
IBM WebSphere Real Time for Linux
Version 3

User Guide

���

IBM WebSphere Real Time for Linux
Version 3

User Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 77.

Fifth edition (February 2014)

This edition of the user guide applies to IBM WebSphere Real Time for Linux, Version 3, and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Preface ix

Chapter 1. Introduction 1
Overview of WebSphere Real Time for Linux . . . 1
What's new 1
Benefits 2
Accessibility 2

Chapter 2. Understanding IBM
WebSphere Real Time for Linux 5
Introduction to the Metronome Garbage Collector . . 5
Thread scheduling 6

Chapter 3. Planning. 9
Migration 9
Supported environments 9
Considerations 10

Chapter 4. Installing WebSphere Real
Time for Linux 11
Installation files 11
Installing from an InstallAnywhere package . . . 11

Completing an attended installation 13
Completing an unattended installation 13
Interrupted installation 14
Known issues and limitations 15

Setting the path 15
Setting the classpath 16
Testing your installation 17
Uninstalling WebSphere Real Time for Linux . . . 17

Chapter 5. Running IBM WebSphere
Real Time for Linux applications . . . 19
Thread scheduling and dispatching 19

Regular Java thread priorities and policies . . . 20
Using the Metronome Garbage Collector 23

Controlling pause time 23
Controlling processor utilization 27
Metronome Garbage Collector limitations . . . 28

Chapter 6. Developing applications . . 29
The sample real-time hash map. 29

Chapter 7. Performance 31
Class data sharing between JVMs 31

Chapter 8. Security 33
Security considerations for the shared class cache. . 33

Chapter 9. Troubleshooting and
support 35
General problem determination methods 35

Linux problem determination 35
NLS problem determination 40
ORB problem determination 40

Troubleshooting OutOfMemory Errors 41
Diagnosing OutOfMemoryErrors 41

Using diagnostic tools 44
Using the IBM Monitoring and Diagnostic Tools
for Java. 45
Using dump agents. 46
Using Javadump. 49
Using Heapdump 54
Using system dumps and the dump viewer . . 57
Tracing Java applications and the JVM 57
JIT and AOT problem determination 58
The Diagnostics Collector. 64
Garbage Collector diagnostic data 64
Shared classes diagnostic data 69
Using the JVMTI 69
Using the Diagnostic Tool Framework for Java . 69

Chapter 10. Reference 71
Command-line options 71

Specifying Java options and system properties. . 71
System properties 71
Standard options 72
Non-standard options 73

Default settings for the JVM 74

Notices 77
Privacy Policy Considerations 78
Trademarks 79

Index 81

© Copyright IBM Corp. 2003, 2014 iii

||

||

iv IBM WebSphere Real Time for Linux: User Guide

Figures

1. Actual garbage collection pause times when
the target pause time is set to the default (3
milliseconds) 24

2. Actual pause times when the target pause time
is set to 6 milliseconds 25

3. Actual pause times when the target pause time
is set to 10 milliseconds 26

4. Actual pause times when the target pause time
is set to 15 milliseconds 27

© Copyright IBM Corp. 2003, 2014 v

vi IBM WebSphere Real Time for Linux: User Guide

Tables

1. Linux environments tested 9
2. Java and operating system priorities 20
3. Support for real-time priority changes. . . . 22

4. Thread names in IBM WebSphere Real Time
for Linux 53

© Copyright IBM Corp. 2003, 2014 vii

||
||

viii IBM WebSphere Real Time for Linux: User Guide

Preface

This user guide provides general information about IBM® WebSphere® Real Time
for Linux.

© Copyright IBM Corp. 2003, 2014 ix

x IBM WebSphere Real Time for Linux: User Guide

Chapter 1. Introduction

This information tells you about IBM WebSphere Real Time for Linux.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Late breaking information about the IBM WebSphere Real Time for Linux that is
not available in the user guide can be found here: http://www.ibm.com/support/
docview.wss?uid=swg21501145
v “Overview of WebSphere Real Time for Linux”
v “What's new”
v “Benefits” on page 2

Overview of WebSphere Real Time for Linux
WebSphere Real Time for Linux bundles real-time capabilities with the IBM J9
virtual machine (JVM).

WebSphere Real Time for Linux is a Java™ Runtime Environment with a Software
Development Kit that extends the IBM SDK for Java with real-time capabilities.
Applications that are dependent on precise response times can take advantage of
the real-time features provided with WebSphere Real Time for Linux on standard
Java technology.

Features

Real-time applications need consistent run time rather than absolute speed.

The main concerns when deploying real-time applications with traditional JVMs
are as follows:
v Unpredictable (potentially long) delays from Garbage Collection (GC) activity.
v Delays to method run time as Just-In-Time (JIT) compilation and recompilation

occurs, with variability in execution time.
v Arbitrary operating system scheduling.

WebSphere Real Time for Linux removes these obstacles by providing:
v The Metronome Garbage Collector, an incremental, deterministic garbage

collector with very short pause times.

What's new
This topic introduces changes for IBM WebSphere Real Time for Linux .

WebSphere Real Time for Linux V3

WebSphere Real Time for Linux V3 is an extension to the IBM SDK for Java V7,
building on the features and functions available with this release to include
real-time capabilities. Earlier versions of WebSphere Real Time for Linux were
based on earlier releases of the IBM SDK for Java.

© Copyright IBM Corp. 2003, 2014 1

http://www.ibm.com/support/docview.wss?uid=swg21501145
http://www.ibm.com/support/docview.wss?uid=swg21501145

To learn more about what's new in IBM SDK for Java V7, see: What's new in the
IBM SDK for Java 7 information center.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Scheduling java threads using Linux scheduling policies

From service refresh 1, you can schedule regular java threads with the SCHED_RR
scheduling policy to fine tune real-time applications. For more information, see
“Thread scheduling” on page 6.

Controlling pause times for the Metronome Garbage Collector

By default, the metronome garbage collector pauses for 3 milliseconds between
garbage collection cycles. You can change this value to control the pause time
using a new command-line option. For more information about this option, see
“Controlling pause time” on page 23.

Compressed references

The metronome garbage collector now supports uncompressed references as well
as compressed references on 64-bit platforms. For any performance implications,
see Chapter 7, “Performance,” on page 31.

Benefits
The benefits of the real-time environment are that Java applications run with a
greater degree of predictability than with the standard JVM and provide consistent
timing behavior for your Java application. Background activities, such as
compilation and garbage collection, occur at given times and thus remove any
unexpected peaks of background activity when running your application.

You obtain these advantages by extending the JVM with the Metronome real time
garbage collection technology.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate WebSphere Real Time for Linux without a mouse, by
using only the keyboard.

To read about issues that affect accessibility of the underlying IBM SDK for Java
V7, see IBM Information Center. There are no accessibility issues affecting unique
features and capabilities in WebSphere Real Time for Linux.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

2 IBM WebSphere Real Time for Linux: User Guide

|

|
|
|

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/preface/changes_70/changes.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/limitations_7.html

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

Chapter 1. Introduction 3

http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

4 IBM WebSphere Real Time for Linux: User Guide

Chapter 2. Understanding IBM WebSphere Real Time for
Linux

This section introduces key components of IBM WebSphere Real Time for Linux.
v “Introduction to the Metronome Garbage Collector”

Introduction to the Metronome Garbage Collector
The Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for Linux.

The key difference between Metronome garbage collection and standard garbage
collection is that Metronome garbage collection occurs in small interruptible steps
but standard garbage collection stops the application while it marks and collects
garbage.

For example:
java -Xgcpolicy:metronome -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60ms. The
remaining 20% of the time might be used for garbage collection, if there is garbage
to be collected. The Metronome Garbage Collector guarantees utilization levels
provided that it has been given sufficient resources. Garbage collection begins
when the amount of free space in the heap falls below a dynamically determined
threshold.

Metronome garbage collection and class unloading

Metronome supports class unloading in the same way as a standard Java
developer kit. However, because of the work involved, while unloading classes
there might be pause time outliers during garbage collection activities.

Metronome Garbage Collector threads

The Metronome Garbage Collector consists of two types of threads: a single alarm
thread, and a number of collection (GC) threads. By default, GC uses one thread
for each logical active processor available to the operating system. This enables the
most efficient parallel processing during GC cycles. A GC cycle means the time
between GC being triggered and the completion of freeing garbage. Depending on
the Java heap size, the elapsed time for a complete GC cycle could be several
seconds. A GC cycle usually contains hundreds of GC quanta. These quanta are the
very short pauses to application code, typically lasting 3 milliseconds. Use
-verbose:gc to get summary reports of cycles and quanta. For more information,
see: “Using verbose:gc information” on page 64. You can set the number of GC
threads for the JVM using the -Xgcthreads option.

There is no benefit from increasing -Xgcthreads above the default. Reducing
-Xgcthreads can reduce overall CPU load during GC cycles, though GC cycles will
be lengthened.

Note: GC quanta duration targets remain constant at 3 milliseconds.

© Copyright IBM Corp. 2003, 2014 5

You cannot change the number of alarm threads for the JVM.

The Metronome Garbage Collector periodically checks the JVM to see if the heap
memory has sufficient free space. When the amount of free space falls below the
limit, the Metronome Garbage Collector triggers the JVM to start garbage
collection.
Alarm thread

The single alarm thread guarantees to use minimal resources. It “wakes” at
regular intervals and makes these checks:
v The amount of free space in the heap memory
v Whether garbage collection is currently taking place

If insufficient free space is available and no garbage collection is taking
place, the alarm thread triggers the collection threads to start garbage
collection. The alarm thread does nothing until the next scheduled time for
it to check the JVM.

Collection threads
The collection threads perform the garbage collection.

After the garbage collection cycle has completed, the Metronome Garbage Collector
checks the amount of free heap space. If there is still insufficient free heap space,
another garbage collection cycle is started using the same trigger ID. If there is
sufficient free heap space, the trigger ends and the garbage collection threads are
stopped. The alarm thread continues to monitor the free heap space and will
trigger another garbage collection cycle when it is required.

For more information about using the Metronome Garbage Collector, see “Using
the Metronome Garbage Collector” on page 23.

Thread scheduling
Linux scheduling policies can be used with regular Java threads to tune real-time
applications.

With WebSphere Real Time for Linux, you can run regular Java threads with the
SCHED_RR scheduling policy. Using the SCHED_RR policy gives you finer control
over your application, which can improve the real-time performance of Java
threads. The JVM detects the priority and policy of the main thread when Java is
started with the SCHED_RR policy. The JVM alters the priority and policy
mappings accordingly. For more information about altering regular Java thread
priorities and policies, see “Thread scheduling and dispatching” on page 19

The Linux scheduling policies include:

SCHED_OTHER
The default universal time-sharing scheduling policy that is used by most
threads. These threads must be assigned with a priority of zero.

SCHED_OTHER uses time slicing, which means that each thread runs for a
limited time period, after which the next thread is allowed to run.

SCHED_FIFO
Can be used only with priorities greater than zero. When a SCHED_FIFO
thread becomes available, the thread has priority over any normal
SCHED_OTHER thread.

6 IBM WebSphere Real Time for Linux: User Guide

|

|
|

|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|

If a SCHED_FIFO thread that has a higher priority becomes available, this
thread has priority over existing SCHED_FIFO threads with a lower
priority. This thread is then kept at the top of the queue for its priority.

There is no time slicing.

Note: SCHED_FIFO is not used by WebSphere Real Time for Linux.

SCHED_RR
Is an enhancement of SCHED_FIFO. The difference is that each thread is
allowed to run only for a limited time period. If the thread exceeds that
time, it is returned to the list for its priority. SCHED_RR can be used by
WebSphere Real Time for Linux V3.

For more details on these Linux scheduling policies, see the man page for
sched_setscheduler.

For more information about using Linux scheduling policies with WebSphere Real
Time for Linux, see “Thread scheduling and dispatching” on page 19.

Chapter 2. Understanding IBM WebSphere Real Time for Linux 7

|
|
|

|

|

|
|
|
|
|

|
|

|
|

8 IBM WebSphere Real Time for Linux: User Guide

Chapter 3. Planning

Read this section before installing WebSphere Real Time for Linux.
v

v “Supported environments”
v

v “Considerations” on page 10

Migration
You can run your standard Java applications on WebSphere Real Time for Linux
without modification.

Supported environments
IBM WebSphere Real Time for Linux is supported on certain hardware platforms
and operating systems.

IBM WebSphere Real Time for Linux

The following platform architectures are supported:
v Intel Architecture, 32-bit (IA-32)

– Pentium 4
– Pentium Xeon
– Pentium M
– Pentium D and equivalents

v AMD64/EM64T
v IBM POWER® 32
v IBM POWER 64

Note: Pentium 3 hardware is no longer supported.

The following operating systems are supported:

Table 1. Linux environments tested

Hardware IA-32 32-bit AMD64/EM64T 64-bit

SDK address space 32-bit 32-bit 64-bit

RHEL 5 Update 7 Yes Yes Yes

RHEL 6 Update 1 Yes Yes Yes

SLES 11 service pack
2

Yes Yes Yes

Ubuntu 8.04 Yes Yes Yes

Ubuntu 10.04 Yes Yes Yes

Note: SLES 9, SLES 10, and RHEL 4 are not supported.

© Copyright IBM Corp. 2003, 2014 9

Considerations
You must be aware of a number of factors when using WebSphere Real Time for
Linux.
v Where possible, do not run more than one real-time JVM on the same system.

The reason is that you would then have multiple garbage collectors. Each JVM
does not know about the memory areas of the other. One effect is that GC cycles
and pause times cannot be coordinated across JVMs, meaning that it is possible
for one JVM to affect adversely the GC performance of another JVM. If you
must use multiple JVMs, ensure that each JVM is bound to a specific subset of
processors by using the taskset command.

v The shared caches used by earlier WebSphere Real Time for Linux releases to
store precompiled code and classes are not compatible with the caches used by
this release of WebSphere Real Time for Linux. You must regenerate the contents
of the earlier caches.

v When using shared class caches, the cache name must not exceed 53 characters.

10 IBM WebSphere Real Time for Linux: User Guide

Chapter 4. Installing WebSphere Real Time for Linux

Follow these steps to install the product.
v “Installation files”
v “Installing from an InstallAnywhere package”

– “Completing an attended installation” on page 13
– “Completing an unattended installation” on page 13
– “Known issues and limitations” on page 15

v “Setting the path” on page 15
v “Setting the classpath” on page 16
v “Testing your installation” on page 17
v “Uninstalling WebSphere Real Time for Linux” on page 17

Installation files
You require these installation files.

IBM WebSphere Real Time for Linux is provided in two types of InstallAnywhere
package.

Installable packages
Installable packages configure your system. For example, the programs
might set environment variables.
v wrt-3.0-0.0-linux-<arch>-sdk.bin

v wrt-3.0-0.0-linux-<arch>-jre.bin

Archive packages
These packages extract the files to your system, but do not perform any
configuration.
v wrt-3.0-0.0-linux-<arch>-sdk-archive.bin

v wrt-3.0-0.0-linux-<arch>-jre-archive.bin

Note: <arch> is your platform architecture; x86_32 or x86_64.

Installing from an InstallAnywhere package
These packages provide an interactive program that guides you through the
installation options. You can run the program as a graphical user interface, or from
a system console.

Before you begin

Your system must have both the following shared libraries:
v GNU C library V2.3 (glibc)
v libstdc++.so.5

If you do not have the libstdc++.so.5 shared library, you might see a Java core
dump when you install, containing the following errors:

© Copyright IBM Corp. 2003, 2014 11

JVMJ9VM011W Unable to load j9dmp24: libstdc++.so.5: cannot open shared object file:
No such file or directory
JVMJ9VM011W Unable to load j9gc24: libstdc++.so.5: cannot open shared object file:
No such file or directory
JVMJ9VM011W Unable to load j9vrb24: libstdc++.so.5: cannot open shared object file:
No such file or directory

If you are installing an installable package, you must have the rpm-build tool
installed on your system, otherwise the installation program cannot register the
new package in the RPM database. To find out if the rpm-build tool is installed,
enter the following command:
rpm -q rpm-build

About this task

The InstallAnywhere packages have a .bin file extension.

There are two types of package:

Installable
Installing these packages also configures your system, for example by
setting environment variables.

Archive
Installing these packages extracts the files to your system, but does not
perform any configuration.

Procedure
v To install the package in an interactive way, complete an attended installation.
v To install the package without any additional user interaction, complete an

unattended installation. You might choose this option if you want to install
many systems.

v When the installation process is completed, follow the configuration steps in this
section, such as settting path and classpath environment variables.

Results

The product is installed.

Note: Do not interrupt the installation process, for example by pressing Ctrl+C. If
you interrupt the process, you might have to reinstall the product. For more
information, see “Interrupted installation” on page 14.

If you are using an installable package, you might see messages advising that a
problem has been found. Installation of the archive packages does not produce any
messages. Some of the messages that you might see when using an installable
package are shown in the following list:

The installer cannot run on your configuration. It will now quit.
This error message occurs when your user ID is not authorized to run the
installation process. Because it cannot continue, the installation program
ends. To fix the problem, start the installation again but with a user ID that
has root authority.

An RPM package is already installed. Uninstall the package before
proceeding.

This message indicates that an RPM package is already installed. Because it

12 IBM WebSphere Real Time for Linux: User Guide

cannot continue, the installation program ends. To fix the problem,
uninstall the RPM package before proceeding.

Completing an attended installation
Install the product from an InstallAnywhere package, in an interactive way.

Before you begin

Check the following conditions before you begin the installation process:
v If you have previously installed WebSphere Real Time for Linux from an RPM

package, you must uninstall this package before proceeding.
v You must have a user ID with root authority.

Procedure
1. Download the installation package file to a temporary directory.
2. Change to the temporary directory.
3. Start the installation process by typing ./package at a shell prompt, where

package is the name of the package that you are installing.
4. Select a language from the list shown in the installer window, then click Next.

The list of available languages is based on the locale setting for your system.
5. Read the license agreement, using the scroll bar to reach the end of the license

text. To proceed with the installation you must accept the terms of the license
agreement. To accept the terms, select the radio button, then click OK.

Note: You cannot select the radio button to accept the license agreement until
you have read to the end of the license text.

6. You are asked to choose the target directory for the installation. If you do not
want to install into the default directory, click Choose to select an alternative
directory, by using the browser window. When you have chosen the installation
directory, click Next to continue.

7. You are asked to review the choices that you made. To change your selection,
click Previous. If your choices are correct, click Install to proceed with
installation.

8. When the installation process is complete, click Done to finish.

Completing an unattended installation
If you have more than one system to install, and you already know the installation
options that you want to use, you might want to use the unattended installation
process. You install once by using the attended installation process, then use the
resulting response file to complete further installations without any additional user
interaction.

Procedure
1. Create a response file by completing an attended installation. Use one of the

following options:
v Use the GUI and specify that the installation program creates a response file.

The response file is called installer.properties, and is created in the
installation directory.

v Use the command line and append the -r option to the attended installation
command, specifying the full path to the response file. For example:
./package -r /path/installer.properties

Chapter 4. Installing WebSphere Real Time for Linux 13

Example response file contents:
INSTALLER_UI=silent
USER_INSTALL_DIR=/my_directory

In this example, /my_directory is the target installation directory that you
chose for the installation.

2. Optional: If required, edit the response file to change options.

Note: Archive packages have the following known issue: installations that use
a response file use the default directory even if you change the directory in the
response file. If a previous installation exists in the default directory, it is
overwritten.
If you are creating more than one response file, each with different installation
options, specify a unique name for each response file, in the format
myfile.properties.

3. Optional: Generate a log file. Because you are installing silently, no status
messages are displayed at the end of the installation process. To generate a log
file that contains the status of the installation, complete the following steps:
a. Set the required system properties by using the following command.

export _JAVA_OPTIONS="-Dlax.debug.level=3 -Dlax.debug.all=true"

b. Set the following environment variable to send the log output to the
console.
export LAX_DEBUG=1

4. Start an unattended installation by running the package installer with the -i
silent option, and the -f option to specify the response file. For example:
./package -i silent -f /path/installer.properties 1>console.txt 2>&1

./package -i silent -f /path/myfile.properties 1>console.txt 2>&1

You can use a fully qualified path or relative path to the properties file. In these
examples, the string 1>console.txt 2>&1 redirects installation process
information from the stderr and stdout streams to the console.txt log file in
the current directory. Review this log file if you think there was a problem with
the installation.

Note: If your installation directory contains multiple response files, the default
response file, installer.properties is used.

Interrupted installation
If the package installer is unexpectedly stopped during installation, for example if
you press Ctrl+C, the installation is corrupted and you cannot uninstall or reinstall
the product. If you try to uninstall or reinstall you might see the message Fatal
Application Error.

About this task

To solve this problem, delete files and reinstall, as described in the following steps.

Procedure
1. Delete the /var/.com.zerog.registry.xml registry file.
2. Delete the directory containing the installation, if it was created. For example

/opt/IBM/javawrt3[_64]/.
3. Run the installation program again.

14 IBM WebSphere Real Time for Linux: User Guide

Known issues and limitations
The InstallAnywhere packages have some known issues and limitations.
v If you do not have the libstdc++.so.5 shared library on your system, the

installation fails, producing a Java core dump. For more information, see
“Installing from an InstallAnywhere package” on page 11.

v The installation package GUI does not support the Orca screen-reading program.
You can use the unattended installation mode as an alternative to the GUI.

v If, after installation, you enter ./package to start the program again, the program
displays the following message:
ENTER THE NUMBER OF THE DESIRED CHOICE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

If you press Enter to accept the default, the program does not respond. Type a
number, then press Enter.

v If you install the package, then attempt to install again in a different mode, for
example console or silent, you might see the following error message:
Invocation of this Java Application has caused an InvocationTargetException.
This application will now exit

You should not see this message if you installed by using the GUI mode and are
running the installation program again in console mode. If you see this error,
and are running the program to select the uninstallation option (installable
packages only), use the ./_uninstall/uninstall command instead, as described
in “Uninstalling WebSphere Real Time for Linux” on page 17.

Installable packages only
v You cannot upgrade an existing installation by using the InstallAnywhere

packages. To upgrade WebSphere Real Time for Linux, you must first uninstall
any previous versions.

v You cannot install two different instances of the same version of WebSphere Real
Time for Linux on the same system at the same time, even if you use different
installation directories. For example, you cannot simultaneously
have WebSphere Real Time for Linux V3 in directory /previous, and an
WebSphere Real Time for Linux service refresh installation in directory /current.
The installation program checks the version number. If the program finds an
existing package with the same version number, you are asked to uninstall the
existing package.

v If the package is installed, and you run the package installer again by using the
GUI, you can select to uninstall the package. This uninstallation option is not
available in unattended mode. If you run the package installer again in
unattended mode, the program runs but does not perform any actions.

Archive packages only
v If you change the installation directory in a response file, and then run an

unattended installation by using that response file, the installation program
ignores the new installation directory and uses the default directory instead. If a
previous installation exists in the default directory, it is overwritten.

Setting the path
When you have set the PATH environment variable, you can run an application or
program by typing its name at a shell prompt.

Chapter 4. Installing WebSphere Real Time for Linux 15

About this task

Note: If you alter the PATH environment variable as described in this section, you
override any existing Java executables in your path.

You can specify the path to a tool by typing the path before the name of the tool
each time. For example, if the SDK is installed in /opt/IBM/javawrt3[_64]/, you
can compile a file named myfile.java by typing the following command at a shell
prompt:
/opt/IBM/javawrt3[_64]/bin/javac myfile.java

To avoid typing the full path each time:
1. Edit the shell startup file in your home directory (usually .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable; for
example:
export PATH=/opt/IBM/javawrt3[_64]/bin:/opt/IBM/javawrt3[_64]/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH setting.
3. Compile the file with the javac tool. For example, to compile the file myfile.java,

at a shell prompt, enter:
javac -Xgcpolicy:metronome myfile.java

The PATH environment variable enables Linux to find executable files, such as
javac, java, and the javadoc tool, from any current directory. To display the
current value of your path, type the following command at a command
prompt:
echo $PATH

What to do next

See “Setting the classpath” to determine whether you need to set your
CLASSPATH environment variable.

Setting the classpath
The CLASSPATH environment variable tells the SDK tools, such as java, javac, and
javadoc tool, where to find the Java class libraries.

About this task

Set the CLASSPATH environment variable explicitly only if one of the following
conditions applies:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH, enter the following command at a
shell prompt:

echo $CLASSPATH

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set CLASSPATH

16 IBM WebSphere Real Time for Linux: User Guide

and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own shell.

If you run only one version of Java at a time, you can use a shell script to switch
between the different runtime environments.

What to do next

See “Testing your installation” to verify that your installation has been successful.

Testing your installation
Use the -version option to check if your installation is successful.

About this task

The Java installation consists of a real-time JVM.

Procedure

Test your installation by following these steps:
1. To see version information for the real-time JVM, type the following command

at a shell prompt:
java -Xgcpolicy:metronome -version

This command returns the following messages if it is successful:
java version "1.7.0"
WebSphere Real Time V3(build pxi3270-20110428_04)
IBM J9 VM (build 2.6, JRE 1.7.0 Linux x86-32 20110427_81014 (JIT enabled, AOT
enabled)
J9VM - R26_head_20110426_2022_B81001
JIT - r11_20110426_19388
GC - R26_head_20110426_1548_B80973
J9CL - 20110427_81014)
JCL - 20110427_03 based on Oracle 7b145

Note: The version information is correct but the platform architecture and
dates might differ from the example. The format of the date string is: yyyymmdd
followed possibly by additional information specific to the component.

Uninstalling WebSphere Real Time for Linux
The process that you use to remove WebSphere Real Time for Linux depends on
what type of installation you used.

Before you begin

For InstallAnywhere installable packages, you must have a user ID with root
authority.

About this task

There is no uninstallation process for InstallAnywhere archive packages. To remove
an archive package from your system, delete the target directory that you chose
when you installed the package. For InstallAnywhere installable packages, you

Chapter 4. Installing WebSphere Real Time for Linux 17

uninstall the product by using a command, or by running the installation program
again, as described in the following steps.

Procedure
v Optional: Uninstall manually by using the uninstall command.

1. Change to the directory that contains the installation. For example:
cd /opt/IBM/javawrt3

2. Start the uninstallation process by entering the following command:
./_uninstall/uninstall

v Optional: If you cannot locate the uninstall program easily, as an alternative you
can run another attended installation. The installation program detects that the
product is already installed, then gives you the opportunity to uninstall the
previous installation.

18 IBM WebSphere Real Time for Linux: User Guide

Chapter 5. Running IBM WebSphere Real Time for Linux
applications

Important information to assist you when running real time applications.
v “Thread scheduling and dispatching”
v

v “Using the Metronome Garbage Collector” on page 23

Thread scheduling and dispatching
The Linux operating system supports various scheduling policies. The default
universal time sharing scheduling policy is SCHED_OTHER, which is used by
most threads. SCHED_RR and SCHED_FIFO can be used by threads in real-time
applications. Only SCHED_OTHER and SCHED_RR are used by WebSphere Real
Time for Linux.

The kernel decides which is the next runnable thread to be run by the processor.
The kernel maintains a list of runnable threads. It looks for the thread with the
highest priority and selects that thread as the next thread to be run.

Thread priorities and policies can be listed using the following command:
ps -emo pid,ppid,policy,tid,comm,rtprio,cputime

where policy:
v TS is SCHED_OTHER
v RR is SCHED_RR
v FF is SCHED_FIFO
v - has no policy reported

The output looks like this example:
PID PPID POL TID COMMAND RTPRIO TIME

31531 30800 - - java - 00:00:13
- - RR 31531 - 6 00:00:00
- - RR 31532 - 6 00:00:13
- - RR 31533 - 6 00:00:00
- - RR 31538 - 6 00:00:00
- - RR 31539 - 6 00:00:00
- - RR 31540 - 6 00:00:00
- - RR 31541 - 6 00:00:00
- - RR 31542 - 6 00:00:00
- - RR 31543 - 6 00:00:00
- - RR 31544 - 6 00:00:00
- - RR 31545 - 6 00:00:00
- - RR 31546 - 6 00:00:00

This output shows the Java process, and numerous threads with policy SCHED_RR
and priority 6.

To query the current scheduling policy, use sched_getscheduler, or the ps
command shown in the example.

For more information about processes, see “General debugging techniques” on
page 36.

© Copyright IBM Corp. 2003, 2014 19

|

Regular Java thread priorities and policies
Regular Java threads, that is, threads allocated as java.lang.Thread objects, use the
default scheduling policy of SCHED_OTHER. From WebSphere Real Time for
Linux V3 service refresh 1, you can run regular Java threads with the SCHED_RR
scheduling policy.

By default, Java threads are run using the default SCHED_OTHER policy. This
policy maps Java threads to the operating system priority 0.

Using the SCHED_RR policy gives you finer control over your application, which
can improve the real-time performance of Java threads. The JVM detects the
priority and policy of the main thread when Java is started with the SCHED_RR
policy. The JVM alters the priority and policy mappings accordingly. All Java
threads are run at the same operating system priority as the main thread. Although
SCHED_RR can be assigned priorities 1 - 99, the usable SCHED_RR priorities for
WebSphere Real Time for Linux V3 are priorities 1 - 10. If the priority is set higher
than 10, the priority of the main thread is lowered to 10 and the mapping applied
based on the value of 10.

One way to alter the real-time scheduling property of a process on the command
line is to use the command chrt. In the following example, the priority of the main
Java thread is set to use the SCHED_RR scheduling policy, with an operating
system priority of 6.
chrt -r 6 java

You might need to configure your system to allow priorities to be changed. See
“Configuring the system to allow priority changes” on page 21 for more
information.

Table 2. Java and operating system priorities

Java priority
Java priority value for
thread Operating system priority

1 MIN_PRIORITY 6

2 6

3 6

4 6

5 NORM_PRIORITY (default) 6

6 6

7 6

8 6

9 6

10 MAX_PRIORITY 6

All threads associated with the main Java thread are run at the same operating
system priority.

If you run the command chrt -r 11 java, the result is the same as running chrt
-r 10 java. This is because you cannot apply a priority above 10 to the priority
mapping used by JVM threads, although the thread that launches the JVM and
waits for JVM termination remains at priority 11.

20 IBM WebSphere Real Time for Linux: User Guide

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|

|
|
|
|

The JVM produces an error message if you attempt to use the command chrt -f 6
java, because SCHED_FIFO is not supported on WebSphere Real Time for
Linux V3.

For more information about the chrt command, see http://
publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/
realtime/liaairtchrt.htm.

Configuring the system to allow priority changes
By default, non-root users on Linux cannot raise the priority of a thread or process.
You can change the system configuration to allow priority changes using the
pam_limits module of the Pluggable Authentication Modules (PAM) for Linux.

If you cannot change the priority of a thread or process using the chrt utility, you
typically see the following message:
sched_setscheduler: Operation not permitted

On recent Linux kernels, you can change the configuration of the system to allow
priority changes using the pam_limits module. This module allows you to
configure the limits on system resources in the limits configuration file. The default
file is /etc/security/limits.conf.

An entry in the /etc/security/limits.conf file has the following form:
<domain> <type> <item> <value>

where:

<domain> is either:
- a user name on the system that can alter limits on a resource.

- a group name, with the syntax @group, whose members can alter limits
on a resource.

- a wildcard "*", which indicates that any user or group can alter limits on
a resource.

<type> is either:
- hard, where hard limits are enforced by the kernel.

- soft, where soft limits apply, which can be altered within the range
specified by the hard limits.

- a dash "-", which indicates hard and soft limits.

<item> is:
- a resource. Use rtprio for real-time priorities.

<value> is:
- a limit. Use a value in the range 1 - 100 to indicate the maximum limit
for real-time priority setting.

For example,
* - rtprio 100

allows all users to change the priority of real-time processes, using chrt or other
mechanisms.

By default, the root user can increase real-time priorities without limits. To apply a
limit to root, the root user must be explicitly specified. Group and wildcard limits
in the configuration file do not apply to the root user.

Chapter 5. Running applications 21

|
|
|

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|

|
|

|
|
|

http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm

If you specify individual user limits in the file, these limits have priority over
group limits.

Changes to limits.conf do not take effect immediately. You must restart the
affected services or reboot the system for a configuration change to take effect.

The ability to increase the real-time priority of a Java Virtual Machine (JVM) is not
available on Linux kernels 2.6.12 and earlier. The table indicates whether support is
available for this feature in some common Linux distributions.

Table 3. Support for real-time priority changes

Linux distribution Linux kernel version
Support for real-time
priority changes (yes/no)

Red Hat Enterprise Linux
(RHEL) 4

2.6.9 no

RHEL 5 and later 2.6.18 and later yes

SUSE Linux Enterprise
Server (SLES) 9

2.6.5-7 no

SLES 10 and later 2.6.16 and later yes

Red Hat Enterprise MRG -
all versions

2.6.24 and later yes

SUSE Linux Enterprise Real
Time (SLERT) - all versions

2.6.16 and later yes

Ubuntu 5.10 2.6.12 no

Ubuntu 6.06 and later 2.6.15 and later yes

To enable priority changes on a real-time Linux system you can add a user to the
realtime group, shown in the limits.conf file.

Launching secondary processes
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

From that method call, a new java.lang.Process object is created. The object can be
used to control the new process, or to obtain information about it.

Several threads are created by the exec methods for this purpose. In IBM
WebSphere Real Time for Linux, modifications of the procedure enable more
deterministic behavior in a real-time environment.

The Runtime.exec call creates a “reaper” thread for each forked subprocess. The
reaper thread is the only thread that waits for the subprocess to terminate. When
the subprocess terminates, the reaper thread records the subprocess exit status. The
reaper thread spawns the new process, and gives it the same priority as the thread
that originally called Runtime.exec.

If the spawned process is another WebSphere Real Time for Linux JVM, and the
Runtime.exec method was called by another method running with a Linux
real-time policy and priority, then the main thread of the new virtual machine
maps its policy and priority to the same Linux real-time policy and priority. This
Java thread priority is between 1 and 10.

22 IBM WebSphere Real Time for Linux: User Guide

|
|

|
|

|
|
|

||

||
|
|

|
|
||

|||

|
|
||

|||

|
|
||

|
|
||

|||

|||
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

The reaper thread also creates two new threads that listen to the stdout and
stderr streams of the new process. The stdout and stderr data is saved into
buffers used by these threads. The buffers persist beyond the lifetime of the
spawned process. This persistence allows the resources held by the spawned
process to be cleared immediately when the process terminates.

Using the Metronome Garbage Collector
Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for Linux.

Controlling pause time
Metronome garbage collector (GC) pause time can be fine-tuned for each Java
process.

By default, the Metronome GC pauses for 3 milliseconds in each individual pause,
which is known as a quantum. A full garbage collection cycle requires many of
these pauses, which are spread out to give the application enough time to run. You
can change this maximum individual pause time value with the
-Xgc:targetPauseTime option. For example, running with -Xgc:targetPauseTime=20
causes the GC to operate with individual pauses that are no longer than 20
milliseconds.

The IBM Monitoring and Diagnostics Tools for Java - Garbage Collection and
Memory Visualizer (GCMV) can be used to monitor the GC pause times for your
application, as well as helping to diagnose and tune performance problems in your
Java application. The tool parses and plots data from various types of log,
including:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The graphs in this section are generated by GCMV, and show the affect of
changing the target pause time on garbage collection cycles. Each graph plots the
actual pause times between metronome garbage collection cycles (Y-axis) against
the run time of an application (X-axis).

Note: GCMV supports an older verbose garbage collection format. If you want to
analyze verbose GC output with GCMV, generate the output with the
-Xgc:verboseFormat=deprecated option. For more information, see GC
command-line options.

With the default target pause time set, the Verbose GC pause time graph shows
that pause times are held around or below the 3 millisecond mark:

Chapter 5. Running applications 23

|
|
|
|
|

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/commands_gc.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/commands_gc.html

With a target pause time set at 6 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 6 millisecond mark:

20 40 60 80 100 120 140 160 180 200

0.0030

0.0025

0.0020

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0015

0.0010

0.0005

0.0000

Figure 1. Actual garbage collection pause times when the target pause time is set to the default (3 milliseconds)

24 IBM WebSphere Real Time for Linux: User Guide

With a target pause time set at 10 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 10 millisecond mark:

0.0065

20 40 60 80 100 120 140 160 180 200

0.0060

0.0050

0.0055

0.0045

0.0040

0.0035

0.0030

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Figure 2. Actual pause times when the target pause time is set to 6 milliseconds

Chapter 5. Running applications 25

With a target pause time set at 15 milliseconds, the Verbose GC pause time graph
shows that pause times are held around or below the 15 millisecond mark:

0.0110

20 40 60 80 100 120 140 160 180 200

0.0100

0.0080

0.0090

0.0070

0.0060

0.0050

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0040

0.0030

0.0020

0.0010

0.0000

Figure 3. Actual pause times when the target pause time is set to 10 milliseconds

26 IBM WebSphere Real Time for Linux: User Guide

Controlling processor utilization
You can limit the amount of processing power available to the metronome garbage
collector.

You can control garbage collection with the Metronome Garbage Collector using
the -Xgc:targetUtilization=N option to limit the amount of CPU used by the
Garbage Collector.

For example:
java -Xgcpolicy:metronome -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60 milliseconds.
The remaining 20% of the time is used for garbage collection. The Metronome
Garbage Collector guarantees utilization levels provided that it has been given
sufficient resources. Garbage collection begins when the amount of free space in
the heap falls below a dynamically determined threshold.

0.0160

20 40 60 80 100 120 140 160 180 200

0.0140

0.0120

0.0100

tim
e

(s
ec

on
ds

)

time (seconds)

GC quantum time maximum

0.0080

0.0060

0.0040

0.0020

0.0000

Figure 4. Actual pause times when the target pause time is set to 15 milliseconds

Chapter 5. Running applications 27

Metronome Garbage Collector limitations
This topic captures any known issues or limitations that affect the metronome GC
policy.

AESNI support on x86 platforms

Software exploitation of AESNI instructions on x86 architectures is currently not
supported with the metronome GC policy.

Long pause times during garbage collection

Under rare circumstances, you might experience longer than expected pauses
during garbage collection. During garbage collection, a root scanning process is
used. The garbage collector walks the heap, starting at known live references.
These references include:
v Live reference variables in the active thread call stacks.
v Static references.

To find all the live object references on an application thread's stack, the garbage
collector scans all the stack frames in that thread's call stack. Each active thread
stack is scanned in an uninterruptible step. Therefore the scan must take place
within an individual GC pause.

The effect is that the system performance might be worse than expected if you
have some threads with very deep stacks, because of extended garbage collection
pauses at the beginning of a collection cycle.

28 IBM WebSphere Real Time for Linux: User Guide

|

|
|

Chapter 6. Developing applications

Important information about writing real time applications, including code
samples.
v “The sample real-time hash map”

The sample real-time hash map
WebSphere Real Time for Linux includes HashMap and HashSet implementations
that provide more consistent performance for the put method than the standard
HashMap in the IBM SDK for Java 7.

The standard java.util.HashMap that IBM provides works well for high throughput
applications. It also helps with applications that know the maximum size their
hash map needs to grow to. For applications that need a hash map that could
grow to variable sizes, depending on usage, there is a potential performance
problem with the standard hash map. The standard hash map provides good
response times for adding new entries into the hash map using the put method.
However, when the hash map fills up, a larger backing store must be allocated.
This means that the entries in the current backing store must be migrated. If the
hash map is large, the time to perform a put could also be large. For example, the
operation could take several milliseconds.

WebSphere Real Time for Linux includes a sample real-time hash map. It provides
the same functional interface as the standard java.util.HashMap, but enables much
more consistent performance for the put method. Instead of creating a backing
store and migrating all the entries when the hash map fills up, the sample hash
map creates an additional backing store. The new backing store is chained to the
other backing stores in the hash map. The chaining initially causes a slight
performance reduction while the empty backing store is allocated and chained to
the other backing stores. Once the backing hash map is updated, it is faster than
having to migrate all the entries. A disadvantage of the real-time hash map is that
the get, put and remove operations are slightly slower. The operations are slower
because each look-up must to proceed through a set of backing hash maps instead
of just one.

To try out the real-time hash map, add the RTHashMap.jar file to the start of your
boot class path. If you installed WebSphere Real Time for Linux into the directory
$WRT_ROOT, then add the following option to use the real-time hash map with your
application, instead of the standard hash map:
-Xbootclasspath/p:$WRT_ROOT/demo/realtime/RTHashMap.jar

The source and class files for the real-time hash map implementation are included
in the demo/realtime/RTHashMap.jar file. In addition, a real time
java.util.LinkedHashMap and java.util.HashSet implementation are also provided.

© Copyright IBM Corp. 2003, 2014 29

30 IBM WebSphere Real Time for Linux: User Guide

Chapter 7. Performance

WebSphere Real Time for Linux is optimized for consistently short GC pauses
rather than the highest throughput performance or smallest memory footprint.

Performance on certified hardware configurations

Certified systems have sufficient clock granularity and processor speed to support
WebSphere Real Time for Linux performance goals. For example, a well-written
application running on a system that is not overloaded, and with an adequate
heap size, would normally experience GC pause times of about 3 milliseconds, and
no more than 3.2 milliseconds. During GC cycles, an application with default
environment settings is not paused for more than 30% of elapsed time during any
sliding 60 millisecond window. The collective time spent in GC pauses over any 60
millisecond period normally totals about 18 milliseconds.

Reducing timing variability

The main sources of variability in a standard JVM are garbage collection pauses. In
WebSphere Real Time for Linux, the potentially long pauses from standard
Garbage Collector modes are avoided by using the Metronome Garbage Collector.
See “Using the Metronome Garbage Collector” on page 23.

Class data sharing between JVMs

Class data sharing provides a transparent method of reducing memory footprint
and improving JVM start time. To learn more on class data sharing see “Class data
sharing between JVMs”

Compressed references

The Metronome GC supports both compressed and uncompressed references on
64-bit platforms. When using compressed references, the JVM stores all references
to objects, classes, threads, and monitors as 32-bit values. Using compressed
references improves the performance of many applications because objects are
smaller, resulting in less frequent garbage collection and improved memory cache
utilization.

Note: The heap size available for compressed references is limited to about 28 GB.
For further information about compressed references, see http://
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/
diag/understanding/mm_compressed_references.html.

Class data sharing between JVMs
Support for shared classes is the same when running with, or without, the
-Xrealtime option.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
memory-mapped cache file on disk. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is deleted.

© Copyright IBM Corp. 2003, 2014 31

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/understanding/mm_compressed_references.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/understanding/mm_compressed_references.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/understanding/mm_compressed_references.html

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Note: A real-time shared classes cache cannot be removed by a non real-time
JVM.

32 IBM WebSphere Real Time for Linux: User Guide

|
|

Chapter 8. Security

This section contains important information about security.

Security considerations for the shared class cache
The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

When using the shared class cache, you must be aware of the default permissions
for new files so that you can improve security by restricting access.

File Default permissions

new shared caches read permissions for group and other

javasharedresources directory world read, write, and execute permission

You require write permission on both the cache file and the cache directory to
destroy or grow a cache.

Changing the file permissions on the cache file

To limit access to a shared class cache, you can use the chmod command.

Change required Command

Limit access to the user and group chmod 770 /tmp/javasharedresources

Limit access to the user chmod 700 /tmp/javasharedresources

Limit the user to read and write access only
for a particular cache

chmod 600 /tmp/javasharedresources/<file
for shared cache>

Limit the user and group to read and write
access only for a particular cache

chmod 660 /tmp/javasharedresources/<file
for shared cache>

Connecting to a cache that you do not have permission to
access

If you try to connect to a cache that you do not have the appropriate access
permissions for, you see an error message:
JVMSHRC226E Error opening shared class cache file
JVMSHRC220E Port layer error code = -302
JVMSHRC221E Platform error message: Permission denied
JVMJ9VM015W Initialization error for library j9shr25(11): JVMJ9VM009E J9VMDllMain
failed
Could not create the Java virtual machine.

© Copyright IBM Corp. 2003, 2014 33

34 IBM WebSphere Real Time for Linux: User Guide

Chapter 9. Troubleshooting and support

Troubleshooting and support for WebSphere Real Time for Linux
v “General problem determination methods”
v “Troubleshooting OutOfMemory Errors” on page 41
v “Using diagnostic tools” on page 44

General problem determination methods
Problem determination helps you understand the kind of fault you have, and the
appropriate course of action.

When you know what kind of problem you have, you might do one or more of the
following tasks:
v Fix the problem.
v Find a good workaround.
v Collect the necessary data with which to generate a bug report to IBM.

Linux problem determination
This section describes problem determination on Linux.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems on Linux, covering:
v Setting up and checking your Linux environment
v General debugging techniques
v Diagnosing crashes
v Debugging hangs
v Debugging memory leaks
v Debugging performance problems

You can find this information here: IBM SDK for Java 7 - Linux problem
determination.

The following information is supplementary for IBM WebSphere Real Time for
Linux

Setting up and checking your Linux environment
On IBM WebSphere Real Time for Linux, check that the JVM is configured
correctly to generate a system dump.

Linux system dumps (core files)

When a crash occurs, the most important diagnostic data to obtain is the Linux
system dump (core file). To ensure that this file is generated, you must check your
operating system settings, and your available disk space, as described in the IBM
SDK for Java V7 user guide.

© Copyright IBM Corp. 2003, 2014 35

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/pd.html

Java virtual machine settings
The JVM must be configured to generate core files when a crash occurs.
Run java -Xdump:what on the command line. The output from this option
is:
-Xdump:system:

events=gpf+abort+traceassert+corruptcache,
label=/mysdk/sdk/jre/bin/core.%Y%m%d.%H%M%S.%pid.dmp,
range=1..0,
priority=999,
request=serial

The values shown are the default settings. At least events=gpf must be set
to generate a core file when a crash occurs. You can change and set options
with the command-line option -Xdump:system[:name1=value1,name2=value2
...]

General debugging techniques
Because Java thread names are visible in the operating system, you can use the ps
command to help with debugging. When using tracing tools, you must use the
correct commands for IBM WebSphere Real Time for Linux.

Examining process information

The output you can expect to see when running the ps command on IBM
WebSphere Real Time for Linux is:

ps -eLo pid,tid,rtprio,comm,cmd
13654 13654 - java jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13655 - main jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13656 - Signal Reporter jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13661 - JIT Compilation jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13662 - JIT Sampler jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13666 - Signal Dispatch jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13667 - Finalizer maste jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13668 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13669 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13670 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13671 - Gc Slave Thread jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13672 - Metronome GC Al jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13673 - Thread-2 jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13698 - process reaper jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13700 - stdout reader j jre/bin/java -Xgcpolicy:metronome -jar example.jar
13654 13701 - stderr reader j jre/bin/java -Xgcpolicy:metronome -jar example.jar

e Selects all processes.

L Shows threads.

o Provides a pre-defined format of columns to display. The columns
specified are the process ID, thread ID, scheduling policy, real-time thread
priority, and the command associated with the process. This information is
useful for understanding what threads in your application as well as the
virtual machine are running at a given time.

Tracing tools

Three tracing tools on Linux are strace, ltrace, and mtrace. The command man
strace displays a full set of available options.

strace
The strace tool traces system calls. You can either use it on a process that is
already available, or start it with a new process. strace records the system calls

36 IBM WebSphere Real Time for Linux: User Guide

made by a program and the signals received by a process. For each system call,
the name, arguments, and return value are used. strace allows you to trace a
program without requiring the source (no recompilation is required). If you use
strace with the -f option, it will trace child processes that have been created as
a result of a forked system call. You can use strace to investigate plug-in
problems or to try to understand why programs do not start properly.

To use strace with a Java application, type strace java -Xgcpolicy:metronome
<class-name>.

You can direct the trace output from the strace tool to a file by using the -o
option.

ltrace
The ltrace tool is distribution-dependent. It is very similar to strace. This tool
intercepts and records the dynamic library calls as called by the executing
process. strace does the same for the signals received by the executing process.

To use ltrace with a Java application, type ltrace java -Xgcpolicy:metronome
<class-name>

mtrace
mtrace is included in the GNU toolset. It installs special handlers for malloc,
realloc, and free, and enables all uses of these functions to be traced and
recorded to a file. This tracing decreases program efficiency and should not be
enabled during normal use. To use mtrace, set IBM_MALLOCTRACE to 1,
and set MALLOC_TRACE to point to a valid file where the tracing
information will be stored. You must have write access to this file.

To use mtrace with a Java application, type:
export IBM_MALLOCTRACE=1
export MALLOC_TRACE=/tmp/file
java -Xgcpolicy:metronome <class-name>
mtrace /tmp/file

Diagnosing crashes
When gathering information about running processes and the Java environment
prior to a crash, follow these guidelines.

Gathering process information

When researching what was happening before the crash occurred, use gdb and the
bt command to display the stack trace of the failing thread, instead of analyzing
the core file.

Finding out about the Java environment

Use Javadump to determine what each thread was doing and which Java methods
were being run. Match function addresses against library addresses to determine
the source of code running at various points.

Use the -verbose:gc option to look at the state of the Java heap. Ask these
questions:
v Was there a shortage of memory in one of the memory areas that could have

caused the crash?
v Did the crash occur during garbage collection, indicating a possible garbage

collection fault?
v Did the crash occurred after garbage collection, indicating a possible memory

corruption?

Chapter 9. Troubleshooting and support 37

Debugging performance problems
When debugging performance problems, consider these specific items for IBM
WebSphere Real Time for Linux in addition to the topics in the IBM SDK for Java
V7 user guide.

Sizing memory areas

The Java heap size is one of the most important tuning parameters of your JVM.
Choose the correct size to optimize performance. Using the correct size can make it
easier for the Garbage Collector to provide the required utilization.

For more information about varying the size of the memory areas, see
“Troubleshooting the Metronome Garbage Collector” on page 64.

JIT compilation and performance

When using the JIT, you should consider the implications to real-time behavior.

Known limitations on Linux
Linux has been under rapid development and there have been various issues with
the interaction of the JVM and the operating system, particularly in the area of
threads.

Note the following limitations that might be affecting your Linux system.

Threads as processes

If the number of Java threads exceeds the maximum number of processes allowed,
your program might:
v Get an error message
v Get a SIGSEGV error
v Stop

For more information, see The Volano Report at http://www.volano.com/report/
index.html.

Floating stacks limitations

If you are running without floating stacks, regardless of what is set for -Xss, a
minimum native stack size of 256 KB for each thread is provided.

On a floating stack Linux system, the -Xss values are used. If you are migrating
from a non-floating stack Linux system, ensure that any -Xss values are large
enough and are not relying on a minimum of 256 KB.

glibc limitations

If you receive a message indicating that the libjava.so library could not be loaded
because of a symbol not found (such as __bzero), you might have an earlier
version of the GNU C Runtime Library, glibc, installed. The SDK for Linux thread
implementation requires glibc version 2.3.2 or greater.

38 IBM WebSphere Real Time for Linux: User Guide

http://www.volano.com/report/index.html
http://www.volano.com/report/index.html

Font limitations

When you are installing on a Red Hat system, to allow the font server to find the
Java TrueType fonts, run (on Linux IA32, for example):
/usr/sbin/chkfontpath --add /opt/IBM/javawrt3[_64]/jre/lib/fonts

You must do this at installation time and you must be logged on as “root” to run
the command. For more detailed font issues, see the Linux SDK and Runtime
Environment User Guide.

Linux Completely Fair Scheduler affects Java performance

Java applications that use synchronization extensively might perform poorly on
Linux distributions that include the Completely Fair Scheduler. The Completely
Fair Scheduler (CFS) is a scheduler that was adopted into the mainline Linux
kernel as of release 2.6.23. The CFS algorithm is different from the scheduling
algorithms for previous Linux releases. It might change the performance properties
of some applications. In particular, CFS implements sched_yield() differently,
making it more likely that a yielding thread is given CPU time regardless.

If you encounter this problem, you might observe high CPU usage by your Java
application, and slow progress through synchronized blocks. The application might
seem to stop because of the slow progress.

There are two possible workarounds:
v Start the JVM with the additional argument -Xthr:minimizeUserCPU.
v Configure the Linux kernel to use an implementation of sched_yield() that is

more compatible with earlier versions. Do this by setting the
sched_compat_yield tunable kernel property to 1. For example:
echo "1" > /proc/sys/kernel/sched_compat_yield

Do not use these workarounds unless you are experiencing poor performance.

This problem might affect IBM Developer Kit and Runtime Environment for Linux
5.0 (all versions) and 6.0 (all versions up to and including SR 4) running on Linux
kernels that include the Completely Fair Scheduler. For IBM Developer Kit and
Runtime Environment for Linux version 6.0 after SR 4, the use of CFS in the kernel
is detected and the option -Xthr:minimizeUserCPU enabled automatically. Some
Linux distributions that include the Completely Fair Scheduler are Ubuntu 8.04
and SUSE Linux Enterprise Server 11.

More information about CFS can be found at Multiprocessing with the Completely
Fair Scheduler.

Performance issues on Linux Red Hat MRG kernels

A configuration issue with Red Hat MRG kernels can cause unexpected pauses to
application threads when WebSphere Real Time starts with verbose garbage
collection enabled. These pauses are not reported in the verbose GC output, but
can last several milliseconds, depending on the network configuration. JVMs
started from remotely defined LDAP users are affected the most, because the name
service cache daemon (nscd) is not started, causing network delays. Solve the
problem by starting nscd. Follow these steps to check on the status of the nscd
service and correct the problem:
1. Check that the nscd daemon is running by typing the command:

Chapter 9. Troubleshooting and support 39

http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux

/sbin/service nscd status

If the daemon is not running you see the following message:
nscd is stopped

2. As root user, start the nscd service with the following command:
/sbin/service nscd start

3. As root user, change the startup information for the nscd service with the
following command:
/sbin/chkconfig nscd on

The nscd process is now running, and starts automatically after reboot.

NLS problem determination
The JVM contains built-in support for different locales.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with NLS, covering:
v Overview of fonts
v Font utilities
v Common NLS problems and possible causes

You can find this information here: IBM SDK for Java 7 - NLS problem
determination.

ORB problem determination
One of your first tasks when debugging an ORB problem is to determine whether
the problem is in the client-side or in the server-side of the distributed application.
Think of a typical RMI-IIOP session as a simple, synchronous communication
between a client that is requesting access to an object, and a server that is
providing it.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with ORB, covering:
v Identifying an ORB problem
v Interpreting the stack trace
v Interpreting ORB traces
v Common problems
v IBM ORB service: Collecting data

You can find this information here: IBM SDK for Java 7 - ORB problem
determination.

The following information is supplementary for IBM WebSphere Real Time for
Linux.

IBM ORB service: collecting data

When collecting the Java version output for service, run the following command:
java -Xgcpolicy:metronome -version

40 IBM WebSphere Real Time for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/orbpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/orbpd.html

Preliminary tests

When a problem occurs, the ORB might generate a org.omg.CORBA.* exception that
includes:
v text to indicate the cause
v a minor code
v a completion status

Before you assume that the ORB is the cause of the problem, check these items:
v The scenario can be reproduced in a similar configuration.
v The JIT is disabled.
v No AOT compiled code is being used

Other actions include:
v Turn off additional processors.
v Turn off Simultaneous Multithreading (SMT) where possible.
v Eliminate memory dependencies with the client or server. The lack of physical

memory can be the cause of slow performance, apparent hangs, or crashes. To
remove these problems, ensure that you have a reasonable headroom of memory.

v Check physical network problems such as firewalls, communication links,
routers, and DNS name servers. These are the major causes of CORBA
COMM_FAILURE exceptions. As a test, ping your own workstation name.

v If the application is using a database such as DB2®, switch to the most reliable
driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is
slower and uses sockets, but is more reliable.

Troubleshooting OutOfMemory Errors
Dealing with OutOfMemoryError exceptions.

For general troubleshooting information on the Metronome Garbage Collector, see
“Troubleshooting the Metronome Garbage Collector” on page 64.

Diagnosing OutOfMemoryErrors
Diagnosing OutOfMemoryError exceptions in Metronome Garbage Collector can be
more complex than in a standard JVM because of the periodic nature of the
garbage collector.

In general, a realtime application requires approximately 20% more heap space
than a standard Java application.

By default, the JVM produces the following diagnostic output when an uncaught
OutOfMemoryError occurs:
v A snap dump; see “Using dump agents” on page 46.
v A Heapdump; see “Using Heapdump” on page 54.
v A Javadump; see “Using Javadump” on page 49
v A system dump; see “Using system dumps and the dump viewer” on page 57.

The dump file names are given in the console output:

Chapter 9. Troubleshooting and support 41

The Java backtrace shown on the console output, and also available in the
Javadump, indicates where in the Java application the OutOfMemoryError
occurred. The JVM memory management component issues a tracepoint that gives
the size, class block address, and memory space name of the failing allocation. This
tracepoint can be found in the snap dump:

The tracepoint ID and data fields might vary from that shown, depending on the
type of object being allocated. In this example, the tracepoint shows that the
allocation failure occurred when the application attempted to allocate a 33.6 MB
object of type class 0x81312d8 in the Metronome heap, memory segment
id=0x809c5f0.

You can determine which memory area is affected by looking at the memory
management information in the Javadump:
NULL --
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0xF288B584 0xF2A1C000 0xF6A1C000 0x04000000 Default
NULL
1STMEMUSAGE Total memory available: 67108864 (0x04000000)
1STMEMUSAGE Total memory in use: 66676824 (0x03F96858)
1STMEMUSAGE Total memory free: 00432040 (0x000697A8)

<< lines removed for clarity >>

You can determine the type of object being allocated by looking at the classes
section of the Javadump:
NULL --
0SECTION CLASSES subcomponent dump routine
NULL =================================
<< lines omitted... >>
1CLTEXTCLLOD ClassLoader loaded classes
2CLTEXTCLLOAD Loader *System*(0xF182BB80)
<< lines omitted... >>
3CLTEXTCLASS [C(0xF1632D80)

Information in the Javadump confirms that the attempted allocation was for a
character array, in the normal heap (ID=0xF288B584) and that the total allocated
size of the heap, indicated by the appropriate 1STHEAP line, is 67108864 decimal
bytes or 0x04000000 hex bytes, or 64 MB.

In this example, the failing allocation is large in relation to the total heap size. If
your application is expected to create 33 MB objects, the next step is to increase the
size of the heap, using the -Xmx option.

JVMDUMP006I Processing dump event "systhrow", detail "java/lang/OutOfMemoryError" - please wait.
JVMDUMP007I JVM Requesting Snap dump using ’Snap.20081017.104217.13161.0001.trc’
JVMDUMP010I Snap dump written to Snap.20081017.104217.13161.0001.trc
JVMDUMP007I JVM Requesting Heap dump using ’heapdump.20081017.104217.13161.0002.phd’
JVMDUMP010I Heap dump written to heapdump.20081017.104217.13161.0002.phd
JVMDUMP007I JVM Requesting Java dump using ’javacore.20081017.104217.13161.0003.txt’
JVMDUMP010I Java dump written to javacore.20081017.104217.13161.0003.txt
JVMDUMP013I Processed dump event "systhrow", detail "java/lang/OutOfMemoryError".

<< lines omitted... >>
09:42:17.563258000 *0xf2888e00 j9mm.101 Event J9AllocateIndexableObject() returning NULL! 80
bytes requested for object of class 0xf1632d80 from memory space ’Metronome’ id=0xf288b584

42 IBM WebSphere Real Time for Linux: User Guide

It is more common for the failing allocation to be small in relation to total heap
size. This is because of previous allocations filling up the heap. In these cases, the
next step is to use the Heapdump to investigate the amount of memory allocated
to existing objects.

The Heapdump is a compressed binary file containing a list of all objects with their
object class, size, and references. Analyze the Heapdump using the IBM
Monitoring and Diagnostic Tools for Java - Memory Analyzer tool, which is
available for download from the IBM Support Assistant (ISA).

Using MDD4J, you can load a Heapdump and locate tree structures of objects that
are suspected of consuming large amounts of heap space. The tool provides
various views for objects on the heap. For example, MDD4J can show a view that
details likely leak suspects, and gives the top five objects and packages
contributing to the heap size. Selecting the tree view gives further information
about the nature of the leaking container object.

How the IBM JVM manages memory
The IBM JVM requires memory for several different components, including
memory regions for classes, compiled code, Java objects, Java stacks, and JNI
stacks. Some of these memory regions must be in contiguous memory. Other
memory regions can be segmented into smaller memory regions and linked
together.

Dynamically loaded classes and compiled code are stored in segmented memory
regions for dynamically loaded classes. Classes are further subdivided into
writable memory regions (RAM classes) and read-only memory regions (ROM
classes). At run time, ROM classes and AOT code from the class cache are memory
mapped, but not loaded, into a contiguous memory region on application startup.
As classes are referenced by the application, classes and compiled code in the class
cache are mapped into storage. The ROM component of the class is shared
between multiple processes referencing this class. The RAM component of the class
is created in the segmented memory regions for dynamically loaded classes when
the class is first referenced by the JVM. AOT-compiled code for the methods of a
class in the class cache are copied into an executable dynamic code memory region,
because this code is not shared by processes. Classes that are not loaded from the
class cache are similar to cached classes, except that the ROM class information is
created in segmented memory regions for dynamically loaded classes. Dynamically
generated code is stored in the same dynamic code memory regions that hold AOT
code for cached classes.

The stack for each Java thread can span a segmented memory region. The JNI
stack for each thread occupies a contiguous memory region.

To determine how your JVM is configured, run with the -verbose:sizes option.
This option prints out information about memory regions where you can manage
the size. For memory regions that are not contiguous, an increment is printed
describing how much memory is acquired every time the region needs to grow.

Here is example output using the -Xrealtime -verbose:sizes options:
-Xmca32K RAM class segment increment
-Xmco128K ROM class segment increment
-Xms64M initial memory size

-Xmx64M memory maximum
-Xmso256K operating system thread stack size

Chapter 9. Troubleshooting and support 43

http://www.ibm.com/software/support/isa/

-Xiss2K java thread stack initial size
-Xssi16K java thread stack increment
-Xss256K java thread stack maximum size

This example indicates that the RAM class segment is initially 0, but grows by 32
KB blocks as required. The ROM class segment is initially 0, and grows by 128 KB
blocks as required. You can use the -Xmca and -Xmco options to control these sizes.
RAM class and ROM class segments grow as required, so you will not typically
need to change these options.

Use the -Xshareclasses option to determine how large your memory mapped
region will be if you use the class cache. Here is a sample of the output from the
command java -Xgcpolicy:metronome -Xshareclasses:printStats.
Current statistics for cache "sharedcc_chamlain":

base address = 0xF1BBD000
end address = 0xF2BAF000
allocation pointer = 0xF1CA95A0

cache size = 16776852
free bytes = 15499564
ROMClass bytes = 1198572
AOT bytes = 0
Data bytes = 57300
Metadata bytes = 21416
Metadata % used = 1%

ROMClasses = 368
AOT Methods = 0
Classpaths = 1
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 7% full

At run time, approximately 3 MB of AOT bytes and metadata bytes are copied into
the dynamic code segmented region, as the classes are referenced. The data bytes
are copied into the RAM class segmented region, as the classes are referenced.

Using diagnostic tools
There are a number of diagnostic tools that are available to help diagnose
problems with the IBM WebSphere Real Time for Linux JVM.

The IBM SDK for Java 7 provides a number of diagnostic tools that can be used to
diagnose problems with the IBM WebSphere Real Time for Linux JVM. This section
introduces the tools that are available, and provides links to further information
about using the tools.

There is an important point to remember when using the SDK diagnostic tools.
When you invoke the real time JVM, you use the following option:
java -Xgcpolicy:metronome

This option must be used when running diagnostic tools for the real time JVM. For
example, to show the registered dump agents for the IBM WebSphere Real Time
for Linux JVM, type:
java -Xgcpolicy:metronome -Xdump:what

44 IBM WebSphere Real Time for Linux: User Guide

Any further differences in using these tools with IBM WebSphere Real Time for
Linux is provided here as supplementary information, together with sample output
to assist you with diagnosis.

For a summary of the diagnostic information that is generated by the IBM SDK for
Java 7, see Summary of diagnostic information.

Using the IBM Monitoring and Diagnostic Tools for Java
IBM provides tooling and documentation to help you understand, monitor, and
diagnose problems with applications using the IBM JRE.

The following tools are available:
v Health Center
v Garbage Collection and Memory Visualizer
v Interactive Diagnostic Data Explorer
v Memory Analyzer

Garbage Collection and Memory Visualizer
Garbage Collection and Memory Visualizer (GCMV) helps you understand
memory use, garbage collection behavior, and performance of Java applications.

GCMV parses and plots data from various types of log, including the following
types:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The tool helps to diagnose problems such as memory leaks, analyze data in
various visual formats, and provides tuning recommendations.

GCMV is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see: http://www.ibm.com/
developerworks/java/jdk/tools/gcmv/.

Further information about GCMV is available in an IBM Information Center.

Health Center
Health Center is a diagnostic tool for monitoring the status of a running Java
Virtual Machine (JVM).

The tool is provided in two parts:
v The Health Center agent that collects data from a running application.
v An Eclipse-based client that connects to the agent. The client interprets the data

and provides recommendations to improve the performance of the monitored
application.

Health Center is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/.

Further information about Health Center is available in an IBM Information Center.

Chapter 9. Troubleshooting and support 45

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/diagnostics_summary.html
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

Interactive Diagnostic Data Explorer
Interactive Diagnostic Data Explorer (IDDE) is a GUI-based alternative to the
dump viewer (jdmpview command). IDDE provides the same functionality as the
dump viewer, but with extra support such as the ability to save command output.

Use IDDE to more easily explore and examine dump files that are produced by the
JVM. Within IDDE, you enter commands in an investigation log, to explore the
dump file. The support that is provided by the investigation log includes the
following items:
v Command assistance
v Auto-completion of text, and some parameters such as class names
v The ability to save commands and output, which you can then send to other

people
v Highlighted text and flagging of issues
v The ability to add your own comments
v Support for using the Memory Analyzer from within IDDE

IDDE is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see IDDE overview on
developerWorks®.

Further information about IDDE is available in an IBM Information Center.

Memory Analyzer
Memory Analyzer helps you analyze Java heaps using operating system level
dumps and Portable Heap Dumps (PHD).

This tool can analyze dumps that contain millions of objects, providing the
following information:
v The retained sizes of objects.
v Processes that are preventing the Garbage Collector from collecting objects.
v A report to automatically extract leak suspects.

This tool is based on the Eclipse Memory Analyzer (MAT) project, and uses the
IBM Diagnostic Tool Framework for Java (DTFJ) feature to enable the processing of
dumps from IBM JVMs.

Memory Analyzer is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/.

Further information about Memory Analyzer is available in an IBM Information
Center.

Using dump agents
Dump agents are set up during JVM initialization. They enable you to use events
occurring in the JVM, such as Garbage Collection, thread start, or JVM termination,
to initiate dumps or to start an external tool.

The IBM SDK for Java V7 User guide contains useful guidance on dump agents,
covering:
v Using the -Xdump option
v Dump agents

46 IBM WebSphere Real Time for Linux: User Guide

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=5efb4378-ebba-47da-8c0f-8841d669d0cc
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

v Dump events
v Advanced control of dump agents
v Dump agent tokens
v Default dump agents
v Removing dump agents
v Dump agent environment variables
v Signal mappings
v Dump agent default locations

You can find this information here: IBM SDK for Java 7 - Using dump agents.

Supplementary information for IBM WebSphere Real Time for Linux is provided
here:

Dump events
Dump agents are triggered by events occurring during JVM operation. For IBM
WebSphere Real Time for Linux, the default value for the slow event is 5
milliseconds.

Some events can be filtered to improve the relevance of the output. See “filter
option” on page 48 for more information.

Note: The unload and expand events currently do not occur in WebSphere Real
Time. Classes are in immortal memory and cannot be unloaded.

Note: The gpf and abort events cannot trigger a heap dump, prepare the heap
(request=prepwalk), or compact the heap (request=compact).

The following table shows events available as dump agent triggers:

Event Triggered when... Filter operation

gpf A General Protection Fault (GPF) occurs.

user The JVM receives the SIGQUIT signal from the
operating system.

abort The JVM receives the SIGABRT signal from the
operating system.

vmstart The virtual machine is started.

vmstop The virtual machine stops. Filters on exit code; for example,
filter=#129..#192#-42#255

load A class is loaded. Filters on class name; for example,
filter=java/lang/String

unload A class is unloaded.

throw An exception is thrown. Filters on exception class name; for example,
filter=java/lang/OutOfMem*

catch An exception is caught. Filters on exception class name; for example,
filter=*Memory*

uncaught A Java exception is not caught by the application. Filters on exception class name; for example,
filter=*MemoryError

Chapter 9. Troubleshooting and support 47

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_agents.html

Event Triggered when... Filter operation

systhrow A Java exception is about to be thrown by the JVM.
This is different from the 'throw' event because it is
only triggered for error conditions detected
internally in the JVM.

Filters on exception class name; for example,
filter=java/lang/OutOfMem*

thrstart A new thread is started.

blocked A thread becomes blocked.

thrstop A thread stops.

fullgc A garbage collection cycle is started.

slow A thread takes longer than 5ms to respond to an
internal JVM request.

Changes the time taken for an event to be
considered slow; for example, filter=#300ms
will trigger when a thread takes longer than
300ms to respond to an internal JVM request.

allocation A Java object is allocated with a size matching the
given filter specification

Filters on object size; a filter must be supplied.
For example, filter=#5m will trigger on
objects larger than 5 Mb. Ranges are also
supported; for example, filter=#256k..512k
will trigger on objects between 256 Kb and 512
Kb in size.

traceassert An internal error occurs in the JVM Not applicable.

corruptcache The JVM finds that the shared class cache is corrupt. Not applicable.

filter option
Some JVM events occur thousands of times during the lifetime of an application.
Dump agents can use filters and ranges to avoid excessive dumps being produced.

Wildcards

You can use a wildcard in your exception event filter by placing an asterisk only at
the beginning or end of the filter. The following command does not work because
the second asterisk is not at the end:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#*.myVirtualMethod

In order to make this filter work, it must be changed to:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#MyApplication.*

Class loading and exception events

You can filter class loading (load) and exception (throw, catch, uncaught, systhrow)
events by Java class name:
-Xdump:java:events=throw,filter=java/lang/OutOfMem*
-Xdump:java:events=throw,filter=*MemoryError
-Xdump:java:events=throw,filter=*Memory*

You can filter throw, uncaught, and systhrow exception events by Java method
name:
-Xdump:java:events=throw,filter=ExceptionClassName[#ThrowingClassName.
throwingMethodName[#stackFrameOffset]]

Optional portions are shown in brackets.

You can filter the catch exception events by Java method name:

48 IBM WebSphere Real Time for Linux: User Guide

-Xdump:java:events=catch,filter=ExceptionClassName[#CatchingClassName.
catchingMethodName]

Optional portions are shown in square brackets.

vmstop event

You can filter the JVM shut down event by using one or more exit codes:
-Xdump:java:events=vmstop,filter=#129..192#-42#255

slow event

You can filter the slow event to change the time threshold from the default of 5ms:
-Xdump:java:events=slow,filter=#300ms

You cannot set the filter to a time lower than the default time.

allocation event

You must filter the allocation event to specify the size of objects that cause a
trigger. You can set the filter size from zero up to the maximum value of a 32-bit
pointer on 32-bit platforms, or the maximum value of a 64-bit pointer on 64-bit
platforms. Setting the lower filter value to zero triggers a dump on all allocations.

For example, to trigger dumps on allocations greater than 5 Mb in size, use:
-Xdump:stack:events=allocation,filter=#5m

To trigger dumps on allocations between 256Kb and 512Kb in size, use:
-Xdump:stack:events=allocation,filter=#256k..512k

Other events

If you apply a filter to an event that does not support filtering, the filter is ignored.

Using Javadump
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during execution. For example, the
information can be about the operating system, the application environment,
threads, stacks, locks, and memory.

The IBM SDK for Java V7 User guide contains useful guidance on Javadumps,
covering:
v Enabling a Javadump
v Triggering a Javadump
v Interpreting a Javadump
v Environment variables and Javadump

You can find this information here: IBM SDK for Java 7 - Using Javadump.

Supplementary information and sample output for IBM WebSphere Real Time for
Linux is provided in the following topics.

Chapter 9. Troubleshooting and support 49

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump.html

Storage Management (MEMINFO)
The MEMINFO section provides information about the Memory Manager, including
heap, immortal, and scoped memory areas.

The MEMINFO section of a Javadump shows information about the Memory
Manager. See Using the Metronome Garbage Collector for details about how the
memory manager component works.

This part of the Javadump provides various storage management values, including:
v amount of free memory
v amount of used memory
v current size of the heap
v current size of immortal memory areas
v current size of scoped memory areas

This section also contains garbage collection history data. The data is shown as a
sequence of tracepoints, each with a timestamp, ordered with the most recent
tracepoint first.

Javadumps produced by the standard JVM contain a “GC History” section. This
information is not contained in Javadumps produced when using the real-time
JVM. Use the -verbose:gc option or the JVM snap trace to obtain information
about GC behavior. See “Using verbose:gc information” on page 64 and the dump
agents section of the IBM SDK for Java V7 User guide for more details.

In a Javadump, segments are blocks of memory allocated by the Java run time for
tasks that use large amounts of memory. Example tasks are:
v maintaining JIT caches
v storing Java classes

The Java runtime environment also allocates other native memory, which is not
listed in the MEMINFO section. The total memory used by Java runtime segments
does not necessarily represent the complete memory footprint of the Java run time.
A Java runtime segment consists of the segment data structure, and an associated
block of native memory.

The following example shows some typical output. All the values are provided as
hexadecimal values. The column headings in the MEMINFO section have the
following meanings:
v Object memory section (HEAPTYPE):

id The id of the space or region.

start The start address of this region of the heap.

end The end address of this region of the heap.

size The size of this region of the heap.

space/region
For a line that contains only an id and a name, this column shows the
name of the memory space. Otherwise the column shows the name of
the memory space, followed by the name of a particular region that is
contained within that memory space.

v Internal memory section (SEGTYPE), including class memory, JIT code cache, and
JIT data cache:

50 IBM WebSphere Real Time for Linux: User Guide

segment
The address of the segment control data structure.

start The start address of the native memory segment.

alloc The current allocation address within the native memory segment.

end The end address of the native memory segment.

type An internal bit field describing the characteristics of the native memory
segment.

size The size of the native memory segment.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STHEAPTYPE Object Memory
NULL id start end size space/region
1STHEAPSPACE 0x00497030 -- -- -- Generational
1STHEAPREGION 0x004A24F0 0x02850000 0x05850000 0x03000000 Generational/Tenured Region
1STHEAPREGION 0x004A2468 0x05850000 0x06050000 0x00800000 Generational/Nursery Region
1STHEAPREGION 0x004A23E0 0x06050000 0x06850000 0x00800000 Generational/Nursery Region
NULL
1STHEAPTOTAL Total memory: 67108864 (0x04000000)
1STHEAPINUSE Total memory in use: 33973024 (0x02066320)
1STHEAPFREE Total memory free: 33135840 (0x01F99CE0)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x073DFC9C 0x0761B090 0x0761B090 0x0762B090 0x01000040 0x00010000

(lines removed for clarity)
1STSEGMENT 0x00497238 0x004FA220 0x004FA220 0x0050A220 0x00800040 0x00010000
NULL
1STSEGTOTAL Total memory: 873412 (0x000D53C4)
1STSEGINUSE Total memory in use: 0 (0x00000000)
1STSEGFREE Total memory free: 873412 (0x000D53C4)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0x0731C858 0x0745C098 0x07464098 0x07464098 0x00010040 0x00008000

(lines removed for clarity)
1STSEGMENT 0x00498470 0x070079C8 0x07026DC0 0x070279C8 0x00020040 0x00020000
NULL
1STSEGTOTAL Total memory: 2067100 (0x001F8A9C)
1STSEGINUSE Total memory in use: 1839596 (0x001C11EC)
1STSEGFREE Total memory free: 227504 (0x000378B0)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x004F9168 0x06960000 0x069E0000 0x069E0000 0x00000068 0x00080000
NULL
1STSEGTOTAL Total memory: 524288 (0x00080000)
1STSEGINUSE Total memory in use: 524288 (0x00080000)
1STSEGFREE Total memory free: 0 (0x00000000)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x004F92E0 0x06A60038 0x06A6839C 0x06AE0038 0x00000048 0x00080000
NULL
1STSEGTOTAL Total memory: 524288 (0x00080000)
1STSEGINUSE Total memory in use: 33636 (0x00008364)
1STSEGFREE Total memory free: 490652 (0x00077C9C)
NULL
1STGCHTYPE GC History
3STHSTTYPE 15:18:14:901108829 GMT j9mm.134 - Allocation failure end: newspace=7356368/8388608
oldspace=32038168/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:901104380 GMT j9mm.470 - Allocation failure cycle end: newspace=7356416/8388608
oldspace=32038168/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:901097193 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0
causedrememberedsetoverflow=0 scancacheoverflow=0 failedflipcount=0 failedflipbytes=0 failedtenurecount=0
failedtenurebytes=0 flipcount=11454 flipbytes=991056 newspace=7356416/8388608 oldspace=32038168/50331648
loa=3523072/3523072 tenureage=1
3STHSTTYPE 15:18:14:901081108 GMT j9mm.140 - Tilt ratio: 50
3STHSTTYPE 15:18:14:893358658 GMT j9mm.64 - LocalGC start: globalcount=3 scavengecount=24 weakrefs=0
soft=0 phantom=0 finalizers=0
3STHSTTYPE 15:18:14:893354551 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 15:18:14:893348733 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.002

Chapter 9. Troubleshooting and support 51

|
|

||

||

||

||
|

||

meanexclusiveaccessms=0.002 threads=0 lastthreadtid=0x00495F00 beatenbyotherthread=0
3STHSTTYPE 15:18:14:893348391 GMT j9mm.469 - Allocation failure cycle start: newspace=0/8388608
oldspace=38199368/50331648 loa=3523072/3523072 requestedbytes=48
3STHSTTYPE 15:18:14:893347364 GMT j9mm.133 - Allocation failure start: newspace=0/8388608
oldspace=38199368/50331648 loa=3523072/3523072 requestedbytes=48
3STHSTTYPE 15:18:14:866523613 GMT j9mm.134 - Allocation failure end: newspace=2359064/8388608
oldspace=38199368/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:866519507 GMT j9mm.470 - Allocation failure cycle end: newspace=2359296/8388608
oldspace=38199368/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:866513004 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0
causedrememberedsetoverflow=0 scancacheoverflow=0 failedflipcount=5056 failedflipbytes=445632
failedtenurecount=0 failedtenurebytes=0 flipcount=9212 flipbytes=6017148 newspace=2359296/8388608
oldspace=38199368/50331648 loa=3523072/3523072 tenureage=1
3STHSTTYPE 15:18:14:866493839 GMT j9mm.140 - Tilt ratio: 64
3STHSTTYPE 15:18:14:859814852 GMT j9mm.64 - LocalGC start: globalcount=3 scavengecount=23 weakrefs=0
soft=0 phantom=0 finalizers=0
3STHSTTYPE 15:18:14:859808692 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 15:18:14:859801848 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.004
meanexclusiveaccessms=0.004 threads=0 lastthreadtid=0x00495F00 beatenbyotherthread=0
3STHSTTYPE 15:18:14:859801163 GMT j9mm.469 - Allocation failure cycle start: newspace=0/10747904
oldspace=38985800/50331648 loa=3523072/3523072 requestedbytes=232
3STHSTTYPE 15:18:14:859800479 GMT j9mm.133 - Allocation failure start: newspace=0/10747904
oldspace=38985800/50331648 loa=3523072/3523072 requestedbytes=232
3STHSTTYPE 15:18:14:652219028 GMT j9mm.134 - Allocation failure end: newspace=2868224/10747904
oldspace=38985800/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:650796714 GMT j9mm.470 - Allocation failure cycle end: newspace=2868224/10747904
oldspace=38985800/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:650792607 GMT j9mm.475 - GlobalGC end: workstackoverflow=0 overflowcount=0
memory=41854024/61079552
3STHSTTYPE 15:18:14:650784052 GMT j9mm.90 - GlobalGC collect complete
3STHSTTYPE 15:18:14:650780971 GMT j9mm.57 - Sweep end
3STHSTTYPE 15:18:14:650611567 GMT j9mm.56 - Sweep start
3STHSTTYPE 15:18:14:650610540 GMT j9mm.55 - Mark end
3STHSTTYPE 15:18:14:645222792 GMT j9mm.54 - Mark start
3STHSTTYPE 15:18:14:645216632 GMT j9mm.474 - GlobalGC start: globalcount=2

(lines removed for clarity)
NULL
NULL --

Threads and stack trace (THREADS)
For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a list of Java threads, native threads, and
stack traces.

A Java thread is implemented by a native thread of the operating system. Each
thread is represented by a set of lines such as:

"main" J9VMThread:0x41D11D00, j9thread_t:0x003C65D8, java/lang/Thread:0x40BD6070, state:CW, prio=5
(native thread ID:0xA98, native priority:0x5, native policy:UNKNOWN)
Java callstack:
at java/lang/Thread.sleep(Native Method)
at java/lang/Thread.sleep(Thread.java:862)
at mySleep.main(mySleep.java:31)

Java thread names are visible in the operating system when using the ps
command. For further information about using the ps command, see “General
debugging techniques” on page 36.

The properties on the first line are the thread name, addresses of the JVM thread
structures and of the Java thread object, thread state, and Java thread priority. The
properties on the second line are the native operating system thread ID, native
operating system thread priority and native operating system scheduling policy.

Thread names are visible in three ways:
v Listed in javacore files. Not all threads are listed in javacore files.
v When listing threads from the operating system with the ps command.
v When using the java.lang.Thread.getName() method.

52 IBM WebSphere Real Time for Linux: User Guide

The following table provides information about IBM WebSphere Real Time for
Linux thread names.

Table 4. Thread names in IBM WebSphere Real Time for Linux

Detail of thread Thread name

An internal JVM thread used by the garbage
collection module to dispatch the finalization
of objects by secondary threads.

Finalizer master

The alarm thread used by the garbage
collector.

GC Alarm

The slave threads used for garbage
collection.

GC Slave

An internal JVM thread used by the
just-in-time compiler module to sample the
usage of methods in the application.

IProfiler

A thread used by the VM to manage signals
received by the application, whether
externally or internally generated.

Signal Reporter

An internal JVM thread used to compile
Java code.

JIT Compilation Thread

An internal JVM thread used to allow
JVMTI agents to attach to a running JVM.

Attach API wait loop

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

If a thread is parked or blocked, the output contains a line for that thread,
beginning with 3XMTHREADBLOCK, listing the resource that the thread is waiting for
and, if possible, the thread that currently owns that resource. For more information
see the topic on blocked threads in the IBM SDK for Java V7 User guide.

When you initiate a Javadump to obtain diagnostic information, the JVM quiesces
Java threads before producing the javacore. A preparation state of
exclusive_vm_access is shown in the 1TIPREPSTATE line of the TITLE section.
1TIPREPSTATE Prep State: 0x4 (exclusive_vm_access)

Chapter 9. Troubleshooting and support 53

Threads that were running Java code when the javacore was triggered are in CW
(Condition Wait) state.

3XMTHREADINFO "main" J9VMThread:0x41481900, j9thread_t:0x002A54A4, java/lang/Thread:0x004316B8,
state:CW, prio=5
3XMTHREADINFO1 (native thread ID:0x904, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/String.getChars(String.java:667)
4XESTACKTRACE at java/lang/StringBuilder.append(StringBuilder.java:207)

The javacore LOCKS section shows that these threads are waiting on an internal JVM
lock.
2LKREGMON Thread public flags mutex lock (0x002A5234): <unowned>
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "main" (0x41481900)

Using Heapdump
The term Heapdump describes the IBM Virtual Machine for Java mechanism that
generates a dump of all the live objects that are on the Java heap; that is, those that
are being used by the running Java application.

The IBM SDK for Java V7 User guide contains useful guidance on Heapdumps,
covering:
v Getting Heapdumps
v Tools for processing Heapdumps
v Using -Xverbose:gc to obtain heap information
v Environment variables and Heapdump
v Text (classic) Heapdump file format
v Portable Heap Dump (PHD) file format

You can find this information here: IBM SDK for Java 7 - Using Heapdump.

Supplementary information for IBM WebSphere Real Time for Linux:

Text (classic) Heapdump file format
The text or classic Heapdump is a list of all object instances in the heap, including
object type, size, and references between objects.

Header record

The header record is a single record containing a string of version information.
// Version: <version string containing SDK level, platform and JVM build level>

Example:
// Version: J2RE 7.0 IBM J9 2.6 Linux x86-32 build 20101016_024574_lHdRSr

Object records

Object records are multiple records, one for each object instance on the heap,
providing object address, size, type, and references from the object.
<object address, in hexadecimal> [<length in bytes of object instance, in decimal>]
OBJ <object type> <class block reference, in hexadecimal>
<heap reference, in hexadecimal <heap reference, in hexadecimal> ...

The object address and heap references are in the heap, but the class block address
is outside the heap. All references found in the object instance are listed, including

54 IBM WebSphere Real Time for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/heapdump.html

references that are null values. The object type is either a class name including
package or a primitive array or class array type, shown by its standard JVM type
signature, see “Java VM type signatures” on page 56. Object records can also
contain additional class block references, typically in the case of reflection class
instances.

Examples:

An object instance, length 28 bytes, of type java/lang/String:
0x00436E90 [28] OBJ java/lang/String

A class block address of java/lang/String, followed by a reference to a char array
instance:
0x415319D8 0x00436EB0

An object instance, length 44 bytes, of type char array:
0x00436EB0 [44] OBJ [C

A class block address of char array:
0x41530F20

An object of type array of java/util/Hashtable Entry inner class:
0x004380C0 [108] OBJ [Ljava/util/Hashtable$Entry;

An object of type java/util/Hashtable Entry inner class:
0x4158CD80 0x00000000 0x00000000 0x00000000 0x00000000 0x00421660 0x004381C0
0x00438130 0x00438160 0x00421618 0x00421690 0x00000000 0x00000000 0x00000000
0x00438178 0x004381A8 0x004381F0 0x00000000 0x004381D8 0x00000000 0x00438190
0x00000000 0x004216A8 0x00000000 0x00438130 [24] OBJ java/util/Hashtable$Entry

A class block address and heap references, including null references:
0x4158CB88 0x004219B8 0x004341F0 0x00000000

Class records

Class records are multiple records, one for each loaded class, providing class block
address, size, type, and references from the class.
<class block address, in hexadecimal> [<length in bytes of class block, in decimal>]
CLS <class type>
<class block reference, in hexadecimal> <class block reference, in hexadecimal> ...
<heap reference, in hexadecimal> <heap reference, in hexadecimal>...

The class block address and class block references are outside the heap, but the
class record can also contain references into the heap, typically for static class data
members. All references found in the class block are listed, including those that are
null values. The class type is either a class name including package or a primitive
array or class array type, shown by its standard JVM type signature, see “Java VM
type signatures” on page 56.

Examples:

A class block, length 32 bytes, for class java/lang/Runnable:
0x41532E68 [32] CLS java/lang/Runnable

References to other class blocks and heap references, including null references:

Chapter 9. Troubleshooting and support 55

0x4152F018 0x41532E68 0x00000000 0x00000000 0x00499790

A class block, length 168 bytes, for class java/lang/Math:
0x00000000 0x004206A8 0x00420720 0x00420740 0x00420760 0x00420780 0x004207B0
0x00421208 0x00421270 0x00421290 0x004212B0 0x004213C8 0x00421458 0x00421478
0x00000000 0x41589DE0 0x00000000 0x4158B340 0x00000000 0x00000000 0x00000000
0x4158ACE8 0x00000000 0x4152F018 0x00000000 0x00000000 0x00000000

Trailer record 1

Trailer record 1 is a single record containing record counts.
// Breakdown - Classes: <class record count, in decimal>,
Objects: <object record count, in decimal>,
ObjectArrays: <object array record count, in decimal>,
PrimitiveArrays: <primitive array record count, in decimal>

Example:
// Breakdown - Classes: 321, Objects: 3718, ObjectArrays: 169,
PrimitiveArrays: 2141

Trailer record 2

Trailer record 2 is a single record containing totals.
// EOF: Total ’Objects’,Refs(null) :
<total object count, in decimal>,
<total reference count, in decimal>
(,total null reference count, in decimal>)

Example:
// EOF: Total ’Objects’,Refs(null) : 6349,23240(7282)

Java VM type signatures

The Java VM type signatures are abbreviations of the Java types are shown in the
following table:

Java VM type signatures Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L <fully qualified-class> ; <fully qualified-class>

[<type> <type>[] (array of <type>)

(<arg-types>) <ret-type> method

56 IBM WebSphere Real Time for Linux: User Guide

Using system dumps and the dump viewer
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically large. Most tools used to
analyze system dumps are also platform-specific.Use the gdb tool to analyze a
system dump on Linux.

The IBM SDK for Java V7 User guide contains useful guidance on using system
dumps and the dump viewer, covering:
v Overview of system dumps
v System dump defaults
v Using the dump viewer

– Using jextract

– Problems to tackle with the dump viewer
– Commands available in jdmpview

– Example session
– jdmpview commands quick reference

You can find this information here: IBM SDK for Java 7 - Using system dumps and
the dump viewer.

Supplementary information for IBM WebSphere Real Time for Linux:

Commands available in jdmpview

jdmpview is an interactive, command-line tool to explore the information from a
JVM system dump and perform various analytic functions.

info jitm
Lists AOT and JIT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

For all other command options,see the IBM SDK for Java V7 User guide.

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in IBM WebSphere Real Time for
Linux with minimal affect on performance. In most cases, the trace data is kept in
a compact binary format, that can be formatted with the Java formatter that is
supplied.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable tracepoints at run time by using levels,
components, group names, or individual tracepoint identifiers.

The IBM SDK for Java V7 User guide contains detailed information on tracing
applications, covering:
v What can be traced
v Types of tracepoint
v Default tracing
v Recording trace data
v Controlling the trace

Chapter 9. Troubleshooting and support 57

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html

v Tracing Java applications
v Tracing Java methods

When tracing IBM WebSphere Real Time for Linux you must correctly invoke the
real-time JVM when including the trace options. For example, when specifying
trace options, type:
java -Xgcpolicy:metronome -Xtrace:<options>

You can find the IBM SDK for Java V7 information here: Tracing Java applications
and the JVM.

JIT and AOT problem determination
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.

Although IBM WebSphere Real Time for Linux shares some common components
with the IBM SDK for Java V7, the behavior of JIT and AOT is different. This
section covers troubleshooting for JIT and AOT issues on IBM WebSphere Real
Time for Linux.

Diagnosing a JIT or AOT problem
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

About this task

To determine what methods are compiled when the shared class cache is
populated, use the -Xaot:verbose option on the admincache command-line. For
example:
admincache -Xrealtime -Xaot:verbose -populate -aot my.jar -cp <My Class Path>

This section describes how you can determine if your problem is compiler-related.
This section also suggests some possible workarounds and debugging techniques
for solving compiler-related problems.

Disabling the JIT or AOT compiler:

If you suspect that a problem is occurring in the JIT or AOT compiler, disable
compilation to see if the problem remains. If the problem still occurs, you know
that the compiler is not the cause of it.

About this task

The JIT compiler is enabled by default. The AOT compiler is also enabled, but, is
not active unless shared classes have been enabled. For efficiency reasons, not all
methods in a Java application are compiled. The JVM maintains a call count for
each method in the application; every time a method is called and interpreted, the
call count for that method is incremented. When the count reaches the compilation
threshold, the method is compiled and executed natively.

The call count mechanism spreads compilation of methods throughout the life of
an application, giving higher priority to methods that are used most frequently.

58 IBM WebSphere Real Time for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/tracing.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/tracing.html

Some infrequently used methods might never be compiled at all. As a result, when
a Java program fails, the problem might be in the JIT or AOT compiler or it might
be elsewhere in the JVM.

The first step in diagnosing the failure is to determine where the problem is. To do
this, you must first run your Java program in purely interpreted mode (that is,
with the JIT and AOT compilers disabled).

Procedure

1. Remove any -Xjit and -Xaot options (and accompanying parameters) from
your command line.

2. Use the -Xint command-line option to disable the JIT and AOT compilers. For
performance reasons, do not use the -Xint option in a production environment.

What to do next

Running the Java program with the compilation disabled leads to one of the
following situations:
v The failure remains. The problem is not in the JIT or AOT compiler. In some

cases, the program might start failing in a different manner; nevertheless, the
problem is not related to the compiler.

v The failure disappears. The problem is most likely in the JIT or AOT compiler.
If you are not using shared classes, the JIT compiler is at fault. If you are using
shared classes, you must determine which compiler is at fault by running your
application with only JIT compilation enabled. Run your application with the
-Xnoaot option instead of the -Xint option. This leads to one of the following
situations:
– The failure remains. The problem is in the JIT compiler. You can also use the

-Xnojit instead of the -Xnoaot option to ensure that only the JIT compiler is
at fault.

– The failure disappears. The problem is in the AOT compiler.

Selectively disabling the JIT compiler:

If your Java program failure points to a problem with the JIT compiler, you can try
to narrow down the problem further.

About this task

By default, the JIT compiler optimizes methods at various optimization levels.
Different selections of optimizations are applied to different methods, based on
their call counts. Methods that are called more frequently are optimized at higher
levels. By changing JIT compiler parameters, you can control the optimization level
at which methods are optimized. You can determine whether the optimizer is at
fault and, if it is, which optimization is problematic.

You specify JIT parameters as a comma-separated list, appended to the -Xjit
option. The syntax is -Xjit:<param1>,<param2>=<value>. For example:
java -Xjit:verbose,optLevel=noOpt HelloWorld

runs the HelloWorld program, enables verbose output from the JIT, and makes the
JIT generate native code without performing any optimizations.

Follow these steps to determine which part of the compiler is causing the failure:

Chapter 9. Troubleshooting and support 59

Procedure

1. Set the JIT parameter count=0 to change the compilation threshold to zero. This
parameter causes each Java method to be compiled before it is run. Use
count=0 only when diagnosing problems, because a lot more methods are
compiled, including methods that are used infrequently. The extra compilation
uses more computing resources and slows down your application. With
count=0, your application fails immediately when the problem area is reached.
In some cases, using count=1 can reproduce the failure more reliably.

2. Add disableInlining to the JIT compiler parameters. disableInlining disables
the generation of larger and more complex code. If the problem no longer
occurs, use disableInlining as a workaround while the Java service team
analyzes and fixes the compiler problem.

3. Decrease the optimization levels by adding the optLevel parameter, and run
the program again until the failure no longer occurs, or you reach the “noOpt”
level. For a JIT compiler problem, start with “scorching” and work down the
list. The optimization levels are, in decreasing order:
a. scorching
b. veryHot
c. hot
d. warm
e. cold
f. noOpt

What to do next

If one of these settings causes your failure to disappear, you have a workaround
that you can use. This workaround is temporary while the Java service team
analyze and fix the compiler problem. If removing disableInlining from the JIT
parameter list does not cause the failure to reappear, do so to improve
performance. Follow the instructions in “Locating the failing method” to improve
the performance of the workaround.

If the failure still occurs at the “noOpt” optimization level, you must disable the
JIT compiler as a workaround.

Locating the failing method:

When you have determined the lowest optimization level at which the JIT or AOT
compiler must compile methods to trigger the failure, you can find out which part
of the Java program, when compiled, causes the failure. You can then instruct the
compiler to limit the workaround to a specific method, class, or package, allowing
the compiler to compile the rest of the program as usual. For JIT compiler failures,
if the failure occurs with -Xjit:optLevel=noOpt, you can also instruct the compiler
to not compile the method or methods that are causing the failure at all.

Before you begin

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20050520_01866_BHdSMr (Linux 2.4.21-27.0.2.EL)
CPU=s390x (2 logical CPUs) (0x7b6a8000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=4148bf20 Signal_Code=00000001

60 IBM WebSphere Real Time for Linux: User Guide

Handler1=00000100002ADB14 Handler2=00000100002F480C InaccessibleAddress=0000000000000000
gpr0=0000000000000006 gpr1=0000000000000006 gpr2=0000000000000000 gpr3=0000000000000006
gpr4=0000000000000001 gpr5=0000000080056808 gpr6=0000010002BCCA20 gpr7=0000000000000000
......
Compiled_method=java/security/AccessController.toArrayOfProtectionDomains([Ljava/lang/Object;
Ljava/security/AccessControlContext;)[Ljava/security/ProtectionDomain;

The important lines are:

vmState=0x00000000
Indicates that the code that failed was not JVM runtime code.

Module= or Module_base_address=
Not in the output (might be blank or zero) because the code was compiled by
the JIT, and outside any DLL or library.

Compiled_method=
Indicates the Java method for which the compiled code was produced.

About this task

If your output does not indicate the failing method, follow these steps to identify
the failing method:

Procedure

1. Run the Java program with the JIT parameters verbose and vlog=<filename>
added to the -Xjit or -Xaot option. With these parameters, the compiler lists
compiled methods in a log file named <filename>.<date>.<time>.<pid>, also
called a limit file. A typical limit file contains lines that correspond to compiled
methods, like:
+ (hot) java/lang/Math.max(II)I @ 0x10C11DA4-0x10C11DDD

Lines that do not start with the plus sign are ignored by the compiler in the
following steps and you can remove them from the file. Methods compiled by
the AOT compiler start with + (AOT cold). Methods for which AOT code is
loaded from the shared class cache start with + (AOT load).

2. Run the program again with the JIT or AOT parameter
limitFile=(<filename>,<m>,<n>), where <filename> is the path to the limit file,
and <m> and <n> are line numbers indicating the first and the last methods in
the limit file that should be compiled. The compiler compiles only the methods
listed on lines <m> to <n> in the limit file. Methods not listed in the limit file
and methods listed on lines outside the range are not compiled and no AOT
code in the shared data cache for those methods will be loaded. If the program
no longer fails, one or more of the methods that you have removed in the last
iteration must have been the cause of the failure.

3. Optional: If you are diagnosing an AOT problem, run the program a second
time with the same options to allow compiled methods to be loaded from the
shared data cache. You can also add the –Xaot:scount=0 option to ensure that
AOT-compiled methods stored in the shared data cache will be used when the
method is first called. Some AOT compilation failures happen only when
AOT-compiled code is loaded from the shared data cache. To help diagnose
these problems, use the –Xaot:scount=0 option to ensure that AOT-compiled
methods stored in the shared data cache are used when the method is first
called, which might make the problem easier to reproduce. Please note that if
you set the scount option to 0 it will force AOT code loading and will pause

Chapter 9. Troubleshooting and support 61

any application thread waiting to execute that method. Thus, this should only
be used for diagnostic purposes. More significant pause times can occur with
the –Xaot:scount=0 option.

4. Repeat this process using different values for <m> and <n>, as many times as
necessary, to find the minimum set of methods that must be compiled to trigger
the failure. By halving the number of selected lines each time, you can perform
a binary search for the failing method. Often, you can reduce the file to a single
line.

What to do next

When you have located the failing method, you can disable the JIT or AOT
compiler for the failing method only. For example, if the method
java/lang/Math.max(II)I causes the program to fail when JIT-compiled with
optLevel=hot, you can run the program with:
-Xjit:{java/lang/Math.max(II)I}(optLevel=warm,count=0)

to compile only the failing method at an optimization level of “warm”, but
compile all other methods as usual.

If a method fails when it is JIT-compiled at “noOpt”, you can exclude it from
compilation altogether, using the exclude={<method>} parameter:
-Xjit:exclude={java/lang/Math.max(II)I}

If a method causes the program to fail when AOT code is compiled or loaded from
the shared data cache, exclude the method from AOT compilation and AOT
loading using the exclude={<method>} parameter:
-Xaot:exclude={java/lang/Math.max(II)I}

AOT methods are compiled at the “cold” optimization level only. Preventing AOT
compilation or AOT loading is the best approach for these methods.

Identifying JIT compilation failures:

For JIT compiler failures, analyze the error output to determine if a failure occurs
when the JIT compiler attempts to compile a method.

If the JVM crashes, and you can see that the failure has occurred in the JIT library
(libj9jit26.so), the JIT compiler might have failed during an attempt to compile a
method.

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00050000
Target=2_30_20051215_04381_BHdSMr (Linux 2.4.21-32.0.1.EL)
CPU=ppc64 (4 logical CPUs) (0xebf4e000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000001
Handler1=0000007FE05645B8 Handler2=0000007FE0615C20
R0=E8D4001870C00001 R1=0000007FF49181E0 R2=0000007FE2FBCEE0 R3=0000007FF4E60D70
R4=E8D4001870C00000 R5=0000007FE2E02D30 R6=0000007FF4C0F188 R7=0000007FE2F8C290
......
Module=/home/test/sdk/jre/bin/libj9jit26.so
Module_base_address=0000007FE29A6000
......
Method_being_compiled=com/sun/tools/javac/comp/Attr.visitMethodDef(Lcom/sun/tools/javac/tree/
JCTree$JCMethodDecl;)

62 IBM WebSphere Real Time for Linux: User Guide

The important lines are:

vmState=0x00050000
Indicates that the JIT compiler is compiling code. For a list of vmState code
numbers, see the Javadump tags table in the IBM SDK for Java V7 User guide,
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/
com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html.

Module=/home/test/sdk/jre/bin/libj9jit26.so
Indicates that the error occurred in libj9jit26.so, the JIT compiler module.

Method_being_compiled=
Indicates the Java method being compiled.

If your output does not indicate the failing method, use the verbose option with
the following additional settings:
-Xjit:verbose={compileStart|compileEnd}

These verbose settings report when the JIT starts to compile a method, and when it
ends. If the JIT fails on a particular method (that is, it starts compiling, but crashes
before it can end), use the exclude parameter to exclude it from compilation (refer
to “Locating the failing method” on page 60). If excluding the method prevents the
crash, you have a workaround that you can use while the service team corrects
your problem.

Performance of short-running applications
The IBM JIT compiler is tuned for long-running applications typically used on a
server. You can use the -Xquickstart command-line option to improve the
performance of short-running applications, especially for applications in which
processing is not concentrated into a few methods.

-Xquickstart causes the JIT compiler to use a lower optimization level by default
and to compile fewer methods. Performing fewer compilations more quickly can
improve application startup time. When the AOT compiler is active (both shared
classes and AOT compilation enabled), -Xquickstart causes all methods selected
for compilation to be AOT compiled, which improves the startup time of
subsequent runs. -Xquickstart might degrade performance if it is used with
long-running applications that contain methods using a large amount of processing
resource. The implementation of -Xquickstart is subject to change in future
releases.

You can also try improving startup times by adjusting the JIT threshold (using trial
and error). See “Selectively disabling the JIT compiler” on page 59 for more
information.

JVM behavior during idle periods
You can reduce the CPU cycles consumed by an idle JVM by using the
-XsamplingExpirationTime option to turn off the JIT sampling thread.

The JIT sampling thread profiles the running Java application to discover
commonly used methods. The memory and processor usage of the sampling thread
is negligible, and the frequency of profiling is automatically reduced when the
JVM is idle.

In some circumstances, you might want no CPU cycles consumed by an idle JVM.
To do so, specify the -XsamplingExpirationTime<time> option. Set <time> to the
number of seconds for which you want the sampling thread to run. Use this option

Chapter 9. Troubleshooting and support 63

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html

with care; after it is turned off, you cannot reactivate the sampling thread. Allow
the sampling thread to run for long enough to identify important optimizations.

The Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostic files for a problem event.

Gathering the files that are needed by IBM service can reduce the time taken to
solve reported problems. The IBM SDK for Java V7 user guide contains detailed
information about using the Diagnostics Collector.

You can find this information here: IBM SDK for Java 7 - The Diagnostics Collector.

Garbage Collector diagnostic data
This section describes how to diagnose garbage collection problems.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
garbage collector problems, covering:
v Verbose garbage collection logging
v Tracing garbage collection using -Xtgc

You can find this information here: IBM SDK for Java 7 - Garbage Collector
diagnostic data.

Supplementary information about the IBM WebSphere Real Time for Linux
Metronome Garbage Collector is provided in the following sections.

Troubleshooting the Metronome Garbage Collector
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.

Using verbose:gc information:

You can use the -verbose:gc option with the -Xgc:verboseGCCycleTime=N option to
write information to the console about Metronome Garbage Collector activity. Not
all XML properties in the -verbose:gc output from the standard JVM are created
or apply to the output of Metronome Garbage Collector.

Use the -verbose:gc option to view the minimum, maximum, and mean free space
in the heap. In this way, you can check the level of activity and use of the heap,
and then adjust the values if necessary. The -verbose:gc option writes Metronome
statistics to the console.

The -Xgc:verboseGCCycleTime=N option controls the frequency of retrieval of the
information. It determines the time in milliseconds that the summaries are
dumped. The default value for N is 1000 milliseconds. The cycle time does not
mean that the summary is dumped precisely at that time, but when the last
garbage collection event that meets this time criterion passes. The collection and
display of these statistics can increase Metronome Garbage Collector pause times
and, as N gets smaller, the pause times can become large.

A quantum is a single period of Metronome Garbage Collector activity, causing an
interruption or pause time for an application.

64 IBM WebSphere Real Time for Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/diag_collector.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/gcpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/gcpd.html

Example of verbose:gc output

Enter:
java -Xgcpolicy:metronome -verbose:gc -Xgc:verboseGCCycleTime=N myApplication

When garbage collection is triggered, a trigger start event occurs, followed by
any number of heartbeat events, then a trigger end event when the trigger is
satisfied. This example shows a triggered garbage collection cycle as verbose:gc
output:

<trigger-start id="25" timestamp="2011-07-12T09:32:04.503" />

<cycle-start id="26" type="global" contextid="26" timestamp="2011-07-12T09:32:04.503" intervalms="984.285" />

<gc-op id="27" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.209">
<quanta quantumCount="321" quantumType="mark" minTimeMs="0.367" meanTimeMs="0.524" maxTimeMs="1.878"
maxTimestampMs="598704.070" />

<exclusiveaccess-info minTimeMs="0.006" meanTimeMs="0.062" maxTimeMs="0.147" />
<free-mem type="heap" minBytes="99143592" meanBytes="114374153" maxBytes="134182032" />
<thread-priority maxPriority="11" minPriority="11" />

</gc-op>

<gc-op id="28" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.458">
<quanta quantumCount="115" quantumType="sweep" minTimeMs="0.430" meanTimeMs="0.471" maxTimeMs="0.511"
maxTimestampMs="599475.654" />

<exclusiveaccess-info minTimeMs="0.007" meanTimeMs="0.067" maxTimeMs="0.173" />
<classunload-info classloadersunloaded=9 classesunloaded=156 />
<references type="weak" cleared="660" />
<free-mem type="heap" minBytes="24281568" meanBytes="55456028" maxBytes="87231320" />
<thread-priority maxPriority="11" minPriority="11" />

</gc-op>

<gc-op id="29" type="syncgc" timems="136.945" contextid="26" timestamp="2011-07-12T09:32:06.046">
<syncgc-info reason="out of memory" exclusiveaccessTimeMs="0.006" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="21290752" bytesAfter="171963656" />

</gc-op>

<cycle-end id="30" type="global" contextid="26" timestamp="2011-07-12T09:32:06.046" />

<trigger-end id="31" timestamp="2011-07-12T09:32:06.046" />

The following event types can occur:

<trigger-start ...>
The start of a garbage collection cycle, when the amount of used memory
became higher than the trigger threshold. The default threshold is 50% of
the heap. The intervalms attribute is the interval between the previous
trigger end event (with id-1) and this trigger start event.

<trigger-end ...>
A garbage collection cycle successfully lowered the amount of used
memory beneath the trigger threshold. If a garbage collection cycle ended,
but used memory did not drop beneath the trigger threshold, a new
garbage collection cycle is started with the same context ID. For each
trigger start event, there is a matching trigger end event with same
context ID. The intervalms attribute is the interval between the previous
trigger start event and the current trigger end event. During this time,
one or more garbage collection cycles will have completed until used
memory has dropped beneath the trigger threshold.

<gc-op id="28" type="heartbeat"...>
A periodic event that gathers information (on memory and time) about all
garbage collection quanta for the time covered. A heartbeat event can occur
only between a matching pair of trigger start and trigger end events;

Chapter 9. Troubleshooting and support 65

that is, while an active garbage collection cycle is in process. The
intervalms attribute is the interval between the previous heartbeat event
(with id -1) and this heartbeat event.

<gc-op id="29" type="syncgc"...>
A synchronous (nondeterministic) garbage collection event. See
“Synchronous garbage collections” on page 67

The XML tags in this example have the following meanings:

<quanta ...>
A summary of quantum pause times during the heartbeat interval,
including the length of the pauses in milliseconds.

<free-mem type="heap" ...>
A summary of the amount of free heap space during the heartbeat interval,
sampled at the end of each garbage collection quantum.

<classunload-info classloadersunloaded=9 classesunloaded=156 />
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="660 />
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Note:

v If only one garbage collection quantum occurred in the interval between two
heartbeats, the free memory is sampled only at the end of this one quantum.
Therefore the minimum, maximum, and mean amounts given in the heartbeat
summary are all equal.

v The interval between two heartbeat events might be significantly larger than the
cycle time specified if the heap is not full enough to require garbage collection
activity. For example, if your program requires garbage collection activity only
once every few seconds, you are likely to see a heartbeat only once every few
seconds.

v It is possible that the interval might be significantly larger than the cycle time
specified because the garbage collection has no work on a heap that is not full
enough to warrant garbage collection activity. For example, if your program
requires garbage collection activity only once every few seconds, you are likely
to see a heartbeat only once every few seconds.
If an event such as a synchronous garbage collection or a priority change occurs,
the details of the event and any pending events, such as heartbeats, are
immediately produced as output.

v If the maximum garbage collection quantum for a given period is too large, you
might want to reduce the target utilization using the -Xgc:targetUtilization
option. This action gives the Garbage Collector more time to work. Alternatively,
you might want to increase the heap size with the -Xmx option. Similarly, if your
application can tolerate longer delays than are currently being reported, you can
increase the target utilization or decrease the heap size.

v The output can be redirected to a log file instead of the console with the
-Xverbosegclog:<file> option; for example, -Xverbosegclog:out writes the
-verbose:gc output to the file out.

v The priority listed in thread-priority is the underlying operating system thread
priority, not a Java thread priority.

66 IBM WebSphere Real Time for Linux: User Guide

Synchronous garbage collections

An entry is also written to the -verbose:gc log when a synchronous
(nondeterministic) garbage collection occurs. This event has three possible causes:
v An explicit System.gc() call in the code.
v The JVM runs out of memory then performs a synchronous garbage collection to

avoid an OutOfMemoryError condition.
v The JVM shuts down during a continuous garbage collection. The JVM cannot

cancel the collection, so it completes the collection synchronously, and then exits.

An example of a System.gc() entry is:
<gc-op id="9" type="syncgc" timems="12.92" contextid="8" timestamp=
"2011-07-12T09:41:40.808">
<syncgc-info reason="system GC" totalBytesRequested="260" exclusiveaccessTimeMs="0.009"
threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="22085440" bytesAfter="136023450" />
<classunload-info classloadersunloaded="54" classesunloaded="234" />
<references type="soft" cleared="21" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="523" />
<finalization enqueued="124" />

</gc-op>

An example of a synchronous garbage collection entry as a result of the JVM
shutting down is:

<gc-op id="24" type="syncgc" timems="6.439" contextid="19" timestamp="2011-07-12T09:43:14.524">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="56182430" bytesAfter="151356238" />
<classunload-info classloadersunloaded="14" classesunloaded="276" />
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="53" />
<finalization enqueued="34" />

</gc-op>

The XML tags and attributes in this example have the following meanings:

<gc-op id="9" type="syncgc" timems="6.439" ...
This line indicates that the event type is a synchronous garbage collection.
The timems attribute is the duration of the synchronous garbage collection
in milliseconds.

<syncgc-info reason="..."/>
The cause of the synchronous garbage collection.

<free-mem-delta.../>
The free Java heap memory before and after the synchronous garbage
collection in bytes.

<finalization .../>
The number of objects awaiting finalization.

<classunload-info .../>
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="53" .../>
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Synchronous garbage collection due to out-of-memory conditions or VM shutdown
can happen only when the Garbage Collector is active. It has to be preceded by a
trigger start event, although not necessarily immediately. Some heartbeat events

Chapter 9. Troubleshooting and support 67

probably occur between a trigger start event and the synchgc event.
Synchronous garbage collection caused by System.gc() can happen at any time.

Tracking all GC quanta

Individual GC quanta can be tracked by enabling the GlobalGCStart and
GlobalGCEnd tracepoints. These tracepoints are produced at the beginning and end
of all Metronome Garbage Collector activity including synchronous garbage
collections. The output for these tracepoints looks similar to:
03:44:35.281 0x833cd00 j9mm.52 - GlobalGC start: globalcount=3

03:44:35.284 0x833cd00 j9mm.91 - GlobalGC end: workstackoverflow=0 overflowcount=0

Out-of-memory entries

When the heap runs out of free space, an entry is written to the -verbose:gc log
before the OutOfMemoryError exception is thrown. An example of this output is:

<out-of-memory id="71" timestamp="2011-07-12T10:21:50.135" memorySpaceName="Metronome"
memorySpaceAddress="0806DFDC"/>

By default a Javadump is produced as a result of an OutOfMemoryError exception.
This dump contains information about the memory used by your program.
NULL
1STSEGTOTAL Total memory: 4066080 (0x003E0B20)
1STSEGINUSE Total memory in use: 3919440 (0x003BCE50)
1STSEGFREE Total memory free: 146640 (0x00023CD0)

Metronome Garbage Collector behavior in out-of-memory conditions:

By default, the Metronome Garbage Collector triggers an unlimited,
nondeterministic garbage collection when the JVM runs out of memory. To prevent
nondeterministic behavior, use the -Xgc:noSynchronousGCOnOOM option to throw an
OutOfMemoryError when the JVM runs out of memory.

The default unlimited collection runs until all possible garbage is collected in a
single operation. The pause time required is usually many milliseconds greater
than a normal metronome incremental quantum.
Related information:
Using -Xverbose:gc to analyze synchronous garbage collections

Metronome Garbage Collector behavior on explicit System.gc() calls:

If a garbage collection cycle is in progress, the Metronome Garbage Collector
completes the cycle in a synchronous way when System.gc() is called. If no
garbage collection cycle is in progress, a full synchronous cycle is performed when
System.gc() is called. Use System.gc() to clean up the heap in a controlled
manner. It is a nondeterministic operation because it performs a complete garbage
collection before returning.

Some applications call vendor software that has System.gc() calls where it is not
acceptable to create these nondeterministic delays. To disable all System.gc() calls
use the -Xdisableexplicitgc option.

The verbose garbage collection output for a System.gc() call has a reason of
“system garbage collect” and is likely to have a long duration:

68 IBM WebSphere Real Time for Linux: User Guide

<gc-op id="9" type="syncgc" timems="6.439" contextid="8" timestamp="2011-07-12T09:41:40.808">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11"/>
<free-mem-delta type="heap" bytesBefore="126082300" bytesAfter="156085440"/>
<classunload-info classloadersunloaded="14" classesunloaded="276"/>
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32"/>
<references type="weak" cleared="53"/>
<finalization enqueued="34"/>

</gc-op>

Shared classes diagnostic data
Understanding how to diagnose problems that might occur helps you to use
shared classes mode.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with shared classes, covering:
v Deploying shared classes
v Dealing with runtime bytecode modification
v Understanding dynamic updates
v Using the Java Helper API
v Understanding shared classes diagnostic output
v Debugging problems with shared classes

You can find this information here: IBM SDK for Java 7 - Shared classes diagnostic
data.

Using the JVMTI
JVMTI is a two-way interface that allows communication between the JVM and a
native agent. It replaces the JVMDI and JVMPI interfaces.

JVMTI allows third parties to develop debugging, profiling, and monitoring tools
for the JVM. The interface contains mechanisms for the agent to notify the JVM
about the kinds of information it requires. The interface also provides a means of
receiving the relevant notifications. Several agents can be attached to a JVM at any
one time.

The IBM SDK for Java V7 User guide contains detailed information about using
JVMTI, including an API reference section on IBM extensions to JVMTI.

You can find this information here: IBM SDK for Java 7 - Using JVMTI.

Using the Diagnostic Tool Framework for Java
The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostics tools.
DTFJ works with data from a system dump or Javadump.

The IBM SDK for Java V7 User guide contains detailed information about DTFJ.
Follow this link: Using the Diagnostic Tool Framework for Java

Chapter 9. Troubleshooting and support 69

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/jvmti.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dtfj.html

70 IBM WebSphere Real Time for Linux: User Guide

Chapter 10. Reference

This set of topics lists the options and class libraries that can be used with
WebSphere Real Time for Linux

Command-line options
You can specify options on the command line while you are starting Java. Default
options have been chosen for best general use.

Specifying Java options and system properties
There are three ways to specify Java properties and system properties.

About this task

You can specify Java options and system properties in these ways. In order of
precedence, they are:
1. By specifying the option or property on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. By creating a file that contains the options, and specifying this file on the
command line using the -Xoptionsfile=<filename> option.
In the options file, specify each option on a new line; you can use the '\'
character as a continuation character if you want a single option to span
multiple lines. Use the '#' character to define comment lines. You cannot specify
-classpath in an options file. Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

3. By creating an environment variable called IBM_JAVA_OPTIONS containing the
options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

The last option you specify on the command line has precedence over first option.
For example, if you specify the options -Xint -Xjit myClass, the option -Xjit
takes precedence over -Xint.

System properties
System properties are available to applications, and help provide information about
the runtime environment.

com.ibm.jvm.realtime
This property enables Java applications to determine if they are running
within a WebSphere Real Time for Linux environment.

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, and was started with the -Xrealtime option,
the com.ibm.jvm.realtime property has the value “hard”.

© Copyright IBM Corp. 2003, 2014 71

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, but was not started with the -Xrealtime
option, the com.ibm.jvm.realtime property is not set.

If your application is running within the IBM WebSphere Real Time
runtime environment, the com.ibm.jvm.realtime property has the value
“soft”.

Standard options
The definitions for the standard options.

-agentlib:<libname>[=<options>]
Loads native agent library <libname>; for example -agentlib:hprof. For
more information, specify -agentlib:jdwp=help and -agentlib:hprof=help
on the command line.

-agentpath:libname[=<options>]
Loads native agent library by full path name.

-assert Prints help on assert-related options.

-cp or -classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath
and -cp are not used and CLASSPATH is not set, the user classpath is, by
default, the current directory (.).

-D<property_name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Loads Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Includes user private JREs in the version search.

-no-jre-restrict-search
Excludes user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:[class,gc,dynload,sizes,stack,jni]
Enables verbose output.

-verbose:class
Writes an entry to stderr for each class that is loaded.

-verbose:gc
See “Using verbose:gc information” on page 64.

-verbose:dynload
Provides detailed information as each class is loaded by the JVM,
including:
v The class name and package
v For class files that were in a .jar file, the name and directory

path of the .jar
v Details of the size of the class and the time taken to load the

class

72 IBM WebSphere Real Time for Linux: User Guide

The data is written out to stderr. An example of the output follows:
<Loaded java/lang/String from /myjdk/sdk/jre/lib/i386/
softrealtime/jclSC160/vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

Note: Classes loaded from the shared class cache do not appear in
-verbose:dynload output. Use -verbose:class for information
about these classes.

-verbose:sizes
Writes information to stderr describing the amount of memory
used for the stacks and heaps in the JVM

-verbose:stack
Writes information to stderr describing Java and C stack usage.

-verbose:jni
Writes information to stderr describing the JNI services called by
the application and JVM.

-version
Prints out version information for the non-real-time mode.

-version:<value>
Requires the specified version to run.

-X Prints help on nonstandard options.

Non-standard options
Options that are prefixed by -X are nonstandard and subject to change without
notice.

The IBM SDK for Java V7 User guide contains detailed information on
non-standard options. You can find this information here: IBM SDK for Java 7 -
Command-line options.

Supplementary information for IBM WebSphere Real Time for Linux is provided in
the following sections.

Metronome Garbage Collector options
The definitions of the Metronome Garbage Collector options.

-Xgc:synchronousGCOnOOM | -Xgc:nosynchronousGCOnOOM
One occasion when garbage collection occurs is when the heap runs out of
memory. If there is no more free space in the heap, using
-Xgc:synchronousGCOnOOM stops your application while garbage collection
removes unused objects. If free space runs out again, consider decreasing
the target utilization to allow garbage collection more time to complete.
Setting -Xgc:nosynchronousGCOnOOM implies that when heap memory is full
your application stops and issues an out-of-memory message. The default
is -Xgc:synchronousGCOnOOM.

-Xnoclassgc
Disables class garbage collection. This option switches off garbage
collection of storage associated with Java classes that are no longer being
used by the JVM. The default behavior is -Xnoclassgc.

-Xgc:targetPauseTime=N
Sets the garbage collection pause time, where N is the time in milliseconds.

Chapter 10. Reference 73

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/cmdline.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/cmdline.html

When this option is specified, the GC operates with pauses that do not
exceed the value specified. If this option is not specified the default pause
time is set to 3 milliseconds. For example, running with
-Xgc:targetPauseTime=20 causes the GC to pause for no longer than 20
milliseconds during GC operations.

-Xgc:targetUtilization=N
Sets the application utilization to N%; the Garbage Collector attempts to
use at most (100-N)% of each time interval. Reasonable values are in the
range of 50-80%. Applications with low allocation rates might be able to
run at 90%. The default is 70%.

This example shows the maximum size of the heap memory is 30 MB. The
garbage collector attempts to use 25% of each time interval because the
target utilization for the application is 75%.
java -Xgcpolicy:metronome -Xmx30m -Xgc:targetUtilization=75 Test

-Xgc:threads=N
Specifies the number of GC threads to run. The default is the number of
processor cores available to the process. The maximum value you can
specify is the number of processors available to the operating system.

-Xgc:verboseGCCycleTime=N
N is the time in milliseconds that the summary information should be
dumped.

Note: The cycle time does not mean that the summary information is
dumped precisely at that time, but when the last garbage collection event
that meets this time criterion passes.

-Xmx<size>
Specifies the Java heap size. Unlike other garbage collection strategies, the
real-time Metronome GC does not support heap expansion. There is not an
initial or maximum heap size option. You can specify only the maximum
heap size.

Default settings for the JVM
Default settings apply to the Real Time JVM when no changes are made to the
environment that the JVM runs in. Common settings are shown for reference.

Default settings can be changed using environment variables or command-line
parameters at JVM startup. The table shows some of the common JVM settings.
The last column indicates how you can change the behavior, where the following
keys apply:
v e - setting controlled by environment variable only
v c - setting controlled by command-line parameter only
v ec - setting controlled by both environment variable and command-line

parameter, with command-line parameter taking precedence.

The information is provided as a quick reference and is not comprehensive.

JVM setting Default Setting
affected by

Javadumps Enabled ec

Javadumps on out of memory Enabled ec

Heapdumps Disabled ec

74 IBM WebSphere Real Time for Linux: User Guide

JVM setting Default Setting
affected by

Heapdumps on out of memory Enabled ec

Sysdumps Enabled ec

Where dump files are produced Current® directory ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformancy checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signalling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

Default locale None e

Time to wait before starting plug-in zero e

Temporary directory /tmp e

Plug-in redirection None e

IM switching Disabled e

IM modifiers Disabled e

Thread model N/A e

Initial stack size for Java Threads 32-bit. Use:
-Xiss<size>

2 KB c

Maximum stack size for Java Threads 32-bit. Use:
-Xss<size>

256 KB c

Stack size for OS Threads 32-bit. Use -Xmso<size> 256 KB c

Initial heap size. Use -Xms<size> 64 MB c

Maximum Java heap size. Use -Xmx<size> Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

c

Chapter 10. Reference 75

JVM setting Default Setting
affected by

Target time interval utilization for an application.
The Garbage collector attempts to use the remainder.
Use -Xgc:targetUtilization=<percentage>

70% c

The number of garbage collector threads to run. Use
-Xgc:threads=<value>

The number of
processor cores
available to the
process.

c

Maximum amount of memory that can be allocated
to scope memories in -Xrealtime mode. Use
-Xgc:scopedMemoryMaximumSize=<size>.

8 MB c

Sets the size of the immortal memory area in
-Xrealtime mode. Use
-Xgc:immortalMemorySize=<size>

16 MB c

Note: “available memory” is either the amount of real (physical) memory, or the
RLIMIT_AS value, whichever is the smallest value.

76 IBM WebSphere Real Time for Linux: User Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 77

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
v JIMMAIL@uk.ibm.com [Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);

78 IBM WebSphere Real Time for Linux: User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Itanium are trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 79

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

80 IBM WebSphere Real Time for Linux: User Guide

Index

Special characters
-? 72
-agentlib: 72
-agentpath: 72
-assert 72
-classpath 72
-cp 72
-D 72
-help 72
-javaagent: 72
-jre-restrict-search 72
-no-jre-restrict-search 72
-showversion 72
-verbose: 72
-verbose:gc option 64
-version: 72
-X 72
-Xdebug 10
-Xgc:immortalMemorySize 73
-Xgc:nosynchronousGCOnOOM 73
-Xgc:noSynchronousGCOnOOM

option 68
-Xgc:scopedMemoryMaximumSize 73
-Xgc:synchronousGCOnOOM 73
-Xgc:synchronousGCOnOOM option 68
-Xgc:targetUtilization 73
-Xgc:threads 73
-Xgc:verboseGCCycleTime=N 73
-Xgc:verboseGCCycleTime=N option 64
-Xmx 41, 73
-Xnojit 10
-Xshareclasses 10
-XsynchronousGCOnOOM 41

A
accessibility features 2
alarm thread

metronome garbage collector 5
AOT

disabling 58

C
class data sharing 31
class records in a heapdump 55
class unloading

metronome 5
classic (text) heapdump file format

heapdumps 54
CLASSPATH

setting 16
collection threads

metronome garbage collector 5
compilation failures, JIT 62
Concepts 5
controlling processor utilization 23, 27
core files 35
crashes

Linux 37

D
debugging performance problems 38
default settings, JVM 74
Developing applications 29
Diagnostics Collector 64
disabling the AOT compiler 58
disabling the JIT compiler 58
DTFJ 69
dump agents

events 47
filters 48
using 46

dump viewer 57
Using diagnostic tools 57

E
events

dump agents 47

F
failing method, JIT 60

G
garbage collection

metronome 5, 23
real time 5, 23

Garbage Collector diagnostic data 64
Using diagnostic tools 64

H
header record in a heapdump 54
Heapdump 54

text (classic) Heapdump file
format 54

Using diagnostic tools 54

I
immortal memory 5
InstallAnywhere 17
installation 11
Introduction 1

J
Javadump 49

storage management 50
threads and stack trace

(THREADS) 52
Using diagnostic tools 49

JIT 58
compilation failures, identifying 62
disabling 58
idle 63

JIT (continued)
locating the failing method 60
selectively disabling 59
short-running applications 63
Using diagnostic tools 58

JVMTI 69
Using diagnostic tools 69

K
known limitations 38

L
limitations

metronome 28
Linux

crashes, diagnosing 37
debugging techniques 36
known limitations 38
problem determination 35

debugging performance
problems 38

setting up and checking the
environment

core files 35
locating the failing method, JIT 60

M
Memory management,

understanding 43
metronome

controlling processor utilization 23,
27

limitations 28
time-based collection 5

metronome class unloading 5
metronome garbage collection 5, 23
metronome garbage collector

alarm thread 5
collection threads 5

N
NLS

problem determination 40

O
object records in a heapdump 54
options

-verbose:gc 64
-Xgc:immortalMemorySize 73
-Xgc:nosynchronousGCOnOOM 73
-Xgc:noSynchronousGCOnOOM 68
-Xgc:scopedMemoryMaximumSize 73
-Xgc:synchronousGCOnOOM 68, 73
-Xgc:targetUtilization 73

© Copyright IBM Corp. 2003, 2014 81

options (continued)
-Xgc:threads 73
-Xgc:verboseGCCycleTime=N 64, 73
-Xmx 73

ORB
debugging 40

OutOfMemoryError 41, 68

P
packaging 11
PATH

setting 16
Planning 9
policies 20
priorities 20
priority scheduler 6, 19, 21
Problem determination 35

R
real-time garbage collection 5, 23
Reference 71
Running applications 19

S
sample application 29
SCHED_FIFO 6, 19, 20, 21
SCHED_OTHER 6, 19, 20, 21
SCHED_RR 6, 19, 20, 21
scheduling policies

SCHED_FIFO 6, 19, 20, 21
SCHED_OTHER 6, 19, 20, 21
SCHED_RR 6, 19, 20, 21

scoped memory 5
Security 33
selectively disabling the JIT 59
settings, default (JVM) 74
shared classes

diagnostic data 69
short-running applications

JIT 63
storage management, Javadump 50
Supported environments 9

T
text (classic) heapdump file format

heapdumps 54
thread dispatching 6, 19, 21
thread scheduling 6, 19, 21
threads and stack trace (THREADS) 52
time-based collection

metronome 5
tracing 57

Using diagnostic tools 57
trailer record 1 in a heapdump 56
trailer record 2 in a heapdump 56
troubleshooting

metronome 64
Troubleshooting and support 35
type signatures 56

U
uninstalling 17

InstallAnywhere 17
Using diagnostic tools 44

Diagnostics Collector 64
DTFJ 69

using dump agents 46
Using the IBM Monitoring and

Diagnostic Tools for Java 45
Using diagnostic tools 45

W
work-based collection 5

82 IBM WebSphere Real Time for Linux: User Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Preface
	Chapter 1. Introduction
	Overview of WebSphere Real Time for Linux
	What's new
	Benefits
	Accessibility

	Chapter 2. Understanding IBM WebSphere Real Time for Linux
	Introduction to the Metronome Garbage Collector
	Thread scheduling

	Chapter 3. Planning
	Migration
	Supported environments
	Considerations

	Chapter 4. Installing WebSphere Real Time for Linux
	Installation files
	Installing from an InstallAnywhere package
	Completing an attended installation
	Completing an unattended installation
	Interrupted installation
	Known issues and limitations

	Setting the path
	Setting the classpath
	Testing your installation
	Uninstalling WebSphere Real Time for Linux

	Chapter 5. Running IBM WebSphere Real Time for Linux applications
	Thread scheduling and dispatching
	Regular Java thread priorities and policies
	Configuring the system to allow priority changes
	Launching secondary processes

	Using the Metronome Garbage Collector
	Controlling pause time
	Controlling processor utilization
	Metronome Garbage Collector limitations

	Chapter 6. Developing applications
	The sample real-time hash map

	Chapter 7. Performance
	Class data sharing between JVMs

	Chapter 8. Security
	Security considerations for the shared class cache

	Chapter 9. Troubleshooting and support
	General problem determination methods
	Linux problem determination
	Setting up and checking your Linux environment
	General debugging techniques
	Diagnosing crashes
	Debugging performance problems
	Known limitations on Linux

	NLS problem determination
	ORB problem determination

	Troubleshooting OutOfMemory Errors
	Diagnosing OutOfMemoryErrors
	How the IBM JVM manages memory

	Using diagnostic tools
	Using the IBM Monitoring and Diagnostic Tools for Java
	Garbage Collection and Memory Visualizer
	Health Center
	Interactive Diagnostic Data Explorer
	Memory Analyzer

	Using dump agents
	Dump events
	filter option

	Using Javadump
	Storage Management (MEMINFO)
	Threads and stack trace (THREADS)

	Using Heapdump
	Text (classic) Heapdump file format

	Using system dumps and the dump viewer
	Tracing Java applications and the JVM
	JIT and AOT problem determination
	Diagnosing a JIT or AOT problem
	Performance of short-running applications
	JVM behavior during idle periods

	The Diagnostics Collector
	Garbage Collector diagnostic data
	Troubleshooting the Metronome Garbage Collector

	Shared classes diagnostic data
	Using the JVMTI
	Using the Diagnostic Tool Framework for Java

	Chapter 10. Reference
	Command-line options
	Specifying Java options and system properties
	System properties
	Standard options
	Non-standard options
	Metronome Garbage Collector options

	Default settings for the JVM

	Notices
	Privacy Policy Considerations
	Trademarks

	Index
	Special characters
	A
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

