High Level Assembler:
Toolkit Feature Technical Overview

SHARE 102 (Feb. 2004), Session 8166

John R. Ehrman
ehrman@us.ibm.com or ehrman@vnet.ibm.com

IBM Silicon Valley (Santa Teresa) Lab
555 Bailey Avenue
San Jose, California 95141 USA

© IBM Corporation 1995, 2004. All rights reserved.

February, 2004




Table of Contents

High Level Assembler Toolkit Feature ... .. ... ... . . .. . ... . .. . 1
Why Use the Assembler Toolkit? . .. .. .. . . . . 2
HLASM Toolkit Publications . . ... ... . .. . e 3
HLASM Toolkit Disassembler . . . . . .. . . e e 4
Disassembler Operation . . ... . ... . . . 5
Disassembler Usage . .. ... . . 6
HLASM Toolkit Cross-Reference Facility . ... .... .. ... . . . . . .. . . . . . . . ..., 7
HLASM Toolkit Program Understanding Tool .. ... .. ... .. ... .. . . .. . . . ... . .... 9
HLASM Toolkit Interactive Debug Facility (IDF) . ... .... .. ... ... ... .. . ... .. ... 10
Interactive Debug Facility (IDF) Overview ... ... ... . . . . . . . .. . .. 12
ASMIDF: Preparing a Debug Session . ... ... ... . . ... 13
ASMIDF: Invocation . . . . . . .. 14
ASMIDF: Useful Options . . . . .. .. . e e e e 15
ASMIDF: Debugger WIindOWS . . . . . . e 16
ASMIDF: Useful Debugger Commands . . ... ... ... .. ..., 17
ASMIDF: Debugger Macros . . . . . . . . i 18
ASMIDF: Debugger Macros, Example 1 . . . . . .. . . 19
ASMIDF: Debugger Macros, Example 2 . . . ... .. .. . . e 20
HLASM Toolkit Structured Programming Macros . ........... ... . ... ... ..... 21
Structured Programming Macros: Why Use Them? . ... . ... .. .. ... . ... . ....... 22
Structured Programming Macros: Usage . ... ... .. ... 23
Structured Programming Macros: IF-THEN-ELSE .. . ... ... ... ... . ... . ... .... 24
Structured Programming Macros: Example 1 ... .. ... ... . .. . .. . .. 25
Structured Programming Macros: IF-THEN-ELSEIF-ELSE . ... ... ................ 26
Structured Programming Macros: DO Set ... ... .. .. . . . . . . . ... 27
DO-WHILE and DO-UNTIL . . ... .. e e e e e e e e e e 28

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. Contents-1



Table of Contents

Structured Programming Macros: Example 2 . . ... ... . ... . . . ... .. 29
Structured Programming Macros: Iterative-Do Macros .. ...................... 30
Structured Programming Macros: General Form of DO Statement ................ 31
Structured Programming Macros: SEARCH Set ... ... ... .. .. .. . . ... ... ..... 32
Structured Programming Macros: CASE Set ... ... ... .. .. . . . .. . . . . . 33
Structured Programming Macros: SELECT Set ... .. ... ... ... . . . ... ... ... ..... 34
Structured Programming Macros: Single-Comparison SELECT ... ............... 35
Structured Programming Macros: Multiple-Comparison SELECT . ................ 37
Structured Programming Macros: Detailed Example . ... ....... .. ... .......... 39
Structured Programming Macros: Notes . .. ... ... . . . . . . . 40
HLASM Toolkit Feature File Comparison Utility ... ....... ... ... .. ... ... ...... 41
HLASM Toolkit Feature Usage Scenarios .. ... ... ... ... .. ..., 42
HLASM Toolkit Feature: Recovery and Reconstruction . ....................... 43
HLASM Toolkit Feature: Analysis and Understanding .. ....................... 44
HLASM Toolkit Feature: Modification and Testing . ......... ... ... .. ... ....... 45
HLASM Toolkit Feature: Validation . ... ... ... .. . . . .. . . . . .. 46
HLASM Toolkit Feature: Scenario Summary . ... ... ... . . . ... ... 47
HLASM Toolkit Feature: Full-Spectrum Application Support .. ... ................ 48
HLASM Toolkit: Summary . ... .. e e e 49

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved. Contents-2



High Level Assembler Toolkit Feature

e Optional priced feature of High Level Assembler for MVS & VM & VSE

e Enhances productivity by providing six powerful tools:
1. A flexible Disassembler
— Creates symbolic Assembler Language source from object code
2. A powerful Source Cross-Reference Facility
— Analyzes code, summarizes symbol and macro use, locates specific tokens
3. A workstation-based Program Understanding Tool
— Provides graphic displays of control flow within and among programs
4. A powerful and sophisticated Interactive Debug Facility (IDF)
— Supports a rich set of diagnostic and display facilities and commands
5. A complete set of Structured Programming Macros

— Do, Do-While, Do-Until, If-Then-Else, Search, Case, Select, etc.
6. A versatile File Comparison Utility (“Enhanced SuperC”)

— Includes special date-handling capabilities

A comprehensive tool set for Assembler Language applications

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 1



Why Use the Assembler Toolkit?

Preserve investments in applications, people, skills, and procedures

— Enhance the productivity of people with specialized skills

Improve product maintainability and simplify upgrades
— Enhancement and maintenance average 60% of software costs
e Improve application understandability
— Product understanding typically requires 30% of maintenance time
e Improve application error detection and correction

— Normal testing typically covers only 60% of code paths

— Even 100% coverage can't find the 75% of defects from...
— missing logic paths that should have been there

— combinations of paths that aren't tested by coverage tools

e The Toolkit components can provide savings in many areas

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 2



HLASM Toolkit Publications

GC26-8709

GC26-8710

GC26-8711

GC26-8712

Toolkit Feature Interactive Debug Facility User's Guide

The reference document for all IDF facilities, commands,
windows and messages.

Toolkit Feature User's Guide

Reference and usage information for the Disassembler, the
Cross-Reference Facility, the Program Understanding Tool, the
File Comparison Ultility, and the Structured Programming
Macros

Toolkit Feature Installation and Customization Guide
Information needed to install all Toolkit Feature components
Toolkit Feature Interactive Debug Facility Reference Summary

Quick-reference summary, with syntax of all commands and a
list of all options; for experienced ASMIDF users.

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 3



HLASM Toolkit Disassembler

e Converts object code to Assembler Language source
e Supports latest processor instructions, including z/Architecture

e Input files:

— Object modules; MVS load modules and program objects; CMS modules; VSE
phases

— Control statements (including a COPYLIB)
e Qutput files:
LISTING control records, messages, source listing, etc.
PUNCH assembler-ready source file, to re-create the object
e Limitations:

— 16MB upper limit on size of module being disassembled

— MVS: no Program Objects containing nonstandard classes

— No Generalized Object File Format (GOFF) object files

— VSE: phases have no ESD; cannot extract individual CSECTs
— SYM-record information not used, even if present

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



Disassembler Operation

e Copyright protection and the COPYRIGHTOK option
e Control statements add symbolic and structure information

DATA, INSTR, DS
designate data, code, and empty areas

DSECT provides symbolic mappings of structures
ULABL assigns user labels to points in the program

USING provides basing data to allow symbolic references in place of
explicit base-displacement operands

COPY includes previously created control statements

e Symbolic names automatically provided for all registers

— Access, Control, Floating-Point, General Purpose, and Vector
e [Informative comments on SVCs, STM, EX, BAL, BALR, etc.

e Listing contains ESD, RLD, other useful information

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 5



Disassembler Usage

e Initial disassembly
— Specify the module and CSECT to be disassembled
e Add USING records

— Specify base registers, contents, and USING ranges

e Add other control records
— Specify areas used for instructions, data, and “empty space”
— Assign your own labels to known instructions, data areas, work areas
— Map data structures with DSECT statements

e Program Understanding Tool helps clarify structure

— Especially useful for compiled HLL code

* Place control records in separate files, include COPY statements

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 6



HLASM Toolkit Cross-Reference Facility

Scans source, macros, and COPY files for

— symbols, macros, and user-specified character strings (“tokens”)

Full support for Assembler, C/C++, PL/I, REXX

— Extensive support for many other languages, including
COBOL, FORTRAN, JCL, CLIST, ISPF, RPG, SCRIPT, SQL, PL/X, etc.

Can create a source file with token matches “tagged”

— Useful as input to Program Understanding tool

Recent enhancement! APAR PQ67403 adds:
— 31-bit enablement for larger reports
— New SYMC “compact symbol-sort-order” for SWU reports

— Message limits now apply independently to each severity

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 7



HLASM Toolkit Cross-Reference Facility ...

e Produces up to six reports
— Control Flow (CF)

— Lines of Code (LOC)
— Lines of OO code (LOOC) for C/C++

— Macro-Where-Used (MWU)
— Symbol-Where-Used (SWU) (compact or expanded format)
— Token-Where-Used (TWU)

— Supports generic (wild-character) matching, “exclusion” tokens

— Spreadsheet-Oriented (SOR)

— Same info as TWU, but in a format useful for identifying critical modules and
estimating conversion effort

e (Can create a source file with token matches “tagged”

— Useful as input to Program Understanding tool

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 8



HLASM Toolkit Program Understanding Tool

Detailed analysis of Assembler Language programs

— Creates annotated listings
— Displays graphic control flow for single programs and “linked” modules
— Runs on Windows and OS/2

Assemble programs with ADATA option
— Download SYSADATA file (in binary) to workstation *.XAA files
ASMPUT analyzes the SYSADATA (.XAA) files

— Creates component lists, simulated listing, graphs, external linkages

e Grapher displays many levels of detail, with zoom capability

— Inter-program relationships

— Major program structures

— Full details of internal control flows

— Graph-printing test version available on HLASM web site

e Online tutorial, extensive HELPs throughout
— Windows Help requires Internet Explorer

e Installed from downloaded host files (not diskettes)

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



HLASM Toolkit Interactive Debug Facility (IDF)

e Supports latest processor enhancements

— 64-bit instructions and AMODE(64)
— APAR PQ51325, Requires HLASM R4 and z/OS 1.2 or later

— New options, commands, and windows

— additional floating point registers and new FP instructions

e Primarily for Assembler Language programs

— Also usable for programs in other languages

— Without source-language support

e Multiple selectable “windows” for address stops, breakpoints, register
displays, disassembled code, register histories, etc.

— Windows may be used in any order or combination

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 10



HLASM Toolkit Interactive Debug Facility (IDF) ...

o Execution stepping: displays disassembled code (and source, if available)
— Per instruction, or between breakpoints or routines
— Breakpoints include “watchpoints” (break on specified condition)

— Instruction counting, execution “history”

o Exit routines (in REXX or other language) invokable at breakpoints

— Capture, analyze, and respond to program conditions
e Storage and register modification by over-typing
 Record/playback facility to re-execute debugging sessions

e Extensive tailoring capabilities

GC26-8709-04, High Level Assembler Toolkit Interactive Debug Facility
User's Guide (Reference Summary is GC26-8712-03)

— 64-bit debug info is available in soft-copy only

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 11



Interactive Debug Facility (IDF) Overview

e Components

— Base Debugger: ASMIDF can be used without source-language support

— On CMS, includes interface module

— ASMLANGX (Extraction Utility) prepares HLASM ADATA files
e Two breakpoint types: SVC97, invalid opcodes (X'01xx"')

e System considerations

— TSO: naming conventions; etc.

— Supports DFSMS/MVS Binder Program Objects (standard classes)
— SVC97 option if application uses ESPIE/ESTAE; subtask of IDF
— NOSVC97 option if application uses TSO TEST; same task as IDF

— CMS: Invalid opcodes only (NOSVC97); PER support
— VSE: Link with ASMLKEDT, specify VTAM terminal
— ISPF: TSOEXEC command (IDF “owns” the screen)
— CICS, DB2, IMS with some limitations

— Debugging authorized code: not supported!

— LE: specify NOSPIE, NOSTAE (or TRAP(OFF))

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 12



ASMIDF: Preparing a Debug Session

e Without source level facilities
— On CMS: LOAD MAP file required
— On VSE: link edit with ASMLKEDT

e With source level facilities
1. Assemble with High Level Assembler's ADATA option
2. Run ASMLANGX extraction program against SYSADATA file

— Prepares source and symbolic information for debug use

— Recent APAR PQ61239 enhances performance

3. Keep the ASMLANGX extraction file

— Can generate the file on TSO, CMS, or VSE, and ship to the others
4. Create target module from object file(s)

— Require LOAD MAP file on CMS; phasename.MAP on VSE

— No need to retain listing or SYSADATA files

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 13



ASMIDF: Invocation

e |nvocation options vs. dynamic options

— Almost all options may be changed dynamically
e Plan for storage utilization by applications and IDF
e Basic syntax for invoking IDF:

ASMIDF <module> (<ASMIDF options> / <module parameters and options>

Example: debugging HLASM's CMS interface module:
ASMIDF ASMAHL ( AMODE31 NOPROF / TESTASM (SIZE(1M)

IDF gains control on program checks, ABENDs, breakpoints, program
completion, break-in interrupts, etc.

e Trace dynamically-loaded modules with deferred breakpoints
DBREAK (1oaded module.csect name)
e ISPF invocation: Under option 6, use TSOEXEC command

14

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



ASMIDF: Useful Options

PROFILE/NOPROFIL
IDF by default looks for PROFILE ASM (a REXX exec)

AMODE24/AMODE31/AMODE64
Sets initial AMODE of target program

AUTOSIZE/NOAUTOSZ
Controls automatic window resizing

PATH, FASTPATH
Counts number of instruction executions

LIBE Specifies library containing target application module

CMDLOG, RLOG
Create or append to or replay command log file

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 15



ASMIDF: Debugger Windows

e Command Window (always displayed)

e Current Registers: General (32 or 64 bit), Access, Control, Float
— APFR for 16 Floating-Point registers

e Old Registers

e Break (breakpoints and watchpoints)

e Disassembly (multiple)

e Dump (multiple)

e Entry Point Names

e Language Support Module Information
e Minimized Window Viewer

e Options

e Skipped Subroutines

e Target Status

e ADSTOPS (CMS only: uses PER; supports REGSTOPS also)

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



ASMIDF: Useful Debugger Commands

e BREAK: Set a breakpoint, or display the Break Window

e DBREAK: Set a deferred (“sticky”) breakpoint

e DUMP: Display storage in symbolic or “dump” format
 FIND/LOCATE: Locate and display given strings in storage

e HISTORY: Display previously executed instructions

o WATCH: Specify a break-test condition at a “watchpoint”

« DISASM: Disassemble a specified area of storage

« STEP/STMTSTEP/RUN: Control instruction-execution rates

e FOLLOW: Dynamically track contents of a register or word in storage
e LANGUAGE LOAD: Load specified language-extraction files
 HIDE/SHOW: Control display detail of source and disassembly data
e UNTIL: Execute instructions up to a specified address

e ..nearly 190, in all!

 New, for 64-bit debugging: REGS64, GPRG, GPRH, EPNAMES

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 17



ASMIDF: Debugger Macros

REXX (interpreted or compiled)

— A very powerful extension mechanism
e Default address
e EXTRACT command (almost 90 different items available to macros)
e IMPMacro option for automatic macro search (ON by default)
e MRUN/MSTEP commands to control execution from macros
 PROFILE macro to customize your environment

o EXIT routine may gain control at specified events

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 18



ASMIDF: Debugger Macros, Example 1

TRAP macro: uses DBREAK to load and break on the entry point of
a loadable module

/

_

| PARAMETERS: name — module name

_ symbol — external symbol to set break point on
/

arg name symbol .

if name == '' then exit 99

if symbol == '' then symbol = name

'DBREAK ('name'.'symbol')' /* Issue DBREAK at start of CSECT */
"MRUN' /* Program will run until DBREAK is matched */
"QUAL' name /* Change qualifier */
'LAN LOAD' symbol /* Load extraction file */
'BREAK' symbol /* Remove breakpoint at module start */
exit

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.

19



ASMIDF: Debugger Macros, Example 2

/*REXX

/* REGS — Toggle the current registers window.
VE
/* When the REGS window is opened, it will be moved on the ASMIDF

/* display so that it is the first window.
\*

'REGS' /* Toggle REGS window

'"Extract Cursor' /* Obtain window information

n = Find(display, 'REGS') /* Is REGS window present?

If n —= 0 Then /* Yes? Force to be 1st window

'"ORDER ='"n
Exit

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.

20



HLASM Toolkit Structured Programming Macros

e Macro sets can help eliminate test/branch instructions, simplify program
structures:

1. f-Then-Else, If-Then (IF/ELSEIF/ELSE/ENDIF)

2. Do, Do-While, Do-Until (DO/ITERATE/DOEXIT/ASMLEAVE/ENDDO)
— supports forward/backward indexing, FROM-TO-BY values, etc.

3. Search (STRTSRCH/ORELSE/ENDLOOP/ENDSRCH/EXITIF)

— supports flexible and powerful choices of loop controls and test conditions

4. Case (CASENTRY/CASE/ENDCASE).

— provides rapid switching via N-way branch to specified cases

5. Select (SELECT/WHEN/OTHRWISE/ENDSEL) with two forms!

— allows general choices among cases using sequential tests

e All macro sets may be (properly) nested in any order, to any level

e You can use the full instruction set (including the newest ops)

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 21



Structured Programming Macros: Why Use Them?

Many users report the following benefits:
e Improved code readability and understandability
e Faster application development
e Cleaner code
e Eliminating extraneous labels makes code easier to revise

e You can use the SP macros when and where appropriate

— Introduce the macros incrementally

« APAR PQ69812 adds extensive generalizations and improvements

— APAR PQ74641 changes LEAVE to ASMLEAVE (IMS problem) and allows easy
renaming of any macro

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 22



Structured Programming Macros: Usage

e All macros are contained in a single member, ASMMSP
— Use COPY ASMMSP statement to initialize
— Or specify PROFILE (ASMMSP) option

— Packaging dictated by IBM naming rules/conventions

e User macros have meaningful mnemonics

— Internal (non-user) macro names begin with ASMM
e Global variables now begin with &ASMA to prevent conflicts

o GC26-8710, High Level Assembler Toolkit User's Guide

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 23



Structured Programming Macros: IF-THEN-ELSE

e Basic IF-ENDIF:

True IF (a) Then
IF—| (a) —»| A —»e—>|ENDIF A

| 4 ENDIF
_ _

e Basic IF-ELSE-ENDIF:

True IF (a) Then
IF—| (a) —»| A —e—>|ENDIF A
| 4 ELSE
|False | B
L »| B ! ENDIF

e The word THEN is not syntactic; only a comment

— Used only to improve readability, understandability

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



Structured Programming Macros: Example 1

e Add absolute value of c(R4) to c(R5); don't change R4

e Unstructured:

LTR R4,R4 Set CC

BM LABEL1 Negative? Branch

AR R5,R4 Positive or zero — add to R5

B LABEL2 Skip the negative case
LABEL1 DS OH

SR R5,R4 Subtract negative value

LABEL2 DS  OH

e Structured:

IF (LTR,R4,R4,NM) THEN Test R4 for non—negative

AR R5,R4 Positive or zero — add to R5
ELSE , Otherwise,

SR R5,R4 Subtract negative value
ENDIF

e (Can also use relative-immediate instructions:

IF (CHI,15,EQ,-3) Compare with Halfword-Immediate

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 25



Structured Programming Macros: IF-THEN-ELSEIF-ELSE

e The ELSEIF macro simplifies deep nesting of IF-ELSE-ENDIF groups:

IF (a)

False
>

A

Ly
>

ylrue

ELSEIF (b)

False

vTrue

|
>

——»etc.—>o—>»

A

e Also used with an ELSE clause:

IF (a)

False
>

A

ylrue

ELSEIF (b)

False
——— etc.

ylrue

[,
>

Ly
>

—->

ENDIF

ELSE

IF (a) Then
A
ELSEIF (b)
B
ENDIF
IF (a) Then
ENDIF A
ELSEIF (b)
B
ELSE
X
ENDIF

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved.

26



Structured Programming Macros: DO Set

e DO, DO-WHILE, DO-UNTIL predicates support mixtures of WHILE, UNTIL,
forward/backward indexing, FROM-TO-BY values, etc.

— DOEXIT macro uses IF-macro syntax to exit the containing DO
— ASMLEAVE exits any number of containing labeled DOs

— |ITERATE requests immediate execution of the next loop iteration for any
containing DO

e A very rich and flexible set of facilities

e Simplest form: infinite loop, exited with a DOEXIT macro

— - DO INF
v False _ A
DO»>e—>| A |—>| DOEXIT (a) ——>| B —> |ENDDO| DOEXIT (a)
_ | B
True '» ! ENDDO

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 27



DO-WHILE and DO-UNTIL

e DO-WHILE tests before entering a loop:

[ -
v _ DO WHILE=(a)
DO—>e—>| If (a) ——>| A — | ENDDO A

_ True _ ENDDO
Falsel—»

e DO-UNTIL tests after executing a loop:

— <— True
v _ False DO UNTIL=(a)
DO [—>e—> A —| If (a) ——>|ENDDO A
ENDDO
e DO-WHILE and DO-UNTIL tests can be combined:
— <— True
v ! False
DO—»e—>»| If () ——>| A |—»| If (b) |—»e—>|ENDDO
: True 4
False! !
DO WHILE=(a),UNTIL=(b) | DO UNTIL=(b),WHILE=(a)
A | A
ENDDO | ENDDO

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 28



Structured Programming Macros: Example 2

e Search a string for first blank character, or end of string

e Unstructured:

L R5,=A(Start-1) Address start-1 of expression
Top_of Loop DS OH

C R5,End Test for end of expression

BNL Leave_Loop and exit if we've reached end

LA R5,1(,R5) Move along one byte

CLI O0(R5),C" ' Test for a blank

BNE Top_of Loop not yet, repeat loop

Leave_Loop DS OH

e Structured:

L R5,=A(Start-1) Address start-1 of expression
Scan DO WHILE=(C,R5,LT,End),UNTIL=(CLI,O(R5),EQ,C' ')
LA R5,1(,R5) Move along one byte
ENDDO

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 29



Structured Programming Macros: Iterative-Do Macros

e Two styles: simple count, general indexing

e Count style does a set number of iterations

— <— Not zero
! _
DO—>| reg = num |»>e—»>| A —»| reg = reg-1 —>|ENDDO
Zero

e Indexing form is extremely flexible

Done
DO—> |Init—>»e—>»| A —»|Count— |ENDDO

t _

_ <—I Not Done

DO [BXH|BXLE,]FROM=(Rx,num),TO=(Ry+1,num),BY=(Ry,num)
A
ENDDO

— Counts up or down
— Automatic or user selection of BXH or BXLE loop closing

— Many variations supported

DO FROM=(reg,num)
A
ENDDO

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.

30



Structured Programming Macros: General Form of DO Statement

e DO statement supports a rich combination of operands

< <— Not Done
—Loop Body— *

_

|

v True
[ J

: : False Done
DO—>|Init—>e—> |WHILE—> : some code :—»e—>|UNTIL—>|Count—>e—>|ENDDO
Test : : 4 |Test Test | 4
: | ITERATE > — True _
False : : | _ > >o
: : L—— outer ENDDO _
: |DOEXIT (c) > >e
: ¢ True
: | ASMLEAVE > >e

[
L outer ENDDO

v
v

e You can specify very detailed loop controls

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 31



Structured Programming Macros: SEARCH Set

e SEARCH set specifies a complex looping structure:

<— Not Done
_

_
|
v test for
STRTSRCH—>e—>| A —>|EXITIF (x) —>| C —>|end Toop —>| D —>e—>|ENDSRCH
i condition 4
y true  ORELSE _
ENDLOOP _
B |
e Statement format:
STRTSRCH (any DO-loop operands)
Process Code A
EXITIF (any IF-type operands) —
Process Code B | repeatable
ORELSE — last one | clauses
Process Code C —' optional —
ENDLOOP
Process Code D
ENDSRCH

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



Structured Programming Macros: CASE Set

e CASE macros provide rapid selection of blocks of code

CASENTRY register[,POWER=p,VECTOR=B|BR]
CASE nl,n2,...

Process Code A
CASE n3,n4,...

Process Code B

ENDCASE

e register operand contains an integer power of 2, p

e VECTOR operand selects table of branches, or adcons used by BR
CASE(nl,n2,..)

CASENTRY reg |—

> A

CASE(n3,n4,..)

»
>

v
A

o—> | ENDCASE

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved.

33



Structured Programming Macros: SELECT Set

e SELECT group with single comparison:

SELECT (comparison) Compare instruction & condition
WHEN (1ist-of—-values-1) Values for this comparison
<statements—-1> Statements for these cases
WHEN (list—of-values—n) Values for last comparison
<statements—n> Statements for these cases
OTHRWISE ,
<statements> Executed if no matching WHEN
ENDSEL , End of SELECT group

e SELECT group with multiple comparisons/tests:

SELECT , No operands
WHEN  (comparisons—1) Comparisons and/or tests
<statements-1> Statements for these cases
WHEN  (comparisons—n) Comparisons and/or tests
<statements—n> Statements for these cases
OTHRWISE ,
<statements> Executed if no matching WHEN
ENDSEL , End of SELECT group

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 34



Structured Programming Macros: Single-Comparison SELECT

e Same comparison used for all WHEN clauses

true
SELECT (comparison) —> [WHEN (values-1) —| S1 >

|
yfalse

_
|
|
true v
WHEN (values—2) —»| S2 .||VH

|
yfalse

true
WHEN (values—n) —| Sn —»

|
yfalse

(optional) OTHERWISE ——> |code—>e—> ENDSEL

e WHEN operand is a list of one or more items

o Easy way to test a series of identical data types

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 35



Structured Programming Macros: Single-Comparison SELECT ...

e Example: check for characters in arithmetic expressions

SELECT (CLI,Flag,eq)
Zrmz Aﬁ.*.uﬁ.\.uﬁ.+.uﬁ.|.v
S1
When (cr(',c')',c'=")
S2
OTHRWISE
code
ENDSEL

e Example: test small numbers in R1 for primes

SELECT C,R1,Eq
WHEN =F'0’
ErrorMsg 'Zero not a valid prime'
WHEN (=F'1',=F'2',=F'3',=F'5',=F'7")
MVI Flag,Prime
WHEN (=F'4',=F'6',=F'8")
MVI Flag,NotPrime
OTHRWISE
MVI Flag,Unknown
ENDSEL

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



Structured Programming Macros: Multiple-Comparison SELECT

o Different comparisons/tests on each WHEN clause

true
SELECT — |WHEN (comparison—-1) —| S1 >

_
|
yfalse |
true v
WHEN (comparison-2) —>| S2 |—»>e
| |
yfalse
_ true v
WHEN (comparison—n) —| Sn [—>e
_ |
yfalse |
v
(optional) OTHRWISE —— > | code —>e—> | ENDSEL

e WHEN operands may be very complex

o Easy way to select among alternatives involving different types

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



Structured Programming Macros: Multiple-Comparison SELECT ...

e Example using mixed comparisons

SELECT
When (CLI,Flag,eq,C'+'),0r,(CLI,Flag,eq,C' ')
S1
When (CLI,Flag,eq,C'-"),And, (LTR,RO,RO,M)
S2

OTHRWISE
code
ENDSEL

o« Example: test value in R1 for a small prime

ST R1,Temp
SELECT
When  (LTR,R1,R1,P),And,(C,R1,1t,=F'4"')
MVI Flag,Prime R1 contains 1, 2, or 3

When  (TM,Temp,NZ,2) Is it even?
MVI Flag,NotPrime
OTHRWISE
MVI Flag,UnKnown
ENDSEL

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 38



Structured Programming Macros: Detailed Example

e An elaborate example is provided in the text

— lllustrates all of the macros, and all their options

— Nested in various combinations

Source

Listing

See Appendix A, “Sample structured macro program”

See Appendix B, “Listing of sample program”

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved.

39



Structured Programming Macros: Notes

To generate relative branches, code ASMMREL ON (OFF for based)

— Base register not required for generated code!
Be very careful about continuations! (Run with FLAG(CONT) option)

Boolean expressions partially optimized

— Evaluated only as far as necessary to determine result

— Can sometimes be simplified: NOT (A AND B) = ((NOT A) OR (NOT B))

Limitation to at most 50 operands on any one macro

— Parentheses in operands are optional, but helpful

Some macro operand “keys” not safely usable as program symbols:

P, M, 0, Z, H, L, E, NP, NM, NO, NZ, NH, NL, NE,
GT, LE, EQ, LT, GE, AND, OR, ANDIF, ORIF

IF, DOEXIT, EXITIF, WHEN macros allow CC= as only operand

Don't forget the ENDxxx macros!

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 40



HLASM Toolkit Feature File Comparison Utility

o File Comparison Utility (“Enhanced SuperC”)

— A powerful and general file comparison and search utility for individual files, or
multiple libraries

— Batch mode on MVS and VSE; panel or command line on CMS
e Compares entire files, or individual lines, words, or bytes
— File types include load modules, VSAM ESDS+KSDS

— Include and exclude selected data types, lines, columns, rows, etc.

Search facility supports multiple search strings, in specified columns
— Search strings may be words, prefixes, or suffixes

— Multiple strings may be forced to match only on single lines

e Date-management support includes
— Fixed or sliding windows
— Multiple date formats and representations

— Automatic “aging” of specified date fields

Recent enhancements: 31-bit support (APAR PQ66218); FINDALL option
(APAR PQ51367)

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 41



HLASM Toolkit Feature Usage Scenarios

1. Recovery from object/load modules (if original source is lost)

» Disassembler initially produces “raw” Assembler source from “binary”
e Control statements define code, data, USINGs, labels, DSECTSs, etc.
» Repeat disassembly/analysis/description/assembly cycle until satisfied

2. Analysis and understanding of Assembler Language source programs

a. ASMXREF cross-reference token scanner

 Locates important symbols, user-selected “tokens”
» Creates “impact-analysis” spreadsheet-input file for effort estimation

b. ASMPUT Program Understanding tool

» Graphic displays of program structure, control flow, with any level of detail
e Can be used to help reconstruct (lost) source in HLLs!

3. Madification, testing, and validation of updated programs

» Interactive Debug Facility speeds and simplifies program testing
o Structured Programming Macros clarify program coding logic
* File Comparison Utility tracks before/after status of source, outputs

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 42



HLASM Toolkit Feature: Recovery and Reconstruction

Recovered
Lost source Assembler Assembler
(object or »| Disassembler —| Language > » Language
executable) Source Source Code

Inspect assembly,
create appropriate |«—— HLASM
control statements

A

e Start with object code (object files or executables)

e Disassemble and inspect; create control statements to describe the
program more fully

 Repeat this cycle as more of the program is understood

e Readable source is used as input to later phases

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 43



HLASM Toolkit Feature: Analysis and Understanding

control stmts,
token Tlists

\
Assembler List of
Language »| ASMXREF —»| ASMPUT —»| ASMIDF —»Desired
Source T Changes
« A A
Tagged
Source ADATA
| !
\4 «
> _ »| HLASM

e ASMXREF scans assembler source programs, identifies key items

— Create “tagged” source file identifying important “tokens”
e Assemble; ASMPUT uses ADATA to analyze control flows

e Use IDF to trace data flows in detalil

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 44



HLASM Toolkit Feature: Modification and Testing

Assembler

Source

Structured Pro—
gramming Macros

!

Language 1| Source Mods —| HLASM —>| ASMIDF >+

|
3 +|v>o>;|b v

~«— modify/assemble/test cycle <

Completed,
Revised
Application

»| File Comparison Utility (SuperC) |«

Modify Assembler Language source at desired points
Assemble and execute the program, test with IDF

Make indicated modifications until result is satisfactory

Compare original and updated source files to validate changes

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved.

45



<+— Present Date —»

HLASM Toolkit Feature: Validation

<— Future Date —»

01d Data 01d Data 01d Data New Data
+ + + +
Original Updated Updated Updated
Applicn. Applicn. Applicn. Applicn.
+ + + +
Baselogl Baselog?2 Baselog3 BaselLog4

L» | SuperC|«—-—>|SuperC |<«—1»|SuperC |«
w/Aging w/Aging

o Create “base logs” with original and updated application, current and
“future” dates, and old and modified data

e Compare results at each stage using “Aging” facilities as needed

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved.



HLASM Toolkit Feature: Scenario Summary

e The Toolkit Feature's components support all phases of Assembler
Language development, maintenance, and migration:

Lost source — | Enhanced Super(C|<+—— SP macs Test Data
(obj,Tload) _ _ T T
| 1 1 v vV

v _ _ Updated

Disassembler —>Source—>| XRef —|P.U.t.—»Updated—=>»| HLASM —| IDF |- Applic'n
Code i Source I T vV vy
oy « v » » « » _ L1 |

_ _ _ L-ADATA— § Base Logs
HLASM L—» |HLASM —ADATA- _ _ T
L— modifications — vVYY
Super(C

<«—Recovery—» <«— Analysis —» <«— Modify/Test/Validation —
Phase Phase Phase

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 47



HLASM Toolkit Feature: Full-Spectrum Application Support

Activity

Toolkit Feature Components

Inventory, assessment

Disassembler helps recover programs

Locating key fields

Cross-Reference Facility pinpoints named fields,
localizes references
File Comparison Utility searches files for strings

Application
understanding

Program Understanding Tool provides insights into
program structures and control flows;

Interactive Debug Facility monitors instruction and
data flows at any level of detail

Decide on fixes

Implement changes

Structured Programming Macros clarify source code;
Enhanced SuperC helps validate source changes

Unit test Interactive Debug Facility provides powerful
debugging and tracing capabilities

Debug Interactive Debug Facility debugs complete
applications, including loaded modules

Validation Enhanced SuperC checks regressions, validates

correctness of updates

HLASM Toolkit Feature

© IBM Corporation 1995, 2004. All rights reserved. 48



HLASM Toolkit: Summary

e HLASM Toolkit Feature provides a powerful, flexible toolset:
1. Disassembler

Cross-Reference Facility

Program Understanding Tool

Interactive Debug Facility

Structured Programming Macros

o a0 A~ b

File Comparison Utility (Enhanced SuperC)

e Supports almost all development and maintenance tasks

— On 0S/390, MVS/ESA, VM/ESA, and VSE/ESA

e HLASM web site: demos of ASMPUT, ASMIDF (basic and advanced);
30-day free trial version of ASMPUT

HLASM Toolkit Feature © IBM Corporation 1995, 2004. All rights reserved. 49
Rev. Rev. 09 Jul 2003 1240 Fmt. 05 Dec 03, 1037



