High Level Assembiler:
Benefiting From Its Powerful New Features

SHARE 102 (Feb. 2004), Session 8165

John R. Ehrman
Ehrman@us.ibm.com or Ehrman@vnet.ibm.com

IBM Silicon Valley (Santa Teresa) Laboratory
555 Bailey Avenue
San Jose, California 95141

February, 2004

Table of Contents

Topic OVerVieWw ittt et e et s e s e OVUE-1
HLASM Options: OVerview e e e e OPTS-2
New Ordinary-Assembly Statements LANG-3
Enhanced Ordinary-Assembly Statements LANG-4
Conditional Assembly Enhancements, LANG-5
Other Useful Language Enhancements LANG-6
Mixed-Case INput LANG-7
Mixed-Case Symbols and Operation Codes LANG-8
Mixed-Case Macro Arguments LANG-9

Ordinary USING Statementsttt annnnns OLDU-1
Addressing Halfwords and Effective Addresses OLDU-2
Manually-Specified Base and Displacement OLDU-3
Assembler-Calculated Base and Displacement OLDU-4
Ordinary USING Statements: Summary OLDU-5

New USING Statementsttt eanennns NEWU-1
Goals of Any Addressing Methodology NEWU-2
Problems with Ordinary USING Statements NEWU-3
New USING Statements in High Level Assembler NEWU-4
Labeled USING Statements and Qualified Symbols NEWU-5
Managing Two Copies of a Data Structure NEWU-6
Managing Two Copies of a Structure (The Hard Way) NEWU-7
Managing Two Copies of a Structure (The Hard Way)... NEWU-8
Managing Two Copies of a Structure (The Hard Way)... NEWU-9

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. Contents-1

Table of Contents

Labeled USINGs: The Best Solution NEWU-10
Example: Doubly-Linked List Structure NEWU-11
Labeled USINGs: Doubly-Linked List NEWU-12
Labeled USING Statements: a Summary, NEWU-13
Dependent USING Statements NEWU-14
Dependent Using Statement Examples NEWU-15
Dependent USING Example: Contiguous Control Blocks NEWU-16
Contiguous Control Blocks: Ordinary USINGs NEWU-17
Contiguous Control Blocks: Dependent USINGs NEWU-18
Dependent USING Example: Nested Structures NEWU-19
Nested Structures with Multiple Ordinary USINGs NEWU-20
Nested Structures with Dependent USINGs NEWU-21
Nested Structures with One Ordinary USING NEWU-22
Mapping Message Fields with the Message ltself NEWU-23
DSECT Nesting in an Employee Record, NEWU-24
Labeled Dependent USING Statements NEWU-25
Two Nested ldentical Structures NEWU-26
Addressing Two Nested ldentical Structures NEWU-27
Multiple Nested Structures e NEWU-28
Multiple Nested Structures: Labeled Dependent USINGs NEWU-29
Multiple Nested Structures: Referencing Fields NEWU-30
Array of ldentical Data Structures NEWU-31
Two MVS DCBs Within a Program NEWU-32
Personnel-File Employee Record NEWU-33
Personnel-File Employee Record: “Person” Fields NEWU-34
Personnel-File Employee Record: “Date,” “Addr” Fields NEWU-35

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. Contents-2

Table of Contents

Personnel-File Employee Record: Comparing Birth Dates NEWU-36
Personnel-File Employee Record: Comparing Dates NEWU-37
Personnel-File Employee Record: Copying Addresses NEWU-38
Summary of USING Statements NEWU-39
DROP Statement Extensions e NEWU-41
Generalized Object File Format (GOFF) GOFF-42
Internal Conditional-Assembly Functions CAFN-43
Internal Arithmetic-Valued Functions CAFN-44
Boolean Operators e CAFN-45
Internal Character Functions CAFN-46
External Conditional-Assembly Functions CAFN-47
SETAF External Function Interface CAFN-48
SETCF External Function Interface CAFN-49
System Variable Symbols: History and Overview SVAR-50
Input-Output EXits e EXIT-51
Input-Output Exit Communication EXIT-52
Example Object-File Exit: OBJX EXIT-53

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. Contents-3

Topic Overview

e Options and Language enhancements
e Mixed-Case Input and Output

e Old and New USING Statements

e GOFF and Binder Considerations

e Conditional Assembly Functions

e System Variable Symbols

e Assembler I/O Exits

e Macro-Operand Sublists

Rev. 19 Dec 03, 1740 Fmt. 21 Dec 03, 1709
HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OVUE-1

HLASM Options: Overview

e HLASM accepts option specifications from several sources:
— *PROCESS statements in the program being assembled
— an external ASMAOPT file
— invocation parameters

— installation defaults

e Options apply to various assembly activities:
— Assembly: BATCH, PROFILE, SIZE
— Source file: DBCS, OPTABLE, COMPAT, SYSPARM
— Obiject file: GOFF, TEST, TRANSLATE, CODEPAGE
— Assembler I/O: EXIT, ADATA, DECK, OBJECT, TERM

— Listing: ASA, ESD, FOLD, LINECOUNT, RLD, PCONTROL, INFO, LIBMAC,
LIST, USING(MAP), THREAD

— Messages: ALIGN, FLAG, LANGUAGE, RENT, RA2, USING(WARN), USING(LIMIT)

— Cross-References: symbols, general registers, macro/COPY members, DSECTs

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OPTS-2

New Ordinary-Assembly Statements

e HLASM provides many new assembler instruction statements:

*PROCESS Source-file assembly options

ACONTROL Dynamic control of certain options
ADATA User data kept with the SYSADATA file
ALIAS Modifies external symbols in object file
CEJECT Conditional control of listing pagination
CATTR Assign class names and attributes
EXITCTL Provide control data to 1/0 exits

XATTR Assign attributes to external symbols

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-3

Enhanced Ordinary-Assembly Statements

e Existing statements are enhanced by HLASM:
AMODE /RMODE Extended to support 64-bit addressing
COPY Supports variable-symbol operand in open code
DC Many new constant types:

EB,DB, LB IEEE Floating Point
EH,DH, LH Hex Floating Point

AD,FD 8-byte address, binary
Ccu Sixteen-bit Unicode
J,R Length, PSECT Address

Blanks allowed in quoted nominal values (except C, G)
No nominal value needed if duplication factor is zero

PRINT Accepts MCALL, MSOURCE, UHEAD operands
PUSH/POP Accepts ACONTROL operand
RSECT Declares a read-only section

USING/DROP Extended for labeled and dependent USINGs

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-4

Conditional Assembly Enhancements

e New conditional-assembly statements have been added and enhanced:

AEJECT/ASPACE Control formatting of macro definition listing

AINSERT Place constructed records into “pre-input” buffer

AREAD Supported operands: CLOCKB, CLOCKD, NOPRINT,
NOSTMT

SETAF, SETCF Invoke externally-defined conditional assembly function

e Other enhancements include:
— Many new system (&SYS) variable symbols
— Simpler variable symbol declaration
— Enhanced substring notation
— Predefined absolute symbols in conditional assembly expressions

— Easier scanning of macro-argument sublists

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-5

Other Useful Language Enhancements

e Unary minus supported in arithmetic expressions
e DXD operand alignment rationalized
e NOPRINT operand supported on several statements

e Attribute-reference extensions
— 0' (“Operation Code”)

— I'", S'" in open code
e Literals as macro operands treated more sensibly
e Literals in machine instructions treated more as “ordinary symbols”

e Attribute references to literals return reliable values

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-6

Mixed-Case Input

e All IBM mainframe assemblers accept mixed case in:
— remarks fields of assembler and machine instruction statements
NAME OPCODE OPERAND,OPERAND Remarks may be in mixed case
PRINT DATA PRINT all generated text
— comment statements

* Comment statements may also be in mixed case

— quoted character strings in character constants and self-defining terms
MIXCON DC C'AbBbCcDdeE' Character Constant
SELFDEF LA R1,C'a’ Character self-defining term

— macro instruction statement operand values.

MACCALL MACOP Positional,KEY=KeyValue Macro call operands

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-7

Mixed-Case Symbols and Operation Codes

e High Level Assembler permits lowercase characters in
— symbolic operation codes
— ordinary symbols

— variable symbols
— local and global
— system (&SYS)

— macro-instruction positional and keyword parameter names

— sequence symbols

e Operation codes and symbols treated as identical to their uppercase
equivalents.

label a reg9,storage_operand(indexreg))) These are
Label A Reg9,Storage Operand(IndexReg))) equivalent
LABEL A REG9, STORAGE_OPERAND (INDEXREG))) statements

e Symbol Table displays each symbol as it was first encountered.

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-8

Mixed-Case Macro Arguments

e Mixed-case symbols do not change macro argument handling:
— Characters in macro arguments are always left in their original case

— Macro calls using mixed-case characters in arguments will work in High Level
Assembler just as in previous assemblers.

LABEL MACCALL Positional_Value,KEYWORD=Key Value A11 assemblers

Label MacCall Positional Value,KeyWord=Key Value HLASM only

 Keyword and Positional values are unchanged

— Passing mixed-case values may require internal macro changes if such values
must be recognized.

— UPPER function can help!
— Use COMPAT (MACROCASE) option if existing macros expect uppercase operands

abend 13,dump Works correctly with CPAT(MC)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. LANG-9

Ordinary USING Statements

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OLDU-1

Addressing Halfwords and Effective Addresses

e Many instructions generate addresses from addressing halfwords:

v

<4 bhits—> = 12 bits

base digit displacement

Effective Address = displacement + if (b # 0) then C(Rb) else 0

e For RX-type instructions, an index may be used:

8 bits 4 bits 4 bits 16 bits

opcode operand | index

0IXxXXXXX register|register addressing halfword
digit digit

else 0
then C(Rx) else 0

Effective Address = displacement

+ +
o |mude
=h
o
.
(=2 =)
N
-+
=
(1]
=
o
~~
=
o
N’

=
—_
b

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OLDU-2

Manually-Specified Base and Displacement

o Consider assigning bases and displacements symbolically

— Displacements derived “manually” for each symbol reference

Location Name Operation Operand

0000 BASR 6,0

0002 BEGIN L 2 ,N-BEGIN(0,6)

0006 A 2 ,0NE-BEGIN(0,6)

000A ST 2 ,N-BEGIN(0,6)
— 22 bytes of stuff ———

0024 N DC F'8'

0028 ONE DC F'1'

— Each storage address specifies two items: an origin and a register
e Prefer to specify those just once

e Hence, the USING statement!

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OLDU-3

Assembler-Calculated Base and Displacement

e USING combines base-register and base-location information

— Relation to actual addressing instructions is unknown!

BASR 6,0
USING BEGIN,6
BEGIN L 2,N
A 2,0NE
ST 2,N
N DC F'8'
ONE DC F'1'

o Benefits:
— Simplified references to addressable operands
— Assembler assigns registers and calculates displacements

— Improved readability and maintainability

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OLDU-4

Ordinary USING Statements: Summary

e Your promise to the assembler:

— Assume this location will be in that register
— Calculate base-displacement resolutions
— Run-time addresses will be evaluated correctly

e Limitations

— Symbolic addressing requires USINGs
— Whether or not run-time addressing requires distinct registers

— Multiple resolution problems

— Base register resolution and selection rules are too easy to forget:
1. Search USING Table for entries with relocatability attribute matching that of the
expression to be resolved (no match: ASMA307W)
2. Select entry (or entries) yielding smallest valid displacement
(beyond USING range: ASMA034W indicates how far)
3. Select highest-numbered register with that smallest displacement
N_r:m:mcmo_cﬁmmx?mmm_o:_mcsﬁmmo_<ma_:<m0<<::UmmmNmS

e It's very easy for you and the assembler to mis-communicate...!

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. OLDU-5

New USING Statements

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-1

Goals of Any Addressing Methodology

Increased opportunities for clear, simple coding

— Easier to write, understand, and maintain

Support efficient coding
— Maximize performance without devious obscurities

— Minimize need to remember arcane language rules

Let the Assembler assign registers and displacements
— Better controls over resolutions

— More understandable and maintainable code

Encourage fully-symbolic references to all objects

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-2

Problems with Ordinary USING Statements

e Ordinary USINGs have several shortcomings:

1. Cannot make simultaneous references to multiple instances of a given control
section

— Unless you write “tortured” code

2. Cannot map more than one DSECT per register

— Unless you write “tortured” code

3. Cannot specify fixed relationships among DSECTs at assembly time

— Unless you write “tortured” code

e New USING statements in High Level Assembler
— Alleviate all these problems
— Coding can be simpler, cleaner, more understandable
— Less need to understand complex assembler rules

— Avoid encoding data structuring info in referencing instructions

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-3

New USING Statements in High Level Assembler

1. Labeled USINGs

e Simultaneous reference to multiple instances of an object
* One object per register

2. Dependent USINGs
e Address multiple objects with a single register
o Greater program efficiency (fewer base registers required)
e Dynamic structure remapping during execution

3. Labeled Dependent USINGs
e« Combines benefits of Labeled and Dependent USINGs

e Simultaneous reference to (possibly multiple) occurrences of multiple objects
with a single register

o Easier mapping of complex data structures

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-4

Labeled USING Statements and Qualified Symbols

e Some definitions:

1. A qualified symbol is of the form qualifier.ordinary symbol

2. A qualifier is an ordinary symbol also

— Qualifiers may not be used as symbols in other contexts

3. A qualifier is defined as such by appearing in the name field of a USING
statement:

qualifier USING base,register

e Examples:
A USING Z,5 Qualifier A Use: A.B
LEFT USING BLOCK,9 Qualifier LEFT LEFT.DATA
RECORD1 USING MAPPING,3 Qualifier RECORD1 RECORD1.FIELD4

e Qualifiers permit “directed resolution” to a specific register

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-5

Managing Two Copies of a Data Structure

 We wish to copy a field F2 between two active copies of a DSECT:

New instance (R5) 01d instance (R7)

A DSECT A DSECT

F1 DS —-- F1 DS -—--
F2 DS CL(FLen) <«— copy —— F2 DS CL(FLen)
- —— etc. — - - - —— etc. — - -

e We'd like the assembler to understand statements like

MVC F2uewsF20.p or MVC NEW_F2,0LD_F2

e Solutions with ordinary USINGs have some shortcomings...
— likely to be harder to understand and maintain
— more opportunities for incorrect or inefficient code
— harder for assembler to diagnose potential problems

— require deeper understanding of complex instruction and language rules

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-6

Managing Two Copies of a Structure (The Hard Way)

e Some examples of solutions with ordinary USINGs:

1. Incorrect usage:

USING A,5 USING A,7
USING A,7 or USING A,5
MVC F2,F2 MVC F2,F2

2. With manually-calculated displacements (1):

USING A,5 map new instance of A
MVC F2,F2—-A(7) move from old to new (Correct, but ugly)

3. With manually-calculated displacements (2):

USING A,7 map old instance of A
MVC F2—A(5) ,F2 move from old to new (WRONG!)

4. With manually-calculated displacements (3):

USING A,7 map old instance of A
MVC F2—A(,5),F2 move from old to new (Correct, but uglier)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-7

Managing Two Copies of a Structure (The Hard Way)...

5. With (strangely) manually-calculated displacements (4):

USING A,5 map new instance of A
USING 0,7 map old instance of A (somewhat...)
MVC F2,F2-A move from old to new

- — - more statements (forgetting to drop RO)
LA 1,100 Resolved on R7! (X'41107064')

6. With (desperately) manually-calculated displacements (4):

USING A,5 map new instance of A
USING O0+X'F999',7 map old instance of A (differently)
MVC F2,F2-A+X'F999' move from old to new

7. Manual assignments may be wrong if the size of DSECT A exceeds

4K bytes
USING A,5,6 map new instance of A
* USING A,7,8 implicit map of old instance of A
MVC F2,F2-A(7) F2—A might exceed 4095?

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-8

Managing Two Copies of a Structure (The Hard Way)...

8. With an intermediate temporary (1):

USING A,7 map old instance of A
MVC TEMP(FLen) ,F2 move from old to temp
USING A,5 map new instance of A
MVC F2,TEMP move from temp to new (WRONG!)

9. With an intermediate temporary (2):

USING A,7 map old instance of A

MVC TEMP(FLen) ,F2 move from old to temp

DROP 7 must DROP register 7 first
USING A,5 map new instance of A

MVC F2,TEMP move from temp to new (RIGHT!)

10. With a duplicated copy of the DSECT:

B
G1
G2

DSECT B is a copy of A

DS - - =

DS CL(FLen)

etc. — — -

USING B,7 map old instance of A (named B)
USING A,5 map new instance of A

MVC F2,G2 move from old to new

e Each of these examples is not untypical of current coding styles...

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-9

Labeled USINGs: The Best Solution

e Labeled USINGs provide a simple solution:

oD F§ USING A,7 map old instance of A
NEW B USING A,5 map new instance of A
MVC NEW.F2,0LD.F2 move field from old to new
d H

— Qualifier OLD [} resolves symbol [and qualifier NEW B resolves [}

e Advantages of labeled USINGs

— data objects need only one definition

— all references are fully symbolic

— no manually-specified displacements and registers

— efficient solution is also the most natural

— no need to understand obscure details of Assembler Language

e You can address multiple instances of CSECTs also!

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-10

Example: Doubly-Linked List Structure

e Insert a NEW element in a doubly-linked list:

Before: After:
R2 R3 R5
_ _ _
| LEFT | RIGHT | NEW LEFT NEW RIGHT
Ly Ly Ly 1] 2]
<«—| Lptr |<—| Lptr Lptr <«—| Lptr |<—| Lptr |<«—| Lptr
Rptr |—»| Rptr |—» Rptr Rptr |—>| Rptr |—>| Rptr [—>
H 4]
Data Data Data Data Data Data

e Labeled USINGs provide clean, understandable solution

— Many complex, obscure solutions possible with ordinary USINGs

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-11

Labeled USINGs: Doubly-Linked List

e Code with labeled USINGs is very simple:

BLOCK
Lptr
Rptr
Data

RNew
Left
Right
New

e Advantages: clarity, simplicity, readability, efficiency, maintainability

DSECT
DS A
DS A

DS XL24,D,E etc.

Equ 5

USING Block,2
USING Block,3
USING Block,RNew

MVC New.Lptr,Right.Lptr
ST RNew,Right.Lptr

MVC New.Rptr,Left.Rptr
ST RNew, Left.Rptr

Pointer to left element
Pointer to right element
Data fields within BLOCK

R5 points to New element

Labeled USING
Labeled USING
Labeled USING

B2 W N =

Qualified symbols
Qualified symbol
Qualified symbols
Qualified symbol

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved.

NEWU-12

Labeled USING Statements: a Summary

e Resolutions done only for symbols with matching qualifier

e Normal resolution rules still apply

— Matching relocatability attribute
— Displacement cannot exceed 4095

e May be concurrent with ordinary USING for same register

USING A,9 Ordinary USING
Q USING A,9 Labeled USING
LA 0,A+40 Resolved only with Ordinary USING
LA 1,Q.A+40 Resolved only with Labeled USING
DROP 9 Drop ordinary USING; labeled still active
LA 2,Q.A+40 Resolved only with Labeled USING
DROP Q Drop labeled USING

e (Care is recommended!

— Avoid mixing qualified and unqualified symbol references

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-13

Dependent USING Statements

e Let you address multiple DSECTs with one base register

— Provide improved ways to manage data structures

e Syntax is the same as for ordinary USINGs:

USING symbol,base

 Except that the second operand is interpreted differently:

ordinary: second operand is absolute, between 0 and 15

USING symbol,register

dependent: second operand is relocatable, addressable

USING symbol,anchor _location

e First operand is “based” or “anchored” at second operand location

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-14

Dependent Using Statement Examples

e Example: DSECTs B and C anchored at different offsets within A

R:F 00000
F 020 00000
00058 4100 F028
F 030 00000
0005C 4100 FO080
00000
00000
00008
00000
00000
00050
00000
00000

9
00020 10

00008 12
00010 14
00050 16
18
19
20
22
23
24

26
27

Bl
B2

Cl
C2

USING
USING

LA
USING
LA
DSECT
DS
DS
DSECT
DS
DS

DSECT
DS

A,15
B,A+32

0,B2
C,B+16

0,C2

CL80
XL8

XL256

Ordinary: Addr(A) in R15
Dependent: B at A+X'20'

B2 at offset X'28' from A
Dependent: C at B+X'10'
C2 at offset X'80' from A

Offset 0 fromB
Offset 8 from B

Offset 0 fromC
Offset X'50' from C

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-15

Dependent USING Example: Contiguous Control Blocks

CB1

CB2

CB3

Contiguous
Control Blocks

CB1
CB1F1
CB1F2
LCB1

CB2
LCB CB2F1
LCB2

CB3
CB3F1
LCB3

LCB

DSECT ,

DS D

DS CL40
EQU *-CBl1
DSECT ,

DS 24F
EQU *-CB2
DSECT ,

DS XL8,CL80

EQU *—CB3

Define

Length
Define
Length

Define

EQU LCB1+LCB2+LCB3

control block 1

of block 1
control block 2
of block 2

control block 3

Total length

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved.

NEWU-16

Contiguous Control Blocks: Ordinary USINGs

e Ordinary USINGs require a register for each DSECT:

* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7
USING CB1,7 Anchor the first storage block
LA 6,CB1+LCB1 Calculate address of second block
USING CB2,6 Anchor the second storage block
LA 4,CB2+LCB2 Calculate address of third block
USING CB3.,4 Anchor the third storage block
e Defects:

— Extra base registers
— Additional initialization overhead
e Devious coding techniques:

USING CB1,7 Anchor the first storage block
L 0,CB1+LCB1+(CB2F1-CB2)+8 3rd element of CB2F1 array

e Defects:
— Complex coding that is hard to understand and maintain

— Relationships among CBs is embedded in each referencing instruction

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-17

Contiguous Control Blocks: Dependent USINGs

e Dependent USINGs require only a single base register:

* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7
USING CB1,7 Anchor the full storage block
USING CB2,CB1+LCB1 Adjoin CB2 to CBl (dependent USING)
USING CB3,CB2+LCB2 Adjoin CB3 to CB2 (dependent USING)

STM 14,12,CB2F1+12 Addresses resolved with
XC CB3F1,CB3F1 ... just one base register (R7)
UNPK CB1F1,CB1F2(4) ... for all these instructions

e Advantages:
— Minimal number of base registers needed
— No run-time initialization overhead

— Independently defined data structures

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-18

Dependent USING Example: Nested Structures

A |AL A |AL
AB B |B1 AB |B1 A DSECT
Al DS 24F
5 B2 AB DS CL(LB)
B3 B3 A2 DS 6CL80
-—= == AC DS CL(LC)
Az o Az A3 DS XL16
AC ¢ |c1 AC |C1 A4 DS CL256
€2 €2 B DSECT
3 3 BL DS CL44
B2 DS 6D
A4 A4 B3 DS 4A
LB EQU *B
DSECT A DSECTs B,C Nested DSECTs
C DSECT
Cl1 DS 96D
C2 DS 4XL20
LC EQU *C

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-19

Nested Structures with Multiple Ordinary USINGs

« Each DSECT requires its own base register:

USING A,7
LA 5,AB
USING B,5
LA 4,AC
USING C,4

e Defects:;

Assume address of A is in R7
Ordinary USING for A
Address of AB in R5

Ordinary USING for B

Address of AC in R4
Ordinary USING for C

— Loss of efficiency: extra registers, execution-time setup

— Precise relationship of instructions to structure elements is not as clear

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved.

NEWU-20

Nested Structures with Dependent USINGs

e Dependent USINGs allow these to be addressed with a single register:

* Assume address of A is in R7
USING A,7 Ordinary USING for A
USING B,AB Dependent USING: anchor B at AB
USING C,AC Dependent USING: anchor C at AC

o Benefits of dependent USINGs:

— More efficient solution
— Minimal number of registers needed for addressing

— No execution-time register setup

— Simpler, clearer code

— Clear separation of data definitions and instructions

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-21

Nested Structures with One Ordinary USING

e Can map nested structures with a single ordinary USING
— Calculate DSECT offsets “manually”

* Assume address of A is in R7

USING A,7 Ordinary USING for A

L 0,AB+(B3-B) Field B3 within DSECT B
C 0,AC+(C2-C) Field C2 within DSECT C

e Will need to write a lot of this if many references to DSECT fields

e Dependent USING is clearer, easier to write and maintain

USING A,7 Ordinary USING for A

USING B,AB Map DSECT B into A at AB
USING C,AC Map DSECT C into A at AC
L 0,B3 Field B3 within DSECT B

C 0,C2 Field C2 within DSECT C

e |et the assembler do the hard work!

— It calculates the same displacements as you did (with difficulty)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-22

Mapping Message Fields with the Message Itself

e Suppose your message has several fields to fill:

Messages CSect ,
Msgl DC C'This message for '

MsglTo DC C' xxxxxxxx" Modified field

DC C' from '
MsglFrom DC C'yyyyyyyy' Modified field
MsgllL Equ *Msgl Length of message

e Move the message to a buffer, then map the constant onto the buffer:

Push Using Save USING status
L 10,=A(Messages) Point to messages
Using Messages,10

MVC Buffer(MsglL),Msgl Move to buffer

Drop 10 Don't reference original
Using Msgl,Buffer Map original onto buffer
MVC MsglTo,ToName Move “To” name

MVC MsglFrom, FromName Move ”“From” name

Pop Using Restore USING status

 No need for separate DSects describing the message's fields

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-23

sainjeed WSYTH

‘peAlesal s1ybu ||V $002 ‘G661 uoneisodion Ng| wybuAdod o

¥2-NM3N

Employee

EPerson
PFName
PGName
PInits
PDoB
Year
Month
Day
PAddr
AStr#
APOBApDp
ACity
AState
AZip
PPhone
PhArea
PhLocal
PhExt
PSSN
PSex
EHire
Year
Month
Day
EWAddr
AStr#
APOBApDp
ACity
AState
AZip
EPhoneW
PhArea
PhLocal
PhExt
EPhoneF
PhArea
PhLocal
PhExt
EMarital
ESpouse
PFName
PGName
|(c|>m1’tted)
E#Deps
EDepl
PFName
PGName
(omitted)

(omitted)

| L—End of Person
(and so forth)

(and so forth)

—Employee 1
—Person 2—
—Date 3

—End of Date
—Addr 3
—End of Addr
—Phone 3
—End of Phone
L—End of Person
—Date 2—
—End of Date
—Addr 2
—End of Addr
—Phone 2
—End of Phone
—Phone 2—
—End of Phone
—Person 2—
(and so forth)
L—End of Person
Person 2—]

End of Employee

pJ102ay 9@aAojdwig ue ul BunsaN 193Sa

Labeled Dependent USING Statements

e Labeled dependent USINGs combine the benefits of labeled and
dependent USINGs:

— labeled: multiple copies of an object may be active simultaneously
— dependent: many objects may be addressed with a single base register
e Syntax combines elements of labeled and dependent USINGs

label USING operandl,operand2 Operand2 is relocatable

o Example: overlay two instances of DSECT DZ within A

Z1 USING DZ,A+12 Overlay DZ at A+12, qualify with “Z1”
Z2 USING DZ,A+82 Overlay DZ at A+82, qualify with “Z22”

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-25

Two Nested Identical Structures

e Nest two instances of AA within BB

BB |BBF1
- AA DSECT
BBAL AA |AAF1 AAF1 DS XL5
AAF2 DS XL8
AAF2 LAA EQU *—AA
BBF3 BB DSECT
- BBF1 DS XL17
BBA2 AA |AAF1 BBAL DS XL(LAA)
BBF3 DS XL11
AAF2 BBA2 DS XL(LAA)
- BBF5 DS XL7
BBF5 LBB EQU *-BB
DSECT BB DSECT AA

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-26

Addressing Two Nested Identical Structures

e With ordinary USINGs

censored

e Labeled USINGs require 3 base registers, “setup” overhead

USING BB,10 R10 points to BB
LA 11,BBAl R11 points to 1lst copy of AA

Al USING AA,11 Labeled USING for 1st copy of AA
LA 12 ,BBA2 R12 points to 2nd copy of AA

A2 USING AA,12 Labeled USING for 2nd copy of AA

o Labeled dependent USINGs require only one base register

USING BB,10 R10 points to BB
Al USING AA,BBAl Labeled dependent USING for 1st copy of AA
A2 USING AA,BBA2 Labeled dependent USING for 2nd copy of AA

e Even if BB exceeds 4K bytes, this is still better

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-27

Multiple Nested Structures

F DSECT ,
E D F X1 DS XL5
X2 DS XL5
F LF EQU *F
F D DSECT ,
F1 DS XL(LF)
D F F2 DS XL(LF)
F3 DS XL(LF)
F LD EQU *-D
F E DSECT ,
D1 DS XL(LD)
D F D2 DS XL(LD)
D3 DS XL(LD)
_H
e Problems:
i — Multiple instances of structures D
and F

— Ordinary or labeled USINGs
require 13 base registers!

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-28

Multiple Nested Structures: Labeled Dependent USINGs

 Mapping nested structures with labeled dependent USINGs

D1E
D1F1
D1F2
D1F3
*

D2E
D2F1
D2F2
D2F3
*

D3E

D3F1
D3F2
D3F3

USING

USING
USING
USING
USING

USING
USING
USING
USING

USING
USING
USING
USING

E,7

D,D1

F,D1E.F1
F,D1E.F2
F,D1E.F3

D,D2

F,D2E.F1
F,D2E.F2
F,D2E.F3

D,D3

F,D3E.F1
F,D3E.F2
F,D3E.F3

B

1 Top level

2 Map D1
3 Map
3 Map
3 Map
2 Middle
Map D2
3 Map
3 Map
3 Map
2 Middle
Map D3
3 Map
3 Map
3 Map

into E at D1

F1 into D1 at
F2 into D1 at
F3 into D1 at
level

into E at D2

F1 into D2 at
F2 into D2 at
F3 into D2 at
level

into E at D3

F1 into D3 at
F2 into D3 at
F3 into D3 at

e Qualifiers indicate which references apply to which instance

F1
F2
F3

F1
F2
F3

F1
F2
F3

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved.

NEWU-29

Multiple Nested Structures: Referencing Fields

o All symbol references to individual fields are qualified:

* Move fields named X within DSECTs described by F

MVC D1F1.X1,D1F1.X2 Within bottom-level DSECT D1F1

MVC D1F3.X2,D1F1.X1 Across bottom—level DSECTs in D1

MVC D3F2.X2,D3F3.X2 Across bottom-level DSECTs in D3

MVC D2F1.X1,D3F2.X2 Across bottom-level DSECTs in D2 and D3
* Move DSECTs named F within DSECTs described by D

MVC D3E.F1,D3E.F3 Within mid-l1evel DSECT D3E

MVC D1E.F3,D2E.F1 Across mid—level DSECTs D1E, D2E

* Move DSECTs named D within E
MVC D1,D2 Across top—level DSECTs D1, D2

e Can address structures as fields, sub-sub-structures, and sub-structures

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-30

Array of Identical Data Structures

e Suppose you have a small array of identical data structures:

Struc DSect ,

StrFl DS CL8 First field
StrF2 DS F Second field
StrF3 DS A Third field
LStruc Equ *Struc Structure Length

e Then, map each element with its own qualifier

EL1 Using Struc,9 Map first element

EL2 Using Struc,EL1.Struc+1*LStruc Map second element

EL3 Using Struc,EL1.Struc+2*LStruc Map third element

EL4 Using Struc,EL1.Struc+3*LStruc Map fourth element
- — = etc.

e Then, you can reference fields among elements:

L 1,EL3.StrF2 Get field 2 from element 3
A 1,EL5.StrF3 Add field 3 from element 5
MVC EL2.StrF1,EL4.StrF1 Move field 1 from element 4 to 2

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-31

Two MVS DCBs Within a Program

e Program fragment containing two DCBs and code:
part of program must copy input-DCB's LRECL to output DCB

LA 3,0UTDCB Point to OQutput DCB
H LA 2 ,INDCB Point to Input DCB
USING IHADCB,?2 Use DSECT mapping of Input DCB
> MVC DCBLRECL-IHADCB(2,3),DCBLRECL Copy IN LRECL to OUT
= __ _
= INDCB DCB DDNAME=..., etc.
OUTDCB DCB DDNAME=..., etc.
% DCBD DSORG=PS,DEVD=DA,...etc. Generate IHADCB DSECT
4 USING *,12
> _
= IN pg§ USING IHADCB,INDCB Labeled dependent USING
s OUT f4 USING IHADCB,OUTDCB Labeled dependent USING
=
v

MVC OUT.DCBLRECL,IN.DCBLRECL Addresses resolved via R12

H 1

e Only one register needed to address code and two DSECTSs!

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-32

Personnel-File Employee Record

e Example: a “personnel-file” record describing an employee

Employee DSECT , Employee record

EPerson DS CL(LPerson) Person field

EHire DS CL(LDate) Date of hire

EWAddr DS CL(LAddr) Work (external) address
EPhoneW DS CL(LPhone) Work telephone

EPhoneF DS CL(LPhone) Work Fax telephone
EMarital DS X Marital Status

ESpouse DS CL(LPerson) Spouse field

E#Deps DS CL2 Number of dependents
EDepl DS CL(LPerson) Dependent 1

EDep2 DS CL(LPerson) Dependent 2

EDep3 DS CL(LPerson) Dependent 3

LEmploye EQU *—Employee Length of Employee record

e Many fields are described by other DSECTs:

— Person, Date, Addr, Phone

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-33

Personnel-File Employee Record: “Person” Fields

e An individual is described by the Person DSECT:

Person DSECT , Define a “Person” field
PFName DS CL20 Last (Family) name
PGName DS CL15 First (Given) name
PInits DS CL3 Initials

PDoB DS CL(LDate) Date of birth

PAddr DS CL(LAddr) Home address

PPhone DS CL(LPhone) Home telephone number
PSSN DS CL9 Social Security Number
PSex DS CL1 Gender

LPerson EQU *—Person Length of Person field

e Some fields are described by other DSECTs:

— Date, Addr, Phone

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-34

Personnel-File Employee Record: “Date,” “Addr” Fields

e Dates and addresses are described by Date, Addr DSECTs:

Date
Year
Month
Day
LDate

DateF

Addr
AStr#
APOBApDp
ACity
AState
AZip
LAddr

AddrF

DSECT ,

DS CL4

DS CL2

DS CL2

EQU *-Date
ORG Date

DS OCL(LDate)
ORG ,

DSECT ,

DS CL30

DS CL15

DS CL24

DS CL2

DS CL9

EQU *-Addr
ORG Addr

DS OCL(LAddr)
ORG ,

Define a calendar date field
YYYY

MM

DD

Length of Date field

Full YYYYMMDD date
End of Date DSECT

Define an address field

Street number

P.0.Box, Apartment, or Department
City name

State abbreviation

U.S. Post Office Zip Code

Length of Address field

Full address
End of Addr DSECT

HLASM Features

© Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-35

Personnel-File Employee Record: Comparing Birth Dates

e Example 1: Compare employee and spouse birth dates

— Requires two active instances of Person DSECT

USING Employee,10 Assume R10 points to the record
PE Y USING Person,EPerson Overlay Person DSECT on Empl. field
PS 4 USING Person,ESpouse Overlay Person DSECT on Spouse field

* Example 1: Compare Employee and Spouse Dates of Birth

CLC PE.PDoB,PS.PDoB Compare Employee/Spouse birth dates

H BH

e Employee's Date of Birth (PDoB) qualified by PE (|}), spouse's by PS

(H)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-36

Personnel-File Employee Record: Comparing Dates

e Example 2: Compare employee date of hire to dependent 1 birth date

— Two active instances of Date DSECT

* Example 2: Compare Date of Hire to Birthdate of Dependent 1

EHD E] USING Date,EHire Overlay Date DSECT on Date of Hire
PD1 USING Person,EDepl Overlay Person DSECT on Dependent 1
DD1 USING Date,PD1.PDoB Overlay Date DSECT on Dependent 1
CLC EHD.DateF,DD1.DateF Compare hire date to Dep 1 DoB
DROP EHD,DD1 Remove both date associations

 Dependent's Person DSECT qualified by PD1 (1)

 Hire date qualified by EHD (|E}), dependent birthdate by DD1 (|H)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-37

Personnel-File Employee Record: Copying Addresses

e Example 3: Copy employee address to dependent 2 address

— Two active instances of Addr DSECT

* Example 3: Copy Employee Address to Dependent 2 address

AE Hu USING Addr,PE.PAddr Overlay Addr DSECT on Employee name
1
PD2 g USING Person,EDep2 Overlay Person DSECT on Dependent 2
AD2 kJ USING Addr,PD2.PAddr Overlay Addr DSECT on Dep. 2 Person
7
MVC AD2.AddrF,AE.AddrF Copy Employee Addr to Dependent 2
8 6
DROP PD2 Remove Dependent 2 associations

e Dependent's Person DSECT qualified by PD1 (i)

e Employee address qualified by AE (), dependent's by AD2 (H])

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-38

Summary of USING Statements

USING | La- | Register |Oper- [Operand 2 |Operand 2 Number of
Type |bel [Usage and 1 Location in | Instances
Based Storage of Active
on Objects
Ordi- |no |one register | absolute anywhere in |only one
nary register [0,15] storage active
per instance of
object an object
at a time
Label- [yes |one register | absolute anywhere in |as many
ed register [0,15] storage active
per instances of
object an object as
registers
assigned
HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-39

Summary of USING Statements ...

USING (La- |[Register |Oper- |Operand Operand 2 Number of
Type bel ([Usage |and1 |2 Location in Instances
Based Storage of Active
on Objects
Depen- |no |multiple [operand|relocatable, [within multiple
dent objects |2 addressable |addressability [active
per range of objects of
register ordinary different
USINGs types
Labeled | yes | multiple |operand|relocatable, [within multiple
Depen- objects |2 addressable |addressability | active
dent per range of objects of
register ordinary the same or
USINGs different
types
HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-40

DROP Statement Extensions

USING Type |DROP Statement

Ordinary By register number

Labeled By qualifying label (dropping the register has no effect)

Dependent By register number (all sub-dependent USINGs dropped
automatically)

Labeled By qualifying label (dropping the register has no effect)
Dependent
e Examples:
Ordinary: DROP 9
Labeled: DROP QUAL
Dependent: DROP 12
Labeled Dependent: DROP QUAL

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. NEWU-41

Generalized Object File Format (GOFF)

e Removes limitations associated with old object module format:

— External names to 63 characters

— Section sizes up to 2GB (addresses to 31 bits)

— Multi-component, multi-modal modules

— Ability to retain “Assembler Data” with object code

— And much more...

e Controlled by GOFF option
— Independent of DECK or OBJECT

— Assembler produces only one type of object file, old or new
— Requires “wide” listing format (LIST(133) or LIST(MAX) option)
— Enables use of CATTR, XATTR statements

— Assign class names and external symbol attributes
— One assembly can create many RMODE(24) and RMODE(31) “segments”
— Entry points can have their own AMODEs

e Utilizes enhanced capabilities of DFSMS Binder, Program Objects

— Existing programs can use GOFF transparently

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. GOFF-42

Internal Conditional-Assembly Functions

o All IBM System/360/370/390 assemblers provide four functions:
— Boolean connectives (AND, OR, NOT) and character substrings

&Bool1l SetB (&Bool2 AND (&Bool3 OR NOT &Bool4)) Boolean functions
&Charl SetC '&Char2'(&Start,&Length) Substring function

e High Level Assembler provides 16 internal functions:
— Arithmetic functions for arithmetic (fullword integer) values
— Masking/logical operations: AND, OR, NOT, XOR
— Shifting operations: SLL, SRL, SLA, SRA
— Boolean connective: XOR

— Character functions:
— Unary operations: UPPER, LOWER, DOUBLE, BYTE, SIGNED

— Binary operations: INDEX, FIND
— Extensible to other functions as required

e ... and two statements for invoking external functions:
— Arithmetic-valued functions: SETAF
— Character-valued functions: SETCF

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-43

Internal Arithmetic-Valued Functions

e Arithmetic functions operate on fullword integer (SETA) values

e Masking/logical operations: AND, OR, NOT, XOR

&A And SetA ((2Al AND &A2) AND X'FF')

&A Or SetA (8Al OR (8A2 OR &A3))

&A Xor SetA (&A1 XOR (&A3 XOR 7))

&A Not SetA (NOT &A1l)+8A2

8A SetA (7 XOR (7 OR (&A+7))) Round &A to next multiple of 8

e Shifting operations: SLL, SRL, SLA, SRA

&A SLL SetA (&A1 SLL 3) Shift left 3 bits, unsigned

&A SRL SetA (&A1l SRL &A2) Shift right &A2 bits, unsigned
&A SLA SetA (&A1l SLA 1) Shift left 1 bit, signed

&A SRA SetA (&A1l SRA &A2) Shift right &A2 bits, signed

e Any combination...

& SetA ((3+(NOT &A) SLL &B))/((&C-1 OR 31)*5)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-44

Boolean Operators

e Logical operators: AND, OR, NOT previously available

&A SetB (& gt 0 AND &V le 7) &V between 1 and 7
&B SetB ('&C' 1t '0' OR '&C' gt '9') &C not a digit
&Z SetB (&A AND NOT &B)

e New operator: XOR

&S SetB (&B XOR (&G OR &D))
&T SetB (&X ge 5 XOR (&Y*2 1t &X OR &D))

o Simplifies “either but not both” testing:

&NotBoth SetB ((&J OR &K) AND NOT (&J AND &K)) Previously
&NotBoth SetB (&J XOR &K) With XOR

e Evaluation priority: NOT, AND, OR, XOR

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-45

Internal Character Functions

e Seven internal character-valued functions
e Unary functions: UPPER, LOWER, DOUBLE, BYTE, SIGNED

&X Up SetC (Upper '&8X') A1l letters in &X set to upper case
&Y Low SetC (Lower '&Y') A1l letters in &Y set to lower case
&Z Pair SetC (Double '&Z') Ampersands/apostrophes in &2 doubled
&Blank SetC (Byte 64) Sets &Blank to C' '

&Minus3 SetC (Signed -3) Sets &inus3 to '-3'

e Binary arithmetic-valued functions: INDEX, FIND
e INDEX returns offset of first match in 1st operand string of 2nd operand
string

&First Match SetA ('&BigStrg' INDEX '&SubStrg') First string match
&First Match SetA ('&HayStack' INDEX '&0neLongNeedle')

e FIND returns offset of first match in 1st operand string of any character of
the 2nd operand

&First Char SetA ('&BigStrg' FIND '&CharSet') First char match
&First Char SetA ('&HayStack' FIND '&ManySmallNeedles')

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-46

External Conditional-Assembly Functions

e Two types of external, user-written functions
1. Arithmetic functions: like &\ = AFunc(&V1, &V2, ...)

&A SetAF 'AFunc',&V1,&V2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb (&N)

2. Character functions: like &€ = CFunc('&S1', '&S2', ...)

&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','8&X' Reverse (&X)

Functions may have zero to many arguments

Assembler's call uses standard linkage conventions

— Assembler provides a save area and a 4-doubleword work area

Functions may provide messages for the listing (as may /O exits)

Return code indicates success or failure

— Failure return terminates the assembly

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-47

SETAF External Function Interface

Primary List Request Info Area

Rl —| 4 ReqInfoArea ——| ParmList Version

4 WorkArea —> Function Type

e (n) means the
field is repeated

Reserved Return Code n times

Reserved Number of Params

4 Message Buf Flg| Reserved e HLASM provides
a 32-byte work
Reserved area

Msg Len| Msg Sev

Function Value

(n)| Parameters 1-n

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. CAFN-48

SETCF External Function Interface

Primary List

Rl —| 4 ReqInfoArea ——»

4 WorkArea —>

(2) | Reserved

4 Msg Buffer

4 Ret. String |—>

(n)| 4 Parm 1-n Str. |

(n)

Request Info Area

ParmList Version

Function Type

Number of Params

Return Code

Flg| Reserved

Reserved

Msg Len | Msg Sev

Ret. Str. Length

Parm 1-n Str. Len

(n) means the
field is repeated
n times

HLASM provides
a 32-byte work
area

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved.

CAFN-49

System Variable Symbols: History and Overview

e Symbols whose value is defined by the assembler
— Three in the OS/360 (1966) assemblers: &SYSECT, &SYSLIST, &SYSNDX
— DOS/TOS Assembler (1968) added &SYSPARM
— Assembler XF (1971) added &SYSDATE, &SYSTIME
— Assembler H (1971) added &SYSLOC

— High Level Assembler provides 39 additional symbols

e Symbol characteristics include
— Type (arithmetic, boolean, or character)
— Type attributes (mostly ‘U’ or '0")
— Scope (usable in macros only, or in open code and macros)

— Variability (when and where values might change)

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. SVAR-50

Input-Output Exits

HLASM supports powerful exit interfaces for all user files

— SYSIN, SYSLIB, SYSPRINT, SYSPUNCH, SYSLIN, SYSTERM, SYSADATA

Exits have as little or as much control as desired
— Modify, insert, delete records

— Monitor or assist assembler 1/O, or replace it entirely

Exits may produce diagnostic messages with each interaction

Three sample exits provided:

— Print (ASMAXPRT): options page deleted or moved to end of listing; summary
page optionally deleted

— Input (ASMAXINV): accepts V-format SYSIN records

— ADATA (ASMAXADT): extracts/formats macro/COPY members and their
library names

e EXITCTL statement provides source-file information to exits

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. EXIT-51

Input-Output Exit Communication

o All assembler/exit Register 1 —»| PList Version
communication via .
/O Exit Parameter Exit Type
. v
List Request Type
e Full control 4 Request Info List —
: : Options
information A Data buffer
e Control information (4): EXITCTL values 1-4 :
e Data set % Error-message buffer | |
information (2): Return/reason codes :
. Buffers, message % Exit-specific info | |
area (2): Buffer Tengths :
e EXxit anchor word # oes :
Error severity
e Assembler, exit are 4 Assembler Info Block
:OO—.OC._H_Dmm: User—defined field
Common exit field

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. EXIT-52

Example Object-File Exit: OBJX

e Add Linkage Editor-Binder control statements after object modules

— NAME and up to 32 ALIASes, optional SETSSI
— BATCHed assemblies are properly separated by NAME statements

— Can create multiple PDS members in two assembly-link steps

e Invoked by specifying EXIT option:

EXIT(OBJEXIT(OBJX[(exit—parm)]))
or EX(OBX(0BJIX[(exit—parm)]))

e OBJX exit handles four one-character parameters in exit-parm

Do not write summary information messages

Add (R) to NAME statements

Provide SETSSI statements with YYDDDHHM date/time
Provide tracing and debugging information

-0V O

HLASM Features © Copyright IBM Corporation 1995, 2004. All rights reserved. EXIT-53

