve

transaction-related

problems,

you

can

use

the

standard

WebSphere

Application

Server

RAS

facilities.

If

you

encounter

a

problem

that

you

think

might

be

related

to

transactions,

complete

the

following

steps:

1.

Check

for

transaction

messages

in

the

administrative

console.

The

Transaction

service

produces

diagnostic

messages

prefixed

by

“WTRN”.

The

error

message

indicates

the

nature

of

the

problem

and

provides

some

detail.

The

associated

message

information

provides

an

explanation

and

any

user

actions

to

resolve

the

problem.

2.

Check

for

Transaction

messages

in

the

activity

log.

Activity

log

messages

produced

by

the

Transaction

service

are

accompanied

by

Log

Analyzer

descriptions.

3.

Check

for

more

messages

in

other

potential

message

output

repositories.

For

more

information

about

a

problem,

check

the

standard

output

file

configured

by

your

administrator.

This

will

contain

more

error

messages

and

other

detailed

information

about

the

problem.

4.

Check

for

messages

related

to

the

application

server’s

transaction

log

directory

when

the

problem

occurred.

Note:

If

you

changed

the

transaction

log

directory

and

a

problem

caused

the

application

server

to

fail

(with

in-flight

transactions)

before

the

server

was

restarted

properly,

the

server

will

next

start

with

the

new

log

directory

and

be

unable

to

automatically

resolve

in-flight

transactions

that

were

recorded

in

the

old

log

directory.

To

resolve

this,

you

can

copy

the

transaction

logs

to

the

new

directory

then

stop

and

restart

the

application

server.

5.

Check

the

RRS

logs

for

any

transaction

activity

involving

RRS-compliant

resources.

IBM

WebSphere

Application

Server

for

z/OS

is

capable

of

supporting

both

XA

and

RRS

resource

managers,

and

of

coordinating

a

mix

of

RRSTransactional

resource

managers

and

XA

capable

resource

managers

under

the

same

global

transaction.

If

your

installation

uses

XA

resource

managers,

RRS

resource

managers,

or

a

mixture

of

both,

you

can

use

the

administrative

console

to

view

transaction

logs

that

contain

information

about

all

transactions.

You

can

find

additional

information

about

RRS

transactions

by

using

the

RRS

panels.

For

additional

information,

see:

v

WebSphere

Application

Server

for

z/OS

V5.0:

Diagnosis,

GA22-7914,

for

information

about

diagnosing

problems

related

to

transactions.

v

WebSphere

Application

Server

for

z/OS

V5.0:

Operations

and

Administration,

GA22-7912,

for

information

about

using

the

RRS

panels

and

transaction

logs.

v

WebSphere

Application

Server

for

z/OS

V5.0:

Installation

and

Customization,

GA22-7910,

for

information

about

working

with

RRS

logs

and

XA

partner

logs

during

restart

and

recovery

mode.

Transaction

service

exceptions

This

topic

lists

the

exceptions

that

can

be

thrown

by

the

WebSphere

Application

Server

transaction

service.

The

exceptions

are

listed

in

the

following

groups:

v

Standard

exceptions

v

Heuristic

exceptions

If

the

EJB

container

catches

a

system

exception

from

the

business

method

of

an

enterprise

bean,

and

the

method

is

running

within

a

container-managed

transaction,

the

container

rolls

back

the

transaction

before

passing

the

exception

on

to

the

client.

For

more

information

about

how

the

container

handles

the

exceptions

thrown

by

the

business

methods

for

beans

with

container-managed

transaction

Chapter

13.

Using

the

transaction

service

777

demarcation,

see

the

section

Exception

handling

in

the

Enterprise

JavaBeans

2.0

specification.

That

section

specifies

the

container’s

action

as

a

function

of

the

condition

under

which

the

business

method

executes

and

the

exception

thrown

by

the

business

method.

It

also

illustrates

the

exception

that

the

client

receives

and

how

the

client

can

recover

from

the

exception.

Standard

exceptions

The

standard

exceptions

such

as

TransactionRequiredException,

TransactionRolledbackException,

and

InvalidTransactionException

are

defined

in

the

Java

Transaction

API

(JTA)

1.0.1

Specification.

InvalidTransactionException

This

exception

indicates

that

the

request

carried

an

invalid

transaction

context.

TransactionRequiredException

exception

This

exception

indicates

that

a

request

carried

a

null

transaction

context,

but

the

target

object

requires

an

active

transaction.

TransactionRolledbackException

exception

This

exception

indicates

that

the

transaction

associated

with

processing

of

the

request

has

been

rolled

back,

or

marked

for

roll

back.

Thus

the

requested

operation

either

could

not

be

performed

or

was

not

performed

because

further

computation

on

behalf

of

the

transaction

would

be

fruitless.

Heuristic

exceptions

A

heuristic

decision

is

a

unilateral

decision

made

by

one

or

more

participants

in

a

transaction

to

commit

or

rollback

updates

without

first

obtaining

the

consensus

outcome

determined

by

the

Transaction

Service.

Heuristic

decisions

are

an

issue

only

after

the

participant

has

been

prepared

and

the

second

phase

of

commit

processing

is

underway.

Heuristic

decisions

are

normally

made

only

in

unusual

circumstances,

such

as

repeated

failures

by

the

transaction

manager

to

communicate

with

a

resource

manage

during

two-phase

commit.

If

a

heuristic

decision

is

taken,

there

is

a

risk

that

the

decision

differs

from

the

consensus

outcome,

resulting

in

a

loss

of

data

integrity.

The

following

list

provides

a

summary

of

the

heuristic

exceptions.

For

more

detail,

see

the

Java

Transaction

API

(JTA)

1.0.1

Specification.

HeuristicRollback

exception

This

exception

is

raised

on

the

commit

operation

to

report

that

a

heuristic

decision

was

made

and

that

all

relevant

updates

have

been

rolled

back.

HeuristicMixed

exception

This

exception

is

raised

on

the

commit

operation

to

report

that

a

heuristic

decision

was

made

and

that

some

relevant

updates

have

been

committed

and

others

have

been

rolled

back.

UserTransaction

interface

-

methods

available

For

details

about

the

methods

available

with

the

UserTransaction

interface,

see

the

WebSphere

Application

Server

application

programming

interface

reference

information

(Javadoc)

or

the

Java

Transaction

API

(JTA)

1.0.1

Specification.

778

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Chapter

14.

Using

naming

Naming

is

used

by

clients

of

WebSphere

Application

Server

applications

most

commonly

to

obtain

references

to

objects

related

to

those

applications,

such

as

Enterprise

JavaBeans

(EJB)

homes.

The

following

steps

outline

the

context

of

Naming

in

the

overall

application

development

and

deployment

process.

Steps

for

this

task

follow:

1.

Develop

your

application

using

either

JNDI

or

CosNaming

(CORBA)

interfaces.

Use

these

interfaces

to

look

up

server

application

objects

that

are

bound

into

the

name

space

and

obtain

references

to

them.

Most

Java

developers

use

the

JNDI

interface.

However,

the

CORBA

CosNaming

interface

is

also

available

for

performing

Naming

operations

on

WebSphere

Application

Server

name

servers

or

other

CosNaming

name

servers.

2.

Assemble

your

application

using

theAssembly

ToolkitorApplication

Assembly

Tool

(AAT).

Application

assembly

is

a

packaging

and

configuration

step

that

is

a

prerequisite

to

application

deployment.

If

the

application

you

are

assembling

is

a

client

to

an

application

running

in

another

process,

you

should

qualify

the

jndiName

values

in

the

deployment

descriptors

for

the

objects

related

to

the

other

application.

Otherwise,

you

may

need

to

override

the

names

with

qualified

names

during

application

deployment.

If

the

objects

have

fixed

qualified

names

configured

for

them,

you

should

use

them

so

that

the

jndiName

values

do

not

depend

on

the

other

application’s

location

within

the

topology

of

the

cell.

3.

Deploy

your

application

Put

your

assembled

application

onto

the

application

server.

If

the

application

you

are

assembling

is

a

client

to

an

application

running

in

another

server

process,

be

sure

to

qualify

the

jndiName

values

for

the

other

application’s

server

objects

if

they

are

not

already

qualified.

For

more

information

on

qualified

names,

see

″Lookup

names

support

in

deployment

descriptors

and

thin

clients.″

4.

Configure

name

space

bindings.

This

step

is

necessary

in

these

cases:

v

Your

deployed

application

is

to

be

accessed

by

legacy

client

applications

running

on

previous

versions

of

WebSphere

Application

Server.

In

this

case,

you

must

configure

additional

name

bindings

for

application

objects

relative

to

the

default

initial

context

for

legacy

clients.

(Version

5

clients

have

a

different

initial

context

from

legacy

clients.)

v

The

application

requires

qualified

name

bindings

for

such

reasons

as:

–

It

will

be

accessed

by

J2EE

client

applications

or

server

applications

running

in

another

server

process.

–

It

will

be

accessed

by

thin

client

applications.

In

this

case,

you

can

configure

name

bindings

as

additional

bindings

for

application

objects.

The

qualified

names

for

the

configured

bindings

are

fixed,

meaning

they

do

not

contain

elements

of

the

cell

topology

that

can

change

if

the

application

is

moved

to

another

server.

Objects

as

bound

into

the

name

space

by

the

system

can

always

be

qualified

with

a

topology-based

name.

You

must

explicitly

configure

a

name

binding

to

use

as

a

fixed

qualified

name.

©

Copyright

IBM

Corp.

2003

779

For

more

information

on

qualified

names,

see

″Lookup

names

support

in

deployment

descriptors

and

thin

clients.″

For

more

information

on

configured

name

bindings,

see

″Configured

name

bindings.″

5.

Troubleshoot

any

problems

that

develop.

If

a

Naming

operation

is

failing

and

you

need

to

verify

whether

certain

name

bindings

exist,

use

the

dumpNameSpace

tool

to

generate

a

dump

of

the

name

space.

Naming

Naming

is

used

by

clients

of

WebSphere

Application

Server

applications

to

obtain

references

to

objects

related

to

those

applications,

such

as

Enterprise

JavaBeans

(EJB)

homes.

These

objects

are

bound

into

a

mostly

hierarchical

structure,

referred

to

as

a

name

space.

In

this

structure,

all

non-leaf

objects

are

called

contexts.

Leaf

objects

can

be

contexts

and

other

types

of

objects.

Naming

operations,

such

as

lookups

and

binds,

are

performed

on

contexts.

All

naming

operations

begin

with

obtaining

an

initial

context.

You

can

view

the

initial

context

as

a

starting

point

in

the

name

space.

The

name

space

structure

consists

of

a

set

of

name

bindings,

each

consisting

of

a

name

relative

to

a

specific

context

and

the

object

bound

with

that

name.

For

example,

the

name

myApp/myEJB

consists

of

one

non-leaf

binding

with

the

name

myApp,

which

is

a

context.

The

name

also

includes

one

leaf

binding

with

the

name

myEJB,

relative

to

myApp.

The

object

bound

with

the

name

myEJB

in

this

example

happens

to

be

an

EJB

home

reference.

The

whole

name

myApp/myEJB

is

relative

to

the

initial

context,

which

you

can

view

as

a

starting

place

when

performing

naming

operations.

You

can

access

and

manipulate

the

name

space

through

a

name

server.

Users

of

a

name

server

are

referred

to

as

naming

clients.

Naming

clients

typically

use

the

Java

Naming

and

Directory

Interface

(JNDI)

to

perform

naming

operations.

Naming

clients

can

also

use

the

Common

Object

Request

Broker

Architecture

(CORBA)

CosNaming

interface.

Typically,

objects

bound

to

the

name

space

are

resources

and

objects

associated

with

installed

applications.

These

objects

are

bound

by

the

system,

and

client

applications

perform

lookup

operations

to

obtain

references

to

them.

Occasionally,

server

and

client

applications

bind

objects

to

the

name

space.

An

application

can

bind

objects

to

transient

or

persistent

partitions,

depending

on

requirements.

In

J2EE

environments,

some

JNDI

operations

are

performed

with

java:

URL

names.

Names

bound

under

these

names

are

bound

to

a

completely

different

name

space

which

is

local

to

the

calling

process.

However,

some

lookups

on

the

java:

name

space

may

trigger

indirect

lookups

to

the

name

server.

Version

5

features

for

name

space

support

The

following

are

features

of

the

WebSphere

Application

Server

new

to

naming

implementation

as

of

Version

5:

v

Name

space

is

distributed.

For

additional

scalability,

the

name

space

for

a

cell

is

distributed

among

various

servers.

Every

server

has

a

name

server.

In

previous

releases,

there

was

only

one

name

server

for

an

entire

administrative

domain.

780

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

In

WebSphere

Application

Server

versions

prior

to

V5,

all

servers

shared

the

same

default

initial

context,

and

everything

was

bound

relative

to

that

same

initial

context.

In

WebSphere

Application

Server

V5,

the

default

initial

context

for

a

server

is

its

server

root.

System

artifacts,

such

as

EJB

homes

and

resources,

are

bound

to

the

server

root

of

the

server

with

which

they

are

associated.

v

Transient

and

persistent

partitions.

The

name

space

is

partitioned

into

transient

areas

and

persistent

areas.

Server

roots

are

transient.

System-bound

artifacts

such

as

EJB

homes

and

resources

are

bound

under

server

roots.

There

is

a

cell

persistent

root,

which

you

can

use

for

cell-scoped

persistent

bindings,

and

a

node

persistent

root,

which

you

can

use

to

bind

objects

with

a

node

scope.

v

System

name

space

structure.

The

name

space

for

the

entire

cell

is

federated

among

all

servers

in

the

cell.

Every

server

process

contains

a

name

server.

All

name

servers

provide

the

same

logical

view

of

the

cell

name

space.

The

various

server

roots

and

persistent

partitions

of

the

name

space

are

interconnected

by

means

of

a

system

name

space.

You

can

use

the

system

name

space

structure

to

traverse

to

any

context

in

the

cell

name

space.

v

Configured

bindings.

You

can

use

the

configuration

graphical

interface

and

script

interfaces

to

configure

bindings

in

various

root

contexts

within

the

name

space.

These

bindings

are

read-only

and

are

bound

by

the

system

at

server

startup.

v

Support

for

CORBA

Interoperable

Naming

Service

(INS)

object

URLs.

WebSphere

Application

Server

V5

contains

support

for

Common

Object

Request

Broker

Architecture

(CORBA)

object

URLs

(corbaloc

and

corbname)

as

Java

Naming

and

Directory

Interface

(JNDI)

provider

URLs

and

lookup

names.

Name

space

logical

view

The

name

space

for

the

entire

cell

is

federated

among

all

servers

in

the

cell.

Every

server

process

contains

a

name

server.

All

name

servers

provide

the

same

logical

view

of

the

cell

name

space.

The

various

server

roots

and

persistent

partitions

of

the

name

space

are

interconnected

by

a

system

name

space.

You

can

use

the

system

name

space

structure

to

traverse

to

any

context

in

a

the

cell’s

name

space.

A

logical

view

of

the

name

space

is

shown

in

the

following

diagram.

Chapter

14.

Using

naming

781

The

bindings

in

the

preceding

diagram

appear

with

solid

arrows,

labeled

in

bold,

and

dashed

arrows,

labeled

in

gray.

Solid

arrows

represent

primary

bindings.

A

primary

binding

is

formed

when

the

associated

subcontext

is

created.

Dashed

arrows

show

linked

bindings.

A

linked

binding

is

formed

when

an

existing

context

is

bound

under

an

additional

name.

Linked

bindings

are

added

for

convenience

or

interoperability

with

previous

WebSphere

Application

Server

versions.

A

cell

name

space

is

composed

of

contexts

which

reside

in

servers

throughout

the

cell.

All

name

servers

in

the

cell

provide

the

same

logical

view

of

the

cell

name

space.

A

name

server

constructs

this

view

at

startup

by

reading

configuration

information.

Each

name

server

has

its

own

local

in-memory

copy

of

the

name

space

and

does

not

require

another

running

server

to

function.

There

are,

however,

a

few

exceptions.

Server

roots

for

other

servers

are

not

replicated

among

all

the

servers.

The

respective

server

for

a

server

root

must

be

running

to

access

that

server

root

context.

In

WebSphere

Application

Server

Network

Deployment

cells,

the

cell

and

node

persistent

areas

can

be

read

even

if

the

deployment

manager

and

respective

node

agent

are

not

running.

However,

the

deployment

manager

must

be

running

to

update

the

cell

persistent

segment,

and

a

node

agent

must

be

running

to

update

its

respective

node

persistent

segment.

Name

space

partitions

There

are

four

major

partitions

in

a

cell

name

space:

v

System

name

space

partition

v

Server

roots

partition

v

Cell

persistent

partition

System Name Space
(Read Only)

Cell Persistent
(Read/Write)

Server Roots
(Read/Write Transient)

Node Persistent
(Read/Write)

X
Y

Z

X
Y

Z

X
Y

Z

X
Y

Z

L
M

N

A
B

C

A
B

C

node
rootBS

nodes

cell root
of foreign cell

cell persistent
root

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objsnode physical

servers

node persistent
root

user transient
sub-ctxs & objs

A
B

C

system artifact
sub-ctxs & objs

BS
server
root

<user-created-bindings>

<physical-server-name><cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

persistent

servers

cell
domain

nodeAgent

clusters

deploymentManager

legacyRoot

cells

cell
domain

cell

cell
root

nodes

persistent

Logical View of a Cell's Name Space

Figure

15.

Name

Space

Logical

View

782

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Node

persistent

partition

System

name

space

partition

The

system

name

space

contains

a

structure

of

contexts

based

on

the

cell

topology.

The

system

structure

supports

traversal

to

all

parts

of

a

cell

name

space

and

to

the

cell

root

of

other

cells,

which

are

configured

as

foreign

cells.

The

root

of

this

structure

is

the

cell

root.

In

addition

to

the

cell

root,

the

system

structure

contains

a

node

root

for

each

node

in

the

cell.

You

can

access

other

contexts

of

interest

specific

to

a

node

from

the

node

root,

such

as

the

node

persistent

root

and

server

roots

for

servers

configured

in

that

node.

All

contexts

in

the

system

name

space

are

read-only.

You

cannot

add,

update,

or

remove

any

bindings.

Server

roots

partition

Each

server

in

a

cell

has

a

server

root

context.

A

server

root

is

specific

to

a

particular

server.

You

can

view

the

server

roots

for

all

servers

in

a

cell

as

being

in

a

transient

read/write

partition

of

the

cell

name

space.

System

artifacts,

such

as

EJB

homes

for

server

applications

and

resources,

are

bound

under

the

server

root

context

of

the

associated

server.

A

server

application

can

also

add

bindings

under

its

server

root.

These

bindings

are

transient.

Therefore,

the

server

application

creates

all

required

bindings

at

application

startup,

so

they

exist

anytime

the

application

is

running.

A

server

cluster

is

composed

of

many

servers

that

are

logically

equivalent.

Each

member

of

the

cluster

has

its

own

server

root.

These

server

roots

are

not

replicated

across

the

cluster.

In

other

words,

adding

a

binding

to

the

server

root

of

one

member

does

not

propagate

it

to

the

server

roots

of

the

other

cluster

members.

To

maintain

the

same

view

across

the

cluster,

you

should

create

all

user

bindings

under

the

server

root

by

the

server

application

at

application

startup

so

that

the

bindings

are

present

under

the

server

root

of

each

cluster

member.

Because

of

Workload

Management

(WLM)

behavior,

a

JNDI

client

outside

a

cluster

has

no

control

over

which

cluster

member’s

server

root

context

becomes

the

target

of

the

JNDI

operation.

Therefore,

you

should

execute

bind

operations

to

the

server

root

of

a

cluster

member

from

within

that

cluster

member

process

only.

Distributing

application

objects

among

many

server

roots

is

a

departure

from

previous

WebSphere

Application

Server

releases,

where

all

system

artifacts

were

bound

under

a

single

root.

This

change

can

affect

the

names

that

clients

use

to

look

up

these

objects.

Server-scoped

bindings

are

relative

to

a

server’s

server

root.

Cell

persistent

partition

The

root

context

of

the

cell

persistent

partition

is

the

cell

persistent

root.

A

binding

created

under

the

cell

persistent

root

is

saved

as

part

of

the

cell

configuration

and

continues

to

exist

until

it

is

explicitly

removed.

Applications

that

need

to

create

additional

persistent

bindings

of

objects

generally

associated

with

the

cell

can

bind

these

objects

under

the

cell

persistent

root.

It

is

important

to

note

that

the

cell

persistent

area

is

not

designed

for

transient,

rapidly

changing

bindings.

The

bindings

are

more

static

in

nature,

such

as

part

of

an

application

setup

or

configuration,

and

are

not

created

at

run

time.

Chapter

14.

Using

naming

783

Note:

In

WebSphere

Application

Server

Network

Deployment

cells,

to

bind

objects

to

the

cell

persistent

root,

ensure

that

the

deployment

manager

and

all

node

agents

in

the

cell

are

running.

An

important

role

of

the

cell

persistent

root

is

as

the

initial

context

for

clients

running

in

previous

WebSphere

Application

Server

versions.

If

you

want

to

access

an

enterprise

bean

by

WebSphere

Application

Server

v4.0.x

and

3.5.x

clients,

you

must

ensure

that

a

binding

for

it

has

been

added

to

the

cell

persistent

root.

You

can

configure

these

additional

bindings

as

cell-scoped

bindings.

Node

persistent

partition

The

node

persistent

partition

is

similar

to

the

cell

partition

except

that

each

node

has

its

own

node

persistent

root.

A

binding

created

under

a

node

persistent

root

is

saved

as

part

of

that

node

configuration

and

continues

to

exist

until

it

is

explicitly

removed.

Applications

that

need

to

create

additional

persistent

bindings

of

objects

associated

with

a

specific

node

can

bind

those

objects

under

that

particular

node’s

node

persistent

root.

As

with

the

cell

persistent

area,

it

is

important

to

note

that

the

node

persistent

area

is

not

designed

for

transient,

rapidly

changing

bindings.

These

bindings

are

more

static

in

nature,

such

as

part

of

an

application

setup

or

configuration,

and

are

not

created

at

run

time.

Note:

In

WebSphere

Application

Server

Network

Deployment

cells,

to

bind

objects

to

a

node

persistent

root,

ensure

the

node

agent

for

the

node

is

running.

Unlike

the

cell

persistent

root,

the

node

persistent

root

plays

no

special

role

in

interoperability

with

WebSphere

Application

Server

clients

of

previous

releases.

Node-scoped

bindings

are

relative

to

a

node’s

node

persistent

root.

Note:

In

the

system

name

space,

there

is

no

persistent

node

root

for

the

deployment

manager

node

because

no

node

agent

or

application

servers

run

in

that

node.

Initial

context

support

All

naming

operations

begin

with

obtaining

an

initial

context.

You

can

view

the

initial

context

as

a

starting

point

in

the

name

space.

Use

the

initial

context

to

perform

naming

operations,

such

as

looking

up

and

binding

objects

in

the

name

space.

Initial

contexts

registered

with

the

ORB

as

initial

references

The

server

root,

cell

persistent

root,

cell

root,

and

node

root

are

registered

with

the

name

server’s

ORB

and

can

be

used

as

an

initial

context.

An

initial

context

is

used

by

CORBA

and

enterprise

bean

applications

as

a

starting

point

for

name

space

lookups.

The

keys

for

these

roots

as

recognized

by

the

ORB

are

shown

in

the

following

table:

Root

Context

Initial

Reference

Key

Server

Root

NameServiceServerRoot

Cell

Persistent

Root

NameServiceCellPersistentRoot

Cell

Root

NameServiceCellRoot,

NameService

784

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Node

Root

NameServiceNodeRoot

A

server

root

initial

context

is

the

server

root

context

for

the

specific

server

you

are

accessing.

Similarly,

a

node

root

initial

context

is

the

node

root

for

the

server

being

accessed.

You

can

use

the

previously

mentioned

keys

in

CORBA

INS

object

URLs

(corbaloc

and

corbaname)

and

as

an

argument

to

an

ORB

resolve_initial_references

call.

For

examples,

see

CORBA

and

JNDI

programming

examples,

which

show

how

to

get

an

initial

context.

Default

initial

contexts

The

default

initial

context

depends

on

the

type

of

client.

Different

categories

of

clients

and

the

corresponding

default

initial

context

follow.

v

WebSphere

Application

Server

V5

JNDI

interface

implementation

The

JNDI

interface

is

used

by

EJB

applications

to

perform

name

space

lookups.

WebSphere

Application

Server

clients

by

default

use

the

WebSphere

Application

Server

CosNaming

JNDI

plug-in

implementation.

The

default

initial

context

for

clients

of

this

type

is

the

server

root

of

the

server

specified

by

the

provider

URL.

For

more

details,

refer

to

the

JNDI

programming

examples

on

getting

initial

contexts.

v

WebSphere

Application

Server

JNDI

interface

implementation

prior

to

V5

WebSphere

Application

Server

clients

running

in

releases

prior

to

WebSphere

Application

Server

V5

by

default

use

WebSphere

Application

Server’s

v4.0

CosNaming

JNDI

plug-in

implementation.

The

default

initial

context

for

clients

of

this

type

is

the

cell

persistent

root,

also

known

as

the

legacy

root.

v

Other

JNDI

implementation

Some

applications

can

perform

name

space

lookups

with

a

non-WebSphere

Application

Server

CosNaming

JNDI

plug-in

implementation.

Assuming

the

key

NamingContext

is

used

to

obtain

the

initial

context,

the

default

initial

context

for

clients

of

this

type

is

the

cell

root.

v

CORBA

The

standard

CORBA

client

obtains

an

initial

org.omg.CosNaming.NamingContext

reference

with

the

key

NamingContext.

The

initial

context

in

this

case

is

the

cell

root.

Lookup

names

support

in

deployment

descriptors

and

thin

clients

Server

objects,

such

as

EJB

homes,

are

bound

relative

to

the

server

root

context

for

the

server

in

which

the

application

is

installed.

Other

objects,

such

as

resources,

can

also

be

bound

to

a

specific

server

root.

The

names

used

to

look

up

these

objects

must

be

qualified

so

as

to

select

the

correct

server

root.

This

is

a

departure

from

previous

versions

of

WebSphere

Application

Server,

where

these

objects

were

all

bound

under

a

single

root

context.

This

section

discusses

what

relative

and

qualified

names

are,

when

they

can

be

used,

and

how

you

can

construct

them.

Relative

names

All

names

are

relative

to

a

context.

Therefore,

a

name

that

can

be

resolved

from

one

context

in

the

name

space

cannot

necessarily

be

resolved

from

another

context

in

the

name

space.

This

point

is

significant

because

the

system

binds

objects

with

names

relative

to

the

server

root

context

of

the

server

in

which

the

application

is

Chapter

14.

Using

naming

785

installed.

Each

server

has

its

own

server

root

context.

The

initial

JNDI

context

is

by

default

the

server

root

context

for

the

server

identified

by

the

provider

URL

used

to

obtain

the

initial

context.

(Typically,

the

URL

consists

of

a

host

and

port.)

For

applications

running

in

a

server

process,

the

default

initial

JNDI

context

is

the

server

root

for

that

server.

A

relative

name

will

resolve

successfully

when

the

initial

context

is

obtained

from

the

server

which

contains

the

target

object,

but

it

will

not

resolve

successfully

from

an

initial

context

obtained

from

another

server.

If

all

clients

of

a

server

application

run

in

the

same

server

process

as

the

application,

all

objects

associated

with

that

application

are

bound

to

the

same

initial

context

as

the

clients’

initial

context.

In

this

case,

only

names

relative

to

the

server’s

server

root

context

are

required

to

access

these

server

objects.

Frequently,

however,

a

server

application

has

clients

that

run

outside

the

application’s

server

process.

The

initial

context

for

these

clients

can

be

different

from

the

server

application’s

initial

context,

and

lookups

on

the

relative

names

for

server

objects

may

fail.

These

clients

need

to

use

the

qualified

name

for

the

server

objects.

This

point

must

be

considered

when

setting

up

the

jndiName

values

in

a

J2EE

client

application

deployment

descriptors

and

when

constructing

lookup

names

in

thin

clients.

Qualified

names

resolve

successfully

from

any

initial

context

in

the

cell.

Qualified

names

All

names

are

relative

to

a

context.

Here,

the

term

qualified

name

refers

to

names

that

can

be

resolved

from

any

initial

context

in

a

cell.

This

action

is

accomplished

by

using

names

that

navigate

to

the

same

context,

the

cell

root.

The

rest

of

the

qualified

name

is

then

relative

to

the

cell

root

and

uniquely

identifies

an

object

throughout

the

cell.

All

initial

contexts

in

a

server

(that

is,

all

naming

contexts

in

a

server

registered

with

the

ORB

as

an

initial

reference)

contain

a

binding

with

the

name

cell,

which

links

back

to

the

cell

root

context.

All

qualified

names

begin

with

the

string

cell/

to

navigate

from

the

current

initial

context

back

to

the

cell

root

context.

A

qualified

name

for

an

object

is

the

same

throughout

the

cell.

The

name

can

be

topology-based,

or

some

fixed

name

bound

under

the

cell

persistent

root.

Topology-based

names,

described

in

more

detail

below,

navigate

through

the

system

name

space

to

reach

the

target

object.

A

fixed

name

bound

under

the

cell

persistent

root

has

the

same

qualified

name

throughout

the

cell

and

is

independent

of

the

topology.

Creating

a

fixed

name

under

the

cell

persistent

root

for

a

server

application

object

requires

an

extra

step

when

the

server

application

is

installed,

but

this

step

eliminates

impacts

to

clients

when

the

application

is

moved

to

a

different

location

in

the

cell

topology.

The

process

for

creating

a

fixed

name

is

described

later

in

this

section.

Generally

speaking,

you

must

use

qualified

names

for

EJB

jndiName

values

in

a

J2EE

client

application

deployment

descriptors

and

for

EJB

lookup

names

in

thin

clients.

The

only

exception

is

when

the

initial

context

is

obtained

from

the

server

in

which

the

target

object

resides.

For

example,

a

session

bean

which

is

a

client

to

an

entity

bean

can

use

a

relative

name

if

the

two

beans

run

in

the

same

server.

If

the

session

bean

and

entity

beans

run

in

different

servers,

the

jndiName

for

the

entity

bean

must

be

qualified

in

the

session

bean’s

deployment

descriptors.

The

same

requirement

may

be

true

for

resources

as

well,

depending

on

the

scope

of

the

resource.

v

Topology-based

names

The

system

name

space

partition

in

a

cell’s

name

space

reflects

the

cell’s

topology.

This

structure

can

be

navigated

to

reach

any

object

bound

into

the

786

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

cell’s

name

space.

Topology-based

qualified

names

include

elements

from

the

topology

which

reflect

the

object’s

location

within

the

cell.

For

a

system-bound

object,

such

as

an

EJB

home,

the

form

for

a

topology-based

qualified

name

depends

on

whether

the

object

is

bound

to

a

single

server

or

cluster.

Both

forms

are

described

below.

Single

Server

An

object

bound

in

a

single

server

has

a

topology-based

qualified

name

of

the

following

form:

cell/nodes/nodeName/servers/serverName/relativeJndiName

where

nodeName

and

serverName

are

the

node

name

and

server

name

for

the

server

where

the

object

is

bound,

and

relativeJndiName

is

the

unqualified

name

of

the

object;

that

is,

the

object’s

name

relative

to

its

server’s

server

root

context.

Server

Cluster

An

object

bound

in

a

server

cluster

has

a

topology-based

qualified

name

of

the

following

form:

cell/clusters/clusterName/relativeJndiName

where

clusterName

is

the

name

of

the

server

cluster

where

the

object

is

bound,

and

relativeJndiName

is

the

unqualified

name

of

the

object;

that

is,

the

object’s

name

relative

to

a

cluster

member’s

server

root

context.
v

Fixed

names

It

is

possible

to

create

a

fixed

name

for

a

server

object

so

that

the

qualified

name

is

independent

of

the

cell

topology.

This

quality

is

desirable

when

clients

of

the

application

run

in

other

server

processes

or

as

pure

clients.

Fixed

names

have

the

advantage

of

not

changing

if

the

object

is

moved

to

another

server.

The

jndiName

values

in

deployment

descriptors

for

a

J2EE

client

application

can

reference

the

qualified

fixed

name

for

a

server

object

regardless

of

the

cell

topology

on

which

the

client

or

server

application

is

being

installed.

Defining

a

cell-wide

fixed

name

for

a

server

application

object

requires

an

extra

step

after

the

server

application

is

installed.

That

is,

a

binding

for

the

object

must

be

created

under

the

cell

persistent

root.

A

fixed

name

bound

under

the

cell

persistent

root

can

be

any

name,

but

all

names

under

the

cell

persistent

root

must

be

unique

within

the

cell

because

the

cell

persistent

root

is

global

to

the

entire

cell.

A

qualified

fixed

name

has

the

form:

cell/persistent/fixedName

where

fixedName

is

an

arbitrary

fixed

name.

The

binding

can

be

created

programmatically

(for

example,

using

JNDI).

However,

it

is

probably

more

convenient

to

configure

a

cell-scoped

binding

for

the

server

object.

You

must

keep

the

programmatic

or

configured

binding

up-to-date.

Configured

EJB

bindings

are

based

on

the

location

of

the

enterprise

bean

within

the

cell

topology,

and

moving

the

EJB

application

to

another

single

server

or

to

a

server

cluster,

for

example,

requires

the

configured

binding

to

be

updated.

Similar

changes

affect

an

EJB

home

reference

programmatically

bound

so

that

the

fixed

name

would

need

to

be

rebound

with

a

current

reference.

However,

for

J2EE

clients,

the

jndiName

value

for

the

object,

and

for

thin

clients,

the

lookup

name

Chapter

14.

Using

naming

787

for

the

object,

remains

the

same.

In

other

words,

clients

that

access

objects

by

fixed

names

are

not

affected

by

changes

to

the

configuration

of

server

applications

they

access.

JNDI

support

in

WebSphere

Application

Server

IBM

WebSphere

Application

Server

includes

a

name

server

to

provide

shared

access

to

Java

components,

and

an

implementation

of

the

javax.naming

JNDI

package

which

supports

user

access

to

the

WebSphere

Application

Server

name

server

through

the

JNDI

naming

interface.

WebSphere

Application

Server

does

not

provide

implementations

for:

v

javax.naming.directory

or

v

javax.naming.ldap

packages

Also,

WebSphere

Application

Server

does

not

support

interfaces

defined

in

the

javax.naming.event

package.

However,

to

provide

access

to

LDAP

servers,

the

development

kit

shipped

with

WebSphere

Application

Server

supports

Sun’s

implementation

of:

v

javax.naming.ldap

and

v

com.sun.jndi.ldap.LdapCtxFactory

WebSphere

Application

Server’s

JNDI

implementation

is

based

on

version

1.2

of

the

JNDI

interface,

and

was

tested

with

Version

1.2.1

of

Sun’s

JNDI

Service

Provider

Interface

(SPI).

The

default

behavior

of

this

JNDI

implementation

is

adequate

for

most

users.

However,

users

with

specific

requirements

can

control

certain

aspects

of

JNDI

behavior.

Developing

applications

that

use

JNDI

References

to

EJB

homes

and

other

artifacts

such

as

data

sources

are

bound

to

the

WebSphere

name

space.

These

objects

can

be

obtained

through

the

JNDI

interface.

Before

you

can

perform

any

JNDI

operations,

you

need

to

get

an

initial

context.

You

can

use

the

initial

context

to

look

up

objects

bound

to

the

WebSphere

name

space.

These

examples

describe

how

to

get

an

initial

context

and

how

to

perform

lookup

operations.

v

Getting

the

default

initial

context

v

Getting

an

initial

context

by

setting

the

provider

URL

property

v

Setting

the

provider

URL

property

to

select

a

different

root

context

as

the

initial

context

v

Looking

up

an

EJB

home

with

JNDI

v

Looking

up

a

JavaMail

session

with

JNDI

In

these

examples,

the

default

behavior

of

features

specific

to

WebSphere’s

JNDI

Context

implementation

is

used.

WebSphere

Application

Server’s

JNDI

context

implementation

includes

special

features.

JNDI

caching

enhances

performance

of

repeated

lookup

operations

on

the

same

objects.

Name

syntax

options

offer

a

choice

of

a

name

syntaxes,

one

optimized

for

typical

JNDI

clients,

and

one

optimized

for

interoperability

with

788

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

CosNaming

applications.

Most

of

the

time,

the

default

behavior

of

these

features

is

the

preferred

behavior.

However,

sometimes

you

should

modify

the

behavior

for

specific

situations.

JNDI

caching

and

name

syntax

options

are

associated

with

a

javax.naming.InitialContext

instance.

To

select

options

for

these

features,

set

properties

that

are

recognized

by

the

WebSphere

Application

Server’s

initial

context

factory.

To

set

JNDI

caching

or

name

syntax

properties

which

will

be

visible

to

WebSphere

Application

Server’s

initial

context

factory,

follow

the

following

steps.

1.

Optional:

Configure

JNDI

caches

JNDI

caching

can

greatly

increase

performance

of

JNDI

lookup

operations.

By

default,

JNDI

caching

is

enabled.

In

most

situations,

this

default

is

the

desired

behavior.

However,

in

specific

situations,

use

the

other

JNDI

cache

options.

Objects

are

cached

locally

as

they

are

looked

up.

Subsequent

lookups

on

cached

objects

are

resolved

locally.

However,

cache

contents

can

become

stale.

This

situation

is

not

usually

a

problem,

since

most

objects

you

look

up

do

not

change

frequently.

If

you

need

to

look

up

objects

which

change

relatively

frequently,

change

your

JNDI

cache

options.

JNDI

clients

can

use

several

properties

to

control

cache

behavior.

You

can

set

properties:

v

From

the

command

line

by

entering

the

actual

string

value.

For

example:

java

-Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v

In

a

jndi.properties

file

by

creating

a

file

named

jndi.properties

as

a

text

file

with

the

desired

properties

settings.

For

example:

...

com.ibm.websphere.naming.jndicache.cacheobject=none

...

Include

the

file

as

the

beginning

of

the

classpath,

so

that

the

class

loader

loads

your

copy

of

jndi.properties

before

any

other

copies.

v

Within

a

Java

program

by

using

the

PROPS.JNDI_CACHE*

Java

constants,

defined

in

the

com.ibm.websphere.naming.PROPS

file.

The

constant

definitions

follow:

public

static

final

String

JNDI_CACHE_OBJECT

=

"com.ibm.websphere.naming.jndicache.cacheobject";

public

static

final

String

JNDI_CACHE_OBJECT_NONE

=

"none";

public

static

final

String

JNDI_CACHE_OBJECT_POPULATED

=

"populated";

public

static

final

String

JNDI_CACHE_OBJECT_CLEARED

=

"cleared";

public

static

final

String

JNDI_CACHE_OBJECT_DEFAULT

=

JNDI_CACHE_OBJECT_POPULATED;

public

static

final

String

JNDI_CACHE_NAME

=

"com.ibm.websphere.naming.jndicache.cachename";

public

static

final

String

JNDI_CACHE_NAME_DEFAULT

=

"providerURL";

public

static

final

String

JNDI_CACHE_MAX_LIFE

=

"com.ibm.websphere.naming.jndicache.maxcachelife";

public

static

final

int

JNDI_CACHE_MAX_LIFE_DEFAULT

=

0;

public

static

final

String

JNDI_CACHE_MAX_ENTRY_LIFE

=

"com.ibm.websphere.naming.jndicache.maxentrylife";

public

static

final

int

JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT

=

0;

To

use

the

previous

properties

in

a

Java

program,

add

the

property

setting

to

a

hashtable

and

pass

it

to

the

InitialContext

constructor

as

follows:

Chapter

14.

Using

naming

789

java.util.Hashtable

env

=

new

java.util.Hashtable();

...

env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_NONE);

//

Disable

caching

...

javax.naming.Context

initialContext

=

new

javax.naming.InitialContext(env);

2.

Optional:

Specify

the

name

syntax

Most

WebSphere

applications

use

JNDI

to

look

up

EJB

objects

and

do

not

need

to

look

up

objects

bound

by

CORBA

applications.

Therefore,

the

default

name

syntax

used

for

JNDI

names

is

the

most

convenient.

If

your

application

needs

to

look

up

objects

bound

by

CORBA

applications,

you

may

need

to

change

your

name

syntax

so

that

all

CORBA

CosNaming

names

can

be

represented.

JNDI

clients

can

set

the

name

syntax

by

setting

a

property.

The

property

setting

is

applied

by

the

initial

context

factory

when

you

instantiate

a

new

java.naming.InitialContext

object.

Names

specified

in

JNDI

operations

on

the

initial

context

are

parsed

according

to

the

specified

name

syntax.

You

can

set

the

property:

v

From

the

command

line

by

entering

the

actual

string

value.

For

example:

java

-Dcom.ibm.websphere.naming.name.syntax=ins

v

In

a

jndi.properties

file

by

creating

a

file

named

jndi.properties

as

a

text

file

with

the

desired

properties

settings.

For

example:

...

com.ibm.websphere.naming.name.syntax=ins

...

Include

the

file

as

the

beginning

of

the

classpath,

so

that

the

class

loader

loads

your

copy

of

jndi.properties

before

any

other

copies.

v

Within

a

Java

program

by

using

the

PROPS.NAME_SYNTAX*

Java

constants,

defined

in

the

com.ibm.websphere.naming.PROPS

file.

The

constant

definitions

follow:

public

static

final

String

NAME_SYNTAX

=

"com.ibm.websphere.naming.name.syntax";

public

static

final

String

NAME_SYNTAX_JNDI

=

"jndi";

public

static

final

String

NAME_SYNTAX_INS

=

"ins";

To

use

the

previous

properties

in

a

Java

program,

add

the

property

setting

to

a

hashtable

and

pass

it

to

the

InitialContext

constructor

as

follows:

java.util.Hashtable

env

=

new

java.util.Hashtable();

...

env.put(PROPS.NAME_SYNTAX,

PROPS.NAME_SYNTAX_INS);

//

Set

name

syntax

to

INS

...

javax.naming.Context

initialContext

=

new

javax.naming.InitialContext(env);

Example:

Getting

the

default

initial

context

This

example

below

gets

the

default

initial

context.

That

is,

no

provider

URL

is

passed

to

the

javax.naming.InitialContext

constructor.

The

following

section

explains

the

process

of

determining

the

address

of

the

bootstrap

server

to

use

to

obtain

the

initial

context.

...

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Context

initialContext

=

new

InitialContext();

...

The

default

initial

context

returned

depends

the

runtime

environment

of

the

JNDI

client.

The

initial

context

returned

in

the

various

environments

are

listed

below:

790

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Thin

client:

The

server

root

context

of

the

server

running

on

the

local

host

at

port

2809.

v

Pure

client:

–

The

context

specified

by

the

java.naming.provider.url

property

passed

to

launchClient

command

with

the

-CCD

command

line

parameter.

The

context

usually

will

be

the

server

root

context

of

the

server

at

the

address

specified

in

the

URL,

although

it

is

possible

to

construct

a

corbaname

or

corbaloc

URL

which

resolves

to

some

other

context.

–

If

no

provider

URL

was

specified,

the

server

root

context

of

the

server

running

on

the

host

and

port

specified

by

the

-CCBootstrapHost

-CCBootstrapPort

command

line

parameters.

The

default

host

is

the

local

host,

and

the

default

port

is

2809.
v

Server

process:

The

server

root

context

for

that

process.

Even

though

no

provider

URL

is

explicitly

specified

in

the

above

example,

the

InitialContext

may

find

a

provider

URL

defined

in

other

places

that

it

searches

for

property

settings.

Users

of

properties

which

affect

ORB

initialization

should

read

the

rest

of

this

section

for

a

deeper

understanding

of

exactly

how

initial

contexts

are

obtained,

which

has

changed

from

previous

releases.

Determining

which

server

is

used

to

obtain

the

initial

context

WebSphere

Application

Server

name

servers

are

CORBA

CosNaming

name

servers,

and

WebSphere

Application

Server

provides

a

CosNaming

JNDI

plug-in

implementation

for

JNDI

clients

to

perform

naming

operations

on

WebSphere

Application

Server

name

spaces.

The

WebSphere

Application

Server

CosNaming

plug-in

implementation

is

selected

through

a

JNDI

property

that

is

passed

to

the

InitialContext

constructor.

This

property

is

java.naming.factory.initial,

and

it

specifies

the

initial

context

factory

implementation

to

use

to

obtain

an

initial

context.

The

factory

returns

a

javax.naming.Context

instance,

which

is

part

of

its

implementation.

The

WebSphere

Application

Server

initial

context

factory,

com.ibm.websphere.naming.WsnInitialContextFactory,

is

typically

used

by

WebSphere

Application

Server

applications

to

perform

JNDI

operations.

The

WebSphere

Application

Server

run-time

environment

is

set

up

to

use

this

WebSphere

Application

Server

initial

context

factory

if

one

is

not

specified

explicitly

by

the

JNDI

client.

When

the

initial

context

factory

is

invoked,

an

initial

context

is

obtained.

The

following

paragraphs

explain

how

the

WebSphere

Application

Server

initial

context

factory

obtains

the

initial

context

in

client

and

server

environments.

v

Understanding

the

registration

of

initial

references

in

server

processes

Every

WebSphere

Application

Server

has

an

ORB

used

to

receive

and

dispatch

invocations

on

objects

running

in

that

server.

Services

running

in

the

server

process

can

register

initial

references

with

the

ORB.

Each

initial

reference

is

registered

under

a

key,

which

is

a

string

value.

An

initial

reference

can

be

any

CORBA

object.

WebSphere

Application

Server

name

servers

register

several

initial

contexts

as

initial

references

under

predefined

keys.

Each

name

server

initial

reference

is

an

instance

of

the

interface

org.omg.CosNaming.NamingContext.

v

Obtaining

initial

references

in

pure

client

processes

Pure

JNDI

clients,

that

is,

JNDI

clients

which

are

not

running

in

a

WebSphere

Application

Server

process,

also

have

an

ORB

instance.

This

client

ORB

instance

Chapter

14.

Using

naming

791

can

be

passed

to

the

InitialContext

constructor,

but

typically

the

initial

context

factory

creates

and

initializes

the

client

ORB

instance

transparently.

A

client

ORB

can

be

initialized

with

initial

references,

but

the

initial

references

most

likely

resolve

to

objects

running

in

some

server.

The

initial

context

factory

does

not

define

any

default

initial

references

when

it

initializes

an

ORB.

If

the

resolve_initial_references

method

is

invoked

on

the

client

ORB

when

no

initial

references

have

been

configured,

the

method

invocation

fails.

This

condition

is

typical

for

pure

client

processes.

To

obtain

an

initial

NamingContext

reference,

the

initial

context

factory

must

invoke

string_to_object

with

an

IIOP

type

CORBA

object

URL,

such

as

corbaloc:iiop:myhost:2809.

The

URL

specifies

the

address

of

the

server

from

which

to

obtain

the

initial

context.

The

host

and

port

information

is

extracted

from

the

provider

URL

passed

to

the

InitialContext

constructor.

If

no

provider

URL

is

defined,

the

WebSphere

Application

Server

initial

context

factory

uses

the

default

provider

URL

of

corbaloc:iiop:localhost:2809.

The

string_to_object

ORB

method

resolves

the

URL

and

communicates

with

the

target

server

ORB

to

obtain

the

initial

reference.

v

Obtaining

initial

references

in

server

processes

If

the

JNDI

client

is

running

in

a

WebSphere

Application

Server

process,

the

initial

context

factory

obtains

a

reference

to

the

server

ORB

instance

if

the

JNDI

client

does

not

provide

an

ORB

instance.

Typically,

JNDI

clients

running

in

server

processes

use

the

server

ORB

instance;

that

is,

they

do

not

pass

an

ORB

instance

to

the

InitialContext

constructor.

The

name

server

which

is

running

in

the

server

process

sets

a

provider

URL

as

a

java.lang.System

property

to

serve

as

the

default

provider

URL

for

all

JNDI

clients

in

the

process.

This

default

provider

URL

is

corbaloc:rir:/NameServiceServerRoot.

This

URL

resolves

to

the

server

root

context

for

that

server.

(The

URL

is

equivalent

to

invoking

resolve_initial_references

on

the

ORB

with

a

key

of

NameServiceServerRoot.

The

name

server

registers

the

server

root

context

as

an

initial

reference

under

that

key.)

v

Understanding

the

legacy

ORB

protocol

Previous

versions

of

WebSphere

Application

Server

used

a

different

ORB

implementation,

which

used

a

legacy

protocol

in

contrast

with

the

Interoperable

Name

Service

(INS)

protocol

now

used.

This

change

has

affected

the

implementation

of

the

WebSphere

Application

Server

initial

context

factory.

Certain

types

of

pure

clients

can

experience

different

behavior

when

getting

initial

JNDI

contexts

as

compared

to

previous

releases

of

WebSphere

Application

Server.

This

behavior

is

discussed

in

more

detail

below.

The

following

ORB

properties

are

used

with

the

legacy

ORB

protocol

for

ORB

initialization

and

are

now

deprecated:

–

com.ibm.CORBA.BootstrapHost

–

com.ibm.CORBA.BootstrapPort

The

new

INS

ORB

is

different

in

a

major

respect,

in

that

it

exhibits

no

default

behavior

if

no

initial

references

are

defined.

In

the

legacy

ORB,

the

bootstrap

host

and

port

values

defaulted

to

localhost

and

900.

All

initial

references

were

obtained

from

the

server

running

on

the

bootstrap

host

and

port.

So,

if

the

ORB

user

provided

no

bootstrap

host

and

port,

all

initial

references

are

resolved

from

the

server

running

on

the

local

host

at

port

900.

The

INS

ORB

has

no

concept

of

bootstrap

host

or

bootstrap

port.

All

initial

references

are

defined

independently.

That

is,

different

initial

references

could

resolve

to

different

servers.

If

ORB.resolve_initial_references

is

invoked

with

a

key

such

that

the

ORB

is

not

initialized

with

an

initial

reference

having

that

key,

the

call

fails.

792

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

In

previous

releases

of

WebSphere

Application

Server,

the

initial

context

factory

invoked

resolve_initial_references

on

the

ORB

in

the

absence

of

any

provider

URL.

This

action

succeeded

if

a

name

server

at

the

default

bootstrap

host

and

port

was

running.

Today,

with

the

INS

ORB,

this

would

fail.

(Actually,

the

ORB

would

fall

back

to

the

legacy

protocol

during

the

deprecation

period,

but

when

the

legacy

protocol

is

no

longer

supported,

the

operation

would

fail.)

The

initial

context

factory

now

uses

a

default

provider

URL

of

corbaloc:iiop:localhost:2809,

and

invokes

string_to_object

with

the

provider

URL.

This

operation

preserves

the

behavior

that

pure

clients

in

previous

releases

experienced

when

they

set

no

ORB

bootstrap

properties

or

provider

URL.

However,

this

different

initial

context

factory

implementation

changes

the

behavior

experienced

by

certain

legacy

pure

clients,

which

do

not

specify

a

provider

URL:

–

Clients

which

set

the

ORB

bootstrap

properties

listed

above

when

getting

an

initial

context.

–

Clients

which

supply

their

own

ORB

instance

to

the

InitialContext

constructor.

There

are

two

ways

to

circumvent

this

change

of

behavior:

–

Always

specify

an

IIOP

type

provider

URL.

This

approach

does

not

depend

on

the

bootstrap

host

and

port

properties

and

continues

to

work

when

support

for

the

bootstrap

host

and

port

properties

is

removed.

For

example,

you

can

express

bootstrap

host

and

port

property

values

of

myHost

and

2809,

respectively,

as

corbaloc:iiop:myHost:2809.

–

Use

an

rir

type

provider

URL:

-

Specify

corbaloc:rir:/NameServiceServerRoot

if

the

ORB

is

initialized

to

use

a

WebSphere

Application

Server

5

server

as

the

bootstrap

server.

-

Specify

corbaname:rir:/NameService#domain/legacyRoot

if

the

ORB

is

initialized

to

use

a

WebSphere

Application

Server

4.0.x

server

as

the

bootstrap

server.

-

Specify

corbaloc:rir:/NameService

if

the

ORB

is

initialized

to

use

a

server

other

than

a

WebSphere

Application

Server

5

or

4.0.x

server

as

the

bootstrap

server.

URLs

of

this

type

are

equivalent

to

invoking

resolve_initial_references

on

the

ORB

with

the

specified

key.

If

the

bootstrap

host

and

port

properties

are

being

used

to

initialize

the

ORB,

this

approach

will

not

work

when

the

bootstrap

and

host

properties

are

no

longer

supported.
v

The

InitialContext

constructor

search

order

for

JNDI

properties

If

the

code

snippet

shown

at

the

beginning

of

this

section

is

executed

by

an

application,

the

bootstrap

server

depends

on

the

value

of

the

property,

java.naming.provider.url.

If

the

property

is

not

set

(in

server

processes

the

default

value

is

set

as

a

system

property),

the

default

host

of

localhost

and

default

port

of

2809

are

used

as

the

address

of

the

server

from

which

to

obtain

the

initial

context.

The

JNDI

specification

describes

where

the

InitialContext

constructor

looks

for

java.naming.provider.url

property

settings,

but

briefly,

the

property

is

picked

up

from

the

following

places

in

the

order

shown:

1.

The

InitialContext

constructor.

This

does

not

apply

to

the

above

example

since

the

example

uses

the

empty

InitalContext

constructor.

2.

System

environment.

You

can

add

JNDI

properties

to

the

system

environment

as

an

option

on

the

Java

command

invocation

and

by

program

code.

The

recommended

way

to

set

the

provider

URL

in

the

system

environment

is

as

an

option

supplied

to

the

Java

command

invocation.

Setting

the

provider

URL

in

this

manner

is

not

temporal,

so

that

getting

a

default

initial

context

will

always

yield

the

same

result.

It

is

generally

Chapter

14.

Using

naming

793

recommended

that

program

code

not

set

the

provider

URL

property

in

the

system

environment

because

as

a

side-effect,

this

could

adversely

affect

other,

possibly

unrelated,

code

running

elsewhere

in

the

same

process.

3.

jndi.properties

file.

There

may

be

many

jndi.properties

files

that

are

within

the

scope

of

the

class

loader

in

effect.

All

jndi.properties

files

are

used

for

setting

JNDI

properties,

but

the

provider

URL

setting

is

determined

by

the

first

jndi.properties

file

returned

by

the

class

loader.

Example:

Getting

an

initial

context

by

setting

the

provider

URL

property

In

general,

JNDI

clients

should

assume

the

correct

environment

is

already

configured

so

there

is

no

need

to

explicitly

set

property

values

and

pass

them

to

the

InitialContext

constructor.

However,

a

JNDI

client

may

need

to

access

a

name

space

other

than

the

one

identified

in

its

environment.

In

this

case,

it

is

necessary

to

explicitly

set

the

java.naming.provider.url

(provider

URL)

property

used

by

the

InitialContext

constructor.

A

provider

URL

contains

bootstrap

server

information

that

the

initial

context

factory

can

use

to

obtain

an

initial

context.

Any

property

values

passed

in

directly

to

the

InitialContext

constructor

take

precedence

over

settings

of

those

same

properties

found

elsewhere

in

the

environment.

You

can

use

two

different

provider

URL

forms

with

WebSphere

Application

Server’s

initial

context

factory:

v

A

CORBA

object

URL

(new

for

J2EE

1.3)

v

An

IIOP

URL

CORBA

object

URLs

are

more

flexible

than

IIOP

URLs

and

are

the

recommended

URL

format

to

use.

CORBA

object

URLs

are

part

of

the

OMG

CosNaming

Interoperable

Naming

Specification.

A

corbaname

URL,

for

example,

can

include

initial

context

and

lookup

name

information

and

can

be

used

as

a

lookup

name

without

the

need

to

explicitly

obtain

another

initial

context.The

IIOP

URLs

are

the

legacy

JNDI

format,

but

are

still

supported

by

the

WebSphere

Application

Server

initial

context

factory.

The

following

examples

illustrate

the

use

of

these

URLs.

Using

a

CORBA

object

URL

This

example

shows

a

CORBA

object

URL.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809");

Context

initialContext

=

new

InitialContext(env);

...

Using

a

CORBA

object

URL

with

multiple

name

server

addresses

CORBA

object

URLs

can

contain

more

than

one

bootstrap

address.

You

can

use

this

feature

when

attempting

to

obtain

an

initial

context

from

a

server

cluster.

You

can

specify

the

bootstrap

addresses

for

all

servers

in

the

cluster

in

the

URL.

The

operation

succeeds

if

at

least

one

of

the

servers

is

running,

eliminating

a

single

point

of

failure.

There

is

no

guarantee

of

any

particular

order

in

which

the

address

794

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

list

will

be

processed.

For

example,

the

second

bootstrap

address

may

be

used

to

obtain

the

initial

context

even

though

the

server

at

the

first

bootstrap

address

in

the

list

is

available.

Multiple-address

provider

URLs

should

only

contain

the

bootstrap

addresses

of

members

of

the

same

cluster.

Otherwise,

incorrect

behavior

may

occur.

An

example

of

a

corbaloc

URL

with

multiple

addresses

follows.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

//

All

of

the

servers

in

the

provider

URL

below

are

members

of

//

the

same

cluster.

env.put(Context.PROVIDER_URL,

"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");

Context

initialContext

=

new

InitialContext(env);

...

Using

a

CORBA

object

URL

from

an

non-WebSphere

Application

Server

JNDI

implementation

Initial

context

factories

for

CosNaming

JNDI

plug-in

implementations

other

than

the

WebSphere

Application

Server

initial

context

factory

most

likely

obtain

an

initial

context

using

the

object

key,

NameService.

When

you

use

such

a

context

factory

to

obtain

an

initial

context

from

a

WebSphere

Application

Server

name

server,

the

initial

context

is

the

cell

root

context.

Since

system

artifacts

such

as

EJB

homes

associated

with

a

server

are

bound

under

the

server’s

server

root

context,

names

used

in

JNDI

operations

must

be

qualified.

If

you

want

to

use

relative

names,

ensure

your

initial

context

is

the

server

root

context

under

which

the

target

object

is

bound.

In

order

to

make

the

server

root

context

the

initial

context,

specify

a

corbaloc

provider

URL

with

an

object

key

of

NameServiceServerRoot.

This

example

shows

a

CORBA

object

type

URL

from

a

non-WebSphere

Application

Server

JNDI

implementation.

This

example

assumes

full

CORBA

object

URL

support

by

the

non-WebSphere

Application

Server

JNDI

implementation.

The

object

key

of

NameServiceServerRoot

is

specified

so

that

the

initial

context

will

be

the

specified

server’s

server

root

context.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.somecompany.naming.TheirInitialContextFactory");

env.put(Context.PROVIDER_URL,

"corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");

Context

initialContext

=

new

InitialContext(env);

...

If

qualified

names

are

used,

you

can

use

the

default

key

of

NameService.

Using

an

IIOP

URL

The

IIOP

type

of

URL

is

a

legacy

format

which

is

not

as

flexible

as

CORBA

object

URLs.

However,

URLs

of

this

type

are

still

supported.

The

following

example

shows

an

IIOP

type

URL

as

the

provider

URL.

Chapter

14.

Using

naming

795

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

"iiop://myhost.mycompany.com:2809");

Context

initialContext

=

new

InitialContext(env);

...

Example:

Setting

the

provider

URL

property

to

select

a

different

root

context

as

the

initial

context

Each

server

contains

its

own

server

root

context,

and,

when

bootstrapping

to

a

server,

the

server

root

is

the

default

initial

JNDI

context.

Most

of

the

time,

this

default

is

the

desired

initial

context,

since

system

artifacts

such

as

EJB

homes

are

bound

there.

However,

other

root

contexts

exist,

which

can

contain

bindings

of

interest.

It

is

possible

to

specify

a

provider

URL

to

select

other

root

contexts.

Selecting

the

initial

root

context

with

a

CORBA

object

URL

There

are

several

object

keys

registered

with

the

bootstrap

server

that

you

can

use

to

select

the

root

context

for

the

initial

context.

To

select

a

particular

root

context

with

a

CORBA

object

URL

object

key,

set

the

object

key

to

the

corresponding

value.

The

default

object

key

is

NameService.

Using

JNDI

yields

the

server

root

context.

A

table

that

lists

the

different

root

contexts

and

their

corresponding

object

key

follows:

Root

Context

CORBA

Object

URL

Object

Key

Server

Root

NameServiceServerRoot

Cell

Persistent

Root

NameServiceCellPersistentRoot

Cell

Root

NameServiceCellRoot

Node

Root

NameServiceNodeRoot

The

following

example

shows

the

use

of

a

corbaloc

URL

with

the

object

key

set

to

select

the

cell

persistent

root

context

as

the

initial

context.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context

initialContext

=

new

InitialContext(env);

...

Selecting

the

initial

root

context

with

the

name

space

root

property

You

can

also

select

the

initial

root

context

by

passing

a

name

space

root

property

setting

to

the

InitialContext

constructor.

Generally,

the

object

key

setting

described

above

is

sufficient.

Sometimes

a

property

setting

is

preferable.

For

example,

you

can

set

the

root

context

property

on

the

Java

invocation

to

make

which

server

root

is

being

used

as

the

initial

context

transparent

to

the

application.

The

default

server

root

property

setting

is

defaultroot,

which

yields

the

server

root

context.

796

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Root

Context

Name

Space

Root

Property

Value

Server

Root

bootstrapserverroot

Cell

Persistent

Root

cellpersistentroot

Cell

Root

cellroot

Node

Root

bootstrapnoderoot

The

initial

context

factory

ignores

the

name

space

root

property

if

the

provider

URL

contains

an

object

key

other

than

NameService.

The

following

example

shows

use

of

the

name

space

root

property

to

select

the

cell

persistent

root

context

as

the

initial

context.

Note

that

available

constants

are

used

instead

of

hard-coding

the

property

name

and

value.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

import

com.ibm.websphere.naming.PROPS;

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809");

env.put(PROPS.NAME_SPACE_ROOT,

PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context

initialContext

=

new

InitialContext(env);

...

Example:

Looking

up

an

EJB

home

with

JNDI

Most

applications

which

use

JNDI

run

in

a

container.

Some

do

not.

The

name

used

to

look

up

an

object

depends

on

whether

or

not

the

application

is

running

in

a

container.

The

examples

below

show

lookups

from

each

type

of

application.

Sometimes

it

is

more

convenient

for

an

application

to

use

a

corbaname

URL

as

the

lookup

name.

Container-based

JNDI

clients

and

thin

Java

clients

can

use

a

corbaname

URL.

An

example

of

a

lookup

with

a

corbaname

URL

is

also

included

in

this

section.

JNDI

lookup

from

an

application

running

in

a

container

Applications

that

run

in

a

container

can

use

java:

lookup

names.

Lookup

names

of

this

form

provide

a

level

of

indirection

such

that

the

lookup

name

used

to

look

up

an

object

is

not

dependent

on

the

object’s

name

as

it

is

bound

in

the

name

server’s

name

space.

The

deployment

descriptors

for

the

application

provide

the

mapping

from

the

java:

name

and

the

name

server

lookup

name.

The

container

sets

up

the

java:

name

space

based

on

the

deployment

descriptor

information

so

that

the

java:

name

is

correctly

mapped

to

the

corresponding

object.

The

following

example

shows

a

lookup

of

an

EJB

home.

The

actual

home

lookup

name

is

determined

by

the

application’s

deployment

descriptors.

//

Get

the

initial

context

as

shown

in

a

previous

example

...

//

Look

up

the

home

interface

using

the

JNDI

name

try

{

java.lang.Object

ejbHome

=

initialContext.lookup(

"java:comp/env/com/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)

ejbHome,

AccountHome.class);

Chapter

14.

Using

naming

797

}

catch

(NamingException

e)

{

//

Error

getting

the

home

interface

...

}

JNDI

lookup

from

an

application

that

does

not

run

in

a

container

Applications

that

do

not

run

in

a

container

cannot

use

java:

lookup

names

because

it

is

the

container

which

sets

the

java:

name

space

up

for

the

application.

Instead,

an

application

of

this

type

must

look

the

object

up

directly

from

the

name

server.

Each

application

server

contains

a

name

server.

System

artifacts

such

as

EJB

homes

are

bound

relative

to

the

server

root

context

in

that

name

server.

The

various

name

servers

are

federated

by

means

of

a

system

name

space

structure.

The

recommended

way

to

look

up

objects

on

different

servers

is

to

qualify

the

name

so

that

the

name

resolves

from

any

initial

context

in

the

cell.

If

a

relative

name

is

used,

the

initial

context

must

be

the

same

server

root

context

as

the

one

under

which

the

object

is

bound.

The

form

of

the

qualified

name

depends

on

whether

the

qualified

name

is

a

topology-based

name

or

a

fixed

name.

A

topology

based

name

depends

on

whether

the

object

resides

in

a

single

server

or

a

server

cluster.

Examples

of

each

form

of

qualified

name

follow.

v

Topology-based

qualified

names

Topology-based

qualified

names

traverse

through

the

system

name

space

to

the

server

root

context

context

under

which

the

target

object

is

bound.

A

topology-based

qualified

name

resolves

from

any

initial

context

in

the

cell.

The

topology-based

qualified

name

depends

on

whether

the

object

resides

on

a

single

server

or

server

cluster.

Examples

of

each

lookup

follow.

Single

server

The

following

example

shows

a

lookup

of

an

EJB

home

that

is

running

in

the

single

server,

MyServer,

configured

in

the

node,

Node1.

//

Get

the

initial

context

as

shown

in

a

previous

example

//

Using

the

form

of

lookup

name

below,

it

doesn’t

matter

which

//

server

in

the

cell

is

used

to

obtain

the

initial

context.

...

//

Look

up

the

home

interface

using

the

JNDI

name

try

{

java.lang.Object

ejbHome

=

initialContext.lookup(

"cell/nodes/Node1/servers/MyServer/com/mycompany/accounting

/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)

ejbHome,

AccountHome.class);

}

catch

(NamingException

e)

{

//

Error

getting

the

home

interface

...

}

Server

cluster

The

example

below

shows

a

lookup

of

an

EJB

home

which

is

running

in

the

cluster,

MyCluster.

The

name

can

be

resolved

if

any

of

the

cluster

members

is

running.

//

Get

the

initial

context

as

shown

in

a

previous

example

//

Using

the

form

of

lookup

name

below,

it

doesn’t

matter

which

//

server

in

the

cell

is

used

to

obtain

the

initial

context.

...

//

Look

up

the

home

interface

using

the

JNDI

name

try

{

java.lang.Object

ejbHome

=

initialContext.lookup(

"cell/clusters/MyCluster/com/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)

ejbHome,

AccountHome.class);

798

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

}

catch

(NamingException

e)

{

//

Error

getting

the

home

interface

...

}

v

Fixed

qualified

names

If

the

target

object

has

a

cell-scoped

fixed

name

defined

for

it,

you

can

use

its

qualified

form

instead

of

the

topology-based

qualified

name.

Even

though

the

topology-based

name

works,

the

fixed

name

does

not

change

with

the

specific

cell

topology

or

with

the

movement

of

the

target

object

to

a

different

server.

An

example

lookup

with

a

qualified

fixed

name

is

shown

below.

//

Get

the

initial

context

as

shown

in

a

previous

example

//

Using

the

form

of

lookup

name

below,

it

doesn’t

matter

which

//

server

in

the

cell

is

used

to

obtain

the

initial

context.

...

//

Look

up

the

home

interface

using

the

JNDI

name

try

{

java.lang.Object

ejbHome

=

initialContext.lookup(

"cell/persistent/com/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)

ejbHome,

AccountHome.class);

}

catch

(NamingException

e)

{

//

Error

getting

the

home

interface

...

}

JNDI

lookup

with

a

corbaname

URL

A

corbaname

can

be

useful

at

times

as

a

lookup

name.

If,

for

example,

the

target

object

is

not

a

member

of

the

federated

name

space

and

cannot

be

located

with

a

qualifiied

name,

a

corbaname

can

be

a

convenient

way

to

look

up

the

object.

A

lookup

with

a

corbaname

URL

follows.

//

Get

the

initial

context

as

shown

in

a

previous

example

...

//

Look

up

the

home

interface

using

a

corbaname

URL

try

{

java.lang.Object

ejbHome

=

initialContext.lookup(

"corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(

(org.omg.CORBA.Object)

ejbHome,

AccountHome.class);

}

catch

(NamingException

e)

{

//

Error

getting

the

home

interface

...

}

Example:

Looking

up

a

JavaMail

session

with

JNDI

The

example

below

shows

a

lookup

of

a

JavaMail

resource.

The

actual

lookup

name

is

determined

by

the

application’s

deployment

descriptors.

//

Get

the

initial

context

as

shown

above

...

Session

session

=

(Session)

initialContext.lookup("java:comp/env/mail/MailSession");

JNDI

interoperability

considerations

This

section

explains

considerations

to

take

into

account

when

interoperating

with

previous

releases

of

WebSphere

Application

Server

and

with

non-WebSphere

Application

Server

JNDI

clients.

Also,

the

way

resources

from

MQSeries

must

be

bound

to

the

name

space

has

changed

and

is

described

below.

Chapter

14.

Using

naming

799

Interoperability

with

previous

WebSphere

Application

Server

Releases

v

EJB

clients

running

on

WebSphere

Application

Server

V3.5

or

V4.0

accessing

EJB

applications

running

on

WebSphere

Application

Server

V5

Applications

migrated

from

previous

versions

of

WebSphere

Application

Server

may

still

have

clients

still

running

in

a

previous

release.

The

default

initial

JNDI

context

for

EJB

clients

running

on

previous

versions

of

WebSphere

Application

Server

is

the

cell

persistent

root

(legacy

root).

The

home

for

an

enterprise

bean

deployed

in

version

5

is

bound

to

its

server’s

server

root

context.

In

order

for

the

EJB

lookup

name

for

down-level

clients

to

remain

unchanged,

configure

a

binding

for

the

EJB

home

under

the

cell

persistent

root.

Note:

EJB

clients

running

in

version

3.5

must

be

running

in

version

3.5.5

or

above,

or

in

version

3.5.3

or

3.5.4

with

e-fix

PQ51387

installed.

v

EJB

clients

running

on

WebSphere

Application

Server

V5

accessing

EJB

applications

running

on

WebSphere

Application

Server

V3.5

or

V4.0

servers

The

default

initial

context

for

a

WebSphere

Application

Server

v3.5

or

v4.0

server

is

the

correct

initial

context.

Simply

look

up

the

JNDI

name

under

which

the

EJB

home

is

bound.

Note:

To

enable

WebSphere

Application

Server

V5

clients

to

access

version

3.5.x

and

4.0.x

servers,

the

down-level

installations

must

have

e-fix

PQ60074

installed.

EJB

clients

running

in

an

environment

other

than

WebSphere

Application

Server

accessing

EJB

applications

running

on

WebSphere

Application

Server

V5

servers

When

an

EJB

application

running

in

WebSphere

Application

Server

V5

is

accessed

by

a

non-WebSphere

Application

Server

EJB

client,

the

JNDI

initial

context

factory

is

presumed

to

be

a

non-WebSphere

Application

Server

implementation.

In

this

case,

the

default

initial

context

will

be

the

cell

root.

If

the

JNDI

service

provider

being

used

supports

CORBA

object

URLs,

the

corbaname

format

can

be

used

to

look

up

the

EJB

home.

The

construction

of

the

stringified

name

depends

on

whether

the

object

is

installed

on

a

single

server

or

cluster,

as

shown

below.

v

Single

server

initialContext.lookup(

"corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

According

to

the

URL

above,

the

bootstrap

host

and

port

are

myHost

and

2809,

and

the

enterprise

bean

is

installed

in

a

server

server1

in

node

node1

and

bound

in

that

server

under

the

name

myEJB.

v

Server

cluster

initialContext.lookup(

"corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

According

to

the

URL

above,

the

bootstrap

host

and

port

are

myHost

and

2809,

and

the

enterprise

bean

is

installed

in

a

server

cluster

named

myCluster

and

bound

in

that

cluster

under

the

name

myEJB.

The

above

lookup

will

work

with

any

name

server

bootstrap

host

and

port

configured

in

the

same

cell.

800

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

above

lookup

will

also

work

if

the

bootstrap

host

and

port

belongs

to

a

member

of

the

cluster

itself.

To

avoid

a

single

point

of

failure,

the

bootstrap

server

host

and

port

for

each

cluster

member

could

be

listed

in

the

URL

as

follows:

initialContext.lookup(

"corbaname:iiop:host1:9810,host2:9810#cell/clusters/myCluster/myEJB");

The

name

prefix

cell/clusters/myCluster/

is

not

necessary

if

boostrapping

to

the

cluster

itself,

but

it

will

work.

The

prefix

is

needed,

however,

when

looking

up

enterprise

beans

in

other

clusters.

Name

bindings

under

the

clusters

context

are

implemented

on

the

name

server

to

resolve

to

the

server

root

of

a

running

cluster

member

during

a

lookup;

thus

avoiding

a

single

point

of

failure.

v

Without

CORBA

object

URL

support

If

the

JNDI

initial

context

factory

being

used

does

not

support

CORBA

object

URLs,

the

initial

context

can

be

obtained

from

the

server,

and

the

lookup

can

be

performed

on

the

initial

context

as

follows:

Hashtable

env

=

new

Hashtable();

env.put(CONTEXT.PROVIDER_URL,

"iiop://myHost:2809");

Context

ic

=

new

InitialContext(env);

Object

o

=

ic.lookup("cell/clusters/myCluster/myEJB");

Binding

resources

from

MQSeries

5.2

In

previous

releases

of

WebSphere

Application

Server,

the

MQSeries

jmsadmin

tool

could

be

used

bind

resources

to

the

name

space.

When

used

with

a

WebSphere

Application

Server

V5

name

space,

the

resource

will

be

bound

within

a

transient

partition

in

the

name

space

and

will

not

persist

past

the

life

of

the

server

process.

Instead

of

binding

the

MQSeries

resources

with

the

jmsadmin

tool,

bind

them

from

the

WebSphere

Application

Server

administrative

console,

under

Resources

in

the

left

panel

on

the

console

JNDI

caching

To

increase

the

performance

of

JNDI

operations,

the

WebSphere

Application

Server

JNDI

implementation

employs

caching

to

reduce

the

number

of

remote

calls

to

the

name

server

for

lookup

operations.

For

most

cases,

use

the

default

cache

setting.

When

an

InitialContext

object

is

instantiated,

an

association

is

established

between

the

InitialContext

instance

and

a

cache.

The

initial

context

and

any

contexts

returned

directly

or

indirectly

from

a

lookup

on

the

initial

context

are

all

associated

with

that

same

cache

instance.

By

default,

the

association

is

based

on

the

provider

URL,

in

particular,

the

host

name

and

port.

The

caller

can

specify

the

cache

name

to

override

this

default

behavior.

A

cache

instance

of

a

given

name

is

shared

by

all

instances

of

InitialContext

configured

to

use

a

cache

of

that

name

which

were

created

with

the

same

context

class

loader

in

effect.

Two

EJB

applications

running

in

the

same

server

will

use

their

own

cache

instances,

if

they

are

using

different

context

class

loaders,

even

if

the

cache

names

are

the

same.

After

an

association

between

an

InitialContext

instance

and

cache

is

established,

the

association

does

not

change.

A

javax.naming.Context

object

returned

from

a

lookup

operation

inherits

the

cache

association

of

the

Context

object

on

which

the

lookup

was

performed.

Changing

cache

property

values

with

the

Context.addToEnvironment()

or

Context.removeFromEnvironment()

method

does

not

affect

cache

behavior.

You

can

change

properties

affecting

a

given

cache

instance

with

each

InitialContext

instantiation.

Chapter

14.

Using

naming

801

A

cache

is

restricted

to

a

process

and

does

not

persist

past

the

life

of

that

process.

A

cached

object

is

returned

from

lookup

operations

until

either

the

max

cache

life

for

the

cache

is

reached,

or

the

max

entry

life

for

the

object’s

cache

entry

is

reached.

After

this

time,

a

lookup

on

the

object

causes

the

cache

entry

for

the

object

to

be

refreshed.

If

a

bind

or

rebind

operation

is

executed

on

an

object,

the

change

is

not

reflected

in

any

caches

other

than

the

one

associated

with

the

context

from

which

the

bind

or

rebind

was

issued.

This

scenario

is

most

likely

to

happen

when

multiple

processes

are

involved,

since

different

processes

do

not

share

the

same

cache,

and

context

objects

in

all

threads

in

a

process

typically

share

the

same

cache

instance

for

a

given

name

service

provider.

Usually,

cached

objects

are

relatively

static

entities,

and

objects

becoming

stale

are

not

a

problem.

However,

you

can

set

timeout

values

on

cache

entries

or

on

a

cache

so

that

cache

contents

are

periodically

refreshed.

JNDI

cache

settings

Various

cache

property

settings

follow.

Ensure

that

all

property

values

are

string

values.

com.ibm.websphere.naming.jndicache.cachename

The

name

of

the

cache

to

associate

with

an

initial

context

instance

can

be

specified

with

this

property.

It

is

possible

to

create

multiple

InitialContext

instances,

each

operating

on

the

name

space

of

a

different

name

server.

By

default,

objects

from

each

bootstrap

address

are

cached

separately,

since

they

each

involve

independent

name

spaces

and

name

collisions

could

occur

if

they

used

the

same

cache.

The

provider

URL

specified

when

the

initial

context

is

created

by

default

serves

as

the

basis

for

the

cache

name.

With

this

property,

a

JNDI

client

can

specify

a

cache

name.

Valid

options

for

cache

names

follow:

Valid

options

Resulting

cache

behavior

providerURL

(default)

Use

the

value

for

java.naming.provider.url

property

as

the

basis

for

the

cache

name.

Cache

names

are

based

on

the

bootstrap

host

and

port

specified

in

the

URL.

The

boostrap

host

is

normalized

to

a

fully

qualfied

name,

if

possible.

For

example,

″corbaname:iiop:server1:2809#some/starting/context″

and

″corbaloc:iiop://server1″

are

normalized

to

the

same

cache

name.

If

no

provider

URL

is

specified,

a

default

cache

name

is

used.

Any

string

Use

the

specified

string

as

the

cache

name.

You

can

use

any

arbitrary

string

with

a

value

other

than

″providerURL″

as

a

cache

name.

com.ibm.websphere.naming.jndicache.cacheobject

Turn

caching

on

or

off

and

clear

an

existing

cache

with

this

property.

By

default,

when

an

InitialContext

is

instantiated,

it

is

associated

with

an

existing

cache

or,

if

one

does

not

exist,

a

new

one

is

created.

An

existing

cache

is

used

with

its

existing

contents.

In

some

circumstances,

this

behavior

is

not

desirable.

For

example,

when

objects

that

are

looked

up

change

frequently,

they

can

become

stale

in

the

cache.

Other

options

are

available.

Thefollowing

table

lists

these

other

options

along

with

the

corresponding

property

value.

802

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Valid

values

Resulting

cache

behavior

populated

(default)

Use

a

cache

with

the

specified

name.

If

the

cache

already

exists,

leave

existing

cache

entries

in

the

cache;

otherwise,

create

a

new

cache.

cleared

Use

a

cache

with

the

specified

name.

If

the

cache

already

exists,

clear

all

cache

entries

from

the

cache;

otherwise,

create

a

new

cache.

none

Do

not

cache.

If

this

option

is

specified,

the

cache

name

is

irrelevant.

Therefore,

this

option

will

not

disable

a

cache

that

is

already

associated

with

other

InitialContext

instances.

The

InitialContext

that

is

instantiated

is

not

associated

with

any

cache.

com.ibm.websphere.naming.jndicache.maxcachelife

Impose

a

limit

to

the

age

of

a

cache

with

this

property.

By

default,

cached

objects

remain

in

the

cache

for

the

life

of

the

process

or

until

cleared

with

the

com.ibm.websphere.naming.jndicache.cacheobject

property

set

to

″cleared″.

This

property

enables

a

JNDI

client

to

set

the

maximum

life

of

a

cache.

This

property

differs

from

the

maxentrylife

property

(below)

in

that

the

entire

cache

is

cleared

when

the

cache

lifetime

is

reached.

The

table

below

lists

the

various

maxcachelife

values

and

their

affect

on

cache

behavior:

Valid

options

Resulting

cache

behavior

0

(default)

Make

the

cache

lifetime

unlimited.

Positive

integer

Set

the

maximum

lifetime

of

the

entire

cache,

in

minutes,

to

the

specified

value.

When

the

maximum

lifetime

for

the

cache

is

reached,

the

next

attempt

to

read

any

entry

from

the

cache

causes

the

cache

to

be

cleared

com.ibm.websphere.naming.jndicache.maxentrylife

Impose

a

limit

to

the

age

of

individual

cache

entries

with

this

property.

By

default,

cached

objects

remain

in

the

cache

for

the

life

of

the

process

or

until

cleared

with

the

com.ibm.websphere.naming.jndicache.cacheobject

property

set

to

cleared.

This

property

enables

a

JNDI

client

to

set

the

maximum

lifetime

of

individual

cache

entries.

This

property

differs

from

the

maxcachelife

property

in

that

individual

entries

are

refreshed

individually

as

their

maximum

lifetime

reached.

This

might

avoid

any

noticeable

change

in

performance

that

might

occur

if

the

whole

cache

is

cleared

at

once.

The

table

below

lists

the

various

maxentrylife

values

and

their

effect

on

cache

behavior:

Valid

options

Resulting

cache

behavior

0

(default)

Lifetime

of

cache

entries

is

unlimited.

Positive

integer

Set

the

maximum

lifetime

of

individual

cache

entries,

in

minutes,

to

the

specified

value.

When

the

maximum

lifetime

for

an

entry

is

reached,

the

next

attempt

to

read

the

entry

from

the

cache

causes

the

individual

cache

entry

to

refresh.

Example:

Controlling

JNDI

cache

behavior

from

a

program

Following

are

examples

that

illustrate

how

you

can

use

JNDI

cache

properties

to

achieve

the

desired

cache

behavior.

Cache

properties

take

effect

when

an

InitialContext

object

is

constructed.

Chapter

14.

Using

naming

803

import

java.util.Hashtable;

import

javax.naming.InitialContext;

import

javax.naming.Context;

import

com.ibm.websphere.naming.PROPS;

/*****

Caching

discussed

in

this

section

pertains

to

the

WebSphere

Application

Server

initial

context

factory.

Assume

the

property,

java.naming.factory.initial,

is

set

to

"com.ibm.websphere.naming.WsnInitialContextFactory"

as

a

java.lang.System

property.

*****/

Hashtable

env;

Context

ctx;

//

To

clear

a

cache:

env

=

new

Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_CLEARED);

ctx

=

new

InitialContext(env);

//

To

set

a

cache’s

maximum

cache

lifetime

to

60

minutes:

env

=

new

Hashtable();

env.put(PROPS.JNDI_CACHE_MAX_LIFE,

"60");

ctx

=

new

InitialContext(env);

//

To

turn

caching

off:

env

=

new

Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_NONE);

ctx

=

new

InitialContext(env);

//

To

use

caching

and

no

caching:

env

=

new

Hashtable();

env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_POPULATED);

ctx

=

new

InitialContext(env);

env.put(PROPS.JNDI_CACHE_OBJECT,

PROPS.JNDI_CACHE_OBJECT_NONE);

Context

noCacheCtx

=

new

InitialContext(env);

Object

o;

//

Use

caching

to

look

up

home,

since

the

home

should

rarely

change.

o

=

ctx.lookup("com/mycom/MyEJBHome");

//

Narrow,

etc.

...

//

Do

not

use

cache

if

data

is

volatile.

o

=

noCacheCtx.lookup("com/mycom/VolatileObject");

//

...

JNDI

name

syntax

JNDI

name

syntax

is

the

default

syntax

and

is

suitable

for

typical

JNDI

clients.

This

syntax

includes

the

following

special

characters:

forward

slash

(/)

and

backslash

(\).

Components

in

a

name

are

delimited

by

a

forward

slash.

The

backslash

is

used

as

the

escape

character.

A

forward

slash

is

interpreted

literally

if

it

is

escaped,

that

is,

preceded

by

a

backslash.

Similarly,

a

backslash

is

interpreted

literally

if

it

is

escaped.

INS

name

syntax

INS

syntax

is

designed

for

JNDI

clients

that

need

to

interoperate

with

CORBA

applications.

804

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

INS

syntax

allows

a

JNDI

client

to

make

the

proper

mapping

to

and

from

a

CORBA

name.

INS

syntax

is

very

similar

to

the

JNDI

syntax

with

the

additional

special

character,

dot

(.).

Dots

are

used

to

delimit

the

id

and

kind

fields

in

a

name

component.

A

dot

is

interpreted

literally

when

it

is

escaped.

Only

one

unescaped

dot

is

allowed

in

a

name

component.

A

name

component

with

a

non-empty

id

field

and

empty

kind

field

is

represented

with

only

the

id

field

value

and

must

not

end

with

an

unescaped

dot.

An

empty

name

component

(empty

id

and

empty

kind

field)

is

represented

with

a

single

unescaped

dot.

An

empty

string

is

not

a

valid

name

component

representation.

JNDI

to

CORBA

name

mapping

considerations

WebSphere

Application

Server

name

servers

are

an

implementation

of

the

CORBA

CosNaming

interface.

WebSphere

Application

Server

provides

a

JNDI

implementation

which

you

can

use

to

access

CosNaming

name

servers

through

the

JNDI

interface.

Issues

can

exist

when

mapping

JNDI

name

strings

to

and

from

CORBA

names.

Each

component

in

a

CORBA

name

consists

of

an

id

and

kind

field,

but

a

JNDI

name

component

consists

of

no

such

fields.

Each

component

in

a

JNDI

name

is

atomic.

Typical

JNDI

clients

do

not

need

to

make

a

distinction

between

the

id

and

kind

fields

of

a

name

component,

or

know

how

JNDI

name

strings

map

to

CORBA

names.

JNDI

clients

of

this

sort

can

use

the

JNDI

syntax

described

below.

When

a

name

is

parsed

according

to

JNDI

syntax,

each

name

component

is

mapped

to

the

id

field

of

the

corresponding

CORBA

name

component.

The

kind

field

always

has

an

empty

value.

This

basic

syntax

is

the

least

obtrusive

to

the

JNDI

client

in

that

it

has

the

fewest

special

characters.

However,

you

cannot

represent

with

this

syntax

a

CORBA

name

with

a

non-empty

kind

field.

This

restriction

can

prevent

EJB

applications

from

interoperating

with

CORBA

applications.

Some

clients,

however

must

interoperate

with

CORBA

applications

which

use

CORBA

names

with

non-empty

kind

fields.

These

JNDI

clients

must

make

a

distinction

between

id

and

kind

so

that

JNDI

names

are

correctly

mapped

to

CORBA

names,

particularly

when

the

CORBA

names

contain

components

with

non-null

kind

fields.

Such

JNDI

clients

can

use

the

INS

name

syntax.

With

its

additional

special

character,

you

can

use

INS

to

represent

any

CORBA

name.

Use

of

this

syntax

is

not

recommended

unless

it

is

necessary,

because

this

syntax

is

more

restrictive

from

the

JNDI

client’s

perspective

in

that

the

JNDI

client

must

be

aware

that

name

components

with

multiple

unescaped

dots

are

syntactically

invalid.

INS

name

syntax

is

part

of

the

OMG

CosNaming

Interoperable

Naming

Specification.

Example:

Setting

the

syntax

used

to

parse

name

strings

JNDI

clients

which

must

interoperate

with

CORBA

applications

may

need

to

use

INS

name

syntax

to

represent

names

in

string

format.

The

name

syntax

property

may

be

passed

to

the

InitialContext

constructor

through

its

parameter,

in

the

System

properties,

or

in

a

jndi.properties

file.

The

initial

context

and

any

contexts

looked

up

from

that

initial

context

will

parse

name

strings

based

on

the

specified

syntax.

The

following

example

shows

how

to

set

the

name

syntax

to

make

the

initial

context

parse

name

strings

according

to

INS

syntax.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

Chapter

14.

Using

naming

805

import

com.ibm.websphere.naming.PROPS;

//

WebSphere

naming

constants

...

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

...);

env.put(PROPS.NAME_SYNTAX,

PROPS.NAME_SYNTAX_INS);

Context

initialContext

=

new

InitialContext(env);

//

The

following

name

maps

to

a

CORBA

name

component

as

follows:

//

id

=

"a.name",

kind

=

"in.INS.format"

//

The

unescaped

dot

is

used

as

the

delimiter.

//

Escaped

dots

are

interpreted

literally.

java.lang.Object

o

=

initialContext.lookup("a\.name.in\.INS\.format");

...

Developing

applications

that

use

CosNaming

(CORBA

Naming

interface)

CORBA

clients

can

perform

naming

operations

on

WebSphere

name

servers

through

the

CosNaming

interface.

The

following

examples

show

how

to

obtain

an

ORB

instance

and

an

initial

context

as

well

as

how

to

look

up

an

EJB

home.

Note:

To

enable

WebSphere

Application

Server

V5

clients

to

access

Versions

3.5.x

and

4.0.x

servers,

the

earlier

installations

must

have

e-fix

PQ60074

installed.

1.

Get

an

initial

context

2.

Perform

desired

CosNaming

operations

Example:

Getting

an

initial

context

with

CosNaming

In

the

WebSphere

Application

Server,

an

initial

context

is

obtained

from

a

bootstrap

server.

The

address

for

the

bootstrap

server

consists

of

a

host

and

port.

To

get

an

initial

context,

you

must

know

the

host

and

port

for

the

server

that

is

used

as

the

bootstrap

server.

Obtaining

an

initial

context

consists

of

two

basic

steps:

1.

Obtain

an

ORB

reference

2.

Invoke

a

method

on

the

ORB

to

obtain

the

initial

reference

These

steps

are

now

explained

in

more

detail.

Obtaining

an

ORB

reference

Pure

CosNaming

clients,

that

is

clients

that

are

not

running

in

a

server

process,

must

create

and

initialize

an

ORB

instance

with

which

to

obtain

the

initial

context.

CosNaming

clients

which

run

in

server

processes

can

obtain

a

reference

to

the

server

ORB

with

a

JNDI

lookup.

The

following

examples

illustrate

how

to

create

and

initialize

a

client

ORB

and

how

to

obtain

a

server

ORB

reference.

Creating

a

client

ORB

instance

To

create

an

ORB

instance,

invoke

the

static

method,

org.omg.CORBA.ORB.init.

The

init

method

requires

a

property

set

to

the

name

of

the

ORB

class

you

want

to

instantiate.

An

ORB

implementation

with

the

class

name

com.ibm.CORBA.iiop.ORB

is

included

with

the

WebSphere

Application

Server.

The

WebSphere

Application

Server

ORB

recognizes

additional

properties

with

which

you

can

specify

initial

references.

The

basic

steps

for

creating

an

ORB

are

as

follows:

806

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

1.

Create

a

Properties

object.

2.

Set

the

ORB

class

property

to

WebSphere

Application

Server’s

ORB

class.

3.

If

the

bootstrap

server

is

INS-compliant,

set

the

initial

reference

properties.

If

the

bootstrap

server

is

not

INS-compliant

(meaning,

WebSphere

Application

Server

v4.0.x

or

earlier),

set

bootstrap

host

and

port

for

bootstrap

server.

4.

Invoke

ORB.init,

passing

in

the

Properties

object.

Usage

scenario

...

import

java.util.Properties;

import

org.omg.CORBA.ORB;

...

Properties

props

=

new

Properties();

props.put("org.omg.CORBA.ORBClass","com.ibm.ws390.orb.ORB");

props.put("com.ibm.CORBA.ORBInitRef.NameService",

"corbaloc:iiop:myhost.mycompany.com:2809/NameService");

props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");

//

props.put("com.ibm.CORBA.BootstrapHost",

"myhost.mycompany.com");

//

Use

this

if

bootstrap

server

is

WebSphere

4.0.x

or

before

//

props.put("com.ibm.CORBA.BootstrapPort",

"2809");

//

Use

this

if

bootstrap

server

is

WebSphere

4.0.x

or

before

ORB

_orb

=

ORB.init((String[])null,

props);

...

Notice

the

initial

reference

definitions

for

NameService

and

NameServiceServerRoot.

The

initial

context

returned

for

NameService

depends

on

the

type

of

bootstrap

server.

The

key

NameServiceServerRoot

is

a

key

introduced

in

WebSphere

Application

Server

V5.

For

more

information

on

initial

contexts,

see

the

section

Initial

Contexts.

Note:

The

properties

com.ibm.CORBA.BootstrapHost

and

com.ibm.CORBA.BootstrapPort

are

deprecated.

They

are

needed,

however,

to

connect

to

WebSphere

Application

Servers

of

Version

4.0.x

or

earlier.

The

default

bootstrap

host

is

the

local

host

and

the

default

port

is

2809.

Obtaining

a

reference

to

the

server

ORB

CosNaming

clients

which

run

in

a

server

process

can

obtain

a

reference

to

the

server

ORB

with

a

JNDI

lookup

on

a

java:

name,

shown

as

follows:

Usage

scenario

...

import

javax.naming.Context;

import

javax.naming.InitialContext;

import

org.omg.CORBA.ORB;

...

Context

initialContext

=

new

InitialContext();

ORB

orb

=

(ORB)

initialContext.lookup("java:comp/ORB");

...

Using

an

ORB

reference

to

get

an

initial

naming

reference

There

are

two

basic

ways

to

get

an

initial

CosNaming

context.

Both

ways

involve

an

ORB

method

invocation.

The

first

way

is

to

invoke

the

resolve_initial_references

method

on

the

ORB

with

an

initial

reference

key.

For

this

call

to

work,

the

ORB

must

be

initialized

with

an

initial

reference

for

that

key.

The

other

way

is

to

invoke

the

string_to_object

method

on

the

ORB,

passing

in

a

CORBA

object

URL

with

the

host

and

port

of

the

bootstrap

server.

The

following

examples

illustrate

both

approaches.

Chapter

14.

Using

naming

807

Invoking

resolve_initial_references

Once

an

ORB

reference

is

obtained,

invoke

the

resolve_initial_references

method

on

the

ORB

to

obtain

a

reference

to

the

initial

context.

The

following

code

example

invokes

resolve_initial_reference

on

an

ORB

reference.

Usage

scenario

...

import

org.omg.CORBA.ORB;

import

org.omg.CosNaming.NamingContextExt;

import

org.omg.CosNaming.NamingContextExtHelper;

...

//

Obtain

ORB

reference

as

shown

in

examples

earlier

in

this

section

...

org.omg.CORBA.Object

obj

=

_orb.resolve_initial_references("NameService");

NamingContextExt

initCtx

=

NamingContextExtHelper.narrow(obj);

...

Note

that

the

key

NameService

is

passed

to

the

resolve_initial_references

method.

Other

initial

context

keys

are

registered

in

WebSphere

Application

Servers.

For

example,

NameServiceServerRoot

can

be

used

to

obtain

a

reference

to

the

server

root

context

in

the

bootstrap

name

server.

For

more

information

on

the

initial

contexts

registered

in

server

ORBs,

please

see

the

section

Initial

Contexts.

Invoking

string_to_object

with

a

CORBA

object

URL

You

can

use

an

INS-compliant

ORB

to

obtain

an

initial

context

even

if

the

ORB

is

not

initialized

with

any

initial

references

or

bootstrap

properties,

or

if

those

property

settings

are

for

a

different

server

than

the

name

server

from

which

you

want

to

obtain

the

initial

context.

To

obtain

an

initial

context

by

explicitly

specifying

the

bootstrap

name

server,

invoke

the

string_to_object

method

on

the

ORB,

passing

in

a

CORBA

object

URL

which

contains

the

bootstrap

server

host

and

port.

The

code

in

the

example

below

invokes

the

string_to_object

method

on

an

existing

ORB

reference,

passing

in

a

CORBA

object

URL

which

identifies

the

desired

initial

context.

Usage

scenario

...

import

org.omg.CORBA.ORB;

import

org.omg.CosNaming.NamingContextExt;

import

org.omg.CosNaming.NamingContextExtHelper;

...

//

Obtain

ORB

reference

as

shown

in

examples

earlier

in

this

section

...

org.omg.CORBA.Object

obj

=

orb.string_to_object("corbaloc:iiop:myhost.mycompany.com:2809/NameService");

NamingContextExt

initCtx

=

NamingContextExtHelper.narrow(obj);

...

Note

that

the

key

NameService

is

used

in

the

corbaloc

URL.

Other

initial

context

keys

are

registered

in

WebSphere

Application

Servers.

For

example,

you

can

use

NameServiceServerRoot

to

obtain

a

reference

to

the

server

root

context

in

the

bootstrap

name

server.

808

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Using

an

existing

ORB

and

invoking

string_to_object

with

a

CORBA

object

URL

with

multiple

name

server

addresses

to

get

an

initial

context

CORBA

object

URLs

can

contain

more

than

one

bootstrap

server

address.

Use

this

feature

when

attempting

to

obtain

an

initial

context

from

a

server

cluster.

You

can

specify

the

bootstrap

server

addresses

for

all

servers

in

the

cluster

in

the

URL.

The

operation

will

succeed

if

at

least

one

of

the

servers

is

running,

eliminating

a

single

point

of

failure.

There

is

no

guarantee

of

any

particular

order

in

which

the

address

list

will

be

processed.

For

example,

the

second

bootstrap

server

address

may

be

used

to

obtain

the

initial

context

even

though

the

first

bootstrap

server

in

the

list

is

available.

An

example

of

a

corbaloc

URL

with

multiple

addresses

follows.

...

import

org.omg.CORBA.ORB;

import

org.omg.CosNaming.NamingContextExt;

import

org.omg.CosNaming.NamingContextExtHelper;

...

//

Assume

orb

is

an

existing

ORB

instance

org.omg.CORBA.Object

obj

=

orb.string_to_object(

"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810/NameService");

NamingContextExt

initCtx

=

NamingContextExtHelper.narrow(obj);

...

Example:

Looking

up

an

EJB

home

with

CosNaming

You

can

look

up

an

EJB

home

or

other

CORBA

object

from

a

WebSphere

Application

Server

name

server

through

the

CORBA

CosNaming

interface.

You

can

invoke

resolve

or

resolve_str

on

the

initial

context,

or

you

can

invoke

string_to_object

on

the

ORB.

You

can

use

a

qualified

name

so

that

the

name

resolves

regardless

of

which

name

server

the

lookup

is

executed

on,

or

use

an

unqualified

name

that

only

resolves

from

the

server

root

context

on

the

name

server

that

actually

contains

the

object

binding.

(The

qualified

name

traverses

the

federated

system

name

space

to

the

specified

server

root

context.)

Qualified

and

unqualified

names

Each

application

server

contains

a

name

server.

System

artifacts

such

as

EJB

homes

are

bound

in

that

name

server.

The

various

name

servers

are

federated

by

means

of

a

system

name

space

structure.

The

recommended

way

to

look

up

objects

on

different

servers

is

to

use

a

qualified

name.

A

qualified

name

can

be

a

topology-based

name,

based

on

the

name

of

the

cluster

or

single

server

and

node

that

contains

the

object.

You

can

define

fixed

qualified

names

for

objects.

With

qualified

names,

you

can

look

up

objects

residing

on

different

servers

from

the

same

initial

context

by

traversing

the

system

name

space

structure.

Alternatively,

you

can

use

an

unqualified

name,

but

an

unqualified

name

will

only

resolve

using

the

name

server

associated

with

the

object’s

application

server.

CosNaming.resolve

(and

resolve_str)

vs.

ORB.string_to_object

If

you

have

an

initial

context

from

any

name

server

in

a

WebSphere

Application

Server

cell,

you

can

look

up

any

CORBA

object

with

a

qualified

name.

You

do

not

need

additional

host

and

port

information

for

the

target

object’s

name

server.

Alternatively,

you

can

look

up

an

object

by

invoking

string_to_object

on

the

ORB,

passing

in

a

corbaname

URL.

Typically,

an

IIOP

type

URL

is

specified,

so

the

bootstrap

address

information

required

for

an

initial

context

must

be

contained

in

the

URL.

You

can

use

a

qualified

or

unqualified

stringified

name,

but

an

unqualifed

name

resolves

only

if

the

initial

context

is

from

the

name

server

in

which

the

object

is

bound.

Chapter

14.

Using

naming

809

The

following

examples

show

CosNaming

resolve

operations

using

qualified

topology-based

lookup

names

and

an

unqualified

lookup

name.

CosNaming

resolve

operation

using

a

qualified

name

The

topology-based

qualified

name

for

an

object

depends

on

whether

the

object

is

bound

in

a

single

server

or

a

server

cluster.

Examples

of

each

follow.

Single

Server

The

following

example

shows

the

lookup

of

an

EJB

home

that

is

running

in

a

single

server.

The

enterprise

bean

that

is

being

looked

up

is

running

in

the

server,

MyServer,

on

the

node,

Node1.

//

Get

the

initial

context

as

shown

in

the

previous

example

//

Using

the

form

of

lookup

name

below,

it

doesn’t

matter

which

//

server

in

the

cell

is

used

to

obtain

the

initial

context.

...

//

Look

up

the

home

interface

using

the

name

under

which

the

EJB

home

is

bound

org.omg.CORBA.Object

ejbHome

=

initialContext.resolve_str(

"cell/nodes/Node1/servers/MyServer/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

AccountHome.class);

Server

Cluster

The

following

example

shows

a

lookup

of

an

EJB

home

that

is

running

in

a

cluster.

The

enterprise

bean

being

that

is

looked

up

is

running

in

the

cluster,

Cluster1.

The

name

can

be

resolved

if

any

of

the

cluster

members

is

running.

Usage

scenario

//

Get

the

initial

context

as

shown

in

the

previous

example

//

Using

the

form

of

lookup

name

below,

it

doesn’t

matter

which

//

server

in

the

cell

is

used

to

obtain

the

initial

context.

...

//

Look

up

the

home

interface

using

the

name

under

which

the

EJB

home

is

bound

org.omg.CORBA.Object

ejbHome

=

initialContext.resolve_str(

"cell/clusters/Cluster1/mycompany/accounting/AccountEJB");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

AccountHome.class);

ORB

string_to_object

operation

using

an

unqualified

stringified

name

If

the

resolve

operation

is

being

performed

on

the

name

server

that

contains

the

object,

the

system

name

space

does

not

need

to

be

traversed,

and

you

can

use

an

unqualified

lookup

name.

Note

that

this

name

does

not

resolve

on

other

name

servers.

If

an

unqualified

name

is

provided,

the

object

key

must

be

NameServiceServerRoot

so

that

the

correct

initial

context

is

selected.

If

a

qualified

name

is

provided,

you

can

use

the

default

key

of

NameService.

The

following

example

shows

a

lookup

of

an

EJB

home.

The

enterprise

bean

that

is

being

looked

up

is

bound

on

the

name

server

running

on

the

host

myHost

on

port

2809.

Note

the

object

key

of

NameServiceServerRoot.

//

Assume

orb

is

an

existing

ORB

instance

...

//

Look

up

the

home

interface

using

the

name

under

which

the

EJB

home

is

bound

org.omg.CORBA.Object

ejbHome

=

orb.string_to_object(

"corbaname:iiop:myHost:2809/NameServiceServerRoot#mycompany/accounting");

accountHome

=

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome,

AccountHome.class);

810

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Configured

name

bindings

Administrators

can

configure

bindings

into

the

name

space.

A

configured

binding

is

different

from

a

programmatic

binding

in

that

the

system

creates

the

binding

every

time

a

server

is

started,

even

if

the

target

context

is

in

a

transient

partition.

Administrators

can

add

name

bindings

to

the

name

space

through

the

configuration.

Name

servers

add

these

configured

bindings

to

the

name

space

view,

by

reading

the

configuration

data

for

the

bindings.

Configuring

bindings

is

an

alternative

to

creating

the

bindings

from

a

program.

Configured

bindings

have

the

advantage

of

being

created

each

time

a

server

starts,

even

when

the

binding

is

created

in

a

transient

partition

of

the

name

space.

Cell-scoped

configured

bindings

provide

interoperability

with

JNDI

clients

running

on

previous

versions

of

WebSphere

Application

Server.

Additionally,

you

can

configure

cell-scoped

bindings

to

create

a

fixed

qualified

name

for

server

objects.

Scope

You

can

configure

a

binding

at

one

of

the

following

three

scopes:

cell,

node,

or

server.

Cell-scoped

bindings

are

created

under

the

cell

persistent

root

context.

Node-scoped

bindings

are

created

under

the

node

persistent

root

context

for

the

specified

node.

Server-scoped

bindings

are

created

under

the

server

root

context

for

the

selected

server.

If

the

target

server

of

a

server-scoped

binding

is

a

cluster,

the

binding

is

created

under

the

server

root

context

of

each

cluster

member.

Note:

The

term

server

includes

clusters

and

can

be

used

interchangeably

with

the

term

cluster

with

respect

to

configured

bindings.

When

applied

to

a

cluster,

a

server-scoped

binding

is

created

in

the

server

root

for

all

member

servers.

The

scope

you

select

for

new

bindings

depends

on

how

the

binding

is

to

be

used.

For

example,

if

the

binding

is

not

specific

to

any

particular

node

or

server,

or

if

you

do

not

want

the

binding

to

be

associated

with

any

specific

node

or

server,

a

cell-scoped

binding

is

a

suitable

scope.

Defining

fixed

names

for

enterprise

beans

to

create

fixed

qualified

names

is

just

such

an

application.

If

a

binding

is

to

be

used

only

by

clients

of

an

application

running

on

a

particular

server,

or

if

you

want

to

configure

a

binding

with

the

same

name

on

different

servers

which

resolve

to

different

objects,

a

server-scoped

binding

would

be

appropriate.

Note

that

two

servers

can

have

configured

bindings

with

the

same

name

but

resolve

to

different

objects.

At

the

cell

scope,

only

one

binding

with

a

given

name

can

exist.

Intermediate

Contexts

Intermediate

contexts

created

with

configured

bindings

are

read-only.

For

example,

if

an

EJB

home

binding

is

configured

with

the

name

some/compound/name/ejbHome,

the

intermediate

contexts

some,

some/compound,

and

some/compound/name

will

be

created

as

read-only

contexts.

You

cannot

add,

update,

or

remove

any

read-only

bindings.

The

configured

binding

name

cannot

conflict

with

existing

bindings.

However,

configured

bindings

can

use

the

same

intermediate

context

names.

Therefore,

a

configured

binding

with

the

name

some/compound/name2/ejbHome2

does

not

conflict

with

the

previous

example

name.

Configured

binding

types

Types

of

objects

that

you

can

bind

follow:

Chapter

14.

Using

naming

811

EJB:

EJB

home

installed

in

some

server

in

the

cell

The

following

data

is

required

to

configure

an

EJB

home

binding:

v

JNDI

name

of

the

EJB

server

or

server

cluster

where

the

enterprise

bean

is

deployed

v

Target

root

for

the

configured

binding

(scope)

v

The

name

of

the

configured

binding,

relative

to

the

target

root.

This

type

of

binding

is

of

special

significance

because

you

can

use

it

to

provide

interoperability

with

WebSphere

Application

Server

v3.5.x

and

v4.0.x

JNDI

clients.

The

default

initial

context

for

these

earlier

clients

is

the

cell

persistent

root,

which

is

different

from

the

initial

context

of

the

server

root

for

WebSphere

Application

Server

V5

JNDI

clients.

If

you

migrate

an

application

to

the

current

release,

you

can

configure

an

EJB

binding

at

the

cell

scope

so

that

the

lookup

names

for

the

enterprise

bean

do

not

change

for

clients

still

running

in

a

earlier

WebSphere

Application

Server

version.

A

cell-scoped

EJB

binding

is

also

useful

for

creating

a

fixed

lookup

name

for

an

enterprise

bean

so

that

the

qualified

name

is

not

dependent

on

the

topology.

CORBA:

CORBA

object

available

from

some

CosNaming

name

server

You

can

identify

any

CORBA

object

bound

into

some

INS

compliant

CosNaming

server

with

a

corbaname

URL.

The

referenced

object

does

not

have

to

be

available

until

the

binding

is

actually

referenced

by

some

application.

The

following

data

is

required

in

order

to

configure

a

CORBA

object

binding:

v

The

corbaname

URL

of

the

CORBA

object

v

An

indicator

if

the

bound

object

is

a

context

or

leaf

node

object

(to

set

the

correct

CORBA

binding

type

of

context

or

object).

v

Target

root

for

the

configured

binding

v

The

name

of

the

configured

binding,

relative

to

the

target

root.

Indirect:

Any

object

bound

in

WebSphere

Application

Server

name

space

accessible

with

JNDI

Besides

CORBA

objects,

this

includes

javax.naming.Referenceable,

javax.naming.Reference,

and

java.io.Serializable

objects.

The

target

object

itself

is

not

bound

to

the

name

space.

Only

the

information

required

to

look

up

the

object

is

bound.

Therefore,

the

referenced

name

server

does

not

have

to

be

running

until

the

binding

is

actually

referenced

by

some

application.

The

following

data

is

required

in

order

to

configure

an

indirect

JNDI

lookup

binding:

v

JNDI

provider

URL

of

name

server

where

object

resides

v

JNDI

lookup

name

of

object

v

Target

root

for

the

configured

binding

(scope)

v

The

name

of

the

configured

binding,

relative

to

the

target

root.

A

cell-scoped

indirect

binding

is

useful

when

creating

a

fixed

lookup

name

for

a

resource

so

that

the

qualified

name

is

not

dependent

on

the

topology.

You

can

also

achieve

this

topology

by

widening

the

scope

of

the

resource

definition.

Note:

WebSphere

Application

Server

v3.5.x

clients

cannot

access

this

type

of

binding

.

812

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

String:

String

constant

You

can

configure

a

binding

of

a

string

constant.

The

following

data

is

required

to

configure

a

string

constant

binding:

v

String

constant

value

v

Target

root

for

the

configured

binding

(scope)

v

The

name

of

the

configured

binding,

relative

to

the

target

root.

Name

space

federation

Federating

name

spaces

involves

binding

contexts

from

one

name

space

into

another

name

space.

For

example,

assume

that

a

name

space,

Name

Space

1,

contains

a

context

under

the

name

a/b.

Also

assume

that

a

second

name

space,

Name

Space

2,

contains

a

context

under

the

name

x/y.

(See

the

following

illustration.)

If

context

x/y

in

Name

Space

2

is

bound

into

context

a/b

in

Name

Space

1

under

the

name

f2,

the

two

name

spaces

are

federated.

Binding

f2

is

a

federated

binding

because

the

context

associated

with

that

binding

comes

from

another

name

space.

From

Name

Space

1,

a

lookup

of

the

name

a/b/f2

returns

the

context

bound

under

the

name

x/y

in

Name

Space

2.

Furthermore,

if

context

x/y

contains

an

Enterprise

JavaBeans

(EJB)

home

bound

under

the

name

ejb1,

the

EJB

home

could

be

looked

up

from

Name

Space

1

with

the

lookup

name

a/b/f2/ejb1.

Notice

that

the

name

crosses

name

spaces.

This

fact

is

transparent

to

the

naming

client.

In

a

WebSphere

Application

Server

name

space,

you

can

create

federated

bindings

with

the

following

restrictions:

v

Federation

is

limited

to

CosNaming

name

servers.

A

WebSphere

Application

Server

name

server

is

a

Common

Object

Request

Broker

Architecture

(CORBA)

CosNaming

implementation.

You

can

create

federated

bindings

to

other

CosNaming

contexts.

You

cannot,

for

example,

bind

contexts

from

an

LDAP

name

server

implementation.

Initial Context

a

Local Context

Local Context

Federated
Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

Chapter

14.

Using

naming

813

v

If

you

use

JNDI

to

federate

the

name

space,

you

must

use

WebSphere

Application

Server’s

initial

context

factory

to

obtain

the

reference

to

the

federated

context.

If

you

use

some

other

initial

context

factory

implementation,

you

either

may

not

be

able

to

create

the

binding,

or

the

level

of

transparency

may

be

reduced.

v

A

federated

binding

to

a

non-WebSphere

Application

Server

naming

context

has

the

following

functional

limitations:

–

JNDI

operations

are

restricted

to

the

use

of

CORBA

objects.

For

example,

you

can

look

up

EJB

homes,

but

you

cannot

look

up

non-CORBA

objects

such

as

data

sources.

–

JNDI

caching

is

not

supported

for

non-WebSphere

Application

Server

name

spaces.

This

restriction

affects

the

performance

of

lookup

operations

only.
v

Do

not

federate

two

WebSphere

Application

Server

stand-alone

server

name

spaces.

Incorrect

behavior

may

result.

If

you

want

to

federate

WebSphere

Application

Server

name

spaces,

you

should

use

servers

running

under

the

Network

Deployment

or

Enterprise

packages

of

WebSphere

Application

Server.

Name

space

bindings

Administrators

can

add

name

bindings

to

the

name

space

through

the

configuration.

Name

servers

add

these

configured

bindings

to

the

name

space

view

by

reading

the

configuration

data

for

the

bindings.

Configuring

bindings

is

an

alternative

to

creating

the

bindings

from

a

program.

Configured

bindings

are

created

each

time

a

server

starts,

even

when

the

binding

is

created

in

a

transient

partition

of

the

name

space.

One

major

use

of

configured

bindings

to

provide

interoperability

with

JNDI

clients

running

on

previous

versions

of

the

WebSphere

Application

Server.

There

are

four

different

kinds

of

bindings

that

you

can

configure:

v

Enterprise

JavaBeans

(EJB)

v

CORBA

object

v

Indirect

Lookup

v

String

Configuring

and

viewing

name

space

bindings

To

view

or

configure

an

EJB,

CORBA,

Indirect

lookup

or

string

name

space

binding,

complete

the

following:

1.

Open

the

Administrative

console.

2.

Click

Environment.

3.

Click

Manage

Name

Space

Bindings.

4.

Select

the

desired

scope

by

entering

in

a

node

name

for

node-scoped

bindings,

or

a

node

name

and

server

name

for

server-scoped

bindings,

and

click

Apply.

5.

To

create

a

new

binding,

click

New

and

follow

the

instructions.

To

edit

a

previously

created

binding,

click

the

binding

you

want

to

edit

and

proceed

to

the

next

step.

6.

Edit

the

Binding

identifier,

the

Name

in

name

space,

and

the

String

value

fields

as

desired.

Note:

All

of

these

fields

are

required.

7.

Click

Finish

to

register

the

changes.

814

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

String

binding

settings

Use

this

page

to

configure

a

new

string

binding

or

to

view

or

edit

an

existing

string

binding.

To

view

this

administrative

console

page,

click

Environment

>

Naming

>

Name

Space

Bindings

>

string_namespace_binding.

Scope

Shows

the

scope

of

the

configured

binding.

This

value

indicates

the

configuration

location

for

the

namebindings.xml

file.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

If

the

configured

binding

is

cell-scoped,

the

starting

context

is

the

cell

persistent

root

context.

If

the

configured

binding

is

node-scoped,

the

starting

context

is

the

node

persistent

root

context.

If

the

configured

binding

is

server-scoped,

the

starting

context

is

the

server’s

server

root

context.

Binding

Type

Shows

the

type

of

binding

configured.

Possible

choices

are

String,

EJB,

CORBA,

and

Indirect.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Binding

Identifier

Specifies

the

name

that

uniquely

identifies

this

configured

binding.

Name

in

Name

Space

Specifies

the

name

used

for

this

binding

in

the

name

space.

This

name

can

be

a

simple

or

compound

name

depending

on

the

portion

of

the

name

space

where

this

binding

is

configured.

String

Value

Specifies

the

string

to

be

bound

into

the

name

space.

CORBA

object

binding

settings

Use

this

page

to

configure

a

new

name

binding

of

a

CORBA

object

binding,

or

to

view

or

edit

an

existing

CORBA

object

binding.

To

view

this

administrative

console

page,

click

Environment

>

Naming

>

Name

Space

Bindings

>

CORBA_namespace_binding.

Scope

Shows

the

scope

of

the

configured

binding.

This

value

indicates

the

configuration

location

for

the

namebindings.xml

file.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

If

the

configured

binding

is

cell-scoped,

the

starting

context

is

the

cell

persistent

root

context.

If

the

configured

binding

is

node-scoped,

the

starting

context

is

the

node

persistent

root

context.

If

the

configured

binding

is

server-scoped,

the

starting

context

is

the

server’s

server

root

context.

Binding

Type

Shows

the

type

of

binding

configured.

Possible

choices

are

String,

EJB,

CORBA,

and

Indirect.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Binding

Identifier

Specifies

the

name

that

uniquely

identifies

this

configured

binding.

Name

in

Name

Space

Specifies

the

name

used

for

this

binding

in

the

name

space.

This

name

can

be

a

simple

or

compound

name

depending

on

the

portion

of

the

name

space

where

this

binding

is

configured.

Chapter

14.

Using

naming

815

Corbaname

URL

Specifies

the

CORBA

name

URL

string

identifying

where

the

object

is

bound

in

a

CosNaming

server.

Federated

Context

Specifies

whether

the

target

is

a

CosNaming

context

(true)

or

a

leaf

node

object

(false).

Value

Result

true

The

target

object

is

bound

with

a

context

CORBA

binding

type.

If

the

corbaname

URL

does

not

resolve

to

a

NamingContext,

an

error

occurs

when

the

binding

is

first

used

(which

is

when

the

URL

is

first

resolved).

false

The

target

object

is

bound

with

an

object

CORBA

binding

type.

Indirect

lookup

binding

settings

Use

this

page

to

configure

a

new

indirect

lookup

name

binding,

or

to

view

or

edit

an

existing

indirect

lookup

binding.

To

view

this

administrative

console

page,

click

Environment

>

Naming

>

Name

Space

Bindings

>

indirect_lookup_namespace_binding.

Scope

Shows

the

scope

of

the

configured

binding.

This

value

indicates

the

configuration

location

for

the

namebindings.xml

file.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

If

the

configured

binding

is

cell-scoped,

the

starting

context

is

the

cell

persistent

root

context.

If

the

configured

binding

is

node-scoped,

the

starting

context

is

the

node

persistent

root

context.

If

the

configured

binding

is

server-scoped,

the

starting

context

is

the

server’s

server

root

context.

Binding

Type

Shows

the

type

of

binding

configured.

Possible

choices

are

String,

EJB,

CORBA,

and

Indirect.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Binding

Identifier

Specifies

the

name

that

uniquely

identifies

this

configured

binding.

Name

in

Name

Space

Specifies

the

name

used

for

this

binding

in

the

name

space.

This

name

can

be

a

simple

or

compound

name

depending

on

the

portion

of

the

name

space

where

this

binding

is

configured.

Provider

URL

Specifies

the

provider

URL

string

needed

to

obtain

a

JNDI

initial

context.

JNDI

Name

Specifies

the

name

used

to

look

up

the

target

object

from

the

initial

context.

EJB

binding

settings

Use

this

page

to

configure

a

new

EJB

binding,

or

to

view

or

edit

an

existing

EJB

binding.

To

view

this

administrative

console

page,

click

Environment

>

Naming

>

Name

Space

Bindings

>

EJB_namespace_binding.

816

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Scope

Shows

the

scope

of

the

configured

binding.

This

value

indicates

the

configuration

location

for

the

namebindings.xml

file.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

If

the

configured

binding

is

cell-scoped,

the

starting

context

is

the

cell

persistent

root

context.

If

the

configured

binding

is

node-scoped,

the

starting

context

is

the

node

persistent

root

context.

If

the

configured

binding

is

server-scoped,

the

starting

context

is

the

server’s

server

root

context.

Binding

Type

Shows

the

type

of

binding

configured.

Possible

choices

are

String,

EJB,

CORBA,

and

Indirect.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Binding

Identifier

Specifies

the

name

that

uniquely

identifies

this

configured

binding.

Name

in

Name

Space

Specifies

the

name

used

for

this

binding

in

the

name

space.

This

name

can

be

a

simple

or

compound

name

depending

on

the

portion

of

the

name

space

where

this

binding

is

configured.

Enterprise

Bean

Location

Specifies

whether

the

enterprise

bean

is

running

in

a

server

cluster

or

a

single

server.

If

Single

Server

is

specified,

type

the

node

name.

Server

Specifies

the

name

of

the

cluster

or

non-clustered

server

in

which

the

enterprise

bean

is

configured.

JNDI

Name

Specifies

the

JNDI

name

of

the

deployed

enterprise

bean

(the

bean’s

JNDI

name

that

is

in

the

enterprise

bean

bindings--not

the

java:comp

name)

Name

space

binding

collection

Use

this

page

to

configure

a

name

binding

of

an

EJB,

a

CORBA

CosNaming

NamingContext,

a

CORBA

leaf

node

object,

an

object

that

you

can

look

up

using

JNDI,

or

a

constant

string

value.

Binding

information

for

configured

bindings

is

stored

in

the

configuration

and

applied

upon

startup

of

the

name

server

for

each

server

within

the

scope

of

the

binding.

To

view

the

Manage

Name

Space

Bindings

Settings

page,

click

Environment

>

Naming

>

Name

Space

Bindings.

Click

the

check

boxes

to

select

one

or

more

of

the

users

in

your

collection.

Use

the

buttons

to

control

the

selected

users.

Name

Shows

the

names

given

to

uniquely

identify

these

configured

bindings.

Scope

Shows

the

scope

of

the

configured

binding.

This

value

indicates

the

configuration

location

for

the

namebindings.xml

file.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Chapter

14.

Using

naming

817

If

the

configured

binding

is

cell-scoped,

the

starting

context

is

the

cell

persistent

root

context.

If

the

configured

binding

is

node-scoped,

the

starting

context

is

the

node

persistent

root

context.

If

the

configured

binding

is

server-scoped,

the

starting

context

is

the

server’s

server

root

context.

Binding

Type

Shows

the

type

of

binding

configured.

Valid

values

are

String,

EJB,

CORBA,

and

Indirect.

This

field

is

for

information

purposes

only

and

cannot

be

updated.

Configuring

name

servers

To

configure

a

name

server,

complete

the

following:

1.

Open

the

administrative

console.

2.

Click

Servers.

3.

Click

Application

Servers.

4.

Click

the

application

server

you

want

to

configure.

5.

Click

Server

Components.

6.

Click

Name

Server.

7.

Edit

the

fields

as

desired.

Note:

All

of

these

fields

are

mandatory.

8.

To

make

other

changes,

click

Custom

Properties.

9.

Click

OK

to

register

your

changes.

Name

server

settings

Use

this

page

to

configure

Naming

Service

Provider

settings

for

the

application

server.

To

view

this

administrative

console

page,

click

one

of

the

following

paths:

v

Servers

>

Application

Servers

>server_name

>

Server

Components

>

Name

Server

v

Servers

>

JMS

Servers

>server_name

>

Server

Components

>

Name

Server

Name

Specifies

the

display

name

for

the

server.

Data

type

String

Initial

State

Specifies

the

execution

state.

The

options

are:

Started

and

Stopped.

Data

type

String

Default

Started

Troubleshooting

name

space

problems

Many

naming

problems

can

be

avoided

by

fully

understanding

the

key

underlying

concepts

of

WebSphere

Application

Server

naming.

1.

Review

the

key

concepts

of

WebSphere

Application

Server

naming,

especially

Name

space

logical

view

and

Lookup

names

support

in

deployment

descriptors

and

thin

clients.

818

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

2.

Review

the

programming

examples

that

are

included

in

the

sections

explaining

the

JNDI

and

CosNaming

interfaces.

3.

Read

Naming

services

component

troubleshooting

tips

for

additional

general

information.

4.

If

you

Cannot

look

up

an

object

hosted

by

WebSphere

Application

Server

from

a

servlet,

JSP

file,

or

other

client,

read

this

article.

dumpNameSpace

tool

You

can

use

the

dumpNameSpace

tool

to

dump

the

contents

of

a

name

space

accessed

through

a

name

server.

When

you

invoke

the

dumpNameSpace

tool,

the

naming

service

must

be

active.

The

dumpNameSpace

tool

cannot

dump

name

spaces

local

to

the

server

process,

such

as

those

with

java:

and

local:

URL

schemes.

The

local:

name

space

contains

references

to

enterprise

beans

with

local

interfaces.

Use

the

name

space

dump

utility

for

java:,

local:

and

server

name

spaces

to

dump

java:

and

local:

name

spaces.

Note

that

the

server

root

context

for

the

server

at

the

specified

host

and

port

is

dumped

(unless

a

non-default

starting

context

which

precludes

it

is

specified).

The

server

root

contexts

for

other

servers

are

not

dumped.

If

you

run

the

dumpNameSpace

tool,

a

login

prompt

is

displayed.

If

you

cancel

the

login

prompt,

the

dumpNameSpace

tool

continues

outbound

with

an

″UNAUTHENTICATED″

credential.

Thus,

by

default,

an

″UNAUTHENTICATED″

credential

is

used

that

is

equivalent

to

the

″Everyone″

access

authorization

policy.

You

can

modify

this

default

setting

by

changing

the

value

for

the

com.ibm.CSI.performClientAuthenticationRequired

property

to

true

in

the

install_dir/properties/sas.client.props

file.

When

you

change

this

property

to

true,

rerun

the

dumpNameSpace

tool,

and

cancel

the

login

prompt,

the

authorization

fails

and

the

command

will

not

continue

outbound.

Command

line

invocation

descriptions

of

the

dumpNameSpace

tool

follow.

This

section

includes

sample

output.

You

can

also

access

this

tool

a

through

its

program

interface.

Refer

to

the

class

com.ibm.websphere.naming.DumpNameSpace

in

the

WebSphere

Application

Server

API

documentation.

To

invoke

the

tool

through

the

command

line,

enter

the

following

command

from

the

WebSphere/AppServer/bin

directory:

Platform

Command

UNIX

dumpNameSpace.sh

[[-keyword

value]...]

Windows

NT

dumpNameSpace

[[-keyword

value]...]

Parameters

The

keywords

and

associated

values

for

the

dumpNameSpace

utility

follow:

-host

myhost.austin.ibm.com

Indicates

the

bootstrap

host

or

the

WebSphere

Application

Server

host

whose

name

space

you

want

to

dump.

The

value

defaults

to

localhost.

-port

nnn

Indicates

the

bootstrap

port

which,

if

not

specified,

defaults

to

2809.

Chapter

14.

Using

naming

819

-root

{cell

|

server

|

node

|

host

|

legacy

|

tree

|

default}

Indicates

the

root

context

to

use

as

the

initial

context

for

the

dump.

The

applicable

root

options

and

default

root

context

depend

on

the

type

of

name

server

from

which

the

dump

is

being

obtained.

This

information

is

provided

in

the

following

tables.

For

WebSphere

Application

Servers

V5

or

later:

cell

DumpNameSpace

default.

Dump

the

tree

starting

at

the

cell

root

context.

server

Dump

the

tree

starting

at

the

server

root

context.

node

Dump

the

tree

starting

at

the

node

root

context.

(Synonymous

with

host.)

For

WebSphere

Application

Servers

v4.0

or

later:

legacy

DumpNameSpace

default.

Dump

the

tree

starting

at

the

legacy

root

context.

host

Dump

the

tree

starting

at

the

bootstrap

host

root

context.

(Synonymous

with

node.)

tree

Dump

the

tree

starting

at

the

tree

root

context.

For

all

WebSphere

Application

Servers

and

other

name

servers:

default

Dump

the

tree

starting

at

the

initial

context

which

JNDI

returns

by

default

for

that

server

type.

This

is

the

only

-root

choice

that

is

compatible

with

WebSphere

Application

Servers

prior

to

v4.0

and

with

non-WebSphere

Application

Server

name

servers.

-url

some

provider

URL

Indicates

the

value

for

the

java.naming.provider.url

property

used

to

get

the

initial

JNDI

context.

This

option

can

be

used

in

place

of

the

-host,

-port,

and

-root

options.

If

the

-url

option

is

specified,

the

-host,

-port,

and

-root

options

are

ignored.

-factory

com.ibm.websphere.naming.WsnInitialContextFactory

Indicates

the

initial

context

factory

to

be

used

to

get

the

JNDI

initial

context.

The

value

defaults

to:

com.ibm.websphere.naming.WsnInitialContextFactory

The

default

value

generally

does

not

need

to

be

changed.

-startAt

some/subcontext/in/the/tree

Indicates

the

path

from

the

bootstrap

host’s

root

context

to

the

top

level

context

where

the

dump

should

begin.

The

utility

recursively

dumps

subcontexts

below

this

point.

It

defaults

to

an

empty

string,

that

is,

the

bootstrap

host

root

context.

-format{jndi

|

ins}

Option

Description

jndi

The

default.

Displays

name

components

as

atomic

strings.

ins

Shows

name

components

parsed

per

INS

rules

(id.kind).

820

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

-report

{short

|

long}

Option

Description

short

The

default.

Dumps

the

binding

name

and

bound

object

type.

This

output

is

also

provided

by

JNDI

Context.list().

long

Dumps

the

binding

name,

bound

object

type,

local

object

type,

and

string

representation

of

the

local

object

(that

is,

the

IORs,

string

values,

and

other

values

that

are

printed).

For

objects

of

user-defined

classes

to

display

correctly

with

the

long

report

option,

it

may

be

necessary

to

add

their

containing

directories

to

the

list

of

directories

searched.

Set

the

environment

variable

WAS_USER_DIRS.

The

value

can

include

one

or

more

directories,

as

for

example:

Platform

Command

UNIX

WAS_USER_DIRS=/usr/classdir1:/usr/classdir2

export

WAS_USER_DIRS

Windows

NT

set

WAS_USER_DIRS=c:\classdir1;d:\classdir2

All

zip,

jar,

and

class

files

in

the

specified

directories

can

then

be

resolved

by

the

class

loader

when

running

dumpNameSpace.

-traceString

″some.package.name.to.trace.*=all=enabled″

Represents

the

trace

string

with

the

same

format

as

that

generated

by

the

servers.

The

output

is

sent

to

the

file,

DumpNameSpaceTrace.out.

Example:

Invoking

the

name

space

dump

utility

It

is

often

helpful

to

view

a

dump

of

the

name

space

to

understand

why

a

naming

operation

is

failing.

You

can

invoke

the

name

space

dump

utility

from

the

command

line

or

from

a

program.

Examples

of

each

option

follow.

Invoking

name

space

dump

utility

from

a

command

line

Invoke

the

name

space

dump

utility

from

the

command

line

by

entering

the

following

command:

dumpNameSpace

-host

myhost.mycompany.com

-port

901

OR

dumpNameSpace

-url

corbaloc:iiop:myhost.mycompany.com:901

There

are

several

command

line

options

to

choose

from.

For

detailed

help,

enter

the

following

command:

dumpNameSpace

-help

For

the

z/OS

environment:

Use

the

dumpNameSpace.sh

command.

(Add

.sh

to

the

utility

name.)

Invoking

name

space

dump

utility

from

a

Java

program

You

can

dump

name

spaces

from

a

program

with

the

com.ibm.websphere.naming.DumpNameSpace

API.

Refer

to

the

WebSphere

Application

Server

API

documentation

for

details

on

the

DumpNameSpace

program

interface

Chapter

14.

Using

naming

821

The

following

example

illustrates

how

to

invoke

the

name

space

dump

utility

from

a

Java

program:

{

...

import

javax.naming.Context;

import

javax.naming.InitialContext;

import

com.ibm.websphere.naming.DumpNameSpace;

...

java.io.PrintStream

filePrintStream

=

...

Context

ctx

=

new

InitialContext();

//

Starting

context

for

dump

ctx

=

(Context)

ctx.lookup("cell/nodes/node1/servers/server1");

DumpNameSpace

dumpUtil

=

new

DumpNameSpace(filePrintStream,

DumpNameSpace.SHORT);

dumpUtil.generateDump(ctx);

...

}

Name

space

dump

utility

forjava:,

local:

and

server

name

spaces

Sometimes

it

is

helpful

to

dump

the

java:

name

space

for

a

J2EE

application.

You

cannot

use

the

dumpNameSpace

command

line

utility

for

this

purpose

because

the

application’s

java:

name

space

is

accessible

only

by

that

J2EE

application.

From

the

WebSphere

Application

Server

scripting

tool,

you

can

invoke

a

NameServer

MBean

to

dump

the

java:

name

space

for

any

J2EE

application

running

in

that

same

server

process.

There

is

another

name

space

local

to

server

process

which

you

cannot

dump

with

the

dumpNameSpace

command

line

utility.

This

name

space

has

the

URL

scheme

of

local:

and

is

used

by

the

container

to

bind

objects

locally

instead

of

through

the

name

server.

The

local:

name

space

contains

references

to

enterprise

beans

with

local

interfaces.

There

is

only

one

local:

name

space

in

a

server

process.

You

can

dump

the

local:

name

space

by

invoking

the

NameServer

MBean

associated

with

that

server

process.

Name

space

dump

options

Name

space

dump

options

are

specified

in

the

MBean

invocation

as

a

parameter

in

chararacter

string

format.

The

option

descriptions

follow.

-startAt

some/subcontext/in/the/tree

Indicates

the

path

from

the

name

space

root

context

to

the

top

level

context

where

the

dump

should

begin.

The

utility

recursively

dumps

subcontexts

below

this

point.

It

defaults

to

an

empty

string,

that

is,

the

root

context.

-report

{short

|

long}

Option

Description

short

The

default.

Dumps

the

binding

name

and

bound

object

type.

This

output

is

also

provided

by

JNDI

Context.list().

long

Dumps

the

binding

name,

bound

object

type,

local

object

type,

and

string

representation

of

the

local

object

(that

is,

the

IORs,

string

values,

and

other

values

that

are

printed).

-root

{tree

|

host

|

legacy

|

cell

|

node

|

server

|

default}

Specify

the

root

context

of

where

the

dump

should

start.

The

default

value

for

-root

is

cell.

This

option

is

only

valid

for

server

name

space

dumps.

822

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Option

Description

tree

Dump

the

tree

starting

at

the

tree

root

context.

host

Dump

the

tree

starting

at

the

server

host

root

context

(synonymous

with

″node″).

legacy

Dump

the

tree

starting

at

the

legacy

root

context.

cell

Dump

the

tree

starting

at

the

cell

root

context.

This

is

the

default

option.

node

Dump

the

tree

starting

at

the

node

root

context

(synonymous

with

″host″).

server

Dump

the

tree

starting

at

the

server

root

context.

This

is

-root

default.

default

Dump

the

tree

starting

at

the

initial

context

which

JNDI

returns

by

default

for

that

server

type.

-format

{jndi

|

ins}

Specify

the

format

to

display

name

component

as

atomic

strings

or

parsed

according

to

INS

rules

(id.kind).

This

option

is

only

valid

for

server

name

space

dumps.

Option

Description

jndi

Display

name

components

as

atomic

strings.

This

is

-format

default.

ins

Display

name

components

parsed

according

to

INS

rules

(id.kind).

NameServer

MBean

invocation

1.

Enter

the

WebSphere

Application

Server

scripting

command

prompt.

Invoke

a

method

on

a

NameServer

MBean

by

using

the

WebSphere

Application

Server

scripting

tool.

Enter

the

scripting

command

prompt

by

typing

the

following

command:

Platform

Command

UNIX

wsadmin.sh

Windows

NT

wsadmin

Use

the

-help

option

for

help

on

using

the

wsadmin

command.

2.

Select

the

NameServer

MBean

instance

to

invoke.

Execute

the

following

script

commands

to

select

the

NameServer

instance

you

want

to

invoke.

For

example,

set

mbean

[$AdminControl

completeObjectName

WebSphere:*,type=NameServer,cell=

cellName,node=nodeName,process=serverName]

where

cellName,

nodeName,

and

serverName

are

the

names

of

the

cell,

node,

and

server

for

the

MBean

you

want

to

invoke.

The

specified

server

must

be

running

before

you

can

invoke

a

method

on

the

MBean.

You

can

see

a

list

of

all

NameServer

MBeans

current

running

by

issuing

the

following

query:

$AdminControl

queryNames

{*:*,type=NameServer}

3.

Invoke

the

NameServer

MBean.

Chapter

14.

Using

naming

823

java:

name

space

Dump

a

java:

name

space

by

invoking

the

dumpJavaNameSpace

method

on

the

NameServer

MBean.

Since

each

server

application

has

its

own

java:

name

space,

the

application

must

be

specified

on

the

method

invocation.

An

application

is

identified

by

the

application

name,

module

name,

and

component

name.

The

method

syntax

follows:

$AdminControl

invoke

$mbean

dumpJavaNameSpace

{{appname}{modName}{compName}{opts}}

where

appName

is

the

application

name,

modName

is

the

module

name,

and

compName

is

the

component

name

of

the

java:

name

space

you

want

to

dump.

The

value

for

opts

is

the

list

of

name

space

dump

options

described

earlier

in

this

section.

The

list

can

be

empty.

local:

name

space

Dump

a

java:

name

space

by

invoking

the

dumpLocalNameSpace

method

on

the

NameServer

MBean.

Since

there

is

only

one

local:

name

space

in

a

server

process,

you

have

to

specify

the

name

space

dump

options

only.

$AdminControl

invoke

$mbean

dumpLocalNameSpace

{{opts}}

where

opts

is

the

list

of

name

space

dump

options

described

earlier

in

this

section.

The

list

can

be

empty.

Server

name

space

Dump

a

server

name

space

by

invoking

the

dumpServerNameSpace

method

on

an

application

server’s

NameServer

MBean.

This

provides

an

alternative

way

to

dump

the

name

space

on

an

application

server,

much

like

the

dumpNameSpace

command

line

utility.

$AdminControl

invoke

$mbean

dumpServerNameSpace

{{opts}}

where

opts

is

the

list

of

name

space

dump

options

described

earlier

in

this

section.

The

list

can

be

empty.

Name

space

dump

output

Name

space

dump

output

is

sent

to

the

console.

It

is

also

written

to

the

file

DumpNameSpace.log,

in

the

server’s

log

directory.

Example:

Invoking

the

name

space

dump

utility

for

java:

andlocal:

name

spaces

It

is

often

helpful

to

view

the

dump

of

a

java:

or

local:

name

space

to

understand

why

a

naming

operation

is

failing.

The

NameServer

MBean

running

in

the

application’s

server

process

can

be

invoked

from

the

WebSphere

Application

Server

scripting

tool

to

generate

a

dump

of

these

name

spaces.

Examples

of

NameServer

MBean

calls

to

generate

dumps

of

java:

and

local:

name

spaces

follow.

Dumping

a

java:

name

space

Assume

you

want

to

dump

the

java:

name

space

of

an

application

component

running

in

server

server1

on

node

node1

of

the

cell

MyCell.

The

application

name

is

AcctApp

in

module

AcctApp.war,

and

the

component

name

is

Acct

Servlet.

The

following

script

commands

generate

a

long

format

dump

of

the

application’s

java:

name

space

of

that

application:

824

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

set

mbean

[$AdminControl

completeObjectName

WebSphere:*,type=NameServer,cell=MyCell,node=node1,process=server1]

$AdminControl

invoke

$mbean

dumpJavaNameSpace

{

{AcctApp}{AcctApp.war}{Acct

Servlet}{-report

long}}

Dumping

a

local:

name

space

Assume

you

want

to

dump

the

local:

name

space

for

the

server

server1

on

node

node1

of

cell

MyCell.

The

following

script

commands

will

generate

a

short

format

dump

of

that

server’s

local

name

space:

set

mbean

[$AdminControl

completeObjectName

WebSphere:*type=NameServer,cell=

MyCell,node=node1,process=server1]

$AdminControl

invoke

$mbean

dumpLocalNameSpace

{{-report

short}}

Name

space

dump

sample

output

Name

space

dump

output

looks

like

the

following

example,

which

is

the

SHORT

dump

format:

Getting

the

initial

context

Getting

the

starting

context

==

Name

Space

Dump

Provider

URL:

corbaloc:iiop:localhost:9810

Context

factory:

com.ibm.websphere.naming.WsnInitialContextFactory

Requested

root

context:

cell

Starting

context:

(top)=outpostNetwork

Formatting

rules:

jndi

Time

of

dump:

Mon

Sep

16

18:35:03

CDT

2002

==

==

Beginning

of

Name

Space

Dump

==

1

(top)

2

(top)/domain

javax.naming.Context

2

Linked

to

context:

outpostNetwork

3

(top)/cells

javax.naming.Context

4

(top)/clusters

javax.naming.Context

5

(top)/clusters/Cluster1

javax.naming.Context

6

(top)/cellname

java.lang.String

7

(top)/cell

javax.naming.Context

7

Linked

to

context:

outpostNetwork

8

(top)/deploymentManager

javax.naming.Context

8

Linked

to

URL:

corbaloc::outpost:9809/NameServiceServerRoot

9

(top)/nodes

javax.naming.Context

10

(top)/nodes/will2

javax.naming.Context

11

(top)/nodes/will2/persistent

javax.naming.Context

12

(top)/nodes/will2/persistent/SomeObject

SomeClass

13

(top)/nodes/will2/nodename

java.lang.String

14

(top)/nodes/will2/domain

javax.naming.Context

14

Linked

to

context:

outpostNetwork

15

(top)/nodes/will2/cell

javax.naming.Context

15

Linked

to

context:

outpostNetwork

16

(top)/nodes/will2/servers

javax.naming.Context

17

(top)/nodes/will2/servers/server1

javax.naming.Context

18

(top)/nodes/will2/servers/will2

javax.naming.Context

19

(top)/nodes/will2/servers/member2

javax.naming.Context

20

(top)/nodes/will2/node

javax.naming.Context

20

Linked

to

context:

outpostNetwork/nodes/will2

21

(top)/nodes/will2/nodeAgent

javax.naming.Context

Chapter

14.

Using

naming

825

22

(top)/nodes/outpost

javax.naming.Context

23

(top)/nodes/outpost/node

javax.naming.Context

23

Linked

to

context:

outpostNetwork/nodes/outpost

24

(top)/nodes/outpost/nodeAgent

javax.naming.Context

24

Linked

to

URL:

corbaloc::outpost:2809/NameServiceServerRoot

25

(top)/nodes/outpost/persistent

javax.naming.Context

26

(top)/nodes/outpost/nodename

java.lang.String

27

(top)/nodes/outpost/domain

javax.naming.Context

27

Linked

to

context:

outpostNetwork

28

(top)/nodes/outpost/servers

javax.naming.Context

29

(top)/nodes/outpost/servers/server1

javax.naming.Context

30

(top)/nodes/outpost/servers/server1/url

javax.naming.Context

31

(top)/nodes/outpost/servers/server1/url/CatalogDAOSQLURL

31

java.net.URL

32

(top)/nodes/outpost/servers/server1/mail

javax.naming.Context

33

(top)/nodes/outpost/servers/server1/mail/PlantsByWebSphere

33

javax.mail.Session

34

(top)/nodes/outpost/servers/server1/TransactionFactory

34

com.ibm.ejs.jts.jts.ControlSet$LocalFactory

35

(top)/nodes/outpost/servers/server1/servername

java.lang.String

36

(top)/nodes/outpost/servers/server1/WSsamples

javax.naming.Context

37

(top)/nodes/outpost/servers/server1/WSsamples/TechSampDatasource

37

TechSamp

38

(top)/nodes/outpost/servers/server1/thisNode

javax.naming.Context

38

Linked

to

context:

outpostNetwork/nodes/outpost

39

(top)/nodes/outpost/servers/server1/cell

javax.naming.Context

39

Linked

to

context:

outpostNetwork

40

(top)/nodes/outpost/servers/server1/eis

javax.naming.Context

41

(top)/nodes/outpost/servers/server1/eis/DefaultDatasource_CMP

41

Default_CF

42

(top)/nodes/outpost/servers/server1/eis/WSsamples

javax.naming.Context

43

(top)/nodes/outpost/servers/server1/eis/WSsamples/TechSampDatasource_CMP

43

TechSamp_CF

44

(top)/nodes/outpost/servers/server1/eis/jdbc

javax.naming.Context

45

(top)/nodes/outpost/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP

45

PLANTSDB_CF

46

(top)/nodes/outpost/servers/server1/eis/jdbc/petstore

46

javax.naming.Context

47

(top)/nodes/outpost/servers/server1/eis/jdbc/petstore/PetStoreDB_CMP

47

PetStore_CF

48

(top)/nodes/outpost/servers/server1/eis/jdbc/CatalogDB_CMP

48

Catalog_CF

49

(top)/nodes/outpost/servers/server1/jta

javax.naming.Context

50

(top)/nodes/outpost/servers/server1/jta/usertransaction

50

java.lang.Object

51

(top)/nodes/outpost/servers/server1/DefaultDatasource

51

Default

Datasource

52

(top)/nodes/outpost/servers/server1/jdbc

javax.naming.Context

53

(top)/nodes/outpost/servers/server1/jdbc/CatalogDB

CatalogDB

54

(top)/nodes/outpost/servers/server1/jdbc/petstore

javax.naming.Context

55

(top)/nodes/outpost/servers/server1/jdbc/petstore/PetStoreDB

55

PetStoreDB

56

(top)/nodes/outpost/servers/server1/jdbc/PlantsByWebSphereDataSource

56

PLANTSDB

57

(top)/nodes/outpost/servers/outpost

javax.naming.Context

57

Linked

to

URL:

corbaloc::outpost:2809/NameServiceServerRoot

58

(top)/nodes/outpost/servers/member1

javax.naming.Context

59

(top)/nodes/outpost/cell

javax.naming.Context

59

Linked

to

context:

outpostNetwork

60

(top)/nodes/outpostManager

javax.naming.Context

61

(top)/nodes/outpostManager/domain

javax.naming.Context

61

Linked

to

context:

outpostNetwork

62

(top)/nodes/outpostManager/cell

javax.naming.Context

62

Linked

to

context:

outpostNetwork

63

(top)/nodes/outpostManager/servers

javax.naming.Context

64

(top)/nodes/outpostManager/servers/dmgr

javax.naming.Context

64

Linked

to

URL:

corbaloc::outpost:9809/NameServiceServerRoot

826

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

65

(top)/nodes/outpostManager/node

javax.naming.Context

65

Linked

to

context:

outpostNetwork/nodes/outpostManager

66

(top)/nodes/outpostManager/nodename

java.lang.String

67

(top)/persistent

javax.naming.Context

68

(top)/persistent/cell

javax.naming.Context

68

Linked

to

context:

outpostNetwork

69

(top)/legacyRoot

javax.naming.Context

69

Linked

to

context:

outpostNetwork/persistent

70

(top)/persistent/AnotherObject

AnotherClass

==

End

of

Name

Space

Dump

==

Naming

and

directories:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

naming

and

directories.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

Programming

instructions

and

examples

v

Naming

in

WebSphere

Application

Server

V5:

Impact

on

Migration

and

Interoperability

Programming

specifications

v

Java

Naming

and

Directory

InterfaceTM

1.2.1

Specification

v

OMG

CosNaming

Interoperable

Naming

Specification

Chapter

14.

Using

naming

827

http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/techarticles/0305_weiner/weiner.xml&xslURL=/wsdd/xsl/document.xsl&format=one-column
http://www7b.software.ibm.com/webapp/dd/transform.wss?URL=/wsdd/library/techarticles/0305_weiner/weiner.xml&xslURL=/wsdd/xsl/document.xsl&format=one-column
http://java.sun.com/products/jndi/1.2/javadoc/
http://www.omg.org/cgi-bin/doc?ptc/99-12-03

828

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

The

dynamic

cache

service

works

within

an

application

server

Java

virtual

machine

(JVM),

intercepting

calls

to

cacheable

objects.

For

example,

it

intercepts

calls

through

a

servlet

service()

method

or

a

command

execute()

method,

and

either

stores

the

output

of

the

object

to,

or

serves

the

content

of

the

object

from

the

dynamic

cache.

WebSphere

Application

Server,

Version

4.0.1,

supported

the

configuration

of

dynamic

servlet

caching

through

the

use

of

a

servletcache.xml

file.

For

migration

purposes,

this

file

is

still

supported

by

this

release.

In

order

to

utilize

the

new

and

improved

functionality

of

the

dynamic

cache

service

in

this

release,

you

must

configure

your

cache

policy

using

the

new

cachespec.xml

format.

The

dynamic

caching

documentation

provides

you

with

the

following

tasks

to

enable

and

configure

the

dynamic

cache

service,

as

well

as

advanced

features,

such

as

controlling

external

caches

and

building

user-defined

drop-in

components

to

customize

the

cache

operation.

1.

Enable

the

dynamic

cache

service

globally.

2.

Configure

servlet

caching.

3.

Configure

Edge

Side

Include

(ESI)

caching.

4.

Configure

command

caching.

5.

Configure

Web

services

caching.

6.

Troubleshoot

any

problems

with

the

dynamic

cache

service.

Dynamic

cache

Caching

the

output

of

servlets,

commands

and

JavaServer

Pages

(JSP)

files,

improves

application

performance.

WebSphere

Application

Server

consolidates

several

caching

activities,

including

servlets,

Web

services,

and

WebSphere

commands

into

one

service

called

the

dynamic

cache.

These

caching

activities

work

together

to

improve

application

performance,

and

share

many

configuration

parameters,

which

are

set

in

the

dynamic

cache

service

of

an

application

server.

You

can

use

the

dynamic

cache

to

improve

the

performance

of

servlet

and

JSP

files

by

serving

requests

from

an

in-memory

cache.

Cache

entries

contain

servlet

output,

results

of

servlet

execution,

and

metadata.

Configuring

cache

replication

Cache

replication

leverages

the

WebSphere

internal

replication

service

that

is

also

leveraged

for

HttpSession

memory-to-memory

replication

for

failover

purposes.

Hence,

a

replication

domain

with

at

least

one

replicator

entry

needs

to

exist

in

order

to

replicate

the

data.

The

dynamic

cache

service,

in

essence,

connects

to

the

replicator.

See

more

information

in

the

topic

referring

to

managing

internal

replication.

To

configure

cache

replication

and

its

features:

1.

Click

Servers

>

Application

Servers

in

the

administrative

console

navigation

tree.

©

Copyright

IBM

Corp.

2003

829

2.

Click

server.

3.

Click

Dynamic

Cache

Service.

4.

Select

the

Enable

cache

replication

check

box

in

the

Cache

replication

field.

To

manage

batch

update

or

PUSH-PULL

-

PUSH/PULL,

repeat

steps

1-4,

then

click

the

Enable

cache

replication

link

to

the

right

of

the

Enable

cache

replication

check

box.

Batch

update

interval

is

set

under

push

frequency.

PUSH-PULL-PUSH/PULL

is

set

through

the

runtime

mode.

You

can

also

select

which

replication

domain

and

initial

replicator

entry

the

dynamic

cache

will

utilize

(either

those

managed

within

the

cell

or

across

the

cell).

Cache

replication

Data

is

generated

one

time

and

copied

or

replicated

to

other

servers

in

the

cluster,

thus

saving

execution

time

and

resources.

Caching

in

a

cluster

has

additional

concerns.

In

particular,

the

same

data

could

be

required,

and

hence,

generated

in

multiple

places.

Also,

the

access

the

resources

need

to

generate

the

cached

data

can

be

restricted,

preventing

access

to

the

data.

Cache

replication

addresses

these

concerns

by

generating

the

data

one

time

and

copying

or

replicating

it

to

the

other

servers

in

the

cluster.

It

also

aids

in

cache

consistency,

in

that

cache

entries

that

are

not

needed

are

removed

or

replaced.

The

configuration

specific

to

replication

of

data

can

exist

as

part

of

the

Web

container

dynamic

cache

configuration

accessible

through

the

administrative

console,

or

on

a

per

cache

entry

basis

through

the

cachespec.xml

file.

This

includes

the

option

to

configure

cache

replication

at

the

Web

container

level,

but

disabling

it

for

a

specific

cache

entry.

Cache

replication

can

take

on

three

forms:

v

PUSH

-

Send

out

new

entries,

both

ID

and

data,

and

updates

to

those

entries.

v

PULL

-

Requests

data

from

other

servers

in

the

cluster

when

that

data

is

not

locally

present.

This

mode

of

replication

is

not

recommended.

v

PUSH/PULL

-

Sends

out

IDs

for

new

entries,

then,

only

request

from

other

servers

in

the

cluster

entries

for

IDs

previously

broadcast.

The

dynamic

cache

always

sends

out

cache

entry

invalidations.

The

dynamic

cache

provides

a

batch

update

option.

Specifically,

for

PUSH

or

PUSH/PULL,

the

dynamic

cache

broadcasts

the

update

asynchronously,

based

on

a

timed

interval

rather

than

sending

them

immediately

upon

inception.

Invalidators

are

sent

immediately.

Distribution

of

invalidations

addresses

the

issue

of

stale

data

residing

in

a

cluster.

Internal

messaging

configuration

settings

Use

this

page

to

set

advanced

configurations

for

Memory

to

Memory

session

replication.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Dynamic

Cache

Service>

Cache

replication

>

Enable

cache

replication

.

The

advanced

replication

settings

include

fields

for

choosing

the

initial

replicator

entry

that

connects

to

the

replicator

domains.

As

an

alternative,

you

can

specify

the

IP

addresses

and

ports

(of

the

form

address:port)

for

connection

to

replicators

outside

of

the

cell

that

the

server

is

administered

under.

By

default,

if

a

replicator

is

defined

on

the

server

you

are

configuring,

that

server

is

the

one

chosen

for

cache

replication.

Select

the

advanced

properties

only

if

you

want

to

deviate

from

the

default

setting.

830

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Note:

The

cache

replication

function

can

only

be

used

if

you

are

running

the

WebSphere

Application

Server

for

z/OS

product

on

multiple

OS

images.

Internal

messaging

server

Specifies

a

domain

from

which

your

data

will

be

replicated.

Depending

on

the

domain

you

choose

to

replicate

the

data,

you

can

choose

any

of

the

replicators

defined

under

that

domain.

You

can

use

the

default

domain

or

choose

one

from

the

drop

down

window.

Runtime

mode

Specifies

the

global

sharing

policy

for

this

server.

The

following

settings

are

available:

v

Both

push

and

pull

sends

the

cache

ID

of

newly

updated

content

to

other

servers

in

the

replication

domain.

Then,

if

one

of

the

other

servers

requests

the

content,

and

that

server

has

the

ID

of

the

cache

entry

for

the

previously

updated

content,

it

will

retrieve

the

content

from

the

publishing

server.

On

the

other

hand,

if

a

request

is

made

for

an

ID

which

has

not

been

previously

published,

the

server

assumes

it

does

not

exist

in

the

cluster

and

creates

a

new

entry.

v

Push

only

sends

the

cache

ID

and

cache

content

of

new

content

to

all

other

servers

in

the

replication

domain.

v

The

sharing

policy

of

Not

Shared

results

in

the

cache

ID

and

cache

content

not

being

shared

with

other

servers

in

the

replication

domain.

The

default

setting

for

a

non-clustered

environment

is

Not

Shared.

When

enabling

replication,

the

default

value

is

Push

only.

Push

frequency

Specifies

the

time

in

seconds

to

wait

before

pushing

new

or

modified

cache

entries

to

other

servers.

A

value

of

0

(zero)

means

send

immediately.

Setting

this

property

to

a

value

greater

than

0

(zero)

causes

a

″batch″

push

of

all

cache

entries

that

are

created

or

modified

during

the

time

period.

Default

0

(equivalent

to

immediate)

Enabling

the

dynamic

cache

service

In

order

to

use

the

dynamic

cache

service,

you

must

first

enable

it.

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

in

the

administrative

console

navigation

tree.

3.

Click

a

server.

4.

Click

Dynamic

Cache

Service

under

Additional

Properties.

5.

Select

Enable

service

at

server

startup

in

the

Startup

state

field.

6.

Click

Apply

or

OK.

7.

Restart

WebSphere

Application

Server.

The

dynamic

cache

service

will

now

cache

content

for

requests

that

have

cache

policies

configured.

Dynamic

cache

service

settings

Use

this

page

to

configure

and

manage

the

dynamic

cache

service

settings.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Dynamic

Cache

Service.

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

831

Startup

state

Specifies

whether

the

dynamic

cache

is

enabled.

Cache

size

Specifies

a

positive

integer

as

the

value

for

the

maximum

number

of

entries

the

cache

holds.

Enter

the

cache

size

value

in

this

field

between

the

range

of

100

through

200,000.

Default

priority

Specifies

the

default

priority

for

cache

entries,

determining

how

long

an

entry

stays

in

a

full

cache.

Default

1

Range

1

to

255

Disk

offload

Specifies

whether

disk

offload

is

enabled.

By

default,

the

dynamic

cache

maintains

the

number

of

entries

configured

in

memory.

If

new

entries

are

created

while

the

cache

is

full,

the

priorities

configured

for

each

cache

entry

and

a

least

recently

used

algorithm,

are

used

to

remove

entries

from

the

cache.

In

addition

to

having

a

cache

entry

removed

from

memory

when

the

cache

is

full,

you

can

enable

disk

offload

to

have

a

cache

entry

copied

to

the

file

system

(the

location

is

configurable).

Later,

if

that

cache

entry

is

needed,

it

is

moved

back

to

memory

from

the

file

system.

Cache

replication

Specifies

whether

cache

replication

is

enabled.

You

can

also

configure

advanced

cache

replication

settings.

Configuring

servlet

caching

To

enable

servlet

caching,

you

must

enable

the

dynamic

cache

service.

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

3.

Click

a

server.

4.

Click

Web

Container.

5.

Select

the

Enable

servlet

caching

check

box

under

the

Configuration

tab.

6.

Click

Apply

or

OK.

Servlet

caching

After

a

servlet

is

invoked

and

generating

the

output

to

cache,

a

cache

entry

is

created

containing

the

output

and

the

side

effects

of

the

invocation.

For

example,

these

side

effects

can

include

calls

to

other

servlets

or

JavaServer

Pages

(JSP)

files,

as

well

as

metadata

about

the

entry,

including

timeout

and

entry

priority

information.

Unique

entries

are

distinguished

by

an

ID

string

generated

from

the

HttpServletRequest

object

for

each

invocation

of

the

servlet.

You

can

then

base

servlet

caching

on:

v

Request

parameters

and

attributes

the

URI

used

to

invoke

the

servlet

v

Session

information

v

Other

options,

including

cookies

832

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Since

JSP

files

are

compiled

by

WebSphere

Application

Server

into

servlets,

the

dynamic

cache

function

treats

them

the

same,

except

in

specifically

documented

situations.

Configuring

the

dynamic

cache

disk

offload

By

default,

when

the

number

of

cache

entries

reaches

the

configured

limit

for

a

given

WebSphere

server,

eviction

of

cache

entries

occurs,

allowing

new

entries

to

enter

the

cache

service.

The

dynamic

cache

includes

an

alternative

feature

named

disk

offload,

that

copies

the

evicted

cache

entries

to

disk

for

potential

future

access.

To

configure

disk

offload:

1.

Open

the

administrative

server.

2.

Click

Server

>

Application

Server

in

the

administrative

console

navigation

tree.

3.

Click

server.

4.

Click

Dynamic

Cache

Service.

5.

Click

the

Enable

disk

offload

check

box

in

the

Disk

offload

field.

You

can

also

set

the

disk

offload

location

in

this

field.

6.

Click

Apply

or

OK.

Application

servers

must

have

different

disk

offload

locations

When

you

have

two

or

more

application

servers

with

servlet

caching

enabled

and

the

application

servers

specify

the

same

disk

offload

location

for

their

caches

through

the

dynamic

cache

service,

the

following

exceptions

might

occur:

java.lang.NullPointerException

at

com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)

at

com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:

java.lang.NullPointerException

at

com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)

at

com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If

one

server

is

run

as

root

and

the

other

servers

are

run

as

nonroot,

this

problem

could

occur.

For

example,

if

server1

runs

as

root

and

server2

runs

as

wasuser

or

wasgroup,

the

cache

files

in

the

disk

offload

location

might

be

created

with

root

permissions.

This

situation

causes

the

applications

running

on

the

nonroot

servers

to

crash

when

they

try

to

read

or

write

to

the

cache.

The

disk

offload

location

must

be

unique

for

servers

defined

on

the

same

node.

If

you

have

multiple

servers

defined

on

the

same

node,

make

sure

the

disk

offload

location

is

different

for

each

server

as

defined

on

the

Dynamic

Cache

Service

panel,

Offload

location

field.

Configuring

Edge

Side

Include

caching

Edge

Side

Include

(ESI)

is

configured

through

the

plugin-cfg.xml

file.

The

Web

server

plug-in

contains

a

built-in

ESI

processor.

The

ESI

processor

has

the

ability

to

cache

whole

pages,

as

well

as

fragments,

providing

a

higher

cache

hit

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

833

ratio.

The

cache

implemented

by

the

ESI

processor

is

an

in-memory

cache,

not

a

disk

cache,

therefore,

the

cache

entries

are

not

saved

when

the

Web

server

is

restarted.

The

basic

operation

of

the

ESI

processor

is

as

follows:

When

a

request

is

received

by

the

Web

server

plug-in,

it

is

sent

to

the

ESI

processor,

unless

the

ESI

processor

is

disabled.

It

is

enabled

by

default.

If

a

cache

miss

occurs,

a

Surrogate-Capabilities

header

is

added

to

the

request

and

the

request

is

forwarded

to

the

WebSphere

Application

Server.

If

the

dynamic

servlet

cache

is

enabled

in

the

application

server,

and

the

response

is

edge

cacheable,

the

application

server

returns

a

Surrogate-Control

header

in

response

to

the

WebSphere

Application

Server

plug-in.

The

value

of

the

Surrogate-Control

response

header

contains

the

list

of

rules

which

are

used

by

the

ESI

processor

in

order

to

generate

the

cache

ID.

The

response

is

then

stored

in

the

ESI

cache,

using

the

cache

ID

as

the

key.

For

each

ESI

include

tag

in

the

body

of

the

response,

a

new

request

is

processed

such

that

each

nested

include

results

in

either

a

cache

hit

or

another

request

forwarded

to

the

application

server.

When

all

nested

includes

have

been

processed,

the

page

is

assembled

and

returned

to

the

client.

The

ESI

processor

is

configurable

through

the

WebSphere

Web

server

plug-in

configuration

file

plugin-cfg.xml.

The

following

is

an

example

of

the

beginning

of

this

file,

which

illustrates

the

ESI

configuration

options.

<?xml

version-"1.0"?>

<Config>

<Property

Name="esiEnable"

Value="true"/>

<Property

Name="esiMaxCacheSize"

Value="1024"/>

<Property

Name="esiInvalidationMonitor"

Value="false"/>

The

first

option,

esiEnable,

can

be

used

to

disable

the

ESI

processor

by

setting

the

value

to

false.

ESI

is

enabled

by

default.

If

ESI

is

disabled,

then

the

other

ESI

options

are

ignored.

The

second

option,

esiMaxCacheSize,

is

the

maximum

size

of

the

cache

in

1K

byte

units.

The

default

maximum

size

of

the

cache

is

1

megabyte.

If

the

cache

is

full,

the

first

entry

to

be

evicted

from

the

cache

is

the

entry

that

is

closest

to

expiration.

The

third

option,

esiInvalidationMonitor,

specifies

whether

or

not

the

ESI

processor

should

receive

invalidations

from

the

application

server.

ESI

works

well

when

the

Web

servers

following

a

threading

model

is

used,

and

only

one

process

is

started.

When

multiple

processes

are

started,

each

process

caches

the

responses

independently

and

the

cache

is

not

shared.

This

could

lead

to

a

situation

where,

the

system’s

memory

is

fully

used

up

by

ESI

processor.There

are

three

methods

by

which

entries

are

removed

from

the

ESI

cache:

first,

an

entry’s

expiration

timeout

could

fire;

second,

an

entry

may

be

purged

to

make

room

for

newer

entries;

or

third,

the

application

server

could

send

an

explicit

invalidation

for

a

group

of

entries.

In

order

for

the

third

mechanism

to

be

enabled,

the

esiInvalidationMonitor

property

must

be

set

to

true

and

the

DynaCacheEsi

application

must

be

installed

on

the

application

server.

The

DynaCacheEsi

application

is

located

in

the

installableApps

directory

and

is

named

DynaCacheEsi.ear.

If

the

ESIInvalidationMonitor

property

is

set

to

true

but

the

DynaCacheEsi

application

is

not

installed,

then

errors

will

occur

in

the

webserver

plugin

and

the

request

will

fail.

The

ESI

processor’s

cache

can

be

monitored

through

the

CacheMonitor

application.

In

order

for

ESI

processor’s

cache

to

be

visible

in

the

CacheMonitor,

the

834

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

DynaCacheEsi

application

must

be

installed

as

described

above

and

the

ESIInvalidationMonitor

property

must

be

set

to

true

in

the

plugin-cfg.xml

file.

When

WebSphere

Application

Server

is

used

to

serve

static

data,

such

as

images

and

HTML

on

the

application

server,

the

URLs

are

also

cached

in

the

ESI

processor.

This

data

has

a

default

timeout

of

300

seconds.

You

can

change

the

timeout

value

by

adding

the

property

com.ibm.servlet.file.esi.timeOut

to

your

JVM’s

command

line

parameters.

The

following

example

shows

how

to

set

a

one

minute

timeout

on

static

data

cached

in

the

plug-in:

-Dcom.ibm.servlet.file.esi.timeOut=60

For

more

information

about

the

plugin-cfg.xml

file

see

″Chapter

15,

“Using

the

dynamic

cache

service

to

improve

performance,”

on

page

829.″

5.0.1 +

For

information

about

configuring

alternate

URL,

see

″Configuring

alternate

URL.″

Configuring

alternate

URL

Alternate

URL

is

a

method

for

edge

caching

JavaServer

Pages

(JSP)

files

and

servlet

responses

that

you

can

not

request

externally.

Dynamic

cache

provides

support

to

recognize

the

presence

of

an

Edge

Side

Include

(ESI)

processor

and

to

generate

ESI

include

tags

and

appropriate

cache

policies

for

edge

cacheable

fragments.

However,

for

a

fragment

to

be

edge

cacheable,

you

must

be

able

to

externally

request

it

from

the

application

server.

In

other

words,

if

a

user

types

the

URL

in

their

browser

with

the

appropriate

parameters

and

cookies

for

the

fragment,

WebSphere

Application

Server

must

return

the

content

for

that

fragment.

One

of

the

standard

J2EE

programming

architectures

is

the

model-view-controller

(MVC)

architecture,

where

a

call

to

a

controller

servlet

might

include

one

or

more

child

JSP

files

to

construct

the

view.

When

using

the

MVC

programming

model,

the

child

JSP

files

are

edge

cacheable

only

if

you

can

request

these

JSP

files

externally,

which

is

not

usually

the

case.

For

example,

if

a

child

JSP

file

uses

one

or

more

request

attributes

that

are

determined

and

set

by

the

controller

servlet,

you

cannot

cache

that

JSP

file

on

the

edge.

You

can

use

alternate

URL

support

to

overcome

this

limitation

by

providing

an

alternate

controller

servlet

URL

used

to

invoke

the

JSP

file.

The

alternate

URL

for

a

JSP

file

or

a

servlet

is

set

in

the

cachespec.xml

file

as

a

property

with

the

name

alternate_url.

You

can

set

the

alternate

URL

either

on

a

per

cache-entry

basis

or

on

a

per

cache-id

basis.

It

is

valid

only

if

the

EdgeCacheable

property

is

also

set

for

that

entry.

If

the

EdgeCacheable

property

is

not

set,

the

alternate_url

property

is

ignored.

The

following

is

a

sample

cache

policy

using

the

alternate_url

property:

<cache-entry>

<class>servlet</class>

<name>/AltUrlTest2.jsp</name>

<property

name=″EdgeCacheable″>true</property>

<property

name=″alternate_url″>/alturlcontroller2</property>

<cache-id>

<timeout>600</timeout>

<priority>2</priority>

</cache-id>

</cache-entry>

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

835

For

more

information

on

the

cachespec.xml

file,

see

Cachespec.xml

file.

Configuring

external

cache

groups

The

dynamic

cache

can

control

caches

outside

of

the

application

server,

such

as

IBM

Edge

Server,

an

IBM

HTTP

Server

for

distributed

platforms’

Fast

Response

Cache

Accelerator

(FRCA)

cache,

and

a

WebSphere

HTTP

Server

for

distributed

platforms

plug-in

ESI

Fragment

Processor.

When

external

cache

groups

are

defined,

the

dynamic

cache

matches

externally

cacheable

cache

entries

with

those

groups,

and

pushes

cache

entries

and

invalidations

out

to

those

groups.

This

allows

WebSphere

Application

Server

to

manage

dynamic

content

beyond

the

application

server.

The

content

can

then

be

served

from

the

external

cache,

instead

of

the

application

server,

improving

savings

in

performance.

1.

Open

the

administrative

console.

2.

Enable

the

dynamic

cache.

a.

Click

Servers

>

Application

Servers

in

the

administrative

console

navigation

tree.

b.

Click

a

server.

c.

Click

Dynamic

Cache

Service.

d.

Select

the

check

box

in

the

Startup

state

field

to

enable

the

dynamic

cache.
3.

Define

the

external

cache

group

in

which

WebSphere

Application

Server

should

control.

a.

Click

External

Caching

Groups

from

the

Dynamic

Cache

administrative

console

page.

b.

Click

New

or

choose

an

external

cache

group

from

the

list.
4.

Configure

cache

group

members.

a.

Click

External

cache

groups

from

the

Dynamic

Cache

administrative

console

page.

Then

click

New

or

choose

an

external

cache

group

from

the

list.

b.

Click

External

cache

group

members

>

New

or

choose

an

external

cache

group

member

from

the

list.

c.

Type

the

configuration

string

in

the

Address

field.

d.

Type

the

adapter

bean

name

in

the

Adapter

Bean

Name

field.

e.

Save

the

configuration.

f.

Click

Apply

or

OK.

External

cache

group

collection

Use

this

page

to

define

sets

of

external

caches

controlled

by

WebSphere

Application

Server

on

Web

servers,

such

as

IBM

Edge

Server

and

IBM

HTTP

Server.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Dynamic

Cache

Service

>

External

Cache

Groups.

Name:

Specifies

the

external

cache

group

name.

The

external

cache

group

name

needs

to

match

the

externalcache

property

as

defined

in

the

servlet

or

JSP

cachespec.xml

file.

836

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

When

external

caching

is

enabled,

the

cache

matches

pages

with

its

URIs

and

pushes

matching

pages

to

the

external

cache.

The

entries

can

then

be

served

from

the

external

cache,

instead

of

the

application

server.

Type:

Specifies

the

external

cache

group

type.

External

cache

group

settings

Use

this

page

to

configure

sets

of

external

caches

controlled

by

WebSphere

Application

Server

on

Web

servers,

such

as

IBM

Edge

Server

and

IBM

HTTP

Server.

To

view

this

administrative

console

page,

click

Servers

>

Application

Server

>

server

>

Dynamic

Cache

Service

>

External

Cache

groups

>

external_cache_group.

Name:

Specifies

the

external

cache

group

name.

The

external

cache

group

name

needs

to

match

the

externalcache

property

as

defined

in

the

servlet

or

JavaServer

Pages

(JSP)

cachespec.xml

file.

When

external

caching

is

enabled,

the

cache

matches

pages

with

its

URIs

and

pushes

matching

pages

to

the

external

cache.

The

entries

can

then

be

served

from

the

external

cache,

instead

of

the

application

server.

This

ability

creates

a

significant

savings

in

performance.

Type:

Specifies

the

external

cache

group

type.

External

cache

group

member

collection

Use

this

page

to

define

specific

caches

that

are

members

of

a

cache

group.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Dynamic

Cache

Service

>

External

Cache

groups

>

external_cache_group

>

External

cache

group

members.

Address:

Specifies

a

configuration

string

used

by

external

cache

adapter

bean

to

connect

to

the

external

cache.

AdapterBeanName:

Specifies

the

adapter

bean

name.

Example

adapter

bean

names

supported

in

WebSphere

Application

Server

are:

AFPA

AdapterBeanName:

com.ibm.ws.cache.servlet.Afpa

Address:

Port

on

which

afpa

listens

ESI

AdapterBeanName:

com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address:

local

host

WTE

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

837

AdapterBeanName:

com.ibm.websphere.edge.dynacache.WteAdapter

Address:

hostname:port

(host

name

and

port

on

which

WTE

is

listening)

External

cache

group

member

settings

Use

this

page

to

configure

specific

caches

that

are

members

of

a

cache

group.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Dynamic

Cache

Service

>

External

Cache

groups

>

external_cache_group

>

External

cache

group

members

>

external_cache_group_member.

Address:

Specifies

a

configuration

string

used

by

external

cache

adapter

bean

to

connect

to

the

external

cache.

AdapterBeanName:

Specifies

the

adapter

bean

name.

Example

adapter

bean

names

supported

in

WebSphere

Application

Server

are:

AFPA

AdapterBeanName:

com.ibm.ws.cache.servlet.Afpa

Address:

Port

on

which

afpa

listens

ESI

AdapterBeanName:

com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Address:

local

host

WTE

AdapterBeanName:

com.ibm.websphere.edge.dynacache.WteAdapter

Address:

hostname:port

(host

name

and

port

on

which

WTE

is

listening)

Configuring

high-speed

external

caching

through

the

Web

server

IBM

HTTP

Server

for

Windows

NT

and

Windows

2000

operating

systems

contains

a

high-speed

cache

referred

to

as

the

Fast

Response

Cache

Accelerator,

or

cache

accelerator.

The

Fast

Response

Cache

Accelerator

is

available

on

Windows

NT

and

Windows

2000

operating

systems

and

AIX

platforms.

However,

support

to

cache

dynamic

content

is

only

available

on

Windows

NT

and

Windows

2000

operating

systems.

You

can

enable

cache

accelerator

to

cache

static

and

dynamic

content.

To

enable

cache

accelerator

for

caching

static

content,

add

the

following

directives

to

the

http.conf

configuration

file,

in

the

IBM

HTTP

Server

conf

directory:

v

AfpaEnable

v

AfpaCache

on

v

AfpaLogFile

″install_root\IBMHttpServer\logs\afpalog″

V-ECLF

To

enable

cache

accelerator

for

caching

dynamic

content,

such

as

servlets

and

Java

Server

Pages

(JSP)

files,

configure

the

WebSphere

Application

Server

and

the

IBM

HTTP

Server

for

distributed

platforms:

1.

Configure

WebSphere

Application

Server

to

enable

Fast

Response

Cache

Accelerator:

838

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

a.

Configure

an

external

cache

group

on

the

application

server:

v

Click

Servers

>

Application

Servers

>

server1.

v

Click

Dynamic

Cache

Service

in

the

Additional

Properties

window.

v

Click

External

Cache

Groups

in

the

Additional

Properties

window.

v

Click

New

on

the

External

cache

group

administrative

console

page

to

define

an

external

cache

group

named

afpa

for

each

application

server

that

uses

the

cache

accelerator.

v

Type

afpa

in

the

External

cache

group

field.

v

Click

Apply.

v

Add

a

member

to

the

group

with

an

adapter

bean

name

of

com.ibm.ws.cache.servlet.Afpa:

Click

Afpa

>

External

cache

group

members.

Click

New

on

the

External

cache

group

members

administrative

console

page.

Type

com.ibm.ws.cache.servlet.Afpa

in

the

AdapterBean

name

field.

Enter

an

unused

port

number

in

the

Address

field.

b.

Add

a

cache

policy

in

the

cachespec.xml

file

for

the

servlet

or

JSP

file

you

want

to

cache.

Add

the

following

property

to

the

cache

policy:

<property

name="ExternalCache">afpa</property>

It

is

important

to

follow

all

the

steps

for

every

application

server

in

the

cluster.

2.

Enable

cache

accelerator

on

the

IBM

HTTP

Server

for

distributed

platforms:

a.

Add

the

following

directives

to

the

end

of

the

httpd.conf

file:

v

AfpaEnable

v

AfpaCache

on

v

AfpaLogFile

″install_root\IBMHttpServer\logs\afpalog″

V-ECLF

v

LoadModule

afpaplugin_module

install_root/bin/afpaplugin.dll

v

AfpaPluginHost

WAS_Hostname:port,

where

WAS_Hostname

is

the

host

name

of

the

application

server

and

port

is

the

port

you

specified

in

the

Address

field

while

configuring

the

external

cache

group

member

The

LoadModule

directive

loads

the

IBM

HTTP

Server

plug-in

that

connects

the

Fast

Response

Cache

Accelerator

to

the

WebSphere

Application

Server

fragment

cache.

If

multiple

IBM

HTTP

Servers

are

routing

requests

to

a

single

application

server,

add

the

directives

above

to

the

http.conf

file

of

each

of

these

IBM

HTTP

Servers

for

distributed

platforms.

If

one

IBM

HTTP

Server

is

routing

requests

to

a

cluster

of

application

servers,

add

the

AfpaPluginHost

WAS_Hostname:port

directive

to

the

http.conf

file

for

each

application

server

in

the

cluster.

For

example,

if

there

are

three

application

servers

in

the

cluster,

add

the

following

directives

to

the

http.conf

file:

v

LoadModule

afpaplugin_module

install_root/bin/afpaplugin.dll

v

AfpaPluginHost

WAS1_Hostname:port1

v

AfpaPluginHost

WAS2_Hostname:port2

v

AfpaPluginHost

WAS3_Hostname:port3

Configuring

Fast

Response

Cache

Accelerator

cache

size

through

a

distributed

platforms

Web

server:

In

the

default

IBM

HTTP

Server

for

distributed

platforms

configuration,

the

maximum

Fast

Cache

Accelerator

dynamic

cache

size

is

calculated

as

1/8

of

physical

pin-able

memory.

On

a

machine

with

384

megabytes

of

RAM,

it

allows

a

maximum

of

approximately

50

megabytes

for

the

Fast

Cache

Accelerator

dynamic

cache.

When

this

limit

is

reached,

the

Cache

Accelerator

then

deletes

older

entries

to

cache

new

ones.

Follow

these

steps

to

configure

the

Cache

Accelerator:

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

839

Using

the

IBM

HTTP

Server

for

distributed

platforms’

AfpaDynaCacheMax

directive,

tune

the

maximum

allowed

cache

size:

1.

Place

the

directive

in

the

global

server

configuration

scope,

along

with

the

other

default

Fast

Cache

Accelerator

directives.

2.

Enable

Fast

Cache

Accelerator.

To

enable

the

Fast

Cache

Accelerator,

update

the

following

directives

in

this

IBM

HTTP

Server’s

http.conf

file:

AfpaEnable

AfpaCache

on

AfpaLogFile

"c:/Program

Files/IBM

HTTP

Server/logs/afpalog"

V-ECLF

AfpaDynaCacheMax

10

These

above

settings

limit

the

dynamic

cache

size

to

10

megabytes.

If

you

use

these

directives

to

increase

cache

size,

do

not

make

the

cache

so

large

that

all

the

physical

memory

is

consumed.

Determine

how

much

memory

is

available

when

all

applications

are

running,

by

using

the

Windows

Task

Manager.

Assign

no

more

than

50%

of

available

physical

memory

to

the

dynamic

cache.

Specifying

too

large

a

cache

not

only

decreases

the

performance

of

other

applications,

but

also

puts

you

at

a

risk

for

completely

running

out

of

memory.

The

default

configuration

does

not

include

the

AfpaDynaCacheMax

directive

where

the

cache

size

is

automatically

calculated

as

1/8

of

physical

memory.

Displaying

cache

information

The

dynamic

cache

monitor

is

an

installable

Web

application

that

displays

simple

cache

statistics,

cache

entries,

and

cache

policy

information.

The

cache

monitor

provides

information

on

the

cache

in

the

Servant

Region

to

which

your

browser

connects

to

interact

with

the

monitor.

Thus,

in

an

environment

with

multiple

Servant

Regions,

the

cache

monitor

provides

a

partial

view

of

caching

activity.

1.

Use

the

administrative

console

to

install

the

cache

monitor

application

from

the

install_root/installableApps

directory.

The

application

is

named

CacheMonitor.ear.

Install

the

cache

monitor

onto

the

application

server

you

are

trying

to

monitor.

Installing

the

cache

monitor

on

the

admin_host

(port

909x)

is

more

secure

than

installing

it

on

the

default_host

(908x),

and

so

it

is

preferable

to

install

it

onto

the

admin_host.

2.

Access

the

Web

application

using

a

Web

browser

and

the

URL

http://your

host_name:your

port_number/cachemonitor,

where

your

port_number

is

the

port

associated

with

the

host

on

which

you

installed

the

cache

monitor

application.

3.

Verify

that

the

cache

monitor

is

working

properly.

a.

View

the

Statistics

page

and

verify

the

cache

configuration

and

cache

data.

Click

Reset

Statistics

to

reset

the

counters

b.

View

the

Cache

Policies

page

to

see

which

cache

policies

are

currently

loaded

in

the

dynamic

cache.

Click

on

a

template

to

view

the

cache

ID

rules

for

the

template.

c.

View

the

Cache

Contents

page

to

examine

the

contents

currently

cached

in

memory.

d.

View

the

ESI

Statistics

page

to

view

data

about

the

current

ESI

processors

configured

for

caching.

Click

Refresh

Statistics

to

see

the

latest

statistics

or

content

from

the

ESI

processors.

Click

Reset

Statistics

to

reset

the

counters.

840

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

e.

View

the

Disk

Offload

page

to

view

content

currently

off-loaded

from

memory

to

disk.

When

viewing

contents

on

memory

or

disk,

click

on

a

template

to

view

all

entries

for

that

template,

click

on

a

dependency

ID

to

view

all

entries

for

the

ID,

or

click

on

the

cache

ID

to

view

the

entire

data

cached

for

that

entry.

4.

Use

the

cache

monitor

to

perform

basic

operations

on

data

in

a

cache.

Remove

an

entry

from

cache

Click

Invalidate

when

viewing

a

cache

entry.

Remove

all

entries

for

a

certain

dependency

ID

Click

Invalidate

when

viewing

entries

for

a

dependency

ID.

Remove

all

entries

for

a

certain

template

Click

Invalidate

when

viewing

entries

for

a

template.

Move

an

entry

to

the

front

of

the

Least

Recently

Used

queue

to

avoid

eviction

Click

Refresh

when

viewing

a

cache

entry.

Move

an

entry

from

disk

to

cache

Click

Send

to

Memory

when

viewing

a

cache

entry

on

disk.

Clear

the

entire

contents

of

the

cache

Click

Clear

Cache

while

viewing

statistics

or

contents.

Clear

the

contents

on

the

ESI

processors

Click

Clear

Cache

while

viewing

ESI

statistics

or

contents.

Clear

the

contents

of

the

disk

cache

Click

Clear

Disk

while

viewing

disk

contents.

Configuring

cacheable

objects

with

the

cachespec.xml

file

Define

cacheable

objects

inside

the

cachespec.xml,

found

inside

the

Web

module

WEB-INF

or

enterprise

bean

META-INF

directory.

You

can

place

a

global

cachespec.xml

in

the

application

server

properties

directory,

but

the

recommended

method

is

to

place

the

cache

configuration

file

with

the

deployment

module.

The

root

element

of

the

cachespec.xml

file

is

<cache>,

which

contains

<cache-entry>

elements.

Within

a

<cache-entry>...</cache-entry>

element

are

parameters

that

allow

you

to

complete

the

following

tasks

to

enable

the

dynamic

cache

with

the

cachespec.xml

file:

1.

Develop

a

cachespec.xml

file.

a.

Create

a

caching

configuration

file.

In

the

<install_root>/properties

directory,

locate

the

cachespec.sample.xml

file.

b.

Copy

the

cachespec.sample.xml

file

to

cachespec.xml

in

Web

module

WEB-INF

or

enterprise

bean

META-INF

directory.
2.

Define

the

cache-entry

elements

necessary

to

identify

the

cacheable

objects.

See

the

topic

″Cachespec.xml

file″

for

a

list

of

elements.

3.

Develop

cache-ID

rules.

To

cache

an

object,

WebSphere

Application

Server

must

know

how

to

generate

unique

IDs

for

different

invocations

of

that

object.

The

<cache-id>

element

performs

that

task.

Each

cache

entry

can

have

multiple

cache-ID

rules

that

execute

in

order

until

either

a

rule

returns

non-empty

cache-ID

or

no

more

rules

remain

to

execute.

If

none

of

the

cache-ID

generation

rules

produce

a

valid

cache

ID,

then

the

object

is

not

cached.

Develop

these

IDs

in

one

of

two

ways:

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

841

v

Use

the

<component>

element

defined

in

the

cache

policy

of

a

cache

entry

(recommended)

v

Write

custom

Java

code

to

build

the

ID

from

input

variables

and

system

state

To

configure

the

cache

entry

to

use

the

IdGenerator,

specify

your

IdGenerator

in

the

XML

file

by

using

the

<idgenerator>

tag,

for

example:

<cache-entry>

<class>servlet</class>

<name>/servlet/CommandProcessor</name>

<cache-id>

<idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>

<timeout>60</timeout>

</cache-id>

</cache-entry>

5.0.1

5.0.2

You

can

also

use

the

Application

Assembly

Tool

(AAT)

to

define

the

IdGenerator

class

in

the

cache

policy’s

Advanced

tab.

4.

Specifying

dependency

ID

rules.

Use

dependency

ID

elements

to

specify

additional

cache

group

identifiers

that

associate

multiple

cache

entries

to

the

same

group

identifier.

The

dependency

ID

is

generated

by

concatenating

the

dependency

ID

base

string

with

the

values

returned

by

its

component

elements.

If

a

required

component

returns

a

null

value,

then

the

entire

dependency

ID

does

not

generate

and

is

not

used.

You

can

validate

the

dependency

IDs

explicitly

through

the

WebSphere

Dynamic

Cache

API,

or

use

another

cache-entry

<invalidation>

element.

Multiple

dependency

ID

rules

can

exist

per

cache-entry.

All

dependency

ID

rules

separately

execute.

See

the

topic

″Cachespec.xml

file″

for

a

list

of

<component>

elements.

5.

Invalidate

other

cache

entries

as

a

side

effect

of

this

object

execution,

if

relevant.

You

can

define

invalidation

rules

in

exactly

the

same

manner

as

dependency

IDs.

However,

the

IDs

that

generate

by

invalidation

rules

are

used

to

invalidate

cache

entries

that

have

those

same

dependency

IDs.

The

invalidation

ID

is

generated

by

concatenating

the

invalidation

ID

base

string

with

the

values

returned

by

its

component

element.

If

a

required

component

returns

a

null

value,

then

the

entire

invalidation

ID

is

not

generated

and

no

invalidation

occurs.

Multiple

invalidation

rules

can

exist

per

cache-entry.

All

invalidation

rules

separately

execute.

6.

Verify

the

cacheable

page.

Typically

you

declare

several

<cache-entry>...</cache-entry>

elements

inside

a

cachespec.xml

file.

The

dynamic

cache

responds

to

changes

in

this

file.

When

new

versions

of

the

cachespec.xml

are

detected,

the

old

policies

are

replaced.

Objects

cached

through

the

old

policy

file

are

not

automatically

invalidated

from

the

cache;

they

are

either

reused

with

the

new

policy

or

eliminated

from

the

cache

through

its

replacement

algorithm.

For

each

of

the

three

IDs

(cache,

dependency,

invalidation)

generated

by

cache

entries,

a

<cache-entry>

can

contain

multiple

elements.

The

dynamic

cache

will

execute

the

<cache-id>

rules

in

order,

and

the

first

one

that

successfully

generates

an

ID

will

be

used

to

cache

that

output.

If

the

object

is

to

be

cached,

each

one

of

the

<dependency-id>

elements

will

be

executed

to

build

a

set

of

dependency

IDs

842

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

for

that

cache

entry.

Finally,

each

of

the

<invalidation>

elements

will

be

executed,

building

a

list

of

IDs

that

the

dynamic

cache

will

invalidate,

whether

or

not

this

object

is

cached.

Verifying

the

cacheable

page

Verify

the

cacheable

page

by

following

these

steps:

1.

View

the

snoop

servlet

in

the

default

application

by

accessing

the

URI:

/snoop

2.

Invoke

and

reload

the

URI

several

times

using

a

different

Web

browser

or

using

different

parameters.

This

action

returns

the

same

output

for

the

snoop

servlet.

The

snoop

servlet

is

now

operating

incorrectly,

because

it

displays

the

request

information

from

its

first

invocation

rather

than

from

the

current

request.

3.

Inspect

the

entry

in

the

cache

with

the

dynamic

cache

monitor.

Cachespec.xml

file

The

cache

parses

the

cachespec.xml

file

on

startup,

and

extracts

from

each

<cache-entry>

element

a

set

of

configuration

parameters.

Every

time

a

new

servlet

or

other

cacheable

object

initializes,

the

cache

attempts

to

match

each

of

the

different

cache-entry

elements,

to

find

the

configuration

information

for

that

object.

Different

cacheable

objects

have

different

<class>

elements.

You

can

define

the

specific

object

a

cache

policy

refers

to

using

the

<name>

element.

Location

The

cachespec.xml

file

is

found

inside

the

WEB-INF

directory

of

a

Web

module.

You

can

place

a

global

cachespec.xml

file

in

the

application

server

properties

directory,

but

the

recommended

method

is

to

place

the

cache

configuration

file

with

the

deployment

module.

(To

place

the

cache

configuration

file

with

the

deployment

module,

use

the

Assembly

ToolkitApplication

Assembly

Tool

(AAT)

to

define

the

cacheable

objects.

The

root

element

of

the

cachespec.xml

file

is

cache,

which

contains

cache-entry

elements.

The

cachespec.dtd

file

is

available

in

the

application

server

properties

directory.

Usage

notes

Each

cache

entry

must

specify

certain

basic

information

that

the

dynamic

cache

uses

to

process

that

entry.

This

section

explains

the

function

of

each

cache

entry

element

of

the

cachespec.xml

file

including:

v

class

v

name

v

sharing-policy

v

property

v

cache-id

class

<class>command

|

servlet

|

webservice</class>

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

843

This

element

is

required

and

governs

how

the

application

server

interprets

the

remaining

cache

policy

definition.

The

value

servlet

refers

to

servlets

and

JavaServer

Pages

(JSP)

files

deployed

in

the

WebSphere

Application

Server

servlet

engine.

The

object

class

extends

the

servlet

with

special

component

types

for

Web

services

requests.

Finally,

the

value

command

refers

to

classes

using

the

WebSphere

command

programming

model.

The

following

examples

illustrate

the

class

element:

<class>command</class>

<class>servlet</class>

<class>webservice</class>

name

<name>name</name>

where

name

is

the

fully

qualified

class

name

of

the

command,

servlet,

or

object.

There

are

two

ways

to

use

<name>

to

specify

a

cacheable

object:

v

For

commands

and

objects,

this

required

element

must

include

the

package

name,

if

any,

and

class

name,

including

a

trailing

.class,

of

the

configured

object.

v

For

servlets

and

JSP

files,

if

the

cachespec.xml

file

is

in

the

WebSphere

Application

Server

properties

directory,

this

required

element

must

include

the

full

URI

of

the

JSP

file

or

servlet

to

cache.

For

servlets

and

JSP

files,

if

the

cachespec.xml

file

is

in

the

Web

application,

this

required

element

can

be

relative

to

the

specific

Web

application

context

root.

Note:

The

preferred

location

of

the

cachespec.xml

file

is

in

the

Web

application,

not

the

properties

directory.

You

can

specify

multiple

<name>

elements

within

a

<cache-entry>

if

you

have

different

mappings

that

refer

to

the

same

servlet.

The

following

examples

illustrate

the

name

element:

<name>com.mycompany.MyCommand.class</name>

<name>default_host:/servlet/snoop</name>

<name>com.mycompany.beans.MyJavaBean</name>

<name>mywebapp/myjsp.jsp</name>

sharing-policy

<sharing-policy>

not-shared

|

shared-push

|

shared-pull

</sharing-policy>

When

working

within

a

cluster

with

a

distributed

cache,

these

values

determine

the

sharing

characteristics

of

entries

created

from

this

object.

If

this

element

is

not

present,

a

not-shared

value

is

assumed.

Also,

in

non-distributed

environments,

not-shared

is

the

only

valid

value.

This

property

does

not

affect

distribution

to

Edge

servers

through

the

Edge

fragment

caching

property.

Value

Description

not-shared

Cache

entries

for

this

object

are

not

shared

among

different

application

servers.

These

entries

can

contain

non-serializable

data.

For

example,

a

cached

servlet

can

place

non-serializable

objects

into

the

request

attributes,

if

the

<class>

type

supports

it.

844

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

shared-push

Cache

entries

for

this

object

are

automatically

distributed

to

the

dynamic

caches

in

other

application

servers

or

cooperating

Java

virtual

machines

(JVMs).

Each

cache

has

a

copy

of

the

entry

at

the

time

it

is

created.

These

entries

cannot

store

non-serializable

data.

shared-pull

Cache

entries

for

this

object

are

shared

between

application

servers

on

demand.

If

an

application

server

gets

a

cache

miss

for

this

object,

it

queries

the

cooperating

application

servers

to

see

if

they

have

the

object.

If

no

application

server

has

a

cached

copy

of

the

object,

the

original

application

server

executes

the

request

and

generates

the

object.

These

entries

cannot

store

non-serializable

data.

This

mode

of

sharing

is

not

recommended.

shared

push-pull

Cache

entries

for

this

object

are

shared

between

application

servers

on

demand.

When

an

application

server

generates

a

cache

entry,

it

broadcasts

the

cache

ID

of

the

created

entry

to

all

cooperating

application

servers.

Each

server

then

knows

whether

an

entry

exists

for

any

given

cache

ID.

On

a

given

request

for

that

entry,

the

application

server

knows

whether

to

generate

the

entry

or

pull

it

from

somewhere

else.

These

entries

cannot

store

non-serializable

data.

The

following

example

shows

a

sharing

policy:

<sharing-policy>not-shared</sharing-policy>

property

<property

name=″key″>value</property>

where

key

is

the

name

of

the

property

defined

for

this

cache

entry

element,

and

value

is

the

corresponding

value.

You

can

set

optional

properties

on

a

cacheable

object,

such

as

a

description

of

the

configured

servlet.

The

class

determines

valid

properties

of

the

cache

entry.

At

this

time,

the

following

properties

are

defined:

Property

Valid

classes

Value

ApplicationName

All

Overrides

the

J2EEName

application

ID

so

that

multiple

applications

can

share

a

common

cache

ID

namespace.

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

845

EdgeCacheable

Servlet

True

or

false.

Default

is

false.

If

the

property

is

true,

then

the

given

servlet

or

JSP

file

is

externally

requested

from

an

Edge

Server.

Whether

or

not

the

servlet

or

JSP

file

is

cacheable,

depends

on

the

rest

of

the

cache

specification.

ExternalCache

Servlet

Specifies

the

external

cache

name.

The

external

cache

name

needs

to

match

the

external

cache

group

name.

consume-subfragments

Servlet

or

Web

service

True

or

false.

Default

is

false.

When

a

servlet

is

cached,

only

the

content

of

that

servlet

is

stored,

and

includes

placeholders

for

any

other

fragments

to

which

it

includes

or

forwards.

Consume-subfragments

(CSF)

tells

the

cache

not

to

stop

saving

content

when

it

includes

a

child

servlet.

The

parent

entry,

the

one

marked

CSF,

includes

all

the

content

from

all

fragments

in

its

cache

entry,

resulting

in

one

big

cache

entry

that

has

no

includes

or

forwards,

but

the

content

from

the

whole

tree

of

entries.

This

can

save

a

significant

amount

of

application

server

processing,

but

is

typically

only

useful

when

the

external

HTTP

request

contains

all

the

information

needed

to

determine

the

entire

tree

of

included

fragments.

alternate_url

Servlet

Specifies

the

alternate

URL

used

to

invoke

the

servlet

or

JSP

file.

The

property

is

valid

only

if

the

EdgeCacheable

property

also

is

set

for

the

cache

entry.

persist-to-disk

All

True

or

false.

Default

is

true.

When

this

property

is

set

to

false,

the

cache

entry

is

not

written

to

the

disk

when

overflow

or

server

stopping

occurs.

save-attributes

Servlet

True

or

false.

Default

is

true.

When

this

property

is

set

to

false,

the

request

attributes

are

not

saved

with

the

cache

entry.

846

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

cache-id

To

cache

an

object,

the

application

server

must

know

how

to

generate

a

unique

ID

for

different

invocations

of

that

object.

These

IDs

are

built

either

from

user-written

custom

Java

code

or

from

rules

defined

in

the

cache

policy

of

each

cache

entry.

Each

cache

entry

can

have

multiple

cache

ID

rules

that

are

executed

in

order

until

either:

v

A

rule

returns

a

non-empty

cache

ID,

or

v

No

more

rules

are

left

to

execute.

If

none

of

the

cache

ID

generation

rules

produce

a

valid

cache

ID,

the

object

is

not

cached.

Each

cache-id

element

defines

a

rule

for

caching

an

object

and

is

composed

of

the

sub-elements

component,

timeout,

priority,

and

property.

The

following

example

illustrates

a

cache-id:

<cache-id>component*|

timeout?

|

priority?

|

property*

</cache-id>

component

sub-element

Use

the

component

sub-element

to

generate

a

portion

of

the

cache

ID.

Each

component

sub-element

consists

of

the

attributes

id,

type,

and

ignore-value,

and

the

elements

method,

field,

required,

value,

and

not-value.

v

Use

the

id

attribute

to

identify

the

component.

v

Use

the

type

attribute

to

identify

the

type

of

component.

The

following

table

lists

the

values

for

the

type.

Type

Valid

classes

Meaning

method

command

Calls

the

indicated

method

on

the

command

or

object

field

command

Retrieves

the

named

field

in

the

command

or

object

parameter

servlet

Retrieves

the

named

parameter

value

from

the

request

object

parameter-list

servlet

Retrieves

a

list

of

values

for

the

named

parameter

session

servlet

Retrieves

the

named

value

from

the

HTTPSession

cookie

servlet

Retrieves

the

named

cookie

value

attribute

servlet

Retrieves

the

named

request

attribute

header

servlet

and

Web

service

Retrieves

the

named

request

header

pathInfo

servlet

Retrieves

the

pathInfo

from

the

request

servletpath

servlet

Retrieves

the

servlet

path

locale

servlet

Retrieves

the

request

locale

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

847

SOAPEnvelope

Web

service

Retrieves

the

SOAPEnvelope

from

a

Web

services

request.

An

ID

attribute

of

Hash

uses

a

Hash

of

the

SOAPEnvelope,

while

Literal

uses

the

SOAPEnvelope

as

received.

SOAPAction

Web

service

Retrieves

the

SOAPAction

header,

(if

available),

for

a

Web

services

request.

serviceOperation

Web

service

Retrieves

the

service

operation

for

a

Web

services

request

serviceOperationParameter

Web

service

Retrieves

the

specified

parameter

from

a

Web

services

request

v

Use

the

ignore-value

attribute

to

specify

whether

or

not

to

use

the

value

returned

by

this

component

in

cache

ID

formation.

This

is

an

optional

attribute

with

a

default

value

of

false.

If

the

value

is

true,

only

the

ID

of

the

component

is

used

when

creating

a

cache

ID,

or

no

output

is

used

when

creating

a

dependency

or

invalidation

ID.

v

Use

the

method

element

to

call

a

void

method

on

a

returned

object.

You

can

infinitely

nest

method

and

field

objects

in

any

combination.

The

method

must

be

public

and

is

not

valid

for

edge-cacheable

components.

For

example:

<component

id="getUser"

type="method"><method>getUserInfo

<method>getName</method></method></component>

This

method

is

equivalent

to

getUser().getUserInfo().getName()

v

Use

the

field

element

to

access

a

field

in

a

returned

object.

You

can

infinitely

nest

method

and

field

objects

in

any

combination.

The

field

must

be

public.

Not

valid

for

edge-cacheable

components.

For

example:

<component

id="getUser"

type="method"><method>getUserInfo

<field>name</field></method></component>

This

method

is

equivalent

to

getUser().getUserInfo().name

v

Use

the

required

element

to

specify

whether

or

not

this

component

must

return

a

non-null

value

for

this

cache

ID

for

it

to

represent

a

valid

cache.

If

set

to

true,

this

component

must

return

a

non-null

value

for

this

cache

ID

to

represent

a

valid

cache

ID.

If

set

to

false,

the

default,

a

non-null

value

is

used

in

the

formation

of

the

cache

ID

and

a

null

value

means

that

this

component

is

not

used

at

all

in

the

ID

formation.

For

example:

<required>true</required>

v

Use

the

value

element

to

specify

values

that

must

match

to

use

this

component

in

cache

ID

formation.

For

example:

<component

id="getUser"

type="method"><value>blue</value>

<value>red</value>

</component>

v

Use

the

not-value

element

to

specify

values

that

must

not

match

to

use

this

component

in

cache

ID

formation.

This

method

is

similar

to

<value>,

but

instead

prescribes

the

defined

values

from

caching.

You

can

use

multiple

<not-value>

elements

when

there

is

more

than

one

invalid

value.

For

example:

<component

id="getUser"

type="method">

<required>true</required>

<not-value>blue</not-value>

<not-value>red</not-value></component>

848

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

component

element

can

have

either

a

method

or

a

field

element,

or

a

value

or

a

not-value

element.

The

method

and

field

elements

apply

only

to

commands.

The

following

example

illustrates

the

attributes

of

a

component

element:

<component

id="isValid"

type="method"

ignore-value="true"><component>

timeout

sub-element

The

timeout

sub-element

is

used

to

specify

a

time-to-live

(TTL)

value

for

the

cache

entry.

For

example,

<timeout>value</timeout>

where

value

is

the

amount

of

time,

in

seconds,

to

keep

the

cache

entry.

If

0,

or

a

negative

value

is

specified,

the

cache

entry

is

kept

indefinitely.

priority

sub-element

Use

the

priority

sub-element

to

specify

the

priority

of

a

cache

entry

in

a

cache.

The

priority

weighting

is

used

by

the

least

recently

used

(LRU)

algorithm,

of

the

cache

to

decide

which

entries

to

remove

from

the

cache

if

the

cache

runs

out

of

storage

space.

For

example,

<priority>value</priority>

where

value

is

a

positive

integer

between

1

and

255

inclusive.

property

sub-element

Use

the

property

sub-element

to

specify

generic

properties

for

the

cache

entry.

For

example,

<property

name="key">value</property>

where

key

is

the

name

of

the

property

to

define,

and

value

is

the

corresponding

value.

For

example:

<property

name="description">The

Snoop

Servlet</property>

Property

Valid

classes

Meaning

sharing-
policy/timeout/priority

All

Overrides

the

settings

for

the

containing

cache

entry

when

the

request

matches

this

cache

ID.

EdgeCacheable

servlet

Overrides

the

settings

for

the

containing

cache

entry

when

the

request

matches

this

cache

ID.

idgenerator

and

metadatagenerator

elements

Use

the

idgenerator

element

to

specify

the

class

name

loaded

for

the

generation

of

the

cache

ID.

The

IdGenerator

must

implement

the

com.ibm.websphere.servlet.cache.IdGenerator

interface.

The

IdGenerator

must

build

and

set

cache

IDs,

group

IDs

and

invalidation

IDs.

An

example

of

the

idgenerator

element

follows:

<idgenerator>

classname

classname

</idgenerator>

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

849

(where

classname=

Fully

qualified

name

of

the

class

to

use)

Use

the

metadatagenerator

element

to

specify

the

class

name

loaded

for

the

metadata

generation

cache

ID.

The

MetadataGenerator

class

must

implement

the

com.ibm.websphere.servlet.cache.MetaDataGenerator

interface.

The

MetadataGenerator

defines

properties

like

timeout,

external

caching

or

generic

properties.

An

example

of

the

metadatagenerator

element

follows:

<metadatagenerator>

classname

classname

</metadatagenerator>

(where

classname=

Fully

qualified

name

of

the

class

to

use)

Configuring

command

caching

Cacheable

commands

are

stored

in

the

cache

for

re-use

with

a

similar

mechanism

for

servlets

and

Java

Server

Pages

(JSP)

files.

However,

in

this

case,

the

unique

cache

IDs

are

generated

based

on

methods

and

fields

present

in

the

command

as

input

parameters.

For

example,

a

GetStockQuote

command

can

have

a

symbol

as

its

input

parameter.

A

unique

cache

ID

can

generate

from

the

name

of

the

command,

plus

the

value

of

the

symbol.

To

use

command

caching

you

must:

Create

a

command.

1.

Define

an

interface.

The

Command

interface

specifies

the

most

basic

aspects

of

a

command.

You

must

define

the

interface

that

extends

one

or

more

of

the

interfaces

in

the

command

package.

The

command

package

consists

of

three

interfaces:

v

TargetableCommand

v

CompensableCommand

v

CacheableCommand

In

practice,

most

commands

implement

the

TargetableCommand

interface,

which

allows

the

command

to

execute

remotely.

The

code

structure

of

a

command

interface

for

a

targetable

command

follows:

...

import

com.ibm.websphere.command.*;

public

interface

MyCommand

extends

TargetableCommand

{

//

Declare

application

methods

here

}

1.

Provide

an

implementation

class

for

the

interface.

Write

an

interface

that

extends

the

CacheableCommandImpl

class

and

implements

your

command

interface.

This

class

contains

the

code

for

the

methods

in

your

interface,

the

methods

inherited

from

extended

interfaces

like

the

CacheableCommand

interface,

and

the

required

or

abstract

methods

in

the

CacheableCommandImpl

class.

You

can

also

override

the

default

implementations

of

other

methods

provided

in

the

CacheableCommandImpl

class.

Command

class

To

write

a

command

interface,

extend

one

or

more

of

the

three

interfaces

included

in

the

command

package.

The

base

interface

for

all

commands

is

the

Command

interface.

This

interface

provides

only

the

client-side

interface

for

generic

commands

and

declares

three

basic

methods:

850

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

isReadyToCallExecute.

This

method

is

called

on

the

client

side

before

the

command

passes

to

the

server

for

execution.

v

execute.

This

method

passes

the

command

to

the

target

and

returns

any

data.

v

reset.

This

method

reverts

any

output

properties

to

the

values

they

had

before

the

execute

method

was

called

so

that

you

can

reuse

the

object.

The

implementation

class

for

your

interface

must

contain

implementations

for

the

isReadyToCallExecute

and

reset

methods.

CacheableCommandImpl

class

Commands

are

implemented

by

extending

the

class

CacheableCommandImpl,

which

implements

the

CacheableCommand

interface.

The

CacheableCommandImpl

class

is

an

abstract

class

that

provides

implementations

for

some

of

the

methods

in

the

CacheableCommand

interface,

for

example,

setting

return

values.

This

class

declares

additional

methods

that

the

application

must

implement,

for

example,

how

to

execute

the

command.

The

code

structure

of

an

implementation

class

for

the

CacheableCommand

interface

follows:

...

import

com.ibm.websphere.command.*;

public

class

MyCommandImpl

extends

CacheableCommandImpl

implements

MyCommand

{

//

Set

instance

variables

here

...

//

Implement

methods

in

the

MyCommand

interface

...

//

Implement

abstract

methods

in

the

CacheableCommandImpl

class

...

}

Example:

Caching

a

command

object

This

example

of

command

caching

is

a

simple

stock

quote

command.

The

following

is

a

stock

quote

command

bean.

It

accepts

a

ticker

as

an

input

parameter

and

produces

a

price

as

its

output

parameter.

public

class

QuoteCommand

extends

CacheableCommandImpl

{

private

String

ticker;

private

double

price;

//

called

to

validate

that

command

input

parameters

have

been

set

public

boolean

isReadyToCallExecute()

{

return

(ticker!=null);

}

//

called

by

a

cache-hit

to

copy

output

properties

to

this

object

public

void

setOutputProperties(TargetableCommand

fromCommand)

{

QuoteCommand

f

=

(QuoteCommand)fromCommand;

this.price

=

f.price;

}

//

business

logic

method

called

when

the

stock

price

must

be

retrieved

public

void

performExecute()throws

Exception

{...}

//input

parameters

for

the

command

public

void

setTicker(String

ticker)

{

this.ticker=ticker;}

public

String

getTicker()

{

return

ticker;}

//output

parameters

for

the

command

public

double

getPrice()

{

return

price;};

}

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

851

To

cache

the

above

command

object

using

the

stock

ticker

as

the

cache

key

and

using

a

60

second

time-to-live,

use

the

following

cache

policy:

<cache>

<cache-entry>

<class>command</class>

<sharing-policy>not-shared</sharing-policy>

<name>QuoteCommand</name>

<cache-id>

<component

type="method"

id="getTicker">

<required>true</required>

</component>

<priority>3</priority>

<timeout>60</timeout>

</cache-id>

</cache-entry>

</cache>

Example:

Caching

Web

services

The

following

is

a

example

of

building

a

set

of

cache

policies

for

a

simple

Web

services

application.

The

application

in

this

example

stores

stock

quotes,

and

has

operations

to

read,

update

the

price

of,

and

buy

a

given

stock

symbol.

Following

are

two

SOAP

message

examples

that

the

application

can

receive,

with

accompanying

HTTP

Request

headers.

The

first

message

sample

contains

a

SOAP

message

for

a

GetQuote

operation,

requesting

a

quote

for

IBM.

This

is

a

read-only

operation

that

gets

its

data

from

the

back-end,

and

is

very

cacheable.

In

this

example

the

SOAP

messasge

is

cached

and

a

timeout

is

placed

on

its

entries

to

guarantee

the

quotes

it

returns

are

not

too

out

of

date.

Message

example

1

POST

/soap/servlet/soaprouter

HTTP/1.1

Host:

www.myhost.com

Content-Type:

text/xml;

charset="utf-8"

SOAPAction:

urn:stockquote-lookup

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:getQuote

xmlns:m="urn:stockquote:>

<symbol>IBM</symbol>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

SOAPAction

HTTP

header

in

the

request

is

defined

in

the

SOAP

specification

and

is

used

by

HTTP

proxy

servers

to

dispatch

requests

to

particular

HTTP

servers.

WebSphere

Application

Server

dynamic

cache

can

use

this

header

in

its

cache

policies

to

build

IDs

without

having

to

parse

the

SOAP

message.

Message

example

2

illustrates

a

SOAP

message

for

a

BuyQuote

operation.

While

message

1

is

cacheable,

this

message

is

not,

because

it

updates

the

back-end

database.

Message

example

2

POST

/soap/servlet/soaprouter

HTTP/1.1

Host:

www.myhost.com

852

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Content-Type:

text/xml;

charset="utf-8"

SOAPAction:

urn:stockquote-update

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>

<m:buyStock

xmlns:m="urn:stockquote:>

<symbol>IBM</symbol>

</m:getQuote>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

The

graphic

illustrates

how

to

invoke

methods

with

the

SOAP

messages.

In

Web

services

terms,

especially

Web

Service

Definition

Language

(WSDL),

a

service

is

a

collection

of

operations

such

as

getQuote

and

buyStock.

A

body

element

namespace

(urn:stockquote

in

our

example)

defines

a

service,

and

the

name

of

the

first

body

element

indicates

the

operation.

buyStock

getQuote

SOAP Router
Servlet

Another
Service

StockQuote
Service

SOAP/HTTP

The

following

is

an

example

of

WSDL

for

the

getQuote

operation:

<?xml

version="1.0"?>

<definitions

name="StockQuoteService-interface"

targetNamespace="http://www.getquote.com/StockQuoteService-interface"

xmlns:tns="http://www.getquote.com/StockQuoteService-interface"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/"

<message

name="SymbolRequest">

<part

name="return"

type="xsd:string"/>

</message>

<portType

name="StockQuoteService">

<operation

name="getQuote">

<input

message="tns:SymbolRequest"/>

<output

message="tns:QuoteResponse"/>

</operation>

</portType>

<binding

name="StockQuoteServiceBinding"

type="tns:StockQuoteService">

<soap:binding

style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation

name="getQuote">

<soap:operation

soapAction="urn:stockquote-lookup"/>

<input>

<soap:body

use="encoded"

namespace="urn:stockquote"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>

<output>

<soap:body

use="encoded"

namespace="urn:stockquotes"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>

</operation>>

</binding>

</definition>

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

853

To

build

a

set

of

cache

policies

for

a

Web

services

application

configure

WebSphere

Application

Server

dynamic

cache

to

recognize

cacheable

service

operation

of

the

operation.

WebSphere

Application

Server

inspects

the

HTTP

request

to

determine

whether

or

not

an

incoming

message

can

be

cached

based

on

the

cache

policies

defined

for

an

application.

In

this

example,

buyStock

and

stock-update

are

not

cached,

but

stockquote-lookup

is

cached.

In

the

cachespec.xml

file

for

this

Web

application,

the

cache

policies

need

defining

for

these

services

so

that

the

dynamic

cache

can

handle

both

SOAPAction

and

service

operation.

WebSphere

Application

Server

uses

the

operation

and

the

message

body

in

Web

services

cache

IDs,

each

of

which

has

a

component

associated

with

them.

Therefore,

each

Web

services

<cache-id>

rule

contains

only

two

components.

The

first

is

for

the

operation.

Because

you

can

perform

the

stockquote-lookup

operation

by

either

using

a

SOAPAction

header

or

a

service

operation

in

the

body,

you

must

define

two

different

<cache-id>

elements,

one

for

each

method.

The

second

component

is

of

type

″body″,

and

defines

how

WebSphere

Application

Server

should

incorporate

the

message

body

into

the

cache

ID.

You

can

use

a

hash

of

the

body,

although

it

is

legal

to

use

the

literal

incoming

message

in

the

ID.

The

incoming

HTTP

request

is

analyzed

by

WebSphere

Application

Server

to

determine

which

of

the

<cache-id>

rules

match.

Then,

the

rules

are

applied

to

form

cache

or

invalidation

IDs.

The

following

is

sample

code

of

a

cachespec.xml

file

defining

SOAPAction

and

servicesOperation

rules:

<cache>

<cache-entry>

<class>webservice</class>

<name>/soap/servlet/soaprouter</name>

<sharing-policy>not-shared</sharing-policy>

<cache-id>

<component

id=""

type=SOAPAction>

<value>urn:stockquote-lookup</value>

</component>

<component

id="Hash"

type="SOAPEnvelope"/>

<timeout>3600</timeout>

<priority>1<priority>

</cache-id>

<cache-id>

<component

id=""

type="serviceOperation">

<value>urn:stockquote:getQuote</value>

</component>

<component

id="Hash"

type="SOAPEnvelope"/>

<timeout>3600</timeout>

<priority>1</priority>

</cache-id>

</cache-entry>

</cache>

Example:

Configuring

the

dynamic

cache

This

example

puts

all

the

steps

together

for

configuring

the

dynamic

cache

with

the

cachespec.xml

file,

showing

the

use

of

the

cache

ID

generation

rules,

dependency

IDs,

and

invalidation

rules.

Suppose

we

have

a

servlet

which

is

used

to

manage

a

simple

news

site.

This

servlet

uses

the

query

parameter

″action″

to

determine

whether

the

request

is

854

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

being

used

to

″view″

news

or

″update″

news

(used

by

the

administrator).

Further,

another

query

parameter

″category″

is

used

to

select

the

news

category.

Further,

suppose

that

this

site

supports

an

optional

customized

layout,

which

is

stored

in

the

user’s

session

using

the

attribute

name

″layout″.

Here

are

example

URL

requests

to

this

servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category=sports

(Returns

a

news

page

for

the

sports

category

)

http://yourhost/yourwebapp/newscontroller?action=view&category=money

(Returns

a

news

page

for

the

money

category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion

(Allows

the

administrator

to

update

news

in

the

fashion

category)

Here

are

the

steps

for

configuring

dynamic

cache

with

cachespec.xml,

using

the

information

provided

to

you:

1.

Define

the

cache-entry

elements

necessary

to

identify

the

servlet.

In

this

case,

the

servlet’s

URI

is

″newscontroller″

so

this

will

be

our

cache-entry’s

name

element.

Also,

since

we

are

caching

a

servlet/JavaServer

Page

(JSP),

the

cache-entry

class

is

″servlet″.

<cache-entry>

<name>

/newscontroller

</name>

<class>servlet

</class>

</cache-entry>

2.

Define

cache

ID

generation

rules.

For

this

servlet,

we

only

want

to

cache

when

action=view,

so

one

component

of

the

cache

ID

will

be

the

parameter

″action″

when

the

value

equals

″view″.

The

news

category

is

also

an

essential

part

of

the

cache

ID.

Finally,

the

optional

session

attribute

for

the

user’s

layout

is

included

in

the

cache

ID.

The

cache-entry

now

looks

like

this:

<cache-entry>

<name>

/newscontroller

</name>

<class>servlet

</class>

<cache-id>

<component

id="action"

type="parameter">

<value>view</value>

<required>true</required>

</component>

<component

id="category"

type="parameter">

<required>true</required>

</component>

<component

id="layout"

type="session">

<required>false</required>

</component>

</cache-id>

</cache-entry>

3.

Define

dependency

ID

rules.

For

this

servlet,

a

dependency

ID

will

be

added

for

the

category.

Later,

when

the

category

is

invalidated

due

to

an

update

event,

all

views

of

that

news

category

will

be

invalidated.

After

adding

our

dependency-id,

the

cache-entry

now

looks

like

this:

<cache-entry>

<name>newscontroller

</name>

<class>servlet

</class>

<cache-id>

<component

id="action"

type="parameter">

<value>view</value>

<required>true</required>

</component>

<component

id="category"

type="parameter">

<required>true</required>

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

855

</component>

<component

id="layout"

type="session">

<required>false</required>

</component>

</cache-id>

<dependency-id>category

<component

id="category"

type="parameter">

<required>true</required>

</component>

</dependency-id>

</cache-entry>

4.

Define

invalidation

rules.

Since

we

defined

a

category

dependency

ID,

we

will

now

define

an

invalidation

rule

to

invalidate

the

category

when

action=update.

To

incorporate

the

conditional

logic,

we

will

add

″ignore-value″

components

into

the

invalidation

rule.

These

components

will

not

add

to

the

output

of

the

invalidation

ID,

but

will

only

determine

whether

or

not

the

invalidation

ID

is

created

and

executed.

The

final

cache-entry

now

looks

like

this:

<cache-entry>

<name>newscontroller

</name>

<class>servlet

</class>

<cache-id>

<component

id="action"

type="parameter">

<value>view</value>

<required>true</required>

</component>

<component

id="category"

type="parameter">

<required>true</required>

</component>

<component

id="layout"

type="session">

<required>false</required>

</component>

</cache-id>

<dependency-id>category

<component

id="category"

type="parameter">

<required>true</required>

</component>

</dependency-id>

<invalidation>category

<component

id="action"

type="parameter"

ignore-value="true">

<value>update</value>

<required>true</required>

</component>

<component

id="category"

type="parameter">

<required>true</required>

</component>

</invalidation>

</cache-entry>

Cache

monitor

Cache

monitor

is

an

installable

Web

application

that

provides

a

real-time

view

of

the

current

state

of

dynamic

cache.

You

use

it

to

help

verify

that

dynamic

cache

is

operating

as

expected.

The

only

way

to

manipulate

the

data

in

the

cache

is

by

using

the

cache

monitor.

It

provides

a

GUI

interface

to

manually

change

data.

Cache

monitor

provides

information

on

the

cache

in

the

Servant

Region

to

which

your

browser

connects

to

interact

with

the

monitor.

Thus,

in

an

environment

with

multiple

Servant

Regions,

Cache

monitor

provides

a

partial

view

of

caching

activity.

Cache

monitor

provides

a

way

to:

v

Verify

the

configuration

of

dynamic

cache

856

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

The

WebSphere

Application

Server

adminstrative

console

provides

ways

to

enable

the

dynamic

cache

service

and

configure

properties,

such

as

maximum

size

of

the

cache

and

disk

offload

location,

as

well

as

advanced

features

such

as

controlling

external

caches.

Cache

monitor

offers

a

way

for

dynamic

cache

users

to

verify

the

configuration

of

the

dynamic

cache

by

providing

a

convenient

view

of

the

configured

features

and

properties

in

the

cache

monitor.

v

Verify

the

cache

policies

To

cache

an

object,

WebSphere

Application

Server

must

know

how

to

generate

unique

IDs

for

different

invocations

of

that

object.

This

is

performed

by

providing

rules

for

each

cacheable

object

in

the

cachespec.xml

file,

found

inside

the

Web

module

WEB-INF

or

enterprise

bean

META-INF

directory.

Each

cacheable

object

can

have

multiple

cache

ID

rules

that

execute

in

sequence

until

either

a

rule

returns

a

cache

ID

or

no

more

rules

remain

to

execute.

If

none

of

the

cache

ID

generation

rules

produce

a

valid

cache

ID,

then

the

object

is

not

cached.

Since

there

can

be

multiple

cachespec.xml

files

with

multiple

cache

ID

rules,

cache

monitor

provides

a

convenient

way

to

verify

the

policies

of

each

object.

It

offers

a

view

of

all

the

cache

polices

currently

loaded

in

dynamic

cache.

This

view

is

also

convenient

to

verify

that

the

cachespec.xml

file

was

read

by

the

dynamic

cache

without

errors.

v

Monitor

cache

statistics

Cache

monitor

provides

a

view

of

the

essential

cache

data,

such

as

number

of

cache

hits,

cache

misses,

and

number

of

entries

in

cache.

This

helps

to

tune

the

cache

configuration

optimally

to

get

the

best

performance

improvement

out

of

dynamic

cache.

For

example,

if

the

number

of

used

entries

is

often

high,

and

entries

are

being

removed

and

recreated,

one

might

consider

increasing

the

maximum

size

of

the

cache

or

enabling

disk

offload.

v

Monitor

the

data

flowing

through

the

cache

Once

a

cacheable

object

is

invoked,

dynamic

cache

creates

a

cache

entry

for

it

that

contains

the

output

of

the

execution

and

metadata,

such

as

time

to

live,

sharing

policy,

etc.

Entries

are

distinguished

by

a

unique

ID

string

that

is

based

on

the

rules

specified

in

the

cachespec.xml

file

for

this

objects

name.

Objects

with

the

same

name

may

generate

multiple

cache

IDs

for

different

invocations,

based

on

request

parameters

and

attributes

for

each

invocation.

Cache

monitor

provides

a

view

of

all

the

cache

entries

currently

in

cache,

based

on

the

unique

ID.

It

also

provides

a

view

of

the

group

of

cache

entries

that

share

a

common

name

(also

known

as

template).

Cache

entries

can

also

be

grouped

together

by

a

dependency

ID,

which

is

used

to

invalidate

the

entire

group

of

entries

dependent

on

a

common

entity.

Therefore,

cache

monitor

also

provides

a

view

of

the

group

of

cache

entries

that

share

a

common

dependency

ID.

For

each

entry,

cache

monitor

also

displays

metadata,

such

as

time

to

live,

priority

and

sharing-policy,

and

provides

a

view

of

the

output

that

has

been

cached.

This

helps

the

customer

to

verify

which

pages

have

been

cached,

that

the

pages

have

been

cached

with

the

right

attributes

such

as

time

to

live,

priority,

etc.,

and

that

the

pages

have

the

right

content.

v

Monitor

the

data

in

the

edge

cache

Dynamic

cache

provides

support

to

recognize

the

presence

of

an

Edge

Side

Include

(ESI)

processor

and

to

generate

ESI

include

tags

and

appropriate

cache

policies

for

edge

cacheable

fragments.

The

ESI

processor

has

the

ability

to

cache

whole

pages,

as

well

as

fragments,

providing

a

higher

cache

hit

ratio.

There

can

be

multiple

ESI

processors

running

on

multiple

hosts

configured

for

caching.

Cache

monitor

provides

a

list

of

all

ESI

processes

and

their

hosts

that

are

enabled

for

caching.

It

also

provides

a

way

to

select

a

host

or

a

processor,

and

view

its

edge

cache

statistics

as

well

as

current

cache

entries.

v

View

the

data

offloaded

to

the

disk

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

857

By

default,

when

the

number

of

cache

entries

reaches

the

configured

limit

for

a

given

server,

eviction

of

cache

entries

occurs,

allowing

new

entries

to

enter

the

cache

service.

The

dynamic

cache

includes

the

disk

offload

feature

that

copies

the

evicted

cache

entries

to

disk

for

future

access.

Cache

monitor

offers

a

view

of

the

content

offloaded

to

disk

that

corresponds

to

the

view

of

contents

cached

in

memory.

v

Manage

the

data

in

the

cache

Besides

displaying

cache

content,

cache

monitor

also

provides

some

basic

operations

on

the

data

in

the

cache:

–

Removing

an

entry

from

the

cache

–

Removing

all

entries

for

a

certain

dependency

ID

–

Removing

all

entries

for

a

certain

name

(template)

–

Moving

an

entry

to

the

front

of

the

least

recently

used

queue

to

avoid

eviction

–

Moving

an

entry

from

the

disk

to

the

cache

–

Clearing

the

entire

contents

of

the

cache

–

Clearing

the

contents

of

the

disk

cache

These

functions

are

useful

for

dynamic

cache

customers,

as

they

provide

a

way

to

manually

change

the

state

of

the

cache

without

having

to

restart

the

server.

Edge

cache

statistics

Cache

monitor

provides

a

view

of

the

edge

cache

statistics.

The

following

statistics

are

available:

v

ESI

Processors.

Number

of

processes

configured

as

edge

caches.

v

Number

of

Edge

Cached

Entries.

Number

of

entries

currently

cached

on

all

edge

servers

and

processes.

v

Cache

Hits.

Number

of

requests

that

match

entries

on

edge

servers.

v

Cache

Misses

By

URL.

A

cache

policy

does

not

exist

on

the

edge

server,

for

the

requested

template.

Note:

–

The

initial

ESI

request

for

a

template

that

has

a

cache

policy

on

WebSphere

Application

Server

will

result

in

a

miss.

–

Every

request

for

a

template

that

does

not

have

a

cache

policy

on

WebSphere

Application

Server

will

result

in

a

miss

by

URL

on

the

edge

server.
v

Cache

Misses

By

Cache

ID.

The

policy

for

the

requested

template

exists

on

the

edge

server,

and

a

cache

ID

is

created,

based

on

the

ID

rules

and

the

request

attributes,

but

the

cache

entry

for

this

ID

does

not

exist.

Note:

If

the

policy

exists

on

the

edge

server

for

the

requested

template,

but

a

cache

ID

match

is

not

found,

based

on

the

ID

rules

and

the

request

attributes,

it

is

not

treated

as

a

cache

miss.

v

Cache

Timeouts.

Number

of

entries

removed

from

the

edge

cache,

based

on

the

timeout

value.

v

Evictions.

Number

of

entries

removed

from

the

edge

cache,

due

to

invalidations

received

from

WebSphere

Application

Server.

Troubleshooting

the

dynamic

cache

service

Complete

the

steps

below

to

resolve

problems

that

you

think

are

related

to

the

dynamic

cache

service.

858

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

1.

Review

the

JVM

logs

for

your

application

server.

Messages

prefaced

with

DYNA

result

from

dynamic

cache

service

operations.

a.

View

the

JVM

logs

for

your

application

server.

Each

server

has

its

own

JVM

log

file.

For

example,

if

your

server

is

named

Member_1,

the

JVM

log

is

located

in

the

subdirectory

install_root/logs/Member_1.

To

use

the

administration

console

to

review

the

JVM

logs,

click

Troubleshooting

>

Logs

and

Trace

>

server_name

>

JVM

Logs

>

Runtime

>

View.

b.

Find

any

messages

prefaced

with

DYNA

in

the

JVM

logs,

and

write

down

the

message

IDs.

A

sample

message

having

the

message

ID

DYNA0030E

follows:

DYNA0030E:

"property"

element

is

missing

required

attribute

"name".

c.

Find

the

message

for

each

message

ID

in

the

WebSphere

Application

Server

InfoCenter.

In

the

InfoCenter

navigation

tree,

click

product_name

>

Reference

>

Messages

>

DYNA

to

view

dynamic

cache

service

messages.

d.

Read

the

message

Explanation

and

User

Action

statements.

A

search

for

the

message

ID

DYNA0030E

displays

a

page

having

the

following

message:

DYNA0030E:

"property"

element

is

missing

required

attribute

"name".

Explanation:

A

required

attribute

was

missing

in

the

cache

configuration.

User

Action:

Add

the

required

attribute

to

your

cache

configuration

file.

This

explanation

and

user

action

suggests

that

you

can

fix

the

problem

by

adding

or

correcting

a

required

attribute

in

the

cache

configuration

file.

e.

Try

the

solutions

stated

under

User

Action

in

the

DYNA

messages.
2.

Use

the

cache

monitor

to

determine

whether

the

dynamic

cache

service

is

functioning

as

expected.

The

cache

monitor

is

an

installable

Web

application

that

displays

simple

cache

statistics,

cache

entries,

and

cache

policy

information.

3.

If

you

have

completed

the

preceding

steps

and

still

cannot

resolve

the

problem,

contact

your

IBM

software

support

representative.

Use

the

collector

tool

(collector.bat

or

collector.sh

located

in

the

bin

directory)

to

gather

trace

information

and

other

configuration

information

for

the

support

team

to

diagnose

the

problem.

The

collector

tool

gathers

dynamic

cache

service

files

and

packages

them

into

a

JAR

file.

The

IBM

representative

can

specify

when

and

where

to

send

the

JAR

file.

The

IBM

representative

might

ask

you

to

complete

a

diagnostic

trace.

To

enable

tracing

in

the

administrative

console,

click

Troubleshooting

>

Logs

and

Trace

>

server_name

>

Diagnostic

Trace

and

specify

Enable

trace

with

the

following

specification.

The

IBM

representative

can

tell

you

what

trace

specification

to

enter.

Note

that

dynamic

cache

trace

files

can

become

large

in

a

short

period

of

time;

you

can

limit

the

size

of

the

trace

file

by

starting

the

trace,

immediately

recreating

the

problem,

and

immediately

stopping

the

trace.

For

current

information

available

from

IBM

Support

on

known

problems

and

their

resolution,

see

the

IBM

Support

page.

IBM

Support

has

documents

that

can

save

you

time

gathering

information

needed

to

resolve

this

problem.

Before

opening

a

PMR,

see

the

IBM

Support

page.

Troubleshooting

tips

for

the

dynamic

cache

service

The

dynamic

cache

service

works

within

an

application

server

Java

virtual

machine

(JVM),

intercepting

calls

to

cacheable

objects.

This

article

describes

some

common

run-time

and

configuration

problems

and

remedies.

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

859

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCVRZY
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Servlets

are

not

cached

Recommended

response

Enable

servlet

caching.

On

the

Web

container

page

of

the

administrative

console,

select

the

Enable

servlet

caching

check

box.

Cache

entries

are

not

written

to

disk

Explanation

Cache

entries

are

written

to

disk

when

the

cache

is

full

and

new

entries

are

added

to

the

memory

cache.

Cache

entries

also

are

written

to

disk

when

the

flushToDiskOnStop

system

property

is

set

and

the

server

is

stopped.

Recommended

response

Verify

that

Disk

offload

is

enabled

on

the

Dynamic

Cache

Service

page

of

the

administrative

console.

Also

verify

that

cache

entries

written

to

disk

are

serializable

and

do

not

have

the

PersistToDisk

configuration

set

to

false.

Some

servlets

are

not

replicated

or

written

to

disk

Recommended

response

Ensure

that

the

attributes

and

response

are

serializable.

If

the

you

do

not

want

to

store

the

attributes,

use

the

following

property

in

your

cache

policy:

<property

name="save-attributes">false</property>

Dynamic

cache

service

does

not

cache

fragments

on

the

Edge

Recommended

response

Set

the

EdgeCacheable

property

to

true

in

the

cache

policy

for

those

entries

that

are

to

be

cached

on

the

Edge.

<property

name="EdgeCacheable">true</property>

Dynamic

cache

invalidations

are

not

sent

to

the

IBM

HTTP

Server

(IHS)

plug-in

Explanation

The

DynaCacheEsi.ear

file

is

required

to

send

invalidations

to

external

caches.

Recommended

response

Install

DynaCacheEsi.ear

using

the

administrative

console.

Cache

entries

are

evicted

often

Problem

The

cache

is

full

and

new

entries

are

added

to

the

cache.

Explanation

Cache

entries

are

evicted

when

the

cache

is

full

and

new

entries

are

added

to

the

cache.

A

LRU

eviction

mechanism

removes

the

least

recently

used

entry

to

make

space

for

the

new

entries.

Recommended

response

Either

enable

Disk

offload

on

the

Dynamic

Cache

Service

page

of

the

administrative

console

so

the

entries

are

written

to

disk.

Or,

increase

the

cache

size

to

accommodate

more

entries

in

the

cache.

Cache

entries

in

disk

with

timeout

set

to

0

expire

after

one

day

Explanation

The

maximum

lifetime

of

an

entry

in

disk

cache

is

24

hours.

A

timeout

of

0

in

the

cache

policy

configures

these

entries

to

stay

in

disk

cache

for

one

whole

day,

unless

they

are

evicted

earlier.

860

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Recommended

response

Set

the

timeout

for

the

cache

policy

to

a

number

greater

than

0.

I

cannot

monitor

cache

entries

on

the

Edge

Explanation

Use

the

cache

monitor

for

monitoring

contents

in

memory

cache,

disk

cache

and

external

caches

(Edge

cache).

For

the

ESI

processor’s

cache

to

be

visible

in

the

cache

monitor,

the

DynaCacheEsi.ear

application

must

be

installed

and

the

esiInvalidationMonitor

property

must

be

set

to

true

in

the

plugin-cfg.xml

file.

Recommended

response

Install

the

DynaCacheEsi.ear

application

and

set

the

esiInvalidationMonitor

property

to

true

in

the

plugin-cfg.xml

file.

I

want

to

cache

static

contents

using

the

dynamic

cache

service

Explanation

You

can

cache

static

contents

using

the

dynamic

cache

service.

Static

contents

in

WebSphere

application

server

are

served

by

the

SimpleFileServlet

file.

Recommended

response

Create

a

cache

policy

for

the

class

com.ibm.ws.webcontainer.servlet

.SimpleFileServlet.class

to

cache

static

contents.

It

is

advisable

to

use

the

dynamic

cache

service

for

caching

more

expensive

dynamic

contents

than

static

contents.

I

want

to

tune

cache

for

my

environment

Recommended

response

Use

the

Tivoli

Performance

viewer

to

study

the

caching

behavior

for

your

applications.

Also,

do

the

following:

v

Increase

the

priority

of

cache

entries

that

are

expensive

to

regenerate.

v

Modify

timeout

of

entries

so

that

they

stay

in

memory

as

long

as

they

are

valid.

v

Enable

disk

offload

to

store

LRU

evicted

entries.

v

Increase

the

cache

size.

Chapter

15.

Using

the

dynamic

cache

service

to

improve

performance

861

862

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

16.

Assembling

applications

with

the

AAT

Assemble

application

modules

(known

as

EAR

files)

from

new

or

existing

J2EE

1.3

or

1.4

modules,

including

these

archives:

Web

application

archives

(WAR),

resource

adapter

archives

(RAR),

enterprise

beans

(EJB

JAR),

and

application

client

archives

(JAR).

This

packaging

and

configuration

of

code

artifacts

into

application

modules

or

stand-alone

Web

modules

is

necessary

for

deploying

the

applications

onto

the

application

server.

5.0.2 +

For

the

Windows

and

Linux

Intel

operating

systems,

the

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

Visit

the

Web

site

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q

=&uid=swg24005125&loc=en_US&cs=utf-8&lang=en+en

to

download

the

Application

Server

Toolkit

product,

which

offers

the

Assembly

Toolkit

and

other

products.

The

Assembly

Toolkit

consists

of

the

J2EE

Perspective

of

the

WebSphere

Studio

Application

Developer

product

without

the

code

generation

capabilities.

Gather

the

code

artifacts

that

you

want

to

package

into

one

or

more

assembled

modules.

Code

artifacts

include

these

items

that

you

have

created

and

unit

tested

in

your

favorite

integrated

development

environment:

v

Enterprise

beans

v

Servlets,

JavaServer

Pages

(JSP)

files

and

other

Web

components

v

Resource

adapter

(connector)

implementations

v

Application

clients

v

Other

supporting

classes

and

files

1.

Start

the

Application

Assembly

Tool

(AAT)on

Windows.

2.

Migrate

existing

J2EE

1.2

modules

to

J2EE

1.3.

The

AAT

has

an

option

for

migrating

J2EE

1.2

application

modules

to

J2EE

1.3.

The

J2EE

1.2

module

is

kept

intact,

with

a

new

1.3

module

created.

See

also

the

earconvert

tool

documentation.

You

must

migrate

J2EE

1.2

application

modules

to

which

you

want

to

add

J2EE

1.3

level

WAR,

RAR,

EJB

and

client

modules.

This

tool

migrates

only

the

application

modules.

J2EE

1.2-level

modules

inside

a

J2EE

1.2

application

module

must

be

migrated

by

other

means.

3.

Assemble

new

EJB

modules

(enterprise

bean

JAR

files)

as

needed.

Assemble

an

EJB

module

to

contain

enterprise

beans

and

related

code

artifacts.

(Group

Web

components,

client

code,

and

resource

adapter

code

in

separate

modules.)

You

can

install

an

EJB

module

as

a

stand-alone

application

or

you

can

combine

it

with

other

modules

into

an

enterprise

application.

4.

Assemble

new

Web

modules

(WAR

files)

as

needed.

Assemble

a

Web

module

to

contain

servlets,

JSP

files,

and

related

code

artifacts.

(Group

enterprise

beans,

client

code,

and

resource

adapter

code

in

separate

modules.)

You

can

install

a

Web

module

as

a

stand-alone

application

or

combine

it

with

other

modules

into

an

enterprise

application.

5.

Assemble

new

application

client

modules

(client

JAR

files)

as

needed.

6.

Assemble

new

resource

adapter

archives

(RAR

files)

as

needed.

Assemble

a

resource

adapter

archive

module

to

contain

the

library

implementation

code

that

your

application

uses

to

connect

to

enterprise

information

systems

(EIS).

(Group

enterprise

beans,

Web

components,

and

client

code

in

separate

modules.)

©

Copyright

IBM

Corp.

2003

863

7.

Assemble

an

application

module

from

other

module

types.

You

are

ready

to

combine

your

new

or

migrated

modules

into

an

application

module

(EAR

file).

For

applications

containing

only

Web

modules,

this

step

is

optional.

It

is

feasible

to

deploy

Web

modules

without

assembling

them

into

application

modules.

8.

Verify

your

archive

files.

Verify

your

archive

files

and

correct

any

problems

so

that

generation

of

deployment

code

is

successful.

During

verification,

the

AAT

checks

that

an

archive

file

is

complete,

and

that

deployment

descriptor

properties

and

references

contain

appropriate

values.

9.

Remember

to

save

your

application

one

last

time.

10.

Generate

code

for

deployment

for

applications

containing

EJB

modules.

If

the

application

modules

contain

EJB

modules,

you

must

generate

deployment

code

for

the

enterprise

beans

in

the

application

before

you

deploy

applications

on

the

server.

The

AAT

provides

this

ability,

or

you

can

use

the

ejbdeploy

command

line

tool.

11.

Open

existing

modules

(File

>

Open)

in

the

AAT

to

modify

them

as

needed.

For

example,

you

can

add

or

remove

modules

and

edit

deployment

descriptor

properties.

After

assembling

your

applications,

use

a

systems

management

tool

to

deploy

the

EAR

or

WAR

files

onto

the

application

server.

The

systems

management

tool

follows

the

security

and

deployment

instructions

defined

in

the

deployment

descriptor,

and

enables

you

to

modify

bindings

specified

within

the

AAT.

The

tool

locates

the

required

external

resources

that

the

application

uses,

such

as

enterprise

beans

and

databases.

Select

a

tool

to

use:

v

Deploying

and

managing

applications

with

the

GUI

v

Deploying

and

managing

applications

using

programming

v

Deploying

and

managing

applications

using

scripting

If

you

are

uncertain

of

which

systems

management

tool

to

use,

try

using

the

administrative

console.

Application

assembly

and

J2EE

applications

Application

assembly

is

the

process

of

creating

an

Enterprise

Archive

(EAR)

file

containing

all

files

related

to

an

application,

as

well

as

an

XML

deployment

descriptor

for

the

application.

This

configuration

and

packaging

prepares

the

application

for

deployment

onto

an

application

server.

EAR

files

are

comprised

of

the

following

archives:

v

Enterprise

bean

(JAR)

files

(known

as

EJB

modules)

v

Web

application

(WAR)

files

(known

as

Web

modules)

v

Application

client

(JAR)

files

(known

as

client

modules)

v

Resource

adapter

(RAR)

files

(known

as

resource

adapter

modules)

Ensure

that

modules

are

contained

in

an

EAR

file

so

that

they

may

be

deployed

onto

the

server.

The

exceptions

are

WAR

modules,

which

you

can

deploy

individually.

Although

WAR

modules

can

contain

regular

JAR

files,

they

cannot

contain

the

other

module

types

described

previously.

The

assembly

process

includes

the

following:

v

Selecting

all

of

the

files

to

include

in

the

module

864

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Creating

a

deployment

descriptor

containing

instructions

for

module

deployment

on

the

application

server.

As

you

configure

properties

using

the

Application

Assembly

Tool

(AAT),

the

tool

generates

the

deployment

descriptor

for

you.

While

the

AAT

graphical

interface

is

recommended,

you

can

also

edit

descriptors

directly

in

your

favorite

XML

editor.

v

Packaging

modules

into

a

single

Enterprise

archive

(EAR)

file,

which

contains

one

or

more

files

in

a

compressed

format

Archive

support

in

Version

5.0

These

archives

and

Web

components

are

supported:

v

J2EE

1.3

Enterprise

application

(EAR)

files

v

EJB

2.0

(JAR)

files

v

Servlet

2.3

Web

application

WAR

files

v

Application

Client

1.3

JAR

files

v

Connector

1.0

RAR

files

These

archive

files

and

Web

components

are

back-level

and

may

be

read

but

not

created

or

changed:

v

J2EE

1.2

EAR

files

v

EJB

1.1

JAR

files

v

Servlet

2.2

WAR

files

v

Application

Client

1.2

JAR

files

Starting

the

Application

Assembly

Tool

(AAT)

A

graphical

interface

is

available

for

packaging

code

artifacts

into

various

archives

(modules)

and

configuring

their

J2EE

1.3

compliant

deployment

descriptors.

The

Application

Assembly

Tool

(AAT)

is

available

from

the

Windows

Start

menu,

or

you

can

invoke

the

tool

from

a

command

line

as

described

in

the

Steps

for

this

task.

On

z/OS,

the

user

must

FTP

(in

binary)

the

setup.exe

file

from

the

AppServer/lib

directory

and

install

it

on

their

Windows

platform.

This

support

is

for

the

Windows

platform

Only.

If

you

access

the

Application

Assembly

Tool

from

a

remote

browser

and

select

the

Help,

the

Help

files

do

not

display.

You

can

only

view

the

Help

files

from

a

locally

installed

browser.

To

view

the

Help

files

and

avoid

this

problem,

close

all

the

Netscape

sessions

on

the

remote

machine

and

click

Help.

A

new

Netscape

session

starts,

and

you

can

then

view

the

Help

files.

1.

Change

directory

at

a

system

command

prompt

to

the

location

of

the

assembly.bat|sh

file,

typically

install_root/bin.

2.

Run

the

assembly

script

to

launch

the

graphical

interface.

3.

Select

whether

to

work

with

an

existing

module

or

create

a

new

one.

The

navigation

tree

displays

a

hierarchical

structure

used

to

build

the

contents

of

a

new

module,

or

to

work

with

the

contents

of

an

existing

module.

Icons

in

the

tree

represent

the

components,

assembly

properties,

and

files

for

the

module.

The

assembly

properties

appear

in

the

AAT

workspace.

Consider

whether

you

have

any

existing

J2EE

1.2

application

modules

that

you

would

like

to

migrate

to

J2EE

1.3.

Chapter

16.

Assembling

applications

with

the

AAT

865

You

can

create

new

modules

of

the

following

types,

to

assemble

into

an

application

module

later:

v

Assembling

EJB

modules

v

Assembling

Web

modules

v

Assembling

application

client

modules

v

Assembling

resource

adapter

modules

Rather

than

create

new

modules

to

assemble

an

application,

you

can

proceed

directly

to

assembling

a

new

application

module.

While

assembling

an

application

module,

you

can

create

any

new

modules

that

you

need.

Migrating

application

modules

from

J2EE

1.2

to

J2EE

1.3

The

Application

Assembly

Tool

(AAT)

has

an

option

for

migrating

J2EE

1.2

application

modules

to

J2EE

1.3.

The

J2EE

1.2

module

is

kept

intact,

with

a

new

1.3

module

created.

See

also

the

earconvert

tool

documentation.

Migrate

J2EE

1.2

application

modules

to

which

you

want

to

add

J2EE

1.3

level

Web

application

(WAR)

modules,

Resource

adapter

(RAR)

modules,

Entity

bean

(EJB)

modules,

and

application

client

modules.

This

tool

migrates

only

the

application

modules.

Migrate

J2EE

1.2-level

modules

inside

a

J2EE

1.2

application

module

by

other

means.

Note:

When

Entity

beans

are

moved

from

a

J2EE

1.2

module

to

a

J2EE

1.3

module,

the

EJB

container

will

then

apply

rules

defined

in

the

EJB

2.0

specification

to

these

beans.

The

EJB

2.0

specification

mandates

that

when

a

findBy

method

is

called

on

a

bean

home

(except

for

findByPrimaryKey),

the

EJB

container

must

cause

other

Entity

beans

enlisted

in

the

same

transaction

to

write

out

their

current

state

to

the

persistent

store.

This

is

to

ensure

that

the

findBy

operation

is

performed

on

the

most

current

data.

Application

developers

should

plan

for

and

be

aware

of

any

changes

to

the

application

behavior

as

a

result

of

this

rule.

1.

Start

the

AAT.

2.

Use

it

to

open

the

J2EE

1.2

application

module

you

want

to

migrate.

3.

Click

Convert

EAR

from

the

file

menu.

4.

Save

the

new

J2EE

1.3

application.

Assemble

zero

or

more

new

modules

of

your

choice:

v

Assembling

EJB

modules

v

Assembling

Web

modules

v

Assembling

application

client

modules

v

Assembling

resource

adapter

modules

Another

option

is

to

proceed

directly

to

assembling

a

new

application

module.

You

can

create

any

new

modules

that

you

need,

while

assembling

an

application

module.

earconvert

tool

A

command

line

tool

is

provided

for

migrating

J2EE

1.2

application

modules

to

J2EE

1.3.

This

migration

enables

you

to

add

J2EE

1.3

modules

to

the

migrated

application

module.See

also

the

Application

Assembly

Tool

(AAT)

for

information

on

performing

this

task.

866

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Migrate

J2EE

1.2

application

modules

to

which

you

want

to

add

J2EE

1.3

level

Web

application

(WAR),

Resource

adapter

(RAR),

Enterprise

beans

(EJB),

and

client

modules.

This

tool

migrates

only

the

application

modules.

Ensure

that

you

migrate

J2EE

1.2-level

modules

inside

a

J2EE

1.2

application

to

prevent

working

with

back-level

files.

The

IBM

WebSphere

Client

Development

Kit

for

z/OS

is

located

in

the

setup.exe

file

of

the

install_root/lib

directory.

To

install

the

IBM

WebSphere

Client

Development

Kit

for

z/OS,

use

the

File

Transfer

Protocol

(in

binary)

to

transfer

the

setup.exe

file

to

the

machine

on

which

the

Windows

operating

system

is

installed,

and

run

the

setup.exe

file.

earconvert

j2ee_1.2_file_name

j2ee_1.3_file_name

Parameters

Supported

arguments

include:

″j2ee_1.2_file_name″

Specifies

the

actual

name

of

the

existing

J2EE

1.2

application

file.

(In

this

and

other

arguments,

use

quotation

marks

to

allow

for

path

names

that

contain

spaces.)

″j2ee_1.3_file_name″

Specifies

what

you

would

like

to

name

the

new

J2EE

1.3

application

file.

The

following

command

creates

a

new

J2EE

1.3

archive,

new_application.ear,

based

on

the

J2EE

1.2

archive,

existing_application.ear.

earconvert

existing_application.ear

new_application.ear

Assembling

new

or

modifying

existing

modules

Ensure

that

code

artifacts,

such

as

servlets,

JSP

files,

enterprise

beans,

and

application

clients

are

assembled

into

their

respective

modules.

If

you

want

to

use

existing

J2EE

1.2

modules

in

your

J2EE

1.3

application,

migrate

these

modules

to

J2EE

1.3

first.

Also

migrate

any

J2EE

1.2

application

modules

to

which

you

want

to

add

J2EE

1.3

modules.

You

are

now

ready

to

combine

your

new

or

migrated

modules

into

an

application

module

Enterprise

application

(EAR

file).

The

Application

Assembly

Tool

(AAT)

provides

flexibility

in

assembling

applications

from

various

Web

application

(WAR),

Resource

adapter

(RAR),

Enterprise

beans

(EJB

JAR),

and

application

client

(JAR)

files.

Options

described

in

assembling

applications

include:

v

Importing

an

existing

module

(JAR,

RAR

or

WAR

file)

v

Creating

a

new

module

while

you

create

the

new

application

v

Copying

code

artifacts,

such

as

servlets,

from

one

module

to

another

of

the

same

type,

to

reside

in

the

new

application
1.

Start

the

AAT.

2.

From

the

New

tab,

select

Application,

and

click

OK,

if

you

did

not

already

specify

to

create

a

new

application

module.

Each

of

the

next

three

steps

is

optional,

but

you

must

perform

at

least

one

of

them.

3.

Import

existing

modules

into

the

application

module.

Chapter

16.

Assembling

applications

with

the

AAT

867

a.

Right-click

the

folder

for

the

type

of

module

you

want

to

import,

such

as

an

EJB

module,

in

the

navigation

tree.

b.

Click

Import

from

its

right-click

menu.

c.

Use

the

file

browser

to

locate

and

select

the

archive

file

for

the

module.

d.

Click

Open.

The

archive

file

appears

under

the

appropriate

folder

in

the

navigation

tree.

e.

Click

the

plus

sign

(+)

next

to

the

icon

for

the

archive,

to

view

the

module

contents

and

edit

its

properties

if

needed.

f.

Save

the

application

module.
4.

Create

a

new

archive

file

to

include

in

the

application.

a.

Right-click

the

folder

for

the

type

of

module

to

create

(such

as

enterprise

beans

(EJB)

modules,

Web

application

modules

(WAR),

resource

adapter

(RAR)

files,

or

application

client

modules)

in

the

navigation

tree.

b.

Click

New

from

its

right-click

menu.

c.

Configure

properties

of

the

new

module

when

it

displays.

d.

Click

OK.

The

archive

file

displays

under

the

appropriate

folder.

e.

Click

the

plus

sign

(+)

to

verify

file

contents

and

enter

assembly

properties.

f.

Add

enterprise

beans,

if

this

is

an

EJB

module.

g.

Right-click

the

folder

corresponding

to

the

type

of

bean

to

create

(session

bean

or

entity

bean),

and

click

New

or

Import.

h.

Configure

properties

of

the

enterprise

bean

when

it

displays.

i.

Click

OK.

The

enterprise

bean

appears

in

the

navigation

pane.

j.

Click

the

plus

sign

(+)

to

verify

file

contents

and

enter

assembly

properties.

k.

Save

the

application

module.

5.

Copy

code

artifacts,

such

as

servlets,

from

one

module

to

another

of

the

same

type,

to

reside

in

the

new

application.

a.

Identify

the

code

artifact

to

copy,

and

the

type

of

module

in

which

it

resides.

Make

sure

you

already

have

the

same

kind

of

module

(such

as

a

Web

module)

created

in

the

new

application

module.

b.

Open

a

separate,

existing

module

in

the

AAT

by

selecting

File

>

Open

from

the

menu

bar.

c.

Arrange

the

AAT

workspace

so

that

you

can

see

both

the

new

application

module

and

the

source

archive

containing

the

code

artifact.

d.

Copy

and

paste

the

code

artifact

from

the

source

module

to

the

same

module

type

in

the

new

application.

For

example,

copy

a

container-managed

persistence

(CMP)

bean

from

the

source

EJB

module

into

the

new

EJB

application

module.

e.

Save

the

application

module.

6.

Continue

to

add

desired

modules

to

the

application

module.

7.

Define

security

properties

for

the

application.

a.

Right-click

the

Security

Roles

icon

in

the

navigation

tree.

b.

Click

New.

c.

Configure

the

security

properties.

d.

Click

OK.
8.

Add

supplementary

files

needed

by

the

application.

a.

Right-click

the

Files

icon

in

the

navigation

tree,

and

select

Add

Files.

b.

Add

files,

using

the

Add

Files

dialog.
9.

Save

the

application

module.

868

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

are

performing

application

assembly

results

in

a

J2EE

1.3

compliant

EAR

file

containing

one

or

more

WAR,

RAR,

or

JAR

files.

Note:

If

you

use

the

Application

Assembly

Tool

to

create

application

client

modules,

you

must

also

use

the

Application

Client

Resource

Configuration

Tool.

Using

this

tool,

you

can

define

references

to

resources

(other

than

enterprise

beans)

on

the

machine

where

the

application

client

resides.

After

assembling

an

application,

you

can

do

the

following:

1.

Verify

archive

files.

2.

Generate

code

for

deployment.

3.

Use

the

administrative

console

to

install

the

application

onto

an

application

server.

Note:

If

your

application

has

a

large

number

of

modules,

it

might

not

install

successfully

onto

a

server.

Package

your

application

so

the

.ear

file

has

as

few

modules

as

are

necessary.

Modules

can

include

metadata

for

the

modules

such

as

information

on

deployment

descriptors,

bindings

and

IBM

extensions.

4.

Use

the

administrative

console

at

installation

time

to

carry

out

the

security

instructions

defined

in

the

deployment

descriptor

and

to

locate

required

external

resources,

such

as

enterprise

beans

and

databases.

You

can

add

configuration

properties

and

redefine

binding

properties

defined

in

the

Application

Assembly

Tool.

5.

After

the

application

deploys,

use

the

Application

Assembly

Tool

to

modify

the

application

by

adding

or

removing

modules,

editing

deployment

descriptor

properties

and

regenerating

code

for

deployment.

Adding

files

to

assembled

modules

Review

the

usage

scenario

(as

follows)

to

become

familiar

with

the

Add

Files

dialog.

Use

the

Add

Files

dialog

box

of

the

Application

Assembly

Tool

(AAT)

to

import

files

into

assembled

modules

including

Enterprise

application

(EAR),

Web

application

(WAR),

Resource

adapter

(RAR)

and

Application

client

(JAR)

files.

This

task

assumes

that

you

are

performing

another

task,

such

as

assembling

a

Web

or

EJB

module,

when

the

Add

Files

dialog

is

presented

to

you.

1.

Click

Browse.

Locate

the

files

to

add.

v

To

add

specific

individual

files,

select

the

directory

or

archive

(WAR,

JAR,

RAR,

ZIP,

for

example)

containing

the

files.

v

To

add

an

entire

directory

of

files,

select

its

parent

directory.
2.

Click

OK.

The

selected

directory

or

achive

appears

in

the

top

left

part

of

the

dialog

box,

in

an

expandable

tree.

The

top

right

part

of

the

dialog

box

shows

the

contents

of

the

directory,

subdirectory,

or

archive

that

is

selected

on

the

left-hand

side.

3.

Select

one

or

more

items

to

add

from

the

top

right

part

of

the

dialog,

then

click

Add.

As

you

add

files,

they

will

be

displayed

in

the

lower

half

of

the

dialog

box.

4.

Change

your

left-hand

selection

to

gain

access

to

other

files

that

you

want

to

add,

as

needed.

5.

Click

OK

when

all

of

the

files

that

you

want

to

add

appear

in

the

lower

half

of

the

dialog

box.

Chapter

16.

Assembling

applications

with

the

AAT

869

The

following

example

refers

to

the

main

areas

of

the

Add

Files

dialog

box.

Details

such

as

clicking

OK

are

omitted.

Refer

to

the

detailed

task

steps

above

for

this

information.

Suppose

you

are

constructing

a

new

application

module

and

want

to

add

myFile.txt

file

to

the

archive

as

a

supplementary

file.

The

myFile.txt

currently

is

contained

within

the

myFiles

subdirectory

of

a

JAR

file

that

resides

somewhere

on

your

directory

system.

1.

Browse

for

the

JAR

file.

2.

Select

the

JAR

file.

3.

Exit

the

browse

dialog.

At

this

point:

v

Area

1

of

the

Add

Files

dialog

contains

the

path

to

the

JAR

file.

v

Area

2

displays

the

JAR

file

name

as

the

root

directory

of

an

expandable

tree

showing

the

directories

in

the

JAR

file

--

including

myFiles.

v

Area

3

shows

the

root

contents

of

the

JAR

file,

as

well

as

any

subdirectories

visible

from

the

root.
4.

Select

the

myFiles

directory

from

area

2,

causing

myFile.txt

to

become

visible

in

area

3.

5.

Click

myFiles.txt

from

area

3

and

specify

to

Add

the

file.

Now

this

file

is

listed

in

area

4,

the

lower

half

of

the

dialog,

which

indicates

it

is

the

file

that

you

want

to

add

to

the

new

application

module.

6.

Exit

the

Add

Files

dialog.

Resource

environment

reference

assembly

settings

Resource

environment

reference

elements

contain

declarations

of

an

enterprise

bean’s

reference

to

an

administered

object

associated

with

a

resource

in

the

enterprise

bean’s

environment.

Name

Specifies

the

name

of

the

resource

environment

reference.

Its

value

is

the

environment

entry

name

used

in

the

enterprise

bean

code.

Data

type

String

Description

Contains

the

information

that

the

EJB

jar

file

producer

wants

to

provide

to

the

EJB

jar

file

consumer.

Data

type

String

1

2 3

4

870

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Type

Specifies

the

type

of

a

resource

environment

reference.

Data

type

String

Resource

Adapter

Archive

file

assembly

settings

Use

this

page

to

set

the

resource

adapter

archive

file

properties.

File

name

Specifies

the

file

name

of

the

Resource

Adapter

Archive.

Data

type

String

Display

name

Specifies

a

short

name

that

is

intended

to

be

displayed

by

the

GUI.

Data

type

String

Description

Specifies

a

description

that

should

include

any

information

that

the

component

file

producer

wants

to

provide

to

the

consumer

of

the

component

file

(that

is,

to

the

deployer).

Data

type

String

EIS

type

This

helps

in

identifying

EIS

instances

that

can

be

used

with

this

resource

adapter.

Data

type

String

Vendor

name

Specifies

a

string-based

version

of

the

resource

adapter

from

the

resource

adapter

provider.

Data

type

String

Version

Specifies

a

string-based

version

of

the

resource

adapter

from

the

resource

adapter

provider.

Data

type

String

Specification

Specifies

the

version

of

the

connector

architecture

specification

that

is

supported

by

this

resource

adapter.

Data

type

String

License

required

Specifies

if

a

license

is

or

is

not

required.

Chapter

16.

Assembling

applications

with

the

AAT

871

Description

If

a

license

is

required,

this

field

specifies

the

licensing

requirements

for

the

resource

adapter

module.

For

example,

duration

of

license,

number

of

connection

restrictions,

and

so

forth.

Data

type

String

Implementation

The

element

(managedconnectionfactory

class)

that

specifies

the

fully

qualified

name

of

the

Java

class

that

implements

the

javax.resource.spi.Managed-
ConnectionFactory

interface.

Data

type

Class

Interface

The

element

(credential-interface)

that

specifies

the

interface

that

the

resource

adapter

implementation

supports

for

the

representation

of

the

credentials.

The

possible

values

are:

<credential-interface>

javax.resource.spi.security.PasswordCredential

</credential-interface>

<credential-interface>

javax.resource.spi.security.GenericCredential

</credential-interface>

Data

type

Class

Implementation

The

element

(connectionfactory

class)

that

specifies

the

fully-qualified

name

of

the

ConnectionFactory

class

that

implements

the

resource

adapter

specific

ConnectionFactory

interface.

Data

type

Class

Interface

The

element

(connection-interface)

that

specifies

the

fully-qualified

name

of

the

Connection

interface

supported

by

the

resource

adapter.

Data

type

Class

Implementation

The

element

(connection

class)

that

specifies

the

fully-qualified

name

of

the

Connection

class

that

implements

the

resource

adapter

specific

Connection

interface.

Data

type

Class

Support

Reauthentication

Specifies

whether

the

resource

adpater

implementation

supports

re-authentication

of

existing

ManagedConnection

instances.

The

values

are

either

True

or

False.

Data

type

String

872

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Transaction

Specifies

the

level

of

transaction

support

provided

by

the

resource

adapter.

The

three

possible

values

are:

v

NoTransaction

v

LocalTransaction

v

XATransaction

Data

type

String

Small

Icon

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(16x16

pixels).

Data

type

Image

Large

Icon

The

image

is

used

as

an

icon

to

represent

the

module

in

a

GUI.

Specifies

a

JPEG

or

GIF

file

containing

a

small

image

(32x32

pixels).

Data

type

Image

Basic

Password

The

basic

user

password

authentication

mechanism

that

is

specific

to

an

EIS.

Credential

Interface

Specifies

the

interface

that

the

resource

adapter

implementation

supports

for

the

representation

of

the

credentials.

For

Basic

Password

the

credential

value

is

javax.resource.spi.security.PasswordCredential.

Description

Any

information

that

describes

Basic

Password

selection.

Data

type

String

Kerboros

V5

Specifies

a

Kerboros

version

5

authentication

mechanism.

Credential

Interface

Specifies

the

interface

that

the

resource

adapter

implementation

supports

for

the

representation

of

the

credentials.

For

Kerboros

version

5,

the

credential

value

is

javax.resource.spi.security.GenericCredential.

Description

Any

information

that

describes

the

Kerboros

V5

selection.

Data

type

String

Property

Name

Specifies

the

name

of

a

configuration

property.

The

possible

values

are:

<config-property-name>ServerName</config-property-name>

<config-property-name>PortNumber</config-property-name>

<config-property-name>UserName</config-property-name>

<config-property-name>Password</config-property-name>

<config-property-name>ConnectionURL</config-property-name>

Data

type

String

Chapter

16.

Assembling

applications

with

the

AAT

873

Property

Type

Contains

the

fully-qualified

Java

type

of

a

configuration

property

as

required

by

the

ManagedConnectionFactory

instance.

Data

type

String

Property

Value

Contains

the

value

of

a

configuration

entry.

Data

type

String

Description

Describes

the

parent

element.

Data

type

String

Permission

Specification

Specifies

a

security

permission

that

is

required

by

the

resource

adapter

code.

Data

type

String

Saving

applications

after

assembly

Periodically

save

modules

that

you

assemble

with

the

Application

Assembly

Tool

(AAT).

Save

any

changes

right

before

you

close

the

module

with

which

you

are

working.

This

task

assumes

you

have

started

the

AAT

and

are

working

with

a

particular

module.

1.

Save

the

archive

file

by

clicking

File

>

Save

As.

v

If

you

are

saving

an

existing

archive

file

or

application,

click

File

>

Save.
2.

Name

the

new

archive

file

or

application

whatever

you

like.

This

step

is

optional

if

you

are

working

with

an

existing

archive

file

or

application.

Now

that

you

have

saved

your

assembled

application,

you

can

verify

your

archives

and

generate

code

for

deployment.

Verifying

archive

files

Verify

your

archive

files

and

correct

any

problems

so

that

generation

of

deployment

code

is

successful.

During

verification,

the

Application

Assembly

Tool

(AAT)

checks

that

an

archive

file

is

complete,

and

that

deployment

descriptor

properties

and

references

contain

appropriate

values.

This

task

assumes

you

have

previously

assembled

and

saved

one

or

more

modules.

1.

Start

the

Application

Assembly

Tool

(AAT).

2.

Click

File

>

Open

and

select

the

module

to

verify.

3.

Right-click

the

name

of

the

module

at

the

top

of

the

navigation

pane

and

click

Verify.

4.

Click

Verify

in

the

Verify

window.

The

tool

displays

a

scrolling

window

for

viewing

status

messages

as

the

verification

proceeds.

874

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

5.

Save

the

application.

Archive

files

have

been

verified.

The

following

list

includes,

but

is

not

limited

to,

areas

that

the

verification

process

has

checked:

v

Required

deployment

properties

contain

values.

v

Values

specified

for

environment

entries

match

their

associated

Java

types.

v

In

both

Enterprise

application

(EAR)

and

Web

application

(WAR)

files:

–

The

target

enterprise

bean

of

the

link

exists

for

EJB

references.

–

The

target

role

exists

for

security

role

references.

–

Security

roles

are

unique.
v

Each

module

listed

in

the

deployment

descriptor

exists

in

the

archive

for

EAR

files.

v

Files

for

icons,

servlets,

error

and

welcome

pages

listed

in

the

deployment

descriptor

have

corresponding

files

in

the

archive

for

WAR

files.

v

For

EJB

modules:

–

All

class

files

referenced

in

the

deployment

descriptor

exist

in

the

JAR

file.

–

Method

signatures

for

enterprise

bean

home,

remote

and

implementation

classes

are

compliant

with

the

EJB

2.0

specification.

If

your

application

module

contains

EJB

modules,

generate

code

for

deployment.

Otherwise,

you

are

ready

to

deploy

this

application

module

(or

stand-alone

Web

module)

onto

the

application

server.

Application

assembly

performance

checklist

Application

assembly

tools

are

used

to

build

J2EE

components

and

modules

into

J2EE

applications.

Generally,

assembling

consists

of

defining

application

components

and

their

attributes

including

enterprise

beans,

servlets

and

resource

references.

Many

of

these

application

configuration

settings

and

attributes

play

an

important

role

in

the

run-time

performance

of

the

deployed

application.

Use

the

following

information

as

a

check

list

of

important

parameters

and

advice

for

finding

optimal

settings:

v

EJB

modules

–

Entity

bean

Bean

Cache

-

Activate

at

and

Bean

Cache

-

Load

at

settings

–

Method

extensions

Isolation

level

and

Access

intent

settings

–

Container

transactions

assembly

settings
v

Web

modules

–

Web

modules

assembly

settings

-

Distributable

-

Reload

interval

-

Reload

enabled
v

Web

components

–

Load

on

startup

Generating

code

for

deployment

Before

deploying

applications

on

the

server,

if

the

application

modules

contain

EJB

modules,

you

must

generate

deployment

code

for

the

enterprise

beans

in

the

application.

The

Application

Assembly

Tool

(AAT)

provides

this

ability,

or

you

can

use

the

ejbdeploy

command

line

tool.

This

task

assumes

you

have

already

assembled

an

EJB

module,

added

it

to

an

application

module,

saved

the

application

module,

and

verified

the

application

module.

Chapter

16.

Assembling

applications

with

the

AAT

875

Before

installing

your

application

in

WebSphere

Application

Server,

you

must

generate

deployment

code

for

the

application.

This

step

is

required

for

EJB

modules

and

for

any

Enterprise

application

(EAR)

files

that

contain

EJB

modules.

During

code

generation,

the

Application

Assembly

Tool

invokes

the

EJBDeploy

tool

to

prepare

entity

bean

(JAR)

files

for

deployment

in

run

time

environment.

To

deploy

a

J2EE

application,

you

can

install

the

application

in

the

administrative

console.

The

following

steps

assume

that

you

are

using

the

Application

Assembly

Tool

to

generate

code

for

deployment.

1.

Start

the

Application

Assembly

Tool

(AAT).

2.

Open

the

EAR

or

JAR

file

for

which

you

want

to

generate

code

for

deployment.

3.

Click

File

>

Generate

code

for

deployment

from

the

menu

bar.

4.

Specify

the

options

for

the

server

to

use

for

generating

code

for

the

application

deployment.

Note:

For

Container

managed

persistence

(CMP)

entity

beans,

if

the

JAR

file

that

you

opened

(inputJar

file)

contains

a

map

and

schema

document,

that

schema

is

used.

If

the

JAR

file

does

not

contain

a

map

and

schema

document,

the

Application

Assembly

Tool

uses

a

top-down

mapping

to

generate

files

that

contain

mapping

and

database

schema

information.

5.

Click

Generate

Now.

Review

the

messaging

box

for

details

of

any

error

that

might

occur.

Note:

Do

not

change

the

default

output

file

name

to

be

the

same

as

the

input

filename,

as

the

AAT

cannot

read

and

write

to

the

same

file

name,

and

therefore,

an

error

will

occur.

After

deployment

code

is

generated

for

an

application,

the

deployable

archive

is

renamed

with

the

prefix

Deployed_.

Install

the

application

on

your

server

machine.

Note:

Before

deploying

the

application

in

your

run

time

environment,

you

might

need

to

set

classpaths.

ejbdeploy

tool

You

can

generate

code

for

deployment

by

either

using

the

Application

Assembly

Tool

(AAT)

or

by

using

the

Deployment

Tool

for

Enterprise

Java

Beans

(ejbdeploy)

from

a

command

prompt.

For

example,

the

options

that

you

are

able

to

set

in

AAT

correspond

with

commands

that

the

EJBDeploy

tool

uses

to

generate

code

for

deploying

an

application.

For

a

detailed

list

of

available

options

in

the

EJBDeploy

tool,

enter

ejbdeploy

from

a

command

prompt.

For

the

z/OS

environment:

Use

the

-e

option

to

display

console

output

in

ASCII

characters

rather

than

EBCDIC

characters.

Thus,

enter

./ejbdeploy.sh

-e

to

see

a

list

of

available

options

and

use

the

syntax

./ejbdeploy.sh

-e

<input>

<working>

<output>

and

so

on.

876

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

ejbdeploy

syntax

--

relationship

to

Application

Assembly

Tool

options

Application

Assembly

Tool

options

EJBDeploy

tool

options

Deployed

module

location

outputJar

Working

Directory

workingDirectory

Dependent

classpath

cp

Code

generation

only

codegen

Verify

archive

(unchecked)

novalidate

RMIC

options

rmic

options

Database

type

dbvendor

Database

name

dbname

Schema

name

dbschema

Application

Assembly

Tool:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

the

Application

Assembly

Tool.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Programming

specifications

v

Administration

Programming

specifications

v

J2EE

1.3

specification

v

EJB

specifications

v

Servlet

specifications

Administration

v

Application

Client

files

v

Connector

RAR

files

Chapter

16.

Assembling

applications

with

the

AAT

877

http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://developer.java.sun.com/developer/technicalArticles/J2EE/appclient/
http://java.sun.com/j2ee/connector/

878

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

Assemble

enterprise

application

modules

(EAR

files)

from

new

or

existing

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.2

or

1.3

modules,

including

these

archives:

Web

application

archives

(WAR),

resource

adapter

archives

(RAR),

enterprise

bean

(EJB)

JAR

files,

and

application

client

archives

(JAR).

This

packaging

and

configuration

of

code

artifacts

into

application

modules

or

stand-alone

Web

modules

is

necessary

for

deploying

the

applications

onto

the

application

server.

The

Assembly

Toolkit

replaces

the

Application

Assembly

Tool

(AAT).

The

Assembly

Toolkit

consists

of

the

J2EE

Perspective

of

the

WebSphere

Studio

Application

Developer

product.

With

the

Assembly

Toolkit,

you

can

create

and

modify

J2EE

applications

and

modules,

edit

deployment

descriptors,

and

map

databases.

The

Assembly

Toolkit

is

one

of

the

tools

provided

by

the

Application

Server

Toolkit

(ASTK).

Follow

instructions

available

with

the

ASTK

to

install

the

Assembly

Toolkit.

5.0.2

Visit

the

Web

site

http://www.ibm.com/support/docview.wss?rs=

180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US

to

download

the

Application

Server

Toolkit

(ASTK)

product,

which

offers

the

Assembly

Toolkit

and

other

products.

Gather

the

code

artifacts

that

you

want

to

package

into

one

or

more

assembled

modules.

Code

artifacts

include

these

items

that

you

have

created

and

unit

tested

in

your

favorite

integrated

development

environment:

v

Enterprise

beans

v

Servlets,

JavaServer

Pages

(JSP)

files

and

other

Web

components

v

Resource

adapter

(connector)

implementations

v

Application

clients

v

Other

supporting

classes

and

files

The

Assembly

Toolkit

provides

extensive

online

documentation.

The

articles

on

Assembly

Toolkit

provided

in

this

InfoCenter

supplement

that

documentation.

1.

Start

the

Assembly

Toolkit.

2.

Optional:

Read

the

online

documentation

for

the

Assembly

Toolkit.

v

Read

the

section

Assembly

Tool

on

the

Welcome

to

the

Application

Server

Toolkit

page.

To

access

this

page,

click

Help

>

Welcome

>

Application

Server

Toolkit.

v

Click

Help

>

Help

Contents

>

Assembly

Toolkit

information.

The

displayed

documentation

provides

extensive

information

about

the

Assembly

Toolkit.

v

Press

F1

to

access

information

specific

to

an

Assembly

Toolkit

view

or

window.

v

Visit

the

IBM

WebSphere

Studio

Application

Developer

InfoCenter

at

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp.

Click

©

Copyright

IBM

Corp.

2003

879

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q=ASTK&uid=swg24005125&loc=en_US
http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp

WebSphere

Studio

Application

Developer

>

J2EE

development.

The

documentation

in

the

WebSphere

Studio

InfoCenter

is

similar

to

that

in

the

Assembly

Toolkit

online

information.

v

See

the

article

″“Assembly

Toolkit:

Resources

for

learning”

on

page

896″

for

additional

sources.

3.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

4.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

5.

Migrate

EAR,

WAR,

enterprise

bean

JAR

files,

application

client

JAR

files,

or

resource

adapter

RAR

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

the

files

to

the

Assembly

Toolkit.

6.

Optional:

Migrate

a

project

from

J2EE

1.2

to

J2EE

1.3

using

the

J2EE

Migration

wizard.

As

part

of

the

migration,

you

can

migrate

CMP

1.x

beans

to

CMP

2.x

beans.

The

J2EE

Migration

wizard

is

similar

to

the

earconvert

batch

utility

or

the

File

>

ConvertEar

option

of

the

AAT.

a.

In

the

J2EE

Hierarchy

view,

right-click

the

enterprise

application

project

(EAR

file)

you

want

to

migrate.

b.

Click

Migrate

>

J2EE

Migration

Wizard.

c.

Follow

the

instructions

in

the

wizard.

7.

Create

an

enterprise

application

project

to

which

you

can

add

archive

files.

You

can

create

an

enterprise

application

project

separately

or

when

you

create

archive

files

such

as

the

following:

v

Create

a

Web

project.

v

Create

an

application

client.

v

Create

an

enterprise

bean

(EJB)

project.

v

Create

a

resource

adapter

(connector)

project.

8.

Edit

the

deployment

descriptors

as

needed.

You

can

edit

deployment

descriptors

for

enterprise

application,

Web,

application

client,

and

enterprise

bean

(EJB)

modules.

9.

Optional:

Generate

enterprise

bean

(EJB)

to

relational

database

(RDB)

mappings

for

EJB

modules.

10.

Verify

the

archive

files.

11.

Generate

code

for

deployment

for

EJB

modules

or

for

enterprise

applications

that

use

EJB

modules.

12.

Generate

code

for

deployment

for

Web

services-enabled

modules

or

for

enterprise

applications

that

use

Web

service

modules.

13.

Optional:

Test

your

completed

module

on

a

WebSphere

Application

Server

installation.

Right-click

a

module,

click

Run

on

Server,

and

follow

the

instructions

in

the

displayed

wizard.

Note

that

Run

on

Server

works

on

the

Windows,

Linux/Intel,

and

AIX

operating

systems

only;

you

cannot

deploy

remotely

from

the

Assembly

Toolkit

to

a

WebSphere

Application

Server

installation

on

a

UNIX

operating

system

such

as

Solaris.

Important

Important:

Use

Run

On

Server

for

unit

testing

only.

Application

Server

Toolkit

controls

the

WebSphere

Application

Server

installation

and,

when

an

application

is

published

remotely,

the

Toolkit

overwrites

880

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

the

server

configuration

file

for

that

server.

Do

not

use

on

production

servers.

For

instructions

on

remote

testing,

see

the

article

″Setting

Up

a

Remote

WebSphere

Application

Server

in

WebSphere

Studio

V5″

at

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html.

After

assembling

your

applications,

use

a

systems

management

tool

to

deploy

the

EAR

or

WAR

files

onto

the

application

server.

The

systems

management

tool

follows

the

security

and

deployment

instructions

defined

in

the

deployment

descriptor,

and

enables

you

to

modify

bindings

specified

within

the

Assembly

Toolkit.

The

tool

locates

the

required

external

resources

that

the

application

uses,

such

as

enterprise

beans

and

databases.

Select

a

tool

to

use:

v

Administrative

console

installation

pages

(GUI)

v

Java

administrative

programs

(programming)

v

wsadmin

AdminApp

install

command

(scripting)

If

you

are

uncertain

of

which

systems

management

tool

to

use,

try

using

the

administrative

console.

If

your

application

has

a

large

number

of

modules,

it

might

not

install

successfully

onto

a

server.

Package

your

application

so

that

the

.ear

file

contains

necessary

modules

only.

Modules

can

include

metadata

for

the

modules

such

as

information

on

deployment

descriptors,

bindings,

and

IBM

extensions.

Use

the

administrative

console

at

installation

to

complete

the

security

instructions

defined

in

the

deployment

descriptor

and

to

locate

required

external

resources,

such

as

enterprise

beans

and

databases.

You

can

add

configuration

properties

and

redefine

binding

properties

defined

in

the

Assembly

Toolkit.

Application

assembly

and

J2EE

applications

Application

assembly

is

the

process

of

creating

an

enterprise

archive

(EAR)

file

containing

all

files

related

to

an

application,

as

well

as

an

XML

deployment

descriptor

for

the

application.

This

configuration

and

packaging

prepares

the

application

for

deployment

onto

an

application

server.

EAR

files

are

comprised

of

the

following

archives:

v

Enterprise

bean

JAR

files

(known

as

EJB

modules)

v

Web

archive

(WAR)

files

(known

as

Web

modules)

v

Application

client

JAR

files

(known

as

client

modules)

v

Resource

adapter

archive

(RAR)

files

(known

as

resource

adapter

modules)

Ensure

that

modules

are

contained

in

an

EAR

file

so

that

they

can

be

deployed

onto

the

server.

The

exceptions

are

WAR

modules,

which

you

can

deploy

individually.

Although

WAR

modules

can

contain

regular

JAR

files,

they

cannot

contain

the

other

module

types

described

previously.

The

assembly

process

includes

the

following

actions:

v

Selecting

all

of

the

files

to

include

in

the

module.

v

Creating

a

deployment

descriptor

containing

instructions

for

module

deployment

on

the

application

server.

As

you

configure

properties

using

the

Assembly

Toolkit,

the

tool

generates

the

deployment

descriptor

for

you.

While

the

Assembly

Toolkit

graphical

interface

is

recommended,

you

can

also

edit

descriptors

directly

in

your

favorite

XML

editor.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

881

http://www7b.boulder.ibm.com/wsdd/techjournal/0303_yuen/yuen.html

v

Packaging

modules

into

a

single

EAR

file,

which

contains

one

or

more

files

in

a

compressed

format.

Archive

support

in

Version

5.0

The

following

archives

and

Web

components

are

supported

in

Version

5.0:

v

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.2

and

1.3

enterprise

archive

(EAR)

files

v

Enterprise

bean

(EJB)

2.0

JAR

files

v

Servlet

2.3

Web

archive

(WAR)

files

v

Application

client

1.2

and

1.3

JAR

files

v

Connector

1.0

resource

adapter

archive

(RAR)

files

These

archive

files

and

Web

components

are

back-level

and

can

be

read

but

not

created

or

changed:

v

J2EE

1.2

EAR

files

v

EJB

1.1

JAR

files

v

Servlet

2.2

WAR

files

v

Application

client

1.2

JAR

files

Starting

the

Assembly

Toolkit

The

Assembly

Toolkit

provides

a

graphical

interface

for

packaging

code

artifacts

into

various

archives

(modules)

and

configuring

related

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.2

or

1.3

compliant

deployment

descriptors.

The

Assembly

Toolkit

is

a

component

of

the

Application

Server

Toolkit

(ASTK).

To

install

the

Assembly

Toolkit,

follow

the

installation

instructions

for

the

ASTK

and,

when

prompted

by

the

ASTK

installation

program,

select

to

install

the

application

assembly

toolkit.

Users

on

the

z/OS

platform:

The

Assembly

Toolkit

is

not

available

on

the

z/OS

platform.

FTP

in

binary

the

setup.exe

file

from

the

AppServer/lib

directory

and

install

the

setup.exe

file

on

an

operating

system

that

the

ASTK

supports,

such

as

a

Windows

platform.

If

you

have

installed

the

Assembly

Toolkit

component

of

ASTK

previously

and

you

install

the

Assembly

Toolkit

again,

you

must

delete

the

workspace

of

the

previous

installation

of

ASTK

before

starting

the

Assembly

Toolkit.

The

default

workspace

directory

is

my_directory\IBM\astk\workspace.

If

you

do

not

delete

the

workspace

for

a

previous

installation

of

ASTK,

you

might

encounter

error

messages

such

as

the

following

when

starting

the

Assembly

Toolkit:

Problems

during

startup.

Check

the

".log"

file

in

the

".metadata"

directory

of

your

workspace.

1.

Run

the

astk

executable.

2.

In

the

Application

Server

Toolkit

window,

specify

the

workspace

directory

and

click

OK

to

launch

the

graphical

interface.

The

navigation

tree

displays

a

hierarchical

structure

used

to

build

the

contents

of

a

new

module,

or

to

work

with

the

contents

of

an

existing

module.

Consider

whether

you

have

any

existing

J2EE

1.2

application

modules

that

you

would

like

to

migrate

to

J2EE

1.3.

882

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

You

can

import

or

create

new

modules

of

the

following

types,

to

assemble

into

an

application

module

later:

v

Assembling

enterprise

bean

(EJB)

modules

v

Assembling

Web

modules

v

Assembling

application

client

modules

v

Assembling

resource

adapter

modules

Rather

than

import

or

create

new

modules

to

assemble

an

application,

you

can

proceed

directly

to

assembling

a

new

application

module.

While

assembling

an

application

module,

you

can

create

any

new

modules

that

you

need.

astk

command

The

astk

command

starts

the

Application

Server

Toolkit.

The

command

file

is

the

astk

executable

file.

Location

of

the

command

file

The

astk

executable

file

resides

in

the

main

installation

directory

for

Application

Server

Toolkit

(ASTK).

Command

syntax

v

Issue

the

astk

command:

ASTK_install_root/astk

Or,

double-click

the

ASTK

icon.

v

The

astk

command

has

no

options

or

command-line

parameters.

Usage

notes

v

Is

the

astk

executable

file

read-only?

Yes

v

Is

this

file

updated

by

a

product

component?

No

v

How

and

when

are

the

contents

of

this

file

used?

The

astk

executable

file

provides

the

Assembly

Toolkit

component

for

the

Application

Server

Toolkit.

Run

the

astk

executable

file

to

start

the

Assembly

Toolkit.

There

are

no

parameters

or

command-line

options.

Migrating

code

artifacts

to

the

Assembly

Toolkit

You

can

migrate

enterprise

archive

(EAR),

Web

archive

(WAR),

enterprise

bean

JAR,

application

client

JAR,

resource

adapter

archive

(RAR)

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

the

files

to

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Import

an

enterprise

application.

3.

Import

a

WAR

file.

4.

Import

an

application

client

file.

5.

Import

an

enterprise

bean

JAR

file.

6.

Import

a

resource

adapter

RAR

file.

RAR

files

are

also

known

as

connectors.

7.

Verify

the

archive

files.

8.

Generate

code

for

deployment.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

883

Importing

enterprise

applications

You

can

import

an

enterprise

archive

(EAR)

file

and

define

a

new

enterprise

application

project

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import.

Alternatively,

you

can

right-click

Enterprise

Applications

in

a

view

such

as

the

J2EE

Hierarchy

view

and

click

Import.

Or,

on

Windows

platforms,

you

can

drag

the

EAR

file

and

drop

it

on

a

view.

3.

In

the

Import

dialog,

specify

the

EAR

file

to

import

and

the

project

name:

a.

Click

EAR

file

>

Next.

b.

Specify

the

EAR

file

to

import.

Use

Browse

to

locate

the

EAR

file

and

specify

its

full

path

name.

c.

Optional:

Specify

a

new

enterprise

application

project

name.

A

project

name

is

assigned

automatically.

The

project

name

you

specify

must

be

unique

within

the

directory.

d.

Click

Finish.
4.

Verify

the

contents

of

the

new

enterprise

application

project

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

and

view

the

new

project.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

enterprise

application

project

in

a

Navigator

view.

Importing

WAR

files

Your

can

import

a

Web

application

archive

(WAR)

file

and

define

a

new

enterprise

archive

(EAR)

project

and

Web

module

for

the

WAR

file

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import.

Alternatively,

you

can

right-click

Web

Modules

in

a

view

such

as

the

J2EE

Hierarchy

view

and

click

Import.

Or,

on

Windows

platforms,

you

can

drag

the

WAR

file

and

drop

it

on

a

view.

3.

In

the

Import

dialog,

specify

a

WAR

file

and

a

Web

project

name:

a.

Click

WAR

file

>

Next.

b.

Specify

a

WAR

file.

Use

Browse

to

locate

the

WAR

file

and

specify

its

full

path

name.

c.

Specify

a

Web

project.

For

example,

if

you

are

importing

the

HelloWorld.war

file,

you

might

name

the

project

HelloWorld.

Click

New

and

specify

HelloWorld

for

the

project

name.

d.

Optional:

To

add

the

WAR

file

and

Web

project

to

an

enterprise

application,

enable

Configure

advanced

options

and

click

Next.

On

the

J2EE

Settings

page,

specify

the

EAR

project,

the

context

root

(Web

project),

and

the

J2EE

1.2

or

1.3

specification

to

use

for

the

Web

module.

The

J2EE

1.3

specification

(the

default)

includes

the

Servlet

2.3

specification

and

the

JSP

1.2

specification;

applications

developed

for

the

J2EE

1.3

specification

typically

target

a

WebSphere

Application

Server

Version

5.x

server.

Then,

click

Next.

On

the

Features

page,

specify

a

feature

for

the

Web

project.

For

example,

enable

Default

synchronization

policy

for

CVS

repository

to

have

a

.cvsignore

file

generated

for

the

WEB-INF/classes

directory.

Then,

click

Next

or

Finish.

e.

Click

Finish.

884

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

4.

Verify

the

contents

of

the

new

Web

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Web

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

Web

module

in

a

Navigator

view.

Importing

client

applications

You

can

import

an

application

client

JAR

file

into

a

new

or

existing

enterprise

application

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import.

Alternatively,

you

can

right-click

Application

Client

Modules

in

a

view

such

as

the

J2EE

Hierarchy

view

and

click

Import.

Or,

on

Windows

platforms,

you

can

drag

the

application

client

JAR

file

and

drop

it

on

a

view.

3.

In

the

Import

dialog,

specify

the

application

client

file

and

project

name:

a.

Click

App

Client

JAR

file

>

Next.

b.

Specify

the

application

client

JAR

file

to

be

imported.

Use

Browse

to

locate

the

JAR

file

and

specify

its

full

path

name.

c.

Specify

an

application

client

project

name.

For

example,

if

you

are

importing

the

HelloWorld.jar

file,

you

might

name

the

project

HelloWorld.

Click

New

and

specify

HelloWorld

for

the

project

name.

d.

Specify

the

enterprise

archive

(EAR)

file

into

which

to

import

the

application

client

project.

e.

Click

Finish.
4.

Verify

the

contents

of

the

new

application

client

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Application

Client

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

application

client

module

in

a

Navigator

view.

Importing

EJB

files

You

can

import

an

enterprise

bean

(EJB)

JAR

file

and

define

a

new

enterprise

archive

(EAR)

project

and

EJB

module

for

the

enterprise

bean

JAR

file

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Click

File

>

Import.

Alternatively,

you

can

right-click

EJB

Modules

in

a

view

such

as

the

J2EE

Hierarchy

view

and

click

Import.

Or,

on

Windows

platforms,

you

can

drag

the

enterprise

bean

JAR

file

and

drop

it

on

a

view.

3.

In

the

Import

dialog,

specify

the

EJB

JAR

file

and

project

name:

a.

Click

EJB

JAR

file

>

Next.

b.

Specify

the

enterprise

bean

JAR

file

to

import.

Use

Browse

to

locate

the

JAR

file

and

specify

its

full

path

name.

c.

Specify

an

EJB

project

name.

For

example,

if

you

are

importing

the

HelloWorld.jar

file,

you

might

name

the

project

HelloWorld.

Click

New,

specify

HelloWorld

for

the

project

name,

specify

whether

you

want

to

use

the

EJB

1.1

or

2.0

specification

(EJB

2.0

is

the

default),

and

click

Next.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

885

d.

Name

the

enterprise

archive

(EAR)

file

into

which

to

import

the

enterprise

bean

JAR

file.

The

name

must

be

unique

among

EAR

files

in

the

directory.

e.

Click

Finish.
4.

Verify

the

contents

of

the

new

EAR

file

and

EJB

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

or

EJB

Modules

and

view

the

new

modules.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

EAR

file

and

EJB

module

in

a

Navigator

view.

Importing

RAR

files

or

connectors

You

can

import

a

resource

adapter

archive

(RAR)

file,

or

connector,

and

define

a

new

enterprise

archive

(EAR)

project

and

connector

module

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Right-click

Connector

Modules

in

a

view

such

as

the

J2EE

Hierarchy

view

and

click

Import

>

Import

Connector

Module.

3.

In

the

Import

dialog,

specify

the

connector

file

and

project

name:

a.

Specify

the

name

of

the

RAR

file

to

import.

Use

Browse

to

locate

the

RAR

file

and

specify

its

full

path

name.

b.

Specify

a

connector

project

name.

For

example,

if

you

are

importing

the

HelloWorld.rar

file,

you

might

name

the

project

HelloWorld.

Click

New,

specify

HelloWorld

for

the

project

name,

and

click

Next.

c.

If

you

want

the

connector

project

not

to

be

part

of

an

enterprise

application,

specify

Standalone

connector

project.

d.

If

the

connector

project

is

not

to

stand

alone,

name

the

enterprise

archive

(EAR)

file

into

which

to

import

the

RAR

file.

The

name

must

be

unique

among

EAR

files

in

the

directory.

e.

If

you

want

the

Assembly

Toolkit

to

overwrite

existing

resource

files

without

first

warning

you

that

the

files

are

changing,

specify

Overwrite

existing

resources

without

warning.

The

default

is

not

to

overwrite

files

without

warning.

f.

Click

Finish.
4.

Verify

the

contents

of

the

new

connector

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

or

Connector

Modules

and

view

the

new

modules.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

connector

module

in

a

Navigator

view.

Creating

enterprise

applications

Before

you

can

deploy

your

archive

files

onto

an

application

server,

you

must

assemble

them

in

an

enterprise

application

archive

(EAR)

file.

This

article

describes

how

to

create

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

enterprise

application

project

using

the

Assembly

Toolkit.

After

you

create

an

enterprise

application

project,

you

can

add

(import)

archive

files

such

as

Web

application

archives

(WAR),

resource

adapter

archives

(RAR),

enterprise

bean

(EJB)

JAR

files,

and

application

client

archives

(JAR)

files.

1.

Start

the

Assembly

Toolkit.

886

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

2.

Click

File

>

New

>

Project.

Or,

if

you

are

working

in

the

J2EE

perspective,

click

File

>

New

>

Enterprise

Application

Project

and

skip

step

3a

below.

3.

In

the

New

Project

dialog,

create

an

enterprise

application

project:

a.

Click

J2EE

>

Enterprise

Application

Project

>

Next.

b.

Specify

whether

you

want

an

EAR

file

that

supports

J2EE

1.2

or

1.3,

and

click

Next.

c.

On

the

Enterprise

Application

Project

page,

specify

an

EAR

file

name

and

location.

To

change

the

default

project

location,

click

Browse

and

specify

a

new

location.

Then,

click

Next.

d.

Optional:

On

the

EAR

Module

Projects

page,

select

the

existing

modules

that

you

want

to

add

to

the

new

enterprise

application

project.

To

create

new

modules

for

this

enterprise

application,

click

New

Module.

On

the

New

Module

Project

page,

select

Create

default

module

projects

to

create

modules

for

application

client,

enterprise

bean

(EJB),

Web

or

connector

projects.

You

can

use

the

default

project

names

for

the

modules

or

specify

different

project

names.

If

you

clear

the

Create

default

module

projects

check

box,

you

can

select

a

single

module

type

and

proceed

with

the

proper

wizard

for

that

project

type.

Then,

click

Finish

to

create

the

project

modules

and

add

their

names

to

the

list

of

available

modules

on

the

EAR

Module

Projects

page.

e.

Click

Finish.

f.

Optional:

Confirm

that

you

want

to

view

the

J2EE

Hierarchy

view.
4.

Verify

the

contents

of

the

new

enterprise

application

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Application

and

view

the

new

EAR

file.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

enterprise

application

in

a

Navigator

view.

Creating

Web

applications

In

the

Assembly

Toolkit,

you

create

and

maintain

resources

for

Web

applications

in

Web

projects.

There

are

two

types

of

Web

projects,

dynamic

and

static.

Dynamic

web

projects

can

contain

dynamic

J2EE

resources

such

as

servlets,

JavaServer

Pages

(JSP)

files,

filters,

and

associated

metadata,

in

addition

to

static

resources

such

as

images

and

HTML

files.

Static

Web

projects

only

contain

static

resources.

Dynamic

Web

projects

are

always

imbedded

in

enterprise

application

projects.

Creating

a

Web

project

in

the

Assembly

Toolkit

requires

that

an

enterprise

application

(EAR)

project

exist,

or

the

Assembly

Toolkit

creates

one

for

you.

Creating

a

Web

project

updates

the

application.xml

deployment

descriptor

of

the

specified

enterprise

application

project

to

define

the

Web

project

as

a

module

element.

If

you

are

importing

a

WAR

file

rather

than

creating

a

Web

project

new,

the

WAR

Import

wizard

requires

that

you

specify

a

Web

project,

which

already

requires

an

EAR

project.

This

article

describes

how

to

create

a

dynamic

Web

project

using

the

Assembly

Toolkit.

For

instructions

on

how

to

create

a

static

Web

project,

see

the

Assembly

Toolkit

online

help.

In

the

Assembly

Toolkit,

click

Help

>

Help

Contents

>

Assembly

Toolkit

information

>

Web

development

>

Tasks

>

Working

with

Web

projects

>

Creating

new

static

Web

projects.

1.

Start

the

Assembly

Toolkit.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

887

2.

Optional:

View

an

animation

file

that

shows

how

to

create

a

dynamic

Web

project

using

the

Assembly

Toolkit.

In

the

Assembly

Toolkit,

click

Help

>

Help

Contents

>

Assembly

Toolkit

information

>

Web

development

>

Tasks

>

Working

with

Web

projects

>

Creating

new

dynamic

Web

projects

>

Show

Me.

3.

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

4.

Click

File

>

New

>

Dynamic

Web

Project.

5.

On

the

Dynamic

Web

Project

page

of

the

New

Web

Project

dialog:

a.

Specify

a

Web

project

(WAR

file)

name.

b.

Specify

a

location

for

the

WAR

file.

To

change

the

default

WAR

files

location,

click

Browse

and

specify

a

new

location.

c.

Decide

whether

you

want

to

accept

the

defaults

associated

with

a

dynamic

Web

project

or

configure

advanced

options.

If

you

want

to

accept

the

defaults,

deselect

Configure

advanced

options.

Otherwise,

select

Configure

advanced

options

and

Next.

Step

6

describes

the

defaults

and

advanced

options

for

a

dynamic

Web

project.
6.

If

you

selected

Configure

advanced

options,

you

can

customize

the

Web

project

options:

a.

Specify

a

new

or

existing

enterprise

application

(EAR)

project

to

be

associated

with

your

new

Web

project

for

purposes

of

deployment.

If

you

want

to

add

a

Web

project

as

a

module

to

another

enterprise

application

project

in

the

future,

open

the

application.xml

editor

for

the

enterprise

application

project

and

select

Add

on

the

General

page.

b.

Provide

a

Context

root

value.

The

context

root

is

the

Web

application

root,

the

top-level

directory

of

your

application

when

it

is

deployed

to

a

Web

server.

The

default

value

is

the

name

of

your

Web

project.

You

can

change

the

context

root

after

you

create

a

project

using

the

project

Properties

dialog,

which

you

access

from

the

project’s

context

menu.

c.

From

the

J2EE

Level

drop-down

list,

select

the

appropriate

Sun

Microsystems

Servlet

and

JSP

specification

level

for

the

dynamic

elements

you

plan

to

include

in

your

Web

project.

Any

new

servlets

and

JSP

files

that

you

expect

to

create

should

adhere

to

the

latest

specification

level

available;

previous

specification

levels

are

offered

to

accommodate

any

legacy

dynamic

elements

that

you

expect

to

import

into

the

project.

d.

Click

Next.

e.

Optional:

On

the

Features

Page,

select

one

or

more

of

the

Web

project

features

and

click

Next.

f.

Optional:

Select

Use

a

default

Page

Template

for

the

Web

Site

if

you

want

your

entire

Web

site

to

share

a

common

page

template.

If

you

want

to

use

one

of

the

sample

templates

provided,

select

Sample

Template

and

then

choose

one

of

the

templates

shown

in

the

Thumbnail

box.

If

you

want

to

use

a

template

of

your

own,

select

User-defined

Template

and

then

click

Browse

to

select

the

template

from

the

file

system.

The

default

is

not

to

use

a

page

template.
7.

Click

Finish.

A

new

Web

project

is

created,

reflecting

the

J2EE

folder

structure

that

specifies

the

location

of

web

content

files,

class

files,

class

paths,

the

deployment

descriptor,

and

supporting

metadata.

8.

9.

Verify

the

contents

of

the

new

Web

project

in

either

of

the

following

ways:

888

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

and

the

enterprise

application

associated

with

your

Web

project

to

view

the

new

WAR

file.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

Web

project

in

a

Navigator

view.

You

can

now

begin

creating

or

importing

content

for

your

Web

project

using

the

New

File

wizards

or

the

Import

wizards

available

from

the

File

menu.

Creating

application

clients

Application

client

projects

contain

programs

that

run

on

networked

client

systems.

An

application

client

project

is

deployed

as

a

JAR

file.

In

the

Assembly

Toolkit,

you

can

create

and

add

an

application

client

project

to

a

new

or

existing

enterprise

application

project.

1.

Start

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Click

File

>

New

>

Application

Client

Project.

4.

In

the

Application

Client

project

creation

dialog:

a.

Select

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

specification

version

to

which

you

want

your

project

to

adhere,

and

click

Next.

b.

Name

the

application

client

project

and

specify

its

location.

To

change

the

default

project

location,

click

Browse

and

specify

a

new

location.

If

you

specify

a

non-default

project

location

that

is

already

being

used

by

another

project,

the

project

creation

will

fail.

c.

Specify

a

new

or

existing

enterprise

application

(EAR)

project

to

be

associated

with

your

new

application

client

project

for

purposes

of

deployment.

Select

an

existing

enterprise

application

project

from

the

drop-down

list

or

type

a

new

project

name.

Or,

click

New

and

create

a

new

enterprise

application.

Note

that

if

you

type

a

new

EAR

project

name,

the

EAR

project

will

be

created

in

the

default

location

with

the

lowest

compatible

J2EE

version

based

on

the

version

of

the

project

being

created.

If

you

want

to

specify

a

different

version

or

a

different

location

for

the

enterprise

application,

you

must

click

New

and

create

a

new

enterprise

application.

d.

Optional:

If

you

are

creating

a

new

enterprise

application

project

or

if

you

have

no

module

dependencies

to

specify,

skip

this

step.

Otherwise,

click

Next

to

specify

module

and

JAR

file

dependencies.

On

the

Module

Dependencies

page,

select

dependent

JAR

files

or

modules

within

the

associated

enterprise

application

project.

This

updates

the

runtime

class-path

and

Java

project

build

path

with

the

appropriate

JAR

files.

Application

client

modules,

EJB

modules,

and

Web

modules

can

all

have

dependencies

on

EJB

modules

or

utility

JAR

files.

Modules

cannot

depend

on

WAR

or

application

client

JAR

files.

e.

Click

Finish

to

create

the

application

client

project.
5.

Verify

the

contents

of

the

new

application

client

project

in

either

of

the

following

ways:

v

In

theJ2EE

Hierarchy

view,

expand

Enterprise

Applications

and

the

enterprise

application

associated

with

your

application

client

project

to

view

the

new

JAR

file.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

889

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

application

client

project

in

a

Navigator

view.

After

creating

an

application

client

project,

you

can

edit

the

application

client

deployment

descriptor

if

default

properties

are

not

sufficient.

In

the

Client

Deployment

Descriptor

editor,

you

can

add

enterprise

bean,

resource,

or

resource

environment

references

as

well

as

view

and

edit

source

code.

For

detailed

instructions

on

adding

enterprise

bean,

resource,

or

resource

environment

references,

see

the

Assembly

Toolkit

online

help.

In

the

Assembly

Toolkit,

click

Help

>

Help

Contents

>

Assembly

Toolkit

information

>

J2EE

application

development

>

Tasks

>

Configuring

application

client

modules

with

the

client

deployment

descriptor

editor.

Similar

information

is

in

the

IBM

WebSphere

Studio

Application

Developer

InfoCenter

at

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp.

Click

WebSphere

Studio

Application

Developer

>

J2EE

development

>

Tasks

>

Configuring

application

client

modules

with

the

client

deployment

descriptor

editor.

Creating

EJB

modules

In

the

Assembly

Toolkit,

you

can

create

and

test

enterprise

beans

that

conform

to

the

distributed

component

architecture

defined

in

the

Sun

Microsystems

Enterprise

JavaBeans

(EJB)

specification

and

that

support

extended

functionality

for

WebSphere

Application

Server.

You

can

create

enterprise

beans

(either

with

or

without

inheritance)

such

as

session

beans,

container-managed

persistence

(CMP)

entity

beans,

bean-managed

persistence

(BMP)

entity

beans,

or

message-driven

beans.

Using

the

EJB

deployment

descriptor

editor

of

the

Assembly

Toolkit,

you

can

set

deployment

descriptor

and

assembly

properties

for

enterprise

beans.

This

article

describes

how

to

create

an

EJB

project

(or

EJB

module)

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Click

File

>

New

>

EJB

Project.

4.

In

the

New

EJB

Project

dialog:

a.

Select

the

EJB

specification

version

to

which

you

want

your

EJB

project

to

adhere,

and

click

Next.

If

you

plan

on

using

EJB

2.0

enterprise

beans,

you

must

specify

an

EJB

2.0

project.

You

can

add

EJB

1.1

enterprise

beans

to

an

EJB

2.0

project.

An

EJB

2.0

project

must

exist

in

a

J2EE

1.3

enterprise

application

project.

Your

available

options

can

differ,

depending

on

the

J2EE

preferences

defined.

b.

Name

the

EJB

project

and

specify

its

location.

To

change

the

default

project

location,

click

Browse

and

specify

a

new

location.

If

you

specify

a

non-default

project

location

that

is

already

being

used

by

another

project,

the

project

creation

will

fail.

c.

Specify

a

new

or

existing

enterprise

application

(EAR)

project

to

be

associated

with

your

new

EJB

project

for

purposes

of

deployment.

Select

an

existing

enterprise

application

project

from

the

drop-down

list

or

type

a

new

project

name.

Or,

click

New

and

create

a

new

enterprise

application.

Note

that

if

you

type

a

new

EAR

project

name,

the

EAR

project

will

be

created

in

the

default

location

with

the

lowest

compatible

J2EE

version

890

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp

based

on

the

version

of

the

project

being

created.

If

you

want

to

specify

a

different

version

or

a

different

location

for

the

enterprise

application,

you

must

click

New

and

create

a

new

enterprise

application.

d.

Optional:

If

you

are

creating

a

new

enterprise

application

project

or

if

you

have

no

module

dependencies

to

specify,

skip

this

step.

Otherwise,

click

Next

to

specify

module

and

JAR

file

dependencies.

On

the

Module

Dependencies

page,

select

dependent

JAR

files

or

modules

within

the

associated

enterprise

application

project.

Note

that

this

page

is

available

only

if

you

are

using

an

existing

enterprise

application

project.

e.

Click

Finish

to

create

the

EJB

project.
5.

Verify

the

contents

of

the

new

EJB

project

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

and

the

enterprise

application

associated

with

your

EJB

project

to

view

the

new

JAR

file.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

EJB

project

in

a

Navigator

view.

After

you

have

an

EJB

project

to

hold

enterprise

beans,

you

can

do

the

following:

v

Create

or

import

enterprise

beans

to

your

EJB

project.

v

Add

methods

to

the

home

and

remote

interfaces.

v

Add

custom

finders.

v

Add

and

define

additional

CMP

fields.

v

Add

relationships.

v

Edit

the

EJB

deployment

descriptor

if

default

properties

are

not

sufficient.

v

Create

EJB

access

beans

and

use

them

to

create

your

client

application.

v

Map

enterprise

beans

to

RDB

tables.

For

detailed

instructions

on

creating

CMP

fields

or

CMP

finder

methods

for

entity

beans,

relating

CMP

fields,

adding

methods

to

interfaces,

or

managing

enterprise

beans,

see

the

Assembly

Toolkit

online

help.

In

the

Assembly

Toolkit,

click

Help

>

Help

Contents

>

Assembly

Toolkit

information

>

Enterprise

JavaBeans

(EJB)

development

>

Tasks.

Similar

information

is

in

the

IBM

WebSphere

Studio

Application

Developer

InfoCenter

at

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp.

Click

WebSphere

Studio

Application

Developer

>

J2EE

development

>

Tasks

>

Developing

EJB

applications.

Creating

connector

modules

A

connector

is

a

J2EE

component

that

provides

access

to

Enterprise

Information

Systems

(EIS),

and

must

comply

to

the

J2EE

Connector

architecture

(JCA).

An

Enterprise

Information

System

(EIS)

is

a

set

of

related

classes

that

lets

an

application

access

a

resource

such

as

data,

or

an

application

on

a

remote

server,

often

called

a

resource

adapter.

This

article

describes

how

to

create

a

connector

project

using

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Click

File

>

New

>

Connector

Project.

4.

In

the

New

Connector

Project

dialog:

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

891

http://publib.boulder.ibm.com/infocenter/wsphelp/index.jsp

a.

If

you

want

your

connector

project

to

be

a

stand-alone

project,

select

Standalone

connector

project.

Selecting

that

the

connector

project

stand

alone

disables

the

enterprise

archive

(EAR)

project

option

at

the

bottom

of

the

page.

b.

Name

the

connector

project

and

specify

its

location.

To

change

the

default

project

location,

click

Browse

and

specify

a

new

location.

c.

If

you

specified

that

the

connector

project

stand

alone,

specify

a

new

or

existing

enterprise

application

(EAR)

project

to

be

associated

with

your

new

connector

project

for

purposes

of

deployment.

Select

an

existing

enterprise

application

project

from

the

drop-down

list

or

type

a

new

project

name.

Or,

click

New

and

create

a

new

enterprise

application.

Note

that

if

you

type

a

new

EAR

project

name,

the

EAR

project

will

be

created

in

the

default

location

with

the

lowest

compatible

J2EE

version

based

on

the

version

of

the

project

being

created.

If

you

want

to

specify

a

different

version

or

a

different

location

for

the

enterprise

application,

you

must

click

New

and

create

a

new

enterprise

application.

d.

Optional:

If

you

are

creating

a

new

enterprise

application

project

or

if

you

have

no

module

dependencies

to

specify,

skip

this

step.

Otherwise,

click

Next

to

specify

module

and

JAR

file

dependencies.

On

the

Module

Dependencies

page,

select

dependent

JAR

files

or

modules

within

the

associated

enterprise

application

project.

e.

Click

Finish

to

create

the

connector

project.
5.

Verify

the

contents

of

the

new

connector

project

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

Enterprise

Applications

and

the

enterprise

application

associated

with

your

connector

project

to

view

the

new

JAR

file.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

connector

project

in

a

Navigator

view.

Editing

deployment

descriptors

A

deployment

descriptor

is

an

extensible

markup

language

(XML)

file

that

describes

how

to

deploy

a

module

or

application

by

specifying

configuration

and

container

options.

When

you

create

a

module,

the

Assembly

Toolkit

creates

deployment

descriptor

files

for

the

module.

You

can

edit

a

deployment

descriptor

file

manually.

However,

it

is

preferable

to

edit

a

deployment

descriptor

using

an

Assembly

Toolkit

deployment

descriptor

editor

to

ensure

that

the

deployment

descriptor

has

valid

properties

and

that

its

references

contain

appropriate

values.

Deployment

descriptor

editor

Resources

modified

in

the

editor

Application

deployment

descriptor

editor

v

application.xml

v

ibm-application-bnd.xmi

v

ibm-application-ext.xmi

Web

deployment

descriptor

editor

v

WEB-INF/web.xml

v

Binding

information

v

IBM

binding

and

extensions

information

such

as

ibm-web-bnd.xmi

and

ibm-web-ext.xmi

files

Enterprise

bean

(EJB)

deployment

descriptor

editor

v

ejb-jar.xml

v

ibm-ejb-jar-bnd.xml

v

ibm-ejb-jar-ext.xml

v

ibm-ejb-access-bean.xml

892

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Client

deployment

descriptor

editor

v

application-client.xml

v

ibm-application-client-bnd.xmi

v

ibm-application-client-ext.xmi

Web

services

editor

v

webservices.xml

v

ibm-webservices-bnd.xmi

v

ibm-webservices-ext.xmi

Web

services

client

editor

v

webservicesclient.xml

v

ibm-webservicesclient-bnd.xmi

v

ibm-webservicesclient-ext.xmi

1.

Ensure

that

you

are

working

in

the

J2EE

Perspective.

Click

Window

>

Open

Perspective

>

J2EE.

2.

In

a

J2EE

Hierarchy

view

(Window

>

Show

View

>

J2EE

Hierarchy),

right-click

the

module

with

deployment

descriptor

values

that

you

want

to

browse

or

edit,

and

click

Open

With

>

Deployment

Descriptor

Editor.

A

deployment

descriptor

editor

for

the

module

displays

in

a

view.

You

can

click

tabs

such

as

Overview,

Module,

Security,

and

Source

at

the

bottom

of

the

view

to

browse

or

edit

specific

deployment

descriptor

values.

Clicking

Source

displays

editable

source

code;

it

is

preferable

to

edit

values

in

fields

on

or

accessible

from

the

other

tabs

rather

than

edit

the

source

code

manually.

3.

Edit

the

deployment

descriptor

values

as

desired.

For

information

on

fields

in

the

deployment

descriptor

editor,

press

F1

and

click

a

topic.

4.

Save

your

changes

to

the

deployment

descriptor.

a.

Close

the

deployment

descriptor

editor.

b.

When

prompted,

click

Yes

to

indicate

that

you

want

to

save

changes

to

the

deployment

descriptor.

You

also

can

save

changes

to

deployment

descriptors

at

any

time

by

pressing

Ctrl-S.

Mapping

enterprise

beans

to

database

tables

You

can

map

enterprise

bean

JAR

files

(EJB

modules)

to

relational

database

(RDB)

tables

using

the

EJB

to

RDB

Mapping

wizard

of

the

Assembly

Toolkit.

The

wizard

creates

EJB

to

RDB

mappings

for

the

following

situations:

Existing

enterprise

bean

but

no

database

schema

Top

Down

mapping

generates

a

default

database

schema

and

a

mapping

from

one

or

more

existing

enterprise

beans.

Existing

database

schema

but

no

enterprise

bean

Bottom

Up

mapping

generates

one

or

more

enterprise

beans

and

mappings

from

an

existing

database

schema.

Existing

enterprise

bean

and

database

schema

Meet

In

the

Middle

mapping

matches

existing

enterprise

beans

with

existing

database

tables.

You

can

match

by

name,

by

name

and

type,

or

by

neither.
1.

In

the

J2EE

Hierarchy

view,

right-click

the

EJB

module.

2.

Click

Generate

>

EJB

to

RDB

Mapping.

3.

After

the

wizard

opens,

press

F1

and

select

a

type

of

mapping.

The

online

help

provides

detailed

information

on

generating

a

mapping.

4.

For

EJB

2.0

projects,

on

the

EJB

to

RGB

Mapping

page

specify

whether

you

want

to

create

a

new

backend

(Top

Down)

or

use

an

existing

backend

(Bottom

Up

or

Meet

In

the

Middle)

where

the

schema

exists

in

the

backend

but

without

a

mapping

file.

If

you

previously

generated

a

mapping,

you

can

create

and

map

unmapped

elements

or

open

the

mapping

editor

to

manually

make

changes.

In

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

893

EJB

2.0,

your

mapping

and

schema

files

make

up

a

backend

for

EJB

2.0

projects.

You

can

have

multiple

backend

folders

for

each

project;

for

example,

one

DB2

and

one

Oracle

backend.

The

wizard

uses

one

database

backend

only

as

the

default,

but

you

can

define

as

many

as

you

need.

5.

Follow

the

instructions

in

the

wizard

and

in

the

online

help.

6.

Click

Finish

to

generate

the

mapping.

Verifying

archive

files

The

Assembly

Toolkit

validates

code

when

you

request

code

validation

manually,

automatically

during

a

resource

change,

and

automatically

during

a

build.

As

part

of

validating

the

code,

the

validation

checks

for

the

following:

v

Required

deployment

properties

contain

values.

v

Values

specified

for

environment

entries

match

their

associated

Java

types.

v

In

both

enterprise

archive

(EAR)

and

Web

archive

(WAR)

files:

–

The

target

enterprise

bean

of

the

link

exists

for

enterprise

bean

(EJB)

references.

–

The

target

role

exists

for

security

role

references.

–

Security

roles

are

unique.
v

Each

module

listed

in

the

deployment

descriptor

exists

in

the

archive

for

EAR

files.

v

Files

for

icons,

servlets,

error

and

welcome

pages

listed

in

the

deployment

descriptor

have

corresponding

files

in

the

archive

for

WAR

files.

v

For

EJB

modules:

–

All

class

files

referenced

in

the

deployment

descriptor

exist

in

the

JAR

file.

–

Method

signatures

for

enterprise

bean

home,

remote

and

implementation

classes

are

compliant

with

the

EJB

2.0

specification.
1.

Optional:

Specify

whether

you

want

automatic

code

validation

during

a

resource

change

or

during

a

build.

The

default

is

for

automatic

code

validation.

a.

In

the

J2EE

Hierarchy

view,

right-click

on

a

project.

b.

Click

Properties

>

Validation.

c.

Ensure

that

the

Run

validation

options

for

builds

and

for

automatic

validation

are

selected.

Select

Override

validation

preferences

to

disable

automatic

code

validation.

d.

If

you

changed

the

Validation

settings,

click

Apply

or

OK.
2.

Optional:

Specify

validation

options

for

a

project.

The

default

is

to

check

all

validators

for

a

project

during

code

validation.

For

an

enterprise

application

project,

the

validators

might

be

for

DTD,

EAR,

Web

services,

XML,

XML

schema,

or

XSL

files.

a.

In

the

J2EE

Hierarchy

view,

right-click

the

project

containing

the

code

that

you

want

to

validate.

b.

Click

Properties

>

Validation.

c.

Select

Override

validation

preferences.

d.

Select

the

validators

you

want

checked

during

code

validation.

e.

If

you

changed

the

Validation

settings,

click

Apply

or

OK.
3.

Right-click

the

project

containing

the

code

that

you

want

to

validate

and

click

Run

Validation

to

manually

validate

the

code.

The

results

of

the

code

validation

are

shown

in

a

Tasks

view.

For

information

on

the

results,

select

an

entry

in

the

Tasks

view,

press

F1,

and

click

Tasks

view.

894

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

If

your

application

module

contains

EJB

modules,

generate

code

for

deployment.

Otherwise,

you

are

ready

to

deploy

the

application

module

(or

stand-alone

Web

module)

onto

the

application

server.

Generating

code

for

EJB

deployment

This

task

assumes

you

have

already

assembled

an

enterprise

bean

(EJB)

module,

added

it

to

an

application,

saved

the

application,

and

verified

the

application.

Before

installing

your

application

in

WebSphere

Application

Server,

you

must

generate

deployment

code

for

the

application.

This

step

is

required

for

EJB

modules

and

for

any

enterprise

application

archive

(EAR)

files

that

contain

EJB

modules.

During

code

generation,

the

Assembly

Toolkit

prepares

entity

bean

(JAR)

files

for

deployment

in

a

run-time

environment.

If

your

EJB

project

contains

container-managed

persistence

(CMP)

beans

that

have

not

been

mapped,

generating

deployment

code

creates

a

default

top-down

mapping.

1.

If

you

have

turned

automatic

validation

off,

manually

validate

your

enterprise

beans

before

generating

deployment

code

for

them.

If

validating

your

beans

results

in

compilation

errors

or

validation

errors,

fix

the

errors

before

generating

deployment

code.

However,

if

validating

your

beans

results

in

warning

or

information

messages,

you

can

generate

deployment

code.

2.

If

you

have

changed

the

class

path

of

your

EJB

project,

ensure

that

the

source

folder

for

your

EJB

project

is

at

the

beginning

of

the

class

path

of

the

project.

Generating

deployment

code

imports

both

the

JAR

file

and

the

source

code

of

the

JAR

file,

so

entries

on

the

class

path

must

be

in

the

correct

order.

3.

In

the

J2EE

Hierarchy

view

of

the

Assembly

Toolkit,

right-click

on

the

enterprise

application

(EAR

file)

or

EJB

module

(enterprise

bean

JAR

file)

for

which

you

want

to

generate

code

for

deployment.

4.

Click

a

Generate

Deployment

Code

option.

v

For

EAR

files,

click

Generate

Deployment

Code.

v

For

enterprise

bean

JAR

files,

click

Generate

>

Deployment

and

RMIC

Code

>

EJB_module

>

Finish.

Alternatively,

you

can

generate

deployment

code

for

enterprise

bean

JAR

files

using

the

deployment

tool

for

Enterprise

JavaBeans

(ejbdeploy)

from

a

command

prompt.

For

a

detailed

list

of

available

options

in

the

EJBDeploy

tool,

enter

ejbdeploy

from

a

command

prompt.

For

the

z/OS

environment:

Use

the

-e

option

to

display

console

output

in

ASCII

characters

rather

than

EBCDIC

characters.

Thus,

enter

./ejbdeploy.sh

-e

to

see

a

list

of

available

options

and

use

the

syntax

./ejbdeploy.sh

-e

<input>

<working>

<output>

and

so

on.

Code

is

generated

into

the

folder

where

your

enterprise

beans

are

located.

Problems

with

the

generation

of

Java

RMI

stub

compiler

(RMIC)

code

result

in

a

window

that

displays

error

messages.

Install

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

on

your

server

machine.

You

can

install

the

application

onto

a

server

using

the

administrative

console.

Before

installing

the

application,

you

might

need

to

set

class

paths.

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

895

Generating

code

for

Web

service

deployment

This

task

assumes

you

have

already

assembled

a

module

enabled

with

Web

services,

added

it

to

an

application,

saved

the

application,

and

verified

the

application.

Before

installing

your

application

in

WebSphere

Application

Server,

you

must

generate

deployment

code

for

the

application.

This

step

is

required

for

Web

services-enabled

modules

and

for

any

enterprise

application

archive

(EAR)

files

that

contain

Web

services-enabled

modules.

1.

If

you

have

turned

automatic

validation

off,

manually

validate

any

modules

that

use

Web

services

with

the

JSR109

Web

services

validator

before

generating

deployment

code

for

them.

If

validating

your

module

results

in

compilation

errors

or

validation

errors,

fix

the

errors

before

generating

deployment

code.

However,

if

validating

your

module

results

in

warning

or

information

messages,

you

can

generate

deployment

code.

2.

In

the

J2EE

Hierarchy

view

of

the

Assembly

Toolkit,

right-click

on

the

Web

services-enabled

module

(WAR,

enterprise

bean

JAR,

or

application

client

JAR

file)

for

which

you

want

to

generate

code

for

deployment.

3.

Click

Web

Services

>

Deploy

Web

Service.

Alternatively,

you

can

generate

deployment

code

for

Web

services-enabled

modules

using

the

deployment

tool

for

Web

services

(wsdeploy)

from

a

command

prompt.

4.

If

messages

indicate

that

automatic

file

overwriting

is

not

enabled,

click

Yes

to

All

so

the

generated

files

are

added

to

the

module.

5.

If

errors

such

as

Unbound

classpath

variable:

WAS_50_PLUGINDIR

appear

in

the

Tasks

list,

change

the

Java

build

path

libraries

properties

to

define

that

variable

to

be

the

WebSphere

Application

Server

installation

directory.

Install

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

on

your

server

machine.

You

can

install

the

application

onto

a

server

using

the

administrative

console.

Before

installing

the

application,

you

might

need

to

set

class

paths.

Assembly

Toolkit:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

the

Assembly

Toolkit.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Programming

instructions

and

examples

v

Programming

specifications

v

Administration

Programming

instructions

and

examples

v

Developing

and

testing

a

complete

J2EE

″Hello

World″

application

with

WebSphere

Studio

V5

896

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://www.devx.com/ibm/Article/16365/0/page/1
http://www.devx.com/ibm/Article/16365/0/page/1

v

Getting

to

know

WebSphere

Studio

Application

Developer:

Its

capabilities,

technologies,

and

relationship

to

the

open-source

Eclipse

IDE

v

Developing

and

Deploying

an

End-to-end

J2EE

Application

to

JBoss

Application

Server

using

WebSphere

Studio

V5

v

JMS

Applications

with

WebSphere

Studio

V5

--

Part

1:

Developing

a

JMS

Point-to-Point

Application

v

WebSphere

Studio

Version

5

Tips

and

Techniques

v

Java

2

Enterprise

Edition:

Books

index

Programming

specifications

v

J2EE

1.3

specification

v

EJB

specifications

v

Servlet

specifications

Administration

v

Application

Client

files

v

Connector

RAR

files

Chapter

17.

Assembling

applications

with

the

Assembly

Toolkit

897

http://www-106.ibm.com/developerworks/ibm/library/i-wsad/
http://www-106.ibm.com/developerworks/ibm/library/i-wsad/
http://www7b.software.ibm.com/wsdd/techjournal/0302_koo/koo.html
http://www7b.software.ibm.com/wsdd/techjournal/0302_koo/koo.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0307_wilkinson/wilkinson1.html
http://www7b.software.ibm.com/wsdd/library/techarticles/0307_wilkinson/wilkinson1.html
http://www.websphere-users.ca/presentations/06242003/WAS-Tips-Toronto-UG.ppt
http://developer.java.sun.com/developer/Books/j2ee/
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://developer.java.sun.com/developer/technicalArticles/J2EE/appclient/
http://java.sun.com/j2ee/connector/

898

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Chapter

18.

Deploying

and

managing

applications

After

you

develop

an

enterprise

application

and

configure

an

application

server,

you

can

use

the

administrative

console

to

install

application

files

on

the

server

and

manage

the

activity

of

deployed

applications.

1.

Install

your

application

on

your

application

server.

2.

Start

and

stop

applications.

3.

Edit

the

administrative

configuration

for

an

application.

Go

to

the

settings

page

for

an

application,

change

the

values

for

settings

as

needed,

and

click

OK.

4.

Export

applications.

5.

Export

DDL

files.

6.

Update

application

binary

files.

7.

Uninstall

applications.

After

making

changes

to

administrative

configurations

of

your

applications,

ensure

that

you

click

Save

on

the

administrative

console

taskbar

to

save

the

changes.

Enterprise

applications

Enterprise

applications

(or

J2EE

applications)

are

applications

that

conform

to

the

Java

2

Platform,

Enterprise

Edition,

specification.

Enterprise

applications

can

consist

of

the

following:

v

Zero

or

more

EJB

modules

v

Zero

or

more

Web

modules

v

Zero

or

more

connector

modules

(packaged

in

RAR

files)

v

Zero

or

more

application

client

modules

v

Additional

JAR

files

containing

dependent

classes

or

other

components

required

by

the

application

v

Any

combination

of

the

above

A

J2EE

application

is

represented

by,

and

packaged

in,

an

enterprise

archive

(EAR)

file.

Installing

a

new

application

To

install

an

enterprise

application

to

a

WebSphere

Application

Server

configuration,

you

can

use

the

administrative

console

or

the

wsadmin

tool.

The

steps

below

describe

how

to

use

the

administrative

console

to

install

an

application,

EJB

component,

or

Web

module.

Note:

Once

you

start

performing

the

steps

below,

click

Cancel

to

exit

if

you

decide

not

to

install

the

application.

Do

not

simply

move

to

another

administrative

console

page

without

first

clicking

Cancel

on

an

application

installation

page.

1.

Click

Applications

>

Install

New

Application

in

the

console

navigation

tree.

The

first

of

two

Preparing

for

application

install

pages

is

shown.

2.

On

the

first

Preparing

for

application

install

page:

a.

Specify

the

full

path

name

of

the

source

application

file

(.ear

file

otherwise

known

as

an

EAR

file).

The

EAR

file

that

you

are

installing

can

be

either

on

the

client

machine

(the

machine

that

runs

the

Web

browser)

or

on

the

©

Copyright

IBM

Corp.

2003

899

server

machine

(the

machine

to

which

the

client

is

connected).

If

you

specify

an

EAR

file

on

the

client

machine,

then

the

administrative

console

uploads

the

EAR

file

to

the

machine

on

which

the

console

is

running

and

proceeds

with

application

installation.

You

can

also

specify

a

stand-alone

WAR

or

JAR

file

for

installation.

b.

If

you

are

installing

a

stand-alone

WAR

file,

specify

the

context

root.

c.

Click

Next.

3.

On

the

second

Preparing

for

application

install

page:

a.

Select

whether

to

generate

default

bindings.

Using

the

default

bindings

causes

any

incomplete

bindings

in

the

application

to

be

filled

in

with

default

values.

Existing

bindings

are

not

altered.

You

can

customize

default

values

used

in

generating

default

bindings.

For

example,

you

can

specify

JNDI

prefix

for

all

the

EJB

files

in

EJB

modules,

default

data

source

and

connection

factory

settings

for

EJB

modules,

virtual

host

for

web

modules,

and

so

on.

″“Preparing

for

application

installation

settings”

on

page

904″

describes

available

customizations

and

provides

sample

bindings.

b.

Click

Next.

The

Install

New

Application

pages

are

now

shown.

If

you

chose

to

generate

default

bindings,

you

can

proceed

to

the

Summary

step

(step

23

below).

″“Example:

Installing

an

EAR

file

using

the

default

bindings”

on

page

908″

provides

sample

steps.

4.

On

the

Step:

Provide

options

to

perform

the

installation

panel,

provide

values

for

the

following

settings

specific

to

WebSphere

Application

Server.

Default

values

are

used

if

you

do

not

specify

a

value.

a.

For

Pre-compile

JSP,

specify

whether

to

precompile

JSP

files

as

a

part

of

installation.

The

default

is

not

to

precompile

JSP

files.

b.

For

Directory

to

Install

Application,

specify

the

directory

to

which

the

application

EAR

file

will

be

installed.

The

default

value

is

the

value

of

APP_INSTALL_ROOT/cell_name,

where

the

APP_INSTALL_ROOT

variable

is

install_root/installedApps;

for

example,

C:\WebSphere\AppServer\installedApps\cell_name.

Note:

If

an

installation

directory

is

not

specified

when

an

application

is

installed

on

a

single-server

(base)

configuration,

the

application

is

installed

in

APP_INSTALL_ROOT/base_cell_name.

When

the

base

server

is

made

a

part

of

a

Network

Deployment

configuration

(using

the

addNode

utility),

the

cell

name

of

the

new

configuration

becomes

the

cell

name

of

the

deployment

manager

node.

If

the

-includeapps

option

is

used

for

the

addNode

utility,

then

the

applications

that

are

installed

prior

to

the

addNode

operation

still

use

the

installation

directory

APP_INSTALL_ROOT/base_cell_name.

However,

an

application

that

is

installed

after

the

base

server

is

added

to

the

network

configuration

uses

the

default

installation

directory

APP_INSTALL_ROOT/network_cell_name.

To

move

the

application

to

the

APP_INSTALL_ROOT/network_cell_name

location

upon

running

the

addNode

operation,

you

should

explicitly

specify

the

installation

directory

as

${APP_INSTALL_ROOT}/${CELL}

during

installation.

In

such

a

case,

the

application

files

can

always

be

found

under

APP_INSTALL_ROOT/current_cell_name.

c.

For

Distribute

Application,

specify

whether

WebSphere

Application

Server

expands

or

deletes

application

binaries

in

the

installation

destination.

The

default

is

to

enable

application

distribution.

As

a

result,

when

you

save

changes

in

the

console,

application

binaries

for

newly

installed

applications

are

expanded

to

the

directory

specified.

The

binaries

are

also

deleted

when

you

uninstall

and

save

changes

to

the

configuration.

If

you

disable

this

900

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

option,

then

you

must

ensure

that

the

application

binaries

are

expanded

appropriately

in

the

destination

directories

of

all

nodes

where

the

application

is

expected

to

run.

d.

For

Use

Binary

Configuration,

specify

whether

the

application

server

uses

the

binding,

extensions,

and

deployment

descriptors

located

with

the

application

deployment

document,

the

deployment.xml

file

(default),

or

those

located

in

the

EAR

file.

The

default

is

not

to

use

the

binary

configuration.

e.

For

Deploy

EJBs,

specify

whether

the

EJBDeploy

tool

runs

during

application

installation.

The

tool

generates

code

needed

to

run

EJB

files.

The

default

is

not

to

run

the

EJBDeploy

tool.

You

must

enable

this

setting

if

the

EAR

file

was

assembled

using

theApplication

Assembly

(AAT)

toolorAssembly

Toolkit

and

the

EJBDeploy

tool

was

not

run

during

assembly,

if

the

EAR

file

was

not

assembled

using

theAATorAssembly

Toolkit

tool,

or

if

the

EAR

file

was

assembled

using

versions

of

the

Application

Assembly

Tool

(AAT)

previous

to

Version

5.

Note

that

enabling

this

setting

might

cause

the

installation

program

to

run

for

several

minutes.

f.

For

Application

Name,

name

the

application.

Application

names

must

be

unique

within

a

cell

and

cannot

contain

characters

that

are

not

allowed

in

object

names.

g.

For

Create

MBeans

for

Resources,

specify

whether

to

create

MBeans

for

various

resources

(such

as

servlets

or

JSP

files)

within

an

application

when

the

application

is

started.

The

default

is

to

create

MBean

instances.

h.

For

Enable

class

reloading,

specify

whether

to

enable

class

reloading

when

application

files

are

updated.

The

default

is

not

to

enable

class

reloading.

i.

For

Reload

Interval,

specify

the

number

of

seconds

to

scan

the

application’s

file

system

for

updated

files.

The

default

is

the

value

of

the

reload

interval

attribute

in

the

IBM

extension

(META-INF/ibm-application-
ext.xmi)

file

of

the

EAR

file.

This

setting

takes

effect

only

if

class

reloading

is

enabled.

The

reload

interval

specified

here

overrides

the

value

specified

in

the

IBM

extensions

for

each

Web

module

in

the

EAR

file

(which

in

turn

overrides

the

reload

interval

specified

in

the

IBM

extensions

for

the

application

in

the

EAR

file).

j.

5.0.2 +

For

Deploy

WebServices,

specify

whether

the

Web

services

deploy

tool

wsdeploy

runs

during

application

installation.

The

tool

generates

code

needed

to

run

applications

using

Web

services.

The

default

is

not

to

run

the

wsdeploy

tool.

You

must

enable

this

setting

if

the

EAR

file

contains

modules

using

Web

services

and

has

not

previously

had

the

wsdeploy

tool

run

on

it,

either

from

the

Web

Services

>

Deploy

Web

Service

menu

of

the

Assembly

Toolkit

or

from

a

command

line.

5.

If

your

application

uses

EJB

modules,

on

the

Step:

Provide

JNDI

Names

for

Beans

panel,

specify

a

JNDI

name

for

each

enterprise

bean

in

every

EJB

module.

You

must

specify

a

JNDI

name

for

every

enterprise

bean

defined

in

the

application.

For

example,

for

the

EJB

module

MyBean.jar,

specify

MyBean.

6.

If

your

application

uses

EJB

modules

that

contain

Container

Managed

Persistence

(CMP)

beans

that

are

based

on

the

EJB

1.x

specification,

for

Step:

Provide

default

datasource

mapping

for

modules

containing

1.x

entity

beans,

specify

a

JNDI

name

for

the

default

data

source

for

the

EJB

modules.

The

default

data

source

for

the

EJB

modules

is

optional

if

data

sources

are

specified

for

individual

CMP

beans.

Chapter

18.

Deploying

and

managing

applications

901

7.

If

your

application

has

CMP

beans

that

are

based

on

the

EJB

1.x

specification,

for

Step:

Map

datasources

for

all

1.x

CMP,

specify

a

JNDI

name

for

data

sources

to

be

used

for

each

of

the

1.x

CMP

beans.

The

data

source

attribute

is

optional

for

individual

CMP

beans

if

a

default

data

source

is

specified

for

the

EJB

module

that

contains

CMP

beans.

If

neither

a

default

data

source

for

the

EJB

module

nor

a

data

source

for

individual

CMP

beans

are

specified,

then

a

validation

error

displays

after

you

click

Finish

(step

23)

and

the

installation

is

cancelled.

8.

If

your

application

defines

EJB

references,

for

Step:

Map

EJB

references

to

beans,

specify

JNDI

names

for

enterprise

beans

that

represent

the

logical

names

specified

in

EJB

references.

Each

EJB

reference

defined

in

the

application

must

be

bound

to

an

EJB

file

before

clicking

Finish

on

the

Summary

panel.

9.

If

your

application

defines

resource

references,

for

Step:

Map

resource

references

to

resources,

specify

JNDI

names

for

the

resources

that

represent

the

logical

names

defined

in

resource

references.

Each

resource

reference

defined

in

the

application

must

be

bound

to

a

resource

defined

in

your

WebSphere

Application

Server

configuration

before

clicking

on

Finish

on

the

Summary

panel.

10.

If

your

application

uses

Web

modules,

for

Step:

Map

virtual

hosts

for

web

modules,

select

a

virtual

host

from

the

list

that

should

map

to

a

Web

module

defined

in

the

application.

The

port

number

specified

in

the

virtual

host

definition

is

used

in

the

URL

that

is

used

to

access

artifacts

such

as

servlets

and

JSP

files

in

the

Web

module.

Each

Web

module

must

have

a

virtual

host

to

which

it

maps.

Not

specifying

all

needed

virtual

hosts

will

result

in

a

validation

error

displaying

after

you

click

Finish

on

the

Summary

panel.

11.

On

the

Step:

Map

modules

to

application

servers

panel,

for

every

module

select

a

target

server

or

a

cluster

from

the

Clusters

and

Servers

list.

Select

the

check

box

beside

Module

to

select

all

of

the

application

modules

or

select

individual

modules.

12.

If

the

application

has

security

roles

defined

in

its

deployment

descriptor

then,

for

Step:

Map

security

roles

to

users/groups,

specify

users

and

groups

that

are

mapped

to

each

of

the

security

roles.

Select

the

check

box

beside

Role

to

select

all

of

the

roles

or

select

individual

roles.

For

each

role,

you

can

specify

if

predefined

users

such

as

Everyone

or

All

Authenticated

users

are

mapped

to

it.

To

select

specific

users

or

groups

from

the

user

registry:

a.

Select

a

role

and

click

Lookup

users

or

Lookup

groups.

b.

On

the

Lookup

users/groups

panel

shown,

enter

search

criteria

to

extract

a

list

of

users

or

groups

from

the

user

registry.

c.

Select

individual

users

or

groups

from

the

results

displayed.

d.

Click

OK

to

map

the

selected

users

or

groups

to

the

role

selected

on

the

Step:

Map

security

roles

to

users/groups

panel.
13.

If

the

application

has

Run

As

roles

defined

in

its

deployment

descriptor,

for

Step:

Map

RunAs

roles

to

user,

specify

the

Run

As

user

name

and

password

for

every

Run

As

role.

Run

As

roles

are

used

by

enterprise

beans

that

must

run

as

a

particular

role

while

interacting

with

another

enterprise

bean.

Select

the

check

box

beside

Role

to

select

all

of

the

roles

or

select

individual

roles.

After

selecting

a

role,

enter

values

for

the

user

name,

password,

and

verify

password

and

click

Apply.

14.

If

your

application

contains

EJB

1.x

CMP

beans

that

do

not

have

method

permissions

defined

for

some

of

the

EJB

methods,

for

Step:

Ensure

all

902

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

unprotected

1.x

methods

have

the

correct

level

of

protection,

specify

if

you

want

to

leave

such

methods

unprotected

or

assign

protection

with

deny

all

access.

15.

If

your

application

contains

message

driven

enterprise

beans,

for

Step:

Provide

Listener

Ports

for

messaging

beans,

provide

a

listener

port

name

for

every

message

driven

bean.

If

a

name

is

not

specified

for

each

bean,

then

a

validation

error

displays

after

you

click

on

Finish

on

the

Summary

panel.

16.

If

your

application

uses

EJB

modules

that

contain

CMP

beans

that

are

based

on

the

EJB

2.0

specification,

for

Step:

Provide

default

datasource

mapping

for

modules

containing

2.0

entity

beans,

specify

a

JNDI

name

for

the

default

data

source

and

the

type

of

resource

authorization

to

be

used

for

the

default

data

source

for

the

EJB

modules.

The

default

data

source

for

EJB

modules

is

optional

if

data

sources

are

specified

for

individual

CMP

beans.

17.

If

your

application

has

CMP

beans

that

are

based

on

the

EJB

2.0

specification,

on

the

Step:

Map

datasources

for

all

2.0

CMP

panel,

for

each

of

the

2.0

CMP

beans

specify

a

JNDI

name

and

the

type

of

resource

authorization

for

data

sources

to

be

used.

The

data

source

attribute

is

optional

for

individual

CMP

beans

if

a

default

data

source

is

specified

for

the

EJB

module

that

contains

CMP

beans.

If

neither

a

default

data

source

for

the

EJB

module

nor

a

data

source

for

individual

CMP

beans

are

specified,

then

a

validation

error

is

shown

after

you

click

Finish

and

installation

is

cancelled.

18.

If

your

application

contains

EJB

2.0

CMP

beans

that

do

not

have

method

permissions

defined

in

the

deployment

descriptors

for

some

of

the

EJB

methods,

on

the

Step:

Ensure

all

unprotected

2.0

methods

have

the

correct

level

of

protection

panel,

specify

whether

you

want

to

assign

a

specific

role

to

the

unprotected

methods,

add

the

methods

to

the

exclude

list,

or

mark

them

as

unchecked.

Methods

added

to

the

exclude

list

are

marked

as

uncallable.

For

methods

marked

unchecked

no

authorization

check

is

performed

prior

to

their

invocation.

19.

If

the

Deploy

EJBs

setting

is

enabled

on

the

Provide

options

to

perform

the

installation

panel,

then

you

can

specify

options

for

the

EJBDeploy

tool

on

the

Step:

Provide

options

to

perform

the

EJB

Deploy

panel.

On

this

panel,

you

can

specify

extra

class

path,

rmic

options,

database

types,

and

database

schema

names

to

be

used

while

running

the

EJBDeploy

tool.

The

tool

is

run

on

the

EAR

file

during

installation

after

you

click

Finish.

20.

If

your

application

contains

resource

environment

references,

for

Step:

Mapping

Resource

Environment

References

to

Resources,

specify

JNDI

names

of

resources

that

map

to

the

logical

names

defined

in

resource

environment

references.

If

each

resource

environment

reference

does

not

have

a

resource

associated

with

it,

a

validation

error

is

shown

after

you

click

Finish.

21.

If

your

application

defines

Run-As

Identity

as

System

Identity,

for

Step:

Replacing

RunAs

System

to

RunAs

Roles,

you

can

optionally

change

it

to

Run-As

role

and

specify

a

user

name

and

password

for

the

Run

As

role

specified.

Selecting

System

Identity

implies

that

the

invocation

is

done

using

the

WebSphere

Application

Server

security

server

ID

and

should

be

used

with

caution

as

this

ID

has

more

privileges.

22.

If

your

application

has

resource

references

that

map

to

resources

that

have

an

Oracle

database

doing

backend

processing,

for

Step:

Specify

the

isolation

level

for

Oracle

type

provider,

specify

or

correct

the

isolation

level

to

be

used

for

such

resources

when

used

by

the

application.

Oracle

databases

support

ReadCommitted

and

Serializable

isolation

levels

only.

Chapter

18.

Deploying

and

managing

applications

903

23.

On

the

Summary

panel,

verify

the

cell,

node,

and

server

onto

which

the

application

modules

will

install.

Beside

the

Cell/Node/Server

option,

click

Click

here

and

verify

the

settings.

Then

click

Finish.

Note:

After

clicking

Finish,

if

you

receive

an

OutOfMemory

exception

and

the

source

application

file

does

not

install,

your

system

might

not

have

enough

memory

or

your

application

might

have

too

many

modules

in

it

to

install

successfully

onto

the

server.

If

lack

of

system

memory

is

not

the

cause

of

the

exception,

package

your

application

again

so

the

.ear

file

has

fewer

modules.

If

lack

of

system

memory

and

the

number

of

modules

are

not

the

cause

of

the

exception,

check

the

options

you

specified

on

the

Java

Virtual

Machine

page

of

the

application

server

running

the

administrative

console.

Then,

try

installing

the

application

file

again.

24.

Associate

any

shared

libraries

that

the

application

needs

to

the

application.

25.

Click

Save

on

the

administrative

console

taskbar

to

save

the

changes

to

your

configuration.

The

application

is

registered

with

the

administrative

configuration

and

application

files

are

copied

to

the

target

directory,

which

is

install_root/installedApps/cell_name

by

default

or

the

directory

that

you

designate.

For

the

single-server

(base)

installation,

application

files

are

copied

to

the

destination

directory

when

you

click

Save;

for

the

Network

Deployment

installation,

files

are

copied

to

remote

nodes

when

the

configuration

on

the

deployment

manager

synchronizes

with

the

configuration

on

individual

nodes.

26.

Start

the

application.

27.

Test

the

application.

For

example,

point

a

Web

browser

at

the

URL

for

the

deployed

application

and

examine

the

performance

of

the

application.

If

necessary,

update

the

application.

Preparing

for

application

installation

settings

Use

this

page

to

install

an

application

(EAR

file)

or

module

(JAR

or

WAR

file).

To

view

this

administrative

console

page,

click

Applications

>

Install

New

Application.

Follow

the

steps

on

this

page

to

install

an

application

or

module.

You

must

complete,

at

minimum,

the

first

step;

you

must

complete

some

or

all

of

the

later

steps,

depending

on

whether

you

are

installing

an

application,

EJB

module,

or

Web

module.

Path

Specifies

the

fully

qualified

path

to

the

.ear,

.jar,

or

.war

file

for

the

enterprise

application.

Use

Local

path

if

the

browser

and

application

files

are

on

the

same

machine

(whether

or

not

the

server

is

on

that

machine,

too).

Use

Server

path

if

the

application

file

resides

on

any

node

in

the

current

cell

context.

Only

.ear,

.jar,

or

.war

files

are

shown

during

the

browsing.

During

application

installation,

application

files

are

typically

uploaded

from

a

client

machine

running

the

browser

to

the

server

machine

running

the

administrative

console,

where

they

are

deployed.

In

such

cases,

the

Web

browser

running

the

administrative

console

is

used

to

select

EAR,

WAR,

or

JAR

modules

to

upload

to

the

server

machine.

904

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

In

some

cases,

however,

the

application

files

reside

on

the

file

system

of

any

of

the

nodes

in

a

cell.

To

have

the

application

server

install

these

files,

use

the

Server

path

option.

You

can

also

use

this

option

to

specify

an

application

file

already

residing

on

the

machine

running

the

application

server.

For

example,

the

field

value

on

Windows

NT

might

be

C:\WebSphere\AppServer\installableApps\test.ear.

If

you

are

installing

a

stand-alone

WAR

module,

then

you

also

must

specify

the

context

root.

Context

Root

Specifies

the

context

root

of

the

Web

application

(WAR).

This

field

is

used

only

to

install

a

stand-alone

WAR

file.

The

context

root

is

combined

with

the

defined

servlet

mapping

(from

the

WAR

file)

to

compose

the

full

URL

that

users

type

to

access

the

servlet.

For

example,

if

the

context

root

is

/gettingstarted

and

the

servlet

mapping

is

MySession,

then

the

URL

is

http://host:port/gettingstarted/MySession.

Generate

Default

Bindings

Specifies

whether

to

generate

default

bindings.

If

you

place

a

check

mark

in

the

check

box,

then

any

incomplete

bindings

in

the

application

are

filled

in

with

default

values.

Existing

bindings

are

not

altered.

By

choosing

this

option,

you

can

directly

jump

to

the

Summary

step

and

install

the

application

if

none

of

the

steps

have

a

red

asterisk

(*)

next

to

them.

A

red

asterisk

denotes

that

the

step

has

incomplete

data

and

requires

a

valid

value.

On

the

Summary

panel,

verify

the

cell,

node

and

server

on

which

the

application

is

installed.

Bindings

are

generated

as

follows:

v

EJB

JNDI

names

are

generated

of

the

form

prefix/ejb-name.

The

default

prefix

is

ejb,

but

can

be

overridden.

The

ejb-name

is

as

specified

in

the

deployment

descriptors

<ejb-name>

tag.

v

EJB

references

are

bound

as

follows:

If

an

<ejb-link>

is

found,

it

is

honored.

Otherwise,

if

a

unique

enterprise

bean

is

found

with

a

matching

home

(or

local

home)

interface

as

the

referenced

bean,

the

reference

is

resolved

automatically.

v

Resource

reference

bindings

are

derived

from

the

<res-ref-name>

tag.

Note

that

this

action

assumes

that

the

java:comp/env

name

is

the

same

as

the

resource

global

JNDI

name.

v

Connection

factory

bindings

(for

EJB

2.0

JAR

files)

are

generated

based

on

the

JNDI

name

and

authorization

information

provided.

This

action

results

in

default

connection

factory

settings

for

each

EJB

2.0

JAR

file

in

the

application

being

installed.

No

bean-level

connection

factory

bindings

are

generated.

v

Data

source

bindings

(for

EJB

1.1

JAR

files)

are

generated

based

on

the

JNDI

name,

data

source

user

name

password

options.

This

results

in

default

data

source

settings

for

each

EJB

JAR

file.

No

bean-level

data

source

bindings

are

generated.

v

Message-driven

bean

(MDB)

listener

ports

are

derived

from

the

MDB

<ejb-name>

tag

with

the

string

Port

appended.

v

For

.war

files,

the

virtual

host

is

set

as

default_host

unless

otherwise

specified.

The

default

strategy

suffices

for

most

applications

or

at

least

for

most

bindings

in

most

applications.

However,

it

does

not

work

if:

v

You

want

to

explicitly

control

the

global

JNDI

names

of

one

or

more

EJB

files.

v

You

need

tighter

control

of

data

source

bindings

for

CMPs.

That

is,

you

have

multiple

data

sources

and

need

more

than

one

global

data

source.

v

You

must

map

resource

references

to

global

resource

JNDI

names

that

are

different

from

the

java:comp/env

name.

Chapter

18.

Deploying

and

managing

applications

905

In

such

cases,

you

can

alter

the

behavior

with

an

XML

document

(a

custom

strategy).

Use

the

Specific

bindings

file

field

to

specify

a

custom

strategy

and

see

the

field’s

help

for

examples.

Prefixes

Specifies

prefixes

to

use

for

generated

JNDI

names.

Override

Specifies

whether

to

override

existing

bindings.

If

this

check

box

is

checked,

the

existing

bindings

are

overridden

by

the

generated

ones.

EJB

1.1

CMP

bindings

Specifies

the

default

data

source

JNDI

name.

If

the

Default

Bindings

for

EJB

1.1

CMPs

radio

button

is

selected,

specify

the

JNDI

name

for

the

default

data

source

to

be

used

with

the

CMP

1.1

beans.

Also

specify

the

user

ID

and

password

for

this

default

data

source.

Connection

Factory

Bindings

Specifies

the

default

data

source

JNDI

name.

If

the

Default

connection

factory

bindings

radio

button

is

selected,

specify

the

JNDI

name

for

the

default

data

source

to

be

used

with

the

bindings.

Also

specify

the

resource

authorization.

Virtual

Host

Specifies

the

virtual

host

for

WAR

modules.

Specific

bindings

file

Specifies

a

bindings

file

that

overrides

the

default

binding.

Alter

the

behavior

of

the

default

binding

with

an

XML

document

(aka

custom

strategy).

Custom

strategies

extend

the

default

strategy

so

you

only

need

to

customize

those

areas

where

the

default

strategy

is

insufficient.

That

is,

you

only

need

to

describe

how

you

want

to

change

the

bindings

generated

by

the

default

strategy;

you

do

not

have

to

define

bindings

for

the

entire

application.

Brief

examples

of

how

to

override

various

aspects

of

the

default

bindings

generator

follow:

Controlling

an

EJB

JNDI

name

<?xml

version="1.0"?>

<!DOCTYPE

dfltbndngs

SYSTEM

"dfltbndngs.dtd">

<dfltbndngs>

<module-bindings>

<ejb-jar-binding>

<jar-name>helloEjb.jar</jar-name>

<!--

this

name

must

match

the

module

name

in

the

.ear

file

-->

<ejb-bindings>

<ejb-binding>

<ejb-name>HelloEjb</ejb-name>

<!--

this

must

match

the

<ejb-name>

entry

in

the

EJB

jar

DD

-->

<jndi-name>com/acme/ejb/HelloHome</jndi-name>

</ejb-binding>

</ejb-bindings>

</ejb-jar-binding>

</module-bindings>

</dfltbndngs>

Setting

the

connection

factory

binding

for

an

EJB

JAR

file

906

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

<!DOCTYPE

dfltbndngs

SYSTEM

"dfltbndngs.dtd">

<dfltbndngs>

<module-bindings>

<ejb-jar-binding>

<jar-name>yourEjb20.jar</jar-name>

<connection-factory>

<jndi-name>eis/jdbc/YourData_CMP</jndi-name>

<res-auth>Container</res-auth>

</connection-factory>

</ejb-jar-binding>

</module-bindings>

</dfltbndngs>

Setting

the

connection

factory

binding

for

an

EJB

file

<?xml

version="1.0">

<!DOCTYPE

dfltbndngs

SYSTEM

"dfltbndngs.dtd">

<dfltbndngs>

<module-bindings>

<ejb-jar-binding>

<jar-name>yourEjb20.jar</jar-name>

<ejb-bindings>

<ejb-binding>

<ejb-name>YourCmp20</ejb-name>

<!--

this

matches

the

ejb-name

tag

in

the

DD

-->

<connection-factory>

<jndi-name>eis/jdbc/YourData_CMP</jndi-name>

<res-auth>PerConnFact</res-auth>

</connection-factory>

</ejb-binding>

</ejb-bindings>

</ejb-jar-binding>

</module-bindings>

</dfltbndngs>

Overriding

a

Resource

Ref

Binding

from

a

WAR,

EJB

JAR

file,

or

J2EE

client

JAR

file

Example

code

for

overriding

a

Resource

Ref

Binding

from

a

WAR

file

follows.

Use

similar

code

to

override

a

Resource

Ref

Binding

from

an

enterprise

bean

(EJB)

JAR

file

or

a

J2EE

client

JAR

file.

<?xml

version="1.0"?>

<!DOCTYPE

dfltbndngs

SYSTEM

"dfltbndngs.dtd">

<dfltbndngs>

<module-bindings>

<war-binding>

<jar-name>hello.war</jar-name>

<resource-ref-bindings>

<resource-ref-binding>

<!--

the

following

must

match

the

resource-ref

in

the

DD

-->

<resource-ref-name>jdbc/MyDataSrc</resource-ref-name>

<jndi-name>war/override/dataSource</jndi-name>

</resource-ref-binding>

</resource-ref-bindings>

</war-binding>

</module-bindings>

</dfltbndngs>

Overriding

MDB

JMS

listener

ports

<?xml

version="1.0"?>

<!DOCTYPE

dfltbndngs

SYSTEM

"dfltbndngs.dtd">

<dfltbndngs>

<module-bindings>

<ejb-jar-binding>

<jar-name>YourEjbJar.jar</jar-name>

Chapter

18.

Deploying

and

managing

applications

907

<ejb-bindings>

<ejb-binding>

<ejb-name>YourMDB</ejb-name>

<listener-port>yourMdbListPort</listener-port>

</ejb-binding>

</ejb-bindings>

</ejb-jar-binding>

</module-bindings>

</dfltbndngs>

Example:

Installing

an

EAR

file

using

the

default

bindings

An

example

of

a

simple

.ear

file

installation

using

the

default

bindings

follows:

1.

Go

to

the

Preparing

for

application

install

pages.

Click

Applications

>

Install

an

Application

in

the

console

navigation

tree.

2.

For

Path,

specify

the

full

path

name

of

the

.ear

file.

For

this

example,

the

base

file

name

is

my_appl.ear

and

the

file

resides

on

a

server

at

C:\sample_apps.

a.

Select

the

Server

path

radio

button

and

click

Browse.

b.

On

the

Browse

Remote

Filesystems

page,

click

on

the

name

of

the

node

that

holds

the

my_appl.ear

file,

C:\,

sample_apps,

my_appl.ear,

and

then

OK.
3.

Now

that

a

value

is

given

for

Path,

on

the

first

Preparing

for

application

install

page,

click

Next.

4.

On

the

second

Preparing

for

application

install

page,

place

a

checkmark

beside

the

Generate

Default

Bindings

check

box

and

click

Next.

Using

the

default

bindings

causes

any

incomplete

bindings

in

the

application

to

be

filled

in

with

default

values.

Existing

bindings

are

not

changed.

By

choosing

this

option,

you

can

directly

jump

to

the

Summary

step.

5.

On

the

Install

New

Application

page,

click

on

Summary,

the

last

step.

6.

On

the

Summary

panel,

verify

the

cell,

node,

and

server

onto

which

the

application

files

will

install.

a.

Beside

the

Cell/Node/Server

option,

click

Click

here.

b.

On

the

Map

modules

to

application

servers

panel,

select

the

server

onto

which

the

application

files

will

install

from

the

Clusters

and

Servers

list,

place

a

checkmark

in

the

check

box

beside

Module

to

select

all

of

the

application

modules,

and

click

Next.

Because

my_appl.ear

does

not

require

any

additional

settings

to

complete

an

installation,

the

Summary

panel

displays

again.

7.

On

the

Summary

panel,

click

Finish.

Enterprise

application

collection

Use

this

page

to

view

and

manage

enterprise

applications.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications.

Name

Specifies

the

name

of

the

installed

(or

deployed)

application.

Application

names

must

be

unique

within

a

cell

and

cannot

contain

characters

that

are

not

allowed

in

object

names.

Status

Indicates

whether

the

application

deployed

on

the

application

server

is

started,

stopped,

or

unavailable.

908

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Enterprise

application

settings

Use

this

page

to

configure

an

enterprise

application.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>application_name.

Name

Specifies

a

logical

name

for

the

application.

Application

names

must

be

unique

within

a

cell

and

cannot

contain

characters

that

are

not

allowed

in

object

names.

Data

type

String

Starting

Weight

Specifies

the

order

in

which

applications

are

started

when

the

server

starts.

The

application

with

the

lowest

starting

weight

is

started

first.

Data

type

Integer

Default

1

Range

0

to

2147483647

Application

Binaries

Specifies

the

directory

to

which

the

application

EAR

file

will

be

installed.

The

default

value

is

the

value

of

APP_INSTALL_ROOT/cell_name,

where

the

APP_INSTALL_ROOT

variable

is

install_root/installedApps;

for

example,

C:\WebSphere\AppServer\installedApps\cell_name.

You

can

specify

an

absolute

path

or

use

a

pathmap

variable

such

as

${MY_APPS}.

You

can

use

a

pathmap

variable

in

any

installation

though

it

is

particularly

needed

when

installing

an

application

on

a

cluster

with

members

on

heterogeneous

nodes

because,

in

such

cases,

there

might

not

be

a

single

way

to

specify

an

absolute

path.

A

WebSphere

Application

Server

variable

${CELL}

that

denotes

the

current

cell

name

can

also

be

in

the

pathmap

variable;

for

example,

${MY_APP}/${CELL}.

Data

type

String

Units

Full

path

name

Use

Metadata

From

Binaries

Specifies

whether

the

application

server

uses

the

binding,

extensions,

and

deployment

descriptors

located

with

the

application

deployment

document,

the

deployment.xml

file

(default),

or

those

located

in

the

enterprise

application

resource

(EAR)

file.

Data

type

Boolean

Default

false

Enable

Distribution

Specifies

whether

WebSphere

Application

Server

expands

or

deletes

application

binaries

in

the

installation

destination.

The

default

is

to

enable

application

distribution.

Application

binaries

for

installed

applications

are

expanded

to

the

directory

specified.

The

binaries

are

also

deleted

when

you

uninstall

and

save

changes

to

the

configuration.

If

you

disable

this

option,

then

you

must

ensure

that

the

application

binaries

are

expanded

appropriately

in

the

destination

directories

of

all

nodes

where

the

application

runs.

Data

type

Boolean

Default

true

Chapter

18.

Deploying

and

managing

applications

909

Classloader

Mode

Specifies

whether

the

class

loader

searches

in

the

parent

class

loader

or

in

the

application

class

loader

first

to

load

a

class.

The

standard

for

JDK

class

loaders

and

WebSphere

Application

Server

class

loaders

is

PARENT_FIRST.

By

specifying

PARENT_LAST,

your

application

can

override

classes

contained

in

the

parent

class

loader,

but

this

action

can

potentially

result

in

ClassCastException

or

LinkageErrors

if

you

have

mixed

use

of

overridden

classes

and

non-overridden

classes.

The

options

are

PARENT_FIRST

and

PARENT_LAST.

The

default

is

to

search

in

the

parent

class

loader

before

searching

in

the

application

class

loader

to

load

a

class.

Data

type

String

Default

PARENT_FIRST

WAR

Classloader

Policy

Specifies

whether

to

use

a

single

class

loader

to

load

all

WAR

files

of

this

application

or

to

use

a

different

class

loader

for

each

WAR

file.

The

options

are

APPLICATION

and

MODULE.

The

default

is

to

use

a

separate

class

loader

to

load

each

WAR

file.

Data

type

String

Default

MODULE

Create

MBeans

for

Resources

Specifies

whether

to

create

MBean

files

for

various

resources

(such

as

servlets

or

JSP

files)

within

an

application.

Data

type

Boolean

Default

true

Reload

Enabled

Specifies

whether

to

enable

class

reloading

when

application

files

are

updated.

Data

type

Boolean

Default

false

Reload

Interval

Specifies

the

number

of

seconds

to

scan

the

application’s

file

system

for

updated

files.

The

default

is

the

value

of

the

reload

interval

attribute

in

the

IBM

extension

(META-INF/ibm-application-ext.xmi)

file

of

the

EAR

file.

This

setting

takes

effect

only

if

class

reloading

is

enabled.

The

reload

interval

specified

here

overrides

the

value

specified

in

the

IBM

extensions

for

each

Web

module

in

the

EAR

file

(which

in

turn

overrides

the

reload

interval

specified

in

the

IBM

extensions

for

the

application

in

the

EAR

file).

The

range

is

from

0

to

2147483647.

Data

type

Integer

Units

Seconds

Target

mapping

collection

Use

this

page

to

manage

mappings

of

deployed

applications

or

modules

to

servers

or

clusters.

910

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>application_name

>

Target

Mappings.

Target:

States

the

name

of

the

target

server

or

cluster

to

which

the

application

or

module

maps.

You

specify

the

target

on

the

Map

modules

to

application

servers

page

accessed

from

the

settings

for

an

application.

Node:

Specifies

the

node

name

if

the

target

is

a

server.

Status:

Indicates

whether

the

status

of

the

application

running

on

the

target

server

or

cluster

is

started,

stopped

or

unavailable.

Target

mapping

settings:

Use

this

page

to

map

a

deployed

application

or

module

to

a

server

or

cluster.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>application_name

>

Target

Mappings

>target_name.

Target:

States

the

name

of

the

target

server

or

cluster

to

which

the

application

or

module

maps.

You

specify

the

target

on

the

Map

modules

to

application

servers

page

accessed

from

the

settings

for

an

application.

Data

type

String

Enabled:

Indicates

whether

the

application

modules

installed

on

the

target

server

are

started

(or

enabled)

when

the

server

starts.

This

sets

the

initial

state

of

application

modules.

A

true

value

indicates

that

the

corresponding

modules

are

enabled

and

thus

are

accessible

when

the

server

starts.

A

false

value

indicates

that

the

corresponding

modules

are

not

enabled

and

thus

are

not

accessible

when

the

server

starts.

Data

type

Boolean

Default

true

Starting

and

stopping

applications

You

can

start

an

application

that

is

not

running

(has

a

status

of

Stopped)

or

stop

an

application

that

is

running

(has

a

status

of

Started).

1.

Go

to

the

Enterprise

Applications

page.

Click

Applications

>

Enterprise

Applications

in

the

console

navigation

tree.

2.

Check

the

check

box

for

the

application

you

want

started

or

stopped.

Chapter

18.

Deploying

and

managing

applications

911

3.

Click

a

button:

Option

Description

Start

Runs

the

application

and

changes

the

state

of

the

application

from

Stopped

to

Started.

Stop

Stops

the

processing

of

the

application

and

changes

the

state

of

the

application

from

Started

to

Stopped.

To

restart

a

running

application,

place

a

check

mark

in

the

check

box

for

the

application

you

want

to

restart,

click

Stop

and

then

click

Start.

The

status

of

the

application

changes

and

a

message

stating

that

the

application

started

or

stopped

displays

at

the

top

the

page.

Exporting

applications

You

can

export

an

enterprise

application

to

a

location

of

your

choice.

Exporting

applications

enables

you

to

back

up

your

applications

and

preserve

binding

information

for

the

applications.

You

might

export

your

applications

before

updating

installed

applications

or

migrating

to

a

later

version

of

the

WebSphere

Application

Server

product.

1.

Click

Applications

>

Enterprise

Applications

in

the

administrative

console

navigation

tree

to

access

the

Enterprise

Applications

page.

2.

Place

a

check

mark

in

the

check

box

beside

the

application

and

click

Export.

3.

On

the

Export

Application

EAR

Files

page,

click

on

the

link

to

download

the

exported

EAR

file.

4.

Use

the

browser

dialogue

to

specify

a

location

at

which

to

save

the

exported

EAR

file

and

click

OK.

The

file

containing

binding

information

is

exported

to

the

specified

node

and

directory,

and

has

the

name

enterprise_application_name.ear.

Exporting

DDL

files

You

can

export

the

DDL

files

(Table.ddl)

in

the

EJB

modules

of

the

application

to

a

location

of

your

choice.

1.

Click

Applications

>

Enterprise

Applications

in

the

administrative

console

navigation

tree

to

access

the

Enterprise

Applications

page.

2.

Place

a

checkmark

in

the

check

box

beside

the

application

and

click

Export

DDL.

If

the

application

has

no

DDL

files

in

any

of

its

EJB

modules,

then

the

message

No

DDL

files

were

found

displays

at

the

top

of

the

page.

If

the

application

has

DDL

files

in

its

EJB

modules,

then

a

page

displays

listing

DDL

files

in

the

format

appname.ear/_module.jar_Table.ddl.

3.

Click

on

a

file

in

the

list

to

download

the

file

to

your

machine.

Updating

applications

You

can

update

an

application

deployed

on

a

server.

The

steps

below

describe

how

to

update

a

deployed

application

using

the

administrative

console.

912

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Note:

You

can

also

update

applications

using

the

wsadmin

tool,

which

provides

updating

capabilities

identical

to

those

available

using

the

administrative

console.

Further,

in

some

situations,

you

can

update

applications

without

needing

to

restart

the

application

server.

1.

Update

the

contents

of

the

application

and

reassemble

it,

using

the

Application

Assembly

ToolApplication

Assembly

Tool.

Typical

tasks

include

adding

or

editing

assembly

properties,

adding

or

importing

modules

into

an

application,

and

adding

enterprise

beans,

Web

components,

and

files.

2.

Go

to

the

Applications

page

of

the

administrative

console.

Click

Applications

>

Enterprise

Applications

in

the

console

navigation

tree.

3.

Back

up

the

application.

Place

a

checkmark

in

the

check

box

beside

the

application

you

want

uninstalled

and

click

Export

to

export

the

application

to

an

EAR

file

and

preserve

the

binding

information.

4.

With

a

checkmark

beside

the

application,

click

Update.

The

binding

information

of

the

updated

(new)

version

of

the

application

merges

with

the

binding

information

from

the

installed

(old)

version.

Then,

the

older

version

uninstalls

from

the

configuration

and

the

new

version

installs.

5.

Complete

the

steps

in

the

Preparing

for

application

update

page

and

the

pages

that

follow

it.

See

information

on

installing

applications

and

on

the

settings

page

for

application

installation

for

guidance.

Note

that

the

installation

steps

have

the

merged

binding

information

from

the

new

version

and

the

old

version.

If

the

new

version

has

bindings

for

application

artifacts

such

as

EJB

JNDI

names,

EJB

references

or

resource

references,

then

those

bindings

will

be

part

of

the

merged

binding

information.

If

new

bindings

are

not

present,

then

bindings

are

taken

from

the

installed

(old)

version.

If

bindings

are

not

present

in

the

old

version

and

if

the

default

binding

generation

option

is

enabled,

then

the

default

bindings

will

be

part

of

the

merged

binding

information.

You

can

select

whether

to

ignore

bindings

in

the

old

version

or

ones

in

the

new

version.

6.

Map

the

installed

application

or

module

to

servers

or

clusters.

Use

the

Map

modules

to

application

servers

page

of

the

Install

New

Application

pages

displayed

during

updating

the

application.

Or,

after

updating

the

application,

use

the

Map

modules

to

application

servers

page

accessed

from

the

Enterprise

Applications

page.

a.

Go

to

the

Map

modules

to

application

servers

page.

Click

Applications

>

Enterprise

Applications

in

the

console

navigation

tree,

click

the

application

name,

and

then

click

Map

modules

to

application

servers.

b.

Specify

the

application

server

where

you

want

to

install

modules

contained

in

your

application

and

click

OK.
7.

Click

Save

on

the

administrative

console

taskbar

to

save

the

changes

to

your

configuration.

In

the

single

server

(base)

product,

after

you

click

Save

the

old

version

of

the

application

is

uninstalled

and

the

new

version

is

installed

into

the

configuration.

The

application

binaries

for

the

old

version

are

deleted

from

the

destination

directory

and

the

new

binaries

are

copied

to

the

directory.

In

the

Network

Deployment

product,

the

old

application

files

are

deleted

and

new

files

are

copied

when

the

configuration

on

the

deployment

manager

synchronizes

with

the

configuration

on

the

node

where

the

application

is

installed.

If

the

application

is

running

when

you

update

it,

the

application

stops

running

before

its

files

are

copied

to

the

destination

directory

of

the

node

and

restarts

after

the

copy

operation

completes.

Thus,

the

application

is

unavailable

on

the

node

during

the

time

the

node

is

synchronizing

its

configuration

with

the

deployment

manager.

Chapter

18.

Deploying

and

managing

applications

913

8.

Restart

the

application

so

the

changes

take

effect.

If

the

application

is

updated

while

it

is

running,

WebSphere

Application

Server

stops

the

application,

updates

the

application

logic

and

restarts

the

application.

a.

Click

Applications

>

Enterprise

Applications

in

the

console

navigation

tree

to

go

to

the

Enterprise

Applications

page.

b.

Check

the

check

box

for

the

updated

application.

c.

Click

Start.
9.

Optional:

If

the

application

you

are

updating

is

deployed

on

a

server

that

has

its

application

class

loader

policy

set

to

SINGLE,

restart

the

server.

Hot

deployment

and

dynamic

reloading

You

can

make

various

changes

to

applications

and

their

contents

without

having

to

stop

the

server

and

start

it

again.

Making

these

types

of

changes

is

known

as

hot

deployment

and

dynamic

reloading.

Hot

deployment

is

the

process

of

adding

new

components

(such

as

WAR

files,

EJB

Jar

files,

enterprise

Java

beans,

servlets,

and

JSP

files)

to

a

running

server

without

having

to

stop

the

application

server

process

and

start

it

again.

Dynamic

reloading

is

the

ability

to

change

an

existing

component

without

needing

to

restart

the

server

in

order

for

the

change

to

take

effect.

Dynamic

reloading

involves:

v

Changes

to

the

implementation

of

a

component

of

an

application,

such

as

changing

the

implementation

of

a

servlet

v

Changes

to

the

settings

of

the

application,

such

as

changing

the

deployment

descriptor

for

a

Web

module

If

the

application

you

are

updating

is

deployed

on

a

server

that

has

its

application

class

loader

policy

set

to

SINGLE,

you

might

not

be

able

to

dynamically

reload

your

application.

At

minimum,

you

must

restart

the

server

after

updating

your

application.

1.

Locate

your

expanded

application

files.

The

application

files

are

in

the

directory

you

specified

when

installing

the

application

or,

if

you

did

not

specify

a

custom

target

directory,

are

in

the

default

target

directory,

install_root/installedApps/cell_name.

Your

EAR

file,

${APP_INSTALL_ROOT}/cell_name/application_name.ear,

points

to

the

target

directory.

The

variables.xml

file

for

the

node

defines

${APP_INSTALL_ROOT}.

It

is

important

to

locate

the

expanded

application

files

because,

as

part

of

installing

applications,

a

WebSphere

application

server

unjars

portions

of

the

EAR

file

onto

the

file

system

of

the

computer

that

will

run

the

application.

These

expanded

files

are

what

the

server

looks

at

when

running

your

application.

If

you

cannot

locate

the

expanded

application

files,

look

at

the

binariesURL

attribute

in

the

deployment.xml

file

for

your

application.

The

attribute

designates

the

location

the

run

time

uses

to

find

the

application

files.

For

the

remainder

of

this

information

on

hot

deployment

and

dynamic

reloading,

application_root

represents

the

root

directory

of

the

expanded

application

files.

2.

Locate

application

metadata

files.

The

metadata

files

include

the

deployment

descriptors

(web.xml,

application.xml,

ejb-jar.xml,

and

the

like),

the

bindings

files

(ibm-web-bnd.xmi,

ibm-app-bnd.xmi,

and

the

like),

and

the

extensions

files

(ibm-web-ext.xmi,

ibm-app-ext.xmi,

and

the

like).

914

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Metadata

XML

files

for

an

application

can

be

loaded

from

one

of

two

locations.

The

metadata

files

can

be

loaded

from

the

same

location

as

the

application

binary

files

(such

as

application_root/META-INF)

or

they

can

be

loaded

from

the

WebSphere

configuration

tree,

${CONFIG_ROOT}/cells/cell_name

/applications/application_EAR_name/deployments/application_name/.

The

value

of

the

useMetadataFromBinary

flag

specified

during

application

installation

controls

which

location

is

used.

If

specified,

the

metadata

files

are

loaded

from

the

same

location

as

the

application

binary

files.

If

not

specified,

the

metadata

files

are

loaded

from

the

application

deployment

folder

in

the

configuration

tree.

For

the

remainder

of

this

information,

metadata_root

represents

the

location

of

the

metadata

files

for

the

specified

application

or

module.

3.

CAUTION:

If

you

are

running

WebSphere

Application

Server

on

a

group

of

machines

using

Network

Deployment

and

you

are

changing

an

application

on

a

particular

node,

disable

automatic

synchronization.

a.

Click

System

Administration

>

Node

Agents

in

the

administrative

console

navigation

tree,

click

on

a

node

agent

name,

and

then

click

File

Synchronization

Service.

b.

On

the

File

Synchronization

Service

page,

remove

the

checkmark

from

the

check

box

for

Automatic

Synchronization

and

click

OK.

When

you

run

WebSphere

Application

Server

on

a

group

of

machines

using

Network

Deployment

and

you

change

a

file

on

the

disk

in

the

expanded

application

directory

for

a

particular

node,

you

can

lose

those

changes

the

next

time

node

synchronization

occurs.

In

the

Network

Deployment

environment,

the

configuration

stored

by

the

deployment

manager

is

the

master

copy

and

any

changes

detected

between

that

master

copy

and

the

copy

on

a

particular

machine

trigger

the

master

copy

to

be

downloaded

to

the

node.

4.

Change

or

add

the

following

components

or

modules

as

needed:

v

Application

files

v

WAR

files

v

EJB

Jar

files

v

HTTP

plug-in

configuration

files
5.

For

changes

to

take

effect,

you

might

need

to

start,

stop,

or

restart

an

application.

″“Starting

and

stopping

applications”

on

page

911″

provides

information

on

using

the

administrative

console

to

start,

stop,

or

restart

an

application.

″Example:

Starting

an

application

using

wsadmin″

and

″Example:

Stopping

running

applications

on

a

server

using

wsadmin″

provide

information

on

using

the

wsadmin

scripting

tool.

6.

If

you

disabled

automatic

synchronization

in

step

3,

return

to

the

File

Synchronization

Service

page,

enable

Automatic

Synchronization,

and

click

OK.

Changing

or

adding

application

files

You

can

change

or

add

application

files

on

application

servers

without

having

to

stop

the

server

and

start

it

again.

This

file

describes--

v

Updating

an

existing

application

on

a

running

server

(providing

a

new

EAR

file)

v

Adding

a

new

application

to

a

running

server

v

Removing

an

existing

application

from

a

running

server

v

Adding

a

new

EJB

or

Web

module

to

an

existing,

running

application

v

Changing

the

application.xml

file

for

an

application

v

Changing

the

ibm-app-ext.xmi

file

for

an

application

v

Changing

the

ibm-app-bnd.xmi

file

for

an

application

v

Changing

a

non-module

Jar

file

contained

in

the

EAR

file

Chapter

18.

Deploying

and

managing

applications

915

v

Update

an

existing

application

on

a

running

server

(providing

a

new

EAR

file).

Reinstall

an

updated

application

using

the

administrative

console

or

the

wsadmin

$AdminApp

install

command

with

the

-update

option

Both

reinstallation

methods

enable

you

to

update

an

existing

application

using

any

of

the

other

steps

listed

in

this

file,

including

changing

classes,

adding

modules,

removing

modules,

changing

modules,

or

changing

metadata

files.

The

application

reinstallation

methods

detect

the

changes

in

your

application

and

prompt

you

for

additional

binding

data

that

might

be

needed

to

install

the

application.

The

reinstallation

process

automatically

stops

and

restarts

your

application

on

the

appropriate

servers.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

v

Add

a

new

application

to

a

running

server.

Install

an

application

using

the

administrative

console

or

the

wsadmin

install

command.

Hot

deployment:

Yes

Dynamic

reloading:

No

v

Remove

an

existing

application

from

a

running

server.

Stop

the

application

and

then

uninstall

it

from

the

server.

Use

the

administrative

console

to

stop

the

application

and

then

uninstall

it.

Or

run

the

wasadmin

stopApplication

command

and

then

the

uninstall

command.

Hot

deployment:

Yes

Dynamic

reloading:

No

v

Add

a

new

EJB

or

Web

module

to

an

existing,

running

application.

1.

Update

the

application

files

in

the

application_root

location.

2.

Restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Yes

Dynamic

reloading:

No

v

Change

the

application.xml

file

for

an

application.

Restart

the

application.

Automatic

reloading

will

not

detect

the

change.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

the

ibm-app-ext.xmi

file

for

an

application.

Restart

the

application.

Automatic

reloading

will

not

detect

the

change.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

the

ibm-app-bnd.xmi

file

for

an

application.

Restart

the

application.

Automatic

reloading

will

not

detect

the

change.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

916

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

a

non-module

Jar

file

contained

in

the

EAR

file.

1.

Update

the

non-module

Jar

file

in

the

application_root

location.

2.

If

automatic

reloading

is

not

enabled,

restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

Changing

or

adding

WAR

files

You

can

change

WAR

files

on

application

servers

without

having

to

stop

the

server

and

start

it

again.

This

file

describes--

v

Changing

an

existing

JSP

file

v

Adding

a

new

JSP

file

to

an

existing

application

v

Changing

an

existing

servlet

class

(editing

and

recompiling)

v

Changing

a

dependent

class

of

an

existing

servlet

class

v

Adding

a

new

servlet

using

the

Invoker

(Serve

Servlets

by

class

name)

facility

or

adding

a

dependent

class

to

an

existing

application

v

Adding

a

new

servlet,

including

a

new

definition

of

the

servlet

in

the

web.xml

deployment

descriptor

for

the

application

v

Changing

the

web.xml

file

of

a

WAR

file

v

Changing

the

ibm-web-ext.xmi

file

of

a

WAR

file

v

Changing

the

ibm-web-bnd.xmi

file

of

a

WAR

file
v

Change

an

existing

JSP

file.

Place

the

changed

JSP

file

directly

in

the

application_root/module_name

directory

or

the

appropriate

subdirectory.

The

change

will

be

automatically

detected

and

the

JSP

will

be

recompiled

and

reloaded.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Add

a

new

JSP

file

to

an

existing

application.

Place

the

new

JSP

file

directly

in

the

application_root/module_name

directory

or

the

appropriate

subdirectory.

The

new

file

will

be

automatically

detected

and

compiled

on

the

first

request

to

the

page.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

v

Change

an

existing

servlet

class

(editing

and

recompiling).

1.

Place

the

new

version

of

the

servlet

.class

file

directly

in

the

application_root/module_name/WEB-INF/classes

directory.

If

the

.class

file

is

part

of

a

Jar

file,

you

can

place

the

new

version

of

the

Jar

file

directly

in

application_root/module_name/WEB-INF/lib.

In

either

case,

the

change

will

be

detected,

the

Web

application

will

be

shut

down

and

reinitialized,

picking

up

the

new

class.

Chapter

18.

Deploying

and

managing

applications

917

2.

If

automatic

reloading

is

not

enabled,

restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

a

dependent

class

of

an

existing

servlet

class.

1.

Place

the

new

version

of

the

dependent

.class

file

directly

in

the

application_root/module_name/WEB-INF/classes

directory.

If

the

.class

file

is

part

of

a

Jar

file,

you

can

place

the

new

version

of

the

Jar

file

directly

in

application_root/module_name/WEB-INF/lib.

In

either

case,

the

change

will

be

detected,

the

Web

application

will

be

shut

down

and

reinitialized,

picking

up

the

new

class.

2.

If

automatic

reloading

is

not

enabled,

restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Add

a

new

servlet

using

the

Invoker

(Serve

Servlets

by

class

name)

facility

or

adding

a

dependent

class

to

an

existing

application.

1.

Place

the

new

.class

file

directly

in

the

application_root/module_name/WEB-
INF/classes

directory.

If

the

.class

file

is

part

of

a

Jar

file,

you

can

place

the

new

version

of

the

Jar

file

directly

in

application_root/module_name/WEB-
INF/lib.

In

either

case,

the

change

will

be

detected,

the

Web

application

will

be

shut

down

and

reinitialized,

picking

up

the

new

class.

This

case

is

treated

the

same

as

changing

an

existing

class.

The

difference

is

that

adding

the

servlet

or

class

does

not

immediately

cause

the

Web

application

to

reload

because

the

class

has

never

been

loaded

before.

The

class

simply

becomes

available

for

execution.

2.

If

automatic

reloading

is

not

enabled,

restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

Hot

deployment:

Yes

Dynamic

reloading:

Not

applicable

v

Add

a

new

servlet,

including

a

new

definition

of

the

servlet

in

the

web.xml

deployment

descriptor

for

the

application.

Place

the

new

.class

file

directly

in

the

application_root/module_name/WEB-INF/classes

directory.

If

the

.class

file

is

part

of

a

Jar

file,

you

can

place

the

new

version

of

the

Jar

file

directly

in

application_root/module_name/WEB-INF/lib.

You

can

edit

the

web.xml

file

in

place

or

copy

it

into

the

application_root/module_name/WEB-INF/classes

directory.

The

new

.class

file

will

not

trigger

a

reloading

of

the

application.

v

Restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

After

918

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

the

application

restarts,

the

new

servlet

is

available

for

service.

Hot

deployment:

Yes

Dynamic

reloading:

Not

applicable

v

Change

the

web.xml

file

of

a

WAR

file.

1.

Edit

the

web.xml

file

in

place

or

copy

it

into

the

metadata_root/module_name/WEB-INF

directory.

2.

Restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

v

Change

the

ibm-web-ext.xmi

file

of

a

WAR

file.

Edit

the

extension

settings

as

needed.

You

can

change

all

of

the

extension

settings.

The

only

warning

is

if

you

set

the

reloadInterval

property

to

zero

(0)

or

the

reloadEnabled

property

to

false,

the

application

will

no

longer

automatically

detect

changes

to

class

files.

Both

of

these

changes

disable

the

automatic

reloading

function.

The

only

way

to

re-enable

automatic

reloading

is

to

change

the

appropriate

property

and

restart

the

application.

See

other

task

descriptions

in

this

file

for

information

on

restarting

an

application.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

the

ibm-web-bnd.xmi

file

of

a

WAR

file.

1.

Edit

the

bindings

as

needed.

You

can

change

all

of

the

values

but

ensure

that

the

entities

you

are

binding

to

are

present

in

the

configuration

of

the

server.

2.

Restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

Changing

or

adding

EJB

Jar

files

You

can

change

EJB

Jar

files

on

application

servers

without

having

to

stop

the

server

and

start

it

again.

This

file

describes--

v

Changing

the

ejb-jar.xml

file

of

an

EJB

Jar

file

v

Changing

the

ibm-ejb-jar-ext.xmi

or

ibm-ejb-jar-bnd.xmi

file

of

an

EJB

Jar

file

v

Changing

the

Table.ddl

file

for

an

EJB

Jar

file

v

Changing

the

Map.mapxmi

or

Schema.dbxmi

file

for

an

EJB

Jar

file

v

Updating

the

implementation

class

for

an

EJB

file

or

a

dependent

class

of

the

implementation

class

for

an

EJB

file

v

Updating

the

Home/Remote

interface

class

for

an

EJB

file

v

Adding

a

new

EJB

file

to

an

existing

EJB

Jar

file
v

Change

the

ejb-jar.xml

file

of

an

EJB

Jar

file.

Restart

the

application.

Automatic

reloading

will

not

detect

the

change.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Chapter

18.

Deploying

and

managing

applications

919

Dynamic

reloading:

Yes

v

Change

the

ibm-ejb-jar-ext.xmi

or

ibm-ejb-jar-bnd.xmi

file

of

an

EJB

Jar

file.

Restart

the

application.

Automatic

reloading

will

not

detect

the

change.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Change

the

Table.ddl

file

for

an

EJB

Jar

file.

Rerun

the

DDL

file

on

the

user

database

server.

Changing

the

Table.ddl

file

has

no

effect

on

the

application

server

and

is

a

change

to

the

database

table

schema

for

the

EJB

files.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Not

applicable

v

Change

the

Map.mapxmi

or

Schema.dbxmi

file

for

an

EJB

Jar

file.

1.

Change

the

Map.mapxmi

or

Schema.dbxmi

file

for

an

EJB

Jar

file.

2.

Regenerate

the

deployed

code

artifacts

for

the

EJB

file.

3.

Apply

the

new

EJB

Jar

file

to

the

server.

4.

Restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Update

the

implementation

class

for

an

EJB

file

or

a

dependent

class

of

the

implementation

class

for

an

EJB

file.

1.

Update

the

class

file

in

the

application_root/module_name.jar

file.

2.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

If

automatic

reloading

is

not

enabled,

restart

the

application

of

which

the

EJB

file

is

a

member.

If

the

updated

module

is

used

by

other

modules

in

other

applications,

restart

those

applications

as

well.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

v

Update

the

Home/Remote

interface

class

for

an

EJB

file.

1.

Update

the

interface

class

of

the

EJB

file.

2.

Regenerate

the

deployed

code

artifacts

for

the

EJB

file.

3.

Apply

the

new

EJB

Jar

file

to

the

server.

4.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

If

automatic

reloading

is

not

enabled,

restart

the

application

of

which

the

EJB

file

is

a

member.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Not

applicable

Dynamic

reloading:

Yes

920

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

v

Add

a

new

EJB

file

to

an

existing

EJB

Jar

file.

1.

Apply

the

new

or

updated

Jar

file

to

the

application_root

location.

2.

If

automatic

reloading

is

enabled,

you

do

not

need

to

take

further

action.

Automatic

reloading

will

detect

the

change.

If

automatic

reloading

is

not

enabled,

restart

the

application.

Use

the

administrative

console

to

restart

the

application.

Or

run

the

wasadmin

stopApplication

and

startApplication

commands.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

Changing

the

HTTP

plug-in

configuration

You

can

change

the

HTTP

plug-in

configuration

without

having

to

stop

the

server

and

start

it

again.

This

file

describes--

v

Changing

the

application.xml

file

to

change

the

context

root

of

a

WAR

file

v

Changing

the

web.xml

file

to

add,

remove,

or

modify

a

servlet

mapping

v

Changing

the

server.xml

file

to

add,

remove,

or

modify

an

HTTP

transport

or

changing

the

virtualhost.xml

file

to

add

or

remove

a

virtual

host

or

to

add,

remove,

or

modify

a

virtual

host

alias

Changing

the

application.xml

file

to

change

the

context

root

of

a

WAR

file

1.

Change

the

application.xml

file.

2.

Regenerate

the

plug-in

configuration

file

using

the

administrative

console

or

by

running

the

GenPluginCfg.bat/sh

script.

Hot

deployment:

Yes

Dynamic

reloading:

No

Changing

the

web.xml

file

to

add,

remove,

or

modify

a

servlet

mapping

1.

Change

the

web.xml

file.

2.

Regenerate

the

plug-in

configuration

file

using

the

administrative

console

or

by

running

the

GenPluginCfg.bat/sh

script.

If

the

Web

application

has

file

serving

enabled

or

has

a

servlet

mapping

of

/,

you

do

not

have

to

regenerate

the

plug-in

configuration.

In

all

other

cases

the

regeneration

is

required.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

Changing

the

server.xml

file

to

add,

remove,

or

modify

an

HTTP

transport

or

changing

the

virtualhost.xml

file

to

add

or

remove

a

virtual

host

or

to

add,

remove,

or

modify

a

virtual

host

alias

1.

Change

the

server.xml

file

to

add,

remove,

or

modify

an

HTTP

transport

or

change

the

virtualhost.xml

file

to

add

or

remove

a

virtual

host

or

to

add,

remove,

or

modify

a

virtual

host

alias.

2.

Regenerate

the

plug-in

configuration

file

using

the

administrative

console,

by

running

the

GenPluginCfg.bat/sh

script,

or

by

running

a

wsadmin

command.

Hot

deployment:

Yes

Dynamic

reloading:

Yes

Chapter

18.

Deploying

and

managing

applications

921

Uninstalling

applications

After

an

application

no

longer

is

needed,

you

can

uninstall

it.

Uninstalling

an

application

deletes

the

application

from

the

WebSphere

Application

Server

configuration

repository

and

it

deletes

the

application

binaries

from

the

file

system

of

all

nodes

where

the

application

modules

are

installed.

1.

Click

Applications

>

Enterprise

Applications

in

the

administrative

console

navigation

tree

to

access

the

Enterprise

Applications

page.

2.

Stop

the

application.

Select

the

application

you

want

uninstalled

and

click

Stop.

3.

Back

up

the

application.

Select

the

application

you

want

uninstalled

and

click

Export

to

export

the

application

to

an

EAR

file

and

preserve

the

binding

information.

4.

Select

the

application

you

want

uninstalled

and

click

Uninstall.

5.

Click

Save

on

the

console

taskbar

to

save

changes

made

to

the

administrative

configuration.

In

the

single-server

(base)

product,

application

binaries

are

deleted

after

you

click

Save.In

the

Network

Deployment

product,

application

binaries

are

deleted

when

configuration

changes

on

the

deployment

manager

synchronize

with

configurations

for

individual

nodes.

Deploying

and

managing

applications:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

deploying

and

managing

applications

using

the

administrative

console.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Programming

model

and

decisions

v

Programming

instructions

and

examples

v

Programming

instructions

and

examples

Programming

model

and

decisions

v

The

J2EETM

Tutorial:

The

Duke’s

Bank

Application

v

Best

Practices

in

WebSphere

Application:

Separating

the

developers

from

the

administrators

v

Designing

Enterprise

Applications

with

the

JavaTM

2

Platform,

Enterprise

Edition,

Second

Edition

v

Designing

Enterprise

Applications,

Second

Edition

v

Building

JavaTM

Enterprise

Applications

Volume

I:

Architecture

Programming

instructions

and

examples

v

WebSphere

Application

Server

education

v

Developing

and

Testing

a

Complete

’Hello

World’

J2EE

Application

with

IBM

WebSphere

Studio

Application

Developer

for

Linux

v

Writing

Enterprise

Applications

with

JavaTM

2

Platform,

Enterprise

Edition

922

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://developer.java.sun.com/developer/Books/j2ee/designingenterprise/
http://developer.java.sun.com/developer/Books/j2ee/bjeapps/
http://www.software.ibm.com/wsdd/education/enablement/curriculum/cur_webappsrvadm.html
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/

Administration

v

Listing

of

all

IBM

WebSphere

Application

Server

Redbooks

Chapter

18.

Deploying

and

managing

applications

923

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

924

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Mail

Station

P300

522

South

Road

Poughkeepsie,

NY

12601-5400

USA

Attention:

Information

Requests

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

©

Copyright

IBM

Corp.

2003

925

926

WebSphere

Application

Server

for

z/OS

V5.0.2::

Applications

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

©

Copyright

IBM

Corp.

2003

927

	Contents
	How to send your comments
	Chapter 1. Welcome to Applications
	Chapter 2. Using Web applications
	Web applications
	web.xml file
	Migrating Web application components
	Default Application
	Servlets
	Developing servlets with WebSphere Application Server extensions
	Application lifecycle listeners and events
	Listener classes for servlet context and session changes
	Example: com.ibm.websphere.DBConnectionListener.java
	Servlet filtering
	Filter, FilterChain, FilterConfig classes for servlet filtering
	Example: com.ibm.websphere.LoggingFilter.java
	Configuring page list servlet client configurations
	Page lists
	Client type detection support
	client_types.xml
	Example: Extending PageListServlet

	autoRequestEncoding and autoResponseEncoding
	Examples: autoRequestEncoding and autoResponseEncoding encoding examples

	JavaServer Pages files
	Developing JavaServer Pages files with WebSphere extensions
	Tag libraries
	tsx:dbconnect tag JavaServer Pages syntax
	dbquery tag JavaServer Pages syntax
	dbmodify tag JavaServer Pages syntax
	tsx:getProperty tag JavaServer Pages syntax and examples
	tsx:userid and tsx:passwd tag JavaServer Pages syntax
	tsx:repeat tag JavaServer Pages syntax
	Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages tags
	Example: tsx:dbmodify tag syntax
	Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set
	JspBatchCompiler tool

	Bean Scripting Framework
	Developing Web applications
	Disabling JavaServer Pages run-time compilation

	Example: Converting JavaScript source to the Bean Scripting Framework
	Scenario: Creating a Bean Scripting Framework application
	Example: Bean Scripting Framework code example
	Web modules
	Assembling Web applications
	Using the AAT to assemble Web modules
	Context parameters
	Security constraints
	Servlet mappings
	Invoker attributes
	Error pages
	File serving
	Initialization parameters
	Servlet caching
	Web components
	Web property extensions
	Web resource collections
	Welcome files
	Context parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	Initialization parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	Filter assembly settings
	Filter name
	Class
	Description

	JavaServer Pages attribute assembly settings
	JSP Attribute (Name)
	JSP Attribute (Value)
	Supported JSP attributes
	classdebuginfo
	classpath
	deprecation
	disableJspRuntimeCompilation
	ieClassID
	javaEncoding
	jspCompilerPath
	keepgenerated
	largefile
	mappedfile
	scratchdir
	usePageTagPool
	useThreadTagPool
	verbose

	Multipurpose Internet Mail Extensions (MIME) filter assembly settings
	Component name (Required, String)
	Display name
	Description
	Component type
	Class name (Required, String)
	JSP file (Required, String)
	Load on startup
	Small icon
	Large icon

	Page list assembly settings
	Name
	MIME Type
	Error Page
	Default Page
	Pages - Name
	Pages - URI

	Security constraint assembly settings
	Security constraint name
	Authorization Constraints - Roles
	Authorization Constraints - Description
	User Data Constraints - Transport guarantee
	User Data Constraints - Description

	Servlet mapping assembly settings
	URL pattern (Required, String)
	Servlet (Required, String)

	Tag library assembly settings
	Tag library file name (Required, String)
	Tag library location (Required, String)

	Welcome file assembly settings
	Welcome file (Required, String)

	Servlet caching configuration assembly settings
	Caching group name
	Priority
	Timeout
	Invalidate only
	Caching group members
	Use URIs for cache ID building
	Use specified string
	Variables - ID
	Variables - Type
	Variables - Method
	Variables - Data ID
	Variables - Invalidate ID
	Required
	External cache groups - Group name
	ID generator
	Meta data generator

	Web components assembly settings
	Component name
	Display name
	Description
	Component type
	Class name
	JSP file
	Load on startup
	Small icon
	Large icon
	Run as role name
	Description
	Run as role mode
	Local Transactions - Unresolved action

	Web modules assembly settings
	File name
	Alternative DD
	Context root
	Classpath
	Display name
	Description
	Distributable
	Small icon
	Large icon
	Session configuration
	Session timeout
	Login configuration -- Authentication method
	Login configuration -- Realm name
	Login configuration -- Login page
	Form Login Config -- Error page
	Reload interval
	Reloading enabled
	Default error page
	Additional classpath
	File serving enabled
	Directory browsing enabled
	Serve servlets by classname
	Virtual hostname
	Filter mappings

	Assembly property extensions
	File serving attribute assembly settings
	File Serving Attribute (Name)
	File Serving Attribute (Value)

	Invoker attribute assembly settings
	Invoker Attribute (Name)
	Invoker Attribute (Value)

	Error page assembly settings
	Error code
	Error Code (Required, String)
	Exception
	Exception type name (Required, String)
	Location (Required, String)

	Web resource collections security constraint properties
	Web resource name
	Web resource description
	HTTP methods
	URL pattern

	Troubleshooting tips for Web application deployment
	Modifying the default Web container configuration
	Web container
	Web container settings
	Default virtual host
	Servlet caching

	Web module settings
	URI
	Name
	Alternate DD
	Starting weight
	Prefer WEB-INF Classes
	Initial State

	Web Module Deployment settings
	URI
	Alternate DD
	Starting weight
	Classloader Mode

	Web container advanced settings
	Network QoS
	Transaction Class Mapping

	Web container custom properties
	Name
	Value
	Description

	Web applications: Resources for learning

	Chapter 3. Managing HTTP sessions
	Sessions
	Migrating HTTP sessions
	Developing session management in servlets
	Example: SessionSample.java

	Assembling so that session data can be shared
	Session security support
	Session management support
	Configuring session management by level
	Session tracking options
	Session tracking with cookies
	Session tracking with URL rewriting
	Session tracking with SSL information

	Configuring session tracking
	Serializing access to session data
	Session Management settings
	Overwrite Session Management
	Session tracking mechanism
	Maximum in-memory session count
	Overflow
	Session timeout
	Security integration
	Serialize session access

	Cookie settings
	Cookie name
	Secure cookies
	Cookie domain
	Cookie path
	Cookie maximum age

	Distributed sessions
	Session recovery support
	Distributed Environment settings
	Distributed Sessions

	Configuring for database session persistence
	Switching to a multirow schema
	Creating a DB2 table for session persistence
	Database settings
	Datasource JNDI Name
	User ID
	Password
	Confirm Password
	DB2 Row Size
	Table Space Name
	Multi row schema

	Multirow schema considerations

	Memory-to-memory replication
	Clustered session support
	Tuning session management
	Configuring scheduled invalidation
	Configuring write contents
	Configuring write frequency
	Base in-memory session pool size
	Controlling write operations
	Tuning parameter settings
	Tuning Level

	Tuning parameter custom settings
	Write frequency
	Write contents
	Schedule sessions cleanup

	Best practices for using HTTP Sessions
	Managing HTTP sessions: Resources for learning:

	Chapter 4. Using enterprise beans in applications
	Enterprise beans
	Developing enterprise beans
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.0

	WebSphere extensions to the Enterprise JavaBeans specification
	Best practices for developing enterprise beans
	Batch commands for container managed persistence
	Deferred Create for container managed persistence
	Explicit invalidation in the Persistence Manager cache

	Unknown primary-key class

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints

	Applying access intent policies to methods
	Access intent exceptions
	Access intent assembly settings
	Name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Applied access intent

	Access intent best practices
	Frequently asked questions: Access intent

	EJB modules
	Assembling EJB modules
	Assembling EJB modules
	Container transactions
	Method extensions
	Method permissions
	References
	CMP field assembly settings
	Name

	Container transaction assembly settings
	Name
	Description
	Transaction attribute
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	EJB module assembly settings
	File name
	Alternate DD
	Classpath
	Display name
	Description
	EJB client JAR
	Small icon
	Large icon
	Generalizations - Subtype
	Generalizations - Supertype
	EJB relationships - Name
	Default data source - JNDI name
	Default CMP connection factory
	Default authorization - User ID
	Default authorization - Password

	Entity bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Persistence type
	Reentrant
	Primary key class
	Primary key field
	Version
	Abstract schema name
	Small icon
	Large icon
	Security identity
	Run-As mode
	Role name
	Description
	Concurrency control
	Inheritance root
	Bean Cache - Activate at
	Bean Cache - Load at
	Commit option
	Local Transactions - Unresolved action
	Local Transactions - Resolution control
	Local Transactions - Boundary
	Local Relationship Roles - Name
	Local Relationship Roles - Source EJB Name
	Local Relationship Roles - is Forward
	Local Relationship Roles - is Navigable
	Lifetime in cache
	Lifetime in cache usage
	Default Access Intent
	JNDI name
	Data source - JNDI name
	Default Authorization - User ID
	Default Authorization - Password
	CMP Resource - JNDI name
	CMP Resource - Resource authentication

	Message-driven bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Transaction type
	Message selector
	Acknowledge mode
	Destination type
	Listener port name

	Method extension assembly settings
	Method type
	Name
	Parameters
	Isolation level attributes
	Isolation level
	Access intent - Intent type
	Finder descriptor - User
	Finder descriptor - EJB QL
	Finder descriptor - Full SELECT
	Finder descriptor - WHERE clause
	Security identity
	Description
	Run-As mode
	Role name
	Description

	Method permission assembly settings
	Method permission name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Unchecked
	Roles - Role name

	Query assembly settings
	Name
	Parameters
	Result type

	EJB reference assembly settings
	Name
	Description
	Link
	Home
	Remote
	Type
	JNDI name

	EJB local-reference assembly settings
	Name
	Description
	Link
	Local interface
	Local home
	Type

	EJB relation assembly settings
	Description
	Source EJB
	Multiplicity
	Cascade delete
	CMR field

	Exclude list assembly settings
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	Security role assembly settings
	Role name
	Description
	Binding - Groups - Name
	Binding - Users - Name
	Binding - Special Subjects - Name

	Session bean assembly properties
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Session type
	Transaction type
	Small icon
	Large icon
	Security identity
	Description
	Run-As mode
	Role name
	Description
	Timeout
	Inheritance root
	Bean Cache - Activate at
	Local Transactions - Unresolved action
	Local Transactions - Resolution control
	Local Transactions - Boundary
	JNDI name

	EJB containers
	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default datasource JNDI name
	Initial state

	EJB container system properties
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability

	Deploying EJB modules
	EJB module collection
	URI

	EJB module settings
	URI
	Alternate DD
	Starting weight

	Troubleshooting tips for EJBDEPLOY relationships

	Enterprise beans: Resources for learning
	EJB method Invocation Queuing

	Chapter 5. Using message-driven beans in applications
	Message-driven beans - an overview
	Message-driven beans - components
	Message-driven beans - transaction support

	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans
	Deploying an enterprise application to use message-driven beans
	Configuring deployment attributes using the Assembly Toolkit
	Configuring deployment attributes for a message-driven bean

	Configuring message listener resources for message-driven beans
	Configuring the message listener service
	Message listener service

	Adding a new listener port
	Configuring a listener port
	Deleting a listener port
	Configuring security for message-driven beans
	Administering listener ports
	Starting a listener port
	Stopping a listener port

	Important files for message-driven beans and extended messaging
	Troubleshooting message-driven beans
	Message-driven beans samples

	Chapter 6. Using application clients
	Application clients
	Application client functions
	J2EE application clients
	Pluggable application clients

	Migration tips for application clients
	Developing J2EE application client code
	J2EE application client class loading

	Developing pluggable application client code
	Assembling application clients
	Assembling Application Client Modules
	Application client assembly settings
	File name (Required, String)
	Alternative DD
	Classpath
	Display name (Required, String)
	Small icon
	Large icon
	Description
	Main class (Required, String)

	Deploying application clients on z/OS
	Application Client Resource Configuration Scripting tool for z/OS
	Determining required properties for z/OS application client resources
	Properties for data source providers
	Properties for data sources
	Properties for JMS providers
	Properties for JMS connections
	Properties for JMS destinations
	Properties for mail providers
	Properties for mail sessions
	Properties for resource environment providers
	Properties for resource environment entries
	Properties for URL providers
	Properties for URL factories
	Properties for WebSphere MQ queue connection factories
	Properties for WebSphere MQ queue destination factories
	Properties for WebSphere MQ topic connection factories
	Properties for WebSphere MQ topic destination factories
	Properties for WebSphere queue connection factories
	Properties for WebSphere queue destination factories
	Properties for WebSphere topic connection factories
	Properties for WebSphere topic destination factories

	Deploying application clients on workstation platforms
	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Data sources for application clients
	Configuring new data source providers (JDBC providers) for application clients
	Configuring new data source providers

	Configuring new data sources for application clients
	Configuring mail providers and sessions for application clients
	Mail provider settings for application clients
	Mail session settings for application clients
	Example: Configuring JavaMail provider and JavaMail session settings for application clients

	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring URL providers and sessions using the Application Client Resource Configuration Tool
	Example: Configuring URL and URL provider settings for application clients

	Configuring new URLs with the Application Client Resource Configuration Tool
	WebSphere asynchronous messaging using the Java Message Service API for the Application Client Resource Configuration Tool
	Configuring Java messaging client resources
	Configuring new JMS providers with the Application Client Resource Configuration Tool
	JMS provider settings for application clients
	WebSphere queue connection factory settings for application clients
	WebSphere topic connection factory settings for application clients
	WebSphere queue destination settings for application clients
	WebSphere topic destination settings for application clients
	MQSeries queue connection factory settings for application clients
	MQSeries topic connection factory settings for application clients
	MQSeries queue destination settings for application clients
	MQSeries topic destination settings for application clients
	Generic JMS connection factory settings for application clients
	Generic JMS destination settings for application clients
	Example: Configuring JMS Provider, JMS Connection Factory and JMS Destination settings for application clients

	Configuring new connection factories for application clients
	Configuring new Java Message Service destinations for application clients
	Example: Configuring MQ Queue and Topic connection factories and destination factories for application clients
	Example: Configuring WAS Queue and Topic connection factories and destination factories for application clients
	Configuring new resource environment providers for application clients
	Resource environment provider settings for application clients

	Configuring new resource environment entries for application clients
	Resource environment entry settings for application clients

	Managing application clients
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Jave Message Service provider, connection factories, and destination configurations for application clients
	Updating MQ Java Message Service provider, MQ connection factories, and MQ destination configurations for application clients
	Updating Resource Environment Entry and Resource Environment Provider configurations for application clients
	Example: Configuring Resource Environment settings
	Example: Configuring Resource Environment custom settings for application clients

	Removing application client resources

	Running application clients
	launchClient tool
	Specifying the directory for an expanded EAR file

	Application client troubleshooting tips

	Chapter 7. Using Web services based on Web Services for J2EE
	Web services
	SOAP
	Planning to use Web services based on Web Services for J2EE
	Service-oriented architecture
	Web services approach to a service-oriented architecture
	Web services business models supported

	Migrating Apache SOAP Web services to Web Services for J2EE
	Developing Web services based on Web Services for J2EE
	Example: Developing Web services based on Web Services for J2EE
	Web Services for J2EE
	Java API for XML-based remote procedure call (JAX-RPC)
	Artifacts used to develop Web services based on Web Services for J2EE
	Mapping between Java language, WSDL and XML
	Installing IBM Web Services Development Kit for z/OS
	Java2WSDL command
	WSDL2Java command
	Setting up a development and unmanaged client execution environment for Web services based on Web Services for J2EE
	Developing a Web service from a Java bean
	Developing a WSDL file
	Developing a Service Endpoint Interface for a Java bean implementation
	Developing Web services deployment descriptor templates for a Java bean implementation

	Developing a Web service using a stateless session enterprise bean
	Developing a Service Endpoint Interface from an EJB remote interface
	Developing Web services deployment descriptor templates for an EJB implementation
	Completing the EJB implementation

	Configuring the webservices.xml deployment descriptor
	Configuring the ibm-webservices-bnd.xmi deployment descriptor
	ibm-webservices-bnd.xmi assembly properties

	Configuring the webservices.xml deployment descriptor for Handler classes
	Developing a new Web service with an existing WSDL file using a Java bean
	Developing Web services deployment descriptor templates for a Java bean implementation
	Completing the Java bean implementation

	Developing a new Web service from an existing WSDL file using a stateless session enterprise bean
	Developing EJB implementation templates and bindings from a WSDL file

	Web services implementation scope
	Port
	Web Service
	URI
	Scope

	Default Port Mapping Definitions collection
	Port Type Local Name
	Port Type Namespace
	Default Port Local Name
	Default Port Namespace

	Default Port Type Mapping Properties settings
	Port Type Local Name
	Port Type Namespace
	Default Port Local Name
	Default Port Namespace

	Developing Web services clients based on Web Services for J2EE
	Example: Developing Web services clients based on Web Services for J2EE
	Developing client bindings from a WSDL file
	Assembling a Web services-enabled client JAR file into an EAR file
	Assembling a Web services-enabled client WAR file into an EAR file
	Configuring the ibm-webservicesclient-bnd.xmi deployment descriptor
	ibm-webservicesclient-bnd.xmi assembly properties

	Configuring the webservicesclient.xml deployment descriptor
	Configuring the webservicesclient.xml deployment descriptor for Handler classes
	Handler class properties
	Example: Configuring Handler classes for Web services deployment descriptors

	Testing Web services-enabled clients
	Web services client bindings
	Web Service
	URI
	WSDL Filename
	Default Port Mappings

	Assembling Web services applications based on Web Services for J2EE
	Assembling a Web services-enabled EJB JAR file
	Assembling a Web services-enabled EJB JAR file when starting from Java code
	Assembling Web services-enabled EJB JAR file when starting from WSDL

	Assembling a Web services-enabled WAR file
	Assembling a Web services-enabled WAR file when starting from Java code
	Assembling a Web services-enabled WAR file when starting from WSDL

	Assembling a Web services-enabled EJB JAR into an EAR file
	Assembling a Web services-enabled WAR into an EAR file
	Enabling a Web services-enabled EAR file
	Enabling a Web services-enabled EAR file with the endptEnabler command
	Enabling a Web services-enabled EAR file with the Assembly Toolkit

	Deploying Web services based on Web Services for J2EE
	wsdeploy command

	Using the Java Messaging Service to transport Web services requests
	Java Messaging Service endpoint URL syntax

	Securing Web services based on WS-Security
	Web services security specification- a chronology
	Web services security support
	Web services security and Java 2 Platform, Enterprise Edition security relationship
	Web services security model in WebSphere Application Server
	Web services security property collection
	Name
	Value

	Web services security property configuration settings
	Property Name
	Property Value

	Usage scenario for propagating security tokens
	Configurations
	Sample configuration
	View Web services client deployment descriptor
	View Web services server deployment descriptor

	Authentication method overview
	XML digital signature
	Signing information collection
	Signing information configuration settings
	Signing parameter configuration settings

	Securing Web services using XML digital signature
	Transport level security
	HTTP SSL Configuration collection
	HTTP basic authentication
	HTTP basic authentication collection
	Default configuration for WebSphere Application Server Network Deployment
	Trust anchors
	Configuring trust anchors using the Assembly Toolkit
	Configuring trust anchors using the administrative console
	Collection certificate store
	Configuring the client-side collection certificate store using the Application Server Toolkit
	Configuring the client-side collection certificate store using the administrative console
	Configuring the server-side collection certificate store using the Assembly Toolkit
	Configuring the server-side collection certificate store using the administrative console
	Configuring default collection certificate stores at the server level in the WebSphere Application Server administrative console
	Configuring default collection certificate stores at the cell level in the WebSphere Application Server administrative console
	Key locator
	Keys
	Web services security service provider programming interfaces
	Configuring key locators using the Assembly Toolkit
	Configuring key locators using the administrative console
	Configuring server and cell level key locators using the administrative console
	Trusted ID evaluator
	Login mappings
	Configuring the client for request signing: digitally signing message parts
	Configuring the client for request signing: choosing the digital signature method
	Configuring the server for request digital signature verification: verifying the message parts
	Configuring the server for request digital signature verification: choosing the verification method
	Configuring the server for response signing: digitally signing message parts
	Configuring the server for response signing: choosing the digital signature method
	Configuring the client for response digital signature verification: verifying the message parts
	Configuring the client for response digital signature verification: choosing the verification method
	Configuring the client security bindings using the Assembly Toolkit
	Configuring the security bindings on a server acting as a client using the administrative console
	Configuring the server security bindings using the Assembly Toolkit
	Configuring the server security bindings using the Administrative Console

	XML encryption
	Securing Web services using XML encryption
	Encryption information collection
	Encryption information configuration settings
	Encryption information configuration settings
	Login bindings configuration settings
	Request sender
	Configuring the client for request encryption: Encrypting the message parts
	Configuring the client for request encryption: Choosing the encryption method
	Request receiver
	Configuring the server for request decryption: decrypting the message parts
	Configuring the server for request decryption: choosing the decryption method
	Response sender
	Configuring the server for response encryption: encrypting the message parts
	Configuring the server for response encryption: Choosing the encryption method
	Response receiver
	Configuring the client for response decryption: decrypting the message parts
	Configuring the client for response decryption: choosing a decryption method

	Securing Web services using basicauth authentication
	Configuring the client for basic authentication: Specifying the method
	Configuring the client for basic authentication: collecting the authentication information
	Configuring the server to handle BasicAuth authentication information
	Configuring the server to validate BasicAuth authentication information

	Identity assertion
	Securing Web services using identity assertion authentication
	Configuring the client for identity assertion: specifying the method
	Configuring the client for identity assertion: Collecting the authentication method
	Configuring the server to handle identity assertion authentication
	Configuring the server to validate identity assertion authentication information

	Securing Web services using signature authentication
	Configuring the client for signature authentication: specifying the method
	Configuring the client for signature authentication: collecting the authentication information
	Configuring the server to handle signature authentication
	Configuring the server to validate signature authentication information

	Token type overview
	Username token
	Binary security token
	XML token

	Security token
	Securing Web services using a pluggable token
	Configuring pluggable tokens using the Assembly Toolkit
	Configuring pluggable tokens using the administrative console
	Pluggable token support
	Configuring the client for LTPA token authentication: specifying LTPA token authentication
	Configuring the client for LTPA token authentication: Collecting the authentication method information
	Configuring the server to handle LTPA token authentication information
	Configuring the server to validate LTPA token authentication information

	Tuning Web services based on Web Services for J2EE
	Troubleshooting Web services based on Web Services for J2EE
	Troubleshooting command-line tools for Web services based on Web Services for J2EE
	Troubleshooting compiled bindings for Web services based on Web Services for J2EE
	Troubleshooting the run time of Web services based on Web Services for J2EE
	Tracing SOAP messages
	Tracing Web services components based on Web Services for J2EE

	Troubleshooting the run time for a Web services client based on Web Services for J2EE
	Troubleshooting serialization and deserializaton in Web services based on Web Services for J2EE
	Frequently asked questions about Web services based on Web Services for J2EE

	Web services: Resources for learning

	Chapter 8. Web Services Invocation Framework (WSIF): Enabling Web services
	Goals of WSIF
	WSIF - Web services are more than just SOAP services
	WSIF - Tying client code to a particular protocol implementation is restricting
	WSIF - Incorporating new bindings into client code is hard
	WSIF - Multiple bindings can be used in flexible ways
	WSIF - Enabling a freer Web services environment promotes intermediaries

	An overview of WSIF
	WSIF architecture
	Using WSIF with Web services that offer multiple bindings
	WSIF and WSDL
	WSIF usage scenarios
	Dynamic invocation

	Using WSIF to invoke Web services
	Using the WSIF providers
	Using the SOAP provider
	Using the JMS providers
	Using the Java provider
	Using the EJB provider

	Developing a WSIF service
	Developing the WSIF client - the Address Book Sample

	Using complex types
	Using the Java Naming and Directory Interface (JNDI)
	Passing SOAP messages with attachments using WSIF
	SOAP messages with attachments - Writing the WSDL extensions
	SOAP messages with attachments - Passing attachments to WSIF
	SOAP messages with attachments - Working with types and type mappings

	Interacting with the J2EE container in WebSphere Application Server
	Running WSIF as a client

	WSIF system management and administration
	Maintaining the WSIF properties file
	Enabling security for WSIF
	Troubleshooting the Web Services Invocation Framework
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages

	WSIF API
	WSIF API reference: Creating a message for sending to a port
	WSIF API reference: Finding a port factory or service
	WSIFService interface
	WSIFServiceFactory class

	WSIF API reference: Using ports
	WSIFPort interface
	WSIFOperation interface

	Chapter 9. IBM WebSphere UDDI Registry
	UDDI Registry terminology
	UDDI Registry definitions

	An overview of IBM UDDI Registries
	Installing and setting up a UDDI Registry
	Installing the UDDI Registry into a deployment manager cell
	Setting up the UDDI Registry to use Cloudscape within a deployment manager cell
	Setting up the UDDI Registry to use DB2 within a deployment manager cell

	Installing the UDDI Registry into a single appserver
	Setting up the UDDI Registry to use Cloudscape in a single application server
	Setting up the UDDI Registry to use DB2 in a single application server

	Reinstalling the UDDI Registry application
	Removing the UDDI Registry application from a deployment manager cell
	Removing the UDDI Registry application from a single application server
	Configuring the UDDI Registry
	Configuring global UDDI properties
	Modifying the database userid and password
	Configuring security roles
	Configuring the UDDI User Console (GUI) for multiple language encoding support
	Customizing the UDDI User Console (GUI)
	Configuring SOAP interface properties
	Configuring SOAP properties with the Application Assembly ToolWebSphere Assembly Toolkit or the Application Assembly Tool
	Configuring SOAP properties in an application that is already deployed

	Administering the UDDI Registry
	Running the UDDI Registry
	Backing up and restoring the UDDI Registry database

	UDDI user console
	Displaying the user console

	Custom Taxonomy Support in the UDDI Registry
	SOAP application programming interface for the UDDI Registry
	Programming the SOAP API
	SOAP API error handling tips in the UDDI Registry

	UDDI Registry Application Programming Interface
	Inquiry API for the UDDI Registry
	Browse pattern for the UDDI Registry
	Drilldown pattern for the UDDI Registry
	Invocation pattern for the UDDI Registry
	Inquiry API functions in the UDDI Registry

	Publish API for the UDDI Registry

	UDDI EJB Interface for the UDDI Registry
	Datatypes package in the UDDI Registry
	EJB interface methods in the UDDI Registry

	UDDI troubleshooting tips
	Turning on UDDI trace

	Messages
	UDAI (Web Services UDDI) messages
	UDCF (Web Services UDDI) messages
	UDDA (Web Services UDDI) messages
	UDDM (Web Services UDDI) messages
	UDEJ (Web Services UDDI) messages
	UDEX (Web Services UDDI) messages
	UDIN (Web Services UDDI) messages
	UDLC (Web Services UDDI) messages
	UDPR (Web Services UDDI) messages
	UDRS (Web Services UDDI) messages
	UDSC (Web Services UDDI) messages
	UDSP (Web Services UDDI) messages
	UDUC (Web Services UDDI) messages
	UDUT UDDI Utility Tools messages
	UDUU (Web Services UDDI) messages

	Running the UDDI samples
	Installation Verification Program (IVP)
	Reporting problems with the IBM WebSphere UDDI Registry
	Feedback

	Chapter 10. Class loading
	Class loaders
	Class loader collection
	Classloader ID
	Classloader Mode
	Class loader settings
	Classloader ID
	Classloader Mode

	Migrating the class-loader Module Visibility Mode setting
	Class loading: Resources for learning

	Chapter 11. Using EJB query
	EJB query language
	Example: EJB queries
	FROM clause
	Inheritance in EJB query
	Path expressions
	WHERE clause
	Literals
	Input parameters
	Expressions
	Basic predicates
	Quantified predicates
	BETWEEN predicate
	IN predicate
	LIKE predicate
	NULL predicate
	EMPTY collection predicate
	MEMBER OF predicate
	EXISTS predicate
	IS OF TYPE predicate

	Scalar functions
	EJB query: Scalar functions

	Aggregation functions
	SELECT clause
	ORDER BY clause
	Subqueries
	EJB query restrictions
	EJB Query: Reserved words
	EJB query: BNF syntax
	Comparison of EJB 2.0 specification and WebSphere query language

	Chapter 12. Internationalizing applications
	Internationalization
	Identifying localizable text
	Creating message catalogs
	Composing language-specific strings
	Localization API support
	LocalizableTextFormatter class
	Creating a formatter instance
	Setting optional localization values
	Composing complex strings

	Generating localized text
	Customizing the behavior of a formatting method

	Preparing the localizable-text package for deployment
	LocalizableTextEJBDeploy command

	Internationalization: Resources for learning

	Chapter 13. Using the transaction service
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Local and global transaction considerations

	Developing components to use transactions
	Configuring transactional deployment attributes using the Assembly Toolkit
	Configuring transactional deployment attributes using the Application Assembly Tool
	Using bean-managed transactions

	Classifying WebSphere transaction workload for WLM
	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Client inactivity timeout
	Enable logging for heuristic reporting
	Maximum Transaction Timeout

	Using local transactions
	Managing active transactions
	Interoperating transactionally between application servers
	Troubleshooting transactions
	Transaction service exceptions
	UserTransaction interface - methods available

	Chapter 14. Using naming
	Naming
	Version 5 features for name space support
	Name space logical view
	Initial context support
	Lookup names support in deployment descriptors and thin clients
	JNDI support in WebSphere Application Server
	Developing applications that use JNDI
	Example: Getting the default initial context
	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL with multiple name server addresses
	Using a CORBA object URL from an non-WebSphere Application Server JNDI implementation
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the name space root property

	Example: Looking up an EJB home with JNDI
	Example: Looking up a JavaMail session with JNDI
	JNDI interoperability considerations
	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	Example: Controlling JNDI cache behavior from a program
	JNDI name syntax
	INS name syntax
	JNDI to CORBA name mapping considerations
	Example: Setting the syntax used to parse name strings

	Developing applications that use CosNaming (CORBA Naming interface)
	Example: Getting an initial context with CosNaming
	Obtaining an ORB reference
	Using an ORB reference to get an initial naming reference
	Using an existing ORB and invoking string_to_object with a CORBA object URL with multiple name server addresses to get an initial context

	Example: Looking up an EJB home with CosNaming
	CosNaming resolve operation using a qualified name
	ORB string_to_object operation using an unqualified stringified name

	Configured name bindings
	Name space federation
	Name space bindings
	Configuring and viewing name space bindings
	String binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	String Value

	CORBA object binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Corbaname URL
	Federated Context

	Indirect lookup binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Provider URL
	JNDI Name

	EJB binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Enterprise Bean Location
	Server
	JNDI Name

	Name space binding collection
	Name
	Scope
	Binding Type

	Configuring name servers
	Name server settings
	Name
	Initial State

	Troubleshooting name space problems
	dumpNameSpace tool
	Example: Invoking the name space dump utility
	Name space dump utility forjava:, local: and server name spaces
	Example: Invoking the name space dump utility for java: andlocal: name spaces
	Name space dump sample output

	Naming and directories: Resources for learning

	Chapter 15. Using the dynamic cache service to improve performance
	Dynamic cache
	Configuring cache replication
	Cache replication
	Internal messaging configuration settings
	Internal messaging server
	Runtime mode
	Push frequency

	Enabling the dynamic cache service
	Dynamic cache service settings
	Startup state
	Cache size
	Default priority
	Disk offload
	Cache replication

	Configuring servlet caching
	Servlet caching

	Configuring the dynamic cache disk offload
	Configuring Edge Side Include caching
	Configuring alternate URL

	Configuring external cache groups
	External cache group collection
	External cache group settings
	External cache group member collection
	External cache group member settings
	Configuring high-speed external caching through the Web server

	Displaying cache information
	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page
	Cachespec.xml file

	Configuring command caching
	Command class
	CacheableCommandImpl class
	Example: Caching a command object

	Example: Caching Web services
	Example: Configuring the dynamic cache
	Cache monitor
	Edge cache statistics

	Troubleshooting the dynamic cache service
	Troubleshooting tips for the dynamic cache service

	Chapter 16. Assembling applications with the AAT
	Application assembly and J2EE applications
	Archive support in Version 5.0
	Starting the Application Assembly Tool (AAT)
	Migrating application modules from J2EE 1.2 to J2EE 1.3
	earconvert tool

	Assembling new or modifying existing modules
	Adding files to assembled modules
	Resource environment reference assembly settings
	Name
	Description
	Type

	Resource Adapter Archive file assembly settings
	File name
	Display name
	Description
	EIS type
	Vendor name
	Version
	Specification
	License required
	Implementation
	Interface
	Implementation
	Interface
	Implementation
	Support Reauthentication
	Transaction
	Small Icon
	Large Icon
	Basic Password
	Kerboros V5
	Property Name
	Property Type
	Property Value
	Description
	Permission Specification

	Saving applications after assembly
	Verifying archive files
	Application assembly performance checklist
	Generating code for deployment
	ejbdeploy tool
	ejbdeploy syntax -- relationship to Application Assembly Tool options

	Application Assembly Tool: Resources for learning

	Chapter 17. Assembling applications with the Assembly Toolkit
	Application assembly and J2EE applications
	Archive support in Version 5.0
	Starting the Assembly Toolkit
	astk command

	Migrating code artifacts to the Assembly Toolkit
	Importing enterprise applications
	Importing WAR files
	Importing client applications
	Importing EJB files
	Importing RAR files or connectors

	Creating enterprise applications
	Creating Web applications
	Creating application clients
	Creating EJB modules
	Creating connector modules
	Editing deployment descriptors
	Mapping enterprise beans to database tables
	Verifying archive files
	Generating code for EJB deployment
	Generating code for Web service deployment
	Assembly Toolkit: Resources for learning

	Chapter 18. Deploying and managing applications
	Enterprise applications
	Installing a new application
	Preparing for application installation settings
	Path
	Context Root
	Generate Default Bindings
	Prefixes
	Override
	EJB 1.1 CMP bindings
	Connection Factory Bindings
	Virtual Host
	Specific bindings file

	Example: Installing an EAR file using the default bindings

	Enterprise application collection
	Name
	Status
	Enterprise application settings
	Name
	Starting Weight
	Application Binaries
	Use Metadata From Binaries
	Enable Distribution
	Classloader Mode
	WAR Classloader Policy
	Create MBeans for Resources
	Reload Enabled
	Reload Interval
	Target mapping collection

	Starting and stopping applications
	Exporting applications
	Exporting DDL files
	Updating applications
	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling applications
	Deploying and managing applications: Resources for learning

	Notices
	Trademarks and service marks

