
On demand operating environment solutions
White paper

Migrating to a service-oriented
architecture

by Kishore Channabasavaiah and Kerrie Holley,
IBM Global Services, and Edward M. Tuggle, Jr.,
IBM Software Group

April 2004

Migrating to a service-oriented architecture

Page 2

Migrating to a service-oriented architecture

Page 3

Introduction: the case for developing a service-oriented architecture

Over the last four decades IT systems have grown exponentially, leaving

companies to handle increasingly complex software architectures. Traditional

architectures have reached the limit of their capabilities, while traditional

needs of IT organizations persist. IT departments still need to respond

quickly to new business requirements, continually reduce the cost of IT to

the business and seamlessly absorb and integrate new business partners

and customers. The software industry has gone through multiple computing

architectures designed to allow fully distributed processing, programming

languages designed to run on any platform and greatly reduce implementation

schedules and a myriad of connectivity products designed to allow better and

faster integration of applications. However, the complete solution continues

to be elusive.

Now, service-oriented architectures (SOAs) are being promoted as the next

evolutionary step to help IT organizations meet their ever more-complex

challenges. But questions remain: Are SOAs real? And even if they can be

outlined and described, can they actually be implemented? This white paper

discusses how the promise of SOA is true. That after all the publicity has

subsided, and all the inflated expectations have returned to reality, IT

organizations will find that SOAs provide the best foundation upon which

an IT organization can build new application systems, while continuing to

capitalize on existing assets. This white paper is the first in a series intended

to help you better understand the value of an SOA, and to help you develop

a realistic plan for evaluating your current infrastructure and migrating it to

a service-oriented architecture.

For some time now, the existence of Web services technologies has stimulated

the discussion of SOAs. The discussion isn’t a new one; the concept has been

developing for more than a decade now, ever since CORBA extended the

promise of integrating applications on disparate heterogeneous platforms.

2 Introduction: the case for

developing a service-oriented

architecture

3 Problem 1: complexity

4 Problem 2: redundant and

nonreusable programming

4 Problem 3: multiple interfaces

5 What about the future?

7 Requirements for an SOA

8 An SOA—not just Web services

10 The nature of a service

12 Addressing the old problems

14 Integration requirements within

the architecture

17 Benefits of deploying an SOA

19 The future: new models,

new requirements

21 Summary

21 For more information

Contents

Migrating to a service-oriented architecture

Page 2

Migrating to a service-oriented architecture

Page 3

Problems integrating these disparate applications arose, often because so

many different (and non-CORBA-compliant) object models became popular.

As a result, many architects and engineers became so bogged down in

solving technology problems that developing a more robust architecture

that would allow simple, fast, and highly secure integration of systems and

applications was lost. Unfortunately, the problems persist, and become more

complex every year. Meeting basic business needs drive your search for a

better solution. Needs like lowering costs, reducing cycle times, integrating

systems across your enterprise, integrating business-to-business (B2B) and

business-to-consumer (B2C) systems, achieve a faster return on your invest-

ment, and creating an adaptive and responsive business model. But more and

more, you’re finding that point-to-point solutions won’t solve the basic problem:

the lack of a consistent architectural framework that enables you to rapidly

develop, integrate and reuse applications. More importantly, you need an

architectural framework that allows you to assemble components and services

to deliver dynamic solutions as your business needs evolve. This white paper

will go beyond discussing why particular technologies such as Web services

are good. It will provide an architectural view unconstrained by technology.

To begin, you should consider some of the fundamental problems that underlie

your search for a better foundation. How you address these problems will

determine your level of success.

Problem 1: complexity

Some business problems facing your IT organization are consistently the

same. Corporate management pushes for better utilization of IT resources,

greater return on investment (ROI), integration of historically separate systems

and faster implementation of new systems. But some things are different now.

Environments are more complex. Budget constraints and operating efficiencies

require you to reuse legacy systems rather than replace them. Inexpensive,

ubiquitous access to the Internet has created the possibility of entire new

business models that you have to evaluate to keep pace with your competitors.

Growth by merger and acquisition has become standard fare, so entire IT

organizations, applications, and infrastructures must be integrated and

Migrating to a service-oriented architecture

Page 4

Migrating to a service-oriented architecture

Page 5

absorbed. In an environment of this complexity, point-to-point solutions merely

exacerbate the problem, and will never really meet the challenge. You must

develop systems that incorporate heterogeneity as a fundamental part of your

IT environment, so they can accommodate an endless variety of hardware,

operating systems, middleware, languages and data stores. The cumulative

effect of decades of growth and evolution has produced the complexity you’re

now dealing with. With all these business challenges for IT, it is no wonder

that application integration tops the priority list of many CIOs.

Problem 2: redundant and nonreusable programming

Like many companies, your application portfolios may have grown as a result

of mergers and acquisitions. As a result, you may be dealing with redundant

applications—or applications with function that can’t easily be reused. Perhaps

each business unit within your organization has acted separate from every

other unit, effectively hindering any coordinated effort to create reusable

functional assets or services. Collectively this redundancy increases both cost

and time to market to deploy new products or services, because changes have

to be made in each application or system affected. This lack of reuse ultimately

requires more resources—and often more time—to deliver new applications.

Problem 3: multiple interfaces

Consider the n(n-1) integration problem. All organizations face integration

problems of some sort; perhaps because of a corporate merger, a new business

alliance, or just the need to interconnect existing systems. If n application

systems must be directly interconnected, the process will produce n(n-1)

connections, or interfaces. In Figure 1, each arrowhead represents an interface.

According to Aberdeen Group,

surveys of Global 2000 CIOs consis-

tently identify the cost, complexity

and integration time of enterprise

application integration (EAI) and

business-to-business (B2B) integra-

tion as one of their top concerns.

Even with tightening budgets and

lower profit margins, the business

benefits of a solid integration

strategy are so compelling that CIOs

predict they’ll spend between 35

percent and 60 percent of their

budgets on integration projects.1

Figure 1. The n(n-1) integration problem

Application 1 Application 2

Application 3 Application 4

Application 5

Migrating to a service-oriented architecture

Page 4

Migrating to a service-oriented architecture

Page 5

Consequently, if you must integrate another application system A(n+1) ,

you will need to generate, document, test and maintain 2n new interfaces. In

Figure 1, the set of five applications requires 20 direct interfaces. Adding a

sixth application would require ten new interfaces. And to further increase

complexity, you must modify the code in each of the existing applications to

include the new interfaces, generating substantial testing costs. To reduce

this cost and complexity, you need an optimum solution that produces the

minimum number of interfaces n for n applications, with only one new

interface for each system added. However, it can’t be done by direct connection.

What about the future?

Over the last four decades the practice of software development has gone

through several different programming models. Each shift was made in part

to deal with greater levels of software complexity and to enable architects

to assemble applications through parts, components or services. More

recently, Java™ technology has provided platform-neutral programming.

XML has provided self-describing, platform-neutral data. Now Web services

have removed another barrier by allowing applications to interconnect in

an object-model-neutral way. For example, using a simple XML-based

messaging scheme, Java applications can invoke Microsoft® .NET applications

or CORBA-compliant, or even COBOL, applications. So, IBM CICS® or IBM

IMS™ transactions on a mainframe in Singapore can be invoked by a .NET

application which in turn may be invoked by an agent running on an IBM

Lotus® Domino® server in Munich. Best of all, the invoking application

doesn’t have to know where the transaction will run, what language it is written

in or what route the message may take along the way. A service is requested,

and an answer is provided.

Migrating to a service-oriented architecture

Page 6

Migrating to a service-oriented architecture

Page 7

Web services are more likely to be adopted as the de facto standard to deliver

effective, reliable, scalable and extensible machine-to-machine interaction

than any of their predecessors. The timely convergence of several necessary

technological and cultural prerequisites have contributed to this adoption,

including:

• A ubiquitous, open-standards-based, low-cost network infrastructure, and

technologies that offer a distributed environment much more conducive to

the adoption of Web services than both CORBA and Distributed Computing

Environment (DCE)-faced environments

• A degree of acceptance and technological maturity to operate within a network-

centric environment that requires interoperability to achieve critical business

objectives, such as distributed collaboration

• Consensus that low-cost interoperability is best achieved through open Internet-

based standards and related technologies

• The maturity of network-based technologies (such as TCP/IP); tool sets

(integrated development environments [IDEs] and Unified Modeling Language

[UML]) platforms (such as Java 2 Platform, Enterprise Edition [J2EE]) and

related methodologies (such as object-oriented [OO] technology and services),

that provide the infrastructure needed to facilitate loosely-coupled and

interoperable machine-to-machine interactions—a state far more advanced

than what CORBA users experienced.

SOA can be both an architecture and a programming model, a way of thinking

about building software. An SOA enables you to design software systems

that provide services to other applications through published and discoverable

interfaces, and where the services can be invoked over a network. When you

implement an SOA using Web services technologies, you create a new way

of building applications within a more powerful, flexible programming

model. You can reduce your development and ownership costs—and your

implementation risk.

Migrating to a service-oriented architecture

Page 6

Migrating to a service-oriented architecture

Page 7

On the horizon, however, are even more significant opportunities. First,

grid computing, which is much more than just the application of millions

of instructions per second (MIPS) to effect a computing solution. Grid

computing will also provide a framework that will enable you to dynamically

locate, relocate, balance and manage massive numbers of services so you can

guarantee that needed applications are always securely available, regardless

of the load placed on your system.

This framework, in turn, gives rise to the concept of on demand computing,

which could be implemented on any configuration, from a simple cluster of

servers to a network of 1024-node IBM SP2™ systems. If a user needs to solve

a problem and wants the appropriate computing resources applied to it—no

more, no less—you can pay only for the resources actually used. The effective

use of these new capabilities will require the restructuring of many existing

applications. Existing monolithic applications can run in these environments,

but will never use the available resources in an optimal way. These circum-

stances, along with the problems previously discussed, mean that your

infrastructure must undergo a fundamental change—the conversion to an SOA.

Requirements for an SOA

From the problems previously discussed in this paper, it should be clear that

it’s important to develop an architecture that meets all of your requirements.

These requirements should include the ability to:

• Leverage existing assets.

This is your most important requirement. Existing systems can rarely be thrown

away, and probably contain within them data that is of great value to your

enterprise. Strategically, the objective is to build a new architecture that will

yield all the value that you hope for, but tactically, your existing systems must be

integrated so that, over time, they can be componentized or replaced in manageable,

incremental projects.

• Support all required types of integration.

These include user interaction (to provide a single, interactive user experience),

application connectivity (to deliver a communications layer that underlies the

entire architecture), process integration (to choreograph applications and services),

information integration (to federate and move your enterprise data) and build to

integrate (to build and deploy new applications and services).

Migrating to a service-oriented architecture

Page 8

Migrating to a service-oriented architecture

Page 9

• Allow for incremental implementations and migration of assets.

Fulfilling this requirement will enable one of the most critical aspects of

developing the architecture: the ability to produce incremental ROI. Countless

integration projects have failed because of their complexity, cost and unworkable

implementation schedules.

• Build around a standard component framework.

You must include a development environment that is built around a standard

component framework to promote better reuse of modules and systems, allow

legacy assets to be migrated to the framework and allow for the timely

implementation of new technologies.

• Allow implementation of new computing models.

Specific examples of this requirement include new, portal-based client models,

grid computing and on demand computing.

An SOA—not just Web services

The advent of Web services has precipitated a fundamental change in how

IT infrastructures can be developed, deployed and managed. The success of

many Web services projects has shown that technology does exist that can

enable you to implement a true SOA. It allows you to take another step back

and examine your application architecture—as well as the basic business

problems you’re trying to solve. From a business perspective, it’s no longer just

a technology problem, it’s a matter of developing an application architecture

and framework within which you can define business problems and implement

solutions in a coherent, repeatable way.

First, though, it’s important to understand that Web services does not equal

SOA. Web services is a collection of technologies, including XML, Simple

Object Access Protocol (SOAP), Web Services Description Language (WSDL)

and Universal Description, Discover and Integration (UDDI), which allow

you to build programming solutions for specific messaging and application

integration problems. Over time, these technologies can be expected to

mature, and eventually be replaced with better, more-efficient, more-robust

technology. But for the moment, the existing technologies are sufficient,

and have already proven that you can implement an SOA today.

Migrating to a service-oriented architecture

Page 8

Migrating to a service-oriented architecture

Page 9

What actually constitutes an SOA? An SOA is exactly what its name implies—

an architecture. It’s more than any particular set of technologies, such as Web

services. It transcends these technologies—and, in a perfect world, is totally

independent of them. Within a business environment, a pure architectural

definition of an SOA might be an application architecture within which all
functions are defined as independent services with well-defined invokable
interfaces, which can be called in defined sequences to form business processes.
Note the components of this definition:

• All functions are defined as services. This includes purely business functions

(such as create a mortgage application or create an order), business transactions

composed of lower-level functions (such as get credit report or verify employment)

and system service functions (such as validate identification or obtain user profile).

This brings up the question of granularity, which will be addressed later.

• All services are independent. They operate as “black boxes;” external components

neither know nor care how they perform their function, merely that they return

the expected result.

• In the most general sense, the interfaces are invokable; that is, at an architectural

level, it is irrelevant whether they are local (within the system) or remote (external

to the immediate system). It doesn’t matter what interconnect scheme or protocol

is used to effect the invocation, or what infrastructure components are required

to make the connection. The service may be within the same application, or in

a different address space within an asymmetric multiprocessor, on a completely

different system within the corporate intranet, or within an application in a

partner’s system used in a B2B configuration.

In an SOA, the interface is the key, and it is the focus of the calling application.

It defines the required parameters and the nature of the result. This means

that it defines the nature of the service, not the technology used to implement

it. The system must effect and manage the invocation of the service, not the

calling application. This function allows two critical characteristics to be

realized: first, that the services are truly independent, and second, that they

can be managed. Management includes many functions:

Migrating to a service-oriented architecture

Page 10

Migrating to a service-oriented architecture

Page 11

• Security, to authorize requests, encrypt and decrypt data as required, and

validate information.

• Deployment, to allow the service to be moved around the network to maximize

performance or eliminate redundancy to provide optimum availability.

• Logging, to provide auditing and metering capabilities.

• Dynamic rerouting, to provide fail-over or load-balancing capabilities.

• Maintenance, to manage new versions of the service.

The nature of a service

What is a service? As previously stated, typically within a business environ-

ment, a service can be a simple business capability (such as getStockQuote,

getCustomerAddress or checkCreditRating), a more complex business

transaction (such as commitInventory, sellCoveredOption or scheduleDelivery)

or a system service (such as logMessageIn, authenticateUser). Business

functions are, from the application’s perspective, nonsystem functions that

are effectively atomic. Business transactions may seem like a simple function

to the invoking application, but they may be implemented as composite func-

tions covered by their individual transactional context. They may involve

multiple lower-level functions, transparent to the caller. System functions are

generalized functions that can be abstracted out to the particular platform,

such as Microsoft Windows® or Linux.

This may seem like an artificial distinction of the services. You could assert

that from the application’s perspective, all services are atomic; it’s irrelevant

whether they are business or system services. The distinction is made merely

to introduce the important concept of granularity. The decomposition of

business applications into services is not just an abstract process; it has very

practical implications. Services may be low-level or complex high-level

(fine-grained or course-grained) functions, and there are very real tradeoffs

in performance, flexibility, maintainability and reuse, based on their

definitions. The level of granularity is a statement of a service’s functional

richness. For example, the more coarse-grained a service is, the richer the

function offered by the service. Services are typically coarse-grained business

functions, such as openAccount, because this operation might result in the

execution of multiple finer-grained operations, such as verifyCustomerIdentity

and createCustomerAccount. This process of defining services is normally

Migrating to a service-oriented architecture

Page 10

Migrating to a service-oriented architecture

Page 11

XML
conversation

object

accomplished within a larger scope—that of the application framework. This

is the actual work that must be done; that is, the development of a component-

based application framework, wherein the services are defined as a set of

reusable components that can be used to build new applications, or integrate

existing software assets.

There are many such frameworks available today; within IBM, several

frameworks, such as Enterprise Workframe Architecture (EWA), JADE2

and Struts (from Jakarta), are being used in client-integration scenarios.

Taking EWA, from the IBM Software Group Advanced Technology Solutions

team, for example, at a very high level, the framework looks like Figure 2.

Within this framework, a configuration defines an application. It also

describes the components of the application, as well as the sequence and

method of its invocation. Input is received and passed to the application in a

source-neutral way. So, for instance, adding an Internet connection to a bank

application with existing ATM access is transparent to the application logic.

The front-end device and protocol handlers make that possible. System-level

services are provided by the core features, and special-purpose access

components enable connection to back-end enterprise applications, so that

they can remain in place, or be migrated over time. While EWA is fully

J2EE technology-compliant, it can connect to external DCOM or CORBA

component-based systems.

Business-logic
components

Application

Core features
• Base services
 - Log and audit management
 - Security
 - Cache management
• Pluggable Transaction

CORE

Back-end
systems

Application
configuration

Figure 2. The EWA framework

Validation
components

Process, data-access
and external-access

components

XML
conversation

object

Device
handlers

Protocol
handlers

Channel
handler

Client
devices

Migrating to a service-oriented architecture

Page 12

Migrating to a service-oriented architecture

Page 13

Today, the EWA framework contains over 1,500 general and special-purpose

components, greatly reducing the amount of code you have to write to create

a new application.

Addressing the old problems

Returning now to the first integration scenario discussed, how do you find

a scheme that minimizes the number of required interfaces, such as is drawn

in Figure 3?

Figure 3 may look like an overly simplistic view, but it illustrates how, within

a framework such as EWA, this view is the starting point. Now you can add the

architectural concept of the service bus, represented in Figure 4 by the heavy

center line, and a service or flow manager to connect the services and provide

a path for service requests. The flow manager processes a defined execution

sequence, or service flow, that will invoke the required services in the proper

sequence to produce the final result. The Business Process Execution

Language, or BPEL, is an example of such a technology for defining a process

as a set of service invocations.

Figure 3. Application integration

Application 2Application 1

Application 3 Application 4Application 5

Migrating to a service-oriented architecture

Page 12

Migrating to a service-oriented architecture

Page 13

At this point, you need to determine how to call the services, so you

add application configuration. Then, virtualize the inputs and outputs.

Finally, you provide connectivity to back-end processes. The result is a

comprehensive framework that allows processes to run as-is, and provides

for their future migration. Now, as Figure 5 shows, the high-level picture

is at least structurally complete.

Figure 4. Service integration

Service 3Service 1 Service 2

Service nService 4 Service 5

Flow
manager

....

Service n

Flow
manager

....

Service 3Service 2Service 1

Service 5Service 4
System
services

Application
management

System
services

Ex
te

rn
al

 m
es

sa
gi

ng

in
te

rf
ac

e

Figure 5. The completed framework

Back-end (legacy)
processes

Migrating to a service-oriented architecture

Page 14

Migrating to a service-oriented architecture

Page 15

You shouldn’t be surprised that Figure 5 bears some resemblance to a block

diagram of EWA. At the highest level, any robust application framework must

provide these functions. Now, however, the real work begins: building the

1,500 components that put flesh on this skeleton. The process of decomposing

the existing applications into components for the framework is work enough,

without reinventing all the other general-purpose and system components

known to be needed; thus, many IT architects choose to implement within

an existing framework. Regardless of how you approach it, you can implement

this architecture using technologies and frameworks that exist today—which

brings you back to the beginning, to an analysis of the business problems

that you need to solve. You can address these problems with the confidence

that your architecture will be implementable.

Integration requirements within the architecture

So far in this white paper, the discussion of integration has been confined to

application integration through component-based services, but integration

is a much broader topic than this. When assessing the requirements for an

architecture, you must consider several integration types. You must consider

not only application integration, but also integration at the end-user interface,

application connectivity, process integration, information integration and a

build-to-integrate development model.

Integration at the end-user interface is concerned with how the complete set

of applications and services a given user accesses are integrated to provide a

usable, efficient and consistent interface. It is an evolving topic, and the new

developments, for the near term, will be dominated by advances in the use

of portal servers. While portlets can already invoke local service components

through Web services, new technologies, such as Web services for Remote

Portlets, will enable content and application providers to create interactive

services that plug and play with portals through the Internet, and thereby

open up many new integration possibilities.

Migrating to a service-oriented architecture

Page 14

Migrating to a service-oriented architecture

Page 15

Application connectivity is an integration style concerned with all types of

connectivity that must be supported by the architecture. At one level, this

means issues such as synchronous and asynchronous communications, routing,

transformation, high-speed distribution of data, and gateways and protocol

converters. On another level, it also relates to the virtualization of input and

output, or sources and sinks, as in the channel and protocol handlers in Figure

2. Here the problem is the fundamental way data moves in and out, and within,

the framework that implements the architecture.

Process integration is concerned with the development of computing

processes that map to and provide solutions for business processes, integration

of application processes, and integrating processes with other processes.

The first requirement may seem obvious; that is, that the architecture should

allow for an environment within which the basic business problems can be

modeled. However, insufficient analysis at this level can present significant

challenges for any implementation of the architecture, regardless of its

technical sophistication. Integration of applications as part of processes

may include applications within the enterprise, or may involve invocation

of applications or services in remote systems, perhaps those of a business

partner. Likewise, process-level integration may involve the integration of

whole processes, not just individual services, from external sources, such

as supply chain management (SCM) or financial services that span multiple

institutions. For such application and process integration needs, you can use

technologies such as BPEL for Web services (BPEL4WS). Or the application

framework may use a program-configuration scheme, such as the one seen

in EWA. A higher-level configuration scheme can be constructed using

BPEL4WS at a lower level, and then driven by an engine that provides more

function than just flow management. Before any of this is built, however,

the architectural requirements must be understood first, so you can build

the appropriate infrastructure.

Migrating to a service-oriented architecture

Page 16

Migrating to a service-oriented architecture

Page 17

Information integration is the process of providing consistent access to all the

data in your enterprise, by all the applications that need it, in whatever form

they need it, without being restricted by the format, source or location of the

data. This requirement, when implemented, may involve only adapter software

and a transformation engine; however, typically, the process is more complex.

Often the key concept is the virtualization of the data, which may involve the

development of a data bus from which data can be requested using standard

services or interfaces by all applications within your enterprise. So the data

can be presented to the application regardless of whether it came from a spread-

sheet, a native file, a structure query language (SQL) or other database, or an

in-memory data store. The format of the data in its permanent store may also

be unknown to the application. The application is unaware of the operating

system that manages the data, so native files on an IBM AIX® or Linux system

are accessed the same way they would be on Windows, IBM z/OS® or virtually

any other system. The location of the data is also transparent; because it is

provided by a common service, it is the responsibility of the access service,

not the application, to retrieve the data, locally or remotely, and then present

the data in the requested format.

Last, one of the requirements for the application-development environment

must be that it takes into account all the styles and levels of integration that

can be implemented within your enterprise, and provide for their development

and deployment. To be truly robust, the development environment must

include (and enforce) a methodology that clearly prescribes how services and

components are designed and built, to facilitate reuse, eliminate redundancy,

and simplify testing, deployment and maintenance.

All of the styles of integration listed above will have some incarnation

within any enterprise, even though in some cases they may be simplified

or not clearly defined; thus, all styles must be considered when embarking

on a new architectural framework. Your IT environment may have only a

small number of data source types, so information integration may be

straightforward. Or the scope of application connectivity may be limited.

Migrating to a service-oriented architecture

Page 16

Migrating to a service-oriented architecture

Page 17

Even so, the integrating functions within the framework must still be provided

by services, rather than being performed ad hoc by the applications, if the

framework is to successfully endure the growth and changes over time that

all enterprises experience.

Benefits of deploying an SOA

An SOA can be evolved based on existing system investments rather than

requiring a full-scale system rewrite. Organizations that focus their develop-

ment efforts around the creation of services, using existing technologies,

combined with the component-based approach to software development

will realize several benefits.

• Leveraging existing assets

This benefit is the first, and most important, of the requirements discussed

earlier in this paper. You can construct a business service as an aggregation

of existing components, using a suitable SOA framework and made available

to your enterprise. Using this new service requires knowing only its interface and

name. The service’s implementation specifics (such as its component architecture)

or discrete functional components—as well as the complexities of the data flow

through the components that make up the service—are transparent to callers.

This component anonymity lets organizations leverage current investments,

building services from a conglomeration of components built on different machines,

running different operating systems, developed in different programming

languages. Legacy systems can be encapsulated and accessed using Web services

interfaces. More important, legacy systems can be transformed, adding value

as their functionality is transformed into services.

• Infrastructure as a commodity

Infrastructure development and deployment will become more consistent

across all your different enterprise applications. Existing components, newly

developed components and components purchased from a range of vendors can

be consolidated within a well-defined SOA framework. Such an aggregation of

components will be deployed as services on the existing infrastructure. As a result,

the underlying infrastructure becomes more of a commodity. Over time, as services

become more loosely coupled from the supporting hardware, you can optimize

the hardware because the service assembler is no longer dependent upon the

hardware environment on which the service operates at run time.

Migrating to a service-oriented architecture

Page 18

Migrating to a service-oriented architecture

Page 19

• Faster time-to-market

Organizational Web services libraries will become your organization’s core

assets as part of your SOA framework. Building and deploying services with

these Web services libraries will reduce your time to market dramatically,

as new initiatives reuse existing services and components, reducing design,

development, testing and deployment time in the process. As services reach

critical mass in your organization or trusted network, the larger ecosystem

emerges — enabling you to assemble composite applications using services, rather

than developing custom applications.

• Reduced cost

As business demands evolve and new requirements are introduced, the cost

to enhance and create new services by adapting the SOA framework and the

services library, for both existing and new applications, is greatly reduced.

The learning curve for the development team is reduced as well, as they may

already be familiar with the existing components.

• Risk mitigation

Reusing existing components reduces the risk of introducing new failures into the

process of enhancing or creating new business services. You will also reduce the risk

in the maintenance and management of the infrastructure supporting the services.

• Continuous business-process improvement

An SOA allows a clear representation of process flows identified by the order

of the components used in a particular business service—and provides business

users with an ideal environment for monitoring business operations. Process

modeling is reflected in the business service. Process manipulation is achieved by

reorganizing the pieces in a pattern (components that constitute a business service).

This function allows you to change the process flows while monitoring the effects

to facilitate continuous improvement.

Migrating to a service-oriented architecture

Page 18

Migrating to a service-oriented architecture

Page 19

• Process-centric architecture

The existing architecture models and practices tend to be program-centric.

Applications are developed for the programmer’s convenience. Often, process

knowledge is spread among components. The application is much like a

black box, with no granularity available outside it. Reuse requires copying

code, incorporating shared libraries or inheriting objects. In a process-centric

architecture, the application is developed for the process. The process is decomposed

into a series of steps, each representing a business service. In effect, each service

or component functions as a subapplication. These subapplications are chained

together to create a process flow capable of satisfying the business need. This

granularity lets processes leverage and reuse each subapplication throughout

your organization.

The future: new models, new requirements

So far, this white paper discussion centers around the need to increase speed

of business changes, and to improve business performance and efficiency.

These requirements mandate a set of IT imperatives for flexibility where SOA

becomes a key enabler. But what if a completely new model for application

development emerges? Will the notion of an SOA still be meaningful or

required? The answer is a resounding, yes. Two new, emerging concepts are

beginning to be implemented: grid computing and on demand computing.

While these models are distinct and have developed separately, they are

closely related; and each makes the evolution to SOA even more imperative.

Representing every application, resource or business capability as a service

with a standardized interface allows you to quickly combine new and existing

applications to address changing business needs and improve operational

effectiveness — the essence of SOA. As a result, SOA becomes the DNA of

grid computing and on demand computing.

Migrating to a service-oriented architecture

Page 20

Migrating to a service-oriented architecture

Page 21

Grid computing

An in-depth discussion of grid computing is beyond the scope of this paper,

but a couple of points are worth mentioning. First, grid computing is much

more than just the application of large numbers of millions of instructions per

second (MIPS) to effect a computing solution to a complex problem. It enables

you to divide resources into multiple execution environments by applying one

or more concepts, such as hardware or software partitioning, or time-sharing,

machine simulation, emulation and quality of service. This virtualization, or

on demand deployment, of all your distributed computing resources lets you

use them wherever and however they are needed within the grid. Virtualization

is simply a form of resource management for devices, storage, applications,

services or data objects. Hence, applying SOA allows you to maximize resource

utilization in a grid environment. You can deploy and migrate a services

ecosystem onto appropriate nodes in a grid environment to respond efficiently

to changes in your internal and external business environment.

On demand computing

An in-depth discussion of on demand computing is also beyond the scope of

this paper. But, again, SOA can be an essential prerequisite for on demand

computing. SOA is an enabling architecture for on demand applications.

Thus, applications must operate in an SOA to realize the benefits of on demand.

Web services is an enabling technology for SOA. As a subset of on demand

computing, Web services on demand is simply business services exposed using

Web services standards.

On demand computing can cover a wide spectrum. One end of this

spectrum focuses on the application environment; the other end focuses on

the operating environment, which includes items like infrastructure and

autonomic computing. Transforming your business means leveraging both

the application and operating environments to create an on demand business.

At the heart of your on demand business will be business services on demand

where application-level services can be discovered, reconfigured, assembled

and delivered on demand, with just-in-time integration capabilities.

Migrating to a service-oriented architecture

Page 20

Migrating to a service-oriented architecture

Page 21

The promise of Web services as an enabling technology is that it will enhance

business value by providing capabilities such as services on demand, and

over time, will transform the way IT organizations develop software. It could

even transform the way business is conducted and the way you offer your

products and services over the Web to your entire value chain. What if all of

your applications shared the same transport protocol? What if they all under-

stood the same interface? What if they could participate in, and understood,

the same transaction model? What if this were true of your partners? Then

you would have applications and an infrastructure to support an ever-changing

business landscape—and you would have become an on demand business.

Web Services and SOA can make this possible for applications.

Summary

SOA is the next wave of application development. Web services and SOA

are about designing and building systems using heterogeneous network-

addressable software components. SOA is an architecture with special

properties, comprising components and interconnections that stress

interoperability and location transparency. It often can be evolved based

on existing system investments rather than requiring a full-scale system

rewrite. It leverages your organization’s existing investment by taking

advantage of current resources— including developers, software languages,

hardware platforms, databases and applications — and can help reduce costs

and risks while boosting productivity. This adaptable, flexible architecture

provides the foundation for shorter time to market, and reduced costs and

risks in development and maintenance. Web services is a set of enabling

technologies for SOA, and SOA is becoming the architecture of choice for

development of responsive, adaptive new applications.

For more information

To learn more about SOAs and how IBM can help you build an SOA

for your enterprise, visit:

ibm.com/software/info/openenvironment/soa/

or

ibm.com/services

G224-7298-00

© Copyright IBM Corporation 2004

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
04-04
All Rights Reserved

AIX, CICS, Domino, the e-business logo, the
e(logo)business on demand lockup, IBM, the IBM
logo, IMS, Lotus, SP2 and z/OS are trademarks of
International Business Machines Corporation in the
United States, other countries or both.

Microsoft and Windows are trademarks of Microsoft
Corporation in the United States, other countries or
both.

Java and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the United States, other
countries or both.

Other company, product or service names may be
trademarks or service marks of others.

1 Tom Dwyer, Using Composite Applications to Lower
Integration Costs, Aberdeen Group, (April 2003).

2 Jade provides the base application infrastructure for a
JSP/Servlet application. This infrastructure consists of
a programming model based on hundreds of engage-
ments and IBM best practices and a set of Java utilities
and proven practices for building Web applications.

