
IBM WebSphere Real Time for RT Linux
Version 3

User Guide

���

IBM WebSphere Real Time for RT Linux
Version 3

User Guide

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 151.

Fifth edition (February 2014)

This edition of the user guide applies to IBM WebSphere Real Time for RT Linux, Version 3, and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2003, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Preface ix

Chapter 1. Introduction 1
Overview of WebSphere Real Time for RT Linux . . 1
What's new 2
Benefits 3
Accessibility 4

Chapter 2. Understanding IBM
WebSphere Real Time for RT Linux . . . 5
Introduction to the Metronome Garbage Collector . . 5
Compilers 7

Comparing JIT and AOT compilation 7
Thread scheduling 8
Support for RTSJ 9

Real-time thread scheduling and dispatching . . 9
Memory management 13
Synchronization and resource sharing 17
Periodic and aperiodic parameters. 17
Asynchronous event handling 17
Required documentation 18

Chapter 3. Planning 23
Migration 23
Hardware and software prerequisites 23
Considerations 24

Chapter 4. Installing WebSphere Real
Time for RT Linux 27
Installation files 27
Installing a Real Time Linux environment 27
Installing from an InstallAnywhere package . . . 28

Completing an attended installation 29
Completing an unattended installation 30
Interrupted installation 31
Known issues and limitations 31

Setting the path 32
Setting the classpath 33
Testing your installation 33
Uninstalling WebSphere Real Time for RT Linux . . 34

Chapter 5. Running IBM WebSphere
Real Time for RT Linux applications . . 37
Thread scheduling and dispatching 37

Regular Java thread priorities and policies . . . 38
Real-time Java thread priorities and policies . . 40

Using compiled code with WebSphere Real Time for
RT Linux 40

Using the AOT compiler 43

The Just-In-Time (JIT) compiler 56
Using no-heap real-time threads 58

Memory and scheduling constraints 59
Class loading constraints 59
Constraints on Java threads when running with
NHRTs 60
Synchronization 61
No-heap real-time class safety 61

Class data sharing between JVMs 66
Running Applications with a Shared Class Cache 67

Using the Metronome Garbage Collector 68
Controlling processor utilization 68
Tuning Metronome Garbage Collector 68
Metronome Garbage Collector limitations . . . 69

Chapter 6. Developing applications . . 71
Writing Java applications to exploit real time . . . 71

Introduction to writing real-time applications . . 71
Planning your WebSphere Real Time for RT
Linux application 72
Modifying Java applications 74
Writing real-time threads 74
Writing asynchronous event handlers. 77
Writing NHRT threads. 78
Memory allocation in RTSJ 79
Using the high-resolution timer. 80

The sample application 82
Building the sample application 84
Running the sample application 84

The sample real-time hash map. 89
Developing WebSphere Real Time for RT Linux
applications using Eclipse 90

Debugging your applications 91
Running Eclipse with the JVM 92

Chapter 7. Performance 93
Class data sharing between JVMs for non-Real-Time
mode 93

Chapter 8. Security 95
Security considerations for the shared class cache. . 95

Chapter 9. Troubleshooting and
support 97
General problem determination methods 97

Linux problem determination 97
NLS problem determination 101
ORB problem determination 102

Troubleshooting OutOfMemory Errors 103
Diagnosing OutOfMemoryErrors 103
Diagnosing problems in multiple heaps . . . 109
Avoiding memory leaks 109
Using reflection across memory contexts . . . 111
Using inner classes with scoped memory areas 111

© Copyright IBM Corp. 2003, 2014 iii

||

||

Using diagnostic tools 112
Using the IBM Monitoring and Diagnostic Tools
for Java 112
Using dump agents 114
Using Javadump 118
Using Heapdump 123
Using system dumps and the dump viewer . . 126
Tracing Java applications and the JVM 127
JIT and AOT problem determination 128
The Diagnostics Collector 134
Garbage Collector diagnostic data 134
Shared classes diagnostic data 141
Using the JVMTI 141
Using the Diagnostic Tool Framework for Java 142

Chapter 10. Reference 143
Command-line options 143

Specifying Java options and system properties 143
System properties 143
Standard options 144
Non-standard options 145

Default settings for the JVM 147
WebSphere Real Time for RT Linux class libraries 149

Running with TCK 149

Notices 151
Privacy Policy Considerations 152
Trademarks 153

Index 155

iv IBM WebSphere Real Time for RT Linux: User Guide

Figures

1. Overview of WebSphere Real Time for RT Linux 2
2. Comparing JIT compiler and AOT compiler. 8
3. Example of an NHRT accessing a heap object

reference 62
4. Example of an NHRT accessing a heap object

reference (continued from Figure 1) 62

5. A comparison of the features of RTSJ with the
increased predictability. 72

6. Diagram of the lunar lander 83

© Copyright IBM Corp. 2003, 2014 v

vi IBM WebSphere Real Time for RT Linux: User Guide

Tables

1. Java commands used in real-time mode . . . 2
2. Example of garbage collection and priorities 6
3. Memory access by real-time and no-heap

real-time threads 16
4. Java and operating system priorities 38
5. Examples of the <signature> option 46
6. Classes in the java.lang package that are not

NHRT-safe 65
7. Classes in the java.lang.reflect package that are

not NHRT-safe 65
8. Classes in the java.net package that are not

NHRT-safe 66

9. Classes in the java.io package that are not
NHRT-safe 66

10. Classes in the java.math package that are not
NHRT-safe 66

11. Suboptions available when running an
application in real-time mode 67

12. Relationship of threads to memory areas in the
sample application 75

13. Thread names in IBM WebSphere Real Time
for RT Linux 121

© Copyright IBM Corp. 2003, 2014 vii

||

viii IBM WebSphere Real Time for RT Linux: User Guide

Preface

This user guide provides general information about IBM® WebSphere® Real Time
for RT Linux.

© Copyright IBM Corp. 2003, 2014 ix

x IBM WebSphere Real Time for RT Linux: User Guide

Chapter 1. Introduction

This information tells you about IBM WebSphere Real Time for RT Linux.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Late breaking information about the IBM WebSphere Real Time for RT Linux that
is not available in the user guide can be found here: http://www.ibm.com/
support/docview.wss?uid=swg21501145
v “Overview of WebSphere Real Time for RT Linux”
v “What's new” on page 2
v “Benefits” on page 3

Overview of WebSphere Real Time for RT Linux
WebSphere Real Time for RT Linux bundles real-time capabilities with the IBM J9
virtual machine (JVM).

WebSphere Real Time for RT Linux is a Java™ Runtime Environment with a
Software Development Kit that extends the IBM SDK for Java with real-time
capabilities. Applications that are dependent on precise response times can take
advantage of the real-time features provided with WebSphere Real Time for RT
Linux on standard Java technology.

Features

Real-time applications need consistent run time rather than absolute speed.

When the JVM is run in real-time mode, additional memory areas are available in
addition to the garbage collected heap. Programs might request or specify any
number of reusable scoped and nonreusable immortal memory areas, which are
not garbage collected. This capability provides the application with more control
over memory usage. It also uses the Metronome Garbage Collector to achieve
time-based collections. When the JVM is run in a traditional throughput mode,
various work-based garbage collectors can be used that optimize throughput but
can have larger individual delays than the Metronome Garbage Collector.

The main concerns when deploying real-time applications with traditional JVMs
are as follows:
v Unpredictable (potentially long) delays from Garbage Collection (GC) activity.
v Delays to method run time as Just-In-Time (JIT) compilation and recompilation

occurs, with variability in execution time.
v Arbitrary operating system scheduling.

WebSphere Real Time for RT Linux removes these obstacles by providing:
v The Metronome Garbage Collector, an incremental, deterministic garbage

collector with very short pause times.
v Ahead-Of-Time (AOT) compilation.
v Priority-based FIFO scheduling.

© Copyright IBM Corp. 2003, 2014 1

http://www.ibm.com/support/docview.wss?uid=swg21501145
http://www.ibm.com/support/docview.wss?uid=swg21501145

In addition, WebSphere Real Time provides the real-time programmer with the
RTSJ facilities; see “Support for RTSJ” on page 9.

You enable real-time capabilities by using the -Xrealtime option when running the
JVM or any of the tools provided. By default, the JVM and the tools provided run
without real-time capabilities enabled. Figure 1 shows the relationships of the two
JVMs that are supplied with WebSphere Real Time for RT Linux.

The following Java commands recognize the -Xrealtime option:

Table 1. Java commands used in real-time mode

Command Function

java Runs in standard mode by default but also runs in real-time mode when the
-Xrealtime option is specified. In real-time mode, the programmer accesses
classes from the javax.realtime package. You can use precompiled jar files
and the Metronome deterministic garbage collection technology.

javac, javah,
javap

Runs in standard mode by default; but, when the -Xrealtime option is
specified, it includes the javax.realtime.* classes in the class path.

admincache Can be run both with and without -Xrealtime, but populating a shared cache
with the admincache tool is only possible in the real-time mode. In regular
mode, only the cache utilities are available (such as listAllCaches, or
printStats). Like jdmpview, admincache must be run with -Xrealtime to access
caches for the real-time JVM, and must be run without -Xrealtime to access
caches for the regular JVM.

jextract jextract runs in standard mode by default, but must be run with the
-Xrealtime option when processing system dumps generated by the JVM in
real-time mode

What's new
This topic introduces changes for IBM WebSphere Real Time for RT Linux .

WebSphere Real Time for RT Linux V3

WebSphere Real Time for RT Linux V3 is an extension to the IBM SDK for Java V7,
building on the features and functions available with this release to include

J2SE Classes

Java

JVM Real-time JVM

Classes: J2SE
GC: Standard
Memory Area: Heap

Classes: J2SE and RTSJ
GC: Metronome
Memory Areas: Heap

Scoped
Immortal

-Xrealtime

Figure 1. Overview of WebSphere Real Time for RT Linux

2 IBM WebSphere Real Time for RT Linux: User Guide

real-time capabilities. Earlier versions of WebSphere Real Time for RT Linux were
based on earlier releases of the IBM SDK for Java.

To learn more about what's new in IBM SDK for Java V7, see: What's new in the
IBM SDK for Java 7 information center.

Any new modifications made to this user guide are indicated by vertical bars to
the left of the changes.

Real Time Linux operating system support

Support is now included for Red Hat Enterprise MRG 2.2 for Red Hat Enterprise
Linux 6 Update 3. For more information about supported hardware and software,
including any required updates or patches, see “Hardware and software
prerequisites” on page 23.

Use of large pages

In service refresh 4, the IBM SDK for Java V7 introduces the use of large pages by
default for Linux x86 and AMD64/EM64T platforms. Although WebSphere Real
Time for RT Linux is an extension to the IBM SDK for Java V7, large pages are not
enabled by default because of a known problem.

Symbol resolution

By default, the JVM immediately resolves symbol resolution for each function in a
user native library. Use the -XX:+LazySymbolResolution option to force the JVM to
delay symbol resolution for all functions in a user native library, until the function
is called. For more information, see “Non-standard options” on page 145.

Real Time Linux operating system support

Support is now included for SUSE Linux Enterprise Real Time version 11. For
more information about supported hardware and software, including any required
updates or patches, see “Hardware and software prerequisites” on page 23.

jxeinajar

WebSphere Real Time for RT Linux V3 no longer supports the use of jxeinajar. For
reference purposes, earlier information regarding jxeinajar and in particular how to
migrate to admincache can be found in the WebSphere Real Time for RT Linux V2
documentation.

Benefits
The benefits of the real-time environment are that Java applications run with a
greater degree of predictability than with the standard JVM and provide consistent
timing behavior for your Java application. Background activities, such as
compilation and garbage collection, occur at given times and thus remove any
unexpected peaks of background activity when running your application.

You obtain these advantages by extending the JVM with the following functions:
v Metronome real-time garbage collection technology
v Ahead-of-time (AOT) compilation
v Support for the Real-Time Specification for Java (RTSJ)

Chapter 1. Introduction 3

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/preface/changes_70/changes.html
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/topic/com.ibm.rt.doc.20/realtime/admincache_migrating.html
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/topic/com.ibm.rt.doc.20/realtime/admincache_migrating.html

All Java applications can be run in a real-time environment without modification,
benefiting from the Metronome Garbage Collector and its deterministic garbage
collection that occurs at regular intervals. To achieve the maximum benefit from
WebSphere Real Time for RT Linux, you can write applications specifically for the
real-time environment using both real-time threads and no-heap real-time threads.
The approach that you take depends on the timing specification of your
application.

Many real-time Java applications can exploit the low pause times of the
Metronome Garbage Collector and AOT to achieve their goals, retaining the
benefits of Java portability. Applications with tighter requirements must use the
RTSJ facilities of real-time threads and no-heap real-time threads, with scoped and
immortal memory. This approach limits your application to run in a real-time
environment only, losing the advantage of portability to JSE Java. You also have to
develop a more complex programming model.

Accessibility
Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

IBM strives to provide products with usable access for everyone, regardless of age
or ability.

For example, you can operate WebSphere Real Time for RT Linux without a
mouse, by using only the keyboard.

To read about issues that affect accessibility of the underlying IBM SDK for Java
V7, see IBM Information Center. There are no accessibility issues affecting unique
features and capabilities in WebSphere Real Time for RT Linux.

Keyboard navigation

This product uses standard Microsoft Windows navigation keys.

For users who require keyboard navigation, a description of useful keystrokes for
Swing applications can be found here: Swing Key Bindings.

IBM and accessibility

See the IBM Human Ability and Accessibility Center for more information about
the commitment that IBM has to accessibility.

4 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/limitations_7.html
http://www.ibm.com/developerworks/java/jdk/additional/IBM50KeyBindings.html
http://www.ibm.com/able

Chapter 2. Understanding IBM WebSphere Real Time for RT
Linux

This section introduces key components of IBM WebSphere Real Time for RT
Linux.
v “Introduction to the Metronome Garbage Collector”
v “Compilers” on page 7

– “Comparing JIT and AOT compilation” on page 7
v “Support for RTSJ” on page 9

– “Real-time thread scheduling and dispatching” on page 9
– “Memory management” on page 13

Introduction to the Metronome Garbage Collector
The Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for RT Linux.

The key difference between Metronome garbage collection and standard garbage
collection is that Metronome garbage collection occurs in small interruptible steps
but standard garbage collection stops the application while it marks and collects
garbage.

For example:
java -Xrealtime -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60ms. The
remaining 20% of the time might be used for garbage collection, if there is garbage
to be collected. The Metronome Garbage Collector guarantees utilization levels
provided that it has been given sufficient resources. Garbage collection begins
when the amount of free space in the heap falls below a dynamically determined
threshold.

Garbage collection and priorities

The garbage collection thread has to run at a priority higher than the highest
priority thread that generates garbage in the heap; otherwise, it might not run as
specified by the configured utilization. Both regular Java threads and real-time
threads can generate garbage and, therefore, garbage collection must run at a
priority higher than all regular and real-time threads. This prioritization is handled
automatically by the JVM and garbage collection runs at 0.5 priority above the
highest priority of all regular and real-time threads. However, it is important to
ensure that no-heap real-time threads (NHRTs) are not affected by garbage
collection. Run all NHRTs at a higher priority than the highest priority real-time
threads. This means that NHRTs run at a priority higher than garbage collection
and are not delayed.

Table 2 on page 6 shows a typical example of priorities that you can define and the
related garbage collection priorities that follow from your choice

For the comparison of Java priorities and OS priorities, see “Priority mapping and
inheritance” on page 11.

© Copyright IBM Corp. 2003, 2014 5

Table 2. Example of garbage collection and priorities

Threads Priorities (examples)

If the highest priority real-time thread is: 20 (OS priority 43)

Then the Garbage Collector is: 20.5 (OS priority 44)

To ensure that a NHRT runs independently
of the garbage collector, set a higher priority
than the GC:

21 (OS priority 45) or higher.

The Metronome alarm thread is: Priority 46 (OS priority 89)

Note: Even with this configuration, no-heap real-time threads are not completely
unaffected by garbage collection because the metronome alarm thread runs at the
highest priority in the system to ensure that it can wake up regularly and work out
if garbage collection needs to do anything. The work to do that is, of course, tiny
and thus not a major consideration.

Metronome garbage collection and class unloading

The Metronome Garbage Collector does not unload classes in IBM WebSphere Real
Time because it can require a non-deterministic amount of work causing pause
time outliers.

Metronome Garbage Collector threads

The Metronome Garbage Collector consists of two types of threads: a single alarm
thread, and a number of collection (GC) threads. By default, there is one GC
thread. You can set the number of GC threads for the JVM using the -Xgcthreads
option.

You cannot change the number of alarm threads for the JVM.

The Metronome Garbage Collector periodically checks the JVM to see if the heap
memory has sufficient free space. When the amount of free space falls below the
limit, the Metronome Garbage Collector triggers the JVM to start garbage
collection.
Alarm thread

The single alarm thread guarantees to use minimal resources. It “wakes” at
regular intervals and makes these checks:
v The amount of free space in the heap memory
v Whether garbage collection is currently taking place

If insufficient free space is available and no garbage collection is taking
place, the alarm thread triggers the collection threads to start garbage
collection. The alarm thread does nothing until the next scheduled time for
it to check the JVM.

Collection threads
Each collection thread checks Java and real-time threads for heap objects.
They check the memory areas in the following sequence:
1. Scoped memory to identify and mark any live objects in the heap that

are being used by objects from scoped memory.
2. Immortal memory to identify and mark any live objects in the heap

that are being used by objects from immortal memory.
3. Heap memory to identify and mark live objects.

6 IBM WebSphere Real Time for RT Linux: User Guide

When the live objects have been marked, the unmarked objects are
available for collection.

After the garbage collection cycle has completed, the Metronome Garbage Collector
checks the amount of free heap space. If there is still insufficient free heap space,
another garbage collection cycle is started using the same trigger ID. If there is
sufficient free heap space, the trigger ends and the garbage collection threads are
stopped. The alarm thread continues to monitor the free heap space and will
trigger another garbage collection cycle when it is required.

For more information about using the Metronome Garbage Collector, see “Using
the Metronome Garbage Collector” on page 68.

Compilers
IBM WebSphere Real Time for RT Linux supports several models of code
compilation that provide varying levels of code performance and determinism.

The options available for compiling Java code with IBM WebSphere Real Time for
RT Linux include:

Low priority Just-In-Time (JIT) compilation
The default compilation model in WebSphere Real Time for RT Linux uses
a Just-In-Time compiler to compile the important methods of a Java
application while the application runs. In this mode, the JIT compiler
works in a similar way to the operation of the JIT compiler in a
non-real-time JVM. The difference is that the WebSphere Real Time for RT
Linux JIT compiler runs at a lower priority level than any real-time
threads. The lower priority means that the JIT compiler uses system
resources when the application does not need to perform real-time tasks.
The effect is that the JIT compiler does not significantly affect the
performance of real-time tasks.

Ahead-Of-Time (AOT) precompiled code
WebSphere Real Time for RT Linux compiles Java methods to native code
in a precompilation step before running the application. Using AOT
precompiled code provides the highest level of determinism, with good
performance.

Mixed mode, combining AOT precompiled code and low priority JIT
compilation

AOT and JIT compiled code can be used together while the application
runs. This mode of operation can provide very good determinism with
good performance, and very high performance for methods that run
frequently.

Interpreted operation
The interpreter runs a Java application, but does not use code compilation
at all.

For more information about using compiled code, see “Using compiled code with
WebSphere Real Time for RT Linux” on page 40.

Comparing JIT and AOT compilation
Ahead-of-Time (AOT) compilation allows you to compile Java classes and methods
before you run your code. AOT compilation avoids the unpredictable timing effect
the JIT compiler can have on sensitive performance paths. To ensure your code is

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 7

compiled before it executes and for the highest level of deterministic performance,
you can precompile your code into a shared class cache using the AOT compiler.

Note: AOT-compiled code does not typically run as quickly as JIT compiled code.

The Just-In-Time (JIT) compiler runs as a high-priority SCHED_OTHER thread,
running above the priority of standard Java threads, but running below the
priority of real-time threads. Just-in-time compilation, therefore, does not cause
nondeterministic delays in real-time code. As a result, important real-time work is
performed on-time because it won't be preempted by the JIT compiler. Real-time
code might run as interpreted code, however, because the JIT has not had enough
time to compile the hot methods that have queued up. A comparison is shown,
Figure 2.

In general, if your application has a warm-up phase, it is more efficient to run with
the JIT and, if necessary, disable the JIT when the warm-up phase is complete. This
approach allows the JIT compiler to generate code for the environment in which
your application runs.

If the application has no warm-up phase and it is not clear if key paths of
execution are compiled through standard application operation, AOT compilation
works well in this environment.

Thread scheduling
Linux scheduling policies can be used with regular Java threads as well as
real-time Java threads to tune real-time applications.

With WebSphere Real Time for RT Linux, you can run regular Java threads with
the SCHED_RR or SCHED_FIFO scheduling policy. Using the SCHED_RR or

java -Xrealtime

javac -Xrealtime

JIT

Compilation
occurs as
required

during the
execution

of the
application

AOT

Export as jar file

admincache -Xrealtime -populate

Execution

javac

(.java)
Source

(.java)
Source

(.class)
Bytecode

(.class)
Bytecode

Shared class
cache

Figure 2. Comparing JIT compiler and AOT compiler.

8 IBM WebSphere Real Time for RT Linux: User Guide

|

|
|

|
|

SCHED_FIFO policy gives you finer control over your application, which can
improve the real-time performance of Java threads. The JVM detects the priority
and policy of the main thread when Java is started with the SCHED_RR or
SCHED_FIFO policy. The JVM alters the priority and policy mappings accordingly.
For more information about altering regular Java thread priorities and policies, see
“Thread scheduling and dispatching” on page 37

Thread scheduling and dispatching of real-time Java threads is part of the Real
Time Specification for Java (RTSJ). This topic, including the scheduling policies and
priority handling of real-time Java threads can be found in “Support for RTSJ.”

The Linux scheduling policies include:

SCHED_OTHER
The default universal time-sharing scheduling policy that is used by most
threads. These threads must be assigned with a priority of zero.

SCHED_OTHER uses time slicing, which means that each thread runs for a
limited time period, after which the next thread is allowed to run.

SCHED_FIFO
Can be used only with priorities greater than zero. When a SCHED_FIFO
thread becomes available, the thread has priority over any normal
SCHED_OTHER thread.

If a SCHED_FIFO thread that has a higher priority becomes available, this
thread has priority over existing SCHED_FIFO threads with a lower
priority. This thread is then kept at the top of the queue for its priority.

There is no time slicing.

SCHED_RR
Is an enhancement of SCHED_FIFO. The difference is that each thread is
allowed to run only for a limited time period. If the thread exceeds that
time, it is returned to the list for its priority.

For more details on these Linux scheduling policies, see the man page for
sched_setscheduler.

For more information about using Linux scheduling policies with WebSphere Real
Time for RT Linux, see “Thread scheduling and dispatching” on page 37.

Support for RTSJ
WebSphere Real Time for RT Linux implements the Real-Time Specification for
Java (RTSJ).

WebSphere Real Time for RT Linux version 3.0 has been certified as RTSJ 1.0.2
compliant against the RTSJ Technology Compatibility Kit version 3.1.0 FCS, and is
compliant with the Java Compatibility Kit (JCK) for version 7.0.

Real-time thread scheduling and dispatching
Thread scheduling and dispatching of real-time Java threads is part of the Real
Time Specification for Java. The scheduling policy SCHED_FIFO is used to
prioritize real-time Java threads using Linux operating system priorities 11 - 89.

Information about Linux scheduling policies can be found in “Thread scheduling
and dispatching” on page 37.

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 9

|
|
|
|
|
|

|
|
|

|

|
|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|

|
|

Schedulables and their Parameters
There are two main types of real-time schedulable objects: real-time threads and
asynchronous event handlers.

These schedulable objects have the following parameters associated with them:

SchedulingParameters
PriorityParameters schedules real-time schedulable objects by priority.

ReleaseParameters

v PeriodicParameters describes periodic release of real-time schedulable
objects. A periodic real-time thread is one that is released at regular
intervals.

v AperiodicParameters describes the release of real-time schedulable
objects. Aperiodic real-time threads are released at irregular intervals.

MemoryParameters
Describes memory allocation constraints for real-time schedulable objects.

ProcessingGroupParameters
Unsupported in WebSphere Real Time for RT Linux.

The priority scheduler
In WebSphere Real Time for RT Linux, the scheduler is a priority scheduler. As its
name implies, it manages the running of schedulable objects according to their
active priorities.

The scheduler maintains the list of schedulable objects and determines when each
object can be released to run in the CPU. The scheduler must abide by the various
parameters that are associated with each schedulable object. The methods
addToFeasibility, isFeasible, and removeFromFeasibility are provided for this
purpose.

Priorities and policies
Regular Java threads, that is, threads allocated as java.lang.Thread objects, can use
scheduling policies SCHED_OTHER, SCHED_RR or SCHED_FIFO. Real-time
threads, that is, threads allocated as java.lang.RealtimeThread, and asynchronous
event handlers use the SCHED_FIFO scheduling policy.

Regular Java threads use the default scheduling policy of SCHED_OTHER, unless
the JVM is started by a thread with policy SCHED_RR or SCHED_FIFO. Regular
Java threads that use the policy SCHED_OTHER have the operating system thread
priority set to 0. Regular Java threads that use the policy SCHED_RR or
SCHED_FIFO inherit the priority of the thread that starts the JVM. For more
information about priorities and policies for regular Java threads, see “Regular Java
thread priorities and policies” on page 38.

For real-time threads, the SCHED_FIFO policy has no time slicing and supports 99
priorities from 1 (the lowest) to 99 (the highest). This WebSphere Real Time for RT
Linux implementation supports 28 user priorities in the range 11-38 inclusive, so:
javax.realtime.PriorityScheduler().getMinPriority()

returns 11, and:
javax.realtime.PriorityScheduler().getMaxPriority()

returns 38.

10 IBM WebSphere Real Time for RT Linux: User Guide

OS priorities 81 - 89 are used by the IBM JVM for dispatching worker threads.
These threads are all designed to do a small amount of work before going back to
sleep. The threads are as follows:
v The Metronome Garbage Collector alarm thread runs at a priority of 89. This

thread runs regularly and dispatches a GC work unit.
v Two Asynchronous Signal Threads, which process asynchronous signals, one

being a no-heap real-time (NHRT) thread at priority 88 and the other at priority
87.

v Two Timer Threads, which dispatch timer events, one being a no-heap real-time
thread for no-heap timers at priority 85 and the other at priority 83.

v The Async Event Handler Threads, which are dispatched to run asynchronous
event handlers, and, while running an async event handler, are assigned the
priority of that handler. The system starts up with two no-heap real-time
handler threads at priority 85 and 8 others at priority 83.

v The Asynchronous Signal no-heap real-time thread at priority 88 handles
requests for heap dumps, core dumps, and javacore dumps. It temporarily
boosts its priority to 89 while creating dump files.

The Metronome GC Trace thread runs at OS priority 12, and the JIT Sampler
thread, which samples Java methods for compilation, runs at OS priority 13.

The JIT Compilation thread (which is different from the JIT Sampler thread) runs
with the SCHED_OTHER policy at OS priority 0.

The JIT compilation and JIT sampler threads are both disabled if -Xnojit or -Xint
is specified.

The Metronome Garbage Collector and finalizer priority constantly changes (before
each round of collection) to be above the highest priority heap-allocating thread.
You must ensure that the priority of heap-allocating threads is below that of
NoHeapRealtimeThreads.

A heap-allocating thread is any non-NHRT user thread that is not asleep or
blocked on a monitor. A user thread running native code outside the JNI interface
is not considered to be heap-allocating. If a garbage collection is in progress when
a heap-allocating thread wakes up, is no longer blocked on a monitor, or leaves
JNI, it is forced to wait until the garbage collection has finished before it can
continue.

OS priority 81 is reserved for internal JVM threads that are allocating from the
heap. If an internal JVM thread is at OS priority 81, the garbage collector runs at
OS priority 82. When the only heap-allocating user threads are not real-time
threads, the GC priority runs at OS priority 11. Otherwise, the GC runs at a
priority that is one OS priority higher than the highest priority heap-allocating user
thread.

The GC priority is adjusted just before a round of collection.

Priority mapping and inheritance
Each Java priority is mapped to an associated operating system base priority, and
each operating system priority is associated with a scheduling policy. The
WebSphere Real Time for RT Linux Linux operating system scheduling policies are
SCHED_OTHER, SCHED_RR and SCHED_FIFO.

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 11

Real-time Java threads use policy SCHED_FIFO, while regular Java threads use the
policy of the thread that starts the JVM. The default scheduling policy for regular
Java threads is SCHED_OTHER, but you can use a utility like chrt to set policies
SCHED_RR or SCHED_FIFO. For more information about thread priorities and
policies, see “Thread scheduling and dispatching” on page 37.

The following table shows how the Java priorities are mapped to native operating
system priorities. Some Java priorities are reserved for use by the JVM, and some
native priorities that have no corresponding Java priorities are used by the JVM as
well.

Note:

v Priorities 1-10 are used by regular Java threads.
– For policy SCHED_OTHER, Java priorities 1-10 map to operating system

priority 0.
– For policies SCHED_FIFO or SCHED_RR, Java priorities 1-10 inherit the

priority of the thread that starts the JVM.
v Priorities 11 upwards are used by real-time threads and no-heap real-time

threads
v A schedulable object always runs with its active priority. The active priority is

initially the base priority of the schedulable object, but the active priority can be
temporarily raised by priority inheritance. The base priority of a schedulable
object can be changed while it is running.

User base priorities:
Java priorities 1-10: SCHED_OTHER, OS priority 0

Java priority 11: SCHED_FIFO, OS priority 25
Java priority 12: SCHED_FIFO, OS priority 27
Java priority 13: SCHED_FIFO, OS priority 29
Java priority 14: SCHED_FIFO, OS priority 31
Java priority 15: SCHED_FIFO, OS priority 33
Java priority 16: SCHED_FIFO, OS priority 35
Java priority 17: SCHED_FIFO, OS priority 37
Java priority 18: SCHED_FIFO, OS priority 39
Java priority 19: SCHED_FIFO, OS priority 41
Java priority 20: SCHED_FIFO, OS priority 43
Java priority 21: SCHED_FIFO, OS priority 45
Java priority 22: SCHED_FIFO, OS priority 47
Java priority 23: SCHED_FIFO, OS priority 49
Java priority 24: SCHED_FIFO, OS priority 51
Java priority 25: SCHED_FIFO, OS priority 53
Java priority 26: SCHED_FIFO, OS priority 55
Java priority 27: SCHED_FIFO, OS priority 57
Java priority 28: SCHED_FIFO, OS priority 59
Java priority 29: SCHED_FIFO, OS priority 61
Java priority 30: SCHED_FIFO, OS priority 63
Java priority 31: SCHED_FIFO, OS priority 65
Java priority 32: SCHED_FIFO, OS priority 67
Java priority 33: SCHED_FIFO, OS priority 69
Java priority 34: SCHED_FIFO, OS priority 71
Java priority 35: SCHED_FIFO, OS priority 73
Java priority 36: SCHED_FIFO, OS priority 75
Java priority 37: SCHED_FIFO, OS priority 77
Java priority 38: SCHED_FIFO, OS priority 79

Internal base priorities:
Internal Java priority 39: SCHED_FIFO, OS priority 81
Internal Java priority 40: SCHED_FIFO, OS priority 83
Internal Java priority 41: SCHED_FIFO, OS priority 84
Internal Java priority 42: SCHED_FIFO, OS priority 85

12 IBM WebSphere Real Time for RT Linux: User Guide

Internal Java priority 43: SCHED_FIFO, OS priority 86
Internal Java priority 44: SCHED_FIFO, OS priority 87
Internal Java priority 45: SCHED_FIFO, OS priority 88
OS priorities 11, 12, 13
OS priorities even numbers 26, 28, 30, ..., 82
OS priority 89

See also: the "Synchronization" section in http://www.rtsj.org/specjavadoc/
book_index.html.

Priority inheritance:

The active priority of a thread can be temporarily boosted because it holds a lock
required by a higher priority thread. These locks might be internal JVM locks or
user-level monitors associated with synchronized methods or synchronized blocks.
The priority of a regular Java thread, therefore, might temporarily have a real-time
priority until the point at which the thread has released the lock.

One consequence of priority inheritance means that the thread policy of a
SCHED_OTHER thread is temporarily changed to SCHED_FIFO.

For more information about base and active priorities, see the "Synchronization"
section in the RTSJ specification.

Memory management
Garbage collecting memory heaps has always been considered an obstacle to
real-time programming because of the unpredictable behavior introduced by
garbage collection. The Metronome garbage collector in IBM WebSphere Real Time
for RT Linux can provide high deterministic GC performance. At the same time,
the Real-Time Specification for Java (RTSJ) provides several extensions to the
memory model for objects outside the garbage-collected heap, so that a Java
programmer can explicitly manage both short-lived and long-lived objects.

Memory areas

The RTSJ introduces the concept of a memory area that can be used for the
allocation of objects. Some memory areas exist outside the heap and place
restrictions on what the system and garbage collector can do with objects. For
example, objects in some memory areas are never garbage collected but the
Garbage Collector can scan these memory areas for references to any object in the
heap to preserve the integrity of the heap.

Memory management has three basic types:
v Heap memory is the traditional Java heap but is managed by the Metronome

Garbage Collector.
v Scoped memory must be specifically requested by applications and can be used

only by real-time threads, including no-heap real-time threads and no-heap
asynchronous event handlers.

v Immortal memory represents an area of memory containing objects that can be
referenced by any schedulable object, specifically including no-heap real-time
threads and no-heap asynchronous event handlers. It is used by class loading
and static initialization even if the application does not use it.

Immortal or scoped memory can be designated to use physical memory, which
consists of memory regions having specific characteristics such as substantially

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 13

http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc/book_index.html
http://www.rtsj.org/specjavadoc102/book_index.html

faster access. In general, physical memory is not used often and is unlikely to
affect the standard JVM user.

Heap memory

The maximum size is controlled by -Xmx but remember not to set the initial heap
size (-Xms) or set it equal to maximum heap size -Xmx, because, in real time, the
heap never expands from the initial heap size to the maximum heap size. When
you reach maximum heap size with no free space, OutOf MemoryError results. In
general, the real time JVM consumes more heap memory than the traditional JVM
because supporting deterministic collection requires objects to be organized
differently, resulting in higher heap fragmentation. In addition, arrays are broken
into fragments, each of which has a header. It depends on the ratio of large to
small objects and the amount of array usage, but it is likely to find an application
needing 20% more heap space.

The Metronome Garbage Collector is similar to the “mostly concurrent” collector
that exists in the mainstream JVM in that it collects garbage while the application
is running. In a perfect world, the collection cycle completes before the application
runs out of memory, but some applications with very high allocation rates can
allocate faster than the Metronome Garbage Collector can collect. Various detailed
controls affect the collection rate, but there is one control that forces Metronome to
revert to traditional stop-the-world GC before finally throwing OutOf
MemoryError. The runtime parameter is -Xgc:synchronousGCOnOOM and the
counterpart is -Xgc:nosynchronousGCOnOOM. The default is
-Xgc:synchronousGCOnOOM.

Scoped memory

The RTSJ introduces the concept of scoped memory. It can be used by objects that
have a well-defined lifetime. A scope can be entered explicitly, or it can be attached
to a schedulable object (a real-time thread or an asynchronous event handler) that
effectively enters the scope before it runs the run() method of the object. Each
scope has a reference count and when this reaches zero the objects that are resident
in that scope can be closed (finalized) and the memory associated with that scope
is released. Reuse of the scope is blocked until finalization is complete.

Scoped memory can be divided into two types: VTMemory and LTMemory. These
types of scoped memory vary by the time required to allocate objects from the
area. LTMemory guarantees linear time allocation when memory consumption
from the memory area is less then the initial size of the memory area. VTMemory
offers no such guarantee.

Scopes can be nested. When a nested scope is entered, all subsequent allocations
are taken from the memory associated with the new scope. When the nested scope
is completed, the previous scope is restored and subsequent allocations are again
taken from that scope.

Because of the lifetimes of scoped objects, it is necessary to limit the references to
scoped objects, by means of a restricted set of assignment rules. A reference to a
scoped object cannot be assigned to a variable from an outer scope, or to a field of
an object in either the heap or the immortal area. A reference to a scoped object
can be assigned only into the same scope or into an inner scope. The virtual
machine detects incorrect assignment attempts and throws an
IllegalAssignmentError exception when they occur. The flexibility provided in

14 IBM WebSphere Real Time for RT Linux: User Guide

choice of scoped memory types allows the application to use a memory area that
has characteristics that are appropriate to a particular syntactically defined region
of the code.

The size of the area must be specified during construction of the area and a
command-line parameter, -Xgc:scopedMemoryMaximumSize, controls the maximum
value. The default is 8 MB and is adequate for most purposes.

Immortal memory

Immortal memory is a memory resource shared among all schedulable objects and
threads in an application. Objects allocated in immortal memory are always
available to non-heap threads and asynchronous event handlers and are not subject
to delays caused by garbage collection. Objects are freed by the system when the
program terminates.

The size is controlled by -Xgc:immortalMemorySize; for example,
-Xgc:immortalMemorySize=20m sets 20 MB, The default is 16 MB, which is usually
adequate, unless you are doing a lot of class loading. Class loading is the likely
cause of most OutOfMemoryError exceptions.

Estimating memory requirements
How to obtain information required to allocate sufficient memory

A reasonable approach is to identify the memory required to hold the expected
objects, with a sensible safety margin. Analysis of the application helps identify the
number and nature of objects required, although the actual size required for an
object can vary between different systems. Using the SizeEstimator class takes
actual object size into account, providing more portable information.

The SizeEstimator class

The SizeEstimator class provides guidance information about the amount of
memory needed to store an object. The estimate is an indication of the minimum
memory space that should be allocated for the object itself, and does not take into
account memory requirements for any other resources that might be required by
the object, for example during its construction.

For details about this class, see http://www.rtsj.org/specjavadoc/book_index.html

Using memory
A comparison of Java threads, real-time threads, and no-heap real-time threads.

The Real-Time Specification for Java (RTSJ) adds two classes to support real-time
threads: RealtimeThread class and NoHeapRealtimeThread class.
v Both real-time threads and no-heap real-time threads are schedulable objects. As

schedulable objects, they have the following parameters: release, scheduling,
memory, and processing group.

v Real-time threads can access objects in heap memory as well as in scoped and
immortal memory.

v No-heap real-time threads access only scoped and immortal memory areas.
v No-heap real-time threads need a higher priority than other real-time threads. If

their priority is less than other real-time threads, they lose their advantage of
running without interference from the Garbage Collector.

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 15

http://www.rtsj.org/specjavadoc/book_index.html

Note: A no-heap real-time thread with priority higher than other real-time threads
will not be interrupted by garbage collection.

Table 3. Memory access by real-time and no-heap real-time threads

Threads Immortal memory Scoped memory Heap memory

Normal threads

Real-time threads

no-heap real-time
threads

Types of memory area

Immortal memory
Immortal memory is not subject to garbage collection. After space
has been allocated in immortal memory, the space cannot be
reclaimed until the application exits.
v Because of the nature of immortal memory, you might want to

find ways to reuse the memory. One possibility is to create a
pool of reusable objects. Using scoped memory is an alternative.

v Objects in immortal memory cannot reference anything in
scoped memory. If a field of an object in immortal memory is
assigned an object from scoped memory, an
IllegalAssignmentError exception is thrown.

Scoped memory
Scoped memory can be used as the initial memory area of a
schedulable object or can be entered by one. When no longer
referenced, the area is cleared of all objects. Schedulable objects
running in a scoped memory area perform all their object
allocations from that area. When a scoped memory area is unused,
the objects inside it are finalized and the memory is reclaimed,
preparing the scope for reuse. When the scoped memory area is no
longer available to any schedulable objects, the memory is
reclaimed for other uses.

The memory area described by a ScopedMemory instance does not
exist in the Java heap and is not subject to garbage collection. It is
safe to use a ScopedMemory object as the initial memory area
associated with a NoHeapRealtimeThread or to enter the memory
area using the ScopedMemory.enter method inside a
NoHeapRealtimeThread.

Physical memory
Use physical memory when the characteristics of the memory itself
are important; for example, non-pageable or non-volatile.

Linear time allocation scheme (LTMemory)
LTMemory represents a memory area guaranteed by the system to
have linear time allocation when memory consumption from the
memory area is less than the initial size of the memory area. Run
time for allocation is allowed to vary when memory consumption
is between the initial size and the maximum size for the area.
Furthermore, the underlying system is not required to guarantee
that memory between initial and maximum is always available.

16 IBM WebSphere Real Time for RT Linux: User Guide

Variable time allocation scheme (VTMemory)
VTMemory is similar to LTMemory except that the running time of
an allocation from a VTMemory area need not complete in linear
time.

Heap Memory
Objects in heap memory cannot reference anything in scoped
memory. If a field of an object in heap memory is assigned an
object from scoped memory, an IllegalAssignmentError exception is
thrown.

Synchronization and resource sharing
In a real-time system, when three or more threads that are running at different
priorities and are synchronizing with each other, a condition called priority
inversion can occasionally result, in which a higher priority thread is blocked from
running by a lower priority thread for an extended period of time. WebSphere Real
Time for RT Linux uses a scheme called priority inheritance to avoid this
condition.

When a higher priority task is blocked from running by a lower priority task, the
priority of the lower priority task is temporarily boosted to match the higher
priority until the higher priority task is no longer blocked.

Periodic and aperiodic parameters
Real-time threads have a number of release parameters, determining how often a
schedulable object is released. Periodic and aperiodic parameters are examples of
release parameters.

Periodic parameters

This class is for those schedulable objects that are released at regular intervals.

AbsoluteTime
Is expressed in milliseconds and nanoseconds.

RelativeTime
Is the length of time of a given event expressed in milliseconds and
nanoseconds. For example, you can measure the absolute time when an
event starts and finishes. You can then calculate the relative time as the
difference between the two measurements.

Aperiodic parameters

This class is used by those schedulable objects that are released at irregular
intervals. Because a second aperiodic event might occur before the first one has
completed, you can define the length of the queue of outstanding requests.

Asynchronous event handling
Asynchronous event handlers react to events that occur outside a thread; for
example, input from an interface of an application. In real-time systems, these
events must respond within the deadlines that you set for your application.

Asynchronous events can be associated with system interrupts and POSIX signals,
and asynchronous events can be linked to a timer.

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 17

Like real-time threads, asynchronous event handlers have a number of parameters
associated with them. For a list of these parameters, see “Schedulables and their
Parameters” on page 10.

Signal Handlers

The POSIXSignalHandler supports the signals SIGQUIT, SIGTERM, and SIGABRT.
The default behavior for SIGQUIT causes a Javadump to be generated. The
generation of the Javadump does not interfere with the operation of a running
program, apart from CPU time and file reading and writing. The generation of a
Javadump interrupts the program until the Javadump has been completed;
application performance will not be predictable while Javadumps are being
generated.

To suppress all core and Javadump generation on a failure, use -Xdump:none.

To suppress only system dump and Javadump generation on a SIGQUIT signal,
specify -Xdump:java:none -Xdump:java:events=gpf+abort.

The following signals can be attached to asynchronous event handlers (AEHs) by
the POSIXSignalHandler mechanism (signal descriptions as defined in
/usr/include/bits/signum.h):
#define SIGQUIT 3 /* Quit (POSIX). */
#define SIGABRT 6 /* Abort (ANSI). */
#define SIGKILL 9 /* Kill, unblockable (POSIX). */

No other signals are currently supported. All of the signals listed previously are
asynchronous signals, and it is impossible to support attaching to synchronous
signals (such as SIGILL and SIGSEGV) because they indicate a failure of your
application or the JVM code, not an externally generated event.

Note: SIGQUIT by default causes the Java application to generate dumps (for
example, a Javadump) when received by the JVM. Although additionally it is
delivered to any attached AEH, this delivery might cause confusing or undesirable
behavior and you can disable it by using the -Xdump:none:events=user option on
the Java command line.

Required documentation
WebSphere Real Time for RT Linux implements the Real-Time Specification for
Java (RTSJ).

WebSphere Real Time for RT Linux version 2.0 has been certified as RTSJ 1.0.2
compliant against the RTSJ Technology Compatibility Kit version 3.0.13 FCS and is
compliant with the Java Compatibility Kit (JCK) for version 6.0.

Supported facilities

The following facilities are supported:
v Allocation-rate enforcement on heap allocation to limit the rate at which a

schedulable object creates objects in the heap.

Unsupported facilities

The following facilities are not supported:

18 IBM WebSphere Real Time for RT Linux: User Guide

v Priority Ceiling Emulation Protocol. For example, it does not permit
PriorityCeilingEmulation to be used as a monitor control policy.

v Atomic access support, except where required for conformance to the
specification.

v No schedulers other than the base priority scheduler are available to
applications.

v Cost enforcement.

Required documentation for Real-Time Specification for Java

The Required Documentation section of the Real-Time Specification for Java (RTSJ) is
quoted in this section. Any deviations from the standard implementation of RTSJ
are noted.
1. The feasibility testing algorithm is the default.

“If the feasibility testing algorithm is not the default, document the feasibility
testing algorithm.”

2. Only the base priority scheduler is available to applications.

“If schedulers other than the base priority scheduler are available to
applications, document the behavior of the scheduler and its interaction with
each other scheduler as detailed in the Scheduling chapter. Also document the
list of classes that constitute schedulable objects for the scheduler unless that
list is the same as the list of schedulable objects for the base scheduler.”

3. A schedulable object that is preempted by a higher priority schedulable
object will be placed at the front of the queue for its priority.

“A schedulable object that is preempted by a higher-priority schedulable
object is placed in the queue for its active priority, at a position determined by
the implementation. If the preempted schedulable object is not placed at the
front of the appropriate queue the implementation must document the
algorithm used for such placement. Placement at the front of the queue can be
required in a future version of this specification.”

4. Cost enforcement is not supported.

“If the implementation supports cost enforcement, the implementation is
required to document the granularity at which the current CPU consumption
is updated.”

5. Simple sequential mapping is supported.

“The memory mapping implemented by any physical memory type filter must
be documented unless it is a simple sequential mapping of contiguous bytes.”

6. There are no subclasses for the Metronome Garbage Collector supplied with
WebSphere Real Time for RT Linux.

“The implementation must fully document the behavior of any subclasses of
GarbageCollector.”

7. There are no MonitorControl subclasses supplied with WebSphere Real
Time for RT Linux.

“An implementation that provides any MonitorControl subclasses not detailed
in this specification must document their effects, particularly with respect to
priority inversion control and which (if any) schedulers fail to support the
new policy.”

8. A schedulable object holding a monitor required by a higher priority
schedulable object has its priority boosted to the higher priority until such
time as it releases the monitor. If, at that point, the schedulable object is to
be made no longer runnable (that is, there is higher priority work to be

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 19

done) it will be placed at the back of the queue for its original (unboosted)
priority when running on kernels prior to SUSE Linux Enterprise Real Time
10 SP2 update kernel version 2.6.22.19-0.16, and Red Hat Enterprise Linux
5.1 MRG 2.6.24.7-73 Errata 1. Kernels at these levels or later place the
schedulable object at the front of the queue.

“If on losing "boosted" priority because of a priority inversion avoidance
algorithm, the schedulable object is not placed at the front of its new queue,
the implementation must document the queuing behavior.”

9. The base scheduler is the only scheduler provided with WebSphere Real
Time for RT Linux.

“For any available scheduler other than the base scheduler an implementation
must document how, if at all, the semantics of synchronization differ from the
rules defined for the default PriorityInheritance instance. It must supply
documentation for the behavior of the new scheduler with priority inheritance
(and, if it is supported, priority ceiling emulation protocol) equivalent to the
semantics for the base priority scheduler found in the Synchronization
chapter.”

10. The worst case time from the firing of an event to the scheduling of an
associated bound event handler will average 40µs and not exceed 100µs
providing that there are no competing schedulable objects or system activity
of equal or higher priority and providing that garbage collection does not
interfere. If the schedulable object driving the fire method, the AsyncEvent
object or the handler references the heap then the potential influence of
garbage collection is as documented in (�A�). This assumes that the code is
being interpreted and that a single handler (which is bound) is configured
on the event.

“The worst-case response interval between firing an AsyncEvent because of a
bound happening to releasing an associated AsyncEventHandler (assuming no
higher-priority schedulable objects are runnable) must be documented for
some reference architecture.”

11. The worst case interval between firing an
AsynchronouslyInterruptedException at an ATC-enabled thread and the first
delivery of that exception will average 35µs and not exceed 160µs providing
that there are no competing schedulable objects or system activity of equal
or higher priority and providing that garbage collection does not interfere.
ATC-enabled in this case means that the thread is executing in an AI
enabled method in a region that is not ATC-deferred and those conditions
remain true until delivery of the exception. The potential influence of
garbage collection is as documented in (�A�). If the target thread is in native
code then the delay is potentially unbounded. This assumes that the code is
being interpreted.

“The interval between firing an AsynchronouslyInterruptedException at an
ATC-enabled thread and first delivery of that exception (assuming no
higher-priority schedulable objects are runnable) must be documented for
some reference architecture.”

12. Not applicable see response 4.

“If cost enforcement is supported, and the implementation assigns the cost of
running finalizers for objects in scoped memory to any schedulable object
other than the one that caused the scope's reference count to drop to zero by
leaving the scope, the rules for assigning the cost shall be documented.”

13. There are no changes to the standard implementation of RealtimeSecurity.

20 IBM WebSphere Real Time for RT Linux: User Guide

“If the implementation of RealtimeSecurity is more restrictive than the
required implementation, or has runtime configuration options, those features
shall be documented.”

14. The finalizers for objects in a scoped memory area will be run by the last
thread to reference that area, that is, they will be run when the thread
decrements the reference count from one to zero. Any cost associated with
running the finalizers will be assigned to that thread.

“An implementation can run finalizers for objects in scoped memory before
the scope is reentered and before it returns from any call to
getReferenceCount() for that scope. It must, however, document when it runs
those finalizers.”

15. The resolution is not settable.

“For each supported clock, the documentation must specify whether the
resolution is settable, and if it is settable the documentation must indicate the
supported values.”

16. There are no other clocks other than the real-time clock provided with
WebSphere Real Time for RT Linux.

“If an implementation includes any clocks other than the required real-time
clock, their documentation must indicate in what contexts those clocks can be
used.”

Note:

�A� The reference architecture for the tests will be an LS20, 4–way, 2 GHz with 1
MB cache and 4 GB of memory.

�B� Garbage collection can cause a delay at any point in a thread that is associated
with the heap. The collector can operate in one of two basic modes governing the
behavior when heap memory is exhausted. If the collector is set to immediately
throw OutOfMemoryError in these circumstances, the worst case garbage collection
delay will typically be below 1 ms. Currently, in some circumstances, the delay can
be higher; for example, if there are many threads with deeply nested stacks or
large numbers of large-sized scopes. If the collector is set to perform a synchronous
GC before throwing an OutOfMemoryError, the potential collection delay is related
to the number of live objects in the heap and the numbers of objects in other
memory areas. In these circumstances, the delay is considered to be unbounded
because it can be many seconds for typical heap sizes.

Chapter 2. Understanding IBM WebSphere Real Time for RT Linux 21

22 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 3. Planning

Read this section before installing WebSphere Real Time for RT Linux.
v “Migration”
v

v “Hardware and software prerequisites”
v “Considerations” on page 24

Migration
WebSphere Real Time for RT Linux runs in a Linux environment that is modified
for real-time applications. You can use standard Java applications in a real-time
environment. Alternatively, you can modify your applications to exploit the
features of WebSphere Real Time.

System migration

Follow the instructions provided by the Linux support team.

Hardware and software prerequisites
Use this list to check the hardware, operating system, and Java environment that is
supported for WebSphere Real Time for RT Linux.

Hardware

WebSphere Real Time for RT Linux certified hardware configurations are
multiprocessor variants of the following systems:
v IBM BladeCenter® LS20 (Types 8850-76U, 8850-55U, 7971, 7972)
v IBM eServer™ xSeries 326m (Types 7969-65U, 7969-85U, 7984-52U, 7984-6AU)
v IBM BladeCenter LS21 (Type 7971-6AU)
v IBM BladeCenter HS21 XM Dual Quad Core (Type 7995)

To remain certified for WebSphere Real Time for RT Linux, IBM systems with
hyperthreading must not have hyperthreading enabled.

In addition, WebSphere Real Time for RT Linux is supported on hardware that
runs a supported operating system, and that has these characteristics:
v A minimum of 512 MB of physical memory.
v Minimum Intel Pentium 4, AMD Opteron, or Intel Atom Processor.

For systems that are not certified hardware configurations, IBM does not make any
performance statements. Performance considerations for certified hardware
configurations are detailed here: Chapter 7, “Performance,” on page 93

On systems with hyperthreading support, ensure that it is not enabled to avoid
adverse performance effects when using WebSphere Real Time for RT Linux.

© Copyright IBM Corp. 2003, 2014 23

Operating system
v Red Hat Enterprise Messaging, Realtime, Grid (MRG) 1.3 for Red Hat Enterprise

Linux 5 Update 5.
v Red Hat Enterprise MRG 2.2 for Red Hat Enterprise Linux (RHEL) 6 Update 5.

See note.
v SUSE Linux Enterprise Real Time (SLERT) 10.
v SLERT 11 service pack 1, with patch level 2.6.33.18.

Note: In high workload conditions, an intermittent problem is observed when
running applications under IBM WebSphere Real Time V3 for Real Time Linux on
MRG 2.2 with RHEL 6 Update 3. This problem is resolved in RHEL 6 Update 5,
which is the recommended base level. For more information, see
http://www.ibm.com/support/docview.wss?uid=swg21624408.

See “Installing a Real Time Linux environment” on page 27.

Considerations
You must be aware of a number of factors when using WebSphere Real Time for
RT Linux.
v Where possible, do not run more than one real-time JVM on the same system.

The reason is that you would then have multiple garbage collectors. Each JVM
does not know about the memory areas of the other. One effect is that GC cycles
and pause times cannot be coordinated across JVMs, meaning that it is possible
for one JVM to affect adversely the GC performance of another JVM. If you
must use multiple JVMs, ensure that each JVM is bound to a specific subset of
processors by using the taskset command.

v You cannot use the -Xdebug option and the -Xnojit option with code that has
been precompiled by using the Ahead-of-Time compiler. The reason is that
-Xdebug compiles code in a different way from the Ahead-of-Time (AOT)
compiler and is not supported.
To debug your code, use interpreted or JIT-compiled code.

v If you are using the com.sun.tools.javac.Main interface to compile Java source
code that uses the javax.realtime package, you must ensure that
sdk/jre/lib/i386/realtime/jclSC170/realtime.jar is included in the class
path. One common example of this type of compilation is ant compilation.

v The optional JavaComm package can be installed into WebSphere Real Time for
RT Linux and accessed from both the real-time and non-real-time JVM. For more
information about installation and configuration, see http://
publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/
com.ibm.java.lnx.70.doc/user/jcommchapter.html. The real-time JVM in WRT
supports the JavaComm API for use with regular Java threads. However, no
guarantee exists in respect to determinism or real-time performance when
accessing external devices with JavaComm. As such, do not use JavaComm with
no-heap real-time and real-time threads, or when real-time behavior is required.

v The shared caches used by earlier WebSphere Real Time for RT Linux releases to
store precompiled code and classes are not compatible with the caches used by
this release of WebSphere Real Time for RT Linux. You must regenerate the
contents of the earlier caches.

v When using shared class caches, the cache name must not exceed 53 characters.
v The ps command truncates Java thread names.

The ps command is limited to 15 characters. If you set a thread name to more
than 15 characters, the name is truncated by the ps command.

24 IBM WebSphere Real Time for RT Linux: User Guide

|
|

|

|
|
|
|
|

http://www.ibm.com/support/docview.wss?uid=swg21624408
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/jcommchapter.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/jcommchapter.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/jcommchapter.html

v WebSphere Real Time for RT Linux does not support NTLoginModule (NTLM)
authentication.
NTLoginModule (NTLM) is used to help authenticate access to a Windows
service. Authentication by using NTLM is supported on the Windows platform
only. This means that WebSphere Real Time for RT Linux does not support
NTLM authentication.

Chapter 3. Planning 25

26 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 4. Installing WebSphere Real Time for RT Linux

Follow these steps to install the product.
v “Installation files”
v “Installing a Real Time Linux environment”
v “Installing from an InstallAnywhere package” on page 28

– “Completing an attended installation” on page 29
– “Completing an unattended installation” on page 30
– “Known issues and limitations” on page 31

v “Setting the path” on page 32
v “Setting the classpath” on page 33
v “Testing your installation” on page 33
v “Uninstalling WebSphere Real Time for RT Linux” on page 34

Installation files
You require these installation files.

IBM WebSphere Real Time for RT Linux is provided in two types of
InstallAnywhere package.

Installable packages
Installable packages configure your system. For example, the programs
might set environment variables.
v wrt-3.0-0.0-rtlinux-x86_32-sdk.bin

v wrt-3.0-0.0-rtlinux-x86_32-jre.bin

Archive packages
These packages extract the files to your system, but do not perform any
configuration.
v wrt-3.0-0.0-rtlinux-x86_32-sdk.archive.bin

v wrt-3.0-0.0-rtlinux-x86_32-jre.archive.bin

Installing a Real Time Linux environment
Before installing WebSphere Real Time for RT Linux, you must install a 64-bit
version of Real Time Linux.

Red Hat Enterprise Messaging, Realtime, Grid (MRG 1.3) for RHEL 5.5
For more information about installing the real time component of Red Hat
Enterprise Linux 5.5 MRG 1.3, see the installation instructions for RT-Linux
RHEL 5.5 MRG 1.3: https://access.redhat.com/site/documentation/en-US/
Red_Hat_Enterprise_MRG/1.3/html/Realtime_Installation_Guide/
index.html

Red Hat Enterprise MRG 2.2 for RHEL 6.3
For more information about installing the real time component of Red Hat
Enterprise MRG 2.2, see the installation instructions: https://
access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/
2/html/Realtime_Installation_Guide/index.html

© Copyright IBM Corp. 2003, 2014 27

|
|
|
|
|

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Realtime_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Realtime_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/1.3/html/Realtime_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/2/html/Realtime_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/2/html/Realtime_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_MRG/2/html/Realtime_Installation_Guide/index.html

SUSE Linux Enterprise Real Time (SLERT) 10
For more information about installing SLERT 10, see: http://
www.novell.com/products/realtime/eval.html

SUSE Linux Enterprise Real Time (SLERT) 11 service pack 1
You can obtain SLERT 11 from http://download.novell.com/. Service pack
1 is required to work correctly with WebSphere Real Time for RT Linux.
You must also apply patch level 2.6.33.18, which you can download from
Real Time Linux Kernel 5075. For more information about SLERT 11, see:
https://www.suse.com/products/realtime/.

When using a large number of file descriptors to load different instances of classes,
you might see an error message "java.util.zip.ZipException: error in opening
zip file", or some other form of IOException advising that a file could not be
opened. The solution is to increase the provision for file descriptors, using the
ulimit command. To find the current limit for open files, use the command:
ulimit -a

To allow more open files, use the command:
ulimit -n 8196

Installing from an InstallAnywhere package
These packages provide an interactive program that guides you through the
installation options. You can run the program as a graphical user interface, or from
a system console.

Before you begin

Your system must have both the following shared libraries:
v GNU C library V2.3 (glibc)
v libstdc++.so.5

If you do not have the libstdc++.so.5 shared library, you might see a Java core
dump when you install, containing the following errors:
JVMJ9VM011W Unable to load j9dmp24: libstdc++.so.5: cannot open shared object file:
No such file or directory
JVMJ9VM011W Unable to load j9gc24: libstdc++.so.5: cannot open shared object file:
No such file or directory
JVMJ9VM011W Unable to load j9vrb24: libstdc++.so.5: cannot open shared object file:
No such file or directory

If you are installing an installable package, you must have the rpm-build tool
installed on your system, otherwise the installation program cannot register the
new package in the RPM database. To find out if the rpm-build tool is installed,
enter the following command:
rpm -q rpm-build

About this task

The InstallAnywhere packages have a .bin file extension.

There are two types of package:

Installable
Installing these packages also configures your system, for example by
setting environment variables.

28 IBM WebSphere Real Time for RT Linux: User Guide

http://www.novell.com/products/realtime/eval.html
http://www.novell.com/products/realtime/eval.html
http://download.novell.com/
http://download.novell.com/Download?buildid=5QprImtJ9Y0~
https://www.suse.com/products/realtime/

Archive
Installing these packages extracts the files to your system, but does not
perform any configuration.

Procedure
v To install the package in an interactive way, complete an attended installation.
v To install the package without any additional user interaction, complete an

unattended installation. You might choose this option if you want to install
many systems.

v When the installation process is completed, follow the configuration steps in this
section, such as settting path and classpath environment variables.

Results

The product is installed.

Note: Do not interrupt the installation process, for example by pressing Ctrl+C. If
you interrupt the process, you might have to reinstall the product. For more
information, see “Interrupted installation” on page 31.

If you are using an installable package, you might see messages advising that a
problem has been found. Installation of the archive packages does not produce any
messages. Some of the messages that you might see when using an installable
package are shown in the following list:

The installer cannot run on your configuration. It will now quit.
This error message occurs when your user ID is not authorized to run the
installation process. Because it cannot continue, the installation program
ends. To fix the problem, start the installation again but with a user ID that
has root authority.

An RPM package is already installed. Uninstall the package before
proceeding.

This message indicates that an RPM package is already installed. Because it
cannot continue, the installation program ends. To fix the problem,
uninstall the RPM package before proceeding.

Completing an attended installation
Install the product from an InstallAnywhere package, in an interactive way.

Before you begin

Check the following conditions before you begin the installation process:
v If you have previously installed WebSphere Real Time for RT Linux from an

RPM package, you must uninstall this package before proceeding.
v You must have a user ID with root authority.

Procedure
1. Download the installation package file to a temporary directory.
2. Change to the temporary directory.
3. Start the installation process by typing ./package at a shell prompt, where

package is the name of the package that you are installing.
4. Select a language from the list shown in the installer window, then click Next.

The list of available languages is based on the locale setting for your system.

Chapter 4. Installing WebSphere Real Time for RT Linux 29

5. Read the license agreement, using the scroll bar to reach the end of the license
text. To proceed with the installation you must accept the terms of the license
agreement. To accept the terms, select the radio button, then click OK.

Note: You cannot select the radio button to accept the license agreement until
you have read to the end of the license text.

6. You are asked to choose the target directory for the installation. If you do not
want to install into the default directory, click Choose to select an alternative
directory, by using the browser window. When you have chosen the installation
directory, click Next to continue.

7. You are asked to review the choices that you made. To change your selection,
click Previous. If your choices are correct, click Install to proceed with
installation.

8. When the installation process is complete, click Done to finish.

Completing an unattended installation
If you have more than one system to install, and you already know the installation
options that you want to use, you might want to use the unattended installation
process. You install once by using the attended installation process, then use the
resulting response file to complete further installations without any additional user
interaction.

Procedure
1. Create a response file by completing an attended installation. Use one of the

following options:
v Use the GUI and specify that the installation program creates a response file.

The response file is called installer.properties, and is created in the
installation directory.

v Use the command line and append the -r option to the attended installation
command, specifying the full path to the response file. For example:
./package -r /path/installer.properties

Example response file contents:
INSTALLER_UI=silent
USER_INSTALL_DIR=/my_directory

In this example, /my_directory is the target installation directory that you
chose for the installation.

2. Optional: If required, edit the response file to change options.

Note: Archive packages have the following known issue: installations that use
a response file use the default directory even if you change the directory in the
response file. If a previous installation exists in the default directory, it is
overwritten.
If you are creating more than one response file, each with different installation
options, specify a unique name for each response file, in the format
myfile.properties.

3. Optional: Generate a log file. Because you are installing silently, no status
messages are displayed at the end of the installation process. To generate a log
file that contains the status of the installation, complete the following steps:
a. Set the required system properties by using the following command.

export _JAVA_OPTIONS="-Dlax.debug.level=3 -Dlax.debug.all=true"

30 IBM WebSphere Real Time for RT Linux: User Guide

b. Set the following environment variable to send the log output to the
console.
export LAX_DEBUG=1

4. Start an unattended installation by running the package installer with the -i
silent option, and the -f option to specify the response file. For example:
./package -i silent -f /path/installer.properties 1>console.txt 2>&1

./package -i silent -f /path/myfile.properties 1>console.txt 2>&1

You can use a fully qualified path or relative path to the properties file. In these
examples, the string 1>console.txt 2>&1 redirects installation process
information from the stderr and stdout streams to the console.txt log file in
the current directory. Review this log file if you think there was a problem with
the installation.

Note: If your installation directory contains multiple response files, the default
response file, installer.properties is used.

Interrupted installation
If the package installer is unexpectedly stopped during installation, for example if
you press Ctrl+C, the installation is corrupted and you cannot uninstall or reinstall
the product. If you try to uninstall or reinstall you might see the message Fatal
Application Error.

About this task

To solve this problem, delete files and reinstall, as described in the following steps.

Procedure
1. Delete the /var/.com.zerog.registry.xml registry file.
2. Delete the directory containing the installation, if it was created. For example

opt/IBM/javawrt3/.
3. Run the installation program again.

Known issues and limitations
The InstallAnywhere packages have some known issues and limitations.
v If you do not have the libstdc++.so.5 shared library on your system, the

installation fails, producing a Java core dump. For more information, see
“Installing from an InstallAnywhere package” on page 28.

v The installation package GUI does not support the Orca screen-reading program.
You can use the unattended installation mode as an alternative to the GUI.

v If, after installation, you enter ./package to start the program again, the program
displays the following message:
ENTER THE NUMBER OF THE DESIRED CHOICE, OR PRESS <ENTER> TO ACCEPT THE DEFAULT:

If you press Enter to accept the default, the program does not respond. Type a
number, then press Enter.

v If you install the package, then attempt to install again in a different mode, for
example console or silent, you might see the following error message:
Invocation of this Java Application has caused an InvocationTargetException.
This application will now exit

Chapter 4. Installing WebSphere Real Time for RT Linux 31

You should not see this message if you installed by using the GUI mode and are
running the installation program again in console mode. If you see this error,
and are running the program to select the uninstallation option (installable
packages only), use the ./_uninstall/uninstall command instead, as described
in “Uninstalling WebSphere Real Time for RT Linux” on page 34.

Installable packages only
v You cannot upgrade an existing installation by using the InstallAnywhere

packages. To upgrade WebSphere Real Time for RT Linux, you must first
uninstall any previous versions.

v You cannot install two different instances of the same version of WebSphere Real
Time for RT Linux on the same system at the same time, even if you use
different installation directories. For example, you cannot simultaneously
have WebSphere Real Time for RT Linux V3 in directory /previous, and an
WebSphere Real Time for RT Linux service refresh installation in directory
/current. The installation program checks the version number. If the program
finds an existing package with the same version number, you are asked to
uninstall the existing package.

v If the package is installed, and you run the package installer again by using the
GUI, you can select to uninstall the package. This uninstallation option is not
available in unattended mode. If you run the package installer again in
unattended mode, the program runs but does not perform any actions.

Archive packages only
v If you change the installation directory in a response file, and then run an

unattended installation by using that response file, the installation program
ignores the new installation directory and uses the default directory instead. If a
previous installation exists in the default directory, it is overwritten.

Setting the path
When you have set the PATH environment variable, you can run an application or
program by typing its name at a shell prompt.

About this task

Note: If you alter the PATH environment variable as described in this section, you
override any existing Java executables in your path.

You can specify the path to a tool by typing the path before the name of the tool
each time. For example, if the SDK is installed in opt/IBM/javawrt3/, you can
compile a file named myfile.java by typing the following command at a shell
prompt:
opt/IBM/javawrt3/bin/javac myfile.java

To avoid typing the full path each time:
1. Edit the shell startup file in your home directory (usually .bashrc, depending

on your shell) and add the absolute paths to the PATH environment variable; for
example:
export PATH=opt/IBM/javawrt3/bin:opt/IBM/javawrt3/jre/bin:$PATH

2. Log on again or run the updated shell script to activate the new PATH setting.
3. Compile the file with the javac tool. For example, to compile the file myfile.java,

at a shell prompt, enter:
javac -Xrealtime myfile.java

32 IBM WebSphere Real Time for RT Linux: User Guide

The PATH environment variable enables Linux to find executable files, such as
javac, java, and the javadoc tool, from any current directory. To display the
current value of your path, type the following command at a command
prompt:
echo $PATH

What to do next

See “Setting the classpath” to determine whether you need to set your
CLASSPATH environment variable.

Setting the classpath
The CLASSPATH environment variable tells the SDK tools, such as java, javac, and
javadoc tool, where to find the Java class libraries.

About this task

Set the CLASSPATH environment variable explicitly only if one of the following
conditions applies:
v You require a different library or class file, such as one that you develop, and it

is not in the current directory.
v You change the location of the bin and lib directories and they no longer have

the same parent directory.
v You plan to develop or run applications using different runtime environments

on the same system.

To display the current value of your CLASSPATH, enter the following command at a
shell prompt:

echo $CLASSPATH

If you develop and run applications that use different runtime environments,
including other versions that you have installed separately, you must set CLASSPATH
and PATH explicitly for each application. If you run multiple applications
simultaneously and use different runtime environments, each application must run
in its own shell.

If you run only one version of Java at a time, you can use a shell script to switch
between the different runtime environments.

What to do next

See “Testing your installation” to verify that your installation has been successful.

Testing your installation
Use the -version option to check if your installation is successful.

About this task

The Java installation consists of a standard JVM and a real-time JVM.

Procedure

Test your installation by following these steps:

Chapter 4. Installing WebSphere Real Time for RT Linux 33

1. To see version information for the standard JVM, type the following command
at a shell prompt:
java -version

This command returns the following messages if it is successful:
java version "1.7.0"
WebSphere Real Time V3 (build pxi3270rt-20110518_02)
IBM J9 VM (build 2.6, JRE 1.7.0 Linux x86-32 20110516_82445 (JIT enabled,
AOT enabled)
J9VM - R26_head_20110515_0456_B82363
JIT - r11_20110510_19526
GC - R26_head_20110513_1009_B82250
J9CL - 20110516_82445)
JCL - 20110516_01 based on Oracle 7b145

If you intend to use the standard JVM and not the real-time JVM, refer to the
IBM User Guides for Java v7 on Linux.

Note: The version information is correct but the dates might be later than the
ones in this example. The format of the date string is: yyyymmdd followed
possibly by additional information specific to the component.

2. To see version information for the real-time JVM, type the following command
at a shell prompt:
java -Xrealtime -version

This command returns the following messages if it is successful:
java version "1.7.0"
WebSphere Real Time V3 (build pxi3270rt-20110518_02)
IBM J9 VM (build 2.6, JRE 1.7.0 real-time Linux x86-32 20110516_82445 (JIT
enabled, AOT enabled)
J9VM - R26_head_20110515_0456_B82363
JIT - r11_20110510_19526
GC - R26_head_20110513_1009_B82250
J9CL - 20110516_82445)
JCL - 20110516_01 based on Oracle 7b145

Note: The version information is correct but the platform architecture and
dates might differ from the example. The format of the date string is: yyyymmdd
followed possibly by additional information specific to the component.

Uninstalling WebSphere Real Time for RT Linux
The process that you use to remove WebSphere Real Time for RT Linux depends
on what type of installation you used.

Before you begin

For InstallAnywhere installable packages, you must have a user ID with root
authority.

About this task

There is no uninstallation process for InstallAnywhere archive packages. To remove
an archive package from your system, delete the target directory that you chose
when you installed the package. For InstallAnywhere installable packages, you
uninstall the product by using a command, or by running the installation program
again, as described in the following steps.

34 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/index.jsp

Procedure
v Optional: Uninstall manually by using the uninstall command.

1. Change to the directory that contains the installation. For example:
cd /opt/IBM/javawrt3

2. Start the uninstallation process by entering the following command:
./_uninstall/uninstall

v Optional: If you cannot locate the uninstall program easily, as an alternative you
can run another attended installation. The installation program detects that the
product is already installed, then gives you the opportunity to uninstall the
previous installation.

Chapter 4. Installing WebSphere Real Time for RT Linux 35

36 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 5. Running IBM WebSphere Real Time for RT Linux
applications

Important information to assist you when running real time applications.
v “Thread scheduling and dispatching”
v “Using compiled code with WebSphere Real Time for RT Linux” on page 40
v “Using no-heap real-time threads” on page 58
v “Class data sharing between JVMs” on page 66
v “Using the Metronome Garbage Collector” on page 68

Thread scheduling and dispatching
The Linux operating system supports various scheduling policies. The default
universal time sharing scheduling policy is SCHED_OTHER, which is used by
most threads. SCHED_RR and SCHED_FIFO can be used by threads in real-time
applications. .

The kernel decides which is the next runnable thread to be run by the processor.
The kernel maintains a list of runnable threads. It looks for the thread with the
highest priority and selects that thread as the next thread to be run.

Thread priorities and policies can be listed using the following command:
ps -emo pid,ppid,policy,tid,comm,rtprio,cputime

where policy:
v TS is SCHED_OTHER
v RR is SCHED_RR
v FF is SCHED_FIFO
v - has no policy reported

The output looks like this example:
PID PPID POL TID COMMAND RTPRIO TIME

18314 30285 - - java - 00:01:40
- - RR 18314 - 6 00:00:00
- - RR 18315 - 6 00:01:40
- - FF 18318 - 88 00:00:00
- - RR 18323 - 6 00:00:00
- - FF 18324 - 13 00:00:00
- - RR 18325 - 6 00:00:00
- - RR 18326 - 6 00:00:00
- - FF 18327 - 11 00:00:00
- - FF 18328 - 89 00:00:00

This output shows the Java process, the scheduling policy in force, the main thread
with priority “-” (other), and some real-time threads with priorities from 11 to 89.

To query the current scheduling policy, use sched_getscheduler, or the ps
command shown in the example.

For more information about processes, see “General debugging techniques” on
page 98.

© Copyright IBM Corp. 2003, 2014 37

|

Regular Java thread priorities and policies
Regular Java threads, that is, threads allocated as java.lang.Thread objects, use the
default scheduling policy of SCHED_OTHER. From WebSphere Real Time for RT
Linux V3 service refresh 1, you can run regular Java threads with the SCHED_RR
or SCHED_FIFO scheduling policy.

By default, Java threads are run using the default SCHED_OTHER policy. This
policy maps Java threads to the operating system priority 0.

Using the SCHED_RR or SCHED_FIFO policy gives you finer control over your
application, which can improve the real-time performance of Java threads. The
JVM detects the priority and policy of the main thread when Java is started with
the SCHED_RR or SCHED_FIFO policy. The JVM alters the priority and policy
mappings accordingly. All Java threads are run at the same operating system
priority as the main thread. Although SCHED_RR or SCHED_FIFO can be
assigned priorities 1 - 99, the usable SCHED_RR or SCHED_FIFO priorities for
WebSphere Real Time for RT Linux V3 are priorities 1 - 10. If the priority is set
higher than 10, the priority of the main thread is lowered to 10 and the mapping
applied based on the value of 10.

One way to alter the real-time scheduling property of a process on the command
line is to use the command chrt. In the following example, the priority of the main
Java thread is set to use the SCHED_FIFO scheduling policy, with an operating
system priority of 6.
chrt -f 6 java

You might need to configure your system to allow priorities to be changed. See
“Configuring the system to allow priority changes” on page 39 for more
information.

Table 4. Java and operating system priorities

Java priority
Java priority value for
thread Operating system priority

1 MIN_PRIORITY 6

2 6

3 6

4 6

5 NORM_PRIORITY (default) 6

6 6

7 6

8 6

9 6

10 MAX_PRIORITY 6

All threads associated with the main Java thread are run at the same operating
system priority. The metronome alarm thread, and other threads internal to the
JVM with precise real-time timing requirements, might run at a priority higher
than the priorities used by regular Java threads.

If you run the command chrt -f 11 java, the result is the same as running chrt
-f 10 java. This is because you cannot apply a priority above 10 to the priority
mapping used by JVM threads, although the thread that launches the JVM and
waits for JVM termination remains at priority 11.

38 IBM WebSphere Real Time for RT Linux: User Guide

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

||

|
|
||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|
|
|

|
|
|
|

For more information about the chrt command, see http://
publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/
realtime/liaairtchrt.htm.

Configuring the system to allow priority changes
By default, non-root users on Linux cannot raise the priority of a thread or process.
You can change the system configuration to allow priority changes using the
pam_limits module of the Pluggable Authentication Modules (PAM) for Linux.

If you cannot change the priority of a thread or process using the chrt utility, you
typically see the following message:
sched_setscheduler: Operation not permitted

On recent Linux kernels, you can change the configuration of the system to allow
priority changes using the pam_limits module. This module allows you to
configure the limits on system resources in the limits configuration file. The default
file is /etc/security/limits.conf.

An entry in the /etc/security/limits.conf file has the following form:
<domain> <type> <item> <value>

where:

<domain> is either:
- a user name on the system that can alter limits on a resource.

- a group name, with the syntax @group, whose members can alter limits
on a resource.

- a wildcard "*", which indicates that any user or group can alter limits on
a resource.

<type> is either:
- hard, where hard limits are enforced by the kernel.

- soft, where soft limits apply, which can be altered within the range
specified by the hard limits.

- a dash "-", which indicates hard and soft limits.

<item> is:
- a resource. Use rtprio for real-time priorities.

<value> is:
- a limit. Use a value in the range 1 - 100 to indicate the maximum limit
for real-time priority setting.

For example,
* - rtprio 100

allows all users to change the priority of real-time processes, using chrt or other
mechanisms.

By default, the root user can increase real-time priorities without limits. To apply a
limit to root, the root user must be explicitly specified. Group and wildcard limits
in the configuration file do not apply to the root user.

If you specify individual user limits in the file, these limits have priority over
group limits.

Chapter 5. Running applications 39

|
|
|

|
|
|
|

|
|

|

|
|
|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|
|
|

|

|

|
|

|
|
|

|
|

http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=/liaai/realtime/liaairtchrt.htm

Changes to limits.conf do not take effect immediately. You must restart the
affected services or reboot the system for a configuration change to take effect.

To enable priority changes on a real-time Linux system you can add a user to the
realtime group, shown in the limits.conf file.

Launching secondary processes
The java.lang.Runtime.exec methods in the Java virtual machine (JVM) API give
your Java application the ability to execute a command in a separate process.

From that method call, a new java.lang.Process object is created. The object can be
used to control the new process, or to obtain information about it.

Several threads are created by the exec methods for this purpose. In IBM
WebSphere Real Time for RT Linux, modifications of the procedure enable more
deterministic behavior in a real-time environment.

The Runtime.exec call creates a “reaper” thread for each forked subprocess. The
reaper thread is the only thread that waits for the subprocess to terminate. When
the subprocess terminates, the reaper thread records the subprocess exit status. The
reaper thread spawns the new process, and gives it the same scheduling
parameters as the thread that originally called Runtime.exec.

If the spawned process is another WebSphere Real Time for RT Linux JVM, and the
Runtime.exec method was called by another method running with a Linux
real-time policy and priority, then the main thread of the new virtual machine
maps its policy and priority to the same Linux real-time policy and priority. This
Java thread priority is between 1 and 10.

The reaper thread also creates two new threads that listen to the stdout and
stderr streams of the new process. These new threads are regular Java threads, not
real-time Java threads. The stdout and stderr data is saved into buffers used by
these threads. The buffers persist beyond the lifetime of the spawned process. This
persistence allows the resources held by the spawned process to be cleared
immediately when the process terminates.

If you want the stdout and stderr reader threads to run at a Linux real-time
priority, launch the original JVM owning these threads with a Linux SCHED_FIFO
or SCHED_RR policy and priority. The effect is to map all regular threads to a
real-time policy and priority as high as 10 in the Linux operating system.

Real-time Java thread priorities and policies
Real-time threads, that is, threads allocated as java.realtime.RealtimeThread, and
asynchronous event handlers use the SCHED_FIFO scheduling policy.

Thread scheduling and dispatching of real-time Java threads is part of the Real
Time Specification for Java (RTSJ). This topic, including the scheduling policies and
priority handling of real-time Java threads is discussed in the section “Support for
RTSJ” on page 9.

Using compiled code with WebSphere Real Time for RT Linux
IBM WebSphere Real Time for RT Linux supports several models of code
compilation, providing varying levels of code performance and determinism.

40 IBM WebSphere Real Time for RT Linux: User Guide

|
|

|
|

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

Interpreted operation
This is the simplest code compilation model. The interpreter runs a Java
application, but does not use code compilation at all. The interpreter
exhibits good determinism, but provides very low performance, therefore
avoid using this mode of operation for production systems.

To use interpreted operation, specify the -Xint option on the Java
command line.

Low priority Just-In-Time (JIT) compilation
The default compilation model in WebSphere Real Time for RT Linux uses
a Just-In-Time compiler to compile the important methods of a Java
application while the application runs. In this mode, the JIT compiler
works in a similar way to the operation of the JIT compiler in a
non-real-time JVM. The difference is that the WebSphere Real Time for RT
Linux JIT compiler runs at a lower priority level than any real-time
threads. The lower priority means that the JIT compiler uses system
resources when the application does not need to perform real-time tasks.
The effect is that the JIT compiler does not significantly affect the
performance of real-time tasks.

The JIT compiler uses two threads for compilation-related activities: the
compilation thread, and the sampler thread. These threads run at lower
priority than real-time tasks. The compilation thread runs in an
asynchronous fashion to the application. This means that an application
thread does not wait for the compilation thread to finish compiling a
method at any time. The sampler thread periodically sends an
asynchronous message to the application threads to identify the currently
running method on each thread. Processing the message takes little time on
the application thread. No messages are sent if the sampling thread cannot
run because of higher priority real-time tasks. Using the JIT compiler has a
small effect on determinism, but this compilation mode provides the best
performance for many users.

To run an application with the JIT at low priority, see “Enabling the JIT”
on page 57.

Ahead-Of-Time (AOT) precompiled code
WebSphere Real Time for RT Linux compiles Java methods to native code
in a precompilation step before running the application. Prior to
WebSphere Real Time for RT Linux V2, the precompilation step used the
jxeinajar tool to compile methods using an Ahead-Of-Time compiler, and
stored the results in special Java executable files. These files might be
collected into bound jar files. When running an application, bound jar files
are added to the application class path so that the JVM can load AOT code
when the classes for methods were loaded from the JXE. Using this
approach, the JIT compiler is made completely unavailable by specifying
the -Xnojit option on the command-line. The application can use any
precompiled AOT code that has been created, and the interpreter for other
methods. This mode of operation provides high determinism because the
JIT compiler is not present, so there are no sampling thread or context
switch performance reductions. The difficulty of compiling Java code
ahead of time, while conforming with the Java specification, means that
AOT compiled code typically performs slower than JIT compiled code,
although it is typically much faster than interpreting.

WebSphere Real Time for RT Linux V2 and subsequent versions stores
AOT code in a shared class cache rather than in JXE files, using the shared
classes technology provided in the IBM Java 6 JVMs. The admincache tool

Chapter 5. Running applications 41

lets you query the contents of a cache, list all existing caches, and populate
a cache with classes and AOT code. The advantages of storing AOT
compiled code are that the application jar files are not modified, and no
class path changes are needed when running the application.

A shared class cache has a practical size limit, based on the available
virtual address space. This means that AOT compilation for all jar files is
not practical. Selective AOT compilation must be performed.

When an application runs with AOT code in a shared class cache, the AOT
code for methods of a class loads automatically when the class loads into
the JVM. The additional cost in loading a class to install AOT code for its
methods makes it important to preload as many classes as possible before
the performance critical parts of the application run.

Using AOT precompiled code provides the highest level of determinism,
with good performance. AOT code can be used when your application
runs by specifying the -Xshareclasses and -Xaot options. The -Xaot option
is on by default.

To store and use AOT code with a shared class cache using the admincache
tool, see “Using the admincache tool” on page 43. Information regarding
migration from jxeinajar to admincache can be found in the WebSphere
Real Time for RT Linux V2 documentation.

For an example of running an application with AOT compiled code, see
“Running the sample application while using AOT” on page 87.

Mixed mode, combining AOT precompiled code and low priority JIT
compilation

AOT and JIT compiled code can be used together while the application
runs. This mode of operation can provide very good determinism with
good performance, and very high performance for methods that run
frequently. The main benefit of this mode is that AOT precompilation is
used to ensure that the most important parts of your application never run
in the interpreter, which is typically far slower than AOT or JIT compiled
code. You do not need to precompile every method because the JIT
compiler can identify dynamically any interpreted methods that run
frequently, without disturbing the application performance significantly.
Mixed mode is the default mode when the -Xshareclasses option is added
to the command line.

To run your application with mixed AOT and JIT compilation, see
“Running the sample application while using AOT” on page 87

Managing compilation explicitly
In compilation modes with the JIT compiler enabled, the
java.lang.Compiler API can be used to control JIT compiler operation
explicitly. The JIT compiler compiles methods of the class passed using the
compileClass() method. compileClass() is synchronous, therefore it does not
return until the supplied methods have been compiled. An application
might use compileClass() in an initialization phase, by iterating over the
classes used by the main phase of the application run time. When the
initialization phase finishes, call the Compiler.disable() method to disable
the compilation and sampling threads entirely. The main difficulty with
this technique is the problem of managing the list of classes to load and
compile in the application initialization phase, especially during
application development.

42 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/realtime/v2r0/topic/com.ibm.rt.doc.20/realtime/admincache_migrating.html
http://publib.boulder.ibm.com/infocenter/realtime/v2r0/topic/com.ibm.rt.doc.20/realtime/admincache_migrating.html

For more information about managing compilation in an application, see
IBM Real-Time Class Analysis Tool for Java.

Overview of Compilation Command-Line Options

You can run an application with JIT enabled using the -Xjit option or without the
JIT using the -Xnojit option. -Xjit is the default mode.

You can run an application with AOT code enabled using the -Xshareclasses
-Xaot options. Disable AOT code by using the -Xnoaot option. -Xaot is the default
option, but has no effect unless the -Xshareclasses option is also specified,
because AOT code must be stored in a shared class cache.

Using the AOT compiler
Use these steps to precompile your Java code. This procedure describes the use of
the -Xrealtime option in a javac command, the admincache tool, and the
-Xrealtime and -Xnojit options with the java command.

About this task

Using the ahead-of-time compiler means that compilation is separate from the run
time of the application. Also, you can compile more methods at the same time
rather than just the frequently used methods. You can compile everything in an
application or just individual classes, as shown in the following steps.

Note: When using shared class caches, the name of the cache must not exceed 53
characters.

Procedure
1. From a shell prompt, enter:

javac -Xrealtime source

This command creates the Java bytecode from your source for use in the
real-time environment. See Figure 2 on page 8.

2. Package the class files generated into a JAR file. For example, to create test.jar:
jar cvf test.jar source

3. From a shell prompt, enter:
admincache -Xrealtime -populate -aot test.jar -cacheName myCache -cp test.jar

This command pre-compiles the test.jar file and writes the output to the output
directory ./aot.

4. To run the file using the AOT code in the shared class cache, in a shell prompt
enter:
java -Xrealtime -Xshareclasses:name=myCache -cp test.jar -Xnojit MyTestClass

To run the file using the AOT code in the shared class cache, recompile
frequently called methods. Then, run the following command without creating
a new JAR file:
java -Xrealtime -Xshareclasses:name=myCache -cp test.jar MyTestClass

These commands use the same JAR files that you precompiled in step 3.

Using the admincache tool
The admincache tool is used to manage the shared class caches on a workstation.

Chapter 5. Running applications 43

http://www.alphaworks.ibm.com/tech/ratcat

In the IBM WebSphere Real Time for RT Linux product, the admincache tool can
be used to create a shared class cache containing classes or classes and AOT
compiled code. After caches have been created, this tool can also be used to inspect
existing caches.

The shared class cache is used to reduce the memory footprint in multi-JVM
scenarios, and to accelerate application start-up.

Shared class caches can be used by WebSphere Real Time for RT Linux in both
non-real-time and real-time modes, but the cache format, creation and population
techniques differ. Real-time mode caches are not compatible with non-real-time
mode caches. In non-real-time mode, caches are created and populated in the same
way as the standard JVM. This means the cache is created and populated by the
JVM as it runs an application, transparently to the user. In real-time mode, using
the -Xrealtime option, shared class caches must be created and prepopulated by
admincache, using the -populate option. Applications running in real-time mode
might read content from the prepopulated cache, but cannot modify its contents.

Shared class caches created in the real-time mode can only be used when running
an application in real-time mode. Shared class caches created in the non-real-time
mode can only be used when running an application in non-real-time mode. This
also applies to the admincache tool. To manage caches created by the JVM in
real-time mode, use admincache with the -Xrealtime option. To manage caches
created by the JVM in non-real-time mode, do not use the -Xrealtime option. To
connect to a shared class cache at run time, add the -Xshareclasses option to the
command-line.

Multiple shared class caches can be created on a workstation, each with a specific
name and in a specific directory. When a new cache is created, the name of the
cache can be specified by the -cacheName <name> option. The cache name must not
exceed 53 characters.

By default, shared class caches are created in the /tmp/javasharedresources
directory, but this location can be overridden by specifying the -cacheDir
<directory> option. The internal format for a shared class caches depends on the
characteristics of the workstation where it is created. This means shared class
caches cannot be created on networked drives as a safety measure. Another reason
for this restriction is the slower and unpredictable performance effects when
accessing a shared class cache from a networked file system.

If no cache name is specified on the command line, the default is
sharedcc_<user_login>

For more information about shared cache operation in the non-real-time mode, see
“Class data sharing between JVMs for non-Real-Time mode” on page 93.

Note: From IBM WebSphere Real Time for RT Linux V2 SR1 and later, you must
use the -classpath option with the -populate option.

Creating a Real-Time Shared Class Cache:

The admincache tool is used to create shared class caches that are accessible in
real-time mode.

Note: You must be aware of the security considerations when creating shared class
cache files with default settings. See “Security considerations for the shared class

44 IBM WebSphere Real Time for RT Linux: User Guide

cache” on page 95 for more information about security considerations for the
shared class cache and information about changing the default permissions.

The admincache tool -populate option is used to create shared class caches. The
option is used in combination with a list of .jar files, or a directory, or a directory
tree to search for .jar files. For each .jar file specified or found, admincache stores
each class in the .jar file in the shared class cache. The class methods are also AOT
compiled and stored in the shared class cache, unless you specify the -noaot
option.

You must use the -classpath option with -populate or you will see the following
error message:

-populate action requires -classpath <class path> option to be specified

The admincache -help option lists the suboptions that can be used to control how
admincache populates the cache.

$ admincache -Xrealtime -help
Usage: admincache [option]*

where [option] can be:
-help | -? Action: show this help
-Xrealtime use in real time environment
-cacheName <name> specify name of shared cache (Use %%u to substitute username)
-cacheDir <dir> set the location of the JVM cache files
-listAllCaches Action: list all existing shared class caches
-printStats Action: print cache statistics
-printAllStats Action: print more verbose cache statistics
-destroy Action: destroy the named (or default) cache
-destroyAll Action: destroy all caches
-populate Action: Create a new cache and populate it

-searchPath <path> specify the directory in which to find files if no files specified
(default is .)
only one -searchPath option can be specified

-classpath <class path> specify the classpath that will be used at runtime to access this cache
the -classpath option is required

-[no]recurse [do not] recurse into subdirectories to find files to convert
(default do not recurse)

-[no]grow if specified cache exists already, [do not] add to it (default no grow)
if -grow is not selected, specified cache will be removed if present

-verbose print out progress messages for each jar
-noisy print out progress messages for each class in each jar
-quiet suppress all output
-[no]aot also perform AOT compilation on methods after storing classes into cache
-aotFilter <signature> only matching methods will be AOT compiled and stored into cache

e.g. -aotFilter {mypackage/myclass.mymethod(I)I} compiles only mymethod(I)I
e.g. -aotFilter {mypackage/myclass.mymethod*} compiles any mymethod
e.g. -aotFilter {mypackage/myclass.*} compiles all methods from myclass

-aotFilterFile <file> only methods matching those in file will be AOT compiled and stored into
cache (input file must have been created by -Xjit:verbose={precompile},
vlog=<file>)

-printvmargs print VM arguments needed to access populated cache at runtime
[jar file]*.[jar][zip] explicit list of jar files to populate into cache

if no files are specified, all files.[jar][zip] in the searchPath
will be converted.

Exactly one action option must be specified

Note: When using shared class caches, the name specified by the -cacheName
option must not exceed 53 characters.

A list of .jar files can be specified, in which case only the classes from those .jar
files will be added to the shared class cache. If you do not specify a list of .jar files,
use the -searchPath <path> option to specify a directory tree to search for .jar or

Chapter 5. Running applications 45

.zip files. The -recurse option is the default, and means that the directory tree is
searched recursively for .jar or .zip files. The -norecurse options means that only
the specified directory is searched. Specify the -classpath <class path> option so
that admincache can find all the classes needed to process the specified .jar files.
The classes are loaded into the JVM as part of populating the shared class cache,
so it is important that all referenced classes and superclasses can be found by
admincache when it tries to load a class from a .jar file.

The -grow option specifies that a new .jar file is added to the existing cache
contents, if there is an existing shared class cache of the same name in the cache
directory. The -nogrow option specifies that a new .jar file replaces the old cache
contents, if there is an existing shared class cache of the same name in the old
cache directory. The -grow option is used to add new .jar files that do not currently
exist in the shared class cache, not to replace classes that have changed. Do not use
the -grow option to update classes that are already in the cache but have changed
because of application modifications. To update existing classes, create a
completely new cache with the current class contents. If you do not update your
shared class cache when you change a class, your application will run properly
with the new class contents, but will not be taking advantage of the shared class
cache. This is because the changed class will be loaded from disk rather than from
the shared class cache. Loading the class from disk means that AOT compiled code
cannot be used for that class. Regenerate your shared class cache when you change
a class.

Use the -quiet, -verbose, and -noisy options to control the level of detail
provided by admincache.

To specify Ahead-Of-Time (AOT) precompilation for the methods in the classes
populating the shared class cache, use the -aot option. To prevent AOT
precompilation and only store classes into the shared class cache, use the -noaot
option. The -aot option is the default setting.

To precompile some methods selectively, use the -aotFilter <signature> or
-aotFilterFile <file> options. The <signature> is a simplified regular expression
for a method signature, enclosed in curly braces, where '*' can replace any
sequence of characters. You might need to enclose <signature> in single quotation
marks so that the shell does not interpret any of the characters in the method
signature.

Table 5 shows some examples of the <signature> option.

Table 5. Examples of the <signature> option

Signature Meaning

-aotFilter ’{java/lang/*}’ AOT compiles methods in the java/lang
package.

-aotFilter ’{*.sample*}’ AOT compiles methods beginning with
"sample".

-aotFilter ’{mypackage/
myclass.mymethod(I)I}’

AOT compiles the method with this exact
signature.

The -aotFilterFile <file> option uses the contents of <file> to select the methods
for AOT compilation. No other methods are AOT compiled. The contents of <file>
are generated during an earlier run of the application using the

46 IBM WebSphere Real Time for RT Linux: User Guide

-Xjit:verbose={precompile},vlog=<file> option. The verbose output stored in
<file> uses an internal format. This format is required by the -aotFilterFile
option.

Note: The -vlog=<file> option does not directly generate a file called "file". A date
and process ID string is appended to "file" when the verbose output is generated.
By specifying the option -Xjit:verbose={precompile},vlog=my_file, the generated
file name is similar to my_file.<date>.<#>.<process id> The extra fields make it
easier to generate individual verbose log files in multiple-JVM scenarios where it
can be difficult to supply command-line options to one particular JVM or to use
different -Xjit command-line options with different JVMs. In a single JVM
scenario, these numbers are appended to the file name supplied on the
command-line.

A generated file can be used with the -aotFilterFile option, without requiring
any editing. Multiple verbose log files generated by several application runs using
the -Xjit:verbose={precompile},vlog=<file> option can be concatenated and
supplied to admincache using the -aotFilterFile option.

The -printvmargs option helps ensure that the correct arguments are supplied on
the command line when the application runs.
$ admincache -Xrealtime -classpath myapp.jar -cacheDir myCacheDir -cacheName
myCache -populate myapp.jar -printvmargs

admincache 1.02
Converting files
Processing classes in /team/triage/180724/bin/myapp.jar into shared class cache
No errors while processing jar file /team/triage/180724/bin/myapp.jar

Processing complete

VM args needed at runtime: -Xshareclasses:name=myCache,cacheDir=/tmp/peter
-classpath myapp.jar -Xaot

In this example, the final line of output shows the options that should be added to
the command line when running the application, so that the classes and AOT
methods stored in the shared class cache are used. To use the options from this
example, enter the command:
java -Xshareclasses:name=myCache,cacheDir=myCacheDir -classpath myapp.jar -Xaot
myMainClass <application arguments>

Managing Shared Class Caches with admincache:

The admincache tool includes several utilities to manage the shared class caches on
your system.

The admincache tool provides utilities to help with several activities.
v Listing the shared class caches present in a cache.
v Providing details about the contents of a shared class cache.
v Removing some or all of the caches in a specific cache directory.

Listing Available Shared Class Caches:

The admincache tool provides a list of shared class caches present in a cache.

To obtain a list of all shared class caches present in a cache, use the
-listAllCaches option and specify the cache directory using the -cacheDir option.

Chapter 5. Running applications 47

$ admincache -Xrealtime -listAllCaches

admincache 1.02

Listing all caches in cacheDir /tmp/javasharedresources/

Cache name level persistent last detach time

Compatible shared caches
sharedcc_username Java6 32-bit yes Thu Oct 16 17:02:39 2008
rtCache Java6 32-bit yes Thu Oct 16 17:03:12 2008

Incompatible shared caches
nonrtCache Java6 32-bit yes Thu Oct 16 17:17:32 2008

In this example, there are two compatible shared class caches in the default cache
directory:
v The default named cache for a user with the login username

v Another cache called rtCache

The example also shows an incompatible cache called nonrtCache. The nonrtCache
was created by the JVM while executing in the non-real-time mode. This means it
cannot be accessed using the -Xrealtime option.

The real-time mode JVM can see caches created in non-real-time mode. The
non-real-time mode JVM cannot see caches created in real-time mode.
$ admincache -listAllCaches
J9 Java(TM) admincache 1.0
Licensed Materials - Property of IBM

(c) Copyright IBM Corp. 1991, 2008 All Rights Reserved
IBM is a registered trademark of IBM Corp.
Java and all Java-based marks and logos are trademarks or registered
trademarks of Oracle Corporation

Listing all caches in cacheDir /tmp/javasharedresources/

Cache name level persistent last detach time

Compatible shared caches
nonrtCache Java6 32-bit yes Thu Oct 16 17:17:32 2008

In this example, nonrtCache is listed, and it is shown as compatible because
-Xrealtime is not specified.

Inspecting Contents of Shared Class Caches:

The admincache tool describes the contents of a shared class cache.

You can use the admincache tool -printStats option to obtain an overview
describing the main contents of a shared class cache. For information about a
specific cache, in a specific cache directory, use the -cacheName and -cacheDir
options. The following example gives information about the nonrtCache cache in
the default cache directory.
$ admincache -cacheName nonrtCache -printStats

admincache 1.02

Current statistics for cache "nonrtCache":

48 IBM WebSphere Real Time for RT Linux: User Guide

base address = 0xD5445000
end address = 0xD6437000
allocation pointer = 0xD5529FA8

cache size = 16776852
free bytes = 14070360
ROMClass bytes = 1166004
AOT bytes = 1437412
Data bytes = 57440
Metadata bytes = 45636
Metadata % used = 1%

ROMClasses = 372
AOT Methods = 981
Classpaths = 1
URLs = 0
Tokens = 0
Stale classes = 0
% Stale classes = 0%

Cache is 16% full

Note: When using shared class caches, the name of the cache must not exceed 53
characters.

There are several pieces of useful information about this cache:
v The size of the cache, shown as cache size = 16776852.
v The space available in the cache, shown as free bytes = 14070360. You can

calculate that the cache is approximately 16% full.
v The number of classes stored in the cache, shown as # ROMClasses = 372.
v The number of AOT methods stored in the cache, shown as # AOT Methods =

981.

For more details about the information provided by the -printStats option in the
admincache tool, see printStats utility.

The -printAllStats option provides a more detailed description of the contents of
a shared class cache. The information includes the list of classes and AOT methods
stored in the cache. Output from the -printAllStats option is verbose.

Classes contained in the cache are indicated by lines similar to:
1: 0xD643B788 ROMCLASS: java/lang/ClassLoader at 0xD5469B88.

This line indicates that the class java/lang/ClassLoader is contained in the cache.
The addresses are internal to the shared class cache, and are rarely useful except
for diagnostic purposes.

AOT methods contained in the cache are indicated by lines similar to:
1: 0xD643B290 AOT: callerClassLoader

for ROMClass java/lang/ClassLoader at 0xD5469B88.

These lines indicate that the callerClassLoader method from the
java/lang/ClassLoader class is contained in the cache. The addresses listed are
internal shared cache addresses. Output from the -printAllStats option does not
show the signature for each AOT method in the cache, where the signature consists
of the parameter types and return type.

Chapter 5. Running applications 49

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shcpd_out_printstats.html

For more details about the information provided by the -printAllStats option in
the admincache tool, see printAllStats utility.

Destroying Shared Class Caches:

The admincache tool has options to erase a particular cache or all caches in a
specified cache directory.

The admincache tool -destroy option is used to erase a particular cache in a
specific cache directory, if the user has permission to do so. The -destroyAll
option is used to erase all the caches, if the user has permission to do so. For
example:
$ admincache -Xrealtime -destroy

admincache 1.02

JVMSHRC256I Persistent shared cache "sharedcc_username" has been destroyed

After erasing the cache, a listing of the available shared class caches in the default
cache directory shows that the erased cache no longer appears:
$ admincache -Xrealtime -listAllCaches

admincache 1.02

Listing all caches in cacheDir /tmp/javasharedresources/

Cache name level persistent last detach time

Compatible shared caches
rtCache Java6 32-bit yes Thu Oct 16 17:03:12 2008

Incompatible shared caches
nonrtCache Java6 32-bit yes Thu Oct 16 17:17:32 2008

The -destroyAll option removes all caches in the specified cache directory,
regardless of whether they are compatible or not with the current JVM. The
-destroyAll option must be used with great care:
$ admincache -Xrealtime -destroyAll

admincache 1.02

Attempting to destroy all caches in cacheDir /tmp/javasharedresources/

JVMSHRC256I Persistent shared cache "rtCache" has been destroyed
JVMSHRC256I Persistent shared cache "nonrtCache" has been destroyed

The result is that there are no longer any shared class caches available on the
machine:
$ admincache -Xrealtime -listAllCaches

admincache 1.02

JVMSHRC005I No shared class caches available

If the current user does not have permission to access a cache, then the cache is
not be destroyed by either the -destroy or -destroyAll options.

Practical Sizes for Shared Class Caches:

The admincache tool provides information for sizing shared class caches.

50 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shcpd_out_printallstats.html

For smaller applications, a shared class cache can be populated with all classes and
methods without producing a prohibitively large cache size. For larger
applications, the size of the resulting shared class cache might become too large for
practical purposes. This is because a JVM process must have sufficient virtual
address space to address the entire contents of the shared class cache. There are
some considerations you can apply when using the shared class cache technology.

The shared class cache must be virtually addressable in its entirety, in any JVM
connecting to it. This means avoiding using shared class caches larger than 700
MB. The admincache tool can predict the size of a cache. If the tool indicates that
the cache will be larger than the 700 MB limit, a message is displayed advising
that you store a smaller number of classes, or are more selective about the AOT
methods stored in the cache.

$ admincache -Xrealtime -populate veryBigJar.jar -cp <my class path>

admincache 1.02

WARNING: predicted cache size (15960MB) exceeds recommended maximum shared class cache size of 700MB
If your jar files contain primarily class files then you may not be able to create a cache of this size

or you may not be able to connect to the created cache when you run your application.
Alternatively, you may want to more selectively compile AOT methods by using -aotFilterFile
To override this warning message, please directly specify -Xscmx15960M on your command-line

but beware that the resulting failure may not occur until the very end of the population
procedure.

The admincache tool predicts a conservative cache size, based upon the total size
of the .jar files specified or found for population. This means that the prediction
might not be accurate if the .jar file contains many files that are not class files. To
get a more accurate prediction of the cache size, create temporary versions of the
.jar files that contain only the class files. If the admincache tool still produces a
warning message, you might consider AOT precompiling the methods in the .jar
file more selectively, by using the -aotFilter <pattern> or -aotFilterFile <file>
options. The admincache tool message reminds you that the prediction does not
take into account AOT methods filtered out by these options.

To override the warning message and proceed to the cache population step, add
the indicated -Xscmx option to the admincache command line. If the predicted size
is very large, the admincache tool might not be able to create a shared class cache
of the required size. To resolve this, reduce the cache size until admincache tool is
able to proceed.

When the final cache is written to disk, it is only as big as is needed to hold the
classes and AOT methods specified. This means that specifying a large initial cache
size is not a problem.

Storing SDK classes in a Shared Class Cache:

Creating a cache containing all the jar files from the SDK might not be necessary
for all applications.

The number and size of the jar files in the SDK means that trying to create a cache
containing all of these jar files results in a warning message advising that the
resulting cache will be too large. For many applications, most of the SDK jar files
are never be referenced.

The main SDK jar files are located in the SDK/jre/lib directory. For most
applications, the most important of these jar files is rt.jar, which is new in Java 6
releases. rt.jar is a collection of classes previously stored in separate jar files

Chapter 5. Running applications 51

before the Java 6 release. Populating a shared class cache with rt.jar alone, and
compiling all of its methods with the AOT compiler, creates a cache approximately
300 MB in size. Most of the methods from the rt.jar classes will not be referenced
by a typical application. To populate a shared class cache with rt.jar:
1. Populate the classes only from rt.jar into the shared class cache. This

consumes approximately 50 MB of space in the cache.
2. Use the -aotFilterFile <file> option to compile only the methods your

program might use. You can generate the <file> by running the application.

There are other commonly-used and important jar files in the SDK, including:
v sdk/jre/lib/i386/realtime/jclSC160/realtime.jar

v sdk/jre/lib/i386/realtime/jclSC160/vm.jar

v sdk/jre/lib/java.util.jar

realtime.jar contains the IBM implementation of the Real Time Specification for
Java (RTSJ). If your application uses any of the features of the RTSJ, store the
realtime.jar file in the shared class cache for better deterministic performance.
vm.jar contains several internal JVM classes, commonly used in all applications.
java.util.jar contains several container classes, and must be stored into every
application's shared class cache for better deterministic performance.

Other jar files in sdk/jre/lib and sdk/jre/lib/ext directories can be stored into a
shared class cache if an application uses those classes. The easiest way to identify
if your application uses these classes is to use the -verbose:dynload option when
running your program. The -verbose:dynload option describes only the classes
loaded by the current run of the application. For example:
<Loaded java/io/InputStreamReader from /myjdk/sdk/jre/lib/rt.jar>
< Class size 2126; ROM size 2280; debug size 0>
< Read time 54 usec; Load time 47 usec; Translate time 86 usec>
<Loaded java/util/LinkedHashSet from /myjdk/sdk/jre/lib/java.util.jar>
< Class size 1218; ROM size 1136; debug size 0>
< Read time 48 usec; Load time 31 usec; Translate time 55 usec>
<Loaded java/util/HashSet from /myjdk/sdk/jre/lib/java.util.jar>
< Class size 3171; ROM size 2664; debug size 0>
< Read time 71 usec; Load time 70 usec; Translate time 118 usec>

This example output shows three classes loaded from two different SDK jar files.
The java/io/InputStreamReader class was loaded from rt.jar. The
java/util/LinkedHashSet and java/util/HashSet classes were loaded from
java.util.jar.

Other admincache considerations:

Useful information for working with admincache.

Cache Population and Immortal Memory Sizing

When the admincache tool populates a shared class cache in real-time mode, it
must load each class as it goes through the population process. Each class
consumes some immortal memory, thus it is possible that the default immortal
memory size will not be large enough for all the classes requested. If the
admincache tool throws an OutOfMemory error while populating a cache with
many classes, try increasing the immortal memory size beyond the default 16 MB,
using the -Xgc:immortalMemorySize=32M option.

52 IBM WebSphere Real Time for RT Linux: User Guide

When you Change Classes

If a class file is changed on disk, the shared class cache technology automatically
detects that the cached version of that class in a shared class cache must not be
used. Your program will operate correctly, but cannot take full advantage of the
shared class cache, and any AOT methods for that class will not be used. If you
change a class in your application, re-create your shared class cache. Do not try to
use the -grow option to repopulate only the .jar file containing the modified class,
because this option is not designed for the scenario where the .jar file already
exists in the cache.

Managing shared caches

Shared caches require address space even if there are no files loaded. See “How the
IBM JVM manages memory” on page 105 for more information on how shared
class caches consume memory in the JVM process.

Storing precompiled jar files into a shared class cache
You can store all, some, or include Java classes provided by IBM into a shared
class cache. This process uses the -Xrealtime option with javac and the admincache
tool to store the classes into a shared class cache.

Before you begin

Jar files stored ahead of time into a shared class cache is supported only with the
-Xrealtime option and when running java with the -Xrealtime option. You can use
the same jar files when running with or without -Xrealtime, but the jar files stored
into the cache can only be used when -Xrealtime is specified.

Note: When using shared class caches, the cache name must not exceed 53
characters.

About this task

You can store jar files into a shared class cache using the admincache tool.
admincache enables you to build your application in one of three ways.

Note:
v If you have set a timeout on your Linux system, you might need to override it

when precompiling large jar files; otherwise, compilation will time out and the
jar file is not created.

Precompiling all classes and methods in an application:

This procedure precompiles all the classes in an application. It stores a set of jar
files into a shared class cache. All methods in all classes in those jar files are stored
into the cache. The optimized jar files have all methods compiled.

About this task

For the purposes of this example, the application resides under the directory
specified by the environment variable $APP_HOME and the jar files are in the
subdirectory $APP_HOME/lib. The application also uses some classes from those
provided by IBM in core.jarrt.jar. In this case, you can precompile only the
application code, namely main.jar and util.jar.

Chapter 5. Running applications 53

By default, the shared class cache is in /tmp/javasharedresources. Use the
-cacheDir option to put the cache into a different directory. You cannot create a
cache on a networked file system.

Procedure

1. From a shell prompt, enter: cd $APP_HOME

where $APP_HOME is the directory of your application.
2. From a shell prompt, enter: cd $APP_HOME/lib. $APP_HOME/lib is the directory

where main.jar and util.jar are stored.
3. From a shell prompt, enter: admincache -Xrealtime -populate -aot -classpath

$APP_HOME/lib -searchPath $APP_HOME/lib -norecurse . This procedure
optimizes each of the jar files found in $APP_HOME/lib, writing out progress
information to the screen, and then creating the new jar file in the
$APP_HOME/aot directory. You can specify a cache name with -cacheName <name>,
but a default name based on the user's login is used if none is specified.

Note: The name specified by the -cacheName option must not exceed 53
characters.

4. From a shell prompt, entering: admincache -Xrealtime -listAllCaches shows
the existence of the cache.

What to do next

For more options, specify: admincache -Xrealtime -help.

Precompiling frequently used methods:

You can use profile-directed AOT compilation to precompile only the methods that
are frequently used by the application. AOT compilation stores a set of jar files into
a shared class cache using an option file generated by running the application with
a special option -Xjit:verbose={precompile},vlog=optFile. Only the methods
listed in the option file are precompiled.

Before you begin

Before you start, create a list of those methods that are typically compiled by a JIT
compiler.

About this task

You can edit the file generated by the -Xjit:verbose={precompile} option. The file
is an explicit specification of the methods that are to be precompiled. These
methods are specific; that is, they contain the full signature for each method to be
compiled, which lets you compile com/acme/sample.myMethod(J)V but not
com/acme/sample.myMethod(I)V.

Note: When using shared class caches, the name of the cache must not exceed 53
characters.

Procedure

1. From a shell prompt, enter:
cd $APP_HOME

where $APP_HOME is the directory of your application.

54 IBM WebSphere Real Time for RT Linux: User Guide

2. From a shell prompt, enter:
java -Xjit:verbose={precompile},vlog=$APP_HOME/app.precompileOpts \

-cp $APP_HOME/lib/demo.jar applicationName

where:
v app.precompileOpts is the name of the log file that lists the methods compiled

with JIT.
v applicationName is the name of your application.
This command creates a list of the methods that are compiled using JIT.

3. From a shell prompt, enter:
cd $APP_HOME/lib

$APP_HOME/lib is the directory where the jar files for your application are
stored.

4. To compile all the sample application methods into the cache, enter:
admincache -Xrealtime -populate -cacheName myCache \

-aotFilterFile $APP_HOME/app.precompileOpts \
-cp $APP_HOME/lib/demo.jar

5. To compile realtime.jar and vm.jar into the cache, enter:
admincache -Xrealtime -populate -grow -cacheName myCache \

-aotFilterFile $APP_HOME/app.precompileOpts \
-searchPath $JAVA_HOME/jre/bin/realtime/jclSC160
-cp $APP_HOME/lib/demo.jar

6. To compile rt.jar into the cache, enter:
admincache -Xrealtime -populate -grow -cacheName myCache \

-aotFilterFile $APP_HOME/app.precompileOpts \
$JAVA_HOME/jre/lib/rt.jar
-cp $APP_HOME/lib/demo.jar

7. To test this command run your application with the -nojit option, which uses
the code in the cache. From the shell prompt, enter:

java -Xrealtime -Xshareclasses:name=myCache -Xnojit \
-cp $APPHOME/aot/demo.jar applicationName

where applicationName is the name of your application.

Precompiling files provided by IBM:

You can precompile files provided by IBM, for example rt.jar, to achieve a
compromise between performance and predictability.

About this task

The precompilation is similar to the task of precompiling your application jars but
an additional requirement applies at run time; you must ensure that your boot
class path is specified correctly to use these files instead of the files in the JRE. You
can do this with the -Xshareclasses option, which instructs the JVM to look first
in the specified class cache ahead of the default class path locations.

Note: When using shared class caches, the name of the cache must not exceed 53
characters.

Precompile rt.jar for use with the application:

Procedure

1. From a shell prompt, enter: cd $JAVA_HOME/lib where $JAVA_HOME is your
Java home directory.

Chapter 5. Running applications 55

2. Run the admincache tool. At a shell prompt, enter:
admincache -Xrealtime -populate -cacheName myCache

-classpath <class path> rt.jar

This command populates the cache called myCache with the results of
precompiling the IBM-provided file called rt.jar.

3. Run your application specifying the -Xshareclasses option to specify the cache
name. To run your application, enter:
java -Xrealtime -Xnojit -Xshareclasses:name=myCache

-classpath:$APP_HOME/main.jar:$APP_HOME/util.jar ...

The Just-In-Time (JIT) compiler
You can control when and how the JIT compiler operates using the
java.lang.Compiler class that is provided as part of the standard SDK class library.
IBM fully supports the Compile.compileClass(), Compiler.enable() and
Compiler.disable() methods.

For example, if you want to warm up your application and know that the key
methods in your application have been compiled, you can call the
Compiler.disable() method after you have warmed up your application and be
confident that JIT compilation will not occur during the remainder of the execution
of your application.

You can control method compilation in two ways:
v Specify a set of methods that you can compile:

Compiler.command("{<method specification>}(compile)");

where <method specification> is a list of all the methods that have been loaded at
this point and are to be compiled. <method specification> describes a fully
qualified method name. An asterisk denotes a wildcard match.
For example, to compile all methods starting with java.lang.String that were
already loaded, you specify:
Compiler.command("{java.lang.String*}(compile)");

Note: This command compiles not only methods in the java.lang.String class,
but also in the java.lang.StringBuffer class, which might not be what you
wanted. To compile only methods in the java.lang.String class, you specify:
Compiler.command("{java.lang.String.*}(compile)");

v Specify that all methods in the compilation queue will be compiled before this
thread runs and continues:
Compiler.command("waitOnCompilationQueue");

You might want to ensure that the compilation queue was empty before
disabling the compiler. A typical technique for compiling a set of methods and
classes might be:

Compiler.enable(); // ensure compiler is active
Compiler.command("{com.mycompany.*}(compile)"); // queue up all the methods you want to compile
Compiler.command("waitOnCompilationQueue"); // wait until all those methods are compiled
Compiler.disable(); // turn the compiler off

Determinism during JNI transitions

By default, the JIT generates optimized code for high performance Java-to-native
(J2N) JNI transitions. Reduced determinism might possibly occur when reloading a
native library using the following code sequence:

56 IBM WebSphere Real Time for RT Linux: User Guide

RegisterNatives / UnregisterNatives / RegisterNatives

To revert to the slower, more deterministic code, use the command line option
-Xjit:disableDirectToJNI.

Enabling the JIT
You can explicitly enable the JIT in several ways. Both command-line options
override the JAVA_COMPILER environment variable.

Procedure
v Set the JAVA_COMPILER environment variable to "jitc" before running the Java

application. At a shell prompt, enter:
– For the Korn shell: export JAVA_COMPILER=jitc

Note: Korn shell commands are used in this information unless otherwise
stated.

– For the Bourne shell:
JAVA_COMPILER=jitc
export JAVA_COMPILER

– For the C shell: setenv JAVA_COMPILER jitc

If the JAVA_COMPILER environment variable is an empty string, the JIT remains
disabled. To disable the environment variable, at a shell prompt, enter unset
JAVA_COMPILER.

v Use the -D option on the JVM command line to set the java.compiler property to
"jitc". At a shell prompt, enter: java -Djava.compiler=jitc <MyApp>

v Use the -Xjit option on the JVM command line. You must not specify the -Xint
option at the same time. At a shell prompt, enter: java -Xjit <MyApp>

Disabling the JIT
You can disable the JIT in several ways. Both command-line options override the
JAVA_COMPILER environment variable.

About this task

Procedure
v Set the JAVA_COMPILER environment variable to "NONE" or the empty string

before running the Java application. At a shell prompt enter:
– For the Korn shell: export JAVA_COMPILER=NONE

Note: Korn shell commands are used for the remainder of this information.
– For the Bourne shell:

JAVA_COMPILER=NONE
export JAVA_COMPILER

– For the C shell: setenv JAVA_COMPILER NONE

v Use the -D option on the JVM command line to set the java.compiler property to
"NONE" or the empty string. At a shell prompt, enter: java
-Djava.compiler=NONE <MyApp>

v Use the -Xint option on the JVM command line. At a shell prompt, enter: java
-Xint <MyApp>

Determining whether the JIT is enabled
You can determine the status of the JIT using the -version option.

Chapter 5. Running applications 57

Procedure

Enter the following command at a shell prompt:
java -version

If the JIT is not in use, a message is displayed that includes the following text:
(JIT disabled)
If the JIT is in use, a message is displayed that includes the following text:
(JIT enabled)

Using no-heap real-time threads
Metronome garbage collection provides more consistent response times, but
sometimes it is appropriate to completely avoid interruptions from garbage
collection.

NoHeapRealtimeThreads (NHRT) are an extension to RealtimeThreads. They differ
from RealtimeThreads in that they do not have access to the heap memory.
Without access to the heap, NHRTs can continue to run even during a garbage
collection cycle, with some restrictions. It follows that without access to the heap
the programming model is different from the one for real-time threads.

Considerations when using NHRTs

Consider these points about NHRTs:
v The main reason for using NHRTs is with a task that cannot tolerate garbage

collection. For example, if your application is time-critical and cannot tolerate
any interruptions.

v If time is so critical that you are using NHRTs, also consider using the ahead-of
time (AOT) compiler; that is, use the -Xnojit option.

v When you use the -Xrealtime option, you automatically use the Metronome
Garbage Collector. The benefits of Metronome Garbage Collector might be
sufficient for your enterprise, thus reducing the need to code NHRTs.

v NHRT threads run independently of the Garbage Collector because they have a
priority higher than the priority of the Garbage Collector. Java threads can have
a priority in the range 1 - 10. If NHRTs are present, the priority of Java threads
is reset to 0 regardless of the priority set in your program. The Garbage
Collector is automatically set to half a step higher than the highest real-time
thread. You set the priority of your NHRTs to be at least one higher than the
highest real-time thread. In this way, the NHRTs are independent of the garbage
collector.

Note: NHRTs are not entirely free of garbage collection because the Metronome
alarm thread garbage collector runs at the highest priority in the system. This
priority ensures that the JVM can be activated to check if the Garbage Collector
must do anything. The work to run the Metronome alarm thread is small and
does not affect performance significantly. On a multi-processor system, the alarm
thread can run simultaneously with NHRT threads and thus no garbage
collection interruptions occur.

v Because NHRTs are restricted to the scoped and immortal memory areas, Java
methods perform checks to ensure that they are not allocated from the heap. The
start method checks and returns an exception (MemoryAccessError) if NHRTs are
allocated from the heap. NHRTs can access only ImmortalMemory and
ScopedMemory.

58 IBM WebSphere Real Time for RT Linux: User Guide

v The semantics of locking are unchanged, so that NHRT threads can be blocked
by normal threads if a lock is shared.

v A thread that is using the heap can have its priority boosted on a synchronized
method when an NHRT tries to use the same method.

v Use nonblocking queues for communications between NHRTs and heap threads.
Otherwise, separate the two types of threads.

Exceptions

These exceptions can occur when using NHRTs:
v IllegalAssignmentError. As an example, this error can occur when an attempt is

made to create a reference to scoped memory in immortal memory.
v MemoryAccessError. As an example, this error can occur when an NHRT tries to

reference heap memory.

Asynchronous event handling constraints

There are multiple cases where NHRTs can be blocked during garbage collection,
including:
1. When an NHRT calls either fire(), setHandler(), or addHandler() on an

AsyncEvent that is already associated with handlers that are allocated from the
Heap memory

2. When an NHRT calls either destroy(), start(), or stop() on a Timer which is
associated with handlers that are allocated from the Heap memory

3. An NHRT is the last thread exiting a scope and is shutting down Timers or
AsyncEvents from the scope. However, the Timers or AsyncEvents have
associated handlers that are allocated from the Heap memory

To avoid these situations with NHRTs:
1. Avoid adding handlers allocated from the Heap to AsyncEvents or Timers that

might be fired by an NHRT.
2. Avoid conditions where an NHRT exits last from a scope that has AsyncEvents

or Timers that have handlers allocated from the Heap memory.

Memory and scheduling constraints
The JVM prevents no-heap real-time threads from loading references to objects that
are on the heap onto its operand stack. To do so throws a
javax.realtime.MemoryAccessError.

The JVM also guards against references to objects in scoped memory being stored
in heap or immortal memory. Although scoped memory is not used exclusively by
NHRTs, it is likely to be used if immortal memory is inappropriate and memory
deallocation is required in an NHRT context.

While an NHRT is executing, if it populates a field with a reference to an object, it
can successfully overwrite any pre-existing reference to an object on the heap in
that field. The pre-existing reference will be successfully overwritten by the NHRT
without generating a MemoryAccessError.

Class loading constraints
Classes are loaded into the same memory areas as the class loader. The default
area for class loaders is immortal memory.

Chapter 5. Running applications 59

In order for applications to provide the expected response times, they must be
"warm". Applications should load their classes early so that class loading does not
interrupt real-time threads and asynchronous event handlers later.

Constraints on Java threads when running with NHRTs
Because system properties are shared in a JVM and any thread can access the
system properties, some care is required when using the getProperties and
setProperties methods in JVMs in which NHRTs are run. For system properties to
be accessible to NHRTs, they must be in immortal memory.

The java.lang.System class provides several methods that allow threads to interact
with the system properties; including these methods:
String getProperty(String)
String getProperty(String,String)
Properties getProperties()

String setProperty(String,String)
void setProperties(Properties)

The real-time JVM uses an instance of the com.ibm.realtime.ImmortalProperties
class that was created specifically for the real-time JVM object to store all system
properties. Use of this instance ensures that any calls to the System.setProperty() or
System.getProperties.setProperty() methods result in the property being stored in
immortal memory. No special user code is required in this case but it is important
to understand that each time a property is set some immortal memory is
consumed.

Calls to the setProperties() method are a little more difficult because the shared
Properties object is used to store system properties. If an application runs in a
real-time JVM that has NHRTs running, calls to the setProperties method must
pass in an instance of a com.ibm.realtime.ImmortalProperties class, or subclass,
that was created in immortal memory. Use of this instance ensures that all
properties that are set by using the setProperties method are stored in immortal
memory.

Note: Calling setProperties(null) results in a new ImmortalProperties object being
created internally with a default set of properties, which consumes additional
immortal memory.

Calls to the getProperties() method return either the object that was set or the
default properties object, which is an com.ibm.realtime.ImmortalProperties object.
To maximize compatibility with existing code that calls the getProperties() method,
the ImmortalProperties object serializes the object and then deserializes in a
standard JVM. The default behavior for the serialization of ImmortalProperties is to
serialize a regular Properties object, because standard JVMs do not have the
ImmortalProperties object and deserialization fails. To override this default
behavior, the ImmortalProperties class provides the enabledReplacement(boolean)
method, which, if called with false, disables the default behavior. In this case,
serialization serializes the ImmortalPropeties object and it is then possible to
deserialize this and use the resulting object in a call to the System.setProperties
method in a real-time JVM.

Note: Deserialization takes place in immortal memory, which might consume too
much of this limited resource.

60 IBM WebSphere Real Time for RT Linux: User Guide

Security manager

The security manager set for the system is used by all types of threads in the JVM.
For this reason, in a real-time JVM in which NHRTs run, the security manager
must be allocated in immortal memory. The real-time JVM ensures that any
security manager specified in the command-line options is allocated in immortal
memory. The security manager can also be set through calls to the
System.setSecurityManager(SecurityManager) method. If the application sets the
security manager in this way, it must ensure that the security manager was
allocated from Immortal so that NHRTs are able to run correctly.

The exceptions thrown and any objects returned by the security manager must
either be in immortal memory, if cached, or be allocated in the current allocation
context.

Synchronization
The MonitorControl class and its subclass PriorityInheritance manage
synchronization, in particular priority inversion control. These classes allow the
setting of a priority inversion control policy either as the default or for specific
objects.

The WaitFreeReadQueue, WaitFreeWriteQueue, and WaitFreeDequeue classes allow
wait-free communication between schedulable objects (especially instances of
NoHeapRealtimeThread) and regular Java threads.

The WaitFree classes provide safe, concurrent access to data shared between
instances of NoHeapRealtimeThread and schedulable objects subject to garbage
collection delays.

No-heap real-time class safety
In some circumstances, portions of the JSE API cannot necessarily be used in a
no-heap context. Restrictions are placed on classes that are shared between heap
and no-heap threads. Be aware of the classes supplied with the JVM that can be
safely used.

Sharing objects
Methods that run in no-heap real-time threads throw a
javax.realtime.MemoryAccessError whenever they try to load a reference to an
object on a heap.

Figure 3 on page 62 is an example of the sort of code to be avoided:

Chapter 5. Running applications 61

Figure 3 produces a javax.realtime.MemoryAccessError:
Exception in thread "NoHeapRealtimeThread-0" javax.realtime.MemoryAccessError

at NHRTError1$NHRT.run(NHRTError1.java:56)
at javax.realtime.RealtimeThread.runImpl(RealtimeThread.java:1754)

If an object is to be accessible to both a no-heap real-time thread and a standard
Java thread, the object must be allocated in immortal memory. Similarly, if an

/**
* NHRTError1
*
* This example is a simple demonstration of an NHRT accessing
* a heap object reference.
*
* The error generated is:
*
* Exception in thread "NoHeapRealtimeThread-0" javax.realtime.MemoryAccessError
* at NHRT.run(NHRTError1.java:56)
* at javax.realtime.RealtimeThread.runImpl(RealtimeThread.java:1754)

*/
import javax.realtime.*;

public class NHRTError1 {
public static void main(String[] args) {

NHRTError1 example = new NHRTError1();

example.run();
}

public NHRTError1() {
message = new String("This on the heap.");

}

static public String message; /* The NHRT can access static fields directly - they are always Immortal. */
static public NHRT myNHRT = null;

public void run() {
ImmortalMemory.instance().executeInArea(new Runnable() {

public void run() {
NHRTError1.this.myNHRT = new NHRT();

}
});

myNHRT.start();

try {
myNHRT.join();

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

}

Figure 3. Example of an NHRT accessing a heap object reference

/* A NHRT class */
class NHRT extends NoHeapRealtimeThread {

public NHRT() {
super(null, ImmortalMemory.instance());

}

/* Prints the String via the static reference in NHRTError1.message */
public void run() {

System.out.println("Message: " + NHRTError1.message);
}

}

}

Figure 4. Example of an NHRT accessing a heap object reference (continued from Figure 1)

62 IBM WebSphere Real Time for RT Linux: User Guide

object is to be accessible to a no-heap real-time thread and a real-time thread, the
object can also be held in a scoped memory area.

In Figure 3 on page 62, the reference to the String "This on the heap." was held in a
class variable. This variable is accessible to NHRTs because all classes are allocated
in immortal memory. Alternatively, the String could have been passed to the
NHRTs constructor.

Most objects contain references to other objects, and so care must be taken when
sharing such objects between ordinary threads and NHRTs. A typical example is of
a LinkedList allocated in immortal memory, shared between an ordinary thread
and a NHRT. If sufficient care is not taken, the standard thread might introduce
objects into the LinkedList that are on the heap. Of greater concern is that the data
structures that are allocated by the LinkedList to track objects are allocated on the
heap by the ordinary thread, easily causing a MemoryAccessError in the NHRT.

Some classes cannot be safely shared between NHRTs and other threads, regardless
of where individual instances of them might be allocated. These are classes that
rely on objects stored in class variables, usually for caching purposes. InetAddress
is a typical example that caches addresses; if the first thread to call certain methods
in InetAddress is running on the heap, the same methods are unsafe to be called
by NHRTs in the future.

Locking on objects with NHRTs

NHRTs must avoid synchronizing with other threads. Consider the following
scenario:
v A real-time thread of low priority enters a synchronized block or method,

synchronizing on an object.
v An NHRT of high priority is blocked when attempting to synchronize on the

same object.
v Priority inheritance causes the real-time thread to temporarily assume the same

priority as the NHRT.
v Garbage collection then runs at a higher priority than the NHRT, and can

therefore interrupt the NHRT. The reason for using the NHRT is to avoid
interruption by garbage collection, so this scenario negates the use of the NHRT.

It is sometimes unavoidable that NHRTs and other threads synchronize on the
same object, but you must minimize the possibility. Be careful to avoid
unnecessary synchronization when sharing objects.

Restrictions on safe classes
Some considerations apply when an application contains both real-time thread and
no-heap real-time thread objects.
v The no-heap real-time thread can suffer MemoryAccessErrors caused by

interaction with the real-time thread.
v The no-heap real-time thread might be accidentally delayed by garbage

collection caused by the real-time thread.

MemoryAccessErrors caused on a no-heap real-time thread

When the two types of thread both call methods on the same class, the real-time
thread might “pollute” the static variables of the class with objects allocated from
the heap. The no-heap real-time thread will receive a MemoryAccessError when
trying to access those heap objects. The pollution can also happen on instances of

Chapter 5. Running applications 63

the class. Unfortunately, both problems are quite likely to be seen in typical coding
patterns and so it is worth exploring a couple of cases.

If a class is performing a time-consuming operation, it often chooses to cache the
result to improve performance of the subsequent operations. The cache is typically
a collection such as a HashMap anchored in a static variable in the class. A
real-time thread operating in heap context can store a heap object in this collection,
which not only adds the object itself but also adds infrastructure objects to the
collection; for example, parts of the index. When a no-heap real-time thread later
tries to access the collection, even if it is not trying to access the object added by
the other thread, it attempts to load the infrastructure objects and hence receive a
MemoryAccessError. As class libraries develop and are tuned for performance,
these caches become more common.

A class instance can also become polluted by heap objects in a variety of ways.
Consider an instance built in immortal memory and thus accessible to both types
of thread. If the first use of the object is by a realtime thread in heap context, you
might find that a secondary object is stored in a field of the original object. If the
secondary object is in heap context, subsequent use by the no-heap real-time
thread again shows a MemoryAccessError. These secondary objects might not
always be added on first use but after a number of uses, and might be designed to
improve the performance of heavily used methods.

NoHeap thread delayed by garbage collection

No-heap threads must be assigned priorities that are higher than other threads to
avoid being delayed by garbage collection.

Additionally, if a class contains any synchronized methods, it is possible that a
no-heap real-time thread calling such methods might unintentionally be delayed by
garbage collection. This scenario is described in “Locking on objects with NHRTs”
on page 63.

If a class contains any synchronized methods (either static or instance methods), it
is possible that a no-heap real-time thread calling such methods might
unintentionally be delayed by garbage collection. The problem is caused if a
real-time thread is accessing a synchronized method (static or instance) at the point
where a no-heap real-time thread attempts to call another synchronized method
that will block waiting for the other thread to complete. If the no-heap real-time
thread has a higher priority than the real-time thread, the priority of the real-time
thread is raised. If that thread is then forced to wait for a garbage collection
interrupt, a priority inversion is possible, because the garbage collector thread has
a priority higher than the highest priority real-time thread, which might not be as
high as the no-heap real-time thread that is currently blocked waiting to enter the
synchronized method.

The only way to fix such problems is to ensure that no-heap real-time threads
never call synchronized methods on classes or instances that are shared with other
thread types. Unfortunately, it is not always clear from a method signature
whether a method is synchronized; it might, for example, contain a synchronized
block or call a synchronized method.

Summary

The NoHeapRealtimeThread class adds a significant amount of complexity to the
real-time environment and a significant number of problems can be caused when a

64 IBM WebSphere Real Time for RT Linux: User Guide

mixture of thread types operate in an environment. During development of an
application, you must carefully design areas in which you have shared use of
classes by the different thread types. Of particular importance is the use that these
threads make of classes in the SDK. Because of the complexity of analysis, it is
impossible to give any guarantee that all the classes provided in the SDK are safe
for such shared use. Instead, a small subset of the classes have been verified.
Initially, verification has concentrated on the MemoryAccessError aspect and the
result is a list of classes that have been analyzed, tested, and modified where
necessary to ensure that they can be used by both no-heap and other types of
threads.

Safe classes
This section lists the set of classes that are intended to be safely used by
NoHeapRealtimeThread and other thread types.

The main concern is focused on the MemoryAccessError aspect of safety. The
following list details classes that can be used by all three thread types in the same
JVM.

Note: Individual instances of the class might not always be safely shared.

Follow these rules to ensure that a class can be used safely by all thread types:
v The instance must be built in a memory area that is accessible to the thread

intending to access the instance.
v If the class has public static fields, avoid storing heap objects in these fields.
v If the class has public instance fields, avoid storing heap objects in these fields.

Not all IBM-provided classes are NHRT-safe. The following packages contain
classes that are NHRT-safe:
v java.lang package
v java.lang.reflect package
v java.lang.ref package (all classes)
v java.net package
v java.io package
v java.math package

These tables show classes within these packages that are not NHRT-safe:

Table 6. Classes in the java.lang package that are not NHRT-safe

Class Method

java.lang.ProcessBuilder *

java.lang.Thread getAllStackTraces()Ljava.util.Map;

java.lang.ThreadGroup *

java.lang.ThreadLocal *

java.lang.InheritableThreadLocal *

Table 7. Classes in the java.lang.reflect package that are not NHRT-safe

Class Method

java.lang.reflect.Proxy.* *

Chapter 5. Running applications 65

Table 8. Classes in the java.net package that are not NHRT-safe

Class Method

java.net.SocketPermission.* newPermissionCollection()Ljava.net.SocketPermissionCollection;

Table 9. Classes in the java.io package that are not NHRT-safe

Class Method

java.io.ExpiringCache *

java.io.SequenceInputStream *

java.io.FilePermission newPermissionCollection()Ljava.io.FilePermissionCollection;

java.io.ObjectInputStream *

java.io.ObjectOutputStream *

java.io.ObjectStreamClass *

Table 10. Classes in the java.math package that are not NHRT-safe

Class Method

java.math.BigInteger *

The packages might include sub packages that contain non-safe classes. For
example, the following classes are not NHRT-safe:
v java.lang.management.*
v java.lang.annotation.*
v java.lang.instrument.*

Even if a class is considered as NHRT-safe, the class might not be suitable for use
in an NHRT. Application developers must determine the real-time requirements of
the classes on a case-by-base basis, regardless of whether a class is NHRT-safe.

Class data sharing between JVMs
The Java Virtual Machine (JVM) allows you to share class data between JVMs by
storing it in a memory-mapped cache file on disk.

Sharing reduces the overall virtual storage consumption when more than one JVM
shares a cache. Sharing also reduces the startup time for a JVM after the cache has
been created. The shared class cache is independent of any active JVM and persists
until it is destroyed. A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes
v Ahead-of-time (AOT) compiled code

Shared class caches can be used by IBM WebSphere Real Time for RT Linux in
both non-real-time and real-time modes, but the cache format, creation, and
population techniques differ. Real-time mode caches are not compatible with
non-real-time mode caches. In non-real-time mode, caches are created and
populated in the same way as the standard JVM. This means the cache is created
and populated by the JVM as it runs an application, transparently to the user. In
real-time mode, using the -Xrealtime option, shared class caches must be created

66 IBM WebSphere Real Time for RT Linux: User Guide

and prepopulated by admincache, using the -populate option. Applications running
in real-time mode might read content from the prepopulated cache, but cannot
modify its contents.

Use the admincache tool to create, populate, and destroy caches.

To enable an application to use a shared class cache, add the -Xshareclasses
option to its command-line. Because real-time mode caches are read-only, some
non-real-time mode suboptions of -Xshareclasses are not available in real-time
mode.

For further information, see “Using the admincache tool” on page 43, “Class data
sharing between JVMs for non-Real-Time mode” on page 93, and “Shared classes
diagnostic data” on page 141.

Running Applications with a Shared Class Cache
To run an application with a shared class cache, use the -Xshareclasses option on
the command-line.

Table 11 shows the suboptions available when running an application in real-time
mode, using the -Xshareclasses option.

Table 11. Suboptions available when running an application in real-time mode

Option Meaning

cacheDir=<directory> Sets the directory in which shared class
cache data is read and written. By default,
<directory> is /tmp/javasharedresources.
The directory name must match that
specified in the -cacheDir option used in the
admincache command to create the cache.

name=<name> The name of the shared class cache to use.
The name must match that specified in the
-cacheName option used in the admincache
command to create the cache. The name
must not exceed 53 characters.

none Explicitly disable class sharing. Can be
added to the end of a command line to
disable class data sharing. This suboption
overrides class sharing arguments found
earlier on the command line.

nonfatal Always start JVM regardless of errors or
warnings. Allows the JVM to start even if
class data sharing fails. Typical behavior for
the JVM is to refuse to start if class data
sharing fails. If you select nonfatal and the
shared classes cache fails to initialize, the
JVM attempts to connect to the cache in
read-only mode. If this attempt fails, the
JVM starts without class data sharing.

silent Suppress all output messages. Turns off all
shared classes messages, including error
messages. Unrecoverable error messages,
which prevent the JVM from initializing, are
displayed.

Chapter 5. Running applications 67

Table 11. Suboptions available when running an application in real-time mode (continued)

Option Meaning

verbose Enable verbose output, providing overall
status on the shared class cache and more
detailed error messages.

verboseAOT Enables verbose output when compiled AOT
code is being found in the cache, for
example during AOT method load requests.

verboseHelper Enables verbose output for the Java Helper
API. This output shows you how the Helper
API is used by your class loader.

verboseIO Enable verbose output of class load requests.
This option provides detailed output about
the cache I/O activity, listing information
about classes being found.

To ensure these options are correct, use the -printvmargs option with admincache
(see -printvmargs for more information). The nonfatal option is not suitable for
general use, because it forces the JVM to ignore warnings and errors about the
shared class cache. The none option explicitly disables class sharing, and is
equivalent to omitting the -Xshareclasses option on the command line.

For more detailed information about the -Xshareclasses suboptions, see Class data
sharing command-line options.

Using the Metronome Garbage Collector
Metronome Garbage Collector replaces the standard Garbage Collector in
WebSphere Real Time for RT Linux.

Controlling processor utilization
You can limit the amount of processing power available to the metronome garbage
collector.

You can control garbage collection with the Metronome Garbage Collector using
the -Xgc:targetUtilization=N option to limit the amount of CPU used by the
Garbage Collector.

For example:
java -Xrealtime -Xgc:targetUtilization=80 yourApplication

The example specifies that your application runs for 80% in every 60 milliseconds.
The remaining 20% of the time is used for garbage collection. The Metronome
Garbage Collector guarantees utilization levels provided that it has been given
sufficient resources. Garbage collection begins when the amount of free space in
the heap falls below a dynamically determined threshold.

Tuning Metronome Garbage Collector
You can tune the real-time environment by controlling the amount of memory that
your application uses. For example, use the -Xmx, -Xgc:immortalMemorySize=size,
-Xgc:scopedMemoryMaximumSize=size, and the -Xgc:targetUtilization=N options.
v Use the -Xmx option to limit the size of the heap.

The value chosen is used as the upper limit of heap size and thus reflects the
likely usage over time. Choosing a value that is too low increases the garbage

68 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/sharedclassesxoptions.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/user/sharedclassesxoptions.html

collection frequency and leads to a lower overall throughput although it reduces
the memory footprint. For good real-time performance, avoid paging. It is
normal to ensure that the footprint of all the running processes on a machine
does not exceed the physical memory size.

v Use the -Xgc:immortalMemorySize=size option to control the size of the
immortal memory area.
You must analyze carefully the use of immortal memory. The “ideal” application
uses immortal memory during startup but thereafter stops using it. If allocation
of immortal objects continues, the application is able to continue to run until
immortal memory has been exhausted. The current usage can be obtained by
adding:
long used = ImmortalMemory.instance().memoryConsumed();

to your code.
v Use the -Xgc:scopedMemoryMaximumSize=size option to ensure that applications

do not request excessive amounts of scoped memory. Use this option for
diagnosis rather than tuning.

v Set the -Xgc:targetUtilization=N option to ensure that under the worst-case
conditions (maximum allocation rate of heap objects), the garbage collector can
collect garbage at a higher rate than the application generates it.
Typically, the default value is sufficient but application performance might be
improved by increasing the utilization to the point at which the collector is able
to collect garbage slightly faster than the application can create it.

v Use the -Xgcthreads <n> option to create additional threads to run garbage
collection in parallel.
The default is to use one thread. If your workload has a high rate of garbage
generation, and runs on a symmetric multiprocessor with CPU cycles available,
performance could benefit by setting this parameter to >1.

Note: Setting this parameter too high can have a negative affect on throughput.

Metronome Garbage Collector limitations
This topic captures any known issues or limitations that affect the metronome GC
policy.

AESNI support on x86 platforms

Software exploitation of AESNI instructions on x86 architectures is currently not
supported with the metronome GC policy.

Long pause times during garbage collection

Under rare circumstances, you might experience longer than expected pauses
during garbage collection. During garbage collection, a root scanning process is
used. The garbage collector walks the heap, starting at known live references.
These references include:
v Live reference variables in the active thread call stacks.
v Static references.
v All object references in immortal and scoped memories.

Chapter 5. Running applications 69

|

|
|

To find all the live object references on an application thread's stack, the garbage
collector scans all the stack frames in that thread's call stack. Each active thread
stack is scanned in an uninterruptible step. Therefore the scan must take place
within an individual GC pause.

The effect is that the system performance might be worse than expected if you
have some threads with very deep stacks, because of extended garbage collection
pauses at the beginning of a collection cycle.

Immortal memory is processed incrementally. All other scoped memory areas are
processed in one atomic, uninterruptible step. Therefore significant use of scoped
memory areas might lead to worse system performance than expected, because of
extended garbage collection pauses when the root scan is processing scoped
memory.

70 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 6. Developing applications

Important information about writing real time applications, including code
samples.
v “Writing Java applications to exploit real time”
v “The sample application” on page 82
v “The sample real-time hash map” on page 89
v “Developing WebSphere Real Time for RT Linux applications using Eclipse” on

page 90

Writing Java applications to exploit real time
These examples describe how to exploit the real-time environment. They range
from the simplest example, running a Java application in real time without any
modifications to the code, through to a more complex process of planning and
writing no-heap real-time threads. Reasons are provided to help you decide which
approach might be most suitable for your applications.

Introduction to writing real-time applications
You do not have to write elaborate no-heap real-time applications to exploit the
features of real-time technology. Some of the benefits can be used with very little
change to your existing code.

For application programers, here are the steps that you can take to exploit
WebSphere Real Time for RT Linux:
1. You can run a standard Java application in a real-time JVM to give you the

benefit of Metronome garbage collection and achieve significant improvement
in the predictability of the run time of your application.

2. Add the -Xnojit option after you have precompiled your code to use the
ahead-of-time (AOT) compiler. See “Storing precompiled jar files into a shared
class cache” on page 53.

3. Replace java.lang.Thread with javax.realtime.RealtimeThread in your
application. You might see a slight improvement when compared with the AOT
option.
The main advantage of using real-time threads is the ability to control the
priority that you give to each of the threads. Real-time threads can also be
made periodic. To exploit these advantages, you must be prepared to make
changes to the application itself.

4. Plan and write a specific application to use real-time threads and asynchronous
event handlers to deal with timers or external events. Consider these three
factors:
v Planning the priority that you assign to your real-time threads
v Deciding which memory areas you will use to hold objects
v Communicating with the event handlers

5. Plan and write a specific application to use no-heap real-time threads. No-heap
real-time threads are extensions of real-time threads and you have to consider
the priority that you assign and the memory area. In general, take this step
only if the application must handle events in times comparable to the GC
pause time (sub-millisecond). Do not underestimate the complexity of
developing with no-heap real-time threads.

© Copyright IBM Corp. 2003, 2014 71

Figure 5 shows the steps described previoulsy.

Planning your WebSphere Real Time for RT Linux application
When you are preparing to write real-time Java applications, you must consider
whether to use Java threads, real-time threads, or no-heap real-time threads. In
addition, you can decide which memory area that your threads will use.

About this task

When planning your application, these steps describe the decisions you need to
make:

Procedure
1. Identify your tasks.
2. Decide the timing periods:

v Responses greater than 10 ms, choose Java threads, just exploiting the
Metronome Garbage Collector.
These threads use only the heap memory for storage. Their disadvantage is
that garbage collection interrupts your application but, because it is
controlled by the Metronome Garbage Collector, the length and timing of the
interruptions are predictable.

v Responses less than 10 ms, choose real-time threads.
Real-time threads can be placed in heap, scoped, or immortal memory. The
benefits of using real-time threads are as follows:
– They can run at a higher priority than standard Java threads.

NHRTReal-time
threads

Real-time
threads

Asynchronous
Event

Handlers

Asynchronous
Event

Handlers

Real-time
threads

Java
threads

Java
threads

Java
threads

AOT

AOT

AOT

AOT

JIT

JIT

Metronome
GC

Metronome
GC

Metronome
GC

Metronome
GC

Metronome
GC

GC

Immortal memory
Scoped memory
Heap memory

Immortal memory
Scoped memory
Heap memory

Heap memory

Heap memory

Heap memory

Heap memory

Plan and write
NHRT threads

Change Java
threads to
real-time
threads

Run with
-Xrealtime

Increasing
predictability

and
complexity

Increasing
features

Run with AOT
and -Xnojit option

Plan and write
real-time threads

and asynchronous
event handlers

Figure 5. A comparison of the features of RTSJ with the increased predictability.

72 IBM WebSphere Real Time for RT Linux: User Guide

– Garbage collection is under the control of the Metronome Garbage
Collector. However, the garbage collector runs at a higher priority than the
highest priority of a real-time thread and interrupts the running of your
program.

v Responses less than a millisecond, choose no-heap real-time threads.
The priority of no-heap real-time threads can be set higher than garbage
collection and therefore is not interrupted significantly by the Metronome.
Only the Metronome alarm thread runs at the top level of priority and that
uses very small amounts of CPU.

3. Determine if your application requires asynchronous event handlers. This
requirement depends on the structure of your program.
v A time response less than 10 ms, choose real-time threads.
v A time response less than a millisecond, choose no-heap real-time threads

4. Determine thread priorities. In general, the shorter the time period, the higher
the priority.

5. Decide memory characteristics.
v If a task has a variable or high allocation rate, which might overwhelm the

GC, consider imposing a rate limit (using MemoryParameters) or consider
allocating into a scoped memory area.

v If a task generates a large amount of temporary data during a calculation,
consider using a scoped memory area.

v If a task generates some data during startup that is required for the lifetime
of the JVM, consider using immortal memory. Try to avoid using immortal
memory in cases where objects will continue to be created over the life of the
JVM.

v If tasks need to communicate, particularly if one is running under a no-heap
real-time thread, consider using a scoped memory area for the
communication.

v If a task is running under a no-heap real-time thread, consider building a
scoped memory area, for example LTMemory, to contain the no-heap thread,
the runtime parameters, and possibly the wait-free queues that are used to
communicate with the task. The LTMemory object must be built either in
immortal or another scope to avoid errors when the no-heap thread attempts
to reference it.

6. Modify the runtime options to improve the performance of your application,
when you have decided the structure and content of your application. The next
steps describe how to do this:
a. During initial testing of your application, set generous amounts of space in

heap, scoped, and immortal memory using the -Xmx,
-Xgc:immortalMemorySize=size and -Xgc:scopedMemoryMaximumSize=size
options.

Note: With the Metronome GC the initial and maximum heap sizes must be
the same because Metronome GC does not increase the size of the heap.
Growing the heap is a nondeterministic operation.

b. Use the -verbose:gc option to determine the amount of memory used.
c. Modify the -Xgc:targetUtilization option to allow sufficient time for

garbage collection to occur. The default is 70% and this percentage is
usually adequate for most applications. Ensure that the garbage collection
rate is slightly higher than the allocation rate.

d. Set a realistic size for heap memory using the -Xmx option.

Chapter 6. Developing applications 73

Modifying Java applications
To write code that makes use of the real-time Java features, use
javax.realtime.RealtimeThread to replace java.lang.Thread for threads.

Before you begin

This example is based on JavaRadar.java class found in the demo/realtime/
sample_application.zip file.

About this task

The programming model for real-time threads is similar to that for standard Java
applications. However, this rather crude way of adding real-time threads to your
programs does not take full advantage of the features of WebSphere Real Time for
RT Linux. To do so, you must modify the threads so that they had a priority
associated with them and also consider what memory areas they will use.

Just by changing the classes of your threads, you gain only a slight benefit for your
application because the default priority of real-time threads is greater than that of
standard Java threads.

To change JavaRadar to a RealtimeThread, you change the class it extends from
Thread to RealtimeThread.

Replacement of java.lang.Thread by
javax.realtime.RealtimeThread

The JavaRadar class in the sample application extends java.lang.Thread. For
example:
public class JavaRadar extends Thread implements Radar

To make this Java thread a real-time thread, you redefine this class definition as
follows:
public class RTJavaRadar extends RealtimeThread implements Radar

Writing real-time threads
So far, you have just modified an application; now it is time to write some code.
You can write applications that use real-time threads to take advantage of the
real-time priority levels and memory areas.

Before you begin

This example is based on JavaRadar.java, RTJavaRadar.java, and
RTJavaControlLauncher.java classes found in the demo/realtime/
sample_application.zip file.

This sample shows you how to use immortal memory with the same sample that is
described in “Modifying Java applications.”

About this task

The programming model for real-time threads is similar to that for standard Java
applications.

The benefits of using real-time threads are as follows:

74 IBM WebSphere Real Time for RT Linux: User Guide

v Full support for OS-level thread priorities on real-time threads.
v The use of scoped or immortal memory areas.

– With scoped memory you can explicitly control the deallocation of memory
without affecting Garbage Collection.

– With no-heap real-time threads, you can use immortal memory to avoid
garbage collection pauses.

– Those real-time threads that reference objects in the heap are subject to
garbage collection as are those real-time threads that are stored in the heap
memory.

– No-heap real-time threads cannot reference objects in heap memory and, as a
consequence, they are not affected by garbage collection.

In Table 12, the priorities are assigned on the basis that the SimulationThread has
the highest priority because it represents external events and must not be allowed
to be preempted by anything in the program. The RadarThread needs to respond
quickly to the pings from the controller. The quicker the response, the more
accurate the measurement of the height of the lunar lander. The ListenThread also
has to respond quickly to commands from the controller but takes second place to
the RadarThread.

These three threads are in scoped memory because the simulation runs as a server.
After the server has run a simulation, it can exit the scoped memory area and then
reenter it to wait for another run of the simulation. The server uses scoped
memory so that it can reset itself.

RTJavaRadarthread has the highest priority of the controller threads because it is
more sensitive to timing because it is using this time to derive the height. It is
immortal because it is running as a NHRT and the controller is run only once and
the memory is released when the JVM exits.

For RTJavaControlThread and RTJavaEventThread, the time constraints are not as
critical and therefore using heap memory is acceptable.

RTLoadThread performs no useful function for the lunar lander. However,
RTLoadThread demonstrates that significant memory allocation and deallocation
can be performed at a lower priority than other threads, without affecting the
performance of the higher priority threads.

Table 12. Relationship of threads to memory areas in the sample application

Memory Thread Priority

Scoped demo.sim.SimulationThread 38

demo.sim.RadarThread 37

demo.sim.SimulationThread.ListenThread 36

Immortal demo.controller.RTJavaRadarThread 15

Heap demo.controller.RTJavaControlThread 14

demo.controller.RTJavaEventThread 13

Scoped and Heap demo.controller.RTLoadThread 12

Examples

This code from demo.sim.SimulationThread shows where the priority of 38 has
been set. �1� This line of code retrieves the maximum priority that is available in
the JVM.

Chapter 6. Developing applications 75

super(null, area);

// Set priority separately, as we are using "this".
// Note that PriorityScheduler.MAX_PRIORITY has been deprecated.
this.setSchedulingParameters(new PriorityParameters(PriorityScheduler

.getMaxPriority(this))); �1�

This code from demo.sim.SimLauncher shows where scoped memory has been
defined. �2� shows the allocation of LTMemory, which is a scoped memory area
that allocates memory in linear time.

final IndirectRef<MemoryArea> myMemRef = new IndirectRef<MemoryArea>();

/*
* The LTMemory object has to be created in a memory area that the
* NHRTs can access.
*/
ImmortalMemory.instance().enter(new Runnable() {

public void run() {
myMemRef.ref = new LTMemory(10000000); �2�

}
});

final MemoryArea simMemArea = myMemRef.ref;

The ScopedMemoryArea object referenced by simMemArea is being allocated in
immortal memory, because the NHRT must be able to reference the object that
represents the ScopedMemoryArea. Allocating it on the heap results in the NHRT
constructor throwing an IllegalArgumentException, because its memory area
argument was on the heap.

simMemArea.enter(new Runnable() {
public void run() {

try {
CommsControl commsControl = new CommsControl();

This code from demo.controller.RTJavaControlLauncher shows where immortal
memory has been defined and used by RTJavaRadar. Because RTJavaRadar runs
once during the whole lifetime of the controller JVM, it is designed to allocate
memory only on startup; it can be safely run in immortal memory. The design of
the application benefits because the Controller can access the RTJavaRadar
methods without having to first enter the scoped memory area. Entering the
scoped memory area is difficult because Controller was written to run in ordinary
Java as well as in real-time Java.

final RadarPort radarPort = commsControl.getRadarPort();
EventPort eventPort = commsControl.getEventPort();

final IndirectRef<RTJavaRadar> radarRef = new IndirectRef<RTJavaRadar>();

// Create RTJavaRadar in Immortal, it is an NHRT.
// If it was in scoped, it’s interaction with the other threads would
// be more complex.
ImmortalMemory.instance().enter(new Runnable() {

public void run() {
// Realtime version of Radar.
radarRef.ref = new RTJavaRadar(radarPort, ImmortalMemory

.instance());
}

});

RTJavaRadar radarJava = radarRef.ref;

76 IBM WebSphere Real Time for RT Linux: User Guide

Writing asynchronous event handlers
Asynchronous event handlers react to timer events or to events that occur outside
a thread; for example, input from an interface of an application. In real-time
systems, these events must respond inside the deadlines that you set for your
application.

Before you begin

This example is based on RTJavaEventThread.java and RTJavaControlLauncher.java
classes found in the demo/realtime/sample_application.zip file.

About this task

In the sample application, the event thread waits on events from the simulation
that signals a crash or a landing. In the real-time version of this thread, the
AsyncEvent mechanism is used. These events are used to print out the appropriate
status message and to cause the controller to exit.

The RTJavaEventThread has two asynchronous events defined. They both have no
parameters.
public class RTJavaEventThread extends RealtimeThread {

private AsyncEvent landEvent = new AsyncEvent(), �Land�
crashEvent = new AsyncEvent(); �Crash�

These events create and register two asynchronous event handlers:
/**
* Pass a runnable object that will be fired when the land event occurs.
*
* @param runnable code to be executed when land event is triggered.
*/
public void addLandHandler(Runnable runnable) {

AsyncEventHandler handler = new AsyncEventHandler(runnable);
this.landEvent.addHandler(handler);

}

/**
* Pass a runnable object that will be run when the crash event occurs.
*
* @param runnable code to be executed when crash event is triggered.
*/
public void addCrashHandler(Runnable runnable) {

AsyncEventHandler handler = new AsyncEventHandler(runnable);
this.crashEvent.addHandler(handler);

}

When the crash or land messages are received, their corresponding asynchronous
event handler is fired, causing Runnable objects to be released.

tag = this.eventPort.receiveTag();

switch (tag) {
case EventPort.E_CRSH:

// Crash
this.crashEvent.fire();
this.running = false;
break;

case EventPort.E_LAND:
// Land

Chapter 6. Developing applications 77

this.landEvent.fire();
this.running = false;
break;

}

Results

RTJavaControlLauncher.java contains invocations to the addLandHandler and
addCrashHandler methods. The Runnable objects passed cause a message to be
printed onto the console and the control thread is stopped when their associated
asynchronous event handlers are fired. See RTJavaEventThread.java for the point
where they are triggered.

// AEH runnable for land handler.
javaEventThread.addLandHandler(new Runnable() {

public void run() {
System.out.println("LAND!");

}
});

// AEH runnable for crash handler.
javaEventThread.addCrashHandler(new Runnable() {

public void run() {
System.out.println("CRASH!");

}
});

Writing NHRT threads
To add no-heap real-time threads (NHRT) to a Java application, use this tutorial to
develop or modify your own programs.

Before you begin

This example is based on SimulationThread.java and SimLauncher.java classes
found in the demo/realtime/sample_application.zip file.

About this task

The demo.sim.SimulationThread class is part of the simulation in the demo
application. It is intended to act as a substitute for the real world, and, therefore,
will probably run without interruption from the rest of the system. The thread is
created as a NoHeapRealtimeThread with the highest available priority, to ensure
that the thread is not interrupted by garbage collection or by other threads on the
system.

In SimulationThread, the following constructor calls the super constructor
“NoHeapRealtimeThread(SchedulingParameters scheduling, MemoryArea area)”,
before then setting its SchedulingParameters and ReleaseParameters separately:
public SimulationThread(MemoryArea area, ControlPort controlPort,

EventPort eventPort, RadarThread radarThread) {

super(null, area);

// Set priority separately, as we are using "this".
// Note that PriorityScheduler.MAX_PRIORITY has been deprecated.
this.setSchedulingParameters(new PriorityParameters(PriorityScheduler

.getMaxPriority(this)));

ReleaseParameters releaseParms = new PeriodicParameters(null,
new RelativeTime(period, 0)); // 20ms cycle (50Hz)

this.setReleaseParameters(releaseParms);

78 IBM WebSphere Real Time for RT Linux: User Guide

// It is good practice to identify each of the threads.
this.setName("SimulationThread");

this.controlPort = controlPort;
this.eventPort = eventPort;
this.radarThread = radarThread;

}

The other active threads in the simulation are also created as no-heap real-time
threads (NHRTs), but of slightly lower priority. See “Writing real-time threads” on
page 74 for the arrangement of the priorities.

The simulation has the option of running indefinitely, so that after a simulation has
completed it restarts. Because the simulation is composed of NHRTs, you can
choose ScopedMemory or ImmortalMemory. The sample application uses
ScopedMemory for the simulation because it is appropriate to exit the
ScopeMemoryArea that was allocated when the simulation finished and then
reenter it to wait for the next run. In this case, no state is carried over from one
run to the next.

Most classes are NHRT safe; however, most classes can be run in a manner that is
not NHRT safe. For example, if the DatagramSockets were kept in immortal
memory, or in an outer scoped memory area, problems might occur because they
are not designed to span memory areas. The sample application uses just the one
ScopedMemory area to prevent such problems.

Memory allocation in RTSJ
In RTSJ, you can allocate an object in a specific memory area in a number of ways
and it is not always obvious which of these to choose at any given point.

Each approach has some characteristics, which vary between implementations of
RTSJ, and make a difference to either the performance or the eventual memory
footprint. This section outlines the available options and suggests occasions where
they might be the most appropriate choice for allocating an object.

Static initializer

The simplest way to allocate an object in the immortal memory area is to allocate it
in a static initializer. The advantage is that you do not have to deal with the issues
of changing memory context, but the circumstances where this pattern is
appropriate are quite limited. This approach is efficient in that the amount of
immortal memory consumed is limited to that required for the object itself.

MemoryArea.newInstance(Class c)

This approach is straightforward if a thread is in a memory context and wants to
allocate an object in another area, which must already be in the scope stack of the
thread. The advantage is that you need access only to the class to be instantiated,
but the newInstance method must build an appropriate constructor. This pattern is
most appropriate if objects of a given class must be allocated infrequently, but
otherwise tends to show high memory usage.

MemoryArea.newInstance(Constructor c, Object[] args)

Again, a simple approach if a thread is in a memory context and wants to allocate
an object in another context, which must already be in the scope stack of the

Chapter 6. Developing applications 79

thread. In this case, you must pass a Constructor and some arguments and
assumes the responsibility of ensuring that Constructor is valid in the current
memory context. Because the newInstance method does not have to build a
Constructor, the memory usage is lower than newInstance(Class c) and thus this
pattern is more appropriate if objects are to be allocated more frequently and you
are willing to pay the price of allocating the constructor in advance and storing it
somewhere like ImmortalMemory.

MemoryArea.enter(Runnable r) followed by new <class>()

This approach makes the given MemoryArea the new default for allocations and
removes the need for reflection and the attendant Constructor objects. Hence it is
most appropriate if many objects are to be created because no additional memory
usage occurs above the object itself. This approach works only if the given area is
not already active in the scope stack of any thread. The requirement to build a
Runnable memory area makes this approach more complex than using
newInstance because you generally should pass parameters either on the Runnable
or through static or instance fields.

MemoryArea.executeInArea(Runnable r) followed by new
<class>()

Again, this approach makes the given MemoryArea the new default for allocations
and removes the need for reflection and the attendant Constructor objects. Hence it
is most appropriate if many objects are to be created because no additional
memory usage occurs above the object itself. You can use this approach if the
given area is already in the scope stack of the current thread and hence is more
flexible than MemoryArea.enter. The requirement to build a Runnable makes this
approach more complex than using newInstance because you generally should
pass parameters either on the Runnable or through static or instance fields.

Class.newInstance()

This approach builds the new instance in the current memory area and therefore
must be used with either MemoryArea.enter or executeInArea. No additional
memory usage occurs above the object itself.

Using the high-resolution timer
The real-time clock provides more precision that the clocks associated with the
standard JVM.

Before you begin

This example is based on RTJavaRadar.java class found in the
demo/realtime/sample_application.zip file.

About this task

Ordinary Java has limited ability for dealing with clocks and timers. The Real-Time
Specification for Java allows absolute times to be specific with nanosecond
precision and sufficient magnitude for wall-clock time.
javax.realtime.HighResolutionTime and its subclasses are used to represent time
with two components, milliseconds and nanoseconds.

80 IBM WebSphere Real Time for RT Linux: User Guide

WebSphere Real Time for RT Linux uses the support of the underlying operating
system to supply the high resolution time. Current® Linux kernels supply a clock
with, at best, 4 millisecond guaranteed precision. The Linux patches supplied with
WebSphere Real Time for RT Linux provide a clock with a precision of closer to 1
microsecond.

The RTJavaRadar class demonstrates the use of the high-resolution timer:
v �1� gets the real-time clock.
v �2� gets the current absolute time.
v �3� gets the nanosecond component of time. The accuracy of the real-time clock

means that using nanoseconds is reasonable.
v �4� gets the time before and after the ping.
v �5� returns the speed of descent of the lander.
v �6� makes the thread wait for 5 milliseconds before performing another

iteration.
public void run() {

// The following objects are created in advance and reused each
// iteration.
Clock rtClock = Clock.getRealtimeClock(); �1�
AbsoluteTime time = rtClock.getTime(); �2�

try {
double height = 0.0, lastheight;
long millis = time.getMilliseconds(), lastmillis;
long nanos = time.getNanoseconds(), lastnanos; �3�

while (this.running) {

lastmillis = millis;
lastnanos = nanos;
lastheight = height;

// Rather than use the time = rtClock.getTime() form, this
// method
// replaces the values in a preexisting AbsoluteTime object.
rtClock.getTime(time); �4�
millis = time.getMilliseconds();
nanos = time.getNanoseconds();

// We time the time it takes to send the ping and receive the
// pong.
this.radarPort.ping();

rtClock.getTime(time); �4�

height = (time.getMilliseconds() - millis)
/ demo.sim.RadarThread.timeScale;

height += ((time.getNanoseconds() - nanos) / 1.0e6) �5�
/ demo.sim.RadarThread.timeScale;

double difference = ((double) (millis - lastmillis)) / 1.0e3
+ ((double) (nanos - lastnanos)) / 1.0e9;

double speed = (height - lastheight) / difference;

this.myHeight = height;
this.mySpeed = speed;

try {
sleep(5); �6�

Chapter 6. Developing applications 81

} catch (InterruptedException e) {
// This is not important.

}
}

The preceding code can be compared with the following standard JVM code in the
JavaRadar class:

public void run() {
try {

double height = 0.0, lastheight;

long nanos = System.nanoTime(), lastnanos;
while (this.running) {

/* Set the height every x milliseconds */
Thread.sleep(5);
lastnanos = nanos;
lastheight = height;

nanos = System.nanoTime();

this.radarPort.ping();

// Time scale is height units per millisecond
height = ((System.nanoTime() - nanos) / 1.0e6)

/ demo.sim.RadarThread.timeScale;

double speed = (height - lastheight)
/ (((double) (nanos - lastnanos)) / 1.0e9);

this.myHeight = height;
this.mySpeed = speed;

}

The sample application
The sample application uses a series of examples to demonstrate the features of
WebSphere Real Time for RT Linux that can be used to improve the real-time
characteristics of Java programs.

The source files for the sample application are in the demo/realtime/
sample_application.zip file.

The sample consists of two main components:
v A simulation, a simple example of a lunar lander. The lander’s position is

defined by its height above the ground, derived from timed pulses, and its
horizontal distance from the landing area. See Figure 6 on page 83.
The simulation class is written using no-heap real-time threads (NHRTs) and is
not modified any further in this documentation.

v A controller that sends commands to the simulation. The controller sends radar
pings to judge the lander's height and control the rate of descent of the lander
based on this information. The controller also receives a stream of information
from the lander; for example, the lander's distance from the landing area.
The controller is written initially in standard Java. In “Modifying Java
applications” on page 74, it is developed into a real-time Java program

Depending on the outcome of the landing, the controller is sent one of two
messages: either crash or land.

Using the sample application you can perform these operations:

82 IBM WebSphere Real Time for RT Linux: User Guide

v Run both the simulation and the controller together to demonstrate a
combination of real-time and standard Java classes running together. For
information, see “Building the sample application” on page 84 and “Running the
sample application” on page 84, where you will also see output that you can
expect from the sample application.

Note: You can start both the simulation and the controller at the same time
using the LaunchBoth class.

v Compare the difference when using the Metronome Garbage Collector and the
standard Garbage Collector. For information, see “Running the sample
application without Real Time” on page 84 and “Running the sample application
with Metronome Garbage Collector” on page 86.

v Run the application using the ahead-of-time (AOT) complier. For information,
see “Running the sample application while using AOT” on page 87.

Control

Simulation

Radar

Controller Port

Simulation Port

Radar

Events Controller

Simulation

X

STRT
FIR[L/R/D] SNDV

Height
derived from
timed pulses

Landing site

PING

PONG

LAND CRSH

Figure 6. Diagram of the lunar lander

Chapter 6. Developing applications 83

This diagram shows the relationship of the modules provided in the sample. The
controller and simulation components communicate with each other through the
controller and simulation ports. The controller component has three threads:
Control, Radar, and Events. The simulation component has two threads: Simulation
and Radar. The Control thread starts the simulation, then sends firing messages to
the simulation component to control the direction of the lander. The Simulation
thread sends back values which represent its state. The Radar threads of each
component send PING and PONG messages to each other. The time between the
exchange of these messages is used by the Control thread to calculate the height of
the lander. The Simulation thread also sends appropriate ending events, either
crash or land, to the Events thread. The Events thread passes the ending events
back to the Control thread, which then ends the simulation.

Building the sample application
The sample application source code is provided for guidance. Preparation requires
unpacking and compilation of the Java source code before it can be run.

Procedure
1. Create a working directory.
2. Extract the sample application into your working directory:

unzip sample_application.zip

3. Create a new directory for your output:
mkdir classes

4. Compile the source.
a. Generate a list of the files:

find -name "*.java" > source

b. Compile the source:
javac -Xrealtime -Xlint:deprecated -g -d classes @source

c. Create a jar file of the class files:
jar cf demo.jar -C classes/ .

What to do next

You can now run the sample application.

Running the sample application
WebSphere Real Time provides a standard JVM as well as a real-time JVM, started
with the -Xrealtime command-line argument.

The sample application has two components, designed to be run in separate JVMs:
v The Simulation, which only runs in Real-Time Java.
v The Controller, which can run either non-Real-Time or Real-Time Java.

Running the Controller code in a variety of modes demonstrates the benefits of the
IBM Real-Time Java technology.

Running the sample application without Real Time
In this procedure, you run the sample application without taking advantage of
IBM WebSphere Real Time.

84 IBM WebSphere Real Time for RT Linux: User Guide

Before you begin

To run the sample application, you must first build the sample source code. See
“Building the sample application” on page 84 for more information.

Procedure
1. Start the simulation:

java -Xrealtime -classpath ./demo.jar -Xgc:scopedMemoryMaximumSize=11m
demo.sim.SimLauncher <port>

In this command, <port> is a deallocated port for the workstation.
2. Start the controller:

java -classpath ./demo.jar -mx300m demo.controller.JavaControlLauncher <host>
<port>

In this command, <host> is the hostname of the workstation running the
simulation, and <port> is the port specified in the previous step.

Results

The application produces a message showing that the simulation and the controller
have started:
SimLauncher: Waiting for connections...
Starting control thread...

Some point samples of the values in the controller are printed out to the console:
x=99.50, radar=199.11, y=198.34, vx=-0.71, vy=-0.43, timeSinceLast=0.19, targetVx=-6.01, targetVy=-9.00
x=95.50, radar=194.59, y=192.70, vx=-2.70, vy=-2.43, timeSinceLast=0.20, targetVx=-5.94, targetVy=-9.00
x=87.50, radar=186.57, y=183.06, vx=-4.70, vy=-4.40, timeSinceLast=0.20, targetVx=-5.77, targetVy=-9.00
x=76.46, radar=172.84, y=169.42, vx=-5.42, vy=-6.75, timeSinceLast=0.20, targetVx=-5.60, targetVy=-9.00
x=65.36, radar=155.58, y=151.84, vx=-5.50, vy=-9.19, timeSinceLast=0.20, targetVx=-5.57, targetVy=-9.00
x=54.36, radar=138.06, y=135.24, vx=-5.44, vy=-7.63, timeSinceLast=0.20, targetVx=-5.56, targetVy=-9.00
x=43.26, radar=120.57, y=117.22, vx=-5.67, vy=-9.62, timeSinceLast=0.20, targetVx=-5.52, targetVy=-9.00
x=32.36, radar=103.60, y=100.72, vx=-5.47, vy=-9.06, timeSinceLast=0.20, targetVx=-5.43, targetVy=-9.00
x=21.52, radar=84.60, y=82.86, vx=-5.32, vy=-9.09, timeSinceLast=0.20, targetVx=-5.60, targetVy=-9.00
x=10.72, radar=67.07, y=65.56, vx=-5.30, vy=-10.54, timeSinceLast=0.20, targetVx=-5.65, targetVy=-9.00
x=0.76, radar=51.08, y=49.78, vx=-4.30, vy=-7.52, timeSinceLast=0.20, targetVx=-0.50, targetVy=-9.00
x=-5.24, radar=37.07, y=35.94, vx=-2.30, vy=-8.26, timeSinceLast=0.20, targetVx=0.50, targetVy=-9.00
x=-7.24, radar=20.05, y=19.90, vx=-0.30, vy=-6.15, timeSinceLast=0.20, targetVx=0.50, targetVy=-9.00
x=-6.36, radar=2.68, y=2.80, vx=0.27, vy=-10.08, timeSinceLast=0.20, targetVx=0.50, targetVy=-9.00

Just before the simulation stops, an event summary message is issued:
Fire down transitions 141, fire horizontally transitions 141
LAND!

In addition to point samples and the event summary message, the controller
produces a graph called graph.svg in the same directory. The graph contains a plot
of the point samples. The graph shows the effect of garbage collection pauses on
the JavaRadar thread when running the application with a standard non-Real-Time
JVM. The data representing the Radar Height has spikes. The spikes are caused by
standard garbage collection pauses affecting the Controller application. On some
runs, the garbage collection pauses are long enough to cause failures, leading to
the message:
CRASH!

To see the pause times caused by garbage collection, add the -verbose:gc option to
the controller launch command:

Chapter 6. Developing applications 85

java -classpath ./demo.jar -verbose:gc -mx300m demo.controller.JavaControlLauncher
<host> <port>

Running the sample application with Metronome Garbage
Collector
You can run a standard Java application in a real-time environment without any
need to rewrite the code, by adding the -Xrealtime option. The option enables both
Real-Time Java language features, and the Metronome Garbage Collector.

Before you begin

To run the sample application, you must first build the sample source code. See
“Building the sample application” on page 84 for more information.

Procedure
1. Start the simulation:

java -Xrealtime -classpath ./demo.jar -Xgc:scopedMemoryMaximumSize=11m
demo.sim.SimLauncher <port>

In this command, <port> is a deallocated port on the workstation.
2. Start the controller:

java -Xrealtime -classpath ./demo.jar -mx300m
demo.controller.JavaControlLauncher <host> <port>

In this command, <host> is the hostname of the workstation running the
simulation, and <port> is the port specified in the previous step. Running both
JVMs on the same workstation can lead to less deterministic behavior. See
“Considerations” on page 24 for more information.

Results

The application runs and generates several outputs, including:
1. Messages showing that the simulation and the controller have started.
2. Point samples of the controller values.
3. A graph called graph.svg in the same directory, containing a plot of the point

samples.
4. An event summary message.

When running the application with Metronome garbage collection, the point
samples and corresponding graph tends to show:
v No spikes in the Radar Height data.
v Accurate tracking of the Real Height data.

The reason is that the Controller code is now running with shorter garbage
collection pauses.

Metronome garbage collection pauses are frequent, but typically less than 1
millisecond in duration. Non-real-time garbage collection pauses are fewer, but
typically last for tens or hundreds of milliseconds. The difference between the
pauses can be seen by adding the -verbose:gc option to the Controller run
command.

See “Using verbose:gc information” on page 135 for more information about the
verbose garbage collection output.

86 IBM WebSphere Real Time for RT Linux: User Guide

Running the sample application while using AOT
This procedure runs a standard Java application in a real-time environment while
using the ahead-of-time (AOT) compiler, without the need to rewrite code. Use this
sample to compare running the same application while using the JIT compiler.

See “Using compiled code with WebSphere Real Time for RT Linux” on page 40
for more details about ahead-of-time compilation.

Before you begin

To run the sample application, you must first build the sample source code. See
“Building the sample application” on page 84 for more information.

About this task

The ahead-of-time compiler compiles your Java application to native code before
running it. You can predict more precisely how the application runs, because there
are no interruptions caused by just-in-time (JIT) compilation.

Procedure
1. Convert the application bytecodes into native code.

a. The conversion takes place by first running the sample with the normal JIT
compiler.
java -Xrealtime -Xjit:verbose={precompile},vlog=./sim.aotOpts \

-classpath ./demo.jar -Xgc:scopedMemoryMaximumSize=11m
demo.sim.SimLauncher <port>

In this command, <port> is a deallocated port for the workstation.
b. In a different window, run the application.

java -Xrealtime -Xjit:verbose={precompile},vlog=./control.aotOpts \
-classpath ./demo.jar -Xmx300m demo.controller.JavaControlLauncher
localhost <port>

In this command, <port> is the port specified in the previous step. The
application outputs results similar to the following messages:
Fire down transitions 141, fire horizontally transitions 141

and:
Land!

c. Combine the AOT options files created in the previous steps.
cat sim.aotOpts.20081014.234958.13205 control.aotOpts.20081014.234958.13205
> sample.aotOpts

The names used for the log files created in the previous steps have date and
process ID information appended to the file name. The format for the file
name is specified by the vlog= option. For example, vlog=sim.aotOpts
generates a file name similar to sim.aotOpts.20081014.234958.13205:

d. Compile the files in the sample.aotOpts file in realtime.jar,vm.jar rt.jar,
and the application demo.jar. When using shared class caches, the name of
the cache must not exceed 53 characters.

Chapter 6. Developing applications 87

admincache -Xrealtime -populate -cacheName "sample" -aotFilterFile
sample.aotOpts -classpath ./demo.jar \
$JAVA_HOME/jre/lib/i386/realtime/jclSC160/vm.jar \
$JAVA_HOME/jre/lib/i386/realtime/jclSC160/realtime.jar \
$JAVA_HOME/jre/lib/rt.jar \
./demo.jar

The compilation results are reported:
J9 Java(TM) admincache 1.0
Licensed Materials - Property of IBM

(c) Copyright IBM Corp. 1991, 2008 All Rights Reserved
IBM is a registered trademark of IBM Corp.
Java and all Java-based marks and logos are trademarks or registered
trademarks of Oracle Corporation

JVMSHRC256I Persistent shared cache "sample" has been destroyed
Converting files
Converting /team/mstoodle/demo/sdk/jre/lib/i386/realtime/jclSC160/vm.jar into shared class cache
Succeeded to convert jar file /team/mstoodle/demo/sdk/jre/lib/i386/realtime/jclSC160/vm.jar
Converting /team/mstoodle/demo/sdk/jre/lib/i386/realtime/jclSC160/realtime.jar into shared class cache
Succeeded to convert jar file /team/mstoodle/demo/sdk/jre/lib/i386/realtime/jclSC160/realtime.jar
Converting /team/mstoodle/demo/sdk/jre/lib/rt.jar into shared class cache
Succeeded to convert jar file /team/mstoodle/demo/sdk/jre/lib/rt.jar
Converting /team/mstoodle/demo/demo.jar into shared class cache
Succeeded to convert jar file /team/mstoodle/demo/demo.jar

Processing complete

Note: The line:
JVMSHRC256I Persistent shared cache "sample" has been destroyed

means that any existing cache called "sample" is destroyed by this
command, to create the specified cache.

e. Display the contents of the populated cache.
admincache -Xrealtime -cacheName "sample" -printStats

2. Start the simulation:
java -Xrealtime -Xnojit -Xmx300m -Xshareclasses:name="sample" \

-classpath ./demo.jar -Xgc:scopedMemoryMaximumSize=11m \
demo.sim.SimLauncher <port>

In this command, <port> is a deallocated port for this workstation.
3. Start the controller:

java -Xrealtime -Xnojit -Xmx300m -Xshareclasses:name="sample" \
-classpath ./demo.jar \
demo.controller.JavaControlLauncher <host> <port>

In this command, <host> is the hostname of the workstation running the
simulation, and <port> is the port specified in the previous step. Running both
JVMs on the same workstation can lead to less deterministic behavior. See
“Considerations” on page 24 for more information.

Results

The application runs and generates several outputs, including:
1. Messages showing that the simulation and the controller have started.
2. Point samples of the controller values.

88 IBM WebSphere Real Time for RT Linux: User Guide

3. A graph called graph.svg in the same directory, containing a plot of the point
samples.

4. An event summary message.

When running the application with ahead-of-time compilation, the point samples
and corresponding graph tends to show:
v No spikes in the Radar Height data.
v Accurate tracking of the Real Height data.

The reason is that the Controller code is now running with shorter garbage
collection pauses and no just-in-time compilation interruptions.

A benefit of using the shared class cache to run this application is that the
controller and the simulation JVMs share some of the memory used by classes
loaded by both JVMs.

The sample real-time hash map
WebSphere Real Time for RT Linux includes HashMap and HashSet
implementations that provide more consistent performance for the put method
than the standard HashMap in the IBM SDK for Java 7.

The standard java.util.HashMap that IBM provides works well for high throughput
applications. It also helps with applications that know the maximum size their
hash map needs to grow to. For applications that need a hash map that could
grow to variable sizes, depending on usage, there is a potential performance
problem with the standard hash map. The standard hash map provides good
response times for adding new entries into the hash map using the put method.
However, when the hash map fills up, a larger backing store must be allocated.
This means that the entries in the current backing store must be migrated. If the
hash map is large, the time to perform a put could also be large. For example, the
operation could take several milliseconds.

WebSphere Real Time for RT Linux includes a sample real-time hash map. It
provides the same functional interface as the standard java.util.HashMap, but
enables much more consistent performance for the put method. Instead of creating
a backing store and migrating all the entries when the hash map fills up, the
sample hash map creates an additional backing store. The new backing store is
chained to the other backing stores in the hash map. The chaining initially causes a
slight performance reduction while the empty backing store is allocated and
chained to the other backing stores. Once the backing hash map is updated, it is
faster than having to migrate all the entries. A disadvantage of the real-time hash
map is that the get, put and remove operations are slightly slower. The operations
are slower because each look-up must to proceed through a set of backing hash
maps instead of just one.

To try out the real-time hash map, add the RTHashMap.jar file to the start of your
boot class path. If you installed WebSphere Real Time for RT Linux into the
directory $WRT_ROOT, then add the following option to use the real-time hash map
with your application, instead of the standard hash map:
-Xbootclasspath/p:$WRT_ROOT/demo/realtime/RTHashMap.jar

The source and class files for the real-time hash map implementation are included
in the demo/realtime/RTHashMap.jar file. In addition, a real time
java.util.LinkedHashMap and java.util.HashSet implementation are also provided.

Chapter 6. Developing applications 89

Developing WebSphere Real Time for RT Linux applications using
Eclipse

Using Eclipse provides you with a fully-featured IDE when developing your
real-time applications.

Before you begin

If this is the first time that you have used the Eclipse application development
environment to develop real-time applications, use this procedure to configure
your environment.

WebSphere Real Time for RT Linux supplies the standard Oracle javac compiler.
There are no restrictions on which compiler you use, but it must produce valid
Java 5.0 class files. However, the javax.realtime.* Java classes have to be on the
build path.

About this task

To develop your applications on Eclipse, follow these instructions:

Procedure
1. Download Eclipse from http://www.eclipse.org/downloads/. It is

recommended that you use Eclipse 3.1.2 for correct Java 5.0 compilation.
2. Download IBM SDK and Runtime Environment for Linux platforms, Java 2

Technology Edition, Version 5.0 compliant JVM for running Eclipse.
3. Extract this file, opt/IBM/javawrt3/jre/lib/i386/realtime/jclSC160/

realtime.jar, from the WebSphere Real Time for RT Linux package.
4. Open Eclipse and create a project. Click File > New. Select Java project from

the New Project panel.
5. Click Next to display the New Java Project panel.

a. Enter a project name, for example, RTSJ-Tests.
b. Check that the JDK compiler is set to 5.0.

6. Click Finish.
7. Create a working directory and import the opt/IBM/javawrt3/jre/lib/i386/

realtime/jclSC160/realtime.jar file.
8. Click File > New > Folder to open the New Folder panel. Enter a new folder

name, for example, deplib.
9. Click Finish.

10. To import your realtime.jar file, click File > Import to open the Import
panel.

11. Click File System and click Next.
12. Open the opt/IBM/javawrt3/jre/lib/i386/realtime/jclSC160/ directory on

the filesystem where the JVM was unpacked.
13. Select the check box next to the realtime.jar file, specify a folder to import

into, for example RTSJ-Tests/deplib, and ensure that the Create selected
folders only option is selected.

14. Click Finish.
15. Add the jar file to the library path. Right-click your project and click

Properties to open the Properties panel.
16. Click Java Build Path and the Libraries tab. Click Add Jars.

90 IBM WebSphere Real Time for RT Linux: User Guide

http://www.eclipse.org/downloads/

17. Click realtime.jar under your project directory. Click OK.

Results

If this procedure is successful, the realtime.jar file appears in the list of .jar files on
the Libraries tab.

Example

Eclipse can use the realtime.src.jar to present additional information on the RTSJ
classes. To do this, open the properties window for the imported realtime.jar file,
click Java Source Attachment and enter in Location path: the location of the
realtime.src.jar file.

What to do next

If you want to build applications by using Apache Ant with Eclipse, add the
realtime.jar file to the class path in your Ant build script. For example:
<property name="rtsj.src" location="." />
<property name="rtsj.deplib" location="deplib" />
<property name="rtsj.jar.dir" location="build/rtsj-jar.dir" />

<!-- Generate .class files for this package -->
<target name="compile" depends="init">
<javac destdir="${rtsj.jar.dir}"
srcdir="${rtsj.src}"
target="1.5"
classpath="${rtsj.deplib}/realtime.jar:${rtsj.src}"
debug="true"/>
</target>

This is only a part of an ant build script.

Debugging your applications
Using the Eclipse Application developer you can debug your applications either
locally or remotely.

About this task

To debug your real-time application remotely, the JVM being debugged requires
the following option.
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=10100

Procedure
1. In the Linux environment where your application is running, enter:

java -Xrealtime -agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=10100

where:
v server=y indicates that the JVM is accepting connections from debuggers.
v suspend=y makes the JVM wait for a debugger to attach before running.
v address=10100 is the port number to which the debugger should attach to

the JVM. This number should normally be above 1024.

The JVM displays the following message:
Listening for transport dt_socket at address: 10100

2. Open your application in Eclipse and select Debug.

Chapter 6. Developing applications 91

3. A new configuration for debugging remote applications should be created. You
need only to create one if an application in the same project is run, and is
listening on the same port for each run.

4. When you have created the configuration, fill in the name of the
Configurations, the name of the project that contains the application you are
debugging, the hostname of the workstation where the application is running,
and the port number you passed in the -agentlib options.

5. Click Debug to start the debugging session. The Debug perspective should be
open for you to view the state of the remotely debugged JVM.

Running Eclipse with the JVM
This section explains how to run Eclipse with the WebSphere Real Time for RT
Linux JVM.

To run Eclipse with the JVM, specify the following items with the eclipse
command:
v The fully qualified directory to the Java executable file of the WebSphere Real

Time for RT Linux JVM that you intend to use
v The -Xrealtime JVM option
v The size of the Immortal Memory that you want Eclipse to use. The size should

be at least 128M.

For example:
eclipse -vm $JAVA_HOME/jre/bin/java -vmargs -Xrealtime -Xgc:immortalMemorySize=128M

Note: The Eclipse SDK does not take advantage of the various real-time memory
options which are available to WebSphere Real Time for RT Linux applications.
One consequence of this behavior is that Immortal Memory can become exhausted,
especially when Eclipse is used for many hours or days without being restarted. If
an OutOfMemory error occurs, you can increase the value of the
-Xgc:immortalMemorySize option to increase the amount of Immortal Memory that
you want Eclipse to use.

92 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 7. Performance

WebSphere Real Time for RT Linux is optimized for consistently short GC pauses
rather than the highest throughput performance or smallest memory footprint.

On systems where hyperthreading is supported, you must ensure that it is not
enabled. The reason is to avoid adverse performance effects when using
WebSphere Real Time for RT Linux.

Reducing timing variability and support for the Real-Time Specification for Java
(RTSJ) required some standard IBM Java runtime optimizations to be disabled.
Consequently, a reduction in overall performance is likely to be observed when a
standard Java application is run with the -Xrealtime parameter.

Performance on certified hardware configurations

Certified systems have sufficient clock granularity and processor speed to support
WebSphere Real Time for RT Linux performance goals. For example, a well-written
application running on a system that is not overloaded, and with an adequate
heap size, would normally experience GC pause times that are well below 1
millisecond, typically about 500 microseconds. During GC cycles, an application
with default environment settings is not paused for more than 30% of elapsed time
during any sliding 10 millisecond window. The collective time spent in GC pauses
over any 10 millisecond period normally totals less than 3 milliseconds.

Reducing timing variability

The two main sources of variability in a standard JVM are handled in WebSphere
Real Time for RT Linux as follows:
v Java code preparation: loading and Just-In-Time (JIT) compilation is dealt with

by Ahead-Of-Time (AOT) compilation. See “Using the AOT compiler” on page
43.

v Garbage Collection pauses: the potentially long pauses from standard Garbage
Collector modes are avoided by using the Metronome Garbage Collector. See
“Using the Metronome Garbage Collector” on page 68.

Class data sharing between JVMs for non-Real-Time mode
Class sharing is supported in non-real-time mode, but operates differently than in
real-time mode.

You can share class data between Java Virtual Machines (JVMs) by storing it in a
memory-mapped cache file on disk. Sharing reduces the overall virtual storage
consumption when more than one JVM shares a cache. Sharing also reduces the
startup time for a JVM after the cache has been created. The shared class cache is
independent of any running JVM and persists until it is deleted.

A shared cache can contain:
v Bootstrap classes
v Application classes
v Metadata that describes the classes

© Copyright IBM Corp. 2003, 2014 93

v Ahead-of-time (AOT) compiled code

Note: A real-time shared classes cache cannot be removed by a non real-time
JVM.

94 IBM WebSphere Real Time for RT Linux: User Guide

|
|

Chapter 8. Security

This section contains important information about security.

Security considerations for the shared class cache
The shared class cache is designed for ease of cache management and usability, but
the default security policy might not be appropriate.

When using the shared class cache, you must be aware of the default permissions
for new files so that you can improve security by restricting access.

File Default permissions

new shared caches read permissions for group and other

javasharedresources directory world read, write, and execute permission

You require write permission on both the cache file and the cache directory to
destroy or grow a cache.

Changing the file permissions on the cache file

To limit access to a shared class cache, you can use the chmod command.

Change required Command

Limit access to the user and group chmod 770 /tmp/javasharedresources

Limit access to the user chmod 700 /tmp/javasharedresources

Limit the user to read and write access only
for a particular cache

chmod 600 /tmp/javasharedresources/<file
for shared cache>

Limit the user and group to read and write
access only for a particular cache

chmod 660 /tmp/javasharedresources/<file
for shared cache>

See “Creating a Real-Time Shared Class Cache” on page 44 for more information
about creating a shared class cache.

Connecting to a cache that you do not have permission to
access

If you try to connect to a cache that you do not have the appropriate access
permissions for, you see an error message:
JVMSHRC226E Error opening shared class cache file
JVMSHRC220E Port layer error code = -302
JVMSHRC221E Platform error message: Permission denied
JVMJ9VM015W Initialization error for library j9shr25(11): JVMJ9VM009E J9VMDllMain
failed
Could not create the Java virtual machine.

© Copyright IBM Corp. 2003, 2014 95

96 IBM WebSphere Real Time for RT Linux: User Guide

Chapter 9. Troubleshooting and support

Troubleshooting and support for WebSphere Real Time for RT Linux
v “General problem determination methods”
v “Troubleshooting OutOfMemory Errors” on page 103
v “Using diagnostic tools” on page 112

General problem determination methods
Problem determination helps you understand the kind of fault you have, and the
appropriate course of action.

When you know what kind of problem you have, you might do one or more of the
following tasks:
v Fix the problem.
v Find a good workaround.
v Collect the necessary data with which to generate a bug report to IBM.

Linux problem determination
This section describes problem determination on Linux.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems on Linux, covering:
v Setting up and checking your Linux environment
v General debugging techniques
v Diagnosing crashes
v Debugging hangs
v Debugging memory leaks
v Debugging performance problems

You can find this information here: IBM SDK for Java 7 - Linux problem
determination.

The following information is supplementary for IBM WebSphere Real Time for RT
Linux

Setting up and checking your Linux environment
On IBM WebSphere Real Time for RT Linux, check that the JVM is configured
correctly to generate a system dump.

Linux system dumps (core files)

When a crash occurs, the most important diagnostic data to obtain is the Linux
system dump (core file). To ensure that this file is generated, you must check your
operating system settings, and your available disk space, as described in the IBM
SDK for Java V7 user guide.

© Copyright IBM Corp. 2003, 2014 97

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/pd.html

Java virtual machine settings
The JVM must be configured to generate core files when a crash occurs.
Run java -Xrealtime -Xdump:what on the command line. The output from
this option is:
-Xdump:system:

events=gpf+abort+traceassert+corruptcache,
label=/mysdk/sdk/jre/bin/core.%Y%m%d.%H%M%S.%pid.dmp,
range=1..0,
priority=999,
request=serial

The values shown are the default settings. At least events=gpf must be set
to generate a core file when a crash occurs. You can change and set options
with the command-line option -Xdump:system[:name1=value1,name2=value2
...]

General debugging techniques
Because Java thread names are visible in the operating system, you can use the ps
command to help with debugging. When using tracing tools, you must use the
correct commands for IBM WebSphere Real Time for RT Linux.

Examining process information

The output you can expect to see when running the ps command on IBM
WebSphere Real Time for RT Linux is:

ps -eLo pid,tid,rtprio,comm,cmd
29286 29286 - java jre/bin/java -Xrealtime -jar example.jar
29286 29287 - main jre/bin/java -Xrealtime -jar example.jar
29286 29290 88 Signal Reporter jre/bin/java -Xrealtime -jar example.jar
29286 29295 - JIT Compilation jre/bin/java -Xrealtime -jar example.jar
29286 29296 13 JIT Sampler jre/bin/java -Xrealtime -jar example.jar
29286 29297 - Signal Dispatch jre/bin/java -Xrealtime -jar example.jar
29286 29298 - Finalizer maste jre/bin/java -Xrealtime -jar example.jar
29286 29299 11 Gc Slave Thread jre/bin/java -Xrealtime -jar example.jar
29286 29300 89 Metronome GC Al jre/bin/java -Xrealtime -jar example.jar
29286 29301 - Thread-2 jre/bin/java -Xrealtime -jar example.jar
29286 29302 43 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29303 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29304 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29305 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29306 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29307 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29311 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29312 83 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29313 85 Realtime AEH No jre/bin/java -Xrealtime -jar example.jar
29286 29314 85 Realtime AEH No jre/bin/java -Xrealtime -jar example.jar
29286 29315 87 Realtime Schedu jre/bin/java -Xrealtime -jar example.jar
29286 29316 79 Realtime AEH Se jre/bin/java -Xrealtime -jar example.jar
29286 29317 85 Realtime Non-he jre/bin/java -Xrealtime -jar example.jar
29286 29318 83 Realtime Heap T jre/bin/java -Xrealtime -jar example.jar
29286 29319 83 Realtime Heap T jre/bin/java -Xrealtime -jar example.jar
29286 29321 45 RealtimeThread- jre/bin/java -Xrealtime -jar example.jar
29286 29343 43 RealtimeThread- jre/bin/java -Xrealtime -jar example.jar
29286 29345 - stdout reader j jre/bin/java -Xrealtime -jar example.jar
29286 29346 - stderr reader j jre/bin/java -Xrealtime -jar example.jar

e Selects all processes.

L Shows threads.

o Provides a pre-defined format of columns to display. The columns
specified are the process ID, thread ID, scheduling policy, real-time thread
priority, and the command associated with the process. This information is

98 IBM WebSphere Real Time for RT Linux: User Guide

useful for understanding what threads in your application as well as the
virtual machine are running at a given time.

Tracing tools

Three tracing tools on Linux are strace, ltrace, and mtrace. The command man
strace displays a full set of available options.

strace
The strace tool traces system calls. You can either use it on a process that is
already available, or start it with a new process. strace records the system calls
made by a program and the signals received by a process. For each system call,
the name, arguments, and return value are used. strace allows you to trace a
program without requiring the source (no recompilation is required). If you use
strace with the -f option, it will trace child processes that have been created as
a result of a forked system call. You can use strace to investigate plug-in
problems or to try to understand why programs do not start properly.

To use strace with a Java application, type strace java -Xrealtime
<class-name>.

You can direct the trace output from the strace tool to a file by using the -o
option.

ltrace
The ltrace tool is distribution-dependent. It is very similar to strace. This tool
intercepts and records the dynamic library calls as called by the executing
process. strace does the same for the signals received by the executing process.

To use ltrace with a Java application, type ltrace java -Xrealtime
<class-name>

mtrace
mtrace is included in the GNU toolset. It installs special handlers for malloc,
realloc, and free, and enables all uses of these functions to be traced and
recorded to a file. This tracing decreases program efficiency and should not be
enabled during normal use. To use mtrace, set IBM_MALLOCTRACE to 1,
and set MALLOC_TRACE to point to a valid file where the tracing
information will be stored. You must have write access to this file.

To use mtrace with a Java application, type:
export IBM_MALLOCTRACE=1
export MALLOC_TRACE=/tmp/file
java -Xrealtime <class-name>
mtrace /tmp/file

Diagnosing crashes
When gathering information about running processes and the Java environment
prior to a crash, follow these guidelines.

Gathering process information

When researching what was happening before the crash occurred, use gdb and the
bt command to display the stack trace of the failing thread, instead of analyzing
the core file.

Chapter 9. Troubleshooting and support 99

Finding out about the Java environment

Use Javadump to determine what each thread was doing and which Java methods
were being run. Match function addresses against library addresses to determine
the source of code running at various points.

Use the -verbose:gc option to look at the state of the Java heap and the Immortal
and Scoped Memory areas, . Ask these questions:
v Was there a shortage of memory in one of the memory areas that could have

caused the crash?
v Did the crash occur during garbage collection, indicating a possible garbage

collection fault?
v Did the crash occurred after garbage collection, indicating a possible memory

corruption?

Debugging performance problems
When debugging performance problems, consider these specific items for IBM
WebSphere Real Time for RT Linux in addition to the topics in the IBM SDK for
Java V7 user guide.

Sizing memory areas

The JVM can be tuned by varying the sizes of the heap, immortal and scoped
memory. Choose the correct size to optimize performance. Using the correct size
can make it easier for the Garbage Collector to provide the required utilization.

For more information about varying the size of the memory areas, see
“Troubleshooting the Metronome Garbage Collector” on page 134.

JIT compilation and performance

When using the JIT, you should consider the implications to real-time behavior.

If you require predictable behavior but also need better performance then you
should consider using ahead-of-time (AOT) compilation. For further information
see “Using compiled code with WebSphere Real Time for RT Linux” on page 40.

Known limitations on Linux
Linux has been under rapid development and there have been various issues with
the interaction of the JVM and the operating system, particularly in the area of
threads.

Note the following limitations that might be affecting your Linux system.

Threads as processes

If the number of Java threads exceeds the maximum number of processes allowed,
your program might:
v Get an error message
v Get a SIGSEGV error
v Stop

For more information, see The Volano Report at http://www.volano.com/report/
index.html.

100 IBM WebSphere Real Time for RT Linux: User Guide

http://www.volano.com/report/index.html
http://www.volano.com/report/index.html

Floating stacks limitations

If you are running without floating stacks, regardless of what is set for -Xss, a
minimum native stack size of 256 KB for each thread is provided.

On a floating stack Linux system, the -Xss values are used. If you are migrating
from a non-floating stack Linux system, ensure that any -Xss values are large
enough and are not relying on a minimum of 256 KB.

glibc limitations

If you receive a message indicating that the libjava.so library could not be loaded
because of a symbol not found (such as __bzero), you might have an earlier
version of the GNU C Runtime Library, glibc, installed. The SDK for Linux thread
implementation requires glibc version 2.3.2 or greater.

Font limitations

When you are installing on a Red Hat system, to allow the font server to find the
Java TrueType fonts, run (on Linux IA32, for example):
/usr/sbin/chkfontpath --add opt/IBM/javawrt3/jre/lib/fonts

You must do this at installation time and you must be logged on as “root” to run
the command. For more detailed font issues, see the Linux SDK and Runtime
Environment User Guide.

Performance issues on Linux Red Hat MRG kernels

A configuration issue with Red Hat MRG kernels can cause unexpected pauses to
application threads when WebSphere Real Time starts with verbose garbage
collection enabled. These pauses are not reported in the verbose GC output, but
can last several milliseconds, depending on the network configuration. JVMs
started from remotely defined LDAP users are affected the most, because the name
service cache daemon (nscd) is not started, causing network delays. Solve the
problem by starting nscd. Follow these steps to check on the status of the nscd
service and correct the problem:
1. Check that the nscd daemon is running by typing the command:

/sbin/service nscd status

If the daemon is not running you see the following message:
nscd is stopped

2. As root user, start the nscd service with the following command:
/sbin/service nscd start

3. As root user, change the startup information for the nscd service with the
following command:
/sbin/chkconfig nscd on

The nscd process is now running, and starts automatically after reboot.

NLS problem determination
The JVM contains built-in support for different locales.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with NLS, covering:

Chapter 9. Troubleshooting and support 101

v Overview of fonts
v Font utilities
v Common NLS problems and possible causes

You can find this information here: IBM SDK for Java 7 - NLS problem
determination.

ORB problem determination
One of your first tasks when debugging an ORB problem is to determine whether
the problem is in the client-side or in the server-side of the distributed application.
Think of a typical RMI-IIOP session as a simple, synchronous communication
between a client that is requesting access to an object, and a server that is
providing it.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with ORB, covering:
v Identifying an ORB problem
v Interpreting the stack trace
v Interpreting ORB traces
v Common problems
v IBM ORB service: Collecting data

You can find this information here: IBM SDK for Java 7 - ORB problem
determination.

The following information is supplementary for IBM WebSphere Real Time for RT
Linux.

IBM ORB service: collecting data

When collecting the Java version output for service, run the following command:
java -Xrealtime -version

Preliminary tests

When a problem occurs, the ORB might generate a org.omg.CORBA.* exception that
includes:
v text to indicate the cause
v a minor code
v a completion status

Before you assume that the ORB is the cause of the problem, check these items:
v The scenario can be reproduced in a similar configuration.
v The JIT is disabled.
v No AOT compiled code is being used

Other actions include:
v Turn off additional processors.
v Turn off Simultaneous Multithreading (SMT) where possible.
v Eliminate memory dependencies with the client or server. The lack of physical

memory can be the cause of slow performance, apparent hangs, or crashes. To
remove these problems, ensure that you have a reasonable headroom of memory.

102 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/nls.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/orbpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/problem_determination/orbpd.html

v Check physical network problems such as firewalls, communication links,
routers, and DNS name servers. These are the major causes of CORBA
COMM_FAILURE exceptions. As a test, ping your own workstation name.

v If the application is using a database such as DB2®, switch to the most reliable
driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is
slower and uses sockets, but is more reliable.

Troubleshooting OutOfMemory Errors
Dealing with OutOfMemoryError exceptions, memory leaks, and hidden memory
allocations.

For general troubleshooting information on the Metronome Garbage Collector, see
“Troubleshooting the Metronome Garbage Collector” on page 134.

Diagnosing OutOfMemoryErrors
Diagnosing OutOfMemoryError exceptions in Metronome Garbage Collector can be
more complex than in a standard JVM because of the periodic nature of the
garbage collector.

The characteristics of the different types of heap are described in “Memory
management” on page 13. In general, an RTSJ application requires approximately
20% more heap space than a standard Java application.

By default, the JVM produces the following diagnostic output when an uncaught
OutOfMemoryError occurs:
v A snap dump; see “Using dump agents” on page 114.
v A Heapdump; see “Using Heapdump” on page 123.
v A Javadump; see “Using Javadump” on page 118
v A system dump; see “Using system dumps and the dump viewer” on page 126.

The dump file names are given in the console output:

The Java backtrace shown on the console output, and also available in the
Javadump, indicates where in the Java application the OutOfMemoryError
occurred. The next step is to find out which RTSJ memory area is full. The JVM
memory management component issues a tracepoint that gives the size, class block
address, and memory space name of the failing allocation. You find this tracepoint
in the snap dump:

The tracepoint ID and data fields might vary from that shown, depending on the
type of object being allocated. In this example, the tracepoint shows that the

JVMDUMP006I Processing dump event "systhrow", detail "java/lang/OutOfMemoryError" - please wait.
JVMDUMP007I JVM Requesting Snap dump using ’Snap.20081017.104217.13161.0001.trc’
JVMDUMP010I Snap dump written to Snap.20081017.104217.13161.0001.trc
JVMDUMP007I JVM Requesting Heap dump using ’heapdump.20081017.104217.13161.0002.phd’
JVMDUMP010I Heap dump written to heapdump.20081017.104217.13161.0002.phd
JVMDUMP007I JVM Requesting Java dump using ’javacore.20081017.104217.13161.0003.txt’
JVMDUMP010I Java dump written to javacore.20081017.104217.13161.0003.txt
JVMDUMP013I Processed dump event "systhrow", detail "java/lang/OutOfMemoryError".

<< lines omitted... >>
09:42:17.563258000 *0xf2888e00 j9mm.101 Event J9AllocateIndexableObject() returning NULL! 80
bytes requested for object of class 0xf1632d80 from memory space ’Metronome’ id=0xf288b584

Chapter 9. Troubleshooting and support 103

allocation failure occurred when the application attempted to allocate a 33.6 MB
object of type class 0x81312d8 in the Metronome heap, memory segment
id=0x809c5f0.

You can determine which RTSJ memory area is affected by looking at the memory
management information in the Javadump:
NULL --
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STMEMTYPE Object Memory
NULL region start end size name
1STHEAP 0xF288B584 0xF2A1C000 0xF6A1C000 0x04000000 Default
NULL
1STMEMUSAGE Total memory available: 67108864 (0x04000000)
1STMEMUSAGE Total memory in use: 66676824 (0x03F96858)
1STMEMUSAGE Total memory free: 00432040 (0x000697A8)
NULL
NULL region start end size name
1STHEAP 0xF288B5A4 0xF17FF008 0xF27FF008 0x01000000 Immortal
NULL
1STMEMUSAGE Total memory available: 16777216 (0x01000000)
1STMEMUSAGE Total memory in use: 00450816 (0x0006E100)
1STMEMUSAGE Total memory free: 16326400 (0x00F91F00)
NULL
1STSEGTYPE Internal Memory
NULL segment start alloc end type size
1STSEGMENT 0x0808DA48 0x0814A0A8 0x0814A0A8 0x0815A0A8 0x01000040 0x00010000
1STSEGMENT 0x0808DB50 0x08131EB8 0x08131EB8 0x08141EB8 0x01000040 0x00010000
<< lines removed for clarity >>

You can determine the type of object being allocated by looking at the classes
section of the Javadump:
NULL --
0SECTION CLASSES subcomponent dump routine
NULL =================================
<< lines omitted... >>
1CLTEXTCLLOD ClassLoader loaded classes
2CLTEXTCLLOAD Loader *System*(0xF182BB80)
<< lines omitted... >>
3CLTEXTCLASS [C(0xF1632D80)

Information in the Javadump confirms that the attempted allocation was for a
character array, in the normal heap (ID=0xF288B584) and that the total allocated
size of the heap, indicated by the appropriate 1STHEAP line, is 67108864 decimal
bytes or 0x04000000 hex bytes, or 64 MB.

In this example, the failing allocation is large in relation to the total heap size. If
your application is expected to create 33 MB objects, the next step is to increase the
size of the heap, using the -Xmx option.

It is more common for the failing allocation to be small in relation to total heap
size. This is because of previous allocations filling up the heap. In these cases, the
next step is to use the Heapdump to investigate the amount of memory allocated
to existing objects.

The Heapdump is a compressed binary file containing a list of all objects with their
object class, size, and references. Analyze the Heapdump using the IBM
Monitoring and Diagnostic Tools for Java - Memory Analyzer tool, which is
available for download from the IBM Support Assistant (ISA).

104 IBM WebSphere Real Time for RT Linux: User Guide

http://www.ibm.com/software/support/isa/

Using MDD4J, you can load a Heapdump and locate tree structures of objects that
are suspected of consuming large amounts of heap space. The tool provides
various views for objects on the heap. For example, MDD4J can show a view that
details likely leak suspects, and gives the top five objects and packages
contributing to the heap size. Selecting the tree view gives further information
about the nature of the leaking container object.

By default, a single Heapdump file containing all objects in all RTSJ memory
spaces is produced. Use the command-line option -Xdump:heap:request=multiple
to request a separate Heapdump for each memory space. With multiple dumps,
you can examine just the set of objects that are allocated in a specific memory area.
You identify the Heapdumps by the file name given on the console output:

How the IBM JVM manages memory
The IBM JVM requires memory for several different components, including
memory regions for classes, compiled code, Java objects, Java stacks, and JNI
stacks. Some of these memory regions must be in contiguous memory. Other
memory regions can be segmented into smaller memory regions and linked
together.

Dynamically loaded classes and compiled code are stored in segmented memory
regions for dynamically loaded classes. Classes are further subdivided into
writable memory regions (RAM classes) and read-only memory regions (ROM
classes). At run time, the class cache is memory mapped, but not necessarily
loaded, into a contiguous memory region on application startup. As classes are
referenced by the application, classes and compiled code in the class cache are
mapped into storage. The ROM component of the class is shared between multiple
processes referencing this class. The RAM component of the class is created in the
segmented memory regions for dynamically loaded classes when the class is first
referenced by the JVM. AOT-compiled code for the methods of a class in the class
cache are copied into an executable dynamic code memory region, because this
code is not shared by processes. Classes that are not loaded from the class cache
are similar to cached classes, except that the ROM class information is created in
segmented memory regions for dynamically loaded classes. Dynamically generated
code is stored in the same dynamic code memory regions that hold AOT code for
cached classes.

All Java objects are stored in the standard heap memory when running the JVM
without the -Xrealtime option. If the -Xrealtime option is used, objects can also be
allocated out of two additional memory regions called immortal memory and
scoped memory.

The stack for each Java thread can span a segmented memory region. The JNI
stack for each thread occupies a contiguous memory region.

JVMDUMP006I Processing Dump Event "uncaught", detail "java/lang/OutOfMemoryError" - Please Wait.
<< lines omitted... >>
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Default0809DCD8-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Default0809DCD8-0002.phd
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Immortal0809DCF4-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Immortal0809DCF4-0002.phd
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Scope0809DD10-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Scope0809DD10-0002.phd
<< lines omitted... >>
JVMDUMP013I Processed Dump Event "uncaught", detail "java/lang/OutOfMemoryError".
Exception in thread "RTJ Memory Consumer (thread_type=Realtime)" java.lang.OutOfMemoryError
at tests.com.ibm.jtc.ras.runnable.DepleteMemory.depleteMemory(DepleteMemory.java:57)
<< lines omitted... >>

Chapter 9. Troubleshooting and support 105

To determine how your JVM is configured, run with the -verbose:sizes option.
This option prints out information about memory regions where you can manage
the size. For memory regions that are not contiguous, an increment is printed
describing how much memory is acquired every time the region needs to grow.

Here is example output using the -Xrealtime -verbose:sizes options:
-Xmca32K RAM class segment increment
-Xmco128K ROM class segment increment
-Xms64M initial memory size
-Xgc:immortalMemorySize=16M immortal memory space size
-Xgc:scopedMemoryMaximumSize=8M scoped memory space maximum size
-Xmx64M memory maximum
-Xmso256K operating system thread stack size
-Xiss2K java thread stack initial size
-Xssi16K java thread stack increment
-Xss256K java thread stack maximum size

This example indicates that the RAM class segment is initially 0, but grows by 32
KB blocks as required. The ROM class segment is initially 0, and grows by 128 KB
blocks as required. You can use the -Xmca and -Xmco options to control these sizes.
RAM class and ROM class segments grow as required, so you will not typically
need to change these options.

The immortal memory is a contiguous region and might need to be preallocated a
larger space. In this example, the immortal memory region is preallocated at 16
MB. If you try to write more than 16 MB of objects into this immortal memory
region, you receive an OutOfMemory exception because, by definition, this
memory area is not garbage collected.

The scoped memory region is contiguous and in this example is pre-allocated at 8
MB. If you have many scoped memory areas active when the program is running,
you might need to specify a larger scoped memory region.

Use the admincache utility to determine how large your memory mapped region
will be if you use the class cache. Here is a sample of the output from the
command admincache -Xrealtime -printStats -nologo:
J9 Java(TM) admincache 1.0

Current statistics for cache "sharedcc_localuser":

base address = 0xA52B4000
end address = 0xA59B7000
allocation pointer = 0xA59B4000

cache size = 7356040
free bytes = 330604
ROMClass bytes = 3798460
AOT bytes = 3101560
Data bytes = 3812
Metadata bytes = 121604
Metadata % used = 1%

ROMClasses = 1044
AOT Methods = 1652
Classpaths = 2
URLs = 1
Tokens = 0

106 IBM WebSphere Real Time for RT Linux: User Guide

Stale classes = 0
% Stale classes = 0%

Cache is 95% full

The cache size indicates that the memory mapped region will be slightly over 7
MB in space. The ROM class and AOT bytes take up the majority of this space,
using slightly over 3 MB each.

Example OutOfMemoryError in immortal memory space
This example shows how to identify an OutOfMemoryError in the immortal
memory space and describes steps to take to prevent the problem.

The snap dump shows that two small allocation requests have failed in the
immortal memory area id=0x809dd1c:

The Javadump shows that the immortal memory space is full:
NULL --
0SECTION MEMINFO subcomponent dump routine
NULL =================================
1STHEAPFREE Bytes of Heap Space Free: 3f0c000
1STHEAPALLOC Bytes of Heap Space Allocated: 4000000
1STHEAPFREE Bytes of Immortal Space Free: 0
1STHEAPALLOC Bytes of Immortal Space Allocated: 1000000
<< lines omitted... >>
1STSEGTYPE Object Memory
NULL segment start alloc end type bytes
1STSEGSUBTYPE Immortal Segment ID=0809DD1C
1STSEGMENT 0809D510 B279D008 B379D008 B379D008 00001008 1000000

An MDD4J analysis shows that a very large LinkedList has been allocated,
consuming a large proportion of the available memory.

You are recommended to minimize the number of objects allocated in the immortal
memory area because objects in the immortal area are not garbage collected. The
most common immortal memory usage is class loading, which is a finite activity
occurring mostly during JVM and application initialization. Applications with high
numbers of loaded classes (or other immortal memory usage) can increase the size
of the immortal memory area using the -Xgc:immortalMemorySize=<size> option.
The default size for the immortal memory area is 16 MB.

If increasing the size of the immortal memory area only delays the
OutOfMemoryError for immortal memory, investigate the pattern of continued
allocation of immortal data, either related to class loading or other application
objects.

Example OutOfMemoryError in scoped memory space
This example shows you how to identify an OutOfMemoryError in scoped
memory space and describes steps to take to prevent the problem.

Use the command-line option -Xdump:heap:request=multiple to produce separate
dumps for each memory space:

16:08:04.876087000 083d4000 j9mm.100 Event J9AllocateObject() returning NULL!
16 bytes requested for object of class 0x8110e60 from memory space ’Immortal’ id=0x809dd1c

16:08:04.876171000 083d4000 j9mm.100 Event J9AllocateObject() returning NULL!
32 bytes requested for object of class 0x81180f0 from memory space ’Immortal’ id=0x809dd1c

Chapter 9. Troubleshooting and support 107

The snap dump shows that two allocation requests have failed in scoped memory
area id=0x809dd10:

The Javadump shows that for the scoped memory area with id=0x809dd10, the
allocated size of the memory area is quite small, only 60 KB; in this case, increase
the size of the scoped memory area in the application code.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
1STHEAPFREE Bytes of Heap Space Free: 3eb0000
1STHEAPALLOC Bytes of Heap Space Allocated: 4000000
1STHEAPFREE Bytes of Immortal Space Free: f47474
1STHEAPALLOC Bytes of Immortal Space Allocated: 1000000
1STHEAPFREE Bytes of Scoped Space ID=0809DD10 Free: eb00
1STHEAPALLOC Bytes of Scoped Space Allocated: eb00
.......
1STSEGTYPE Object Memory
NULL segment start alloc end type bytes
1STSEGSUBTYPE Scoped Segment ID=0809DD10
1STSEGMENT 0809D560 08416350 08424E50 08424E50 00002008 eb00
1STSEGSUBTYPE Immortal Segment ID=0809DCF4
1STSEGMENT 0809D4E8 B2857008 B3857008 B3857008 00001008 1000000

In the example Javadump, the scoped memory area appears to be empty. It
appears empty because the Javadump is produced when the OutOfMemoryError
reaches the JVM, at which time the scope has been exited and cleaned up. You can
produce a Javadump at the point of failure by using the
-Xdump:java:events=throw,filter=java/lang/OutOfMemoryError command-line
option. By using this option, the free space in the scoped memory area is correctly
reported.

It is also possible to exhaust the total space available for scoped memory; in this
case, increase the size of the scoped memory area using the command-line option
-Xgc:scopedMemoryMaximumSize=<size>. The default size for the scoped memory
area is 8 MB. If the total space available for scoped memory becomes exhausted,
you see different messages on the console; for example:

VMDUMP006I Processing Dump Event "uncaught", detail "java/lang/OutOfMemoryError" - Please Wait.
JVMDUMP007I JVM Requesting Snap Dump using ’/home/test/snap-0001.trc’
JVMDUMP010I Snap Dump written to /home/test/snap-0001.trc
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Default0809DCD8-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Default0809DCD8-0002.phd
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Immortal0809DCF4-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Immortal0809DCF4-0002.phd
JVMDUMP007I JVM Requesting Heap Dump using ’/home/test/heapdump-Scope0809DD10-0002.phd’
JVMDUMP010I Heap Dump written to /home/test/heapdump-Scope0809DD10-0002.phd
JVMDUMP007I JVM Requesting Java Dump using ’/home/test/javacore-0003.txt’
JVMDUMP010I Java Dump written to /home/test/javacore-0003.txt
JVMDUMP013I Processed Dump Event "uncaught", detail "java/lang/OutOfMemoryError".
Exception in thread "RTJ Memory Consumer (thread_type=Realtime)" java.lang.OutOfMemoryError

at tests.com.ibm.jtc.ras.runnable.DepleteMemory.depleteMemory(DepleteMemory.java:57)
at tests.com.ibm.jtc.ras.runnable.DepleteMemory.run(DepleteMemory.java:26)

<< lines omitted... >>

16:14:45.887176823 08480900 j9mm.100 Event J9AllocateObject() returning NULL!
16 bytes requested for object of class 0x8110e38 from memory space ’Scoped’ id=0x809dd10

16:14:45.887252747 08480900 j9mm.100 Event J9AllocateObject() returning NULL!
32 bytes requested for object of class 0x81180c8 from memory space ’Scoped’ id=0x809dd10

108 IBM WebSphere Real Time for RT Linux: User Guide

Diagnosing problems in multiple heaps
You can use the address ranges provided in the Javadump with the occupancy
information in the Heapdump to help analyze OutOfMemoryErrors in multiple
RTSJ memory areas.

In this Javadump, the immortal segment ranges from 0xB281C008 to 0xB381C008,
and the normal heap segment ranges from 0xB381D008 to 0xB781D008:
0SECTION MEMINFO subcomponent dump routine
NULL =================================
1STHEAPFREE Bytes of Heap Space Free: 58000
1STHEAPALLOC Bytes of Heap Space Allocated: 4000000
1STHEAPFREE Bytes of Immortal Space Free: b319d8
1STHEAPALLOC Bytes of Immortal Space Allocated: 1000000
NULL
1STSEGTYPE Internal Memory
<< lines omitted... >>
1STSEGTYPE Object Memory
NULL segment start alloc end type bytes
1STSEGSUBTYPE Immortal Segment ID=0809C68C
1STSEGMENT 0809BE80 B281C008 B381C008 B381C008 00001008 1000000
1STSEGSUBTYPE Heap Segment ID=0809C670
1STSEGMENT 0809BE08 B381D008 B781D008 B781D008 00000009 4000000
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type bytes
1STSEGMENT 08158154 083FFD68 083FFEF0 08407D68 00010040 8004

The Heapdump is a compressed binary file containing a list of all objects with their
object class, size, and references. Analyze the Heapdump using the IBM
Monitoring and Diagnostic Tools for Java - Memory Analyzer tool, which is
available for download from the IBM Support Assistant (ISA).

You can use the object memory locations listed by MDD4J to determine the
memory space in which an object is. Addresses in the 0xB28nnnnn range are in the
immortal memory area. Addresses in the 0xB61nnnnn range are in the normal
heap.

Avoiding memory leaks
The garbage collector does not process immortal or scoped memory areas. In the
case of immortal memory, the memory is freed only when the JVM exits. Scoped
memory areas are freed only after their reference counts go to zero. Long-running
tasks running in these contexts must be written in such a way that, after the task
has warmed up, no additional memory from the immortal memory area is
allocated.

Exception in thread "main" java.lang.OutOfMemoryError: Creating (LTMemory) Scoped memory # 0 size=16777216
at javax.realtime.MemoryArea.create(MemoryArea.java:808)
at javax.realtime.MemoryArea.create(MemoryArea.java:798)
at javax.realtime.ScopedMemory.create(ScopedMemory.java:1359)
at javax.realtime.ScopedMemory.create(ScopedMemory.java:1351)
at javax.realtime.ScopedMemory.initialize(ScopedMemory.java:1705)
at javax.realtime.ScopedMemory.<init>(ScopedMemory.java:216)
at javax.realtime.ScopedMemory.<init>(ScopedMemory.java:164)

Chapter 9. Troubleshooting and support 109

http://www.ibm.com/software/support/isa/

Loading classes uses a small amount of immortal memory. These classes are not
garbage collected in the real-time environment. As such, loading classes that are
not required by the application can cause the application to use more immortal
memory than necessary.

If your application contains classes that implement the Serializable interface, adjust
the initial immortal memory size to account for the footprint of generated classes.
Each constructor has one generated object per class, in the form of
"GeneratedSerializationConstructorAccessorXXX" (whereXXX is a number) that is
loaded into immortal memory the first time the object is serialized.

Avoid using immortal memory, because objects allocated from immortal memory
cannot be garbage collected. Consider object pooling in immortal memory if the
immortal memory area is being used more than occasionally.

Hidden memory allocation through language features
In a scoped or immortal memory context, avoid the variable arguments language
feature because these methods allocate hidden memory.

Variable arguments (vararg)

The Java language implements variable arguments by passing them to the method
as an array. The compiler makes calling variable argument methods easy by
creating and initializing the array for you.

Memory can be lost by calling a variable argument method in an immortal or
scoped memory context. Do not use variable arguments in scoped or immortal
memory contexts. Instead, explicitly create an array and use it in place of the
variable arguments.

Here are two examples showing equivalent ways of calling a variable argument
method:
public class VarargEx {

public static void main(String[] args) {
System.out.println("Sum: "+ sum(1.0, 2.0 , 3.0, 4.0));

}
static double sum(double... params) {

double total=0.0;

for(double num : params) {
total += num;

}

return total;
}

}

public class VarargEx {

public static void main(String[] args) {
double array[] = new double[4];

array[0] = 1.0; array[1] = 2.0; array[2] = 3.0; array[3] = 4.0;
System.out.println("Sum: " + sum(array));

}

static double sum(double... params) {
double total=0.0;

110 IBM WebSphere Real Time for RT Linux: User Guide

for(double num : params) {
total += num;

}

return total;
}

}

The second example is preferred. Because the double array allocation becomes
visible in the code, the allocation can be directed into a particular memory area.

String concatenation

Adding to an existing string to produce a longer string is implemented using
java.lang.StringBuilder objects, which requires memory allocations.

Autoboxing

Autoboxing involves creating an object to contain a basic type, which requires
memory allocations.

Using reflection across memory contexts
If a constructor object has been built in a scoped memory area, it can be used only
in the same scope or an inner scope. Any attempt to use that constructor object in
immortal, heap, or an outer scope memory context will fail.

The exception thrown when reflection has occurred across memory contexts will be
similar to the following output:
Exception in thread "NoHeapRealtimeThread-14" javax.realtime.IllegalAssignmentError

at java.lang.reflect.Constructor$1.<init>(Constructor.java:570)
at java.lang.reflect.Constructor.acquireConstructorAccessor(Constructor.java:568)
at java.lang.reflect.Constructor.newInstance(Constructor.java:521)
at testMain$TestRunnable$1.run(testMain.java:40)
at javax.realtime.MemoryArea.activateNewArea(MemoryArea.java:597)
at javax.realtime.MemoryArea.doExecuteInArea(MemoryArea.java:612)
at javax.realtime.ImmortalMemory.executeInArea(ImmortalMemory.java:77)
at testMain$TestRunnable.allocate(testMain.java:36)
at testMain$TestRunnable.run(testMain.java:12)
at java.lang.Thread.run(Thread.java:875)
at javax.realtime.ScopedMemory.runEnterLogic(ScopedMemory.java:280)
at javax.realtime.MemoryArea.enter(MemoryArea.java:159)
at javax.realtime.ScopedMemory.enterAreaWithCleanup(ScopedMemory.java:194)
at javax.realtime.ScopedMemory.enter(ScopedMemory.java:186)
at javax.realtime.RealtimeThread.runImpl(RealtimeThread.java:1824)

It is possible to work around this restriction by using the constructor in the same
scope as it was allocated.

Using inner classes with scoped memory areas
When using inner classes in the context of scoped memory areas, you must take
care when instantating inner class objects if the outer and inner objects are located
in different memory areas. An IllegalAssignmentError will result from
compiler-generated code that is not visible in the original source code, if the inner
object is not capable of storing a reference to the outer object.

An inner class object must be able to store an implicit reference to its outer class
object. If the reference violates RTSJ memory reference rules then an
IllegalAssignmentError will be generated.

Chapter 9. Troubleshooting and support 111

Most inner classes (including local and anonymous inner classes) will contain a
compiler-generated (synthetic) non-static field for the instance of the lexically
enclosing outer class. The only exception occurs when an inner class instance does
not have an enclosing outer object, such as an anonymous class object instantiated
in a static intializer block. The synthetic field of the inner object will contain a
reference to the outer object. This is implemented by the compiler as a convenience
to the java programmer. The field will not be visible in the original source code,
although it is possible to write similar code using static nested classes with a
reference that is visible. If the implicit reference violates RTSJ memory area rules,
then an IllegalAssignmentError will be thrown, when the inner object is
contructed, as it attempts to store the reference to the outer object.

In general, you cannot violate RTSJ memory reference rules when using inner
classes. You cannot create an inner object if a reference to the associated outer
object violates RTSJ memory reference rules. This rule means that an inner object
allocated in immortal or heap cannot have a reference to an outer object from
scoped memory. An inner object from scoped memory can have a reference to an
outer object from scoped memory, but the outer object must be allocated from the
same scoped memory area or an outer scoped memory area.

There are work-arounds, including:
v use static nested classes to eliminate the implicit reference
v choose memory areas to ensure inner and outer object relationships do not

violate memory area reference restrictions

Using diagnostic tools
There are a number of diagnostic tools that are available to help diagnose
problems with the IBM WebSphere Real Time for RT Linux JVM.

The IBM SDK for Java 7 provides a number of diagnostic tools that can be used to
diagnose problems with the IBM WebSphere Real Time for RT Linux JVM. This
section introduces the tools that are available, and provides links to further
information about using the tools.

There is an important point to remember when using the SDK diagnostic tools.
When you invoke the real time JVM, you use the following option:
java -Xrealtime

This option must be used when running diagnostic tools for the real time JVM. For
example, to show the registered dump agents for the IBM WebSphere Real Time
for RT Linux JVM, type:
java -Xrealtime -Xdump:what

Any further differences in using these tools with IBM WebSphere Real Time for RT
Linux is provided here as supplementary information, together with sample output
to assist you with diagnosis.

For a summary of the diagnostic information that is generated by the IBM SDK for
Java 7, see Summary of diagnostic information.

Using the IBM Monitoring and Diagnostic Tools for Java
IBM provides tooling and documentation to help you understand, monitor, and
diagnose problems with applications using the IBM JRE.

112 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/diagnostics_summary.html

The following tools are available:
v Health Center
v Garbage Collection and Memory Visualizer
v Interactive Diagnostic Data Explorer
v Memory Analyzer

Garbage Collection and Memory Visualizer
Garbage Collection and Memory Visualizer (GCMV) helps you understand
memory use, garbage collection behavior, and performance of Java applications.

GCMV parses and plots data from various types of log, including the following
types:
v Verbose garbage collection logs.
v Trace garbage collection logs, generated by using the -Xtgc parameter.
v Native memory logs, generated by using the ps, svmon, or perfmon system

commands.

The tool helps to diagnose problems such as memory leaks, analyze data in
various visual formats, and provides tuning recommendations.

GCMV is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see: http://www.ibm.com/
developerworks/java/jdk/tools/gcmv/.

Further information about GCMV is available in an IBM Information Center.

Health Center
Health Center is a diagnostic tool for monitoring the status of a running Java
Virtual Machine (JVM).

The tool is provided in two parts:
v The Health Center agent that collects data from a running application.
v An Eclipse-based client that connects to the agent. The client interprets the data

and provides recommendations to improve the performance of the monitored
application.

Health Center is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/.

Further information about Health Center is available in an IBM Information Center.

Interactive Diagnostic Data Explorer
Interactive Diagnostic Data Explorer (IDDE) is a GUI-based alternative to the
dump viewer (jdmpview command). IDDE provides the same functionality as the
dump viewer, but with extra support such as the ability to save command output.

Use IDDE to more easily explore and examine dump files that are produced by the
JVM. Within IDDE, you enter commands in an investigation log, to explore the
dump file. The support that is provided by the investigation log includes the
following items:
v Command assistance
v Auto-completion of text, and some parameters such as class names

Chapter 9. Troubleshooting and support 113

http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp

v The ability to save commands and output, which you can then send to other
people

v Highlighted text and flagging of issues
v The ability to add your own comments
v Support for using the Memory Analyzer from within IDDE

IDDE is provided as an IBM Support Assistant (ISA) add-on. For information
about installing and getting started with the add-on, see IDDE overview on
developerWorks®.

Further information about IDDE is available in an IBM Information Center.

Memory Analyzer
Memory Analyzer helps you analyze Java heaps using operating system level
dumps and Portable Heap Dumps (PHD).

This tool can analyze dumps that contain millions of objects, providing the
following information:
v The retained sizes of objects.
v Processes that are preventing the Garbage Collector from collecting objects.
v A report to automatically extract leak suspects.

This tool is based on the Eclipse Memory Analyzer (MAT) project, and uses the
IBM Diagnostic Tool Framework for Java (DTFJ) feature to enable the processing of
dumps from IBM JVMs.

Memory Analyzer is provided as an IBM Support Assistant (ISA) add-on. For
information about installing and getting started with the add-on, see:
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/.

Further information about Memory Analyzer is available in an IBM Information
Center.

Using dump agents
Dump agents are set up during JVM initialization. They enable you to use events
occurring in the JVM, such as Garbage Collection, thread start, or JVM termination,
to initiate dumps or to start an external tool.

The IBM SDK for Java V7 User guide contains useful guidance on dump agents,
covering:
v Using the -Xdump option
v Dump agents
v Dump events
v Advanced control of dump agents
v Dump agent tokens
v Default dump agents
v Removing dump agents
v Dump agent environment variables
v Signal mappings
v Dump agent default locations

You can find this information here: IBM SDK for Java 7 - Using dump agents.

114 IBM WebSphere Real Time for RT Linux: User Guide

https://www.ibm.com/developerworks/mydeveloperworks/groups/service/html/communityview?communityUuid=5efb4378-ebba-47da-8c0f-8841d669d0cc
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/index.jsp
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_agents.html

Supplementary information for IBM WebSphere Real Time for RT Linux is
provided here:

Dump events
Dump agents are triggered by events occurring during JVM operation. For IBM
WebSphere Real Time for RT Linux, the default value for the slow event is 5
milliseconds.

Some events can be filtered to improve the relevance of the output. See “filter
option” on page 116 for more information.

Note: The unload and expand events currently do not occur in WebSphere Real
Time. Classes are in immortal memory and cannot be unloaded.

Note: The gpf and abort events cannot trigger a heap dump, prepare the heap
(request=prepwalk), or compact the heap (request=compact).

The following table shows events available as dump agent triggers:

Event Triggered when... Filter operation

gpf A General Protection Fault (GPF) occurs.

user The JVM receives the SIGQUIT signal from the
operating system.

abort The JVM receives the SIGABRT signal from the
operating system.

vmstart The virtual machine is started.

vmstop The virtual machine stops. Filters on exit code; for example,
filter=#129..#192#-42#255

load A class is loaded. Filters on class name; for example,
filter=java/lang/String

unload A class is unloaded.

throw An exception is thrown. Filters on exception class name; for example,
filter=java/lang/OutOfMem*

catch An exception is caught. Filters on exception class name; for example,
filter=*Memory*

uncaught A Java exception is not caught by the application. Filters on exception class name; for example,
filter=*MemoryError

systhrow A Java exception is about to be thrown by the JVM.
This is different from the 'throw' event because it is
only triggered for error conditions detected
internally in the JVM.

Filters on exception class name; for example,
filter=java/lang/OutOfMem*

thrstart A new thread is started.

blocked A thread becomes blocked.

thrstop A thread stops.

fullgc A garbage collection cycle is started.

slow A thread takes longer than 5ms to respond to an
internal JVM request.

Changes the time taken for an event to be
considered slow; for example, filter=#300ms
will trigger when a thread takes longer than
300ms to respond to an internal JVM request.

Chapter 9. Troubleshooting and support 115

Event Triggered when... Filter operation

allocation A Java object is allocated with a size matching the
given filter specification

Filters on object size; a filter must be supplied.
For example, filter=#5m will trigger on
objects larger than 5 Mb. Ranges are also
supported; for example, filter=#256k..512k
will trigger on objects between 256 Kb and 512
Kb in size.

traceassert An internal error occurs in the JVM Not applicable.

corruptcache The JVM finds that the shared class cache is corrupt. Not applicable.

filter option
Some JVM events occur thousands of times during the lifetime of an application.
Dump agents can use filters and ranges to avoid excessive dumps being produced.

Wildcards

You can use a wildcard in your exception event filter by placing an asterisk only at
the beginning or end of the filter. The following command does not work because
the second asterisk is not at the end:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#*.myVirtualMethod

In order to make this filter work, it must be changed to:
-Xdump:java:events=vmstop,filter=*InvalidArgumentException#MyApplication.*

Class loading and exception events

You can filter class loading (load) and exception (throw, catch, uncaught, systhrow)
events by Java class name:
-Xdump:java:events=throw,filter=java/lang/OutOfMem*
-Xdump:java:events=throw,filter=*MemoryError
-Xdump:java:events=throw,filter=*Memory*

You can filter throw, uncaught, and systhrow exception events by Java method
name:
-Xdump:java:events=throw,filter=ExceptionClassName[#ThrowingClassName.
throwingMethodName[#stackFrameOffset]]

Optional portions are shown in brackets.

You can filter the catch exception events by Java method name:
-Xdump:java:events=catch,filter=ExceptionClassName[#CatchingClassName.
catchingMethodName]

Optional portions are shown in square brackets.

vmstop event

You can filter the JVM shut down event by using one or more exit codes:
-Xdump:java:events=vmstop,filter=#129..192#-42#255

slow event

You can filter the slow event to change the time threshold from the default of 5ms:
-Xdump:java:events=slow,filter=#300ms

116 IBM WebSphere Real Time for RT Linux: User Guide

You cannot set the filter to a time lower than the default time.

allocation event

You must filter the allocation event to specify the size of objects that cause a
trigger. You can set the filter size from zero up to the maximum value of a 32-bit
pointer on 32-bit platforms, or the maximum value of a 64-bit pointer on 64-bit
platforms. Setting the lower filter value to zero triggers a dump on all allocations.

For example, to trigger dumps on allocations greater than 5 Mb in size, use:
-Xdump:stack:events=allocation,filter=#5m

To trigger dumps on allocations between 256Kb and 512Kb in size, use:
-Xdump:stack:events=allocation,filter=#256k..512k

Other events

If you apply a filter to an event that does not support filtering, the filter is ignored.

request option
Use the request option to ask the JVM to prepare the state before starting the
dump agent. For IBM WebSphere Real Time for RT Linux there is an additional
request option; multiple.

The available options are listed in the following table:

Option value Description

exclusive Request exclusive access to the JVM.

compact Run garbage collection. This option removes all unreachable objects from
the heap before the dump is generated.

prepwalk Prepare the heap for walking. You must also specify exclusive when using
this option.

serial Suspend other dumps until this one has finished.

multiple Produce separate heap dumps for each RTSJ memory area.

preempt Applies to the Java dump agent and controls whether native threads in the
process are forcibly preempted in order to collect stack traces. If this option
is not specified, only Java stack traces are collected in the Javadump.

For example, the default setting of the request option for Javadumps is
request=exclusive+preempt. To change the settings so that Javadumps are
produced without preempting threads to collect native stack traces, use the
following option:
-Xdump:java:request=exclusive

In general, the default request options are sufficient.

You can specify more than one request option with +. For example:
-Xdump:heap:request=exclusive+compact+prepwalk

Chapter 9. Troubleshooting and support 117

Using Javadump
Javadump produces files that contain diagnostic information related to the JVM
and a Java application captured at a point during execution. For example, the
information can be about the operating system, the application environment,
threads, stacks, locks, and memory.

The IBM SDK for Java V7 User guide contains useful guidance on Javadumps,
covering:
v Enabling a Javadump
v Triggering a Javadump
v Interpreting a Javadump
v Environment variables and Javadump

You can find this information here: IBM SDK for Java 7 - Using Javadump.

Supplementary information and sample output for IBM WebSphere Real Time for
RT Linux is provided in the following topics.

Storage Management (MEMINFO)
The MEMINFO section provides information about the Memory Manager, including
heap, immortal, and scoped memory areas.

The MEMINFO section of a Javadump shows information about the Memory
Manager. See Using the Metronome Garbage Collector for details about how the
memory manager component works.

This part of the Javadump provides various storage management values, including:
v amount of free memory
v amount of used memory
v current size of the heap
v current size of immortal memory areas
v current size of scoped memory areas

This section also contains garbage collection history data. The data is shown as a
sequence of tracepoints, each with a timestamp, ordered with the most recent
tracepoint first.

Javadumps produced by the standard JVM contain a “GC History” section. This
information is not contained in Javadumps produced when using the real-time
JVM. Use the -verbose:gc option or the JVM snap trace to obtain information
about GC behavior. See “Using verbose:gc information” on page 135 and the dump
agents section of the IBM SDK for Java V7 User guide for more details.

If you are running a program which uses scoped memory, and an
OutOfMemoryError is thrown, some of the memory areas listed in the Javadump
might be empty. When a scope that is nested inside another scope runs out of
memory, the inner scope might be deleted by the time the Javadump is generated.
To get information which relates to the state of the memory areas at the time the
OutOfMemoryError is thrown, run your program with the following
command-line option:
-Xdump:java:events=throw,filter=java/lang/OutOfMemoryError,range=1..1

This command generates an additional Javadump when the OutOfMemoryError is
thrown, rather than when the uncaught exception is detected, which happens

118 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump.html

slightly later. In this Javadump, can see all memory areas that were active at the
time the OutOfMemoryError was thrown, including any inner scopes. For further
information about using the -Xdump option, see the IBM SDK for Java V7 User
guide.

In a Javadump, segments are blocks of memory allocated by the Java run time for
tasks that use large amounts of memory. Example tasks are:
v maintaining JIT caches
v storing Java classes

The Java runtime environment also allocates other native memory, which is not
listed in the MEMINFO section. The total memory used by Java runtime segments
does not necessarily represent the complete memory footprint of the Java run time.
A Java runtime segment consists of the segment data structure, and an associated
block of native memory.

The following example shows some typical output. All the values are provided as
hexadecimal values. The column headings in the MEMINFO section have the
following meanings:
v Object memory section (HEAPTYPE):

id The id of the space or region.

start The start address of this region of the heap.

end The end address of this region of the heap.

size The size of this region of the heap.

space/region
For a line that contains only an id and a name, this column shows the
name of the memory space. Otherwise the column shows the name of
the memory space, followed by the name of a particular region that is
contained within that memory space.

v Internal memory section (SEGTYPE), including class memory, JIT code cache, and
JIT data cache:

segment
The address of the segment control data structure.

start The start address of the native memory segment.

alloc The current allocation address within the native memory segment.

end The end address of the native memory segment.

type An internal bit field describing the characteristics of the native memory
segment.

size The size of the native memory segment.
0SECTION MEMINFO subcomponent dump routine
NULL =================================
NULL
1STHEAPTYPE Object Memory
NULL id start end size space/region
1STHEAPSPACE 0x00497030 -- -- -- Generational
1STHEAPREGION 0x004A24F0 0x02850000 0x05850000 0x03000000 Generational/Tenured Region
1STHEAPREGION 0x004A2468 0x05850000 0x06050000 0x00800000 Generational/Nursery Region
1STHEAPREGION 0x004A23E0 0x06050000 0x06850000 0x00800000 Generational/Nursery Region
NULL
1STHEAPTOTAL Total memory: 67108864 (0x04000000)
1STHEAPINUSE Total memory in use: 33973024 (0x02066320)
1STHEAPFREE Total memory free: 33135840 (0x01F99CE0)
NULL
1STSEGTYPE Internal Memory

Chapter 9. Troubleshooting and support 119

|
|

||

||

||

||
|

||

NULL segment start alloc end type size
1STSEGMENT 0x073DFC9C 0x0761B090 0x0761B090 0x0762B090 0x01000040 0x00010000

(lines removed for clarity)
1STSEGMENT 0x00497238 0x004FA220 0x004FA220 0x0050A220 0x00800040 0x00010000
NULL
1STSEGTOTAL Total memory: 873412 (0x000D53C4)
1STSEGINUSE Total memory in use: 0 (0x00000000)
1STSEGFREE Total memory free: 873412 (0x000D53C4)
NULL
1STSEGTYPE Class Memory
NULL segment start alloc end type size
1STSEGMENT 0x0731C858 0x0745C098 0x07464098 0x07464098 0x00010040 0x00008000

(lines removed for clarity)
1STSEGMENT 0x00498470 0x070079C8 0x07026DC0 0x070279C8 0x00020040 0x00020000
NULL
1STSEGTOTAL Total memory: 2067100 (0x001F8A9C)
1STSEGINUSE Total memory in use: 1839596 (0x001C11EC)
1STSEGFREE Total memory free: 227504 (0x000378B0)
NULL
1STSEGTYPE JIT Code Cache
NULL segment start alloc end type size
1STSEGMENT 0x004F9168 0x06960000 0x069E0000 0x069E0000 0x00000068 0x00080000
NULL
1STSEGTOTAL Total memory: 524288 (0x00080000)
1STSEGINUSE Total memory in use: 524288 (0x00080000)
1STSEGFREE Total memory free: 0 (0x00000000)
NULL
1STSEGTYPE JIT Data Cache
NULL segment start alloc end type size
1STSEGMENT 0x004F92E0 0x06A60038 0x06A6839C 0x06AE0038 0x00000048 0x00080000
NULL
1STSEGTOTAL Total memory: 524288 (0x00080000)
1STSEGINUSE Total memory in use: 33636 (0x00008364)
1STSEGFREE Total memory free: 490652 (0x00077C9C)
NULL
1STGCHTYPE GC History
3STHSTTYPE 15:18:14:901108829 GMT j9mm.134 - Allocation failure end: newspace=7356368/8388608
oldspace=32038168/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:901104380 GMT j9mm.470 - Allocation failure cycle end: newspace=7356416/8388608
oldspace=32038168/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:901097193 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0
causedrememberedsetoverflow=0 scancacheoverflow=0 failedflipcount=0 failedflipbytes=0 failedtenurecount=0
failedtenurebytes=0 flipcount=11454 flipbytes=991056 newspace=7356416/8388608 oldspace=32038168/50331648
loa=3523072/3523072 tenureage=1
3STHSTTYPE 15:18:14:901081108 GMT j9mm.140 - Tilt ratio: 50
3STHSTTYPE 15:18:14:893358658 GMT j9mm.64 - LocalGC start: globalcount=3 scavengecount=24 weakrefs=0
soft=0 phantom=0 finalizers=0
3STHSTTYPE 15:18:14:893354551 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 15:18:14:893348733 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.002
meanexclusiveaccessms=0.002 threads=0 lastthreadtid=0x00495F00 beatenbyotherthread=0
3STHSTTYPE 15:18:14:893348391 GMT j9mm.469 - Allocation failure cycle start: newspace=0/8388608
oldspace=38199368/50331648 loa=3523072/3523072 requestedbytes=48
3STHSTTYPE 15:18:14:893347364 GMT j9mm.133 - Allocation failure start: newspace=0/8388608
oldspace=38199368/50331648 loa=3523072/3523072 requestedbytes=48
3STHSTTYPE 15:18:14:866523613 GMT j9mm.134 - Allocation failure end: newspace=2359064/8388608
oldspace=38199368/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:866519507 GMT j9mm.470 - Allocation failure cycle end: newspace=2359296/8388608
oldspace=38199368/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:866513004 GMT j9mm.65 - LocalGC end: rememberedsetoverflow=0
causedrememberedsetoverflow=0 scancacheoverflow=0 failedflipcount=5056 failedflipbytes=445632
failedtenurecount=0 failedtenurebytes=0 flipcount=9212 flipbytes=6017148 newspace=2359296/8388608
oldspace=38199368/50331648 loa=3523072/3523072 tenureage=1
3STHSTTYPE 15:18:14:866493839 GMT j9mm.140 - Tilt ratio: 64
3STHSTTYPE 15:18:14:859814852 GMT j9mm.64 - LocalGC start: globalcount=3 scavengecount=23 weakrefs=0
soft=0 phantom=0 finalizers=0
3STHSTTYPE 15:18:14:859808692 GMT j9mm.63 - Set scavenger backout flag=false
3STHSTTYPE 15:18:14:859801848 GMT j9mm.135 - Exclusive access: exclusiveaccessms=0.004
meanexclusiveaccessms=0.004 threads=0 lastthreadtid=0x00495F00 beatenbyotherthread=0
3STHSTTYPE 15:18:14:859801163 GMT j9mm.469 - Allocation failure cycle start: newspace=0/10747904
oldspace=38985800/50331648 loa=3523072/3523072 requestedbytes=232
3STHSTTYPE 15:18:14:859800479 GMT j9mm.133 - Allocation failure start: newspace=0/10747904
oldspace=38985800/50331648 loa=3523072/3523072 requestedbytes=232
3STHSTTYPE 15:18:14:652219028 GMT j9mm.134 - Allocation failure end: newspace=2868224/10747904
oldspace=38985800/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:650796714 GMT j9mm.470 - Allocation failure cycle end: newspace=2868224/10747904
oldspace=38985800/50331648 loa=3523072/3523072
3STHSTTYPE 15:18:14:650792607 GMT j9mm.475 - GlobalGC end: workstackoverflow=0 overflowcount=0
memory=41854024/61079552
3STHSTTYPE 15:18:14:650784052 GMT j9mm.90 - GlobalGC collect complete

120 IBM WebSphere Real Time for RT Linux: User Guide

3STHSTTYPE 15:18:14:650780971 GMT j9mm.57 - Sweep end
3STHSTTYPE 15:18:14:650611567 GMT j9mm.56 - Sweep start
3STHSTTYPE 15:18:14:650610540 GMT j9mm.55 - Mark end
3STHSTTYPE 15:18:14:645222792 GMT j9mm.54 - Mark start
3STHSTTYPE 15:18:14:645216632 GMT j9mm.474 - GlobalGC start: globalcount=2

(lines removed for clarity)
NULL
NULL --

Threads and stack trace (THREADS)
For the application programmer, one of the most useful pieces of a Java dump is
the THREADS section. This section shows a list of Java threads, native threads, and
stack traces. For IBM WebSphere Real Time for RT Linux real-time threads and no
heap real time threads are also shown.

A Java thread is implemented by a native thread of the operating system. Each
thread is represented by a set of lines such as:

"main" J9VMThread:0x41D11D00, j9thread_t:0x003C65D8, java/lang/Thread:0x40BD6070, state:CW, prio=5
(native thread ID:0xA98, native priority:0x5, native policy:UNKNOWN)
Java callstack:
at java/lang/Thread.sleep(Native Method)
at java/lang/Thread.sleep(Thread.java:862)
at mySleep.main(mySleep.java:31)

Java thread names are visible in the operating system when using the ps
command. For further information about using the ps command, see “General
debugging techniques” on page 98.

The properties on the first line are the thread name, addresses of the JVM thread
structures and of the Java thread object, thread state, and Java thread priority. The
properties on the second line are the native operating system thread ID, native
operating system thread priority and native operating system scheduling policy.

Thread names are visible in three ways:
v Listed in javacore files. Not all threads are listed in javacore files.
v When listing threads from the operating system with the ps command.
v When using the java.lang.Thread.getName() method.

The following table provides information about IBM WebSphere Real Time for RT
Linux thread names.

Table 13. Thread names in IBM WebSphere Real Time for RT Linux

Detail of thread Thread name

An internal JVM thread used by the garbage
collection module to dispatch the finalization
of objects by secondary threads.

Finalizer master

The alarm thread used by the garbage
collector.

GC Alarm

The slave threads used for garbage
collection.

GC Slave

An internal JVM thread used by the
just-in-time compiler module to sample the
usage of methods in the application.

IProfiler

A thread used by the VM to manage signals
received by the application, whether
externally or internally generated.

Signal Reporter

Chapter 9. Troubleshooting and support 121

Table 13. Thread names in IBM WebSphere Real Time for RT Linux (continued)

Detail of thread Thread name

An internal JVM thread used to compile
Java code.

JIT Compilation Thread

An internal JVM thread used to allow
JVMTI agents to attach to a running JVM.

Attach API wait loop

The default names of real-time threads (javax.realtime.RealtimeThread) created in
Java code are RTThread-x, where “x” is the thread number.

The default names of no-heap real-time threads are NHRTThread-x, where “x” is the
thread number.

The Java thread priority is mapped to an operating system priority value in a
platform-dependent manner. A large value for the Java thread priority means that
the thread has a high priority. In other words, the thread runs more frequently
than lower priority threads. For further details of how this works for Java threads,
real-time threads and no-heap real-time threads, see “Priority mapping and
inheritance” on page 11.

The values of state can be:
v R - Runnable - the thread is able to run when given the chance.
v CW - Condition Wait - the thread is waiting. For example, because:

– A sleep() call is made
– The thread has been blocked for I/O
– A wait() method is called to wait on a monitor being notified
– The thread is synchronizing with another thread with a join() call

v S – Suspended – the thread has been suspended by another thread.
v Z – Zombie – the thread has been killed.
v P – Parked – the thread has been parked by the new concurrency API

(java.util.concurrent).
v B – Blocked – the thread is waiting to obtain a lock that something else currently

owns.

If a thread is parked or blocked, the output contains a line for that thread,
beginning with 3XMTHREADBLOCK, listing the resource that the thread is waiting for
and, if possible, the thread that currently owns that resource. For more information
see the topic on blocked threads in the IBM SDK for Java V7 User guide.

When you initiate a Javadump to obtain diagnostic information, the JVM quiesces
Java threads before producing the javacore. A preparation state of
exclusive_vm_access is shown in the 1TIPREPSTATE line of the TITLE section.
1TIPREPSTATE Prep State: 0x4 (exclusive_vm_access)

Threads that were running Java code when the javacore was triggered are in CW
(Condition Wait) state.

3XMTHREADINFO "main" J9VMThread:0x41481900, j9thread_t:0x002A54A4, java/lang/Thread:0x004316B8,
state:CW, prio=5
3XMTHREADINFO1 (native thread ID:0x904, native priority:0x5, native policy:UNKNOWN)
3XMTHREADINFO3 Java callstack:
4XESTACKTRACE at java/lang/String.getChars(String.java:667)
4XESTACKTRACE at java/lang/StringBuilder.append(StringBuilder.java:207)

122 IBM WebSphere Real Time for RT Linux: User Guide

The javacore LOCKS section shows that these threads are waiting on an internal JVM
lock.
2LKREGMON Thread public flags mutex lock (0x002A5234): <unowned>
3LKNOTIFYQ Waiting to be notified:
3LKWAITNOTIFY "main" (0x41481900)

Using Heapdump
The term Heapdump describes the IBM Virtual Machine for Java mechanism that
generates a dump of all the live objects that are on the Java heap; that is, those that
are being used by the running Java application.

The IBM SDK for Java V7 User guide contains useful guidance on Heapdumps,
covering:
v Getting Heapdumps
v Tools for processing Heapdumps
v Using -Xverbose:gc to obtain heap information
v Environment variables and Heapdump
v Text (classic) Heapdump file format
v Portable Heap Dump (PHD) file format

You can find this information here: IBM SDK for Java 7 - Using Heapdump.

Supplementary information for IBM WebSphere Real Time for RT Linux:

Enabling multiple Heapdumps for real-time JVMs
The generated Heapdump is by default a single file containing information about
all Java objects in all memory areas, Heap memory, Immortal memory and Scoped
memory. The main reason to produce multiple dumps is so that each individual
heap area can be analyzed using the traditional Heapdump tools without
modification.

About this task

By default, Heapdumps contain information about all the objects in the JVM's
memory areas, Heap, Immortal and Scoped memory. You can obtain separate
Heapdumps containing information about Java objects in each memory area by
using the request=multiple option with -Xdump:heap. Note that you must repeat
the default settings of the request option as well, so you need to specify
request=multiple+exclusive+prepwalk+compact. This produces a set of
Heapdumps with an extra field in the name indicating the specific memory area:
heapdump.%id.%Y%m%d.%H%M%S.%pid.phd

where %id identifies the Heapdump file as containing objects in Heap memory,
Immortal memory, or a specific area of Scoped memory.

There are 4 types of heap represented by the following names: “Default”,
“Immortal”, “Scope” and “Other”. The Heapdump code replaces the %id in the
heap label with one of these names concatenated with an identifier (typically
numeric), for example: heapdump.Immortal12994208.20060807.093653.7684.txt.

Example
java -Xrealtime -Xdump:heap:defaults:request=multiple+exclusive+compact+prepwalk

<java program>

Chapter 9. Troubleshooting and support 123

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/heapdump.html

Using this extra option produces multiple Heapdumps in the portable Heapdump
(phd) format.
java -Xrealtime -Xdump:heap:defaults:request=multiple+exclusive+compact+prepwalk,

opts=CLASSIC <java program>

Using this extra option produces multiple Heapdumps in the CLASSIC text format.

Using the -Xdump:what option shows the dump agents on JVM startup, and is
useful for checking the dump options that are in place.

Text (classic) Heapdump file format
The text or classic Heapdump is a list of all object instances in the heap, including
object type, size, and references between objects.

Header record

The header record is a single record containing a string of version information.
// Version: <version string containing SDK level, platform and JVM build level>

Example:
// Version: J2RE 7.0 IBM J9 2.6 Linux x86-32 build 20101016_024574_lHdRSr

Object records

Object records are multiple records, one for each object instance on the heap,
providing object address, size, type, and references from the object.
<object address, in hexadecimal> [<length in bytes of object instance, in decimal>]
OBJ <object type> <class block reference, in hexadecimal>
<heap reference, in hexadecimal <heap reference, in hexadecimal> ...

The object address and heap references are in the heap, but the class block address
is outside the heap. All references found in the object instance are listed, including
references that are null values. The object type is either a class name including
package or a primitive array or class array type, shown by its standard JVM type
signature, see “Java VM type signatures” on page 126. Object records can also
contain additional class block references, typically in the case of reflection class
instances.

Examples:

An object instance, length 28 bytes, of type java/lang/String:
0x00436E90 [28] OBJ java/lang/String

A class block address of java/lang/String, followed by a reference to a char array
instance:
0x415319D8 0x00436EB0

An object instance, length 44 bytes, of type char array:
0x00436EB0 [44] OBJ [C

A class block address of char array:
0x41530F20

An object of type array of java/util/Hashtable Entry inner class:
0x004380C0 [108] OBJ [Ljava/util/Hashtable$Entry;

124 IBM WebSphere Real Time for RT Linux: User Guide

An object of type java/util/Hashtable Entry inner class:
0x4158CD80 0x00000000 0x00000000 0x00000000 0x00000000 0x00421660 0x004381C0
0x00438130 0x00438160 0x00421618 0x00421690 0x00000000 0x00000000 0x00000000
0x00438178 0x004381A8 0x004381F0 0x00000000 0x004381D8 0x00000000 0x00438190
0x00000000 0x004216A8 0x00000000 0x00438130 [24] OBJ java/util/Hashtable$Entry

A class block address and heap references, including null references:
0x4158CB88 0x004219B8 0x004341F0 0x00000000

Class records

Class records are multiple records, one for each loaded class, providing class block
address, size, type, and references from the class.
<class block address, in hexadecimal> [<length in bytes of class block, in decimal>]
CLS <class type>
<class block reference, in hexadecimal> <class block reference, in hexadecimal> ...
<heap reference, in hexadecimal> <heap reference, in hexadecimal>...

The class block address and class block references are outside the heap, but the
class record can also contain references into the heap, typically for static class data
members. All references found in the class block are listed, including those that are
null values. The class type is either a class name including package or a primitive
array or class array type, shown by its standard JVM type signature, see “Java VM
type signatures” on page 126.

Examples:

A class block, length 32 bytes, for class java/lang/Runnable:
0x41532E68 [32] CLS java/lang/Runnable

References to other class blocks and heap references, including null references:
0x4152F018 0x41532E68 0x00000000 0x00000000 0x00499790

A class block, length 168 bytes, for class java/lang/Math:
0x00000000 0x004206A8 0x00420720 0x00420740 0x00420760 0x00420780 0x004207B0
0x00421208 0x00421270 0x00421290 0x004212B0 0x004213C8 0x00421458 0x00421478
0x00000000 0x41589DE0 0x00000000 0x4158B340 0x00000000 0x00000000 0x00000000
0x4158ACE8 0x00000000 0x4152F018 0x00000000 0x00000000 0x00000000

Trailer record 1

Trailer record 1 is a single record containing record counts.
// Breakdown - Classes: <class record count, in decimal>,
Objects: <object record count, in decimal>,
ObjectArrays: <object array record count, in decimal>,
PrimitiveArrays: <primitive array record count, in decimal>

Example:
// Breakdown - Classes: 321, Objects: 3718, ObjectArrays: 169,
PrimitiveArrays: 2141

Trailer record 2

Trailer record 2 is a single record containing totals.

Chapter 9. Troubleshooting and support 125

// EOF: Total ’Objects’,Refs(null) :
<total object count, in decimal>,
<total reference count, in decimal>
(,total null reference count, in decimal>)

Example:
// EOF: Total ’Objects’,Refs(null) : 6349,23240(7282)

Java VM type signatures

The Java VM type signatures are abbreviations of the Java types are shown in the
following table:

Java VM type signatures Java type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L <fully qualified-class> ; <fully qualified-class>

[<type> <type>[] (array of <type>)

(<arg-types>) <ret-type> method

Using system dumps and the dump viewer
The JVM can generate native system dumps, also known as core dumps, under
configurable conditions. System dumps are typically large. Most tools used to
analyze system dumps are also platform-specific.Use the gdb tool to analyze a
system dump on Linux.

The IBM SDK for Java V7 User guide contains useful guidance on using system
dumps and the dump viewer, covering:
v Overview of system dumps
v System dump defaults
v Using the dump viewer

– Using jextract

– Problems to tackle with the dump viewer
– Commands available in jdmpview

– Example session
– jdmpview commands quick reference

You can find this information here: IBM SDK for Java 7 - Using system dumps and
the dump viewer.

Supplementary information for IBM WebSphere Real Time for RT Linux:

126 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dump_viewer_dtfjview/dump_viewer.html

Using jextract

When processing a system dump from a real-time JVM, you must include the
-Xrealtime option. For example:
jextract -Xrealtime <core file name> [<zip_file>]

When you run jextract on a JVM that is different from the one for which the
dump was produced you see the following error messages:
J9RAS.buildID is incorrect (found e8801ed67d21c6be, expecting eb4173107d21c673).
This version of jextract is incompatible with this dump.
Failure detected during jextract, see previous message(s).

Similarly, this message is also produced if you were running Java with the
standard JVM, but used the -Xrealtime option when processing the dump with
jextract.

Commands available in jdmpview

jdmpview is an interactive, command-line tool to explore the information from a
JVM system dump and perform various analytic functions.

info jitm
Lists AOT and JIT compiled methods and their addresses:
v Method name and signature
v Method start address
v Method end address

For all other command options,see the IBM SDK for Java V7 User guide.

Tracing Java applications and the JVM
JVM trace is a trace facility that is provided in IBM WebSphere Real Time for RT
Linux with minimal affect on performance. In most cases, the trace data is kept in
a compact binary format, that can be formatted with the Java formatter that is
supplied.

Tracing is enabled by default, together with a small set of trace points going to
memory buffers. You can enable tracepoints at run time by using levels,
components, group names, or individual tracepoint identifiers.

The IBM SDK for Java V7 User guide contains detailed information on tracing
applications, covering:
v What can be traced
v Types of tracepoint
v Default tracing
v Recording trace data
v Controlling the trace
v Tracing Java applications
v Tracing Java methods

When tracing IBM WebSphere Real Time for RT Linux you must correctly invoke
the real-time JVM when including the trace options. For example, when specifying
trace options, type:
java -Xrealtime -Xtrace:<options>

Chapter 9. Troubleshooting and support 127

You can find the IBM SDK for Java V7 information here: Tracing Java applications
and the JVM.

JIT and AOT problem determination
You can use command-line options to help diagnose JIT and AOT compiler
problems and to tune performance.

Although IBM WebSphere Real Time for RT Linux shares some common
components with the IBM SDK for Java V7, the behavior of JIT and AOT is
different. This section covers troubleshooting for JIT and AOT issues on IBM
WebSphere Real Time for RT Linux.

Diagnosing a JIT or AOT problem
Occasionally, valid bytecodes might compile into invalid native code, causing the
Java program to fail. By determining whether the JIT or AOT compiler is faulty
and, if so, where it is faulty, you can provide valuable help to the Java service team.

About this task

To determine what methods are compiled when the shared class cache is
populated, use the -Xaot:verbose option on the admincache command-line. For
example:
admincache -Xrealtime -Xaot:verbose -populate -aot my.jar -cp <My Class Path>

This section describes how you can determine if your problem is compiler-related.
This section also suggests some possible workarounds and debugging techniques
for solving compiler-related problems.

Disabling the JIT or AOT compiler:

If you suspect that a problem is occurring in the JIT or AOT compiler, disable
compilation to see if the problem remains. If the problem still occurs, you know
that the compiler is not the cause of it.

About this task

The JIT compiler is enabled by default. The AOT compiler is also enabled, but, is
not active unless shared classes have been enabled. For efficiency reasons, not all
methods in a Java application are compiled. The JVM maintains a call count for
each method in the application; every time a method is called and interpreted, the
call count for that method is incremented. When the count reaches the compilation
threshold, the method is compiled and executed natively.

The call count mechanism spreads compilation of methods throughout the life of
an application, giving higher priority to methods that are used most frequently.
Some infrequently used methods might never be compiled at all. As a result, when
a Java program fails, the problem might be in the JIT or AOT compiler or it might
be elsewhere in the JVM.

The first step in diagnosing the failure is to determine where the problem is. To do
this, you must first run your Java program in purely interpreted mode (that is,
with the JIT and AOT compilers disabled).

128 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/tracing.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/tracing.html

Procedure

1. Remove any -Xjit and -Xaot options (and accompanying parameters) from
your command line.

2. Use the -Xint command-line option to disable the JIT and AOT compilers. For
performance reasons, do not use the -Xint option in a production environment.

What to do next

Running the Java program with the compilation disabled leads to one of the
following situations:
v The failure remains. The problem is not in the JIT or AOT compiler. In some

cases, the program might start failing in a different manner; nevertheless, the
problem is not related to the compiler.

v The failure disappears. The problem is most likely in the JIT or AOT compiler.
If you are not using shared classes, the JIT compiler is at fault. If you are using
shared classes, you must determine which compiler is at fault by running your
application with only JIT compilation enabled. Run your application with the
-Xnoaot option instead of the -Xint option. This leads to one of the following
situations:
– The failure remains. The problem is in the JIT compiler. You can also use the

-Xnojit instead of the -Xnoaot option to ensure that only the JIT compiler is
at fault.

– The failure disappears. The problem is in the AOT compiler.

Selectively disabling the JIT compiler:

If your Java program failure points to a problem with the JIT compiler, you can try
to narrow down the problem further.

About this task

By default, the JIT compiler optimizes methods at various optimization levels.
Different selections of optimizations are applied to different methods, based on
their call counts. Methods that are called more frequently are optimized at higher
levels. By changing JIT compiler parameters, you can control the optimization level
at which methods are optimized. You can determine whether the optimizer is at
fault and, if it is, which optimization is problematic.

You specify JIT parameters as a comma-separated list, appended to the -Xjit
option. The syntax is -Xjit:<param1>,<param2>=<value>. For example:
java -Xjit:verbose,optLevel=noOpt HelloWorld

runs the HelloWorld program, enables verbose output from the JIT, and makes the
JIT generate native code without performing any optimizations.

Follow these steps to determine which part of the compiler is causing the failure:

Procedure

1. Set the JIT parameter count=0 to change the compilation threshold to zero. This
parameter causes each Java method to be compiled before it is run. Use
count=0 only when diagnosing problems, because a lot more methods are
compiled, including methods that are used infrequently. The extra compilation
uses more computing resources and slows down your application. With

Chapter 9. Troubleshooting and support 129

count=0, your application fails immediately when the problem area is reached.
In some cases, using count=1 can reproduce the failure more reliably.

2. Add disableInlining to the JIT compiler parameters. disableInlining disables
the generation of larger and more complex code. If the problem no longer
occurs, use disableInlining as a workaround while the Java service team
analyzes and fixes the compiler problem.

3. Decrease the optimization levels by adding the optLevel parameter, and run
the program again until the failure no longer occurs, or you reach the “noOpt”
level. For a JIT compiler problem, start with “scorching” and work down the
list. The optimization levels are, in decreasing order:
a. scorching
b. veryHot
c. hot
d. warm
e. cold
f. noOpt

What to do next

If one of these settings causes your failure to disappear, you have a workaround
that you can use. This workaround is temporary while the Java service team
analyze and fix the compiler problem. If removing disableInlining from the JIT
parameter list does not cause the failure to reappear, do so to improve
performance. Follow the instructions in “Locating the failing method” to improve
the performance of the workaround.

If the failure still occurs at the “noOpt” optimization level, you must disable the
JIT compiler as a workaround.

Locating the failing method:

When you have determined the lowest optimization level at which the JIT or AOT
compiler must compile methods to trigger the failure, you can find out which part
of the Java program, when compiled, causes the failure. You can then instruct the
compiler to limit the workaround to a specific method, class, or package, allowing
the compiler to compile the rest of the program as usual. For JIT compiler failures,
if the failure occurs with -Xjit:optLevel=noOpt, you can also instruct the compiler
to not compile the method or methods that are causing the failure at all.

Before you begin

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00000000
Target=2_30_20050520_01866_BHdSMr (Linux 2.4.21-27.0.2.EL)
CPU=s390x (2 logical CPUs) (0x7b6a8000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=4148bf20 Signal_Code=00000001
Handler1=00000100002ADB14 Handler2=00000100002F480C InaccessibleAddress=0000000000000000
gpr0=0000000000000006 gpr1=0000000000000006 gpr2=0000000000000000 gpr3=0000000000000006
gpr4=0000000000000001 gpr5=0000000080056808 gpr6=0000010002BCCA20 gpr7=0000000000000000
......
Compiled_method=java/security/AccessController.toArrayOfProtectionDomains([Ljava/lang/Object;
Ljava/security/AccessControlContext;)[Ljava/security/ProtectionDomain;

The important lines are:

130 IBM WebSphere Real Time for RT Linux: User Guide

vmState=0x00000000
Indicates that the code that failed was not JVM runtime code.

Module= or Module_base_address=
Not in the output (might be blank or zero) because the code was compiled by
the JIT, and outside any DLL or library.

Compiled_method=
Indicates the Java method for which the compiled code was produced.

About this task

If your output does not indicate the failing method, follow these steps to identify
the failing method:

Procedure

1. Run the Java program with the JIT parameters verbose and vlog=<filename>
added to the -Xjit or -Xaot option. With these parameters, the compiler lists
compiled methods in a log file named <filename>.<date>.<time>.<pid>, also
called a limit file. A typical limit file contains lines that correspond to compiled
methods, like:
+ (hot) java/lang/Math.max(II)I @ 0x10C11DA4-0x10C11DDD

Lines that do not start with the plus sign are ignored by the compiler in the
following steps and you can remove them from the file. Methods for which
AOT code is loaded from the shared class cache start with + (AOT load).

2. Run the program again with the JIT or AOT parameter
limitFile=(<filename>,<m>,<n>), where <filename> is the path to the limit file,
and <m> and <n> are line numbers indicating the first and the last methods in
the limit file that should be compiled. The compiler compiles only the methods
listed on lines <m> to <n> in the limit file. Methods not listed in the limit file
and methods listed on lines outside the range are not compiled and no AOT
code in the shared data cache for those methods will be loaded. If the program
no longer fails, one or more of the methods that you have removed in the last
iteration must have been the cause of the failure.

3. Repeat this process using different values for <m> and <n>, as many times as
necessary, to find the minimum set of methods that must be compiled to trigger
the failure. By halving the number of selected lines each time, you can perform
a binary search for the failing method. Often, you can reduce the file to a single
line.

What to do next

When you have located the failing method, you can disable the JIT or AOT
compiler for the failing method only. For example, if the method
java/lang/Math.max(II)I causes the program to fail when JIT-compiled with
optLevel=hot, you can run the program with:
-Xjit:{java/lang/Math.max(II)I}(optLevel=warm,count=0)

to compile only the failing method at an optimization level of “warm”, but
compile all other methods as usual.

If a method fails when it is JIT-compiled at “noOpt”, you can exclude it from
compilation altogether, using the exclude={<method>} parameter:
-Xjit:exclude={java/lang/Math.max(II)I}

Chapter 9. Troubleshooting and support 131

If a method causes the program to fail when AOT code is loaded from the shared
data cache, exclude the method from AOT loading using the exclude={<method>}
parameter:
-Xaot:exclude={java/lang/Math.max(II)I}

AOT methods are only compiled into the shared class cache during the admincache
population step. Preventing AOT loading is the best diagnostic approach for
problems with these methods.

Identifying JIT and AOT compilation failures:

For JIT compiler failures, analyze the error output to determine if a failure occurs
when the JIT compiler attempts to compile a method.

If the JVM crashes, and you can see that the failure has occurred in the JIT library
(libj9jit26.so), the JIT compiler might have failed during an attempt to compile a
method.

If you see error output like this example, you can use it to identify the failing
method:

Unhandled exception
Type=Segmentation error vmState=0x00050000
Target=2_30_20051215_04381_BHdSMr (Linux 2.4.21-32.0.1.EL)
CPU=ppc64 (4 logical CPUs) (0xebf4e000 RAM)
J9Generic_Signal_Number=00000004 Signal_Number=0000000b Error_Value=00000000 Signal_Code=00000001
Handler1=0000007FE05645B8 Handler2=0000007FE0615C20
R0=E8D4001870C00001 R1=0000007FF49181E0 R2=0000007FE2FBCEE0 R3=0000007FF4E60D70
R4=E8D4001870C00000 R5=0000007FE2E02D30 R6=0000007FF4C0F188 R7=0000007FE2F8C290
......
Module=/home/test/sdk/jre/bin/libj9jit26.so
Module_base_address=0000007FE29A6000
......
Method_being_compiled=com/sun/tools/javac/comp/Attr.visitMethodDef(Lcom/sun/tools/javac/tree/
JCTree$JCMethodDecl;)

The important lines are:

vmState=0x00050000
Indicates that the JIT compiler is compiling code. For a list of vmState code
numbers, see the Javadump tags table in the IBM SDK for Java V7 User guide,
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/
com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html.

Module=/home/test/sdk/jre/bin/libj9jit26.so
Indicates that the error occurred in libj9jit26.so, the JIT compiler module.

Method_being_compiled=
Indicates the Java method being compiled.

If your output does not indicate the failing method, use the verbose option with
the following additional settings:
-Xjit:verbose={compileStart|compileEnd}

These verbose settings report when the JIT or AOT compiler starts to compile a
method, and when it ends. If the JIT or AOT compiler fails on a particular method
(that is, it starts compiling, but crashes before it can end), use the exclude
parameter on the -Xjit or -Xaot command-line option to exclude it from JIT or
AOT compilation (refer to “Locating the failing method” on page 130). For
problems with AOT compilation, destroy your shared class cache before using the

132 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/javadump_tags_info.html

exclude option. If excluding the method prevents the crash, you have a
workaround that you can use while the service team corrects your problem.

Identifying AOT compilation failures in non-real-time-mode:

AOT problem determination in non-real-time-mode is very similar to JIT problem
determination.

About this task

As with the JIT, first run your application with -Xnoaot, which ensures that the
AOT'ed code is not used when running the application.

If this fixes the problem, rebuild the AOT jar files using the same technique that is
described in “Locating the failing method” on page 130, providing the -Xaot
option at AOT build time, instead of application run time.

Identifying AOT compilation failures in real-time mode:

AOT problem determination uses the admincache tool to locate the problem.

About this task

In contrast to JIT compilation failures, which occur at application run time, AOT
compilation failures occur during the admincache population step.

To find where the problem occurs, run the admincache tool with the -Xnoaot
option. This ensures that the application does not run with ahead-of-time compiled
code.

If using the -Xnoaot option fixes the problem, examine the output of the original
crash. The output provides information identifying which method is the cause of
the problem. Look for a line similar to:
Method_being_compiled=myAppClass.main(Ljava/lang/String;)V

To avoid the problem, this method must be excluded from ahead-of-time
compilation. Do this by adding an option to the admincache command line, similar
to the following example:
-Xaot:exclude={myAppClass.main(Ljava/lang/String;)V}

This exclusion prevents AOT compilation of the problem method.

Performance of short-running applications
The IBM JIT compiler is tuned for long-running applications typically used on a
server. You can use the -Xquickstart command-line option in non-real-time mode
to improve the performance of short-running applications, especially for
applications in which processing is not concentrated into a few methods.

-Xquickstart causes the JIT compiler to use a lower optimization level by default
and to compile fewer methods. Performing fewer compilations more quickly can
improve application startup time. When the AOT compiler is active (both shared
classes and AOT compilation enabled), -Xquickstart causes all methods selected
for compilation to be AOT compiled, which improves the startup time of
subsequent runs. -Xquickstart might degrade performance if it is used with

Chapter 9. Troubleshooting and support 133

long-running applications that contain methods using a large amount of processing
resource. The implementation of -Xquickstart is subject to change in future
releases.

You can also try improving startup times by adjusting the JIT threshold (using trial
and error). See “Selectively disabling the JIT compiler” on page 129 for more
information.

-Xquickstart has no effect on AOT code usage with -Xrealtime.

JVM behavior during idle periods
You can reduce the CPU cycles consumed by an idle JVM by using the
-XsamplingExpirationTime option to turn off the JIT sampling thread.

The JIT sampling thread profiles the running Java application to discover
commonly used methods. The memory and processor usage of the sampling thread
is negligible, and the frequency of profiling is automatically reduced when the
JVM is idle.

In some circumstances, you might want no CPU cycles consumed by an idle JVM.
To do so, specify the -XsamplingExpirationTime<time> option. Set <time> to the
number of seconds for which you want the sampling thread to run. Use this option
with care; after it is turned off, you cannot reactivate the sampling thread. Allow
the sampling thread to run for long enough to identify important optimizations.

The Diagnostics Collector
The Diagnostics Collector gathers the Java diagnostic files for a problem event.

Gathering the files that are needed by IBM service can reduce the time taken to
solve reported problems. The IBM SDK for Java V7 user guide contains detailed
information about using the Diagnostics Collector.

You can find this information here: IBM SDK for Java 7 - The Diagnostics Collector.

Garbage Collector diagnostic data
This section describes how to diagnose garbage collection problems.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
garbage collector problems, covering:
v Verbose garbage collection logging
v Tracing garbage collection using -Xtgc

You can find this information here: IBM SDK for Java 7 - Garbage Collector
diagnostic data.

Supplementary information about the IBM WebSphere Real Time for RT Linux
Metronome Garbage Collector is provided in the following sections.

Troubleshooting the Metronome Garbage Collector
Using the command-line options, you can control the frequency of Metronome
garbage collection, out of memory exceptions, and the Metronome behavior on
explicit system calls.

134 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/diag_collector.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/gcpd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/gcpd.html

Using verbose:gc information:

You can use the -verbose:gc option with the -Xgc:verboseGCCycleTime=N option to
write information to the console about Metronome Garbage Collector activity. Not
all XML properties in the -verbose:gc output from the standard JVM are created
or apply to the output of Metronome Garbage Collector.

Use the -verbose:gc option to view the minimum, maximum, and mean free space
in the heap. In this way, you can check the level of activity and use of the heap,
and then adjust the values if necessary. The -verbose:gc option writes Metronome
statistics to the console.

The -Xgc:verboseGCCycleTime=N option controls the frequency of retrieval of the
information. It determines the time in milliseconds that the summaries are
dumped. The default value for N is 1000 milliseconds. The cycle time does not
mean that the summary is dumped precisely at that time, but when the last
garbage collection event that meets this time criterion passes. The collection and
display of these statistics can increase Metronome Garbage Collector pause times
and, as N gets smaller, the pause times can become large.

A quantum is a single period of Metronome Garbage Collector activity, causing an
interruption or pause time for an application.

Example of verbose:gc output

Enter:
java -Xrealtime -verbose:gc -Xgc:verboseGCCycleTime=N myApplication

This example shows the initial output of verbose:gc, which contains the version
and garbage collection settings:

<verbosegc
xmlns="http://www.ibm.com/j9/verbosegc" version="R26_Java726_GA_20110716_0946_B87065">

<initialized id="1" timestamp="2011-07-27T14:17:52.277">
<attribute name="gcPolicy" value="-Xgcpolicy:metronome"/>
<attribute name="maxHeapSize" value="0x5800000"/>
<attribute name="initialHeapSize" value="0x4000000"/>
<attribute name="compressedRefs" value="false"/>
<attribute name="pageSize" value="0x1000"/>
<attribute name="requestedPageSize" value="0x1000"/>
<attribute name="gcthreads" value="1"/>
<region>

<attribute name="regionSize" value="16384"/>
<attribute name="regionCount" value="4096"/>
<attribute name="arrayletLeafSize" value="2048"/>

</region>
<metronome>

<attribute name="beatsPerMeasure" value="500"/>
<attribute name="timeInterval" value="10000"/>
<attribute name="targetUtilization" value="70"/>
<attribute name="trigger" value="0x2000000"/>
<attribute name="headRoom" value="0x100000"/>

</metronome>
<system>

<attribute name="physicalMemory" value="12507463680"/>
<attribute name="numCPUs" value="8"/>
<attribute name="architecture" value="x86"/>
<attribute name="os" value="Linux"/>
<attribute name="osVersion" value="2.6.24.7-75ibmrt2.18"/>

</system>
<vmargs>

Chapter 9. Troubleshooting and support 135

<vmarg
name="-Xoptionsfile=/my_dir/pxi3270hrt-20110719_02/sdk/jre/lib/i386/realtime/options.default"/>

<vmarg name="-Xjcl:jclse7b_26"/>
<vmarg

name="-Dcom.ibm.oti.vm.bootstrap.library.path=/my_dir/pxi3270hrt-20110719_02/sdk/jre/lib/i386/realtime:/
my_dir/pxi3270hrt-2011071..."/>

<vmarg
name="-Dsun.boot.library.path=/my_dir/pxi3270hrt-20110719_02/sdk/jre/lib/i386/realtime:/my_dir/
pxi3270hrt-20110719_02/sdk/jre/lib..."/>

<vmarg
name="-Djava.library.path=/my_dir/pxi3270hrt-20110719_02/sdk/jre/lib/i386/realtime:/my_dir/
pxi3270hrt-20110719_02/sdk/jre/lib/i38..."/>

<vmarg name="-Djava.home=/my_dir/pxi3270hrt-20110719_02/sdk/jre"/>
<vmarg name="-Djava.ext.dirs=/my_dir/pxi3270hrt-20110719_02/sdk/jre/lib/ext"/>
<vmarg name="-Duser.dir=/my_dir/pxi3270hrt-20110719_02/sdk/jre/bin"/>
<vmarg name="_j2se_j9=1120000"

value="F76FF700"/>
<vmarg name="-Djava.runtime.version=pxi3270hrt-20110719_02"/>
<vmarg name="-Djava.class.path=."/>
<vmarg name="-Xrealtime"/>
<vmarg name="-verbose:gc"/>
<vmarg name="-Dsun.java.launcher=SUN_STANDARD"/>
<vmarg name="-Dsun.java.launcher.pid=5543"/>
<vmarg name="_port_library" value="F7701B80"/>
<vmarg name="_bfu_java" value="F77029A8"/>
<vmarg name="_org.apache.harmony.vmi.portlib" value="08051DA0"/>

</vmargs>
</initialized>

When garbage collection is triggered, a trigger start event occurs, followed by
any number of heartbeat events, then a trigger end event when the trigger is
satisfied. This example shows a triggered garbage collection cycle as verbose:gc
output:

<trigger-start id="25" timestamp="2011-07-12T09:32:04.503" />

<cycle-start id="26" type="global" contextid="26" timestamp="2011-07-12T09:32:04.503" intervalms="984.285" />

<gc-op id="27" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.209">
<quanta quantumCount="321" quantumType="mark" minTimeMs="0.367" meanTimeMs="0.524" maxTimeMs="1.878"
maxTimestampMs="598704.070" />

<exclusiveaccess-info minTimeMs="0.006" meanTimeMs="0.062" maxTimeMs="0.147" />
<free-mem type="heap" minBytes="99143592" meanBytes="114374153" maxBytes="134182032" />
<free-mem type="immortal" minBytes="44234538" meanBytes="60342344" maxBytes="61219900"/>
<thread-priority maxPriority="11" minPriority="11" />

</gc-op>

<gc-op id="28" type="heartbeat" contextid="26" timestamp="2011-07-12T09:32:05.458">
<quanta quantumCount="115" quantumType="sweep" minTimeMs="0.430" meanTimeMs="0.471" maxTimeMs="0.511"
maxTimestampMs="599475.654" />

<exclusiveaccess-info minTimeMs="0.007" meanTimeMs="0.067" maxTimeMs="0.173" />
<classunload-info classloadersunloaded=9 classesunloaded=156 />
<references type="weak" cleared="660" />
<free-mem type="heap" minBytes="24281568" meanBytes="55456028" maxBytes="87231320" />
<free-mem type="immortal" minBytes="38234500" meanBytes="41736440" maxBytes="42233458"/>
<thread-priority maxPriority="11" minPriority="11" />

</gc-op>

<gc-op id="29" type="syncgc" timems="136.945" contextid="26" timestamp="2011-07-12T09:32:06.046">
<syncgc-info reason="out of memory" exclusiveaccessTimeMs="0.006" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="21290752" bytesAfter="171963656" />
<free-mem-delta type="immortal" bytesBefore="35735400" bytesAfter="35735400"/>

</gc-op>

<cycle-end id="30" type="global" contextid="26" timestamp="2011-07-12T09:32:06.046" />

<trigger-end id="31" timestamp="2011-07-12T09:32:06.046" />

136 IBM WebSphere Real Time for RT Linux: User Guide

The following event types can occur:

<trigger-start ...>
The start of a garbage collection cycle, when the amount of used memory
became higher than the trigger threshold. The default threshold is 50% of
the heap. The intervalms attribute is the interval between the previous
trigger end event (with id-1) and this trigger start event.

<trigger-end ...>
A garbage collection cycle successfully lowered the amount of used
memory beneath the trigger threshold. If a garbage collection cycle ended,
but used memory did not drop beneath the trigger threshold, a new
garbage collection cycle is started with the same context ID. For each
trigger start event, there is a matching trigger end event with same
context ID. The intervalms attribute is the interval between the previous
trigger start event and the current trigger end event. During this time,
one or more garbage collection cycles will have completed until used
memory has dropped beneath the trigger threshold.

<gc-op id="28" type="heartbeat"...>
A periodic event that gathers information (on memory and time) about all
garbage collection quanta for the time covered. A heartbeat event can occur
only between a matching pair of trigger start and trigger end events;
that is, while an active garbage collection cycle is in process. The
intervalms attribute is the interval between the previous heartbeat event
(with id -1) and this heartbeat event.

<gc-op id="29" type="syncgc"...>
A synchronous (nondeterministic) garbage collection event. See
“Synchronous garbage collections” on page 138

The XML tags in this example have the following meanings:

<quanta ...>
A summary of quantum pause times during the heartbeat interval,
including the length of the pauses in milliseconds.

<free-mem type="heap" ...>
A summary of the amount of free heap space during the heartbeat interval,
sampled at the end of each garbage collection quantum.

<classunload-info classloadersunloaded=9 classesunloaded=156 />
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="660 />
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Note:

v If only one garbage collection quantum occurred in the interval between two
heartbeats, the free memory is sampled only at the end of this one quantum.
Therefore the minimum, maximum, and mean amounts given in the heartbeat
summary are all equal.

v The interval between two heartbeat events might be significantly larger than the
cycle time specified if the heap is not full enough to require garbage collection
activity. For example, if your program requires garbage collection activity only
once every few seconds, you are likely to see a heartbeat only once every few
seconds.

Chapter 9. Troubleshooting and support 137

v It is possible that the interval might be significantly larger than the cycle time
specified because the garbage collection has no work on a heap that is not full
enough to warrant garbage collection activity. For example, if your program
requires garbage collection activity only once every few seconds, you are likely
to see a heartbeat only once every few seconds.
If an event such as a synchronous garbage collection or a priority change occurs,
the details of the event and any pending events, such as heartbeats, are
immediately produced as output.

v If the maximum garbage collection quantum for a given period is too large, you
might want to reduce the target utilization using the -Xgc:targetUtilization
option. This action gives the Garbage Collector more time to work. Alternatively,
you might want to increase the heap size with the -Xmx option. Similarly, if your
application can tolerate longer delays than are currently being reported, you can
increase the target utilization or decrease the heap size.

v The output can be redirected to a log file instead of the console with the
-Xverbosegclog:<file> option; for example, -Xverbosegclog:out writes the
-verbose:gc output to the file out.

v The priority listed in thread-priority is the underlying operating system thread
priority, not a Java thread priority.

Synchronous garbage collections

An entry is also written to the -verbose:gc log when a synchronous
(nondeterministic) garbage collection occurs. This event has three possible causes:
v An explicit System.gc() call in the code.
v The JVM runs out of memory then performs a synchronous garbage collection to

avoid an OutOfMemoryError condition.
v The JVM shuts down during a continuous garbage collection. The JVM cannot

cancel the collection, so it completes the collection synchronously, and then exits.

An example of a System.gc() entry is:
<gc-op id="9" type="syncgc" timems="12.92" contextid="8" timestamp="2011-07-12T09:41:40.808">
<syncgc-info reason="system GC" totalBytesRequested="260" exclusiveaccessTimeMs="0.009"
threadPriority="11" />

<free-mem-delta type="heap" bytesBefore="22085440" bytesAfter="136023450" />
<free-mem-delta type="immortal" bytesBefore="62324800" bytesAfter="62324800"/>
<classunload-info classloadersunloaded="54" classesunloaded="234" />
<references type="soft" cleared="21" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="523" />
<finalization enqueued="124" />

</gc-op>

An example of a synchronous garbage collection entry as a result of the JVM
shutting down is:

<gc-op id="24" type="syncgc" timems="6.439" contextid="19" timestamp="2011-07-12T09:43:14.524">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11" />
<free-mem-delta type="heap" bytesBefore="56182430" bytesAfter="151356238" />
<free-mem-delta type="immortal" bytesBefore="23659200" bytesAfter="23659200"/>
<classunload-info classloadersunloaded="14" classesunloaded="276" />
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32" />
<references type="weak" cleared="53" /> <finalization enqueued="34" />

</gc-op>

The XML tags and attributes in this example have the following meanings:

138 IBM WebSphere Real Time for RT Linux: User Guide

<gc-op id="9" type="syncgc" timems="6.439" ...
This line indicates that the event type is a synchronous garbage collection.
The timems attribute is the duration of the synchronous garbage collection
in milliseconds.

<syncgc-info reason="..."/>
The cause of the synchronous garbage collection.

<free-mem-delta.../>
The free Java heap memory before and after the synchronous garbage
collection in bytes.

<finalization .../>
The number of objects awaiting finalization.

<classunload-info .../>
The number of classloaders and classes unloaded during the heartbeat
interval.

<references type="weak" cleared="53" .../>
The number and type of Java reference objects that were cleared during the
heartbeat interval.

Synchronous garbage collection due to out-of-memory conditions or VM shutdown
can happen only when the Garbage Collector is active. It has to be preceded by a
trigger start event, although not necessarily immediately. Some heartbeat events
probably occur between a trigger start event and the synchgc event.
Synchronous garbage collection caused by System.gc() can happen at any time.

Tracking all GC quanta

Individual GC quanta can be tracked by enabling the GlobalGCStart and
GlobalGCEnd tracepoints. These tracepoints are produced at the beginning and end
of all Metronome Garbage Collector activity including synchronous garbage
collections. The output for these tracepoints looks similar to:
03:44:35.281 0x833cd00 j9mm.52 - GlobalGC start: globalcount=3

03:44:35.284 0x833cd00 j9mm.91 - GlobalGC end: workstackoverflow=0 overflowcount=0

Priority changes

In addition to summaries, an entry is written to the -verbose:gc log when the
Garbage Collector thread priority changes (because the application changed thread
priorities, or because one or more threads in an application ended). The priority
listed is the underlying OS thread priority, not a Java thread priority. An example
of a Garbage Collector thread priority change entry is:
<gc type="heartbeat" id="73" timestamp="Feb 26 13:11:35 2007" intervalms"1001.754">

<summary quantumcount="240">
<quantum minms="0.022" meanms="0.984" maxms="1.011" />
<classunloading classloaders="11" classes="17" />
<heap minfree="202833920" meanfree="214184823" maxfree="221102080" />
<thread-priority maxPriority="11" minPriority="11" />

</summary>
</gc>

Priority changes can be tracked in Real Time by producing the trace point
information relating to Garbage Collector thread priorities. This output looks
similar to:
15:58:25.493*0x8286e00 j9mm.102 - setGCThreadPriority() called with
newGCThreadPriority = 11

Chapter 9. Troubleshooting and support 139

This output can be enabled by using the ID, as follows:
-Xtrace:iprint=tpnid{j9mm.102}

Out-of-memory entries

When one of the memory areas runs out of free space, an entry is written to the
-verbose:gc log before the OutOfMemoryError exception is thrown. An example of
this output is:

<out-of-memory id="71" timestamp="2011-07-23T08:32:51.435" memorySpaceName="Scoped"
memorySpaceAddress="080EED9C"/>

By default a Javadump is produced as a result of an OutOfMemoryError exception.
This dump contains information about the memory areas used by your program.
Together with the J9MemorySpace value given in the -verbose:gc output, you can
use this information in the dump to identify the particular memory area that ran
out of space:
NULL id start end size space/region
1STHEAPSPACE 0x080EED9C -- -- -- Scoped
1STHEAPREGION 0x0810C570 0xF1B09028 0xF2B09028 0x01000000 Scoped/Region
NULL
1STHEAPTOTAL Total memory: 16777216 (0x01000000)
1STHEAPINUSE Total memory in use: 625952 (0x00098D20)
1STHEAPFREE Total memory free: 16151264 (0x00F672E0)

In the previous example, the memory space ID given in the -verbose:gc output
(0x080EED9C) can be matched to the ID of the Scoped memory area of the Java
dump. This match can be useful if you have several scopes and need to identify
which one has gone out of memory, because the -verbose:gc output only indicates
whether the OutOfMemoryError occurred in immortal, scoped, or heap memory.

Metronome Garbage Collector behavior in out-of-memory conditions:

By default, the Metronome Garbage Collector triggers an unlimited,
nondeterministic garbage collection when the JVM runs out of memory. To prevent
nondeterministic behavior, use the -Xgc:noSynchronousGCOnOOM option to throw an
OutOfMemoryError when the JVM runs out of memory.

The default unlimited collection runs until all possible garbage is collected in a
single operation. The pause time required is usually many milliseconds greater
than a normal metronome incremental quantum.
Related information:
Using -Xverbose:gc to analyze synchronous garbage collections

Metronome Garbage Collector behavior on explicit System.gc() calls:

If a garbage collection cycle is in progress, the Metronome Garbage Collector
completes the cycle in a synchronous way when System.gc() is called. If no
garbage collection cycle is in progress, a full synchronous cycle is performed when
System.gc() is called. Use System.gc() to clean up the heap in a controlled
manner. It is a nondeterministic operation because it performs a complete garbage
collection before returning.

Some applications call vendor software that has System.gc() calls where it is not
acceptable to create these nondeterministic delays. To disable all System.gc() calls
use the -Xdisableexplicitgc option.

140 IBM WebSphere Real Time for RT Linux: User Guide

The verbose garbage collection output for a System.gc() call has a reason of
“system garbage collect” and is likely to have a long duration:

<gc-op id="9" type="syncgc" timems="6.439" contextid="8" timestamp="2011-07-12T09:41:40.808">
<syncgc-info reason="VM shut down" exclusiveaccessTimeMs="0.009" threadPriority="11"/>
<free-mem-delta type="heap" bytesBefore="126082300" bytesAfter="156085440"/>
<free-mem-delta type="immortal" bytesBefore="5129096" bytesAfter="5129096"/>
<classunload-info classloadersunloaded="14" classesunloaded="276"/>
<references type="soft" cleared="154" dynamicThreshold="29" maxThreshold="32"/>
<references type="weak" cleared="53"/>
<finalization enqueued="34"/>

</gc-op>

Shared classes diagnostic data
Understanding how to diagnose problems that might occur helps you to use
shared classes mode.

For an introduction to shared classes, see Class data sharing between JVMs.

The IBM SDK for Java V7 User guide contains useful guidance on diagnosing
problems with shared classes, covering:
v Deploying shared classes
v Dealing with runtime bytecode modification
v Understanding dynamic updates
v Using the Java Helper API
v Understanding shared classes diagnostic output
v Debugging problems with shared classes

You can find this information here: IBM SDK for Java 7 - Shared classes diagnostic
data.

Some of the material in the IBM SDK for Java V7 User guide might not be
applicable to IBM WebSphere Real Time for RT Linux. In particular:
v In real-time mode, applications have only read access to shared class caches, not

read-write access.
v Caches can be modified exclusively using the admincache tool.
v Nonpersistent caches are not available in real-time mode.

Using the JVMTI
JVMTI is a two-way interface that allows communication between the JVM and a
native agent. It replaces the JVMDI and JVMPI interfaces.

JVMTI allows third parties to develop debugging, profiling, and monitoring tools
for the JVM. The interface contains mechanisms for the agent to notify the JVM
about the kinds of information it requires. The interface also provides a means of
receiving the relevant notifications. Several agents can be attached to a JVM at any
one time.

The IBM SDK for Java V7 User guide contains detailed information about using
JVMTI, including an API reference section on IBM extensions to JVMTI.

You can find this information here: IBM SDK for Java 7 - Using JVMTI.

Chapter 9. Troubleshooting and support 141

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/shared_classes_pd.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/jvmti.html

Using the Diagnostic Tool Framework for Java
The Diagnostic Tool Framework for Java (DTFJ) is a Java application programming
interface (API) from IBM used to support the building of Java diagnostics tools.
DTFJ works with data from a system dump or Javadump.

The IBM SDK for Java V7 User guide contains detailed information about DTFJ.
Follow this link: Using the Diagnostic Tool Framework for Java

142 IBM WebSphere Real Time for RT Linux: User Guide

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/tools/dtfj.html

Chapter 10. Reference

This set of topics lists the options and class libraries that can be used with
WebSphere Real Time for RT Linux

Command-line options
You can specify options on the command line while you are starting Java. Default
options have been chosen for best general use.

Specifying Java options and system properties
There are three ways to specify Java properties and system properties.

About this task

You can specify Java options and system properties in these ways. In order of
precedence, they are:
1. By specifying the option or property on the command line. For example:

java -Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump MyJavaClass

2. By creating a file that contains the options, and specifying this file on the
command line using the -Xoptionsfile=<filename> option.
In the options file, specify each option on a new line; you can use the '\'
character as a continuation character if you want a single option to span
multiple lines. Use the '#' character to define comment lines. You cannot specify
-classpath in an options file. Here is an example of an options file:
#My options file
-X<option1>
-X<option2>=\
<value1>,\
<value2>
-D<sysprop1>=<value1>

3. By creating an environment variable called IBM_JAVA_OPTIONS containing the
options. For example:
export IBM_JAVA_OPTIONS="-Dmysysprop1=tcpip -Dmysysprop2=wait -Xdisablejavadump"

The last option you specify on the command line has precedence over first option.
For example, if you specify the options -Xint -Xjit myClass, the option -Xjit
takes precedence over -Xint.

System properties
System properties are available to applications, and help provide information about
the runtime environment.

com.ibm.jvm.realtime
This property enables Java applications to determine if they are running
within a WebSphere Real Time for RT Linux environment.

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, and was started with the -Xrealtime option,
the com.ibm.jvm.realtime property has the value “hard”.

© Copyright IBM Corp. 2003, 2014 143

If your application is running within the IBM WebSphere Real Time for RT
Linux runtime environment, but was not started with the -Xrealtime
option, the com.ibm.jvm.realtime property is not set.

If your application is running within the IBM WebSphere Real Time
runtime environment, the com.ibm.jvm.realtime property has the value
“soft”.

Standard options
The definitions for the standard options.

-agentlib:<libname>[=<options>]
Loads native agent library <libname>; for example -agentlib:hprof. For
more information, specify -agentlib:jdwp=help and -agentlib:hprof=help
on the command line.

-agentpath:libname[=<options>]
Loads native agent library by full path name.

-assert Prints help on assert-related options.

-cp or -classpath <directories and .zip or .jar files separated by :>
Sets the search path for application classes and resources. If -classpath
and -cp are not used and CLASSPATH is not set, the user classpath is, by
default, the current directory (.).

-D<property_name>=<value>
Sets a system property.

-help or -?
Prints a usage message.

-javaagent:<jarpath>[=<options>]
Loads Java programming language agent. For more information, see the
java.lang.instrument API documentation.

-jre-restrict-search
Includes user private JREs in the version search.

-no-jre-restrict-search
Excludes user private JREs in the version search.

-showversion
Prints product version and continues.

-verbose:[class,gc,dynload,sizes,stack,jni]
Enables verbose output.

-verbose:class
Writes an entry to stderr for each class that is loaded.

-verbose:gc
See “Using verbose:gc information” on page 135.

-verbose:dynload
Provides detailed information as each class is loaded by the JVM,
including:
v The class name and package
v For class files that were in a .jar file, the name and directory

path of the .jar
v Details of the size of the class and the time taken to load the

class

144 IBM WebSphere Real Time for RT Linux: User Guide

The data is written out to stderr. An example of the output follows:
<Loaded java/lang/String from /myjdk/sdk/jre/lib/i386/
softrealtime/jclSC160/vm.jar>
<Class size 17258; ROM size 21080; debug size 0>
<Read time 27368 usec; Load time 782 usec; Translate time 927 usec>

Note: Classes loaded from the shared class cache do not appear in
-verbose:dynload output. Use -verbose:class for information
about these classes.

-verbose:sizes
Writes information to stderr describing the amount of memory
used for the stacks and heaps in the JVM

-verbose:stack
Writes information to stderr describing Java and C stack usage.

-verbose:jni
Writes information to stderr describing the JNI services called by
the application and JVM.

-version
Prints out version information for the non-real-time mode. When used
with the -Xrealtime option, it prints out the version information for
real-time mode.

-version:<value>
Requires the specified version to run.

-X Prints help on nonstandard options.

Non-standard options
Options that are prefixed by -X are nonstandard and subject to change without
notice.

The IBM SDK for Java V7 User guide contains detailed information on
non-standard options. You can find this information here: IBM SDK for Java 7 -
Command-line options.

Changes from the IBM SDK for Java V7 User guide are documented in the
following list:
v -XX:-LazySymbolResolution is the default option on the RT Linux operating

system, not -XX:+LazySymbolResolution.

Supplementary information for IBM WebSphere Real Time for RT Linux is
provided in the following sections.

Real-time options
The definition of the -Xrealtime option used in WebSphere Real Time for RT
Linux.

The following -X options are applicable in the WebSphere Real Time for RT Linux
environment.

-Xrealtime
Starts the real-time mode. It is required if you want to run the Metronome
Garbage Collector and use the Real-Time Specification for Java (RTSJ)
services. If you do not specify this option, the JVM starts in non-real-time

Chapter 10. Reference 145

|
|

http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/cmdline.html
http://publib.boulder.ibm.com/infocenter/java7sdk/v7r0/topic/com.ibm.java.lnx.70.doc/diag/appendixes/cmdline/cmdline.html

mode equivalent to IBM SDK and Runtime Environment for Linux
Platforms, Java 2 Technology, version 7.

The -Xrealtime option is interchangeable with -Xgcpolicy:metronome. You
can specify either one to get real-time mode.

Ahead-of-time options
The definitions for the ahead-of-time options.

Purpose

No option specified:
Runs with the interpreter and dynamically compiled code. If AOT code is
discovered, it is not used. Instead, it is dynamically compiled as required.
This is particularly useful for non-real time and some real-time
applications. This option provides optimal performance and throughput
but can suffer non-deterministic delays at run time when compilation
occurs.

-Xjit: This option is the same as default.

-Xint: Runs the interpreter only, ignores code written for AOT that might be
found in a precompiled jar file, and does not run the dynamic compiler.
This mode is not often required, other than for debugging problems that
you suspect are related to compilation or for very short batch applications
that do not derive benefit from compilation.

-Xnojit:
Runs the interpreter and uses code written for AOT if it is found in a
precompiled jar file. It does not run the dynamic compiler. This mode
works well for some real-time applications where you want to ensure that
no non-deterministic delays occur at run time because of compilation.
Code written for AOT can only be used when running with the -Xrealtime
option. It is not supported when running in a standard JVM, that is,
-Xrealtime is not specified.

Example
java -Xrealtime -Xnojit outputtest.jar.

Metronome Garbage Collector options
The definitions of the Metronome Garbage Collector options.

-Xgc:immortalMemorySize=size
Specifies the size of your immortal heap area. The default is 16 MB.

-Xgc:scopedMemoryMaximumSize=size
Specifies the size of your scoped memory heap area. The default is 8 MB.

-Xgc:synchronousGCOnOOM | -Xgc:nosynchronousGCOnOOM
One occasion when garbage collection occurs is when the heap runs out of
memory. If there is no more free space in the heap, using
-Xgc:synchronousGCOnOOM stops your application while garbage collection
removes unused objects. If free space runs out again, consider decreasing
the target utilization to allow garbage collection more time to complete.
Setting -Xgc:nosynchronousGCOnOOM implies that when heap memory is full
your application stops and issues an out-of-memory message. The default
is -Xgc:synchronousGCOnOOM.

-Xnoclassgc
Disables class garbage collection. This option switches off garbage

146 IBM WebSphere Real Time for RT Linux: User Guide

collection of storage associated with Java classes that are no longer being
used by the JVM. The default behavior is -Xnoclassgc.

-Xgc:targetUtilization=N
Sets the application utilization to N%; the Garbage Collector attempts to
use at most (100-N)% of each time interval. Reasonable values are in the
range of 50-80%. Applications with low allocation rates might be able to
run at 90%. The default is 70%.

This example shows the maximum size of the heap memory is 30 MB. The
garbage collector attempts to use 25% of each time interval because the
target utilization for the application is 75%.
java -Xrealtime -Xmx30m -Xgc:targetUtilization=75 Test

-Xgc:threads=N
Specifies the number of GC threads to run. The default is 1.

-Xgc:verboseGCCycleTime=N
N is the time in milliseconds that the summary information should be
dumped.

Note: The cycle time does not mean that the summary information is
dumped precisely at that time, but when the last garbage collection event
that meets this time criterion passes.

-Xmx<size>
Specifies the Java heap size. Unlike other garbage collection strategies, the
real-time Metronome GC does not support heap expansion. There is not an
initial or maximum heap size option. You can specify only the maximum
heap size.

-Xthr:metronomeAlarm=osxx
Controls the priority that the Metronome Garbage Collector alarm thread
runs at.

where xx is a number from 11 to 89 that specifies the priority the
metronome alarm thread should run at. Care should be taken in modifying
the OS priority that the alarm thread runs at. If you specify an OS priority
lower than that of any realtime thread, you will experience OutOfMemory
errors because the Garbage Collector ends up running at a lower priority
than realtime threads allocating garbage. The default Metronome Garbage
Collector alarm thread runs at an OS priority of 89.

Default settings for the JVM
Default settings apply to the Real Time JVM when no changes are made to the
environment that the JVM runs in. Common settings are shown for reference.

Default settings can be changed using environment variables or command-line
parameters at JVM startup. The table shows some of the common JVM settings.
The last column indicates how you can change the behavior, where the following
keys apply:
v e - setting controlled by environment variable only
v c - setting controlled by command-line parameter only
v ec - setting controlled by both environment variable and command-line

parameter, with command-line parameter taking precedence.

The information is provided as a quick reference and is not comprehensive.

Chapter 10. Reference 147

JVM setting Default Setting
affected by

Javadumps Enabled ec

Javadumps on out of memory Enabled ec

Heapdumps Disabled ec

Heapdumps on out of memory Enabled ec

Sysdumps Enabled ec

Where dump files are produced Current directory ec

Verbose output Disabled c

Boot classpath search Disabled c

JNI checks Disabled c

Remote debugging Disabled c

Strict conformancy checks Disabled c

Quickstart Disabled c

Remote debug info server Disabled c

Reduced signalling Disabled c

Signal handler chaining Enabled c

Classpath Not set ec

Class data sharing Disabled c

Accessibility support Enabled e

JIT compiler Enabled ec

AOT compiler (AOT is not used by the JVM unless
shared classes are also enabled)

Enabled c

JIT debug options Disabled c

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

Default locale None e

Time to wait before starting plug-in zero e

Temporary directory /tmp e

Plug-in redirection None e

IM switching Disabled e

IM modifiers Disabled e

Thread model N/A e

Initial stack size for Java Threads 32-bit. Use:
-Xiss<size>

2 KB c

Maximum stack size for Java Threads 32-bit. Use:
-Xss<size>

256 KB c

Stack size for OS Threads 32-bit. Use -Xmso<size> 256 KB c

Initial heap size. Use -Xms<size> 64 MB c

148 IBM WebSphere Real Time for RT Linux: User Guide

JVM setting Default Setting
affected by

Maximum Java heap size. Use -Xmx<size> Half the available
memory with a
minimum of 16
MB and a
maximum of 512
MB

c

Target time interval utilization for an application.
The Garbage collector attempts to use the remainder.
Use -Xgc:targetUtilization=<percentage>

70% c

The number of garbage collector threads to run. Use
-Xgc:threads=<value>

1 c

Maximum amount of memory that can be allocated
to scope memories in -Xrealtime mode. Use
-Xgc:scopedMemoryMaximumSize=<size>.

8 MB c

Sets the size of the immortal memory area in
-Xrealtime mode. Use
-Xgc:immortalMemorySize=<size>

16 MB c

Note: “available memory” is either the amount of real (physical) memory, or the
RLIMIT_AS value, whichever is the smallest value.

WebSphere Real Time for RT Linux class libraries
A reference to the Java class libraries that are used by WebSphere Real Time for RT
Linux.

The Java class libraries that are used by WebSphere Real Time for RT Linux are
described in http://www.rtsj.org/specjavadoc/book_index.html.

Running with TCK
If you are running the Real-Time Specification for Java (RTSJ) Technology
Compatibility Kit (TCK) with WebSphere Real Time for RT Linux, you should
include demo/realtime/TCKibm.jar in the classpath in order for tests to be
completed successfully.

TCKibm.jar includes the class VibmcorProcessorLock which is IBM's extension to
the TCK.ProcessorLock class. This class provides uniprocessor behavior that is
required in a small set of TCK tests. For more information on the
TCK.ProcessorLock class and vendor specific extensions to this class, see the
readme file that is included with the TCK distribution.

Chapter 10. Reference 149

http://www.rtsj.org/specjavadoc/book_index.html

150 IBM WebSphere Real Time for RT Linux: User Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2003, 2014 151

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:
v JIMMAIL@uk.ibm.com [Hursley Java Technology Center (JTC) contact]

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see: (i) IBM’s Privacy Policy at http://www.ibm.com/privacy ; (ii)
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details (in
particular, the section entitled “Cookies, Web Beacons and Other Technologies”);

152 IBM WebSphere Real Time for RT Linux: User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

and (iii) the “IBM Software Products and Software-as-a-Service Privacy Statement”
at http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
and/or other countries.

Intel and Itanium are trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 153

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

154 IBM WebSphere Real Time for RT Linux: User Guide

Index

Special characters
-? 144
-agentlib: 144
-agentpath: 144
-assert 144
-classpath 144
-cp 144
-D 144
-help 144
-javaagent: 144
-jre-restrict-search 144
-no-jre-restrict-search 144
-noRecurse 53
-outPath 53
-searchPath 53
-showversion 144
-verbose: 144
-verbose:gc option 135
-version: 144
-X 144
-Xbootclasspath/p 145
-Xdebug 24
-Xdump:heap 123
-Xgc:immortalMemorySize 146
-Xgc:immortalMemorySize=size 68
-Xgc:nosynchronousGCOnOOM 146
-Xgc:noSynchronousGCOnOOM

option 140
-Xgc:scopedMemoryMaximumSize 146
-Xgc:scopedMemoryMaximumSize=size 68
-Xgc:synchronousGCOnOOM 146
-Xgc:synchronousGCOnOOM option 140
-Xgc:targetUtilization 146
-Xgc:threads 146
-Xgc:verboseGCCycleTime=N 146
-Xgc:verboseGCCycleTime=N

option 135
-Xint 7, 41, 146
-Xjit 7, 41, 146
-Xmx 68, 103, 146
-Xnojit 7, 24, 41, 146
-Xrealtime 7, 41, 145
-Xshareclasses 24
-XsynchronousGCOnOOM 103

A
accessibility features 4
admincache

choosing classes to cache 51
creating a real-time shared class

cache 44
destroying a cache 50
erasing a cache 50
inspecting class caches 48
listing class caches 47
managing 47, 52, 66
shared class cache 44, 47, 48, 50, 51,

52, 66, 67
sizing shared class caches 51

admincache (continued)
using 44, 67

ahead-of-time compiler 87
ahead-of-time compiliation 8, 43
alarm thread

metronome garbage collector 5
AOT

disabling 128
application

running 85, 86
asynchronous event handlers

planning 17, 77
writing 17, 77

B
building 53, 54, 55
building precompiled files 53, 54, 55

C
class data sharing 93
class loading

NHRT 60
class records in a heapdump 125
class unloading

metronome 5
classic (text) heapdump file format

heapdumps 124
CLASSPATH

setting 33
clock

real-time 80
collection threads

metronome garbage collector 5
compilation failures, JIT 132
compiling 7, 41
complier

ahead-of-time 8, 43
Concepts 5
controlling processor utilization 68
core files 97
crashes

Linux 99

D
debugging performance problems 100
default settings, JVM 147
deserialization 60
Developing applications 71
Diagnostics Collector 134
disabling the AOT compiler 128
disabling the JIT compiler 128
DTFJ 142
dump agents

events 115
filters 116
using 114

dump viewer 126

dump viewer (continued)
Using diagnostic tools 126

E
events

dump agents 115

F
failing method, JIT 130

G
garbage collection

metronome 5, 68
real time 5, 68

Garbage Collector diagnostic data 134
Using diagnostic tools 134

H
hardware prerequisites 23
header record in a heapdump 124
heap memory 13
Heapdump 123

text (classic) Heapdump file
format 124

Using diagnostic tools 123

I
IBM-provided files

precompiling 55
immortal memory 5, 13
ImmortalProperties 60
InstallAnywhere 34
installation 27
internal base priorities 12
Introduction 1

J
Java application

writing 71
Java applications

modifying 74
Java class libraries

RTSJ 149
Javadump 118

storage management 118
threads and stack trace

(THREADS) 121
Using diagnostic tools 118

JIT 128
compilation failures, identifying 132
disabling 128
idle 134

© Copyright IBM Corp. 2003, 2014 155

JIT (continued)
locating the failing method 130
selectively disabling 129
short-running applications 133
testing 58
Using diagnostic tools 128

just-in-time
testing 58

JVMTI 141
Using diagnostic tools 141

K
known limitations 100

L
limitations

metronome 69
Linux

crashes, diagnosing 99
debugging techniques 98
known limitations 100
problem determination 97

debugging performance
problems 100

setting up and checking the
environment

core files 97
locating the failing method, JIT 130

M
Memory

requirements 15
SizeEstimator class 15

memory areas 13
reflection 111

memory leaks
avoiding 110

memory management 13
Memory management,

understanding 105
metronome

controlling processor utilization 68
limitations 69
time-based collection 5

metronome class unloading 5
metronome garbage collection 5, 68
metronome garbage collector

alarm thread 5
collection threads 5

multiple heapdumps 123

N
NHRT

class loading 60
constraints 60
memory 59
safe classes 65
scheduling 59

NLS
problem determination 101

No-Heap Real Time
using 58

no-heap real-time threads 15
NoHeapRealtimeThread 15

O
object records in a heapdump 124
operating system 23
options

-noRecurse 53
-outPath 53
-searchPath 53
-verbose:gc 135
-Xdump:heap 123
-Xgc:immortalMemorySize 146
-Xgc:nosynchronousGCOnOOM 146
-Xgc:noSynchronousGCOnOOM 140
-Xgc:scopedMemoryMaximumSize 146
-Xgc:synchronousGCOnOOM 140,

146
-Xgc:targetUtilization 146
-Xgc:threads 146
-Xgc:verboseGCCycleTime=N 135,

146
-Xmx 146
-Xnojit 43
-Xrealtime 43

ORB
debugging 102

OutOfMemoryError 103, 140
OutOfMemoryError, Immortal 107
OutOfMemoryError, Scoped 107

P
packaging 27
PATH

setting 32
Planning 23
planning asynchronous event

handlers 17, 77
planning real-time threads 74
policies 10, 38, 40
POSIXSignalHandler 17
pre-complied files 53, 54, 55
precompiled files 53
priorities 10, 38, 40

internal base 12
user base 12

priority inheritance 13
priority inhertance 17
priority inversion 17
priority scheduler 8, 9, 10, 37, 39
Problem determination 97

R
real-time clock 80
real-time garbage collection 5, 68
real-time threads 15

planning 74
writing 74

RealtimeThread 15
Reference 143

reflection
memory contexts 111

resource sharing 17
return codes 53
RTSJ 13
running an application 85, 86
Running applications 37

S
safe classes

NHRT 65
sample application 82, 89
SCHED_FIFO 8, 9, 10, 12, 37, 38, 39, 40
SCHED_OTHER 8, 9, 10, 12, 37, 38, 39,

40
SCHED_RR 8, 9, 10, 37, 38, 39, 40
scheduling policies

SCHED_FIFO 8, 9, 10, 12, 37, 38, 39,
40

SCHED_OTHER 8, 9, 10, 12, 37, 38,
39, 40

SCHED_RR 8, 9, 10, 37, 38, 39, 40
scoped memory 5, 13
Security 95
security manager 60
selectively disabling the JIT 129
serialization 60
settings, default (JVM) 147
shared class cache 44, 47, 48, 50, 51, 52,

66, 67
shared classes

diagnostic data 141
short-running applications

JIT 133
SIGABRT 17
SIGKILL 17
signal handling 17
SIGQUIT 17
SIGTERM 17
SIGUSR1 17
SIGUSR2 17
SizeEstimator 15
software prerequisites 23
storage management, Javadump 118
synchronization 17
system properties 60

T
TCK 149
Technology Compatibility Kit 149
text (classic) heapdump file format

heapdumps 124
thread dispatching 8, 9, 37, 39
thread scheduling 8, 9, 37, 39
threads and stack trace (THREADS) 121
time-based collection

metronome 5
tracing 127

Using diagnostic tools 127
trailer record 1 in a heapdump 125
trailer record 2 in a heapdump 125
troubleshooting

metronome 135
Troubleshooting and support 97

156 IBM WebSphere Real Time for RT Linux: User Guide

type signatures 126

U
uninstalling 34

InstallAnywhere 34
user base priorities: 12
Using diagnostic tools 112

Diagnostics Collector 134
DTFJ 142

using dump agents 114
Using the IBM Monitoring and

Diagnostic Tools for Java 113
Using diagnostic tools 113

W
work-based collection 5
writing asynchronous event handlers 17,

77
writing real-time threads 74

Index 157

158 IBM WebSphere Real Time for RT Linux: User Guide

����

Printed in USA

	Contents
	Figures
	Tables
	Preface
	Chapter 1. Introduction
	Overview of WebSphere Real Time for RT Linux
	What's new
	Benefits
	Accessibility

	Chapter 2. Understanding IBM WebSphere Real Time for RT Linux
	Introduction to the Metronome Garbage Collector
	Compilers
	Comparing JIT and AOT compilation

	Thread scheduling
	Support for RTSJ
	Real-time thread scheduling and dispatching
	Schedulables and their Parameters
	The priority scheduler
	Priorities and policies
	Priority mapping and inheritance

	Memory management
	Estimating memory requirements
	Using memory

	Synchronization and resource sharing
	Periodic and aperiodic parameters
	Asynchronous event handling
	Required documentation

	Chapter 3. Planning
	Migration
	Hardware and software prerequisites
	Considerations

	Chapter 4. Installing WebSphere Real Time for RT Linux
	Installation files
	Installing a Real Time Linux environment
	Installing from an InstallAnywhere package
	Completing an attended installation
	Completing an unattended installation
	Interrupted installation
	Known issues and limitations

	Setting the path
	Setting the classpath
	Testing your installation
	Uninstalling WebSphere Real Time for RT Linux

	Chapter 5. Running IBM WebSphere Real Time for RT Linux applications
	Thread scheduling and dispatching
	Regular Java thread priorities and policies
	Configuring the system to allow priority changes
	Launching secondary processes

	Real-time Java thread priorities and policies

	Using compiled code with WebSphere Real Time for RT Linux
	Using the AOT compiler
	Using the admincache tool
	Storing precompiled jar files into a shared class cache

	The Just-In-Time (JIT) compiler
	Enabling the JIT
	Disabling the JIT
	Determining whether the JIT is enabled

	Using no-heap real-time threads
	Memory and scheduling constraints
	Class loading constraints
	Constraints on Java threads when running with NHRTs
	Synchronization
	No-heap real-time class safety
	Sharing objects
	Restrictions on safe classes
	Safe classes

	Class data sharing between JVMs
	Running Applications with a Shared Class Cache

	Using the Metronome Garbage Collector
	Controlling processor utilization
	Tuning Metronome Garbage Collector
	Metronome Garbage Collector limitations

	Chapter 6. Developing applications
	Writing Java applications to exploit real time
	Introduction to writing real-time applications
	Planning your WebSphere Real Time for RT Linux application
	Modifying Java applications
	Writing real-time threads
	Writing asynchronous event handlers
	Writing NHRT threads
	Memory allocation in RTSJ
	Using the high-resolution timer

	The sample application
	Building the sample application
	Running the sample application
	Running the sample application without Real Time
	Running the sample application with Metronome Garbage Collector
	Running the sample application while using AOT

	The sample real-time hash map
	Developing WebSphere Real Time for RT Linux applications using Eclipse
	Debugging your applications
	Running Eclipse with the JVM

	Chapter 7. Performance
	Class data sharing between JVMs for non-Real-Time mode

	Chapter 8. Security
	Security considerations for the shared class cache

	Chapter 9. Troubleshooting and support
	General problem determination methods
	Linux problem determination
	Setting up and checking your Linux environment
	General debugging techniques
	Diagnosing crashes
	Debugging performance problems
	Known limitations on Linux

	NLS problem determination
	ORB problem determination

	Troubleshooting OutOfMemory Errors
	Diagnosing OutOfMemoryErrors
	How the IBM JVM manages memory
	Example OutOfMemoryError in immortal memory space
	Example OutOfMemoryError in scoped memory space

	Diagnosing problems in multiple heaps
	Avoiding memory leaks
	Hidden memory allocation through language features

	Using reflection across memory contexts
	Using inner classes with scoped memory areas

	Using diagnostic tools
	Using the IBM Monitoring and Diagnostic Tools for Java
	Garbage Collection and Memory Visualizer
	Health Center
	Interactive Diagnostic Data Explorer
	Memory Analyzer

	Using dump agents
	Dump events
	filter option
	request option

	Using Javadump
	Storage Management (MEMINFO)
	Threads and stack trace (THREADS)

	Using Heapdump
	Enabling multiple Heapdumps for real-time JVMs
	Text (classic) Heapdump file format

	Using system dumps and the dump viewer
	Tracing Java applications and the JVM
	JIT and AOT problem determination
	Diagnosing a JIT or AOT problem
	Performance of short-running applications
	JVM behavior during idle periods

	The Diagnostics Collector
	Garbage Collector diagnostic data
	Troubleshooting the Metronome Garbage Collector

	Shared classes diagnostic data
	Using the JVMTI
	Using the Diagnostic Tool Framework for Java

	Chapter 10. Reference
	Command-line options
	Specifying Java options and system properties
	System properties
	Standard options
	Non-standard options
	Real-time options
	Ahead-of-time options
	Metronome Garbage Collector options

	Default settings for the JVM
	WebSphere Real Time for RT Linux class libraries
	Running with TCK

	Notices
	Privacy Policy Considerations
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

