
IBM WebSphere Real Time for AIX
Version 3

User Guide

���

IBM WebSphere Real Time for AIX
Version 3

User Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 67.

Fifth edition (February 2014)

This edition of the user guide applies to IBM WebSphere Real Time for AIX, Version 3, and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Preface ix

Chapter 1. Introduction 1
Overview of WebSphere Real Time for AIX 1
What's new 1
Benefits 2
Accessibility 2

Chapter 2. Understanding IBM
WebSphere Real Time for AIX 3
Introduction to the Metronome Garbage Collector . . 3

Chapter 3. Planning. 5
Migration 5
Supported environments 5
Additional information for AIX 6
Considerations. 7

Chapter 4. Installing IBM WebSphere
Real Time for AIX. 9
Installation files 9
Installing from an installp package 9

Relocating WebSphere Real Time for AIX . . . 10
Installing from an InstallAnywhere package . . . 10

Completing an attended installation 11
Completing an unattended installation 11
Interrupted installation 12
Known issues and limitations 12

Configuring user accounts 13
Setting the path 13
Setting the classpath 14
Verifying the installation 15

Chapter 5. Running IBM WebSphere
Real Time for AIX applications 17
Using the Metronome Garbage Collector 17

Controlling pause time 17
Controlling processor utilization 21
Metronome Garbage Collector limitations . . . 22

Chapter 6. Developing applications . . 23
The sample real-time hash map. 23

Chapter 7. Performance 25
Class data sharing between JVMs 25

Chapter 8. Security 27
Security considerations for the shared class cache. . 27

Chapter 9. Troubleshooting and
support 29
General problem determination methods 29

AIX problem determination 29
NLS problem determination 30
ORB problem determination 30

Troubleshooting OutOfMemory Errors 31
Diagnosing OutOfMemoryErrors 31

Using diagnostic tools 35
Using the IBM Monitoring and Diagnostic Tools
for Java. 35
Using dump agents. 37
Using Javadump. 39
Using Heapdump 44
Using system dumps and the dump viewer . . 46
Tracing Java applications and the JVM 47
JIT and AOT problem determination 47
The Diagnostics Collector. 53
Garbage Collector diagnostic data 53
Shared classes diagnostic data 58
Using the JVMTI 59
Using the Diagnostic Tool Framework for Java . 59

Chapter 10. Reference 61
Command-line options 61

Specifying Java options and system properties. . 61
System properties 61
Standard options 62
Non-standard options 63

Default settings for the JVM 64

Notices 67
Privacy Policy Considerations 68
Trademarks 69

Index 71

© Copyright IBM Corp. 2003, 2014 iii

iv IBM WebSphere Real Time for AIX: User Guide

Figures

1. Actual garbage collection pause times when
the target pause time is set to the default (3
milliseconds) 18

2. Actual pause times when the target pause time
is set to 6 milliseconds 19

3. Actual pause times when the target pause time
is set to 10 milliseconds 20

4. Actual pause times when the target pause time
is set to 15 milliseconds 21

© Copyright IBM Corp. 2003, 2014 v

vi IBM WebSphere Real Time for AIX: User Guide

Tables

1. AIX environments tested 6
2. Thread names in IBM WebSphere Real Time

for AIX 42

© Copyright IBM Corp. 2003, 2014 vii

viii IBM WebSphere Real Time for AIX: User Guide

Preface

This user guide provides general information about IBM® WebSphere® Real Time
for AIX®.

© Copyright IBM Corp. 2003, 2014 ix

x IBM WebSphere Real Time for AIX: User Guide

Chapter 1. Introduction

This information tells you about IBM WebSphere Real Time for AIX.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Late breaking information about the IBM WebSphere Real Time for AIX that is not
available in the user guide can be found here: http://www.ibm.com/support/
docview.wss?uid=swg21501145
v “Overview of WebSphere Real Time for AIX”
v “What's new”
v “Benefits” on page 2

Overview of WebSphere Real Time for AIX
WebSphere Real Time for AIX bundles real-time capabilities with the IBM J9 virtual
machine (JVM).

WebSphere Real Time for AIX is a Java™ Runtime Environment with a Software
Development Kit that extends the IBM SDK for Java with real-time capabilities.
Applications that are dependent on precise response times can take advantage of
the real-time features provided with WebSphere Real Time for AIX on standard
Java technology.

Features

Real-time applications need consistent run time rather than absolute speed.

The main concerns when deploying real-time applications with traditional JVMs
are as follows:
v Unpredictable (potentially long) delays from Garbage Collection (GC) activity.
v Delays to method run time as Just-In-Time (JIT) compilation and recompilation

occurs, with variability in execution time.
v Arbitrary operating system scheduling.

WebSphere Real Time for AIX removes these obstacles by providing:
v The Metronome Garbage Collector, an incremental, deterministic garbage

collector with very short pause times.

What's new
This topic introduces changes for IBM WebSphere Real Time for AIX .

WebSphere Real Time for AIX V3

WebSphere Real Time for AIX V3 is an extension to the IBM SDK for Java V7,
building on the features and functions available with this release to include
real-time capabilities. Earlier versions of WebSphere Real Time for AIX were based
on earlier releases of the IBM SDK for Java.

© Copyright IBM Corp. 2003, 2014 1

http://www.ibm.com/support/docview.wss?uid=swg21501145
http://www.ibm.com/support/docview.wss?uid=swg21501145

To learn more about what's new in IBM SDK for Java V7, see: What's new in the
IBM SDK for Java 7 information center.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Controlling pause times for the Metronome Garbage Collector

By default, the metronome garbage collector pauses for 3 milliseconds between
garbage collection cycles. You can change this value to control the pause time
using a new command-line option. For more information about this option, see
“Controlling pause time” on page 17.

Compressed references

The metronome garbage collector now supports uncompressed references as well
as compressed references on 64-bit platforms. For any performance implications,
see Chapter 7, “Performance,” on page 25.

Benefits
The benefits of the real-time environment are that Java applications run with a
greater degree of predictability than with the standard JVM and provide consistent
timing behavior for your Java application. Background activities, such as
compilation and garbage collection, occur at given times and thus remove any
unexpected peaks of background activity when running your application.

You obtain these advantages by extending the JVM with the Metronome real time
garbage collection technology.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate WebSphere Real Time for AIX without a mouse, by
using only the keyboard.

To read about issues that affect accessibility of the underlying IBM SDK for Java
V7, see IBM Information Center. There are no accessibility issues affecting unique
features and capabilities in WebSphere Real Time for AIX.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

2 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/preface/changes_70/changes.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/user/limitations_7.html
http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

Chapter 2. Understanding IBM WebSphere Real Time for AIX

This section introduces key components of IBM WebSphere Real Time for AIX.
v “Introduction to the Metronome Garbage Collector”

Introduction to the Metronome Garbage Collector
The Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for AIX.

The key difference between Metronome garbage collection and standard garbage
collection is that Metronome garbage collection occurs in small interruptible steps
but standard garbage collection stops the application while it marks and collects
garbage.

For example:
java -Xgcpolicy:metronome -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60ms. The
remaining 20% of the time might be used for garbage collection, if there is garbage
to be collected. The Metronome Garbage Collector guarantees utilization levels
provided that it has been given sufficient resources. Garbage collection begins
when the amount of free space in the heap falls below a dynamically determined
threshold.

Metronome garbage collection and class unloading

Metronome supports class unloading in the same way as a standard Java
developer kit. However, because of the work involved, while unloading classes
there might be pause time outliers during garbage collection activities.

Metronome Garbage Collector threads

The Metronome Garbage Collector consists of two types of threads: a single alarm
thread, and a number of collection (GC) threads. By default, GC uses one thread
for each logical active processor available to the operating system. This enables the
most efficient parallel processing during GC cycles. A GC cycle means the time
between GC being triggered and the completion of freeing garbage. Depending on
the Java heap size, the elapsed time for a complete GC cycle could be several
seconds. A GC cycle usually contains hundreds of GC quanta. These quanta are the
very short pauses to application code, typically lasting 3 milliseconds. Use
-verbose:gc to get summary reports of cycles and quanta. For more information,
see: “Using verbose:gc information” on page 54. You can set the number of GC
threads for the JVM using the -Xgcthreads option.

There is no benefit from increasing -Xgcthreads above the default. Reducing
-Xgcthreads can reduce overall CPU load during GC cycles, though GC cycles will
be lengthened.

Note: GC quanta duration targets remain constant at 3 milliseconds.

You cannot change the number of alarm threads for the JVM.

© Copyright IBM Corp. 2003, 2014 3

The Metronome Garbage Collector periodically checks the JVM to see if the heap
memory has sufficient free space. When the amount of free space falls below the
limit, the Metronome Garbage Collector triggers the JVM to start garbage
collection.
Alarm thread

The single alarm thread guarantees to use minimal resources. It “wakes” at
regular intervals and makes these checks:
v The amount of free space in the heap memory
v Whether garbage collection is currently taking place

If insufficient free space is available and no garbage collection is taking
place, the alarm thread triggers the collection threads to start garbage
collection. The alarm thread does nothing until the next scheduled time for
it to check the JVM.

Collection threads
The collection threads perform the garbage collection.

After the garbage collection cycle has completed, the Metronome Garbage Collector
checks the amount of free heap space. If there is still insufficient free heap space,
another garbage collection cycle is started using the same trigger ID. If there is
sufficient free heap space, the trigger ends and the garbage collection threads are
stopped. The alarm thread continues to monitor the free heap space and will
trigger another garbage collection cycle when it is required.

For more information about using the Metronome Garbage Collector, see “Using
the Metronome Garbage Collector” on page 17.

4 IBM WebSphere Real Time for AIX: User Guide

Chapter 3. Planning

Read this section before installing WebSphere Real Time for AIX.
v

v “Supported environments”
v

v “Considerations” on page 7

Migration
You can run your standard Java applications on WebSphere Real Time for AIX
without modification.

Supported environments
IBM WebSphere Real Time for AIX is supported on certain hardware platforms and
operating systems.

IBM WebSphere Real Time for AIX

The 32-bit and 64-bit SDKs run on hardware that supports the following platform
architectures:
v IBM POWER® 4
v IBM POWER 5
v IBM POWER 6
v IBM POWER 7
v JS20 blades

IBM WebSphere Real Time for AIX also runs on older System p® systems that have
a Common Hardware Reference Platform (CHRP) architecture. To test whether
IBM WebSphere Real Time for AIX is supported on a specific System p system, at
the system prompt type:
lscfg -p | fgrep Architecture

The output for a supported platform reads:
Model Architecture: chrp

A minimum of 512 MB of physical memory is required for simple applications. For
good performance, more complex applications require a larger memory
configuration.

IBM WebSphere Real Time for AIX operates on Very Large Symmetric
Multiprocessor systems. However, the additional computational power of systems
with more than eight physical processor cores might give diminishing benefits. To
optimize the extra capacity of these systems, multiple LPARs with up to eight
physical processors each are recommended.

The following operating systems are supported:

© Copyright IBM Corp. 2003, 2014 5

Table 1. AIX environments tested

Operating system 32-bit SDK 64-bit SDK

AIX 6.1 TL5 Yes Yes

AIX 7.1.0.0 Yes Yes

Additional information for AIX
Important information for IBM WebSphere Real Time for AIX.

AIX APARs required for IBM WebSphere Real Time for AIX.

To avoid problems when using Java, ensure that you have any prerequisite AIX
APARs installed. For further information about the APARs needed for an AIX
level, see http://www.ibm.com/support/docview.wss?uid=swg21605167.

Environment variables

The environment variable LDR_CNTRL=MAXDATA is not supported for 64-bit processes.
Use LDR_CNTRL=MAXDATA only on 32-bit processes.

Graphics terminal

If you are using IBM WebSphere Real Time for AIX on 64-bit AIX, with UTF-8
locale and the local graphics terminal uses the UTF-8 locale, you might see an
exception from java.io.Console.

On AIX 6.1, the exception is:
IZ97736: CANNOT CONTROL TTY ATTRIBUTE BY USING 64BIT PROGRAM

For more information, see the APAR https://www-304.ibm.com/support/
docview.wss?uid=isg1IZ97736.

On AIX 7.1, the exception is:
IZ97912: CANNOT CONTROL TTY ATTRIBUTE BY USING 64BIT PROGRAM

For more information, see the APAR https://www-304.ibm.com/support/
docview.wss?uid=isg1IZ97912.

Use of non-UTF8 CJK locales

If you are using one of the supported non-UTF8 CJK locales, you must install one
of these file sets.
X11.fnt.ucs.ttf (for ja_JP or Ja_JP)
X11.fnt.ucs.ttf_CN (for zh_CN or Zh_CN)
X11.fnt.ucs.ttf_KR (for ko_KR)
X11.fnt.ucs.ttf_TW (for zh_TW or Zh_TW)

Note: The installation images are available on the AIX base CDs. Updates are
available from the AIX fix distribution website.

When using the zh_TW.IBM-eucTW locale on 64-bit AIX 6.1, you might get a result
that uses ISO-8859-1 instead of IBM-eucTW, in response to the following command:
$ LANG=zh_TW locale charmap

6 IBM WebSphere Real Time for AIX: User Guide

http://www.ibm.com/support/docview.wss?uid=swg21605167
https://www-304.ibm.com/support/docview.wss?uid=isg1IZ97736
https://www-304.ibm.com/support/docview.wss?uid=isg1IZ97736
https://www-304.ibm.com/support/docview.wss?uid=isg1IZ97912
https://www-304.ibm.com/support/docview.wss?uid=isg1IZ97912
http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html

The different return might affect operation of the IBM WebSphere Real Time for
AIX. If you encounter this effect, contact IBM Support for more information.

Java 2D graphics

If you want to use the improved Java 2D graphics pipeline, based on the X11
XRender extension, you must install the libXrender.so library, version 0.9.3 or
later.

Considerations
You must be aware of a number of factors when using WebSphere Real Time for
AIX.
v Where possible, do not run more than one real-time JVM on the same system.

The reason is that you would then have multiple garbage collectors. Each JVM
does not know about the memory areas of the other. One effect is that GC cycles
and pause times cannot be coordinated across JVMs, meaning that it is possible
for one JVM to affect adversely the GC performance of another JVM. If you
must use multiple JVMs, ensure that each JVM is bound to a specific subset of
processors by using the execrset command.

v The shared caches used by earlier WebSphere Real Time for AIX releases to store
precompiled code and classes are not compatible with the caches used by this
release of WebSphere Real Time for AIX. You must regenerate the contents of the
earlier caches.

v When using shared class caches, the cache name must not exceed 53 characters.
v Workload partitions (WPAR) are not supported.
v Micropartitions are not supported. Logical partitions (LPAR) with an integral

number of processors are supported, but LPARs with a fractional number of
processors, for example 0.5 or 1.5, are not.

Chapter 3. Planning 7

8 IBM WebSphere Real Time for AIX: User Guide

Chapter 4. Installing IBM WebSphere Real Time for AIX

Follow these steps to install WebSphere Real Time for AIX.

Installation files
You require these installation files.

IBM WebSphere Real Time for AIX is provided in two types of package.

Installable packages
Installable packages configure your system. For example, the programs
might set environment variables. Extracting this package provides the AIX
installp filesets that you install with the smitty tool.
v wrt-3.0-0.0-aix-<arch>-sdk-tar.gz

The JRE is available only as an archive package.

Archive packages
These packages extract the files to your system, but do not perform any
configuration. These are InstallAnywhere packages.
v wrt-3.0-0.0-aix-<arch>-sdk-archive.bin

v wrt-3.0-0.0-aix-<arch>-jre-archive.bin

Note: <arch> is your platform architecture; ppc_32 or ppc_64.

Before you begin, ensure that the AIX operating system is correctly configured, and
the required patches are installed. Details can be found here: “Supported
environments” on page 5. In particular, ensure that you have installed the required
APARs for your system.

Installing from an installp package
After downloading the installation file you must extract the AIX filesets before
installing WebSphere Real Time for AIX.

Before you begin

Ensure that you have downloaded the correct installation package specified in
“Installation files.” If you are accessing Passport Advantage®, this file might have a
different name.

Procedure

These steps need to be performed one time only:
1. Extract the tar file from the installation package with the following command:

gunzip <package>

where <package> is the installable package wrt-3.0-0.0-aix-<arch>-sdk-
tar.gz.

2. Extract the installp filesets from the tar file with the following command:
tar xvf <tar_file>

© Copyright IBM Corp. 2003, 2014 9

where <tar_file> is the extracted tar file from step 1.
3. Use the AIX installp command to install WebSphere Real Time for AIX.
4. When the installation process is completed, follow the configuration steps in

this section, starting with “Configuring user accounts” on page 13.

Relocating WebSphere Real Time for AIX
By default, the WebSphere Real Time for AIX SDK is installed in
/usr/javawrt3[_64]/. To install in another directory, use the AIX relocation
commands.

Delete any .toc files in the directory containing your installp images or PTFs
before using the AIX relocation commands.

Commands

See the AIX man pages for reference information about the command-line options
for these commands.

installp_r
Install the SDK:
installp_r -a -Y -R /<Install Path>/ -d ’.’ <fileset>

Remove the SDK:
installp_r -u -R /<Install Path>/ <fileset>

lsusil List the user-defined installation paths.
lsusil

lslpp_r
Find details of installed products.
lslpp_r -R /<Install Path>/ -S [A|O]

rmusil Remove existing user-defined installation paths.
rmusil -R /<Install Path>/

Installing from an InstallAnywhere package
These packages provide an interactive program that guides you through the
installation options. You can run the program as a graphical user interface, or from
a system console.

About this task

The InstallAnywhere packages have a .bin file extension.

Procedure
v To install the package in an interactive way, complete an attended installation.
v To install the package without any additional user interaction, complete an

unattended installation. You might choose this option if you want to install
many systems.

v When the installation process is completed, follow the configuration steps in this
section, such as settting path and classpath environment variables.

10 IBM WebSphere Real Time for AIX: User Guide

Results

Completing an attended installation
Install the product from an InstallAnywhere package, in an interactive way.

Before you begin

Check the following conditions before you begin the installation process:
v You must have a user ID with root authority.

Procedure
1. Download the installation package file to a temporary directory.
2. Change to the temporary directory.
3. Start the installation process by typing ./package at a shell prompt, where

package is the name of the package that you are installing.
4. Select a language from the list shown in the installer window, then click Next.

The list of available languages is based on the locale setting for your system.
5. Read the license agreement, using the scroll bar to reach the end of the license

text. To proceed with the installation you must accept the terms of the license
agreement. To accept the terms, select the radio button, then click OK.

Note: You cannot select the radio button to accept the license agreement until
you have read to the end of the license text.

6. You are asked to choose the target directory for the installation. If you do not
want to install into the default directory, click Choose to select an alternative
directory, by using the browser window. When you have chosen the installation
directory, click Next to continue.

7. You are asked to review the choices that you made. To change your selection,
click Previous. If your choices are correct, click Install to proceed with
installation.

8. When the installation process is complete, click Done to finish.

Completing an unattended installation
If you have more than one system to install, and you already know the installation
options that you want to use, you might want to use the unattended installation
process. You install once by using the attended installation process, then use the
resulting response file to complete further installations without any additional user
interaction.

Procedure
1. Create a response file by completing an attended installation. Use one of the

following options:
v Use the GUI and specify that the installation program creates a response file.

The response file is called installer.properties, and is created in the
installation directory.

v Use the command line and append the -r option to the attended installation
command, specifying the full path to the response file. For example:
./package -r /path/installer.properties

Example response file contents:
INSTALLER_UI=silent
USER_INSTALL_DIR=/my_directory

Chapter 4. Installing IBM WebSphere Real Time for AIX 11

In this example, /my_directory is the target installation directory that you
chose for the installation.

2. Optional: If required, edit the response file to change options.

Note: The packages have the following known issue: installations that use a
response file use the default directory even if you change the directory in the
response file. If a previous installation exists in the default directory, it is
overwritten.
If you are creating more than one response file, each with different installation
options, specify a unique name for each response file, in the format
myfile.properties.

3. Optional: Generate a log file. Because you are installing silently, no status
messages are displayed at the end of the installation process. To generate a log
file that contains the status of the installation, complete the following steps:
a. Set the required system properties by using the following command.

export _JAVA_OPTIONS="-Dlax.debug.level=3 -Dlax.debug.all=true"

b. Set the following environment variable to send the log output to the
console.
export LAX_DEBUG=1

4. Start an unattended installation by running the package installer with the -i
silent option, and the -f option to specify the response file. For example:
./package -i silent -f /path/installer.properties 1>console.txt 2>&1

./package -i silent -f /path/myfile.properties 1>console.txt 2>&1

You can use a fully qualified path or relative path to the properties file. In these
examples, the string 1>console.txt 2>&1 redirects installation process
information from the stderr and stdout streams to the console.txt log file in
the current directory. Review this log file if you think there was a problem with
the installation.

Note: If your installation directory contains multiple response files, the default
response file, installer.properties is used.

Interrupted installation
If the package installer is unexpectedly stopped during installation, for example if
you press Ctrl+C, the installation is corrupted and you cannot uninstall or reinstall
the product. If you try to uninstall or reinstall you might see the message Fatal
Application Error.

About this task

To solve this problem, delete files and reinstall, as described in the following steps.

Procedure
1. Delete the /var/.com.zerog.registry.xml registry file.
2. Delete the directory containing the installation, if it was created. For example

/usr/javawrt3[_64]/.
3. Run the installation program again.

Known issues and limitations
The InstallAnywhere packages have some known issues and limitations.

12 IBM WebSphere Real Time for AIX: User Guide

v The installation package GUI does not support the Orca screen-reading program.
You can use the unattended installation mode as an alternative to the GUI.

v If, after installation, you enter ./package to start the program again, the program
displays the following message:
ENTER THE NUMBER OF THE DESIRED CHOICE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

If you press Enter to accept the default, the program does not respond. Type a
number, then press Enter.

v If you install the package, then attempt to install again in a different mode, for
example console or silent, you might see the following error message:
Invocation of this Java Application has caused an InvocationTargetException.
This application will now exit

You should not see this message if you installed by using the GUI mode and are
running the installation program again in console mode. .

v If you change the installation directory in a response file, and then run an
unattended installation by using that response file, the installation program
ignores the new installation directory and uses the default directory instead. If a
previous installation exists in the default directory, it is overwritten.

Configuring user accounts
Important steps to configure AIX user accounts correctly on your system.

Procedure

This step must be completed one time only:
1. When the installation process is completed, you must change the user account

to allow access to high-resolution timers. Run the following command as root
user:
chuser "capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE" <username>

where <username> is the non-root AIX user account.

Note: The user must log out and log back in for the change to take effect.

This step must be completed in every shell before starting Java:
1. Set the AIXTHREAD_HRT environment variable to true. This environment variable

allows a process to use high-resolution timeouts with clock_nanosleep(). You
must set this environment variable each time the process is started. On the
command line, type:
AIXTHREAD_HRT=true

This setting can be added to a user's .profile so that it is set each time the
user logs in. Add the following line to the user .profile file:
export AIXTHREAD_HRT=true

Setting the path
Updating the PATH environment variable enables the operating system to find Java
programs and utilities.

Chapter 4. Installing IBM WebSphere Real Time for AIX 13

About this task

The PATH environment variable enables the operating system to find programs and
utilities, such as javac, java, and javadoc tool from any current directory.
Changing the path will override any existing Java launchers in your path.

To display the current value of your PATH environment variable, type the following
command at a command prompt:
echo $PATH

To add the Java launchers to your path:
1. Edit the shell startup file in your home directory. The name of your startup file

will depend on the shell you are using; for example:
v The Korn shell startup file is .kshrc.
v The C shell startup file is .cshrc.
v The Bourne shell startup file is .profile.
v The BASH shell startup file is .bashrc.

Add the absolute paths to the PATH environment variable; for example:
export PATH=/usr/javawrt3[_64]/jre/bin:/usr/javawrt3[_64]/bin:$PATH

Note: The actual path name varies, depending on whether you used the
default installation directory.

2. Log on again or run the updated shell script to activate the new PATH
environment variable.

Results

After setting the path, you can run a tool by typing the tool command name at a
command prompt from any directory. For example, to compile the file
Myfile.Java, type:
javac Myfile.Java

Setting the classpath
The classpath tells the SDK tools, such as java, javac, and the javadoc tool, where
to find the Java class libraries.

About this task

Set the classpath explicitly only for these reasons:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH environment variable, type the
following command at a shell prompt:
echo $CLASSPATH

14 IBM WebSphere Real Time for AIX: User Guide

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set the
CLASSPATH and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own shell.

Verifying the installation
Follow these steps to check that your installation was successful.

Before you begin

To help ensure that the verification process behaves consistently, first run these
commands:
unset LIBPATH
unset CLASSPATH
unset JAVA_COMPILER
unset JAVA_HOME
export PATH=/usr/javawrt3[_64]/jre/bin:/usr/javawrt3[_64]/bin:$PATH

Procedure

Enter the following command:
java -Xgcpolicy:metronome -version

If the installation was successful, the following information is displayed:
java version "1.7.0"
WebSphere Real Time V3 (build pap3270-20110428_04)
IBM J9 VM (build 2.6, JRE 1.7.0 AIX ppc-32 20110427_81014 (JIT enabled, AOT enabled)
J9VM - R26_head_20110426_2022_B81001
JIT - r11_20110426_19388
GC - R26_head_20110426_1548_B80973
J9CL - 20110427_81014)
JCL - 20110427_03 based on Oracle 7b145

Dates, times, and specific build information might be different.

What to do next

When verification is complete, log on again and review any values that you might
have assigned to these variables for possible conflicts.

Unless the .hotjava directory already exists, run the applet viewer to create a
directory called .hotjava in your home directory. Enter the following command to
confirm that the directory has been created:
ls -a ~

Chapter 4. Installing IBM WebSphere Real Time for AIX 15

16 IBM WebSphere Real Time for AIX: User Guide

Chapter 5. Running IBM WebSphere Real Time for AIX
applications

Important information to assist you when running real time applications.
v

v

v “Using the Metronome Garbage Collector”

Using the Metronome Garbage Collector
Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for AIX.

Controlling pause time
Metronome garbage collector (GC) pause time can be fine-tuned for each Java
process.

By default, the Metronome GC pauses for 3 milliseconds in each individual pause,
which is known as a quantum. A full garbage collection cycle requires many of
these pauses, which are spread out to give the application enough time to run. You
can change this maximum individual pause time value with the
-Xgc:targetPauseTime option. For example, running with -Xgc:targetPauseTime=20
causes the GC to operate with individual pauses that are no longer than 20
milliseconds.

The IBM Monitoring and Diagnostics Tools for Java - Garbage Collection and
Memory Visualizer (GCMV) can be used to monitor the GC pause times for your
application, as well as helping to diagnose and tune performance problems in your
Java application. The tool parses and plots data from various types of log,
including:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The graphs in this section are generated by GCMV, and show the affect of
changing the target pause time on garbage collection cycles. Each graph plots the
actual pause times between metronome garbage collection cycles (Y-axis) against
the run time of an application (X-axis).

Note: GCMV supports an older verbose garbage collection format. If you want to
analyze verbose GC output with GCMV, generate the output with the
-Xgc:verboseFormat=deprecated option. For more information, see GC
command-line options.

With the default target pause time set, the Verbose GC pause time graph shows
that pause times are held around or below the 3 millisecond mark:

© Copyright IBM Corp. 2003, 2014 17

|

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/appendixes/cmdline/commands_gc.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/appendixes/cmdline/commands_gc.html

With a target pause time set at 6 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 6 millisecond mark:

20 40 60 80 100 120 140 160 180 200

0.0030

0.0025

0.0020

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0015

0.0010

0.0005

0.0000

Figure 1. Actual garbage collection pause times when the target pause time is set to the default (3 milliseconds)

18 IBM WebSphere Real Time for AIX: User Guide

With a target pause time set at 10 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 10 millisecond mark:

0.0065

20 40 60 80 100 120 140 160 180 200

0.0060

0.0050

0.0055

0.0045

0.0040

0.0035

0.0030

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Figure 2. Actual pause times when the target pause time is set to 6 milliseconds

Chapter 5. Running applications 19

With a target pause time set at 15 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 15 millisecond mark:

0.0110

20 40 60 80 100 120 140 160 180 200

0.0100

0.0080

0.0090

0.0070

0.0060

0.0050

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0040

0.0030

0.0020

0.0010

0.0000

Figure 3. Actual pause times when the target pause time is set to 10 milliseconds

20 IBM WebSphere Real Time for AIX: User Guide

Controlling processor utilization
You can limit the amount of processing power available to the metronome garbage
collector.

You can control garbage collection with the Metronome Garbage Collector using
the -Xgc:targetUtilization=N option to limit the amount of CPU used by the
Garbage Collector.

For example:
java -Xgcpolicy:metronome -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60 milliseconds.
The remaining 20% of the time is used for garbage collection. The Metronome
Garbage Collector guarantees utilization levels provided that it has been given
sufficient resources. Garbage collection begins when the amount of free space in
the heap falls below a dynamically determined threshold.

0.0160

20 40 60 80 100 120 140 160 180 200

0.0140

0.0120

0.0100

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0080

0.0060

0.0040

0.0020

0.0000

Figure 4. Actual pause times when the target pause time is set to 15 milliseconds

Chapter 5. Running applications 21

Metronome Garbage Collector limitations
This topic captures any known issues or limitations that affect the metronome GC
policy.

Long pause times during garbage collection

Under rare circumstances, you might experience longer than expected pauses
during garbage collection. During garbage collection, a root scanning process is
used. The garbage collector walks the heap, starting at known live references.
These references include:
v Live reference variables in the active thread call stacks.
v Static references.

To find all the live object references on an application thread's stack, the garbage
collector scans all the stack frames in that thread's call stack. Each active thread
stack is scanned in an uninterruptible step. Therefore the scan must take place
within an individual GC pause.

The effect is that the system performance might be worse than expected if you
have some threads with very deep stacks, because of extended garbage collection
pauses at the beginning of a collection cycle.

22 IBM WebSphere Real Time for AIX: User Guide

Chapter 6. Developing applications

Important information about writing real time applications, including code
samples.
v “The sample real-time hash map”

The sample real-time hash map
WebSphere Real Time for AIX includes HashMap and HashSet implementations
that provide more consistent performance for the put method than the standard
HashMap in the IBM SDK for Java 7.

The standard java.util.HashMap that IBM provides works well for high throughput
applications. It also helps with applications that know the maximum size their
hash map needs to grow to. For applications that need a hash map that could
grow to variable sizes, depending on usage, there is a potential performance
problem with the standard hash map. The standard hash map provides good
response times for adding new entries into the hash map using the put method.
However, when the hash map fills up, a larger backing store must be allocated.
This means that the entries in the current backing store must be migrated. If the
hash map is large, the time to perform a put could also be large. For example, the
operation could take several milliseconds.

WebSphere Real Time for AIX includes a sample real-time hash map. It provides
the same functional interface as the standard java.util.HashMap, but enables much
more consistent performance for the put method. Instead of creating a backing
store and migrating all the entries when the hash map fills up, the sample hash
map creates an additional backing store. The new backing store is chained to the
other backing stores in the hash map. The chaining initially causes a slight
performance reduction while the empty backing store is allocated and chained to
the other backing stores. Once the backing hash map is updated, it is faster than
having to migrate all the entries. A disadvantage of the real-time hash map is that
the get, put and remove operations are slightly slower. The operations are slower
because each look-up must to proceed through a set of backing hash maps instead
of just one.

To try out the real-time hash map, add the RTHashMap.jar file to the start of your
boot class path. If you installed WebSphere Real Time for AIX into the directory
$WRT_ROOT, then add the following option to use the real-time hash map with your
application, instead of the standard hash map:
-Xbootclasspath/p:$WRT_ROOT/demo/realtime/RTHashMap.jar

The source and class files for the real-time hash map implementation are included
in the demo/realtime/RTHashMap.jar file. In addition, a real time
java.util.LinkedHashMap and java.util.HashSet implementation are also provided.

© Copyright IBM Corp. 2003, 2014 23

24 IBM WebSphere Real Time for AIX: User Guide

Chapter 7. Performance

WebSphere Real Time for AIX is optimized for consistently short GC pauses rather
than the highest throughput performance or smallest memory footprint.

Performance on certified hardware configurations

Certified systems have sufficient clock granularity and processor speed to support
WebSphere Real Time for AIX performance goals. For example, a well-written
application running on a system that is not overloaded, and with an adequate
heap size, would normally experience GC pause times of about 3 milliseconds, and
no more than 3.2 milliseconds. During GC cycles, an application with default
environment settings is not paused for more than 30% of elapsed time during any
sliding 60 millisecond window. The collective time spent in GC pauses over any 60
millisecond period normally totals about 18 milliseconds.

Reducing timing variability

The main sources of variability in a standard JVM are garbage collection pauses. In
WebSphere Real Time for AIX, the potentially long pauses from standard Garbage
Collector modes are avoided by using the Metronome Garbage Collector. See
“Using the Metronome Garbage Collector” on page 17.

Class data sharing between JVMs

Class data sharing provides a transparent method of reducing memory footprint
and improving JVM start time. To learn more on class data sharing see “Class data
sharing between JVMs”

Compressed references

The Metronome GC supports both compressed and uncompressed references on
64-bit platforms. When using compressed references, the JVM stores all references
to objects, classes, threads, and monitors as 32-bit values. Using compressed
references improves the performance of many applications because objects are
smaller, resulting in less frequent garbage collection and improved memory cache
utilization.

Note: The heap size available for compressed references is limited to about 28 GB.
For further information about compressed references, see http://
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/
diag/understanding/mm_compressed_references.html.

Class data sharing between JVMs
Support for shared classes is the same when running with, or without, the
-Xrealtime option.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
memory-mapped cache file on disk. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is deleted.

© Copyright IBM Corp. 2003, 2014 25

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/understanding/mm_compressed_references.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/understanding/mm_compressed_references.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/understanding/mm_compressed_references.html

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Note: A real-time shared classes cache cannot be removed by a non real-time
JVM.

26 IBM WebSphere Real Time for AIX: User Guide

|
|

Chapter 8. Security

This section contains important information about security.

Security considerations for the shared class cache
The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

When using the shared class cache, you must be aware of the default permissions
for new files so that you can improve security by restricting access.

File Default permissions

new shared caches read permissions for group and other

javasharedresources directory world read, write, and execute permission

You require write permission on both the cache file and the cache directory to
destroy or grow a cache.

Changing the file permissions on the cache file

To limit access to a shared class cache, you can use the chmod command.

Change required Command

Limit access to the user and group chmod 770 /tmp/javasharedresources

Limit access to the user chmod 700 /tmp/javasharedresources

Limit the user to read and write access only
for a particular cache

chmod 600 /tmp/javasharedresources/<file
for shared cache>

Limit the user and group to read and write
access only for a particular cache

chmod 660 /tmp/javasharedresources/<file
for shared cache>

Connecting to a cache that you do not have permission to
access

If you try to connect to a cache that you do not have the appropriate access
permissions for, you see an error message:
JVMSHRC226E Error opening shared class cache file
JVMSHRC220E Port layer error code = -302
JVMSHRC221E Platform error message: Permission denied
JVMJ9VM015W Initialization error for library j9shr25(11): JVMJ9VM009E J9VMDllMain
failed
Could not create the Java virtual machine.

© Copyright IBM Corp. 2003, 2014 27

28 IBM WebSphere Real Time for AIX: User Guide

Chapter 9. Troubleshooting and support

Troubleshooting and support for WebSphere Real Time for AIX
v “General problem determination methods”
v “Troubleshooting OutOfMemory Errors” on page 31
v “Using diagnostic tools” on page 35

General problem determination methods
Problem determination helps you understand the kind of fault you have, and the
appropriate course of action.

When you know what kind of problem you have, you might do one or more of the
following tasks:
v Fix the problem.
v Find a good workaround.
v Collect the necessary data with which to generate a bug report to IBM.

AIX problem determination
This section describes problem determination on AIX.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems on AIX, covering:
v Setting up and checking your AIX environment
v General debugging techniques
v Diagnosing crashes
v Debugging hangs
v Understanding memory usage
v Debugging performance problems

You can find this information here: IBM SDK for Java 7 - AIX problem
determination.

The following information is supplementary for IBM WebSphere Real Time for AIX

Setting up and checking your AIX environment

Check that your path statement is correctly set up. See “Setting the path” on page
13.

Debugging with the DBX plug-in

The plug-in for the AIX DBX debugger gives DBX users enhanced features when
working on Java processes or core files generated by Java processes.

To enable the plug-in on 32-bit AIX, use the DBX command pluginload:
pluginload $JAVAHOME/jre/lib/ppc/softrealtime/libdbx_j9.so

On 64-bit AIX, use:

© Copyright IBM Corp. 2003, 2014 29

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/pd.html

pluginload $JAVAHOME/jre/lib/ppc64/softrealtime/libdbx_j9.so

You can also set the DBX_PLUGIN_PATH environment variable to
$JAVAHOME/jre/lib/ppc[64]/softrealtime. DBX automatically loads any plug-ins
found in the specified path.

For more information about using the DBX plug-in, see DBX plug-in.

NLS problem determination
The JVM contains built-in support for different locales.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with NLS, covering:
v Overview of fonts
v Font utilities
v Common NLS problems and possible causes

You can find this information here: IBM SDK for Java 7 - NLS problem
determination.

ORB problem determination
One of your first tasks when debugging an ORB problem is to determine whether
the problem is in the client-side or in the server-side of the distributed application.
Think of a typical RMI-IIOP session as a simple, synchronous communication
between a client that is requesting access to an object, and a server that is
providing it.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with ORB, covering:
v Identifying an ORB problem
v Interpreting the stack trace
v Interpreting ORB traces
v Common problems
v IBM ORB service: Collecting data

You can find this information here: IBM SDK for Java 7 - ORB problem
determination.

The following information is supplementary for IBM WebSphere Real Time for
AIX.

IBM ORB service: collecting data

When collecting the Java version output for service, run the following command:
java -Xgcpolicy:metronome -version

Preliminary tests

When a problem occurs, the ORB might generate a org.omg.CORBA.* exception that
includes:
v text to indicate the cause
v a minor code

30 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/aix_dbx_plugin.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/orbpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/problem_determination/orbpd.html

v a completion status

Before you assume that the ORB is the cause of the problem, check these items:
v The scenario can be reproduced in a similar configuration.
v The JIT is disabled.
v No AOT compiled code is being used

Other actions include:
v Turn off additional processors.
v Turn off Simultaneous Multithreading (SMT) where possible.
v Eliminate memory dependencies with the client or server. The lack of physical

memory can be the cause of slow performance, apparent hangs, or crashes. To
remove these problems, ensure that you have a reasonable headroom of memory.

v Check physical network problems such as firewalls, communication links,
routers, and DNS name servers. These are the major causes of CORBA
COMM_FAILURE exceptions. As a test, ping your own workstation name.

v If the application is using a database such as DB2®, switch to the most reliable
driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is
slower and uses sockets, but is more reliable.

Troubleshooting OutOfMemory Errors
Dealing with OutOfMemoryError exceptions.

For general troubleshooting information on the Metronome Garbage Collector, see
“Troubleshooting the Metronome Garbage Collector” on page 54.

Diagnosing OutOfMemoryErrors
Diagnosing OutOfMemoryError exceptions in Metronome Garbage Collector can be
more complex than in a standard JVM because of the periodic nature of the
garbage collector.

In general, a realtime application requires approximately 20% more heap space
than a standard Java application.

By default, the JVM produces the following diagnostic output when an uncaught
OutOfMemoryError occurs:
v A snap dump; see “Using dump agents” on page 37.
v A Heapdump; see “Using Heapdump” on page 44.
v A Javadump; see “Using Javadump” on page 39
v A system dump; see “Using system dumps and the dump viewer” on page 46.

The dump file names are given in the console output:

JVMDUMP006I Processing dump event "systhrow", detail "java/lang/OutOfMemoryError" - please wait.
JVMDUMP007I JVM Requesting Snap dump using ’Snap.20081017.104217.13161.0001.trc’
JVMDUMP010I Snap dump written to Snap.20081017.104217.13161.0001.trc
JVMDUMP007I JVM Requesting Heap dump using ’heapdump.20081017.104217.13161.0002.phd’
JVMDUMP010I Heap dump written to heapdump.20081017.104217.13161.0002.phd
JVMDUMP007I JVM Requesting Java dump using ’javacore.20081017.104217.13161.0003.txt’
JVMDUMP010I Java dump written to javacore.20081017.104217.13161.0003.txt
JVMDUMP013I Processed dump event "systhrow", detail "java/lang/OutOfMemoryError".

Chapter 9. Troubleshooting and support 31

The Java backtrace shown on the console output, and also available in the
Javadump, indicates where in the Java application the OutOfMemoryError
occurred. The JVM memory management component issues a tracepoint that gives
the size, class block address, and memory space name of the failing allocation. This
tracepoint can be found in the snap dump:

The tracepoint ID and data fields might vary from that shown, depending on the
type of object being allocated. In this example, the tracepoint shows that the
allocation failure occurred when the application attempted to allocate a 33.6 MB
object of type class 0x81312d8 in the Metronome heap, memory segment
id=0x809c5f0.

You can determine which memory area is affected by looking at the memory
management information in the Javadump:
NULL --
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0xF288B584 0xF2A1C000 0xF6A1C000 0x04000000 Default
NULL
1STMEMUSAGE Total memory available: 67108864 (0x04000000)
1STMEMUSAGE Total memory in use: 66676824 (0x03F96858)
1STMEMUSAGE Total memory free: 00432040 (0x000697A8)

<< lines removed for clarity >>

You can determine the type of object being allocated by looking at the classes
section of the Javadump:
NULL --
0SECTION CLASSES subcomponent dump routine
NULL =================================
<< lines omitted... >>
1CLTEXTCLLOD ClassLoader loaded classes
2CLTEXTCLLOAD Loader *System*(0xF182BB80)
<< lines omitted... >>
3CLTEXTCLASS [C(0xF1632D80)

Information in the Javadump confirms that the attempted allocation was for a
character array, in the normal heap (ID=0xF288B584) and that the total allocated
size of the heap, indicated by the appropriate 1STHEAP line, is 67108864 decimal
bytes or 0x04000000 hex bytes, or 64 MB.

In this example, the failing allocation is large in relation to the total heap size. If
your application is expected to create 33 MB objects, the next step is to increase the
size of the heap, using the -Xmx option.

It is more common for the failing allocation to be small in relation to total heap
size. This is because of previous allocations filling up the heap. In these cases, the
next step is to use the Heapdump to investigate the amount of memory allocated
to existing objects.

<< lines omitted... >>
09:42:17.563258000 *0xf2888e00 j9mm.101 Event J9AllocateIndexableObject() returning NULL! 80
bytes requested for object of class 0xf1632d80 from memory space ’Metronome’ id=0xf288b584

32 IBM WebSphere Real Time for AIX: User Guide

The Heapdump is a compressed binary file containing a list of all objects with their
object class, size, and references. Analyze the Heapdump using the IBM
Monitoring and Diagnostic Tools for Java - Memory Analyzer tool, which is
available for download from the IBM Support Assistant (ISA).

Using MDD4J, you can load a Heapdump and locate tree structures of objects that
are suspected of consuming large amounts of heap space. The tool provides
various views for objects on the heap. For example, MDD4J can show a view that
details likely leak suspects, and gives the top five objects and packages
contributing to the heap size. Selecting the tree view gives further information
about the nature of the leaking container object.

How the IBM JVM manages memory
The IBM JVM requires memory for several different components, including
memory regions for classes, compiled code, Java objects, Java stacks, and JNI
stacks. Some of these memory regions must be in contiguous memory. Other
memory regions can be segmented into smaller memory regions and linked
together.

Dynamically loaded classes and compiled code are stored in segmented memory
regions for dynamically loaded classes. Classes are further subdivided into
writable memory regions (RAM classes) and read-only memory regions (ROM
classes). At run time, ROM classes and AOT code from the class cache are memory
mapped, but not loaded, into a contiguous memory region on application startup.
As classes are referenced by the application, classes and compiled code in the class
cache are mapped into storage. The ROM component of the class is shared
between multiple processes referencing this class. The RAM component of the class
is created in the segmented memory regions for dynamically loaded classes when
the class is first referenced by the JVM. AOT-compiled code for the methods of a
class in the class cache are copied into an executable dynamic code memory region,
because this code is not shared by processes. Classes that are not loaded from the
class cache are similar to cached classes, except that the ROM class information is
created in segmented memory regions for dynamically loaded classes. Dynamically
generated code is stored in the same dynamic code memory regions that hold AOT
code for cached classes.

The stack for each Java thread can span a segmented memory region. The JNI
stack for each thread occupies a contiguous memory region.

To determine how your JVM is configured, run with the -verbose:sizes option.
This option prints out information about memory regions where you can manage
the size. For memory regions that are not contiguous, an increment is printed
describing how much memory is acquired every time the region needs to grow.

Here is example output using the -Xrealtime -verbose:sizes options:
-Xmca32K RAM class segment increment
-Xmco128K ROM class segment increment
-Xms64M initial memory size

-Xmx64M memory maximum
-Xmso256K operating system thread stack size
-Xiss2K java thread stack initial size
-Xssi16K java thread stack increment
-Xss256K java thread stack maximum size

This example indicates that the RAM class segment is initially 0, but grows by 32
KB blocks as required. The ROM class segment is initially 0, and grows by 128 KB

Chapter 9. Troubleshooting and support 33

http://www.ibm.com/software/support/isa/

blocks as required. You can use the -Xmca and -Xmco options to control these sizes.
RAM class and ROM class segments grow as required, so you will not typically
need to change these options.

Use the -Xshareclasses option to determine how large your memory mapped
region will be if you use the class cache. Here is a sample of the output from the
command java -Xgcpolicy:metronome -Xshareclasses:printStats.
Current statistics for cache "sharedcc_j9build":

shared memory ID = 103809029

base address = 0xC000DBB8
end address = 0xC1000000
allocation pointer = 0xC00F3340

cache size = 16776892
free bytes = 15536560
ROMClass bytes = 1161532
AOT bytes = 0
Data bytes = 56244
Metadata bytes = 22556
Metadata % used = 1%

ROMClasses = 365
AOT Methods = 0
Classpaths = 1
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 7% full

Current statistics for cache "sharedcc_j9build":

shared memory ID = 48234504

base address = 0x070000002000DC0C
end address = 0x0700000021000000
allocation pointer = 0x07000000200F3394

cache size = 16776808
free bytes = 15267168
ROMClass bytes = 1412468
AOT bytes = 17728
Data bytes = 56504
Metadata bytes = 22940
Metadata % used = 1%

ROMClasses = 365
AOT Methods = 4
Classpaths = 1
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 8% full

At run time, approximately 3 MB of AOT bytes and metadata bytes are copied into
the dynamic code segmented region, as the classes are referenced. The data bytes
are copied into the RAM class segmented region, as the classes are referenced.

34 IBM WebSphere Real Time for AIX: User Guide

Using diagnostic tools
There are a number of diagnostic tools that are available to help diagnose
problems with the IBM WebSphere Real Time for AIX JVM.

The IBM SDK for Java 7 provides a number of diagnostic tools that can be used to
diagnose problems with the IBM WebSphere Real Time for AIX JVM. This section
introduces the tools that are available, and provides links to further information
about using the tools.

There is an important point to remember when using the SDK diagnostic tools.
When you invoke the real time JVM, you use the following option:
java -Xgcpolicy:metronome

This option must be used when running diagnostic tools for the real time JVM. For
example, to show the registered dump agents for the IBM WebSphere Real Time
for AIX JVM, type:
java -Xgcpolicy:metronome -Xdump:what

Any further differences in using these tools with IBM WebSphere Real Time for
AIX is provided here as supplementary information, together with sample output
to assist you with diagnosis.

For a summary of the diagnostic information that is generated by the IBM SDK for
Java 7, see Summary of diagnostic information.

Using the IBM Monitoring and Diagnostic Tools for Java
IBM provides tooling and documentation to help you understand, monitor, and
diagnose problems with applications using the IBM JRE.

The following tools are available:
v Health Center
v Garbage Collection and Memory Visualizer
v Interactive Diagnostic Data Explorer
v Memory Analyzer

Garbage Collection and Memory Visualizer
Garbage Collection and Memory Visualizer (GCMV) helps you understand
memory use, garbage collection behavior, and performance of Java applications.

GCMV parses and plots data from various types of log, including the following
types:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The tool helps to diagnose problems such as memory leaks, analyze data in
various visual formats, and provides tuning recommendations.

GCMV is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see: http://www.ibm.com/
developerworks/java/jdk/tools/gcmv/.

Chapter 9. Troubleshooting and support 35

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/diagnostics_summary.html
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/

Further information about GCMV is available in an IBM Information Center.

Health Center
Health Center is a diagnostic tool for monitoring the status of a running Java
Virtual Machine (JVM).

The tool is provided in two parts:
v The Health Center agent that collects data from a running application.
v An Eclipse-based client that connects to the agent. The client interprets the data

and provides recommendations to improve the performance of the monitored
application.

Health Center is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/.

Further information about Health Center is available in an IBM Information Center.

Interactive Diagnostic Data Explorer
Interactive Diagnostic Data Explorer (IDDE) is a GUI-based alternative to the
dump viewer (jdmpview command). IDDE provides the same functionality as the
dump viewer, but with extra support such as the ability to save command output.

Use IDDE to more easily explore and examine dump files that are produced by the
JVM. Within IDDE, you enter commands in an investigation log, to explore the
dump file. The support that is provided by the investigation log includes the
following items:
v Command assistance
v Auto-completion of text, and some parameters such as class names
v The ability to save commands and output, which you can then send to other

people
v Highlighted text and flagging of issues
v The ability to add your own comments
v Support for using the Memory Analyzer from within IDDE

IDDE is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see IDDE overview on
developerWorks®.

Further information about IDDE is available in an IBM Information Center.

Memory Analyzer
Memory Analyzer helps you analyze Java heaps using operating system level
dumps and Portable Heap Dumps (PHD).

This tool can analyze dumps that contain millions of objects, providing the
following information:
v The retained sizes of objects.
v Processes that are preventing the Garbage Collector from collecting objects.
v A report to automatically extract leak suspects.

This tool is based on the Eclipse Memory Analyzer (MAT) project, and uses the
IBM Diagnostic Tool Framework for Java (DTFJ) feature to enable the processing of
dumps from IBM JVMs.

36 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=5efb4378-ebba-47da-8c0f-8841d669d0cc
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

Memory Analyzer is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/.

Further information about Memory Analyzer is available in an IBM Information
Center.

Using dump agents
Dump agents are set up during JVM initialization. They enable you to use events
occurring in the JVM, such as Garbage Collection, thread start, or JVM termination,
to initiate dumps or to start an external tool.

The IBM SDK for Java V7 User guide contains useful guidance on dump agents,
covering:
v Using the -Xdump option
v Dump agents
v Dump events
v Advanced control of dump agents
v Dump agent tokens
v Default dump agents
v Removing dump agents
v Dump agent environment variables
v Signal mappings
v Dump agent default locations

You can find this information here: IBM SDK for Java 7 - Using dump agents.

Supplementary information for IBM WebSphere Real Time for AIX is provided
here:

Dump events
Dump agents are triggered by events occurring during JVM operation. For IBM
WebSphere Real Time for AIX, the default value for the slow event is 5
milliseconds.

Some events can be filtered to improve the relevance of the output. See “filter
option” on page 38 for more information.

Note: The unload and expand events currently do not occur in WebSphere Real
Time. Classes are in immortal memory and cannot be unloaded.

Note: The gpf and abort events cannot trigger a heap dump, prepare the heap
(request=prepwalk), or compact the heap (request=compact).

The following table shows events available as dump agent triggers:

Event Triggered when... Filter operation

gpf A General Protection Fault (GPF) occurs.

user The JVM receives the SIGQUIT signal from the
operating system.

abort The JVM receives the SIGABRT signal from the
operating system.

Chapter 9. Troubleshooting and support 37

http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/dump_agents.html

Event Triggered when... Filter operation

vmstart The virtual machine is started.

vmstop The virtual machine stops. Filters on exit code; for example,
filter=#129..#192#-42#255

load A class is loaded. Filters on class name; for example,
filter=java/lang/String

unload A class is unloaded.

throw An exception is thrown. Filters on exception class name; for example,
filter=java/lang/OutOfMem*

catch An exception is caught. Filters on exception class name; for example,
filter=*Memory*

uncaught A Java exception is not caught by the application. Filters on exception class name; for example,
filter=*MemoryError

systhrow A Java exception is about to be thrown by the JVM.
This is different from the 'throw' event because it is
only triggered for error conditions detected
internally in the JVM.

Filters on exception class name; for example,
filter=java/lang/OutOfMem*

thrstart A new thread is started.

blocked A thread becomes blocked.

thrstop A thread stops.

fullgc A garbage collection cycle is started.

slow A thread takes longer than 5ms to respond to an
internal JVM request.

Changes the time taken for an event to be
considered slow; for example, filter=#300ms
will trigger when a thread takes longer than
300ms to respond to an internal JVM request.

allocation A Java object is allocated with a size matching the
given filter specification

Filters on object size; a filter must be supplied.
For example, filter=#5m will trigger on
objects larger than 5 Mb. Ranges are also
supported; for example, filter=#256k..512k
will trigger on objects between 256 Kb and 512
Kb in size.

traceassert An internal error occurs in the JVM Not applicable.

corruptcache The JVM finds that the shared class cache is corrupt. Not applicable.

filter option
Some JVM events occur thousands of times during the lifetime of an application.
Dump agents can use filters and ranges to avoid excessive dumps being produced.

Wildcards

You can use a wildcard in your exception event filter by placing an asterisk only at
the beginning or end of the filter. The following command does not work because
the second asterisk is not at the end:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#*.myVirtualMethod

In order to make this filter work, it must be changed to:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#MyApplication.*

38 IBM WebSphere Real Time for AIX: User Guide

Class loading and exception events

You can filter class loading (load) and exception (throw, catch, uncaught, systhrow)
events by Java class name:
-Xdump:java:events=throw,filter=java/lang/OutOfMem*
-Xdump:java:events=throw,filter=*MemoryError
-Xdump:java:events=throw,filter=*Memory*

You can filter throw, uncaught, and systhrow exception events by Java method
name:
-Xdump:java:events=throw,filter=ExceptionClassName[#ThrowingClassName.
throwingMethodName[#stackFrameOffset]]

Optional portions are shown in brackets.

You can filter the catch exception events by Java method name:
-Xdump:java:events=catch,filter=ExceptionClassName[#CatchingClassName.
catchingMethodName]

Optional portions are shown in square brackets.

vmstop event

You can filter the JVM shut down event by using one or more exit codes:
-Xdump:java:events=vmstop,filter=#129..192#-42#255

slow event

You can filter the slow event to change the time threshold from the default of 5ms:
-Xdump:java:events=slow,filter=#300ms

You cannot set the filter to a time lower than the default time.

Other events

If you apply a filter to an event that does not support filtering, the filter is ignored.

Using Javadump
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during execution. For example, the
information can be about the operating system, the application environment,
threads, stacks, locks, and memory.

The IBM SDK for Java V7 User guide contains useful guidance on Javadumps,
covering:
v Enabling a Javadump
v Triggering a Javadump
v Interpreting a Javadump
v Environment variables and Javadump

You can find this information here: IBM SDK for Java 7 - Using Javadump.

Supplementary information and sample output for IBM WebSphere Real Time for
AIX is provided in the following topics.

Chapter 9. Troubleshooting and support 39

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/javadump.html

Storage Management (MEMINFO)
The MEMINFO section provides information about the Memory Manager, including
heap, immortal, and scoped memory areas.

The MEMINFO section of a Javadump shows information about the Memory
Manager. See Using the Metronome Garbage Collector for details about how the
memory manager component works.

This part of the Javadump provides various storage management values, including:
v amount of free memory
v amount of used memory
v current size of the heap
v current size of immortal memory areas
v current size of scoped memory areas

This section also contains garbage collection history data. The data is shown as a
sequence of tracepoints, each with a timestamp, ordered with the most recent
tracepoint first.

Javadumps produced by the standard JVM contain a “GC History” section. This
information is not contained in Javadumps produced when using the real-time
JVM. Use the -verbose:gc option or the JVM snap trace to obtain information
about GC behavior. See “Using verbose:gc information” on page 54 and the dump
agents section of the IBM SDK for Java V7 User guide for more details.

In a Javadump, segments are blocks of memory allocated by the Java run time for
tasks that use large amounts of memory. Example tasks are:
v maintaining JIT caches
v storing Java classes

The Java runtime environment also allocates other native memory, which is not
listed in the MEMINFO section. The total memory used by Java runtime segments
does not necessarily represent the complete memory footprint of the Java run time.
A Java runtime segment consists of the segment data structure, and an associated
block of native memory.

The following example shows some typical output. All the values are provided as
hexadecimal values. The column headings in the MEMINFO section have the
following meanings:
v Object memory section (HEAPTYPE):

id The id of the space or region.

start The start address of this region of the heap.

end The end address of this region of the heap.

size The size of this region of the heap.

space/region
For a line that contains only an id and a name, this column shows the
name of the memory space. Otherwise the column shows the name of
the memory space, followed by the name of a particular region that is
contained within that memory space.

v Internal memory section (SEGTYPE), including class memory, JIT code cache, and
JIT data cache:

40 IBM WebSphere Real Time for AIX: User Guide

segment
The address of the segment control data structure.

start The start address of the native memory segment.

alloc The current allocation address within the native memory segment.

end The end address of the native memory segment.

type An internal bit field describing the characteristics of the native memory
segment.

size The size of the native memory segment.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STHEAPTYPE Object Memory
NULL id start end size space/region
1STHEAPSPACE 0x0000010010FE8FF0 -- -- -- Metronome
1STHEAPREGION 0x000001001029D460 0x0000000040000000 0x0000000040010000 0x0000000000010000 Metronome/Small Region
1STHEAPREGION 0x000001001029D640 0x0000000040010000 0x0000000040020000 0x0000000000010000 Metronome/Small Region
1STHEAPREGION 0x000001001029D820 0x0000000040020000 0x0000000040030000 0x0000000000010000 Metronome/Small Region
....
1STHEAPREGION 0x000001001029F080 0x00000000400F0000 0x0000000040100000 0x0000000000010000 Metronome/Arraylet Region
1STHEAPREGION 0x000001001029F260 0x0000000040100000 0x0000000040110000 0x0000000000010000 Metronome/Arraylet Region
....
NULL
1STHEAPTOTAL Total memory: 536870912 (0x0000000020000000)
1STHEAPINUSE Total memory in use: 534955160 (0x000000001FE2C498)
1STHEAPFREE Total memory free: 1915752 (0x00000000001D3B68)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x0000010012471558 0x0000010012D63870 0x0000010012D63870 0x0000010012D73870 0x01000040 0x0000000000010000
1STSEGMENT 0x0000010012471318 0x0000010012D33750 0x0000010012D33750 0x0000010012D43750 0x01000040 0x0000000000010000
1STSEGMENT 0x0000010012498B98 0x00000100125A3150 0x00000100125A3150 0x00000100125B3150 0x01000040 0x0000000000010000
....
NULL
1STSEGTOTAL Total memory: 1784400 (0x00000000001B3A50)
1STSEGINUSE Total memory in use: 0 (0x0000000000000000)
1STSEGFREE Total memory free: 1784400 (0x00000000001B3A50)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0x000001001247F358 0x00000000601007F0 0x00000000601087F0 0x00000000601087F0 0x00010040 0x0000000000008000
1STSEGMENT 0x000001001247F298 0x0000010012BE0AD0 0x0000010012BE0E28 0x0000010012C00AD0 0x00020040 0x0000000000020000
1STSEGMENT 0x000001001247F1D8 0x00000000600F87A0 0x00000000601007A0 0x00000000601007A0 0x00010040 0x0000000000008000
....
NULL
1STSEGTOTAL Total memory: 2329244 (0x0000000000238A9C)
1STSEGINUSE Total memory in use: 2160420 (0x000000000020F724)
1STSEGFREE Total memory free: 168824 (0x0000000000029378)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x00000100117B3FD8 0x00000100117B4270 0x00000100117D2878 0x00000100119B4270 0x00000068 0x0000000000200000
1STSEGMENT 0x000001001113BBB8 0x00000100115A4210 0x00000100115BA708 0x00000100117A4210 0x00000068 0x0000000000200000
1STSEGMENT 0x000001001113BAF8 0x0000010011394490 0x00000100113AA988 0x0000010011594490 0x00000068 0x0000000000200000
1STSEGMENT 0x000001001113BA38 0x0000010011184710 0x000001001119AC08 0x0000010011384710 0x00000068 0x0000000000200000
NULL
1STSEGTOTAL Total memory: 8388608 (0x0000000000800000)
1STSEGINUSE Total memory in use: 398576 (0x00000000000614F0)
1STSEGFREE Total memory free: 7990032 (0x000000000079EB10)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x000001001113BF98 0x00000100119C4210 0x00000100119D7E40 0x0000010011BC4210 0x00000048 0x0000000000200000
NULL
1STSEGTOTAL Total memory: 2097152 (0x0000000000200000)
1STSEGINUSE Total memory in use: 80944 (0x0000000000013C30)
1STSEGFREE Total memory free: 2016208 (0x00000000001EC3D0)
NULL
1STGCHTYPE GC History
3STHSTTYPE 15:18:36:229787192 GMT j9mm.101 - J9AllocateIndexableObject() returning NULL! 268451872 bytes requested for object

of class 0000000060015600 from memory space ’Metronome’ id=0000010010FE8FF0
3STHSTTYPE 15:18:36:216005016 GMT j9mm.468 - Cycle End: type 1 approximateFreeMemorySize 2047080
3STHSTTYPE 15:18:36:216002364 GMT j9mm.475 - GlobalGC end: workstackoverflow=0 overflowcount=0 memory=2047080/536870912

Chapter 9. Troubleshooting and support 41

|
|

||

||

||

||
|

||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3STHSTTYPE 15:18:36:216000829 GMT j9mm.51 - SystemGC end: newspace=0/0 oldspace=2047080/536870912 loa=0/0
3STHSTTYPE 15:18:36:215983093 GMT j9mm.57 - Sweep end
3STHSTTYPE 15:18:36:209832984 GMT j9mm.56 - Sweep start
3STHSTTYPE 15:18:36:209831045 GMT j9mm.94 - Class unloading end: classloadersunloaded=0 classesunloaded=0
3STHSTTYPE 15:18:36:209822935 GMT j9mm.60 - Class unloading start
3STHSTTYPE 15:18:36:209822201 GMT j9mm.55 - Mark end
3STHSTTYPE 15:18:36:207800094 GMT j9mm.54 - Mark start
3STHSTTYPE 15:18:36:207795841 GMT j9mm.474 - GlobalGC start: globalcount=4
3STHSTTYPE 15:18:36:207794287 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.000 meanexclusiveaccessms=0.000 threads=0

lastthreadtid=0x0000000000000000 beatenbyotherthread=0
3STHSTTYPE 15:18:36:207793480 GMT j9mm.131 - SystemGC start: newspace=0/0 oldspace=2047080/536870912 loa=0/0
3STHSTTYPE 15:18:36:207790037 GMT j9mm.467 - Cycle Start: type 1 approximateFreeMemorySize 2047080
3STHSTTYPE 15:18:36:204710301 GMT j9mm.468 - Cycle End: type 1 approximateFreeMemorySize 2047080
3STHSTTYPE 15:18:36:204707992 GMT j9mm.475 - GlobalGC end: workstackoverflow=0 overflowcount=0 memory=2047080/536870912
3STHSTTYPE 15:18:36:204706764 GMT j9mm.51 - SystemGC end: newspace=0/0 oldspace=2047080/536870912 loa=0/0
....
NULL --

Threads and stack trace (THREADS)
For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a list of Java threads, native threads, and
stack traces.

A Java thread is implemented by a native thread of the operating system. Each
thread is represented by a set of lines such as:

"main" J9VMThread:0x41D11D00, j9thread_t:0x003C65D8, java/lang/Thread:0x40BD6070, state:CW, prio=5
(native thread ID:0xA98, native priority:0x5, native policy:UNKNOWN)
Java callstack:
at java/lang/Thread.sleep(Native Method)
at java/lang/Thread.sleep(Thread.java:862)
at mySleep.main(mySleep.java:31)

The properties on the first line are the thread name, addresses of the JVM thread
structures and of the Java thread object, thread state, and Java thread priority. The
properties on the second line are the native operating system thread ID, native
operating system thread priority and native operating system scheduling policy.

Thread names are visible in three ways:
v Listed in javacore files. Not all threads are listed in javacore files.
v When listing threads from the operating system with the ps command.
v When using the java.lang.Thread.getName() method.

The following table provides information about IBM WebSphere Real Time for AIX
thread names.

Table 2. Thread names in IBM WebSphere Real Time for AIX

Detail of thread Thread name

An internal JVM thread used by the garbage
collection module to dispatch the finalization
of objects by secondary threads.

Finalizer master

The alarm thread used by the garbage
collector.

GC Alarm

The slave threads used for garbage
collection.

GC Slave

An internal JVM thread used by the
just-in-time compiler module to sample the
usage of methods in the application.

IProfiler

42 IBM WebSphere Real Time for AIX: User Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Table 2. Thread names in IBM WebSphere Real Time for AIX (continued)

Detail of thread Thread name

A thread used by the VM to manage signals
received by the application, whether
externally or internally generated.

Signal Reporter

An internal JVM thread used to compile
Java code.

JIT Compilation Thread

An internal JVM thread used to allow
JVMTI agents to attach to a running JVM.

Attach API wait loop

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

If a thread is parked or blocked, the output contains a line for that thread,
beginning with 3XMTHREADBLOCK, listing the resource that the thread is waiting for
and, if possible, the thread that currently owns that resource. For more information
see the topic on blocked threads in the IBM SDK for Java V7 User guide.

When you initiate a Javadump to obtain diagnostic information, the JVM quiesces
Java threads before producing the javacore. A preparation state of
exclusive_vm_access is shown in the 1TIPREPSTATE line of the TITLE section.
1TIPREPSTATE Prep State: 0x4 (exclusive_vm_access)

Threads that were running Java code when the javacore was triggered are in CW
(Condition Wait) state.

3XMTHREADINFO "main" J9VMThread:0x41481900, j9thread_t:0x002A54A4, java/lang/Thread:0x004316B8,
state:CW, prio=5
3XMTHREADINFO1 (native thread ID:0x904, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/String.getChars(String.java:667)
4XESTACKTRACE at java/lang/StringBuilder.append(StringBuilder.java:207)

The javacore LOCKS section shows that these threads are waiting on an internal JVM
lock.

Chapter 9. Troubleshooting and support 43

2LKREGMON Thread public flags mutex lock (0x002A5234): <unowned>
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "main" (0x41481900)

Using Heapdump
The term Heapdump describes the IBM Virtual Machine for Java mechanism that
generates a dump of all the live objects that are on the Java heap; that is, those that
are being used by the running Java application.

The IBM SDK for Java V7 User guide contains useful guidance on Heapdumps,
covering:
v Getting Heapdumps
v Tools for processing Heapdumps
v Using -Xverbose:gc to obtain heap information
v Environment variables and Heapdump
v Text (classic) Heapdump file format
v Portable Heap Dump (PHD) file format

You can find this information here: IBM SDK for Java 7 - Using Heapdump.

Supplementary information for IBM WebSphere Real Time for AIX:

Text (classic) Heapdump file format
The text or classic Heapdump is a list of all object instances in the heap, including
object type, size, and references between objects.

Header record

The header record is a single record containing a string of version information.
// Version: <version string containing SDK level, platform and JVM build level>

Example:
// Version: J2RE 7.0 IBM J9 2.6 Linux x86-32 build 20101016_024574_lHdRSr

Object records

Object records are multiple records, one for each object instance on the heap,
providing object address, size, type, and references from the object.
<object address, in hexadecimal> [<length in bytes of object instance, in decimal>]
OBJ <object type> <class block reference, in hexadecimal>
<heap reference, in hexadecimal <heap reference, in hexadecimal> ...

The object address and heap references are in the heap, but the class block address
is outside the heap. All references found in the object instance are listed, including
references that are null values. The object type is either a class name including
package or a primitive array or class array type, shown by its standard JVM type
signature, see “Java VM type signatures” on page 46. Object records can also
contain additional class block references, typically in the case of reflection class
instances.

Examples:

An object instance, length 28 bytes, of type java/lang/String:
0x00436E90 [28] OBJ java/lang/String

44 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/heapdump.html

A class block address of java/lang/String, followed by a reference to a char array
instance:
0x415319D8 0x00436EB0

An object instance, length 44 bytes, of type char array:
0x00436EB0 [44] OBJ [C

A class block address of char array:
0x41530F20

An object of type array of java/util/Hashtable Entry inner class:
0x004380C0 [108] OBJ [Ljava/util/Hashtable$Entry;

An object of type java/util/Hashtable Entry inner class:
0x4158CD80 0x00000000 0x00000000 0x00000000 0x00000000 0x00421660 0x004381C0
0x00438130 0x00438160 0x00421618 0x00421690 0x00000000 0x00000000 0x00000000
0x00438178 0x004381A8 0x004381F0 0x00000000 0x004381D8 0x00000000 0x00438190
0x00000000 0x004216A8 0x00000000 0x00438130 [24] OBJ java/util/Hashtable$Entry

A class block address and heap references, including null references:
0x4158CB88 0x004219B8 0x004341F0 0x00000000

Class records

Class records are multiple records, one for each loaded class, providing class block
address, size, type, and references from the class.
<class block address, in hexadecimal> [<length in bytes of class block, in decimal>]
CLS <class type>
<class block reference, in hexadecimal> <class block reference, in hexadecimal> ...
<heap reference, in hexadecimal> <heap reference, in hexadecimal>...

The class block address and class block references are outside the heap, but the
class record can also contain references into the heap, typically for static class data
members. All references found in the class block are listed, including those that are
null values. The class type is either a class name including package or a primitive
array or class array type, shown by its standard JVM type signature, see “Java VM
type signatures” on page 46.

Examples:

A class block, length 32 bytes, for class java/lang/Runnable:
0x41532E68 [32] CLS java/lang/Runnable

References to other class blocks and heap references, including null references:
0x4152F018 0x41532E68 0x00000000 0x00000000 0x00499790

A class block, length 168 bytes, for class java/lang/Math:
0x00000000 0x004206A8 0x00420720 0x00420740 0x00420760 0x00420780 0x004207B0
0x00421208 0x00421270 0x00421290 0x004212B0 0x004213C8 0x00421458 0x00421478
0x00000000 0x41589DE0 0x00000000 0x4158B340 0x00000000 0x00000000 0x00000000
0x4158ACE8 0x00000000 0x4152F018 0x00000000 0x00000000 0x00000000

Trailer record 1

Trailer record 1 is a single record containing record counts.

Chapter 9. Troubleshooting and support 45

// Breakdown - Classes: <class record count, in decimal>,
Objects: <object record count, in decimal>,
ObjectArrays: <object array record count, in decimal>,
PrimitiveArrays: <primitive array record count, in decimal>

Example:
// Breakdown - Classes: 321, Objects: 3718, ObjectArrays: 169,
PrimitiveArrays: 2141

Trailer record 2

Trailer record 2 is a single record containing totals.
// EOF: Total ’Objects’,Refs(null) :
<total object count, in decimal>,
<total reference count, in decimal>
(,total null reference count, in decimal>)

Example:
// EOF: Total ’Objects’,Refs(null) : 6349,23240(7282)

Java VM type signatures

The Java VM type signatures are abbreviations of the Java types are shown in the
following table:

Java VM type signatures Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L <fully qualified-class> ; <fully qualified-class>

[<type> <type>[] (array of <type>)

(<arg-types>) <ret-type> method

Using system dumps and the dump viewer
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically large. Most tools used to
analyze system dumps are also platform-specific.

The IBM SDK for Java V7 User guide contains useful guidance on using system
dumps and the dump viewer, covering:
v Overview of system dumps
v System dump defaults
v Using the dump viewer

– Using jextract

– Problems to tackle with the dump viewer

46 IBM WebSphere Real Time for AIX: User Guide

– Commands available in jdmpview

– Example session
– jdmpview commands quick reference

You can find this information here: IBM SDK for Java 7 - Using system dumps and
the dump viewer.

Supplementary information for IBM WebSphere Real Time for AIX:

Commands available in jdmpview

jdmpview is an interactive, command-line tool to explore the information from a
JVM system dump and perform various analytic functions.

info jitm
Lists AOT and JIT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

For all other command options,see the IBM SDK for Java V7 User guide.

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in IBM WebSphere Real Time for AIX
with minimal affect on performance. In most cases, the trace data is kept in a
compact binary format, that can be formatted with the Java formatter that is
supplied.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable tracepoints at run time by using levels,
components, group names, or individual tracepoint identifiers.

The IBM SDK for Java V7 User guide contains detailed information on tracing
applications, covering:
v What can be traced
v Types of tracepoint
v Default tracing
v Recording trace data
v Controlling the trace
v Tracing Java applications
v Tracing Java methods

When tracing IBM WebSphere Real Time for AIX you must correctly invoke the
real-time JVM when including the trace options. For example, when specifying
trace options, type:
java -Xgcpolicy:metronome -Xtrace:<options>

You can find the IBM SDK for Java V7 information here: Tracing Java applications
and the JVM.

JIT and AOT problem determination
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.

Chapter 9. Troubleshooting and support 47

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/tracing.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/tracing.html

Although IBM WebSphere Real Time for AIX shares some common components
with the IBM SDK for Java V7, the behavior of JIT and AOT is different. This
section covers troubleshooting for JIT and AOT issues on IBM WebSphere Real
Time for AIX.

Diagnosing a JIT or AOT problem
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

About this task

To determine what methods are compiled when the shared class cache is
populated, use the -Xaot:verbose option on the admincache command-line. For
example:
admincache -Xrealtime -Xaot:verbose -populate -aot my.jar -cp <My Class Path>

This section describes how you can determine if your problem is compiler-related.
This section also suggests some possible workarounds and debugging techniques
for solving compiler-related problems.

Disabling the JIT or AOT compiler:

If you suspect that a problem is occurring in the JIT or AOT compiler, disable
compilation to see if the problem remains. If the problem still occurs, you know
that the compiler is not the cause of it.

About this task

The JIT compiler is enabled by default. The AOT compiler is also enabled, but, is
not active unless shared classes have been enabled. For efficiency reasons, not all
methods in a Java application are compiled. The JVM maintains a call count for
each method in the application; every time a method is called and interpreted, the
call count for that method is incremented. When the count reaches the compilation
threshold, the method is compiled and executed natively.

The call count mechanism spreads compilation of methods throughout the life of
an application, giving higher priority to methods that are used most frequently.
Some infrequently used methods might never be compiled at all. As a result, when
a Java program fails, the problem might be in the JIT or AOT compiler or it might
be elsewhere in the JVM.

The first step in diagnosing the failure is to determine where the problem is. To do
this, you must first run your Java program in purely interpreted mode (that is,
with the JIT and AOT compilers disabled).

Procedure

1. Remove any -Xjit and -Xaot options (and accompanying parameters) from
your command line.

2. Use the -Xint command-line option to disable the JIT and AOT compilers. For
performance reasons, do not use the -Xint option in a production environment.

48 IBM WebSphere Real Time for AIX: User Guide

What to do next

Running the Java program with the compilation disabled leads to one of the
following situations:
v The failure remains. The problem is not in the JIT or AOT compiler. In some

cases, the program might start failing in a different manner; nevertheless, the
problem is not related to the compiler.

v The failure disappears. The problem is most likely in the JIT or AOT compiler.
If you are not using shared classes, the JIT compiler is at fault. If you are using
shared classes, you must determine which compiler is at fault by running your
application with only JIT compilation enabled. Run your application with the
-Xnoaot option instead of the -Xint option. This leads to one of the following
situations:
– The failure remains. The problem is in the JIT compiler. You can also use the

-Xnojit instead of the -Xnoaot option to ensure that only the JIT compiler is
at fault.

– The failure disappears. The problem is in the AOT compiler.

Selectively disabling the JIT compiler:

If your Java program failure points to a problem with the JIT compiler, you can try
to narrow down the problem further.

About this task

By default, the JIT compiler optimizes methods at various optimization levels.
Different selections of optimizations are applied to different methods, based on
their call counts. Methods that are called more frequently are optimized at higher
levels. By changing JIT compiler parameters, you can control the optimization level
at which methods are optimized. You can determine whether the optimizer is at
fault and, if it is, which optimization is problematic.

You specify JIT parameters as a comma-separated list, appended to the -Xjit
option. The syntax is -Xjit:<param1>,<param2>=<value>. For example:
java -Xjit:verbose,optLevel=noOpt HelloWorld

runs the HelloWorld program, enables verbose output from the JIT, and makes the
JIT generate native code without performing any optimizations.

Follow these steps to determine which part of the compiler is causing the failure:

Procedure

1. Set the JIT parameter count=0 to change the compilation threshold to zero. This
parameter causes each Java method to be compiled before it is run. Use
count=0 only when diagnosing problems, because a lot more methods are
compiled, including methods that are used infrequently. The extra compilation
uses more computing resources and slows down your application. With
count=0, your application fails immediately when the problem area is reached.
In some cases, using count=1 can reproduce the failure more reliably.

2. Add disableInlining to the JIT compiler parameters. disableInlining disables
the generation of larger and more complex code. If the problem no longer
occurs, use disableInlining as a workaround while the Java service team
analyzes and fixes the compiler problem.

Chapter 9. Troubleshooting and support 49

3. Decrease the optimization levels by adding the optLevel parameter, and run
the program again until the failure no longer occurs, or you reach the “noOpt”
level. For a JIT compiler problem, start with “scorching” and work down the
list. The optimization levels are, in decreasing order:
a. scorching
b. veryHot
c. hot
d. warm
e. cold
f. noOpt

What to do next

If one of these settings causes your failure to disappear, you have a workaround
that you can use. This workaround is temporary while the Java service team
analyze and fix the compiler problem. If removing disableInlining from the JIT
parameter list does not cause the failure to reappear, do so to improve
performance. Follow the instructions in “Locating the failing method” to improve
the performance of the workaround.

If the failure still occurs at the “noOpt” optimization level, you must disable the
JIT compiler as a workaround.

Locating the failing method:

When you have determined the lowest optimization level at which the JIT or AOT
compiler must compile methods to trigger the failure, you can find out which part
of the Java program, when compiled, causes the failure. You can then instruct the
compiler to limit the workaround to a specific method, class, or package, allowing
the compiler to compile the rest of the program as usual. For JIT compiler failures,
if the failure occurs with -Xjit:optLevel=noOpt, you can also instruct the compiler
to not compile the method or methods that are causing the failure at all.

Before you begin

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20050520_01866_BHdSMr (Linux 2.4.21-27.0.2.EL)
CPU=s390x (2 logical CPUs) (0x7b6a8000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=4148bf20 Signal_Code=00000001
Handler1=00000100002ADB14 Handler2=00000100002F480C InaccessibleAddress=0000000000000000
gpr0=0000000000000006 gpr1=0000000000000006 gpr2=0000000000000000 gpr3=0000000000000006
gpr4=0000000000000001 gpr5=0000000080056808 gpr6=0000010002BCCA20 gpr7=0000000000000000
......
Compiled_method=java/security/AccessController.toArrayOfProtectionDomains([Ljava/lang/Object;
Ljava/security/AccessControlContext;)[Ljava/security/ProtectionDomain;

The important lines are:

vmState=0x00000000
Indicates that the code that failed was not JVM runtime code.

Module= or Module_base_address=
Not in the output (might be blank or zero) because the code was compiled by
the JIT, and outside any DLL or library.

50 IBM WebSphere Real Time for AIX: User Guide

Compiled_method=
Indicates the Java method for which the compiled code was produced.

About this task

If your output does not indicate the failing method, follow these steps to identify
the failing method:

Procedure

1. Run the Java program with the JIT parameters verbose and vlog=<filename>
added to the -Xjit or -Xaot option. With these parameters, the compiler lists
compiled methods in a log file named <filename>.<date>.<time>.<pid>, also
called a limit file. A typical limit file contains lines that correspond to compiled
methods, like:
+ (hot) java/lang/Math.max(II)I @ 0x10C11DA4-0x10C11DDD

Lines that do not start with the plus sign are ignored by the compiler in the
following steps and you can remove them from the file. Methods compiled by
the AOT compiler start with + (AOT cold). Methods for which AOT code is
loaded from the shared class cache start with + (AOT load).

2. Run the program again with the JIT or AOT parameter
limitFile=(<filename>,<m>,<n>), where <filename> is the path to the limit file,
and <m> and <n> are line numbers indicating the first and the last methods in
the limit file that should be compiled. The compiler compiles only the methods
listed on lines <m> to <n> in the limit file. Methods not listed in the limit file
and methods listed on lines outside the range are not compiled and no AOT
code in the shared data cache for those methods will be loaded. If the program
no longer fails, one or more of the methods that you have removed in the last
iteration must have been the cause of the failure.

3. Optional: If you are diagnosing an AOT problem, run the program a second
time with the same options to allow compiled methods to be loaded from the
shared data cache. You can also add the –Xaot:scount=0 option to ensure that
AOT-compiled methods stored in the shared data cache will be used when the
method is first called. Some AOT compilation failures happen only when
AOT-compiled code is loaded from the shared data cache. To help diagnose
these problems, use the –Xaot:scount=0 option to ensure that AOT-compiled
methods stored in the shared data cache are used when the method is first
called, which might make the problem easier to reproduce. Please note that if
you set the scount option to 0 it will force AOT code loading and will pause
any application thread waiting to execute that method. Thus, this should only
be used for diagnostic purposes. More significant pause times can occur with
the –Xaot:scount=0 option.

4. Repeat this process using different values for <m> and <n>, as many times as
necessary, to find the minimum set of methods that must be compiled to trigger
the failure. By halving the number of selected lines each time, you can perform
a binary search for the failing method. Often, you can reduce the file to a single
line.

What to do next

When you have located the failing method, you can disable the JIT or AOT
compiler for the failing method only. For example, if the method
java/lang/Math.max(II)I causes the program to fail when JIT-compiled with
optLevel=hot, you can run the program with:
-Xjit:{java/lang/Math.max(II)I}(optLevel=warm,count=0)

Chapter 9. Troubleshooting and support 51

to compile only the failing method at an optimization level of “warm”, but
compile all other methods as usual.

If a method fails when it is JIT-compiled at “noOpt”, you can exclude it from
compilation altogether, using the exclude={<method>} parameter:
-Xjit:exclude={java/lang/Math.max(II)I}

If a method causes the program to fail when AOT code is compiled or loaded from
the shared data cache, exclude the method from AOT compilation and AOT
loading using the exclude={<method>} parameter:
-Xaot:exclude={java/lang/Math.max(II)I}

AOT methods are compiled at the “cold” optimization level only. Preventing AOT
compilation or AOT loading is the best approach for these methods.

Identifying JIT compilation failures:

For JIT compiler failures, analyze the error output to determine if a failure occurs
when the JIT compiler attempts to compile a method.

If the JVM crashes, and you can see that the failure has occurred in the JIT library
(libj9jit26.so), the JIT compiler might have failed during an attempt to compile a
method.

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00050000
Target=2_30_20051215_04381_BHdSMr (Linux 2.4.21-32.0.1.EL)
CPU=ppc64 (4 logical CPUs) (0xebf4e000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000001
Handler1=0000007FE05645B8 Handler2=0000007FE0615C20
R0=E8D4001870C00001 R1=0000007FF49181E0 R2=0000007FE2FBCEE0 R3=0000007FF4E60D70
R4=E8D4001870C00000 R5=0000007FE2E02D30 R6=0000007FF4C0F188 R7=0000007FE2F8C290
......
Module=/home/test/sdk/jre/bin/libj9jit26.so
Module_base_address=0000007FE29A6000
......
Method_being_compiled=com/sun/tools/javac/comp/Attr.visitMethodDef(Lcom/sun/tools/javac/tree/
JCTree$JCMethodDecl;)

The important lines are:

vmState=0x00050000
Indicates that the JIT compiler is compiling code. For a list of vmState code
numbers, see the Javadump tags table in the IBM SDK for Java V7 User guide,
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/
com.ibm.java.aix.70.doc/diag/tools/javadump_tags_info.html.

Module=/home/test/sdk/jre/bin/libj9jit26.so
Indicates that the error occurred in libj9jit26.so, the JIT compiler module.

Method_being_compiled=
Indicates the Java method being compiled.

If your output does not indicate the failing method, use the verbose option with
the following additional settings:
-Xjit:verbose={compileStart|compileEnd}

52 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/javadump_tags_info.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/javadump_tags_info.html

These verbose settings report when the JIT starts to compile a method, and when it
ends. If the JIT fails on a particular method (that is, it starts compiling, but crashes
before it can end), use the exclude parameter to exclude it from compilation (refer
to “Locating the failing method” on page 50). If excluding the method prevents the
crash, you have a workaround that you can use while the service team corrects
your problem.

Performance of short-running applications
The IBM JIT compiler is tuned for long-running applications typically used on a
server. You can use the -Xquickstart command-line option to improve the
performance of short-running applications, especially for applications in which
processing is not concentrated into a few methods.

-Xquickstart causes the JIT compiler to use a lower optimization level by default
and to compile fewer methods. Performing fewer compilations more quickly can
improve application startup time. When the AOT compiler is active (both shared
classes and AOT compilation enabled), -Xquickstart causes all methods selected
for compilation to be AOT compiled, which improves the startup time of
subsequent runs. -Xquickstart might degrade performance if it is used with
long-running applications that contain methods using a large amount of processing
resource. The implementation of -Xquickstart is subject to change in future
releases.

You can also try improving startup times by adjusting the JIT threshold (using trial
and error). See “Selectively disabling the JIT compiler” on page 49 for more
information.

JVM behavior during idle periods
You can reduce the CPU cycles consumed by an idle JVM by using the
-XsamplingExpirationTime option to turn off the JIT sampling thread.

The JIT sampling thread profiles the running Java application to discover
commonly used methods. The memory and processor usage of the sampling thread
is negligible, and the frequency of profiling is automatically reduced when the
JVM is idle.

In some circumstances, you might want no CPU cycles consumed by an idle JVM.
To do so, specify the -XsamplingExpirationTime<time> option. Set <time> to the
number of seconds for which you want the sampling thread to run. Use this option
with care; after it is turned off, you cannot reactivate the sampling thread. Allow
the sampling thread to run for long enough to identify important optimizations.

The Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostic files for a problem event.

Gathering the files that are needed by IBM service can reduce the time taken to
solve reported problems. The IBM SDK for Java V7 user guide contains detailed
information about using the Diagnostics Collector.

You can find this information here: IBM SDK for Java 7 - The Diagnostics Collector.

Garbage Collector diagnostic data
This section describes how to diagnose garbage collection problems.

Chapter 9. Troubleshooting and support 53

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/diag_collector.html

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
garbage collector problems, covering:
v Verbose garbage collection logging
v Tracing garbage collection using -Xtgc

You can find this information here: IBM SDK for Java 7 - Garbage Collector
diagnostic data.

Supplementary information about the IBM WebSphere Real Time for AIX
Metronome Garbage Collector is provided in the following sections.

Troubleshooting the Metronome Garbage Collector
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.

Using verbose:gc information:

You can use the -verbose:gc option with the -Xgc:verboseGCCycleTime=N option to
write information to the console about Metronome Garbage Collector activity. Not
all XML properties in the -verbose:gc output from the standard JVM are created
or apply to the output of Metronome Garbage Collector.

Use the -verbose:gc option to view the minimum, maximum, and mean free space
in the heap. In this way, you can check the level of activity and use of the heap,
and then adjust the values if necessary. The -verbose:gc option writes Metronome
statistics to the console.

The -Xgc:verboseGCCycleTime=N option controls the frequency of retrieval of the
information. It determines the time in milliseconds that the summaries are
dumped. The default value for N is 1000 milliseconds. The cycle time does not
mean that the summary is dumped precisely at that time, but when the last
garbage collection event that meets this time criterion passes. The collection and
display of these statistics can increase Metronome Garbage Collector pause times
and, as N gets smaller, the pause times can become large.

A quantum is a single period of Metronome Garbage Collector activity, causing an
interruption or pause time for an application.

Example of verbose:gc output

Enter:
java -Xgcpolicy:metronome -verbose:gc -Xgc:verboseGCCycleTime=N myApplication

When garbage collection is triggered, a trigger start event occurs, followed by
any number of heartbeat events, then a trigger end event when the trigger is
satisfied. This example shows a triggered garbage collection cycle as verbose:gc
output:

<trigger-start id="25" timestamp="2011-07-12T09:32:04.503" />

<cycle-start id="26" type="global" contextid="26" timestamp="2011-07-12T09:32:04.503" intervalms="984.285" />

<gc-op id="27" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.209">
<quanta quantumCount="321" quantumType="mark" minTimeMs="0.367" meanTimeMs="0.524" maxTimeMs="1.878"
maxTimestampMs="598704.070" />

<exclusiveaccess-info minTimeMs="0.006" meanTimeMs="0.062" maxTimeMs="0.147" />
<free-mem type="heap" minBytes="99143592" meanBytes="114374153" maxBytes="134182032" />

54 IBM WebSphere Real Time for AIX: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/gcpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/gcpd.html

<thread-priority maxPriority="11" minPriority="11" />
</gc-op>

<gc-op id="28" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.458">
<quanta quantumCount="115" quantumType="sweep" minTimeMs="0.430" meanTimeMs="0.471" maxTimeMs="0.511"
maxTimestampMs="599475.654" />

<exclusiveaccess-info minTimeMs="0.007" meanTimeMs="0.067" maxTimeMs="0.173" />
<classunload-info classloadersunloaded=9 classesunloaded=156 />
<references type="weak" cleared="660" />
<free-mem type="heap" minBytes="24281568" meanBytes="55456028" maxBytes="87231320" />
<thread-priority maxPriority="11" minPriority="11" />

</gc-op>

<gc-op id="29" type="syncgc" timems="136.945" contextid="26" timestamp="2011-07-12T09:32:06.046">
<syncgc-info reason="out of memory" exclusiveaccessTimeMs="0.006" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="21290752" bytesAfter="171963656" />

</gc-op>

<cycle-end id="30" type="global" contextid="26" timestamp="2011-07-12T09:32:06.046" />

<trigger-end id="31" timestamp="2011-07-12T09:32:06.046" />

The following event types can occur:

<trigger-start ...>
The start of a garbage collection cycle, when the amount of used memory
became higher than the trigger threshold. The default threshold is 50% of
the heap. The intervalms attribute is the interval between the previous
trigger end event (with id-1) and this trigger start event.

<trigger-end ...>
A garbage collection cycle successfully lowered the amount of used
memory beneath the trigger threshold. If a garbage collection cycle ended,
but used memory did not drop beneath the trigger threshold, a new
garbage collection cycle is started with the same context ID. For each
trigger start event, there is a matching trigger end event with same
context ID. The intervalms attribute is the interval between the previous
trigger start event and the current trigger end event. During this time,
one or more garbage collection cycles will have completed until used
memory has dropped beneath the trigger threshold.

<gc-op id="28" type="heartbeat"...>
A periodic event that gathers information (on memory and time) about all
garbage collection quanta for the time covered. A heartbeat event can occur
only between a matching pair of trigger start and trigger end events;
that is, while an active garbage collection cycle is in process. The
intervalms attribute is the interval between the previous heartbeat event
(with id -1) and this heartbeat event.

<gc-op id="29" type="syncgc"...>
A synchronous (nondeterministic) garbage collection event. See
“Synchronous garbage collections” on page 56

The XML tags in this example have the following meanings:

<quanta ...>
A summary of quantum pause times during the heartbeat interval,
including the length of the pauses in milliseconds.

<free-mem type="heap" ...>
A summary of the amount of free heap space during the heartbeat interval,
sampled at the end of each garbage collection quantum.

Chapter 9. Troubleshooting and support 55

<classunload-info classloadersunloaded=9 classesunloaded=156 />
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="660 />
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Note:

v If only one garbage collection quantum occurred in the interval between two
heartbeats, the free memory is sampled only at the end of this one quantum.
Therefore the minimum, maximum, and mean amounts given in the heartbeat
summary are all equal.

v The interval between two heartbeat events might be significantly larger than the
cycle time specified if the heap is not full enough to require garbage collection
activity. For example, if your program requires garbage collection activity only
once every few seconds, you are likely to see a heartbeat only once every few
seconds.

v It is possible that the interval might be significantly larger than the cycle time
specified because the garbage collection has no work on a heap that is not full
enough to warrant garbage collection activity. For example, if your program
requires garbage collection activity only once every few seconds, you are likely
to see a heartbeat only once every few seconds.
If an event such as a synchronous garbage collection or a priority change occurs,
the details of the event and any pending events, such as heartbeats, are
immediately produced as output.

v If the maximum garbage collection quantum for a given period is too large, you
might want to reduce the target utilization using the -Xgc:targetUtilization
option. This action gives the Garbage Collector more time to work. Alternatively,
you might want to increase the heap size with the -Xmx option. Similarly, if your
application can tolerate longer delays than are currently being reported, you can
increase the target utilization or decrease the heap size.

v The output can be redirected to a log file instead of the console with the
-Xverbosegclog:<file> option; for example, -Xverbosegclog:out writes the
-verbose:gc output to the file out.

v The priority listed in thread-priority is the underlying operating system thread
priority, not a Java thread priority.

Synchronous garbage collections

An entry is also written to the -verbose:gc log when a synchronous
(nondeterministic) garbage collection occurs. This event has three possible causes:
v An explicit System.gc() call in the code.
v The JVM runs out of memory then performs a synchronous garbage collection to

avoid an OutOfMemoryError condition.
v The JVM shuts down during a continuous garbage collection. The JVM cannot

cancel the collection, so it completes the collection synchronously, and then exits.

An example of a System.gc() entry is:
<gc-op id="9" type="syncgc" timems="12.92" contextid="8" timestamp=
"2011-07-12T09:41:40.808">
<syncgc-info reason="system GC" totalBytesRequested="260" exclusiveaccessTimeMs="0.009"
threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="22085440" bytesAfter="136023450" />
<classunload-info classloadersunloaded="54" classesunloaded="234" />

56 IBM WebSphere Real Time for AIX: User Guide

<references type="soft" cleared="21" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="523" />
<finalization enqueued="124" />

</gc-op>

An example of a synchronous garbage collection entry as a result of the JVM
shutting down is:

<gc-op id="24" type="syncgc" timems="6.439" contextid="19" timestamp="2011-07-12T09:43:14.524">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="56182430" bytesAfter="151356238" />
<classunload-info classloadersunloaded="14" classesunloaded="276" />
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="53" />
<finalization enqueued="34" />

</gc-op>

The XML tags and attributes in this example have the following meanings:

<gc-op id="9" type="syncgc" timems="6.439" ...
This line indicates that the event type is a synchronous garbage collection.
The timems attribute is the duration of the synchronous garbage collection
in milliseconds.

<syncgc-info reason="..."/>
The cause of the synchronous garbage collection.

<free-mem-delta.../>
The free Java heap memory before and after the synchronous garbage
collection in bytes.

<finalization .../>
The number of objects awaiting finalization.

<classunload-info .../>
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="53" .../>
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Synchronous garbage collection due to out-of-memory conditions or VM shutdown
can happen only when the Garbage Collector is active. It has to be preceded by a
trigger start event, although not necessarily immediately. Some heartbeat events
probably occur between a trigger start event and the synchgc event.
Synchronous garbage collection caused by System.gc() can happen at any time.

Tracking all GC quanta

Individual GC quanta can be tracked by enabling the GlobalGCStart and
GlobalGCEnd tracepoints. These tracepoints are produced at the beginning and end
of all Metronome Garbage Collector activity including synchronous garbage
collections. The output for these tracepoints looks similar to:
03:44:35.281 0x833cd00 j9mm.52 - GlobalGC start: globalcount=3

03:44:35.284 0x833cd00 j9mm.91 - GlobalGC end: workstackoverflow=0 overflowcount=0

Out-of-memory entries

When the heap runs out of free space, an entry is written to the -verbose:gc log
before the OutOfMemoryError exception is thrown. An example of this output is:

Chapter 9. Troubleshooting and support 57

<out-of-memory id="71" timestamp="2011-07-12T10:21:50.135" memorySpaceName="Metronome"
memorySpaceAddress="0806DFDC"/>

By default a Javadump is produced as a result of an OutOfMemoryError exception.
This dump contains information about the memory used by your program.
NULL
1STSEGTOTAL Total memory: 4066080 (0x003E0B20)
1STSEGINUSE Total memory in use: 3919440 (0x003BCE50)
1STSEGFREE Total memory free: 146640 (0x00023CD0)

Metronome Garbage Collector behavior in out-of-memory conditions:

By default, the Metronome Garbage Collector triggers an unlimited,
nondeterministic garbage collection when the JVM runs out of memory. To prevent
nondeterministic behavior, use the -Xgc:noSynchronousGCOnOOM option to throw an
OutOfMemoryError when the JVM runs out of memory.

The default unlimited collection runs until all possible garbage is collected in a
single operation. The pause time required is usually many milliseconds greater
than a normal metronome incremental quantum.
Related information:
Using -Xverbose:gc to analyze synchronous garbage collections

Metronome Garbage Collector behavior on explicit System.gc() calls:

If a garbage collection cycle is in progress, the Metronome Garbage Collector
completes the cycle in a synchronous way when System.gc() is called. If no
garbage collection cycle is in progress, a full synchronous cycle is performed when
System.gc() is called. Use System.gc() to clean up the heap in a controlled
manner. It is a nondeterministic operation because it performs a complete garbage
collection before returning.

Some applications call vendor software that has System.gc() calls where it is not
acceptable to create these nondeterministic delays. To disable all System.gc() calls
use the -Xdisableexplicitgc option.

The verbose garbage collection output for a System.gc() call has a reason of
“system garbage collect” and is likely to have a long duration:

<gc-op id="9" type="syncgc" timems="6.439" contextid="8" timestamp="2011-07-12T09:41:40.808">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11"/>
<free-mem-delta type="heap" bytesBefore="126082300" bytesAfter="156085440"/>
<classunload-info classloadersunloaded="14" classesunloaded="276"/>
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32"/>
<references type="weak" cleared="53"/>
<finalization enqueued="34"/>

</gc-op>

Shared classes diagnostic data
Understanding how to diagnose problems that might occur helps you to use
shared classes mode.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with shared classes, covering:
v Deploying shared classes
v Dealing with runtime bytecode modification
v Understanding dynamic updates

58 IBM WebSphere Real Time for AIX: User Guide

v Using the Java Helper API
v Understanding shared classes diagnostic output
v Debugging problems with shared classes

You can find this information here: IBM SDK for Java 7 - Shared classes diagnostic
data.

Using the JVMTI
JVMTI is a two-way interface that allows communication between the JVM and a
native agent. It replaces the JVMDI and JVMPI interfaces.

JVMTI allows third parties to develop debugging, profiling, and monitoring tools
for the JVM. The interface contains mechanisms for the agent to notify the JVM
about the kinds of information it requires. The interface also provides a means of
receiving the relevant notifications. Several agents can be attached to a JVM at any
one time.

The IBM SDK for Java V7 User guide contains detailed information about using
JVMTI, including an API reference section on IBM extensions to JVMTI.

You can find this information here: IBM SDK for Java 7 - Using JVMTI.

Using the Diagnostic Tool Framework for Java
The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostics tools.
DTFJ works with data from a system dump or Javadump.

The IBM SDK for Java V7 User guide contains detailed information about DTFJ.
Follow this link: Using the Diagnostic Tool Framework for Java

Chapter 9. Troubleshooting and support 59

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/jvmti.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/tools/dtfj.html

60 IBM WebSphere Real Time for AIX: User Guide

Chapter 10. Reference

This set of topics lists the options and class libraries that can be used with
WebSphere Real Time for AIX

Command-line options
You can specify options on the command line while you are starting Java. Default
options have been chosen for best general use.

Specifying Java options and system properties
There are three ways to specify Java properties and system properties.

About this task

You can specify Java options and system properties in these ways. In order of
precedence, they are:
1. By specifying the option or property on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. By creating a file that contains the options, and specifying this file on the
command line using the -Xoptionsfile=<filename> option.
In the options file, specify each option on a new line; you can use the '\'
character as a continuation character if you want a single option to span
multiple lines. Use the '#' character to define comment lines. You cannot specify
-classpath in an options file. Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

3. By creating an environment variable called IBM_JAVA_OPTIONS containing the
options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

The last option you specify on the command line has precedence over first option.
For example, if you specify the options -Xint -Xjit myClass, the option -Xjit
takes precedence over -Xint.

System properties
System properties are available to applications, and help provide information about
the runtime environment.

com.ibm.jvm.realtime
This property enables Java applications to determine if they are running
within a WebSphere Real Time for AIX environment.

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, and was started with the -Xrealtime option,
the com.ibm.jvm.realtime property has the value “hard”.

© Copyright IBM Corp. 2003, 2014 61

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, but was not started with the -Xrealtime
option, the com.ibm.jvm.realtime property is not set.

If your application is running within the IBM WebSphere Real Time
runtime environment, the com.ibm.jvm.realtime property has the value
“soft”.

Standard options
The definitions for the standard options.

-agentlib:<libname>[=<options>]
Loads native agent library <libname>; for example -agentlib:hprof. For
more information, specify -agentlib:jdwp=help and -agentlib:hprof=help
on the command line.

-agentpath:libname[=<options>]
Loads native agent library by full path name.

-assert Prints help on assert-related options.

-cp or -classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath
and -cp are not used and CLASSPATH is not set, the user classpath is, by
default, the current directory (.).

-D<property_name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Loads Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Includes user private JREs in the version search.

-no-jre-restrict-search
Excludes user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:[class,gc,dynload,sizes,stack,jni]
Enables verbose output.

-verbose:class
Writes an entry to stderr for each class that is loaded.

-verbose:gc
See “Using verbose:gc information” on page 54.

-verbose:dynload
Provides detailed information as each class is loaded by the JVM,
including:
v The class name and package
v For class files that were in a .jar file, the name and directory

path of the .jar
v Details of the size of the class and the time taken to load the

class

62 IBM WebSphere Real Time for AIX: User Guide

The data is written out to stderr. An example of the output follows:
<Loaded java/lang/String from /myjdk/sdk/jre/lib/ppc64/
softrealtime/jclSC160/vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

Note: Classes loaded from the shared class cache do not appear in
-verbose:dynload output. Use -verbose:class for information
about these classes.

-verbose:sizes
Writes information to stderr describing the amount of memory
used for the stacks and heaps in the JVM

-verbose:stack
Writes information to stderr describing Java and C stack usage.

-verbose:jni
Writes information to stderr describing the JNI services called by
the application and JVM.

-version
Prints out version information for the non-real-time mode.

-version:<value>
Requires the specified version to run.

-X Prints help on nonstandard options.

Non-standard options
Options that are prefixed by -X are nonstandard and subject to change without
notice.

The IBM SDK for Java V7 User guide contains detailed information on
non-standard options. You can find this information here: IBM SDK for Java 7 -
Command-line options.

Supplementary information for IBM WebSphere Real Time for AIX is provided in
the following sections.

Metronome Garbage Collector options
The definitions of the Metronome Garbage Collector options.

-Xgc:synchronousGCOnOOM | -Xgc:nosynchronousGCOnOOM
One occasion when garbage collection occurs is when the heap runs out of
memory. If there is no more free space in the heap, using
-Xgc:synchronousGCOnOOM stops your application while garbage collection
removes unused objects. If free space runs out again, consider decreasing
the target utilization to allow garbage collection more time to complete.
Setting -Xgc:nosynchronousGCOnOOM implies that when heap memory is full
your application stops and issues an out-of-memory message. The default
is -Xgc:synchronousGCOnOOM.

-Xnoclassgc
Disables class garbage collection. This option switches off garbage
collection of storage associated with Java classes that are no longer being
used by the JVM. The default behavior is -Xnoclassgc.

-Xgc:targetPauseTime=N
Sets the garbage collection pause time, where N is the time in milliseconds.

Chapter 10. Reference 63

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/appendixes/cmdline/cmdline.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.aix.70.doc/diag/appendixes/cmdline/cmdline.html

When this option is specified, the GC operates with pauses that do not
exceed the value specified. If this option is not specified the default pause
time is set to 3 milliseconds. For example, running with
-Xgc:targetPauseTime=20 causes the GC to pause for no longer than 20
milliseconds during GC operations.

-Xgc:targetUtilization=N
Sets the application utilization to N%; the Garbage Collector attempts to
use at most (100-N)% of each time interval. Reasonable values are in the
range of 50-80%. Applications with low allocation rates might be able to
run at 90%. The default is 70%.

This example shows the maximum size of the heap memory is 30 MB. The
garbage collector attempts to use 25% of each time interval because the
target utilization for the application is 75%.
java -Xgcpolicy:metronome -Xmx30m -Xgc:targetUtilization=75 Test

-Xgc:threads=N
Specifies the number of GC threads to run. The default is the number of
processor cores available to the process. The maximum value you can
specify is the number of processors available to the operating system.

-Xgc:verboseGCCycleTime=N
N is the time in milliseconds that the summary information should be
dumped.

Note: The cycle time does not mean that the summary information is
dumped precisely at that time, but when the last garbage collection event
that meets this time criterion passes.

-Xmx<size>
Specifies the Java heap size. Unlike other garbage collection strategies, the
real-time Metronome GC does not support heap expansion. There is not an
initial or maximum heap size option. You can specify only the maximum
heap size.

Default settings for the JVM
Default settings apply to the Real Time JVM when no changes are made to the
environment that the JVM runs in. Common settings are shown for reference.

Default settings can be changed using environment variables or command-line
parameters at JVM startup. The table shows some of the common JVM settings.
The last column indicates how you can change the behavior, where the following
keys apply:
v e - setting controlled by environment variable only
v c - setting controlled by command-line parameter only
v ec - setting controlled by both environment variable and command-line

parameter, with command-line parameter taking precedence.

The information is provided as a quick reference and is not comprehensive.

JVM setting Default Setting
affected by

Javadumps Enabled ec

Javadumps on out of memory Enabled ec

Heapdumps Disabled ec

64 IBM WebSphere Real Time for AIX: User Guide

JVM setting Default Setting
affected by

Heapdumps on out of memory Enabled ec

Sysdumps Enabled ec

Where dump files are produced Current® directory ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformancy checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signalling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

Default locale None e

Time to wait before starting plug-in N/A e

Temporary directory /tmp e

Plug-in redirection None e

IM switching Disabled e

IM modifiers Disabled e

Thread model N/A e

Initial stack size for Java Threads 32-bit. Use:
-Xiss<size>

2 KB c

Maximum stack size for Java Threads 32-bit. Use:
-Xss<size>

256 KB c

Stack size for OS Threads 32-bit. Use -Xmso<size> 256 KB c

Initial stack size for Java Threads 64-bit. Use:
-Xiss<size>

2 KB c

Maximum stack size for Java Threads 64-bit. Use:
-Xss<size>

256 KB c

Stack size for OS Threads 64-bit. Use -Xmso<size> 256 KB c

Initial heap size. Use -Xms<size> 64 MB c

Chapter 10. Reference 65

JVM setting Default Setting
affected by

Maximum Java heap size. Use -Xmx<size> Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

c

Target time interval utilization for an application.
The Garbage collector attempts to use the remainder.
Use -Xgc:targetUtilization=<percentage>

70% c

The number of garbage collector threads to run. Use
-Xgc:threads=<value>

The number of
processor cores
available to the
process.

c

Maximum amount of memory that can be allocated
to scope memories in -Xrealtime mode. Use
-Xgc:scopedMemoryMaximumSize=<size>.

8 MB c

Sets the size of the immortal memory area in
-Xrealtime mode. Use
-Xgc:immortalMemorySize=<size>

16 MB c

Note: “available memory” is either the amount of real (physical) memory, or the
RLIMIT_AS value, whichever is the smallest value.

66 IBM WebSphere Real Time for AIX: User Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 67

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
v JIMMAIL@uk.ibm.com [Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);

68 IBM WebSphere Real Time for AIX: User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Itanium are trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 69

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

70 IBM WebSphere Real Time for AIX: User Guide

Index

Special characters
-? 62
-agentlib: 62
-agentpath: 62
-assert 62
-classpath 62
-cp 62
-D 62
-help 62
-javaagent: 62
-jre-restrict-search 62
-no-jre-restrict-search 62
-showversion 62
-verbose: 62
-verbose:gc option 54
-version: 62
-X 62
-Xdebug 7
-Xgc:immortalMemorySize 63
-Xgc:nosynchronousGCOnOOM 63
-Xgc:noSynchronousGCOnOOM

option 58
-Xgc:scopedMemoryMaximumSize 63
-Xgc:synchronousGCOnOOM 63
-Xgc:synchronousGCOnOOM option 58
-Xgc:targetUtilization 63
-Xgc:threads 63
-Xgc:verboseGCCycleTime=N 63
-Xgc:verboseGCCycleTime=N option 54
-Xmx 31, 63
-Xnojit 7
-Xshareclasses 7
-XsynchronousGCOnOOM 31

A
accessibility features 2
AIX

problem determination 29
alarm thread

metronome garbage collector 3
AOT

disabling 48

C
class data sharing 25
class records in a heapdump 45
class unloading

metronome 3
classic (text) heapdump file format

heapdumps 44
collection threads

metronome garbage collector 3
compilation failures, JIT 52
Concepts 3
controlling processor utilization 17, 21

D
default settings, JVM 64
Developing applications 23
Diagnostics Collector 53
disabling the AOT compiler 48
disabling the JIT compiler 48
DTFJ 59
dump agents

events 37
filters 38
using 37

dump viewer 46
Using diagnostic tools 46

E
events

dump agents 37

F
failing method, JIT 50

G
garbage collection

metronome 3, 17
real time 3, 17

Garbage Collector diagnostic data 54
Using diagnostic tools 54

H
header record in a heapdump 44
Heapdump 44

text (classic) Heapdump file
format 44

Using diagnostic tools 44

I
immortal memory 3
Introduction 1

J
Javadump 39

storage management 40
threads and stack trace

(THREADS) 42
Using diagnostic tools 39

JIT 48
compilation failures, identifying 52
disabling 48
idle 53
locating the failing method 50
selectively disabling 49
short-running applications 53

JIT (continued)
Using diagnostic tools 48

JVMTI 59
Using diagnostic tools 59

L
limitations

metronome 22
locating the failing method, JIT 50

M
Memory management,

understanding 33
metronome

controlling processor utilization 17,
21

limitations 22
time-based collection 3

metronome class unloading 3
metronome garbage collection 3, 17
metronome garbage collector

alarm thread 3
collection threads 3

N
NLS

problem determination 30

O
object records in a heapdump 44
options

-verbose:gc 54
-Xgc:immortalMemorySize 63
-Xgc:nosynchronousGCOnOOM 63
-Xgc:noSynchronousGCOnOOM 58
-Xgc:scopedMemoryMaximumSize 63
-Xgc:synchronousGCOnOOM 58, 63
-Xgc:targetUtilization 63
-Xgc:threads 63
-Xgc:verboseGCCycleTime=N 54, 63
-Xmx 63

ORB
debugging 30

OutOfMemoryError 31, 58

P
packaging 9
Planning 5
Problem determination 29

© Copyright IBM Corp. 2003, 2014 71

R
real-time garbage collection 3, 17
Reference 61
Running applications 17

S
sample application 23
scoped memory 3
Security 27
selectively disabling the JIT 49
settings, default (JVM) 64
shared classes

diagnostic data 58
short-running applications

JIT 53
storage management, Javadump 40
Supported environments 5

T
text (classic) heapdump file format

heapdumps 44
threads and stack trace (THREADS) 42
time-based collection

metronome 3
tracing 47

Using diagnostic tools 47
trailer record 1 in a heapdump 45
trailer record 2 in a heapdump 46
troubleshooting

metronome 54
Troubleshooting and support 29
type signatures 46

U
Using diagnostic tools 35

Diagnostics Collector 53
DTFJ 59

using dump agents 37
Using the IBM Monitoring and

Diagnostic Tools for Java 35
Using diagnostic tools 35

W
work-based collection 3

72 IBM WebSphere Real Time for AIX: User Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Preface
	Chapter 1. Introduction
	Overview of WebSphere Real Time for AIX
	What's new
	Benefits
	Accessibility

	Chapter 2. Understanding IBM WebSphere Real Time for AIX
	Introduction to the Metronome Garbage Collector

	Chapter 3. Planning
	Migration
	Supported environments
	Additional information for AIX
	Considerations

	Chapter 4. Installing IBM WebSphere Real Time for AIX
	Installation files
	Installing from an installp package
	Relocating WebSphere Real Time for AIX

	Installing from an InstallAnywhere package
	Completing an attended installation
	Completing an unattended installation
	Interrupted installation
	Known issues and limitations

	Configuring user accounts
	Setting the path
	Setting the classpath
	Verifying the installation

	Chapter 5. Running IBM WebSphere Real Time for AIX applications
	Using the Metronome Garbage Collector
	Controlling pause time
	Controlling processor utilization
	Metronome Garbage Collector limitations

	Chapter 6. Developing applications
	The sample real-time hash map

	Chapter 7. Performance
	Class data sharing between JVMs

	Chapter 8. Security
	Security considerations for the shared class cache

	Chapter 9. Troubleshooting and support
	General problem determination methods
	AIX problem determination
	NLS problem determination
	ORB problem determination

	Troubleshooting OutOfMemory Errors
	Diagnosing OutOfMemoryErrors
	How the IBM JVM manages memory

	Using diagnostic tools
	Using the IBM Monitoring and Diagnostic Tools for Java
	Garbage Collection and Memory Visualizer
	Health Center
	Interactive Diagnostic Data Explorer
	Memory Analyzer

	Using dump agents
	Dump events
	filter option

	Using Javadump
	Storage Management (MEMINFO)
	Threads and stack trace (THREADS)

	Using Heapdump
	Text (classic) Heapdump file format

	Using system dumps and the dump viewer
	Tracing Java applications and the JVM
	JIT and AOT problem determination
	Diagnosing a JIT or AOT problem
	Performance of short-running applications
	JVM behavior during idle periods

	The Diagnostics Collector
	Garbage Collector diagnostic data
	Troubleshooting the Metronome Garbage Collector

	Shared classes diagnostic data
	Using the JVMTI
	Using the Diagnostic Tool Framework for Java

	Chapter 10. Reference
	Command-line options
	Specifying Java options and system properties
	System properties
	Standard options
	Non-standard options
	Metronome Garbage Collector options

	Default settings for the JVM

	Notices
	Privacy Policy Considerations
	Trademarks

	Index
	Special characters
	A
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

