
IBM® WebSphere® Host Publisher
Programmer’s Guide and Reference
Version 4.0

���

IBM® WebSphere® Host Publisher
Programmer’s Guide and Reference
Version 4.0

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix A.
Notices” on page 83.

Third Edition (April 2002)

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this information v
Where can I find information online? v

Manuals v
Information on the Web vi

Chapter 1. Programming with IBM Host
Publisher Integration Objects 1
Application components 1

Browser components. 1
Web application server components. 1
Distributed object server components 2
Using Host Publisher Java objects in a WebSphere
application 2

Using Host Publisher Integration Objects 3
Preparing to work with an Integration Object . . 3
Working with Host Publisher .ear, .war, and .jar
files in WSAD 4
Using an Integration Object in a Web container
(custom servlet or JSP) 5
Using an Integration Object in an EJB container
(from a custom EJB) 8
Defining Host Publisher Server as a WebSphere
custom service 10
Integration Object methods 11
Integration Object chaining 13

Chapter 2. Applying XML stylesheet
processing to Integration Object output 15
DTD of XML data returned by
getHPubXMLProperties() method 15

XML data using the getHPubXMLProperties()
method 15

DTD of XML data returned by
getHPubXMLProperties(HPubConvertToTableFormat.xsl)
method 16

XML data with HPubConvertToTableFormat
stylesheet applied 16

Chapter 3. Programming with the XML
Java bean 19
The xmlAppData Java bean 20
The sample XML Gateway servlet 20
The HostConnection Java bean 22

Chapter 4. Using Enterprise JavaBeans
Support 23
Programming with EJB Access Beans 23

EJB Access Bean chaining. 23
Using EJB Access Beans with Java Application
Clients 25

Chapter 5. Using Web Services support 27

Programming with Web Services Integration Objects
and EJB Access Beans 27

Integration Object Chaining with Web Services 28
EJB Access Bean Chaining with Web Services . . 28

Creating and Deploying Web Services using WSAD 28
Creating Web Services from an Integration Object 28
Creating Web Services From an EJB Access Bean 29

Chapter 6. Using Remote Integration
Objects 31
Creating Remote Integration Objects and the sample
application 31
Programming with Remote Integration Objects . . 32

Using Remote Integration Objects 32
Remote Integration Object chaining 33

Obtaining Integration Object data in XML format. . 34
Remote Integration Object files 36

Chapter 7. Customizing Host Access
Integration Object Java code 37
Using Java coding templates. 37

Modifying Java coding templates 38
Debugging customizable Host Access Integration
Object compilation errors 39

A common class for accessing Host Access
Integration Object information 39

Java class hierarchy of Host Access Integration
Objects 39

Chapter 8. Customizing JavaServer
Page (JSP) migration 41

Chapter 9. Host Publisher File formats 43
Integration Object project (.hpi) file 43
Host Publisher application (.hpa) file 47
Integration Object source (.java) file 49
JavaServer Pages (JSP) Web page files 50
Connection and configuration files 56

Format of connection pool specification files . . 57
Macro script files 64

Macro editing tips 65
Macro script syntax. 66

Appendix A. Notices 83
Programming interface information 84

Appendix B. Trademarks 85

Index 87

© Copyright IBM Corp. 2000, 2002 iii

iv IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

About this information

This information is designed to help you, the Host Publisher programmer,
understand how to use the functions provided by Host Publisher. This book also
includes information about the file formats and macro script syntax created by
Host Publisher components, which enables you to edit the files manually.

Additional information resources are available for learning to use Host Publisher
features. These resources include the product README, online help, and product
Web pages. (See “Where can I find information online?”).

This book is available as an HTML file on the installation CD, as a PDF file on the
CD, and as an HTML file on the product Web site. Visit the Web site for the most
updated version of this document.

Where can I find information online?
You can find the following forms of documentation for Host Publisher online.

Manuals
To access online documentation in either Host Publisher Studio or Host Publisher
Server, you can use a Web browser to open HTML files and book (PDF) files on
your local system.

In Host Publisher Studio
Listed below are the locations for the files for each document, where install_dir is
the directory in which Host Publisher is installed.

IBM WebSphere Host Publisher Administrator’s and User’s Guide
install_dir\Common\doc\guide\guide.htm

To open the book (PDF) version, use the file name guide.pdf instead of
guide.htm.

IBM WebSphere Host Publisher Planning and Installation Guide
install_dir\Common\doc\install\instgd.htm

To open the book (PDF) version, use the file name instgd.pdf instead of
instgd.htm.

IBM WebSphere Host Publisher Programmer’s Guide and Reference
install_dir\Common\doc\proggd\proggd.htm

To open the book (PDF) version, use the file name progguid.pdf instead of
proggd.htm.

IBM WebSphere Host Publisher Messages Reference
install_dir\Common\doc\msgref\msgref.htm

To open the book (PDF) version, use the file name msgref.pdf instead of
msgref.htm.

IBM Host Publisher Readme
install_dir\Common\doc\readme.htm

© Copyright IBM Corp. 2000, 2002 v

In Host Publisher Server
In Host Publisher Server, the documentation is available in any language you
choose, when WebSphere is running on the Server. Open a browser to
http://ServerName/HPDoc/HPDocServlet to choose the desired language and
view the documentation in that language.

Listed below are the file names for each document.

IBM WebSphere Host Publisher Administrator’s and User’s Guide
guide.htm and guide.pdf in \guide subdirectory

IBM WebSphere Host Publisher Planning and Installation Guide
instgd.htm and instgd.pdf in \install subdirectory

IBM WebSphere Host Publisher Programmer’s Guide and Reference
proggd.htm and proggd.pdf in \proggd subdirectory

IBM WebSphere Host Publisher Messages Reference
msgref.htm and msgref.pdf in \msgref subdirectory

IBM Host Publisher Readme
readme.htm

Information on the Web
Find the most up-to-date versions of this document, frequently asked questions
(FAQs), white papers, and additional information at the product Web site:
http://www.ibm.com/software/network/hostpublisher.

vi IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 1. Programming with IBM Host Publisher Integration
Objects

Host Publisher Studio creates Java™ objects (Integration Objects, Remote
Integration Objects, EJB Access Beans, and Web Services support files) that can be
used as building blocks for WebSphere applications. Host Publisher Java objects
are Java beans that encapsulate interactions with legacy data sources. These legacy
data sources include terminal-oriented applications that use 3270, 5250, and VT
data streams, as well as relational databases that provide a JDBC™ interface, such
as the IBM DB2 Universal Database®.

The following sections introduce the components of a WebSphere application. This
information helps the Host Publisher programmer understand how Host Publisher
Java objects can be used in a WebSphere application.

Application components
Application components are those that a developer will have to program, whether
manually or with the aid of tools. The language used to develop a given
application component will depend in large part upon the “tier” where the
component will be executed at runtime.

For example, browser-based components will tend to use tag and script-oriented
languages, while Web application server components will tend towards Java.

Because the language differences tend to divide along tier boundaries, the
following sections describe the components you develop that are hosted by
browsers, Web application servers, and distributed object servers.

Browser components
While a browser is not provided by WebSphere, browser components make up a
large part of any Web-enabled application. The reason is that the browser serves as
the runtime engine for the user interface of a Web application.

The browser components that are most relevant to the WebSphere programming
model include:
v HTML
v DHTML and JavaScript
v Framesets and Named Windows
v eXtensible Markup Language (XML), XML Style Language (XSL) and Document

Type Definition (DTD).

Web application server components
Web application server components are different from browser components in that
Web application server components can create dynamic pages. HTML, DHTML,
and framesets cover the static components of the programming model. The Web
application server components hosted by WebSphere most useful in generating
dynamic content include:
v Servlets
v JavaServer Pages™ (JSPs).

© Copyright IBM Corp. 2000, 2002 1

Distributed object server components
The WebSphere programming model provides support for Java-based distributed
objects called Enterprise JavaBeans™ (EJBs). EJBs can be thought of as a standard
mechanism to contain enterprise business logic and data (usually hosted on some
enterprise server) that can take advantage of the following object services:
v Distribution, the ability for the server to be remote from the client
v Persistence, maintenance of the essential data associated with the component
v Transactions, providing the atomicity, consistency, isolation, and durability

(ACID) characteristics for the units of work
v Security, control of the roles that can access the objects and associated methods
v Trace and monitoring, configurable instrumentation for debugging and

performance tuning.

Using Host Publisher Java objects in a WebSphere application
Refer to Figure 1 for an overview of where Host Publisher Java objects can be used
within the “tiers” of a WebSphere application.

Figure 1. Host Publisher Java objects in a WebSphere application

2 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Host Publisher Server installation configures WebSphere AE to define the Host
Publisher application server (named HostPubServer in the WebSphere
Administration Console.) In WebSphere AEs, Host Publisher runs in the existing
application Server. The installation of Host Publisher Server deploys three
enterprise applications in the application server:

HPAdmin.ear
Provides administrative support for Host Publisher Server.

xmlLegacyGW.ear
Provides access to the XML Gateway function.

HPDoc.ear
Provides internationalization support for Host Publisher documentation

Host Publisher Integration Objects are intended to run only where Host Publisher
Server is installed. If you want to build an application that will run remotely from
Host Publisher Server yet requires the function of an Integration Object, use Web
Services, Remote Integration Objects, or EJB Access Beans.

Because Host Publisher Java objects are reusable Java beans, they can be used to
build your own custom servlets and EJBs.

You can build other configurations using WebSphere configuration, such as:
v Cloning your Host Publisher application server to provide load balancing and

hot standby
v Defining your own application server to run Host Publisher J2EE applications, to

isolate the processing of certain applications in one application server from those
in another application server.

Refer to WebSphere documentation for information on WebSphere configuration.

The versatility of Host Publisher Java objects in WebSphere applications, combined
with the ability to build other WebSphere configurations, enables you to build Web
applications to meet your business needs.

Using Host Publisher Integration Objects
You can use the Integration Objects that Host Publisher creates to build your own
server-side components, such as servlets, JSPs, or EJBs. This section provides
instructions for setting up an integrated development environment (IDE) to work
with an Integration Object, sample code to use when you set up the Host Publisher
Server runtime environment in an IDE, and instructions for working with
Integration Objects in a servlet, JSP, or EJB.

The IDEs described in this chapter are WebSphere Studio tools, such as WebSphere
Studio Application Developer (WSAD) Version 4.

Preparing to work with an Integration Object
These instructions assume you have already created an Integration Object using the
Host Publisher Database Access or Host Access application, and that you are
developing your program on the machine where Host Publisher Studio is installed.

In these instructions:
v Studio_Install_Dir is the Host Publisher Studio installation directory
v IOName is the name you gave to the Integration Object.

Chapter 1. Programming with IBM Host Publisher Integration Objects 3

v appname is the name you gave the application in the Host Publisher Studio
Application Integrator.

Use Host Publisher Studio Application Integrator to build an Enterprise Archive
(.ear) file with the files needed for further development.

You can use your IDE to create servlets, EJBs, or JSPs, which will need access to
the following common files located in the Studio_Install_Dir\Common directory:
v elf.jar
v habeansnlv.jar
v HpRte.jar
v HPShared.jar
v HPubCommon.jar

Note: For an EJB Web project, this is the only common file required. If you use
the sample code for starting and stopping the Host Publisher Server
instance, you also need access to HpRte.jar.

v HPubService.jar
v log.jar
v sslight-ex11-rsa-des.zip
v xmlLegacyPortal.jar

If you run an Integration Object that is express logon enabled, you also need access
to the HostPubELF.class file that you created in Host Publisher Studio. See the IBM
WebSphere Host Publisher Administrator’s and User’s Guide for information on
creating this file.

Working with Host Publisher .ear, .war, and .jar files in WSAD
To work with .ear, .war, and .jar files in WSAD, the following are the general steps
required:
1. Create an application using Host Publisher Studio Application Integrator and

import the required Integration Objects.

Note: You can create the JSPs for an application in Host Publisher Studio
Application Integrator and enhance them in WSAD, or create the JSPs in
WSAD.

2. Click Finish and choose Create J2EE Archives from the toolbar to create the .ear
file.

3. Import the .ear, .war, or .jar file located in the
Studio_Install_Dir\Applications\appname directory into WSAD. Modify the
Java build path for Web projects and EJB .jar projects to include the common
files listed in “Preparing to work with an Integration Object” on page 3.

4. Set up your application server instance.
5. Start the Host Publisher runtime. See “Sample code for starting and stopping

the Host Publisher Server runtime” on page 5 for the location of sample code.
6. Continue development of your J2EE applications in WSAD.

The following information provides more specific information on the previous
general steps. You can import .ear and Web Application Record (.war) files created
by Host Publisher Studio into WSAD for testing and access to the tools provided
by the integrated development environment (IDE). If you import a .ear file, WSAD
creates an Enterprise Application project for the .ear file and a Web project for the

4 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

.war file contained in the .ear file. If you import a .war file, you can associate the
Web project with either an existing Enterprise Application project or a new
Enterprise Application project.

WSAD also provides EJB support. If you import a .ear file that contains an
Enterprise JavaBeans (EJB) .jar file, you also have an EJB .jar project. You can
import EJB .jar and .war files into separate Enterprise Application projects. You
must generate the EJB deployment code in WSAD before running the application.

All of these projects can be built to run on the application server instance. Projects
can run within WSAD using the WebSphere Test Environment, or remotelyon an
installed WebSphere Application Server using WSAD Remote Server support. See
the online help of your IDE for information about setting up the Remote Test
Environment or specifying the type of server instance to run your project.

Setting up the WebSphere Test Environment in WSAD
If you plan to use Host Publisher Integration Objects in the WebSphere Test
Environment, you must create a servlet to start the Host Publisher Server runtime.
Create a project to contain the servlet. See “Sample code for starting and stopping
the Host Publisher Server runtime” for the location of sample code.

To build the servlet for starting the Host Publisher Server runtime in the
WebSphere Test Environment, your IDE will need access to the common files listed
in “Preparing to work with an Integration Object” on page 3. Add these files to the
Java build path for the project containing the servlet.

Running the servlet in the WebSphere Test Environment publishes the servlet and
runs it in a Web browser. A default server instance and configuration for the
WebSphere Test Environment are created, if they do not already exist. An error
occurs when you run the servlet on the server for the first time. You need to
modify the default server environment that was created for you, by adding the
common files listed in “Preparing to work with an Integration Object” on page 3 to
the WebSphere specific classpath in the WebSphere Test Environment server
instance. Restart the WebSphere Test Environment server instance for the changes
to take effect.

Sample code for starting and stopping the Host Publisher Server
runtime
You need to start the runtime if your application is running in a WebSphere
application server other than the Host Publisher application server. The runtime
should be started before any Integration Objects are executed. One way to
accomplish this is to define a servlet containing code to start and stop the runtime.

Sample source code for starting and stopping the runtime and all documentation
can be accessed starting with the following file:
Studio_Install_Dir\SDK\Server\Introduction.html

Using an Integration Object in a Web container (custom
servlet or JSP)

The instructions in this section reference Integration Object methods. See
“Integration Object methods” on page 11 for a description of these methods.

Note: You must set your CLASSPATH so that your servlet can access your
Integration Object’s .jar file as well as the common .jar files listed in
“Preparing to work with an Integration Object” on page 3.

Chapter 1. Programming with IBM Host Publisher Integration Objects 5

To write a servlet that invokes an Integration Object:
1. If your servlet will run in a WebSphere application server other than the one

configured during the installation of Host Publisher Server, you must initalize
and start the server. You can start the server with a custom service or by
creating a servlet to start the server. See “Defining Host Publisher Server as a
WebSphere custom service” on page 10 for information on using custom
services. See “Sample code for starting and stopping the Host Publisher Server
runtime” on page 5 for the location of sample code. In the WebSphere Test
Environment, you must initialize and start the server using a servlet.

2. Create an instance of your Integration Object by calling its constructor.
3. Invoke the methods for the Integration Object. You can invoke methods to set

properties of input variables. The naming convention for setter methods is as
follows:
void setXyz(String)

where xyz is the name of your input variable.

You can use a different connection pool than the one you specified when you
created your Integration Object. To specify a different connection pool, invoke
the method
void setHPubStartPoolName(String)

specifying the name of the connection pool you want to use.

Note: You can add additional connection pools to the .ear file built in Host
Publisher Studio Application Integrator.

4. Invoke the Integration Object to perform its task (running a macro or querying
a database, for example):
void doHPTransaction(HttpServletRequest, HttpServletResponse)

5. Check for errors. The doHPTransaction(HttpServletRequest,
HttpServletResponse) method will throw an exception (of type
com.ibm.HostPublisher.IntegrationObject.BeanException) if the Integration
Object has an error.
When the Integration Object is called by a JSP, the JSP processor will catch the
exception and redirect the browser to the error page specified on the
errorPage="errorPageName" attribute of the page directive. Refer to the Host
Publisher default error page, DefaultErrorPage.jsp, which can be found in the
Studio_Install_Dir\Studio directory, for a sample.
When the Integration Object is called by a custom servlet, your code must catch
the thrown exception:
try {

integrationObject.doHPTransaction(request, response);
} catch (Exception e) {
// Handle the exception condition and recover
}

Note: The error handling method used in previous versions of Host Publisher,
which used servlet response redirection to an error page specified by a
call to setHPubErrorPage(String), is deprecated. It will work for
Integration Objects created with previous versions of Host Publisher, but
cannot be used for Integration Objects created with Host Publisher 4.0.

6. Request the results from your Integration Object.

6 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

v If you created your Integration Object using the Host Access application,
retrieve the value for output variables by invoking one of the following
methods:
– Simple text

String getAbc()

where abc is the name of your output variable.
– Tables

- To get an entire column of results, invoke
String[] getAbc()

where abc is the name of your output variable.
- To get a single value from a column of results, invoke

String getAbc(int) throws ArrayIndexOutOfBoundsException

where abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method will
throw an ArrayIndexOutOfBoundsException exception when you have
reached the end of the array.

v If you created your Integration Object using the Database Access application
and your Statement Type was Select or Select Unique, your output variables
are the columns of the table you queried.
– To get an entire column of results, invoke

String[] getTableColumn_()

where Table is the name of the database table and Column is the name of
the column in the table.

– To get a single value from a column of results, invoke
String getTableColumn_(int) throws ArrayIndexOutOfBoundsException

where Table is the name of the database table, Column is the name of the
column in the table, and int is the index of the value you want. As you
iterate through the array, the method will throw an
ArrayIndexOutOfBoundsException exception when you have reached the
end of the array.

v If you created your Integration Object using the Database Access application
and your Statement Type was Insert, Update, or Delete, you have only one
output variable. To get the number of rows changed by your database
request, invoke the method
int getHPubNumberOfRowsChanged()

v Regardless of the application you used to create your Integration Object, you
can invoke the XML method
String getHPubXMLProperties()

which returns the IntegrationObject’s properties and values as an XML
formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you may retrieve those values if
necessary. The signature for these methods is
void getXyz(String)

Chapter 1. Programming with IBM Host Publisher Integration Objects 7

where xyz is the name of your input variable.

To verify input or output variable names that are generated from data that you
entered, look at the properties defined in your Integration Object’s BeanInfo
java file. The Integration Object’s BeanInfo java file is found in the
Studio_Install_Dir\Studio\IntegrationObjects\ directory.

Using an Integration Object in an EJB container (from a
custom EJB)

The instructions in this section reference Integration Object methods. See
“Integration Object methods” on page 11 for a description of these methods.

To use an Integration Object from a custom EJB:
1. If your custom EJB will run in a WebSphere application server other than the

one configured during the installation of Host Publisher Server, you must
initalize and start the server. You can start the server with a custom service or
by creating a servlet to start the server. See “Defining Host Publisher Server as
a WebSphere custom service” on page 10 for information on using custom
services. See “Sample code for starting and stopping the Host Publisher Server
runtime” on page 5 for the location of sample code. In the WebSphere Test
Environment, you must initialize and start the server using a servlet.

2. Create an instance of your Integration Object by calling its constructor.
3. Invoke the methods for the Integration Object instance. You might want to

invoke methods to set properties of input variables. The naming convention for
setter methods is as follows:
void setXyz(String)

where xyz is the name of your input variable.

You can use a different connection than the one you specified when you
created your Integration Object. To specify a different connection pool, invoke
the method
void setHPubStartPoolName(String)

and specify the name of the connection you want to use.
4. Invoke the Integration Object to perform its task (running a macro or querying

a database, for example), using the method
void processRequest() throws BeanException

The processRequest() method will throw an exception (of type
com.ibm.HostPublisher.IntegrationObject.BeanException) if the Integration
Object has an error.

You can reset the input variables and invoke the processRequest() method
multiple times. The error indications and result values will be reset with each
invocation.

5. Check for errors by invoking
int getHPubErrorOccurred()

If your result is nonzero, an error has occurred. You will have an error
exception and, for Database Access Integration Objects, you might have an
SQL error exception. To get the specific exception for the error, invoke
Exception getHPubErrorException()

8 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

You can retrieve the error message by invoking getMessage() on the Exception
object. The messages are documented in the IBM WebSphere Host Publisher
Messages Reference. Note that the first seven characters are set to HPSxxxx
where xxxx is the message number.

For Database Access Integration Objects with a nonzero result from
getHPubErrorOccurred(), check to see whether the error message number is in
the range 6205-6209. If so, you have an SQL error exception. In the case where
your database action caused more than one SQL error to be generated, you are
returned the first SQL error. To get the first SQL error exception, invoke
SQLException getHPubSQLErrorException()

In addition to SQL error exceptions, if you created your Integration Object
using Database Access application, you may have an SQL warning exception.
To check for an SQL warning exception, invoke
int getHPubWarningOccurred()

If your result is nonzero, an SQL warning has occurred. Note that you may
have an SQL error exception as well as an SQL warning exception. In the case
where your database action caused more than one SQL warning to be
generated, you are returned the first warning generated. To get the first
warning exception, invoke
SQLWarning getHPubSQLWarningException()

6. Request the results from your Integration Object.
v If you created your Integration Object using the Host Access application,

retrieve the value for output variables by invoking one of the following
methods:
– Simple text

String getAbc()

where abc is the name of your output variable.
– Tables

- To get an entire column of results
String[] getAbc()

where abc is the name of your output variable.
- To get a single value from a column of results

String getAbc(int) throws ArrayIndexOutOfBoundsException

where abc is the name of your output variable, and int is the index of
the value you want. As you iterate through the array, the method will
throw an ArrayIndexOutOfBoundsException exception when you have
reached the end of the array.

v If you created your Integration Object using the Database Access application
and your Statement Type was Select or Select Unique, your output variables
are the columns of the table you queried. Retrieve the value for output
variables by invoking one of the following methods:
– To get an entire column of results

String[] getTableColumn_()

where Table is the name of the database table and Column is the name of
the column in the table.

– To get a single value from a column of results

Chapter 1. Programming with IBM Host Publisher Integration Objects 9

String getTableColumn_(int) throws ArrayIndexOutOfBoundsException

where Table is the name of the database table, Column is the name of the
column in the table, and int is the index of the value you want. As you
iterate through the array, the method will throw an
ArrayIndexOutOfBoundsException exception when you have reached the
end of the array.

v If you created your Integration Object using the Database Access application
and your Statement Type was Insert, Update, or Delete, you have only one
output variable. To get the number of rows changed by your database
request, invoke the method
int getHPubNumberOfRowsChanged()

v Regardless of the application you used to create your Integration Object, you
can invoke the XML method
String getHPubXMLProperties()

which returns the IntegrationObject’s properties and values as an XML
formatted string.

The input variables for all Integration Objects have getter methods
corresponding to each setter method so that you can retrieve those values if
necessary. The signature for these methods is
void getXyz(String)

where xyz is the name of your input variable.

If you are unsure about any input or output variable names that are generated
from data that you entered, look at the properties defined in your Integration
Object’s BeanInfo java file. The Integration Object’s BeanInfo java file is found
in the Studio_Install_Dir\Studio\IntegrationObjects\ directory.

Defining Host Publisher Server as a WebSphere custom
service

To run Host Publisher applications in a WebSphere application server, the Host
Publisher Server runtime must be initialized and active. The most efficient way to
address this requirement is to define the Host Publisher Server runtime as a
custom service associated with the application server. A custom service is a “hook
point” defined by WebSphere that gets executed at application server startup and
shutdown. By defining the Host Publisher Server runtime as a custom service, the
runtime is automatically initialized and started at application server startup and is
terminated when the application server is stopped.

For information on creating a custom service, refer to WebSphere Application
Server documentation.

When creating a custom service for Host Publisher, the following properties should
be defined:
v Enable the custom service.
v Provide the class name as com.ibm.HostPublisher.Server.StartRTE.
v Provide a unique name on WebSphere Application Server AE or a unique

display name on WebSphere Application Server AEs.
v For WebSphere Application Server AE, define a custom property named

hostpublisher.install.dir with a value of the installation directory of Host Publisher

10 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Server. For WebSphere Application Server AEs, define a dynamic property
named hostpublisher.install.dir with a value of the installation directory of Host
Publisher Server.

Integration Object methods
Host Publisher Integration Objects contain Java methods that you can use when
programming with Integration Objects. Some of the methods apply only to Host
Access Integration Objects and some of the methods apply only to Database Access
Integration Objects. This section lists the methods and a short description of the
function of each method.

Common methods
These methods are common to all Integration Objects:

void doHPTransaction(HttpServletRequest req, HttpServletResponse resp)
throws BeanException

This execution method runs a Host Publisher Integration Object or EJB
Access Bean from a servlet or JSP. If you use this method, you can run
chained Integration Objects without additional programming to chain
Integration Objects.

void processRequest() throws BeanException
This execution method runs a Host Publisher Integration Object, Remote
Integration Object, or EJB Access Bean from an application component.
This method does not require the application component to be running in
a Web container. To run chained Integration Objects, you have to do
additional programming; refer to “Integration Object chaining” on page 13.

java.lang.String getHPubBeanName()
Returns the name of the current Integration Object, EJB Access Bean, or
Remote Integration Object

java.lang.String getHPubBeanType()
Returns a string representing the type of Host Publisher Integration Object,
EJB Access Bean, or Remote Integration Object. The returned string can be
one of the following:

HOD The bean was created using Host Access.

DB This bean was created using Database Access.

void setHPubErrorPage(java.lang.String value)
For Integration Objects created with previous versions of Host Publisher,
sets the name of the error page to be used. Use this method only if you are
running the Host Publisher Integration Object or EJB Access Bean from a
servlet or JSP. Specify the name of your error page relative to the location
of your servlet or JSP.

Note: This method is deprecated and cannot be used for Integration
Objects created with Host Publisher 4.0.

java.lang.String getHPubStartPoolName()
Returns the name of the connection pool from which the Integration Object
acquired the connection

void setHPubStartPoolName(java.lang.String value)
Sets the name of the connection pool from which the Integration Object
will acquire the connection

Chapter 1. Programming with IBM Host Publisher Integration Objects 11

java.lang.String getHPubXMLProperties()
Returns an XML formatted string specifying the property names and
values for this Integration Object

java.lang.String getHPubXMLProperties(HPubConvertToTableFormat.xsl)
Returns an XML formatted string specifying the property names and
values for this Integration Object, and applies XML stylesheet processing to
the returned string. See “Chapter 2. Applying XML stylesheet processing to
Integration Object output” on page 15 for more information.

int getHPubErrorOccurred()
Returns a non-zero value when an error has occurred.

java.lang.Exception getHPubErrorException()
Returns an exception object that describes the error that occurred; valid
only if HPubErrorOccurred is non-zero

java.lang.String getHPubErrorMessage()
Returns a string containing the Host Publisher code and message of the
error that occurred; valid only if HPubErrorOccurred is non-zero

Host Access Integration Object methods
These methods are unique to Host Access Integration Objects:

java.lang.String getHPubLinkKey()
Returns the name of the key that represents the connection for the
Integration Object chain. This value should be obtained from the first
Integration Object in a chain after the Integration Object has run in a
non-Web container.

void setHPubLinkKey(java.lang.String value)
Sets the name of the key that represents the connection for the Integration
Object chain. This value should be set for any chained Integration Objects,
other than the first Integration Object in the chain, before they run in a
non-Web container.

java.lang.String getHPubStartChainName()
Returns the name of the start state label as defined in Host Access. This
value is Null for the first Integration Object in a chain or an Integration
Object that is not chained.

java.lang.String getHPubEndChainName()
Returns the stop state label as defined in Host Access. This value is Null
for the last Integration Object in a chain or an Integration Object that is not
chained.

java.lang.String getHPubScreenState()
Returns the name of the last Host On-Demand macro screen executed
when the macro was stopped.

java.lang.String getHPubMacroMessage()
Returns the value of the message tag of the last screen executed in the
current Host On-Demand macro screen. See “<message> tag” on page 77
for information about using this method for debugging Host Publisher
macro execution.

Database Access Integration Object methods
These methods are unique to Database Access Integration Objects:

int getHPubNumberOfRowsChanged()
Returns the number of rows changed by this database request

12 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

java.lang.String getHPubWarningOccurred()
Returns a non-zero value indicating that a warning has occurred.

java.sql.SQLWarning getHPubSQLWarningException()
Returns a SQLWarning object of the warning that occurred; valid only if
HPubWarningOccurred is non-zero

java.sql.SQLException getHPubSQLErrorException()
Returns a SQL Exception object of the error that occurred; valid only if
HPubErrorOccurred is non-zero and HPubErrorMessage indicates an SQL
error

Integration Object chaining
Integration Object chaining is handled by Host Publisher for the following:
v Host Publisher applications using Host Access Integration Objects or the

corresponding EJB Access Beans
v Custom JSPs or servlets that use Host Access Integration Objects or the

corresponding EJB Access Beans in a Web container.

In these cases, the doHPTransaction execution method is used.

You must retrieve and set properties that enable chaining for the following:
v Remote Integration Objects
v EJB Access Beans running outside of a Web container
v Custom EJBs that use Integration Objects.

In these cases, the processRequest execution method is used.

See “Integration Object methods” on page 11 for a description of the
doHPTransaction and processRequest methods.

Host Publisher provides methods that enable you to extract the key that represents
the connection for the Integration Object chain from the first Integration Object in a
chain, and to set the property for subsequent Integration Objects in the chain.

You must also retrieve and set properties that enable chaining for Web Services.
For Web Services, the processWSRequest execution method is used. See
“Programming with Web Services Integration Objects and EJB Access Beans” on
page 27 for a description of the processWSRequest method.

For a description of Integration Object chaining for Remote Integration Objects, see
“Remote Integration Object chaining” on page 33.

For a description of Integration Object chaining for EJB Access Beans outside of a
Web container, see “EJB Access Bean chaining” on page 23.

To build an Integration Object chain from a custom EJB, do the following:
1. If your custom EJB is deployed in a container other than the one configured in

the Host Publisher application server, initialize and start the server. You can
start the server with a custom service or by creating a servlet to start the
server. See “Defining Host Publisher Server as a WebSphere custom service”
on page 10 for information on using custom services. See “Sample code for
starting and stopping the Host Publisher Server runtime” on page 5 for the
location of sample code.

2. Create an instance of the first Integration Object in the chain by calling its
constructor.

Chapter 1. Programming with IBM Host Publisher Integration Objects 13

3. Invoke the methods for the Integration Object instance. You might want to
invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:
IOChain1.setXyz(String)

where xyz is the name of your input variable.
4. Invoke the Integration Object to perform its task (running a macro or querying

a database, for example), using the method
IOChain1.processRequest()

5. Check for errors by invoking
IOChain1.getHPubErrorOccurred()

6. Extract and save the key that represents the connection for the Integration
Object chain
String myLinkkey = IOChain1.getHpubLinkKey();

7. Create an instance of the next Integration Object in the chain by calling its
constructor.

8. Set the key for this chained connection
IOChain2.setHpubLinkKey(myLinkkey);

9. Invoke the methods for this Integration Object instance. You might want to
invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:
IOChain2.setXyz(String)

where xyz is the name of your input variable.
10. Invoke this Integration Object to perform its task (running a macro or

querying a database, for example), using the method
IOChain2.processRequest()

11. Check for errors by invoking
IOChain2.getHPubErrorOccurred()

Repeat steps 7 through 11 for any and all subsequent Integration Objects in the
chain.

Integration Object chaining and WebSphere cloning
If you are using WebSphere for cloning application servers for load balancing, and
you are using Integration Objects chaining in a servlet or JSP, you must configure
HTTP session affinity to ensure that the same Web client (browser) returns to the
WebSphere application server that originally established the host connection.

14 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 2. Applying XML stylesheet processing to Integration
Object output

With Host Publisher Version 2, Integration Object data in XML format was
retrieved using the getHPubXMLProperties() function. XML stylesheets could only
be applied to Remote Integration Object XML output.

Host Publisher now provides an XML stylesheet, HPubConvertToTableFormat.xsl,
that can be applied to the getHPubXMLProperties() function call for tabular data.
Applying the stylesheet produces an XML format including the table name and
column names, and reorders data in record format. To apply the
HPubConvertToTableFormat.xsl stylesheet, you must code the
getHPubXMLProperties() function call as
getHPubXMLProperties(HPubConvertToTableFormat.xsl).

For information on the methods that you can use in WebSphere applications, see
“Integration Object methods” on page 11.

DTD of XML data returned by getHPubXMLProperties() method
When an XML stylesheet is not applied to Integration Object output, the XML data
is returned with the following document type definition (DTD):
<?xml version=\"1.0\" standalone=\"yes\"?>
<!DOCTYPE com.ibm.HostPublisher.IntegrationObject.properties [
<!ELEMENT com.ibm.HostPublisher.IntegrationObject.properties

(inputProperties, outputProperties)>
<!ATTLIST com.ibm.HostPublisher.IntegrationObject.properties name CDATA "">
<!ELEMENT inputProperties (inputProperty*)>
<!ELEMENT inputProperty (value)>
<!ATTLIST inputProperty name CDATA "">
<!ELEMENT outputProperties (outputProperty*)>
<!ELEMENT outputProperty (value*)>
<!ATTLIST outputProperty name CDATA "" type (singlevalue|multivalue) 'multivalue'>
<!ELEMENT value (#PCDATA)>
]>

XML data using the getHPubXMLProperties() method
The following sample data:

Table 1. Sample XML data

Name Phone Number

Mary Smith 867–5309

John Doe 123–4567

results in the following XML data:
<com.ibm.HostPublisher.IntegrationObject.properties name=IntegrationObject.test1>
<inputProperties>
<inputProperty name=nameValue>
<value>%</value>
<inputProperty>
</inputProperties?
<outputProperties>
<outputProperty name=tablename type=multivalue>
<value>Mary Smith</value>
<value>John Doe</value>

© Copyright IBM Corp. 2000, 2002 15

</outputProperty>
<outputProperty name=table1phonenumber type=multivalue>
<value>867-5309</value>
<value>123-4567</value>
</outputProperty>
<outputProperty name=databaseStatus type=singlevalue>
<value>Ok</value>
</outputProperty>
<outputProperty name=hPubErrorOccurred" type=singlevalue>
<value>0</value>
</outputProperty>
<outputProperty name=hPubErrorException" type=singlevalue>
<value></value>
</outputProperty>
<outputProperty name=hPubErrorMessage" type=singlevalue>
<value></value>
</outputProperty>
</outputProperties>
</com.ibm.HostPublisher.IntegrationObject.properties>

All of the data is within multiple <value> tags with the <outputProperty> tags in
columnar order.

DTD of XML data returned by
getHPubXMLProperties(HPubConvertToTableFormat.xsl) method

When the XML HPubConvertToTableFormat stylesheet is applied to Integration
Object output, the XML data is returned with the following document type
definition (DTD):
<?xml version=\"1.0\" standalone=\"yes\"?>
<!DOCTYPE com.ibm.HostPublisher.IntegrationObject.properties [
<!ELEMENT com.ibm.HostPublisher.IntegrationObject.properties

(inputProperties, outputProperties)>
<!ATTLIST com.ibm.HostPublisher.IntegrationObject.properties name CDATA "">
<!ELEMENT inputProperties (inputProperty*)>
<!ATTLIST inputProperty name CDATA "">
<!ELEMENT outputProperties (outputProperty*,Table*)>
<!ATTLIST outputProperty name CDATA "">
<!ELEMENT Table (DataRecord*)>
<!ATTLIST Table name CDATA "">
<!ELEMENT DataRecord (outputProperty*)>
]>

XML data with HPubConvertToTableFormat stylesheet applied
The sample data shown in Table 1 on page 15 results in the following XML data:
<com.ibm.HostPublisher.IntegrationObject.properties name=IntegrationObject.test1>
<!-- Input Properties -->
<inputProperties>
<inputProperty name=inputName>
%
<inputProperty>
</inputProperties?
<outputProperties>

<!-- Table (multivalued) output property -->
<Table name=table1>
<DataRecord>
<outputProperty name=Name>Mary Smith</outputProperty>
<outputProperty name=phoneNumber>867-5309</outputProperty>
</DataRecord>
<DataRecord>
<outputProperty name=Name>John Doe</outputProperty>
<outputProperty name=phoneNumber>123-4567</outputProperty>

16 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

</DataRecord>
</Table>

<!-- Single Valued output Property -->
<outputProperty name=databaseStatus>
Ok
</outputProperty>

<!-- Standard Error output Properties -->
<outputProperty name=hPubErrorOccurred">0</outputProperty>
<outputProperty name=hPubErrorException"></outputProperty>
<outputProperty name=hPubErrorMessage"></outputProperty>
</outputProperties>

</com.ibm.HostPublisher.IntegrationObject.properties>

Chapter 2. Applying XML stylesheet processing to Integration Object output 17

18 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 3. Programming with the XML Java bean

The Host Publisher XML Java bean presents the view of a host application in XML
format, showing one screen at a time. You can write a Java application, applet, Java
bean, or servlet to convert the XML data to HTML or some other markup
language.

Host Publisher XML Gateway SDK includes the following:
v The xmlAppData Java bean
v The sample xmlGateway servlet
v The HostConnection Java bean

The xmlAppData Java bean encapsulates the host application XML data, the
sample xmlGateway servlet converts the XML data to HTML format, and the
HostConnection Java bean acquires and releases Host On-Demand session Java
beans using the Host Publisher Server runtime environment.

See Figure 2 for an architectural overview of the Host Publisher XML Gateway.

Figure 2. XML Gateway Architecture

© Copyright IBM Corp. 2000, 2002 19

The xmlAppData Java bean
This Java bean communicates with the host application using XML data
formatting. Javadoc for this Java bean is included with the HostPublisher
installation and can be accessed starting with the following file:
install_dir\SDK\XLGW\xmlAppData\AllNames.html

where install_dir is the directory in which Host Publisher is installed.

Refer to Figure 2 to see how the xmlAppData Java bean relates to the other
components of the XML Gateway.

The xmlAppData Java bean contains properties that describe the HostPublisher,
HOD, and TN3270 or TN5250 parameters used to instantiate a host session.

The xmlAppData Java bean also contains properties that describe the host data as
XML records. These records contain the text of the fields displayed on the screen
and the attributes of the fields. Methods are supplied for reading the fields so they
can be manipulated as an XML document.

The xmlAppData Java bean contains methods for sending a new screen of data to
the host. This new screen is described by an XML document, which will often be
the previous host data transformed into an XML document, with the user input
fields updated, or a user action specified, or both.

The xmlAppData Java bean sends xmlDataEvents to all xmlDataEvent listeners.
The data events are sent when the host screen has changed.

The xmlAppData Java bean interacts with the IBM Host On-Demand (HOD)
session Java bean using PSEvents. When a PSEvent is received by the xmlAppData
Java bean, the Java bean updates its internal objects to reflect the new status of the
host screen. The xmlAppData Java bean sends an xmlDataEvent to inform its
listeners of the change.

The xmlAppData Java bean sends xmlErrorEvents to all xmlErrorEvent listeners
when a processing error has been detected.

The xmlAppData Java bean sends xmlLegacyTraceEvents to all
xmlLegacyTraceEvent listeners for appropriate tracing of the xmlAppData Java
bean activity.

The xmlAppData Java bean listens for HODTraceEvents and sends the
HODTraceEvents to all xmlHODTraceEvent listeners.

The sample XML Gateway servlet
The XML Gateway servlet transforms XML data into HTML format. This servlet
enables viewing of a host screen in a Web browser. A user can interact with the
host screen in the browser by typing in the fields on the screen or by using the
function keys, which are displayed as buttons in the browser. Because the servlet
interacts with the host application, most of the data processing takes place at the
server. This enables browser access to host applications from a thin client.

You can write your own servlet to interface with the host application. To facilitate
the writing of Host Publisher XML Gateway servlets, the sample source code for

20 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

the XML Gateway servlet is included with Host Publisher. HTML documentation is
also included. The source code and all documentation can be accessed starting
with the following file:
install_dir\SDK\XLGW\Introduction.html

where install_dir is the directory in which Host Publisher is installed.

The sample servlet uses Extensible Stylesheet Language (XSL) processing to
transform XML data to HTML format. This is a powerful example of how to
transform the host screen into XML data and, through the use of a stylesheet,
present it to the end user in a different format. By replacing or modifying the
sample servlet, the supplied stylesheet, or both, and by using an XSL processor like
the one included in WebSphere Application Server, the application programmer
can easily render host data onto a variety of devices using a single servlet with
multiple stylesheets.

Refer to Figure 2 to see how the XML Gateway servlet relates to the other
components of the XML Gateway.

The XML Gateway servlet:
1. Is instantiated with form parameters that describe the desired host session.

These parameters describe the telnet name of the host, the terminal format
(3270 or 5250) of the session, and so on.

2. Initiates a host session using Host Publisher and IBM Host On-Demand Java
objects and properties.

3. Instantiates the xmlAppData Java bean and makes the Java bean a listener for
Host On-Demand events.

4. Retrieves, after a programmed delay, the current state of the host screen as
XML data from the xmlAppData Java bean.

5. Formats the XML data as HTML output. This output is returned to the browser.

The HTML output returned to the browser shows how the screen displays on a
traditional terminal. The user can input data directly onto the HTML host screen.
The user can move the cursor to the input fields using the mouse or the Tab key.
The traditional terminal function keys are presented to the user as buttons on the
browser screen. The user can select the buttons using the mouse or using the Tab
key and pressing the Enter key on the keyboard.

Two additional buttons are presented on the user’s browser page: Refresh and
Disconnect. The Refresh button updates the browser’s host screen to the current
state of the host session, ignoring possible input. The Disconnect button terminates
the current host session. Disconnection enables an efficient use of Host Publisher
resources. The user should disconnect the host session when interaction with the
host application is no longer needed.

While the servlet is a useful application, it is an example of how to interact with
Host Publisher to encapsulate host data in XML format. The servlet could be
changed to interact with the host application using XML processing techniques, in
an automated fashion, presenting the user with a specific subset of information
obtained from the host.

The data can also be rendered in different formats by using a different XSL
stylesheet when processing the data. The sample servlet can be changed to render
the data in a format that matches the output preference of the user or the user’s

Chapter 3. Programming with the XML Java bean 21

access device. The sample servlet can do this at runtime by specifying the XSL
stylesheet used for this particular instance of the servlet.

The HostConnection Java bean
This Java bean is part of the Host Publisher Server runtime code. Javadoc for this
Java bean is included with the HostPublisher installation and can be accessed
starting with the following file:
install_dir\SDK\XLGW\HostConnection\AllNames.html

where install_dir is the directory in which Host Publisher is installed.

The HostConnection Java bean contains methods for acquiring and releasing Host
On-Demand session Java beans using the Host Publisher Server runtime
environment.

22 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 4. Using Enterprise JavaBeans Support

When you create Enterprise JavaBeans (EJB) Integration Object support in Host
Publisher Studio with Host Access or Database Access, EJB support files are
generated during creation of the Integration Object. One of the files generated is
the EJB Access Bean. The EJB Access Bean is a Java bean that has a signature
similar to the Integration Object that the Access Bean supports. You use Host
Publisher Studio Application Integrator to import EJB Access Beans to create
EJB-based applications to run Integration Objects in an EJB environment. When
you choose Create J2EE Archives from the toolbar to create the .ear file, an EJB .jar
file is also created, which contains the necessary EJB files.

Programming with EJB Access Beans
Host Publisher Integration Objects contain Java methods that you can use when
programming with Integration Objects. These methods are also available when
programming with EJB Access Beans. In addition to the methods described in
“Integration Object methods” on page 11, you can use the following methods when
programming with EJB Access Beans:

java.lang.Object getHPubAccessHandle()
Returns the handle for the Host Publisher EJB instance corresponding to
the Integration Object chain

void setHPubAccessHandle(java.lang.Object value)
Sets the handle for the Host Publisher EJB instance corresponding to the
Integration Object chain

EJB Access Bean chaining
To support chained Integration Objects, the Host Publisher EJB is implemented as a
stateful session bean, where the life cycle of a Host Publisher EJB instance
corresponds with the processing of an Integration Object chain. When EJB Access
Beans for an Integration Object chain are processed, two EJB Access Bean
properties are used:

hPubAccessHandle
Contains the handle for the Host Publisher EJB instance corresponding to
the Integration Object chain

hPubLinkKey
Contains the key that represents the connection for the Integration Object
chain

EJB Access Bean chaining in a Web container
When EJB Access Beans are processed in a Web container, the EJB Access Bean
saves the values of the hPubAccessHandle and hPubLinkKey properties in the
HttpSessionObject associated with the client session. The properties are retrieved
by subsequent EJB Access Beans in processing the Integration Object chain.

The EJB Access Bean for the first Integration Object in a chain creates an instance
of the Host Publisher EJB. That instance is used for all EJB Access Beans for the
subsequent Integration Objects in the chain. After the processing of the EJB Access
Bean for the last Integration Object in a chain, the Host Publisher EJB instance
corresponding to that Integration Object chain is removed.

© Copyright IBM Corp. 2000, 2002 23

EJB Access Bean chaining outside of a Web container
When EJB Access Beans are processed outside of a Web container (for example,
directly from a Java program), the calling program must retrieve the values of the
hPubAccessHandle and hPubLinkKey properties. The properties can be retrieved
after the EJB Access Bean for the first Integration Object in the chain is processed.
The calling program must set the two properties for all subsequent EJB Access
Beans in the Integration Object chain before they are processed.

To chain EJB Access Beans outside of a Web container, do the following:
1. Create an instance of the first EJB Access Bean in the chain by calling its

constructor.
2. Invoke the methods for the EJB Access Bean instance. You might want to

invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:
EJBChain1.setXyz(String)

where xyz is the name of your input variable.
3. Invoke the EJB Access Bean to perform its task (running a macro or querying

a database, for example), using the method
EJBChain1.processRequest()

4. Check for errors by invoking
EJBChain1.getHPubErrorOccurred()

5. Extract and save the key that represents the connection for the EJB Access
Bean chain
String myLinkkey = EJBChain1.getHPubLinkKey();

6. Extract and save the handle for the Host Publisher EJB instance corresponding
to the Integration Object chain
String myHandle = EJBChain1.getHPubAccessHandle();

7. Create an instance of the next EJB Access Bean in the chain by calling its
constructor.

8. Set the key for this chained connection
EJBChain2.setHPubLinkKey(myLinkkey);

9. Set the handle for this chained connection
EJBChain2.setHPubAccessHandle(myHandle);

10. Invoke the methods for this EJB Access Bean instance. You might want to
invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:
EJBChain2.setXyz(String)

where xyz is the name of your input variable.
11. Invoke this EJB Access Bean to perform its task (running a macro or querying

a database, for example), using the method
EJBChain2.processRequest()

12. Check for errors by invoking
EJBChain2.getHPubErrorOccurred()

Repeat steps 7 through 12 for any and all subsequent EJB Access Beans in the
chain.

24 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Using EJB Access Beans with Java Application Clients
With WebSphere 4.0, Java application clients consist of the following models:
v J2EE application client
v Java thin application client

For more information, refer to the WebSphere InfoCenter documentation.

To build Java Application Clients that use EJB Access Beans, the EJB jar file built
by the Host Publisher Studio Application Integrator must be deployed to the
WebSphere Application Server. This deployment created the EJB stub files required
by the EJB Access Beans with the corresponding EJB.

When creating Java Application Clients that use EJB Access Beans, you need the
following files:

the deployed EJB .jar file
WebSphere_Install_Dir\installedApps\app_name

the EJB AccessBean .jar file
Studio_Install_Dir\Studio\Applications\app_name\app_name.war, where
app_name is the name of your application. The EJB AccessBean.jar file is in
the .war module.

HPubCommon.jar
Studio_Install_Dir\Common\HPubCommon.jar

Chapter 4. Using Enterprise JavaBeans Support 25

26 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 5. Using Web Services support

When you create Web Services Integration Object support in Host Publisher Studio
with Host Access or Database Access, Web Services support files are generated
during creation of the Integration Object.

The Web Services support files consist of:
v A properties object (named IONamePropertiesObjectSuffix),where IOName is name

of the Integration Object and PropertiesObjectSuffix is the name specified for the
Web Services Properties Object Suffix. The properties object contains all possible
input and output properties for the Integration Object.

v A helper object (named IONameHelperObjectSuffix), where IOName is the name of
the Integration Object and HelperObjectSuffix is the name specified for the Web
Services Helper Object Suffix. This helper object extends the Integration Object.
It initializes the input properties using an instance of the properties object,
invokes the Integration Object with the specified input properties, and then
returns the output properties via a new instance of the properties object. If you
plan to create an Integration Object Web Service within a web application, you
will use the helper object to create the Web Service using WebSphere Studio
tools

If you want to create Web Services using Host Publisher EJB Access beans, you
must create EJB 1.1 Integration Object support, which generates Web Services
support files. Use the EJB Access Bean to create the Web Service using WebSphere
Studio tools.

Programming with Web Services Integration Objects and EJB Access
Beans

Host Publisher Web Services support differs from programming with Integration
Objects because only the following method is used to create the Web Service:

IONamePropertiesObjectSuffix processWSRequest(IONamePropertiesObjectSuffix)
throws BeanException

The processWSRequest method is contained in the helper object when Create
Web Services support is checked on the Host Access or Database Access
Options menu.The IONamePropertiesObjectSuffix object contains the
inputs and outputs of an Integration Object. This object is passed to and
from the Web Services processWSRequest method. It contains getter and
setter methods, but no additional methods.

IOName is the name you gave to the Integration Object, and
PropertiesObjectSuffix is the name specified for the Web Services Properties
Object Suffix.

The processWSRequest method takes the properties object as input, drives the
Integration Object with those input properties, and returns the output properties of
the Integration Object through a new instance of the properties object. The
advantage of using the processWSRequest method is that it provides a single
method that sets all inputs, drives the Integration Object, and returns all outputs.

© Copyright IBM Corp. 2000, 2002 27

Integration Object Chaining with Web Services
If your application requires chaining, you must retrieve the hPubLinkKey property
from the first Integration Object in the chain, and set it for all subsequent
Integration Objects in the chain.

EJB Access Bean Chaining with Web Services
If your application requires chaining, you must retrieve both the hPubLinkKey and
the hPubAccessHandle properties from the first EJB Access Bean in the chain, and
set them for all subsequent EJB Access Beans in the chain

Creating and Deploying Web Services using WSAD
Import the required Integration Objects and EJB Access Beans into Host Publisher
Studio Application Integrator. Choose Create J2EE Archives to create the .ear file.

Follow the instructions in “Preparing to work with an Integration Object” on
page 3, “Working with Host Publisher .ear, .war, and .jar files in WSAD” on page 4,
and “Setting up the WebSphere Test Environment in WSAD” on page 5 (if you
want to test your Web Service using the WebSphere Test Environment). If you
complete these steps successfully, an application server instance exists where the
Host Publisher Server runtime has started successfully. You also have folders that
represent the following:
v The application_name.ear file you created with Host Publisher Studio

Application Integrator
v The application_name.war file contained in the application_name.ear file
v If your .ear file contained EJB Access Beans, the EJB .jar file contained in the

application_name.ear. Ensure that you generated the deployment code for the
EJB .jar.

Creating Web Services from an Integration Object
1. Import the helper object (from

Studio_Install_Dir\Studio\IntegrationObjects\WS\IOName\IONameHelperObjectSuffix.jar)
into the WEB-INF\lib directory of your web application.

2. Update the Java Build path:
v Add the XERCES classpath variable

3. Create a Web Service in your web application from the helper object:
a. Create a Java bean Web Service from the IONameHelperObjectSuffix.jar.
b. Use Request scope.
c. Make processWSRequest the Web Service Java Bean method. Other methods

are shown as choices, and you must deselect them.
d. Choose to generate a sample to test your Web Service. When the sample is

launched, choose the processWSRequest method.
e. For inputs, set the following input properties in addition to the Integration

Objects inputs you created in Host Access or Database Access:
v hPubStartType=0
v hPubEndType=0
v hPubErrorOccurred=0

f. After you have completed development and test of your application, export
it from WSAD and deploy it to your Host Publisher Server.

28 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Creating Web Services From an EJB Access Bean
1. Update the Java Build path:

v Add the XERCES classpath variable
2. Create a Web Service in your Web application from the EJB Access Bean:

a. Create a Java bean Web Service from the IONameEJBAccessBeanSuffix.jar.
b. Use Request scope.
c. Make processWSRequest the Web Service Java Bean method. Other methods

are shown as choices, and you must deselect them.
d. Choose to generate a sample to test your Web Service. When the sample is

launched, choose the processWSRequest method.
e. For inputs, set the following input properties in addition to the Integration

Objects inputs you created in Host Access or Database Access:
v hPubStartType=0
v hPubEndType=0
v hPubErrorOccurred=0

f. After you have completed development and test of your application, export
it from WSAD and deploy it to your Host Publisher Server.

Chapter 5. Using Web Services support 29

30 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 6. Using Remote Integration Objects

We recommend that you use the Web Services function as an alternative to Remote
Integration Objects. Web Services represents IBM’s strategic solution, providing an
open, standards-based way to access Integration Objects from a remote machine.
For more information about using Web Services, refer to the IBM WebSphere Host
Publisher Administrator’s and User’s Guide.

Remote Integration Objects (RIOs) are designed for use by Java programmers
familiar with Java code and using Host Publisher Integration Objects.

You can use Remote Integration Objects to access Integration Object data from a
Java program (applet or application) running on a remote machine. The remote
machine requires lightweight Remote Integration Object .jar files and network
access to a Host Publisher Server; however, it does not require Host Publisher
Server or WebSphere Application Server.

You can customize the lightweight Java program for specific business needs, such
as correlating data with other Java beans or XML data sources. It can be
distributed as a standalone Java application or to a Web server as a downloadable
Java applet.

Creating Remote Integration Objects and the sample application
The following steps create a Java program (applet or application) to access
Integration Object data on a remote machine. In these steps, IOName is the name
you gave to the Integration Object, and install_dir is the directory in which Host
Publisher is installed.
1. Start Host Access or Database Access and open the Integration Object you want

to access remotely.
2. Ensure that Create Remote Integration Object is checked on the Host Access

or Database Access Options menu.
3. Save the Integration Object using the Host Access or Database Access File

menu. You can also select Create Integration Object from the Host Access File
menu. Host Publisher creates the Remote Integration Object files. Refer to
“Remote Integration Object files” on page 36 for the names and location of the
files that are created.

4. The sample CustomAppIOName.class program will work as it is; however, you
can edit the CustomAppIOName.java file, which is located in the
install_dir\Studio\IntegrationObjects\RemoteIO\IOName\ directory, to
perform whatever task is required to access the Integration Object data.

5. If you edit the sample CustomAppIOName.java file, compile the file with the
CompileCustomAppIOName.bat utility file.

6. Package the files needed to run the Remote Integration Object on the remote
machine using the PkgRIOIOName.bat utility file, which creates a RIOIOName.zip
file.

7. Copy the RIOIOName.zip file to the remote machine, using FTP or a similar
program, and unzip the file. For a Java application, JDK™ 1.1.7 or higher is
required for the remote machine to run the java application. For a Java applet,
the RIOIOName.zip file should be transferred to the desired HTTP server for
browser download.

© Copyright IBM Corp. 2000, 2002 31

8. Complete the Host Publisher application that uses the Integration Object in
Host Publisher Studio, publish the application to Host Publisher Server, and
deploy and start the application.

Note: Host Publisher Studio does not require you to create JSPs to drive
Integration Objects in your Host Publisher application. You might choose
to import only Integration Objects into your application.

9. After unzipping the RIOIOName.zip file on the remote machine, you can run the
CustomAppIOName.java file using the RunCustomAppIOName.bat utility file.

Programming with Remote Integration Objects
Host Publisher Integration Objects contain Java methods that you can use when
programming with Integration Objects. In addition to the methods described in
“Integration Object methods” on page 11, you can use the following methods when
programming with Remote Integration Objects:

java.lang.String getURLString()
Returns the URL used to access the Remote Integration Object servlet

void setURLString(java.lang.String urlString)
Sets the URL used to access the Remote Integration Object servlet

java.lang.String getSessionID()
Returns the session identifier that WebSphere assigns to the HTTP
connection between the browser and the Web server from the first
Integration Object in a chain. This method is analogous to the
java.lang.String getHPubLinkKey() method described in “Integration
Object methods” on page 11.

void setSessionID(java.lang.String newID)
Sets the session identifier for the HTTP connection between the browser
and the Web server for subsequent Integration Objects in a chain. This
method is analogous to the void setHPubLinkKey(java.lang.String value)
method described in “Integration Object methods” on page 11.

You can invoke a Remote Integration Object from a servlet like an Integration
Object with the following exception:
v You must call RemoteTestIO.setURLString(String urlstring) with the URL

pointing to RIOServlet on Host Publisher Server. You must invoke this prior to
performing the processRequest() function. For example:
RemoteTestIO.setURLString ("http://localhost/context_root/RIOServlet")

where context_root is the context root of the application that contains the
integration object.

v Remote Integration Objects support chained Integation Objects, but do not
contain the doHPTransaction(HttpServletRequest, HttpServletResponse) method.
Use the processRequest() method to perform the action, and use the
getSessionID() and setSessionID() methods to get and set the session ID.

Using Remote Integration Objects
To use a Remote Integration Object, do the following:
1. Initialize and start the Host Publisher Server runtime, if it is not already

running. You can start the Host Publisher Server runtime by defining it as a
WebSphere Application Server custom service or by creating a servlet to start
the runtime. See “Defining Host Publisher Server as a WebSphere custom

32 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

service” on page 10 for information on using custom services. See “Sample code
for starting and stopping the Host Publisher Server runtime” on page 5 for
sample code to include in a servlet.

2. Create an instance of the Remote Integration Object by calling its constructor.
Set the URL to the location of RIOServlet on the target Host Publisher Server.
RemoteTestIO.setURLString ("http://hpserver/context_root/RIOServlet")

where context_root is the context root of the application that contains the
integration object.

3. Invoke the methods for the Remote Integration Object instance. You might want
to invoke methods to set properties of input variables. The naming convention
for setter methods is as follows:
RemoteTestIO.setXyz(String)

where xyz is the name of your input variable.
4. Invoke the Remote Integration Object to perform its task (running a macro or

querying a database, for example), using the method
RemoteTestIO.processRequest()

5. Check for errors by invoking
RemoteTestIO.getHPubErrorOccurred()

Remote Integration Object chaining
To chain Remote Integration Objects, do the following:
1. Create an instance of the first Remote Integration Object in the chain by

calling its constructor. Set the URL to the location of RIOServlet on the target
Host Publisher Server.
RIOChain1.setURLString ("http://hpserver/context_root/RIOServlet")

where context_root is the context root of the application that contains the
integration object.

2. Invoke the methods for the Remote Integration Object instance. You might
want to invoke methods to set properties of input variables. The naming
convention for setter methods is as follows:
RIOChain1.setXyz(String)

where xyz is the name of your input variable.
3. Invoke the Remote Integration Object to perform its task (running a macro or

querying a database, for example), using the method
RIOChain1.processRequest()

4. Check for errors by invoking
RIOChain1.getHPubErrorOccurred()

5. Extract and save the key that represents the connection for the Remote
Integration Object chain
String mySession = RIOChain1.getSessionID();

6. Create an instance of the next Remote Integration Object in the chain by
calling its constructor. Set the URL to the location of RIOServlet on the target
Host Publisher Server.
RIOChain2.setURLString ("http://hpserver/context_root/RIOServlet")

where context_root is the context root of the application that contains the
integration object.

Chapter 6. Using Remote Integration Objects 33

7. Set the key for this chained connection
RIOChain2.setSessionID(mySession);

8. Invoke the methods for this Remote Integration Object instance. You might
want to invoke methods to set properties of input variables. The naming
convention for setter methods is as follows:
RIOChain2.setXyz(String)

where xyz is the name of your input variable.
9. Invoke this Remote Integration Object to perform its task (running a macro or

querying a database, for example), using the method
RIOChain2.processRequest()

10. Check for errors by invoking
RIOChain2.getHPubErrorOccurred()

Repeat steps 6 through 10 for any and all subsequent Remote Integration Objects
in the chain.

Obtaining Integration Object data in XML format
Refer to Figure 3 for an overview of the Remote Integration Object components
and the interactions between them.

Integration Object data can be queried from an XML application and from a
browser that supports XML data. The XML application requires an XML parser
and TCP/IP connectivity to a Host Publisher Server. No other packaging is
necessary. When Create Remote Integration Object on the Options menu in Host
Access or Database Access is checked, a sample XMLIOName.html file (where
IOName is the name you gave to the Integration Object) is created that extracts
Integration Object data in XML format. To extract the data in XML format, the
XML browser or XML application must send a URL to the Host Publisher Web
server as follows:

Figure 3. Remote Integration Object components

34 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

To request a list of input parameters:

http://yourserver/context_root/RIOServlet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=requestInputs

where context_root is the context root of the application that contains the integration object.
To run an Integration Object with optional style sheet processing:

http://yourserver/context_root/RIOServlet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=execute
&hPubExecuteXML=&EXECUTEXMLDOC
&hPubXMLServerStyleSheet=SERVERSTYLE
&hPubXMLClientStyleSheet=CLIENTSTYLE

where context_root is the context root of the application that contains the integration object.
To run an Integration Object with input parameters and optional style sheet processing:

http://yourserver/context_root/RIOServlet?hPubIntegrationObjectName=IntegrationObject.TestDB
&hPubRequestType=execute
&INPUTNAME1=INPUTVAL1&INPUTNAME2=INPUTVAL2...
&hPubXMLServerStyleSheet=SERVERSTYLE
&hPubXMLClientStyleSheet=CLIENTSTYLE

where context_root is the context root of the application that contains the integration object.
Where: TestDB is the name of the Integration Object to run

SERVERSTYLE is the server style sheet to apply
CLIENTSTYLE is the client style sheet that the browser will apply
INPUTNAME1=INPUTVAL1... define the input parameters and values of the Integration Object

Notes:

1. Each new parameter in the URL begins with an ampersand (&). There should be no spaces in the URL. If you
use either of the optional stylesheet parameters, do not type a space between the other parameters and the
stylesheet parameters.

2. WebSphere Application Server provides two default style sheets: default.xsl and default2.xsl in the WebSphere
directory.

Host Publisher provides the HPubConvertToTableFormat.xsl style sheet in the install_dir\Common\ directory,
where install_dir is the directory in which Host Publisher is installed. For more information, refer to
“Chapter 2. Applying XML stylesheet processing to Integration Object output” on page 15.

If you specify SERVERSTYLE in the URL, enter the full file path of the server style sheet, for example
\websphere\AppServer\web\xml\xsl\default\default.xsl.

3. For CLIENTSTYLE, Host Publisher creates a sample style sheet (StyleSheetIOName.xsl where IOName is the name you
give to the Integration Object) when you create a Remote Integration Object. Copy the StyleSheetIOName.xsl file
from the install_dir\Studio\IntegrationObjects\RemoteIO\IOName\ directory to a directory accessible through
the URL. If you specify CLIENTSTYLE in the URL, enter the full file path of the location where you copied the
StyleSheetIOName.xsl file.

The response from the Host Publisher Web server is the XML data defined by the
following Data Type Declaration (DTD):
<?xml version="1.0" standalone="yes">
<!DOCTYPE com.ibm.HostPublisher.IntegrationObject.properties [
<!ELEMENT com.ibm.HostPublisher.IntegrationObject.properties

(inputProperties, outputProperties)>
<!ATTLIST com.ibm.HostPublisher.IntegrationObject.properties name CDATA "">
<!ELEMENT inputProperties (inputProperty*)>
<!ELEMENT inputProperty (value)>
<!ATTLIST inputProperty name CDATA "">
<!ELEMENT outputProperties (outputProperty*)>
<!ELEMENT outputProperty (value*)>
<!ATTLIST outputProperty name CDATA "">
<!ELEMENT value (#PCDATA)>
]>

Chapter 6. Using Remote Integration Objects 35

Remote Integration Object files
The Remote Integration Object file names are derived from the Integration Object
file name. In the following example, the Remote Integration Object files were
created in the \HostPub\Studio\IntegrationObjects\RemoteIO\TestDB\ directory
for an Integration Object named TestDB.

IntegrationObject\RemoteTestDB.java Remote Integration Object proxy source file
Note: This file should not be modified. If you
want to change the function of the Remote
Integration Object, modify the
CustomAppIOName.java file.

IntegrationObject\RemoteTestDB.class Remote Integration Object proxy class file

CustomAppTestDB.java Sample Java program source that calls Remote
Integration Object proxy class

CustomAppTestDB.class * Compiled sample Java program

AppLoaderTestDB.html * HTML file to load sample Java applet,
CustomAppTestDB.class

XMLTestDB.html HTML file to get Integration Object in XML
format

StyleSheetTestDB.xsl Sample client style sheet

CreateRIOJavaDoc.bat Utility file that creates a Javadoc document for
RemoteTestDB.java

CompileCustomAppTestDB.bat Utility file that compiles CustomAppTestDB.java
using JDK 1.2

PkgRIOTestDB.bat Utility file that packages the Remote Integration
Object files in a .zip file for transfer to a client
machine

RunCustomAppTestDB.bat Utility file that runs CustomAppTestDB.java
using JDK 1.2

CreateRIOBeanJar.bat Utility file that packages the
IntegrationObject\RemoteTestDB.class file in a
.jar file as a Java bean. This utility is useful for
development tools that require .jar and META
files for importing Java beans.

Note: * CustomAppTestDB.class and AppLoaderTestDB.HTML require access to some
Swing files to run correctly:

JDK 1.1.7 or higher
classes.zip and swingall.jar

JDK 1.2 or higher
rt.jar and tools.jar

36 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 7. Customizing Host Access Integration Object Java
code

Host Publisher enables you to modify how an Integration Object interacts with the
underlying subsystems, at the Java code level, to perform additional functions.
Host Publisher provides Java coding templates for building Host Access
Integration Objects. You specify which coding templates to use in building an
Integration Object by updating the HOD_BEAN_TEMPLATE_PATH and
HOD_BEAN_INFO_TEMPLATE_PATH parameters in the Host Publisher Studio
initialization file (Studio.ini). The HOD_BEAN_TEMPLATE_PATH is used to locate
the template that defines the Java bean code used to create Integration Objects. The
HOD_BEAN_INFO_TEMPLATE_PATH is used to locate the template that defines
the Java BeanInfo file used to create Integration Objects. The Studio.ini file is
stored in the install_dir\Studio directory, where install_dir is the directory in
which Host Publisher Studio is installed.

There are two types of Java coding templates: default templates and customizable
templates. The templates are also stored in the install_dir\Studio directory. The
default templates are HPubTemplateHODBean.Default and
HPubTemplateHODBeanInfo.Default. The customizable templates are
HPubTemplateHODBean.Customize and HPubTemplateHODBeanInfo.Customize.

The Studio.ini file is automatically created when you access any of the three Host
Publisher Studio components, Application Integrator, Database Access, and Host
Access. The Studio.ini file specifies the default templates for creating Host Access
Integration Objects. These templates contain Java code that is independent of the
Host Publisher and Host On-Demand code. Integration Objects created using the
default templates will not need to be recompiled and redeployed if the Host
Publisher or Host On-Demand code changes for enhancements or service.

The customizable templates contain substantial Java code that interacts with the
Host Publisher code, Host On-Demand objects, events, and other Java constructs.
These templates enable you to modify an Integration Object to perform additional
functions. Integration Objects created using the customizable templates will contain
code that directly interacts with the Host Publisher and Host On-Demand code
and implements much of the data processing. If any Host Publisher or Host
On-Demand code changes affect the code contained in the Integration Object, the
Integration Object will have to be recompiled and redeployed.

Using Java coding templates
If you do not need to modify how Integration Objects interact with Host Publisher
or the operating environment, always use the HPubTemplateHODBean.Default and
HPubTemplateHODBeanInfo.Default templates.

If you want all Host Access Integration Objects to perform additional functions,
whether you are creating new Integration Objects or updating existing Integration
Objects, use the HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates. Modify the templates to add
Java code for the functions you want the Integration Objects to perform.

© Copyright IBM Corp. 2000, 2002 37

If you want only a small number of Integration Objects to perform additional
functions, make a copy of the HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates and rename them. Modify the
new template files to add Java code for the functions you want the Integration
Objects to perform.

If you use either the customizable templates or renamed copies of the templates,
update the Studio.ini file in the install_dir\Studio directory, where install_dir
is the directory in which Host Publisher Studio is installed, to show the template
names on the HOD_BEAN_TEMPLATE_PATH and
HOD_BEAN_INFO_TEMPLATE_PATH path variables.

Modifying Java coding templates
The HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates contain Java code that is
incorporated into the Integration Object Java bean code (.java) file when the
Integration Object is compiled. The templates also contain constructs specifically
for Host Publisher, prefaced with a percent sign (%). These constructs enable Host
Publisher to create Java beans from the data specified by the Host Publisher Studio
user when the Integration Object is created. When modifying the template files, be
careful not to delete the statements containing the Host Publisher constructs. Make
backup copies of the HPubTemplateHODBean.Customize and
HPubTemplateHODBeanInfo.Customize templates before you begin making
changes to the template files.

For example, suppose that you want to trace the name and the x and y screen
coordinates of the Host On-Demand Extract Events that are processed by an
Integration Object.

Note: Extraction of the x and y screen coordinates is not available in the Web
Services, Remote Integration Objects, or EJB environments, because the x
and y coordinates require access to internal variables not available in those
environments.

Assuming that Host Publisher Studio was installed in C:\HostPub\, do the
following:
1. Back up the file C:\HostPub\Studio\HPubTemplateHODBean.Customize
2. Change the code that extracts the macro event in

C:\HostPub\Studio\HPubTemplateHODBean.Customize to add the following
lines after the pullVariableValueFromExtractData(haovWorkOnThis, data);...
statement:

// --- Trace X and Y screen coordinates example ---
if (HPubTracingOn) {

String strg = "Extracting variable: " + stringExtractNameForThisEvent +
" from screen location (" +
haovWorkOnThis.intXScreenLocation + "," +
haovWorkOnThis.intYScreenLocation + ")";

Ras.trace(this.getClass().getName(),"macroExtractEvent", strg);
}

For example:
...

public void macroExtractEvent(MacroExtractEvent oMacroExtractEvent)
{ // a HOD macroExtractEvent was fired for this macro

...
pullVariableValueFromExtractData(haovWorkOnThis, data);

38 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

// --- Trace X and Y screen coordinates example ---
if (HPubTracingOn) {

String strg = "Extracting variable: " + stringExtractNameForThisEvent +
" from screen location (" +
haovWorkOnThis.intXScreenLocation + "," +
haovWorkOnThis.intYScreenLocation + ")";

Ras.trace(this.getClass().getName(),"macroExtractEvent", strg);
}...

3. Update the path variables HOD_BEAN_TEMPLATE_PATH and
HOD_BEAN_INFO_TEMPLATE_PATH in C:\HostPub\Studio\Studio.ini to:
HOD_BEAN_TEMPLATE_PATH=C:\HostPub\Studio\HPubTemplateHODBean.Customize
HOD_BEAN_INFO_TEMPLATE_PATH=C:\HostPub\Studio\HPubTemplateHODBeanInfo.Customize

4. Restart Host Publisher Studio.
5. Create an Integration Object as you normally would. If you want to modify an

existing Integration Object to trace the name and the x and y screen coordinates
of the Host On-Demand Extract Events, open the existing Integration Object
and re-create it by using the Create Integration Object selection on the File
menu in Host Access.

Debugging customizable Host Access Integration Object
compilation errors

If the new code that was added to a customizable template causes a compilation
error, you will receive a Host Publisher Studio message stating that the object
could not be created. A file named iofailed.txt in the install_dir\Studio\
directory will contain a copy of the compilation errors.

A common class for accessing Host Access Integration Object
information

The properties of an Integration Object can be accessed from WebSphere
applications. The calling program must know the name of the Integration Object
and the name of the variable. Sometimes, it is advantageous for the calling
program to be able to access properties that all Integration Objects share, without
knowing the name of the Integration Object. A new Java class, HPubHostAccess,
has been added and is extended by all Host Access Integration Objects. The
HPubHostAccess class contains properties common to Host Access Integration
Objects. The programmer can extract information from the HPubHostAccess class
without knowing the name of the Integration Object. The HPubHostAccess class
can be introspected to find the name of the current properties that can be extracted
using the Integration Object methods. For information on these methods, see
“Integration Object methods” on page 11.

Java class hierarchy of Host Access Integration Objects
Following is the Java class hierarchy of the default and customizable Integration
Objects:
HPubCommon -- HPubHostAccess + -- HPubHODCommon -- HPubTemplateHODBean.Default

|
+ -- HPubTemplateHODBean.Customize

Chapter 7. Customizing Host Access Integration Object Java code 39

40 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 8. Customizing JavaServer Page (JSP) migration

With Host Publisher Version 2, JSPs were created using the JSP 0.91 specification.
With Host Publisher Version 3.5, JSPs were created using the JSP 1.0 specification.
Host Publisher Version 4.0 creates JSPs using the JSP 1.1 specification. You must
migrate JSPs that were created using the JSP 0.91 specification. You do not need to
migrate JSPs that use JSP 1.0 or 1.1 specifications.

Host Publisher Version 4.0 provides a JSP migration utility, JSPMigrator utility, that
is invoked when the AppMigrator and StudioAppMigrator utilities run. The JSP
migration utility converts all 0.91 JSP tags generated by Host Publisher Studio or
the Host Publisher error page to JSP 1.1 tags or to inline Java code. Following is a
list of 0.91 JSP tags and how they are migrated.

<BEAN>
Replaced with the JSP 1.1 <jsp:useBean> tag
<jsp:useBean id="dBAcc" type="IntegrationObject.DBAcc"
class="IntegrationObject.DBAcc" scope="request"> </jsp:useBean>

<INSERT></INSERT>
Information between <INSERT> and </INSERT> is replaced with in-line
Java code. For example:
<%= dBAcc.getDB2ADMINEMPLOYEEBIRTHDATE_(_i0) %>

<REPEAT></REPEAT>
Information between <REPEAT> and </REPEAT> is replaced with in-line
Java code.

<REPEAT> is replaced with:
<%
for (int _i0 = 0; _i0 <= 2147483647;_i0++){
try {
%>

where _i0 is the name of the index used in the original REPEAT tag.

</REPEAT> is replaced with:
<%
}
catch (java.lang.ArrayIndexOutOfBoundsException _e0)
{
break;
}
catch (Java.lang.NullPointerException _e)
{
break;
}
}
%>

<%@ content_type=″text/html;charset=ISO-8859–1″ %>
Replaced with the following JSP 1.1 syntax:
<%@ page contentType="text/html;charset=ISO-8859–1" %>

In Host Publisher-created error pages:
v The word session is converted to hp_session.

© Copyright IBM Corp. 2000, 2002 41

v The tag com_ibm_HostPublisher emsg is converted to com_ibm_HostPub
emsg.

If you have added JSP 0.91 tags to Web pages in your applications other than those
described here, those tags are not migrated to JSP 1.1 tags. The log file for the
JSPMigrator utility identifies tags and code that are not converted. You must
determine if these tags need to be migrated manually.

Host Publisher includes sample source code for the migration utility in the
install_dir\SDK\JSPCustomMigration\ directory, where install_dir is the
directory in which Host Publisher is installed. You can modify the code to include
migration of JSP tags that you have added to your Web pages. HTML instructions
for modifying the JSPCustomMigrator.java file are also included in the
install_dir\SDK\JSPCustomMigration\ directory. Point your Web browser to
install_dir\SDK\JSPCustomMigration\Introduction.html to view the instructions.

Note: If you modify the JSPCustomMigrator code, your modified version of the
code is not used during installation of Host Publisher Server nor for JSP
migration in Host Publisher Studio. You must run your modified version of
the code from the command line. In addition, the modified version of the
code must be run before the AppMigrator and StudioAppMigrator utilities
are initiated. If not, when the AppMigrator and StudioAppMigrator utilities
run, errors in JSP pages are reported.

42 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Chapter 9. Host Publisher File formats

When you use the Transfer to Server function in the Host Publisher Application
Integrator, the application’s Web pages, Java objects, and other resources are
assembled into a binary J2EE-compliant Enterprise Archive (.ear) file, which
contains a J2EE-compliant Web Application Record (.war) file. If you requested EJB
support when you created the Integration Object in Host Publisher Studio, the .ear
file also contains and EJB .jar file.

By default, the .ear file is stored in the
Studio_Install_Dir\Studio\Applications\app_name subdirectory path, where
app_name is the name of your application. The .ear file is transferred to a Host
Publisher Server, to the WebSphere_Install_Dir/installableApps/HostPublisher
directory. After the administrator deploys and starts the application’s .ear file,
WebSphere Application Server uses the files to service end-user requests to Host
Publisher.

The J2EE specification provides details about the contents and layout of .ear files,
.war files, and EJB .jar files.

Host Publisher produces applications using standard open formats—such as
HTML pages, Java files, JSPs, and XML files. This makes it simple to make changes
to a Host Publisher application after it has been published to a Host Publisher
Server. You don’t have to keep returning to Host Publisher Studio to make small
changes to your application.

Warning: If you make changes to applications on the server without updating the
files in Host Publisher Studio, you could lose the changes in the server version
when you next publish your application. Be sure to update the version you keep in
Host Publisher Studio before you publish those files. There is no automatic way to
synchronize the two versions.

A Host Publisher application is made up of several types of files. The following
sections describe each file, explain how it is used, and provide the file format.
Some of these files are stored in the .war file, or the EJB .jar file for EJB-based
applications, which are contained in the .ear file, when the application is
transferred to a server. Other files are specific to Host Publisher Studio and are not
transferred to the server.

Integration Object project (.hpi) file
Integration Object project (.hpi) files are specific to Host Publisher Studio and are
not transferred to the server.

Host Access and Database Access store project information into .hpi files. These
files describe the details you defined while creating an Integration Object.

Note: The format of the Integration Object project (.hpi) file is shown for
information only. If you manually edit this file, you might receive
unexpected results.

The following is a sample .hpi project file generated by Host Access.

© Copyright IBM Corp. 2000, 2002 43

<?xml version="1.0" standalone="yes"?>

<com.ibm.HostPublisher.IntegrationObject name = "Pat1" type="hod">

<Package name = "IntegrationObject"/>
<Session>

<PoolName>callup</PoolName>
<FileName>Callup.poolspec</FileName>

</Session>

<EJB PropertiesSuffix = "Properties" HelperSuffix = "Helper"
EJB10AccessBeanSuffix = "Access0"
EJB11AccessBeanSuffix = "Access1"/>

<RIO RIOPrefix = "Remote"/>
<OutputVariable name="table1" type ="simple">

<ScreenCoordinates x="1" y="14" dx="79" dy="1"/>
<SubVariable name="column0" type ="array">

<RelativeCoordinates x="0" y="0" dx="7" dy="1"/>
</SubVariable>
<SubVariable name="column1" type ="array">

<RelativeCoordinates x="7" y="0" dx="5" dy="1"/>
</SubVariable>
<SubVariable name="column2" type ="array">

<RelativeCoordinates x="12" y="0" dx="12" dy="1"/>
</SubVariable>
<SubVariable name="column3" type ="array">

<RelativeCoordinates x="24" y="0" dx="9" dy="1"/>
</SubVariable>
<SubVariable name="column4" type ="array">

<RelativeCoordinates x="33" y="0" dx="4" dy="1"/>
<SubVariable name="column5" type ="array">

<RelativeCoordinates x="37" y="0" dx="9" dy="1"/>
<SubVariable name="column6" type ="array">

<RelativeCoordinates x="46" y="0" dx="9" dy="1"/>
<SubVariable name="column7" type ="array">

<RelativeCoordinates x="55" y="0" dx="18" dy="1"/>
<SubVariable name="column8" type ="array">

<RelativeCoordinates x="73" y="0" dx="6" dy="1"/>
</SubVariable>

</OutputVariable>

<HODMacro filename = "callup.macro"/>
<SessionChain>

<StartState name = "Start Label"/>
<EndState name = "The End Label"/>
<Position>middle</Position>

</SessionChain>
<com.ibm.HostPublisher.IntegrationObject>

The following is a sample .hpi project file generated by Database Access.
<?xml version="1.0" standalone="yes"?>

<com.ibm.HostPublisher.IntegrationObject name = "QuerySample" type="db">

<Package name = "IntegrationObject"/>

<Session>
<FileName>SessionDefs.XML</FileName>
<PoolName>QuerySample</PoolName>

</Session>

<EJB PropertiesSuffix = "Properties" HelperSuffix = "Helper"
EJB10AccessBeanSuffix = "Access0"
EJB11AccessBeanSuffix = "Access1"/>

44 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

<RIO RIOPrefix = "Remote"/>

<SQL>
SELECT "JMYERS"."DEPARTMENT"."DEPTNO", "JMYERS"."DEPARTMENT"."DEPTNAME",

"JMYERS"."DEPARTMENT"."MGRNO" FROM "JMYERS"."DEPARTMENT"
WHERE (("JMYERS"."DEPARTMENT"."DEPTNO" = 'B01') AND
("JMYERS"."DEPARTMENT"."DEPTNAME" = @+)deptname@-)''@+)))

</SQL>

<JDBCUrl name="jdbc:db2:sample"/>
<JDBCDriver name="COM.ibm.db2.jdbc.app.DB2Driver"/>

<com.ibm.HostPublisher.IntegrationObject>

Tag descriptions:

com.ibm.HostPublisher.IntegrationObject

name Specifies the name of this Integration Object. This name
must match the name of the file.

type The type of Integration Object described in this file. Valid
values are hod or db.

EJB Specifies the suffixes appended to the name of the Integration
Object for naming EJB Access Beans and object files. You specify
the values for the attributes using the EJB Integration Object
Properties selection of the Options menu in Host Publisher Studio
when creating the Integration Object. The attributes are:

EJB10AccessBeanSuffix
Specifies the suffix appended to the name of the
Integration Object for naming the EJB 1.0 Access Bean files.
The default value is Access0, unless you modify the value
in the Studio.ini file.

EJB11AccessBeanSuffix
Specifies the suffix appended to the name of the
Integration Object for naming the EJB 1.1 Access Bean files.
The default value is Access1, unless you modify the value
in the Studio.ini file.

HelperSuffix
Specifies the suffix appended to the name of the
Integration Object for naming the EJB helper object files.
The default value is Helper, unless you modify the value in
the Studio.ini file.

PropertiesSuffix
Specifies the suffix appended to the name of the
Integration Object for naming the EJB properties object
files. The default value is Properties, unless you modify the
value in the Studio.ini file.

HODMacro

filename
Identifies the filename containing the Host On-Demand
macro recorded by the user for this Host Access Integration
Object.

JDBCDriver

Chapter 9. Host Publisher File formats 45

name The JDBC driver name to use for the specified URL for
Database Access Integration Objects.

JDBCUrl

name The JDBC URL to connect to when executing this Database
Access Integration Object.

OutputVariable
Output variables define data that will be extracted during the
macro execution in Host Access Integration Objects.

name Specifies the variable name provided by the user during
macro recording.

type Specifies the type of variable described by the tag. Valid
values are simple and array. Simple variables are stored
and displayed as single blocks of text. Array variables are
stored as individual lines that can be displayed
individually on a JSP.

ScreenCoordinates
Identifies a rectangular region on the application screen
that defines the data to extract.

x Identifies the starting column number. The first
column begins at 1.

y Identifies the starting row number. The first row
begins at 1.

dx Identifies the total number of columns to include in
this variable.

dy Identifies the total number of rows to include in
this variable.

Package

name Specifies the Java package name used when generating the
Java source code for this object.

RIO

RIOPrefix
Specifies the prefix prepended to the name of the
Integration Object for naming the Remote Integration
Object files. You specify the value for the RIOPrefix
attribute using the Remote Integration Object Properties
selection of the Options menu in Host Publisher Studio
when creating the Integration Object. The default value is
Remote, unless you modify the value in the Studio.ini file.

Session

PoolName
Specifies the connection pool name used by this Integration
Object.

FileName
Specifies the file name where the pool name is stored.

SessionChain

46 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

StartState name
The connection start state label given by the user for the
Host Access Integration Object.

EndState name
The connection end state label given by the user for the
Host Access Integration Object.

Position
The position of this Host Access Integration Object in the
object chain. Valid values are first, middle, or last.

SQL Identifies the SQL statement to execute for Database Access
Integration Objects.

SubVariable Subvariables define further detail of the format of data defined by
an output variable. Subvariables are generated when the user
specifies data to be extracted as a table in Host Access. Each
column identified by the user is defined using the SubVariable tag.

name Specifies the variable name provided by the user during
macro recording.

type Specifies the type of variable described by the tag. Valid
values are simple and array. Simple variables are stored
and displayed as single blocks of text. Array variables are
stored as individual lines that can be displayed
individually on a JSP.

RelativeCoordinates
Identifies a rectangular region on the application screen
that defines the data to extract.

x Identifies the starting column number. The first
column begins at 1.

y Identifies the starting row number. The first row
begins at 1.

dx Identifies the total number of columns to include in
this variable.

dy Identifies the total number of rows to include in
this variable.

Host Publisher application (.hpa) file
Host Publisher application (.hpa) files are specific to Host Publisher Studio and are
not transferred to the server.

This XML file organizes all of the parts that make up a Host Publisher application,
including Java objects and the Web pages that refer to them. Host Publisher
applications are published to Host Publisher Servers for access by your customers.
When Host Publisher Studio is used to load an existing application, it is this file
that you actually open.

Note: The format of the Host Publisher application (.hpa) file is shown for
information only. If you manually edit this file, you might receive
unexpected results.

Here is a sample of a typical application file:

Chapter 9. Host Publisher File formats 47

<?xml version='1.0' encoding='UTF-8'?>
<application>
<appl_name>EmployeeQuery</appl_name>
<integration_object>

<obj_name>HostPub41\Studio\IntegrationObjects\EmployeeQuery.jar
</obj_name>
<input_properties>

<input>setEmpno</input>
</input_properties>
<output_properties>

<output>getJMYERSEMPLOYEEEMPNO_</output>
<output>getJMYERSEMPLOYEEFIRSTNME_</output>
<output>getJMYERSEMPLOYEEMIDINIT_</output>
<output>getJMYERSEMPLOYEELASTNAME_</output>
<output>getJMYERSEMPLOYEEWORKDEPT_</output>
<output>getJMYERSEMPLOYEEPHONENO_</output>
<output>getJMYERSEMPLOYEEHIREDATE_</output>
<output>getJMYERSEMPLOYEEJOB_</output>
<output>getJMYERSEMPLOYEEEDLEVEL_</output>
<output>getJMYERSEMPLOYEESEX_</output>
<output>getJMYERSEMPLOYEEBIRTHDATE_</output>
<output>getJMYERSEMPLOYEESALARY_</output>
<output>getJMYERSEMPLOYEEBONUS_</output>
<output>getJMYERSEMPLOYEECOMM_</output>

</output_properties>
<execution_method>doHPTransaction</execution_method>

</integration_object>
<page>D:\HostPub41\Studio\Applications\EmployeeQuery\output.jsp</page>
<page>D:\HostPub41\Studio\Applications\EmployeeQuery\input.jsp</page>
<connection_pool>D:\HostPub41\Studio\SessionDefs\Empno.poolspec</connection_pool>
</application>

Tag descriptions:

appl_name
Names the Host Publisher application. This name must match the name of
the file. It is also the name Host Publisher Server uses to track this
application.

connection_pool
Identifies an additional connection pool packaged with this application.

execution_method
Specifies the Java method for invoking the Java object once the inputs are
satisfied with data. After the execution method completes, the Java object’s
resulting data can be accessed using its output methods, if there are any.

input Specifies the Java method used to set an input value. For a Java bean, this
is typically the setter method for a Java bean property.

input_properties
Specifies the beginning of the list of inputs for this Java object. Inputs
generally must be satisfied with data before the Java object can be
executed. Each input is specified by a separate input tag under this tag.

integration_object
Specifies beginning of a definition of an Integration Object or other Java
object that was imported into Host Publisher Studio.

obj_name
Specifies the full path to the Integration Object or other Java object within
the file system. If the object is an Integration Object created using one of
the Host Publisher Access applications, this file refers to a .jar file

48 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

containing the Integration Object Java bean and its related files. If this
object is another Java object, this file refers to the file containing that Java
object.

output
Specifies the Java method used to get data values from a Java object. For a
Java bean, this is typically the getter method for a Java bean property.

output_properties
Specifies the beginning of the list of outputs for this Java object. Outputs
are used to render Java object data within a Web page. Each output is
specified by a separate output tag under this tag.

page Specifies a Web page that is used, either directly or indirectly, to access
Java objects.

Integration Object source (.java) file
Integration Object source (.java) files are specific to Host Publisher Studio and are
not transferred to the server.

Integration Objects created by Host Publisher Studio are Java beans. The Java bean
files are contained within a .jar file and are generally made up of two files, the
Java bean class and the Java bean BeanInfo class. These class files are generated
based on a template maintained by Host Publisher Studio and information
provided by you through one of the Host Publisher Access applications.

The template for Database Access Integration Obects is not available to you for
customization, and since any time the Integration Object is modified using the
Database Access application it is regenerated and compiled, do not customize the
source files for the Integration Objects in any way. Instead, if you require custom
logic to make use of Integration Object data, use JSP tags and additional Java code
to include the logic in the Web pages, or develop another Java class that extends
your Integration Object to customize Integration Object results.

Integration Objects created by Host Publisher Studio are Java beans. The Java bean
files are contained within a .jar file and are generally made up of two files, the
Java bean class and the Java bean BeanInfo class. These class files are generated
based on templates maintained by Host Publisher Studio and information you
provide through one of the Host Publisher Access applications.

There are two types of templates for Host Access Integration Objects: default
templates and customizable templates. Host Access Integration Objects use the
default templates by default. Default templates are not customizable. If you want
to modify the way an Integration Object is generated, you must use a customizable
template. The two customizable templates are HPubTemplateHODBean.Customize
and HPubTemplateHODBeanInfo.Customize. For more information, see “Chapter 7.
Customizing Host Access Integration Object Java code” on page 37.

The templates for Database Access Integration Obects are not customizable. Using
the templates, the Integration Objects are regenerated and compiled every time the
Integration Objects are modified using the Database Access application. If you
require custom logic to make use of Database Access Integration Object data, use
JSP tags and additional Java code to include the logic in the Web pages, or develop
another Java class that extends your Integration Object to customize Integration
Object results.

Chapter 9. Host Publisher File formats 49

JavaServer Pages (JSP) Web page files
JSP Web page files are stored in the .ear file and are transferred to the server.

Host Publisher Studio generates JSP 1.1 pages to manipulate Java objects and their
output. JSP tags are similar to HTML tags, but their purpose is to instantiate Java
objects, execute methods, and access the object’s properties (inputs and outputs).
JSP tags enable you to interact with Java objects using standard Web pages.

With Host Publisher Version 2, JSPs were created using the JSP 0.91 specification.
Host Publisher Version 4.0 creates JSPs using the JSP 1.1 specification. Host
Publisher provides a migration utility to convert .91 JSPs to 1.1 JSPs. This utility
can be invoked at server installation time, in Host Publisher Studio, and as a
command line utility. See the IBM WebSphere Host Publisher Administrator’s and
User’s Guide for more information about the migration utility.

If you want to customize JSP migration, Host Publisher provides sample JSP
migration code. For more information about customizing the sample JSP migration
code, see “Chapter 8. Customizing JavaServer Page (JSP) migration” on page 41.

The following are sample JSPs, followed by a description of how the tags are being
used. If you edit any of the JSP Web page files in a non-English environment, you
must use a UTF-8 capable editor.

JSP for the EmployeeQuery Integration Object
<HTML>
<%@ page contentType="text/html;charset=UTF-8" errorPage="DefaultErrorPage.jsp" %>
<BODY>

<jsp:useBean id="EmployeeQuery" type="IntegrationObject.EmployeeQuery"
class="IntegrationObject.EmployeeQuery" scope="request">

<jsp:setProperty name="EmployeeQuery" property="*" />
</jsp:useBean>
<% EmployeeQuery.setHPubStartPoolName("EmployeeQuery"); %>
<% EmployeeQuery.doHPTransaction(request, response); %>

<P>Employee Data
<TABLE BORDER>
<TBODY>
<tr>
<th>Employee Number<th>
<th>First Name<th>
<th>Last Name<th>
<th>Phone Number<th>
</tr>
<%
for (int idx1 = 0; idx1 <= 2147483647; idx1 ++){

try {
String str =

"<tr>" +"\n" +
"<td>" + EmployeeQuery.getJMYERSEMPLOYEEEMPNO_(idx1) + "\n" +
"<td>" + EmployeeQuery.getJMYERSEMPLOYEEFIRSTNME_(idx1) + "\n" +
"<td>" + EmployeeQuery.getJMYERSEMPLOYEELASTNAME_(idx1) + "\n" +
"<td>" + EmployeeQuery.getJMYERSEMPLOYEEPHONENO_(idx1) + "\n" +
"<tr>" + "\n";

%>
<%= str %>
<%

}
catch (java.lang.ArrayIndexOutOfBoundsException e){

break;
}

50 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

catch (java.lang.NullPointerException e){
break;

}
}
%>
</TBODY>
</TABLE>
</BODY>
</HTML>

JSP for the QuerySample Integration Object
<%
//---
HttpSession hp_session = request.getSession(true);
//---
%>
<HTML>
<%@ page contentType="text/html;charset=UTF-8" errorPage="DefaultErrorPage.jsp" %>
<BODY>

<jsp:useBean id="QuerySample" type="IntegrationObject.QuerySample"
class="IntegrationObject.QuerySample" scope="request">

<jsp:setProperty name="QuerySample" property="*" />
</jsp:useBean>
<% QuerySample.setHPubStartPoolName("QuerySample"); %>
<% QuerySample.doHPTransaction(request, response); %>

<FORM NAME="input" METHOD="POST" ACTION="<%= response.encodeUrl("input.jsp") %>">
<LABEL>Department</LABEL>
<SELECT NAME ="JMYERSDEPARTMENTDEPTNO_" MULTIPLE SIZE=3>
<%
for (int idx1 = 0 ; idx1 <= 2147483647; idx1 ++){

try{
String str =

"<OPTION VALUE=\""
+ QuerySample.getJMYERSDEPARTMENTDEPTNO_(idx1) + "\"> "
+ QuerySample.getJMYERSDEPARTMENTDEPTNO_(idx1) + "\n";

%>
<%= str %>
<%

}
catch (java.lang.ArrayIndexOutOfBoundsException e){

break;
}
catch (java.lang.NullPointerException e){

break;
}

}
%>
</SELECT>

<INPUT TYPE="submit" VALUE="Submit">
</FORM>
</BODY>
</HTML>

The first page references an Integration Object called EmployeeQuery. After
invoking the object, it renders the object’s output in an HTML table with three
columns. The second page references an Integration Object called QuerySample.
After invoking the object, it renders the object’s output in an HTML form that
enables the user to select a department. The following tags are used on these
pages:

FORM
The FORM tag encompasses the content of an HTML fill-in form. Use this

Chapter 9. Host Publisher File formats 51

tag to create fill-in forms with checkboxes, radio buttons, and text input
windows. It contains the following parameters:

ACTION
The ACTION parameter specifies the URL to which the FORM tag
content is sent. This parameter is required.

METHOD
When the ACTION parameter indicates an HTTP URL, the
METHOD parameter identifies the HTTP method for sending
information to the server. This parameter is optional. Values for
this parameter are:

GET The form content is appended to the URL.

POST The form content is sent to the server as a message body,
and not as part of the URL.

NAME
The NAME parameter specifies the URL to which the FORM tag
content is sent. This parameter is required.

Inline Java tag (<% %>)
Inline Java tags specify the beginning and end of Java code segments that
are to be invoked as they are written. These segments may reference
variables specified within other inline Java tags before these on the same
page. As shown in the examples, these tags can be used to access or
execute Java objects explicitly.

INPUT
The INPUT tag specifies a variety of editable fields inside a form. It
contains the following parameters:

NAME
The NAME parameter specifies the variable name for the VALUE
parameter.

TYPE The TYPE parameter specifies the type for the INPUT tag. This
parameter is required. Values for this parameter are:

checkbox
INPUT tag elements are boolean quantities. The default
value is off.

file The INPUT tag element is a file selection tool, with which
the user can select a file to be sent with the FORM tag.

hidden
The INPUT tag element is not displayed to the user.

image The INPUT tag element is an active inline image.

password
The INPUT tag element is a single-line text field, but the
text typed in the field is obscured by asterists or some
other method. This is used for password entry.

radio The INPUT tag element is a radio button. Radio buttons
are linked together by the same NAME parameter.

reset The INPUT tag element is a reset button. When pressed, all
the fields in the FORM tag are reset to the values given by
their VALUE parameter, erasing all user input.

52 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

submit
The INPUT tag element is a Submit button. Pressing the
Submit button sends the FORM tag data to the specified
URL.

text The INPUT tag element is a single-line text entry field. The
physically displayed size of the input field is set by the
SIZE attribute.

VALUE
The VALUE parameter specifies the initial value of the INPUT tag.

jsp:setProperty
The jsp:setProperty tag sets the value of one or more properties in a Java
bean component, using the Java bean’s set methods. You must use a
jsp:useBean tag to declare the Java bean before you use the jsp:setProperty
tag. The jsp:setProperty tag contains the following parameters:

name The name parameter names an instance of a Java bean that has
already been created or located with a jsp:useBean tag. The value
of the name parameter must match the value of the id parameter
on a jsp:useBean tag. The jsp:useBean tag must appear before the
jsp:setProperty tag in the same JSP file.

property
The property parameter sets the property values in a Java bean
component. You can set property values in several ways:
v By passing all of the values in the user’s request (stored as

parameters in the request object) to matching properties in the
Java bean

v By passing a specific value in the request object to a matching
property or a property of a different name in the Java bean

v By explicitly setting a Java bean property to a value specified as
a String or the result of an expression.

Each method of setting property values is determined by the
values you specify on the property tag. The values are:

property=″*″
Stores all of the values in the request object parameters
(called request parameters) in matching Java bean
properties. The property names in the Java bean must
match the request parameters. The parameter names
usually come from the elements of an HTML form, and the
values come from the data the user enters.

The values of the request parameters are always of type
String. The String values are converted to other data types
so they can be stored in Java bean properties. The allowed
Java bean property types and their conversion methods are
shown in the following table:

Table 2. String conversions

Property Type String Is Converted Using

boolean or Boolean java.lang.Boolean.valueOf(String)

byte or Byte java.lang.Byte.valueOf(String)

char or Character java.lang.Character.valueOf(String)

double or Double java.lang.Double.valueOf(String)

Chapter 9. Host Publisher File formats 53

Table 2. String conversions (continued)

Property Type String Is Converted Using

integer or Integer java.lang.Integer.valueOf(String)

float or Float java.lang.Float.valueOf(String)

long or Long java.lang.Long.valueOf(String)

You can also use jsp:setProperty tag to set the value of an
indexed property in a Java bean. The indexed property
must have one of the types shown in Table 2 on page 53,
and the request value assigned to it must be an array of
the same type. The array elements are converted using the
conversion methods shown in Table 2 on page 53.

If a request parameter has an empty or null value, the
corresponding Java bean property is not set. If the Java
bean has a property that does not have a matching request
parameter, the property value is not set.

property=″propertyName″ [param=″parameterName″]
Sets one Java bean property to the value of one request
parameter. The request parameter can have a different
name than the Java bean property, and if so, you must
specify the param attribute. If the Java bean property and
request parameter have the same name, you can omit the
param attribute.

If the parameter has an empty or null value, the
corresponding Java bean property is not set.

You cannot use both the param and value attributes in a
jsp:setProperty tag.

property=″propertyName″ value=″{ string | <%= expression %> }″
Sets one Java bean property to a specific value. The value
can be a string or an expression. If you use a string, it is
converted to the Java bean property’s data type, according
to the conversion rules shown in Table 2 on page 53. If you
use an expression, the data type of the value of the
expression must match the data type of the Java bean
property.

If the parameter has an empty or null value, the
corresponding Java bean property is not set.

You cannot use both the param and value attributes in a
jsp:setProperty tag.

jsp:useBean
The jsp:useBean tag locates or instantiates a Java bean with a specific name
and scope. The body of a jsp:useBean tag often contains a jsp:setProperty
tag that defines property values in the object.

The jsp:useBean tag works with JavaBeans™ components, but not with
enterprise beans. If you want to use enterprise beans, you can write a JSP
file that constructs a JavaBean component, and have the JavaBean
component call the EJB.

54 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Note: In Host Publisher, Integration Objects and EJB Access Beans are both
Java beans.

The jsp:useBean tag contains the following parameters:

class=package.class
The class parameter instantiates a Java bean from a class, using the
new keyword and the class constructor. The class must not be
abstract and must have a public, no-argument constructor. The
package and class names are case sensitive.

id The id parameter names a variable that identifies the Java bean in
the scope you specify. You can use the variable name in
expressions or scriptlets in the same JSP file. The name is case
sensitive and must conform to the naming conventions of the page
scripting language.

scope The scope parameter defines a scope in which the Java bean exists
and the variable named on the id parameter is available. Values for
this parameter are:

application
The Java bean is set as a context in the application by a
servlet that invokes the JSP file. If the Java bean is not part
of the request context, the Java bean is created and stored
in the request context.

page If the Java bean is present in the current JSP, the Java bean
is reused. If the Java bean is not present, it is created and
stored until the request in the current page is completed.

request
The life of the Java object lasts as long as the request for
this page is being processed. It is discarded when a new
page is requested.

session
The instance of this class is maintained past the current
request, allowing other JSPs, for example, to access this
object again.

The default value for the scope parameter is page.

type=package.class
If the Java bean already exists in the specified scope, the type
parameter gives the Java bean the type you specify. If you use the
type parameter without the class parameter, no Java bean is
instantiated. The package and class names are case sensitive.

OPTION
The OPTION tag sets the different character-string options for a SELECT
tag. The OPTION tag can contain characters, character references, or entity
references. The VALUE attribute specifies the value assigned to the
OPTION tag.

SELECT
The SELECT tag enables the user to select from a set of values presented as
a selectable list of text strings, specified by the OPTION tag. The SELECT
tag contains the following parameters:

Chapter 9. Host Publisher File formats 55

MULTIPLE
The MULTIPLE parameter specifies that the user can select
multiple items from a single SELECT tag. If MULTIPLE is not
specified, the user can select only a single item from the SELECT
tag. This parameter is optional.

NAME
This parameter specifies the variable name associated with the
SELECT tag. This parameter is required.

SIZE This parameter specifies the number of displayed text lines. The
default is 1, and the list is often presented as a pull-down menu.

Connection and configuration files
Connection and configuration files are stored in the .ear file and are transferred to
the server.

This section describes the format of configuration files used by Host Publisher
Server Administration to configure Host Publisher. The files use XML tags to
structure their content. Host Publisher generates these files along with Integration
Objects and publishes them to the server as part of an application. The
configuration files are the following:

Connection specification (.connspec)
This file specifies the parameters necessary for establishing a connection to
a data source, such as a 3270 application or a database.

Connection pool specification (.poolspec)
This file defines how to create a pool of connections to a host or database.
It specifies parameters for pools of connections to data sources, such as
3270 applications or databases. It also serves as the main coordinating file
for a complete connection pool definition (including connection, users, and
connect and disconnect macros, if appropriate).

Logon specification (.logonspec)
This file specifies the names of the connect and disconnect macros for Host
Access Integration Objects. If connection pooling is enabled, this file also
specifies the name of the checkin screen.

User pool specification (.userpool)
This file lists the users and any associated user-specific information
necessary for accessing a data source. It is this list of users and the
connection definition that define a pool of connections.

Checkin screen description (.screen)
This Host On-Demand screen description identifies the host screen that
should be active for a connection to be considered ready to be returned to
the connection pool. If a connection is not in that state, it is discarded or
recycled in an attempt to return the connection to that state. If connection
pooling is not enabled, the checkin screen is ignored.

Macro files (.macro)
For Host Access Integration Objects only, these files specify IBM Host
On-Demand keyboard and screen recognition macros. They are used for
replaying sequences of keystrokes for performing certain tasks for the
Integration Object, such as logging on to a system or accessing a data
screen on an application. See “Macro script syntax” on page 66 for more
information on the format of these XML files.

56 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Notes:

1. Configuration descriptions might refer to other files that can be referenced
using relative path names. The forward slash (/) is used as a file name
separator, and it is replaced by the platform-specific filename separator
character when Host Publisher Server Administration processes file names.

2. If you edit any of the connection and configuration files in a non-English
environment, you must use a UTF-8 capable editor.

3. Because applications do not share connection and configuration files when they
run on the server, each application has its own unique copy of these files. Any
changes that you make to a connection or configuration file in one application
do not affect the files in other applications on the server.

Format of connection pool specification files

XML tag conventions
The following sections describe the XML syntax used to define Host Publisher
connection pools, using examples. The following conventions have been used:
v Each file contains a set of tags that correspond to a single instance of the

connection or connection pool that the file describes.
v A single top level tag identifies the type of connection being described, such as

<poolconfig> or <connconfig>.
v A tag that describes an instance always has a name attribute.
v Different object-specific tags are used to distinguish the connections that they are

instances of. For example, a connection pool specification configuration file can
have a <hodpoolspec> or a <dbpoolspec> tag.

v Within the tag describing the object of interest are nested tags defining that
object’s properties. Each nested tag within a connection-specific tag is an empty
XML tag, and the value of the property that it represents is specified by an
attribute.
– If the property is a “simple” type (integer or string), the value is specified

using a value attribute.
– If the property is a reference to a DbConnSpec, HodConnspec,

HodLogonSpec, or LocalUserPool specification, a refname attribute is used to
reference that specification’s definition. Another file with that name and a
fixed extension contains that specification.

– If the property is a reference to another Java object such as
java.util.Properties, whose string representation can be quite big, the value is
represented using a nonempty nested tag. An example of this is the
sessionprops attribute of the <hodconnspec> tag.

– If the property is a reference to an object that also has an XML representation
(such as an HOD macro), then the object is stored in a separate file, and an
empty tag with a filename attribute is used to reference that file.

v If a property value is not specified in the XML tag, the default value is used
during execution.

Notes:

1. All timeout values are integers (32 bit), and the unit of time is seconds.
2. A timeout value of 0 indicates no waiting. A timeout value of -1 indicates an

infinite wait. For counters, the upper limit is always the maximum value of
the primitive integer type in Java (2,147,483,647).

Chapter 9. Host Publisher File formats 57

3. While all attribute values in XML are strings, type information is provided
for each property that the attribute represents since that will limit the string
values that can appear (for example, if boolean, valid values are true and
false).

XML Tags for connection specifications
A file defines each instance of the ConnSpec record. A connection specification
defines how to connect to a data source. Whether connection pooling is used for
this definition is defined by the pool specifications. A connection specification is
nested within a single <connconfig> tag. The <hodconnspec> tag is used to
describe an HodConnSpec record, and the <dbconnspec> tag is used to describe a
DbConnSpec record. These records have different sets of properties, and the nested
tags used to set their values are described in separate sections.

Host On-Demand connections: The following XML tags correspond to properties
of an HodConnSpec record.

connecttimeout
The time, in seconds, that Host Publisher Server will wait while creating a
host connection using Host On-Demand APIs, and priming it by running a
connect macro.

The value is an integer, either -1 or 1 or greater. The default is 120.

disconnecttimeout
The time, in seconds, that Host Publisher Server will wait while running a
disconnect macro and disconnecting a host connection using Host
On-Demand APIs.

The value is an integer, either -1 or 1 or greater. The default is 120.

expresslogon
Contains tags that specify whether the connection uses express logon. The
nested tags specify connection information for the Digital Certificate Access
Server (DCAS) server. The nested tags are:
v elfenabled
v dcasservername
v dcasserverport

sessionprops
Contains Host On-Demand connection properties.

singlelogon
Set this value to true if this connection does not allow a user ID and
password to be used for multiple simultaneous sessions. If this value is set
to true and a user list is defined for this connection, the user ID/password
pairs in that user list are locked when in use to prevent their being used
by simultaneous connections. If this value is set to true and a user ID is
not available for the user list, the requester for the connection waits the
amount of time specified by the connecttimeout property.

Set this value to false if this connection allows a user ID and password to
be used for multiple simultaneous connections. If this value is set to false
and a user list is defined for this connection, the first user ID/password
pair in the user list will be reused for each requested connection.

The value is boolean. The default is false.

JDBC connections: The following XML tags correspond to properties of a
DbConnSpec record.

58 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

connecttimeout
The time, in seconds, that Host Publisher Server will wait to create a
database connection using JDBC APIs.

The value is an integer, either -1 or 1 or greater. The default is 120.

drivername
The name of a JDBC driver (class) that can be used by Host Publisher
Server to load the driver.

This string value is mandatory.

urlname
This URL must identify the database to which a connection is created.

This string value is mandatory.

Examples: vm3.connspec
<?xml version="1.0"?>
<!DOCTYPE connconfig SYSTEM "connconfig.dtd">

<connconfig>
<hodconnspec name="vm3">
<singlelogon value="false"/>
<sessionprops>

SSL=false
fontSize=10
autoReconnect=false
OIAVisible=true
port=23
autoConnect=false
TNEnhanced=false
fontSizeBounded=true
autoFontSize=false
codePage=037
host=ralvm3
screensize=2
sessionType=1
SSLServerAuthentication=false
LUName=
codePageKey=KEY_US

</sessionprops>
<expresslogon>

<elfenabled value="true"/>
<dcasservername value="9.37.52.31"/>
<dcasserverport value="809">

</expresslogon/>
<disconnecttimeout value="120"/>
</hodconnspec>

</connconfig>

empdb.connspec
<?xml version="1.0"?>
<!DOCTYPE connconfig SYSTEM "connconfig.dtd">

<connconfig>
<dbconnspec name="empdb">

<drivername value="com.ibm.db2.jdbcdvr"/>
<urlname value="jdbc://myserver.ibm.com/employeedb"/>
<connecttimeout value="60"/>

</dbconnspec>
</connconfig>

XML tags for pool specifications
A file defines each instance of a PoolSpec record. A pool specification defines
whether a connection pool supports connection pooling and defines properties
required to support connection pooling. The pool specification is nested within a

Chapter 9. Host Publisher File formats 59

single <poolconfig> tag. Pool specification values are only used if connection
pooling is enabled. See the description of the <poolingenabled> tag for more
information.

The <hodpoolspec> tag is used to describe an HodPoolSpec record, and the
<dbpoolspec> tag is used to describe an DbPoolSpec record. Both objects have the
same set of properties with values defined using the set of nested tags described
below:

connecttimeout
The time, in seconds, for which a requester of a connection waits to acquire
a connection from the pool if no connections are available.

The value is an integer, either -1 or 0 or greater. The default is 120.

If connecttimeout is set to -1, the requester will wait forever.

dbconnspec
A reference to a DbConnSpec specification in another file. This tag (with
different attributes) is used in .connspec files to define DbConnSpec
records.

hodconnspec
A reference to a HodConnSpec specification in another file. This tag (with
different attributes) is also used in .connspec files to define HodConnSpec
records.

hodlogonspec
A reference to a HodLogonSpec specification in another file. This tag (with
different attributes) is also used in .logonspec files to define
HodLogonSpec records.

localuserpool
A reference to a LocalUserPool specification in another file. This tag (with
different attributes) is used in .userpool files to define LocalUserPool
records.

maxbusytime
The time in seconds, since a connection was last accessed, after which it is
reclaimed. A connection is considered to be accessed when it is acquired or
when it is released to Host Publisher Server to save until the next
Integration Object in a chained application acquires it. The connection is
reclaimed and terminated if maxbusytime is not set to -1 and either of the
following occurs:
v An Integration Object acquires a connection, but does not release it to

the pool in the time specified by maxbusytime
v An Integration Object releases a connection to Host Publisher Server to

save for the next Integration Object in a chain, but the next Integration
Object does not acquire it in the time specified by maxbusytime

The value is an integer, either -1 or 60 or greater. The default is -1.

If maxbusytime is set to -1, a busy connection is never reclaimed.

Note: The maxbusytime parameter is in effect even when pooling is not
enabled. If an Integration Object acquires a connection that is not
pooled, the connection is reclaimed if the connection is not active
and maxbusytime is not set to -1.

60 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

maxconnections
This is the maximum size of the pool. Once this many connections have
been created and all connections have been acquired, the next requester
will wait unless overflowallowed is set to true. In that case, a new
non-pooled connection is created.

The value is an integer. The default is 1.

maxidletime
The time, in seconds, after which a connection that is idle is removed from
the pool, if the number of connections in the pool exceeds minconnections.

The value is an integer, either -1 or 60 or greater. The default is –1.

If maxidletime is set to -1, an idle connection is never removed from the
pool.

minconnections
The number of active connections in the pool below which idle connections
are not disconnected, regardless of the value of maxidletime. This does not
imply that Host Publisher Server will create that many connections during
initialization. The pool is populated on demand.

The value is an integer. The default is 0.

overflowallowed
If set to true, when a request is received for a connection and none is
available (because the maxconnections limit has been reached), a new
connection outside the pool is created. When this connection is released, it
is ended and discarded.

The value is boolean. The default is false.

poolingenabled
If set to true, connection pooling is enabled and a request to acquire a
connection from the pool results in an already-initialized connection being
returned to the requester, if one is available. When the requester releases
this connection, it is returned to the pool for later use.

If set to false, connection pooling is disabled and a request to acquire a
connection from the pool results in a new connection being initialized and
returned to the requester. When the requester releases this connection, it is
terminated and discarded.

Note: If connection pooling is disabled, the values of the following
properties are ignored:
v maxidletime

v connecttimeout

v minconnections

v maxconnections

v overflowallowed

The value is boolean. The default is true.

Examples: callup.poolspec
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE poolconfig SYSTEM "poolconfig.dtd">
<poolconfig>

<hodpoolspec name="callup">
<hodconnspec refname="vm6conn"/>

Chapter 9. Host Publisher File formats 61

<hodlogonspec refname="vm6"/>
<localuserpool refname="vm6users"/>
<maxidletime value="600"/>
<minconnections value="10"/>
<maxconnections value="20"/>
<connecttimeout value="30"/>
<overflowallowed value="true"/>

</hodpoolspec>
</poolconfig>

puborder.poolspec
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE poolconfig SYSTEM "poolconfig.dtd">
<poolconfig>

<hodpoolspec name="puborder">
<hodconnspec refname="vm6conn"/>
<hodlogonspec refname="vm6"/>
<localuserpool refname="vm6users"/>
<connecttimeout value="30">
<minconnections value="30"/>
<maxconnections value="40"/>

</hodpoolspec>
</poolconfig>

empdb.poolspec
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE poolconfig SYSTEM "poolconfig.dtd">
<poolconfig>

<dbpoolspec name="empdb">
<dbconnspec refname="empdb"/>
<localuserpool refname="empdbusers"/>
<connecttimeout value="20">
<minconnections value="5"/>
<maxconnections value="10"/>

</dbpoolspec>
</poolconfig>

XML Tags for logon and logoff specifications
A file defines each HodLogonSpec record.The logon specification defines
information required by Host On-Demand for logging on and off a connection to a
host. This file is only pertinent to Integration Objects created by the Host Access
application. The <hodlogonspec> tag is used to describe an HodLogonSpec record,
and is nested within a single <logonconfig> tag. The following XML tags
correspond to properties of an HodLogonSpec record.

checkinscreendesc
References a file containing a string representation of a
com.ibm.eNetwork.ECL.ECLScreenDesc object that is constructed in Host
Publisher Studio. This value is only used when connection pooling is
enabled. When a connection is returned to Host Publisher Server, the
Server checks the current screen against this screen description. If the
current screen and this screen description match, the connection is returned
to the pool. If the current screen and this screen description do not match,
connection recovery might be initiated.

This string value is mandatory.

logoffmacro
References a file containing the Host On-Demand disconnect macro (in
Host On-Demand-defined XML format). A disconnect macro may not be
needed if the Integration Object’s data macro includes disconnect actions
or if certain public domain hosts do not need a disconnect step.

62 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

This file reference value is optional.

logonmacro
References a file containing the Host On-Demand connect macro (in Host
On-Demand-defined XML format). A connect macro may not be needed if
the Host Access Integration Object’s data macro includes connect actions or
if certain public domain hosts do not need a connect step.

This file reference value is optional.

Example: This is the file vm6.logon. In the example, the file names have been
derived from the record name by adding a standard suffix.
<?xml version="1.0"?>
<!DOCTYPE logonconfig SYSTEM "logonconfig.dtd">
<logonconfig>

<hdlogonspec name="vm6">
<logonmacro filename="vm6_logon.macro"/>
<logoffmacro filename="vm6_logoff.macro"/>
<checkinscreendesc value="vm6_checkin.screen"/>

</hodlogonspec>
</logonconfig>

XML Tags for user pool specifications
A user pool file contains a list of user ID/password pairs that are used by a
connection pool to make a connection. A file is used to define each LocalUserPool
record.

For hosts that allow a user ID/password pair to be used by simultaneous multiple
connections (for example, AS/400s and JDBC databases), the user list typically has
one entry. If more than one entry is specified for such a connection, Host Publisher
Server ignores the other entries when selecting user ID/password pairs for logging
on to the connection, because it will always use the first connection.

For hosts that do not allow a user ID/password pair to be used by simultaneous
multiple connections (for example, 3270 hosts running VM), the Server manages
the user list by locking user ID/password pairs that are currently in use. A
subsequent request for a connection uses a userID/password pair that is not
locked.

The user pool record can be used to store more than just user IDs and passwords.
You can associate other properties with user IDs as well as passwords. For
instance, you might have a user ID that requires an additional password to log on
to another application as part of the session priming process. In this case, the user
pool would contain a list of user ID/password pairs with an additional password
property associated with each user ID entry. Each property defined in the user list
can be encrypted, except the user ID, and each property can use a different level of
encryption.

The <schema> tag defines each property that should appear in each entry in the
user list, and the encryption level for each property.

The <localuserpool> tag describes a LocalUserPool record, and is nested within a
single <userconfig> tag. Multiple <entry> tags are used to define the database
entries, one for each user ID, password, and any other properties, using
<property> tags.

The <localuserpool> tag has an optional session attribute. If the session attribute
is present with a value that is not null, at least one property in the user list is
strongly encrypted. The value for the session attribute is set when a user of Host

Chapter 9. Host Publisher File formats 63

Publisher Studio transfers a user list to the server and selects strong encryption.
Host Publisher Studio prompts the user for a password to be used for strong
encryption. When an application containing a strongly encrypted user list is
deployed on the Server, the password the user specified for strong encryption must
be defined using Host Publisher Administration. If another user list is created with
a property that requires strong encryption, and is to be deployed to the same
server, the same password must be specified to encrypt that user list. If weak
encryption is used, no password is required.

Examples of User Pool Definitions: vm6users.userpool
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE userconfig SYSTEM "userconfig.dtd">
<userconfig>

<schema>
<defineproperty encrypt="0" name="_userid"/>
<defineproperty encrypt="0" name="app_password"/>
<defineproperty encrypt="0" name="_password"/>

</schema>
<localuserpool name="nm01users">

<entry key="vm6Userid01">
<property name="userid" value="vm6Userid01"/>
<property name="_password" value="vm6Password01"/>
<property name="app_password" value="apppw1"/>

</entry>
<entry key="vm6Userid02">

<property name="userid" value="vm6Userid02"/>
<property name="_password" value="vm6Password02"/>
<property name="app_password" value="apppw2"/>

</entry>
</localuserpool>

</userconfig>

empdbusers.userpool
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE userconfig SYSTEM "userconfig.dtd">
<userconfig>

<schema>
<defineproperty encrypt="0" name="_userid"/>
<defineproperty encrypt="2" name="_password"/>

</schema>
<localuserpool name="empdbusers"

<entry key="UserName5">
<property name="_userid" value="UserName5"/>
<property name="_password" value="o0+n5w1W3mhej7KWpb6SEw=="/>

</entry>
<entry key="UserName4">

<property name="_userid" value="UserName4"/>
<property name="_password" value="h57hlX=hMrl13baAuFhk9Q=="/>

</entry>
</localuserpool>

</userconfig>

Macro script files
Macro script files are stored in the .ear file and are transferred to the server.

After a macro script (a .macro file) has been created using the Host Access
application, you might want to manually edit it. Manually editing macro scripts
should only be performed by advanced users.

Connect and disconnect macros created using Host Access are stored in the
Studio_Install_Dir\Studio\SessionDefs directory, where Studio_Install_Dir is

64 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

the Host Publisher installation directory for Host Publisher Studio. Data macros are
stored in the \Studio\IntegrationObjects directory of the Host Publisher
installation directory.

Macro scripts can also be edited on Host Publisher Server as part of the deployed
application, although we recommend that you use Host Publisher Studio to edit
the macros.

Caution: If the application is redeployed, changes made to the macro scripts on
Host Publisher Server will be lost.

Macro editing tips
If you edit any of the macro script files in a non-English environment, you must
use a UTF-8 capable editor.

The following sections provide tips for editing macros created by Host Publisher.

Editing extract coordinates in a data macro
When you edit extract coordinates in a data macro, you need to modify the extract
coordinates in the Integration Object’s .hpi file to match the ones you updated in
the macro. After updating the .hpi file, use the Host Access application to
re-generate the Integration Object. If the extract coordinates in the data macro do
not match those in the .hpi file when the Integration Object runs, the data macro
extracts the data based on the macro’s updated coordinates, but the Integration
Object returns the data to your Web application based on the old coordinates. The
data in the resulting Web page might be incorrect.

Editing special characters
Host Access uses Host On-Demand to establish a connection to the host. Host
On-Demand uses special characters to identify host aid keys. If you want Host
On-Demand to interpret text literally instead of treating it as a potential host aid
key, you must edit special characters manually in the Host Publisher macro.

For example, the square bracket ([) signifies a host aid key such as [enter]. To
send the square bracket as a non-special key, input a double square bracket ([[) in
a Host Publisher macro. While playing back the macro, set the value for
xlatehostkeys to true in the prompt.

If you edit the macro in Host Access after making manual changes to the macro,
you lose your manual changes. This applies to the prompt tag and numerous other
tags. See “Macro script syntax” on page 66 for more information.

The following is an example of a correct prompt:
<prompt name="ID" row="1" col="1" default="[some more text" xlatehostkeys="false" />

In the following example, [enter] is not translated into the Enter key.
<prompt name="ID" row="1" col="1" default="[some more text[enter]" xlatehostkeys="false" />

In this case, you should split the prompt:
<prompt name="ID" row="1" col="1" default="[some more text" xlatehostkeys="false" />
<input value="[enter]" row="0" col="0" movecursor="true" xlatehostkeys="true" />

Chapter 9. Host Publisher File formats 65

h
h
h
h
h

h
h
h
h

h
h
h

h

h

h

h

h

h
h

Macro script syntax
This section is excerpted from the IBM WebSphere Host On-Demand Host Access
Beans for Java Reference. The complete book is included in the Host On-Demand
Host Access Toolkit.

Information has been added or modified for usage of macro scripts within Host
Publisher.

Introduction
IBM Host On-Demand uses XML because a macro is better suited to the state
machine model (the main reason for the move: XML is tailor made for a state
machine).

The idea of a state machine may be fairly new to you. The idea behind a state
machine, especially in the IBM Host On-Demand macro context, is simple. Think
of how you use a host system from a terminal or a terminal emulator (like IBM
Host On-Demand). The process you follow when you interact with a host system
is illustrated in these steps:
1. The host sends an expected screen down to you at your terminal.
2. You look at and understand which screen is presented to you.
3. You take the required actions based on your understanding (type keystrokes,

and so forth).
4. Another screen is presented after these actions.
5. If you see the screen you expected, repeat steps 2, 3, and 4.
6. If you do not see the screen you expected, call the help desk or handle the

error.

This is the idea behind a state machine in the Macro context (although the Macro
can’t call the help desk for you). The states are the screens you expect to see, and
you take actions on those screens to change from one state, or screen, to another.
That’s it, see a screen, perform the action, see the next screen. It is easier to
understand (and program) a macro with this approach than having several
if-then-else and do-while programming statements. Remember, see a screen,
perform the action, see the next screen.

Now take a look at how well suited XML is to coding a macro. Here is an example
of how to specify a connect macro:
<HAScript name="" description="" timeout="60000" pausetime="200" promptall="false"

author="" creationdate="" supressclearevents="false" >
<screen name="Screen1.1" entryscreen="true" exitscreen="false" transient="false">

<description uselogic="1 and ((4 and 5) OR (2 or 3))" >
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<block row="20" col="2" casesense="true" optional="true" invertmatch="false" >

<string value="USERID ===>" />
<string value="PASSWORD ===>" />

</block>
<string value="USERID" row="15" col="1" casesense="true" optional="true"

invertmatch="false" />
<numinputfields number="16" optional="false" invertmatch="false" />
<cursor row="20" col="16" optional="false" invertmatch="false" />

</description>
<actions>

<input value="myID" row="0" col="0" movecursor="true" xlatehostkeys="true"
encrypted="false" />

<input value="myPW" row="0" col="0" movecursor="true" xlatehostkeys="true"
encrypted="true" />

<input value="[enter]" row="0" col="0" movecursor="true" xlatehostkeys="true"

66 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

h

encrypted="false" />
</actions>
<nextscreens timeout="0" >

<nextscreen name="Screen2" />
</nextscreens>

</screen>
<screen name="Screen2" entryscreen="false" exitscreen="false" transient="false">

<description uselogic="1 and 2" >
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<string value="MORE..." row="20" col="20" casesense="true" optional="false"

invertmatch="false" />
</description>
<actions>

<input value="[clear]" row="0" col="0" movecursor="true" xlatehostkeys="true"
encrypted="false" />

</actions>
<nextscreens timeout="0" >

<nextscreen name="Screen3.1" />
</nextscreens>

</screen>
<screen name="Screen3.1" entryscreen="false" exitscreen="true" transient="false">

<comment>
This screen description defines the connection pool checkin screen.
</comment>
<description uselogic="1 and (2 and 3)" >

<oia status="NOTINHIBITED" optional="false" invertmatch="false" />
<string value="Ready;" row="1" col="1" casesense="true" optional="false"

invertmatch="false" />
<string value="Ready;" row="2" col="1" casesense="true" optional="false"

invertmatch="true" />
</description>
<actions>
</actions>
<nextscreens timeout="0" >
</nextscreens>

</screen>
<HAScript>

These lines of code demonstrate the power of this syntax. All the screens you
expect to see for a task (like connecting) are coded within <screen> tags in XML.
You describe the screen in a <description> tag, specify the actions for the screen in
an <actions> tag, and specify the screen you want to see next in a <nextscreens>
tag.

Keep in mind that the actions happen in sequence. The <screen> tag describes a
logon screen with the text USERID and PASSWORD on the screen and the
screen’s cursor position at row 20, column 10. If the macro logic sees a screen
matching this description, it prompts the user for an ID and password, places the
prompt results at the specified row and column positions, and sends the ENTER
key, effectively connecting the user to the host. The <nextscreens> tag specifies the
name of another <screen> tag that appears later in the macro. If the next screen
does not appear, the macro logic returns an error.

Although there are a large number of valid XML tags, XML is not complicated. A
screen is specified with a description, actions, and the next screens. When a macro
is played and a screen matching the description appears, the actions are executed
for that screen and the macro logic monitors the host for any next screens
specified.

Macro Syntax
The following details each valid macro tag:

Chapter 9. Host Publisher File formats 67

<HAScript>
<screen>

<comment>
<description>

<oia>
<cursor>
<numfields>
<numinputfields>
<string>
<block>
<attrib>
<customreco>

<actions>
<prompt>
<input>
<extract>
<message>
<trace>
<xfer>
<pause>
<mouseclick>
<boxselect>
<commwait>
<custom>

<nextscreens>
<nextscreen>

<recolimit>

The following XML tags and their attributes are valid in the IBM Host On-Demand
Macro XML namespace. This description of the tags is structured like an actual
macro file.

Note: The tag and attribute values are not case sensitive.

Attention: All characters in a macro must be Unicode characters. Most text editors
support this by default, because they use the ASCII character set, which is at the
lower end of the Unicode character set.

<HAScript> tag: The <HAScript> tag is the main enclosing tag for the macro. All
other tags at this level that are not HAScript are ignored by the parser.

The attributes of the <HAScript> tag are:

name The name of the macro. This attribute is optional. The name can contain
any valid Unicode character.

description
The description of the macro. This attribute is optional. The description can
contain any valid Unicode character.

author The creator of the macro. This attribute is optional. The author can contain
any valid Unicode character.

creationdate
The date the macro was created. This attribute is optional. The creationdate
can contain any valid Unicode character. The date format is not checked.

promptall
This launches all prompts at the beginning of the macro. This attribute is
optional. The default is true. The value must be true or false.

pausetime
The sleep time in milliseconds initiated after a screen is matched. This is
used to let the host quiet down. This attribute is optional. The default is no

68 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

pause. The value must be a number. The default is 300 milliseconds. If a
<pause> tag is specified for a specific screen, the value specified on the
<pause> tag overrides this value.

Note: The maximum pause time is limited to the platform on which the
macro is running.

timeout
The allowable time in milliseconds between recognition events. If time
expires, the macro goes into the error state. You can override this value in
the <nextscreens> tag. The value must be a number. The default is 60,000
milliseconds (60 seconds).

Note: The maximum pause time is limited to the largest numeric value
supported on the platform on which the macro is running.

suppressclearevents
This is an advanced feature that determines whether the system should
ignore screen events when a host application sends a clear screen
command immediately followed by an end of record indicator in the data
stream. You may want to set this value to true if you have screens in your
application flow that have all blanks in them. If there is a valid blank
screen in the macro and clear commands are not ignored, it is possible that
a screen event with all blanks will be generated by clear commands
coming from an ill-behaved host application. This will cause a screen
recognition event to be processed and the valid blank screen will match
when it shouldn’t have matched. This attribute is optional. The default is
false. The value must be true or false.

Example:
<HAScript name="Logon Macro" description="Logs me on" author="btwebb"

creationdate="12/29/1998" promptall="true" pausetime="500" timeout="10000" >
...
</HAScript>

<screen> tag: The <screen> tag is the enclosing tag for the screen.

The attributes of the <screen> tag are:

name The unique identifier for the screen. This attribute is mandatory and must
be a unique string among the other screen IDs. The name can contain any
valid Unicode character.

entryscreen
If true, the screen should be the first screen seen. Any other screen
generates an error. This value must be true or false. This attribute is
optional. The default is false.

Note: There can be only one screen with the entryscreen attribute set to
true.

exitscreen
If true, a match on the screen causes the macro to stop playing. You can
have multiple screens with the exitscreen attribute set to true. This value
must be true or false. This attribute is optional. The default is false.

transient
If true, the screen is handled as transient. Transient screens exist outside
the normal macro flow. They are matched after nontransient screens. If

Chapter 9. Host Publisher File formats 69

you specify next screens in a transient screen, the next screens are
ignored. Use this attribute to specify a screen that can appear at any time
in the screen flow. This value must be true or false. This attribute is
optional. The default is false.

pause Time (in milliseconds) to pause before the screen recognition engine
attempts to match next screens. A value greater or equal to 0 overrides the
value specified on the pausetime attribute of the <HAScript> tag.. The
default value is -1.

Example:
<screen name="screen1" entryscreen="true" exitscreen="false" transient="false">
...
</screen>

<comment> tag: The <comment> tag for the screen. This can contain any valid
Unicode character.

There are no attributes for the <comment> tag.

Example:
<comment> ... </comment>

<description> tag: The <description> tag is the enclosing tag for the description
associated with the screen.

The attributes of the <description> tag are:

uselogic
Determines the boolean logic for screen recognition. The numbers in the
value represent the sequential positions of the descriptors in the
<description> tag. There must be a descriptor for each number in the
value.

In a macro generated by Host Access, the first number in the value always
represents the position of the <oia> tag.

Notes:

1. On the Host Publisher Server machine, if the uselogic attribute is
present, the optional and invertmatch attributes of the descriptors are
ignored.

2. On the Host Publisher Studio machine, if you change any of the
following:
v The value of the uselogic attribute of the <description> tag
v The values of the optional and invertmatch attributes of the

descriptors
v The positions of the descriptors

and you load the macro into Host Access, the value of the uselogic
attribute is overwritten to match the positions and optional and
invertmatch attributes of the descriptors.

3. If you make any of the changes listed above, and the value of the
uselogic attribute contains a number for a descriptor that does not exist,
the following problems occur:
v On Host Publisher Server, the macro fails when Host On-Demand

attempts to load it, and an error message is logged.

70 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

v In Host Access, the macro does not load when you open the
Integration Object, and an error message is issued. The macro
appears blank in the macro tree. Other macros are not affected.

4. If you have a syntax error in the value of the uselogic attribute, such as
unmatched parentheses, the following problems occur:
v On Host Publisher Server, the macro fails when Host On-Demand

attempts to load it, and an error message is logged.
v In Host Access, the macro does not load when you open the

Integration Object, and an error message is issued. The macro
appears blank in the macro tree. Other macros are not affected.

Example:
<description uselogic="1 and (2 or !3)"> ... </description>

<oia> tag: The <oia> tag specifies an operator information area (OIA) condition
to match. This tag is optional. The default is to wait for inhibit status.

The attributes of the <oia> tag are:

status If NOTINHIBITED, the OIA must be uninhibited for a match to occur. If
DONTCARE, the OIA inhibit status is ignored. This has the same effect as
not specifying OIA at all. Valid values are NOTINHIBITED and
DONTCARE. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (logical NOT not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:
<oia status="NOTINHIBITED" optional="false" invertmatch="false" />

<cursor> tag: The <cursor> tag describes the screen based on the position of the
cursor.

The attributes of the <cursor> tag are:

row The row position of the cursor. The value must be a number. This is a
required attribute.

Chapter 9. Host Publisher File formats 71

col The column position of the cursor. The value must be a number. This is a
required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:
<cursor row="1" col="1" optional="false" invertmatch="false" />

<numfields> tag: The <numfields> tag defines the total number of fields on the
screen. This tag is optional. The number of fields not used if not specified.

The attributes of the <numfields> tag are:

number
The field count. The value must be a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:

72 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

<numfields number="10" optional="false" invertmatch="false" />

<numinputfields> tag: The <numinputfields> tag defines the total number of
input fields on the screen. This tag is optional. The number of input fields is not
used if not specified.

The attributes of the <numinputfields> tag are:

number
The field count. The value must be a number. This is a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:
<numinputfields number="10" optional="false" invertmatch="false" />

<string> tag: The <string> tag describes the screen based on a string.

The attributes of the <string> tag are:

value The string value. This value can contain any valid Unicode character. This
is a required attribute.

row The starting row position for a string at an absolute position or in a
rectangle. The value must be a number. This value is optional. If not
specified, Macro logic searches the entire screen for the string. If specified,
col position is required. <erow> and <ecol> attributes can also be specified
to specify a string in a rectangular area.

Note: Negative values are valid and are used to indicate relative position
for the bottom of the screen (for example, -1 is the last row).

col The starting column position for the string at an absolute position or in a
rectangle. The value must be a number. This attribute is optional.

erow The ending row position for string in a rectangle. The value must be a
number. This attribute is optional. If both erow and ecol are specified,
string is in a rectangle.

Chapter 9. Host Publisher File formats 73

ecol The ending column position for string in a rectangle. The value must be a
number. This attribute is optional. If both erow and ecol are specified,
string is in a rectangle.

casesense
If true, string comparison is case sensitive. The value must be true or false.
This attribute is optional. The default is false.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description>, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Examples:
<string value="hello" row="1" col="1" optional="false" invertmatch="false" />
<string value="hello" row="1" col="1" erow="11" ecol="11" casesense="false"

optional="false" invertmatch="false" />
<string value="hello" />

<block> tag: The <block> tag describes the screen based on a group of strings.
This tag is used instead of multiple <string> tags, when the strings are positioned
on the screen relative to the first string. The contents of <block> tag are considered
a single descriptor.

The attributes of the <block> tag are the same as the <string> tag, with the
exception of the value attribute.

Example:
<block row="20" col="2" casesense="true" optional="true" invertmatch="false" >

<string value="USERID ===>" />
<string value="PASSWORD ===>" />

</block>

<attrib> tag: The <attrib> tag describes the screen based on an attribute. This is
an advanced feature and should only be used if needed. Usually all the other
description elements are enough to describe a screen.

The attributes of the <attrib> tag are:

plane The plane value string that the attribute resides in. Valid values are
COLOR_PLANE, FIELD_PLANE, and EXFIELD_PLANE. This is a required
attribute.

74 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

value The hex value string of the attribute. Example, value=″0xA0″. This is a
required attribute.

row The row position of the attribute. The value must be a number. This is a
required attribute.

col The column position of the attribute. The value must be a number. This is
a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:
<attrib value="0x01" row="1" col="1" plane="COLOR_PLANE" optional="false"

invertmatch="false" />

<customreco> tag: The macro logic will call out to any custom recognition
listeners for the custom tag to have the listener do its own custom screen
recognition logic.

The attributes of the <customreco> tag are:

ID The unique identifier for the custom description element. Allows for
multiple custom elements. This can be any valid Unicode character. This is
a required attribute.

optional
If false, this descriptor is considered non-optional during screen
recognition. If the descriptors are comprised of more than one non-optional
descriptor, and more than one optional descriptor, the non-optional
descriptors are checked first. If all of the non-optional descriptors match,
the screen matches. If at least one of the non-optional descriptors does not
match, the optional descriptors are checked. One of the optional
descriptors must match for the screen to match. Otherwise, the screen fails
to match. The value must be true or false. This attribute is optional. The
default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Chapter 9. Host Publisher File formats 75

invertmatch
If true, recognition matching passes only if the screen does not match this
description element (boolean not operation). The value must be true or
false. This attribute is optional. The default is false.

Note: If the uselogic attribute is specified on the <description> tag, this
attribute is ignored.

Example:
<customreco id="id1" optional="false" invertmatch="false"/>

<actions> tag: The <actions> tag is the enclosing tag for the actions associated
with the screen.

The attributes of the <actions> tag are:

promptall
If this value is set to true, the Macro bean will gather all prompts within
the current action tag and launch them as one prompt event. The value
must be true or false. This attribute is optional. The default is false.

Example:
<actions promptall="true"> ... <actions>

<prompt> tag: The <prompt> tag specifies a prompt to be handled for the screen.

The attributes of the <prompt> tag are:

row The row to place the prompt. The value must be a number. This is a
required attribute.

col The column to place the prompt. The value must be a number. This is a
required attribute.

len The length of the prompt. The value must be a number. This is a required
attribute.

name The name of the prompt. This can be any valid Unicode character. This
attribute is optional.

description
The description of the prompt. This can be any valid Unicode character.
This attribute is optional.

default
The prompt’s default value. This can be any valid Unicode character. This
attribute is optional.

clearfield
This clears the host field on placement of prompt text. The value must be
true or false. This attribute is optional. The default is false.

encrypted
Use a password echo character. The value must be true or false. This
attribute is optional. The default is false.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. For a list
of key mnemonics, see the Host On-Demand online help. The value must
be true or false. This attribute is optional. The default is false. If you do not
have this value set to true (which is normal because you wouldn’t ask

76 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

users to type key mnemonics), don’t forget to code an input tag after the
prompt(s) for the current actions to get the prompt data entered onto the
host.

Example:
<prompt name="ID" row="1" col="1" len="8" description="ID for Logon"

default="btwebb" clearfield="true" encrypted="true"/>

<input> tag: The <input> tag specifies keystrokes to be placed on the screen.

The attributes of the <input> tag are:

row The row position to send the keys. The value must be a number. This
attribute is optional. This defaults to current cursor position.

col The column position to send the keys. The value must be a number. This
attribute is optional. This defaults to current cursor position.

movecursor
Whether to place the cursor at the end of the input string. The value must
be true or false. This attribute is optional. This defaults to false.

value The text that is sent to the screen. This can be any valid Unicode character.
This is a required attribute.

xlatehostkeys
If true, host key mnemonics (example, [enter]) will be translated. For a list
of key mnemonics, see the Host On-Demand online help. The value must
be true or false. This attribute is optional. The default is true.

encrypted
If true, keystrokes that are typed are not displayed on the screen. The
value must be true or false. This attribute is optional. The default is false.

Example:
<input value="[clear]" row="0" col="0" movecursor="true" xlatehostkeys="true"

encrypted="false" />

<extract> tag: The <extract> tag specifies an extract to be handled for the screen.

The attributes of the <extract> tag are:

name The name of the extract. This can be any valid Unicode character. This
attribute is optional.

srow Upper left row of the bounding extract rectangle. The value must be a
number. This is a required attribute.

scol The upper left column of the bounding extract rectangle. The value must
be a number. This is a required attribute.

erow The lower right row of the bounding extract rectangle. The value must be a
number. This is a required attribute.

ecol The lower right column of the bounding extract rectangle. The value must
be a number. This is a required attribute.

Example:
<extract name="Get Data" srow="1" scol="1" erow="11" ecol="11" />

<message> tag: The <message> tag specifies a message to be sent to the user.

Chapter 9. Host Publisher File formats 77

The attributes of the <message> tag are:

title The title to display in the message dialog. This can be any valid Unicode
character. This attribute is optional. This defaults to macro name.

value The message to display in the dialog. This can be any valid Unicode
character. This is a required attribute.

Example:
<message value="yourvalue" title="YourMessage" />

Note: To aid in debugging Host Publisher macro execution, you can set distinctive
messages in connect, data, and disconnect macros. During macro execution,
the macroMessage Integration Object property is set to the last message tag
executed. JSPs can query the value of the last message encountered using
the Host Publisher getHPubMacroMessage method. For information on the
getHPubMacroMessage method and other Integration Object methods that
you can use in your WebSphere applications, see “Integration Object
methods” on page 11.

<trace> tag: The <trace> tag specifies a string to be sent to one of several trace
facilities.

The attributes of the <trace> tag are:

type The type can either be sent to the IBM Host On-Demand trace facility, a
user trace event, or to the command line. Respectively, the types are
HODTRACE, USER, and SYSOUT. This is a required attribute.

Note: To aid in debugging and controlling Host Publisher macro
execution, set the type attribute to USER.

value The text that is sent to trace. This can be any valid Unicode character. This
is a required attribute.

Example:
<trace value="hello" type="HODTRACE" />

<xfer> tag: The <xfer> tag transfers a file to or from a host system.

The attributes of the <xfer> tag are:

direction
The direction for the file transfer. The allowable types are SEND (file from
PC to host) and RECEIVE (file from host to PC). This is a required
attribute.

pcfile The PC file name to be used for the file transfer. This should point to a
valid file on your system. This is a required attribute.

hostfile
The host file name to be used for the file transfer. This should point to a
valid file on your host system. This is a required attribute.

clear Indicates whether the Macro bean should clear the host screen before
performing the file transfer. The value must be true or false. This attribute
is optional.

timeout
Sets the time out value (in milliseconds) for the file transfer. If the transfer

78 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

does not complete in this given time, the macro will end in error. The
value must be a number in milliseconds. This attribute is optional and the
default is 10000 milliseconds or 10 seconds.

options
Sets the host specific options for the file transfer. Options are different for
every type of host system. See the file transfer bean documentation or
contact your host system administrator for valid options for your host
system. This value must be a Unicode string. This attribute is optional and
the default is no options.

pccodepage
Sets the PC code page to use in the file transfer. The value must be a valid
PC code page. See the Host On-Demand online help for session
configuration for valid code page values. This attribute is optional.

hostorientation
Sets the host character orientation to use in the file transfer. This applies to
BIDI (bidirectional) environments only. See the Host On-Demand online
help for session configuration for valid values. This attribute is optional
and defaults to no value.

pcorientation
Sets the PC character orientation to use in the file transfer. This applies to
BIDI (bidirectional) environments only. See the Host On-Demand online
help for session configuration for valid values. This attribute is optional
and defaults to no value.

pcfiletype
Sets the PC file type to use in the file transfer. This applies to BIDI
(bidirectional) environments only. See the Host On-Demand online help for
session configuration for valid values. This attribute is optional and
defaults to no value.

lamalefexpansion
Sets whether Lam Alef expansion will be used in the file transfer. This
applies to BIDI (bidirectional) environments only. See the Host On-Demand
online help for session configuration for page values. This attribute is
optional and defaults to no value.

lamalefcompression
Sets whether Lam Alef compression will be used in the file transfer. This
applies to BIDI (bidirectional) environments only. See the Host On-Demand
online help for session configuration for page values. This attribute is
optional and defaults to no value.

Example:
<xfer direction="send" pcfile="c:\myfile.txt" hostfile="myfile text A0" />

<pause> tag: The <pause> tag causes the macro engine to sleep for the number of
milliseconds specified. This action is useful for pausing between several file
transfers. The value specified for the <pause> tag overrides the value specified on
the pausetime attribute of the <HAScript> tag.

The attributes of the <pause> tag are:

value The time to pause. The value must be a number (in milliseconds). This
attribute is optional. The default is 10000 milliseconds or 10 seconds.

Example:

Chapter 9. Host Publisher File formats 79

<pause value="2000" />

<mouseclick> tag: The <mouseclick> tag simulates a user mouse click on the
Terminal bean. This essentially sets the cursor at a given row and column position.

The attributes of the <mouseclick> tag are:

row The host screen row position for the mouse click. This must be a number
within the host screen coordinate system (example, 24 rows by 80
columns). This is an optional attribute and the default value is 1.

col The host screen column position for the mouse click. This must be a
number within the host screen coordinate system (example, 24 rows by 80
columns). This is an optional attribute and the default value is 1.

Example:
<mouseclick row="20" col="16" />

<boxselect> tag: The <boxselect> tag is used for either marking or unmarking the
marking rectangle on the Terminal bean.

The attributes of the <boxselect> tag are:

srow The upper left row of the bounding selection rectangle. The value must be
a number within the host screen coordinate system (example, 24 rows by
80 columns). Negative values are allowed and specify a virtual position
from the last row (for example, if the Screen has 24 rows, a row value of -2
points to the 22nd row). This is a required attribute.

scol The upper left column of the bounding selection rectangle. The value must
be a number within the host screen coordinate system. Negative values are
allowed and specify a virtual position from the last column. This is a
required attribute.

erow The lower right row of the bounding selection rectangle. The value must
be a number within the host screen coordinate system. Negative values are
allowed and specify a virtual position from the last row. This is a required
attribute.

ecol The lower right column of the bounding selection rectangle. The value
must be a number within the host screen coordinate system. Negative
values are allowed and specify a virtual position from the last column.
This is a required attribute.

type The type of selection action to perform. The value must be either SELECT
or DESELECT. This is an optional attribute and the default is SELECT.

Example:
<boxselect srow="1" scol="1" erow="11" ecol="11" type="SELECT" />

<commwait> tag: The <commwait> tag is used for performing a communication
status wait during a macro’s execution.

The attributes of the <commwait> tag are:

value The type of communication status to wait for. Valid values are
CONNECTION_INIT, CONNECTION_PND_INACTIVE,
CONNECTION_INACTIVE, CONNECTION_PND_ACTIVE,
CONNECTION_ACTIVE, CONNECTION_READY, and
CONNECTION_DEVICE_NAME_READY. The meaning of these types is

80 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

documented in the Java documentation for the ECLConnection object in
the Host On-Demand Host Acceess Class Library documentation. The two
most used and most meaningful types are CONNECTION_READY and
CONNECTION_INACTIVE. This is a required attribute.

timeout
Sets the time out value (in milliseconds) for the communication wait. If the
wait does not complete in this given time, the macro will end in error. The
value must be a number in milliseconds. This attribute is optional and the
default is no time out.

Example:
<commwait value="CONNECTION_READY" timeout="10000" />

<custom> tag: The <custom> tag enables the user to have an exit to Java code.
See the Host On-Demand Java documentation for the MacroActionCustom class.

The attributes of the <custom> tag are:

id The ID of the callout code that the Macro bean will use. This can be any
valid Unicode character. This is a required attribute.

args The argument string that can be passed to the callout. This can be any
valid Unicode character. This attribute is optional.

Example:
<custom id="custom1" args="YourArgument" />

<nextscreens> tag: The <nextscreens> tag contains all the valid next screens to be
recognized after the current screen’s actions have been executed.

The attributes of the <nextscreens> tag are:

timeout
The allowable time in milliseconds that can elapse between current screen
and any next screen before the macro bean will go into the error state. This
overrides the timeout attribute for the entire macro. The value must be a
number. This attribute is optional. The default is to use the overall macro
timeout.

Example:
<nextscreens> ... </nextscreens>

<nextscreen> tag: The <nextscreen> tag forces a next screen. Multiple
<nextscreen> tags are allowed. If a screen appears that is in the macro but is not a
next screen, the macro will go into an error state. If the next screen refers to a
screen tag that doesn’t exist, the macro will have a parse error.

The attributes of the <nextscreen> tag are:

name The name of the <screen> element that is the valid next screen. This can be
any valid Unicode character. This is a required attribute.

Example:
<nextscreen name="screen1" />

<recolimit> tag: The <recolimit> tag is for advanced use only. It is used to
enforce a limited amount of time a screen can be recognized in a row before it

Chapter 9. Host Publisher File formats 81

goes to the screen indicated in the goto attribute. This tag is useful for screen
looping where you know exactly how many times you’ll see a given screen in a
row. It also is a safeguard against infinite screen recognition.

The attributes of the <recolimit> tag are:

value The allowable number of times to recognize a screen. This value must be a
number. This is a required attribute.

Note: The actions will not be executed the last time the screen is
recognized.

goto The name of the screen to go to when recognition limit has been reached.
This can be any valid Unicode character but the screen must exist in the
macro. For Host Publisher, this attribute is required. If no goto screen is
given, the macro terminates.

Example:
<recolimit value="3" goto="endscreen"/>

82 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Appendix A. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2002 83

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
TL3B/062
3039 Cornwallis Road
RTP, NC 27709-2195
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Programming interface information
This User’s Guide contains information on intended programming interfaces that
allow the customer to write programs to obtain the services of Host Publisher.

84 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Appendix B. Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:
v AIX
v DB2 Universal Database
v IBM
v OS/400
v WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and FrontPage are trademarks or registered
trademarks of Microsoft Corporation in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 2000, 2002 85

86 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Index

Special Characters
.connspec, connection specification

file 56
.ear files 4
.hpa, Host Publisher application file 47
.hpi, Integration Object project file 43
.jar files 4
.java, Integration Object source file 49
.logonspec, logon specification file 56
.macro, macro files 56
.poolspec, connection pool specification

file 56
.screen, checkin screen description

file 56
.userpool, user pool specification file 56
.war files 4

A
ACTION attribute

FORM tag 52
actions tag 76
Administrator’s and User’s Guide v, vi
args attribute

custom tag 81
attrib tag 74
attributes

ACTION
FORM tag 52

args
custom tag 81

author
HAScript tag 68

casesense
string tag 74

class
jsp:useBean tag 55

clear
xfer tag 78

clearfield
prompt tag 76

col
attrib tag 75
cursor tag 71
input tag 77
mouseclick tag 80
prompt tag 76
string tag 73

creationdate
HAScript tag 68

default
prompt tag 76

description
HAScript tag 68
prompt tag 76

direction
xfer tag 78

ecol
boxselect tag 80
extract tag 77

attributes (continued)
ecol (continued)

string tag 73
EJB10AccessBeanSuffix

EJB tag 45
EJB11AccessBeanSuffix

EJB tag 45
encrypted

input tag 77
prompt tag 76

EndState name
SessionChain tag 47

entryscreen
screen tag 69

erow
boxselect tag 80
extract tag 77
string tag 73

exitscreen
screen tag 69

FilelName
Session tag 46

filename
HODMacro tag 45

goto
recolimit tag 82

HelperSuffix
EJB tag 45

hostfile
xfer tag 78

hostorientation
xfer tag 79

id
custom tag 81
jsp:useBean tag 55

ID
customreco tag 75

invertmatch
attrib tag 75
cursor tag 72
customreco tag 76
numfields tag 72
numinputfields tag 73
oia tag 71
string tag 74

lamalefcompression
xfer tag 79

lamalefexpansion
xfer tag 79

len
prompt tag 76

METHOD
FORM tag 52

movecursor
input tag 77

MULTIPLE
SELECT tag 55

name
com.ibm.HostPublisher.IntegrationObject

tag 45
extract tag 77

attributes (continued)
name (continued)

HAScript tag 68
JDBCDriver tag 46
JDBCUrl tag 46
jsp:setProperty 53
nextscreen tag 81
OutputVariable tag 46
Package tag 46
prompt tag 76
screen tag 69
SubVariable tag 47

NAME
FORM tag 52
INPUT tag 52
SELECT tag 56

number
numfields tag 72
numinputfields tag 73

optional
attrib tag 75
cursor tag 72
customreco tag 75
numfields tag 72
numinputfields tag 73
oia tag 71
string tag 74

options
xfer tag 79

pause
screen tag 70

pausetime
HAScript tag 68

pccodepage
xfer tag 79

pcfile
xfer tag 78

pcfiletype
xfer tag 79

pcorientation
xfer tag 79

plane
attrib tag 74

PoolName
Session tag 46

Position
SessionChain tag 47

promptall
actions tag 76
HAScript tag 68

PropertiesSuffix
EJB tag 45

property
jsp:setProperty 53

RelativeCoordinates
SubVariable tag 47

RIOPrefix
RIO tag 46

row
attrib tag 75
cursor tag 71

© Copyright IBM Corp. 2000, 2002 87

attributes (continued)
row (continued)

input tag 77
mouseclick tag 80
prompt tag 76
string tag 73

scol
boxselect tag 80
extract tag 77

scope
jsp:useBean tag 55

ScreenCoordinates
OutputVariable tag 46

SIZE
SELECT tag 56

srow
boxselect tag 80
extract tag 77

StartState name
SessionChain tag 47

status
oia tag 71

suppressclearevents
HAScript tag 69

timeout
commwait tag 81
HAScript tag 69
nextscreens tag 81
xfer tag 78

title
message tag 78

transient
screen tag 69

type
boxselect tag 80
com.ibm.HostPublisher.IntegrationObject

tag 45
jsp:useBean tag 55
OutputVariable tag 46
SubVariable tag 47
trace tag 78

TYPE
INPUT tag 52

uselogic
description tag 70

value
attrib tag 74
commwait tag 80
input tag 77
message tag 78
pause tag 79
recolimit tag 82
string tag 73
trace tag 78

VALUE
INPUT tag 53

xlatehostkeys
input tag 77
prompt tag 76

author attribute
HAScript tag 68

B
block tag 74
boxselect tag 80

C
casesense attribute

string tag 74
chaining

EJB Access Beans 23
Integration Objects 13
Remote Integration Objects 33

checkin screen description (.screen)
file 56

checkinscreendesc tag 62
class attribute

jsp:useBean tag 55
clear attribute

xfer tag 78
clearfield attribute

prompt tag 76
col attribute

attrib tag 75
cursor tag 71
input tag 77
mouseclick tag 80
prompt tag 76
string tag 73

comment tag 70
common files, Studio

elf.jar 4
habeansnlv.jar 4
HostPubELF.class 4
HpRte.jar 4
HPShared.jar 4
HPubCommon.jar 4
HPubService.jar 4
log.jar 4
sslight-ex11-rsa-des.zip 4
xmlLegacyPortal.jar 4

commwait tag 80
connection pool specification (.poolspec)

file 56
connection specification (.connspec)

file 56
connection specification file

example 59
connecttimeout tag 58, 60
conventions, XML tag 57
creationdate attribute

HAScript tag 68
cursor tag 71
custom tag 81
customizable Host Access Integration

Objects
debugging 39

customizing
Host Access Integration Objects 37

customreco tag 75

D
dbconnspec tag 60
default attribute

prompt tag 76
description attribute

HAScript tag 68
prompt tag 76

description tag 70
direction attribute

xfer tag 78

disconnecttimeout tag 58
documentation

manuals v
Administrator’s and User’s

Guide v, vi
Messages Reference v, vi
Planning and Installation

Guide v, vi
Programmer’s Guide and

Reference v, vi
on the Web vi
Readme v, vi

drivername tag 59

E
ecol attribute

boxselect tag 80
extract tag 77
string tag 73

editing
files 43
macros manually 64

EJB
using an Integration Object 8

EJB Access Bean chaining 23
EJB Access Beans

chaining Integration Objects
in a Web container 23
outside of a Web container 24

properties
hPubAccessHandle 23
hPubLinkKey 23

using 23
EJB10AccessBeanSuffix attribute

EJB tag 45
EJB11AccessBeanSuffix attribute

EJB tag 45
elf.jar file 4
encrypted attribute

input tag 77
prompt tag 76

EndState name attribute
SessionChain tag 47

entry tag 63
entryscreen attribute

screen tag 69
erow attribute

boxselect tag 80
extract tag 77
string tag 73

example
connection specification file 59
HOD connection macro 63
HOD logon macro 69
pool specification file 61
user pool definition file 64

exitscreen attribute
screen tag 69

expresslogon tag 58
extract tag 77

F
filename attribute

HODMacro tag 45

88 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

FileName attribute
Session tag 46

files
.ear 4
.jar 4
.war 4
elf.jar 4
habeansnlv.jar 4
HostPubELF.class 4
HpRte.jar 4
HPShared.jar 4
HPubCommon.jar 4
HPubService.jar 4
log.jar 4
sslight-ex11-rsa-des.zip 4
Studio

checkin screen description
(.screen) 56

connection pool specification
(.poolspec) 56

connection specification
(.connspec) 56

Host Publisher application (.hpa
) 47

Integration Object project
(.hpi) 43

Integration Object source
(.java) 49

JavaServer Pages (JSP) Web
page 50

logon specification
(.logonspec) 56

macro (.macro) 56
user pool specification

(.userpool) 56
xmlLegacyPortal.jar 4

files, editing 43
files, macro 56

G
getHPubXMLProperties() function

HPubConvertToTableFormat
stylesheet applied 16

getHPubXMLProperties() method 15
goto attribute

recolimit tag 82

H
habeansnlv.jar file 4
HAScript tag 68
HelperSuffix attribute

EJB tag 45
HOD connection macro

example 63
HOD logon macro

example 69
hodconnspec tag 60
hodlogonspec tag 60
Host Access Integration Objects

customizable
debugging 39

customizing 37
Java class hierarchy 39
Java coding templates 37

Host Access Integration Objects
(continued)

HPubTemplateHODBean
.Customize 37

HPubTemplateHODBean
.Default 37

HPubTemplateHODBeanInfo
.Customize 37

HPubTemplateHODBeanInfo
.Default 37

modifying 38
using 37

Host On-Demand
connection files 58
logon and logoff specification 62

Host On-Demand connection
specification tags

connecttimeout 58
disconnecttimeout 58
expresslogon 58
sessionprops 58
singlelogon 58

Host Publisher
documentation v

Host Publisher application (.hpa) file 47
sample 48

Host Publisher application (.hpa) file tags
appl_name 48
connection_pool 48
execution_method 48
input 48
input_properties 48
integration_object 48
obj_name 48
output 49
output_properties 49
page 49

Host Publisher Java objects
in a WebSphere application 2

HostConnection Java bean 22
hostfile attribute

xfer tag 78
hostorientation attribute

xfer tag 79
HostPubELF.class 4
HpRte.jar file 4
HPShared.jar 4
HPubCommon.jar file 4
HPubHostAccess class 39
HPubService.jar 4
HTTP session affinity

Integration Object chaining 14

I
id attribute

custom tag 81
jsp:useBean tag 55

ID attribute
customreco tag 75

input tag 77
Integration Object

data in XML format 34
remote 31

creating 31
files 36

Integration Object chaining 13

Integration Object chaining (continued)
HTTP session affinity 14
WebSphere cloning 14

Integration Object methods 11
common 11
Database Access 12
EJB Access Beans 23
Host Access 12
Remote Integration Object 32
using

in a JSP 5
in a servlet 5
in an EJB 8

Integration Object output
Applying XML stylesheets 15

Integration Object project (.hpi) file 43
Database Access sample 44
Host Access sample 43

Integration Object project file tags
com.ibm.HostPublisher.IntegrationObject 45
EJB 45
HODMacro 45
JDBCDriver 45
JDBCUrl 46
OutputVariable 46
Package 46
RIO 46
Session 46
SessionChain 46
SQL 47
SubVariable 47

Integration Object source (.java) file 49
Integration Objects

preparing to work with 3
programming with 1

sample Host Publisher Server
runtime code 5

using 3
invertmatch attribute

attrib tag 75
cursor tag 72
customreco tag 76
numfields tag 72
numinputfields tag 73
oia tag 71
string tag 74

J
Java bean

HostConnection 22
xmlAppData 20

Java class
HPubHostAccess 39

Java class hierarchy
Host Access Integration Objects 39

JavaServer Pages (JSP) Web page file
samples 50

JavaServer Pages (JSP) Web page file tags
FORM 51
Inline Java (<% %>) 52
INPUT 52
jsp:setProperty 53
jsp:useBean 54
OPTION 55
SELECT 55

JavaServer Pages (JSP) Web page files 50

Index 89

JDBC connection files 58
JDBC connection specification tags

connecttimeout 58
drivername 59
urlname 59

JSP
using an Integration Object 5

JSP migration
customizing 41

JSP Web pages 50
JSPCustomMigrator utility 42
JSPMigrator utility 41

L
lamalefcompression attribute

xfer tag 79
lamalefexpansion attribute

xfer tag 79
len attribute

prompt tag 76
localuserpool tag 60, 63
log.jar file 4
logoffmacro tag 62
logon and logoff specification tags

checkinscreendesc 62
logoffmacro 62
logonmacro 63

logon specification (.logonspec) file 56
logonmacro tag 63

M
macro (.macro) files 56
macro script syntax 66
macro syntax tags

actions 76
attrib 74
block 74
boxselect 80
comment 70
commwait 80
cursor 71
custom 81
customreco 75
description 70
extract 77
HAScript

overview 68
input 77
message 77
mouseclick 80
nextscreen 81
nextscreens 81
numfields 72
numinputfields 73
oia 71
pause 79
prompt 76
recolimit 81
screen 69
string 73
trace 78
xfer 78

macros
editing manually 64

manuals v
Administrator’s and User’s Guide v
Messages Reference v
online

Administrator’s and User’s
Guide vi

Messages Reference vi
Planning and Installation

Guide vi
Programmer’s Guide and

Reference vi
Planning and Installation Guide v
Programmer’s Guide and

Reference v
maxbusytime tag 60
maxconnections tag 61
maxidletime tag 61
message tag 77
Messages Reference v, vi
METHOD attribute

FORM tag 52
minconnections tag 61
mouseclick tag 80
movecursor attribute

input tag 77
MULTIPLE attribute

SELECT tag 55

N
name attribute

com.ibm.HostPublisher.IntegrationObject
tag 45

extract tag 77
HAScript tag 68
JDBCDriver tag 46
JDBCUrl tag 46
jsp:setProperty tag 53
nextscreen tag 81
OutputVariable tag 46
Package tag 46
prompt tag 76
screen tag 69
SubVariable tag 47

NAME attribute
FORM tag 52
INPUT tag 52
SELECT tag 56

nextscreen tag 81
nextscreens tag 81
number attribute

numfields tag 72
numinputfields tag 73

numfields tag 72
numinputfields tag 73

O
oia tag 71
online information v
optional attribute

attrib tag 75
cursor tag 72
customreco tag 75
numfields tag 72
numinputfields tag 73

optional attribute (continued)
oia tag 71
string tag 74

options attribute
xfer tag 79

overflowallowed tag 61

P
pause attribute

screen tag 70
pause tag 79
pausetime attribute

HAScript tag 68
pccodepage attribute

xfer tag 79
pcfile attribute

xfer tag 78
pcfiletype attribute

xfer tag 79
pcorientation attribute

xfer tag 79
plane attribute

attrib tag 74
Planning and Installation Guide v, vi
pool specification file

connection (.poolspec) 56
example 61
user (.userpool) 56

pool specification tags
connecttimeout 60
dbconnspec 60
hodconnspec 60
hodlogonspec 60
localuserpool 60
maxbusytime 60
maxconnections 61
maxidletime 61
minconnections 61
overflowallowed 61
poolingenabled 61

poolingenabled tag 61
PoolName attribute

Session tag 46
Position attribute

SessionChain tag 47
Programmer’s Guide and Reference v, vi
programming with Integration Objects 1

sample Host Publisher Server runtime
code 5

prompt tag 76
promptall attribute

actions tag 76
HAScript tag 68

PropertiesSuffix attribute
EJB tag 45

property attribute
jsp:setProperty tag 53

property tag 63

R
Readme v, vi
recolimit tag 81
RelativeCoordinates attribute

SubVariable tag 47

90 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Remote Integration Object chaining 33
Remote Integration Objects 31

creating 31
files 36

RIOPrefix attribute
RIO tag 46

row attribute
attrib tag 75
cursor tag 71
input tag 77
mouseclick tag 80
prompt tag 76
string tag 73

S
sample Host Publisher Server runtime

code
programming with Integration

Objects 5
samples

Host Publisher application (.hpa)
file 48

Integration Object project (.hpi)
file 43

JavaServer Pages (JSP) Web page
file 50

schema tag 63
scol attribute

boxselect tag 80
extract tag 77

scope attribute
jsp:useBean tag 55

screen description (.screen) file,
checkin 56

screen tag 69
ScreenCoordinates attribute

OutputVariable tag 46
servlet

using an Integration Object 5
XML Gateway 20

sessionprops tag 58
singlelogon tag 58
SIZE attribute

SELECT tag 56
srow attribute

boxselect tag 80
extract tag 77

sslight-ex11-rsa-des.zip file 4
StartState name attribute

SessionChain tag 47
status attribute

oia tag 71
string tag 73
Studio, common files

elf.jar 4
habeansnlv.jar 4
HostPubELF.class 4
HpRte.jar 4
HPShared.jar 4
HPubCommon.jar 4
HPubService.jar 4
log.jar 4
sslight-ex11-rsa-des.zip 4
xmlLegacyPortal.jar 4

Studio files
checkin screen description

(.screen) 56
connection pool specification

(.poolspec) 56
connection specification

(.connspec) 56
Host Publisher application (.hpa) 47
Integration Object project (.hpi) 43
Integration Object source (.java) 49
JavaServer Pages (JSP) Web page 50
logon specification (.logonspec) 56
macro (.macro) 56
user pool specification (.userpool) 56

suppressclearevents attribute
HAScript tag 69

syntax, macro script 66

T
tag conventions, XML 57
tag descriptions

connection specifications 58
Host Publisher application (.hpa) 48
Integration Object project file 45
JavaServer pages 51
logon and logoff specification 62
pool specifications 59
user pool specifications 63

timeout attribute
commwait tag 81
HAScript tag 69
nextscreens tag 81
xfer tag 78

title attribute
message tag 78

trace tag 78
transient attribute

screen tag 69
type attribute

boxselect tag 80
com.ibm.HostPublisher.IntegrationObject

tag 45
jsp:useBean tag 55
OutputVariable tag 46
SubVariable tag 47
trace tag 78

TYPE attribute
INPUT tag 52

U
urlname tag 59
uselogic attribute

description tag 70
user pool definition file

example 64
user pool specification (.userpool) file 56
user pool specification tags

entry 63
localuserpool 63
property 63
schema 63
userconfig 63

userconfig tag 63

using an Integration Object
in a servlet or JSP 5
in an EJB 8

V
value attribute

attrib tag 74
commwait tag 80
input tag 77
message tag 78
pause tag 79
recolimit tag 82
string tag 73
trace tag 78

VALUE attribute
INPUT tag 53

W
Web page

for Host Publisher vi
Web pages, JSP 50
WebSphere cloning

Integration Object chaining 14
WebSphere programming model 1

application components 1
Browser components 1
Distributed object server

components 2
Web application server

components 1
white papers vi

X
xfer tag 78
xlatehostkeys attribute

input tag 77
prompt tag 76

XML Gateway 19
HostConnection Java bean 22
servlet 20
xmlAppData Java bean 20

XML lGateway servlet 20
XML tag conventions 57
xmlAppData Java bean 20
xmlLegacyPortal.jar file 4

Index 91

92 IBM® WebSphere® Host Publisher Programmer’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

IBM® WebSphere® Host Publisher
Programmer’s Guide and Reference
Version 4.0

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Software Reengineering
Department G7IA/ Bldg 503
Research Triangle Park, NC
27709-9990

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	About this information
	Where can I find information online?
	Manuals
	In Host Publisher Studio
	In Host Publisher Server

	Information on the Web

	Chapter 1. Programming with IBM Host Publisher Integration Objects
	Application components
	Browser components
	Web application server components
	Distributed object server components
	Using Host Publisher Java objects in a WebSphere application

	Using Host Publisher Integration Objects
	Preparing to work with an Integration Object
	Working with Host Publisher .ear, .war, and .jar files in WSAD
	Setting up the WebSphere Test Environment in WSAD
	Sample code for starting and stopping the Host Publisher Server runtime

	Using an Integration Object in a Web container (custom servlet or JSP)
	Using an Integration Object in an EJB container (from a custom EJB)
	Defining Host Publisher Server as a WebSphere custom service
	Integration Object methods
	Common methods
	Host Access Integration Object methods
	Database Access Integration Object methods

	Integration Object chaining
	Integration Object chaining and WebSphere cloning

	Chapter 2. Applying XML stylesheet processing to Integration Object output
	DTD of XML data returned by getHPubXMLProperties() method
	XML data using the getHPubXMLProperties() method

	DTD of XML data returned by getHPubXMLProperties(HPubConvertToTableFormat.xsl) method
	XML data with HPubConvertToTableFormat stylesheet applied

	Chapter 3. Programming with the XML Java bean
	The xmlAppData Java bean
	The sample XML Gateway servlet
	The HostConnection Java bean

	Chapter 4. Using Enterprise JavaBeans Support
	Programming with EJB Access Beans
	EJB Access Bean chaining
	EJB Access Bean chaining in a Web container
	EJB Access Bean chaining outside of a Web container

	Using EJB Access Beans with Java Application Clients

	Chapter 5. Using Web Services support
	Programming with Web Services Integration Objects and EJB Access Beans
	Integration Object Chaining with Web Services
	EJB Access Bean Chaining with Web Services

	Creating and Deploying Web Services using WSAD
	Creating Web Services from an Integration Object
	Creating Web Services From an EJB Access Bean

	Chapter 6. Using Remote Integration Objects
	Creating Remote Integration Objects and the sample application
	Programming with Remote Integration Objects
	Using Remote Integration Objects
	Remote Integration Object chaining

	Obtaining Integration Object data in XML format
	Remote Integration Object files

	Chapter 7. Customizing Host Access Integration Object Java code
	Using Java coding templates
	Modifying Java coding templates
	Debugging customizable Host Access Integration Object compilation errors

	A common class for accessing Host Access Integration Object information
	Java class hierarchy of Host Access Integration Objects

	Chapter 8. Customizing JavaServer Page (JSP) migration
	Chapter 9. Host Publisher File formats
	Integration Object project (.hpi) file
	Host Publisher application (.hpa) file
	Integration Object source (.java) file
	JavaServer Pages (JSP) Web page files
	Connection and configuration files
	Format of connection pool specification files
	XML tag conventions
	XML Tags for connection specifications
	XML tags for pool specifications
	XML Tags for logon and logoff specifications
	XML Tags for user pool specifications

	Macro script files
	Macro editing tips
	Editing extract coordinates in a data macro
	Editing special characters

	Macro script syntax
	Introduction
	Macro Syntax

	Appendix A. Notices
	Programming interface information

	Appendix B. Trademarks
	Index
	Readers’ Comments — We'd Like to Hear from You

