

IBM WebSphere Application Server

v7.0 Performance Optimization

Scripts

Document version [1.0]

Christopher J. Blythe

 [October, 2009]

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

Introduction
A new set of optimized performance tuning scripts are now available for download on the WebSphere®

Application Server Performance site and included within the latest update to the WebSphere

Application Server Base Trial v7.0. These python-based tuning scripts can be used in conjunction with

wsadmin to apply recommended tuning settings for three standard tuning templates. These standard

tuning templates are designed to target individual server instances and apply some of the most common

WebSphere Application Server tuning parameters to suit one of the following three environments:

 Production – Applies tuning well suited for a production environment where application

changes are rare and optimal runtime performance is desired.

 Performance Test – This template is very similar to the production template; however,

adjustments have been made to account for potential changes to the application and to

generate diagnostic information like verbose garbage collection output.

 Development – Tunes the server for a development environment where frequent application

updates are performed and system resources are at a minimum.

A fourth tuning script (Default) is also provided that will return the server configuration to the standard

out-of-the-box defaults.

The tuning parameters and values applied by these templates may not result in optimal performance for

your specific application. These templates should be viewed as a recommended starting point for

improving application server performance. We highly recommend conducting your own performance

evaluation and tuning exercise in order to fine tune the server for your application.

Running the Scripts
The tuning script packages are located in the following directory:

<WAS_HOME>/scriptLibraries/perfTuning/V70

In this directory you will find the following four python tuning scripts corresponding to the four

templates discussed in the introduction.

 production_template.py

 performanceTest_template.py

 development_template.py

 default_template.py

To apply one the tuning templates to your server profile, execute the following command:

<WAS_HOME>/profiles/<PROFILE>/bin/wsadmin -f ../../../scriptLibraries/ perfTuning/V70/<script template>

http://www-01.ibm.com/software/webservers/appserv/was/performance.html
http://www-01.ibm.com/software/webservers/appserv/was/performance.html
http://www.ibm.com/developerworks/downloads/ws/was/
http://www.ibm.com/developerworks/downloads/ws/was/
http://www.ibm.com/developerworks/downloads/ws/was/

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

An additional script file, view_parameters.py, can be used to quickly review the current values of server

parameters modified by the tuning scripts. This script can be invoked using the same method described

above.

The scripts can be run at any time against a single server profile. However, in order to benefit from the

Data Source and class reload tuning described in the next section, the scripts should be executed after

your application and its required resources have been installed.

Tuning Performed By Scripts
The following table details the specific tuning performed by each of the three scripts and compares this

to the original out-of-the-box defaults. If one of the listed parameters is omitted for a particular tuning

template, the cell will be left blank in the table. Further information regarding each tuning parameter

and the impact it has on the server performance is discussed later.

Parameter Server Default Production Performance
Test

Development

JVM Heap Size (MB) 50 min / 256
max

512 min / 512
max

512 min / 512
max

256 min / 512
max

Verbose GC disabled disabled enabled enabled

JVM Diagnostic Trace
(Generic JVM
Arguments)

 -Xtrace:none -Xtrace:none -Xtrace:none

HTTP (9080) and HTTPS
(9443) Channel
maxKeepAliveRequests

100 10000 10000 10000

Development Mode disabled enabled

Server Component
Provisioning

disabled enabled enabled enabled

PMI enabled disabled disabled disabled

Authentication Cache
Timeout *

10 minutes 60 minutes 60 minutes 60 minutes

Override Application
Class Reload Interval *

No – 3 sec
(enabled)

Yes – 0 sec
(disabled)

Yes – 60 sec
(enabled)

JSP Reload Interval enabled – 10 sec disabled enabled – 60 sec

Data Source
Connection Pool Size *

1 min / 10 max 10 min / 50 max 10 min / 50 max

Data Source Prepared
Statement Cache Size*

10 50 50

ORB Pass-by-Reference disabled enabled enabled enabled

Thread Pools
(Web Container, ORB,
Default)

50 min / 50 max,
10 min / 50 max,
20 min / 20 max

 5 min / 10 max

*Indicates items that must exist in the configuration to be tuned. Any new items will be created using the standard server defaults

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

JVM Heap Size – The JavaTM Virtual Machine (JVM) heap size is typically one of the first parameters

tuned in any WebSphere Application Server environment. The overall goal of tuning the heap size is to

not only reduce the frequency of garbage collections, but also minimize the duration of each garbage

collection cycle. This maximizes the number of cycles granted to the server to perform application work.

The default size of 50 MB minimum and 256 MB maximum is generally too small for most applications.

Increasing the heap size to 512 MB minimum and maximum generally reduces the frequency of garbage

collections and eliminates the overhead incurred by the JVM for dynamically managing the heap size.

For the Development profile where optimal performance is not a key factor, the minimum is left at 256

MB to reduce the overall size of the JVM process.

Java virtual machine settings

Tuning the IBM virtual machine for Java

Tuning the HotSpot Java virtual machines (Solaris & HP-UX)

Verbose GC – The verbose garbage collection output generated by the JVM is an essential component in

fine tuning the JVM heap size and garbage collection policy. When enabled, this information is written

to the application server’s native_stderr.log. There is very little performance overhead associated with

verbose garbage collection; however, there is a risk that the log file could grow without bound if left

unchecked. Consequently, the Production profile leaves verbose garbage collection disabled.

Java virtual machine settings

JVM Diagnostic Trace – The low-level JVM diagnostic trace facilities are rarely needed and can be

disabled to eliminate associated overhead. Other diagnostic capabilities like the ability to generate

javacores and heap dumps are not disrupted.

Maximum Keepalives Per Request – This parameter adjusts the number of requests a keepalive

connection can service before the server forces the connection to be closed. This capability is used to

prevent denial of service attacks; however, the default value of 100 is relatively small. Increasing this

parameter has a significant impact on SSL connections where the initial SSL handshake is a costly

operation.

HTTP transport channel settings

Development Mode – This feature reduces the time needed to start the application server by adding

the –Xquickstart and -Xverify:none parameters to the server JVM command line. The quickstart option

directs the JVM to perform class optimization at a lower level, providing an improvement in JVM startup

time. The verify:none parameter directs the JVM to skip class verification which can also provide

benefits to JVM startup time.

Application server settings

Server Component Provisioning – The feature can potentially reduce the startup time and memory

footprint of the application server by allowing internal server components to start as needed. For

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/urun_rconfproc_jvm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.base.doc/info/aes/ae/tprf_tunejvm_v61.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tprf_hotspot_jvm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/urun_rconfproc_jvm.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_chain_typehttp.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/urun_rappsvr.html

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

instance, if an application consists of Java Servlets and JavaServer Pages (JSPTM) only, there is no need

for the server to start the EJB container.

Application server settings

Performance Monitoring Infrastructure (PMI) – The PMI service is enabled by default and provides

common performance statistics for the sever and installed applications. This service is generally useful

for performance tuning and problem determination, but does add additional overhead. Consequently,

we recommend disabling this service unless it is explicitly needed.

Enabling PMI data collection

Authentication Cache Timeout – The authentication cache timeout controls how often authentication

information is refreshed within the cache. Obtaining authentication information from an LDAP server or

other native authentication mechanisms is a costly operation. Increasing the authentication cache

timeout reduces the frequency of these costly updates.

Authentication cache settings

Override Application Class Reload Interval – By default, the application server scans for application

class changes every 3 seconds. This is good for development environments where application changes

are expected on a frequent basis, but may not be necessary in other environments. For instance, in a

test environment less frequent application changes are expected, the default value can be overridden

and increased to 60 seconds. In a production environment, this feature can be disabled all together by

overriding the default value and setting the reload interval to 0. This is extremely useful when trying to

reduce overall cpu cycles consumed by an idle application server.

Class loading and update detection settings

JSP Reload Interval – This feature is similar to the application class reload interval, but extends to an

application’s JSP files.

JavaServer Pages (JSP) runtime reloading settings

Data Source Connection Pool Size – The minimum and maximum connection pool size should be

increased to reduce time spent waiting to obtain a datasource connection from the connection pool. In

this case, the maximum pool size is set to correspond to the default maximum Web Container and ORB

thread pool size of 50. In clustered environments, this setting may overwhelm the database server and

should be adjusted accordingly.

Connection pool settings

Data Source Prepared Statement Cache Size – The prepared statement cache optimizes the processing

of prepared and callable statements by caching them in a least-recently-used (LRU) cache. Most

applications will utilize more than 10 prepared statements. Consequently, the scripts for the

performance test and production environments increase this value to 50. The Tivoli Performance Viewer

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/urun_rappsvr.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tprf_pmi_encoll.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/usec_sec_domains_cache.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/urun_rapp_classload.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rweb_jspreloading.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udat_conpoolset.html

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

can be used to monitor LRU discards from the prepared statement cache to determine if the cache size

should be increased.

Data access tuning parameters

WebSphere Application Server data source properties

ORB Pass-By-Reference – This feature allows the server to use pass-by-reference semantics instead of

pass-by-value semantics for Enterprise JavaBeanTM (EJB) invocations where the EJB client and remote

target exist within the same JVM. This optimization essentially treats EJBs implementing a remote

interface as local and avoids the requisite object copy. In some cases, this can improve performance by

over 50%.

Object Request Broker service settings

Thread Pool Size – The default size of the various threads pools within the application server are

generally well suited for Production and Test environments. However, for Development environments,

the minimum and maximum sizes for the Web Container, ORB, Default thread pools can be reduced to

reduce the memory footprint requirements of the server.

Thread pool settings

http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/topic/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/rdat_datobjtune.html?resultof=%22%70%72%65%70%61%72%65%64%22%20%22%70%72%65%70%61%72%22%20%22%73%74%61%74%65%6d%65%6e%74%22%20%22%63%61%63%68%65%252
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/udat_jdbcdatasorprops.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/uorb_rsetg.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp?topic=/com.ibm.websphere.nd.multiplatform.doc/info/ae/ae/uejb_rthrd.html

© COPYRIGHT IBM CORPORATION 2009. ALL RIGHTS RESERVED.

®

© Copyright IBM Corporation 2009
All Rights Reserved.

IBM, the IBM (logo), and WebSphere are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.

Solaris, Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

References in this publication to IBM products or services do not imply that IBM intends to make them available in
all countries in which IBM operates. The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATIONPROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTYOF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUTNOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR APARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the
information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

The information in this publication is provided AS IS without warranty. Such information was obtained from
publicly available sources, is current as of January 2009, and is subject to change. Any performance data included
in the paper was obtained in the specific operating environment and is provided as an illustration. Performance in
other operating environments may vary. More specific information about the capabilities of products described
should be obtained from the suppliers of those products.

