
Finding and Fixing Assembler Language Problems:

How High Level Assembler Can Help

SHARE 103 (August 2004), Session 8173

John R. Ehrman
ehrman@us.ibm.com or ehrman@vnet.ibm.com

International Business Machines Corporation
Silicon Valley (nee Santa Teresa) Laboratory

555 Bailey Avenue
San Jose, California 95141 USA

 Invitation

Suggestions for improvements and additions are welcomed.

 Synopsis:

Assembler Language problems are sometimes difficult to locate and correct. The IBM High Level
Assembler for MVS & VM & VSE provides many helpful features that can help; these notes provide an
overview of those features.

The examples in this document are for purposes of illustration only, and no warranty of correctness
or applicability is implied or expressed.

Permission is granted to SHARE Incorporated to publish this material in the proceedings of SHARE
103 (August 2004). IBM retains the right to publish this material elsewhere.

 IBM Corporation 2000, 2004. All rights reserved.

 Notice

 IBM Corporation 2000, 2004. All rights reserved. Note to U.S. Government Users: Documentation
subject to restricted rights. Use, duplication, or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract with IBM Corp.

Copyright Notices and Trademarks

Note to U.S. Government Users: Documentation subject to restricted rights. Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following terms, denoted by an asterisk (*) in this publication, are trademarks or registered
trademarks of the International Business Machines Corporation in the United States and/or other
countries:

The following are trademarks or registered trademarks of other corporations:

Publications, Collection Kits, Web Sites

The currently available product publications for High Level Assembler for MVS & VM & VSE are:

• High Level Assembler for MVS & VM & VSE Language Reference, SC26-4940
• High Level Assembler for MVS & VM & VSE Programmer's Guide, SC26-4941
• High Level Assembler for MVS & VM & VSE General Information, GC26-4943
• High Level Assembler for MVS & VM & VSE Licensed Program Specifications, GC26-4944
• High Level Assembler for MVS & VM & VSE Installation and Customization Guide, SC26-3494

• High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility User's
Guide, GC26-8709

• High Level Assembler for MVS & VM & VSE Toolkit Feature User's Guide, GC26-8710
• High Level Assembler for MVS & VM & VSE Toolkit Feature Installation and Customization Guide,

GC26-8711
• High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility Reference

Summary, GC26-8712

• High Level Assembler for MVS & VM & VSE Release 2 Presentation Guide, SG24-3910

Soft-copy High Level Assembler for MVS & VM & VSE publications are available on the following IBM
Online Library Omnibus Edition Compact Disks:

• VSE Collection, SK2T-0060
• MVS Collection, SK2T-0710
• Transaction Processing and Data Collection, SK2T-0730
• VM Collection, SK2T-2067
• OS/390 Collection, SK2T-6700 (BookManager), SK2T-6718 (PDF)

HLASM publications are available online at the HLASM web site:

http://www.ibm.com/software/ad/hlasm/

(Revised 01 Jul 2004, 1940, Formatted 01 Jul 04, 1106.)

IBM ESA System/370 System/370/390
System/390 MVS/ESA OS/390 VM/ESA
VSE/ESA VSE z/OS z/VM
z/VSE z/Architecture zSeries DFSMS
OS/2 OS/2 Warp

Windows 95 Windows 98 Windows 2000 Windows NT Windows XP

ii Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Contents

Overview . 1

Information in the Listing . 2
Options Summary . 3
Assembler Service Status (INFO Option) . 4
External Symbol Dictionary (ESD Option) . 5

ALIAS Information . 8
Private Code Sections . 9

Source Program and Object Code Listing . 10
Diagnostic Messages and Severities . 11

Relocation Dictionary (RLD Option) . 12
Symbol Cross-Reference (XREF Option) . 14

XREF(SHORT,UNREFS) Options and Unreferenced Symbols 16
Unreferenced DSECTs . 16

Macro-COPY Summary and Cross-Reference (MXREF Option) 17
DSECT Cross-Reference (DXREF Option) . 19
USING Map (USING(MAP) Option) . 20
General Purpose Register Cross-Reference (RXREF Option) 22
Assembly Summary . 23

Assembler Options and Diagnostics . 26
TERM Option . 26
BATCH Option . 27

Extra Statements . 28
Batch Assemblies and Private Code . 29

PRINT Instructions and the PCONTROL Option . 30
PCONTROL Option . 31
PCONTROL(ON) Option . 31
PCONTROL(DATA) Option . 32
PCONTROL(GEN) Option . 32
PCONTROL(MCALL) Option . 32
PCONTROL(MSOURCE) Option . 33
PCONTROL(UHEAD) Option . 33
NOPRINT Operands on Certain Statements . 33

FLAG Option . 34
FLAG(severity) Option . 35
FLAG(ALIGN) Option . 35
FLAG(CONT) Option and Continuation Statement Checking 36
FLAG(IMPLEN) Option and Length Specifications . 37
FLAG(PAGE0) Option and Unintended Low-Storage References 38
FLAG(PUSH) Option and Non-Empty PUSH Stack . 39
FLAG(RECORD) Option . 39
FLAG(USING0) Option: USINGs With Absolute Base Address 40

USING Diagnostic Messages . 41
USING Option . 42

USING(LIMIT(xxx)) . 43
USING(WARN(nn)) . 43
USING Diagnostics: Examples . 44
Fixing USING Problems with Multiple Resolutions (ASMA303W) 45

Multiple USING Resolutions(1): Entry-Point USINGs . 46
USING Range Limits . 47
Multiple USING Resolutions(2): Unavoidable Range Overlaps 48
Multiple USING Resolutions(3): A Complex Example . 49
Multiple USING Resolutions(3): Complex Example, Enhanced 51

ASMA031E: Invalid Immediate or Mask Field . 54
Other Helpful and Informative Diagnostics . 55

ASMA019W: Length of EQUated Symbol Undefined . 55
LANGUAGE Option . 56

 Contents iii

LIST(133) Option . 56

Macros and Conditional Assembly . 57
LIBMAC Option . 58
PCONTROL Options Relating to Macros . 59
Macro-COPY Cross-Reference (MXREF Option) . 59
FLAG(SUBSTR) Option and Conditional-Assembly Substrings 59
COMPAT Option . 60

COMPAT(LITTYPE) Option: Attribute References to Literals 61
COMPAT(MACROCASE) Option: Mixed-Case Macro Operands 61
COMPAT(SYSLIST) Option: Inner-Macro Argument Lists 62

MHELP Instruction . 63
ACTR Instruction . 63

Other Things . 64
ACONTROL Instruction . 65
Non-Invariant Characters . 66
I/O Exits . 66
SYSADATA File . 67
FOLD Option . 67
External Conditional Assembly Functions . 67
Attribute References, Literals, and Lookahead Mode . 68

Literal Extensions . 68
Lookahead Mode . 69

Assembler Abnormal Termination . 69
Loaded Modules and Required Files . 69
Option Errors and PESTOP . 70
I/O Exits and External Functions . 70
Virtual Storage . 70
Internal and I/O Errors . 70
COPY Loops and Excess DASD or CPU Use . 70

Summary . 72

Index . 73

iv Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Figures

 1. Example of External Symbol Dictionary Listing (NOGOFF Option) 5
 2. Example of External Symbol Dictionary Listing (GOFF Option) 7
 3. Example of ALIAS and the External Symbol Dictionary 8
 4. Program that Generates Unintended Private Code . 9
 5. Example of Active Usings Heading . 10
 6. Sample Program with Address Constant Types . 12
 7. Sample Program with Address Constants: ESD Listing 12
 8. Sample Program with Address Constants: RLD Listing 13
 9. Example of XREF(UNREFS) Listing . 16
10. Example of MXREF(SOURCE) output . 17
11. Example of MXREF(XREF) output . 18
12. DSECT Cross-Reference with Internal and External Dummy Sections 19
13. Example of a Using Map . 21
14. Example of Compact Diagnostic Summary . 23
15. Example of Allocated Data Sets/Files Summary Information 24
16. Example of Assembly Summary Function Statistics 24
17. Example of Assembly I/O Exit Activity . 24
18. Example of Assembly Storage Utilization . 24
19. Example of Assembly I/O Activity . 25
20. Example of Assembly Time Estimates . 25
21. Source Program With Intentional Errors . 27
22. Source Program With Errors (Some Not Visible) . 27
23. Source Program With Errors (All Visible) . 27
24. Source File With Dangling Statement . 28
25. Source File With Dangling Statement: NOBATCH, NOTERM (Listing) 28
26. Source File With Dangling Statement: NOBATCH, TERM (Terminal Display) 28
27. Source File With Dangling Statement: BATCH, NOTERM (Listing) 28
28. Source File With Dangling Statement: BATCH, TERM (Listing) 29
29. Source File With Dangling Statement: BATCH, TERM (Terminal Display) 29
30. ESD from Source File With Extra Assembly . 29
31. Example of FLAG(ALIGN) Option . 35
32. USING Diagnostics Example . 44
33. Simple Multiple-Resolution USING Warning . 46
34. Program Structure with Unavoidable USING Range Overlaps 48
35. USING-Warning Program, Elaborated . 50
36. USING-Warning Program Elaborated and Extended . 51
37. USING-Warning Program Elaborated and Extended: Problems 52
38. USING-Warning Program Elaborated and Extended: Problem Fixed 53
39. Examples of ASMA031E Diagnostic . 54
40. Example of ASMA019W Diagnostic for Length Attribute of a Length 55
41. Example of Macro Expansion with LIST(121) . 56
42. Example of Macro Expansion with LIST(133) . 56
43. Error from Library Macro . 58
44. Error from Library Macro Pinpointed by LIBMAC . 58

 Figures v

vi Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Overview

Overview: How HLASM Can Help

1 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Things HLASM can help with:

− Information available in the listing

— The program being assembled

— The assembly environment

— How to reveal possibly-hidden information

− Useful options

− Optional diagnostics

− Macro-related information and problem solving

− Other things worth noting

• Things HLASM can't help with: (Sorry!)

− Problems with program structure, logic, or style

— HLASM Toolkit components can help with these

− Problems with using the wrong fi les (such as libraries)

− Resource constraints (but HLASM can sometimes cope)

The High Level Assembler for MVS & VM & VSE provides extensive information about the
programs it assembles and the assembly environment, and supports flexible controls over
both the displayed information and diagnostics to be applied to the program.

This document summarizes many ways to benefit from the capabilities of the High Level
Assembler, particularly for locating problems with Assembler Language programs.

High Level Assembler is designed to assemble programs efficiently, but it does not try to
create an “overview” or comprehensive analysis of the program as a whole. Thus, matters
such as coding style, program structure and organization, and logic are largely invisible to
the assembler. Certain statements with wide-ranging effects, such as USING instructions, are
analyzed with care, but this analysis is based only on the information known at the time the
statement is processed.

The High Level Assembler for MVS & VM & VSE Toolkit Feature provides several
components that can help with understanding and managing programs “in the large” such
as the Interactive Debug Facility, the Program Understanding Tool, and the Source
Cross-Reference Utility.

 Overview 1

Information in the Listing

Information in the Listing

2 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Options Summary

• Assembler Service Status (INFO)

• External Symbol Dictionary (ESD)

• Source and Object Code

− Active-USINGs Heading

• Relocation Dictionary (RLD)

• Ordinary Symbol and Literal XREF

− Unreferenced Symbols in CSECTs

• Macro and COPY Code Summary

− Macro and COPY Code XREF

• DSECT XREF

• USING Map

• General Purpose Register XREF

• Diagnostic XREF and Assembler Summary

The High Level Assembler listing contains useful information about all aspects of an
assembly. This information is produced in many different areas, some parts of which can be
included or excluded under the control of options and source-program statements. The
listing includes some or all of the following sections, in this order:

• Options Summary

• Assembler Service Status (INFO)

• External Symbol Dictionary (ESD)

• Source and Object Code

− Active-USINGs Heading

• Relocation Dictionary (RLD)

• Ordinary Symbol and Literal XREF

− Unreferenced Symbols in CSECTs

• Macro and COPY Code Summary

− Macro and COPY Code XREF

• DSECT XREF

• USING Map

• General Purpose Register XREF

• Diagnostic XREF and Assembler Summary

Each of these is discussed in turn, describing useful information that you can find in each
section of the listing.

2 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Options Summary

Options Summary

3 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Listing shows options in effect, and options hierarchy for overrides
Overriding ASMAOPT Parameters ─ NODXREF,NODECK �── ASMAOPT file
Overriding Parameters─ asa,noobj,exit(prtexit(prtx)) �── ASMAHL command
Process Statements─ OVERRIDE(CODEPAGE(X'047B')) �── *PROCESS

 NOESD �── *PROCESS

Options for this Assembly
NOADATA

ALIGN
3 ASA

BATCH
1 CODEPAGE(047B)

NOCOMPAT
NODBCS

2 NODECK
2 NODXREF
5 NOESD
3 EXIT(PRTEXIT(PRTX))

─ ─ ─ etc.

• Numeric tags in left margin indicate the origin of the override
• Check: correct options; exits; BATCH; APAR status (line 1)

The first page of the listing file contains:

• Fixed installation default options that were specified with DELETE operand of the
ASMAOPTS installation macro

• User-supplied options from the ASMAOPT file

• User-supplied options from invocation parameters

• *PROCESS-statement options

• a list of all options in effect

• a list of overriding ddnames

An example is shown in slide 3.

The options used for an assembly are determined according to the following hierarchy
(highest to lowest; the numbering corresponds to the numbers used in the options summary
to indicate overrides):

0. Fixed installation defaults

1. *PROCESS OVERRIDE options

2. Options from the ASMAOPT file (or VSE Librarian member ASMAOPT.USEROPT)

3. Options in JCL PARM (MVS, VSE) or ASMAHL command (CMS)

4. Options on JCL OPTION statement (VSE)

5. Options on *PROCESS statements

6. Non-fixed installation defaults

This summary will tell you which options were provided for the assembly. Additional
information is provided about errors in the requested options.

Information in the Listing 3

Things Worth Checking

• First, check that the specified options are the ones you really want. Information about
overrides can help you determine how the final values of the options were derived.

• Check whether I/O exits are specified: such exits have control over all assembler files
(except its utility “work” file), and therefore can control what is read into the assembler
and what is produced as output. For example, certain parts of the listing may have been
moved, modified, or suppressed by a listing exit (including the fact that the exit is
present)! (See also “I/O Exits” on page 66.)

• Check whether BATCH mode has been specified. Programs that assemble or link one
way with NOBATCH may behave differently with BATCH. (See also “BATCH Option” on
page 27.)

• The first line of the first page shows the latest service applied to the assembler. If you're
interested in knowing what was fixed, specify the INFO option.

Assembler Service Status (INFO Option)

Assembler Service Status (INFO Option)

4 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• HLASM prints its service status, other useful information

− Latest PTF number is on the first line of the listing

• Example of the printed text:

The following information describes enhancements and changes to the
High Level Assembler Product.

The information displayed can be managed by using the following options:
INFO ─ prints all available information for this release.
INFO(yyyymmdd) ─ suppresses items dated prior to ″ yyyymmdd″ .

 NOINFO ─ suppresses the product information entirely.

19981104 APAR PQ21028 Fixed
Some machine opcodes incorrectly no longer accept literal operands.

19990113 APAR PQ22004 Fixed
The message ASMA138W is being issued at the end of a compile when a
PUSH/POP stack is not empty. The option FLAG(NOPUSH) is provided to
allow this message to be disabled.

• Check: current service status; language changes

If you specify the INFO option, High Level Assembler will print a summary of the status of all
service that has been applied to your copy of the assembler. Slide 4 shows an example.

You can request a subset of this service status data by specifying a date: INFO(yyyymmdd)
requests the assembler not to display service-status information that is dated prior to the
specified date.

Things Worth Checking: If the behavior of your assembler has changed, it is possible that
service may have been applied that you weren't aware of. Conversely, you may have been
told that some problem has been fixed, but still seems to be present on your assembler.
Checking the output of the INFO option can help you determine its exact service status.

4 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

External Symbol Dictionary (ESD Option)

External Symbol Dictionary (ESD Option)

5 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• The external names defined and referenced by this assembly
− Normally in upper-case letters

− Each item (except LDs) is assumed to be independently relocatable

• Each symbol has a type and an identifying number (its “ESD ID”)
− Section definitions (types are SD, CM, PC)

— PC sections may cause MODE problems, even if zero length
— Usual cause: EQUs appearing before first section is init iated

− Entry point definitions (type LD)
— LD-ID points to the section in which the symbol is an entry

− External references (types ER, WX)
— Names of symbols referenced by this assembly but defined elsewhere

− External Dummy definitions (type XD)
— Symbols naming DXD instructions, or DSECT names in Q-cons
— Other products (such as PL/I, binders/loaders) cal l i t “PR”

• ALIAS information
− ALIAS instruction changes an existing external name to another

− Linkers and loaders see the changed name, not the original

• Check: correct name/length/type; mixed-case aliases; private code

The ESD option causes HLASM to display information about all external symbols in the
object file. There are four general types of external symbol produced by the assembler if
the NOGOFF option is specified, or five if the GOFF option is specified.

The following figure illustrates an ESD listing for the traditional object module format.

Symbol Type ID Address Length LD ID Flags Alias-of
SECT_A SD 00000001 00000000 0000002C 01
MYCOM CM 00000002 00000000 00000060 00
MY_XD XD 00000003 00000007 00000018
SECT_B SD 00000004 00000030 00000038 02
B_DATA LD 00000030 00000004

Figure 1. Example of External Symbol Dictionary Listing (NOGOFF Option)

In the ESD listing, several fields are displayed:

• Symbol: the external symbol. Note that all external symbols are converted to upper case
letters, even if they appear in mixed case in the source file. The ALIAS instruction (see
“ALIAS Information” on page 8) must be used to obtain lower case letters in external
symbols.

• Symbol type: a two-letter code indicating the symbol's type.

− Section definition

SD An ordinary control section, specified by a CSECT, RSECT, or START instruction

CM A common control section, specified by a COM instruction

PC A control section with a blank name, typically caused by instructions like EQU
preceding one of the other section-initiating statements (see “Private Code
Sections” on page 9)

− Label definition (LD)

Information in the Listing 5

An entry point in a previously defined section. For each LD item, there is an
associated “LD ID”, which is the ESDID of the section in which this name is an entry.
The “address” of the LD item should be compared to the address of its owning
section; the difference between the two is the offset within the section of the entry
point.

− External reference

ER A strong external reference that is expected to be resolved to a symbol
definition during linking and binding.

WX A weak external reference that may or may not be resolved to a symbol
definition during linking and binding.

− External Dummy definition (XD)

A symbol appearing in the name field of a DXD instruction, or the name of a DSECT
that has appeared as the operand of a Q-type address constant.

− Element definition (ED) (GOFF option only)

This is the name of a binder class; the combination of a section name and a class
name defines an element. The LD-ID of the class is that of the section to which it
belongs. Entry points within an element are assigned an LD-ID of the owning
element. (See Figure 2 on page 7 for an example.)

• ID: the ESD ID assigned to the symbol

Each symbol is assigned a unique identification number called its “ESD ID” (except for
LD items, as explained below). Because each distinct ID is assumed to represent an
independently relocatable item, this is also called its “relocation ID”.

• Address: the assembler-assigned address of the symbol.

If a section starts at a nonzero address (either due to a START instruction operand, or
due to the presence of multiple control sections), this starting address is adjusted to zero
during program linking and binding, and all related addresses are adjusted by the same
amount. (The NOTHREAD option causes non-initial sections to have zero origin.)

For XD items, this field contains a number one less than the desired boundary alignment
of the item at bind time:

0 byte alignment
1 halfword alignment
3 fullword alignment
7 doubleword alignment
15 quadword alignment

• Length: the assembler-assigned length of the symbol

• LD-ID: the ESDID of the section or element in which the LD item is an entry point.

• Flags: these indicate the AMODE and RMODE information associated with the symbol.
Five bits in the Flags byte are used to indicate the AMODE and RMODE of an external
symbol: these can be designated B'..RA.rab', where

R means RMODE(64)
A means AMODE(64)
r means RMODE(31)
a means AMODE(31)
b means AMODE(24)

If all bits are zero, the modes were unspecified, and default to 24/24. Additional
combinations are supported:

− if both “a” and “b” are one, it means AMODE(ANY); that is, 24 or 31

6 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

− if both “R” and “A” are one (meaning both RMODE and AMODE are 64), the
RMODE(31) bit “r” is also set, so that existing loaders can load programs below the
2GB “bar”

In Figure 1 on page 5, symbol SECTA has flags X'01' meaning RMODE(24),AMODE(24);
and symbol SECTB has flags X'02' meaning RMODE(24),AMODE(31).

Note that in the old object module format, entry (LD) names have no addressing mode
assigned.

• Alias: the character string that appears in the object file in place of the symbol's name, if
an alias was specified. Details are provided at “ALIAS Information” on page 8.

Not all of these fields appear for every symbol type.

The following figure illustrates an ESD listing for the new (GOFF) object module format.

Symbol Type ID Address Length LD ID Flags Alias-of
SECT_A SD 00000001
B_PRV ED 00000002 00000001
B_TEXT ED 00000003 00000000 0000002C 00000001 01
SECT_A LD 00000004 00000000 00000003 01
MYCOM SD 00000005
B_PRV ED 00000006 00000005
B_TEXT ED 00000007 00000000 00000060 00000005 00
MYCOM CM 00000008 00000000 00000007
MY_XD XD 00000009 00000007 00000018
SECT_B SD 0000000A
B_PRV ED 0000000B 0000000A
B_TEXT ED 0000000C 00000030 00000038 0000000A 02
SECT_B LD 0000000D 00000030 0000000C 02
B_DATA LD 0000000E 00000030 0000000C 02

Figure 2. Example of External Symbol Dictionary Listing (GOFF Option)

In Figure 2, there are several differences from the simpler form shown in Figure 1 on
page 5: for each SD item, the assembler assumes that no other classes will be declared, so
it emits

• ED items for classes
− B_PRV for external dummy symbols
− B_TEXT for text not directed to a declared class

• LD items for the name of the SD item (note that RMODE/AMODE information is provided
for LD items)

Addresses and lengths are assigned to ED items, not to SD items.

One other difference is that the common declaration for symbol MYCOM appears as an SD
item and as a CM item: the latter is simply an indication to the Binder that MYCOM should be
linked according to the old rules for common sections.

Things Worth Checking

• Verify that all external symbols have the correct names, types, addresses, and lengths.

• For LD items, check that the LD offset is within its owning section or element. That is, the
LD address does not exceed the section (or element) address plus its length.

• If an assembly has multiple sections, it is possible to refer to from one section to symbols
in another without declaring names in other sections using EXTRN instructions. If the
sections are always assembled together, this is not a problem; but if subsequent program
linking replaces one of the sections, references to it from other sections will very
probably no longer be correct.

Information in the Listing 7

ALIAS Information

The assembler's ALIAS instruction changes a syntactically valid external symbol to another
character string in the object module. This assembly-time operation causes a “normal”
external symbol defined by the program — that is, a symbol using characters valid in the
Assembler Language — to be changed to a different name (its “alias”) in the External
Symbol Dictionary. This permits Assembler object modules to be linked with those from
other languages whose external symbols contain characters that would otherwise be
syntactically invalid in the Assembler Language.

The ALIAS instruction permits 64-character external names when the GOFF option is
specified, and 8-character names if the old object format is used.

This fragment of a source program:

EXTRN STAR_X,Lower
STAR_X ALIAS C'*X'
Lower ALIAS C'Lower'

produces this portion of the ESD listing:

External Symbol Dictionary

Symbol Type Id Address Length LD ID Flags Alias-of
X SD 00000001 00000000 00000000 00
*X ER 00000002 STAR_X
Lower ER 00000003 LOWER

Figure 3. Example of ALIAS and the External Symbol Dictionary

In Figure 3, the EXTRN instruction in the source program declares two external symbols,
STAR_X and Lower. In the absence of the ALIAS instructions, these would appear in the ESD as
STAR_X and LOWER (both in upper case). The ALIAS instructions cause HLASM to change those
names to *X and Lower in the object file's External Symbol Dictionary records. Internal to the
program, they would still be referenced by their original names. For example,

DC V(Star_X,LOWER)

would generate adcons that resolve only to the “ALIASed” names (*X and Lower).

Things Worth Checking: If mixed case symbols are generated by ALIAS instructions, check
that your binder/linker can recognize and process them correctly.

8 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Private Code Sections

“Private Code” is the name the assembler gives to blank section names, because without
ENTRY points in blank sections, there is no way for other code to refer to it.

The presence of PC sections in an assembly is usually unintended, and can have some
unexpected side-effects. Suppose you wrote code as in the following figure: note that the
ESD contains a zero-length PC section, which has a different AMODE/RMODE setting than
the Code section.

This fragment of a source program:

R1 Equ 1
CODE Start 0
CODE RMode 31

- - -

produces this portion of the ESD listing:

Symbol Type Id Address Length LD ID Flags Alias-of
PC 00000001 00000000 00000000 00

CODE SD 00000002 00000000 00000004 06

Figure 4. Program that Generates Unintended Private Code

When linked, the default AMODE/RMODE values of the PC section (24/24) may cause the
desired values specified for the CODE section to be downgraded.

Things Worth Checking

• Typically, Private Code (PC) sections in an assembly have zero length, and should have
no impact on a program's size at link time. However, the presence of PC sections in an
assembly can lead to other problems:

− Because they are assigned default AMODE(24) and RMODE(24) values, an entire
bound module may be assigned those attributes even though other attributes were
intended. Examples are shown in Figure 4 and in Figure 30 on page 29.

− In the absence of LTORG instructions, the assembler puts the literal pool at the end of
the first control section. If this is the Private Code section, it is unlikely that the literals
will be addressable from other sections, causing diagnostics to be issued for each
literal reference. The literals may also reside in an unexpected section, even though
they appear to be addressable.

Information in the Listing 9

Source Program and Object Code Listing

Source Program and Object Code Listing

6 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Source and object code listing

− Active USINGs heading lines

− LOC, C-LOC, D-LOC, R-LOC location counter headings

— Indicates type of section active at start of the page

− USING resolution details: registers, offsets

• Statements and options affecting the source and object code listing

− PRINT instructions control various portions of the listing

− PCONTROL can override PRINT-instruction controls (see slide 18)

− USING and FLAG control various diagnostics (see slides 18, 28)

• To suppress the source and object code listing

− Selectively: use PRINT instruction operands (see slide 17)

− Completely: use NOLIST option (but it suppresses the entire listing!)

• Check: code in correct sections; END-nominated execution entry

The source and object code listing contains several useful bits of information in addition to
statements, object code, and messages.

• The page heading can contain a summary of USINGs currently active as of the start of
that page. This helps you understand how symbolic addresses on each page will be
resolved, without having to read and annotate the entire program up to that point. This
USING heading can be enabled or disabled with PRINT instruction UHEAD and NOUHEAD
operands, or by specifying the PCONTROL option (see “PRINT Instructions and the
PCONTROL Option” on page 30).

The information for each USING specifies the base location, the range of the USING (in
parentheses), and the base register. The range is not shown if it is the default (X'1000'
times the number of base registers). If the USING is dependent, it will show the base
register and the offset at which the USING is anchored; if it is labeled, the label will
appear preceding the name of the DSECT.

Active Usings: Record,R4 ZipCode(X'F9A'),R4+X'66' Sect1(X'CA6'),R15
HF.PhoneNo(X'F90'),R4+X'70' WF.PhoneNo(X'F86'),R4+X'7A' OLD.Record,R5
NEW.Record,R6

Figure 5. Example of Act ive Usings Heading

Thus, in Figure 5, the first and third USINGs (based at Record and Sect1) are ordinary; the
second is dependent; the fourth and fifth are labeled dependent; and the last two are
labeled. Only the third USING specified a range limit; the other USINGs whose ranges are
less than the X'1000' default are dependent USINGs anchored at a nonzero offset from
the basing register. (See Figure 13 on page 21 for an example of a Using Map
corresponding to this Using Heading.)

• The Location Counter column heading indicates whether a CSECT, DSECT, RSECT, or
COM section is currently in effect. The heading is LOC, D-LOC, R-LOC, or C-LOC,
respectively.

• For USING-resolution displays, both the second operand value and the registers specified
as bases are shown for ordinary USINGs. The base-displacement resolution and first and

10 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

second operand addresses used are provided for dependent USINGs. Dependent
USINGs display the actual offset of the anchor location.

• In the space between the statement number and the statement itself, a non-blank
character indicates that the statement was derived from some other source than the
primary input stream, or was processed in a special way:

+ The statement was generated by a macro, or is the result of conditional assembly
substitution.

− The statement was taken from the input stream and assigned to a conditional
assembly variable by an AREAD instruction.

> The statement was introduced into the input stream by an AINSERT instruction.

= The statement was introduced into the input stream by a COPY instruction.

Things Worth Checking

• The “LOC” heading of each page's location counter designates the type of section
currently being assembled; verify that it's what you intend.

• Verify that the nominated entry point on the END instruction refers to the desired
execution start address, and that it lies within the bounds of the section to which it
belongs.

Diagnostic Messages and Severities

Diagnostic Messages and Severities

7 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• All messages prefixed with '** ASMA'

• Final letter of ASMAnnnS is a severity indicator:

• If FLAG(RECORD) is specified, all messages are followed by another
indicating the source record to which the message applies

− Also identifies records from macro and COPY-file data sets

Letter Severity Meaning

I 0 Information
N 2 Notification
W 4 Warning
E 8 Error
S 12 Severe Error
C 16 Critical Error
U 20 Unable to proceed

All messages issued by High Level Assembler have the form ** ASMAnnnS, where nnn is a
three-digit message number, and S is a severity indicator, as shown in slide 7.

Some messages may not appear in the listing if portions have been suppressed by PRINT OFF
instructions (see “TERM Option” on page 26) or if the diagnostics are subject to option
control and have been disabled (see “FLAG(severity) Option” on page 35).

If the FLAG(RECORD) option is active, each diagnostic message is followed by an ASMA435I
message indicating which source or library file and relative record number is associated
with the message.

Information in the Listing 11

Relocation Dictionary (RLD Option)

Relocation Dictionary (RLD Option)

8 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Information about relocatable (and Q, CXD) address constants

• Position ID: ESDID of the section where the constant resides

• Relocation ID: ESDID of the name whose value the adcon will contain

• Address: the address or offset at which the constant resides within its
section (as specified by the P pointer)

• New format of length, type information:

− Flag byte replaced by type/length, “action” f ields

• Check: intended relocatable items; overlapping RLDs; complexly
relocatable operands

The sample program in Figure 6 illustrates four types of address constants requiring
relocation following assembly. The four adcon types are V, A, CXD, and Q. (Types A and V
are addresses, type Q is an offset, and a CXD constant is a length.)

ASect Start 0 �── Control section
Extrn EX �── External symbol
Entry NTRY �── Entry declaration
DC V(EX) �── V-type adcon

NTRY DC A(EX-ASect) �── A-type adcon with two operands
CXD �── Cumulative external dummy length

EXDUM DXD F �── External dummy section
DC QL2(EXDUM) �── Q-type adcon
END

Figure 6. Sample Program with Address Constant Types

The ESD listing from the assembly is shown in Figure 7 (the NOGOFF option was specified
when the source file was assembled):

Symbol Type Id Address Length LD ID
ASECT SD 00000001 00000000 00000010
EX ER 00000002
NTRY LD 00000004 00000001
EXDUM XD 00000003 00000003 00000004

Figure 7. Sample Program with Address Constants: ESD Listing

The ESD listing shows the ESD IDs assigned to the symbols, as described in “External
Symbol Dictionary (ESD Option)” on page 5.

When the RLD option is specified, HLASM provides a summary of all fields requiring
relocation, as shown in Figure 8 on page 13.

12 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Pos.Id Rel.Id Address Type Action
00000001 00000000 00000008 J 4 ST �── Type J; Rel.Id = 0 for CXD
00000001 00000001 00000004 A 4 − �── Type A; note address 004, subtraction
00000001 00000002 00000000 V 4 ST �── Type V; stored
00000001 00000002 00000004 A 4 + �── note address 004; added
00000001 00000003 0000000C Q 2 ST �── Type Q; length 2 bytes

Figure 8. Sample Program with Address Constants: RLD Listing

The four fields in the RLD listing are:

• Position ID: the ESD ID of the section in which the adcon resides.

• Relocation ID: the ESD ID of the item according to which the adcon field will be relocated
(or “adjusted”); the term “relocation” is used even if the contents of the adcon is not a
relocated address. Note that CXD items have Relocation ID zero.

• Address: the location within the section indicated by the Position ID where the adcon is
located.

• Type: the two entries indicate the type of constant and its length.

• Action: at link/bind time, the result of relocating the adcon is either stored into the
adcon's field (indicated by ST), or added to (+) or subtracted from (−) the text in the
adcon's field.

In the example in Figure 6 on page 12, the constant named NTRY indicates that the
difference of two external symbols should be placed in the adcon field; the corresponding
RLD items appear in the RLD Listing in Figure 8 at address 00000004, with two different
Relocation IDs.

Things Worth Checking

• Check that there are as many relocatable items as you expect.

• Check that overlapping RLDs (with the same Position ID and address) are really
intended. Sometimes, two adcons are accidentally placed in the same location, causing
unexpected double relocations at bind time, execution time, or both.

Information in the Listing 13

Symbol Cross-Reference (XREF Option)

Ordinary Symbol and Literal Cross-Reference (XREF Option)

9 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• XREF has three sub-options:
− XREF(FULL) for all symbols, referenced or not

− XREF(SHORT) for referenced symbols only

− XREF(UNREFS) lists unreferenced non-DSECT symbols
— Ignored if XREF(FULL) is specified

• Displays information about each symbol:
− Symbol, length attribute, value

− Relocation ID, relocatabil ity tags (especially “C”), symbol type, where
defined

− References, including tags indicating use:
Branch, Drop, Modification, Using, eXecute

• See the example on slide 10
− Symbol Batch_Init is a branch target (B tag)

− Symbol Err_Buff modified (M tag); a USING base (U tag)

− Symbol Move_Msg is executed (X tag)

− Symbol R1 appears in USING (U tag) and DROP (D tag) instructions

• Check: usage tags; relocation ID and type; attributes; duplicate literals

When the XREF option is specified, HLASM produces several styles of symbol
cross-reference information. Because large programs may contain many unreferenced
symbols, a more readable listing is produced if you specify the XREF(SHORT) option.

Slide 10 shows an excerpt from a symbol cross-reference, illustrating the key features of that
part of the listing.

Ordinary Symbol and Literal Cross-Reference Example

10 IBM Corporation 2000, 2004. All r ights reserved.HLASM

Symbol Len Value Id R Type Defn References
...

BadEQU 1 000004 00000001 C U 666 �── note C type
Batch_Init 2 00035C 00000001 H 493 399B 490B �── note B tag
Batch_Len 8 000018 FFFFFFFF A U 772 497
Batch_Msg_1 39 0006A1 00000001 C 681 469 469 716

...
Err_Buff 1 000000 FFFFFFFD J 787 127U 517M 789 �── note U tag
Err_Msg 255 000000 FFFFFFFD C 788 277M 397M 469M 476M 481M 486M ...
ESD_Amt 2 00000A FFFFFFFC Y 797 347
ESD_Data 48 000010 FFFFFFFC C 800 348
ESD_ESD 3 000001 FFFFFFFC C 795 342 383
ESD_Item 1 000000 FFFFFFFB J 804 349U 831 �── note U tag

...
Move_Msg 6 0004A6 00000001 I 645 641X �── note X tag

...

... ┌─────┬──── note U,D tags

... � �
R1 1 000001 00000001 A U 53 123U 128D 132M 133M 133 135 ...

215D 248M 262 348M 349U 373M ...
460 560M 574M 578M 582M 586M ...

 ... etc.

The ordinary symbol and literal cross-reference displays the following items:

• The symbol, in the form it was first encountered and entered into the symbol table

• The length attribute of the symbol (in decimal)

14 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

• The value of the symbol (in hexadecimal)

• The relocation ID (relocatability attribute) of the symbol, which relates the symbol directly
to its “owning” control section. (See slide 10 on page 14.)

Relocation ID values are also found in the ESD listing, or in the DXREF listing (described
on page 19) for symbols defined in DSECTs.

• A column headed by “R” provides information about the relocatability properties of each
symbol. Absolute symbols are flagged with an A, complexly relocatable symbols are
flagged with a C, and simply relocatable symbols (the most common case) are not
flagged.

• The type attribute of the symbol. Note that this is the type attribute of the symbol's final
definition, and may not be the attribute value used during conditional assembly! (This
situation is discussed further at “Lookahead Mode” on page 69.)

• The statement number at which the symbol was defined.

• In the cross-reference of symbol uses, High Level Assembler provides indicator tags in
several contexts:

− In USING (U) and DROP (D) instructions

− As targets of EXecute (X) instructions

− Modification (M) tags for operand symbols naming fields whose contents may be
modified by the action of the instruction

− Branch target (B) tags for symbols used as operands of branch instructions.

The modification (M) tags permit rapid determination of which symbolic usages are for
read references, and which are for write references. This feature eliminates much of the
tedium in hunting for the few instructions that might have changed the value of a variable
or the contents of a named register. Examples are shown in slide 10 on page 14.

Things Worth Checking: The XREF contains a wealth of useful information, and is worth
checking carefully when problems arise.

• Check that the tags indicate expected uses of the symbol. For example, a symbol naming
a constant should not have an ″M″ tag, indicating an instruction that appears to have
modified it.

• Check whether the relocation type (the R column) of any symbol is ″C″ . While the
assembler allows you to define complexly relocatable symbols, such uses are very rare,
and are most often an error that can otherwise be difficult to find.

• Verify that the length and type attributes are as expected. Sometimes a symbol defining
a field is defined with an EQU instruction and assigned a (default) length attribute 1,
where a different length was intended.

• Sometimes a type attribute value will be assigned by a macro, using a value that does
not print as a normal character (or print at all!). Verify that such symbols have the
properties you expect, or that the symbols are of no direct interest to your program.

• Check for multiple appearances of literals; these may occur if there is more than one
LTORG instruction in the program. Sometimes the number of literals can be reduced by
careful placement of literal pools.

Information in the Listing 15

XREF(SHORT,UNREFS) Options and Unreferenced Symbols

Symbols defined in ordinary (non-dummy) control sections but not referenced elsewhere in
the program may be selectively displayed by specifying the XREF(SHORT,UNREFS) option,
without the necessity of displaying all unreferenced symbols. This display is normally much
shorter than a FULL cross-reference, and can help in eliminating unneeded constants,
storage areas, and “dead code” statements. An example is shown in the following figure,
where the unreferenced symbol was defined at statement 418.

Unreferenced Symbols Defined in CSECTs
 Defn Symbol

418 Normal_Dump

Figure 9. Example of XREF(UNREFS) Listing

If XREF(FULL) is specified, High Level Assembler ignores the UNREFS suboption, and
displays all symbols whether referenced or not.

Things Worth Checking: Programs can often be “cleaned up” by checking areas in which
unreferenced symbols appear:

• Unreferenced symbols among statements can sometimes indicate segments of “dead”
that is never referenced, and that can be removed, either by deleting them, or by adding
conditional-assembly AGO statements to skip over the unused statements (this keeps the
statements in the source file in case they ever need to be reactivated).

• Unreferenced constants and work areas can often be removed.

Unreferenced DSECTs

Sometimes DSECTs are declared (or copied into, or macro-generated) but none of its
symbols are used. To reduce the “clutter” in the program (and to minimize chances for
accidental misuse of symbols), you may want to remove unreferenced DSECTs. To check
whether a DSECT can be removed:

• Assemble the program with the XREF(FULL) and DXREF options.

• Locate the relocation ID of the DSECT in the DSECT XREF (see Figure 12 on page 19 for
an example).

• Scan the symbol XREF for occurrences of symbols with that ID. If there are none, the
DSECT is unreferenced. Otherwise,

• Check that all references to those symbols are made from statements within the DSECT.
For example, in

DS1 DSECT ,
DSA DS A
DSB DS XL4
DSC EQU *-DSA

ORG DSA
DSD DS CL8

the symbol DSA is referenced twice by symbols belonging to the DSECT.

• If the only references are made by statements in the DSECT, it can be considered
unreferenced.

16 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Macro-COPY Summary and Cross-Reference (MXREF Option)

Macro/COPY Summary and Cross-Reference (MXREF Option)

11 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• MXREF option has three sub-options:

− MXREF(SOURCE) shows where each macro/COPY originated

− MXREF(XREF) shows where each macro/COPY is referenced

− MXREF(FULL) is equivalent to MXREF(SOURCE,XREF)

• Macro/COPY usage information

− Information about l ibrary data sets and members

− COPY and LIBMAC tags, where defined, who called

− Inner macro calls captured even if not in listing

− COPY-reference statement numbers tagged with 'C'

• MXREF data also written to SYSADATA file

− ASMAXADA sample ADATA exit summarizes “Bil l of Materials” info

• Check: fi les from correct libraries; inner macro's callers; duplicate
COPY

The MXREF option specifies whether or not macro and COPY-member information should be
included in the output listing. It has three suboptions: SOURCE, XREF, and FULL.

• If you specify the MXREF(SOURCE) option, the macro and COPY source summary
provides the data set or file name and volume identification for every file from which a
member was taken, as well as an indication of whether it was a primary source (SYSIN)
file or a library (SYSLIB) file, and a concatenation number to distinguish among
concatenated input or library files. A list of members used is provided for each library
file.

An example of the Source Summary is shown in the following figure.

Macro and Copy Code Source Summary

Con Source Volume Members
 L1 OSMACRO MACLIB S2 MNT190 FREEMAIN GETMAIN RETURN SAVE TIME
 L4 ASMAMAC MACLIB S2 MNT190 ASMAXITP

Figure 10. Example of MXREF(SOURCE) output

In this assembly, two macro libraries (OSMACRO and ASMAMAC) were referenced, even
though four were specified in the SYSLIB concatenation. The members retrieved from
each library are shown. The library files are identified by the information in the first
column as “L1” and “L4”: these refer to library files (L) in concatenation sequence
positions 1 and 4 respectively.

If a macro definition was part of the SYSIN stream, the words “PRIMARY INPUT” would
have appeared instead of a file name. (See the discussion of the allocated-files
information in “Assembly Summary” on page 23.)

• If you specify the MXREF(XREF) option, the cross-reference provides, for each macro or
COPY segment, its member name (if from a library), the concatenation number, which
macro called it, the statement number at which it was defined, and the statement
numbers at which references to it were made. This XREF information is provided even if
inner calls do not appear on the listing (e.g. if PRINT NOMCALL has been specified).

Information in the Listing 17

An example of the XREF is shown in the following figure.

Macro and Copy Code Cross Reference

Macro Con Called By Defn References
ASMAXITP L4 PRIMARY INPUT - 833
FREEMAIN L1 PRIMARY INPUT - 564
GETMAIN L1 PRIMARY INPUT - 165
RETURN L1 PRIMARY INPUT - 294, 527, 567
SAVE L1 PRIMARY INPUT - 110
TIME L1 PRIMARY INPUT - 256

Figure 11. Example of MXREF(XREF) output

The same library concatenation-number indicators are used here as in the previous
listing: “L4” for the fourth library in the concatenation, and “L1” for the first. This
example shows that all the macros except RETURN are referenced only once.

The ″-″ in the “Defn” column means that the macro was not defined in the source
stream. (Again, see the discussion of the allocated-files information in “Assembly
Summary” on page 23.)

• If you specify the MXREF(FULL) option, both the source summary and the cross-reference
are produced.

The MXREF output is a valuable resource for tracking macro and COPY-file usage. Note also
that the MXREF data is written to the SYSADATA file when you specify the ADATA option; it
is then easy to extract useful data from that file, either during the assembly (using an I/O
exit) or later. A sample ADATA I/O exit (ASMAXADA) is provided with the High Level
Assembler; it provides information about all members read from each library file.

This information helps with version control, impact analysis, reassembly analysis, multiple
library controls, and other code management tasks.

When you specify LIBMAC (via option or ACONTROL instruction) and MCALL (via
PCONTROL(MCALL) option or PRINT MCALL instruction), additional valuable information
may be available to you in the MXREF listing. This data is also helpful in possible
error-tracing situations (see “Macros and Conditional Assembly” on page 57).

Things Worth Checking

• Verify that each macro and COPY file comes from the intended library. Multiple instances
of a macro in different concatenated data sets can produce unexpected results.

• If a COPY file is referenced more than once, verify that the enclosing scope of the
COPYed text will not cause duplicate definitions or a COPY loop (if conditional-assembly
backward branches are used in the COPY text). An example showing how this problem
can arise is discussed on page 70.

• Check that inner macros are called by the intended callers.

18 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

DSECT Cross-Reference (DXREF Option)

DSECT Cross-Reference (DXREF Option)

12 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• DXREF option lists all DSECTs defined in the assembly

− Displays name, length, relocation ID, definition-start statement number

• Relocation ID:

− Identifies the section in which each symbol is defined

− Starts at X'FFFFFFFF' for DSECTS, counts down

− Starts at X'00000001' for external symbols, counts up (same as ESDID)

• Example:

Dsect Length ID Defn

AEFNPARM 0000001C FFFFFFFF 165 (negative ID for internal dummy section)
AEFNRIL 00000024 FFFFFFFE 183
B 00000008 00000002 42 (positive ID for external dummy section)

• Check: DSECTs are intended; correct DSECT and DXD lengths

The DXREF option controls whether or not a DSECT cross-reference should be printed in the
output listing. It provides for each internal and external dummy section:

• its name
• the section's length
• the relocation ID assigned to the section (this helps in identifying all symbols “belonging”

to the section)
• the statement number where the definition begins.

Relocation IDs are assigned to external symbols starting at one and counting up (this is the
ESD ID of the external symbol), and starting at X'FFFFFFFF' for internal sections and counting
down. Both internal and external dummy sections will appear in the DSECT cross-reference
listing, as shown in the following example.

Dsect Length ID Defn

AEFNPARM 0000001C FFFFFFFF 165 (negative ID for internal dummy section)
AEFNRIL 00000024 FFFFFFFE 183
B 00000008 00000002 42 (positive ID for external dummy section)

Figure 12. DSECT Cross-Reference with Internal and External Dummy Sections

The first two DSECTs are internal (their IDs begin with X'FFFF..') and the last (B) is an
external dummy section. The presence of a positive ID value means that the external
symbol is either a DXD name, or a DSECT name that has appeared as the operand of a
Q-type address constant.

Things Worth Checking

• Verify that DSects (with negative relocation IDs) are indeed intended to be dummy
sections, and that their length is as expected. (Sometimes one may forget to resume a
CSect, making the preceding DSect contain extra or unwanted statements.)

• Check that DXD (external dummy section) names have the correct length. Their
alignment is shown in the ESD listing, as noted on page 6.

Information in the Listing 19

USING Map (USING(MAP) Option)

USING Map (USING(MAP) Option)

13 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• USING Map provides complete summary of all USING/DROP activity:

• Statement-location data

− Statement number of the USING or DROP

− Active Location Counter and section ID where the statement appeared

• The type of action requested (USING, DROP)

• Type of USING (Ordinary, Labeled, Dependent, Labeled Dependent)

• Base address, range, and ID of each USING

• Anchoring register on which the USING instruction is based

• Maximum displacement and last statement resolved based on this
USING

− Helps you to minimize USING ranges, avoid unwanted resolutions

• The operand-field text of the USING instruction

• Check: max displacement; last resolved statement; un-DROPped regs

The USING(MAP) option requests that HLASM create a USING Map in the listing. It
summarizes all activity relating to the USING and DROP (and PUSH and POP USING)
instructions in the program that control resolutions of symbolic addresses into
base-displacement form. The information provided includes:

• The instruction number of the USING or DROP instruction.

• Under the “Location” heading, the “Count” and “Id” columns give the location counter
value and the relocation ID active at the time the USING was issued.

• The “Action” column indicates whether the statement is USING or DROP.

• Under the “Using” heading, the “Type”, “Value”, “Range”, and “Id” columns describe
the type of each USING, the base address of the USING, the range of resolution (which
will be less than a multiple of X'1000' if a range limit is specified, or if a dependent
USING is anchored at a nonzero offset), and the relocation ID of the base address. The
“Reg” column shows the register(s) assigned as base(s), or involved in DROP
instructions.

• The “Max Disp” column shows the maximum displacement calculated for the specified
base register. Large values indicate that the object(s) addressed by that register may
soon run out of addressability.

• The “Last Stmt” column indicates the last statement in which the register was used to
resolve an address (that is, the effective end of the USING's domain). This can help you
to place your DROP instructions to minimize the domain of a USING, in order to avoid
accidental resolutions with incorrect base registers.

• The “Label and Using Text” displays the operands of the USING instruction, including the
qualifier (which is moved from the name field).

20 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Using Map

Stmt ---Location--- Action --------------Using----------- Reg Max Last Label and Using Text
Count Id Type Value Range Id Disp Stmt

2 000000 000001 USING ORDINARY 000000 000CA6 0001 15 C94 805 (*,End),R15
6 00001E 000001 USING ORDINARY 000000 001000 FFFF 4 0A0 Record,R4

 47 00021C 000001 USING LAB+DEPND +000070 000F90 FFFD 4 007 HF.PhoneNo,HomeFone
 48 00021C 000001 USING LAB+DEPND +00007A 000F86 FFFD 4 007 WF.PhoneNo,WorkFone
 49 00021C 000001 USING DEPENDENT +000066 000F9A FFFE 4 006 ZipCode,Zip
 93 00000C 000001 DROP 4 HF
 93 00000C 000001 DROP 4 WF
710 0005BC 000001 USING LABELED 000000 001000 FFFF 5 07E OLD.Record,R5
711 0005BC 000001 USING LABELED 000000 001000 FFFF 6 07E NEW.Record,R6
812 00000C 000001 DROP 4 R4
812 00000C 000001 DROP 15 R15

Figure 13. Example of a Using Map

The example has been edited slightly to fit a narrower field than is actually displayed on the
listing (many of the fields are normally wider). An example of each of the four USING types
is shown here, and a corresponding Using Heading is shown in Figure 5 on page 10.

Things Worth Checking

• If the maximum displacement value is zero, it can indicate either that there is only a
reference to the base address of a target field (such as the beginning of a DSect), or that
there are no addressing references to that register (in which case the USING can be
eliminated and the register assigned to other uses).

• Check for maximum-displacement values approaching X'FFF'. This can indicate that the
base register may be about to exceed its addressability range.

• Check the statement number of the last statement resolved for each USING, and put
appropriate DROP instructions as closely as possible after that statement. This can help
avoid later undesired resolutions against that base register.

• Check for un-DROPped registers. Their presence can also cause undesired resolutions.

Information in the Listing 21

General Purpose Register Cross-Reference (RXREF Option)

General Purpose Register Cross-Reference (RXREF Option)

14 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Implicit references noted (e.g., statement 116: STM instruction)
LM 3,5,X implicitly references (and modifies) GR 4

• Actual register use; does not depend on symbolic register naming!
Register References (M=modified, B=branch, U=USING, D=DROP, N=index)

0(0) 116 163M 164 179M 180 181 185M 186M 186 190 ...
374M 388M 389M 389 450M 456M 473M 474M 475 477M ...

 ... etc.
2(2) 116 171M 174M 197M 198M 199 295M 357M 358M 359 ...

419M 420 421M 422N 528M 568M 625M 625 626M 627 ...
 ... etc.
12(C) 116 117M 119U 295M 528M 568M 649D ...
13(D) 116 178 180 181M 293M 295 309 311 312M 524M ...
14(E) 116 295M 296B 399M 490M 498B 528M 529B 568M 569B ...
15(F) 109U 111 116 117 118D 189M 190 295M 528M 568M ...

• Register 2 used as index at statement 422 (N tag)
• Register 14 used in branch statements (296, 498, etc.; B tag)
• Registers used for base resolution not referenced or tagged
• Check: low utilization; localized loads/stores; based branches

HLASM produces a cross-reference of all general purpose register usage when the RXREF
option is specified. Slide 14 shows an excerpt from a typical general-register
cross-reference; parts of the complete listing have been deleted for simplicity. All sixteen
registers are shown (in a complete listing), with implicit and explicit references indicated;
cases where a register is assigned as a base register by normal base-displacement
resolution are not shown. The register cross-reference is independent of the symbol
cross-reference: “absolute” register references (such as are generated by many system
macros) are not shown in the symbol cross-reference, but are shown in the register
cross-reference.

Implicit uses (such as registers involved in multiple-register instructions like LM, STM, D, M,
SLDL, etc.) are also shown, even though the register number is not specified in the
instruction itself.

The register cross-reference includes tags on statement numbers where the statement
causes the register to be

• modified ('M' tag)
• specified as a base register ('U' tag)
• used as an index register ('N' tag)
• used in a DROP instruction ('D' tag)
• used as a branch-target address ('B' tag)

This information can be very helpful, especially in finding instructions that modify a register
in unexpected ways.

Things Worth Checking

• Registers with low levels of (or no) utilization can be identified to achieve better
register-usage balance.

• Closely located store/load activity for a register can indicate a need for more registers
usable as base registers. Modifying the code to utilize relative branch instructions can
release some registers from providing code addressability for other uses.

22 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Assembly Summary

Assembly Summary

15 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Last page of the listing:

• Diagnostic summary: statement, origin, severity

− Pointers to origins of source statements having diagnostics

− Format is sn(sc[:mac],nnn), where
sn = s ta tement number; s = P r imary/L ibrary, c = concatenat ion number,
mac = macro name, nnn = record number in that fi le

• Assembler and host system data

• All files used, I/O and exit counts

• External function statistics

• I/O exit statistics

• Storage utilization data, file-I/O record counts

• Assembly start/stop and processor time info

• Check: I/O exits; I/O counts; correct library file ordering; storage use;
CPU time

The diagnostic and assembly summary page includes information about the entire assembly,
including detailed information about the number of I/O actions, memory usage, number of
diagnostic messages, host system, Assembler version, and other related data.

• All flagged statements are listed by statement number; if the FLAG(RECORD) option is
active, each statement number is accompanied with information specifying the exact
source record and the file from which it was read. For example, a small assembly with
several intentional errors produced this portion of the diagnostic summary:

Statements Flagged

1(P1,1), 4(L1:XXX,2), 6(P1,3), 7(L1:YYY,5), 8(L1:YYY,4), 9(P1,5)

6 Statements Flagged in this Assembly 12 was Highest Severity Code

Figure 14. Example of Compact Diagnostic Summary

In Figure 14, the list of flagged statements gives the statement number, and in
parentheses the file identifier (described in Figure 15 on page 24) and the member (if
any) from that file, and the record number within that file that caused the error. The final
line gives the number of statements causing diagnostics, and the highest severity
associated with the messages.

Using this information, you can quickly locate and correct the files or library members.

• The name of the assembler, its release level, and current PTF level. The system
environment is also shown.

• All input and output data set names, member names, and volume IDs are displayed,
listed by ddname, including concatenations, as shown in the following figure.

Information in the Listing 23

Datasets Allocated for this Assembly

 Con DDname Dataset Name Volume Member
P1 SYSIN ASMAOX02 ASSEMBLE D1 EHR192
L1 SYSLIB OSMACRO MACLIB S2 MNT190
L2 ASMAFMAC MACLIB A1 EHR191
L3 ASMSMAC MACLIB L2 EHR195
L4 ASMAMAC MACLIB S2 MNT190

SYSLIN ASMAOX02 TEXT D1 EHR192
SYSPRINT ASMAOX02 LISTING D1 EHR192

Figure 15. Example of Allocated Data Sets/Files Summary Information

This example shows that a single file was allocated for all but SYSLIB, for which four
concatenated libraries were allocated. The order of concatenation is indicated in the
“Con” column, where “L” means “Library” and “P” means “Primary Input”, and the
following numeric gives the concatenation order.

• External function statistics include the name of each function, the number of calls of each
type, and the number of messages issued and their maximum severity.

The following example shows the results of a test program that passed valid and invalid
data to two functions.

External Function Statistics
 ----Calls---- Message Highest Function
SETAF SETCF Count Severity Name
195 1 55 12 LOG2
1 13 2 12 REVERSE

Figure 16. Example of Assembly Summary Function Statistics

LOG2 is an arithmetic function, REVERSE is a character function; each was called once in
the wrong mode to verify that it produced a severity-12 error message.

• I/O exit statistics describe the exit type, exit name, number of calls to the exit, number of
messages produced, and number of records added or deleted. The following figure
shows the information produced from a sample exit.

Input/Output Exit Statistics
Exit Type Name Calls ---Records--- Diagnostic

Added Deleted Messages
OBJECT OBJX 10 3 0 1

Figure 17. Example of Assembly I/O Exit Act iv i ty

• The central storage used for the assembly.

5551K allocated to Buffer Pool

Figure 18. Example of Assembly Storage Util ization

• I/O statistics describe the number of reads and writes for each file used by the
assembler.

24 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

 792 Primary Input Records Read 1283 Library Records Read
0 ASMAOPT Records Read 1359 Primary Print Records Written
14 Punch Records Written 0 ADATA Records Written

Figure 19. Example of Assembly I/O Act iv i ty

• The start and stop times of the assembly, an estimate of processor time required for the
assembly, and the final return code of the assembly.

Assembly Start Time: 11.00.11 Stop Time: 11.00.12 Processor Time: 00.00.00.1101
Return Code 000

Figure 20. Example of Assembly Time Estimates

Things Worth Checking

• Verify that any I/O exits are ones you expect, and that the processing performed on input
and output records looks reasonable. A listing exit can even suppress or modify
information in the listing (including data about I/O exits!).

• Check that the files and data sets used for the assembly are as intended, and that library
concatenations are in the correct order.

• I/O counts can help you determine that a reasonable number of records has been read or
written.

• Information about storage use can be very helpful in setting storage sizes accurately, to
avoid over-allocation and added costs and assembly-time overheads.

• Check that the estimate of processing time appears to be consistent with other
assemblies of the size of the current program. Larger values could indicate that some
macros could be improved, or that the assembler itself is processing certain items
inefficiently.

Information in the Listing 25

Assembler Options and Diagnostics

Assembler Options and Diagnostics

16 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• TERM: strongly recommended; always displays a one-line summary
− Messages displayed (if not suppressed by FLAG option)

whether or not PRINT-suppressed in the listing

− Two suboptions: WIDE (no compression), NARROW (compress blanks)

• BATCH: multiple assemblies with one HLASM invocation
− Note possible “module contamination”

• PCONTROL: many suboptions (see slide 18)
− Useful for “exposing” hidden l ist ing information

• FLAG: controls various useful diagnostics (see slide 21)

• USING: controls diagnostics, USING Map (see slide 28)

• LANGUAGE: Select national language for messages, headings

• LIST(133): Wider listing provides more detail

• Check: TERM option; BATCH option (dangling statements, multiple
assemblies)

You can specify several High Level Assembler options to help find problems that might not
otherwise be evident. These options include TERM, BATCH, PCONTROL, FLAG, and USING.

TERM Option
The terminal output display (on SYSTERM) provides a useful summary of an assembly's
behavior, showing all diagnostic messages (if any). The message display is not affected by
PRINT or other statements that may prevent them from being seen on the listing, but may be
suppressed by the FLAG(severity) option if the severity of the message is lower than the
FLAG value.

TERM supports two suboptions (WIDE and NARROW). The blank-compressed NARROW
layout enhances readability and allows the output to fit easily on an 80-character-wide
display without wraparound. The WIDE format does not compress blanks, and may be more
appropriate for screens that can display the full listing line length.

• A single-line summary is given for a successful assembly. This summary line reduces
the amount of clutter on your terminal when assembling a “batch” of modules.

• The Deck-ID (if any; from a TITLE instruction) is included in the summary message. This
information helps you monitor the progress of a batch of assemblies and associate
diagnostic messages with the proper portion of the input file.

Suppose we assemble the small program shown in the following figure; the SPLAT
mnemonic is intentionally unknown, and will generate an error message.

26 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

PRINT OFF
SPLAT
PRINT ON
SPLAT
END

Figure 21. Source Program With Intentional Errors

When this program is assembled, the PRINT OFF instruction will cause the first SPLAT
instruction and its associated diagnostic to be suppressed, as shown in the following extract
from the listing file:

2 PRINT OFF
4 PRINT ON
5 SPLAT

** ASMA057E Undefined operation code - SPLAT
6 END

Figure 22. Source Program With Errors (Some Not Visible)

In Figure 22, the ASMA057E error message associated with statement 3 has been
suppressed by the preceding PRINT OFF instruction.

If the TERM option is specified, then all error messages are visible, as shown in the
following extract of the terminal display for this assembly:

3 SPLAT
ASMA057E Undefined operation code - SPLAT

5 SPLAT
ASMA057E Undefined operation code - SPLAT
Assembler Done 2 Statements Flagged / 8 was Highest Severity Code

Figure 23. Source Program With Errors (All Visible)

Things Worth Checking: Specifying the TERM option is recommended, especially during
program development.

BATCH Option
The BATCH option allows you to complete multiple assemblies with a single invocation of
the assembler. However, programs assembled with the BATCH option sometimes produce
unexpected assembly-time errors, multiple assemblies, or even bind-time errors.

When the NOBATCH option is specified, the assembler stops reading the input file when it
has processed the first END instruction, whether or not that END record is the last record in
the input file. Thus, any trailing records are ignored.

When the BATCH option is specified, the assembler completes each assembly when its END
instruction is encountered, and then continues to read the input file for further source
modules. If the records following an END instruction do not form a valid source program,
unexpected diagnostics may be produced; and if these following records do form a valid
source program, their presence in the object file may cause undesirable behavior at
link/bind time.

Assembler Options and Diagnostics 27

Extra Statements

Sometimes the END instruction of an assembly is followed by extra records, whose presence
is apparent only when the BATCH option is specified.

Suppose we create an input file with a complete assembly plus some additional “dangling”
statements, as illustrated in the following figure:

A CSect
Con DC F'1'

END
* Define a constant

Figure 24. Source File With Dangling Statement

This program was assembled with various combinations of the BATCH and TERM options:

• NOBATCH and NOTERM: no errors

000000 00000 00004 1 A CSect
000000 00000001 2 Con DC F'1'

3 End

Figure 25. Source File With Dangling Statement: NOBATCH, NOTERM (Listing)

The assembly appears to be error-free, as expected.

• NOBATCH and TERM: no errors, and a terminal message

Assembler Done No Statements Flagged

Figure 26. Source File With Dangling Statement: NOBATCH, TERM (Terminal Display)

Again, the assembly appears to be problem-free.

• BATCH and NOTERM: a second assembly with diagnostics:

000000 00000 00004 1 A CSect
000000 00000001 2 Con DC F'1'

3 End
 --- many lines later ---

1 * Define a constant
** ASMA140W END record missing

Figure 27. Source File With Dangling Statement: BATCH, NOTERM (Listing)

The assembly now completes with a nonzero return code (the severity depends on what
kinds of statements follow the first END statement). Thus, a program that “always”
assembled successfully in the past may appear to have been contaminated with new,
unsuspected errors. This can be particularly annoying if the first assembly is very large,
because the small second assembly may not be easy to find at the end of the main
assembly.

• BATCH and TERM: a second assembly with diagnostics:

28 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

000000 00000 00004 1 A CSect
000000 00000001 2 Con DC F'1'

3 End
 --- many lines later ---

1 * Define a constant
** ASMA140W END record missing

Figure 28. Source File With Dangling Statement: BATCH, TERM (Listing)

The terminal display shows clearly that more than one assembly was being processed:

Assembler Done No Statements Flagged
ASMA140W END record missing
Assembler Done 1 Statement Flagged / 4 was Highest Severity Code

Figure 29. Source File With Dangling Statement: BATCH, TERM (Terminal Display)

Batch Assemblies and Private Code

The presence of Private Code (PC) sections can “contaminate” a bound module (see also
the discussion of Private Code on page 9). To show how this can happen, suppose you
assemble a program with an added fragment, specifying the BATCH option:

This example of a source file:

A CSect
A AMode 31
A RMode 31

...and lots of other stuff
End

R1 Equ 1
End

when assembled produces two object files with ESDs:

Symbol Type Id Address Length LD ID Flags Alias-of
A SD 00000001 00000000 00000AF8 06

Symbol Type Id Address Length LD ID Flags Alias-of
PC 00000001 00000000 00000000 00

Figure 30. ESD from Source File With Extra Assembly

When this program is linked, the added Private Code (PC) section will very probably force
the linked module's AMODE/RMODE to the lowest values (24/24), rather than the intended
31/31.

Things Worth Checking

• If unexpected errors occur in an otherwise “clean” assembly, check for the presence of
the BATCH option and more than one assembly listing.

• If bind-time addressing or residence modes are not as expected, check for extra code
following the first END instruction that was recognized due to the BATCH option. (Note
that Private Code can also cause this condition, as discussed on page 9.)

• Message ASMA140W may indicate the presence of “dangling” statements, possibly
following the only intended END instruction.

Assembler Options and Diagnostics 29

PRINT Instructions and the PCONTROL Option

PRINT Instruction Operands

17 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• PRINT instruction operands affect the source and object code listing

− ON, OFF: control display of source/object code listing

— Be careful: PRINT OFF also disables message printing on the listing

— Messages are always visible if TERM option is specif ied

− DATA, NODATA: control display of DC-generated data

− GEN, NOGEN: control display of conditional-assembly generated statements

− MCALL, NOMCALL: control display of inner macro calls

− MSOURCE, NOMSOURCE: control display of macro-generated source
statements

− UHEAD, NOUHEAD: control display of Active-USINGs heading

• NOPRINT operand allowed on PRINT, PUSH, POP

− Allows these statements to hide themselves!

The PRINT instruction supports six pairs of complementary operands, each pair enabling or
disabling the printing of selected portions of the source and object code listing. Thus, parts
of the listing can be made visible or invisible, as desired. However, useful information may
have been hidden from view because parts of the listing may have been suppressed through
use of the NOxxx or OFF operands.

The operands of the PRINT instruction are:

ON, OFF
These operands enable and disable the display of all subsequent lines in the source and
object code listing, including diagnostic messages.

Specifying the TERM option will let you see all diagnostic messages not suppressed by
the FLAG(n) option, even though PRINT settings may prevent their appearance in the
listing. The examples at “TERM Option” on page 26 show how this works.

DATA, NODATA
If NODATA is specified, the listing will show only the first line of generated data from DC
instructions (usually, at most 8 bytes). If DATA is specified, all generated data will be
displayed.

GEN, NOGEN
If the GEN operand is specified, all statements generated by conditional assembly or
macros, except for inner macro calls, are displayed with a + character to the left of the
statement. The NOGEN operand suppresses the display of these generated statements.

When PRINT NOGEN is in effect, High Level Assembler displays the location counter
value in effect for the first macro-generated code on the same line as the source
statement. This makes debugging simpler for programs containing macro calls.

MCALL, NOMCALL
The MCALL operand controls the printing of inner macro calls. When an outer-level (or
“top-level”) macro is called, the assembler displays that call on the listing (if other
controls do not prevent its appearance). However, inner macro calls are not normally
shown. Specifying the MCALL operand of a PRINT instruction will cause subsequent
inner calls to be displayed. This helps you to debug complex nested macro interactions.
Additional information is shown in the Macro Summary and XREF, described on page 17.

30 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Macro calls displayed by the MCALL facility are not affected by the
COMPAT(MACROCASE) option, discussed on page 61.

MSOURCE, NOMSOURCE
The NOMSOURCE operand suppresses the display of subsequent macro-generated
source statements while still showing the generated object code. See
“PCONTROL(MSOURCE) Option” on page 33 for further details.

UHEAD, NOUHEAD
The UHEAD operand controls the printing of the USING heading at the top of each page.
Specifying NOUHEAD suppresses the USING heading on subsequent pages of the listing.

PCONTROL Option

PCONTROL Option

18 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• PCONTROL lets you override PRINT operands without source changes

− You can see full details that might have been hidden

• Sub-options are exactly the same as PRINT instruction operands!
(Compare slide 17)

− ON, OFF (ON exposes everything hidden by PRINT OFF statements)

− DATA, NODATA

− GEN, NOGEN (GEN exposes everything hidden by PRINT NOGEN
statements)

− MCALL, NOMCALL

− MSOURCE, NOMSOURCE

− UHEAD, NOUHEAD

• GEN, MCALL, MSOURCE useful for macro problems

The PCONTROL option can be used to “globally” override all occurrences of the internal
settings of selected listing control (PRINT) instructions appearing anywhere in the source
program: OFF and ON, [NO]DATA, [NO]UHEAD, [NO]GEN, [NO]MCALL, and
[NO]MSOURCE. With this option you can force the display of code that would otherwise be
invisible or obscured in normal listings, without having to modify any element of the source
code itself.

PCONTROL(ON) Option

Long sequences of statements that appear in every assembly may become so familiar that
they need not be present in the listing, so they are sometimes suppressed by PRINT OFF
instructions. Later changes to the program may cause errors elsewhere in the program; if
these are in PRINT-OFF regions, the reasons for the error are hard to find. Rather than
modify PRINT instructions in every block of statements in such regions, simply reassemble
with the PCONTROL(ON) option, and all statements in such PRINT-OFF regions will be
displayed. (The TERM option is also very helpful in these situations.)

Assembler Options and Diagnostics 31

PCONTROL(DATA) Option

Most DC instructions generate small enough strings of data bytes that all “interesting” bytes
are displayed. If, however, you want to verify that correct data has been generated without
having to insert PRINT DATA instructions in the source program, just reassemble with the
PCONTROL(DATA) option.

PCONTROL(GEN) Option

The PCONTROL(GEN) option can help find problems with macros and data declarations by
causing generated statements from macros or open-code conditional assembly to appear in
the listing. This provides additional detail that may help in locating problems with such
statements and their generators.

PCONTROL(MCALL) Option

PCONTROL(MCALL) Option

19 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Controls display of inner macro calls
• Suppose you write these three simple macros:

┌──────────────────────┬─────────────────────────┬──────────────────┐
│ Macro │ Macro │ Macro │
│ TOP &a,&b,&c │ MIDDLE &x,&y,&z │ BOTTOM &j │
│ MIDDLE &c,&a,&b │&n SetA &x*&y+3*&z │ MNote '&j' │
│ MEnd │ BOTTOM &n │ MEnd │
│ │ MEnd │ │
└──────────────────────┴─────────────────────────┴──────────────────┘

• When the TOP macro is invoked with NOMCALL active, no inner calls
are visible:
 *Process PControl(NoMCALL)

TOP 2,3,5
+19

• When TOP is called with MCALL active, inner calls are visible:
 *Process PControl(MCALL)

TOP 2,3,5
+ MIDDLE 5,2,3
+ BOTTOM 19
+19

The PCONTROL(MCALL) option specifies that all macro calls should be displayed, inner calls
as well as top-level calls from open code. This can help in determining the flow of control
and the values of arguments through levels of macro calls. The example in slide 19 shows
how MCALL exposes the arguments of inner macro calls.

Macro calls are displayed in their original “as-created” case, independent of the
COMPAT(MACROCASE) option.

32 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

PCONTROL(MSOURCE) Option

PCONTROL(MSOURCE) Option

20 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Controls display of source statements generated by macro expansions

• Expansion with MSOURCE displays all generated statements

12 MVC2 Buffer,=C'Message'
000000 D500 0000 C090 00000 00090 13+ CLC 0(0,0),=C'Message'
000006 00006 00000 14+ Org *─6
000000 4100 C006 00006 15+ LA 0,Buffer(0)
000004 00004 00000 16+ Org *─4
000000 D206 17+ DC AL1(X'D2',L'=C'Message'─1)
000002 00002 00006 18+ Org *+4

• Expansion with NOMSOURCE hides the macro's inner workings

12 MVC2 Buffer,=C'Message'
000000 D500 0000 C090 00000 00090 13+
000006 00006 00000 14+
000000 4100 C006 00006 15+
000004 00004 00000 16+
000000 D206 17+
000002 00002 00006 18+

• Unlike PRINT NOGEN, you can still see the object code

There are times when complicated schemes are used in macros to generate object code,
and while seeing the generated machine language may be helpful, the generated statements
themselves may be confusing. By specifying the PCONTROL(NOMSOURCE) option, the
source lines may be suppressed without eliminating the generated machine language. An
example is shown in slide 20.

Note that this option requires that PRINT GEN instructions or the PCONTROL(GEN) option be
active; otherwise, the generated statements will not be printed in the listing.

PCONTROL(UHEAD) Option

Some types of USING-related problems can be analyzed more easily if all active USING
instructions are known when a set of statements are being reviewed. Specifying the
PCONTROL(UHEAD) option will cause High Level Assembler to display the standard “Active
Usings” heading described on page 10.

NOPRINT Operands on Certain Statements

The NOPRINT operand of the PRINT, PUSH, and POP instructions can help to eliminate
distracting detail in the listing due to uninteresting generated statements and makes it
easier to use High Level Assembler as a “cross-assembler” for other hardware
architectures. However, the NOPRINT operand can hide the presence of the statement itself,
which may make it harder to locate statements controlling the listing.

Note: Even if a program contains statements with NOPRINT operands, they are still placed
in the SYSADATA file, which is described on page 67.

Things Worth Checking: Check that all needed source statements and/or generated data in
the listing are visible. If parts are not visible, assemble the program with the appropriate
PCONTROL options.

Assembler Options and Diagnostics 33

FLAG Option

Assembler Diagnostics: FLAG Options

21 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• FLAG(severity) controls which messages are printed in the listing

• FLAG(ALIGN) controls checks for normal operand alignment

• FLAG(CONT) controls checks for common continuation errors

• FLAG(IMPLEN) checks for implicit length use in SS-type instructions

• FLAG(PAGE0) checks for inadvertent low-storage references resolved
with base register zero

• FLAG(PUSH) checks at END for non-empty PUSH stack

• FLAG(RECORD) indicates the specific record in error

• FLAG(SUBSTR) checks for improper conditional assembly substrings

• FLAG(USING0) notes possible conflicts with assembler's USING 0,0

• Check: ALIGN messages; continuations; implicit lengths; page-zero
references

You can request High Level Assembler diagnostics to help find problems that might not
otherwise be evident. Many of these are controlled by the FLAG option (page 34) and USING
option (page 42).

FLAG options include the following:

• FLAG(severity) controls which messages are printed in the listing, as described on page
35.

• FLAG(ALIGN) controls checking for potential problems with operand alignment, as
described on page 35.

• FLAG(CONT) controls checks for possible errors in coding continuation statements. This
option is discussed on page 36.

• FLAG(IMPLEN) controls checks for possibly unintentional omission of the length
specification in SS-type instructions. Examples are shown on page 37.

• FLAG(PAGE0) controls checks for possible inadvertent references to addresses in the
first 4K bytes of storage, as illustrated on page 38.

• FLAG(PUSH) checks at the end of the assembly for a non-empty PUSH stack, as
described on page 39.

• FLAG(RECORD) causes HLASM to add an second message following a diagnostic to
indicate the record number and source file from which the flagged statement was read.
This option is discussed on page 39.

• FLAG(SUBSTR) controls checks for possible errors in coding conditional assembly
substring notation. This is discussed on page 59.

• FLAG(USING0) notes possible conflicts with the assembler's implicit USING 0,0
instruction. The implications of such conflicts are discussed on page 40.

All the FLAG sub-options except RECORD are controllable dynamically with the ACONTROL
instruction, discussed on page 65.

34 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

FLAG(severity) Option

The severity value in the FLAG option is a decimal value between 0 and 255. Terminal
messages (controlled by the TERM option) and listing messages are treated as follows:

• Assembler messages with severity indicators less than severity will not appear on the
terminal or in the listing.

• MNOTE messages with severity indicators less than severity will not appear on the
terminal, but will be be printed in the listing without the prefixed text:

** ASMA254I *** MNOTE ***

Messages displayed on the terminal under control of the TERM option will be displayed if
their severity is greater than or equal to severity.

Things Worth Checking: The FLAG(severity) option should always specify 0; otherwise,
useful messages may be obscured.

FLAG(ALIGN) Option

FLAG(NOALIGN) causes High Level Assembler to suppress all warning messages when an
alignment inconsistency is detected between a storage operand and a referencing
instruction. When FLAG(ALIGN) is specified, the messages issued depend on the ALIGN
option; the relationship between these two options is shown in the following table.

Table 1. Alignment Warning Messages and Their Dependence on ALIGN

The three messages are:

ASMA033I Issued where operand alignment is optional; for example, a LH instruction.

ASMA212W Issued when a branch-target address is odd.

ASMA213W Issued where operand alignment is required; for example, a CS instruction.

For example, suppose your program makes reference to an operand that is not aligned on a
normal boundary:

ALIGN,FLAG(ALIGN) NOALIGN,FLAG(ALIGN)

• ASMA033I
• ASMA212W
• ASMA213W

• ASMA212W
• ASMA213W

*PROCESS FLAG(ALIGN)
L 0,X X is not on a fullword boundary

** ASMA033I Storage alignment for X unfavorable

*PROCESS FLAG(NOALIGN)
L 0,X X still not on a fullword boundary; no message

Figure 31. Example of FLAG(ALIGN) Option

The informational message is suppressed by the FLAG(NOALIGN) option.

Things Worth Checking: Alignment errors may or may not be serious in terms of
performance degradation, but they could imply misaligned references to fields in a shared
data structure mapped with a DSECT.

Assembler Options and Diagnostics 35

FLAG(CONT) Option and Continuation Statement Checking

FLAG(CONT) Option

22 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• FLAG(CONT) controls checks for common continuation errors

ABCDE ARG=XYZ, Continued macro operands X
RESULT=JKL Continuation starts in column 17!

 ** ASMA430W Continuation statement does not start in continue column.

• Not all diagnosed situations are truly errors; but check carefully!

IF (X) Then do this or that
DO (This,OR,That)

ELSE Otherwise, do that and this <── note comma!
 ** ASMA431W Continuation statement may be in error ─

continuation indicator column is blank.

IF (X) Then do this or that
DO (This,OR,That)

ELSE Otherwise do that and this <── note no comma!

• Recommend running with continuation checking enabled initially

− Control scope of checking with ACONTROL instructions (see slide 41)

A common source of errors is the improper coding of continuation statements (the
assembler language is unfortunately rather inflexible in its statement format!). Such errors
can be extremely difficult to find and correct, so HLASM provides the FLAG(CONT) option to
enable checking for continuation errors. The checks are neither exhaustive nor definitive, but
they will detect a great many typical errors.

In this example of a call of the macro-instruction ABCDE,

ABCDE ARG=XYZ, Continued macro operands X
RESULT=JKL Continuation starts in column 17!

 ** ASMA430W Continuation statement does not start in continue column.

the continuation line begins in column 17, rather than in column 16 as intended. This would
normally result in the second operand (RESULT=JKL) being ignored, which is probably not what
was desired.

Occasionally this continuation checking will flag statements that are in fact correct or
harmless. For example, suppose you are using some structured-programming macros in
which the ELSE macro has no operands; a typical statement might look like this:

 ELSE Take the other action

The remark “Take” appears to the continuation checking as a normal positional operand, so
no diagnostic appears. However, if you had written

 ELSE No, take the other action

Then the presence of the comma after the word “No” would make it appear to be the first
operand in a list. The absence of a continuation indicator is (mis-)understood to indicate a
missing operand, and the assembler will flag the statement with an ASMA431W warning
message.

Continuation checking can be disabled by specifying the FLAG(NOCONT) option.

FLAG(CONT) helps you to find one of the most insidious types of Assembler Language
errors: when statements are continued, misplacement of a single character can cause
portions of statements to be ignored. Specifying this option causes High Level Assembler to

36 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

flag unusual or suspicious but difficult-to-find errors in specifying continued and continuation
statements:

• An operand on a continued record ends with a comma, and a continuation statement is
present, but the continuing statement does not begin in the “continue” column (usually,
16).

• A list of operands ends with a comma, but the continuation column (usually, 72) is blank.

• The continuing statement starts in the continue column, but there is no comma present
following the operands on the previous continued record.

• The continued record is full, but the continuation record does not start in the continue
column.

Things Worth Checking: Continuation checking can be very valuable; its use is strongly
recommended as a regular diagnostic. You can use the ACONTROL instruction (described
on page 65) with FLAG(NOCONT) and FLAG(CONT) operands to localize checking around
statements known to be correct.

FLAG(IMPLEN) Option and Length Specifications

FLAG(IMPLEN) Option

23 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• FLAG(IMPLEN) option flags use of implied length in SS-type ops

− Target-operand length may be too short or too long:

A DS CL99 Wrong # bytes moved?
0000A4 D262 F063 F732 ... MVC A,=C'Message'
** ASMA169I Implicit length of symbol A used for operand 1

− Length attribute of A+1 is that of A, but 1+A's is that of 1:

B EQU *
DS CL99

0000C6 D262 F064 F000 ... MVC A+1,B Moves L'A bytes
** ASMA169I Implicit length of symbol A+1 used for operand 1
0000CC D200 F064 F000 ... MVC 1+A,B Moves one byte
** ASMA169I Implicit length of symbol 1+A used for operand 1

• Using implicit lengths is a good thing! But ... use them carefully

• Check: instruction length fields are assembled correctly

Occasionally an SS-type instruction requiring a length field will resolve the length implicitly,
by using the length attribute of the the appropriate operand. This may or may not be
intended:

A DS CL99
0000A4 D262 F063 F732 ... MVC A,=C'Message' Wrong number of bytes moved?
** ASMA169I Implicit length of symbol A used for operand 1
0000C6 D262 F064 F000 ... MVC A+1,B Moves L'A bytes
** ASMA169I Implicit length of symbol A+1 used for operand 1
0000CC D200 F064 F000 ... MVC 1+A,B Moves one byte
** ASMA169I Implicit length of symbol 1+A used for operand 1

If you specify FLAG(IMPLEN) as an option or as an operand of an ACONTROL instruction,
HLASM will issue an informational (severity zero) message when implicit lengths are used.

Assembler Options and Diagnostics 37

Things Worth Checking: While such usage is common (and almost always correct), having
the assembler check these uses is a good way to ensure that an error has not been
overlooked.

FLAG(PAGE0) Option and Unintended Low-Storage References

FLAG(PAGE0) Option

24 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Page 0 reference: FLAG(PAGE0) option flags “baseless” resolutions
(potentially very important in Access Register mode!)

*! BR R14 was intended...
B R14 Branch to location 14

** ASMA309W Operand R14 resolved to a displacement with no base register

*! MVC A,=C'A' was intended...
MVC A,C'A' Move bytes to A, starting at location 193

** ASMA309W Operand C'A' resolved to a displacement with no base register

*! LA 0,8 was intended
LH 0,8 (What if the 2 bytes at location 8 contained 8!)

** ASMA309W Operand 8 resolved to a displacement with no base register

*! MVC 6(,2),B was intended
MVC 6(2),B Length 2, base register zero

** ASMA309W Operand 6(2) resolved to a displacement with no base register

L 1,0(2) Possible AR─mode problem?
** ASMA309W Operand 0(2) resolved to a displacement with no base register

* Generated instruction 58120000 has base register 0: no AR qualification

Infrequently a programmer will write an instruction operand that assembles without
diagnostics, but the operand address is resolved with respect to register zero. For example:

B R14 (Intended BR R14)
CLC X(1),C'0' (Intended CLC X(1),=C'0')
LH R2,X'0018' (Intended LH R2,=X'0018')

and HLASM resolves the absolute expression in the operand with register zero as the base
register.

In each case, a reference is made to the first 4K bytes of storage, sometimes called “Page
0”. If you specify FLAG(PAGE0) as an option or as an operand on an ACONTROL instruction,
HLASM will flag such uses with a warning message (except when the operand is used in an
LA instruction).

Note that based references to page zero are valid, and are not flagged:

USING PSA,R0 Page-zero mapping DSect
L R1,PSACVT etc.

Similarly, explicit references to page zero are not flagged:

L 1,16(0,0) Explicit reference is OK

L 1,16 Typical implicit reference
** ASMA309W Operand 16 resolved to a displacement with no base register

This warning can be extremely important for programs executing in Access-Register (AR)
mode, because the index field of an instruction is not qualified by an Access Register. For
example:

L 1,0(2)

38 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

is assembled as though it had been written

L 1,0(2,0) Object code 5012 0000

This will use general register 2 for a “base” address when not in AR mode; but in AR mode,
Access Register 2 will not be referenced! To obtain correct addressing in all modes, the
statement should be written

L 1,0(0,2) Object code 5810 2000

Things Worth Checking: This diagnostic is strongly recommended: it can catch errors that
may otherwise be unnoticed for a long time. It is especially important for programs that may
execute in AR mode.

FLAG(PUSH) Option and Non-Empty PUSH Stack

FLAG(PUSH) Option

25 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Non-empty PUSH stack detected at end of assembly

− Non-empty PUSH-USING stack may be serious; PUSH-PRINT isn't

− May have incorrect USING resolutions if PUSH-USINGs don't match
POP-USINGs

• USING-instruction PUSH-level status shown in USING subheading

Active Usings (1): ...etc... (follows TITLE line)

“(1)” indicates USING Push depth = 1

• Check: non-empty PUSH USING stack at END

The PUSH instruction lets you save the status of PRINT, USING, and ACONTROL statements.
At the end of the assembly, HLASM checks to see if the PUSH stack is empty; if not, it issues
diagnostic ASMA138W. The depth of the USING stack is indicated in the “Active Usings”
heading on each page. The diagnostic can be suppressed with the FLAG(NOPUSH) option.

Things Worth Checking: While a non-empty PUSH stack is rarely serious, it could indicate
that a USING environment was suspended and not restored, which could mean that incorrect
base-displacement resolutions were derived for statements that follow the point where a
POP USING instruction should have appeared. Specifying this option can help detect such
oversights.

FLAG(RECORD) Option

The FLAG(RECORD) option causes High Level Assembler to provide supplementary
information (with each diagnostic message, and in the diagnostic summary) about the data
set name and relative record number within that data set for the statement involved. This
option can help with locating the specific original source statement requiring correction.

The following figure illustrates the additional ASMA435I message produced when
FLAG(RECORD) is specified:

Assembler Options and Diagnostics 39

 ** ASMA062E Illegal operand format - T'V
 ** ASMA435I Record 26 in TATST ASSEMBLE A1 on volume: EHR191

 ** ASMA137S Invalid character expression - 4)
 ** ASMA435I Record 35 in TATST ASSEMBLE A1 on volume: EHR191

The ASMA435I messages show the name of the file and the number of the record in that file
where the diagnostic was issued. This makes it easy to edit and correct the source file at the
same time the listing is being scanned for diagnostic messages.

FLAG(USING0) Option: USINGs With Absolute Base Address

FLAG(USING0) Option

26 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Helps catch accidental use of absolute base address

• Examples of USINGs with absolute base addresses that overlap the
assembler's implicit USING 0,0

USING 12,12
 ** ASMA306W USING range overlaps implicit USING 0,0

4110 000A LA 1,10
4110 C008 LA 1,20

− Note the different resolutions: one based on register 0, one on 12

USING ─1000,12
** ASMA306W USING range overlaps implicit USING 0,0

4110 C3DE LA 1,─10
4120 C3F2 LA 2,10

USING +1000,11
** ASMA306W USING range overlaps implicit USING 0,0

4130 B3E9 LA 3,2001
4145 B0C8 LA 4,1200(5)

• Message ASMA306W is controlled with the FLAG(USING0) option

If the user specifies a USING instruction with an absolute base address whose range
overlaps that of the assembler's “implicit USING 0,0”, HLASM will issue message
ASMA306W.

As a simple example, suppose the following statements appear in a program:

USING 12,12
 ** ASMA306W USING range overlaps implicit USING 0,0

4110 000A LA 1,10
4110 C008 LA 1,20

Note that the two values 10 and 20 are resolved quite differently: because a valid
displacement cannot be calculated for the implied absolute address 10 from existing
USINGs, the assembler uses its implicit USING 0,0 to resolve the value with base register
zero. The absolute address 20 can be resolved with a smaller displacement (8) using base
register 12, as indicated.

Further examples of absolute base address resolution follow.

If a USING instruction specifies an absolute base address whose range overlaps the range of
the assembler's “ implicit” USING 0,0 then unexpected resolutions might occur:

40 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

USING -1000,12
** ASMA306W USING range overlaps implicit USING 0,0

4110 C3DE LA 1,-10
4120 C3F2 LA 2,10

USING +1000,11
** ASMA306W USING range overlaps implicit USING 0,0

4130 B3E9 LA 3,2001
4145 B0C8 LA 4,1200(5)

Additional USING diagnostics are described beginning on page 41.

Things Worth Checking: While absolute base values are rarely used, they can cause
serious problems in code written to assume they will never be present. This diagnostic can
help avoid errors that may otherwise be difficult to find.

USING Diagnostic Messages

USING Diagnostic Messages

27 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Message not controlled by an option:

ASMA308W Repeated register in USING

• Messages controlled by the USING(WARN(nn)) option (see slide 28)

ASMA300W, ASMA301W
Nullification of one USING by another

ASMA302W Base register 0 specified with nonzero base address

ASMA303W Multiple valid resolutions

ASMA304W Resolved displacement exceeds specified limit

• Message controlled by the FLAG(USING0) option (see slide 26):

ASMA306W USING range overlaps implicit USING 0,0

• Check: examine all USING-related messages carefully

Because USING errors can be difficult to find, and may have serious impacts on program
execution, HLASM provides extensive checking for potential misuses.

Remember that the assembler uses the following resolution rules for base-displacement
addressing:

1. The assembler searches the USING Table for entries with a relocatability attribute
matching that of the implied address (which will almost always be simply relocatable, but
may be absolute). (If the implied address is complexly relocatable, no match will be
found.)

2. For all such matching entries, the assembler checks to see if a valid displacement can be
derived. If so, it will select as a base register that register which yields the smallest valid
displacement. If the smallest valid displacement exceeds the USING range (usually 4095
bytes), the assembler will indicate the amount by which the implied address was not
“reachable”.

3. In the event that more than one register yields the same smallest displacement, the
assembler will select as a base register the highest-numbered register.

Assembler Options and Diagnostics 41

4. If no resolution has been completed, and the implied address is absolute, attempt a
resolution with register zero and base zero.

Five USING diagnostics are controlled by the USING(WARN) option, and one of them also
depends on the USING(LIMIT) option (described on page 43). One USING diagnostic is
controlled by the FLAG(USING0) option, as discussed previously on page 40.

One other USING diagnostic is not controlled by an option. Previous assemblers did not
diagnose repeated uses of the same base register in one USING instruction; such
(admittedly unusual) specifications could lead to unexpected resolutions, when all but the
last instance of a register was ignored! Previously, the instruction

USING base,12,11,12,11

was treated as being equivalent to the four statements

USING base,12
USING base+4096,11
USING base+8192,12
USING base+12288,11

and therefore the first two “USINGs” were effectively ignored.

High Level Assembler diagnoses this situation:

USING base,12,11,12,11
** ASMA308E Repeated register 12
** ASMA308E Repeated register 11

The statement is ignored; you could find that some or all of your program has no
addressability.

USING Option

Assembler Diagnostics: USING Option

28 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• The USING option supports three sub-options:

• MAP: controls Using Map in the listing (see slide 13)

• LIMIT(xxx): sets a checking value for USING-derived displacements

• WARN(nn): controls USING diagnostics

− WARN(1): checks for USING “nullif ication” by other USINGs

− WARN(2): checks for R0-based USINGs with nonzero base address

− WARN(4): checks for possible multiple USING resolutions

− WARN(8): enables checks for resolved displacements exceeding xxx

WARN values are additive

• Check: recommend assembling with USING(WARN(15))

USING options to be described include the following:

• USING(MAP) controls the presence of the USING Map, as described on page 20.

42 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

• USING(LIMIT(xxx)) checks for displacements that exceed the specified limit (“xxx”) in
addressability resolutions.

• USING(WARN(nn)) controls checking for errors associated with the USING instruction.

USING(LIMIT(xxx))

This option sets a value that the assembler will use to check against all calculated
displacements. If the USING(WARN(8)) option is active and any displacement exceeds this
value, a warning message will be issued. This is very useful in detecting portions of the
program that may be in danger of running out of addressability when new statements are
added.

USING(WARN(nn))

The WARN(nn) suboption of the USING option enables checking for several (often obscure)
but common USING-instruction errors and oversights. Because USING instructions are the
most important (and probably, the most confusing) of the Assembler Language's addressing
facilities, these features help with specifying them and diagnosing possible misuses.

These sub-options are:

WARN(1) Warnings for two common (but extremely difficult to find) errors can be
enabled. These involve cases where an ordinary USING instruction will cause
either a previous or a subsequent USING instruction to be ignored by the
assembler. The terminology used in the High Level Assembler's message is
that one USING is “made inactive” (or “nullified”) by another.

WARN(2) The use of register zero as a base register with a nonzero absolute base is
detected. This helps to isolate errors caused by forgetting that General Register
0 cannot be used as a base register.

WARN(4) Multiple valid resolutions can be flagged. In some programs, this condition
represents an oversight on the part of the programmer, and typically is an
error. In other cases, the structure of the program causes USING ranges to
overlap. (An overlap of exactly one byte will not be flagged.)

This diagnostic may indicate a potential problem when in fact there is none.
This condition can be controlled by specifying a USING range limit, as
described in “USING Range Limits” on page 47. However, it should not be
suppressed automatically: a detailed example of the importance of this
diagnostic will be shown in “Fixing USING Problems with Multiple Resolutions
(ASMA303W)” on page 45.

WARN(8) Warnings can be issued if the range of addressability of a base register
exceeds a specified threshold. This is very helpful when a growing program is
nearing the limits of addressability provided by its base registers, and you wish
to be warned when the remaining addressability falls below a specified
threshold. (The threshold value is specified in the LIMIT sub-option of the
USING option.)

You may obtain combinations of these diagnostics by adding the WARN values: for example,
WARN(3) specifies that the first two conditions should be flagged.

USING instructions with absolute base expressions and nonzero base registers whose range
overlaps that of the assembler's “implicit” USING 0,0 are controlled by the FLAG(USING0)
option, as described on page 40.

Things Worth Checking: It is recommended that all programs be assembled with WARN(15)
as the default.

Assembler Options and Diagnostics 43

USING Diagnostics: Examples

Examples of USING Diagnostics

29 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Assembler options included USING(WARN(15),LIMIT(X'F98'))

1 START CSECT
00000 2 USING *,10
00000 3 USING *,11 A later USING, but...

** ASMA301W Prior active USING on statement number 2
overridden by this USING

00000 4 USING *,9 Another later USING
** ASMA300W USING overridden by a prior active USING on statement number 3

00000 6 USING B,0
** ASMA302W USING specifies register 0 with a nonzero

absolute or relocatable base address

00FFA 8 USING *+4090,7
** ASMA303W Multiple address resolutions may result from this USING

000000 4120 BFA0 00FA0 10 LA 2,START+4000
** ASMA304W Displacement exceeds LIMIT value specified

00004 12 B EQU 4

The following small fragment of a program illustrates how High Level Assembler detects
possible USING error conditions. The LIMIT sub-option was specified as LIMIT(X'F98').

1 START CSECT
00000 2 USING *,10
00000 3 USING *,11

** ASMA301W Prior active USING on statement number 2 overridden by this USING

00000 4 USING *,9
** ASMA300W USING overridden by a prior active USING on statement number 3

00000 6 USING B,0
** ASMA302W USING specifies register 0 with a nonzero

absolute or relocatable base address

00FFA 8 USING *+4090,7
 ** ASMA303W Multiple address resolutions may result from this USING

000000 4120 BFA0 �1� 00FA0 10 LA 2,START+4000
ASMA304W ** WARNING ** Displacement exceeds LIMIT value specified

00004 12 B EQU 4

Figure 32. USING Diagnostics Example

This example shows each of the four diagnostic messages issued under the control of the
WARN sub-option of the USING option.

1. The ASMA301W message is issued because the second USING instruction (statement 3)
will cause the preceding USING to be made inactive. The second USING has the same
base address but a higher-numbered register, so it will always be selected in preference
to the first.

44 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

2. The ASMA300W message is issued because the third USING instruction (statement 4) will
be ignored. Even though it appears in the program later than the preceding USING
instruction (statement 3), it will be ineffective because it has both the same base address
and a lower-numbered register than the preceding USING.

This condition often occurs because it is easy to forget the assembler's complex
address-resolution rules, and to assume that a “later” USING automatically supersedes
an “earlier” USING.

3. The ASMA302W message occurs because a nonzero base address has been specified in
a USING instruction designating base register zero.

4. The ASMA303W message indicates that the range of this USING instruction overlaps the
range of some previous USING instruction.

While this is not necessarily an error, it often represents an oversight on the part of the
programmer, because it is unusual to provide more than one base register for a given
part of a program. Thus, this message can help to locate inadvertent or improper USING
specifications more easily. (See “Fixing USING Problems with Multiple Resolutions
(ASMA303W)” for examples.)

5. The ASMA304W message indicates that the displacement calculated for the LA
instruction at statement 10 (X'FA0', at key �1�) exceeded the LIMIT value specified.

It is also worth noting that the base register specification digit X'B' indicates that
register 11 was used for address resolution: only the second USING instruction
(statement number 3) is truly “in effect!”

Fixing USING Problems with Multiple Resolutions (ASMA303W)

The ASMA303W warning message indicates that multiple base-displacement resolutions may
be derived from two or more USING instructions in the program. Sometimes the warning is
produced for a situation that is obviously safe; but there are times when a subtle problem
may be highlighted by the warning. This discussion should help convince you not to disable
this warning message “automatically”.

We will show three examples of coding that could produce this warning. The first is quite
harmless, the second is intentional and/or unavoidable, while the third illustrates a
potentially very dangerous situation.

Assembler Options and Diagnostics 45

Multiple USING Resolutions(1): Entry-Point USINGs

Overlapping USING-Range Warning: Simple Case

30 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Typical warning for overlapping USINGs in prolog/entry code:

1 Enter Start 0
2 Using *,15
3 STM 14,12,12(13) Save registers
4 LR 11,15 Set local base register in R12
5 LR 12,11 Second base
6 AH 12,HW4096 Add 4096 for second base value
7 B DoSaves Skip over constant
8 HW4096 DC H'4096' Constant

┌───�
│ 9 Using Enter,11,12 Provide local addressability
│ ** ASMA303W Multiple address resolutions may result from
│ this USING and the USING on statement number 2
└�── 10 Drop 15 Drop R15

• First impulse: suppress the warning

− May not be the best idea...

• Easy to fix: move the 'Drop 15' at statement 10
to precede the 'Using Enter,11,12' at statement 9

Consider a typical entry-point coding sequence like the one shown in Figure 33. If the
USING warnings are enabled, the assembler will flag the second USING instruction with a
warning:

1 Enter Start 0
2 Using *,15
3 STM 14,12,12(13) Save registers
4 LR 11,15 Set local base register in R12
5 LR 12,11 Second base
6 AH 12,HW4096 Add 4096 for second base value
7 B DoSaves Skip over constant
8 HW4096 DC H'4096' Constant

┌───�
│ 9 Using Enter,11,12 Provide local addressability
│ ** ASMA303W Multiple address resolutions may result from
│ this USING and the USING on statement number 2
└�── 10 Drop 15 Drop R15

Figure 33. Simple Multiple-Resolution USING Warning

In this case, the warning is not terribly helpful, because the DROP instruction on the
following line removes the possibility of subsequent resolutions that might “ignore” R12.

This “problem” is easy to fix: simply move the DROP 15 instruction before the preceding
USING instruction.

46 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

USING Range Limits

USING Range Limits

31 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• May not want USING range to extend to “full” value

− Normally, 4096 bytes per base register

• Can limit range by specifying an endloc of allowed range:

USING (baseloc,endloc),regs

• Addressability range restricted to [baseloc,endloc-1]

• endloc may exceed baseloc+4095 without warning

− Assembler uses the default range [baseloc,baseloc+4095]

• Assembler checks for:

− baseloc ≤ endloc (ASMA313E if not)

− baseloc and endloc have same relocatability attribute (ASMA314E if not)

• Range limits can help eliminate “unavoidable” overlaps

The second instance of USING range overlaps occurs when two segments of code or data
are assigned their own base registers. Before showing how this might occur, we will discuss
a feature of USING instructions that helps with this and other USING-range situations.

You might want to ensure that a given USING instruction is not utilized by the assembler to
resolve implied addresses beyond a known limit. In previous assemblers, there was no way
to control this. High Level Assembler provides a method allowing you to explicitly specify the
precise range of validity for a USING instruction, by providing a pair of values as the first
operand of the USING instruction:

USING (baseloc,endloc),regs

The endloc address is the first location not addressed by this USING; thus the addressable
locations in the USING's range lie between baseloc and endloc-1. If the endloc value exceeds
baseloc+4095, the range is the normal 4096 bytes starting at baseloc. In effect, the number of
bytes addressed is

bytes addressed = min(4096,endloc-baseloc)

The assembler also checks that the intended range is non-empty; if endloc ≤ baseloc, the
assembler issues an error message:

USING (*,*),10
 ** ASMA313E The end value specified in the USING is less than or equal

to the base value

Similarly, if the baseloc and endloc values have different relocatability attributes, the endloc
address cannot be used to limit the range starting at baseloc, and the assembler indicates
an error:

USING (*,1000),10
 ** ASMA314E The base and end values have differing relocation attributes

Assembler Options and Diagnostics 47

Multiple USING Resolutions(2): Unavoidable Range Overlaps

Overlapping USING Range Warning: Unavoidable Cases

32 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Typical program structure: separate code and data areas
┌────────────────────────────────┐
│CODE CSect │ CODE control section
│ Using Code,12,11 │ Code base registers
│ Using DATA,10 │ Data area base register
│ ** ASMA303W Multiple etc.... │ Usual warning
│ │
: code :

4K ├────────────────────────────────┤
│ │
: code :
│ │

7K ├────────────────────────────────┤
│DATA DS 0D │ DATA control section
│ │
└────────────────────────────────┘

• USING ranges overlap intentionally for code and data base registers
• Solution: specify a range l imit for the code base

USING (CODE,DATA),12,11

• Range of first USING does not overlap that of the second!

It may happen that the structure of a program is such that the USING instruction ranges
must overlap. For example, a program in which the code area is followed by a data area
requiring different base registers cannot control the fact that the USING ranges overlap. This
situation will normally encounter the ASMA303W diagnostic indicating the (known and
expected) fact that the ranges overlap. Sometimes, users feel compelled to disable the
warning (at the possible expense of not detecting errors like the one illustrated in “Multiple
USING Resolutions(3): A Complex Example” on page 49 below).

Suppose your program is structured as in the following example:

┌────────────────────────────────┐
│CODE CSect │ CODE control section
│ Using Code,12,11 │ Code base registers
│ Using DATA,10 │ Data area base register
│ ** ASMA303W Multiple etc.... │ Usual warning
│ │
: code :

4K ├────────────────────────────────┤
│ │
: code :
│ │

7K ├────────────────────────────────┤
│DATA DS 0D │ DATA control section
│ │
└────────────────────────────────┘

Figure 34. Program Structure with Unavoidable USING Range Overlaps

HLASM provides the range limit sub-operand of the first USING instruction operand to
handle this situation: simply specify

USING (CODE,DATA),12,11

48 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

and the range of the USING for code addressability will be exactly the code area, and the
ASMA303W diagnostic message will not appear.

Multiple USING Resolutions(3): A Complex Example

Overlapping USING Warning: Complex Example

33 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Program has grown larger, and now has an “asynchronous exit”
Offset 0 ┌──────────────────────────────┐

│Enter Start 0 │
│ Using *,15 │
│ etc. │ Prologue code
│ Using Enter,11,12 │ Addressed by R11
│ etc. │
│ ─ ─ ─ │ ─ ─ ─
│ ┌──────────────────────┐ │

Base reg 15 │ │ Using *,15 │ │ Addressability for exit
│ │ │ ** ASMA303W ... etc... │ Same warning message
│ │ │Exit STM 14,12,12(13)│ │ Entry from operating system
│ │ │ ─ ─ ─ │ │ ─ ─ ─
│ │ │ LM 14,12,12(13)│ │ Restore registers
│ │ │ BR 14 │ │ Return to system
� │ │ Drop 15 │ │

│ └──────────────────────┘ │ Addressed by R11
│ ─ ─ ─ │ ─ ─ ─

Offset 4096 ├──────────────────────────────┤ Addressed by R12
: ─ ─ ─ etc. :
└──────────────────────────────┘

• Originally assembled without HLASM: didn't flag range overlap

Now, suppose we add further code to the program in Figure 34 on page 48. It now includes
a small routine that acts as an “exit” from some system service (such as a timer or program
check interruption), and will be entered from the operating system at the label Exit with R15
set to the address of the entry point. The exit routine performs something and then returns
to the system at the address in R14. The DS instruction reserving 3000 bytes is meant to
indicate the presence of additional code.

Assembler Options and Diagnostics 49

Enter Start 0
Using *,15
STM 14,12,12(13) Save registers
LR 11,15 Set local base register in R12
LR 12,11 Second base
AH 12,HW4096 Add 4096 for second base value
B DoSaves Skip over constant

HW4096 DC H'4096' Constant
Drop 15 Drop R15
Using Enter,11,12 Provide local addressability

*
DoSaves DC 0H'0'

LA 10,SaveArea Point to local save area
ST 13,SaveArea+4 Store back chain in our area
ST 10,8(,13) Forward chain in caller's area
LR 13,10 Point R13 to our area

*------------------------------- Begin processing
DS 3000x Lots of code doing good things

*
Using Exit,15

** ASMA303W Multiple address resolutions may result from
this USING and the USING on statement number 10

Exit STM 14,12,12(13) Save exit registers
B *+4 Code to ...
B *+4 do some useful stuff

- - - - - ...lots more code

LM 14,12,12(13) Restore registers
BR 14 Return to caller

*
DS 2000x More code doing good things

SaveArea DC 18F'0' Local save area

Figure 35. USING-Warning Program, Elaborated

This code segment will work as the writer expected, and (after testing is complete) he will
probably believe that it has been fully debugged. The ASMA303W warning for the
USING Exit,15 instruction will appear to be spurious, and the programmer may be tempted to
suppress it.

50 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Multiple USING Resolutions(3): Complex Example, Enhanced

Overlapping USING Warning: Complex Example, Enhanced

34 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Program grows; exit starts near offset 4096; warning suppressed

Offset 0 ┌──────────────────────────────┐
│Enter Start 0 │
│ Using *,15 │
│ etc. │ Prologue code
│ Using Enter,11,12 │ Addressed by R11
│ ─ ─ ─ │ ─ ─ ─
│ etc. │ More code added here...
│ ─ ─ ─ │ ─ ─ ─
│ ┌──────────────────────┐ │

Base reg 15 │ │ Using *,15 │ │ Addressability for
│ │Exit STM 14,12,12(13)│ │ exit routine
│ │ ─ ─ ─ │ │ ─ ─ ─

Offset 4096 ├─┼──────────────────────┼─────┤ Addressed by R12
Base reg 12 │ │ ─ ─ ─ │ │ Thought R15 was base...

│ │ LM 14,12,12(13)│ │ Restore registers
│ │ BR 14 │ │ Return to system
│ │ Drop 15 │ │
│ └──────────────────────┘ │ ─ ─ ─
: ─ ─ ─ :
└──────────────────────────────┘

Now, suppose that over a period of time further code has been added preceding the exit
routine, so that instead of 3000 bytes of code preceding the exit, there are now 4040 bytes,
as illustrated below.

Enter Start 0
- - - (As above)

*------------------------------- Begin processing
DS 4040x Lots more code than before!

*
Using Exit,15

Exit STM 14,12,12(13) Save exit registers
B *+4 Code to ...
B *+4 do some useful stuff

- - - - - ...lots more code

LM 14,12,12(13) Restore registers
BR 14 Return to caller

*
SaveArea DC 18F'0' Local save area

End

Figure 36. USING-Warning Program Elaborated and Extended

The source code in the exit routine looks (and is) no different from the code in Figure 35 on
page 50, but the assembled statements have a subtle and critically important difference, as
shown in this fragment of the assembly listing:

Assembler Options and Diagnostics 51

 Loc Object Code Addr1 Addr2 Stmt Source Statement
000000 1 Enter Start 0

R:F 00000 2 Using *,15
000000 90EC D00C 0000C 3 STM 14,12,12(13) Save registers
000004 18BF 4 LR 11,15 Set local base register in R12
000006 18CB 5 LR 12,11 Second base
000008 4AC0 F010 00010 6 AH 12,HW4096 Add 4096 for second base value
00000C 47F0 F012 00012 7 B DoSaves Skip over constant
000010 1000 8 HW4096 DC H'4096' Constant

9 Drop 15 Drop R15
R:BC 00000 10 Using Enter,11,12 Provide local addressability

11 *
000012 12 DoSaves DC 0H'0'
000012 41A0 C018 01018 13 LA 10,SaveArea Point to local save area
000016 50D0 C01C 0101C 14 ST 13,SaveArea+4 Store back chain in our area
00001A 50A0 D008 00008 15 ST 10,8(,13) Forward chain in caller's area
00001E 18DA 16 LR 13,10 Point R13 to our area

17 *
000020 18 DS 4040x Lots of code

19 *
R:F 00FE8 20 Using Exit,15

** ASMA303W Multiple address resolutions may result from this USING
and the USING on statement number 10

000FE8 90EC D00C 0000C 21 Exit STM 14,12,12(13) Save exit registers
000FEC 47F0 F008 00FF0 22 B *+4 Do some useful stuff

- - - - -
000FFC 47F0 C000 �─── 01000 26 B *+4 Do some useful stuff
001000 47F0 C004 �─── 01004 27 B *+4 Do some useful stuff

─ ─ ─ ─ ─
001010 98EC D00C 0000C 31 LM 14,12,12(13) Restore registers
001014 07FE 32 BR 14 Return to caller

Figure 37. USING-Warning Program Elaborated and Extended: Problems

The ASMA303W warning message following statement 20 is the key to understanding what
has happened here. Had this message been suppressed, most programmers would not
observe in the object code for statements 22 through 30 that register 15 is not being used as
a base address throughout the exit. (Starting at statement 26, the assembler has used
register 12 rather than register 15 as a base register for resolving the implied addresses.)

If the general register contents at entry to the exit routine have not been set by the operating
system to contain the base registers used for the main program, the branch instructions
resolved with respect to registers 11 and 12 will undoubtedly branch “wildly”. Finding this
problem will probably be obscured by the quite sensible procedure of hunting through the
newly added code in the main program (after all, the program worked correctly before the
new code was added!) rather than by checking the base registers assigned in the exit.

The added code in the main program has “pushed” the start of the exit routine near to the
boundary of addressability for registers 11 and 12. The 4K-byte boundary marking the start of
addressability for R12 begins a few bytes after the exit routine begins; at that point, the
register yielding the smallest displacements for the exit's instructions is no longer R15, but
R12, so the assembler must use it to resolve implied addresses whose value exceeds
X'1000' (the limit of addressability using R11).

Unfortunately, the rules used by the assembler to resolve implied addresses into
base-displacement form (summarized on page 41) are difficult to remember, and their
complexity (and sometimes, subtlety) can lead to programming errors that can be quite
difficult to correct. The High Level Assembler's warning messages for USINGs will help
make it less imperative that you remember such rules.

52 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Fixing Unavoidably Overlapping USINGs

35 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Ensure that only R15 is a base in the exit routine:

Offset 0 ┌──────────────────────────────┐
│Enter Start 0 │
│ Using *,15 │
│ ─ ─ ─ │ ─ ─ ─
│ ┌──────────────────────┐ │
│ │ Push Using │ │ Save USING status
│ │ Drop , │ │ Drop all registers

Base reg 15 │ │ Using *,15 │ │ Addressability for
│ │Exit STM 14,12,12(13)│ │ exit routine
│ │ ─ ─ ─ │ │ ─ ─ ─

Offset 4096 ├─┼──────────────────────┼─────┤ Now addressed by R15
│ │ ─ ─ ─ │ │ ─ ─ ─
│ │ LM 14,12,12(13)│ │ Restore registers
│ │ BR 14 │ │ Return to system
│ │ Drop 15 │ │
│ │ Pop Using │ │ Restore USING status

Base reg 12 │ └──────────────────────┘ │ ─ ─ ─
: ─ ─ ─ :
└──────────────────────────────┘

Fixing the problem is easy: insert PUSH USING and DROP instructions before the exit, and a
POP USING following the exit, to ensure that only register 15 is used as a base register for
the exit's statements. The effect of doing this can be seen in the following extract of an
assembly of the program with the PUSH and POP instructions:

 Loc Object Code Addr1 Addr2 Stmt Source Statement

000020 18 DS 4040x Lots of code

20 Push Using Save USING-table status
21 Drop , Drop all base registers

R:F 00FE8 23 Using Exit,15
000FE8 90EC D00C 0000C 24 Exit STM 14,12,12(13) Save exit registers
000FEC 47F0 F008 00FF0 25 B *+4 Do some useful stuff

- - - - -
000FFC 47F0 F018 01000 29 B *+4 Do some useful stuff
001000 47F0 F01C 01004 30 B *+4 Do some useful stuff

- - - - -
001010 98EC D00C 0000C 34 LM 14,12,12(13) Restore registers
001014 07FE 35 BR 14 Return to caller

37 Pop Using Restore USING status
001016 5800 C01C 0101C 38 L 0,SaveArea Check address resolution
00101A 0000
00101C 0000000000000000 40 SaveArea DC 18F'0' Local save area

41 End

Figure 38. USING-Warning Program Elaborated and Extended: Problem Fixed

The USING at instruction number 23 is now used for address resolution throughout the
“exit”, and all implied addresses are correctly resolved with a base register digit X'F'.

Assembler Options and Diagnostics 53

This example also provides one other indicator that the PUSH/POP technique has worked: at
statement 38, the instruction referring to the symbol SaveArea has been resolved using
register 12 as a base address.

One important observation: you can't fix this instance of overlapping USING ranges with
range limits, because these ranges are intentionally overlapping rather than merely
adjacent!

As these examples have illustrated, High Level Assembler for MVS & VM & VSE attempts to
indicate potential trouble areas involving USING instructions. There will be cases where the
messages describe situations that may not actually be errors; but a careful analysis of such
diagnostics is recommended.

ASMA031E: Invalid Immediate or Mask Field

Immediate operands are used in many contexts. The recent addition of Halfword-Immediate
instructions to the System/390 and z/Architecture series provides three types of operand:

• arithmetic, with values in the range −32768 to +32767.
• logical, with values in the range 0 to X'FFFF'.
• mask, with values in the range 0 to X'FFFF'.

Because such operands are evaluated to 32 bits, you should take care to specify them in a
form consistent with their use in the instruction. For example:

... A708 FFF0 ... LHI 0,-16 Operand is arithmetically valid

... 0000 0000 ... LHI 1,65520 Operand overflows arithmetically
** ASMA031E Invalid immediate or mask field
... A708 0FFF ... LHI 2,X'0FFF' Operand is arithmetically valid
... 0000 0000 ... LHI 2,X'FFF0' Operand overflows arithmetically
** ASMA031E Invalid immediate or mask field
... A708 FFF0 ... LHI 2,X'FFFFFFF0' Operand is valid arithmetically

... 0000 0000 ... NIHH 0,-16 Operand is inconsistent with operation
** ASMA031E Invalid immediate or mask field
... A514 FFF0 ... NIHH 1,65520 Operand is logically valid
... A524 FFF0 ... NIHH 2,X'FFF0' Operand is logically valid

... 0000 0000 ... TML 0,-16 Operand is inconsistent with operation
** ASMA031E Invalid immediate or mask field
... A711 FFF0 ... TML 1,65520 Operand is valid as a mask
... A721 FFF0 ... TML 2,X'FFF0' Operand is valid as a mask

Figure 39. Examples of ASMA031E Diagnostic

HLASM attempts to verify that the form of the immediate operand is consistent with the type
of instruction. Thus, for example, X'FFF0' is considered invalid for the LHI instruction,
because the result will be negative, not positive. If you want to specify a negative arithmetic
operand using hexadecimal notation, be sure to specify the correct number of high-order
1-bits.

54 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Other Helpful and Informative Diagnostics

Other Helpful and Informative Diagnostics

36 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• ASMA019W flags length attribute reference to symbols having none:

000000 B EQU *
000000 ... DS CL99

00063 LB EQU *─B
...

0000DE D200 F063 F000 ... MVC A(L'LB),B Moves one byte!
** ASMA019W Length of EQUated symbol LB undefined; default=1

• ASMA031E flags inconsistency between immediate operand and the
instruction:

... A708 FFF0 ... LHI 0,─16 Operand is arithmetically valid

... 0000 0000 ... LHI 1,65520 Operand overflows arithmetically
** ASMA031E Invalid immediate or mask field

... 0000 0000 ... NIHH 0,─16 Operand is inconsistent with operation
** ASMA031E Invalid immediate or mask field
... A524 FFF0 ... NIHH 2,X'FFF0' Operand is logically valid

... A711 FFF0 ... TML 1,65520 Operand is valid as a mask

Some other diagnostics may help you find obscure behaviors.

ASMA019W: Length of EQUated Symbol Undefined

If a length value is defined using an EQU expression, it may happen that someone forgets to
use that value and uses its length attribute instead:

000000 B EQU *
000000 ... DS CL99

00063 LB EQU *-B
...

0000DE D200 F063 F000 ... MVC A(L'LB),B Moves one byte!
** ASMA019W Length of EQUated symbol LB undefined; default=1

Figure 40. Example of ASMA019W Diagnostic for Length Attr ibute of a Length

Using the length attribute of a length is probably not what was intended; just remove the L'
to fix the statement. Another “cure” is to define a length attribute on the EQU statement that
defines LB:

000000 B EQU *
000000 ... DS CL99

00063 LB EQU *-B,99 Define length
...

0000DE D262 F063 F000 ... MVC A(L'LB),B Moves 99 bytes

This is valid, but the added obscurity seems self-defeating.

Assembler Options and Diagnostics 55

LANGUAGE Option
High Level Assembler supports English, German, Japanese, and Spanish language
messages and listing headings. These are specified as:

LANGUAGE(DE) German
LANGUAGE(EN) Mixed-case English
LANGUAGE(ES) Spanish
LANGUAGE(JP) Japanese
LANGUAGE(UE) Upper-case English

For example, here is the same message in English, German, and Spanish:

 ** ASMA019W Length of EQUated symbol LB undefined; default=1
 ** ASMA019W Länge des EQU Symbols LB nicht definiert; Standardwert=1
 ** ASMA019W Longitud del símbolo EQUated LB indefinida; por omisión=1

LIST(133) Option
The traditional listing width is 120 characters (plus one for carriage control). By expanding
the listing to 132 characters, HLASM is able to provide additional detail:

• location counter values are displayed as 8 hexadecimal digits, corresponding to support
for larger program sizes

• an extra digit is available for statement numbers

• more information is provided for macro names and nesting levels on generated
statements

Figures 41 and 42 illustrate the differences: Figure 41 is the familiar 120-column “narrow”
listing format, as specified by the LIST(121) option.

000110 130+IHB0012A DS 0H 01-WTO
000110 0A23 131+ SVC 35 ISSUE SVC 35 01-WTO
000112 181D 133 LR 1,13 Point to local save area
000114 58D0 D004 00004 134 L 13,4(,13) Get system's save area pointer

136 FREEMAIN R,A=(1),LV=72 Free the local save area
000118 4100 0048 00048 137+ LA 0,72(0,0) LOAD LENGTH 01-FREEM
00011C 0A0A 138+ SVC 10 ISSUE FREEMAIN SVC 01-FREEM

140 RETURN (14,12),RC=0 Return with code zero
00011E 98EC D00C 0000C 141+ LM 14,12,12(13) RESTORE THE REGISTERS 01-RETUR
000122 41F0 0000 00000 142+ LA 15,0(0,0) LOAD RETURN CODE 01-RETUR

Figure 41. Example of Macro Expansion with LIST(121)

In the wider 132-column listing format shown in Figure 42, location counter and address
values display eight hexadecimal digits, and all eight characters of the statement-generating
macro name appear at the right end of the line.

00000098 70+IHB0006A DS 0H 01-WTO
00000098 0A23 71+ SVC 35 ISSUE SVC 35 01-WTO
0000009A 181D 73 LR 1,13 Point to local save area
0000009C 58D0 D004 00000004 74 L 13,4(,13) Get system's save area pointer

76 FREEMAIN R,A=(1),LV=72 Free the local save area
000000A0 4100 0048 00000048 77+ LA 0,72(0,0) LOAD LENGTH 01-FREEMAIN
000000A4 0A0A 78+ SVC 10 ISSUE FREEMAIN SVC 01-FREEMAIN

80 RETURN (14,12),RC=0 Return with code zero
000000A6 98EC D00C 0000000C 81+ LM 14,12,12(13) RESTORE THE REGISTERS 01-RETURN
000000AA 41F0 0000 00000000 82+ LA 15,0(0,0) LOAD RETURN CODE 01-RETURN
000000AE 07FE 83+ BR 14 RETURN 01-RETURN

Figure 42. Example of Macro Expansion with LIST(133)

The GOFF option requires the LIST(133) option, because 8-digit values are used for the
location counter and other address-related fields.

56 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Macros and Conditional Assembly

Macros and Conditional Assembly

37 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Various options and statements to help find macro-related problems

• LIBMAC option: puts library macro definitions into the source stream

• Useful PCONTROL sub-options: GEN, MCALL, MSOURCE

− PRINT operands can also be overridden (slides 17, 18)

• MXREF option (see slide 11)

• FLAG(SUBSTR) option (see slide 21)

• COMPAT sub-options: LITTYPE, MACROCASE, SYSLIST (see slide 38)

• MHELP instruction

− Built-in assembler trace and display facil ity

• ACTR instruction

− Limits number of conditional branches within a macro

• Check: l ibrary-macro errors; substring errors; mixed-case macro
arguments

There are many options and statements that can help you locate problems with macros.

• The LIBMAC option causes HLASM to bring the source statements of the macro definition
into the input stream. Normally, macros are read from the library and encoded internally,
so that errors found during encoding and expansion cannot be identified with a specific
line within the macro definition. By placing the macro definition in the source stream,
each line has a statement number that can be used to identify specific statements in case
of error.

• The PCONTROL option lets you force portions of the listing to be displayed. These
options are especially helpful with macro problems:

− PCONTROL(GEN) is described on page 32.

− PCONTROL(MCALL) is described on page 32.

− PCONTROL(MSOURCE) is described on page 33.

• The MXREF option causes HLASM to show all macros and COPY segments used by the
program, where they were used, and where they were called. Details are described on
page 17.

• The FLAG(SUBSTR) option causes HLASM to check for potential problems with
conditional assembly substring operations, as described on page 59.

• Three COMPAT sub-options can help with problems of compatibility with older
assemblers, as well as providing greater freedom in the way you write your programs.
Details are on page 60.

• For really difficult macro problems, the MHELP instruction provides extensive tracing and
display capabilities. These are described on page 63.

• In situations where you suspect a macro may be looping, the ACTR instruction provides a
way to limit the number of conditional assembly “branches”. See page 63 for details.

Macros and Conditional Assembly 57

LIBMAC Option
The LIBMAC option causes High Level Assembler to treat library macros as though they
were defined inline at the point of their first reference in the source program. With this
option you can detect and track the causes of errors in library macro definitions without
having to manually extract them from the library for insertion at a proper place into the
source program.

In this example, a macro BadMac with a potential error was installed in a macro library, and
called with an argument that causes an error. Without LIBMAC, HLASM reports the error as
being “somewhere” in the macro.

4 BadMac 65535
** ASMA103E Multiplication overflow; default product=1 - BADMA

5+*,&A*&A = 1 01-BADMA

Figure 43. Error from Library Macro

Lacking better clues as to the source of the error, you might be forced to retrieve the macro
definition and study or test it to find the problem. However, if you specify the LIBMAC option,
or precede the call with an ACONTROL LIBMAC instruction (see page 65), then the macro
definition will be placed inline at the point of the call. This allows HLASM to identify the
specific line in the macro definition that causes the error.

In this example, the same macro is called; HLASM indicates the number (00008) of the
problem statement.

6 MACRO
7 &L BADMAC &A
8 &X SETA &A*&A
9 MNOTE *,'&&A.*&&A. = &X.'
10 MEND
11 BadMac 65535

** ASMA103E Multiplication overflow; default product=1 - 00008
12+*,&A*&A = 1 01-00009

Figure 44. Error from Library Macro Pinpointed by LIBMAC

Note also that the MNOTE output identifies the statement number (00009) in the macro that
generated the output; without LIBMAC, it simply displays the name of the macro, as shown
in Figure 43.

58 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

PCONTROL Options Relating to Macros
Three PCONTROL sub-options are useful in finding and debugging macro-related problems:
GEN, MCALL, and MSOURCE. Details are provided at “PRINT Instructions and the
PCONTROL Option” on page 30.

Macro-COPY Cross-Reference (MXREF Option)
The MXREF option produces a great deal of helpful information (see page 17). When used
with the LIBMAC and PCONTROL(MCALL) options, the most detailed levels of data are
produced.

FLAG(SUBSTR) Option and Conditional-Assembly Substrings
The Language Reference manuals for the Assembler Language have always stated that
substring operations of the form

&SubStr SetC '&CharVar'(&Start,&Len) &Len characters starting at &Start

are valid only if the extracted substring lies entirely within the bounds of the subject string
(&CharVar in this example), and that the assembler would diagnose any misuse. However,
Assembler H and HLASM Release 1 did not diagnose this situation.

When IBM applied a correction that caused the error to be flagged, it happened that many
programs had relied on the error. A typical technique for extracting the remainder of a
character string was to write something like

&SubStr SetC '&CharVar'(&Start,255) Take rest of characters at &Start

In order to allow such programs to continue to assemble without diagnostic, you may specify
the FLAG(NOSUBSTR) option.

A better approach is to use the explicit “remainder of string” notation:

&SubStr SetC '&CharVar'(&Start,*) Take rest of characters at &Start

as this will then allow the assembler to diagnose “true” errors in the specification of
substrings.

FLAG(SUBSTR) specifies that High Level Assembler should diagnose improper character
substrings in the conditional-assembly language. For example:

&C SETC 'ABCDE'(4,5)

specifies a substring (five characters, starting with 'DE') that extends beyond the end of the
original string; this is an error. Normally, High Level Assembler issues the ASMA094W
warning message; if FLAG(NOSUBSTR) is specified, High Level Assembler suppresses the
warning.

Things Worth Checking: FLAG(SUBSTR) can help in macros and conditional assembly
statements to detect coding errors that might produce unexpected or unpredictable results.

Macros and Conditional Assembly 59

COMPAT Option

COMPAT Option

38 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• COMPAT option enforces “old rules”:

• COMPAT(LITTYPE): Literal macro operands always have type 'U'

NOCOMPAT(LITTYPE): The correct type attribute of the literal constant is
used

• COMPAT(MACROCASE): Unquoted macro arguments converted to upper
case

AbEnd 1,Dump Mixed─case argument is accepted

NOCOMPAT(MACROCASE): macro arguments must be typed in the expected
(upper) case

AbEnd 1,DUMP Argument must be in upper case

• COMPAT(SYSLIST): Inner-macro arguments have no list structure

NOCOMPAT(SYSLIST): Inner-macro arguments may have list structure

The COMPAT option allows you to control the degree of compatibility High Level Assembler
should enforce for programs accepted by previous assemblers. This is useful in situations
when programs are developed using the benefits and features of High Level Assembler, but
the programs must be distributed to sites which might assemble them on a different
assembler, or where the costs of modifying the differences in existing programs is not
justified. (Not all such differences can be controlled, of course!)

There are four areas of intentional incompatibility between HLASM and Assembler H in the
ways they treat the input text of the program:

• sensitivity to the case of the input text

• the handling of substituted sublists in macro arguments and character-variable strings

• the case of unquoted macro operands

• the type attribute of literals as macro arguments.

These differences can be controlled by using the COMPAT option, or with ACONTROL
COMPAT(...) statements, as described on page 65.

60 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

COMPAT(LITTYPE) Option: Attribute References to Literals

Note: Attribute references to literals used as macro operands may result in different values
from previous assemblers. For example, Assembler H returned value 'U' for type attribute
references to literal operands, whereas HLASM may return 'U' if the literal was not
previously defined, or its “normal” type if it was previously defined. If the behavior of
Assembler H is required, specify the COMPAT(LITTYPE) option and HLASM will then return
'U' as the type attribute of all literals in macro operands.

Previous assemblers treated literals in macro arguments as always having type 'U',
whereas High Level Assembler tries to provide the actual type if it is known. You can specify
the COMPAT(LITTYPE) option to request that HLASM always return 'U' as the type attribute
of a macro operand whose argument is a literal.

Things Worth Checking

• Look for macros that depend on the type attribute of literals: their type can change
during an assembly depending on whether or not they have been “defined” in the symbol
table.

• Assuming that type attribute 'U' implies a literal operand is dangerous because many
other operands can have that type.

• Examining the first character of an operand for an equal sign is safer, but not always
error-proof.

COMPAT(MACROCASE) Option: Mixed-Case Macro Operands

The COMPAT(MACROCASE) option allows you to write macro calls using mixed-case
operands for macros that expect upper-case operands. HLASM allows symbols and other
statement elements to be specified in mixed case. In some situations, you may want to write
macro argument strings in mixed case, for macros that otherwise would be able to handle
only uppercase argument strings. COMPAT(MACROCASE) specifies that High Level
Assembler should internally translate lowercase characters in unquoted macro arguments to
uppercase before the macro is expanded.

For example, in older assemblers where all instruction mnemonics and operands were
required to be in upper case letters, you would write something like this:

AbEnd 13,DUMP

to invoke the system Abnormal End service. With the availability of mixed-case support in
High Level Assembler, you may have wanted to write

AbEnd 13,Dump

for increased readability.

The problem here is that the ABEND macro was written when only upper-case operands
were allowed, so that the internal logic of the macro checks for the presence of a DUMP
operand (all capital letters) and does not recognize the mixed-case operand “Dump”.

If you specify the COMPAT(MACROCASE) operand, HLASM will automatically convert the
mixed-case operand to upper case just before passing it to the internal logic of the macro,
which then recognizes DUMP as the operand, even though the original source statement is
unchanged.

Things Worth Checking: If familiar, frequently-used macros appear to generate spurious
error messages, check whether operands may have been specified in mixed case (while the
macro was not written to recognize them). Specifying the COMPAT(MACROCASE) option
may be all that's needed to fix the problem.

Macros and Conditional Assembly 61

COMPAT(SYSLIST) Option: Inner-Macro Argument Lists

COMPAT(SYSLIST) Option

39 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Old assemblers pass these two types of argument differently:
MYMAC (A,B,C,D) Macro call with one (list) argument

&Char SetC '(A,B,C,D)' Create argument for MYMAC call
MYMAC &Char Macro call with one (string) argument

− Second macro argument was treated simply as a string, not as a list

• Constructed lists may be passed as structures
OUTERMAC A,(B,C,D),E (B,C,D) (&P2) a list
─ ─ ─ OUTERMAC calls INNERMAC
INNERMAC STUFF,&P2 Substituted &P2='(B,C,D)'

* &P2 treated by INNERMAC as a string (COMPAT(SYSLIST))
* or as a list (COMPAT(NOSYSLIST))

• Can use assembler's full scanning power in all macros

− No distinction between directly-passed and constructed-string arguments

− Simplifies logic of inner macros

• COMPAT(SYSLIST) option enforces “old rules”

− Inner-macro arguments treated as having no list structure

In older assemblers, character strings substituted as operands of calls to inner macros were
treated only as unstructured character strings, independent of their actual structure. This
meant that argument scanning techniques might depend on whether the macro was invoked
from open code or from another macro; inner macros had to parse the operands one
character at a time.

HLASM permits such substituted operands to be treated as having a list structure that is
accessible to the assembler through the normal &SYSLIST facilities such as the number and
count attributes, as well as the usual ability to designate sublists and sublist elements
symbolically or by using a subscript notation. This means that macros need not be written
differently depending on whether they are invoked as “outer” or “inner” macros.

If it is desired that HLASM treat such operands and SETC variables as was done in previous
assemblers, specify the COMPAT(SYSLIST) option, or with ACONTROL instructions (see
page 65). However, if you specify the COMPAT(NOSYSLIST) option, High Level Assembler
can recognize substituted sublists as having a list structure. Thus you can construct
complex macro operands in an outer macro to be passed as list structures to inner macros.
This capability can help remove many unnecessary distinctions between outer and inner
macros.

62 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

MHELP Instruction
The MHELP instruction is more general but less specific in its actions than the MNOTE
instruction. Once an MHELP option is enabled, it stays active until it is reset. The MHELP
operand specifies which actions should be activated; the value of the operand is the sum of
the “bit values” for each action:

1 Trace macro calls
2 Trace macro branches
4 AIF dump
8 Macro exit dump
16 Macro entry dump
32 Global suppression
64 Hex dump
128 MHELP suppression

These values are additive: you may specify any combination.

MHELP is valuable when really difficult macro problems must be resolved. Its output can be
large, so you may want to use it only for critical parts of the program.

ACTR Instruction
The ACTR instruction can be use the limit the number of conditional assembly branches (AIF
and AGO) executed within a macro invocation (or in open code). It is written

ACTR arithmetic_expression

where the value of the “arithmetic_expression” will be used to set an upper limit on the
number of branches executed by the assembler. In the absence of an ACTR instruction, the
default ACTR value is 4096, which is adequate for most macros.

ACTR is most useful if you suspect a macro may be looping or branching excessively; you
can set a lower ACTR value to limit the number of allowed branches.

Macros and Conditional Assembly 63

Other Things

Other Topics

40 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• ACONTROL instruction

• Non-invariant characters (@, #, $)

• I/O Exits

• SYSADATA files and the ADATA option

− Full information about all aspects of the assembly

• FOLD option for printed (listing) output

− Lowercase characters are converted (“folded”) to uppercase

− Provides readable output for case-sensitive printers (e.g. Kana)

• Conditional assembly external functions

• SYSUT1 block size considerations no longer apply!

− Starting with R5, all assemblies entirely in central storage

• Attribute references and Lookahead Mode

• Abnormal terminations

Other factors worth knowing about include:

• The ACONTROL instruction (see page 65) allows you to control dynamically the settings
of certain options. This gives you more flexibility and precision in selecting ranges of
statements for chosen diagnostic checks.

• Certain characters are not “invariant” across all EBCDIC encodings; see page 66 for
details.

• I/O exits may modify input and output files, so the presence of exits may mean that the
assembler's listing (which itself may be modified!) may not accurately reflect all inputs or
outputs. Exits are discussed on page 66.

• The ADATA option causes HLASM to generate a SYSADATA “side file” containing useful
information about the assembly. See page 67 for details.

• The FOLD option discussed on page 67 may have changed the appearance of the listing.

• External functions can add capabilities beyond the “native” facilities of the assembler;
these are described on page 67.

• Sometimes the behavior of an assembly depends on the order of the statements in the
source program. Some considerations are discussed on page 68.

• Some assembler abnormal terminations are due to internal errors, while others may be
due to apparently normal coding techniques, as discussed on page 69.

64 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

ACONTROL Instruction

ACONTROL Instruction

41 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• ACONTROL operands allow changing selected options dynamically

− Operands: COMPAT, FLAG (except REC), LIBMAC, RA2, AFPR

• COMPAT: see slide 38 for details

• FLAG: see slide 21 for details
L 0,X X is not on a fullword boundary

** ASMA033I Storage alignment for X unfavorable

ACONTROL FLAG(NOALIGN)
L 0,X X still not on a fullword boundary; no message

• LIBMAC: Lets you accurately locate errors in library macros

• RA2: Tolerate relocatable two-byte address constants

• AFPR: controls recognition of Additional Floating Point Registers
ACONTROL AFPR Allow Additional Floating Point Registers
LE 1,=E'6.7' Float Register 1
ACONTROL NOAFPR No AFPRs allowed
LE 1,=E'6.7' Float Register 1

** ASMA029E Incorrect register specification

The ACONTROL instruction allows you to dynamically change the settings of a subset of
assembler options. For example, you can request that High Level Assembler check for
possible continuation statement errors at invocation time, and then turn off the checking
around a specific set of statements.

The examples of the FLAG(CONT) option in slide 22 on page 36 showed how diagnostics for
continuation errors could be suppressed. If you want to retain this valuable checking for the
entire program except for a particular statement, you can “bracket” the trusted statement
with ACONTROL instructions controlling FLAG(CONT) checking. Normal checking might
cause a message like the following:

ELSE Otherwise, do that and this �── note comma!
** ASMA431W Continuation statement may be in error -

continuation indicator column is blank.

With ACONTROL instructions, the message is suppressed:

AControl FLAG(NOCONT) Suspend checking
ELSE Otherwise, do that and this
AControl FLAG(NOCONT) Resume checking

The error shown in Figure 44 on page 58 could also have been exposed by placing an
ACONTROL instruction before the macro call:

AControl LibMac
BadMac 65535

Things Worth Checking: You might be inclined to avoid certain useful diagnostics because
one or two valid statements in a program are flagged by the assembler. Rather than
suppress the diagnostics entirely, it is better to bracket the valid statements with
ACONTROLs, so that the rest of the program can still be checked.

Other Things 65

Non-Invariant Characters
Each EBCDIC character is assigned a specific encoding that defines its numeric value. For
example, the letter A is assigned value 193, or X'C1'. This is what makes character
self-defining terms equivalent to other forms such as binary and hexadecimal.

Most of the EBCDIC characters recognized by HLASM having syntactic validity in the
language have the same encoding across code pages: that is, all but three characters have
invariant encodings. The three non-invariant characters are not assigned consistent values,
even though they are valid in symbols!

These three symbols are the at sign (@), the sharp or pound (US!) sign (#), and the dollar
sign ($). For example, a program that scans data for the presence of a dollar sign or other
special characters might use CLI instructions such as

CLI 0(R4),C'$' Assumes C'$' = X'5B' = 91
CLI 0(R4),C'#' Assumes C'#' = X'7B' = 123
CLI 0(R4),C'@' Assumes C'@' = X'7C' = 124

only to find that the encoding of the data does not use the same representation of the dollar
sign assumed by the assembler when the program was assembled.

The “Syntactic Character Set” with encodings common to all EBCDIC code pages are the
space (blank) and these 81 characters:

• upper and lower case alphabetics A-Z, a-z
• numeric digits 0-9
• the special characters

 . , : ; ? () ' ″ / - _ & + % * = < >

Things Worth Checking: You should avoid using non-invariant characters in any program
that is assembled outside the USA, or which might process data that originates elsewhere.
Even using non-invariant characters in symbols might cause a program not to assemble
correctly if modifications are made on systems using different encodings.

I/O Exits
I/O exits can process all records being read and written by the assembler, and therefore
have considerable control over the object file and what you see in the listing. The final page
of the assembly listing shows what actions have been taken by each exit (see the example
on page 24). While it is possible for a listing exit to hide the presence of all exits, such a
situation is very unlikely.

Note that I/O exits can also produce diagnostic messages that may appear in the listing.

Things Worth Checking: The presence of SYSIN or SYSLIB exits can mean that source files
have been modified; the presence of SYSLIN or SYSPUNCH exits can mean that the object
file has been modified; and the presence of a SYSPRINT exit can mean that the listing has
been modified.

66 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

SYSADATA File
If you specify the ADATA option, HLASM produces a SYSADATA file of information about all
aspects of the assembly, even if parts of the listing are suppressed. The file is intended to
be read by programs (unlike the listing, which is formatted for human readers), such as
debuggers, program understanders, “bill-of-materials” processors, and so forth. (An
example of a SYSADATA exit that creates a list of all library members and the data sets they
came from is provided with HLASM as a sample program; it is described in the High Level
Assembler for MVS & VM & VSE Programmer's Guide.)

A key feature of the SYSADATA file is that it contains all the information in the listing (except
for that produced by the INFO and OPTABLE(..,LIST) options), even if the listing is
suppressed or if a SYSPRINT exit is active.

HLASM R5 supports ADATA exits that allow record selection and suppression. Also, the
layout of the records has been modified, and an optional ASMAXADR exit is provided to
reformat R5 ADATA files to R4 format.

FOLD Option
The FOLD option lets you specify that all alphabetic characters in the listing file (whatever
their original case) should be produced in upper case only. Character data entered in lower
case will of course be converted to the appropriate lower case code points; only the listing
file is affected by the FOLD option.

This option is provided so that languages that use the code points of lower case letters for
other ideographs or scripts, such as Katakana and Hiragana, can be printed readably.

The case of messages and text sent to the SYSTERM file (normally, the terminal) is not
affected by the FOLD option.

Things Worth Checking: Because all lower case letters are forced to upper case on all
listing lines, you should check carefully that the contents of DCs, SETC values, ESD aliases,
and symbol type attributes in the symbol XREF have not been obscured.

External Conditional Assembly Functions
HLASM's Support for external conditional assembly functions allows you to access
capabilities not supported directly by the assembler, such as special processing of
conditional assembly data and interfaces to the assembler's operating environment.

Your listing may also contain messages produced by external functions (and that are not
documented in the HLASM manuals). The final page of the assembly listing summarizes the
functions called and the actions they take; see the example in Figure 16 on page 24.

Things Worth Checking: The presence of external-function calls can mean that special code
is being generated by macros or other conditional assembly statements.

Things Worth Checking: Some assembler errors such as messages ASMA105U, ASMA170S,
or ASMA253C may be correctable by specifying larger block sizes on SYSUT1.

Other Things 67

Attribute References, Literals, and Lookahead Mode

Attribute References, Literals, and Lookahead Mode

42 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• Symbol attribute reference extensions and enhancements

− Scale, integer attributes allowed in open code

− Possible errors if old syntax looks like an attribute reference

• Literals treated more like ordinary symbols

− May be indexed; offsets allowed

• Attribute references to l iterals are treated more uniformly

− Previously, could get different results depending on statement ordering
(see slide 38)

• Lookahead mode: symbol attributes for conditional assembly

− HLASM “looks ahead” in input f i le to determine needed attributes

− Cannot “see” any generate statements; scans only source/COPY text

High Level Assembler recognizes certain attribute references in contexts where they were
not allowed by previous assemblers. The only attribute reference formerly permitted in
“open code” was the Length Attribute Reference (L'); High Level Assembler supports Scale
(S') and Integer (I') Attribute references in open code. Conditional assembly allows the use
of references to the Length, Scale, Integer, Type (T'), Count (K'), Opcode (O'), Number (N'),
and Definition (D') attributes of variable symbols.

Things Worth Checking: Some unusual operands using character strings starting with a
single letter followed by an apostrophe might be recognized by High Level Assembler as
attribute references where previous assemblers had ignored them.

Literal Extensions

High Level Assembler permits literals to be used in wider contexts than previous
assemblers. For example, in machine instruction statement operands, a literal may be used
as an ordinary relocatable term, or may be indexed; previous assemblers required that the
literal be the only term in the operand, and indexing was not allowed. Note: Beginning with
Release 4, HLASM flags the use of literals as the targets of EX and branch instructions.

Attribute references to literals are allowed in most contexts, whether or not the literals were
previously defined.

Literals may also be used as macro instruction operands, and type attribute references to
those operands will return a reasonable value for all references rather than the previous
“unknown” on the first reference. The COMPAT(LITTYPE) option lets you control this
behavior; see page 61 for details.

68 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Lookahead Mode

Whenever an attribute of an unknown symbol is required during a conditional assembly
operation, HLASM suspends normal operation and enters “lookahead mode”. The input
stream is scanned until the required symbol is found. Its attributes are then entered into the
symbol table and normal processing is resumed. Whenever lookahead mode is invoked, the
source text is compressed and stored in an internal file, so the input file need not be reread.
Attributes of other symbols found during the search are entered into the symbol table, so
that attribute references to those symbols will not cause lookahead. Further requests for
statements from the input stream will be referred to the lookahead file until it is exhausted,
when input will then resume from the primary (SYSIN) file again.

It is possible that conditional assembly might later generate different definitions of symbols
from those found during lookahead mode; the attributes are “corrected” when the symbols
are generated. Note also that only the attributes of a symbol are determined in lookahead
mode; the value and relocatability attributes are unknown until conditional assembly and the
first ordinary-assembly passes are complete.

Things Worth Checking: Symbol attributes used for conditional assembly might be different
from the attributes at the end of the assembly; the symbol cross-reference will show the final
values.

Assembler Abnormal Termination

Assembler Abnormal Terminations

43 IBM Corporation 2000, 2004. All r ights reserved.HLASM

Several conditions can cause abnormal/early assembly termination:

• HLASM is unable to load certain modules

− Main processing module (ASMA93), default options, opcodes, exits,
functions, messages, translate table, Unicode table

• A loaded module is found to be invalid

• Missing required file(s)

• Invocation-option errors and the PESTOP install option

• External functions and I/O exits

− Return codes can request explicit (and orderly) termination

− ABENDs will kil l the assembly

• Insufficient virtual storage

• Internal errors (e.g., messages 950-64, 970-1, 976)

− Some may be correctable with larger SYSUT1 block size

• COPY loops: excess DASD or CPU time

Sometimes an abnormal termination of an assembly can be caused by source-program or
assembly-environment conditions over which the assembler has little or no control.

Loaded Modules and Required Files

HLASM loads many modules dynamically depending, on the options specified for the
assembly. If any of these modules is unavailable, or when loaded is found to have an invalid
format, the assembler will terminate immediately.

Similarly, if a file required for the assembly is missing (such as SYSIN, or other files
required for the specified options), the assembly is terminated.

Other Things 69

Option Errors and PESTOP

If the PESTOP option is specified when HLASM is installed, any error in options processing
will terminate the assembly. This can save the time and resources needed to re-run a
complete assembly that was discarded because of the errors.

I/O Exits and External Functions

Exits and functions run in same task and space as the assembler itself, so that errors can
cause the assembly to fail; there is no error recovery in assembler itself. Assembler failures
are rare, so if you are using exits or external functions, check to see if the problem may
have originated there; exit and external-function errors may be difficult to detect.

Virtual Storage

While HLASM can write much of its working data to its utility file, some portions must remain
in central storage throughout the assembly. Insufficient storage can cause the assembler to
terminate in many different ways.

The assembly summary also includes information about the amount of storage used (see
Figure 18 on page 24).

Internal and I/O Errors

Occasionally an internal error in the assembler will cause an abnormal termination. Some of
these errors are accompanied by a message indicating that HLASM has detected the error
itself; others may cause an ABEND condition. If reproducible, these should be reported to
IBM Service.

I/O errors may be caused by incorrect JCL, or may be transient conditions that can be
corrected by moving or restoring a file.

COPY Loops and Excess DASD or CPU Use

COPY Loops and Time/DASD Overruns

44 IBM Corporation 2000, 2004. All r ights reserved.HLASM

• COPY loops can be caused by AIF/AGO instructions in COPY files

• Example: COPY segment named CPYSEG

DC CL33' '
AIF (&TEST).SKIP
DC C'More stuff'

 .SKIP DC XL2'0'

• If COPY CPYSEG appears more than once in open code...

− First occurrence of .SKIP defines the sequence symbol

− Second occurrence of a successful AIF branch goes backward!

• HLASM blindly copies CPYSEG over, and over, and over, and...

• No diagnostic messages:

− The listing isn't produced until after the assembly is done

• Remedies:

1. Put ACTR 20 (or so) at the front of the program

2. Embed COPY files containing conditional logic inside a macro (always!)

70 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Sometimes HLASM uses unexpectedly large amounts of CPU time or DASD space, and
increasing the allotment of either doesn't fix the problem; and, no error messages are
produced to help locate the problem!

An apparently normal coding practice might cause this behavior. Suppose you write a COPY
file named CPYSEG that contains some conditional assembly logic:

DC CL33' '
AIF (&TEST).SKIP
DC C'More stuff'

 .SKIP DC XL2'0'

Then, suppose you copy this segment into (say) a DSECT:

 DATA1 DSECT
COPY CPYSEG

This causes no problems, whether &TEST is true (1) or false (0). Suppose now that you want
to use the same data structure in a second DSECT:

 DATA2 DSECT
COPY CPYSEG

HLASM effectively sees a code sequence like this:

 DATA1 DSECT
 * COPY CPYSEG

DC CL33' '
AIF (&TEST).SKIP
DC C'More stuff'

 .SKIP DC XL2'0'
 DATA2 DSECT
 * COPY CPYSEG

DC CL33' '
AIF (&TEST).SKIP May branch backward!
DC C'More stuff'

 .SKIP DC XL2'0'

The first COPY causes the sequence symbol .SKIP to be defined. The second COPY can
cause one of two problems for HLASM. First, if &TEST is false, no conditional assembly
branch is taken, statement processing flows sequentially without branching, and HLASM will
diagnose a redefinition of the sequence symbol .SKIP.

The more serious problem occurs when &TEST is true, because the second AIF will branch
back to the first occurrence — the definition — of .SKIP! But this precedes the COPY
instruction following the declaration of the second DSECT, so HLASM executes
COPY CPYSEG repeatedly, eventually using up all the space allocated to the SYSUT1 utility
file, or exceeding the CPU time limit.

Because HLASM must read the entire source program (and buffer it to DASD if there's not
enough central storage) before it produces a listing, the end of the program is never found,
and no warnings can be produced.

There are two ways to “expose” the problem. One is to insert an ACTR instruction at the
beginning of the program:

ACTR 10 Allow only 10 successful conditional assembly branches

This will terminate the COPY loop, and HLASM may then be able to provide meaningful
information. (Choose an ACTR value appropriate to the number of successful conditional
assembly branches you expect in the program.)

A better approach is to use a macro. If a COPY file must contain any conditional assembly
logic, encapsulate that logic in a macro definition. Using the previous example, you could
write

Other Things 71

MACRO
CPYSEG
GBLB &TEST
DC CL33' '
AIF (&TEST).SKIP
DC C'More stuff'

 .SKIP DC XL2'0'
MEND

and then write the program with macro calls instead of COPY instructions:

 DATA1 DSECT
CPYSEG

 DATA2 DSECT
CPYSEG

Looping inside a macro is likely to create only limited damage.

Things Worth Checking: Check for AIF and AGO instructions in all COPY segments, and
consider replacing the segments with macros that provide the same function, to limit the
scope of such conditional assembly branching.

Summary

Summary

45 IBM Corporation 2000, 2004. All r ights reserved.HLASM
Fmt. 01 Jul 04, 1106Rev. 01 Jul 2004, 1940

HLASM provides...

• Helpful information:

− Cross-references for symbols, registers, DSECTs, macros and COPY
segments

− A map of all USING/DROP activity

• Tools for handling possible problems:

− Diagnostics for programming oversights

− Options to provide additional checking

− Options to control the assembler's handling of old code

− Ways to trace and locate unusual errors

− Language extensions providing detailed management of USINGs

• Localized controls over assembly-time behavior

− ACONTROL statement

Let HLASM do what it can to help you!

HLASM supports many enhanced features that ease the daily chores of finding and fixing
problems in Assembler Language programs. While it can't find errors of logic (the HLASM
Toolkit Feature can help with this!), many of the features can help reduce the likelihood of
error, or can provide information useful in locating and identifying problems.

72 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

Index

Special Characters

*PROCESS OVERRIDE statement 3
*PROCESS statement 3

A

absolute base address
ASMA306W message 40
FLAG(USING0) option 40

Access Register mode 38
and message ASMA309W 38

ACONTROL instruction 64
control of options 65
FLAG operands 34
FLAG(IMPLEN) operand 37
FLAG(PAGE0) operand 38
LIBMAC operand 18, 58

ACTR instruction 57, 71
looping termination 63
macro debugging 63

ADATA option 64
ADATA sample exit 18
address constants 12
addressability threshold 43
AIF/AGO instructions

ACTR control 63
in COPY segments 72

AINSERT instruction 11
ALIAS instruction 8
ALIGN option 35

and FLAG(ALIGN) 35
alignment 35
AMODE 6
AMODE(24) in private code 9

and BATCH option 29
AREAD instruction 11
ASMA019W 55
ASMA031E 54
ASMA033I 35
ASMA057E 27
ASMA094W 59
ASMA105U 67
ASMA138W 39
ASMA140W 29
ASMA169I 37
ASMA170S 67
ASMA212W 35
ASMA213W 35
ASMA253C 67
ASMA300W 45

ASMA301W 44
ASMA302W 45
ASMA303W 45, 50
ASMA304W 45
ASMA306W 40
ASMA309W 38

and AR mode 38
ASMA313E 47
ASMA314E 47
ASMA430W 36
ASMA431W 36, 65
ASMA435I 11, 39
ASMAOPT options file 3
assembler errors 64
assembler termination

COPY loops 71
excess CPU use 71
excess DASD use 71
external functions 70
I/O exits 70
IBM Service 70
internal errors 70
loaded modules 69
missing files 69
PESTOP installation option 70
virtual storage 70

assembly summary
ddnames 23
diagnostic XREF 23
external function statistics 24
file names 23
host system 24
I/O activity 24
I/O exit statistics 24
I/O statistics 24
member names 23
memory usage 24
storage usage 24
volume IDs 23

attribute references 61, 68
COMPAT(LITTYPE) option 61
conditional assembly 69
in open code 68
lookahead mode 69
migration considerations 68
to literals in macros 61

B

B_PRV class 7
B_TEXT class 7

 Index 73

base address zero 42
base register zero 42, 43
BATCH option 4, 27

C

case sensitivity 60
character encoding 64
classes, default

B_PRV 7
B_TEXT 7

coding style 1
COMPAT option 57, 60

COMPAT(LITTYPE) 61, 68
COMPAT(MACROCASE) 61

effect in listed macro calls 32
COMPAT(SYSLIST) 62

compatibil ity
attribute references 68
list-structured operands 62
literals 68

type attribute 68
unquoted macro operands 60

conditional assembly
functions 67
substrings 59

continuation-statement checking
FLAG(CONT) option 36

COPY instruction 11
COPY loops 71
COPY member in MXREF 17

D

ddnames 3
debugging macros

See also macro debugging
LIBMAC 65

diagnostic messages 11
external functions 67
FLAG option 34
I/O exits 66
multiple USING resolutions 43
severity 11, 23, 35

maximum 23
summary 23
suppression 11
USINGs 43
via TERM option 26
XREF 23

DSECT XREF 19
relocation ID 19
section length 19
section name 19

DSECTs
in DXREF 19
unreferenced 16

DXD instruction 6
DXREF option 16, 19

E

END instruction
and BATCH option 27
nominated execution entry point 11

ESD ID 6
ESD option 5
excess CPU use 71
excess DASD use 71
external file exits 4
external function statistics 24
external functions 64, 67
external symbol dictionary 5

ALIAS information 8
AMODE/RMODE 6
attribute flags 6
classes 7
DXD alignment 6
ESD ID 6
length 6
private code 9
relocation ID 6
symbol alias 7
symbol type 5

F

fixed installation default options 3
FLAG option 11, 23, 34

FLAG(ALIGN) 35
FLAG(CONT) 36
FLAG(IMPLEN) 37
FLAG(NOALIGN) 35
FLAG(NOCONT) 36
FLAG(NORECORD) 39
FLAG(NOSUBSTR) 59
FLAG(PAGE0) 38
FLAG(PUSH) 39
FLAG(RECORD) 11, 23, 39
FLAG(severity) 35

and TERM option 26
FLAG(SUBSTR) 57, 59
FLAG(USING0) 40

FOLD option 64, 67

74 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

G

general purpose register XREF 22
GOFF option 5, 56

H

halfword-immediate instructions 54
HLASM Toolkit Feature

Interactive Debug Facility 1, 67
Program Understanding Tool 1, 67
Source Cross-Reference Utility 1

I

I/O exits 4, 64, 66
ADATA 18
statistics 24

I/O statistics 24
IBM Service 70

status via INFO option 4
immediate operands 54
implicit length checking

FLAG(IMPLEN) option 37
INFO option 4

selected by date 4
inner-macro arguments 62
installation options

fixed 3
non-fixed 3

internal errors 64, 70
invariant characters 64, 66
invocation options 3

L

LANGUAGE option 56
length attribute 14
LIBMAC option 18, 57, 58
library macros 58
LIST option 56
listing

active USINGs heading 2
PRINT (NO)UHEAD instruction 10

assembly summary 2, 23
control by ACONTROL instructions 65
control by PRINT instructions 30
data sets/files summary 24
diagnostic XREF 2
DSECT XREF 2, 19
external function statistics 24
external symbol dictionary 2, 5, 6, 8, 9
FOLD option effects 67

listing (continued)
general purpose register XREF 2, 22
I/O exit statistics 24
INFO option 4
library macros

LIBMAC option 58
line length 56
literal XREF 2, 14
location counter heading 10
macro and COPY code summary 2
macro/COPY XREF 2
messages 11

summary 23
suppression 11

options from fixed defaults
ASMAOPTS macro 3

options in effect 3
options summary 2, 3

*PROCESS options 3
ASMAOPT file 3
fixed defaults 3
invocation options 3

ordinary symbol XREF 14
overriding ddnames 3
relocation dictionary 2, 12
service status 2, 4
source and object code 2
statement-origin tags 11
storage usage 24
symbol XREF 2

reference tags 15
relocatability 15
unreferenced symbols 2

USING map 2, 20
USING resolution 10

literal XREF 14
literals

as macro-instruction operands 68
as relocatable terms 68
in machine instructions 68
indexing 68
not as branch targets 68
not EXecutable 68

loaded modules 69
location counter heading 10
lookahead mode 15, 69
low-storage reference

FLAG(PAGE0) option 38
LTORG instruction 9, 15

M

macro argument sublists 62
macro call operands 61

literals 61
mixed case 61

 Index 75

macro call operands (continued)
sublists 62

macro debugging
ACONTROL COMPAT(...) instructions 60
ACONTROL instruction 64
ACTR instruction 63
COMPAT option 60
LIBMAC 65
looping 63
MHELP instruction 63
MXREF option 59

macro definition
in MXREF 17

macro sublists 62
macro/COPY XREF 17

from library member 17
from primary input file 17
inner-macro callers 18
member usage 17

messages 11
ASMA019W 55
ASMA031E 54
ASMA033I 35
ASMA057E 27
ASMA094W 59
ASMA105U 67
ASMA138W 39
ASMA140W 29
ASMA169I 37
ASMA170S 67
ASMA212W 35
ASMA213W 35
ASMA253C 67
ASMA300W 45
ASMA301W 44
ASMA302W 45
ASMA303W 45, 50
ASMA304W 45
ASMA306W 40
ASMA309W 38
ASMA313E 47
ASMA314E 47
ASMA430W 36
ASMA431W 36, 65
ASMA435I 11, 39
general form 11
severity 35

MHELP instruction 57
macro debugging 63

missing files 69
multiple address resolutions 43
multiple USING resolutions 43
MXREF option 57

MXREF(FULL) 17
MXREF(SOURCE) 17
MXREF(XREF) 17

N

NOCOMPAT(SYSLIST) option 62
NOGOFF option 5
non-fixed installation default options 3
non-invariant characters 66
NOPRINT operand

POP instruction 33
PRINT instruction 33
PUSH instruction 33

NOTHREAD option 6
nullified USINGs 43

O

options
*PROCESS OVERRIDE statement 3
*PROCESS statement 3
ADATA 64
ALIGN 35
ASMAOPT file 3
BATCH 27
COMPAT 57, 60
COMPAT(LITTYPE) 61, 68
COMPAT(MACROCASE) 61

effect in listed macro calls 32
COMPAT(SYSLIST) 62
DXREF 19
ESD 5
external file 3
fixed installation defaults 3
FLAG 34
FLAG(ALIGN) 35
FLAG(CONT) 36
FLAG(IMPLEN) 37
FLAG(NOALIGN) 35
FLAG(NOCONT) 36
FLAG(NORECORD) 39
FLAG(NOSUBSTR) 59
FLAG(PAGE0) 38
FLAG(PUSH) 39
FLAG(RECORD) 11, 23, 39

in assembly summary 23
FLAG(severity) 35
FLAG(SUBSTR) 57, 59
FLAG(USING0) 40
FOLD 64, 67
GOFF 5, 56

listing width 56
hierarchy

*PROCESS OVERRIDE statement 3
*PROCESS statement 3
ASMAOPT file 3
fixed installation defaults 3
invocation options 3
non-fixed installation defaults 3
VSE JCL statement 3

76 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

options (continued)
in effect 3
INFO 4

selected by date 4
installation 3
installation defaults

fixed 3
non-fixed 3

invocation options 3
LANGUAGE 56
LIBMAC 18, 57, 58
LIST(121) 56
LIST(133) 56
MCALL 17
MXREF 17, 57
MXREF(FULL) 17
MXREF(SOURCE) 17
MXREF(XREF) 17
NOALIGN 35
NOCOMPAT(SYSLIST) 62
NOGOFF 5
non-fixed installation defaults 3
NOTHREAD 6
PCONTROL 10, 31, 57
PCONTROL(DATA) 31, 32
PCONTROL(GEN) 32
PCONTROL(MCALL) 18, 31, 32
PCONTROL(MSOURCE) 31
PCONTROL(NOMSOURCE) 33
PCONTROL(OFF) 31
PCONTROL(ON) 31
PCONTROL(UHEAD) 31, 33
PESTOP (installation) 70
RLD 12
RXREF 22
specification errors

PESTOP installation option 70
summary 3
TERM 26
THREAD 6
user-supplied 3
USING 43
USING(LIMIT) 43
USING(MAP) 20
USING(WARN) 42, 43
VSE JCL statement 3
XREF 14
XREF(FULL) 16
XREF(SHORT,UNREFS) 16
XREF(SHORT) 14

ordinary symbol XREF
literals 14

overriding ddnames 3

P

page heading
USINGs in effect 10

PRINT (NO)UHEAD instruction 10
page-zero references 38
PCONTROL option 10, 31, 57

PCONTROL(DATA) 32
PCONTROL(GEN) 32
PCONTROL(MCALL) 18, 31, 32
PCONTROL(MSOURCE) 31
PCONTROL(NOMSOURCE) 33
PCONTROL(ON) 31
PCONTROL(UHEAD) 31, 33

PESTOP installation option 70
POP instruction

NOPRINT operand 33
PRINT instruction

(NO)ADATA operand 31
(NO)DATA operand 30
(NO)GEN operand 30, 31

location counter display 30
(NO)MCALL 30

effect of COMPAT(MACROCASE) 31
(NO)MCALL operand 17, 18, 31
(NO)MSOURCE operand 31
(NO)UHEAD operand 10, 31
ON/OFF operands 11, 30
operands 30

private code 9
caused by BATCH option 29

problems
abnormal termination 69
absolute base address 40
assembler errors 70
assembler service status 4
caused by BATCH option 4, 28, 29
continuation statements 36
COPY loops 71

ACTR instruction 71
macro solution 71

correct library files 18
excess CPU use 71
excess DASD use 71
extra statements 28
FOLD option effects 67
I/O exits 4
I/O utilization 25
intended section type 11
internal errors 70
language changes 4
literals 15
loaded modules 69
locating 1
macros

See problems, macros
missing files 69

 Index 77

problems (continued)
mixed-case external symbols 8
mode contamination 29
multiple resolutions 45
non-empty PUSH stack 39
non-invariant characters 66
nullified USINGs 43
options

BATCH 4
I/O exits 4

overlapping adcons 13
overlapping USING ranges 45, 48
PESTOP installation option 70
private code 9, 29
register usage indicator tags 22
relocation type 15
service status 4
storage utilization 24
symbol usage indicator tags 15
undesired resolutions 21
unreferenced DSECTs 16
unreferenced symbols 16
virtual storage 70

problems, macros
ACTR instruction 63
attribute references 61
COMPAT option 57
FLAG(SUBSTR) option 57, 59
list-structured operands 62
MHELP instruction 63
mixed-case operands 61
MXREF option 57, 59
PCONTROL option 57, 59

program organization 1
PUSH instruction 39

NOPRINT operand 33
PUSH/POP stack

FLAG(PUSH) option 39

R

range-limited USINGs 47
base location 47
default range 47
end location 47

register XREF 22
relocatability attribute 15

absolute 15
complexly relocatable 15
simply relocatable 15

relocation ID 6, 15
in DSECT XREF 19

RLD option 12
RMODE 6
RMODE(24) in private code 9

and BATCH option 29

RXREF option 22

S

sample programs
ASMAXADA ADATA exit 18, 67

service status 4
SHORT suboption of XREF 16
source file indicator 11, 23, 24

in MXREF 17
special characters 66
statement order 64
statement-origin tags 11
storage usage 24
substituted sublists 62
substrings 59
symbol attribute references 68

migration considerations 68
symbol XREF 14

relocatability attribute 15
relocation ID 15
symbol reference tags 15

branch targets 15
DROP operands 15
execute targets 15
modification targets 15
USING operands 15

type attribute 15, 69
unreferenced symbols 16

syntactic character set 66
SYSADATA file 18, 33, 64, 67

T

TERM option 26
and FLAG(severity) option 26
deck ID 26
NARROW format 26
WIDE format 26

THREAD option 6
TITLE instruction 26
type attribute

in XREF 15
incompatibil ity 61
lookahead mode 15

U

UHEAD operand 31
UNREFS suboption of XREF 16
usage tags

registers in RXREF 22
symbols in XREF 15

78 Finding/Fixing Assembler Language Problems With High Level Assembler, SHARE August 2004

USING diagnostics 40, 41, 42
addressability threshold 43
base register zero 43
base registers made inactive 43
FLAG(USING0) control 42
inactive base registers 43
non-empty USING range limit 47
nullified base registers 43
overlapping ranges 45
range limits 47
range overlaps USING 0,0 40
register zero as base register 43
relocatability attributes 47
repeated registers 42
USING(LIMIT) option 43
USING(WARN) option 43
WARN 42

USING instruction
range limits 47
range overlaps 48

fix with PUSH/POP USING 53
USING map 20
USING nullification 43
USING option 34, 42

USING(LIMIT) 43
USING(MAP) 20
USING(WARN) 42, 43

USING ranges 43, 47
adjacent 54
coincident 54
limits 47

USING resolution 10, 41
dependent USINGs 11
ordinary USINGs 10

USING(WARN) diagnostics
base register zero 43
multiple resolutions 43
nullified USINGs 43
USING ranges 43

V

virtual storage 70
VSE JCL statement 3

X

XREF option 14
XREF(FULL) 16
XREF(SHORT,UNREFS) 16
XREF(SHORT) 14

XREF, DSECT 19
XREF, macro/COPY 17
XREF, register 22

XREF, symbol 14
relocatability attribute 15
relocation ID 15
symbol reference tags 15

branch targets 15
DROP operands 15
execute targets 15
modification targets 15
USING operands 15

type attribute 15, 69

 Index 79

