

Portlet Development Guide
Working with the Portlet API 1.1
Java Server Pages in Portlets
Portlet Design Guidelines
Security and Single Sign On

First Edition
April 2, 2002

Authors:

Stephan Hesmer
Peter Fischer
Ted Buckner
Ingo Schuster
Pervasive Computing Development

1. Abstract .. 5

2. Overview... 6

2.1. Portlets and the Servlet API.. 6

2.2. Portlet deployment descriptor... 8

2.3. Portlet Concepts ... 9

2.4. Portlet Applications.. 10
2.4.1. Concrete Portlet Application.. 11

2.5. Portlet modes .. 11

2.6. Portlet states.. 12

2.7. Examples in this document - the Bookmark Portlet ... 12

3. Portlet API - Basic elements ... 14

3.1. Portlet .. 14
3.1.1. getLastModified()... 15
3.1.2. PortletAdapter .. 15
3.1.3. Example.. 15

3.2. Core Objects ... 17
3.2.1. PortletRequest .. 17
3.2.2. PortletResponse.. 19
3.2.3. PortletSession ... 20
3.2.4. Example.. 20

3.3. Listeners .. 22
3.3.1. PortletSessionListener .. 22
3.3.2. PortletPageListener .. 23
3.3.3. PortletTitleListener... 23
3.3.4. Complete Lifecycle .. 24
3.3.5. Example.. 24

3.4. Configuration Objects.. 26
3.4.1. PortletConfig .. 26
3.4.2. PortletSettings .. 27
3.4.3. PortletApplicationSettings ... 27
3.4.4. PortletData.. 28
3.4.5. Example.. 28

3.5. Miscellaneous Objects.. 30
3.5.1. PortletContext... 30
3.5.2. PortletWindow ... 32
3.5.3. User .. 32
3.5.4. Example.. 32

3.6. The scope of the portlet objects... 34

4. Java Server Pages.. 35

4.1. Portlet API Tags ... 35
4.1.1. if ... 35
4.1.2. log... 36

 2

4.1.3. text .. 36
4.1.4. dataLoop... 36
4.1.5. dataAttribute... 37
4.1.6. settingsLoop ... 37
4.1.7. settingsAttribute ... 38
4.1.8. CreateReturnURI.. 38
4.1.9. createURI ... 39
4.1.10. URIParameter... 39
4.1.11. URIAction .. 39
4.1.12. encodeNamespace .. 40
4.1.13. init... 40
4.1.14. encodeURI (deprecated)... 41

4.2. The example using a JSP ... 41

4.3. Reserved Parameter Names .. 43

5. Portlet API - Advanced elements .. 44

5.1. Portlet events .. 44
5.1.1. Action events.. 44
5.1.2. Window events ... 46
5.1.3. Message events... 46

5.2. PortletSettingsAttributesListener... 47

5.3. PortletApplicationSettingsAttributesListener... 47

5.4. Portlet Caching... 47

5.5. Portlet Services ... 48
5.5.1. Writing a portlet service... 48
5.5.2. ContentAccessService.. 51

6. Deployment Descriptors .. 52

6.1. Web application deployment descriptor .. 52

6.2. Portlet deployment descriptor... 52

6.3. Relationship between the deployment descriptors.. 57

6.4. Guidelines for portlet application UIDs ... 57

7. Portlet development issues .. 59

7.1. Compiling and testing portlets .. 59
7.1.1. Setting up a portlet development environment .. 59
7.1.2. Compiling Java source ... 59
7.1.3. Creating the deployment descriptors.. 60
7.1.4. Setting up the WAR file directory structure... 60

7.2. Portlet creation guidelines ... 62
7.2.1. No instance and class variables.. 62
7.2.2. Storing data .. 62
7.2.3. Performance issues... 63
7.2.4. Guidelines for markup.. 64

7.3. Namespaces/Javascript .. 64

7.4. Multi-markup support... 65

 3

7.5. Multi-language support ... 65

8. Extended WPS PortletServices ... 66

8.1. Persistent Backend Connections ... 66
8.1.1. Persistent Backend Connections concept ... 66
8.1.2. Using the PersistentConnection object... 66
8.1.3. Persistent Backend Connections Service in a cluster....................................... 67
8.1.4. Usage example ... 67

8.2. Credential Vault ... 68
8.2.1. Credential Vault organization .. 68
8.2.2. Vault Segments .. 68
8.2.3. Credential slots ... 69
8.2.4. Credentials objects ... 69
8.2.5. Credential Vault usage scenarios ... 71
8.2.6. Methods of the CredentialVaultService ... 73
8.2.7. Programming Example... 77
8.2.8. Using JAAS to retrieve the user’s credentials.. 78

9. References.. 83

Figures

Figure 1: View of a portlet on the application server and portal server 8
Figure 2: Manifestations of a portlet in the portal server.. 9
Figure 3: Portlet application ... 11
Figure 4: Use of servlet ID in the portlet deployment descriptor 57
Figure 5: Vault segments and vault implementations .. 69

 4

1. Abstract

The purpose of this document is to show how to develop a portlet using the Portlet
API, introducing concepts of the Portlet API along the way. Elements of the Portlet
API are described with the help of an example that progresses from a simple portlet
with no output to a complex portlet application with more advanced features. Portlet
development for the WebSphere Portal environment is also described.

 5

2. Overview

Portals are Web sites that serve as a starting point to information and applications on
the Internet or from an intranet. Early Internet portals, such as Yahoo, Excite, and
Lycos, categorized Web content and provided search facilities. Over the years,
portals have evolved to provide aggregation of content from diverse sources, such as
rich text, video, or XML, and personalized services, such as user customization of
layout and content.

To accommodate the aggregation and display of such diverse content, a portal server
must provide a framework that breaks the different portal components into portlets.
Each portlet is responsible for accessing content from its source (for example, a Web
site, database, or email server) and transforming the content so that it can be
rendered to the client. In addition, a portlet might be responsible for providing
application logic or storing information associated with a particular user. The portal
server provides a framework of services to make the task of writing and managing
portlets easier.

From a user's perspective, a portlet is a window in the portal that provides a specific
service or information, for example, a calendar or news feed. From an application
development perspective, portlets are pluggable modules that are designed to run
inside a portlet container of a portal server.

The portlet container provides a runtime environment in which portlets are
instantiated, used, and finally destroyed. Portlets rely on the portal infrastructure to
access user profile information, participate in window and action events,
communicate with other portlets, access remote content, lookup credentials, and to
store persistent data. The Portlet API provides standard interfaces for these
functions. The portlet container is not a stand-alone container like the servlet
container. Instead, it is implemented as a thin layer on top of the servlet container
and reuses the functionality provided by the servlet container.

IBM is working with other companies to standardize the Portlet API, making portlets
interoperable between portal servers that implement the specification. The Portlet
API offered in WebSphere Portal Version 4.1 is the first step toward the Portlet API
standardization. For more information about the portlet specification, see

 http://jcp.org/jsr/detail/168.jsp

2.1. Portlets and the Servlet API

The abstract Portlet class is the central abstraction of the Portlet API. The Portlet
class extends HTTPServlet, of the Servlet API. All portlets extend the Portlet class
indirectly, and inherit from HttpServlet as shown:

 6

http://jcp.org/jsr/detail/168.jsp

...
 +--javax.servlet.http.HttpServlet
 |
 +--org.apache.jetspeed.portlet.Portlet
 |
 +--org.apache.jetspeed.portlet.PortletAdapter
 |
 +--com.myCompany.myApplication.myPortlet

Therefore, portlets are a special type of servlet, with properties that allow them to
easily plug into and run in the portal server. Unlike servlets, portlets cannot send
redirects or errors to browsers directly, forward requests, or write arbitrary markup to
the output stream.

Generally, portlets are administered more dynamically than servlets. The following
updates can be applied without having to start and restart the portal server:

• Portlet applications consisting of several portlets can be installed and removed
using the portal administration user interface.

• The settings of a portlet can be changed by an administrator with appropriate
access rights.

• Portlets can be created and deleted dynamically by administration portlets. For
example, the clipping portlet can be used to create new portlet instances
whenever an administrator creates a new clipping.

The portlet container relies on the J2EE architecture implemented by WebSphere
Application Server. As a result, portlets are packaged in WAR files similar to J2EE
Web applications and are deployed like servlets. Like other servlets, a portlet is
defined to the application server using the web application deployment descriptor
(web.xml). This file defines the portlet's class file, the servlet mapping and read-only
initialization parameters.

Figure 1 shows the portlet after its WAR file is deployed. For each portlet deployed
on the portal server, it creates a servlet, or portlet class instance, on the application
server.

 7

Figure 1: View of a portlet on the application server and portal server

The initialization parameters are set by the portlet developer and can be read by the
portlet using the PortletConfig object. The Web application deployment descriptor
can contain multiple servlets, each defined by the <servlet> element. In addition,
each servlet definition can point to the same portlet class file, thus creating different
PortletConfig objects with different initialization parameters for each portlet class
instance. For more information, see Web application deployment descriptor.

2.2. Portlet deployment descriptor

In addition to the servlet descriptor, portlets must also provide a portlet deployment
descriptor (portlet.xml) to define the portlet’s capabilities to the portal server. This
information includes configuration parameters specific to a particular portlet or portlet
application as well as general information that all portlets provide, such as the type of
markup that the portlet supports. The portal server uses this information to provide
services for the portlet. For example, if a portlet registers its support for help and edit
mode in the portlet deployment descriptor, the portal server will render icons to allow
the user to invoke the portlet’s help and edit pages.

The following is an example portlet deployment descriptor with the minimum tags.

 8

Example portlet deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN" "portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="com.myCompany.myPortletApp.54321">
 <portlet-app-name>My portlet application</portlet-app-name>
 <portlet id="Portlet_1" href="WEB-INF/web.xml#Servlet_1">
 <portlet-name>My portlet</portlet-name>
 <supports>
 <markup name="html">
 <view output="fragment"/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>

 <concrete-portlet-app uid="com.myCompany.myConcretePortletApp.54321">
 <portlet-app-name>My concrete portlet application</portlet-app-name>
 <concrete-portlet href="#Portlet_1">
 <portlet-name>My concrete portlet</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en_US">
 <title>My portlet</title>
 </language>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

For detailed information, see Deployment descriptors.

2.3. Portlet Concepts

The following figure shows different variations of a portlet as it is created, placed on a
page, and accessed by users. Notice that the first two steps involve the use of
persistent data, but for the third step, the data is available only for the duration of the
session.

Figure 2: Manifestations of a portlet in the portal server

 9

 The portal administrator uses the administrative interface to deploy a new portlet
application WAR file or install a copy of a portlet. Either action creates a concrete
portlet, which is a portlet parameterized by a single PortletSettings object. There can
be many concrete portlets for each portlet. At least one concrete portlet is defined in
the portlet deployment descriptor. After deployment, any number of concrete portlets
can be created by the administrator. PortletSettings are read/write accessible and
persistent. The PortletSettings contains configuration parameters initially defined in
the portlet deployment descriptor and changeable by the administrator during
runtime.

The use of concrete portlets allows many instances of a portlet to run with different
configurations, without creating extra portlet class instances. During the lifecycle of a
single portlet, many concrete portlets can be created and destroyed. There is no
object that explicitly represents the concrete portlet. The same concrete portlet can
be shared across many users.

 The portlet is placed on a page by a user or an administrator. This creates a
concrete portlet instance, which is a concrete portlet parameterized by a single
PortletData object. There can be many concrete portlet instances per concrete
portlet. PortletData stores persistent information for a portlet that has been added to
a page. This information cannot be changed by the administrator; it may only be
written by the portlet itself. For example, a user can edit a stock quotes portlet and
save a list of stock symbols for the companies to track.

 The scope of the PortletData depends on the scope of the page that the
concrete portlet is on.

1. If an administrator puts a concrete portlet on a group page, then the
PortletData object contains data stored for the group of users.

2. If a concrete portlet is put on a user’s page, the PortletData contains data for
that user.

When a user accesses a page that contains a portlet, that creates a user portlet
instance. A user portlet instance is a concrete portlet instance parameterized by a
single PortletSession. There can be many user portlet instances per concrete portlet
instance. The PortletSession stores transient information related to a single use of
the portlet.

2.4. Portlet Applications

Portlet applications provide the means to package a group of related portlets that
share the same context. The context contains all resources, for example, images,
properties files, and classes. All portlets must be packaged as part of a portlet
application.

 10

2.4.1. Concrete Portlet Application

A concrete portlet application is a portlet application parameterized with a single
PortletApplicationSettings object. For each portlet application, there may be many
concrete portlet applications. PortletApplicationSettings are read/write accessible and
persistent. There is no object that explicitly represents the concrete portlet
application.

Figure 3: Portlet application

A concrete portlet application contains at least one concrete portlet from the portlet
application, but it is not required to contain all of them.

Portlet applications provide no code on their own but form a logical group of portlets.
Beside this more logical gain, portlets of the same portlet application can also
exchange messages.

2.5. Portlet modes

Portlet modes allow a portlet to display a different user interface, depending on the
task required of the portlet. The following modes are provided by the Portlet API:

• View When a portlet is initially constructed on the portal page for a
user, it is displayed in its view mode. This is the portlet’s
normal mode of operation.

• Help If this mode is supported by a portlet, the portlet provides a
help page for users to obtain more information about the
portlet.

 11

• Edit If this mode is supported by a portlet, the portlet provides a
page for users to customize the portlet for their own needs.
For example, a portlet can provide a page for users to specify
their location for obtaining local weather and events.

• Configure If this mode is supported by a portlet, the portlet provides a
page for portal administrators to configure a portlet for a user
or group of users.

The Portlet API provides methods for the portlet to determine the current mode.

2.6. Portlet states

Portlet states allow users to change how the portlet window is displayed within the
portal. In a browser, users invoke these states with icons in the title bar in the same
way that Windows applications are manipulated. Portlet states are maintained in the
PortletWindow.State object with a boolean value.

• Normal When a portlet is initially constructed on the portal page, it is
displayed in its normal state – arranged on the page along with
other portlets.

• Maximized When a portlet is maximized, it is displayed in the entire body
of the portal, replacing the view of other portlets.

• Minimized When a portlet is minimized, only the portlet title bar is
displayed on the portal page.

2.7. Examples in this document - the Bookmark Portlet

This guide shows functions of the Portlet API by using only one example portlet
which is constantly extended during the sections, starting with a very simple empty
portlet. At last, a fully functional portlet is created that demonstrates each aspect of
the Portlet API. This portlet allows users to manage bookmarks.

BookmarkPortlet 0 shows how to get, set, and remove variables for a concrete
portlet. The portlet, however, does not produce any output.

BookmarkPortlet 1 writes HTML output to the portlet’s view mode.

BookmarkPortlet 2 implements listeners.

BookmarkPortlet_3 shows how to retrieve parameters from PortletConfig and
attributes from PortletData and PortletSettings.

BookmarkPortlet_4 shows how to get localized text from the resource bundle:
bookmark.properties .

 12

BookmarkPortlet_5 shows how to render the portlet’s view mode using
bookmarkView.jsp .

See Compiling and testing portlets for information about using the samples in this
document. The complete source for all BookmarkPortlet versions, as well as any
supporting resources, are available in bookmark_samplets.zip .

 13

3. Portlet API - Basic elements

This section describes the basic interfaces and methods of the Portlet API. The
following figure shows a map of many of the common objects in the Portlet API.

• Portlet
extended by PortletAdapter

• service() 1 PortletResponse
• createURI() PortletURI

• service() 2 PortletRequest
• getPortletSettings() PortletSettings

• getPortletApplicationSettings PortletApplicationSettings
• getMode() Portlet.Mode
• getClient() Client
• getData() PortletData
• getWindow() PortletWindow

• getWindowState() PortletWindow.State
• getPortletSession() PortletSession
• getUser() User

• getPortletConfig() PortletConfig
• getContext() PortletContext

• getLog() PortletLog
• getService() PortletService

3.1. Portlet

The abstract Portlet class is the central abstraction of the Portlet API. All portlets
extend this abstract class by extending one of its subclasses, such as PortletAdapter,
that provide methods helpful for the developer. The portlet container calls the
following methods of the abstract portlet during the portlet’s life cycle 3:

• init() The portlet is constructed, after portal initialization, and
then initialized with the init() method. The portal always
instantiates only a single instance of the portlet, and this
instance is shared among all users, the same way a
servlet is shared among all users of an application server.

1 PortletRequest and PortletResponse are passed by helper methods of PortletAdapter, such as doView().

2 PortletRequest and PortletResponse are passed by helper methods of PortletAdapter, such as doView().

3 This represents the methods called on all portlets. Other methods are called for portlets that
implement listeners. See the Complete Lifecycle for more information.

 14

• initConcrete() After constructing the portlet and before the portlet is
accessed for the first time, the concrete portlet is
initialized with the PortletSettings.

• service() The portal calls the service() method when the portlet is
required to render it’s content. During the life cycle of the
portlet, the service() method is typically called many
times. For each portlet on the page, the service() method
is not called in a guaranteed order and may even be
called in a different order for each request.

• destroyConcrete() The concrete portlet is taken out of service with the
destroyConcrete() method. This can happen when an
administrator deletes a concrete portlet during runtime of
the portal server.

• destroy() When the portal is terminating, portlets are taken out of
service, then destroyed with the destroy() method. Finally
the portlet is garbage collected and finalized.

3.1.1. getLastModified()

The portlet container provides a built-in caching mechanism to gain better
performance. The abstract Portlet provides the getLastModified() method, which is
called by every request to enable the portlet to inform the container when the cache
entry for the portlet should be invalidated and therefore the portlet’s content should
be refreshed. The getLastModified() method returns the last time the content of the
portlet changed, in milliseconds, between the current time and midnight, January 1,
1970 UTC (java.lang.System.currentTimeMillis()) or a negative value if it is unknown.
For an example of how this method is used, see Portlet Caching .

3.1.2. PortletAdapter

The PortletAdapter provides a default implementation for the abstract Portlet
class. It is recommended to not implement the abstract Portlet directly. Rather, a
portlet should derive from the PortletAdapter or any other derived class because
changes in the abstract Portlet class are then mostly likely to be caught by the
default implementation rather than breaking your portlet implementation.

Additionally, the PortletAdapter enables a portlet to store variables with the concrete
portlet. Concrete portlet variables differ from Java instance variables because they
are bound to the portlet class or non-concrete portlet. The PortletAdapater provides
the methods setVariable(), getVariable() and removeVariable() to work with concrete
portlet variables.

3.1.3. Example

 15

The following example shows a basic portlet that extends the PortletAdapter
and stores some URLs as portlet variables. At this stage of development, the portlet
only reads out the variables in the doView method but does not provide any output.
As a result, an empty portlet window is displayed in the portal.

BookmarkPortlet.java version 0

package com.mycompany.portlets.bookmark;

import org.apache.jetspeed.portlet.*;
import java.io.IOException;

public class BookmarkPortlet extends PortletAdapter
{
 public void init (PortletConfig config) throws UnavailableException
 {
 super.init(config);

 // do initialization
 }

 public void destroy (PortletConfig config)
 {
 // undo initialization
 }

 public void initConcrete (PortletSettings settings) throws UnavailableException
 {
 try
 {
 this.setVariable("url.1", "http://www.google.com");
 this.setVariable("url.2", "http://de.my.yahoo.com");
 }
 catch (AccessDeniedException e)
 {
 throw new UnavailableException("problem with setting variables" + e);
 }
 }

 public void destroyConcrete (PortletSettings settings)
 {
 try
 {
 this.removeVariable("url.1");
 this.removeVariable("url.2");
 }
 catch (AccessDeniedException e)
 {
 // do nothing
 }
 }

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 String url1 = (String) this.getVariable("url.1");
 String url2 = (String) this.getVariable("url.2");
 }
}

web.xml version 0

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">
<web-app id="WebApp_1">
 <display-name>bookmark0</display-name>

 <servlet id="Servlet_1">
 <servlet-name>Bookmark0</servlet-name>
 <servlet-class>com.mycompany.portlets.bookmark.BookmarkPortlet</servlet-class>

 16

 </servlet>

 <servlet-mapping id="ServletMapping_1">
 <servlet-name>Bookmark0</servlet-name>
 <url-pattern>/Bookmark0/*</url-pattern>
 </servlet-mapping>
</web-app>

portlet.xml version 0

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN" "portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="com.mycompany.portlets.bookmark.1234" major-version="1" minor-version="0">
 <portlet-app-name>Bookmark Application0</portlet-app-name>
 <portlet id="Portlet_1" href="WEB-INF/web.xml#Servlet_1">
 <portlet-name>Bookmark Portlet0</portlet-name>
 <cache>
 <expires>0</expires>
 <shared>NO</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html">
 <view output="fragment"/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>

 <concrete-portlet-app uid="com.mycompany.portlets.bookmark.1234.1">
 <portlet-app-name>ConcreteSamplets_Bookmark0</portlet-app-name>
 <context-param>
 <param-name>Webmaster</param-name>
 <param-value>huge@system.com</param-value>
 </context-param>
 <concrete-portlet href="#Portlet_1">
 <portlet-name>Bookmark Portlet0</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>My Bookmarks0</title>
 <title-short>Bookmarks0</title-short>
 <description>Portlet showing your personalized bookmarks</description>
 <keywords>bookmarks</keywords>
 </language>
 </concrete-portlet>
 </concrete-portlet-app>

</portlet-app-def>

3.2. Core Objects

3.2.1. PortletRequest

The PortletRequest object is passed to the portlet through the login(), beginPage(),
endPage(), and service() methods, providing the portlet with request-specific data
and the opportunity to access the following information.

• Attributes
Attributes are name/value pairs associated with a request. Attributes are
available only for the scope of the request. The portlet can get, set, and
remove attributes during one request.

 17

• Parameters
Parameters are name/value pairs sent by the client in the URI query string as
part of a request. Often the parameters are posted from a form. Parameters
are available for the scope of a specific request. The portlet can get but not set
parameters from a request.

• Client
The Client object encapsulates all information about the user agent of a
specific request. Information from the Client object includes the manufacturer
of the user agent or the type of markup that the client supports.

• User data
The PortletData object represents data for a concrete portlet instance that is
saved to persistent store. For example, a user can set a portlet e-mail
application to check for new mail every 30 minutes. This preference is stored
for the instance in the PortletData object.

• Session
The PortletSession object represents user-specific, transient data for more
than one request. In contrast with the request, which does not retain data after
the request is completely processed, session attributes can be
remembered/saved over more than one request.

• Portlet settings
The PortletSettings object represents the configuration for a concrete portlet
that is saved to persistent store. For example, an administrator can set to
which host and port a Stock portlet should connect to get live data. This
preference is stored for the concrete portlet in the PortletSettings object.

• Mode
Portlet.Mode provides the current or previous mode of the portlet.

• PortletWindow
The PortletWindow object represents the state of the current portlet window.
The portlet can access this object to determine if the portlet is currently
maximized, minimized, or rendered in its normal view.

• Portlet.ModeModifier
The Portlet.Modemodifier object can be used in a PortletAction to set the
portlet mode to its current, previous, or requested mode before the portlet is
rendered. For example, a portlet in edit mode could process a user action and
return the portlet to edit mode for more input before returning to view mode.

3.2.1.1. Client

The Client object encapsulates request-dependent information about the user agent
of a specific request. The Client is extracted from the PortletRequest using the
getClient() method. The following information can be obtained from the Client:

• User agent

 18

The portlet can get the String sent by the user agent to identify itself to the
portal.

• Markup name

The portlet can get the String that indicates the markup language that the
client supports, for example, “wml”.

• MIME type

The portlet can get the String that indicates the MIME types supported by the
client (for example: “text/vnd.wap.wml”). If the portlet supports multiple types
of devices, it should get the markup name rather than the MIME type. The
following table shows MIME types and their corresponding markup types.

MIME types Markup types
text/html html
text/vnd.wap.wml wml
text/html chtml

• Capabilities

The Capability object contains more detailed information than the markup type
about what the client can support, such as the level of HTML, Javascript, or
WML tables.

3.2.2. PortletResponse

The PortletResponse encapsulates information to be returned from the server to the
client. PortletResponse is passed via the beginPage(), endPage() and service()
method and is used by the portlet to return portlet content using a Java PrintWriter.
The response also includes methods for creating the PortletURI object or qualifying
portlet markup with the portlet’s namespace.

Use one of the following methods to create the PortletURI:

• createURI() - Creates a PortletURI object pointing to the calling portlet with the
current mode

• createURI(PortletWindow.State state) - Creates a PortletURI object pointing to
the calling portlet with the current mode and given portlet window state.

• createReturnURI() - Creates a portlet URI pointing at the caller of the portlet.
For example, createReturnURI() can used to create a back button in an edit
mode.

Each portlet runs in its own unique namespace. encodeNamespace() is used by
portlets to bring attributes in the portlet’s output to avoid name clashes with other
portlets. Attributes can include parameter names, global variables, or javascript
function names.

 19

3.2.2.1. PortletURI

The PortletURI object contains a URI pointing to the Portlet instance and can be
further extended by adding portlet-specific parameters and by attaching actions.

Actions are portlet-specific activities that need to be performed as result of the
incoming request, but before the service() method of the portlet is called. For
example, when a user is entering data in the portlet’s edit mode and clicks a “Save”
button, the portlet needs to process the posted data before the next markup is
generated. This can be achieved by adding a "Save" action to the URI that
represents the "Save" button.

The complete URI can be converted to a string which is ready for embedding into
markup.

3.2.3. PortletSession

The PortletSession holds user-specific, transient data for the concrete portlet
instance of the portlet, creating a portlet user instance. Concrete portlet instances
differ from each other only by the data stored in their PortletData. Portlet user
instances differ from each other only by the transient data stored in their
PortletSession. Any persistent data must be stored using PortletData. Information
stored in a portlet’s instance variables is shared between all concrete portlet
instances and even between all concrete portlets – with read and write access. Make
sure you do not use instance attributes for user-specific data.

On the other hand, you have to be cautious about what the portlet adds to the
session, especially if the portlet ever runs in a cluster environment where the session
is being serialized to a shared database. Everything that is stored in the session must
be serializable, too.

Like the HttpSession, a PortletSession is not available on an anonymous page.
During login, a PortletSession is automatically created for each portlet on a page. To
get a PortletSession, the getPortletSession() method (available from the
PortletRequest) has to be used. The method returns the current session or, if there is
no current session and the given parameter “create” is true, it creates one and
returns it.

3.2.4. Example

The following example, from BookmarkPortlet version 1, displays the stored variables
as bookmark links. The PortletResponse’s writer is used to write HTML output for the
portlet’s view mode. In addition to the bookmark functionality, a counter is
implemented and stored in the PortletSession. The counter can be hidden by clicking
a link that contains a parameter. This is implemented with the help of a PortletURI
object. The corresponding xml files (web.xml and portlet.xml) did not have to be
changed as the configuration did not change in comparison to version 0 (except for
the version number).

 20

BookmarkPortlet.java version 1

package com.mycompany.portlets.bookmark;

…

public class BookmarkPortlet extends PortletAdapter
{
 private static final String COUNTER = "counter";
 private static final String HIDE = "hide";

 private static final String URL_PREFIX = "url.";
 private static final String NAME_PREFIX = "name.";
 private static final String URL_COUNT = "count";

 public void initConcrete (PortletSettings settings) throws UnavailableException
 {
 …
 this.setVariable(URL_PREFIX + "1" , "http://www.google.com");
 this.setVariable(NAME_PREFIX + "1" , "Google");
 this.setVariable(URL_PREFIX + "2" , "http://de.my.yahoo.com");
 this.setVariable(NAME_PREFIX + "2" , "Yahoo");
 this.setVariable(URL_COUNT , "2");
 …
 }

 public void destroyConcrete (PortletSettings settings)
 {
 …
 String count = (String) this.getVariable(URL_COUNT);
 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 this.removeVariable(URL_PREFIX + i);
 this.removeVariable(NAME_PREFIX + i);
 }
 }
 …
 }

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 response.getWriter().println("Predefined bookmarks:

 ");

 // get the bookmarks
 String count = (String) this.getVariable(URL_COUNT);
 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 String url = (String) this.getVariable(URL_PREFIX + i);
 String name = (String) this.getVariable(NAME_PREFIX + i);

 // make them to links
 response.getWriter().println("" +
 name + "
");
 }
 }

 // build the show/hide counter linke
 PortletURI uri = response.createURI();
 String msg = null;

 String bool = request.getParameter(HIDE);
 Boolean hide = null;

 if (bool == null) hide = new Boolean(false);
 else hide = new Boolean(bool);

 // get the counter value
 Integer counter = (Integer) request.getSession().getAttribute(COUNTER);
 if (counter == null)

 21

 {
 counter = new Integer(0);
 }

 // write out the counter if necessary
 if (hide.booleanValue())
 {
 hide = new Boolean(false);
 msg = "click to SHOW counter";
 }
 else
 {
 hide = new Boolean(true);
 msg = "click to HIDE counter";

 response.getWriter().println("

Reload counter (per session): " +

counter.toString() + "");
 }

 // increase the counter and put into session
 counter = new Integer(counter.intValue()+1);
 request.getSession().setAttribute(COUNTER, counter);

 // write out the show/hide link
 uri.addParameter(HIDE, hide.toString());
 response.getWriter().println("

<a href='" + uri.toString() +

"'>"+msg+"

");
 }
}

See Compiling and testing portlets for information about using this or other samples
in this document. The source for all BookmarkPortlet versions, as well as any
supporting resources, are available in bookmark_samplets.zip .

3.3. Listeners

The Portlet API provides listeners, which can add more functionality for a portlet. To
enable the listener’s functionality, one of the following interfaces has to be
implemented by the portlet.

• PortletSessionListener
• PortletPageListener
• PortletTitleListener

The following additional listeners are described in other sections of this document:

• ActionListener
• WindowListener
• MessageListener
• PortletSettingsAtributesListener
• PortletApplicationSettingsAttributesListener

3.3.1. PortletSessionListener

In addition to the concrete portlet instance, which exists for each portlet occurrence
on a page, a portlet may have an even finer granularity. The PortletSessionListener
allows a portlet to recognize the lifecycle of a user portlet instance:

 22

• login() After a user logs in to a portal, each portlet creates a session for

the user. The combination of the concrete portlet instance and
the user session creates the user portlet instance. The start of a
user instance is signaled by the portal calling the login() method
at the portlet. This method allows the portlet to initialize the
user's session instance of the portlet, for example, to store
attributes in the session.

• logout() When the user ends the session with the portal or the session
times out, the portal server calls the logout() method to inform
the portlet that the user's session instance is terminating. The
portlet should then clean up any resources for the portlet user
instance.

3.3.2. PortletPageListener

A portlet has no control or awareness of the order in which the output from all of the
portlets on the page is written. The PortletPageListener allows a portlet to insert
markup at the beginning and ending of a page.

• beginPage() At the beginning of each page and before any service() method
of any portlet on the page is called, the beginPage() method is
called for each portlet residing on the page. Like the service()
method, the beginPage() method for each portlet on the page is
not called in a guaranteed order and can even be called in a
different order for each request. This method allows a portlet to
output Javascript that is visible to all portlet’s service() methods
or even to set cookies or headers.

• endPage() At the end of each page, and after all service() methods of all
portlets on the page are called, the endPage() method is called
for each portlet residing on the page. Like the service() method,
the endPage() method is not called in a guaranteed order and
can even be called in a different order for each request. For
example, the portlet can insert Javascript to the end of the page
that needs to occur after all other elements of the page have
been written.

3.3.3. PortletTitleListener

The PortletTitleListener interface is used to allow the portlet title, as it is displayed in
the title bar, to be changed based on a condition (for example, the type of device
used to access the portal) or user input (for example, a preference that the user sets
on the edit page). If the PortletTitleListener is not implemented, the portlet will display
the title specified on the <title> element (under <language>) of the portlet deployment
descriptor.

 23

3.3.4. Complete Lifecycle

When implementing all listener interfaces that are linked with a portlet’s lifecycle, the
methods are executed:

• init() The non-concrete portlet is initialized with PortletConfig.

• initConcrete() The concrete portlet is initialized with PortletSettings.

• login() The user portlet instance is initialized with PortletSession.

• beginPage() The portlet can render output at the beginning of each
page for each request.

• service() The portlet may render output in the portlet window for
each request.

• endPage() The portlet may render output at the end of each page for
each request.

• logout() The user portlet instance is destroyed.

• destroyConcrete() The concrete portlet is destroyed.

• destroy() The non-concrete portlet is destroyed.

3.3.5. Example

The following example, from BookmarkPortlet version 2, implements the
PortletSessionListener, the PortletPageListener and the
PortletTitleListener. Therefore, the portlet is able to initialize the session
and set an attribute in the login method instead of doing it in doView(). The
attribute is removed on logout. Moreover, it declares Javascript methods in
beginPage() and sets a dynamic title in doTitle().

BookmarkPortlet.java version 2

package com.mycompany.portlets.bookmark;

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;
import java.io.IOException;
import javax.servlet.http.HttpSession;

public class BookmarkPortlet extends PortletAdapter
implements PortletSessionListener, PortletPageListener, PortletTitleListener
{
 private static final String COUNTER = "counter";
 private static final String HIDE = "hide";

 private static final String URL_PREFIX = "url.";
 private static final String NAME_PREFIX = "name.";
 private static final String URL_COUNT = "count";

 // PortletSessionListener interface methods
 public void login(PortletRequest request)
 {
 request.getSession().setAttribute(COUNTER, new Integer(0));
 }

 public void logout(PortletSession session)
 {
 session.removeAttribute(COUNTER);

 24

 }

 // PortletPageListener interface methods
 public void beginPage (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 // write stuff into the header of the page (e.g. JavaScript)
 response.getWriter().println("<!--insert your JavaScript stuff here:\n");
 response.getWriter().println(" function " +

response.encodeNamespace("myMethodName") + "() {}");
 response.getWriter().println("\n-->");
 }

 public void endPage (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 }

 // PortletTitleListener interface methods
 public void doTitle (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 response.getWriter().print("My Bookmarks2");

 String bool = request.getParameter(HIDE);
 if ((bool == null) || !Boolean.valueOf(bool).booleanValue())
 {
 response.getWriter().print(" showing counter");
 }
 }

 public void initConcrete (PortletSettings settings) throws UnavailableException
 {
 try
 {
 this.setVariable(URL_PREFIX + "1" , "http://www.google.com");
 this.setVariable(NAME_PREFIX + "1" , "Google");
 this.setVariable(URL_PREFIX + "2" , "http://de.my.yahoo.com");
 this.setVariable(NAME_PREFIX + "2" , "Yahoo");
 this.setVariable(URL_COUNT , "2");
 }
 catch (AccessDeniedException e)
 {
 throw new UnavailableException("problem with setting variables" + e);
 }
 }

 public void destroyConcrete (PortletSettings settings)
 {
 try
 {
 String count = (String) this.getVariable(URL_COUNT);
 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 this.removeVariable(URL_PREFIX + i);
 this.removeVariable(NAME_PREFIX + i);
 }
 }
 }
 catch (AccessDeniedException e)
 {
 // do nothing
 }
 }

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 response.getWriter().println("Predefined bookmarks:

 ");

 // get the bookmarks
 String count = (String) this.getVariable(URL_COUNT);

 25

 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 String url = (String) this.getVariable(URL_PREFIX + i);
 String name = (String) this.getVariable(NAME_PREFIX + i);

 // make them to links
 response.getWriter().println("" +
 name + "
");
 }
 }

 // build the show/hide counter links (the counter will only be hidden
 // on a request basis)
 PortletURI uri = response.createURI();
 String msg = null;

 String bool = request.getParameter(HIDE);
 Boolean hide = null;

 if (bool == null) hide = new Boolean(false);
 else hide = new Boolean(bool);

 // get the counter value - it was set in the login method
 Integer counter = (Integer) request.getSession().getAttribute(COUNTER);

 // write out the counter if necessary
 if (hide.booleanValue())
 {
 hide = new Boolean(false);
 msg = "click to SHOW counter";
 }
 else
 {
 hide = new Boolean(true);
 msg = "click to HIDE counter";

 response.getWriter().println("

Reload counter (per session): " +

counter.toString() + "");
 }

 // increase the counter and put into session
 counter = new Integer(counter.intValue()+1);
 request.getSession().setAttribute(COUNTER, counter);

 // write out the show/hide link (the counter will only be hidden
 // on a request basis)
 uri.addParameter(HIDE, hide.toString());
 response.getWriter().println("

<a href='" + uri.toString() +

"'>"+msg+"

");
 }
}

3.4. Configuration Objects

3.4.1. PortletConfig

The PortletConfig provides the non-concrete portlet with its initial configuration. The
configuration holds information about the portlet class. This information is valid for
every concrete portlet derived from the portlet.

A portlet’s configuration is initially read from its associated servlet from the web
deployment descriptor. This information is set by the portlet developer. The
configuration is read-only and cannot be changed by the portlet.

 26

The PortletConfig is passed to the portlet in the init() method of the abstract Portlet
and is used to access portlet-specific configuration parameters using
getInitParameters(). PortletConfig parameters are name/value pairs available for the
complete life cycle of the non-concrete portlet. Non-concrete portlet’s parameters are
defined by the <config-param> tag in the associated servlet in the web deployment
descriptor.

3.4.2. PortletSettings

The PortletSettings provide the concrete portlet with its dynamic configuration. The
configuration holds information about the concrete portlet. This information is valid
for every concrete portlet instance of the concrete portlet.

A concrete portlet’s configuration is initially read from the portlet deployment
descriptor. The configuration is read only and can be written by the portlet only when
the portlet is in configure mode. This information is normally maintained by the portal
administrator and may be changed while the portal server is running. The portlet can
get, set, and remove attributes during one request. To commit the changes, the
store() method has to be called.

The PortletSettings object can be accessed with the getPortletSettings() method,
available from the PortletRequest. Often, it is used to access portlet-specific
configuration parameters using getAttribute(). Attributes are name/value pairs
available for the complete life cycle of a concrete portlet. Concrete portlet attributes
are defined by the <config-param> tag in the portlet deployment descriptor.

3.4.3. PortletApplicationSettings

The PortletApplicationSettings object provides the concrete portlet application with its
dynamic configuration. The configuration holds information about the portlet
application that is shared across all concrete portlets included in the application.

A concrete portlet application’s configuration is initially read from the portlet
deployment descriptor. The configuration is read only and can be written by the
portlet only when the portlet is in configure mode. This information is normally
maintained by the portal administrator and may be changed while the portal server is
running. A portlet in the application can get, set, and remove attributes during one
request. To commit the changes, the store() method has to be called.

The PortletApplicationSettings can be accessed with the getApplicationSettings()
method, available from the PortletSettings object. It is used to access portlet-specific
configuration parameters using getAttribute(). Attributes are name/value pairs
available for the duration of a concrete portlet application. Concrete portlet
application attributes are defined by the <context-param> tag in the portlet
deployment descriptor.

 27

3.4.4. PortletData

The PortletData holds data for the concrete portlet instance. For each occurrence on
a page there is a concrete portlet instance. The PortletData contains persistent
information about the concrete portlet instance while the PortletSession contains only
the transient data of the user portlet instance.

There is one concrete portlet instance for each occurrence of a portlet on a page. A
page can be owned by either a single user (personal page) or by a single group of
users (group page). PortletData contains user-specific data on a personal page and
group-specific data on a group page.

The PortletData stores attributes as name/value pairs. The portlet can get, set, and
remove attributes during one request. To commit the changes, the store() method
has to be called. The data is read only and can be written by the portlet only when
the portlet is in edit mode.

3.4.5. Example

Version 3 of BookmarkPortlet stores the predefined bookmarks in the portlet’s
PortletSettings, which are set as config-param entries in the portlet.xml and
can be accessed via the PortletRequest. User-defined bookmarks are read from
the PortletData, but as they are not set, there is nothing to display yet. Moreover,
an image is set as an init-param in the web.xml. The image name is retrieved via
the PortletConfig and encoded before turned into a link.

BookmarkPortlet.java version 3

package com.mycompany.portlets.bookmark;

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;
import java.io.IOException;

import java.util.Enumeration;

public class BookmarkPortlet extends PortletAdapter
implements PortletTitleListener
{
 private static final String URL_PREFIX = "url.";
 private static final String NAME_PREFIX = "name.";
 private static final String URL_COUNT = "count";

 private static final String IMAGE = "image.name";

 // PortletTitleListener interface methods
 public void doTitle (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 response.getWriter().print(
 request.getPortletSettings().getTitle(request.getLocale(),
 request.getClient())
);

 String count = (String) request.getData().getAttribute(URL_COUNT);
 if (count != null)
 {
 response.getWriter().print(" - User defined bookmarks: " + count);
 }
 }

 28

 public void initConcrete (PortletSettings settings) throws UnavailableException
 {
 // predefined urls are now in the settings
 }

 public void destroyConcrete (PortletSettings settings)
 {
 // predefined urls are now in the settings
 }

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 response.getWriter().println("<table><tr><td>");
 response.getWriter().println("Predefined bookmarks:

 ");

 // get the bookmarks
 PortletSettings settings = request.getPortletSettings();

 String count = settings.getAttribute(URL_COUNT);
 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 String url = (String) settings.getAttribute(URL_PREFIX + i);
 String name = (String) settings.getAttribute(NAME_PREFIX + i);

 // make them to links
 response.getWriter().println("" +
 name + "
");
 }
 }

 response.getWriter().println("
Userdefined bookmarks:

 ");

 // show user defined bookmarks from PortletData
 PortletData data = request.getData();

 count = (String) data.getAttribute(URL_COUNT);
 if (count != null)
 {
 for (int i=1; i <= Integer.parseInt(count); i++)
 {
 String url = (String) data.getAttribute(URL_PREFIX + i);
 String name = (String) data.getAttribute(NAME_PREFIX + i);

 // make them to links
 response.getWriter().println("" +
 name + "
");
 }
 }

 response.getWriter().println("</td><td>");

 String imageName = this.getPortletConfig().getInitParameter(IMAGE);
 response.getWriter().println(
 "");

 response.getWriter().println("</td></tr></table>");
 }
}

web.xml version 3

<?xml version="1.0" encoding="UTF-8"?>
…
<servlet-class>com.mycompany.portlets.bookmark.BookmarkPortlet</servlet-class>
 <init-param>
 <param-name>image.name</param-name>
 <param-value>bookmarks.gif</param-value>
 </init-param>
…

 29

portlet.xml version 3

<?xml version="1.0" encoding="UTF-8"?>
…
 <concrete-portlet-app uid="com.mycompany.portlets.bookmark.1234.1">
 <portlet-app-name>ConcreteSamplets_Bookmark3</portlet-app-name>
…
 <concrete-portlet href="#Portlet_1">
 <portlet-name>Bookmark Portlet3</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>My Bookmarks3</title>
 <title-short>Bookmarks3</title-short>
 <description>Portlet showing your personalized bookmarks</description>
 <keywords>bookmarks</keywords>
 </language>
 <config-param>
 <param-name>url.1</param-name>
 <param-value>http://www.google.com</param-value>
 </config-param>
 <config-param>
 <param-name>name.1</param-name>
 <param-value>Google</param-value>
 </config-param>
 <config-param>
 <param-name>url.2</param-name>
 <param-value>http://de.my.yahoo.com</param-value>
 </config-param>
 <config-param>
 <param-name>name.2</param-name>
 <param-value>Yahoo</param-value>
 </config-param>
 <config-param>
 <param-name>count</param-name>
 <param-value>2</param-value>
 </config-param>
 </concrete-portlet>

 </concrete-portlet-app>

3.5. Miscellaneous Objects

3.5.1. PortletContext

The PortletContext interface defines a portlet's view of the portlet container within
which each portlet is running. The PortletContext also allows a portlet to access
resources available to it. For example, using the context, a portlet can access the
portlet log, access context parameters common to all portlets within the portlet
application, obtain URL references to resources, or access portlet services .

The most important information related to the PortletContext is described in detail
below:

• InitParameters
Parameters are name/value pairs available to all portlets within the web
application. These are defined in the web deployment descriptor under the
<context-param> element. For example, if a group of portlets share a context
parameter called “Webmaster” that contains the portal site’s administrator
email, each portlet could get that value and provide a “mailto” link in their help.

• Attributes

 30

Attributes are name/value pairs available to all portlets within the web
application.
Hint: Attributes of the context are stored on a single machine and are not
distributed in a cluster.

• Localized text
The getText() method is used by the portlet to access resource bundles within
a given locale.

• Resources

It is through the PortletContext that a portlet can load or include resources
located in the portlet’s application scope. Available methods are include() and
getResourceAsStream(). The include() method is typically used to invoke
JSPs for output.

• Messaging

Through messaging, it is possible to communicate between portlets and share
data or send notifications. A message is sent by using the send() method.
For more information, see Portlet events.

• PortletServices

PortletServices allow portlets to use plugable services via dynamic discovery.
See Portlet Services for more information.

• Log
The PortletLog provides the portlet with the ability to log informational,
warning, or error messages.

3.5.1.1. PortletLog

Portlets can write message and trace information to log files, which are maintained in
the wps_root/log/ directory. The log is maintained by the portlet container.
Whether logging is enabled or not is at the discretion of the portlet container. The log
files help the portal administrator investigate portlet errors and special conditions and
help the portlet developer test and debug portlets. The Portlet API provides the
PortletLog class, which has methods to write message and trace information to the
logs.

debug()

Writes trace information to wps_[timestamp].log .

info()

Writes informational messages to wps_[timestamp].log .

error()

Writes error messages to wps_[timestamp].log .

warn()

 31

Writes warning messages to wps_[timestamp].log .

[timestamp] has the following format:

year.month.date-hour.minute.second

For example, wps_2002.03.08-14.00.00.log was written on March 8, 2002, at 2:00
pm.
If you access the portlet log multiple times in a method it is good idea to assign the
log reference to a variable, for example:

 private PortletLog myLogRef = getPortletLog();

Since logging operations are expensive, PortletLog provides methods to determine if
logging is enabled for a given level. Your portlets should write to the log of a given
level only if the log is tracking messages of that level. For example:

 if(getPortletLog().isDebugEnabled())
 {
 myLogRef.debug("Warning, Portlet Resources are low!");
 }

3.5.2. PortletWindow

The PortletWindow represents the window that encloses a portlet. For example, on
an HTML page, the portlet window can typically be rendered as a table cell. The
portlet window can send events on manipulation of its various window controls, like
when the user clicks minimize or close. The portlet, in turn, can interrogate the
window about its current visibility state. For example, a portlet may render its content
differently depending on whether its window is maximized or not. The PortletWindow
is available using the getWindow() method of the PortletRequest object.

3.5.3. User

The User interface contains methods for accessing attributes about the user, such as
the user’s full name or user name.

3.5.4. Example

In version 4 of the BookmarkPortlet, the getText() method is used to retrieve the
localized value of the PreDefinedBookmarks and the UserDefinedBookmarks
parameters, which are set in a properties file. This value is added to the PrintWriter
to be rendered in the portlet.

 32

Note: This sample follows standard Java conventions for resource bundles. The getText()
method retrieves the resource bundle as “nls.bookmark”. The resource bundle is packaged
in the /WEB-INF/classes/nls directory of the WAR file as bookmark.properties. For
more information about resource bundles, see Accessing Resources in a Location-
Independent Manner in the JDK documentation.

BookmarkPortlet.java version 4

package com.mycompany.portlets.bookmark;

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;
import java.io.IOException;
import java.util.Enumeration;

public class BookmarkPortlet extends PortletAdapter
implements PortletTitleListener
{
 private static final String URL_PREFIX = "url.";
 private static final String NAME_PREFIX = "name.";
 private static final String URL_COUNT = "count";

 private static final String IMAGE = "image.name";

…

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 if (getPortletLog().isDebugEnabled())
 getPortletLog().debug("BookmarkPortlet doView()");

 response.getWriter().println("<table><tr><td>");

 PortletContext context = getPortletConfig().getContext();

 String localizedText = context.getText("nls.bookmark",
 "PreDefinedBookmarks",
 request.getLocale());

 response.getWriter().println("" + localizedText + "

 ");

 // get the bookmarks
 PortletSettings settings = request.getPortletSettings();

 …

 localizedText = context.getText("nls.bookmark",
 "UserDefinedBookmarks",
 request.getLocale());

 response.getWriter().println("
" +
 localizedText +
 "

 ");

 PortletData data = request.getData();

 …

 }
}

bookmark.properties

localized text of the bookmark portlet
PreDefinedBookmarks = Predefined bookmarks:
UserDefinedBookmarks = User defined bookmarks:
Yahoo = My Yahoo Portal
Google = Google Web Search

 33

3.6. The scope of the portlet objects

The following table shows the scope of portlet objects as they correspond to other
elements of the Portlet API.

 Scope

Objects

R
eq

ue
st

U
se

r P
or

tle
t

In
st

an
ce

C
on

cr
et

e
Po

rtl
et

In

st
an

ce

C
on

cr
et

e
Po

rtl
et

C
on

cr
et

e
Po

rtl
et

Ap

pl
ic

at
io

n

N
on

-c
on

cr
et

e
Po

rtl
et

N
on

-c
on

cr
et

e
Po

rtl
et

Ap

pl
ic

at
io

n

PortletRequest - - - - - -
PortletResponse - - - - - -
PortletSession - - - - -
PortletData - - - -
PortletSettings - - -
PortletApplicationSettings - -
PortletConfig -
PortletContext

Legend:

• , means that the object is directly related to the scope. You can read it like
this and replace the cursive words with the appropriate object/scope:

There is one object per scope.
For example, there is one PortletSession per user portlet instance.

• , means that the object is inside of the scope, meaning that the scope is part
of the matching (marked with) scope to this object.

• -, means that the object is outside of the scope.

 34

4. Java Server Pages

4.1. Portlet API Tags

The portlet container provides tags for use in portlet JSPs. To make these tags
available in a JSP, the following directive is required at the beginning of the JSP:
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

4.1.1. if

4.1.1.1. Description

Through the attributes of this tag, several conditions can be checked. If the condition
is true, the content of the tag is written to the page. Otherwise the content is skipped.
More than one condition can be evaluated. All conditions must evaluate to be true for
the tag contents to be written. Also, each parameter can contain multiple values
separated by commas or semicolons. Only one value in the list needs to be true for
the condition to evaluate as true.

4.1.1.2. Parameters

Include at least one of the following attributes:

• mode = [Portlet.Mode]
evaluates the current mode of the portlet. For example, mode=”Edit” is true if
the user has placed the portlet in Edit mode.

• previousMode = [Portlet.Mode]
evaluates the previous mode of the portlet. For example,
previousMode=”View” is true after a portlet is moved from View to Edit mode.

• state = [PortletWindow.State]
evaluates the state of the portlet. For example, state=”Minimized” is true after
the user clicks the minimize icon of the portlet.

• markup = [string]
evaluates the markup language supported by the client. For example,
markup=”wml” is true if the client supports WML.

• mimetype = [string]
evaluates the MIME type supported by the client. For example,
mimetype=”text/html” is true if the client supports HTML.

• capability = [Capability]
evaluates the client’s capabilities. For example, capability=”HTML_CSS” is
true if the client supports cascading style sheets.

4.1.1.3. Example

In the following example, the portlet must be in View mode and the portlet state must
be either Normal or Maximized for the image to be rendered:

<portletAPI:if mode="View" state="Normal,Maximized">

 35

</portletAPI:if>

4.1.2. log

4.1.2.1. Description

Writes a string in the portlet log.

4.1.2.2. Parameters

• text = [string] (required)
indicates the message or trace string to be recorded in the portlet log.

• level = [ERROR | WARN | INFO | DEBUG] (optional, default: ERROR)
indicates the level of the message to be logged. DEBUG writes to
PortletTraces.log; the other levels write to Portlet.log.

4.1.2.3. Example

<portletAPI:log text=”This is an error message!”/>

4.1.3. text

4.1.3.1. Description

Writes a localized string to the output stream. When no resource bundle can be
found, the content between the start and end tag is written to the output stream.

4.1.3.2. Parameters

• bundle = [string] (mandatory)
the resource bundle

• key = [string] (mandatory)
the key to be found in the resource bundle.

4.1.3.3. Example

In the following example, the value of the welcome_message parameter is retrieved
from the portlet’s stockportlet.properties file.

<portletAPI:text bundle=”nls.stockportlet” key=”welcome_message”>

Welcome!

</portletAPI:text>

4.1.4. dataLoop

4.1.4.1. Description

 36

Loops through all attributes in PortletData of the current concrete portlet instance.
Use the dataAttribute tag to get the attributes between the dataLoop start and end
tag.

4.1.4.2. Parameters

• pattern = [string] (optional)
a regular expression that defines which attributes should be looped.

4.1.4.3. Example

see dataAttribute

4.1.5. dataAttribute

4.1.5.1. Description

Returns the value of one or more PortletData attributes. The attribute can be
specified by the name parameter. You can also use this tag within a dataLoop tag to
retrieve all attributes or a subset of the attributes from PortletData.

4.1.5.2. Parameters

• name = [string] (optional)
indicates the attribute name.

4.1.5.3. Example

The following example loops through the PortletData attributes, returning only the
values with names that start with stock.user.

Your user settings of the stock portlet:

<portletAPI:dataLoop pattern=”stock.user.*.”>

 <portletAPI:dataAttribute/>

</portletAPI:dataLoop>

One specific user setting of the stock portlet:

<portletAPI:dataAttribute name=”stock.user.quotes-count”/>

4.1.6. settingsLoop

4.1.6.1. Description

Loops through all attributes in PortletSettings of the current concrete portlet. Use the
settingsAttribute tag to get the attributes between start and end tag.

4.1.6.2. Parameters

 37

• pattern = [string] (optional)
a regular expression that defines which attributes should be looped.

4.1.6.3. Example

see settingsAttribute

4.1.7. settingsAttribute

4.1.7.1. Description

Returns the value of one or more PortletSettings attributes. The attribute can be
specified by the name parameter. You can also use this tag within a settingsLoop
tag to retrieve all attributes or a subset of the attributes from PortletSettings.

4.1.7.2. Parameters

• name = [string] (optional)
indicates the attribute name.

4.1.7.3. Example

The following example loops through the PortletSettings attributes, returning only the
values with names that start with stock.config.

Your configuration settings of the stock portlet:

<portletAPI:settingsLoop pattern=”stock.config.*.”>

 <portletAPI:settingsAttribute/>

</portletAPI:settingsLoop>

One specific configuration setting of the stock portlet:

<portletAPI:settingsAttribute name=”stock.config.hostname”/>

4.1.8. CreateReturnURI

4.1.8.1. Description

Creates a URI that points to the caller of the portlet. You can pass a parameter or
action in the URI by including URIParameter or URIAction between the
CreateReturnURI start and end tags.

4.1.8.2. Example

The following example creates a URI to provide a link that returns the user to the
portlet’s previous mode or state.

<a href=”<portletAPI:CreateReturnURI/>”>

 <portletAPI:text bundle=”nls.my_portlet” key=”back_label”>

 38

 Back

 </portletAPI:text>

For examples of passing a parameter or action with this tag, see URIParameter and
URIAction .

4.1.9. createURI

4.1.9.1. Description

Creates an URI that points to the current portlet with the given parameters. You can
pass a parameter or action in the URI by including URIParameter or URIAction
between the createURI start and end tags.

4.1.9.2. Parameters

• state = [PortletWindow.State] (optional)
indicates the state of the portlet. For example, state=”Maximize” creates a
URI for a link that maximizes the portlet. If state is not specified, the URI
points to the portlet’s current state.

4.1.9.3. Example

See URIParameter and URIAction

4.1.10. URIParameter

4.1.10.1. Description

Adds a parameter to the URI of the createURI and CreateReturnURI tags.

4.1.10.2. Parameters

• name = [string] (mandatory)
The name of the parameter to add.

• value = [string] (mandatory)
The value of the parameter to add.

4.1.10.3. Example

<portletAPI:createURI state=”Maximized”>

 <portletAPI:URIParameter name=”showQuote” value=”IBM”/>

</portletAPI:createURI>

4.1.11. URIAction

 39

4.1.11.1. Description

Adds a default action to the URI of the createURI and createReturnURI tags. The
portlet must have a registered action listener to handle the event.

4.1.11.2. Parameters

• name = [string] (mandatory)
The name of the parameter to add.

4.1.11.3. Example

<portletAPI:createURI>

 <portletAPI:URIAction name=”Add” />

</portletAPI:createURI>

4.1.12. encodeNamespace

4.1.12.1. Description

Maps the given string value into this portlet's namespace. Use this tag for named
elements in portlet output (for example, form fields or Javascript variables) to
uniquely associate the element with this concrete portlet instance and avoid name
clashes with other elements on the portal page or with other portlets on the page.

4.1.12.2. Parameters

• name = [string] (mandatory)
The value to be mapped into the portlet’s namespace.

4.1.12.3. Example

In the following example, a text field with the name ‘email’ is encoded to ensure
uniqueness on the portal page.

<input border="0"
 type="text"
 name="<portletAPI:encodeNamespace name=’email’ />”>

4.1.13. init

4.1.13.1. Description

Provides the following variables that the JSP can use to access the corresponding
objects of the portlet API:

• portletRequest
• portletResponse
• portletConfig

 40

4.1.13.2. Example

After using the init tag, the JSP invokes the encodeNamespace() method of the
portletResponse.

<portletAPI:init/>

<%=portletResponse.encodeNamespace("test")%>

4.1.14. encodeURI (deprecated)

Use encodeURL() of the ServletResponse instead. For example:

<%=response.encodeURL("/images/results.gif")%>

4.2. The example using a JSP

BookmarkPortlet.java version 5

package com.mycompany.portlets.bookmark;

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlet.event.*;
import java.io.IOException;
import java.util.Enumeration;

public class BookmarkPortlet extends PortletAdapter
implements PortletTitleListener
{
 private static final String URL_PREFIX = "url.";
 private static final String NAME_PREFIX = "name.";
 private static final String URL_COUNT = "count";

 private static final String IMAGE = "image.name";
 private static final String VIEW_JSP = "jsp.view";

 // PortletTitleListener interface methods
 public void doTitle (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
…
 }

 public void doView (PortletRequest request,
 PortletResponse response)
 throws PortletException, IOException
 {
 if (getPortletLog().isDebugEnabled())
 getPortletLog().debug("BookmarkPortlet doView()");

 String jspName = getPortletConfig().getInitParameter(VIEW_JSP);

 getPortletConfig().getContext().include(
 "/WEB-INF/jsp/"+jspName, request,response);
 }
}

bookmarkView.jsp version 5

<!--!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"-->

 41

<%@ page session="false" %>
<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<%@ page import="com.mycompany.portlets.bookmark.*" %>
<%@ page import="java.util.*" %>

<portletAPI:log text="bookmarkView.jsp" level="DEBUG"/>

<TABLE class="Portlet" width="100%" border="0" cellspacing="0" cellpadding="0">
 <TR>
 <TD>

 <TABLE class="Portlet" border="0" cellspacing="0" cellpadding="0">
 <TR>
 <TD>
 <portletAPI:text key="PreDefinedBookmarks" bundle="nls.bookmark">
 Predefined Book
 </portletAPI:text>

marks (fallback):

 </TD>
 </TR>
 <TR>
 <TD>
 <portletAPI:settingsLoop pattern="name.*.">
 <portletAPI:settingsAttribute/>

 </portletAPI:settingsLoop>
 </TD>
 <TD>
 <portletAPI:settingsLoop pattern="url.*.">
 <a href='<portletAPI:settingsAttribute/>' target=bookmarkwindow>click

 <portletAPI:if state="Maximized">
 -> <portletAPI:settingsAttribute/>
 </portletAPI:if>

 </portletAPI:settingsLoop>
 </TD>
 </TR>

 <!-- Empty row -->
 <TR> <TD> </TD> </TR>

 <TR>
 <TD>
 <portletAPI:text key="UserDefinedBookmarks" bundle="nls.bookmark">
 Userdefined
 </portletAPI:text>

Bookmarks (fallback):

 </TD>
 </TR>
 <TR>
 <TD>
 <portletAPI:dataLoop pattern="name.*.">
 <portletAPI:dataAttribute/>

 </portletAPI:dataLoop>
 </TD>
 <TD>
 <portletAPI:dataLoop pattern="url.*.">
 <a href='<portletAPI:dataAttribute/>' target=bookmarkwindow>click

 <portletAPI:if state="Maximized">
 -> <portletAPI:dataAttribute/>
 </portletAPI:if>

 </portletAPI:dataLoop>
 </TD>
 </TR>
 <TR>
 <TD>

 <portletAPI:if state="Normal">
 <a href='<portletAPI:createURI state="Maximized"/>'>click to MAXIMIZE
 </portletAPI:if>
 <portletAPI:if state="Maximized">
 <a href='<portletAPI:createURI state="Normal"/>'>click to RESTORE
 </portletAPI:if>

 </TD>
 </TR>
 </TABLE>

 42

 </TD>
 <TD>
 <img src='<%=response.encodeURL("/images/bookmarks.gif")%>'>
 </TD>
</TR>
</TABLE>

web.xml version 5

<?xml version="1.0" encoding="UTF-8"?>
…
 <servlet-class>com.mycompany.portlets.bookmark.BookmarkPortlet</servlet-class>
 <init-param>
 <param-name>image.name</param-name>
 <param-value>bookmarks.gif</param-value>
 </init-param>
 <init-param>

 <param-name>jsp.view</param-name>
 <param-value>bookmarkView.jsp</param-value>
 </init-param>
…

4.3. Reserved Parameter Names

The following parameter names may not be used in portlet JSPs without namespace
encoding as they are reserved by the WPS framework:

• names starting with a point ‘.’
• names starting with an underscore ‘_’

 43

5. Portlet API - Advanced elements

This chapter describes features of the Portlet API that are implemented by more
advanced portlets. You should already be familiar with the basic elements before
you use the features described in this chapter. Advanced features include capturing
and processing portlet events, messaging between portlets, caching, and portlet
services.

5.1. Portlet events

Portlet events contain information about an event to which a portlet might need to
respond. For example, when a user clicks a link or button, this generates an action
event. To receive notification of the event, the portlet must have an event listener
implemented at the portlet itself. In the Portlet API, there are three types of events:

• ActionEvents: generated when an HTTP request is received by the portlet
container that is associated with an action, such as when the user clicks a link.

• MessageEvents: generated when a portlet sends a message to another
portlet.

• WindowEvents: generated when the user changes the state of the portlet
window.

The portlet container delivers all events to the respective event listeners (and thereby
the portlets) before generating the new content that the event requires. Should a
listener, while processing the event, find that another event needs to be generated,
that event will be queued by the portlet container and delivered at a point of time that
is at the discretion of the portlet container. It is only guaranteed that it will be
delivered and that it will happen before the content generation phase.

No further events will be delivered once the content generation phase has started.
For example, messages cannot be sent from within the beginPage(), service() and
endPage() methods. The resulting message event will not be delivered and
essentially discarded.

The event listener is implemented directly in the portlet class. The listener can access
the PortletRequest from the event and respond using the PortletRequest or
PortletSession attributes.

5.1.1. Action events

An ActionEvent is sent to the related portlet when an HTTP request is received that is
associated with a PortletAction. PortletActions can be linked to URLs by using the
PortletAPI. Normally, PortletActions are linked with HTTP references or buttons in
html forms enabling the portlet programmer to implement different processing paths
for different user selections. The ActionEvent of the clicked link, then carries the
associated PortletAction back to the portlet which in turn is able to process different
paths on behalf of the PortletAction.

 44

A portlet action can carry any information. It should, however, not store a request,
response, or session object. This information is part of the action event that will be
sent to the registered action listener(s).

5.1.1.1. PortletAction

An object with the type PortletAction has to be implemented, which will be linked to
the URL and will be passed via the ActionEvent. The Portlet API also provides a
DefaultPortletAction with default parameters. You can create a PortletAction based
on DefaultPortletAction or use it to implement your own PortletAction.
The following shows how to create a DefaultPortletAction:

 DefaultPortletAction addAction = new DefaultPortletAction("add");

5.1.1.2. Creating a URI including a PortletAction

A URI that references a PortletAction is created by using the class PortletURI and its
addAction() method. The following snippet shows how to include the PortletAction to
an URI:

 PortletURI addURI = response.createURI();
 DefaultPortletAction addAction = new DefaultPortletAction("add");
 addURI.addAction(addAction);

5.1.1.3. ActionEvent

An ActionEvent is sent by the portlet container when an HTTP request is received
that is associated with one action and can be used to get the associated
PortletAction and the PortletRequest.

The following shows the JSP and how it uses the URL, including the PortletAction.
When the user clicks the “add” button, a new HTTP request is sent to the action URL
of the FORM.

 <FORM method='POST' action='<%=editBean.getAddURI()%>'>
 Name: <INPUT name='bookmark.name'>

 URL: <INPUT name='bookmark.url'>

 <INPUT type='submit' name='addButton' value='Add'>

 </FORM>

5.1.1.4. ActionListener

The ActionListener interface must be implemented at the portlet class if a portlet
wishes to receive action events. The following shows how the ActionListener
differentiates between actions.

 public void actionPerformed (ActionEvent event)
 {
 PortletAction _action = event.getAction();

 45

 if (_action instanceof DefaultPortletAction) {
 …
 DefaultPortletAction action = (DefaultPortletAction)_action;
 if (action.getName().equals("add")) {

5.1.2. Window events

A WindowEvent is sent by the portlet container whenever a user clicks on one of the
control buttons that change the window’s state, such as maximize, minimize or
restore.

5.1.2.1. WindowEvent

A WindowEvent is sent by the portlet container whenever the user or the portal
interacts with portlet window controls.

5.1.2.2. WindowListener

The WindowListener interface must be implemented at the portlet class if the portlet
needs to receive window events.

5.1.2.3. WindowAdapter

The WindowAdapter is a window listener in which all callback methods are empty
implementations. The window adapter makes it more convenient for an object to
listen for window events. In particular, by using the window adapter, it is possible to
implement only those callback methods needed by your portlet. Without the window
adapter, you must implement all callback methods, even if the method is empty.

5.1.3. Message events

MessageEvents can be sent from one portlet to others if the recipient portlets are
members of the same portlet application and are placed on the same page as the
sending portlet. MessageEvents can only be sent actively to other portlets when the
portlet is in the event processing cycle of the portlet container, otherwise an
exception is thrown. Additionally, a DefaultPortletMessage can cross portlet
application boundaries and may be send to all portlets on a page.

There are two different types of messages:

• Single addressed messages: Messages sent to a specific portlet by specifying
the portlet name on the send() method. Additional, the message can be
distinguished by

o self-created message: The message is sent to the target portlet in the
boundary of the concrete portlet application on the same page.

o DefaultPortletMessage: The message is sent to any portlet with the
target name across all concrete portlet applications on the same page.

• Broadcast messages: Messages sent to all portlets of the same portlet
application remaining on the same page.

 46

o self-created message: The message is sent to all portlets in the
boundary of the concrete portlet application on the same page.

o DefaultPortletMessage: The message is sent to all portlets across all
concrete portlet applications on the same page.

MessageEvents are useful when changes in one portlet should be reflected in
another one. The portlet receiving the message must implement a MessageListener.

5.1.3.1. PortletMessage

An object with the type PortletMessage has to be implemented which will be passed
via the MessageEvent.

5.1.3.2. MessageEvent

A MessageEvent is sent by the portlet container if one portlet sends a message to
another.

5.1.3.3. MessageListener

The MessageListener interface must be implemented at the portlet class if a portlet
wishes to receive message events.

5.2. PortletSettingsAttributesListener

This interface listens for changes to the attributes of the PortletSettings, like when an
administrator configures a concrete portlet.

5.3. PortletApplicationSettingsAttributesListener

This interface listens for changes to the attributes of the PortletApplicationSettings,
like when an administrator configures a concrete portlet application.

5.4. Portlet Caching

A portlet container can provide a per portlet cache which stores the content of a
portlet. To configure the caching policy of a portlet, there are two properties in the
portlet’s deployment descriptor:

expires
indicates for how long the content of a portlet should be cached until it expires.

• <0
The portlet provides static content and therefore does never expire

• =0
The portlet expires at once and is not cached at all

• >0
The time in seconds

 47

shared
indicates if the portlet is user specific

• YES
This portlet provides the same content for all users -> one cache entry for all
users

• NO
This portlet is user specific -> separate cache entries for each user

5.5. Portlet Services

Portlet services are discoverable extensions to the Portlet API which can be plugged
into the portal server. That means a portlet can query the container for a specific
service type and gets in return an implementation of the corresponding interface if
available. Thus specific portlet tasks can be encapsulated as portlet services and
used by several portlets. The implementation of such a service can be exchanged /
enhanced transparently to the portlet.

To enable portlets to use plugable services via dynamic discovery, the Portlet API
provides the PortletService interface. A PortletService is accessed from the
PortletContext.getService() method that looks up the appropriate factory for the
service, creates the service, and returns it to the portlet. Take for example a
Credential Vault that enables portlets to access credentials for authentication. The
CredentialVaultService.class would be available on the portal server but does not
belong to the portlet application (that is, it is not packaged with the portlet’s WAR file).
That service can be retrieved as follows:

Example: Portlet using a Portlet Service

import org.apache.jetspeed.portlet.service.PortletService;
import com.ibm.wps.portletservice.credentialvault.CredentialVaultService;
…
CredentialVaultService vault =

(CredentialVaultService) portletContext.getService(CredentialVaultService.class);

Various services may be implemented by different vendors, for example, a
SearchService, LocationService, ContentAccessService, or a MailService. The
Portlet API provides a ContentAccessService.

5.5.1. Writing a portlet service

Writing a portlet service consists of four steps:

1. Defining the interface
2. Writing the service implementation
3. Writing the service’s factory
4. Registering the service

 48

Step 1 is not requiered if you want to implement your service against an existing
interface. This is also the case for step 3 if you want to reuse an existing service
factory.

5.5.1.1. Define the interface

Defining a portlet service interface requires the same careful considerations as
defining any public API interface. A portlet service interface just must extend the
PortletService interface defined in the org.apache.jetspeed.portlet.service package
which serves as a flag like the Serializable interface of the Java API.

The HelloWorldService interface

package my.portlet.service;

import org.apache.jetspeed.portlet.service.*;

public interface HelloWorldService extends PortletService
{
 // my service’s method
 public String sayIt();
}

5.5.1.2. Write the implementation

The service implementation must implement the PortletServiceProvider interface of
the org.apache.jetspeed.portlet.service.spi package to be able to make use of the
portlet service life cycle methods in addition to your service interface. The
PortletServiceConfig parameter of the init method allows you e.g. to access the
configuration of the service which will be discussed in Configure and register the
service. For further details see the JavaDoc of the Portlet API in the InfoCenter.

The HelloWorldServiceImpl class

package my.portlet.service.impl;

import org.apache.jetspeed.portlet.service.*;
import org.apache.jetspeed.portlet.service.spi.*;

public class HelloWorldServiceImpl implements HelloWorldService, PortletServiceProvider
{

 private String it = null;

 public void destroy()
 {
 // do nothing – no resources in use
 }

 public void init(PortletServiceConfig config)
 {
 it = config.getInitParameter("MY_MESSAGE");

 if (it == null)
 it = “Hello world!!!”;
 }

 public String sayIt()
 {
 return it;
 }
}

5.5.1.3. Write the factory

 49

Usually you will not have to write a factory of your own as there are two generic
factories being shipped with the portal server in the
org.apache.jetspeed.portletcontainer.service package. The
PortletServiceDefaultFactory always returns a new instance of a given service and
the PortletServiceCacheFactory always returns the same instance of a given service
so you do not have to implement your service as a singleton but just use this factory.
Factories have to implement the PortletServiceFactory interface of the
org.apache.jetspeed.portlet.service.spi package.

The HelloWorldServiceFactory class

package my.portlet.service.factory;

import org.apache.jetspeed.portlet.service.*;
import org.apache.jetspeed.portlet.service.spi.*;

public class HelloWorldServiceFactory implements PortletServiceFactory
{

 PortletServiceProvider psp = null;

 public PortletService createPortletService(Class service,
 Properties serviceProperties,
 ServletConfig servletConfig)
 throws PortletServiceUnavailableException
 {

 if (psp != null) {
 return psp;
 }
 else {
 psp = new HelloWorldServiceImpl();

 psp.init(new PortletServiceConfigImpl(
 service,
 serviceProperties,
 servletConfig));

 return psp;
 }
 }
}

5.5.1.4. Configure and register the service

To plug the service into the portal server the corresponding class files must be copied
to the …/lib/app directory of the WebSphere Application Server installation.
Then the PortletServices.properties file in the … app\wps.ear\wps.war\WEB-
INF\conf directory of the WebSphere Portal installation must be changed:

1. register the implementation as the corresponding service type
2. register the factory for the implementation
3. provide configuration parameters for the implementation

The PortletServices.properties file

PortletServices.properties

org.apache.jetspeed.portlet.service.default.factory =

org.apache.jetspeed.portletcontainer.service.PortletServiceDefaultFactory

…

my.portlet.service.HelloWorldService = my.portlet.service.impl.HelloWorldServiceImpl

 50

my.portlet.service.impl.HelloWorldServiceImpl.factory =
my.portlet.service.factory.HelloWorldServiceFactory

my.portlet.service.impl.HelloWorldServiceImpl.MY_MESSAGE = Hello World (properties)!

…

5.5.2. ContentAccessService

To retrieve content from sources outside the intranet, usually a proxy must be used.
To enable portlets to transparently make use of a proxy to access remote content,
WPS provides a ContentAccessService. This service allows portlets to access content
either from remote web sites or from JSPs and servlets of the whole portal web
application. (In contrast, the PortletContext.include method only includes JSPs local
to the portlet application.)

Hint: The disadvantage when accessing internet resources directly is that the
content is simply taken and written to the portlet’s output. This means that all relative
links to other pages or images will be broken. This can be solved by parsing the
content or use some enhanced browser portlet.

Example: Portlet using ContentAccessService

import org.apache.jetspeed.portlet.service.ContentAccessService;
…
ContentAccessService service =

 (ContentAccessService)portletContext.getService(ContentAccessService.class);

//get an URL
URL url = service.getURL(“http://www.ibm.com”, request, response);

//include the content of a web site into the portlet
service.include(“http://www.ibm.com”, request, response);

//include a JSP or servlet belonging to the portal web application
service.include(“/templates/weather.jsp”, request, response);

 51

http://www.ibm.com/
http://www.ibm.com/

6. Deployment Descriptors

The WAR file for a portlet application must contain two descriptor documents: the
Web application deployment descriptor and the portlet deployment descriptor.

6.1. Web application deployment descriptor

As with other servlets following the J2EE model, portlets are packaged as WAR or
EAR files with a Web application deployment descriptor (web.xml). This descriptor
defines each portlet as a servlet within the Web application, including unique
identifiers for each portlet, the portlet class, and initialization parameters.

For more information about the Web application deployment descriptor, see the Java
Servlet Specification Version 2.3 .

6.2. Portlet deployment descriptor

The following shows the structure of the portlet deployment descriptor (portlet.xml).
Click any tag to get more information about it’s use.

Structure of the portlet deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application 1.1//EN"

"portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="uid">
 <portlet-app-name>portlet_application_name</portlet-app-name>
 <portlet id="portlet_id" href="WEB-INF/web.xml#servlet_id">
 <portlet-name>portlet_name</portlet-name>
 <cache>
 <expires>number</expires>
 <shared>yes|no</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html|wml|chtml">
 <view output="fragment"/>
 <edit output="fragment"/>
 <help output="fragment"/>
 <configure output="fragment"/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>

 < uid="uid"> concrete-portlet-app
 <portlet-app-name>portlet_application_name</portlet-app-name>
 <context-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </concrete-param>
 <concrete-portlet href="#portlet_id">
 <portlet-name>portlet_name</portlet-name>
 <default-locale>locale</default-locale>
 <language locale="locale">

 52

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

 <title>title</title>
 <title-short>short title</title-short>
 <description>description</description>
 <keywords>keyword1, keyword2</keywords>
 </language>
 <config-param>
 <param-name>name</param-name>
 <param-value>value</param-value>
 </config-param>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

The following describes the elements that make up the portlet deployment descriptor:

<portlet-app-def>
Required. Top level element that contains information about the portlet application.
This element includes exactly one <portlet-app> element and one or more
<concrete-portlet-app> elements.

<portlet-app uid="uid">

Required. Contains information about the portlet application. The uid for
each portlet must be unique within the portlet application. See Guidelines
for portlet UIDs. The following are subelements of <portlet-app>.

<portlet-app-name>

Exactly one is required. Indicates the name of the portlet application.

<portlet id="id" href="href" major-version="version" minor-version="version">

At least one is required. Contains elements describing a portlet that
belongs to this portlet application. id and href is required. The id must be
unique within the portlet application. The href attribute points to the
identifier of the servlet, as in WEB-INF/web.xml#servlet_id .

The following are subelements of <portlet>:

<portlet-name>
Required. The name of the portlet. This name does not appear on the portal
page.

<cache>
Optional. Describes how the portal handles caching the output of this
portlet. The following are subelements of <cache>:

<expires>
Required if <cache> is specified. Indicates the number of seconds after
which the portlet's output is refreshed.

 53

• 0 indicates that the portlet's output always expires. Each request
causes the portlet to refresh its output. This is the default setting if
<cache> is not present.

• Any number greater than 0 indicates the number of seconds the
portlet output is cached. After the cache time expires, subsequent
requests cause the portlet to refresh its output.

• -1 indicates that the portlets output never expires. After the portlet is
initialized, its content is no longer refreshed.

<shared>
Required if <cache> is specified. Indicates if the portlet output is cached
and shared with all users or for each individual user. Specify “yes” or
“no”.

<allows>
Optional. Indicates the states supported by the portlet. No more than one
<allows> element can be specified for a portlet. These settings only affect
the rendering of portlets in HTML. The following are subelements of
<allows>:

<maximized/>
Optional. Indicates whether the portlet can be maximized. When
maximized, the portlet replaces all other portlets on the portal page. If
this element is present, the maximize button is rendered on the portlet's
title bar.

<minimized/>
Optional. Indicates whether the portlet can be minimized. When
minimized, the portlet is rendered only as a title bar. If this element is
present, the minimize button is rendered on the portlet's title bar.

<supports>
Required. Indicates the modes and markup types supported by the portlet.
All portlets must support the view mode. Other modes must be provided
only if they are supported by the portlet. The following are subelements of
<supports>:

<markup name="name">
At least one is required. Indicates the type of markup this portlet
supports. name is one of the following values:

• html

• wml

• chtml

Separate multiple markup types with commas. For example: . The
following are subelements of <markup>:

 54

<view/>
Required. Indicates that this portlet supports view mode.

<edit/>
Optional. Indicates that this portlet supports edit mode. This
element is optional. If edit mode is supported, the portlet must
supply methods that users can invoke to customize the portlet for
their own use.

<help/>
Optional. Indicates that this portlet supports help mode. This
element is optional. If help mode is supported, the portlet must
supply help output that will display in place of the portlet when the
user clicks the help icon.

<configure/>
Optional. Indicates that this portlet supports configure mode. This
element is optional.

<concrete-portlet-app uid="uid">

At least one is required. Contains information about the concrete portlet
application. The following are subelements of <concrete-portlet-app>.

<portlet-app-name>

Exactly one is required. Indicates the name of the portlet application.

<context-param>

Optional. Contains a pair of <param-name> and <param-value> elements that
this concrete portlet application can accept as input parameters. A concrete
portlet application can accept any number of context parameters.
Administrators can change the context parameters when they configure the
concrete portlet application. Provide help information using XML comments to
explain what values the portlet application can accept. The unique
configuration settings for a concrete portlet application make up its
PortletApplicationSettings.

<concrete-portlet id="id" href="href">

At least one is required. Contains elements describing the concrete portlet
that belongs to this concrete portlet application. id and href are required.
The id must be unique within the portlet application. The href attribute
points to the identifier of the servlet, as in WEB-INF/web.xml#servlet_id .
The following are subelements of <concrete-portlet>:

 55

<portlet-name>
Required. The name of the portlet. This name does not appear on the portal
page.

<default-locale>
Required. Indicate the locale that will be used if the client locale cannot be
determined.

<language locale="locale">
At least one is required. Provide one <language> element for each locale
that your portlet supports. locale can have one of the following values:

• en English

• de German

• fr French

• es Spanish

• ja Japanese

• ko Korean

• zh Simplified Chinese

• zh_TW Traditional Chinese

• pt Brazilian Portuguese

• it Italian

The following are subelements of <language>:

<title>
Exactly one <title> is required for each <language> element. Specify a
portlet title translated for the given locale.
<title-short>
Optional. Indicates a translated short title.

<description>
Optional. Provides a translated description of the portlet.

<keywords>
Optional. Provides any translated keywords associated with your portlet.

<config-param>
Contains a pair of <param-name> and <param-value> elements that this
portlet can accept as input parameters. A portlet can accept any number of
configuration parameters. Administrators can change the configuration
parameters when they configure the concrete portlet. Provide help
information using XML comments to explain what values the portlet

 56

application can accept. The unique configuration settings for a concrete
portlet make up its PortletSettings.

6.3. Relationship between the deployment descriptors

The servlet identifier must be referenced by the portlet deployment descriptor, using
the href attribute of the portlet tag and the href attribute of the concrete-portlet tag.

portlet.xml
<portlet-app-def>
<portlet-app uid="com.ibm.wps.samplet.mail.4969">

<portlet-app-name>NotesSuite</portlet-app-name>
<portlet id="Portlet_1"

href="WEB-INF/web.xml#Servlet_1">
<portlet-name>Mail</portlet-name>
... </portlet>

<portlet id="Portlet_2"
href="WEB-INF/web.xml#Servlet_2">

<portlet-name>Calendar</portlet-name>
... </portlet>

</portlet-app>
<concrete-portlet-app

uid="com.ibm.wps.samplet.mail.4969.1>
...
<concrete-portlet href="#Portlet_1">

... </concrete-portlet>
<concrete-portlet href="#Portlet_2">

... </concrete-portlet>
</concrete-portlet-app>
<concrete-portlet-app>

...
<concrete-portlet href="#Portlet_1">

... </concrete-portlet>
</concrete-portlet-app>

</portlet-app-def>

web.xml
<web-app id="WebApp_1">
<display-name>Mail</display-name>
<servlet id="Servlet_1">

<servlet-name>MailPortlet</servlet-name>
<servlet-class>com.ibm.wps.portlets.MVCPortlet

</servlet-class>
<init-param id="InitParam_1">

<param-name>controller.html</param-name>
<param-value>HtmlController</param-value>

</init-param>
</servlet>
<servlet id="Servlet_2">

<servlet-name>CalendarPortlet</servlet-name>
<servlet-class>com.ibm.wps.portlets.MVCPortlet

</servlet-class>
<init-param id="InitParam_2">

<param-name>controller.html</param-name>
<param-value>HtmlController</param-value>

</init-param>
</servlet>
<servlet-mapping id="ServletMapping_1">

<servlet-name>MailPortlet</servlet-name>
<url-pattern>/MailPortlet/*</url-pattern>

</servlet-mapping>
<servlet-mapping id="ServletMapping_2">

<servlet-name>CalendarPortlet</servlet-name>
<url-pattern>/CalendarPortlet/*</url-pattern>

</servlet-mapping>
</web-app>

Figure 4: Use of servlet ID in the portlet deployment descriptor

6.4. Guidelines for portlet application UIDs

The UIDs of portlet applications and concrete portlet applications must identify them
unambiguously in the area of their usage, which could be world-wide. To make this
possible, it is strongly recommended to follow these guidelines.

• Include the portlet’s namespace in the UID, using the same format that is used
for Java packages

• Add some portlet application specific description
• Add some arbitrary characters to guarantee uniqueness within the

namespace:
com.ibm.wps.samplet.mail.4969

• Add postfixes for the corresponding concrete portlet applications, like:
com.ibm.wps.samplet.mail.4969.1

 57

Portlet IDs must be unique within the application.

 58

7. Portlet development issues

7.1. Compiling and testing portlets

The following steps show how to compile and test portlets, using the BookmarkPortlet
as an example:

Set up the portlet development environment
Compile the Java source
Create the deployment descriptor
Setup the WAR file directory structure
Package the portlet into a WAR file
Test the portlet

7.1.1. Setting up a portlet development environment

Before trying any of the classes and samples in this document, you should setup an
environment that makes the tasks of writing, compiling, and testing portlets easier.
The machine you use for developing portlets should have enough disk space to run
the following:

• WebSphere Application Server (including DB/2 and other requirements)

• A Java development environment (for example, Visual Age for Java)

• WebSphere Portal

• An editor for HTML and JSP files

For better performance, setup WebSphere Portal and its prerequisites on one
computer and setup your development tools and environment on a workstation with
FTP or share access to the publish directory on the server.

Make sure that your system's PATH environment variable is setup to use JDK 1.2.2,
which is installed by WebSphere Application Server. You will need to use this JDK
level to compile class files for use in your portlets. Append the location
was_root/java/bin to the PATH if it is not already present.

7.1.2. Compiling Java source

Use the JDK provided by WebSphere Application Server to compile your Java source
files. Before you compile your Java source, set the CLASSPATH for the compiler to
find the JAR files for any portlet packages that your portlet uses. The following JAR
files should always be set in the CLASSPATH to compile:
 was_root/lib/app/portlet-api.jar;

 was_root/lib/app/wps.jar;

 59

 was_root/lib/app/wpsportlets.jar

where was_root is the directory where WebSphere Application Server is installed.

If your portlet requires any classes from the Servlet API, add the following to your
CLASSPATH:
 was_root/lib/j2ee.jar;

You might also need to add the following to your CLASSPATH:
 was_root/lib/app/xalan-2.2.jar - Include for XSL support

 was_root/lib/app/xerces-1.4.2.jar - Include for XML support

Then, compile the portlet using the fully-qualified path to the Java portlet source.
javac -classpath %CLASSPATH% com\mycompany\portlets\BookmarkPortlet.java

After you have finished developing and testing your portlet, the portlet is ready to be
deployed to portal servers using the Web ARchive format or WAR file. You also need
to package your portlet as a WAR file to test it on the portal server. Packaging portlet
classes, resources, and descriptive information in a single file makes distribution and
deployment of portlets easier.

7.1.3. Creating the deployment descriptors

In addition to the portlet code and resources, the WAR file contains the deployment
descriptors, web.xml and portlet.xml, that contain the information necessary for the
portal server to install and configure the portlet. If you are working with the
BookmarkPortlet samples in this document, use the descriptors provided.

For complete information about the structure of the deployment descriptors, see
Deployment descriptors.

7.1.4. Setting up the WAR file directory structure

The WAR file format contains the Java classes and resources for a single portlet
application. The resources can be images, JSP files, or property files containing
translated text. Before you package your portlet, the class files and resources must
be arranged in the directory structure described here. A portlet application exists as a
structured hierarchy of directories.

/

The root directory of the portlet file structure serves as a document root for
serving unprotected files for the portlet.

/images

The /images directory is an example of a directory name in which all images
may be located that are needed by the portlet. Any directory name or number
of nested directories may be used in the unprotected space of the package.

 60

/WEB-INF

The /WEB-INF directory stores the deployment descriptors and all of the
runtime executable JAR files and classes that the packaged portlet requires.

The portlet information directory is not part of the public document tree of the
application. Files that reside in /WEB-INF are not served directly to a client.

/WEB-INF/lib

JAR files should be stored in the /WEB-INF/lib directory.

/WEB-INF/classes

Individual class files should be stored in a directory structure within /WEB-INF
that reflects the class package. For example, the class
BookmarkPortlet.class, in package com.mycompany.portlets.bookmark,
would be stored in
/WEB-INF/classes/
 com/mycompany/portlets/bookmark/BookmarkPortlet.class .

/META-INF

The manifest for the WAR file, manifest.mf, resides in this directory. The
manifest is in the standard JAR file format as defined by the Java 1.3
specification. The contents of the /META-INF directory is not served to clients.

The directory structure for BookmarkPortlet version 1 is as follows:

bookmark1.war
├───META-INF
│ MANIFEST.MF
│
└───WEB-INF
 │ portlet.xml
 │ web.xml
 │
 └───lib
 bookmark1.jar

7.1.4.1. Packaging a portlet and resources into a WAR file

Any JAR utility may be used to build a WAR file. Below are examples of how to use
the JAR utility provided by WebSphere Application Server.

• To create a WAR file with the name BookmarkPortlet.war and include all of
the files in the /WEB-INF and /images directories:

jar -cf BookmarkPortlet.war images WEB-INF

• To update an existing WAR file, BookmarkPortlet.war with a revised portlet
descriptor:

 61

jar -uf BookmarkPortlet.par WEB-INF/portlet.xml

• To extract the portlet descriptor from the WAR file, BookmarkPortlet.war :

jar -xf MailPortlet.par PORTLET-INF/portlet.xml

• To extract all files from an existing WAR file, BookmarkPortlet.war:

jar -xf BookmarkPortlet.war

7.1.4.2. Testing the sample

WebSphere Portal includes an administrative interface for installing, uninstalling, and
configuring portlets. Portlet WAR files can be downloaded from a Web site, like the
Portlet catalog, and installed to the portal server with requiring a restart. To test your
portlet, log in to the portal, install the portlet, and then place it on a portal page.

7.2. Portlet creation guidelines

7.2.1. No instance and class variables

Limit the use of instance or class variables in a portlet. Within WebSphere Portal,
only a single instance of the Portlet class is instantiated. Even if different users have
the same portlet on their pages, it is the same portlet object instance that generates
the markup. Therefore, each portlet instance has to be treated like a singleton. The
implication is that you should not use instance or class variables to store any state or
other information between calls to the portlet. Being a singleton, each instance
variable of a portlet effectively becomes a class variable with similar scope and the
potential for problems when the variable is accessed many times in each user's
context of the portlet. It is better to avoid these problems by limiting the use of
instance or class variables to read only values. Otherwise, reentrance or thread
safety may be compromised.

There is an exception to this rule in that you can use instance variables. Variables
whose values do not change can be stored safely in instance variables. For example,
on initialization of the portlet, its configuration is set within the portlet. Because the
configuration does not change for different users or between calls, you can store it in
an instance variable.

7.2.2. Storing data

The following lists where data is stored by a portlet, depending on how it is used.

 62

http://www.ibm.com/software/webservers/portal/portlets/

• Be careful with use of class variables, these will be shared by all users
who access the portlet.

• Developer’s configuration, data depending on the resources (such as
images or java files) of a WAR file, is stored in the PortletConfig and
read from the web.xml .

• Administrator’s configuration data is stored in the PortletSettings read
from the portlet.xml .

• User/Group preferences are stored in persistence using PortletData.
• Portlet beans for a particular view or mode should be added to a

PortletRequest.
• Portlet beans containing global portlet information should be stored in a

PortletSession.

7.2.3. Performance issues

WebSphere Portal uses the same portlet instance to generate the markup for
different pages for different users. There are a limited number of threads that perform
these tasks. It is imperative to implement the portlet to do its job as quickly as
possible so that response time for a whole page is optimized.

Optimizations you should consider are:

1. Limit the use of the synchronized methods or synchronized code blocks in
the processing of a portlet method.

2. Limit the use of complex string operations. This includes
• Minimize transient XSL style sheets as they cause a lot of temporary

Java object instantiations
• Consider using a StringBuffer to replace temporary String objects.

These are more efficient in processing strings in general and also
don't generally instantiate other temporary String objects.

3. Limit the use of long running loops.

4. Do not create large pools of threads.

5. Minimize calls to external data sources. If possible, set your portlet to
cache its output.

6. Use JSPs instead of XSL. JSP with view beans are much faster and
instantiate less intermediate Java objects. The XSL engine creates a lot of
temporary strings.

7. Portlet JSPs can be optimized for performance by reducing white space
and using the non-transferable JSP comment format (<%-- --%>) as
opposed to the HTML comment format (<!-- -->).

8. Minimize Java object instantiations.

 63

7.2.4. Guidelines for markup

One of the goals in writing portlet markup is to provide a consistent, clean, and
complete user interface. The portal server page is displayed using skins and themes
defined by the portal administrator. Themes represent the look and feel of the portal
overall, including colors and fonts. Skins represent the border rendering around an
individual portlet. WebSphere Portal is installed with some predefined skins and
themes.

For portlets to appear integrated with an organization's portal or user's customized
portal, they should generate markup that invokes the generic style classes for
portlets, rather than using tags or attributes to specify colors, fonts, or other visual
elements. See the WebSphere Portal InfoCenter for more information about use of
style sheets, themes, and skins.

Portlets are allowed to render only markup fragments, which are then assembled by
the portlet framework for a complete page. Therefore, be sure to exclude all page-
level tags, such as <html>, <head>, <body>, <wml>, and so on.

Because HTML, WML, and cHTML code fragments are embedded into other code
fragments, make sure that they are complete, contain no open tags, and only contain
valid HTML, WML, or cHTML. This helps to prevent the portlet's HTML code, for
example, from corrupting the portal's aggregated HTML code. It is recommended to
use a validation tool, such as the W3C HTML Validation Service or a tool from a
markup editor, such as WebSphere Studio.

For specific guidelines for HTML, WML, and cHTML, see the WebSphere Portal
InfoCenter .

7.2.4.1. Accessibility

When writing the markup for a portlet, consider how the portlet will be accessed by
people with disabilities. For example, people with sight limitations might not be able
to distinguish certain colors or require the assistance of a reader to access the
content of your portlet. Make the markup accessible:

• For all field prompts (labels) be sure to use the <LABEL> tag around
the label for screen readers.

• Test the portlet with each browsers range of large and small fonts.

You can find out more about accessibility guidelines the Center for Applied Special
Technology (CAST) or W3C Web Accessibility Initiative . IBM provides guidelines for
Web accessibility at http://www.ibm.com/able/accessweb.html .

7.3. Namespaces/Javascript

Resource URIs should be namespace-encoded, allowing the portal to supply a direct
path to the resource with respect to protected, unprotected, and NLS resource
placement. You should also encode named elements (form fields, Javascript
variables, etc) to avoid clashes with other elements on the portal page or in other
portlets on the page. See PortletURI for more information about encoding .

 64

http://www.ibm.com/software/webservers/portal/library/InfoCenter/
http://validator.w3.org/
http://www.ibm.com/software/webservers/portal/library/InfoCenter/
http://www.ibm.com/software/webservers/portal/library/InfoCenter/
http://www.cast.org/
http://www.cast.org/
http://www.w3.org/WAI/about.html
http://www.ibm.com/able/accessweb.html

7.4. Multi-markup support

Whenever possible, provide support for more than one type of markup (HTML, WML,
and cHTML). This means that you will need to use the getMarkupName() method
from the Client object to test for the markup. You must also indicate the markup
types supported by your portlet in the portlet deployment descriptor.

7.5. Multi-language support

To prepare your portlet for translation, be sure all strings are retrieved from a
properties file using getText() (see BookmarkPortlet_05 for an example) rather than
hard-coded in the portlet. Allow for string expansion in the portlet user interface for
certain NLS languages.

 65

8. Extended WPS PortletServices

8.1. Persistent Backend Connections

Portlets that depends on remote connections require some way of maintaining that
connection in cases where users switch pages. An FTP portlet, for example,
depends on a remote connection. Typically, when the user selects a page with the
FTP portlet, the portlet opens a socket to establish the connection. However, should
the user switch pages, or another bookmark load into the portal window, the portlet
would lose the connection. Using the Persistent Backend Connections service
solves this problem. It provides TCP/IP connections that persist page or pagegroup
changes without losing a connection.

8.1.1. Persistent Backend Connections concept

The concept behind the Persistent Backend Connections service is based on a
connection pool. An internal list holds the connection objects for every open TCP/IP
connection currently used by the portal server. This pool works independent of any
portlets and can therefore persist page and pagegroup changes without losing any
information about open connections. If a portlet needs to open a TCP/IP connection,
it gets a PersistentConnectionPool object using the Persistent Backend Connections
Service. The pool itself provides two methods. One for getting a TCP/IP connection
and one for closing it. The getConnection() method takes three input parameters:

• The TCP/IP address of the remote location
• The port number
• A unique ID for the connection

The unique ID is important to identify the connection later. Currently this ID is only
used to close a connection.

The getConnection() method opens the connection immediately and returns a
PersistentConnection object for that connection. If a connection with the same unique
ID already exists, it returns this connection’s PersistentConnection object. In case of
error, the method throws a ConnectionFailedException. The returned
PersistentConnection object can be used by the portlet to work with the opened
connection.

8.1.2. Using the PersistentConnection object

The PersistentConnection object provides the following methods for working with
the persistent connection.

• GetHostname()

Returns the hostname of the remote host.

 66

• GetIP()
Returns the IP address of the remote host.

• GetPort()
Returns the port of the remote host.

• GetSocket()
Returns the socket object of the connection.

• GetReceiveBuffer()
Returns a BufferedReader object for receiving data from this connection.

• GetSendBuffer()
Returns a BufferedWriter object for sending data to the remote host.

• SetLastState(Object)
Sets a state object for this connection.

• GetLastState()
Returns the state object for this connection.

The PersistentConnection object uses a state object to keep track of session
states. Most remote protocols are not stateless, since most of them require at least
an initial authorization step.
The state object is an object of the portlet developer’s choice.

The PersistentConnection object stores a reference to that object and makes it
available to the portlet using the getLastState() method. The information stored
using the state object depends on the connection protocol and on what the developer
needs to store.

8.1.3. Persistent Backend Connections Service in a cluster

The Persistent Backend Connections Pool is implemented by a Java Hashtable.
When the portlet is in a cluster, this hashtable resides on the node where it was
created. This hashtable cannot be shared with other nodes in the cluster. It is
therefore required that all requests of the portlet be sent to the same node for the
duration of a persistent connection (sticky sessions).

8.1.4. Usage example

The following step by step instruction is a basic set of things that have to be done
when building a portlet that uses persistent connections.

• Get a ConnectionPool object
• Call getConnection() and store the returned object in a variable A
• Determine if the connection is already open:

if (A.getLastState() == null) // this is a fresh connection
else // the connection is already open with a unique ID

• In case it is an already open connection, use the getLastState() method to get

the state object of the connection. If needed, reconstruct the session state using
the information of the state object.

 67

• Work with the connection. Use getReceiveBuffer() and getSendBuffer() to
retrieve input and output streams for the connection.

• In case of a state change, create a new state object (or change the existing one)
and store it using A.setLastState(Object)

• If you don’t need the connection any longer, call
ConnectionPool.closeConnection(UniqueID)

The ‘last state’ object helps to keep the code in sync with the session state of the
connection, even if the execution of the portlet code gets interrupted. The only thing
that has to be stored in the PortletSession is the unique ID. Without it, the
connection cannot be retrieved from the pool.

8.2. Credential Vault

Portlets running on WebSphere Portal may need to access remote applications that
require some form of authentication by using appropriate credentials. Examples for
credentials are user id/password, SSL client certificates or private keys. In order to
provide a single sign-on user experience, portlets may not ask the user for the
credentials of individual applications each time the user starts a new portal session.
Instead they must be able to store and retrieve user credentials for their particular
associated application and use those credentials to log in on behalf of the user.

The credential vault provides exactly this functionality. Portlets can use it through the
Credential Vault PortletService.

8.2.1. Credential Vault organization

The portal server’s credential vault is organized as follows:

• The portal administrator can partition the vault into several vault segments.
Vault segments can be created and configured only by portal administrators.

• A vault segment contains one or more credential slots. Credential slots are the
“drawers” where portlets store and retreieve a user’s credentials. Each slot
holds one credential.

• A credential slot is linked to a resource in a vault implementation, the place
where the credential secrets are actually stored. Examples of vault
implementations include the WebSphere Portal’s default database vault or the
IBM Tivoli Access Manager lock box.

8.2.2. Vault Segments

A vault segment is flagged to be either administrator-managed or user-managed.
While portlets (on behalf of a portal user) can set and retrieve credentials in both
types of segments, they are permitted to create credential slots only in user managed
vault segments. The following figure shows how administrator-managed vault
segments can be distributed among different vault implementations. There is only

 68

one user-managed vault segment, and it resides in the vault provided by WebSphere
Portal.

Figure 5: Vault segments and vault implementations

8.2.3. Credential slots

The credential vault provided by WebSphere Portal distinguishes between three
different types of credential slots:

A system credential slot stores system credentials where the actual secret is shared

among all users and portlets.
A shared credential slot stores user credentials that are shared among the user’s

portlets.
A portlet private slot stores user credentials that are not shared among portlets.

8.2.4. Credentials objects

The CredentialVault PortletService returns credentials in form of credential objects:
com.ibm.wps.portletservice.credentialvault.credentials.Credential

WebSphere Portal differentiates between passive and active credential objects:

• Passive credential objects are containers for the credential’s secret. Portlets
that use passive credentials need to extract the secret out of the credential and
do all the authentication communication with the backend itself.
Passive credential object use (pseudo code)

Object userSecret = credential.getUserSecret();

 69

< portlet connects to back-end system authenticates using the user's secret >

< portlet can uses the connection to communicate with the backend application >

< portlet takes care of logging at the back-end >

• Active credential objects hide the credential's secret from the portlet, there is

no way of extracting it out of the credential. In return, active credential objects
offer business methods that take care of all the authentication.
Active credential object use (pseudo code)

// log into the backend system
credential.login()

// get an authenticated connection to work with
URLConnection = credential.getAuthenticatedConnection();

// log out at the back end
credential.logout();

The second case allows portlets to trigger authentication to remote servers using
standard mechanisms such as basic authentication, HTTP form-based
authentication, or POP3 authentication, without even knowing the credential secrets.
They can ask the portal to authenticate on their behalf and then use already
authenticated connections. From a security point of view the portlets never get in
touch with the credential secrets and thus there is no risk a portlet could violate any
security rules like, for example, storing the secret on the portlet session.
While there might not always be an appropriate active credential class available, it is
the preferred type of credential object to use.

All credential types that are available within the portal are registered in a credential
type registry. WebSphere Portal provides a small set of credential types, but
additional credential objects can easily be registered in this registry. The credential
classes that are shipped with the current release are:

Passive Credential Objects:

SimplePassive
This credential object stores secrets in form of serializable Java objects. As the
vault service does currently not support binary large object (BLOB) secrets, this is
intended for future use only.
UserPasswordPassive
Credential object that stores secrets in the form of userid/password pairs.
JaasSubjectPassive
Credential object that stores secrets in form of javax.security.auth.Subject
objects. Again, this kind of secret cannot currently be stored by the vault service.

Active Credential Objects:

HttpBasicAuth
This credential object stores userid/password secrets and supports HTTP Basic
Authentication.

 70

HttpFormBasedAuth
This credential object stores userid/password secrets and supports HTTP Form-
Based Authentication.
JavaMail
A credential object that stores userid/password pairs and leverages the
authentication functionality of the javax.mail API.

8.2.4.1. Storing credential objects in the PortletSession

Credential objects do not implement java.io.Serializable - they cannot simply be
stored in the PortletSession. This is for security reasons. Because the credential
classes store the actual credential secret as one of their private attributes, the secret
could be found by anyone who has access to the application server session
database.

However, you can store a credential object in the PortletSession as long as you
ensure sure that it is not serialized in a cluster setup. One way of doing this would be
to define a credential container class that stores the actual credential object as a
transient member. This container object can then be stored in the PortletSession
without any problems, you only have to make sure to check whether the credential
object got lost during serialization and in this case retrieve it from the vault again.

Credential object session container

import com.ibm.wps.portletservice.credentialvault.credentials.Credential;

public class CredentialSessionContainer implements java.io.Serializable
{

private transient Credential credential = null;

public void setCredential(Credential cred) {this.credential = cred;}

public Credential getCredential() {return credential;}

public boolean hasCredential() {return credential != null;}

}

8.2.5. Credential Vault usage scenarios

Portlets that need a credential to complete their service have two options:

1. Use an existing credential slot that has been defined by the portal
administrator in an administrator-managed vault segment.

2. Create a credential slot in the user-managed vault segment.

The option you choose depends on how the portlet will be used.

8.2.5.1. Intranet Lotus Notes mail portlet

Scenario A:
A company has an intranet employee portal. Each employee/portal user has a Lotus
Notes mail server account and a Lotus Notes mail portlet will be deployed and pre-
configured on one the employee’s default portal pages.

 71

Design solution:
The Notes mail portlet will need to store the user’s Notes password. As most users
will actually use this portlet, the admin will create a credential slot “Lotus Notes
Credential” for it. The portlet offers the possibility to set the credential slot id as part
of its portlet settings, i.e. the admin can do it for all concrete portlet instances at once
and the portal user’s don’t have to do it via the portlet’s edit mode. What the portlets
have to do in the edit mode is to provide the portlet with their personal Notes
password so that the portlet can store it in the Credential Vault.
If it happens that the Notes passwords

8.2.5.2. Stock of inventory portlet

Scenario B:
A company’s buying department runs a portal that integrates different legacy
applications. One of these applications is an old ordering mainframe application that
directly connects to systems of the suppliers. Several employees use the ordering
portlet, however the old mainframe application is secured by a simple system id, it
doesn’t support several user accounts.

Design solution:
The ordering portlet will need to access the ordering legacy application under the
respective system id. It allows to configure the credential slot id already during
deployment. The portal administrator therefore creates a credential slot in an admin
managed vault segment and marks it as a system credential. He/she uses the
credential vault admin portlets to store the ordering system id and the respective
password in this slot. The buying department’s employees don’t have to care about
credentials at all; they can enjoy a single-sing-on experience right from the start.

8.2.5.3. Internet Mail federating POP3 portlet

Scenario C:
An internet community portal offers among other features a mail federating portlet
that can be used by a portal user to collect mail from a number of POP3 mail
accounts.

Design solution:
The mail federating portlet is just another feature of the community portal and thus it
is likely that it will be used only by some of the portal users. Furthermore, it is not
clear from the outset, how many mail accounts a user wants to federate. Hence, it
doesn’t make sense that the portal admin pre-creates any credential slot for this
portlet. Instead, the portlet provides the user with a comfortable configuration in its
edit mode. The user may add as many POP3 mailboxes as he/she likes and for each
of these mailboxes, the portlet creates an additional credential slot in the user
managed vault segment.
Theoretically, a user could configure two instances of the portlet on his pages, e.g.
one for the business accounts and one for his private mail accounts. Therefore, and
because it most likely doesn’t make sense to share the user’s mail credentials with
other portlets, the portlet created credential slots are better marked as portlet private.

 72

8.2.6. Methods of the CredentialVaultService
This section provides a brief overview of the methods that a portlet can use through
the CredentialVaultService.

getCredentialTypes

Description
This method returns a list of all Credential Types that are registered in the Credential
Type Registry.

Return value
The Credential Types are returned in form of an Iterator of String objects.

getSlotDescription

Description
This method returns the description of a certain credential slot in a specified locale.

Parameters
• slotId [String]

The Credential Slot’s identifier.
• locale [Locale]

The description locale. If set to null, the default locale will be used.

Return value
The description is returned in form of a String object.

Exceptions
• PortletServiceException

Thrown if the description could not been retrieved.

getAccessibleSlots

Description
This method returns a list of all credential slots that a portlet is authorized to use.

Parameters
• request [PortletRequest]

The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Return value
The description is returned in form of an Iterator of CredentialSlotConfig objects.

Exceptions

 73

• PortletServiceException
Thrown if the list of slots could not been retrieved.

setCredentialSecretBinary

Description
This method sets the secret of a credential that holds binary credential data.

Parameters
• slotId [String]

The Credential Slot’s identifier.
• secret [byte[]]

The credential secret data in binary form.
• request [PortletRequest]

The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Exceptions
• PortletServiceException

Thrown if the credential secret is not of the type binary or if the secret could
not be set.

setCredentialSecretUserPassword

Description
This method sets the secret of a credential that holds credential data in form of a
userid/password pair.

Parameters
• slotId [String]

The Credential Slot’s identifier.
• userId [String]

The credential’s user Id.
• password [char[]]

The credential’s password.
• request [PortletRequest]

The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Exceptions
• PortletServiceException

Thrown if the credential secret is not of the type binary or if the secret could
not be set.

createSlot

Description

 74

This method creates a new Credential Slot.

Parameters
• resourceName [String]

The name of the resource.
• segmentId [ObjectID]

The object id of the Vault Segment in which the slot is to be created.
• descriptions [Map]

Human understandable descriptions of the slot, keyed by the description’s
Locale. One description - at least in the default locale - should always be set,
only for portlet private slots the user may never see this description at all and
in this case it can be left empty.

• keywords [Map]
A list of keywords that characterize the slot and can be used for searching.

• secretType [int]
The secret type as defined in the constants of the CredentialVaultService.

• active [boolean]
A map of configuration parameters that are needed to initialize the credential
object. Most credential classes do not have such parameters (set to null).
Please see the credential class’ documentation for detailed information.

• portletPrivate [boolean]
Flag indicating whether this slot is for exclusive use of the portlet or whether it
may be shared with other portlets.

• request [PortletRequest]
The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Return value
This method returns the CredentialSlotConfig object of the newly created slot.

Exceptions
• PortletServiceException

Thrown if the credential secret is not of the type binary or if the secret could
not be set.

getDefaultVaultSegmentId

Description
Returns the ObjectID of the default user managed vault segment. Currently there is
only one user-managed slot, so this returns the ID of the user-managed segment.

Return value
This method returns the ObjectID of the default user managed vault segment, null
if no default user managed vault segment can be found.

Exceptions
• PortletServiceException

Thrown if no Vault Segment information could be retrieved.

 75

getAllVaultSegments

Description
Returns a List of all Vault Segments.

Return value
This method returns all Vault Segments in form of a List of VaultSegmentConfig
objects.

Exceptions
• PortletServiceException

Thrown if no Vault Segment information could be retrieved.

getCredential

Description
This method retrieves a certain credential from the Credential Vault.

Parameters
• slotId [String]

The Credential Slot’s identifier.
• secretType [int]

The secret type as defined in the constants of the CredentialVaultService.
• config [Map]

A map of configuration parameters that are needed to initialize the credential
object. Most credential classes do not have such parameters (set to null).
Please see the credential class’ documentation for detailed information.

• request [PortletRequest]
The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Return value
This method returns the CredentialSlotConfig object of the newly created slot.

Exceptions
• PortletServiceException

Thrown if the credential secret is not of the type binary or if the secret could
not be set.

• CredentialSecretNotSetException
Thrown if the respective credential secret has not been set. If the credential in
question is a user credential, the portlet should react on this exception by
prompting the user for the credential data in order to call the respective
setCredential… method.

getUserSubject

 76

Description
This method returns the user's JAAS subject. This is a special case of the
getCredential call.

Parameters
• request [PortletRequest]

The portlet request is needed by the CredentialVault service in order to
determine the portlet id, portlet application id and alike.

Return value
This method returns the CredentialSlotConfig object of the newly created slot.

Exceptions
• PortletServiceException

Thrown if the credential secret is not of the type binary or if the secret could
not be set.

8.2.7. Programming Example
The following is a example of a portlet that uses a userid/password credential to log
into a web application that is secured with an HTTP form-based login page. The
example shows how the CredentialVault PortletService is used to read a credential
from the vault and how to use this credential. It does not show how in the portlet’s
edit mode the portlet queries the user for his/her secret and stores it in the vault.

Example: Portlet using the CredentialVault PortletService with a HttpFormBasedAuthCredential

import org.apache.jetspeed.portlet.service.PortletServiceException;
import com.ibm.wps.portletservice.credentialvault.CredentialVaultService;
import com.ibm.wps.portletservice.credentialvault.CredentialSecretNotSetException;
import com.ibm.wps.portletservice.credentialvault.credentials.HttpFormBasedAuthCredential;
…

public void doView (PortletRequest request, PortletResponse response)
 throws PortletException, IOException
{

// get output stream and write out the results…
PrintWriter writer = response.getWriter();

// get the CredentialVault PortletService
PortletContext context = this.getPortletConfig().getContext();
CredentialVaultService service =

 (CredentialVaultService) context.getService(CredentialVaultService.class);

// retrieve slotId from persistent portlet data
String slotId = (String) request.getData().getAttribute("VaultTestSlotID");
if (slotId == null) {

writer.println("<h2>Credential not found. Please set it in the edit mode! </h2>");
return;

}

// bundle the credential config data
HashMap config = new HashMap();
config.put(HttpFormBasedAuthCredential.KEY_USERID_ATTRIBUTE_NAME, "userid");
config.put(HttpFormBasedAuthCredential.KEY_PASSWORD_ATTRIBUTE_NAME, "password");
config.put(HttpFormBasedAuthCredential.KEY_LOGIN_URL, "EAI.yourco.com/login.jsp");
config.put(HttpFormBasedAuthCredential.KEY_LOGOUT_URL,"EAI.yourco.com /quit.jsp");
config.put(HttpFormBasedAuthCredential.KEY_USE_AUTH_COOKIES, Boolean.TRUE);

// get the actual credential from the credential vault
HttpFormBasedAuthCredential credential;
try {

 77

credential = (HttpFormBasedAuthCredential)
 service.getCredential(slotId, "HttpFormBasedAuth", config, request);

} catch (PortletServiceException serviceExc) {
writer.println("<h2>Credential vault error, please contact your admin! </h2>");
return;

} catch (CredentialSecretNotSetException userExc) {
writer.println("<h2>Credential not set. Please set it in the edit mode! </h2>");
return;

}

try {

// use credential object to log in at the backend server
credential.login();

// get an authenticated connection to the backend server and send the actual request
connection = credential.getAuthenticatedConnection("EAI.yourco.com/request.jsp");

// Work with the connection: send an HTTP GET or POST and evaluate the response
[…] // your business code

// use credential object to log out at the backend server
credential.logout();

} catch (IOException exc) {
writer.println("<h2>Single-sign-on error, login at back-end failed! </h2>");
return;

}

// get output stream and write out the results…
PrintWriter writer = response.getWriter();

}

8.2.8. Using JAAS to retrieve the user’s credentials

Single sign-on support in WebSphere Portal allows users to communicate through
the portal server, via portlets, with many different back end systems without being
prompted multiple times for a username and password by each individual portlet's
back end server. WebSphere Portal internally makes use of the Java Authentication
and Authorization Service (JAAS) API to provide a framework for integrating single
sign-on into portlets and via these portlets to back end applications.

After a user is authenticated, WebSphere Application Server generates a security
context for the user. WebSphere Portal uses this security context to set up (internally
to the portal) a JAAS Subject containing several Principals and Private Credentials.
When the portal first handles the HTTP request, it will set up the JAAS Subject and
make it available as an attribute of the User, which the portlet accesses from the
PortletSession object. From the Subject, a portlet can use one of the following
methods to extract the Principal and Credentials to pass to its back end application.

getPrincipals(java.lang.Class)

Class is optional. If no argument is specified, this method returns a set
containing all Principals. Use the Class.forName(name) method to generate a
class argument for getPrincipals. See the following example.

// Retrieve the Subject from the CredentialVaultService
PortletContext context = this.getPortletConfig().getContext();
CredentialVaultService service = (CredentialVaultService)

context.getService(CredentialVaultService.class);
Subject subject = service.getUserSubject(portletRequest);

 78

http://java.sun.com/products/jaas/index-10.html
http://java.sun.com/products/jaas/index-10.html
http://java.sun.com/security/jaas/apidoc/javax/security/auth/Subject.html

// Get the User DN
Set set = subject.getPrincipals(Class.forName("com.ibm.wps.sso.UserDNPrincipal"));
UserDNPrincipal userDn = null;

if (set.hasNext()) {
 userDn = (UserDNPrincipal) set.next();

 // Got it, print out what it contains.
 System.out.println("The User DN is " + userDn.getName();
}

The following are some of the class names that can be used with
Class.forName() on this method

com.ibm.wps.sso.UserDNPrincipal

returns the user's distinguished name from LDAP

com.ibm.wps.sso.GroupDNPrincipal

returns the distinguished name of an LDAP group of which the user is a
member. There are as many instances of GroupDNPrincipals as the number
of LDAP groups to which the user belongs.

com.ibm.wps.sso.UserIdPrincipal

returns the ID with which the user logged on to the portal only if an
authentication proxy was not used

com.ibm.wps.sso.PasswordCredential

returns the password with which the user logged on to the portal. Available
only if an authentication proxy was not used.

All Principals descend from java.security.Principal from the standard JDK.
The portlet calls getName() to extract the information contained in these
Principals. Before the portlet can extract any information from the Subject, it
must first get the PortletSession, then the User, and finally the Subject.

getPrivateCredentials(java.lang.Class)

Class is optional. If no argument is specified, this method returns a set
containing all PrivateCredentials. Also use Class.forName(name) to get a
Class object from a classname string for this method. To obtain the user's
CORBA credential, specify org.omg.SecurityLevel2.Credentials as the
argument for Class.forName() .

8.2.8.1. Basic authentication sample

The following example demonstrates how to the extract the Subject from the
PortletSession and then how to extract the user name and password from the
Subject. The portlet then creates a Basic Authentication Header and attempts to
connect to a URL protected by basic authentication. The URL is specified as a
configuration parameter in the portlet deployment descriptor (portlet.xml) . For
output, it displays the user name, password, and the results of the connection
attempt.

 79

In the service() method, the JAAS Subject is extracted from the
CredentialVaultService.

import java.io.*;
import java.net.*;
import java.util.*;
import java.security.*;
import javax.security.auth.*; // for the JAAS Subject

import com.ibm.wps.sso.*; // for the Principals contained in the Subject
import com.ibm.wps.portletservice.credentialvault.CredentialVaultService; // for the
 // Credential Service
import com.ibm.ejs.security.util.Base64Coder;

import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlets.*;

public class URLSSOSamplePortlet extends AbstractPortlet {
 /** URL To Access */
 private String urlSpec = null;

 /**
 * Initialization Routine
 *
 * @param PortletConfig Portlet Configuration
 * @throws UnavailableException
 */
 public void init(PortletConfig portletConfig)
 throws UnavailableException {
 super.init(portletConfig);

 // Get the URL
 urlSpec = portletConfig.getAttribute("url");
 }

 /**
 * Retrieves the specified Principal from the provided Subject
 *
 * @param Subject subject
 * @param String Class Name
 * @return The values of the Principals for the given class name, null if
 * nothing was returned
 * @throws PortletException An error occured retrieving the Principal
 */
 private String[] getPrincipalsFromSubject(Subject subject,
 String className)
 throws PortletException {
 try {
 // Get the Set of Principals
 Object[] principals =
 subject.getPrincipals(Class.forName(className)).toArray();

 // Do we have any?
 if ((null == principals) || (0 == principals.length)) {
 // No principals of this class name
 return(null);
 }

 // Create the String Array to hold the values
 String[] values = new String[principals.length];

 // Populate the values Array
 for (int current = 0; current < values.length; current++) {
 values[current] = ((Principal) principals[current]).getName();
 }

 return(values);

 } catch (ClassNotFoundException cnfe) {
 throw(new PortletException("Class " + className + " could not be found",
 cnfe));
 }
 }

 /**

 80

 * Extracts the UserID and Password from the JAAS Subject, creates a Basic
 * Auth Header from it, and then connects to the resource.
 *
 * @param PortletRequest Request Object
 * @param PortletResponse Response Object
 * @throws PortletException
 * @throws IOException
 */
 public void service(PortletRequest portletRequest,
 PortletResponse portletResponse)
 throws PortletException,
 IOException {
 // Get the Writer from the Response
 PrintWriter writer = portletResponse.getWriter();

 PortletContext context = this.getPortletConfig().getContext();
 CredentialVaultService service = (CredentialVaultService)

context.getService(CredentialVaultService.class);
 Subject subject = service.getUserSubject(portletRequest);

 // Grab the UserID and Password. There will only be one of each
 // contained in the Subject.
 String[] userId = getPrincipalsFromSubject(subject,
 "com.ibm.wps.sso.UserIdPrincipal");
 String[] password = getPrincipalsFromSubject(subject,
 "com.ibm.wps.sso.PasswordCredential");

 // The URL
 writer.println("<TABLE>");
 writer.println("<TR><TD>URL:</TD><TD>" +urlSpec +
 "</TD></TR>");

 // Show the UserId and Password
 writer.println("<TR><TD>UserID:</TD><TD>" + userId[0] +
 "</TD></TR>");
 writer.println("<TR><TD>Password:</TD><TD>" + password[0] +
 "</TD></TR>");

 // Create the Basic Auth Header
 String basicAuth = Base64Coder.base64Encode(userId[0] +
 ":" +
 password[0]);

 basicAuth = "Basic " + basicAuth;
 writer.println("<TR><TD>Basic Auth Header:</TD><TD>" +
 basicAuth +
 "</TD></TR>");
 writer.println("</TABLE>
");

 // Create the URL for our protected resource, and get a URLConnection
 try {
 URL url = new URL(urlSpec);
 HttpURLConnection con = (HttpURLConnection) url.openConnection();

 // Set our Basic Auth Header
 con.setRequestProperty("authorization", basicAuth);

 // Connect
 con.connect();

 // Get the Response Code
 String responseMessage = con.getResponseMessage();
 int responseCode = con.getResponseCode();

 // Were we successful?
 if (HttpURLConnection.HTTP_OK == responseCode) {
 writer.println("<P>Successfully connected to " +
 urlSpec + "!</P>");

 } else {
 writer.println("<P>Unable to successfully connect to " +
 urlSpec + ", HTTP Response Code = " +
 responseCode +
 ", HTTP Response Message = \"" +
 responseMessage + "\"</P>");
 }

 81

 } catch (Exception e) {
 writer.println("<P>Exception caught in HTTP Connection:</P><TT>");
 writer.println(e.getMessage());
 e.printStackTrace(writer);
 writer.println("</TT>");
 }
 }
}

8.2.8.2. LTPA example

Lightweight third-party authenticaiton (LTPA) is the mechanism for providing single
sign-on between WebSphere Application Server and Domino servers that reside in
the same security domain. The LTPA token is carried in the HTTP request as a
cookie. The example in this section assumes that:

1. The portlet is accessing a protected resource on the same WebSphere
Application Server that WebSphere Portal is installed on.

2. If the resource resides on another WebSphere Application Server or Domino
Server, then single sign-on is enabled between them.

Extracting the LTPA token

Object[] temp =
subject.getPrivateCredentials(LTPATokenCredential.class).toArray();
LTPATokenCredential ltpaToken = (LTPATokenCredential) temp[0];

// Create the LTPA Cookie Header
String cookie = "LtpaToken=" + ltpaToken.getTokenString();

// Create the URL for our protected resource, and get a URLConnection
URL url = new URL("http://myserver.example.com/ltpa_protected_resource");
HttpURLConnection con = (HttpURLConnection) url.openConnection();

// Set our LTPA token Cookie
con.setRequestProperty("cookie", cookie);

// Connect
con.connect();

 82

9. References

Portlet Migration Guide
Author: David Lection

Describes concepts and tasks needed to migrate portlets using the Portlet API for
WebSphere Portal Server Version 2.1 to the Portlet API for WebSphere Portal
Version 4.1.

Portlet Design Guide
Author: Patrick McGowan

Describes standards for writing portlets to provide consistency and usability.

WebSphere Portal InfoCenter
Authors: John Waller, Loretta Hicks, Reinhard Brosche, Michael Walden, Mary Carbonara,
Michelle Wallace, Ann Roy, Bill Polomchak, Richard Spinks, Ted Buckner

Describes the concepts and tasks for setting up a portal site using of IBM
WebSphere Portal. This includes planning, installation, administration, portal
design topics, and troubleshooting. The InfoCenter also repeats many of the
portlet development topics discussed in this document.

End of document

 83

	Portlet Development Guide
	Table of contents
	Abstract
	Overview
	Portlets and the Servlet API
	Portlet deployment descriptor
	Portlet Concepts
	Portlet Applications
	Concrete Portlet Application

	Portlet modes
	Portlet states
	Examples in this document - the Bookmark Portlet

	Portlet API - Basic elements
	Portlet
	getLastModified()
	PortletAdapter
	Example

	Core Objects
	PortletRequest
	Client

	PortletResponse
	PortletURI

	PortletSession
	Example

	Listeners
	PortletSessionListener
	PortletPageListener
	PortletTitleListener
	Complete Lifecycle
	Example

	Configuration Objects
	PortletConfig
	PortletSettings
	PortletApplicationSettings
	PortletData
	Example

	Miscellaneous Objects
	PortletContext
	PortletLog

	PortletWindow
	User
	Example

	The scope of the portlet objects

	Java Server Pages
	Portlet API Tags
	if
	log
	text
	dataLoop
	dataAttribute
	settingsLoop
	settingsAttribute
	CreateReturnURI
	createURI
	URIParameter
	URIAction
	encodeNamespace
	init
	encodeURI (deprecated)

	The example using a JSP
	Reserved Parameter Names

	Portlet API - Advanced elements
	Portlet events
	Action events
	PortletAction
	Creating a URI including a PortletAction
	ActionEvent
	ActionListener

	Window events
	WindowEvent
	WindowListener
	WindowAdapter

	Message events
	PortletMessage
	MessageEvent
	MessageListener

	PortletSettingsAttributesListener
	PortletApplicationSettingsAttributesListener
	Portlet Caching
	Portlet Services
	Writing a portlet service
	Define the interface
	Write the implementation
	Write the factory
	Configure and register the service

	ContentAccessService

	Deployment Descriptors
	Web application deployment descriptor
	Portlet deployment descriptor
	<portlet-app-def>
	<portlet-app uid="uid">
	<portlet-app-name>
	<portlet id="id" href="href" major-version="version" minor-version="version">
	<portlet-name>
	<cache>
	<expires>
	<shared>
	<allows>
	<maximized/>
	<minimized/>
	<supports>
	<markup name="name">
	<view/>
	<edit/>
	<help/>
	<configure/>
	<concrete-portlet-app uid="uid">
	<portlet-app-name>
	<context-param>
	<concrete-portlet id="id" href="href">
	<portlet-name>
	<default-locale>
	<language locale="locale">
	<title>
	<title-short>
	<description>
	<keywords>
	<config-param>

	Relationship between the deployment descriptors
	Guidelines for portlet application UIDs

	Portlet development issues
	Compiling and testing portlets
	Setting up a portlet development environment
	Compiling Java source
	Creating the deployment descriptors
	Setting up the WAR file directory structure
	Packaging a portlet and resources into a WAR file
	Testing the sample

	Portlet creation guidelines
	No instance and class variables
	Storing data
	Performance issues
	Guidelines for markup
	Accessibility

	Namespaces/Javascript
	Multi-markup support
	Multi-language support

	Extended WPS PortletServices
	Persistent Backend Connections
	Persistent Backend Connections concept
	Using the PersistentConnection object
	Persistent Backend Connections Service in a cluster
	Usage example

	Credential Vault
	Credential Vault organization
	Vault Segments
	Credential slots
	Credentials objects
	Storing credential objects in the PortletSession

	Credential Vault usage scenarios
	Intranet Lotus Notes mail portlet
	Stock of inventory portlet
	Internet Mail federating POP3 portlet

	Methods of the CredentialVaultService
	getCredentialTypes
	getSlotDescription
	getAccessibleSlots
	setCredentialSecretBinary
	setCredentialSecretUserPassword
	createSlot
	getDefaultVaultSegmentId
	getAllVaultSegments
	getCredential
	getUserSubject

	Programming Example
	Using JAAS to retrieve the user’s credentials
	Basic authentication sample
	LTPA example

	References

