
WebSphere® Application Server for z/OS V5.0

Diagnosis

GA22-7914-00

IBM

WebSphere® Application Server for z/OS V5.0

Diagnosis

GA22-7914-00

IBM

Note
Before using this information and the product it supports, be sure to read the general information under Appendix C,
“Notices”, on page 51.

First Edition (May 2003)

This edition applies to WebSphere Application Server V4.0.1 for z/OS and OS/390 (5655-I35), and to all subsequent
releases and modifications until otherwise indicated in new editions.

The most current versions of the WebSphere Application Server V4.0.1 for z/OS and OS/390 publications and
articles are at this Web site:
http://www.ibm.com/software/webservers/appserv/zos_os390/library.html

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables v

About this book vii
Who should read this book vii
How this book is organized vii
Where to find related information, tools, and
supplements viii
How to send your comments viii

Chapter 1. Introduction 1
Acquiring skills for problem determination 1
Working with diagnostic tools and controls 2

Chapter 2. Preparing for the unexpected 5
Guidelines for maintaining the run-time environment 5
Guidelines for using system controls 6
Setting up the error log 6
Setting up component trace (CTRACE) 7

Steps for preparing CTRACE controls and
resources 8
Steps for starting CTRACE as part of WebSphere
Application Server for z/OS customization . . . 10
Steps for starting CTRACE while WebSphere
Application Server for z/OS servers are active. . 11
Using CTRACE to collect trace data for Java
server applications 12

Configuring WebSphere variables 13
Steps for configuring WebSphere variables . . . 13

Using the z/OS modify command 14
Dynamically changing diagnostic controls
through the modify command 14

Chapter 3. Doing your own detective
work 17
Viewing diagnostic information. 18

Viewing CEEDUMPs in the job log 18
Viewing SVC dumps 18

Viewing CTRACE and JRas data through IPCS 19
Viewing error log contents through the Log
Browse Utility (BBORBLOG). 23
Using the z/OS display command. 26
Converting Java minor codes 26

Debugging specific types of problems 26
Debugging client exceptions 27
Debugging applications that hang 27
Resolving timeout conditions 28
Debugging problems related to Java Message
Service (JMS) support 34

Chapter 4. Working with IBM service 37
Using the IPCS VERBEXIT subcommand to display
diagnostic data 37
Setting trace controls for IBM service 39
Setting dump controls for IBM service 41
Mapping of V4.0.1 environment variables to V5
WebSphere variables 42

Appendix A. WebSphere variable
definitions 43
Setting output destinations and characteristics . . . 43
Setting trace controls 44
Setting dump controls 45
Controlling behavior through timeout values . . . 46

Appendix B. The error dump and
cleanup interface 49

Appendix C. Notices 51
Examples in this book 52
Trademarks 53
Programming interface information 53

Glossary 55

© Copyright IBM Corp. 2000, 2003 iii

iv WebSphere Application Server for z/OS V5.0: Diagnosis

Tables

1. Parameters for the CTIBBOxx parmlib member 10
2. z/OS modify command parameters and their

equivalent WebSphere variables 15
3. Overview of diagnostic procedure, with related

information sources 17
4. Parts table for a server logstream record

output 24
5. Parts table for a CERR record output 25
6. General types of timers and the operations

they control 30

7. Abend EC3 reason codes and their
explanations 31

8. Possible causes of and solutions for timeout
conditions 32

9. Common timer variables and tools for
monitoring these timeout conditions 33

10. V4.0.1 environment variables and their
equivalent V5 WebSphere variables 42

© Copyright IBM Corp. 2000, 2003 v

vi WebSphere Application Server for z/OS V5.0: Diagnosis

About this book

This book is intended to help customers understand the different aspects of
problem determination for WebSphere Application Server V4.0.1 for z/OS and
OS/390. This book contains information on diagnosing and debugging problems
you might encounter when running applications in theWebSphere Application
Server for z/OS environment. Topics covered include:
v Communicating with IBM when a problem occurs;
v The skills that are needed for problem determination;
v The tools needed (by systems programmers and by applications programmers)

for problem determination, including those shipped with the product and z/OS
tools; and

v Where to find information about problem determination-related topics.

Note: The full product name is ″WebSphere Application Server V4.0.1 for z/OS
and OS/390,″ hereafter referred to in this text as WebSphere Application
Server for z/OS.″

Who should read this book
This book is intended for systems programmers and applications programmers
who need to diagnose and debug problems with WebSphere Application Server for
z/OS. Because WebSphere Application Server for z/OS uses most advanced
features and functions of the operating system, diagnosing and fixing problems
might require systems programming skills in a variety of areas. This book
documents the skills required for diagnosis in the z/OS environment, diagnostic
controls and tools available for use, and guidelines for diagnostic procedures.

How this book is organized
The following is an overview of the chapter order and contents.
v Chapter 1, “Introduction”, on page 1 briefly introduces diagnosis terms, skills,

and tools for use with WebSphere Application Server for z/OS.
v Chapter 2, “Preparing for the unexpected”, on page 5 suggests preventative

measures that customers can take to avoid problems, along with suggestions for
controls and tools that can be used for first-failure data capture and initial
diagnosis.

v Chapter 3, “Doing your own detective work”, on page 17 provides suggestions
for using tools and controls to diagnose specific errors so that you can solve
problems without the help of IBM service.

v Chapter 4, “Working with IBM service”, on page 37 briefly describes tasks and
tools that you might be asked to perform or use when you call IBM service to
resolve a problem.

v Appendix A, “WebSphere variable definitions”, on page 43 describes WebSphere
variable definitions, including default values and examples.

v Appendix B, “The error dump and cleanup interface”, on page 49 describes a
WebSphere-specific tool that you can use to request a dump.

v Appendix C, “Notices”, on page 51 contains legal notices about the contents,
examples, and trademarks used in this book.

© Copyright IBM Corp. 2000, 2003 vii

Where to find related information, tools, and supplements
The WebSphere for z/OS library Web site also includes the following books in PDF
format:
v WebSphere Application Server for z/OS V5.0: License Information, GA22-7908, which

describes the license information for WebSphere for z/OS.
v WebSphere Application Server for z/OS V5.0: Program Directory, GI11-2825, which

describes the elements of and the installation instructions for WebSphere for
z/OS.

v WebSphere Application Server for z/OS V5.0: Installation and Customization,
GA22-7909, which describes the planning, installation, and customization tasks
and guidelines for WebSphere for z/OS.

v WebSphere Application Server for z/OS V5.0: Operations and Administration,
SA22-7912, which describes z/OS system operations and administration tasks for
WebSphere for z/OS and other z/OS subsystems that are configured in the
WebSphere for z/OS environment. This book also includes information about
improving the performance of WebSphere for z/OS and the applications it hosts.

v WebSphere Application Server for z/OS V5.0: Messages and Codes, GA22-7915, which
describes messages and codes associated with WebSphere for z/OS.

v WebSphere Application Server for z/OS V5.0: Diagnosis, GA22-7915, which provides
diagnosis information associated with WebSphere for z/OS.

For additional WebSphere for z/OS tools and supplements, go to the following
Web site and select the download link:
http://www.ibm.com/software/webservers/appserv/zos_os390/

You also might need to refer to information about other z/OS or OS/390 elements
and products. All of this information is available through links at the following
Internet locations:
http://www.ibm.com/servers/eserver/zseries/zos/
http://www.ibm.com/servers/s390/os390/

How to send your comments
Your feedback is important in helping to provide the most accurate and highest
quality information.
v To send comments on PDF books, you can e-mail your comments to:

wasdoc@us.ibm.com

or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application
Server version you are using, and, if applicable, the specific page, table, or figure
number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

viii WebSphere Application Server for z/OS V5.0: Diagnosis

Chapter 1. Introduction

Diagnosis is a general term for problem determination and problem source
identification (PD/PSI), which is the process of determining a problem and its
underlying source from specific symptoms. In the multifaceted WebSphere
Application Server environment, problem determination might involve not only
debugging applications, but also diagnosing system problems by investigating
product configurations, and by verifying the means by which the system’s
components interact.

A large-scale enterprise system can exhibit many symptoms that you might classify
as problems. General types of problems include:
v Application or system components that immediately fail without providing any

services.
v Applications or system components that have been running effectively but then

fail to respond (in other words, ″hang″).
v Applications or system components that have been running effectively but then

stop running (in other words, ″crash″).
v Applications or system components that have been running effectively but do

not respond as expected.

These problems present themselves through various symptoms, such as an error
message, wrong output, an abend, an error state, none or bad response times, or a
message returned by the browser.

Another symptom that you might consider a problem is poor performance of an
application or system component. Although poor performance is a problem, it is
not necessarily a result of an error in design or configuration that needs to be
fixed. Performance problems are solved through tuning, which is the process of
adjusting applications or system components to more efficiently exploit their
operating environment. For information about tuning applications and system
components in the WebSphere Application Server for z/OS environment, see
WebSphere Application Server for z/OS V5.0: Operations and Administration, SA22-7912.

Acquiring skills for problem determination
In a large-scale enterprise system such as the WebSphere Application Server for
z/OS environment, diagnosis might require a variety of skills to progress from a
symptom to fixing the underlying cause of that symptom. Because WebSphere
Application Server for z/OS exploits many of the qualities and services that are
unique to the z/OS operating system, diagnosing system-related problems might
require skills in the following areas:
v Parallel sysplex
v TCP/IP
v Security Server (RACF) or the equivalent
v Database systems such as DB2 Universal Database for z/OS and OS/390
v UNIX Systems Services

You can find information for many of these topics in the publications available
through the z/OS library Web site:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 2000, 2003 1

Similarly, diagnosing application-related problems might require a variety of skills
because of the variety of application components that WebSphere Application
Server for z/OS supports. Programmers who diagnose application problems in the
WebSphere Application Server for z/OS environment need some familiarity with
the following:
v The programming models and specifications for application components

(Enterprise beans, Web applications, and client programs).
v The process of assembling, deploying, installing, and running server applications

and clients in the WebSphere Application Server for z/OS environment.
v Various tools such as the WebSphere Application Server for z/OS error log, and

the job logs for programs running on z/OS.

Working with diagnostic tools and controls
This book describes diagnostic information and controls that are specific to
WebSphere Application Server for z/OS, including:
v Messages and codes for WebSphere components
v Configuration variables for routing diagnostic output
v Configuration variables for collecting trace data
v Configuration variables for setting timeout values
v z/OS modify command for dynamically changing configuration variable settings

To access and work with diagnostic information, you will use z/OS tools and
controls as well. The following list summarizes z/OS tools:
v z/OS console

The console displays configuration errors that cause the termination of the
WebSphere Application Server for z/OS address spaces. Whatever goes to the
console also goes to SYSLOG.

v System log (SYSLOG)

SYSLOG is the repository for all messages that have appeared on the operator
console. It also contains warning and informational messages that might be
helpful after a failure has occurred.

v Job log

The job log contains errors and warnings (non-termination) that are related to
configuration. Anything that goes to the console and SYSLOG automatically
goes to the job log.

v System output (SYSOUT)

SYSOUT is a batch log that usually contains diagnostic data from the Java
Virtual Machine (JVM) that runs in the servant (region). Any messages written to
CError will end up in SYSOUT. In addition, SYSOUT might contain error
messages that usually appear in the log stream, but were redirected to SYSOUT
becasue the log stream was not available.

v Error log

The error log contains messages issued through JRas support, if any. In addition,
the error log usually contains messages intended for IBM use only; these are
messages that support actions, problems, or issues that are usually externalized
through additional messages in other sources. When you work with IBM service,
you might be asked to supply the error log so that service personnel can use
these support messages to diagnose the problem.

v SYSPRINT

SYSPRINT contains component trace (CTRACE) output for clients, and for
servants when WebSphere Application Server for z/OS is configured to use
SYSPRINT rather than CTRACE buffers and data sets.

2 WebSphere Application Server for z/OS V5.0: Diagnosis

v Component trace (CTRACE) data set

CTRACE data sets contain diagnostic trace entries for various processes,
depending on the trace options configured for WebSphere Application Server for
z/OS.

v Logrec

When an error occurs, the system records information about the error in the
logrec data set or the logrec log stream. The information provides you with a
history of all hardware failures, selected software errors, and selected system
conditions.

To find additional information about these tools, and about the process of
diagnosing problems on z/OS, use the following sources:
v z/OS MVS Diagnosis: Procedures, GA22-7587 helps you diagnose problems in the

MVS operating system, its subsystems, its components, and in applications
running under the system.

v z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 provides detailed
information about tools and service aids that can help you diagnose problems.
This book contains a guide on how to select the appropriate tool or service aid
for your purposes, and also provides an overview of all the tools and service
aids available.

v WebSphere Application Server for z/OS V5.0: Messages and Codes, GA22-7915, which
describes messages and codes associated with WebSphere Application Server for
z/OS.

Chapter 1. Introduction 3

4 WebSphere Application Server for z/OS V5.0: Diagnosis

Chapter 2. Preparing for the unexpected

The purpose of this chapter is to:
v Suggest preventative measures that you can take to prevent problems from

occurring,
v Suggest settings or tools that you can use so that first-failure data can be as

complete as possible without affecting system performance; and
v Introduce the tools and controls that you can use for diagnosis, when a problem

does occur.

Guidelines for maintaining the run-time environment
Use the following guidelines to make sure that WebSphere Application Server for
z/OS is customized and maintained correctly, to support your installation’s
application workload. Checking these basic software and hardware requirements
can help you avoid problems with the run-time environment.
v Check that you have the necessary prerequisite software up and running.

Check that they have the proper authorizations and that the definitions are
correct.

v Check for messages that signal potential problems. Look for warning and error
messages in the following sources:
– SYSLOG from other z/OS subsystems and products, such as TCP/IP

(especially the DNS, if in use), RACF, and so on
– WebSphere Application Server for z/OS error log
– SYSPRINT of the WebSphere Application Server for z/OS error log
– Component trace (CTRACE) output for the server

v Ensure that z/OS has enough DASD space for SVC dumps. You might have to
adjust the amount of space, because it depends on the size of your applications,
on the configured Java virtual machine (JVM) heap size, and on the number of
servant regions that might be included in one dump, and so on. For an SVC
dump of one controller and one servant, you can start with a minimum of 512,
but might have to increase the MAXSPACE to 1024 or higher, given the factors
listed above.

v Check your general environment. Does your system have enough memory?
Insufficient memory problems can show up as AUX shortages, abends, or
exceptions from the WebSphere Application Server for z/OS run-time.
Sometimes the heap size for Language Environment (LE) and for the Java virtual
machine (JVM) needs to be increased.

v Make sure all prerequisite fixes have been installed; a quick check for a fix can
save hours of debugging.
For the most current information on fixes and service updates, see:
– The Preventive Service Planning (PSP) buckets for both WebSphere

Application Server for z/OS and JAVA subsets of the WebSphere Application
Server for z/OS Upgrade. To obtain a copy of the most current versions of
these PSP buckets, you can either contact the IBM Support Center, use S/390
SoftwareXcel or link to IBMLink at the following website:
http://www.ibmlink.ibm.com/

– The Support page of the WebSphere Application Server for z/OS Web site,
which contains a table of the latest authorized program analysis reports
(APARs). The Support page is available through the following URL:

© Copyright IBM Corp. 2000, 2003 5

http://www.ibm.com/software/webservers/appserv/zos_os390/support/

With the latest service information, check the following:
– Ensure that all prerequisite PTFs (fixes) have been applied to the system.
– Verify that all PTFs were actually present in the executables that were used at

the time of error. Often, SMP can indicate that a fix is present and installed on
the system when, in reality, the executables that were used at the time of error
did not contain the fix.

For more details, see the following sources:
v WebSphere Application Server for z/OS V5.0: Installation and Customization,

GA22-7909 documents hardware and software requirements, instructions for
customizing WebSphere Application Server for z/OS run-time, and
considerations for installing new releases or service.

v WebSphere Application Server for z/OS V5.0: Operations and Administration,
SA22-7912 contains WebSphere Application Server for z/OS performance tuning
guidelines, which can help you determine appropriate heap sizes, and so on.

Guidelines for using system controls
v You have the option of using a z/OS system logger log stream as the WebSphere

Application Server for z/OS error log. The WebSphere variable
ras_log_logstreamName identifies which log stream you want to use for the error
log; it has no default setting. If you do not use a log stream, however, messages
that usually appear in the error log are directed to server’s job log. See “Setting
up the error log” for more information about using a log stream for the error
log.

v You have the option of directing trace output to SYSPRINT or buffers. The
WebSphere variable ras_trace_outputLocation controls the location of trace
output; its default values are SYSPRINT for client applications, and buffers to all
other processes. Although you can change the default for other processes from
buffers to SYSPRINT, performance is better when you use buffers.

v You can use the Resource Measurement Facility (RMF) to view status
information that might indicate potential problems. WebSphere Application
Server for z/OS uses Workload Manager (WLM) services to report transaction
begin-to-end response times and execution delay times, which might indicate
that changes are required for timeout values or tuning controls. For additional
details, see the WLM delay monitoring topic in WebSphere Application Server for
z/OS V5.0: Operations and Administration, SA22-7912.

Setting up the error log
WebSphere Application Server for z/OS uses an error log to record error
information when an unexpected condition or failure is detected within the
product’s own code. Such unexpected conditions or failures include:
v Assertion failures
v Unrecoverable error conditions
v Failures related to vital resources, such as memory
v Operating system exceptions
v Programming defects in WebSphere Application Server for z/OS code.

Because WebSphere Application Server for z/OS is predefined as a z/OS system
logger application, you can use a log stream as the product’s error log. Doing so
offers the following flexibility:

6 WebSphere Application Server for z/OS V5.0: Diagnosis

v You can direct error information to:
– A coupling facility log stream, which provides sysplex-wide error logging, or
– A DASD-only log stream, which provides single system-only error logging.

v You can set up a common log stream for all WebSphere Application Server for
z/OS servers, or individual log streams for each application server. Local z/OS
or OS/390 client ORBs can also log data in log streams. The system logger APIs
are unauthorized, but logstream resources can be protected using security
products such as RACF.

v You can use the WebSphere variable ras_time_local to control whether
timestamps in the error log appear in local time or Greenwich Mean Time
(GMT), which is the default.

When your installation first customizes and verifies WebSphere Application Server
for z/OS installation, you have the option of defining the error log as a log stream.
Using the ISPF customization dialog to configure a base application server node,
you can specify log stream characteristics, including sizes. After verifying
installation, you can change the log stream used for normal operations.

For additional information, see the following sources:
v WebSphere Application Server for z/OS V5.0: Installation and Customization,

GA22-7909 contains instructions for setting up the error log as a log stream, as
well as IBM defaults for the error log that appear in the ISPF customization
dialog. These settings will help you determine what requirements might be
necessary for additional log streams, if you decide to use anything other than
the default log stream.

v “Setting output destinations and characteristics” on page 43 describes the
WebSphere variables that you can use to identify the log stream for either server
or client error logs. Other log-stream characteristics must be set manually.

v z/OS MVS Setting Up a Sysplex, SA22-7625 contains additional information about
log stream requirements.

v “Viewing error log contents through the Log Browse Utility (BBORBLOG)” on
page 23 describes the browse facility for viewing error log contents.

Setting up component trace (CTRACE)
WebSphere Application Server for z/OS uses z/OS component trace (CTRACE)
facilities to manage the collection and storage of trace data. Unless you configure
specific CTRACE controls, WebSphere Application Server for z/OS records its trace
data in address-space buffers in private (pageable) storage. This data is not
accessible unless a dump of the address space is taken.

Although CTRACE data is primarily output for IBM service personnel to use,
exploiting CTRACE capabilities at your installation allows you to have additional
trace data available when a problem first occurs. Because CTRACE efficiently uses
system resources, you can collect valuable trace data with minimal impact on
performance.

When your installation first customizes and verifies WebSphere Application Server
for z/OS installation, you have the option of defining CTRACE controls and
resources. Using the ISPF customization dialog to configure a base application
server node, you can specify:
v Data sets to contain CTRACE data collected for WebSphere Application Server

for z/OS.

Chapter 2. Preparing for the unexpected 7

v CTRACE writer parameters that control the writer through which trace data
moves from address-space buffers into trace data sets.

v The parmlib member that connects WebSphere Application Server for z/OS
address spaces to trace data sets, and optionally turns on the CTRACE writer.

v WebSphere variables that control the characteristics of trace data.

The ISPF customization dialog generates instructions for:
1. Starting the CTRACE writer
2. Starting the WebSphere Application Server for z/OS application server

Following the instructions in sequence is quite important; you can lose valuable
trace data if you do not start the CTRACE writer before starting the server.

For additional information, see the following sources:
v “Steps for preparing CTRACE controls and resources”.
v Procedures for starting CTRACE activity:

– “Steps for starting CTRACE as part of WebSphere Application Server for
z/OS customization” on page 10, or

– “Steps for starting CTRACE while WebSphere Application Server for z/OS
servers are active” on page 11

v “Setting trace controls” on page 44 describes the WebSphere variables that you
can use to control tracing activity.

v “Viewing CTRACE and JRas data through IPCS” on page 19 describes how to
use IPCS to view trace data.

v WebSphere Application Server for z/OS V5.0: Installation and Customization,
GA22-7909 contains instructions for setting up CTRACE, as well as IBM defaults
for the CTRACE writer, parmlib member, and trace data sets.

v z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 contains information
about the advantages of using CTRACE facilities.

Steps for preparing CTRACE controls and resources
Before you start CTRACE activity for WebSphere Application Server for z/OS
servers, you need to make some decisions about CTRACE controls and resources.
You have the option of using default CTRACE values and resources, such as the
IBM-supplied CTRACE parmlib member for WebSphere Application Server for
z/OS, or you may alter default values and provide your own resources.

Perform the following steps to prepare CTRACE controls and resources:
1. Decide where you want to store CTRACE data. The location of trace data is set

through the WebSphere variable ras_trace_outputLocation. Make a note of the
value that you want to use; you will set the value later, when you start
CTRACE activity.
Tips:

v See “Setting trace controls” on page 44 for an explanation of and default
values for the ras_trace_outputLocation variable.

v If you decide to use trace data sets, you can use existing or create new data
sets now or later, as part of the WebSphere Application Server for z/OS
customization process.

v If you want the CTRACE data for each cell to go into separate data sets, use
the ras_trace_ctraceParms variable described in “Setting trace controls” on
page 44.

8 WebSphere Application Server for z/OS V5.0: Diagnosis

v When you are installing WebSphere Application Server for z/OS, sending
trace data to SYSPRINT can be helpful; however, tracing to SYSPRINT in a
production environment can cause spool space to fill up quickly. For
production, you can specify a different trace output location through the
WebSphere variable ras_trace_outputLocation.

v To separate trace data from other standard output messages, such as
System.output.println from Java applications, you can direct CTRACE data
to a separate data set. To accomplish this separation, you need to:
– Specify a TRCFILE DD statement in the JCL start procedure (proc) for the

server.
– Set the WebSphere variable ras_trace_outputLocation to TRCFILE. Note

that you may specify the TRCFILE value with or without additional
variable values.

v Through modify commands, you have the ability to dynamically and
temporarily direct trace data to SYSPRINT or TRCFILE. In other words:
a. You can direct CTRACE data to buffers as part of normal operations.
b. When an error occurs, you can use the modify command to send trace

data to SYSPRINT or TRCFILE.
c. Then you can use the modify command again, to dynamically reset the

trace-output location

You can complete this sequence of actions without stopping the server that is
encountering the problem. For information about the modify command, see
WebSphere Application Server for z/OS V5.0: Operations and Administration,
SA22-7912.

2. Decide whether you want to accept defaults or provide other values for the

following WebSphere variables. Make a note of the values that you want to use;
you will set the values later, when you start CTRACE activity.
v ras_time_local
v ras_trace_BufferCount
v ras_trace_BufferSize

For defaults and valid values, see “Setting trace controls” on page 44.

3. Decide whether you want to use the default JCL start procedure for the

CTRACE writer, or code your own JCL proc. WebSphere Application Server for
z/OS provides a CTRACE writer proc named bbowtr. If you decide to provide
your own CTRACE writer procedure, create the JCL start proc using the rules
for source JCL for an external writer in z/OS MVS Diagnosis: Tools and Service
Aids, GA22-7589. Place the start procedure in your system proclib.

4. Decide whether you want to use the default CTRACE parmlib member for
WebSphere Application Server for z/OS, or provide your own. The WebSphere
parmlib member is named CTIBBO00. If you decide to provide your own
parmlib member, create one according to the following rules, and place it in
your system parmlib.
Rules:

v You must follow the same naming convention; that is, the name must consist
of the letters CTIBBO, but you may replace the two zeroes with any two
alphanumeric characters.

Chapter 2. Preparing for the unexpected 9

v Your parmlib member must contain the following parameters:
TRACEOPTS
WTRSTART(xxxxxx)
ON

/*CONNECT TO CTRACE EXTERNAL WRITER: */
WTR(xxxxxx)

Table 1. Parameters for the CTIBBOxx parmlib member

Parameter Required or
Optional?

Description

TRACEOPTS Required and
positional

This parameter must be specified first.

WTRSTART(xxxxxx) Optional This parameter automatically starts the
CTRACE writer, using the specified JCL
procedure.

Alternative: You may use the operator
command TRACE CT,WTRSTART=xxxxx to start the
CTRACE writer. If you use this parameter in
the parmlib member, and later issue the
operator command, CTRACE issues an
informational message to notify you that the
writer already has been started.

ON Required This parameter must be specified before
component options.

WTR(xxxxxx) Required This parameter identifies the JCL procedure to
be used to start the CTRACE external writer.
The specified value must match the value of
the WTRSTART parameter to capture the
WebSphere Application Server for z/OS trace
data into a trace data set.

5. Ensure that the DLL named BBORTSS5 is in the link-pack area (LPA). For further

details about loading modules into the LPA, see the recommendations on using
memory in WebSphere Application Server for z/OS V5.0: Installation and
Customization, GA22-7909.

After you have made these decisions and completed preparations, you are ready to
start CTRACE activities using one of the following procedures:
v During customization of WebSphere Application Server for z/OS (see “Steps for

starting CTRACE as part of WebSphere Application Server for z/OS
customization”), or

v While WebSphere Application Server for z/OS servers already are running on
z/OS or OS/390 (see “Steps for starting CTRACE while WebSphere Application
Server for z/OS servers are active” on page 11).

Steps for starting CTRACE as part of WebSphere Application
Server for z/OS customization

Before you begin: Make sure you have properly prepared CTRACE controls and
resources as instructed in “Steps for preparing CTRACE controls and resources” on
page 8.

10 WebSphere Application Server for z/OS V5.0: Diagnosis

Perform the following steps to start CTRACE as part of the customization process
for WebSphere Application Server for z/OS:
1. Using the ISPF customization dialog to configure a base application server

node, specify:
v Trace data set characteristics
v CTRACE writer parameters
v The CTRACE parmlib member.
v WebSphere variables, if you want values other than the defaults

Result: The ISPF customization dialog generates:
v Instructions for starting the CTRACE writer
v Instructions for starting the WebSphere Application Server for z/OS

application server

2. Start the CTRACE writer, using the generated instructions. You must start the

writer first, or you might lose valuable trace data.

3. Start the WebSphere Application Server for z/OS application server, using the
generated instructions.

4. When you need to collect trace data for analysis:
a. Use the following operator command to disconnect WebSphere Application

Server for z/OS from CTRACE:
TRACE CT,ON,COMP=cell_short_name
REPLY x,WTR=DISCONNECT,END

where cell_short_name is the value specified through the ISPF customization
dialog to identify the location of server configuration files. The name must
be 8 or fewer characters and all uppercase.

b. Use the following operator command to stop the CTRACE writer address
space:
TRACE CT,WTRSTOP=writer_name

where writer_name is the name of the JCL start procedure for the CTRACE
writer.

To view the CTRACE data, see “Viewing CTRACE and JRas data through IPCS” on
page 19 for instructions.

Steps for starting CTRACE while WebSphere Application
Server for z/OS servers are active

If you start a WebSphere Application Server for z/OS server before starting the
CTRACE writer for WebSphere, the server still gathers data in its trace buffers.
This trace data is not available for use unless you follow this procedure, or until a
dump of the server address space is taken.

Before you begin: Make sure you have properly prepared CTRACE controls and
resources as instructed in “Steps for preparing CTRACE controls and resources” on
page 8.

Chapter 2. Preparing for the unexpected 11

Perform the following steps to start CTRACE when a WebSphere Application
Server for z/OS server already is active:
1. Use the following operator command to start the CTRACE writer address

space:
TRACE CT,WTRSTART=writer_name

where writer_name is the name of the JCL start procedure for the CTRACE
writer that is specified in the WebSphere Application Server for z/OS
CTIBBOxx parmlib member.

Result: The CTRACE external writer begins writing the server’s trace data to
the location specified through the WebSphere variable
ras_trace_outputLocation.

Alternative: To connect WebSphere Application Server for z/OS to a CTRACE
writer other than the one specified in the CTIBBOxx parmlib member, also
enter these operator commands:
TRACE CT,ON,COMP=cell_short_name
REPLY x,WTR=writer_name,END

where:
v cell_short_name is the value specified through the ISPF customization dialog

to identify the location of server configuration files. The name must be 8 or
fewer characters and all uppercase.

v writer_name is the name of a JCL start procedure for a CTRACE external
writer. The JCL start procedure must reside in the system’s proclib.

2. When you need to collect trace data for analysis:

a. Use the following operator command to disconnect WebSphere Application
Server for z/OS from CTRACE:
TRACE CT,ON,COMP=cell_short_name
REPLY x,WTR=DISCONNECT,END

b. Use the following operator command to stop the CTRACE writer address
space:
TRACE CT,WTRSTOP=writer_name

where writer_name is the name of the JCL start procedure for the CTRACE
writer.

To view the CTRACE data, see “Viewing CTRACE and JRas data through IPCS” on
page 19 for instructions.

Using CTRACE to collect trace data for Java server
applications

Applications that run in WebSphere Application Server for z/OS can use JRas to
provide tracing support that is consistent with WebSphere tracing. Instrumented
applications use the JRas interfaces and classes for logging and tracing; trace data
is written to the same component trace data set as the internal traces issued by the
WebSphere Application Server for z/OS runtime. So you can gather application
trace data in the same locations, and use the same commands to start and stop

12 WebSphere Application Server for z/OS V5.0: Diagnosis

CTRACE for these JRas applications as you do for WebSphere Application Server
for z/OS server in which the applications are running.

For more information about working with applications that use JRas, see:
v “Viewing CTRACE and JRas data through IPCS” on page 19 for instructions for

viewing application trace data.

Configuring WebSphere variables
WebSphere Application Server for z/OS provides configuration variables that
control server behavior. Specifically, these variables allow you to control:
v Output destinations and characteristics for the error log, and for CTRACE

buffers, data sets and the external writer.
v Trace buffers, data sets, and the content of trace data.
v Types of dumps to be requested.
v Timeout values for system and application behavior.

Generally speaking, the default values are designed for normal operation in a
production environment. Other circumstances might require different values:
v When you first customize and verify WebSphere Application Server for z/OS

installation, or
v When you test application workloads in a test environment, or
v when you encounter a problem, and need to collect more diagnostic data.

For additional information, see the following topics:
v “Steps for configuring WebSphere variables” for instructions for changing

variable values.
v Appendix A, “WebSphere variable definitions”, on page 43 for variable names,

descriptions, and valid values.
v “Mapping of V4.0.1 environment variables to V5 WebSphere variables” on

page 42 for a comparison of V4.0.1 environment variables and V5 WebSphere
variables.

Steps for configuring WebSphere variables
Depending on the types of problems you encounter, you might need to change the
values set for WebSphere configuration variables that control server behavior. The
following procedure explains how to use the WebSphere Administrative console to
change configuration variable values.

Before you begin: You should know that:
v Configuration variables may be set on a cell, node, or server level.

– Variable values set on a cell level apply to all servers in all nodes in the cell,
unless a different value for the same variable is set on a node or server level.
Variable settings on a node or server level override values for the same
variable set at the cell level.

– Variables set on a node level apply to all servers in the node, unless a
different value for the same variable is set on the server level. Variable
settings on a server level override values for the same variable set at the node
or cell level.

– Variables set on a server level apply only to the specific server, not to any
other servers in the same node or cell.

Chapter 2. Preparing for the unexpected 13

When you are diagnosing particular problems, you are most likely to alter
variable values on a server level, for a particular server. Specifying variable
values on the server level affects both the controller and servant regions.

v You may use scripting interfaces, instead of the WebSphere Administrative
console, to alter configuration variable values.

Perform the following steps to configure WebSphere variables through the
WebSphere Administrative console:
1. Click Environment → Manage WebSphere Variables in the console navigation

tree.
2. On the WebSphere Variables page, select Server as the scope of the variable

setting, and click Apply.
3. On the WebSphere Variables page, click New.
4. On the Variable page, specify a name and value for the variable. So other

people can understand what the variable is used for, also specify a description
for the variable. Then click OK.

5. Verify that the variable is shown in the list of variables.
6. Save your configuration.
7. (Optional) To have the configuration take effect, stop the server and then start

the server again.

Using the z/OS modify command
You may use either the WebSphere Administrative console or the z/OS MVS
console to accomplish many operations tasks related to WebSphere Application
Server for z/OS servers. Entering the z/OS display or modify commands through
the MVS console can provide information or perform tasks that are useful for
diagnosing problems.

In particular, the z/OS modify command provides parameters that not only allow
you to control WebSphere Application Server for z/OS operations, but also to:
v Display information about WebSphere Application Server for z/OS servers or

servants (regions), and
v Dynamically change values related to tracing activity for a server or servant.

For additional information, see the following topics:
v “Dynamically changing diagnostic controls through the modify command” for a

mapping of modify command parameters and their equivalent WebSphere
variables, and

v WebSphere Application Server for z/OS V5.0: Operations and Administration,
SA22-7912 for the modify command syntax and parameter descriptions.

Dynamically changing diagnostic controls through the modify
command

The z/OS modify command provides parameters that allow you to dynamically
change values related to tracing activity for a server or servant. Table 2 on page 15
lists the modify command parameters and the WebSphere variable that provides
equivalent function.

14 WebSphere Application Server for z/OS V5.0: Diagnosis

Table 2. z/OS modify command parameters and their equivalent WebSphere variables

z/OS modify command
parameter

Equivalent WebSphere variable

TRACEALL ras_trace_defaultTracingLevel

TRACEBASIC ras_trace_basic
Note: Do not change this variable unless directed by
IBM service personnel.

TRACEDETAIL ras_trace_detail
Note: Do not change this variable unless directed by
IBM service personnel.

TRACESPECIFIC ras_trace_specific
Note: Do not change this variable unless directed by
IBM service personnel.

TRACE_EXCLUDE_SPECIFIC ras_trace_exclude_specific
Note: Do not change this variable unless directed by
IBM service personnel.

TRACEINIT n/a

TRACENONE n/a

TRACETOSYSPRINT ras_trace_outputLocation=SYSPRINT

TRACETOTRCFILE ras_trace_outputLocation=TRCFILE

TRACEJAVA n/a

Chapter 2. Preparing for the unexpected 15

16 WebSphere Application Server for z/OS V5.0: Diagnosis

Chapter 3. Doing your own detective work

The topics in this chapter provide suggestions for using tools and controls to
diagnose specific errors so that you can solve problems without the help of IBM
service.

The following table outlines the steps you can perform to diagnose and resolve
errors. For each step, sources of additional details are listed.

Table 3. Overview of diagnostic procedure, with related information sources

Diagnosis task Sources of related information

Record initial
symptoms and
observations

Reviewing various sources of diagnostic data can help identify
symptoms and probable causes. “Viewing diagnostic information”
on page 18 provides information about tools for viewing particular
types of diagnostic data.

Collect additional
data, if necessary

Altering trace and dump controls enables you to collect more
diagnostic information than what was gathered during the initial
occurrence of the problem. Use one or more of the following:

v Use the Administrative console to alter WebSphere variable
settings. See:

– “Steps for configuring WebSphere variables” on page 13 for
instructions for changing variable values.

– Appendix A, “WebSphere variable definitions”, on page 43 for
names, descriptions, and valid values.

– “Mapping of V4.0.1 environment variables to V5 WebSphere
variables” on page 42 for a comparison of V4.0.1 environment
variables and V5 WebSphere variables.

v Use the modify command to dynamically change trace settings.
See:

– “Dynamically changing diagnostic controls through the modify
command” on page 14 for a mapping of modify command
parameters and their equivalent WebSphere variables, and

– WebSphere Application Server for z/OS V5.0: Operations and
Administration, SA22-7912 for the modify command syntax and
parameter descriptions.

v Use the WebSphere Application Server for z/OS error dump and
cleanup interface to request an SDUMP. See Appendix B, “The
error dump and cleanup interface”, on page 49.

Identify the cause of
the error

“Debugging specific types of problems” on page 26

If none of the actions above resolve the problem to your satisfaction, call IBM
service. For information about preparing to call IBM service, see Chapter 4,
“Working with IBM service”, on page 37.

© Copyright IBM Corp. 2000, 2003 17

Viewing diagnostic information
The following topics provide information about specific sources of diagnostic data,
and the tools or resources you might need to view or work with that data.

Type of diagnostic tools
or data:

Notes and instructions for use appear in:

CEEDUMPs “Viewing CEEDUMPs in the job log”

SVC dumps “Viewing SVC dumps”

CTRACE and JRas data “Viewing CTRACE and JRas data through IPCS” on page 19

Error log data “Viewing error log contents through the Log Browse Utility
(BBORBLOG)” on page 23

z/OS display command “Using the z/OS display command” on page 26

Java minor codes “Converting Java minor codes” on page 26

Viewing CEEDUMPs in the job log
An error caught by LE or the Java run-time can result in the production of a
CEEDUMP, which is written to a separate CEEDUMP specification in the job log.
To view the dump contents, select the CEEDUMP portion of the output for the
address space. The ‘Traceback’ section at the beginning of the dump can be very
helpful. For additional information, see “Setting dump controls” on page 45 for the
WebSphere variables you can use to control CEEDUMP contents.

Viewing SVC dumps
An SVC dump is a core dump initiated by the operating system generally when a
programming exception occurs. SVC dump processing stores data in dump data
sets that you pre-allocate, or that the system allocates automatically as needed.

Alternatively, you can initiate an SVC dump through the MVS console, to gather
diagnostic data for a ‘hang’ condition, for example. SVC dumps that you initiate
this way are called console dumps.

One example of an abend that could occur is the EC3 abend. WebSphere
Application Server for z/OS requests an SVC dump when a controller terminates a
servant (region) with an EC3 abend when timeout conditions occur.
v Your installation can set parmlib options that determine what to dump,

eliminate duplicate dumps, and so on. WebSphere Application Server for z/OS
provides a dump parmlib sample in SBBOJCL(BBODMCCB).

v The standard SDATA expected in a SVC dump:
SDATA=(ALLNUC,CSA,GRSQ,LPA,LSQA,PSA,RGN,SQA,SUM,SWA,TRT),end

v If you cannot find an SVC dump for a specific abend, your installation might be
using Dump analysis and elimination (DAE) to suppress the dump. If this is the
case, you can change DAE to let the dump be taken or set a SLIP on the specific
abend for a particular job name if the timeout is consistently happening. For
further information, see:
– z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for details about using

DAE.
– z/OS MVS System Commands, SA22-7627 for details about the SLIP command,

which controls SLIP (serviceability level indication processing), a diagnostic
aid that intercepts or traps certain system events and specifies what action to
take. Using the SLIP command, you can set, modify, and delete SLIP traps.

18 WebSphere Application Server for z/OS V5.0: Diagnosis

v When you initiate a console dump:
– When you want an SVC dump of a servant region, also request a dump of

the servant’s controller region.
– Unless you suspect a particular servant region as the source of a problem,

dump the controller region and all of its servant regions.
v If syslog contains a message indicating that the maxspace limit was reached for

this dump, the SVC dump might be a partial one that might not contain the data
you need to diagnose the timeout. This limit means that the data set used for
SVC dump is not large enough, and you have to change the size to capture a
complete dump.

v To view CEEDUMP contents within the SVC dump, use the IPCS verbexit
LEDATA, with the CEEDUMP or NTHREADS options, to format and analyze
Language Environment control blocks. For additional information, see z/OS
Language Environment Debugging Guide, GA22-7560 for instructions for using
IPCS to format and analyze CEEDUMP contents.

See z/OS MVS Diagnosis: Tools and Service Aids, GA22-7589 for additional
information about SVC dumps.

Viewing CTRACE and JRas data through IPCS
Once activated, the WebSphere Application Server for z/OS always writes trace
data into memory buffers. The number and size of these buffers is controlled using
WebSphere variables.

You can get this trace data from a dump, which may be taken by the system or
requested by the operator through DUMP or SLIP commands. See z/OS MVS
System Commands, SA22-7627, for more information about the DUMP and SLIP
commands.

To view messages or application trace data from Component Trace, you must use
the interactive problem control system (IPCS) to format the data. The source of the
trace data can be a dump data set or a trace data set, and the command to use
would be IPCS CTRACE. You can also use the IPCS CTRACE command to merge
multiple trace entities together such as multiple WebSphere Application Server for
z/OS address space traces, OMVS, and TCPIP.

z/OS MVS IPCS Commands, SA22-7594, describes how to use IPCS CTRACE and IPCS
MERGE.

Steps for using the IPCS dialog to format CTRACE data
Before you begin: When setting up IPCS, your installation may customize IPCS for
its users. IBM recommends providing access to the IPCS dialog through an ISPF
panel. If your installation has not customized IPCS as recommended, you need to
start the IPCS dialog. See z/OS MVS IPCS User’s Guide, SA22-7596, to find out how
to start the IPCS dialog.

Perform the following steps to use the IPCS dialog to format application trace data:
1. From the IPCS Primary Option Menu panel, select option 6 (COMMAND).

2. On the IPCS Subcommand Entry panel:

a. (Optional) Issue the SETDEF subcommand to determine the default values
for routing displays.

b. Enter the CTRACE command, with the following required parameters:
CTRACE COMP(cell_short_name)

Chapter 3. Doing your own detective work 19

where cell_short_name is the value specified through the ISPF customization
dialog to identify the location of server configuration files. The name must
be 8 or fewer characters and all uppercase.

Note: If you were interested in only JRAS data, you would enter the
following:
CTRACE COMP(cell_short_name)USEREXIT(JRAS)

Specify additional parameters as necessary.

Example: To direct trace data to the terminal only, you would append the
NOPRINT and TERMINAL parameters to the CTRACE command.

Tip: For a complete list of CTRACE command parameters, see z/OS MVS IPCS
Commands, SA22-7594.

3. View your application’s data, basing the method you choose on which one is

appropriate for the location of the data:

If you directed output to the... Then use the...

IPCS print data set (IPCSPRNT) ISPF/PDF Browse option

Terminal Dump Display Reporter panel

Tip: To navigate through the trace data on the Dump Display Reporter panel,
use the commands and PF keys listed in z/OS MVS IPCS User’s Guide,
SA22-7596.

Finding the subname for IPCS CTRACE
If the trace data set is an SVC dump, the trace subname must also be specified.
This subname is the aggregation of the address space’s jobname with its ASID
(address space identifier), in printable hexadecimal. An easy way to determine the
subname is to query CTRACE for the data using the following IPCS subcommand:
CTRACE QUERY DSN(’dump.data.set’)

Once you get the subname you can view the WebSphere Application Server for
z/OS trace data with the following IPCS subcommand:
CTRACE COMP(cell_short_name) SUB((subname)) FULL DSN(’dump.data.set’)

where cell_short_name is the value specified through the ISPF customization dialog
to identify the location of server configuration files. The name must be 8 or fewer
characters and all uppercase.

Note: The subname parameter is optional for only the trace data set. It is required
when viewing the trace data using the dump data set.

Viewing multiple traces
CTRACE enables you to view multiple traces together with the trace data from the
various sources intermixed based on the time stamp. See z/OS MVS IPCS
Commands, SA22-7594, for specifics on using this MERGE subcommand.

20 WebSphere Application Server for z/OS V5.0: Diagnosis

Steps for using IPCS in batch mode to format CTRACE data
To view messages or application trace data from Component Trace, you must use
the interactive problem control system (IPCS) to format the data. Using IPCS in
batch mode is the easiest method of formatting data, especially if you do not have
much experience with using IPCS, TSO/E and ISPF. Through batch mode, you can
use IPCS to format trace data and write it to an MVS data set. Optionally, you may
copy the contents of that data set into an HFS file for viewing.

Before you begin: You must create an IPCS dump directory before you can use
IPCS in batch mode. When setting up IPCS, your installation may customize IPCS
for its users. This customization can include modifying the IBM-supplied
BLSCDDIR CLIST with default values for creating an IPCS dump directory.

If your installation has modified the BLSCDDIR CLIST, perform the following
steps to create an IPCS dump directory:
1. Decide on a fully-qualified data set name for the directory.
2. From the TSO/E command prompt, enter the BLSCDDIR command, specifying

the data set name. For example, to create a dump directory named
IBMUSER.DDIR, enter:
%blscddir dsn(’ibmuser.ddir’)

If your installation has not customized IPCS, you might need to alter other
BLSCDDIR CLIST parameters. See z/OS MVS IPCS User’s Guide, SA22-7596 and
z/OS MVS IPCS Commands, SA22-7594 for more details about using the BLSCDDIR
CLIST to create a dump directory.

Perform the following steps to use IPCS in batch mode to format application trace
data:
1. Create a file and copy the following sample JCL into it. This JCL invokes IPCS

to extract and format JRAS trace data and write it into an MVS data set, and
then uses the TSO/E OPUT command to copy the formatted data from the MVS
data set into an HFS file.
//IBMUSERX JOB ,
// CLASS=J,NOTIFY=&SYSUID,MSGCLASS=H
//IPCS EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IBMUSER.DDIR,DISP=SHR
//IPCSDOC DD SYSOUT=H
//JRASTRC DD DSN=IBMUSER.CB390.CTRACE,DISP=SHR
//IPCSPRNT DD DSN=IBMUSER.IPCS.OUT,DISP=OLD
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
IPCS
DROPDUMP DDNAME(JRASTRC)
PROFILE LINESIZE(80)PAGESIZE(99999999)
SETDEF NOCONFIRM
CTRACE COMP(SYSBBOSS) DDNAME(JRASTRC) FULL PRINT +

NOTERMINAL
DROPDUMP DDNAME(JRASTRC)
END
/*
//OPUT EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
oput ’ibmuser.ipcs.out’ ’/u/ibmuser/ipcs/jrastrace.txt’ TEXT
/*

2. Edit the sample JCL to replace IBMUSER.DDIR with the data set name that you

used for the IPCS dump directory you created.

Chapter 3. Doing your own detective work 21

Notes:

a. Use the PAGESIZE parameter on the PROFILE statement only if you do not
want to print the output data set.

b. You may replace the HFS file name with the name of an existing HFS file,
but you do not have to do so. The OPUT command processing will create a
new HFS file, if the one specified does not exist, and grants read and write
access to that file for your user ID only.
If you do specify an existing HFS file, the OPUT command processing will
write over any data that is already in that file. If you want to know more
about the OPUT command, see z/OS UNIX System Services Command Reference,
SA22-7802.

c. Change the data set name specified on the JRASTRC DD in the example to the
name of the data set containing the CTRACE data.

d. Change the name of the MVS data set on both the JRASTRC DD statement
and the OPUT command in the SYSTSIN stream, as necessary. The formatted
output of the JRAS CTRACE data is first written to the MVS data set
specified by the IPCSPRNT DD statement and then (optionally) copied to the
HFS data set. You must either pre-allocate this data set, or change the
sample JCL to allocate the data set. This data set should have a record
format of VBA and a record length of 133.

3. Submit the JCL to start the IPCS batch job.

Once you are done you can use a UNIX editor, such as vi, to view your trace data
in the HFS file. If you want to know more about the UNIX editors, see z/OS UNIX
System Services User’s Guide, SA22-7801.

Sample JCL to display WebSphere for z/OS trace data: The following sample
shows JCL that displays WebSphere for z/OS trace data.

Note: The JCL uses an IPCS dump directory (in VSAM data set userid.DUMP.DIR)
that must be allocated before you run the JCL. See z/OS MVS IPCS
Commands, SA22-7594, for information about initializing a dump directory.

//SHOWTRC JOB <job card info>
//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR
//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM
CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)

/*

The following example shows JCL that displays WebSphere for z/OS trace data for
multiple address spaces.
//SHOWTRC2 JOB <job card info>
//JOBLIB DD DISP=SHR,DSN=BBO.SBBOMIG
// DD DISP=SHR,DSN=SYS1.MIGLIB
//PRINTIT EXEC PGM=IKJEFT01,REGION=OM
//IPCSDDIR DD DISP=(OLD,KEEP),DSN=userid.DUMP.DIR

22 WebSphere Application Server for z/OS V5.0: Diagnosis

//IPCSPARM DD DISP=SHR,DSN=SYS1.PARMLIB
//SYSTSPRT DD SYSOUT=*
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//*---------------------------
//SYSTSIN DD *
IPCS NOPARM
MERGE
CTRACE COMP(SYSBBOSS) SUB((subname)) FULL DSN(’dump.data.set’)
CTRACE COMP(SYSBBOSS) SUB((subname2)) FULL DSN(’dump.data.set’)
MERGEEND

/*

Viewing error log contents through the Log Browse Utility
(BBORBLOG)

You can use the Log Browse Utility (BBORBLOG) to view the error log stream. If
you need to look at the WebSphere Application Server for z/OS error logstream,
use ISPF option 6 to enter the command:

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX ’

the log-stream name is assumed to be BBO.BOSSXXXX

The space allocation and the unit for the allocation are contained within the rexx
code. If you keep a large amount of trace data, the allocation must be made larger.

The WebSphere Application Server for z/OS provides an ISPF REXX EXEC named
BBORBLOG, that allows you to browse the error log stream.

Notes:

1. By default, the macro formats the error records to fit a 3270 display.
2. Timestamps are in Greenwich Mean Time (GMT) unless changed by setting

WebSphere variable ras_time_local to 1.
3. Message BBOJ0051I, which appears in the job output can help correlate

error-log entries to the proper job output.

Using the log browse utility (BBORBLOG)
You can view the error log stream output using the BBORBLOG browser. To
invoke the browser, go to ISPF option 6 and enter:

’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX format option ’

Note: In this example, BBORBLOG resides in BBO.SBBOEXEC.

The browser creates a browse data set named ″userid.stream_name″, which
contains the contents of the log stream. When the browser is executed, it:
1. Allocates a data set called userid.stream_name, which overwrites any duplicate

data sets.
2. Populates the data set with the contents of the log stream.
3. Puts the user in ″browse″ mode on the data set.

Note: Each time BBORBLOG is invoked a static file is created which overwrites the
existing file. In order to refresh the file, it is necessary to re-issue BBORBLOG.

The browser takes two parameters:

Chapter 3. Doing your own detective work 23

log stream name
The name of the log stream. See the job messages for the name of the log
stream.

format option

80 The default. The log stream record will be formatted on a lrecl length
of 80 characters. Additional lines will be wrapped.

NOFORMAT
Turns off formatting. The error log message appears as one log
message string in the browse file.

There are three valid ways (three separate commands to use) to invoke the
browser. We will illustrate each of these using the following example:

Example: If the BBORBLOG member was in a data set named BBO.SBBOEXEC, then
you would issue one of the following depending on your chosen format option:

ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX ’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX 80’
ex ’BBO.SBBOEXEC(BBORBLOG)’ ’BBO.BOSSXXXX NOFORMAT ’

Tip: (For using BBORBLOG): If the target library in the BBO.SBBOEXEC example
above was added to the SYSEXEC concatenation of the user logon procedure during
the WebSphere Application Server for z/OS installation, it would be easiest to
invoke the browser. You would not have to specify the library containing the
browser REXX EXEC—you would only need to specify BBORBLOG.

Error log stream record output
There are two error log stream records that we will look at:
v Server logstream
v CERR of a server.

Note: The numbers to the left of each sample were added to specify lines—they
will not be in the actual output.

Sample output from a server logstream:
1| 2000/06/01 16:01:06.683 01 SYSTEM=SY1 SERVER=BBOASR1A JobName=BBOASR1S
2| ASID=0X0033 PID=0X0100003C TID=0X24F858A0 0X000004 c=2.1010030
3| ./bbooreq.cpp+4437 ... BBOU0013W The function
4| make_user_exception(IIOP_protocolArea*)+4437 raised a user exception
5| CosNaming::NamingContext::NotFound.

The log stream record output fields from stream BBO.BOSSXXXX are:

Table 4. Parts table for a server logstream record output

Component Description

line 1: 2000/06/01
16:01:06.683 01

Date / timestamp / 2-digit record version number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 1: JobName=BBOASR1S Jobname

line 2: ASID=0X0033 ASID (address space identifier)

line 2: PID=0X0100003C PID (Process ID)

24 WebSphere Application Server for z/OS V5.0: Diagnosis

Table 4. Parts table for a server logstream record output (continued)

Component Description

line 2: TID=0X24F858A0
0X000004

TID (Thread ID)

line 2: c=2.1010030 Request correlation information

line 3: ./bbooreq.cpp+4437 File name & line

line 3: BBOU0013W Log message number

line 3: The function... Log message

lines 4–5:

make_user_exception...
CosNaming::Naming...

Continuation lines: Continuation of the Log Stream log
message

Note: Each field is delimited by a blank.

Sample output from CERR of a server:
1| BossLog: { 0017} 2000/06/01 15:58:25.557 01 SYSTEM=SY1 SERVER=BBOASR1A
2| PID=0X0100003C TID=0X24F82920 00000000 c=3.C5D02
3| ./bboiroot.cpp+1195 ... BBOU0012W The function IRootHomeImpl::findHome(
4| const char*)+1195 received CORBA system exception CORBA::INTERNAL.
5| Error code is C9C21200.

The CERR job message output fields are:

Table 5. Parts table for a CERR record output

Component Description

line 1: BossLog: { 0017} BossLog: {entry number}

line 1: 2000/06/01
15:58:25.557 01

Date / timestamp / 2-digit record version number

line 1: SYSTEM=SY1 System name

line 1: SERVER=BBOASR1A Server name

line 2: PID=0X0100003C PID (Process ID)

line 2: TID=0X24F82920
00000000

TID (Thread ID)

line 2: c=3.C5D02 Request correlation information

line 3:
./bboiroot.cpp+1195

File name & line

line 3: BBOU0012W Log message number

line 3: The function
IRootHomeImpl::find...

Log message

lines 4–5: const
char*)+1195 received
CORBA system exception
CORBA::INTERNAL. Error
code is C9C21200.

Continuation lines: Continuation lines of the CERR job message

Notes:

1. Each field is delimited by a blank.
2. The CERR format is found in SYSOUT, not the logger.

Chapter 3. Doing your own detective work 25

Saving your BBORBLOG browser output
When you use the BBORBLOG browser, it creates a data set with your user ID
followed by the log stream name. You should rename it if you wish to save your
browser output. The contents of the current view of the log stream will remain
until the stream reaches its retention date. The next time you invoke the browser,
however, the current view of the log stream will be deleted (because it uses the
same data set name). The previous data will exist in another record (not the
current view) until its retention date.

Using the z/OS display command
You may use either the WebSphere Administrative console or the z/OS MVS
console to accomplish many operations tasks related to WebSphere Application
Server for z/OS servers. Entering the z/OS display or modify commands through
the MVS console can provide information or perform tasks that are useful for
diagnosing problems.

In particular, the z/OS display command provides parameters that allow you to
display information about the following:
v Servers
v Servant regions
v Sessions
v Trace settings
v JVM heap statistics

For additional information, see WebSphere Application Server for z/OS V5.0:
Operations and Administration, SA22-7912 for the display command syntax and
parameter descriptions.

Converting Java minor codes
Occasionally, Java will take an WebSphere Application Server for z/OS error code
(C9C2xxxx in hexadecimal) and convert it to a very large negative number. If you
get a very large negative number, try converting it back to hexadecimal to find the
correct code.

To convert the error codes back to hexadecimal:
v Add 232 to the negative number and convert it into hexadecimal. This can be

done using the OMVS command ″bc″.
Example: Suppose you get the error code ″910022649″:
1. Under OMVS, type the command:

bc

2. then type:
obase=16
2^32 - 910022649
quit

v The bc program displays C9C22807, which is the hex value that you should look
up.

Debugging specific types of problems
The following topics provide information for specific types of problems that you
might encounter in the WebSphere Application Server for z/OS environment.

26 WebSphere Application Server for z/OS V5.0: Diagnosis

Debugging client exceptions
Start with the client and work your way backward to find the problem. When
tracing exceptions back to the original problem, be aware that the RMI/IIOP
protocol requires that some exceptions undergo conversion from one type to
another as the exception passes through the runtime. Usually this transformation is
between CORBA::SystemExceptions and RMI RemoteExceptions. Pay special
attention to the CORBA::SystemException minor codes which indicate that a type
transformation has occurred.

Caused by: System exception (thrown by
runtime)

User exception (thrown by
application code)

Look for: v CEEDUMPs in controller (region)
or servant (region). These dumps
indicate that the runtime had an
error

v JRAS error log entries, which can
narrow the error down the
exception to a specific function
within the runtime

v CEEDUMPs

v JRAS error log entries and traces

Actions: v Look at the minor code that is
listed.

v Look for fixes that address
similar symptoms or minor
codes.

v System exceptions usually
represent the detection of an
unexpected error, and therefore
(unless directed by the
documentation of the minor
code) will often require IBM
assistance to identify the
problem.

v Look at your application for any
sign of error.

v Look for system failures, such as
a system exception in the
controller (region). If you find a
system exception, follow the
steps to the left for diagnosing a
system exception.

Debugging applications that hang

Possible cause: The WebSphere variable transaction_defaultTimeout might have a
value too large.

Caused by: Loop in the application JVM runs out of heap storage, if
you are running Java in a servant
(region)

Chapter 3. Doing your own detective work 27

Look for: v Environment variable that
handles how long the application
runs before timeout

v Timeout-related minor codes:

– C9C21047

– C9C2110F

– C9C21110

– C9C21111

– C9C21112

– C9C21113

– C9C21114

– C9C21190

– C9C21191

– C9C21192

– C9C21809

– C9C21892

– C9C21893

– C9C22013

v ABEND EC3, reason codes
0413002 through 04130007

v resource messages on the console

Example: DB2 deadlock
messages on the z/OS console

v A wait beyond the timeout value
length with no timeout

v Any error messages from JVM in
the job log of the failed servant
(region)

Actions: v Analyze with IPCS to determine
whether or not the servant
(region) was looping (application
code loop) or waiting (maybe the
runtime failed).

– Use the DUMP command to get
a console dump of the servant
and its controller.

v If you were utilizing JRAS, look
at the JRAS CTRACE entries:

– If the application code was
looping, you may see the
same entry repeating.

v Ensure that CTRACE writer is on
and take a SVC dump at the
approximate time of hang.

v Use the display command to
determine the state of the server.
See “Using the z/OS display
command” on page 26 for
additional information.

v Through the Administrative
console, set the WebSphere
variable to debug the JVM; this
setting passes information to the
JVM and turns on the high-level
messages for you to examine.

v Look for error message or Java
stack traces that might indicate
an OUT_OF_MEMORY condition.

v Use application monitoring tools,
such as WebSphere Studio
Application Monitor (WSAM) or
Jinsight, to look for application
memory leaks.

Resolving timeout conditions
In such a complex environment as WebSphere Application Server for z/OS,
timeouts might occur for many different reasons. Although you can alter timeout
values, you should not do so until you understand why the timeout occurs.

28 WebSphere Application Server for z/OS V5.0: Diagnosis

Depending on the timeout condition, you might be able to permanently fix the
timeout condition by doing some system or application tuning. For example, if the
diagnostic data indicates throughput problems, you can alter the number of server
regions, the number of threads within each server region, or the use of replicated
servers.WebSphere Application Server for z/OS V5.0: Operations and Administration,
SA22-7912 contains performance tuning guidelines for:
v Applications running in the WebSphere Application Server for z/OS run-time,
v The WebSphere Application Server for z/OS run-time itself,
v The z/OS operating system, and
v z/OS subsystems or other products that might be involved in processing a

particular application request.

Generally speaking, increasing the timeout values should be your last resort, or
only a temporary action taken to prevent multiple timeout-abend dumps from
causing system performance problems. If you increase timeout values without
properly diagnosing the timeout condition, the only results you might see are less
frequent abends and dumps for the same timeout condition, or slower system or
application performance. The following topics provide background information
that can help you resolve timeout conditions:
v “Understanding how timers work”
v “Guidelines for analyzing diagnostic data for timeout conditions” on page 30
v “Identifying possible causes of and fixes for timeout conditions” on page 32
v “Guidelines for altering timeout values” on page 33

Understanding how timers work
Timers define a limit to the amount of time required for a specific operation to
complete. When the timer begins its countdown depends on type of operation it
controls. The timers that WebSphere Application Server for z/OS uses can be
classified into the general types described in Table 6 on page 30; the specific timers
themselves are described in “Controlling behavior through timeout values” on
page 46. Most of the timers have a default value that defines a reasonable limit for
the particular operation to complete. When the timer pops (that is, reaches the time
limit), WebSphere Application Server for z/OS takes one of the following actions:
v Sends a minor code to the client for timers that pop before the client request is

dispatched to a servant region.
v Abnormally ends the servant region with an EC3 ABEND for timers that pop

while the client request is being processed by an application component running
in the servant region. All threads in the abending servant region will be
terminated.
WebSphere terminates the servant region to prevent the application from tying
up resources, thus causing other requests to start backing up. Once the servant is
terminated, WLM starts a new servant to take its place and continue processing
requests from the controller.

Different types of timers might be counting down simultaneously, because the
operations they control might overlap to a certain degree. For example, suppose
the application server receives an IIOP client request that will be processed by an
application component that uses transaction support. In this case, both of the
following WebSphere timers can be counting down simultaneously:
v control_region_wlm_dispatch_timeout, which limits both the amount of time a

client request waits on the WLM queue, as well as the time required for the
application component to process the request; and

Chapter 3. Doing your own detective work 29

v transaction_defaultTimeout, which limits the amount of time the controller will
wait for a transaction to be either committed or rolled back.

These timers overlap only for the time during which the application’s transaction
is being processed. To determine which timer cause the error, you can use the
symptoms– specific minor codes or EC3 ABEND reason codes.

Table 6. General types of timers and the operations they control

General
type

Timer processing Timeout symptoms

Input Input timers define limits for receiving a
complete request; the countdown starts when
a connection to the Java server is established.
The communication protocol (HTTP, HTTPS)
determines the timer used for the request.

The session is closed.

Session Session timers define limits for the use of
session connections. These timers start the
countdown as soon as a session becomes idle.

The session is closed.

WLM
dispatch

Dispatch timers control how long a complete
client request waits to be dispatched in a
servant region for processing. The countdown
starts when the controller places the request
on the WLM queue. Depending on the
specific timer, the time limit can include not
only wait time on the WLM queue, but also
the time required for processing a response to
the client request.

Message BBOO0232W and an
EC3 ABEND in the servant
(region), with one of these
accompanying reason codes:
04130003
04130004
04130006

Transaction Transaction timers define how long:

v An application or controller will wait for
one transaction to complete. The
countdown starts when the container starts
a transaction on behalf of the application
component.

v A controller will attempt to recover
in-doubt transactions during peer restart
and recovery mode.

v Message BBOT0003W or
BBOO0232W

v An EC3 ABEND in the
servant (region), with one
of these accompanying
reason codes:
04130002
04130005

Output Output timers define how long a controller
will wait to receive output for a client request.
The countdown starts when the client request
is dispatched to the servant region for
processing. The communication protocol
(HTTP, HTTPS) determines the timer used for
the request.

Message BBOO0232W and an
EC3 ABEND in the servant
(region), with reason code
04130007

Guidelines for analyzing diagnostic data for timeout conditions
The following guidelines provide instructions for finding diagnostic data in an
SVC dump that can help you determine what timeout condition occurred:
v Find the task with the EC3 abend:

1. Format the TCB summary for the servant that was timed out by entering the
following command:
ip summ format asid(x‘address’)

where address is the address space ID of the servant.

30 WebSphere Application Server for z/OS V5.0: Diagnosis

Find the TCB that had the EC3 completion code. Ignore any EC3 completion
code on the ″main″ thread which is the 4th TCB listed in the summary
format (the 1st one after the 3 MVS TCBs). The WebSphere main thread is
the one that is waiting in BBO_BOA::impl_is_ready. No application requests
are ever dispatched on this thread, therefore there is nothing to timeout.
During timeout processing the main thread for the server region is also
abended with EC3 as a mechanism of bringing the address space down.
Thus the reason why the EC3 completion code may appear on the main
thread. This is never the cause of a timeout though, only a result of timeout
processing.

2. If there is no EC3 completion code in the TCB summary, look in systrace.
Format the systrace in gmt time since the other timestamps you’ll be
comparing it to are in gmt time. To format in gmt time, enter the following
command::
ip systrace all time(gmt)

You may not see the EC3 abend in systrace either as systrace can cover a
small amount of time.

3. You can also try looking in ip verbx mtrace or in syslog to see when the EC3
abend occurred. You’ll need this time to determine the ’end’ time of the
request which is the gmt time the timeout value was reached.

v Determine what timeout values are in effect by checking the reason code
associated with the EC3 abend.

Table 7. Abend EC3 reason codes and their explanations

Reason code Explanation

04130002 The controller issued an ABTERM for this servant region because a
transaction timeout ocurred. Code under dispatch could have been in a tight
loop.

04130003 The controller issued an ABTERM for this servant region because it was
hung trying to move a controller request into the servant region. The target
request was timed out, but the servant was currently copying the request.
The controller checked the servant for progress at regular intervals, before
taking action by issuing an ABTERM.

04130004 The controller issued a ABTERM for this servant region because the WLM
queue timeout occurred. Code under dispatch could have been in a tight
loop.

04130005 The controller issued an ABTERM for this servant region because a
transaction timeout ocurred. The transaction has timed out, but no current
request associated with the transaction was found. The servant associated
with the transaction will be terminated.

04130006 A controller thread encountered a problem while processing a request. The
request has been queued to WLM and associated with a servant region. The
termination of the associated servant region is needed to complete cleanup
for the request.

04130007 The controller issued a ABTERM for this servant region because the HTTP
OUTPUT timeout occurred. Code under dispatch could have been in a tight
loop.

v Find the method name to determine if it was httpRequest, httpsRequest or
DispatchbyURI or some other method.
If the request is not specifically a request that came through the HTTP or HTTPS
transport handlers, the protocol_http_output_timeout (HTTP) and
protocol_https_timeout_output (HTTPS) timeout values will not be a factor. In

Chapter 3. Doing your own detective work 31

other words, when the request is a DispatchbyURI method, the request is
received through the RMI/IIOP protocol, so the protocol_http* variables have
no affect.

v Obtain the callback stack for the request, using the IPCS verbexit LEDATA, with
the CEEDUMP or NTHREADS option.

Identifying possible causes of and fixes for timeout conditions
The timer that expires first might not indicate the actual problem that needs to be
fixed. To properly diagnose timeout conditions, you should know all of the timer
values that might be in effect for a particular servant region.

Table 8. Possible causes of and solutions for timeout conditions

General type of
timer

Possible causes Possible solutions

Input The client sent only part of the data and was
delayed in sending the rest.

The application on the client side may want to
consider having retry logic in place if it does
receive a timeout minor code in return.

Session The session is idle through lack of use. If you consider losing idle sessions to be a
problem, increase the values of the
persistent-session timeouts, or use the session
more frequently.

WLM dispatch No threads are free to pick up the request
because of one of the following conditions:

v The threads are all busy processing requests.

v The currently executing threads are waiting
for a response from DB2, WebSphere MQ,
another server, and so on. In this case, look
for messages indicating contention for
resources; for example, on the z/OS console,
you might see messages about DB2
deadlocks.

In either case, the request times out waiting in
the WLM queue to be dispatched in a servant
(region).

The case where the threads are all busy
processing requests could indicate one of the
following conditions:

v The number of servant regions that WLM
may start is set too low (the number is set
through WebSphere variable
wlm_maximumSRCount).

v The number of threads allowed within a
servant region is set too low (the number is
controlled by the Isolation Policy setting in
Administrative console or WebSphere
variable server_region_workload_profile).

v You need to replicate servers to handle the
amount of incoming work.

All of these conditions indicate that
performance tuning might be necessary. See
the performance topics in WebSphere
Application Server for z/OS V5.0: Operations and
Administration, SA22-7912.

Transaction Possible causes of transaction timeouts
include:

v The same as those for WLM dispatch
timeouts, or

v Delays that prevent the transaction
coordinator from committing or rolling back
a transaction within the allotted time.

See the possible solutions for WLM dispatch
timeouts. In addition, you can look for
messages indicating contention for resources
that are involved in the transaction that timed
out.

Output Possible causes of output timeouts are the
same as those for WLM dispatch (dispatch is
for IIOP, output is for HTTP).

See the possible solutions for WLM dispatch
timeouts. In addition, you can use the
WebSphere variable
protocol_accept_http_work_after_min_srs=1
to prevent the HTTP transport handler from
dispatching requests until WLM starts a
minimum number of servant regions.

32 WebSphere Application Server for z/OS V5.0: Diagnosis

Guidelines for altering timeout values
Generally speaking, increasing the timeout values should be your last resort, or
only a temporary action taken to prevent multiple timeout-abend dumps from
causing system performance problems. If you increase timeout values without
properly diagnosing the timeout condition, the only results you might see are less
frequent abends and dumps for the same timeout condition, or slower system or
application performance. When you do have to alter timeout values, however, use
the information in Table 9 to help you decide what new values might be
appropriate.

Table 9. Common timer variables and tools for monitoring these timeout conditions

WebSphere variable and its
relationship, if any, to other timers

How to monitor processing for
this type of timeout condition:

If you want to adjust the value, consider
the following:

control_region_wlm_dispatch_
timeout

For HTTP work, the WLM timer is not
set and only the HTTP_OUTPUT_TIMEOUT
is in effect (covering the entire
dispatch window)

SMF provides data on WLM
queue time

How long work takes to get to a servant
depends on the number of servants that
WLM starts, how many you let it start
(wlm_maximumSRCount), how many
service classes the work is spread across,
how much work you’re getting, and so on

protocol_http_ timeout_ input

None.

This behavior is not easily
monitored. Turning on a trace
point would indicate whether a
client failed because of this
input timeout setting, but
tracing has performance
consequences.

v How long are you willing to allow a
control region worker thread to be
blocked while it is waiting for a
message?

v How big are incoming HTTP requests?
The larger they are, the longer it might
take to get the whole request through
the network.

protocol_http_timeout_ output

If the application component starts
transactions, then the transaction
timers also might be involved.

This behavior is not easily
monitored, but the controller
will terminate the servant
(region) with abend EC3 for
this timeout condition.

v How long are you willing to let a client
hang waiting for a response?

v How long are you willing to let a thread
in a servant (region) be tied up working
on a response before concluding that the
request has taken too long?

v If you have multiple application threads
in the servant (region), all of them will
be terminated when only one of them
times out. This loss of work might make
you want to allow these timeouts to
occur less frequently.

protocol_http_timeout_
persistentSession

None. All the other timers relate to
work processing, whereas this one
relates to what happens when there is
no work.

None. How much time passes between requests
vs. how much does it cost to establish a
new session. You would want to keep idle
sessions around for a while to avoid the
startup cost of a new session, but don’t
want to keep them forever as resource
usage accumulation will eventually be a
problem.

protocol_https_timeout_ input See the information for the protocol_http_timeout_input variable. This
value applies in exactly the same way to work that comes in over the HTTPS
port.

protocol_https_timeout_output See the information for the protocol_http_timeout_output variable. This
value applies in exactly the same way to work that comes in over the HTTPS
port.

Chapter 3. Doing your own detective work 33

Table 9. Common timer variables and tools for monitoring these timeout conditions (continued)

WebSphere variable and its
relationship, if any, to other timers

How to monitor processing for
this type of timeout condition:

If you want to adjust the value, consider
the following:

protocol_iiop_local_ timeout

None. This variable is a client-side
timeout, and IIOP only.

None, other than to observe the
timeouts occuring on the client
side.

How long are you willing to let the client
block?

protocol_iiop_server_session_
keepalive

protocol_iiop_server_session_
keepalive_ssl

None. These variables relate to session
activity during idle periods and only
for IIOP, so these timers do not
interact with the
protocol_http_timeout_
persistentSession timer.

You should read TCP/IP APAR
PQ18618 for information about
the SOCK_TCP_KEEPALIVE values
and their consequences.

Is it useful to have idle sessions timeout?
They normally don’t which can consume
resources. However, detecting a timeout
requires network traffic between TCP/IP
stacks. Creating traffic on otherwise idle
sessions may have network consequences
you don’t want.

transaction_ defaultTimeout

This variable can be overriden by
applications up to the maximum
indicated by the
transaction_maximumTimeout variable,
which limits the amount of time an
application can set for its transactions
to complete. Output timers also might
cause work to time out, but the
transaction timers and output timers
are not aware of each other.

The controller issues message
BBOT0003W to indicate a
timeout condition, and
terminates the servant (region)
with abend EC3 reason codes
04130002 or 04130005.

v How long are you willing to let a client
hang waiting for a response?

v How long are you willing to let a thread
in a servant (region) be tied up working
on a response before concluding that the
request has taken too long?

v If you have multiple application threads
in the servant (region), all of them will
be terminated when only one of them
times out. This loss of work might make
you want to allow these timeouts to
occur less frequently.

transaction_ maximumTimeout

If set, this variable limits the amount
of time an application can set for its
transactions to complete. If the
transaction_maximumTimeout variable
is not set, application transactions are
controlled by the time limit set on the
transaction_ defaultTimeout variable.

None. Same considerations as for transaction_
defaultTimeout

transaction_ recoveryTimeout

None

None. Locks are held while one controller (region)
waits for other controllers that are required
to resolve in-doubt transactions. How long
can you afford to have these resources
held?

Debugging problems related to Java Message Service (JMS)
support

You might encounter JMS-related errors in the WebSphere Application Server for
z/OS environment. To debug these errors, use the following:
v WebSphere variables that control the type of trace data collected. Use the

procedure in “Steps for configuring WebSphere variables” on page 13 to set these
variables:

com.ibm.ejs.*=all=enabled
Turns on all container tracing

34 WebSphere Application Server for z/OS V5.0: Diagnosis

com.ibm.ejs.j2c.*=all=enabled
Turns on all tracing for connector support in WebSphere Application Server
for z/OS

Messaging=all=enabled
Collects trace data for the JMS and Message-driven bean (MDB) components
of WebSphere Application Server for z/OS

If your installation configures WebSphere MQ to provide Java Message Service
(JMS) support, you might need to use specific MQ tools for diagnosis:
v WebSphere variable JMSApi=all=enabled, which turns on all tracing for

applications that use the JMS application programming interface (API).
v MQSC commands, which allow you to display information and perform other

operations
v The CSQUTIL utility program, which helps you to perform backup, restoration,

and reorganization tasks, and to issue WebSphere MQ commands.

For more information about these diagnostic tools, refer to WebSphere MQ books,
which are available through the Web site:
http://www.ibm.com/software/ts/mqseries/library/

The most useful for diagnostic information are:
v WebSphere MQ for z/OS Problem Determination, GC34-6054
v WebSphere MQ for z/OS Messages and Codes, SC34-6056
v WebSphere MQ Script (MQSC) Command Reference, SC34-6055
v WebSphere MQ for z/OS System Administration Guide, SC34-6053

Chapter 3. Doing your own detective work 35

36 WebSphere Application Server for z/OS V5.0: Diagnosis

Chapter 4. Working with IBM service

When you report a problem to IBM service, you will need to provide as much
information as possible to help service personnel quickly resolve the problem. The
information you might need to send depends, in part, on the type of problem you
have encountered, and includes the following items:
v Job logs for affected address spaces; for example, the controller and any servant

regions that the controller terminated
v Job output for affected address spaces, particularly WebSphere Application

Server for z/OS messages that are written to the JESMSGLG data set
v The system log (SYSLOG), another source of WebSphere Application Server for

z/OS messages
v WebSphere Application Server for z/OS error log
v The system logrec data set or log stream
v CTRACE external writer data sets
v SVC dumps, CEEDUMPs, or other types of dumps produced because of the

problem.
v The affected server’s environment file, WAS.env, which is located in the HFS:

AppServer/config/cells/cellname/nodes/nodename/servers/servername/was.env

Additionally, IBM service might request you to:
v Provide a description of the circumstances or scenario under which the error

occurs.
v Use the VERBEXIT CBDATA subcommand. See “Using the IPCS VERBEXIT

subcommand to display diagnostic data”.
v Reset WebSphere variables that are for use only when directed by IBM service:

– “Setting trace controls for IBM service” on page 39
– “Setting dump controls for IBM service” on page 41

v Set WebSphere variable values for the location service daemon address space
(same as those for servers, with the prefix “DAEMON_”). Use the procedure in
“Steps for configuring WebSphere variables” on page 13.

Using the IPCS VERBEXIT subcommand to display diagnostic data
The interactive problem control system (IPCS) is a tool that provides formatting
and analysis support for dumps and traces produced by WebSphere Application
Server for z/OS and the applications that it hosts. IBM service personnel might
request that you use the IPCS subcommand VERBEXIT with theCBDATA verb name to
display dump information for WebSphere Application Server for z/OS. The
CBDATA formatters reside in the SBBOMIG data set, which must be in the link list or
LPA; see WebSphere Application Server for z/OS V5.0: Installation and Customization,
GA22-7909 for further details about configuring the SBBOMIG data set.

Entering VERBEXIT CBDATA results in a display of dump contents that can include
the following WebSphere Application Server for z/OS structures:
v Global control blocks
v Address space control blocks
v Task control blocks (TCBs)

© Copyright IBM Corp. 2000, 2003 37

v ORB control block

Optional parameters control which of these structures are included in the dump
display. If you enter VERBEXIT CBDATA without any optional parameters, the dump
display includes only global control block contents.

To enter VERBEXIT CBDATA, you may use any of the methods for entering IPCS
subcommands on z/OS, as described in z/OS MVS IPCS User’s Guide, SA22-7596.
Use the following syntax:
VERBEXIT CBDATA [‘parameter [,parameter]...’]

Valid parameters are:

GLOBAL(bgvt-address)
Formats and displays cell-level global vector data for the specified address
space. This display includes the following formatted control blocks:
v BGVT address — z/OS Global Vector table
v ASR Table and ASR Table entries — Active Server Resposity information

ASID(asid-number)
Formats and displays address space information for the daemon, the controller
(region), or the servant (region). This display includes the following formatted
control blocks:
v BACB — z/OS address space control block
v BTRC,TBUFSET,TBUF — z/OS Component trace control blocks
v BOAM,BOAMX — z/OS BOA control blocks
v ACRW queue — Application Control Region Work element control blocks
v BTCB queues — z/OS control information

Along with ASID(asid-number), IBM service personnel might direct you to
specify one of the following parameters, to include additional information in
the dump display:

BTCB(btcb_address)
Formats and displays the specified BTCB and ORB information for the
WebSphere Application Server for z/OS TCB.

COMMDATA
Formats and displays session information.

CONFIG
Formats and displays configuration information for the address space.

OBJADDR(object_address) and OBJTYPE(object_type_ID)
Formats and displays information for the specified object of the specified
type. IBM service personnel will provide the values for you to supply for
these parameters.

ORBDATA
Formats and displays ORB information.

TCB(tcb_address)
Formats and displays request summary information for the specified task.

TRACEBACK
Formats and displays ORB information.

38 WebSphere Application Server for z/OS V5.0: Diagnosis

SUMMARY
Summarizes information from some of the other CBDATA optional parameters.
For example, for the GLOBAL parameter, specifying SUMMARY produces a list of
active servers.

Example: Output from the command ip VERBEXIT CBDATA ‘ASID(xx)
TCB(yyyyyyyy)’:
command ===> ip VERBX CBDATA ’ASID(xx) TCB(xxxxxxxx)’
********************************* TOP OF DATA *******************************
COMPON=WEBSPHERE Z/OS,COMPID=5655A9801,ISSUER=BBORMCDP,ERRNO=04006006

BBOR0012I Formatting Clssname
Clssname: 2BE6947E

+0000 D9859496 A385E685 82C39695 A3818995 |RemoteWebContain|................|
+0010 859900 |er. |... |
BBOR0012I Formatting MethodNm
MethodNm: 2BE69472

+0000 88A3A397 998598A4 85A2A300 00000000 |httprequest.....|.........?......|
BBOR0012I Formatting ComRtInf
ComRtInf: 2BE69212

+0000 89974081 8484997E F94BF5F6 4BF4F24B |ip addr=9.56.42.|..@....~.K..K..K|
+0010 F1F6F840 979699A3 7EF1F0F8 F500 |168 port=1085. |...@....~..... |
BBOR0026I GMT Time Request was received into CTL region
TODCLOCK: 00000000

04/08/2003 12:58:02.926136
BBOR0026I GMT Time Request was Queued to WLM in CTL region
TODCLOCK: 00000000

04/08/2003 12:58:02.926263
BBOR0026I GMT Time Request will be Expired (approximated)
TODCLOCK: 00000000

04/08/2003 13:08:01.663032
BBOR0026I GMT Time Request was received into SR region
TODCLOCK: 00000000

04/08/2003 12:58:02.927729

Setting trace controls for IBM service
“Using the z/OS modify command” on page 14

ras_trace_defaultTracingLevel=n
Specifies the default tracing level for WebSphere Application Server for z/OS.

Valid values and their meanings are:

0 No tracing

1 Exception tracing

2 Basic and exception tracing

3 Detailed tracing, including basic and exception tracing

Use this variable together with the ras_trace_basic and ras_trace_detail
variables to set tracing levels for WebSphere Application Server for z/OS
subcomponents.

Default: 1

Example: ras_trace_defaultTracingLevel=2

ras_trace_basic=n | (n,...)
Specifies tracing overrides for particular WebSphere Application Server for
z/OS subcomponents.

Chapter 4. Working with IBM service 39

Subcomponents, specified by numbers, receive basic and exception traces. If
IBM service directs you to specify more than one subcomponent, use
parentheses and separate the numbers with commas. IBM service provides the
subcomponent numbers and their meanings.

Other parts of WebSphere Application Server for z/OS receive tracing as
specified on the ras_trace_defaultTracingLevel variable.

Default: (no default value)

Example: ras_trace_basic=3

ras_trace_detail=n | (n,...)
Specifies tracing overrides for particular WebSphere Application Server for
z/OS subcomponents.

Subcomponents, specified by numbers, receive detailed traces. If IBM service
directs you to specify more than one subcomponent, use parentheses and
separate the numbers with commas. IBM service provides the subcomponent
numbers and their meanings.

Other parts of WebSphere Application Server for z/OS receive tracing as
specified on the ras_trace_defaultTracingLevel variable.

Default: (no default value)

Examples:

ras_trace_detail=3
ras_trace_detail=(3,4)

ras_trace_specific=n | (n,...)
Specifies tracing overrides for specific WebSphere Application Server for z/OS
trace points.

Trace points are specified by 8-digit, hexadecimal numbers. If IBM service
directs you to specify more than one trace point, use parentheses and separate
the numbers with commas. You also can specify a WebSphere variable name by
enclosing the name in single quotes. The value of the WebSphere variable will
be handled as if you had specified that value on ras_trace_specific.

Default: (no default value)

Examples:

ras_trace_specific=03004020
ras_trace_specific=(03004020,04005010)
ras_trace_specific=‘xyz’

[where xyz is an environment variable name]
ras_trace_specific=(‘xyz’,‘abc’,03004021)

[where xyz and abc are environment variable names]

ras_trace_exclude_specific=n | (n,...)
Specifies WebSphere Application Server for z/OS trace points to exclude from
tracing activity.

Trace points are specified by 8-digit, hexadecimal numbers. If IBM service
directs you to specify more than one trace point, use parentheses and separate
the numbers with commas. You also can specify a WebSphere variable name by
enclosing the name in single quotes. The value of the WebSphere variable will
be handled as if you had specified that value on ras_trace_exclude_specific.

Default: (no default value)

40 WebSphere Application Server for z/OS V5.0: Diagnosis

Examples:

ras_trace_exclude_specific=03004020
ras_trace_exclude_specific=(03004020,04005010)
ras_trace_exclude_specific=‘xyz’

[where xyz is an environment variable name]
ras_trace_exclude_specific=(‘xyz’,‘abc’,03004021)

[where xyz and abc are environment variable names]

Setting dump controls for IBM service
ras_minorcode_action=value

Determines the default behavior for gathering documentation about system
exception minor codes.

CEEDUMP
Captures callback and offsets.

Tip: It takes time for the system to take CEEDUMPs and this may cause
transaction timeouts. For instance, if the WebSphere variable
transaction_defaultTimeout is set to 30 seconds, your application
transaction may time out because processing a CEEDUMP can take longer
than 30 seconds. To prevent this from happening, either:
v Increase the transaction timeout value, or
v Code ras_minorcode_action=NODIAGNOSTICDATA and make sure the

ras_trace_minorCodeTraceBacks variable is not specified.

TRACEBACK
Captures Language Environment and z/OS UNIX traceback data.

SVCDUMP
Captures an MVS dump (but will not produce a dump in the client).

NODIAGNOSTICDATA
Specifies that no diagnostic data will be collected, even if CEEDUMP,
TRACEBACK, or SVCDUMP processing occurs because of another
WebSphere variable setting. For example, if you code both of the following
variables, traceback processing occurs but none of the traceback data is
collected:

ras_minorcode_action=NODIAGNOSTICDATA
ras_trace_minorCodeTraceBacks=ALL

Default: NODIAGNOSTICDATA

Example: ras_minorcode_action=SVCDUMP

ras_trace_minorCodeTraceBacks=value
Enables traceback of system exception minor codes. Values are:

ALL|all
Enables traceback for all system exception minor codes.

minor_code
Enables traceback for a specific minor code.

Example: Type 1234 for minor code C9C21234

(null value)
The default. This setting will not cause gathering of a traceback.

Chapter 4. Working with IBM service 41

Default: (null value)

Example: ras_trace_minorCodeTraceBacks=all

Mapping of V4.0.1 environment variables to V5 WebSphere variables
The following table lists only V5 WebSphere variables related to diagnosis, along
with their equivalent V4.0.1 environment variables. This information is provided
only as an aid to IBM service personnel.

Warning: Do not use this information to manually modify the contents of a
was.env file. The was.env file is managed by WebSphere, and its content is
rewritten with each change made to the WebSphere configuration. Therefore, any
hand-editing will be overwritten.

Table 10. V4.0.1 environment variables and their equivalent V5 WebSphere variables

V4.0.1 environment variables Equivalent V5 WebSphere variables

BBOC_HTTP_INPUT_TIMEOUT protocol_http_timeout_input

BBOC_HTTP_OUTPUT_TIMEOUT protocol_http_timeout_output

BBOC_HTTP_PERSISTENT_SESSION_TIMEOUT protocol_http_timeout_persistentSession

BBOC_HTTP_SSL_OUTPUT_TIMEOUT protocol_https_timeout_output

CLIENT_TIMEOUT protocol_iiop_local_timeout

IIOP_SERVER_SESSION_KEEPALIVE protocol_iiop_server_session_keepalive

OTS_DEFAULT_TIMEOUT transaction_defaultTimeout

control_region_wlm_dispatch_timeout

OTS_MAXIMUM_TIMEOUT transaction_maximumTimeout

RECOVERY_TIMEOUT transaction_recoveryTimeout

SSLIIOP_SERVER_SESSION_KEEPALIVE protocol_iiop_server_session_keepalive_ssl

42 WebSphere Application Server for z/OS V5.0: Diagnosis

Appendix A. WebSphere variable definitions

WebSphere Application Server for z/OS provides configuration variables that allow
you to control:
v Output destinations and characteristics for the error log, and for CTRACE

buffers, data sets and the external writer.
v Trace buffers, data sets, and the content of trace data.
v Types of dumps to be requested.
v Timeout values for system and application behavior.

Setting output destinations and characteristics
client_ras_logstreamname=name

Specifies the name of the log stream for an application client run-time to use
for error information.

Default: If this variable is not specified, the client run-time uses STDERR.

Example: client_ras_logstreamname=MY.CLIENT.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data
set names.

ras_default_msg_dd=DD_card_name
Redirects write-to-operator (WTO) messages that use the default routing to
hardcopy. These messages are redirected to the location identified through the
DD card on the server’s JCL start procedure. These WTO messages are
primarily messages that WebSphere Application Server for z/OS issues during
initialization.

Default: No default value is set; WTO messages that use default routing are
sent to hardcopy.

Examples:

ras_default_msg_dd=MSGDD
ras_default_msg_dd=DFLTLOG

Example of the DFLTLOG DD card on the server’s JCL start procedure:
//DFLTLOG DD SYSOUT=*

ras_hardcopy_msg_dd=DD_card_name
Redirects write-to-operator (WTO) messages that WebSphere Application
Server for z/OS routes to hardcopy. These messages are redirected to the
location identified through the DD card on the server’s JCL start procedure.
These WTO messages are primarily audit messages issued from Java code
during initialization.

Default: No default value is set; WTO messages that use hardcopy routing are
sent to hardcopy.

Example: ras_hardcopy_msg_dd=MSGDD

ras_log_logstreamName=name
Specifies the log stream for WebSphere Application Server for z/OS to use for

© Copyright IBM Corp. 2000, 2003 43

error information during bootstrap processing. If the specified log stream is not
found or not accessible, a message is issued and errors are written to the
server’s job log.

Default: If this variable is not specified, WebSphere Application Server for
z/OS uses STDERR.

Example: ras_log_logstreamName=MY.CB.ERROR.LOG

Tip: Do not put the log stream name in quotes. Log stream names are not data
set names.

Setting trace controls
ras_trace_outputLocation=SYSPRINT | BUFFER | TRCFILE

Specifies where you want trace records to be sent:
v To SYSPRINT
v To a memory buffer (BUFFER), the contents of which are later written to a

CTRACE data set
v To a trace data set (TRCFILE) specified on the TRCFILE DD statement in the

server’s start procedure.

For servers, you may specify one or more values, separated by a space. For
clients, you may specify SYSPRINT only.

Defaults:

v For clients, SYSPRINT
v For all other processes, BUFFER

Example: ras_trace_outputLocation=SYSPRINT BUFFER

ras_time_local=0 | 1
Specifies whether timestamps in trace records use Greenwich Mean Time
(GMT) or local time. This variable setting controls timestamp format in the
error log, and in traces sent to SYSPRINT or TRCFILE DD.

Default: 0 (GMT)

Example: ras_time_local=1 sets timestamps to local time.

ras_trace_ctraceParms=SUFFIX | MEMBER_NAME
Identifies the CTRACE PARMLIB member. The value can be either:
v A two-character suffix, which is added to the string CTIBBO to form the name

of the PARMLIB member, or
v The fully specified name of the PARMLIB member. A fully specified name

must conform to the naming requirements for a CTRACE PARMLIB
member.

If this environment variable is specified and the PARMLIB member is not
found, the default PARMLIB member, CTIBBO00, is used. If neither the
specified nor the default PARMLIB member is found, tracing is defined to
CTRACE, but there is no connection to a CTRACE external writer.

Note: The Daemon is the only server that recognizes this environment
variable.

Default: 00 (the default PARMLIB member, CTIBBO00)

Example: ras_trace_ctraceParms=01 identifies PARMLIB member CTIBBO01

44 WebSphere Application Server for z/OS V5.0: Diagnosis

ras_trace_BufferCount=n
Specifies the number of trace buffers to allocate. Valid values are 4 through 8.

Default: 4

Example: ras_trace_BufferCount=6

ras_trace_BufferSize=n
Specifies the size of a single trace buffer in bytes. You can use the letters K (for
kilobytes) or M (for megabytes). Valid values are 128K through 4M.

Default: 1M

Example: ras_trace_BufferSize=2M

Setting dump controls
ras_dumpoptions_dumptype=n

Specifies the default dump used by the signal handler. Valid values and their
meanings are:

0 No dump is generated.

1 A ctrace dump is taken.

2 A cdump dump is taken.

3 A csnap dump is taken.

4 A CEE3DMP dump is taken.

CEE3DMP generates a dump of Language Environment and the member
language libraries. Sections of the dump are selectively included,
depending on dump options specified, either by default or through the
ras_dumpoptions_ledumpoptons variable. By default, this value passes
THREAD(ALL) BLOCKS to CEE3DMP. You can override the default options for
CEE3DMP through the ras_dumpoptions_ledumpoptons variable. For more
information about CEE3DMP and its options, see z/OS Language
Environment Programming Reference, SA22-7562.

Default: 3

Example: ras_dumpoptions_dumptype=2

ras_dumpoptions_ledumpoptons=options
Specifies dump options to be used with a CEE3DMP. If you want more than
one option, separate each option with a blank.

This WebSphere variable is used only when you specify
ras_dumpoptions_dumptype=4. For an explanation of CEE3DMP and valid dump
options, see z/OS Language Environment Programming Reference, SA22-7562.

Rule: The maximum length of the option string on this environment variable is
255. If the option string is longer than 255, you receive message BBOM0011W
and the CEE3DMP dump options are set to THREAD(ALL) BLOCKS.

Default: THREAD(ALL) BLOCKS

Example: ras_dumpoptions_ledumpoptons=NOTRACEBACK NOFILES

Appendix A. WebSphere variable definitions 45

Controlling behavior through timeout values
control_region_wlm_dispatch_timeout

Specifies the maximum amount of time, in seconds, that WebSphere
Application Server for z/OS will wait for IIOP requests to complete. This time
limit includes:
v Time during which the IIOP request waits on the WLM queue until being

dispatched to a servant (region), and
v Time during which an application component, running in the servant,

processes the request and generates a response.

The server generates a failure response if this processing does not complete
within the specified time.

Note: This variable setting does not apply for HTTP requests; for that type of
work, the value specified through the protocol_http_timeout_output
variable controls the time allowed for dispatching work to a servant
(region).

Default: 300 seconds

Example: control_region_wlm_dispatch_timeout=600

protocol_http_timeout_input
Sets a maximum amount of time, in seconds, that the Java server will wait for
the complete HTTP request to arrive. The Java server starts the timer after the
connection has been established, and cancels the connection if a complete
request does not arrive within the specified maximum time limit. Specifying a
value of zero disables the time-out function.

Default: 10 seconds

Example: protocol_http_timeout_input=15

protocol_http_timeout_output
Sets a maximum amount of time, in seconds, that the Java server will wait for
an application component to respond to an HTTP request. If the response is
not received within the specified length of time, the servant (region) fails with
ABENDEC3 and RC=04130007. Setting this timer prevents client applications
from waiting for a response from an application component that might be
deadlocked, looping, or encountering other processing problems related to:
v JSP compiles (javac / jit compiles)
v XML parser
v jaspr

Default: 120 seconds

Example: protocol_http_timeout_output=150

protocol_http_timeout_persistentSession
Specifies the time, in seconds, that the Java server will wait for a subsequent
request from an HTTP client on a persistent connection. If another request is
not received from the same client within this time limit, the connection is
closed.

Default: 30 seconds

Example: protocol_http_timeout_persistentSession=40

46 WebSphere Application Server for z/OS V5.0: Diagnosis

protocol_https_timeout_input
Specifies the maximum amount of time, in seconds, that the Java server will
allow for the complete HTTPS request to be received before cancelling the
connection.

Default: 10 seconds

Example: protocol_https_timeout_input=15

protocol_https_timeout_output
Specifies the maximum amount of time, in seconds, that the Java server will
wait from the time the complete HTTPS request is received until output is
available to be sent to the client.

Default: 120 seconds

Example: protocol_https_timeout_output =150

protocol_https_timeout_persistentSession
Specifies the time, in seconds, that the Java server will wait between requests
issued over a persistent connection from an HTTPS client. After the server
sends a response, it uses the persistent timeout to determine how long it
should wait for a subsequent request before cancelling the persistent
connection.

Default: 30 seconds

Example: protocol_https_timeout_persistentSession=40

protocol_iiop_local_timeout
Specifies the maximum time, in tenths of seconds, that the client will wait for
the response to a client request. This variable is the only time-out available for
remote method dispatches made by clients only, not by application
components within the servant region. Because the sysplex TCP/IP that runs
through the coupling facility does not always tell the client when the other end
of the socket is gone, clients can wait indefinitely for a response unless you set
this variable. Setting protocol_iiop_local_timeout ensures that the client gets
a response within the specified time, even if the response is a COMM_FAILURE
exception.

Default: 0 (unlimited), which means no time-out value is set

Example: protocol_iiop_local_timeout=20 sets the time to 2 seconds

protocol_iiop_server_session_keepalive
Defines the value, in seconds, provided to TCP/IP on the
SOCK_TCP_KEEPALIVE option for the IIOP listener. The function of this
option is to verify if idle sessions are still valid by polling the client TCP/IP
stack. If the client does not respond, the session is closed. If the client goes
away without notifying the server, it would unnecessarily leave the session
active on the server side. Use this option to clean up these unnecessary
sessions.

Notes:

1. If the environment variable is not set, the TCP/IP option is not set.
2. Setting the SOCK_TCP_KEEPALIVE option generates network traffic on

idle sessions, which can be undesirable.

Default: 0

Example: protocol_iiop_server_session_keepalive=3600

Appendix A. WebSphere variable definitions 47

protocol_iiop_server_session_keepalive_ssl

transaction_defaultTimeout
Specifies the maximum amount of time, in seconds, that the Java server will
wait for an application transaction to complete. This default amount of time is
given to the application transaction if it does not set its own time-out value
through the current→set_timeout method. The timer in the controller (region)
starts when the container starts a global transaction. If the application
transaction is not committed or rolled back within the specified time, the
controller abends servant (region) in which the application component is
running, with abend EC3 reason code 04130002 or 04130005.

The maximum value is 2147483 seconds (24.85 days). You should not use a null
or 0 value.

Default: 120 seconds

Example: transaction_defaultTimeout=300

transaction_maximumTimeout
Specifies the maximum amount of time, in seconds, that your installation will
allow an application to specify for its transactions to complete. If an
application assigns a greater amount of time through the current→set_timeout
method, the Java server overrides the application setting to the value specified
for the transaction_maximumTimeout variable. If the application does not set its
own time-out value through the current→set_timeout method, the default
value set through the transaction_defaultTimeout variable applies.

The maximum value is 2147483 seconds (24.85 days). You should not use a null
or 0 value.

Default: 300 seconds

Example: transaction_maximumTimeout=600

transaction_recoveryTimeout
Specifies the time, in minutes, that this controller (region) uses to attempt to
resolve in-doubt transactions before issuing a write-to-operator-with-reply
(WTOR) message to the console, requesting whether it should:
v Stop trying to resolve in-doubt transactions,
v Write transaction-related information to the job log or hard copy log, and
v Terminate.

If the operator replies that recovery should continue, the controller (region)
will attempt recovery for the specified amount of time before re-issuing the
WTOR message. Once all the transactions are resolved, the control region
terminates. This variable applies only to controllers in peer restart and recovery
mode.

Default: 15 minutes

Example: transaction_recoveryTimeout=7

48 WebSphere Application Server for z/OS V5.0: Diagnosis

Appendix B. The error dump and cleanup interface

Note: This appendix contains Programming Interface and Associated Guidance
Information.

The Error Dump and Cleanup (BBORLEXT) interface exists to call WebSphere
Application Server for z/OS in a recovery environment to allow it to request a
dump and to clean up its resources.

The interface will:
v Save the function and DLL names of the failing z/OS component into the

SDWA.
v Determine whether or not to issue an SDUMP, if relevant to the time-of-failure

environment.
v Clean up z/OS internal structures and connections.

Program requirements

This interface must be called from within a WebSphere Application Server for
z/OS location service daemon, controller (region), or servant (region). There
are no restrictions against in which recovery environment, such as an ESTAE
or FRR routine, the caller must reside.

General information

Interface: BALR to BBORLEXT

Address of routine: (ECVT+’234’x)+’20’x

Address mode: AMODE 31, RMODE any

State: Allow problem program state, task mode

Cross memory mode: PASN=HASN=SASN (non-cross memory)

Return codes: No return codes

Function: Clean-up various WebSphere for z/OS resources and possibly
issue an SVC dump for the current address space

Input register information
The contents of the registers are as follows:

1 Contains the address of the SDWA

14 Contains the return address

15 Contains the entry point address of BBORLEXT

Output register information
When control returns to the caller, the contents of the registers are as follows:

0-1 Used as a work register by the system

2-14 Unchanged

15 Used as a work register by the system

Note: Some callers depend on register contents remaining the same before and
after issuing a service. If the system changes the contents of registers on

© Copyright IBM Corp. 2000, 2003 49

which the caller depends, the caller must save them before issuing the
service and restore them after the system returns control.

Note: A dump will not occur for X22 abends or for certain reason codes from 0D6,
052, 067, CC3, and DC3 abends. There may also be other error conditions
that will not create a dump.

Example:
Example
Here is an example of how to call this routine in assembler:

LA 1,SDWA Load SDWA@ in Reg 1
L 15,(0,16) Load CVT address
L 15,140(,15) Load ECVT address
L 15,564(,15) Load address of z/OS structure
L 15,32(,15) Load address of z/OS routine
BALR 14,15 Invoke z/OS routine

50 WebSphere Application Server for z/OS V5.0: Diagnosis

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2003 51

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Examples in this book
The examples in this book are samples only, created by IBM Corporation. These
examples are not part of any standard or IBM product and are provided to you
solely for the purpose of assisting you in the development of your applications.
The examples are provided ″as is.″ IBM makes no warranties express or implied,
including but not limited to the implied warranties of merchantability and fitness
for a particular purpose, regarding the function or performance of these examples.
IBM shall not be liable for any damages arising out of your use of the examples,
even if they have been advised of the possibility of such damages.

These examples can be freely distributed, copied, altered, and incorporated into
other software, provided that it bears the above disclaimer intact.

52 WebSphere Application Server for z/OS V5.0: Diagnosis

Trademarks
The following terms are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both:

DB2
IBM
Language Environment
MVS
OS/390

RACF
S/390
WebSphere
z/OS

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, ActiveX, Visual Basic, Visual C++, Windows, Windows NT, and the
Windows logo are trademarks or registered trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Other company, product, or service names may be trademarks or service marks of
others.

Programming interface information
This publication documents information that is NOT intended to be used as
Programming Interfaces of WebSphere for z/OS.

Appendix C. Notices 53

54 WebSphere Application Server for z/OS V5.0: Diagnosis

Glossary

For more information on terms used in this book, refer
to one of the following sources:

v IBM Glossary of Computing Terms, located on the
Internet at:

http://www.ibm.com/ibm/terminology/

v Sun Microsystems Glossary of Java
Technology-Related Terms, located on the Internet at:

http://java.sun.com/docs/glossary.html

v The Sun Web site, located on the Internet at:

http://www.sun.com/

© Copyright IBM Corp. 2000, 2003 55

56 WebSphere Application Server for z/OS V5.0: Diagnosis

IBMR

Program Number: 5655–I35

Printed in the United States of America

GA22-7914-00

	Contents
	Tables
	About this book
	Who should read this book
	How this book is organized
	Where to find related information, tools, and supplements
	How to send your comments

	Chapter 1. Introduction
	Acquiring skills for problem determination
	Working with diagnostic tools and controls

	Chapter 2. Preparing for the unexpected
	Guidelines for maintaining the run-time environment
	Guidelines for using system controls
	Setting up the error log
	Setting up component trace (CTRACE)
	Steps for preparing CTRACE controls and resources
	Steps for starting CTRACE as part of WebSphere Application Server for z/OS customization
	Steps for starting CTRACE while WebSphere Application Server for z/OS servers are active
	Using CTRACE to collect trace data for Java server applications

	Configuring WebSphere variables
	Steps for configuring WebSphere variables

	Using the z/OS modify command
	Dynamically changing diagnostic controls through the modify command

	Chapter 3. Doing your own detective work
	Viewing diagnostic information
	Viewing CEEDUMPs in the job log
	Viewing SVC dumps
	Viewing CTRACE and JRas data through IPCS
	Steps for using the IPCS dialog to format CTRACE data
	Finding the subname for IPCS CTRACE
	Viewing multiple traces
	Steps for using IPCS in batch mode to format CTRACE data

	Viewing error log contents through the Log Browse Utility (BBORBLOG)
	Using the log browse utility (BBORBLOG)
	Error log stream record output
	Saving your BBORBLOG browser output

	Using the z/OS display command
	Converting Java minor codes

	Debugging specific types of problems
	Debugging client exceptions
	Debugging applications that hang
	Resolving timeout conditions
	Understanding how timers work
	Guidelines for analyzing diagnostic data for timeout conditions
	Identifying possible causes of and fixes for timeout conditions
	Guidelines for altering timeout values

	Debugging problems related to Java Message Service (JMS) support

	Chapter 4. Working with IBM service
	Using the IPCS VERBEXIT subcommand to display diagnostic data
	Setting trace controls for IBM service
	Setting dump controls for IBM service
	Mapping of V4.0.1 environment variables to V5 WebSphere variables

	Appendix A. WebSphere variable definitions
	Setting output destinations and characteristics
	Setting trace controls
	Setting dump controls
	Controlling behavior through timeout values

	Appendix B. The error dump and cleanup interface
	Appendix C. Notices
	Examples in this book
	Trademarks
	Programming interface information

	Glossary

