
IBM High Level Assembler for MVS & VM & VSE:

Benefiting from its Powerful New Features

SHARE 96, February 2001, Session 8165

February, 2001

John R. Ehrman
ehrman@vnet.ibm.com or ehrman@us.ibm.com

International Business Machines Corporation
Silicon Valley (nee Santa Teresa) Laboratory

555 Bailey Avenue
San Jose, California 95141

Synopsis:

The examples in this document are for purposes of illustration only, and no warranty of correctness
or applicability is implied or expressed.

Permission is granted to SHARE Incorporated to publish this material in the proceedings of SHARE
96, February 2001. IBM retains the right to publish this material elsewhere.

IBM Corporation, 1995, 2001.



Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks or registered trade-
marks of the IBM Corporation in the United States and/or other countries:

Publications, Collection Kits, Web Sites

The currently available product publications for High Level Assembler for MVS & VM & VSE are:

High Level Assembler for MVS & VM & VSE Language Reference, SC26-4940
High Level Assembler for MVS & VM & VSE Programmer's Guide, SC26-4941
High Level Assembler for MVS & VM & VSE General Information, GC26-4943
High Level Assembler for MVS & VM & VSE Licensed Program Specifications, GC26-4944
High Level Assembler for MVS & VM & VSE Installation and Customization Guide, SC26-3494

High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility User's
Guide, GC26-8709
High Level Assembler for MVS & VM & VSE Toolkit Feature User's Guide, GC26-8710
High Level Assembler for MVS & VM & VSE Toolkit Feature Installation and Customization Guide,
GC26-8711
High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility Reference
Summary, GC26-8712

High Level Assembler for MVS & VM & VSE Release 2 Presentation Guide, SG24-3910

Soft-copy High Level Assembler for MVS & VM & VSE publications are available on the following IBM
Online Library Omnibus Edition Compact Disks:

VSE Collection, SK2T-0060
MVS Collection, SK2T-0710
Transaction Processing and Data Collection, SK2T-0730
VM Collection, SK2T-2067
OS/390 Collection, SK2T-6700 (BookManager), SK2T-6718 (PDF)

HLASM publications are available online at the HLASM web site:

http://www.ibm.com/software/ad/hlasm/

IBM ESA
MVS/ESA System/370
System/370/390 System/390
VM/ESA VSE/ESA
VSE OS/390

ii High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Contents

Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Assembler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
How Options May Be Specified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Assembly Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Source File Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Object File Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Assembler I/O Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Listing Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Message Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Cross Reference Control Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Installation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
PESTOP Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Options From Old Assemblers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Useful Language Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Useful Language Features: New Ordinary-Assembly Statements . . . . . . . . . . . . . . . . 8
Useful Language Features: Enhanced Statements . . . . . . . . . . . . . . . . . . . . . . . . 10
Useful Language Features: Conditional Assembly Enhancements . . . . . . . . . . . . . . 12

New Conditional Assembly Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Other Conditional Assembly Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Useful Language Features: Other Enhancements . . . . . . . . . . . . . . . . . . . . . . . . 15

Mixed-Case Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Mixed-Case Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Operation Codes and Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
The COMPAT(CASE) Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Macro Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
The FOLD Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Ordinary USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Addressing and USING Statements: A Review . . . . . . . . . . . . . . . . . . . . . . . . . . 21
The Addressing Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Effective Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Examples of Effective Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Examples of Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Addressing Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Deriving the USING Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

The BASR Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Computing Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Explicit Base and Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
The USING Statement and Implied Addresses . . . . . . . . . . . . . . . . . . . . . . . . . 29
Location Counter Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Incorrectly Specified Base Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Destroying Base Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Calculating Displacements: the Assembly Process . . . . . . . . . . . . . . . . . . . . . . . 32
Pass One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Pass Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Multiple USING Table Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Resolutions With Register Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
The DROP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Unusable USING Table Entries: Addressability Errors . . . . . . . . . . . . . . . . . . . . 38
Absolute USINGs, Absolute Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

New USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Contents iii



Desirable Properties of Any Addressing Method . . . . . . . . . . . . . . . . . . . . . . . . . 42
Problems with Ordinary USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Three New USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Labeled USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Labeled USINGs and Qualified Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Examples of Labeled USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Example 1: Managing Two Copies of One Structure . . . . . . . . . . . . . . . . . . . . . 46
Example 1: With Ordinary USINGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Example 1a: Incorrect Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Example 1b: Correct (But Not Recommended) Usage: Manually-Specified

Displacements and Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Example 1c: Problems with “Manual” Assignment . . . . . . . . . . . . . . . . . . . . . 49
Example 1d: Correct (But Still Not Recommended) Usage: Intermediate Temporary

Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Example 1e: Correct (But Definitely Not Recommended) Usage: Duplicated DSECTs 51
Example 1f: A Simpler Hard Way: Macro-Duplicated DSECTs . . . . . . . . . . . . . . 51

Example 1 Solution: Labeled USINGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Example 2: Doubly-Linked List Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Example 2a: With Multiple Ordinary USINGs . . . . . . . . . . . . . . . . . . . . . . . . 54
Example 2b: Correct (But Not Recommended) Usage: Manually-Specified

Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Example 2c: The Clean and Simple Way: Labeled USINGs . . . . . . . . . . . . . . . . 56

Labeled USING Statements: a Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Dependent USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Definition of Dependent USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Dependent USINGs Example 3: Contiguous Control Blocks . . . . . . . . . . . . . . . . . 60

Dependent USINGs Example 3a: Contiguous Control Blocks with Ordinary USINGs . 61
Dependent USINGs Example 3b: Contiguous Control Blocks with Dependent USINGs 62

Dependent USINGs Example 4: Nested Structures . . . . . . . . . . . . . . . . . . . . . . 63
Example 4a: Structure Nesting with Multiple Ordinary USINGs . . . . . . . . . . . . . 65
Example 4b: Structure Nesting with Dependent USINGs . . . . . . . . . . . . . . . . . . 66
Example 4c: Structure Nesting with One Ordinary USING . . . . . . . . . . . . . . . . . 67

Dependent USINGs Example 5: Disjoint USING Ranges . . . . . . . . . . . . . . . . . . . 68
Dependent USINGs Example 6: A Personnel-File Record . . . . . . . . . . . . . . . . . . 69

Labeled Dependent USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Definition of Labeled Dependent USINGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Example 7: Nesting Two Identical Structures Within a Third . . . . . . . . . . . . . . . . . 75

Example 7a: Nesting Two Identical Structures with Ordinary USINGs . . . . . . . . . . 76
Example 7b: Nesting Two Identical DSECTs with DSECT Renaming . . . . . . . . . . . 76
Example 7c: Nesting Two Identical DSECTs with Labeled USINGs . . . . . . . . . . . 76
Example 7d: Nesting Two Identical DSECTs with Labeled Dependent USINGs . . . . 77

Example 8: Multiple Nesting of Identical Structures . . . . . . . . . . . . . . . . . . . . . . 78
Example 9: Two MVS Data Control Blocks Within a Program . . . . . . . . . . . . . . . . 82
Example 10: Personnel-File Record with Labeled Dependent USINGs . . . . . . . . . . . 83

Personnel-File Record Example 10a: Comparing Birth Dates . . . . . . . . . . . . . . . 85
Personnel-File Record Example 10b: Comparing Dates . . . . . . . . . . . . . . . . . . 86
Personnel-File Record Example 10c: Copying Addresses . . . . . . . . . . . . . . . . . 87

Summary of USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
DROP Statement Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Generalized Object File Format (GOFF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
External Symbol Dictionary Listing Enhancements . . . . . . . . . . . . . . . . . . . . . . . 92

Conditional-Assembly Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Internal Conditional-Assembly Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Internal Arithmetic-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Internal Boolean-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Internal Character Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

External Conditional-Assembly Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
SETAF External Function Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

iv High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



SETCF External Function Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

System (&SYS) Variable Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
System Variable Symbols: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Input-Output Exits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Communication and Work Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Mapping the Communication and Work Areas . . . . . . . . . . . . . . . . . . . . . . . . 110
The EXITCTL Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Example: A SYSLIN, SYSPUNCH Object-File Exit . . . . . . . . . . . . . . . . . . . . . . . . 112
Creating Linkage Editor Control Statements . . . . . . . . . . . . . . . . . . . . . . . . . 112
Description of HLASM Object Exit OBJX . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Error Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Information Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Coding the OBJECT Exit OBJX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Installing the Object Exit OBJX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Glossary of Abbreviations and Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Ordinary and Conditional Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Figures
1. Typical Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2. Structure of an Addressing Halfword . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3. RX Instruction, showing Index Register Specification Digit . . . . . . . . . . . . . . . 23
4. A Simple Program Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5. Simple Program Segment with Assembled Contents . . . . . . . . . . . . . . . . . . . 26
6. Same Program Segment, Different Storage Addresses . . . . . . . . . . . . . . . . . 26
7. Same Program Segment, with Assembled Contents . . . . . . . . . . . . . . . . . . . 27
8. Program Segment with Pre-calculated Explicit Base and Displacements . . . . . . . 27
9. Program Segment with Explicit Base and Assembler-Calculated Explicit

Displacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
10. Program Segment with USING Instruction . . . . . . . . . . . . . . . . . . . . . . . . . 29
11. Sample Program Segment with Erroneous Statement . . . . . . . . . . . . . . . . . . 31
12. Pass One of Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
13. USING Table with One Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
14. Pass Two of Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
15. Program Segment with Second USING Statement . . . . . . . . . . . . . . . . . . . . 36
16. USING Table with Multiple Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17. Assembled Contents when Two USINGs Are Active . . . . . . . . . . . . . . . . . . . 37
18. USING Table After DROP Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
19. USING Table After Second DROP Statement . . . . . . . . . . . . . . . . . . . . . . . . 38
20. Sample DSECT fragment, to Illustrate Problems with Ordinary USINGs . . . . . . . . 46
21. Incorrect Coding for Simultaneous DSECT Usage . . . . . . . . . . . . . . . . . . . . . 47
22. Incorrect Coding for Intermediate Temporary . . . . . . . . . . . . . . . . . . . . . . . 50
23. Corrected Coding for Intermediate Temporary . . . . . . . . . . . . . . . . . . . . . . 51
24. The Hard Way: Making a Copy of the DSECT . . . . . . . . . . . . . . . . . . . . . . . 51
25. The Simpler Hard Way: a Macro to Copy the DSECT . . . . . . . . . . . . . . . . . . . 52
26. The Right Way: Labeled USINGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
27. Doubly-linked List Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
28. Labeled USING Example 2: a DSECT Describing a Small Control Block . . . . . . . 54
29. Example 2: Inserting a New Instance of BLOCK . . . . . . . . . . . . . . . . . . . . . . 54
30. Ordinary-USING Code to Insert a New List Element . . . . . . . . . . . . . . . . . . . 55
31. Ordinary-USING Code to Insert a New List Element . . . . . . . . . . . . . . . . . . . 55

Contents v



32. Labeled USING Example 2c: Code for Inserting a New Control Block . . . . . . . . . 56
33. Concurrently Active Ordinary and Labeled USINGs . . . . . . . . . . . . . . . . . . . . 57
34. Dependent USING Example 3: Control Block Definitions . . . . . . . . . . . . . . . . . 60
35. Dependent USING Example 3a: Control Block Addressing with Ordinary USINGs . . 61
36. Dependent USING Example 3a: Control Block Addressing with Ordinary USINGs . . 61
37. Dependent USING Example 3b: Control Block Addressing with Dependent USINGs 62
38. Nested or Overlaid Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
39. Defining the DSECTs Which Will Be Nested . . . . . . . . . . . . . . . . . . . . . . . . 64
40. Referencing Nested DSECTs with Ordinary USINGs . . . . . . . . . . . . . . . . . . . 65
41. Referencing Nested DSECTs with Dependent USINGs . . . . . . . . . . . . . . . . . . 66
42. Dependent USING Example 4c: Structure Nesting with One Ordinary USING . . . . 67
43. Dependent USING Example 4c: Structure Nesting with Dependent USING . . . . . . 67
44. Dependent USING Example 5: Range-Limited USING . . . . . . . . . . . . . . . . . . . 68
45. Dependent USING Example 5: Possibly Overlapping USING Ranges . . . . . . . . . 68
46. Dependent USING Example 5: Disjoint USING Ranges with Range-Limited USINGs 69
47. Dependent USING Example 6: Define a Personnel-File Record . . . . . . . . . . . . . 69
48. Dependent USING Example 6: Employee Record Person DSECT . . . . . . . . . . . . 70
49. Dependent USING Example 6: Employee Record Date DSECT . . . . . . . . . . . . . 70
50. Dependent USING Example 6: Employee Record Address DSECT . . . . . . . . . . . 70
51. Dependent USING Example 6: Employee Record Phone DSECT . . . . . . . . . . . . 71
52. Dependent USING Example 6: DSECT Nesting in Employee Record . . . . . . . . . . 72
53. Dependent USING Example 6: Anchoring DSECTs within Employee Record . . . . . 71
54. Dependent USING Example 6: Using fields within Employee Record . . . . . . . . . 73
55. Dependent USING Example 6: DSECTs within Employee Record with Ordinary

USINGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
56. Syntax of a Labeled Dependent USING Statement . . . . . . . . . . . . . . . . . . . . 74
57. Labeled Dependent USINGs Example 7: Nested DSECT Definition (1) . . . . . . . . . 75
58. Labeled Dependent USINGs Example 7: Nested DSECT Definition (2) . . . . . . . . . 75
59. Labeled Dependent USINGs Example 7b: Renamed DSECT Definition . . . . . . . . 76
60. Labeled Dependent USINGs Example 7c: Nesting with Labeled USINGs . . . . . . . 76
61. Labeled Dependent USINGs Example 7d: Nesting with Labeled USINGs . . . . . . . 77
62. Labeled Dependent USINGs Example 7d: Nesting with Ordinary USINGs . . . . . . . 77
63. Multiply-Nested Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
64. Labeled Dependent USINGs Example 8: Double Nesting DSECT Definitions . . . . . 79
65. Labeled Dependent USINGs Example 8: Double Nesting DSECT Definitions . . . . . 80
66. Labeled Dependent USINGs Example 8: Putting the USINGs to Work . . . . . . . . . 81
67. Labeled Dependent USING Example 9: Addressing With Ordinary USINGs . . . . . . 82
68. Labeled Dependent USING Example 9: Addressing Everything with One Register . 83
69. Labeled Dependent USINGs: Comparing Dates of Birth . . . . . . . . . . . . . . . . . 85
70. Labeled Dependent USINGs: Comparing Date Fields . . . . . . . . . . . . . . . . . . . 86
71. Labeled Dependent USINGs: Copying Addresses . . . . . . . . . . . . . . . . . . . . . 87
72. Summary of USING Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
73. Summary of DROP Statement Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . 90
73. Summary of DROP Statement Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 90
74. Sketch of Load Module vs. Program Object . . . . . . . . . . . . . . . . . . . . . . . . 92
75. Interface for Arithmetic (SETAF) External Functions . . . . . . . . . . . . . . . . . . 101
76. Interface for Character (SETCF) External Functions . . . . . . . . . . . . . . . . . . . 102
77. Properties and Uses of System Variable Symbols . . . . . . . . . . . . . . . . . . . 104
78. I/O Exit Parameter List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
79. Passing character data to I/O exits: ASYSLIB macro . . . . . . . . . . . . . . . . . . 111
80. Object exit OBJX: variable symbol definitions . . . . . . . . . . . . . . . . . . . . . . 114
81. Object exit OBJX: description of method of operation . . . . . . . . . . . . . . . . . 115
82. Object exit OBJX: CSECT definition and register EQUates . . . . . . . . . . . . . . 116
83. Object exit OBJX: other useful EQUates . . . . . . . . . . . . . . . . . . . . . . . . . 117
84. Object exit OBJX: initial entry and interface validation . . . . . . . . . . . . . . . . . 118
85. Object exit OBJX: Checking for initial or subsequent entry . . . . . . . . . . . . . . 118
86. Object exit OBJX: OPEN processing: obtain and initialize working storage . . . . 119
87. Object exit OBJX: initial checks for exit-parm information . . . . . . . . . . . . . . . 120
88. Object exit OBJX: scan exit-parm characters . . . . . . . . . . . . . . . . . . . . . . 120
89. Object exit OBJX: processing each exit-parm option . . . . . . . . . . . . . . . . . . 121
90. Object exit OBJX: end of exit-parm scan . . . . . . . . . . . . . . . . . . . . . . . . . 121
91. Object exit OBJX: initializing SETSSI information . . . . . . . . . . . . . . . . . . . . 122

vi High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



92. Object exit OBJX: completion of OPEN processing . . . . . . . . . . . . . . . . . . . 122
93. Object exit OBJX: processing of subsequent (non-initial) entries . . . . . . . . . . . 123
94. Object exit OBJX: request to process an object record . . . . . . . . . . . . . . . . 123
95. Object exit OBJX: scan ESD record for usable external names . . . . . . . . . . . . 124
96. Object exit OBJX: finish processing of ESD record . . . . . . . . . . . . . . . . . . . 124
97. Object exit OBJX: END of object module processing . . . . . . . . . . . . . . . . . . 125
98. Object exit OBJX: prepare an ALIAS statement for output . . . . . . . . . . . . . . 126
99. Object exit OBJX: processing of SETSSI statement . . . . . . . . . . . . . . . . . . . 126
100. Object exit OBJX: output of NAME statement . . . . . . . . . . . . . . . . . . . . . . 127
101. Object exit OBJX: summary message at end of object module . . . . . . . . . . . . 127
102. Object exit OBJX: re-initialization and return to the assembler . . . . . . . . . . . . 128
103. Object exit OBJX: return to assembler, possibly with tracing . . . . . . . . . . . . . 128
104. Object exit OBJX: CLOSE processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
105. Object exit OBJX: error processing (1) . . . . . . . . . . . . . . . . . . . . . . . . . . 130
106. Object exit OBJX: error processing (2) . . . . . . . . . . . . . . . . . . . . . . . . . . 130
107. Object exit OBJX: error message processing and output . . . . . . . . . . . . . . . 131
108. Object exit OBJX: error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
109. Object exit OBJX: information messages . . . . . . . . . . . . . . . . . . . . . . . . . 132
110. Object exit OBJX: constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
111. Object exit OBJX: working storage (1) . . . . . . . . . . . . . . . . . . . . . . . . . . 133
112. Object exit OBJX: working storage (2) . . . . . . . . . . . . . . . . . . . . . . . . . . 133
113. Object exit OBJX: working storage (3) . . . . . . . . . . . . . . . . . . . . . . . . . . 134
114. Object exit OBJX: DSECTs for working buffers . . . . . . . . . . . . . . . . . . . . . . 135
115. Object exit OBJX: object module ESD-record DSECT . . . . . . . . . . . . . . . . . . 135
116. Object exit OBJX: DSECT for ESD data items . . . . . . . . . . . . . . . . . . . . . . 136
117. Object exit OBJX: High Level Assembler communication area mapping . . . . . . 136
118. Comparison of Ordinary and Conditional Assembly . . . . . . . . . . . . . . . . . . 143

Figures vii



viii High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Overview

Fmt. 12 Feb 01, 1102Rev. 08 Feb 2001, 1220
OVUE-1 Copyright IBM Corporation 1993, 2001HLASM

Topic Overview

Options and Language enhancements
Mixed-Case Input and Output
Old and New USING Statements
GOFF and Binder Considerations
Conditional Assembly Functions
System Variable Symbols
Assembler I/O Exits
Macro-Operand Sublists

We will discuss the following topics:

useful assembler options (“Assembler Options” on page 2)

new and enhanced assembler instruction statements (“Useful Language Features” on
page 8)

considerations of mixed-case input and output (“Mixed-Case Input and Output” on
page 17)

a review of ordinary (“old”) USING statements (“Ordinary USING Statements” on
page 21)

new USING statements and their benefits (“New USING Statements” on page 41)

features of the new object file format (GOFF) (“Generalized Object File Format (GOFF)”
on page 91)

conditional assembly functions (“Conditional-Assembly Functions” on page 93)

system variable symbols (“System (&SYS) Variable Symbols” on page 103)

assembler input-output exits (“Input-Output Exits” on page 107).

Overview 1



Assembler Options

HLASM Options: Overview

OPTS-2 Copyright IBM Corporation 1993, 2001HLASM

HLASM accepts option specifications from several sources:
− *PROCESS statements in the program being assembled

− an external ASMAOPT file

− invocation parameters

− installation defaults

Options apply to various assembly activities:
− Assembly: BATCH, PROFILE, SIZE

− Source file: DBCS, OPTABLE, COMPAT, SYSPARM

− Object file: GOFF, TEST, TRANSLATE, CODEPAGE

− Assembler I/O: EXIT, ADATA, DECK, OBJECT, TERM

− Listing: ASA, ESD, FOLD, LINECOUNT, RLD, PCONTROL, INFO, LIBMAC, LIST,
USING(MAP), THREAD
— Messages: ALIGN, FLAG, LANGUAGE, RENT, RA2, USING(WARN), USING(LIMIT)

— Cross-References: symbols, general registers, macro/COPY members, DSECTs

Many of these new and enhanced options have been mentioned eariler, in the context of the
features they control. They are listed here for completeness.

How Options May Be Specified
The High Level Assembler accepts options from four sources:

1. Installation options are set at the time HLASM is placed on your system. They may be
fixed — not capable of being overridden — if the installer chooses.

2. Invocation parameters from JCL PARMs or CMS command lines are the traditional and
familiar way of providing assembler options.

3. HLASM supports an external ASMDOPT file for options. This can be very helpful if the
length of the option string is too long to be conveniently specified by other means.

4. *PROCESS statements at the beginning of the source file to be assembled can “tai lor”
options to each assembly. The OVERRIDE operand allows you to specify certain options
that may not be modified by other sources of options: for example, a program containing
EBCDIC data in a national language like French can specify a CODEPAGE option such
that that only the French-to-Unicode mapping tables may be used in creating Unicode
constants.

2 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Assembly Control Options
These options specify “global” assembly activities:

BATCH Multiple complete assembly files can be processed in a single invocation of
the assembler.

PROFILE The assembler will retrieve statements from the member specified in this
option, and them at the head of the source file.

SIZE Controls the amount of storage allocated for the assembly.

Source File Control Options
These options specify how various parts of the source program should be treated:

DBCS If specified, G-type constants and self-defining terms are allowed, and DBCS
data in C-type constants is translated correctly.

OPTABLE The assembler provides several tables of mnemonics and operation codes,
allowing you to select which should be used for the assembly.

COMPAT For compatibility with code written for older assemblers, HLASM allows you
to select either the “o ld” interpretation or processing, or the newer methods
supported by HLASM.

SYSPARM The length of the string passed from the SYSPARM option to the &SYSPARM
system variable symbol may be as long as 255 characters. This allows more
flexibility in controlling conditional assembly, and is especially useful when
supplied from an external options file (see “How Options May Be Specified”
on page 2).

Object File Control Options
These options specify how various parts of the object file should be created:

GOFF If specified, the new “Generalized Object File Format” (GOFF) will be
produced, rather than the traditional card-image object module (OBJ)
format.

TEST The assembler can produce SYM records with old (OBJ) object files con-
taining information about internal symbols used in the assembly. This
option is incompatible with the GOFF option.

TRANSLATE The TRANSLATE option lets you specify that C-type character constants (but
not C-type self-defining terms!) should be translated to a specified code
page; the default is ASCII. This can simplify creating data to be passed to
systems that do not support EBCDIC data.

CODEPAGE Many EBCDIC code pages have been defined to support national languages.
Internationalization may require Unicode data; the CODEPAGE option and
CU-type constants support the mapping of single-byte EBCDIC data to the
two-byte Unicode format. &SYSPARM system variable symbol may be as long
as 255 characters. This allows more flexibility in controlling conditional
assembly, and is especially useful when supplied from an external options
file (see “How Options May Be Specified” on page 2).

Assembler Options 3



Assembler I/O Control Options
These options specify how the assembler's input/output activities should be handled:

EXIT HLASM allows you to supply I/O exits for all files except its work (utility) file.
These exits can supplement or even replace the assembler's I/O, and can
add, delete, and modify records, as well as providing messages to be added
to the listing. You specify the type of exit, the name of the module, and
optionally a “parameter” string to be passed to the exit routine.

ADATA The ADATA option causes HLASM to write information about every aspect
of the assembly to the SYSADATA file. The file contains more information
than may be present in the listing (because portions of the listing can be
suppressed by other options), and the data is in a format intended for proc-
essing by other programs, rather than for legibility like the listing.

TERM The TERM option causes HLASM to write messages and erroneous state-
ments to the terminal (or to a file, if specified). The information can be com-
pressed (to avoid line wrap-around) if you specify the TERM(NARROW)
option; TERM(WIDE) does not compress spaces.

DECK, OBJECT These two options determine whether and where the object file will be
written. DECK specifies the SYSPUNCH file, and OBJECT specifies the
SYSLIN file. These options, unlike the GOFF option, do not affect the format
of the object module, only its destinations.

Listing Control Options
These options let you control various aspects of the assembly listing:

LIST The LIST option controls two things: whether or not the listing is produced
(NOLIST suppresses it), and the length of listing lines. The LIST(121) option
produces listings appropriate to the OBJ object file format; LIST(133) or
LIST(MAX) is required when the GOFF option has been specified.

ASA The ASA option specifies that ANSI carriage-control characters should be
used for lines in the listing file. If assembler listings are to be printed as
part of a larger set of files (for example, the assembler is invoked dynam-
ically by a program producing listings of its own), compatible carriage con-
trols will help. If not specified, the assembler will provide “machine”
carriage controls.

ESD, RLD These options control the listing of the External Symbol Dictionary and the
Relocation Dictionary, respectively.

FOLD The FOLD option causes lower-case letters in the listing to be converted to
upper case. This is needed only in countries where the code points
assigned to lower case letters are used for national characters: if a listing
containing lower case Latin letters was displayed on a terminal supporting
national characters, the text might be difficult to read.

INFO The INFO option causes HLASM to display information about its current
status. Because not all copies of HLASM will apply service at the same
time, this option can help users of each copy determine which problems
have been fixed, and what enhancements have been added.

THREAD In a multi-section assembly without the THREAD option, HLASM will start
the location counter of each section on the next doubleword boundary. This
causes extra work in determining section offsets, as the section origin must
be subtracted. Specifying THREAD causes HLASM to start each section at a
zero origin.

4 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



LINECOUNT The number of lines per listing page may be zero (in which case all page
ejects are suppressed), or a very large number.

PCONTROL The PCONTROL option lets you override settings of PRINT statements in the
source program. Rather than modifying and reassembling a program in
order to see otherwise invisible portions of the program, you can simply
specify appropriate PCONTROL suboptions:

ON overrides PRINT OFF statements

GEN overrides PRINT NOGEN statements

DATA overrides PRINT NODATA statements

MCALL causes inner macro calls to be displayed

MSOURCE displays source statements generated by macros

UHEAD causes the “Usings in Effect” page heading to be displayed

If the scope of certain PCONTROL actions is too broad, it can be specified
“dynamically” using the ACONTROL statement (see “Useful Language Fea-
tures: New Ordinary-Assembly Statements” on page 8).

LIBMAC Library macros containing previously undetected errors may generate diag-
nostic messages that don't precisely identify the statements in the macro
causing the problem. The LIBMAC option will cause library macros to be
placed in the listing just before their first call, as though it had been defined
“inline”. Any diagnostic messages will then identify the specific statement in
error. The scope of the LIBMAC option is also controllabe with ACONTROL
statements.

USING(MAP) The Using Map is a summary of all USING and DROP activity in the
program, which can help with determining overlaps and USING ranges.
This option causes the Using Map to be printed.

Message Control Options
These options allow you to control some of the assembler's error checking and diagnostic
messages.

ALIGN The ALIGN option requests HLASM to check boundary alignment of data.
NOALIGN suppresses the checks for non-privileged instructions, and will
cause data not to be aligned if the DC/DS duplication factor is nonzero.

FLAG Seven suboptions are supported by the FLAG option to control continuation
checking, substring checking, record/file identification for flagged state-
ments, alignment checking, use of implied lengths, un-based references to
low-storage addresses, improper substrings, and nonempty PUSH stacks.

FLAG(ALIGN) checks for possibly incorrect or inefficient operand align-
ments.

FLAG(CONT) controls checks for possible errors in coding continuation
statements.

FLAG(PAGE0) controls checks for possible inadvertent references to
addresses in the first 4K bytes of storage.

FLAG(IMPLEN) controls checks for possibly unintentional omission of the
length specification in SS-type instructions.

FLAG(PUSH) checks at the end of the assembly for a nonempty PUSH
stack.

Assembler Options 5



FLAG(RECORD) causes HLASM to identify the name of the source file
and the relative record number (from that file) of the statement with
which another message is associated.

FLAG(SUBSTR) controls checks for possible errors in coding conditional
assembly substring notation.

LANGUAGE In addition to English-language messages, HLASM supports German,
Spanish, and Japanese.

RENT The RENT option asks HLASM to check for possible violation of reentrancy
due to apparent stores into CSECTs.

RA2 Sometimes HLASM is used as a cross-assembler for systems supporting
16-bit address constants. The RA2 option permits relocatable 2-byte address
constants.

USING(WARN) HLASM can detect several possible errors in specifying USING statement
operands. The four sub-options control checking for nullified USINGs,
nonzero base addresses based on register zero, overlapping resolutions,
and displacements exceeding a supplied limit value.

USING(LIMIT) The USING(LIMIT) option provides a value to be compared to each implicitly
calculated displacement: if the displacement is larger and the
USING(WARN(8)) value is specified, HLASM will issue a warning.

Cross Reference Control Options
These options specify

XREF This option controls the production of the ordinary symbol cross-reference.
Two sub-options allow you to retain only referenced symbols, and to display
unreferenced symbols defined in CSECTs and RSECTs.

RXREF The RXREF option causes HLASM to create a cross-reference of all general
register usage, including implicitly referenced registers.

MXREF The MXREF option controls cross-referencing of macros and COPY
members from library files. The MXREF listing contains information about
the sources of each member, and also where each is referenced in the
program.

DXREF The DXREF option causes HLASM to list all DSECTs defined in the program,
their length and relocation ID, and where their definitions begin.

Installation Options
At the time HLASM is installed, you may choose default options to be used for each
assembly. Some options may be “fixed”, so that they may not be overridden at assembly
time by other option sources.

PESTOP Option
By providing the PESTOP option during installation, you may specify that errors in specifying
options should cause the assembly to be suppressed. This can help save time and system
resources by avoiding the need for reassembling programs with correct options.

6 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Options From Old Assemblers
Some options supported by Assembler H (IEV90), the DOS/VSE Assembler, or Assembler XF
(IFOX00) are either not present in HLASM, or are supported in different ways:

ALOGIC (in XF; not in HLASM)
EDECK (DOS/VSE only)
LINK (in DOS/VSE)
MCALL (in XF; different form in HLASM)
MLOGIC (not in HLASM)
NUM (CMS only; in H only)
PRINT (CMS only)
STMT (CMS only; in H only)
SUBLIB (DOS/VSE and HLASM on VSE)
SYSPARM (via // OPTION JCL statement in DOS/VSE)
SXREF (in XF; same as XREF(SHORT) option in HLASM)
WORKSIZE (XF only; CMS only)
YFLAG (in XF only; same as RA2 option in HLASM)

Assembler Options 7



Useful Language Features

New Ordinary-Assembly Statements

LANG-3 Copyright IBM Corporation 1993, 2001HLASM

HLASM provides many new assembler instruction statements:

*PROCESS Source-file assembly options

ACONTROL Dynamic control of certain options

ADATA User data kept with the SYSADATA file

ALIAS Modifies external symbols in object file

CEJECT Conditional control of listing pagination

CATTR Assign class names and attributes

EXITCTL Provide control data to I/O exits

XATTR Assign attributes to external symbols

Useful Language Features: New Ordinary-Assembly Statements
High Level Assembler introduces statements not available in previous assemblers, to
provide additional function and flexibility.

*PROCESS *PROCESS statements are a special form of comment statement at the begin-
ning of a source program, specifying options for the program.

*PROCESS statements may include an OVERRIDE operand: any items specified
in the OVERRIDE list may not be modified by invocation options. If your
program must be assembled with certain options, you can specify them on
*PROCESS OVERRIDE statements.

Note: Programs might contain what appear to be *PROCESS statements, but
which are actually comments that might be misinterpreted. High Level Assem-
bler can be prevented from treating such comments as *PROCESS statements
by inserting any valid statement (including a comment statement not resem-
bling *PROCESS) ahead of any such “apparent” *PROCESS statement.

ACONTROL The ACONTROL statement allows you to dynamically change the settings of
certain assembler options. For example, you can request that High Level
Assembler check for possible continuation statement errors as an invocation
option, and then turn checking off and on around specific sets of statements.

ADATA The ADATA statement allows you (or other creators of source files, such as
editors, preprocessors, and the like) to insert information into files to be proc-
essed by the assembler. The data specified in these ADATA statements will be
captured by the assembler and placed into the SYSADATA output stream for
use by other tools and processors.

ALIAS The ALIAS statement for external symbols permits assembler output modules
to be linked with those from other languages whose external symbols contain
characters that would otherwise be invalid in the “normal” assembler lan-

8 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



guage, or which would have been automatically translated to upper case char-
acters by the assembler.

ALIAS causes a “normal” external symbol already defined by the program to
be given a different name (its “alias”) in the External Symbol Dictionary. The
ESD listing provides additional information relating to the external symbol sub-
stitutions specified by ALIAS statements.

Note: Remember that only one instance of a symbol is allowed; thus, symbols
'aa' and 'AA' are not both supported.

CATTR The CATTR statement defines the “class” into which subsequent text or
external symbol definitions will be placed. CATTR requires the GOFF option,
and the information will be processed by the DFSMS/MVS* Binder. This topic
is discussed further in “Generalized Object File Format (GOFF)” on page 91.

CEJECT The CEJECT “conditional page-EJECT” statement permits automatic determi-
nation of the amount of space remaining on a listing page, with a page skip
occurring if less than the requested number of lines remains. This relieves you
of the necessity of frequently adjusting lines to determine where to put EJECT
statements; blocks of statements can be kept together on a page even if pre-
ceding statements are added or removed.

EXITCTL The EXITCTL statement passes passes information from the program being
assembled to I/O exit routines, to give you greater flexibility in managing the
behavior of I/O exits. (An example of the use of the EXITCTL statement is given
at “The EXITCTL Statement” on page 111.)

XATTR The XATTR statement assigns special attributes to external symbols. If you are
using special features of the Binder, or establish linkages to C/C++ functions,
this statement may be required. XATTR requires the GOFF option. This topic
is discussed further in “Generalized Object File Format (GOFF)” on page 91.

Each of these new assembler instructions may also be used as a model statement in macro
definitions.

Useful Language Features 9



Enhanced Ordinary-Assembly Statements

LANG-4 Copyright IBM Corporation 1993, 2001HLASM

Existing statements are enhanced by HLASM:

AMODE/RMODE Extended to support 64-bit addressing

COPY Supports variable-symbol operand in open code

DC Many new constant types:

EB,DB,LB IEEE Floating Point
EH,DH,LH Hex Floating Point
AD,FD 8-byte address, binary
CU Sixteen-bit Unicode
J,R Length, PSECT Address

Blanks allowed in quoted nominal values (except C, G)
No nominal value needed if duplication factor is zero

PRINT Accepts MCALL, MSOURCE, UHEAD operands

PUSH/POP Accepts ACONTROL operand

RSECT Declares a read-only section

USING/DROP Extended for labeled and dependent USINGs

Useful Language Features: Enhanced Statements
Several assembler instruction statements supported by previous assemblers have been
enhanced in High Level Assembler:

AMODE/RMODE The AMODE and RMODE statements have been extended to support 64-bit
addressing requirements.

COPY The COPY statement is enhanced to support a variable symbol in the
operand field if the statement is used in open code. For example:

&MEMBER SetC 'MyDefs' Assign 'MyDefs' to &MEMBER
- - -
COPY &MEMBER

causes the assembler to first assign the string MyDefs to the variable symbol
&MEMBER, causing the assembler to copy the contents of library member
MyDefs into the source program. (Note that this technique doesn't work in
macros.)

DC/DS The DC and DS statements have been extended in many ways:

Floating Point Constants
HLASM converts decimal values to IEEE binary floating point (with five
choices of rounding mode) for constants of types EB, ED, and ED.

The introduction of new conversion routines to support IEEE-format data
allows HLASM to provide improved and directed-rounding conversion of
hexadecimal floating point data for constants of types EH, DH, and LH.
In rare cases the improved conversion may cause a one-bit difference
in the generated constant.

Floating Point Symbolic Constants
HLASM supports symbolic forms for special floating point values.
These three are supported for hex and binary:

MAX Maximum normalized value
MIN Minimum normalized value

10 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



DMIN Smallest nonzero denormalized value

These four are supported only for IEEE binary values:
INF Infinity
NAN Not-a-Number (same as QNAN)
SNAN Signaling Not-a-Number
QNAN Quiet Not-a-Number

All forms may be signed.

Unicode Constants
16-bit Unicode values are generated from CU-type constants. The
mapping is determined by the CODEPAGE opion.

Address Constants
Two new address constant types are provided:

J Length (generalization of CXD)
R PSECT address

64-bit Constants
Two new 64-bit constant types are provided:

AD 8-byte address
FD 8-byte fixed-point binary

Spaces in Nominal Values
The nominal value of quote-delimited constants may contain extra
spaces for improved readability. (This excludes C-type and G-type con-
stants, of course.)

Zero Duplication Factor
In DC statements, a nominal value is not required if the duplication
factor is zero.

PUSH/POP The PUSH and POP statements have been extended to save and restore the
current status of ACONTROL statements.

PRINT The PRINT statement supports three additional operands:

MCALL When an outer-level (or “top-level”) macro is called, the
assembler displays that call on the listing if other controls do
not prevent its appearance; but inner macro calls are not
normally shown. The MCALL operand causes inner calls to be
displayed. (This can also be achieved with the
PCONTROL(MCALL) option.)

MSOURCE Normally, HLASM displays the source statements and their
generated code. To retain the code but suppress the state-
ment, specify the NOMSOURCE operand.

UHEAD To suppress the “Usings In Effect” page heading, specify the
NOUHEAD operand.

RSECT The RSECT statement was supported in Assembler H (without documenta-
tion), but only to the extent of placing a special flag in the External Symbol
Dictionary for the name of the control section. HLASM extends the support
by checking the instructions in the designated control section for possible
violations of program reentrancy. This is done on a per-section basis, and is
independent of the setting of the RENT option.

USING/DROP The USING statement supports several powerful extensions that can greatly
clarify and simplify coding that refers to complex data structures. Corre-
sponding extensions were made to DROP. These are discussed in detail at
“New USING Statements” on page 41.

Useful Language Features 11



Conditional Assembly Enhancements

LANG-5 Copyright IBM Corporation 1993, 2001HLASM

New conditional-assembly statements have been added and enhanced:

AEJECT/ASPACE Control formatting of macro definition listing

AINSERT Place constructed records into “pre-input” buffer

AREAD Supported operands: CLOCKB, CLOCKD, NOPRINT,
NOSTMT

SETAF, SETCF Invoke externally-defined conditional assembly
function

Other enhancements include:

− Many new system (&SYS) variable symbols

− Simpler variable symbol declaration

− Enhanced substring notation

− Predefined absolute symbols in conditional assembly expressions

− Easier scanning of macro-argument sublists

Useful Language Features: Conditional Assembly Enhancements
High Level Assembler has added several assembler instruction statements, many new
system variable symbols, and other enhancements that add power and flexibility to the con-
ditional assembly language.

New Conditional Assembly Statements
New conditional assembly statements include:

AEJECT This macro-definition-time operation causes a page skip in the assembly listing
of the macro definition.

ASPACE This macro-definition-time operation causes spacing of one or more lines in the
assembly listing of the macro definition. (ASPACE and AEJECT are not model
statements: when the macro is called, the ASPACE and AEJECT statements do
not appear in the generated code.)

AINSERT This instruction inserts a record into an internal input buffer that will be read
(until the buffer is emptied) in place of the primary input stream; input will then
resume from the primary input. Its most powerful applications are in macros.

AREAD An AREAD statement with no operands causes the 80 bytes of the next avail-
able record in the primary input stream to be assigned to a character variable
symbol, rather than being scanned during normal statement processing.

HLASM supports four AREAD statement operands for controlling statement
printing, and for obtaining current time information:

The CLOCKB and CLOCKD operands return binary and decimal time infor-
mation, respectively. (They were available but not documented in Assem-
bler H Version 2.1.) These contain current time values, unlike the
&SYSTIME and &SYSCLOCK system variable symbols. (&SYSTIME returns
the time at which the assembly started and does not vary during the
assembly; &SYSCLOCK returns the time at which the macro expansion
began, and does not vary during the macro expansion.)

The NOPRINT operand suppresses the printing of the AREAD statement, and
the NOSTMT operand suppresses the printing of the source record that was
“read” by AREAD.

12 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



SETAF This conditional assembly operation causes the assembler to invoke an
external arithmetic-valued function, and assign its value to an arithmetic vari-
able symbol.

SETCF This conditional assembly operation causes the assembler to invoke an
external character-valued function, and assign its value to a character variable
symbol. (SETAF and SETCF are discussed in greater detail in “Conditional-
Assembly Functions” on page 93.)

Other Conditional Assembly Enhancements
Other useful enhancements to the conditional assembly language include:

System Variable Symbols
HLASM greatly expands the number of system variable symbols available to your pro-
grams. A summary is provided at “System (&SYS) Variable Symbols” on page 103.

Variable Symbol Declarations
No ampersand is required in declarations of variable symbols in LCLx and GBLx state-
ments. For example, these two declarations are equivalent:

LCLA &X,&Y,&ZZZ
LCLA X,Y,ZZZ

Conditional Assembly Substrings
Previous assemblers handled improper substring expressions inconsistently, sometimes
providing the expected diagnostics and sometimes not. This occasionally required
awkward coding; a typical technique for extracting the remainder of a character string
was to write something like

&SubStr SetC '&CharVar'(&Start,255) Take rest of characters at &Start

In order to allow such programs to continue to assemble without diagnostic, specify the
FLAG(NOSUBSTR) option.

A better approach is to specify the FLAG(SUBSTR) option, and also use the explicit
“remainder of string” notation:

&SubStr SetC '&CharVar'(&Start,*) Take rest of characters at &Start

This allows the assembler to diagnose “true” errors in specifying substrings.

Absolute Symbols in Conditional Assembly Statements
Predefined absolute symbols are permitted in many conditional assembly contexts
where they were not allowed by earlier assemblers, such as in arithmetic expressions
in SETA and AIF statements.

Substituted (&SYSLIST and SETC) Sublists
In previous assemblers, character strings substituted as arguments of calls to inner
macro were treated only as character strings, independent of their actual structure.
HLASM permits such substituted operands to be treated as parameters having a list
structure accessible through the normal subscripting and &SYSLIST facilities such as
the number and count attributes, as well as the usual ability to designate sublists and
sublist elements symbolically or by using subscript notation. This means that macros
need not be written differently depending on whether they are invoked as “outer” or
“ inner” macros.

If HLASM should treat such operands and SETC variables as in previous assemblers,
specify the COMPAT(SYSLIST) option. This option determines whether HLASM will or
will not match the list-handling behavior of previous assemblers such as Assembler H.
(The assembler's handling of macro arguments in list format is rarely a concern, but
there are cases where macros can be written much more simply if you can utilize
HLASM's ability to handle lists more uniformly than could past assemblers.)

Two types of lists are passed as arguments to macros:

1. a positional argument list, and

Useful Language Features 13



2. a parenthesized list of terms passed as a single argument.

For example, a positional argument list of four arguments (A, B, C, and D) appears in
the call

MYMAC A,B,C,D Macro call with four arguments

and these may be treated as a list through references in the macro to the &SYSLIST
system variable symbol. A list of terms passed as a single argument appears in the call

MYMAC (A,B,C,D) Macro call with one (list) argument

where only one argument is passed (that is, (A,B,C,D) is a list of four elements). If
these lists are passed to an inner macro as one argument (A,B,C,D), the inner macro's
scanning may be simpler if the NOCOMPAT(SYSLIST) option is specified.

Macro-Call Name Field Operands
The name field (“label”) entry of a macro call need not be a symbol. This allows greater
freedom in passing arguments to macros.

14 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Other Useful Language Enhancements

LANG-6 Copyright IBM Corporation 1993, 2001HLASM

Unary minus supported in arithmetic expressions

DXD operand alignment rationalized

NOPRINT operand supported on several statements

Attribute-reference extensions

− O' (“Operation Code”)

− I', S' in open code

Literals as macro operands treated more sensibly

Literals in machine instructions treated more as “ordinary symbols”

Attribute references to literals return reliable values

Useful Language Features: Other Enhancements
Other potentially useful enhancements to High Level Assembler include:

Unary Minus
HLASM supports arithmetic unary minus operations in both ordinary and conditional
assembly arithmetic expressions.

DXD Statement
Previous assemblers assigned alignment requirements to dummy external sections
(DXDs) based on the first operand. HLASM corrects this behavior by assigning the most
stringent alignment requirement among all the operands.

NOPRINT Operand Extensions
The NOPRINT operand is supported by the AREAD, PRINT, PUSH, and POP statements,
and suppresses the appearance of the statement itself on the listing. This can help to
eliminate distracting detail in the listing due to uninteresting generated statements and
makes it easier to use High Level Assembler as a “cross-assembler” of code for other
hardware architectures.

Attribute Notation Extensions
HLASM recognizes certain attribute references in contexts where they were not allowed
by previous assemblers. The only attribute reference formerly permitted in “open code”
was the Length Attribute Reference (L'); conditional assembly allowed the use of refer-
ences to the Length, Type, Scale, Integer, Count, Number, and Definition attributes of
variable symbols. High Level Assembler permits the use of Scale (S') and Integer (I')
Attribute references in open code.

High Level Assembler also defines a new “Operation Code” Attribute Reference (O'),
which can be used to test for definition of operation code mnemonics.

One effect of these extensions is that code containing character strings that appear to
HLASM to be attribute references may not have been treated that way by earlier assem-
blers; this may cause certain statements to be flagged, or to be interpreted differently.

Literals in Macro Operands
Attribute references to literals used as macro operands may result in different values
from previous assemblers. For example, Assembler H returned value 'U' for type attri-

Useful Language Features 15



bute references to literal operands, whereas HLASM provides the actual type if it can be
determined. If the behavior of Assembler H is required, specify the COMPAT(LITTYPE)
option and HLASM will then return 'U' as the type attribute of all literals in macro oper-
ands.

The Assembler H documentation states that the evaluated operand in an attribute refer-
ence must be a symbol (except for type attribute references). However, it actually eval-
uated attributes of strings containing expressions and other objects, using the first
symbol. The High Level Assembler enforces the previously documented rules. One
consequence of this enforcement is that attribute evaluations of expressions that previ-
ously returned a “val id” type (that is, not 'U') will now return 'U'.

Literals as Relocatable Terms
High Level Assembler permits literals to be used in wider contexts than previous
assemblers. For example, in machine instruction statement operands, a literal may be
used as an ordinary relocatable term, or may be indexed. Thus, these two statements
are valid:

TR StringToHex,=C'0123456789ABCDEF'-C'0' Printable Hex
IC 0,=AL1(0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,3,4)(4) No. of 1-bits

Previous assemblers required that the literal be the only term in the operand, and
indexing was not allowed.

Attribute References to Literals
Attribute references to previously-defined literals formerly gave results that were dif-
ferent from later references, after the literal was defined. HLASM now returns a uniform
value of the type attribute for all references.

16 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Mixed-Case Input and Output
High Level Assembler can accept its input statements coded either in uppercase characters
(for compatibility) or in mixed lower and uppercase characters. Similarly, the assembler's
listing file can print records in mixed case, or only as uppercase characters.

Mixed-Case Input

LANG-7 Copyright IBM Corporation 1993, 2001HLASM

All IBM mainframe assemblers accept mixed case in:

− remarks fields of assembler and machine instruction statements

NAME OPCODE OPERAND,OPERAND Remarks may be in mixed case
PRINT DATA PRINT all generated text

− comment statements

* Comment statements may also be in mixed case

− quoted character strings in character constants and self-defining terms

MIXCON DC C'AbBbCcDdeE' Character Constant
SELFDEF LA R1,C'a' Character selfÄdefining term

− macro instruction statement operand values.

MACCALL MACOP Positional,KEY=KeyValue Macro call operands

Mixed-Case Input
High Level Assembler and all previous IBM assemblers for the System/360/370/390 family of
processors accept mixed upper-case and lowercase letters in certain contexts:

remarks fields of assembler and machine instruction statements

NAME OPCODE OPERAND,OPERAND Remarks may be in mixed case
PRINT DATA PRINT all generated text

comment statements

* Comment statements may also be in mixed case

quoted character strings such as character self-defining terms and C-type operands in
DC and DS statements

MIXCON DC C'AbBbCcDdeE' Character Constant
SELFDEF LA R1,C'a' Character self-defining term

macro instruction statement operand values.

Mixed-Case Input and Output 17



MACCALL MACOP Positional,KEY=KeyValue Macro call operands

High Level Assembler extends the use of lowercase letters to operation codes and to
symbols of all types.

Mixed-Case Symbols and Operation Codes

LANG-8 Copyright IBM Corporation 1993, 2001HLASM

High Level Assembler permits lowercase characters in

− symbolic operation codes

− ordinary symbols

− variable symbols

— local and global

— system (&SYS)

— macro-instruction positional and keyword parameter names

− sequence symbols

Operation codes and symbols treated as identical to their uppercase
equivalents.
label a reg9,storage_operand(indexreg) )) These are
Label A Reg9,Storage_Operand(IndexReg) )) equivalent
LABEL A REG9,STORAGE_OPERAND(INDEXREG) )) statements

Symbol Table displays each symbol as it was first encountered.

Operation Codes and Symbols
The High Level Assembler permits you to use lowercase characters in contexts where they
were not previously allowed:

symbolic operation codes
ordinary symbols
variable symbols
− local
− global
− system (&SYS)
− macro-instruction positional parameters
− macro-instruction keyword parameters
sequence symbols

Internally, all such operation codes and symbols are treated as identical to their uppercase
equivalents. Thus, the following three statements are identical:

label a reg9,storage_operand(indexreg)
Label A Reg9,Storage_Operand(IndexReg)
LABEL A REG9,STORAGE_OPERAND(INDEXREG)

In the Symbol Table listing, each symbol is displayed in the form in which it was first
encountered and entered into the symbol table. Thus, if the first recognition of the symbols
occurred in the first of the three statements above, the symbols label, reg9, storage_operand,
and indexreg would appear in the Symbol Table listing in lower case.

18 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



The COMPAT(CASE) Option
If you must maintain compatibility with previous assemblers, the option

COMPAT(CASE)

causes HLASM to recognize symbols and operation codes only when they are entered as
uppercase characters.

Mixed-Case Macro Arguments

LANG-9 Copyright IBM Corporation 1993, 2001HLASM

Mixed-case symbols do not change macro argument handling:

− Characters in macro arguments are always left in their original case

− Macro calls using mixed-case characters in arguments will work in High
Level Assembler just as in previous assemblers.

LABEL MACCALL Positional_Value,KEYWORD=Key_Value All assemblers

Label MacCall Positional_Value,KeyWord=Key_Value HLASM only

Keyword and Positional values are unchanged

− Passing mixed-case values may require internal macro changes if such
values must be recognized.

— UPPER function can help!

− Use COMPAT(MACROCASE) option if existing macros expect uppercase operands

Macro Arguments
Assemblers for the System/360/370/390 family of processors have always left positional and
keyword macro arguments in the form in which they were entered. If the macro must scan
the argument characters, either

1. the arguments must be entered in upper case only, or

2. the arguments can be “forced” to upper case before macro expansion by specifying the
COMPAT(MACROCASE) option, or

3. the internal conditional-assembly function UPPER may be used inside the macro to
convert strings to uppercase letters, or

4. the internal scanning may have to handle case sensitivity.

Because the character-handling capabilities of the conditional assembly language are con-
siderably improved in High Level Assembler, it is not necessary to require that scanned
macro arguments be entered in uppercase only. If the argument string is to be substituted
without scanning, then no case conversion is required.

The availability of mixed-case symbols in High Level Assembler makes no changes in the
ways arguments to macros are handled. Unquoted macro arguments are normally passed
to the macro expansion unchanged, which has required (in most cases) that such arguments
be written completely in uppercase letters. For example, you might have written

File_Error AbEnd 2,DUMP

Because HLASM supports mixed-case symbols and operation codes, it is natural to write
other parts of a program using mixed-case text. However, some macros may have been

Mixed-Case Input and Output 19



written to accept only uppercase arguments; to help preserve your investment in such
macros, specify the COMPAT(MACROCASE) option. This causes unquoted arguments to be
converted internally to uppercase before macro expansion begins. For example, you could
specify the COMPAT(MACROCASE) option and write

File_Error AbEnd 2,Dump

and the assembler will pass the “uppercased” argument DUMP to the macro expansion.

The FOLD Option
The FOLD option is provided by High Level Assembler to let you specify that all alphabetic
characters in the listing file (whatever their original case) should be produced in upper case
only. Character data entered in lower case will of course be converted to the appropriate
lower case code points; only the listing file is affected by the FOLD option.

The case of messages and text sent to the SYSTERM file (normally, the terminal) is not
affected by the FOLD option.

Because both of these options affect High Level Assembler's treatment of the case of char-
acter text, it is worth noting that their effects are independent of each other.

COMPAT(CASE) affects only the recognition of symbols and operation-code mnemonics
in input text. If COMPAT(CASE) is specified, High Level Assembler will recognize
symbols and operation codes only if they are entered in uppercase.

FOLD affects only the production of the output listing. All alphabetic characters (what-
ever their case as entered) are converted to uppercase in the listing file, but this has no
effect on the assembler's recognition and treatment of character case when the state-
ments are scanned.

Note: The FOLD option may obscure the visibility of lower-case characters in the
program. The object code listing will show that correct values have been generated from
lower-case characters.

20 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Ordinary USING Statements

OLDU-1 Copyright IBM Corporation 1993, 2001HLASM

Ordinary USING Statements

Addressing and USING Statements: A Review
If you are familiar with the way the System/360/370/390 family of machine generates storage
addresses, and with the usage rules, purpose, and function of the Assembler Language
USING statement, feel free to skip ahead to “New USING Statements” on page 41.
(However, you might find that a quick reading of this section will both refresh your know-
ledge and establish a better familiarity with the terminology to be used in later sections.)

Before discussing the High Level Assembler's treatment of USING statements, we will first
review the fundamental mechanisms of address generation used in the System/360/370/390
family of processors.

The addressing technique used in System/360/370/390 processors differs from that found in
many earlier computers, where the actual storage address (or addresses) of the operand (or
operands) was part of the instruction:

ÚÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ opcode ³ operand address ³
ÀÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 1. Typical Instruction Format

Because System/370/390 allows very large amounts of addressable central storage (231

bytes, or more), the technique of placing actual addresses into the instructions would require
a field at least 31 bits wide for each such address. Since few programs need as much as 231

bytes of memory to execute, many of the bits in the address field would be wasted by such a
direct-addressing technique.

In the System/360/370/390 machines, the scheme used for addressing memory operands is
more economical in the number of bits allotted to each instruction, but therefore more
expensive in terms of the computation needed to determine operand addresses.

Ordinary USING Statements 21



Addressing Halfwords and Effective Addresses

OLDU-2 Copyright IBM Corporation 1993, 2001HLASM

Many instructions generate addresses from addressing halfwords:

IÄ4 bitsÄH IÄÄÄÄÄÄÄÄÄÄ12 bitsÄÄÄÄÄÄÄÄÄÄH
ÚÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³base digit³ displacement ³
ÀÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Effective Address = displacement + if (b =/ 0) then C(Rb) else 0

For RX-type instructions, an index may be used:

8 bits 4 bits 4 bits 16 bits
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ opcode ³operand ³ index ³ ³
³ 01xxxxxx ³register³register³ addressing halfword ³
³ ³ digit ³ digit ³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Effective Address = displacement + if (b =/ 0) then C(Rb) else 0
+ if (x =/ 0) then C(Rx) else 0

The Addressing Halfword
The System/360/370/390 family of processors provides several modes of addressing. For the
purposes of this review we will discuss only one, in which 31-bit addresses are generated.

To refer to items in processor storage such as data or instructions, the program will almost
always make use of one of the general purpose registers. This is due to the way the
processor uses the information in a portion of an instruction called an “addressing
halfword”, which always occupies a correctly aligned halfword in memory.

³IÄ4 bitsÄH³IÄÄÄÄÄÄÄÄÄÄ12 bitsÄÄÄÄÄÄÄÄÄÄH³
ÚÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³base digit³ displacement ³
ÀÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
0 3 4 15

Figure 2. Structure of an Addressing Halfword

The 4-bit field at the left of the addressing halfword contains a single hex digit (called the
base register specification digit, or base digit). It can take values from 0 to 15, and specifies
a general purpose register. The 12-bit field in the rest of the addressing halfword contains an
unsigned (and therefore non-negative) number called the displacement which can take
values from 0 to 4095.

Effective Addresses
To generate the address of an operand, the processor does the following:

Step 1: The 12-bit displacement is put at the right-hand end of an internal register called
the Effective Address Register (abbreviated EAR), and the leftmost 19 bits of the
EAR are cleared to zeros.

Step 2a: If the base register specification digit is not zero, then the rightmost 31 bits of the
specified general purpose register are added to the contents of the Effective
Address Register, and carries out the left end of the EAR are ignored. (The high-

22 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



order bit of the general purpose register is ignored also.) The register used is
called the base register, and the quantity in its rightmost 31 bits is called the base
address or base.

Step 2b: If the base register specification digit is zero, nothing is added to the EAR. Thus,
R0 will never be used as a base register.

The resulting quantity in the EAR is called the effective address. It may be used as the
address of an operand in memory, as well as for other purposes such as a shift count. This
method of generating addresses is called base-displacement addressing.

Examples of Effective Addresses
1. Suppose the addressing halfword of an instruction is 1011 001011010101 in binary (or

X'B2D5' in hex) and suppose that the contents of general purpose register 11 is

1100 0111 0011 1110 1001 0000 1010 1111

in binary (or X'C73E90AF' in hex). Then the effective address of the instruction is (giving
both binary and hex arithmetic):

000 0000 0000 0000 0000 0010 1101 0101 000002D5 (displacement)
100 0111 0011 1110 1001 0000 1010 1111 473E90AF (base)
100 0111 0011 1110 1001 0011 1000 0100 473E9384 (effective address)

2. Suppose the addressing halfword of the same instruction is X'0468'. Then the effective
address is X'00000468', since R0 cannot be used as a base register.

3. Suppose the addressing halfword of the same instruction is X'B000', and the contents of
R11 is as before. Then the effective address is X'473E90AF'; a zero displacement is
quite acceptable.

Indexing
After the displacement has been added to the base (if any), the processor checks the type of
the instruction. If the instruction is type RX, a further indexing cycle is needed. The second
byte of an RX-type instruction contains two four-bit fields, the second of which is called the
index register specification digit, or index digit:

8 bits 4 bits 4 bits 16 bits
ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ opcode ³operand ³ index ³ ³
³ 01xxxxxx ³register³register³ addressing halfword ³
³ ³ digit ³ digit ³ ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
0 7 8 11 12 15 16

Figure 3. RX Instruction, showing Index Register Specification Digit

Step 3: If the instruction is type RX, and the 4-bit index register specification digit is not
zero, then the rightmost 31 bits of the general purpose register specified by the
index register specification digit are added (again ignoring carries out the left end)
to the contents of the EAR.

The resulting quantity in the EAR is still called the effective address. (Sometimes it is called
the indexed effective address, but the greater precision of this term is rarely needed.) The
index register specification digit is sometimes called the index digit; similarly, the specified
register is called the index register, and the quantity in its rightmost 31 bits is called the
index.

Ordinary USING Statements 23



Examples of Indexing
1. Suppose an RX-type instruction is X'430A7468' and that the contents of R7 is

X'12345678' and the contents of R10 is X'FEDCBA98'. (Note that the base register spec-
ification digit, namely 7, means that R7 will be used as the source of the base address.)
Then the effective address is

000 0000 0000 0000 0000 0100 0110 1000 00000468 (displacement)
001 0010 0011 0100 0101 0110 0111 1000 12345678 (base, from R7)
001 0010 0011 0100 0101 1010 1110 0000 12345AE0
111 1110 1101 1100 1011 1010 1001 1000 7EDCBA98 (index, from R10)
001 0001 0001 0001 0001 0101 0111 1000 11111578 (effective address)

The carry off the left end is ignored.

2. Suppose an RX-type instruction is X'43007468' and that the contents of register 7 is again
X'12345678'. Then the effective address is

000 0000 0000 0000 0000 0100 0110 1000 00000468 (displacement)
001 0010 0011 0100 0101 0110 0111 1000 12345678 (base)
001 0010 0011 0100 0101 1010 1110 0000 12345AE0 (effective address)

No indexing cycle is needed because the index register specification digit is zero.

3. Suppose an RX-type instruction is X'43070468' and that the contents of register 7 is still
X'12345678'. Then the effective address is

000 0000 0000 0000 0000 0100 0110 1000 00000468 (displacement)
000 0000 0000 0000 0000 0000 0000 0000 00000000 (base)
000 0000 0000 0000 0000 0100 0110 1000 00000468
001 0010 0011 0100 0101 0110 0111 1000 12345678 (index)
001 0010 0011 0100 0101 1010 1110 0000 12345AE0 (effective address)

In this example the values of the base and index register specification digits were inter-
changed from those in the preceding example, so that an indexing cycle was required to
compute the same effective address.

Addressing Problems
Because the only part of storage which can be addressed without the use of a base register
is the area with addresses 0 to 4095 = X'FFF', the programmer will almost invariably be
required to use a base register to refer to operands in storage. This means that if we want
to access a byte at address Q, there must be a base register available (that is, one of regis-
ters 1 to 15) which contains a number between Q− 4095 and Q, since we can then generate
an effective address Q by using a displacement between 0 and 4095. If there is no such
number in a register, then the byte at Q is not addressable. Thus, if all the general registers
contain zero, only the first 4096 bytes of memory are addressable!

Deriving the USING Statement
Understanding the USING statement is fundamental to writing Assembler Language pro-
grams for System/360/370/390 systems. In “Addressing and USING Statements: A Review”
on page 21 we saw how the processor at execution time converts addressing halfwords into
effective addresses. In this section, we will see how the Assembler performs the “reverse”
process, deriving addressing halfwords from the values of symbolic expressions at assembly
time.

Rather than give a set of rules and recipes and later explain how they work, we will start
with a program that works in a known way.

24 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



The BASR Instruction
The Branch and Save (Register) RR-type instruction with mnemonic BASR is central to
establishing addressability. For the time being, we will be interested only in the situation
where we write

BASR r1,0

(so that the second operand register specification digit r2 is zero). The effect of this instruc-
tion when executed is to replace the contents of the general purpose register specified by r1
by the right half of the Program Status Word (PSW): the rightmost 31 bits contain the value
of the Instruction Address (IA). This address will be the address of the instruction following
the BASR, because the IA is incremented by the instruction length (2 bytes for BASR) during
the fetch portion of the instruction cycle.

Suppose the following short sequence of statements is part of a program which has been
assembled and placed in storage to be executed. While we are giving the Assembler Lan-
guage statements in Figure 4 below, the actual contents of storage will be hexadecimal data
in the form of instructions, as illustrated in Figure 5 on page 26. Assume for the moment
that the Supervisor has relocated the program so that the first instruction (the BASR)
happens to be at storage address X'5000'.

Address Name Operation Operand Comment

* Example of a simple program
5000 BASR 6,0 Establish base address
5002 BEGIN L 2,N Load contents of N into R2
5006 A 2,ONE Add contents of ONE
500A ST 2,N Store contents of R2 into N

--twenty-two additional bytes of instructions, data, etc.--
5024 N DC F'8' Fullword integer 8
5028 ONE DC F'1' Fullword integer 1

Figure 4. A Simple Program Segment

While the actual functioning of these statements (other than BASR) is irrelevant to this dis-
cussion, a brief explanation may be helpful. The instructions L, A, and ST respectively (1)
take a copy of the contents of a fullword area of storage and put it into a general register
(i.e., Load the register), (2) Add a copy of the contents of a fullword area of storage to the
contents of a register, and (3) replace the contents of a fullword area in storage by a copy of
the contents of a general register (i.e., STore the register). The DC (Define Constant) state-
ments are assembler instruction statements that provide two fullword areas of storage with
names “N” and “ONE”, and which contain the fullword integer values desired. We have
arbitrarily set the contents of the fullword at N to the integer 8, even though any value might
be possible in an actual program. All of these instructions will be explained in more detail
later.

Computing Displacements
When the program has been allowed to start execution, and after the BASR has been exe-
cuted, R6 will contain X'00005002'. Remember: BASR places the address of the next
instruction into the register designated by r1. We can now use the address in R6 as a base
address for the instructions following the BASR; thus the base register specification digit in
subsequent addressing halfwords should be 6. To determine the proper displacement in the
L instruction at X'5002', we can use the known contents of R6 (X'00005002'). Since we
know the address of the fullword area named N, we can now compute a displacement:

X'00005024' − X'00005002' = X'022'.

Ordinary USING Statements 25



Then, the assembled machine instruction (using the operation code X'58' for the mnemonic
L) will be X'58206022'. When this instruction is executed, the computation of the effective
address yields

X'022' + X'00005002' = X'00005024',

which is the address we want!

If we continue in this fashion for the rest of the statements, we find that the following
“assembled” machine language instructions, at the indicated storage addresses, will give
the desired results at execution time. That is, after program loading is complete, we want
the storage areas starting at address X'5000' to contain the (hexadecimal) data shown
under “Assembled Contents”.

Address Assembled Contents Original Statement

5000 0D60 BASR 6,0
5002 58206022 BEGIN L 2,N
5006 5A206026 A 2,ONE
500A 50206022 ST 2,N

----------------------------------
5024 00000008 N DC F'8'
5028 00000001 ONE DC F'1'

Figure 5. Simple Program Segment with Assembled Contents

Remember that when the Assembler processes the BASR statement and produces two bytes
of machine language code containing X'0D60', nothing is “ in ” R6. It is only when this
machine language instruction is finally executed by the processor that the desired base
address will be placed in R6.

So far, so good: we have constructed a sequence of instructions which will give a desired
result if it is placed in storage at exactly the right place. It is natural to ask “What would
happen if the program is put elsewhere by the Supervisor?”

So, assume now that the same program segment begins at storage address X'84E8', as in
the figure below.

Address Statement

84E8 BASR 6,0
84EA BEGIN L 2,N
84EE A 2,ONE
84F2 ST 2,N

--- the same 22 bytes of odds and ends ---
850C N DC F'8'
8510 ONE DC F'1'

Figure 6. Same Program Segment, Different Storage Addresses

In this case, the contents of R6 after the BASR is executed would be X'000084EA'. To access
the contents of the fullword at N, using R6 as a base register, the necessary displacement is

X'0000850C' − X'000084EA' = X'022'.

Similarly, the displacement necessary in the “ A ” instruction is

X'00008510' − X'000084EA' = X'026'.

Thus the assembled program would appear in storage as shown in the figure below.

26 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Address Assembled Contents

84E8 0D60
84EA 58206022
84EE 5A206026
84F2 50206022

-----------------
850C 00000008
8510 00000001

Figure 7. Same Program Segment, with Assembled Contents

The identical assembled program is generated in both cases. It therefore appears that so
long as the same fixed relationship is maintained among the various parts of the program
segment (there must be 22 bytes between the ST instruction and the fullword named N, and
that N and ONE name areas that fall on fullword boundaries), then the program segment
could be placed anywhere in storage and still execute correctly. That is, the program is
relocatable.

The displacements of the three RX-type instructions were calculated on the assumption that
at the time the program is executed there would be an address in R6 (the address of the L
instruction named BEGIN) which could be used for a base address. (This is a key observa-
tion; we will use it shortly.) Indeed, we could have assumed that the program began at
storage address zero (even though an actual program would not be placed there) because
the contents of R6 after the BASR is executed would then be X'00000002', and the displace-
ments would be calculated exactly as before.

In the first example, the actual origin of the program segment was X'5000'. We could by
chance have assigned X'5000' as an assumed origin in the program, and then the values of
the Assembler's Location Counter (LC) would be identical to the actual addresses later
assigned by the Supervisor to each instruction. In certain simple operating systems it is pos-
sible that someone can tell us the actual origin that will be assigned by the Supervisor to
our program; in general, however, this is an unnecessary and occasionally misleading piece
of information.

Explicit Base and Displacement
Knowing what we want to obtain for the assembled program (the machine language
instructions shown in Figure 5 on page 26 and Figure 7), we will now write the instruction
statements with explicit addresses in their second operands. Register 6 is the base register,
and the displacements are the ones we calculated above. Then we can write the program as
shown in the following figure, using an assumed origin of zero for the LC.

Location Name Operation Operand

0000 BASR 6,0
0002 BEGIN L 2,X'022'(0,6)
0006 A 2,X'026'(0,6)
000A ST 2,X'022'(0,6)

--------- 22 bytes ----------
0024 N DC F'8'
0028 ONE DC F'1'

Figure 8. Program Segment with Pre-calculated Explicit Base and Displacements

This example of a program has two major shortcomings. First, calculating all the displace-
ments in advance is a nuisance (especially in large programs), to say nothing of being error-

Ordinary USING Statements 27



prone. Second, if the relative positions of the parts of the program were to change in any
way, we would be forced to recalculate some or all of the displacements.

Thus, our first simplification in this program is to devise a way to make the Assembler
compute the displacements in the same way we did by hand. Now, however, we will make
use of the values assigned by the Assembler to the symbols BEGIN, N, and ONE. (The
values of the symbols are the values of the LC when the statement is scanned; thus the
values assigned to these three symbols will be the value of the assumed origin plus X'2',
X'24', and X'28' respectively.)

The key to this example is the observation made in discussing Figure 7 on page 27 above:
at the time the program is executing, the base register we have chosen (R6) will contain the
address of the instruction named BEGIN. We remember that the difference between
assembly-time locations and execution-time addresses in a relocatable program can be only
a single constant value, so we can rewrite the program segment as shown below.

Manually-Specified Base and Displacement

OLDU-3 Copyright IBM Corporation 1993, 2001HLASM

Consider assigning bases and displacements symbolically

− Displacements derived “manually” for each symbol reference

Location Name Operation Operand

0000 BASR 6,0
0002 BEGIN L 2,NÄBEGIN(0,6)
0006 A 2,ONEÄBEGIN(0,6)
000A ST 2,NÄBEGIN(0,6)

ÄÄÄÄÄÄÄ 22 bytes of stuff ÄÄÄÄÄÄÄ
0024 N DC F'8'
0028 ONE DC F'1'

− Each storage address specifies two items: an origin and a register

Prefer to specify those just once

Hence, the USING statement!

Location Name Operation Operand

0000 BASR 6,0
0002 BEGIN L 2,N-BEGIN(0,6)
0006 A 2,ONE-BEGIN(0,6)
000A ST 2,N-BEGIN(0,6)

------- the usual 22 bytes -------
0024 N DC F'8'
0028 ONE DC F'1'

Figure 9. Program Segment with Explicit Base and Assembler-Calculated Explicit Displacements

In this example we have eliminated both of the shortcomings of the program segment in
Figure 8 on page 27: the values of the displacements were not calculated in advance, and
the insertion of (say) four more bytes of instructions or data preceding the DC statements
would not require that the rest of the program be rewritten. However, we have generated
another nuisance, since every instruction containing a reference to a symbol must now
specify two extra items: the symbol BEGIN, and the base register (6). It is therefore natural
to devise some means that will let the Assembler do the rest of the work for us, after we

28 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



have specified (1) the base register and (2) the value that will be in it when the program is
executed.

The USING Statement and Implied Addresses
The USING assembler instruction statement provides exactly this information. It is written

USING s,r1

where “ s ” is a relocatable expression. (Very infrequently, an absolute expression is used;
we will mention this again in “Calculating Displacements: the Assembly Process” on
page 32, and in more detail at “Absolute USINGs, Absolute Expressions” on page 39.) The
value provided by the expression “ s ” is sometimes called the base location. The operand r1
is an absolute expression of value less than 16, which specifies the register to be used as a
base register. Thus, the statement

USING BEGIN,6

informs the Assembler that register 6 may be assumed (for purposes of computing displace-
ments at assembly time) to be a base register which at execution time will contain the relo-
cated value of the symbol BEGIN.

We could rewrite the sample program segment to include the USING statement as in the
figure below.

Assembler-Calculated Base and Displacement

OLDU-4 Copyright IBM Corporation 1993, 2001HLASM

USING combines base-register and base-location information

− Relation to actual addressing instructions is unknown!

BASR 6,0
USING BEGIN,6

BEGIN L 2,N
A 2,ONE
ST 2,N

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
N DC F'8'
ONE DC F'1'

Benefits:

− Simplified references to addressable operands

− Assembler assigns registers and calculates displacements

− Improved readability and maintainability

BASR 6,0
USING BEGIN,6

BEGIN L 2,N
A 2,ONE
ST 2,N

-----------------------
N DC F'8'
ONE DC F'1'

Figure 10. Program Segment with USING Instruction

Ordinary USING Statements 29



If the initial LC value assigned by the programmer is zero, the value of the symbol BEGIN
will be X'2', and the values of the symbols N and ONE will be X'24' and X'28' respectively.
To complete its derivation of the addressing halfword of the ST instruction, the Assembler
needs only to note that the difference between the value of the symbol N, and the value
(BEGIN) specified in the USING instruction as being present in R6, is X'24'− X'2' = X'22';
this is the required displacement.

Similarly, the implied address in the operand field of the A instruction has value X'28'; when
the base location value is subtracted, we obtain a displacement of X'26', as before. We say
that the Assembler has resolved the implied addresses of the L, A, and ST instructions into
base-displacement form. Thus, the machine language generated from this set of statements
would appear exactly as in Figure 5 on page 26 and Figure 7 on page 27 above. (A more
detailed discussion of the method used by the Assembler to compute displacements and
assign bases will be given in “Calculating Displacements: the Assembly Process” on
page 32.)

If the attempted calculation

displacement = (symbol value) − (base location value)

yields a negative value, or a value greater than 4095, the location referred to by the symbol
is still not addressable, and some other solution would be needed.

It is clear that the Assembler can make use of the information supplied by the USING state-
ment only for implied addresses. If you provide an explicit base and displacement, then the
Assembler will simply convert them to their proper binary form.

Two important features of the program segment in Figure 10 on page 29 should be noted.

1. The USING instruction does absolutely nothing about actually placing an address into a
register; it merely tells the Assembler what to assume will be there when the program is
executed.

That is, the USING statement is merely a promise from the programmer to the Assembler
that if the Assembler computes displacements in the standard manner, everything will
work properly when the program is executed. (Needless to say, it is easy to lie to the
Assembler; see “Incorrectly Specified Base Registers” on page 31).

2. If the BASR instruction had been omitted, the contents of R6 is unknown. Thus, there is
no guarantee that when the program is executed, the correct effective addresses will be
computed. The following example will help to illustrate this.

Location Counter Reference
The Assembler provides a very useful notational device for referring to the current value of
the Location Counter, the Location Counter Reference. The term “ *” in an expression is
given the current value of the LC; hence it is relocatable.

Thus we can rewrite the first two statements of our sample program as

BASR 6,0
USING *,6

and achieve the same results as before. Remember that after the BASR is assembled, the
LC will have a value corresponding to the location of the next byte to be assembled.
Because the BASR will at execution time place the address of the following instruction into
R6, we can use a Location Counter Reference to specify the base location, and not have to
use a symbol (such as the symbol BEGIN in Figure 10.3.2) to name the following instruction.

A common technique for specifying base registers in a program is to choose a base register,
write the statements

BASR reg,0
USING *,reg

30 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



at the beginning of the program, and then carefully avoid modifying that register. Thus, for
simple programs, specifying and using base registers is reduced to a very simple procedure.

Incorrectly Specified Base Registers
A careless programmer inverted the order of his BASR and USING statements as follows:

USING *,12
BASR 12,0

Why is this wrong? Precisely what would you expect to happen?

The two statements are in the wrong order. The value of the LC before the BASR is encount-
ered may be 2 (or even 3) less than the value of the LC after the BASR has been assembled.
Thus the value placed in the USING table by the Assembler will cause it to calculate dis-
placements that are 2 (or 3) bytes too large. This will undoubtedly lead to incorrect operand
addresses when the program is executed. Stated somewhat differently: the values of the
base location specified in the USING expression (at assembly time) and the base address (at
execution time), both measured relative to the start of the program, will not be the same.

Destroying Base Registers
Suppose an error had been made in preparing the statement with the L instruction, such that
it became

BEGIN L 6,N Load contents of N into R2

(the first operand was incorrectly typed as 6 instead of 2). The assembled program would
then appear as in Figure 11, assuming that an assumed origin of zero had been assigned to
the Location Counter.

Location Assembled Contents Statement
0000 0D60 BASR 6,0

USING BEGIN,6
0002 58606022 BEGIN L 6,N WRONG REGISTER!
0006 5A206026 A 2,ONE
000A 50206022 ST 2,N

---------------------------
0024 00000008 N DC F'8'
0028 00000001 ONE DC F'1'

Figure 11. Sample Program Segment with Erroneous Statement

This program will assemble correctly with no diagnostic messages, since all quantities are
properly specified according to the rules of the Assembler Language. However, at execution
time, things go wrong in a hurry.

Suppose again that the program is placed in storage by the Supervisor starting at X'5000',
so that when the L instruction is executed, R6 contains X'00005002'. Now, the L instruction is
supposed to transmit a fullword from storage (at the address given by the second operand)
into the register specified by the first operand. However, the first operand in this case speci-
fies R6, instead of R2 as desired. When the effective address (of N) is being calculated
during instruction decoding, R6 will contain the correct base address; but when the exe-
cution of the L instruction is complete, the contents of R6 will have become X'00000008', and
not X'00005002', because the number at N will have been placed into R6.

Now the fun begins. When the next instruction (A) is executed, the effective address calcu-
lated is

X'026' + X'00000008' = X'0000002E'

Ordinary USING Statements 31



and not X'00005028', which is the address where the desired operand is to be found. In this
case, the generated effective address is not only not on a fullword boundary, but it is also
somewhere among the old and new PSW's at the bottom end of storage; strange numbers
will be added to R2's initial (and unknown) contents. Finally, the ST instruction will attempt
to store a fullword at X'0000002A', which should cause a storage protection exception. At
this point, the program should stop.

This does not by any means imply that whenever we have the misfortune to destroy the con-
tents of a base register, the processor will be able to detect the error. Indeed, if the con-
tents of the fullword at N had been the decimal integer 20450 instead of 8, then the effective
address would have been computed to be X'4FE2'+ X '26'= X '5008', which is a perfectly
acceptable storage address for a fullword (and, besides, it's somewhere inside our
program!). The subsequent instructions would thus have gone their merry and oblivious way,
adding the contents of the fullword at storage location X'5008' to R2, and storing the result
at location X'5004', which is obviously not what is intended!

It is partly a matter of chance how much damage such a program error can cause when the
program is executed; indeed, when the processor finally (if it ever) detects an error, all evi-
dence pointing to the offending instruction may have been lost (R6 may have been changed
several times!), making error tracing difficult. Thus you must take care to guarantee the
integrity of the contents of base registers, since the Assembler makes no checks for
instructions that might alter the contents of registers designated in USING instructions as
base registers.

Calculating Displacements: the Assembly Process
The method used by the Assembler to compute bases and displacements for implied
addresses was described earlier in this section; we will now examine the process more
closely.

One can visualize assembly as being done by making two passes over the program: that is,
the Assembler “reads” the program twice. On the first pass, the Symbol Table is built; on
the second pass, the data in the Symbol Table is used to help generate the desired
instructions and data.

Pass One
We will now describe (in simplified form) the first pass of an assembly.

First, you will remember that values are assigned to symbols by the Assembler as follows:

1. A statement is read and examined to determine its general character. It is also saved in
some temporary storage place so that it can be read again during the second pass over
the program.

2. If the statement will generate instructions or data, the Assembler adjusts the Location
Counter (if necessary) to satisfy alignment requirements, so that instructions begin on
halfword boundaries, fullwords begin on fullword boundaries, etc.

3. If a symbol appears in the name field of the statement, it is entered into the Assembler's
Symbol Table, and (if it is not an EQU statement) is given the value of the Location
Counter. That is, the symbol is defined. (Of course, it will be an error if the symbol is
already in the table with a value; this is called multiple or duplicate definition.)

4. The rest of the statement is scanned; if any other symbols are encountered, they are
entered into the symbol table (if not there already), but numeric values are not assigned
to their attributes. That is, if the symbol is not yet defined, it remains “undefined”.

5. The length of the instruction or data to be generated from the statement is then added to
the Location Counter. No data or instructions are generated at this time, however.

32 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



This process is repeated for each statement, until the end of the program is reached.
Because the Assembler has made a complete scan or “pass” over the program's state-
ments, this is called “Pass One” of the assembly. At this point the Symbol Table contains all
the symbols in the program, whether or not they are defined.

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄH́ Read statement³
↑ ³ and save it ³
³ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ
³ ↓
³ ÚÄÁÄÄÄÄ¿yes ÚÄÄÄÄÄÄÄÄÄ¿
³ ³'END'?ÃÄÄÄÄH́ to Pass 2³
³ ÀÄÂÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÙ
³ ↓no
³ yes ÚÄÄÁÄÄÄÄÄ¿
ÃIÄÄÄÄÄ́ comment?³
↑ ÀÄÄÂÄÄÄÄÄÙ
³ ↓no
³ ÚÄÄÄÄÁÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄ¿
³ ³InstructionÃÄÄÄÄH́ symbol in ÃÄÄÄH́ is it in³
³ ³statement? ³yes ³name field?³yes ³symÄtbl?³
³ ÀÄÄÄÄÂÄÄÄÄÄÄÙ ÀÂÄÄÄÄÄÄÄÄÄÄÙ ÀÂÄÄÄÄÂÄÄÙ
³ ³no no³ ÚÄÄÄÄÄÄÄÄ¿ no³ ³yes
³ ↓ ↓ ³enter itÃIÄÄÙ ↓
³ ÚÄÄÄÁÄÄÄÄÄ¿ ³ ÀÄÄÄÂÄÄÄÄÙ ÚÄÄÄÁÄÄÄ¿
³ ³Undefined³ ³ ↓ no³does it³
ÃIÄÄÄÄ́ opcode ³ ³ ÃIÄÄÄÄÄÄÄÄ́ have a ³
↑ ÀÄÄÄÄÄÄÄÄÄÙ ³ ↓ ³value? ³
³ ³ ÚÄÄÄÄÄÁÄÄÄ¿ ÀÄÄÄÂÄÄÄÙ
³ ³ ³set value³ yes³
³ ÃÄ́ from LC ³ ↓
³ ÚÄÄÄÄÄÄÄÄ¿ ↓ ÀÄÄÄÄÄÄÄÄÄÙ ÚÄÄÄÄÄÄÄÁÄÄ¿
³ ³enter in³ ÚÄÄÄÄÄÄÁÄÄÄÄÄÄÄ¿ ³note error³
³ ³table, ³ Y³symbol(s) in ³ ÀÄÄÄÄÄÄÄÂÄÄÙ
³ ³no valueÃIÄ́ operand field?ÃIÄÄÄÄÄÄÄÄÄÄÄÄÙ
³ ÀÄÄÂÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ
³ ↓ no↓
³ ÚÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
ÀÄÄÄÄ́ increment LC by instruction length³

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 12. Pass One of Assembly

This figure is incomplete in many ways. For example, you will remember that the EQU state-
ment allows you to assign a value to a symbol, and the value is taken from the expression in
the operand field of the EQU statement. The figure above, however, only shows values being
assigned to symbols by using the value of the Location Counter. It also omits any
description of how erroneous statements are handled.

Pass Two
The Assembler now begins a second pass over the program by retrieving the statements
from their temporary storage place. This time, however, the Assembler uses the data in the
Symbol Table to evaluate all expressions appearing in the statements. When a USING state-
ment is encountered, the Assembler enters the value and relocatability attributes of the first
operand expression (the base location), and the value of the second expression (the register
number), into a USING Table. When a subsequent instruction statement is encountered that
contains an implied address, the Assembler compares the relocatability attribute and the

Ordinary USING Statements 33



value of that expression to each entry in the USING Table. If a valid displacement can be
calculated from

displacement = (implied address value) − (base location value)

then the Assembler inserts the computed displacement and the corresponding base register
digit into the addressing halfword of the instruction. We say that the Assembler has resolved
the implied address into base-displacement form, and that the implied address is address-
able.

For example, consider the second and third statements in Figure 10 on page 29. Assuming
that the initial LC value assigned to the program was zero, the USING Table would contain
an entry for register 6, with an associated relocatable base location value of X'00000002'
(the value of the symbol BEGIN), as illustrated in Figure 13 below. The abbreviations “ reg”
and “RA” denote respectively the register specified in the second operand of the USING
statement, and the relocatability attribute of the base location expression from the first
operand of the USING statement. For now, the only importance of the relocatability attribute
is that it indicates whether the symbol is relocatable (RA=01) or absolute (RA=00).

ÚÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄ¿
³reg³ base location ³ RA ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ 6 ³ 00000002 ³ 01 ³
ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÙ

Figure 13. USING Table with One Entry

The relocatability attribute of any given symbol almost always has a single value (it won't
matter if we ignore the special “complex” situations for now, because they don't affect
addressability). However, it is not at all unusual for a program to utilize many different
relocatability attributes to correctly describe all its symbols.

In processing the third statement in Figure 10 on page 29, the value of the implied address
is the value of the symbol N, or X'00000024'. The computed displacement is

X'00000024' − X'00000002' = X'022',

as we saw previously. Thus the completed addressing halfword is X'6022'.

We might summarize this description by saying that the Assembler does at assembly time
the opposite of what the processor does at execution time. That is, the Assembler computes
a displacement from the formula

displacement = (operand location) − (base location).

At execution time, the processor reverses this computation:

(operand address) = displacement + (base address).

The importance of giving correct information in a USING statement is now apparent, since it
specifies the intimate connection between the base location at assembly time and the base
address at execution time.

The overall flow of the second pass of the assembly process is sketched in Figure 14 on
page 35 below. As noted following Figure 12 on page 33 (describing the first pass of the
assembly), this is a very abbreviated description of the second pass, so that you should not
attach great significance to the precise sequence of processing actions implied by the
diagram.

34 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



ÚÄÄÄÄÄÄÄÄÄÄÄ¿
ÚÄÄH́ Read, PrintÃIÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
↑ ³ statement ³ ↑ ↑
³ ÀÄÄÄÄÂÄÄÄÄÄÄÙ ³ ³
³ ↓ ³ ³
³ ÚÄÄÄÁÄÄÄÄ¿yes ³ ³
³ ³comment?ÃÄÄÄÄÙ ³
³ ÀÄÄÄÂÄÄÄÄÙ ³
³ ↓no ³
³ ÚÄÄÄÁÄÄÄÄ¿yes ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
³ ³'USING'?ÃÄÄÄH́ enter data in USING TableÃÄÄÄÄ́
³ ÀÄÄÄÂÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ↑
³ ↓no ³
³ ÚÄÄÄÁÄÄÄ¿yes ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³
³ ³'DROP'?ÃÄÄÄH́ delete entry from USING TableÃÄÙ
³ ÀÄÄÄÂÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
³ ↓no
³ ÚÄÄÁÄÄÄ¿yes ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³'END'?ÃÄÄÄH́ return to Supervisor³
³ ÀÄÄÂÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
³ ↓no
³ ÚÄÄÄÁÄÄÄÄÄÄÄÄ¿yes ÚÄÄÄÄÄÄÄÄ¿yes ÚÄÄÄÄÄÄÄ¿
³ ³machine ÃÄÄÄH́ implied ÃÄÄÄH́ compute³
³ ³instruction?³ ³address?³ ³ value ³
³ ÀÄÄÄÂÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÂÄÙ ÀÄÄÄÂÄÄÄÙ
³ ↓no no ↓ ↓
³ ÚÄÄÄÁÄÄÄÄÄ¿yes ÚÄÄÄÄÄÄÄ¿ ³ ÚÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³define a ÃÄÄÄH́ convert³ ³ ³check USING Table for³
³ ³constant?³ ³ data ³ ³ ³a valid displacement ³
³ ÀÄÄÄÂÄÄÄÄÄÙ ÀÄÄÂÄÄÄÄÙ ³ ÀÄÂÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÙ
³ ↓no ↓ ³ ↓OK ↓none
³ ÚÄÄÄÄÄÁÄÄÄÄ¿ ³ ÃÄÄÄÙ ÚÄÄÄÄÄÄÄÁÄÄÄÄÄÄ¿
ÃIÄ́ note error³ ³ ↓ ³addressability³
↑ ÀÄÄÄÄÄÄÄÄÄÄÙ ³ ³ ³ error ³
³ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÁÄ¿ ÀÄÄÄÄÄÄÄÂÄÄÄÄÄÄÙ
ÀÄÄ́ Generate instruction or dataÃIÄÄÄÄÄÄÄÄÄÄÄÄÙ

ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 14. Pass Two of Assembly

An important feature of the High Level Assembler is that it provides an optional summary of
all USING Table activity, in the form of a USING Map. If you specify USING(MAP) as part of the
parameter string when you invoke the High Level Assembler, it will display all USING and
DROP activity for the entire program.

Multiple USING Table Entries
It is possible to have more than one entry in the USING Table, and therefore to have a
number of possible correct resolutions of an implied address into base-displacement form.

Suppose we add another USING statement to the program, so that it looks like this:

Ordinary USING Statements 35



Name Operation Operand Remarks

BASR 6,0
USING *,6

BEGIN L 2,N
USING *,7 Added USING statement
A 2,ONE
ST 2,N

---------------------------
N DC F'8'
ONE DC F'1'

Figure 15. Program Segment with Second USING Statement

(For the moment, ignore the fact that the contents of register 7 is unknown; we will discuss
this point shortly.)

When the second USING is scanned, the value of the Location Counter is X'00000006', so
the assembler will make a second entry in the USING Table, as shown in Figure 16.

ÚÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄ¿
³reg³ base location ³ RA ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ 6 ³ 00000002 ³ 01 ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ 7 ³ 00000006 ³ 01 ³
ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÙ

Figure 16. USING Table with Multiple Entries

When the next statement

A 2,ONE

is scanned, there are two possible valid resolutions available for the implied address speci-
fied by the symbol ONE:

If register 6 is used as a base register, the displacement is

X'00000028' − X'00000002' = X'026'

and the addressing halfword would be X'6026' (as shown in Figure 11 on page 31).

If register 7 is used as a base register (again, ignoring the fact that its run-time contents
are unknown), the assembler determines that the displacement is

X'00000028' − X'00000006' = X'022'

and the addressing halfword would be X'7022'. (Similarly, the ST instruction could have
an addressing halfword X'701E'.)

Now the assembler must make a choice: which of the two valid resolutions should be
selected for the completed machine language instruction?

The High Level Assembler uses these resolution rules:

1. Find the USING table entries whose relocatability attribute matches that of the implied
address to be resolved. If no matching entry is found, HLASM issues message
ASMA307W indicating that no USING statement is active for the control section having
the relocatability attribute of the implied address. (If the implied address is complexly
relocatable, no match will be found.)

36 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



2. Choose the base register which leads to the smallest valid displacement. If the dis-
placement exceeds the USING range (usually 4095 bytes), HLASM notes the excess in
message ASMA034E.

3. If more than one base register provides the same smallest displacement, choose the
corresponding highest-numbered register.

The implications of these choices will be discussed in more detail later.

Thus, the assembled program would appear as shown in Figure 17 below:

Location Assembled Contents

00000 0D60
00002 58206022 Based on register 6
00006 5A207022 Based on register 7
0000A 5020701E Based on register 7

-----------------
00024 00000008
00028 00000001

Figure 17. Assembled Contents when Two USINGs Are Active

At this point, you could (correctly) observe that this program is seriously (if not fatally)
flawed, because the contents of register 7 at execution time could be “anything”. When the
A and ST instructions are executed, their operand addresses are likely to cause errors
(whether or not they are detected immediately!).

There is an important lesson in this example: the Assembler has no way of knowing that the
information supplied in the statement

USING *,7

may not be valid. It can only proceed on the assumption that you have provided correct
base-location and register data it can use to resolve implied addresses.

Resolutions With Register Zero
There is one further resolution rule used by the assembler when absolute implied addresses
are not resolved according to the three previous resolution rules:

4. If no previous resolution has been completed, and the implied address is absolute and
has value between 0 and 4095, use General Register 0 as the base register and the
value of the implied address expression as the displacement.

Thus, if an implied address happens to be absolute, and has a value between 0 and 4095,
the Assembler will assign a base digit of zero and a displacement equal to the value of the
implied address. This behavior is used frequently in Assembler Language programs. Thus,
if any implied address has a value that is absolute, a valid displacement can be computed
only if that value does not exceed 4095.

According to the rules for evaluating expressions, an attempt to compute a displacement for
a relocatable symbol using an absolute base location of value zero would require that the
displacement be relocatable, which is of course invalid. That is, a valid displacement cannot
be calculated from

(absolute) displacement ?= (relocatable) − (absolute).

Similarly, an absolute implied address cannot be resolved into base-displacement form
using a register whose base location is relocatable, since a valid displacement cannot be
computed from

Ordinary USING Statements 37



(absolute) displacement ?= (absolute) − (relocatable).

Note: It is possible (but not recommended!) to specify USING statements with register zero
as the base register, but the assembler will always assign a base address of zero to register
zero.

The DROP Statement
It is also possible to delete entries from the USING Table. The DROP statement tells the
Assembler to remove the information corresponding to a given register. For example, if the
statement

DROP 6

was inserted after the third statement (labeled BEGIN) in Figure 15 on page 36, the initial
entry would be deleted, and the USING table would appear as in Figure 18 below.

ÚÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄ¿
³reg³ base location ³ RA ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ ³ empty ³ ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ 7 ³ 00000006 ³ 01 ³
ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÙ

Figure 18. USING Table After DROP Statement

Unusable USING Table Entries: Addressability Errors
Suppose a second DROP statement is added after the A instruction in the program shown in
Figure 15 on page 36, specifying register 7:

DROP 7

Then, the remaining entry in the USING Table would be deleted, and the USING table would
appear as in Figure 19 below.

ÚÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄ¿
³reg³ base location ³ RA ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ ³ empty ³ ³
ÃÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄ́
³ ³ empty ³ ³
ÀÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÙ

Figure 19. USING Table After Second DROP Statement

Because there are no entries left in the USING Table, there is no way for the Assembler to
resolve the implied addresses of any following instructions, and an addressability error con-
dition would be noted for those statements.

38 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Absolute USINGs, Absolute Expressions
While USING statements specifying absolute base addresses are rare, they are allowed; and
absolute implied address expressions are subject to the same resolution rules as relocat-
able expressions. In most cases, there is no entry in the USING Table with an absolute base
address, and the assembler proceeds as though an implicit

USING 0,0 Assembler's implicit USING-Table entry

is always present. Thus, an implied address such as

LA 3,1000 Implied address = 1000

would be resolved to the addressing halfword X'03E8'.

Now, suppose you had provided a USING statement with an absolute base address:

USING 400,9 Base Address = 400
LA 3,1000 Implied address = 1000

The assembler follows its usual resolution rules, and determines that there are two valid
resolutions: X'03E8' and X'9258'. Since the latter provides the smallest displacement, the
assembler chooses that resolution!

If the original resolution (using base register zero) is required no matter what other USINGs
may be active, the terms of the previously implied address should be written explicitly, as

LA 3,1000(0,0) Explicit displacement = 1000, base = 0

Ordinary USING Statements: Summary

OLDU-5 Copyright IBM Corporation 1993, 2001HLASM

Your promise to the assembler:

− Assume this location will be in that register
− Calculate base-displacement resolutions
− Run-time addresses will be evaluated correctly

Limitations

− Symbolic addressing requires USINGs
— Whether or not run-time addressing requires distinct registers

− Multiple resolution problems
− Base register selection rules are too easy to forget:

1. Search USING Table for entries with relocatability attribute matching that of the
expression to be resolved (no match: ASMA307W)

2. Select entry (or entries) yielding smallest valid displacement
(beyond USING range: ASMA034W indicates how far)

3. Select highest-numbered register with that smallest displacement
4. If an absolute expression is unresolved, try R0 with base zero

It's very easy for you and the assembler to mis-communicate...!

Summary
In summary, the ordinary USING statement provides two major features:

1. A base location relative to which the Assembler can calculate displacements

2. A base register to be used in addressing halfwords of those implied addresses whose
displacements were calculated as being addressable with this register

Ordinary USING Statements 39



It is important to remember that the information conveyed in a USING statement is only, and
no more than, a promise that you make to the Assembler. The promise is that if the Assem-
bler uses the base location and base address specified in the USING statement to calculate
addressing halfwords at assembly time, then when at execution time the base address in the
specified base register is used by the processor to calculate an effective address, the
desired (and correct) address will be delivered.

Unfortunately, the rules used by the assembler to resolve implied addresses into base-
displacement form are difficult to remember, and their complexity (and sometimes, subtlety)
can lead to programming errors that can be quite difficult to correct.

1. The assembler searches the USING Table for entries with a relocatability attribute
matching that of the implied address (which will almost always be simply relocatable, but
may be absolute). (If the implied address is complexly relocatable, no match will be
found.)

2. For all such matching entries, the assembler checks to see if a valid displacement can be
derived. If so, it will select as a base register that register which yields the smallest valid
displacement. If the smallest valid displacement exceeds the USING range (usually 4095
bytes), the assembler will indicate the amount by which the implied address was not
“reachable”.

3. In the event that more than one register yields the same smallest displacement, the
assembler will select as a base register the highest-numbered register.

4. If no resolution has been completed, and the implied address is absolute, attempt a
resolution with register zero and base zero.

We will see in “New USING Statements” on page 41 that you may achieve even greater
control over these resolutions, and that High Level Assembler provides new capabilities to
assist in managing and diagnosing address resolutions.

40 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



New USING Statements

NEWU-1 Copyright IBM Corporation 1993, 2001HLASM

New USING Statements

HLASM provides three powerful new forms of USING statement that can simplify coding,
reduce errors, and help you write more efficient code without obscurities. They also help you
to achieve the advantages of fully symbolic coding techniques while improving flexibility.

We will illustrate these new USING statements below.

Goals of Any Addressing Methodology

NEWU-2 Copyright IBM Corporation 1993, 2001HLASM

Increased opportunities for clear, simple coding

− Easier to write, understand, and maintain

Support efficient coding

− Maximize performance without devious obscurities

− Minimize need to remember arcane language rules

Let the Assembler assign registers and displacements

− Better controls over resolutions

− More understandable and maintainable code

Encourage fully-symbolic references to all objects

New USING Statements 41



Desirable Properties of Any Addressing Method
Any addressing method should provide as many of the following benefits as possible.

1. Coding should be simple, clear, understandable, and efficient. These help with simplicity,
readability, and maintainability.

2. All instructions should use fully symbolic references. These help with readability and
maintainability.

3. Base registers and displacements should always be automatically assigned by the
assembler from information provided in USING statements, and never be supplied as
constants or as manual calculations. These also help with quality, readability, and main-
tainability.

Ordinary USINGs can easily fail in one or more of these respects, as some of the following
illustrations will demonstrate. We will also show how the new USING statements can avoid
most of these failures.

Problems with Ordinary USING Statements

NEWU-3 Copyright IBM Corporation 1993, 2001HLASM

Ordinary USINGs have several shortcomings:

1. Cannot make simultaneous references to multiple instances of a given
control section

− Unless you write “tortured” code

2. Cannot map more than one DSECT per register

− Unless you write “tortured” code

3. Cannot specify fixed relationships among DSECTs at assembly time

− Unless you write “tortured” code

New USING statements in High Level Assembler

− Alleviate all these problems

− Coding can be simpler, cleaner, more understandable

− Less need to understand complex assembler rules

Problems with Ordinary USING Statements
There are three major problems with ordinary USING statements:

1. You cannot make “simultaneous” reference to multiple instances of a given control
section (usually, a DSECT).

2. You cannot map more than one DSECT with a single register.

3. You cannot specify fixed relationships among related DSECTs at assembly time. (You
can do this at execution time, but only at cost of allocating additional base registers).

The new USING statements in High Level Assembler solve all these problems, while still
supporting fully-symbolic addressing capabilities.

42 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



New USING Statements in High Level Assembler

NEWU-4 Copyright IBM Corporation 1993, 2001HLASM

1. Labeled USINGs

Simultaneous reference to multiple instances of an object

One object per register

2. Dependent USINGs

Address multiple objects with a single register

Greater program efficiency (fewer base registers required)

Dynamic structure remapping during execution

3. Labeled Dependent USINGs

Combines benefits of Labeled and Dependent USINGs

Simultaneous reference to (possibly multiple) occurrences of multiple objects
with a single register

Easier mapping of complex data structures

Three New USING Statements
High Level Assembler provides two major types of extension to the USING statement:
labeled and dependent. They may also be used in combination, as labeled dependent
USINGs, giving you a repertoire of four different types of USING statement.

This enhancement (adapted from the “SLAC Mods to Assembler H”)1 permits much greater
control over the assignment and resolution of base addresses in symbolic expressions and
provides a capability that can improve the reliability, maintainability, and efficiency of
assembler language applications.

Labeled USINGs permit you simultaneously to address multiple instances of a DSECT
without the usual additional ordinary USING and DROP statements, and without the need
to explicitly code offsets and base registers. Thus, you can concurrently manage multiple
copies of the same DSECT-defined data structure using the full symbolic capabilities of
the assembler language.

Dependent USINGs permit you to address multiple DSECTs that are anchored by a single
base register, enabling you to describe adjacent, nested, or overlapping code and data
structures. This means that (unlike the symbolic addressing techniques required with all
previous assemblers) you can actually reduce the number of general registers required
for addressing DSECTs and assign them to other uses. This permits you to write more
efficient code while retaining the traditional advantages of fully symbolic addressing for
DSECT-mapped data.

We will see that dependent USINGs have a useful dynamic property, whereby declara-
tions may be changed in the code. This allows different mappings to be used on different
code paths. (These relationships are not so dynamic that displacements are calculated
at execution time; High Level Assembler still requires that all implied addresses be fully
resolved at the end of the assembly. Such dynamic relations are also available with ordi-
nary USINGs, but at cost of additional active base registers.)

Labeled dependent USINGs combine the benefits of both. For example, you can describe
record structures containing multiple instances of nested substructures, or of substruc-

1 The “Stanford Linear Accelerator Center Mods to Assembler H” achieved widespread use, and many customer
and user-group requirements submitted to IBM were based on experiences with those extensions.

New USING Statements 43



tures that depend on a variable elsewhere in the containing structure. Although such
complex data structures are commonly used in higher level languages, previous assem-
blers could describe them only with very complex and difficult coding.

As you will see from the following examples, the possibilities for mapping and addressing
complex data structures are much richer and more varied than with previous assemblers.
Following the examples, we will summarize the properties of the four types of USING state-
ments supported by High Level Assembler at “Summary of USING Statements” on page 89.

Labeled USING Statements
Labeled USING statements provide you with the capability of symbolically addressing more
than one instance of a given control section at the same time. The usual rules for base-
displacement resolution of symbolic operands are restricted to operands whose qualifier
matches that on a valid USING statement.

Labeled USING Statements and Qualified Symbols

NEWU-5 Copyright IBM Corporation 1993, 2001HLASM

Some definitions:

1. A qualified symbol is of the form qualifier.ordinary_symbol

2. A qualifier is an ordinary symbol also

3. A qualifier is defined as such by appearing in the name field of a USING
statement:

qualifier USING base,register

Examples:

A USING Z,5 Qualifier A Use: A.B
LEFT USING BLOCK,9 Qualifier LEFT LEFT.DATA
RECORD1 USING MAPPING,3 Qualifier RECORD1 RECORD1.FIELD4

Qualifiers permit “directed resolution” to a specific register

Labeled USINGs and Qualified Symbols
A key concept in using labeled USING statements is the “label” or “USING label” or “qual-
if ier” or “qualifying label”; all four terms can be used interchangeably. We will try to use
only “qualif ier” unless the meaning of the other terms is clear from its context.

A qualifier is a symbol, and follows all the rules for proper form of ordinary symbols. A quali-
fied symbol is a pair of symbols separated by a period, with the first symbol being the qual-
ifier and the second being the ordinary (operand) symbol:

qualified_symbol = qualifier.ordinary_symbol

Examples: A.B
LEFT.DATA

RECORD1.FIELD4

In the above examples, the qualifiers are A, LEFT, and RECORD1. The ordinary symbols are B,
DATA, and FIELD4. Only symbols may be qualified. Even though they might make sense in the
proper contexts, qualified terms such as A.*+4 are invalid uses of a qualifier.

44 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



A symbol is defined to be a qualifier by its appearance in the name field of a USING state-
ment. The presence of this name field symbol distinguishes labeled USINGs from other
USING statements.

A USING Z,5 Qualifier A
LEFT USING BLOCK,9 Qualifier LEFT
RECORD1 USING MAPPING,3 Qualifier RECORD1

If a qualifying symbol is not present, the USING statement will be interpreted by High Level
Assembler as an ordinary USING. Because qualifiers are maintained by the assembler in
the same symbol table as ordinary symbols, they must be distinct. Thus, a qualified symbol
like X.X is invalid.

The resolution rule for labeled USINGs is particularly simple: if a symbol is qualified, it may
be resolved only with respect to the base register(s) specified in the labeled USING state-
ment with the qualifier label. This can help you to avoid errors caused by the possibility of
multiple address resolutions with ordinary USING statements.

Remember that correct qualification is no guarantee of addressability! Address resolution
still requires that displacements not exceed 4095, and that the relocatability attributes of the
addressing expression and the base location in the USING statement must match.

Examples of Labeled USING Statements
We will provide several examples to help illustrate the use and benefits of labeled USING
statements, contrasting them with the coding that would be required to obtain similar results
with ordinary USING statements. We will begin by showing how the limitations of ordinary
USING statements can cause complexities and problems that can be avoided easily with
labeled USING statements.

Managing Two Copies of a Data Structure

NEWU-6 Copyright IBM Corporation 1993, 2001HLASM

We wish to copy a field F2 between two active copies of a DSECT:

New instance (R5) Old instance (R7)

A DSECT A DSECT
F1 DS Ä Ä Ä F1 DS Ä Ä Ä
F2 DS CL(FLen) IÄÄÄ copy ÄÄÄÄ F2 DS CL(FLen)
Ä Ä Ä etc. Ä Ä Ä Ä Ä Ä etc. Ä Ä Ä

We'd like the assembler to understand statements like

MVC F2NEW,F2OLD or MVC NEW_F2,OLD_F2

Solutions with ordinary USINGs have some shortcomings...

− likely to be harder to understand and maintain

− more opportunities for incorrect or inefficient code

− harder for assembler to diagnose potential problems

− require deeper understanding of complex instruction and language rules

New USING Statements 45



Example 1: Managing Two Copies of One Structure
Suppose our program must manage two instances of a structure described by a DSECT
named A, and that we wish to move a field (say, F2) from one copy of the DSECT to the
other.

New instance Old instance

A DSECT A DSECT
F1 DS - - - F1 DS - - -
F2 DS CL(FLen) <--- copy --- F2 DS CL(FLen)
- - - etc. - - - - - - etc. - - -

Figure 20. Sample DSECT fragment, to Illustrate Problems with Ordinary USINGs

We will further suppose that

R5 and R7 point to the new and old instances of A, respectively
a simple MVC instruction is the desired efficient solution.

We would be happiest if the assembler could understand statements like

MVC F2NEW,F2OLD

or MVC NEW_F2,OLD_F2

because they convey a clear and intuitive sense of what we want to do. We shall see (after
examining some of the difficulties imposed by ordinary USING statements) that labeled
USINGs let us do this!

We will examine the following approaches:

1. an example of incorrect addressing with ordinary USINGs
2. ordinary USINGs, with manually-specified displacements
3. unusual ordinary USINGs, with manually-specified displacements
4. ordinary USINGs and an intermediate temporary variable
5. duplicated (but differently-named) copies of the DSECT
6. labeled USINGs.

46 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Managing Two Copies of a Structure (The Hard Way)

NEWU-7 Copyright IBM Corporation 1993, 2001HLASM

Some examples of solutions with ordinary USINGs:

1. Incorrect usage:

USING A,5 USING A,7
USING A,7 or USING A,5
MVC F2,F2 MVC F2,F2

2. With manually-calculated displacements (1):

USING A,5 map new instance of A
MVC F2,F2ÄA(7) move from old to new (Correct, but ugly)

3. With manually-calculated displacements (2):

USING A,7 map old instance of A
MVC F2ÄA(5),F2 move from old to new (WRONG!)

4. With manually-calculated displacements (3):

USING A,7 map old instance of A
MVC F2ÄA(,5),F2 move from old to new (Correct, but uglier)

Example 1: With Ordinary USINGs
We will illustrate several possible techniques for managing the two copies of DSECT A, using
ordinary USING statements. Some of the techniques are clearly incorrect; they are included
simply to show how (apparently) obvious and simple solutions can lead to unexpected pit-
falls.

Example 1a: Incorrect Usage

First, consider an “obvious but incorrect” solution. Suppose we wrote either of the two fol-
lowing sequences of statements:

USING A,5 USING A,7
USING A,7 or USING A,5
MVC F2,F2 MVC F2,F2

Figure 21. Incorrect Coding for Simultaneous DSECT Usage

Both of these code sequences fail because only R7 will be used to address the fields of
DSECT A. (If two registers are based on the same location, the assembler will choose the
higher-numbered register for base-displacement resolutions.) The MVC instructions will
effectively move the old field “onto itself”, producing no result whatever. (Note that High
Level Assembler will provide a diagnostic message warning about the fact that R5 has been
nullified as a base register; all other assemblers will not.

In summary, the defects of this technique are

incorrect code
no warning message from old assemblers.

New USING Statements 47



Example 1b: Correct (But Not Recommended) Usage: Manually-Specified
Displacements and Registers

Suppose now that we now rewrite these simple statements to avoid the previous problems,
by specifying the displacement and base to be used:

USING A,5 map new instance of A
MVC F2,F2-A(7) move from old to new

This sequence has the disadvantage that the displacement and base are assigned by the
programmer, rather than by the assembler. If there is ever a need to re-allocate base regis-
ters (so that, perhaps, R7 is given a different use), then all references to R7 must be located
and inspected to see if they need changing.

In summary, the defects of this technique are

more complex coding
more difficult maintenance.

Writing these two statements a different, if obvious, way can lead to even more serious diffi-
culties:

USING A,7 map old instance of A
MVC F2-A(5),F2 move from old to new

This sequence, while syntactically correct, will undoubtedly be wrong, because the syntax
rules of the Assembler Language dictate that if the first operand of an SS-type instruction is
written in the form expression1(expression2), then expression1 provides the implied address
and expression2 provides the operand's explicit length value. (A second and possibly more
serious flaw is that because expression1 is absolute, the first operand may be resolvable
with base register zero, and therefore refer to the low-addressed end of storage! Fortunately,
HLASM will attempt to diagnose such references if you specify the FLAG(PAGE0) option.)

Consider how much more difficult this problem would have been to solve if you had used
“proper” register notation:

USING A,R7 map old instance of A with R7
MVC F2-A(R5),F2 move from old to new (based on R5)

The use of the symbol R5 would lead most readers to believe that it was a correct register
reference, while in fact it is the length expression!

It will be a rare coincidence if the length of the field F2 is the same as the value of the
symbol R5, so this statement will only work “partially”, and almost always incorrectly,
despite the lack of any diagnostics.

The correct form is

USING A,7 map old instance of A
MVC F2-A(,5),F2 move from old to new

which requires remembering obscure rules of the assembler language; such usage is not
obvious to most programmers. We will see that labeled USINGs can help eliminate these
obscurities.

Another potential trap in manually assigning registers is that USINGs may be in effect for
both the old and new register numbers, in such a way that a statement may assemble cor-
rectly but its operand(s) may be resolved with respect to the wrong register.

48 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Managing Two Copies of a Structure (The Hard Way)...

NEWU-8 Copyright IBM Corporation 1993, 2001HLASM

5. With (strangely) manually-calculated displacements (4):

USING A,5 map new instance of A
USING 0,7 map old instance of A (somewhat...)
MVC F2,F2ÄA move from old to new

Ä Ä Ä more statements (forgetting to drop R0)

LA 1,100 Resolved on R7! (X'41107064')

6. With (desperately) manually-calculated displacements (4):

USING A,5 map new instance of A
USING 0+X'F999',7 map old instance of A (differently)
MVC F2,F2ÄA+X'F999' move from old to new

7. Manual assignments may be wrong if the size of DSECT A
exceeds 4K bytes

USING A,5,6 map new instance of A
* USING A,7,8 implicit map of old instance of A

MVC F2,F2ÄA(7) F2ÄA might exceed 4095?

To avoid these syntactic difficulties, a clever programmer might observe that a manually-
calculated displacement can be resolved without having to specify a base register explicitly
by specifying a zero base address and the desired register:

USING A,5 map new instance of A
USING 0,7 map old instance of A (somewhat...)
MVC F2,F2-A move from old to new

and the MVC instruction will now resolve correctly.

However, if you forget to DROP register 0, later statements that depend on absolute
expressions resolving with register 0 may not give the correct object code:

- - - more statements (forgetting to drop R0)
LA 1,100 Resolved on R7! (X'41107064')

To avoid this defect, our clever programmer may also observe that setting a large absolute
offset in the USING statement and in the manually calculated displacement avoids contam-
inating later resolutions intended for R0:

USING A,5 map new instance of A
USING 0+X'F999',7 map old instance of A (differently)
MVC F2,F2-A+X'F999' move from old to new

Again, the code is correct, but at the cost of complexity and coding unlikely to be understood
by later maintainers.

Example 1c: Problems with “Manual” Assignment

Suppose the data structure mapped by DSECT A grows to be longer than 4096 bytes.
Naturally, you would establish two base registers to map each of the two instances:

LA 6,4095(0,5) increment R5 by 4095 into R6...
LA 6,1(0,6) and by 1 more, for second base
USING A,5,6 map new instance of A
LA 8,4095(0,7) increment R7 by 4095 into R8...
LA 8,1(0,8) and by 1 more, for second base

* USING A,7,8 implicit map of old instance of A

Then, if you write

New USING Statements 49



MVC F2,F2-A(7) F2-A might exceed 4095?

the correctness of the second operand depends on whether the manually-assigned displace-
ment F2− A is less than 4095. If not, the displacement will be too large, and the manually-
assigned register (7) will be incorrect. Thus, you would have to write

MVC F2,F2-A-4096(8) if F2-A exceeds 4095

which is obviously error-prone, since it depends on the current size of DSECT A and the
position of field F2 within A.

In summary, the defects of these techniques are

greater likelihood of undetected error
deeper understanding required of language details
more complex coding
more difficult maintenance.

Managing Two Copies of a Structure (The Hard Way)...

NEWU-9 Copyright IBM Corporation 1993, 2001HLASM

8. With an intermediate temporary (1):
USING A,7 map old instance of A
MVC TEMP(FLen),F2 move from old to temp
USING A,5 map new instance of A
MVC F2,TEMP move from temp to new (WRONG!)

9. With an intermediate temporary (2):
USING A,7 map old instance of A
MVC TEMP(FLen),F2 move from old to temp
DROP 7 must DROP register 7 first
USING A,5 map new instance of A
MVC F2,TEMP move from temp to new (RIGHT!)

10. With a duplicated copy of the DSECT:
B DSECT B is a copy of A
G1 DS Ä Ä Ä
G2 DS CL(FLen)
Ä Ä Ä etc. Ä Ä Ä

USING B,7 map old instance of A (named B)
USING A,5 map new instance of A
MVC F2,G2 move from old to new

Each of these examples is not untypical of current coding styles...

Example 1d: Correct (But Still Not Recommended) Usage: Intermediate Temporary
Variable

Correct references to the specific instances of the DSECT A can be obtained (apparently) by
using an intermediate temporary storage area:

USING A,7 map old instance of A
MVC TEMP(FLen),F2 move from old to temp
USING A,5 map new instance of A
MVC F2,TEMP move from temp to new

Figure 22. Incorrect Coding for Intermediate Temporary

Unfortunately, this version fails because the programmer forgot the (possibly obscure) rule
that if two registers are based at the same location, the higher-numbered register will be
used for calculating displacements. Thus, the second MVC instruction will merely move the
data from TEMP back to where it started!

The solution for ordinary USINGs is to insert a DROP statement for R7:

50 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



USING A,7 map old instance of A
MVC TEMP(FLen),F2 move from old to temp
DROP 7 delete mapping of old instance of A
USING A,5 map new instance of A
MVC F2,TEMP move from temp to new

Figure 23. Corrected Coding for Intermediate Temporary

In summary, the defects of these two techniques are

greater likelihood of undetected error
deeper understanding required of language details
more complex coding
less efficient instruction sequences
more difficult maintenance

Example 1e: Correct (But Definitely Not Recommended) Usage: Duplicated DSECTs

A programmer who observes the defects of the above methods of managing two instances of
the DSECT A might decide that the best approach will be to make a second copy, with a
different name, in order to avoid having to write confusing USING and DROP statements.
Thus, he might define an exact copy of A, now named B:

B DSECT
G1 DS - - -
G2 DS CL(FLen)
- - - etc. - - -

Figure 24. The Hard Way: Making a Copy of the DSECT

Then, the desired code sequence takes a much cleaner and simpler form:

USING B,7 map old instance of A (named B)
USING A,5 map new instance of A
MVC F2,G2 move from old to new

While this is the desired code sequence, the technique can lead to extreme difficulties in
maintenance if the maintainer doesn't appreciate that the original coder expected that B
must be an exact duplicate of A. If changes are made to A, the differences in DSECT and
symbol naming make it easy to overlook the requirement to make equivalent and identical
changes to B. It is also less obvious that the symbols in this code fragment actually refer to
the same things.

In summary, the defects of this technique are

greater likelihood of maintenance problems
greater difficulty in understanding the code.

Example 1f: A Simpler Hard Way: Macro-Duplicated DSECTs

Occasionally, this “duplicate definition” technique is encapsulated in a macro definition. For
example, suppose you have written a macro named DDSECTA to define copies of DSECT A.
The macro can generate as many copies of the DSECT as needed, adding a specified prefix
to each of the generated symbols, as illustrated in Figure 25 on page 52:

New USING Statements 51



DDSECTA PREFIX=OLD DSECT A, symbols prefixed 'OLD'
+OLDA DSECT
+OLDF1 DS - - -
+OLDF2 DS CL(FLen)

- - -
DDSECTA PREFIX=NEW DSECT A, symbols prefixed 'NEW'

+NEWA DSECT
+NEWF1 DS - - -
+NEWF2 DS CL(FLen)

- - -
USING NEWA,5
USING OLDA,7
MVC NEWF2,OLDF2 Move from old F2 to new F2

Figure 25. The Simpler Hard Way: a Macro to Copy the DSECT

This technique -- the most satisfactory of all the approaches discussed up to this point --
ensures that only a single source file containing the DSECT's definition is maintained (inside
the macro). The defects of this approach are:

it introduces new symbols and DSECTs into the program, some of which are duplicate
names for what is really one object
it requires that an additional piece of code (the macro definition) be defined and main-
tained
all references to the DSECT must use the prefixed names, even when only a single
instance of the object is active (unless a third set of names is generated, with no prefix!).

Labeled USINGs: The Best Solution

NEWU-10 Copyright IBM Corporation 1993, 2001HLASM

Labeled USINGs provide a simple solution:

OLD . . USING A,7 map old instance of A

NEW . . USING A,5 map new instance of A

MVC NEW.F2,OLD.F2 move field from old to new

. . . .

− Qualifier OLD . . resolves symbol . . and qualifier NEW . . resolves . .

Advantages of labeled USINGs

− data objects need only one definition
− all references are fully symbolic
− no manually-specified displacements and registers
− efficient solution is also the most natural
− no need to understand obscure details of Assembler Language

Example 1 Solution: Labeled USINGs
In High Level Assembler, labeled USINGs provide a clean and simple solution to this
problem. Suppose the DSECT A has been declared as in Figure 20 on page 46 above. By
specifying two labeled USING statements and by specifying appropriately qualified symbols,
the resulting code is much cleaner:

52 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



OLD . . USING A,7 map old instance of A
NEW . . USING A,5 map new instance of A

MVC NEW.F2,OLD.F2 move field from old to new
. . . .

Figure 26. The Right Way: Labeled USINGs

The labeled USING with qualifier OLD (at . .) is used to qualify the second occurrence of the
symbol F2 (at . .). Similarly, the labeled USING with qualifier NEW (at . .) is used to qualify
the first occurrence of the symbol F2 (at . .). Because both occurrences of F2 are qualified,
they can only be resolved into base-displacement form using the proper register.

You can see that an appropriate choice of qualifier names also makes the code easier to
read and understand!

This example illustrates several advantages of labeled USINGs:

1. Data objects need be defined only once, no matter how many times they may appear to
be used concurrently.

2. All references are fully symbolic, and neither explicit base registers nor manually-
calculated displacements are required.

3. The desired, efficient solution is obtained in a simple, direct, and readable way.

4. The programmer need not understand the details of instruction syntax or of the address
resolution rules for ordinary USING statements.

Example: Doubly-Linked List Structure

NEWU-11 Copyright IBM Corporation 1993, 2001HLASM

Insert a NEW element in a doubly-linked list:

Before: After:

ÚÄÄ¿ ÚÄÄ¿ ÚÄÄ¿
³R2³ ³R3³ ³R5³
ÀÂÄÙ ÀÂÄÙ ÀÂÄÙ
³ LEFT ³ RIGHT ³ NEW LEFT NEW RIGHT
ÀHÚÄÄÄÄÄÄ¿ ÀHÚÄÄÄÄÄÄ¿ ÀHÚÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄ¿. .ÚÄÄÄÄÄÄ¿. .ÚÄÄÄÄÄÄ¿
IÄÄ³ Lptr ³IÄÄ³ Lptr ³ ³ Lptr ³ IÄÄ³ Lptr ³IÄÄ³ Lptr ³IÄÄ³ Lptr ³

ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´
³ Rptr ³ÄÄH³ Rptr ³ÄÄH ³ Rptr ³ ³ Rptr ³ÄÄH³ Rptr ³ÄÄH³ Rptr ³ÄÄH
ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄ´. .ÃÄÄÄÄÄÄ .́ .ÃÄÄÄÄÄÄ´
³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³
: : : : : : : : : : : :

Labeled USINGs provide clean, understandable solution

− Many complex, obscure solutions possible with ordinary USINGs

Example 2: Doubly-Linked List Structure
Suppose we have a data structure requiring a doubly-linked list, in which each structure
element points both to its predecessor (called the “left” element) and to its successor
(called the “r ight” element).

New USING Statements 53



LEFT RIGHT
ÚÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄ¿

IÄÄ³ Lptr ³IÄÄ³ Lptr ³
ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́
³ Rptr ³ÄÄH³ Rptr ³ÄÄH
ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́
³ Data ³ ³ Data ³
³ Data ³ ³ Data ³
: : : :

Figure 27. Doubly-linked List Structure

Let the format of a structure element be defined by a DSECT named BLOCK:

BLOCK DSECT
Lptr DS A Pointer to left element
Rptr DS A Pointer to right element
Data DS XL24,D,E etc. Data fields within BLOCK

- - -

Figure 28. Labeled USING Example 2: a DSECT Describing a Small Control Block

For this example, we will suppose that we have three distinct instances of the control block
structure described by BLOCK: two linked elements LEFT and RIGHT (which are addressable
using registers 2 and 3 respectively), and a NEW element addressed by register 5. We wish
to insert the new instance of the BLOCK between the two existing instances.

Before: After:

ÚÄÄ¿ ÚÄÄ¿ ÚÄÄ¿
³R2³ ³R3³ ³R5³
ÀÂÄÙ ÀÂÄÙ ÀÂÄÙ
³ LEFT ³ RIGHT ³ NEW LEFT NEW RIGHT
ÀHÚÄÄÄÄÄÄ¿ ÀHÚÄÄÄÄÄÄ¿ ÀHÚÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄ¿. .ÚÄÄÄÄÄÄ¿. .ÚÄÄÄÄÄÄ¿
IÄÄ³ Lptr ³IÄÄ³ Lptr ³ ³ Lptr ³ IÄÄ³ Lptr ³IÄÄ³ Lptr ³IÄÄ³ Lptr ³

ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́
³ Rptr ³ÄÄH³ Rptr ³ÄÄH ³ Rptr ³ ³ Rptr ³ÄÄH³ Rptr ³ÄÄH³ Rptr ³ÄÄH
ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄ́ . .ÃÄÄÄÄÄÄ́ . .ÃÄÄÄÄÄÄ́
³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³ ³ Data ³
: : : : : : : : : : : :

Figure 29. Example 2: Inserting a New Instance of BLOCK

The links that must be changed during the insertion process are indicated in the figure
above by the keys . . and . . (the “left” links), and by . . and . . (the “r ight” links).

Example 2a: With Multiple Ordinary USINGs

The “cleanest” technique with ordinary USING statements is to refer to the fields in BLOCK
with proper symbolic addressing throughout. The following code sequence shows how this
might be done:

54 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



USING BLOCK,3 map RIGHT element
L 0,Lptr save old Right.Lptr
ST 5,Lptr store new Right.Lptr . .
DROP 3 unmap RIGHT element

USING BLOCK,2 map LEFT element
L 1,Rptr save old Left.Rptr
ST 5,Rptr store new Left.Rptr . .
DROP 2 unmap LEFT element

USING BLOCK,5 map NEW element
ST 0,Lptr store new New.Lptr . .
ST 1,Rptr store new New.Rptr . .

Figure 30. Ordinary-USING Code to Insert a New List Element

The statements that establish the links are indicated by keys . . through . ., as defined in
Figure 29 on page 54.

The primary shortcomings of this method are

intermediate temporaries (in this case, registers 0 and 1) are used to hold some of the
pointers
the precise sequence of USING and DROP statements is required to obtain correct
address resolutions
two additional instructions are required (Load and Store via registers, rather than an
MVC).

Example 2b: Correct (But Not Recommended) Usage: Manually-Specified
Displacements

To eliminate the need for intermediate temporaries, we might wish to use MVC instructions
to move the fields (with a presumed gain in efficiency):

RNew Equ 5 R5 points to New element
USING BLOCK,RNew map NEW element
MVC Lptr,Lptr-BLOCK(,3) move old Right.Lptr . .
ST RNew,Lptr-BLOCK(,3) store new Right.Lptr . .
MVC Rptr,Rptr-BLOCK(,2) move old Left.Rptr . .
ST RNew,Rptr-BLOCK(,2) store new Left.Rptr . .

Figure 31. Ordinary-USING Code to Insert a New List Element

This code sequence contains the desired “efficient” instructions, but its defects are consider-
able:

greater difficulty of understanding
increased likelihood of maintenance problems due to fixed assignments to registers in
the instructions themselves

New USING Statements 55



Labeled USINGs: Doubly-Linked List

NEWU-12 Copyright IBM Corporation 1993, 2001HLASM

Code with labeled USINGs is very simple:

BLOCK DSECT
Lptr DS A Pointer to left element
Rptr DS A Pointer to right element
Data DS XL24,D,E etc. Data fields within BLOCK

Ä Ä Ä

RNew Equ 5 R5 points to New element
Left USING Block,2 Labeled USING
Right USING Block,3 Labeled USING
New USING Block,RNew Labeled USING

Ä Ä Ä
MVC New.Lptr,Right.Lptr . . Qualified symbols
ST RNew,Right.Lptr . . Qualified symbol
MVC New.Rptr,Left.Rptr . . Qualified symbols
ST RNew,Left.Rptr . . Qualified symbol

Advantages: clarity, simplicity, readability, efficiency, maintainability

Example 2c: The Clean and Simple Way: Labeled USINGs

By far the simplest and clearest solution is to use labeled USINGs, with appropriate descrip-
tive qualifiers. In this example, references to the left- and right-pointer fields “LPTR” and
“RPTR” are qualified through the use of the qualifying symbols LEFT, RIGHT, and NEW.
Observe that three instances of the DSECT named BLOCK are concurrently active.

RNew Equ 5 R5 points to New element
Left USING Block,2 Labeled USING
Right USING Block,3 Labeled USING
New USING Block,RNew Labeled USING

- - -
MVC New.Lptr,Right.Lptr . . Qualified symbols
ST RNew,Right.Lptr . . Qualified symbol
MVC New.Rptr,Left.Rptr . . Qualified symbols
ST RNew,Left.Rptr . . Qualified symbol

Figure 32. Labeled USING Example 2c: Code for Inserting a New Control Block

The advantages in clarity, readability, simplicity, and improved ease of maintenance are
obvious. Without labeled USINGs, the code for these operations is much more convoluted
and difficult to read, understand, and maintain.

56 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Labeled USING Statements: a Summary

NEWU-13 Copyright IBM Corporation 1993, 2001HLASM

Resolutions done only for symbols with matching qualifier

Normal resolution rules still apply

− Matching relocatability attribute
− Displacement cannot exceed 4095

May be concurrent with ordinary USING for same register

USING A,9 Ordinary USING
Q USING A,9 Labeled USING

Ä Ä Ä
LA 0,A+40 Resolved only with Ordinary USING
LA 1,Q.A+40 Resolved only with Labeled USING
DROP 9 Drop ordinary USING; labeled still active
LA 2,Q.A+40 Resolved only with Labeled USING
DROP Q Drop labeled USING

Care is recommended!

− Avoid mixing qualified and unqualified symbol references

Labeled USING Statements: a Summary
Labeled USING statements have several interesting properties:

No symbol without a qualifier that matches the qualifying label can be resolved with that
USING. This means that you can actually have several USINGs active against a particular
base register at the same time. In general, this practice would not be recommended,
because it will be more difficult to understand the code.

DROP statements for labeled USINGs must be specified by the qualifier, not by the reg-
ister. (Extensions to the DROP statement will be discussed in “DROP Statement
Extensions” on page 90.)

Normal base-displacement address resolution rules are still in effect:

− The relocatability attributes of the implied address must match those of candidate
entries in the Using Table before displacement calculation will be attempted.

− Valid displacements still cannot exceed 4095.

Labeled USINGs and ordinary USINGs specifying the same base register may be active at
the same time. For example:

USING A,9 Ordinary USING
Q USING A,9 Labeled USING

- - -
LA 0,A+40 Resolved only with Ordinary USING
LA 1,Q.A+40 Resolved only with Labeled USING
DROP 9 Drop ordinary USING; labeled still active
LA 2,Q.A+40 Resolved only with Labeled USING

Figure 33. Concurrently Active Ordinary and Labeled USINGs

Implied addresses containing symbols without qualifiers will be resolved with the ordi-
nary USING, and qualified symbols will be resolved only with the matching labeled
USING. As this example shows, the DROP statement deletes the Using Table entry for the
ordinary USING, but the labeled USING remains in effect.

New USING Statements 57



This style of programming should be used with caution, due to the greater potential for
confusion.

Dependent USING Statements

NEWU-14 Copyright IBM Corporation 1993, 2001HLASM

Lets you address multiple DSECTs with one base register

Syntax is the same as for ordinary USINGs:

USING symbol,base

Except that the second operand is interpreted differently:

ordinary: second operand is absolute, between 0 and 15

USING symbol,register

dependent: second operand is relocatable, addressable

USING symbol,anchor_location

First operand is “based” or “anchored” at second operand location

Dependent USING Statements
Dependent USINGs permit addressing multiple DSECTs with a single base register. We will
illustrate some typical problems in managing such addressing problems with ordinary
USINGs, and then show how dependent USINGs can provide simpler solutions.

Dependent USINGs can provide elegant solutions to problems involving the management of
data structures that are adjacent, nested, or overlapping in storage, while maintaining

addressability with a minimum number of registers

fully symbolic structure and substructure mappings with independent DSECTs.

simple mappings of complex data structures

ability to map “variant records” in which the structure of parts of the record depend on
preceding data values

ability to provide different mappings along different code paths

Definition of Dependent USING Statements
Dependent USING statements allow any object − normally, a DSECT − to be “anchored” or
“based” at any location already addressable by an existing USING statement.

Dependent USING statements are written with almost the same syntax as an ordinary
USING, but with one key difference:

USING operand1,operand2

If the second operand of the USING statement (operand2) is absolute, then it must have a
value between zero and fifteen, and it then designates the base register of an ordinary
USING statement. On the other hand, if the second operand is relocatable, then it is under-
stood to be the “supporting base location” at which the first operand is to be “based” or
“anchored”, and the USING statement will be taken to be a dependent USING statement.

58 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Note that this base or anchor location must itself be within the range of an existing ordinary
USING statement, because implied operand addresses must still be resolved into base-
displacement form with respect to a declared base register and base location.

In summary, we can characterize the difference between an ordinary USING and a
dependent USING by the way the first-operand location is “based” or “anchored”.

For ordinary USINGs, the first operand is “based” on the register specified by the second
operand.

For dependent USINGs, the first operand is “based” on the location specified by the
second operand; this location must already be addressable.

Note that for dependent USINGs, the relative position of the first operand is set at assembly
time by the assembler, rather by instructions that set the address at execution time (as with
ordinary USINGs).

New USING Statements 59



Dependent USING Example: Contiguous Control Blocks

NEWU-15 Copyright IBM Corporation 1993, 2001HLASM

ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ CB1 ³ ↑
³ ³ ³
³ ³ ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄ´ ³
³ CB2 ³ ³
³ ³ ³
³ ³ ³
³ ³ LCB
³ ³ ³
³ ³ ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄ´ ³
³ CB3 ³ ³
³ ³ ³
³ ³ ³
³ ³ ³
³ ³ ³
³ ³ ↓
ÀÄÄÄÄÄÄÄÄÄÄÄÄÙ

Contiguous
Control Blocks

CB1 DSECT , Define control block 1
CB1F1 DS D
CB1F2 DS CL40
LCB1 EQU *ÄCB1 Length of block 1

CB2 DSECT , Define control block 2
CB2F1 DS 24F
LCB2 EQU *ÄCB2 Length of block 2

CB3 DSECT , Define control block 3
CB3F1 DS XL8,CL80
LCB3 EQU *ÄCB3

LCB EQU LCB1+LCB2+LCB3 Total length

Dependent USINGs Example 3: Contiguous Control Blocks
In this example, we assume that a large block of working storage will be acquired, which is
to contain several different (and independently named) data structures or control blocks
named CB1, CB2, and CB3, which are to reside in adjacent areas of storage. Suppose the
control blocks are defined as follows:

CB1 DSECT , Define control block 1
CB1F1 DS D
CB1F2 DS CL40
LCB1 EQU *-CB1 Length of block 1

CB2 DSECT , Define control block 2
CB2F1 DS 24F
LCB2 EQU *-CB2 Length of block 2

CB3 DSECT , Define control block 3
CB3F1 DS XL8,CL80
LCB3 EQU *-CB3

LCB EQU LCB1+LCB2+LCB3 Total length

Figure 34. Dependent USING Example 3: Control Block Definitions

Previous assemblers required using a separate register to address each control block;
dependent USING statements allow all of the control blocks to be addressed with a single
register.

60 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Contiguous Control Blocks: Ordinary USINGs

NEWU-16 Copyright IBM Corporation 1993, 2001HLASM

Ordinary USINGs require a register for each DSECT:
* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7

Ä Ä Ä
USING CB1,7 Anchor the first storage block
LA 6,CB1+LCB1 Calculate address of second block
USING CB2,6 Anchor the second storage block
LA 4,CB2+LCB2 Calculate address of third block
USING CB3,4 Anchor the third storage block

Defects:
− Extra base registers
− Additional initialization overhead

Devious coding techniques:
USING CB1,7 Anchor the first storage block
L 0,CB1+LCB1+(CB2F1ÄCB2)+8 3rd element of CB2F1 array
Ä Ä Ä

Defects:
− Complex coding that is hard to understand and maintain
− Relationships among CBs is embedded in each referencing instruction

Dependent USINGs Example 3a: Contiguous Control Blocks with Ordinary USINGs

To address these three independent control blocks with ordinary USINGs, we must assign
one register to hold a base address for each.

* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7
- - -
USING CB1,7 Anchor the first storage block
LA 6,CB1+LCB1 Calculate address of second block
USING CB2,6 Anchor the second storage block
LA 4,CB2+LCB2 Calculate address of third block
USING CB3,4 Anchor the third storage block

Figure 35. Dependent USING Example 3a: Control Block Addressing with Ordinary USINGs

There are several defects to this apparently sensible approach:

Two unnecessary additional base registers are required.

The extra LA instructions imply a possible loss of efficiency.

The relationship among the three control blocks is determined by the operands of the LA
instructions, and not by any other data declarations.

An alternative approach that avoids the need for additional base registers might be to code
the offsets of the second and third control blocks into the instructions that reference their
fields:

USING CB1,7 Anchor the first storage block
L 0,CB1+LCB1+(CB2F1-CB2)+8 3rd element of CB2F1 array

Figure 36. Dependent USING Example 3a: Control Block Addressing with Ordinary USINGs

New USING Statements 61



While this method will allow you to refer to all three control blocks using a single base reg-
ister, it introduces further defects:

complex coding that is hard to understand and maintain

the relationships among the control blocks is embedded in each referencing instruction;
changing those relationships (for example, interchanging the order of CB2 and CB3)
requires modifying every referencing instruction.

Contiguous Control Blocks: Dependent USINGs

NEWU-17 Copyright IBM Corporation 1993, 2001HLASM

Dependent USINGs require only a single base register:

* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7
Ä Ä Ä
USING CB1,7 Anchor the full storage block
USING CB2,CB1+LCB1 Adjoin CB2 to CB1 (dependent USING)
USING CB3,CB2+LCB2 Adjoin CB3 to CB2 (dependent USING)

STM 14,12,CB2F1+12 Addresses resolved with
XC CB3F1,CB3F1 ... just one base register (R7)
UNPK CB1F1,CB1F2(4) ... for all these instructions

Advantages:

− Minimal number of base registers needed

− No run-time initialization overhead

− Independently defined data structures

Dependent USINGs Example 3b: Contiguous Control Blocks with Dependent USINGs

Because several such blocks can now be referenced through a single register, registers pre-
viously required for addressing can be allocated to other useful purposes, thereby
increasing the efficiency of the program.

* GET (LCB bytes) STORAGE FOR ALL 3 BLOCKS, BASE ADDRESS IN R7
- - -
USING CB1,7 Anchor the full storage block
USING CB2,CB1+LCB1 Adjoin CB2 to CB1 (dependent USING)
USING CB3,CB2+LCB2 Adjoin CB3 to CB2 (dependent USING)

STM 14,12,CB2F1+12 Addresses resolved with
XC CB3F1,CB3F1 ... just one base register (R7)
UNPK CB1F1,CB1F2(4) ... for all these instructions

Figure 37. Dependent USING Example 3b: Control Block Addressing with Dependent USINGs

62 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Dependent USING Example: Nested Structures

NEWU-18 Copyright IBM Corporation 1993, 2001HLASM

ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
A ³A1 ³ A ³A1 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿ ÃÄÄÄÂÄÄÄÄÄÄÄ´
³AB ³ B ³B1 ³ ³AB ³B1 ³
³ ³ ÃÄÄÄÄÄÄÄ´ ³ ÃÄÄÄÄÄÄÄ´
³ ³ ³B2 ³ ³ ³B2 ³
³ ³ ÃÄÄÄÄÄÄÄ´ ³ ÃÄÄÄÄÄÄÄ´
³ ³ ³B3 ³ ³ ³B3 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄ´
³A2 ³ ³A2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿ ÃÄÄÄÂÄÄÄÄÄÄÄ´
³AC ³ C ³C1 ³ ³AC ³C1 ³
³ ³ ÃÄÄÄÄÄÄÄ´ ³ ÃÄÄÄÄÄÄÄ´
³ ³ ³C2 ³ ³ ³C2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄ´
³A3 ³ ³A3 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄ´
³A4 ³ ³A4 ³
ÀÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÙ

DSECT A DSECTs B,C Nested DSECTs

A DSECT
A1 DS 24F
AB DS CL(LB)
A2 DS 6CL80
AC DS CL(LC)
A3 DS XL16
A4 DS CL256

B DSECT
B1 DS CL44
B2 DS 6D
B3 DS 4A
LB EQU *ÄB

C DSECT
C1 DS 96D
C2 DS 4XL20
LC EQU *ÄC

Dependent USINGs Example 4: Nested Structures
Many high-level languages such as C, COBOL, Fortran90, Pascal, and PL/I support “nested”
data structures, or “structures of structures”, where data structures may contain one or
more sub-structures. Furthermore, there may be more than one instance of each substruc-
ture, as in PL/I's “arrays of structures”. The limited facilities of earlier assemblers made it
difficult to write straightforward statements to describe these complex data structures,
because there was no way to define a DSECT on or within another DSECT without having to
use another base register. We will see that High Level Assembler provides facilities that
make this much easier.

Suppose we wish to describe three independently-defined “records” A, B, and C. In this
example, we will want to use B and C as sub-records of C, as illustrated in the following
figure:

New USING Statements 63



ÚÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄ¿
A ³A1 ³ A ³A1 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ́ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿ ÃÄÄÄÂÄÄÄÄÄÄÄ́
³AB ³ B ³B1 ³ ³AB ³B1 ³
³ ³ ÃÄÄÄÄÄÄÄ́ ³ ÃÄÄÄÄÄÄÄ́
³ ³ ³B2 ³ ³ ³B2 ³
³ ³ ÃÄÄÄÄÄÄÄ́ ³ ÃÄÄÄÄÄÄÄ́
³ ³ ³B3 ³ ³ ³B3 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ́ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄ́
³A2 ³ ³A2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ́ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿ ÃÄÄÄÂÄÄÄÄÄÄÄ́
³AC ³ C ³C1 ³ ³AC ³C1 ³
³ ³ ÃÄÄÄÄÄÄÄ́ ³ ÃÄÄÄÄÄÄÄ́
³ ³ ³C2 ³ ³ ³C2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ́ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄ́
³A3 ³ ³A3 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄ́
³A4 ³ ³A4 ³
ÀÄÄÄÄÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÄÄÄÄÙ

DSECT A DSECTs B,C Nested DSECTs

Figure 38. Nested or Overlaid Data Structures

In the figure, the three DSECTs A, B, and C are independently defined. In actual use, we
wish to “overlay” or “nest” B and C within A, at the positions labeled AB and AC respec-
tively (at keys . . and . .). The DSECTs themselves might be defined with statements like
the following:

A DSECT | B DSECT | C DSECT
A1 DS 24F | B1 DS CL44 | C1 DS 96D
AB DS CL(LB) . . | B2 DS 6D | C2 DS 4XL20
A2 DS 6CL80 | B3 DS 4A |
AC DS CL(LC) . . | |
A3 DS XL16 | |
A4 DS CL256 | |

Figure 39. Defining the DSECTs Which Will Be Nested

We could attempt to solve this problem with ordinary USINGs (in which case three base reg-
isters are required), or with techniques like DSECT renaming, where we define the inner
DSECTs as being part of the outer. For example, in the above, we could “nest” the compo-
nents of DSECT B inside DSECT A this way:

A DSECT
A1 DS 24F
AB DS 0C
AB_B1 DS CL44 Nesting of B: field B1
AB_B2 DS 6D Nesting of B: field B2
AB_B3 DS 4A Nesting of B: field B3
A2 DS 6CL80

- - - etc.

It is evident that this technique can lead to maintenance problems, difficulties in under-
standing the code, and other defects described earlier:

independence of the three structure definitions is lost

the structure definition is more complex

64 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



maintainers will have a harder time understanding what to change.

We will now show how to achieve the desired “nesting”, first with ordinary USINGs and then
with labeled USINGs.

Nested Structures with Multiple Ordinary USINGs

NEWU-19 Copyright IBM Corporation 1993, 2001HLASM

Each DSECT requires its own base register:

* Assume address of A is in R7
USING A,7 Ordinary USING for A
LA 5,AB Address of AB in R5
USING B,5 Ordinary USING for B
LA 4,AC Address of AC in R4
USING C,4 Ordinary USING for C

Defects:

− Loss of efficiency: extra registers, execution-time setup

− Precise relationship of instructions to structure elements is not as clear

Example 4a: Structure Nesting with Multiple Ordinary USINGs

A typical code sequence for establishing addressability to the three DSECTs might look like
this:

* Assume address of A is in R7
USING A,7 Ordinary USING for A
LA 5,AB Address of AB in R5
USING B,5 Ordinary USING for B
LA 4,AC Address of AC in R4
USING C,4 Ordinary USING for C

Figure 40. Referencing Nested DSECTs with Ordinary USINGs

While this code sequence will provide the desired addressing and DSECT nesting, it has
some shortcomings:

Two additional registers must be set up and used as base registers, even though it is
known that the entire structure can be addressed with a single base register. This means
that the two registers cannot be used for other purposes while the structures are being
addressed.

Additional time is required to initialize the extra base registers, leading to a loss in effi-
ciency.

It is not immediately evident that the desired “nesting” relationship is critically
dependent on the instructions that set up the run-time addresses of B and C. It is pos-
sible that someone might change those instructions without realizing that the correctness
of the nesting might be destroyed.

New USING Statements 65



Nested Structures with Dependent USINGs

NEWU-20 Copyright IBM Corporation 1993, 2001HLASM

Dependent USINGs allow these to be addressed with a single register:

* Assume address of A is in R7
USING A,7 Ordinary USING for A
USING B,AB Dependent USING: anchor B at AB
USING C,AC Dependent USING: anchor C at AC

Benefits of dependent USINGs:

− More efficient solution

— Minimal number of registers needed for addressing

— No execution-time register setup

− Simpler, clearer code

— Clear separation of data definitions and instructions

Example 4b: Structure Nesting with Dependent USINGs

The problem of correctly nesting DSECTs is easily solved with dependent USING statements.
Rather than calculate the needed base addresses at program execution time, we can “bind”
the nested DSECTs (B and C) in Figure 39 on page 64 to the containing DSECT (A) at
assembly time:

* Assume address of A is in R7
USING A,7 Ordinary USING for A
USING B,AB Dependent USING for B
USING C,AC Dependent USING for C

Figure 41. Referencing Nested DSECTs with Dependent USINGs

In addition to saving the two additional base registers that were required when ordinary
USING statements were specified (in Figure 40 on page 65), no instructions are needed to
initialize those two registers, so the program can now gain other efficiencies by utilizing the
registers for other purposes.

66 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Nested Structures with One Ordinary USING

NEWU-21 Copyright IBM Corporation 1993, 2001HLASM

Can map nested structures with a single ordinary USING
− Calculate DSECT offsets “manually”

* Assume address of A is in R7
USING A,7 Ordinary USING for A
Ä Ä Ä
L 0,AB+(B3ÄB) Field B3 within DSECT B
C 0,AC+(C2ÄC) Field C2 within DSECT C

Will need to write a lot of this if many references to DSECT fields

Dependent USING is clearer, easier to write and maintain
USING A,7 Ordinary USING for A
USING B,AB Map DSECT B into A at AB
USING C,AC Map DSECT C into A at AC
Ä Ä Ä
L 0,B3 Field B3 within DSECT B
C 0,C2 Field C2 within DSECT C

Let the assembler do the hard work!
− It calculates the same displacements as you did (with difficulty)

Example 4c: Structure Nesting with One Ordinary USING

The structure illustrated in Figure 38 on page 64 can be mapped with a single base register,
if you are willing to calculate the needed offsets manually. Suppose you want to compare
fields in the nested DSECTs B and C. You could write something like the sequence in the
following figure.

* Assume address of A is in R7
USING A,7 Ordinary USING for A
- - -
L 0,AB+(B3-B) Field B3 within DSECT B
C 0,AC+(C2-C) Field C2 within DSECT C

Figure 42. Dependent USING Example 4c: Structure Nesting with One Ordinary USING

where the offsets of the fields B3 and C2 within their respective “owning” DSECTs must be
added to the base locations of the DSECTs within DSECT A. While this code conserves base
registers, It is likely to be difficult to understand and maintain, especially if many references
to the fields within B and C are needed.

With dependent USINGs, the same instructions could be written much more understandably,
as shown in this figure:

USING A,7 Ordinary USING for A
USING B,AB Map DSECT B into A at AB
USING C,AC Map DSECT C into A at AC
- - -
L 0,B3 Field B3 within DSECT B
C 0,C2 Field C2 within DSECT C

Figure 43. Dependent USING Example 4c: Structure Nesting with Dependent USING

New USING Statements 67



Dependent USINGs and Disjoint USING Ranges

NEWU-22 Copyright IBM Corporation 1993, 2001HLASM

Range-limited USINGs restrict resolution range
USING (start_range,end_range),anchor

Only “My Code” and “My Literals” addressed by “My USING”
− Addressing anything else should be an error

USING MyCode,9
MyCode DS 0H Start of my code

Ä Ä Ä Ä My code Ä Ä Ä
EndCode DS 0H End of my code

DROP 9 No further use of my base register

Ä Ä Ä other code Ä Ä Ä Code/data that I shouldn't address,
Ä Ä Ä Ä Ä Ä and that shouldn't use R9 as a base

MyLits LTORG , Start of my (and others') literals
Ä Ä Ä

EndLits EQU * End of my literals

Specify restricted ranges for “only my stuff”
USING (MyCode,EndCode),9 Address only my code
USING (MyLits,EndLits),MyCode Address literals only

Dependent USINGs Example 5: Disjoint USING Ranges
You may want to ensure that correct USING resolutions are calculated by the assembler in
programs with many segments that supply their own USING statements, and in which their
ranges may frequently overlap. A key feature of all USING statements is that you can
specify USING-range limits, such that addresses outside that range cannot be addressed
with that USING's base registers. The form of such a USING is

USING (start_range,end_range),anchor

Figure 44. Dependent USING Example 5: Range-Limited USING

and only addresses starting at start_range and ending one byte before end_range are
addressable with this USING.

Suppose you have a segment of code that generates literals that will appear in a literal pool
with literals from other code segments. You also want to be sure that your code and the
literals are addressable with your USING statement, and that your code can address nothing
else by accident. You could write something like the following:

USING MyCode,9
MyCode DS 0H Start of my code

- - - - My code - - -
EndCode DS 0H End of my code

DROP 9 No further use of my base register

- - - other code - - - Code/data that I shouldn't address

MyLits LTORG , Start of my (and others') literals
- - -

EndLits EQU * End of my literals

Figure 45. Dependent USING Example 5: Possibly Overlapping USING Ranges

68 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



To prevent the USING for MyCode from being used to resolve addresses in “other code”, you
simply replace the USING Mycode,9 statement with two USINGs, as shown in the following
figure.

USING (MyCode,EndCode),9 Address only my code
USING (MyLits,EndLits),MyCode Address literals only

Figure 46. Dependent USING Example 5: Disjoint USING Ranges with Range-Limited USINGs

The second USING is anchored at the same base location as the first USING, but provides
addressability only to the literals between MyLits and EndLits. Thus, the intervening “other
code” will not be addressable with this base register setting.

Dependent USINGs Example 6: A Personnel-File Record
The power of dependent USINGs is most evident in handling complex data records, espe-
cially when the structure of fields in later parts of the record depends on data values in
earlier fields, or where repeated identically-structured fields (mapped by the same DSECT)
appear several times within the outer record's structure.

Suppose our application program must reference various fields in records maintained in a
“personnel” file. Each record contains information about an employee, and various fields
within the record contain different kinds of information. (We will also use these data struc-
tures to illustrate the benefits of labeled dependent USINGs, in “Example 10: Personnel-File
Record with Labeled Dependent USINGs” on page 83.)

First, let us define the basic layout of the employee record, by defining an Employee DSECT.

Employee DSECT , Employee record
EPerson DS CL(LPerson) Person field
EHire DS CL(LDate) Date of hire
EWAddr DS CL(LAddr) Work (external) address
EPhoneW DS CL(LPhone) Work telephone
EPhoneF DS CL(LPhone) Work Fax telephone
EMarital DS X Marital Status
ESpouse DS CL(LPerson) Spouse field
E#Deps DS CL2 Number of dependents
EDep1 DS CL(LPerson) Dependent 1
EDep2 DS CL(LPerson) Dependent 2
EDep3 DS CL(LPerson) Dependent 3
LEmploye EQU *-Employee Length of Employee record

Figure 47. Dependent USING Example 6: Define a Personnel-File Record

This record contains information about the employee: a description of the person (and of the
employee's spouse and first three dependents), work address, date of hire, work telephone,
and so forth. Space has been reserved in the Employee DSECT for several other “nested” or
“overlaid” DSECTS, to be described below.

The description of each person (employee, spouse, dependents) is similarly defined by a
Person DSECT:

New USING Statements 69



Person DSECT , Define a "Person" field
PFName DS CL20 Last (Family) name
PGName DS CL15 First (Given) name
PInits DS CL3 Initials
PDoB DS CL(LDate) Date of birth
PAddr DS CL(LAddr) Home address
PPhone DS CL(LPhone) Home telephone number
PSSN DS CL9 Social Security Number
PSex DS CL1 Gender
LPerson EQU *-Person Length of Person field

Figure 48. Dependent USING Example 6: Employee Record Person DSECT

The fields in the Person DSECT describe the person's name, date of birth, home address and
telephone, and other items. Again, space has been reserved for three other “nested”
DSECTs describing a date, an address, and a telephone number.

The remaining three DSECTs might be defined as follows. First, the Date DSECT:

Date DSECT , Define a calendar date field
Year DS CL4 YYYY
Month DS CL2 MM
Day DS CL2 DD
LDate EQU *-Date Length of Date field

ORG Date
DateF DS 0CL(LDate) Full YYYYMMDD date

ORG ,

Figure 49. Dependent USING Example 6: Employee Record Date DSECT

The last three statements are used to define the symbol DateF as a single field containing
the entire contents of the three Date fields.

The Addr DSECT, describing a postal address, is defined in a similar way:

Addr DSECT , Define an address field
AStr# DS CL30 Street number
APOBApDp DS CL15 P.O.Box, Apartment, or Department
ACity DS CL24 City name
AState DS CL2 State abbreviation
AZip DS CL9 U.S. Post Office Zip Code
LAddr EQU *-Addr Length of Address field

ORG Addr
AddrF DS 0CL(LAddr) Full address

ORG ,

Figure 50. Dependent USING Example 6: Employee Record Address DSECT

Again, the last three statements are used to define the symbol AddrF as a single field con-
taining the entire contents of all the Addr fields.

Finally we define The Phone DSECT, describing a commercial telephone number:

70 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Phone DSECT , Define a Telephone field
PhArea DS CL3 Area Code
PhLocal DS CL7 Local number
PhExt DS CL4 Extension
LPhone EQU *-Phone Length of Phone field

ORG Phone
PhoneF DS 0CL(LPhone) Full telephone number

ORG ,

Figure 51. Dependent USING Example 6: Employee Record Phone DSECT

As before, the last three statements to define the symbol PhoneF to name a single field con-
taining the entire contents of all the Phone fields.

At this point, it may be worth sketching the nesting of these various DSECTs. It is worth
noting the following points:

The Date DSECT appears at two different levels of nesting: the Date-of-Hire field (EHire) in
the Employee DSECT is nested two levels deep, and the Date-of-Birth fields (PDoB) in each
Person DSECT are nested three levels deep (because the Person DSECT is nested two
levels deep in the Employee DSECT).

Similarly, the Addr DSECT is nested two levels deep (as the employee's work address),
and three levels deep (as the home-address field (PAddr) within each Person DSECT).

Finally, the Phone DSECT is also nested two levels deep (PPhone, for the employee's home)
and three levels deep (EPhoneW, the employee's work number).

The nesting levels are shown in the upper right corners of the boxes in Figure 52 on
page 72.

While this example may seem a bit complex, we will use it again in discussing labeled
dependent USINGs, where the full power of those statements can be shown.

To show how dependent USINGs can help with mapping this structure, suppose such an
employee record has been placed in main storage and its address has been placed in R10;
we now wish to manipulate various fields within the record. The necessary DSECT
addressing can be established as follows:

USING Employee,10 R10 points to Employee record
USING Person,EPerson Anchor Person DSECT at EPerson field
USING Date,PDoB Anchor Date DSECT at PDoB field
USING Addr,PAddr Anchor Addr DSECT at PAddr field
USING Phone,PPhone Anchor Phone DSECT at PPhone field

Figure 53. Dependent USING Example 6: Anchoring DSECTs within Employee Record

These five USING statements provide addressability to five different DSECTS:

The Employee DSECT is based on an ordinary USING statement with base register 10. All
other implied address resolutions within the Employee DSECT will be resolved using R10
as the base register.

The Person DSECT is anchored by the first dependent USING at the Eperson field in the
Employee DSECT.

Within the Person DSECT, the Date DSECT is anchored by the second dependent USING at
the PDoB field in the Person DSECT.

Within the Person DSECT, the Addr DSECT is anchored by the third dependent USING at
the PAddr field in the Person DSECT.

New USING Statements 71



Employee ÚÄÄEmployeeÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ1Ä¿
| EPerson ³ÚÄÄPersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | PFName ³³ ³³
| | PGName ³³ ³³
| | PInits ³³ ³³
| | PDoB ³³ÚÄÄDateÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ3Ä¿³³
| | | Year ³³³ ³³³
| | | Month ³³³ ³³³
| | | Day ³³ÀÄÄEnd of DateÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³³
| | PAddr ³³ÚÄÄAddrÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ3Ä¿³³
| | | AStr# ³³³ ³³³
| | | APOBApDp ³³³ ³³³
| | | ACity ³³³ ³³³
| | | AState ³³³ ³³³
| | | AZip ³³ÀÄÄEnd of AddrÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³³
| | PPhone ³³ÚÄÄPhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ3Ä¿³³
| | | PhArea ³³³ ³³³
| | | PhLocal ³³³ ³³³
| | | PhExt ³³ÀÄÄEnd of PhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³³
| | PSSN ³³ ³³
| | PSex ³ÀÄÄEnd of PersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| EHire ³ÚÄÄDateÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | Year ³³ ³³
| | Month ³³ ³³
| | Day ³ÀÄÄEnd of DateÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| EWAddr ³ÚÄÄAddrÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | AStr# ³³ ³³
| | APOBApDp ³³ ³³
| | ACity ³³ ³³
| | AState ³³ ³³
| | AZip ³ÀÄÄEnd of AddrÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| EPhoneW ³ÚÄÄPhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | PhArea ³³ ³³
| | PhLocal ³³ ³³
| | PhExt ³ÀÄÄEnd of PhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| EPhoneF ³ÚÄÄPhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | PhArea ³³ ³³
| | PhLocal ³³ ³³
| | PhExt ³ÀÄÄEnd of PhoneÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| EMarital ³ ³
| ESpouse ³ÚÄÄPersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | PFName ³³ ³³
| | PGName ³³ ³³
| (omitted) :: (and so forth) ::
| | | ³ÀÄÄEnd of PersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| E#Deps ³ ³
| EDep1 ³ÚÄÄPersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ2Ä¿³
| | PFName ³³ ³³
| | PGName ³³ ³³
| | (omitted) :: (and so forth) ::
| | ³ÀÄÄEnd of PersonÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ³
| (omitted) : (and so forth) :
| ³ ³
| ÀÄÄEnd of EmployeeÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 52. Dependent USING Example 6: DSECT Nesting in Employee Record

72 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Finally, within the Person DSECT, the Phone DSECT is anchored by the fourth and last
dependent USING at the PPhone field in the Person DSECT.

We can now use these definitions to access and manipulate the fields described by those
five DSECTs, as in the following statements:

CLC PGname,Input_Name Compare name in record to input value
- - -
MVC PhExt,=CL4' ' Blank out phone extension field
- - -
CLC AZip,=C'95141' Check for given Zip Code

Figure 54. Dependent USING Example 6: Using fields within Employee Record

All of the symbolic references to fields in any of the five DSECTs will be resolved with a
single base register, so long as the size of the Employee record does not exceed 4096 bytes.
(If it does, the problem is easy to fix: simply add another base register to the ordinary USING
statement in Figure 53 on page 71, and another 4096 bytes will be addressable automat-
ically.)

The primary limitation of the uses of dependent USINGs shown in this example is that only a
single instance of each DSECT is addressable at any one time. In many applications this
may be entirely adequate; if not, labeled dependent USINGs (as described at “Example 10:
Personnel-File Record with Labeled Dependent USINGs” on page 83) will help.

If ordinary USING statements had been required in Figure 53 on page 71, the resulting
burden on the general purpose registers might have been much more severe. Statements
such as the following might have been required:

USING Employee,10 R10 points to Employee record
LA 9,Eperson Address of EPerson field
USING Person,9 Anchor Person DSECT at EPerson field
LA 8,PDoB Address of PDoB field
USING Date,8 Anchor Date DSECT at PDoB field
LA 7,PAddr Address of PAddr field
USING Addr,7 Anchor Addr DSECT at PAddr field
LA 6,PPhone Address of PPhone field
USING Phone,6 Anchor Phone DSECT at PPhone field

Figure 55. Dependent USING Example 6: DSECTs within Employee Record with Ordinary USINGs

It can be seen that the coding is likely to be less efficient, and also that the number of oppor-
tunities for misunderstanding and error has also increased.

New USING Statements 73



Labeled Dependent USING Statements

Labeled Dependent USING Statements

NEWU-23 Copyright IBM Corporation 1993, 2001HLASM

Labeled dependent USINGs combine the benefits of labeled and
dependent USINGs:

− labeled: multiple copies of an object may be active simultaneously

− dependent: many objects may be addressed with a single base register

Syntax combines elements of labeled and dependent USINGs

label USING operand1,operand2 Operand2 is relocatable

Example: overlay two instances of DSECT DZ within A

Z1 USING DZ,A+12 Overlay DZ at A+12, qualify with "Z1"
Z2 USING DZ,A+82 Overlay DZ at A+82, qualify with "Z2"

Labeled dependent USINGs combine the benefits of labeled USINGs and dependent USINGs:

multiple copies of an object may be active simultaneously (labeled)

many objects may be addressed with a single base register (dependent).

We will begin this discussion of labeled dependent USINGs with several rather simple exam-
ples that are intended to illustrate both the problems encountered with ordinary USINGs, and
how High Level Assembler can help you to solve them with labeled dependent USINGs.

Definition of Labeled Dependent USINGs
The syntax of a labeled dependent USING is evident from its name: a qualifying label is
required in the name field of the USING statement, and a relocatable second operand is
required to indicate where the first operand is to be “anchored” or “based”.

label USING operand1,operand2 Operand2 is relocatable

Figure 56. Syntax of a Labeled Dependent USING Statement

As with unlabeled dependent USINGs, the second operand must be addressable with refer-
ence to an ordinary USING statement somewhere earlier in the program. (The second
operand may itself be a qualified symbol, which allows you to specify multiple levels of
dependence.)

We can use such labeled dependent USINGs to map or overlay two different instances of a
DSECT on a single area of storage. For example, suppose we have a DSECT named DZ that
we wish to “overlay” at two different positions within a third program component named A:

Z1 USING DZ,A+12 Overlay DZ at A+12, qualify with "Z1"
Z2 USING DZ,A+82 Overlay DZ at A+82, qualify with "Z2"

Then, references to fields in the two instances of DZ can be distinguished by using the qual-
ifiers Z1 and Z2.

74 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Two Nested Identical Structures

NEWU-24 Copyright IBM Corporation 1993, 2001HLASM

Nest two instances of AA within BB

ÚÄÄÄÄÄÄÄÄÄÄÄ¿
BB ³BBF1 ³

ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿
³BBA1 ³ AA ³AAF1 ³
³ ³ ÃÄÄÄÄÄÄÄ´
³ ³ ³AAF2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ
³BBF3 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÚÄÄÄÄÄÄÄ¿
³BBA2 ³ AA ³AAF1 ³
³ ³ ÃÄÄÄÄÄÄÄ´
³ ³ ³AAF2 ³
ÃÄÄÄÄÄÄÄÄÄÄÄ´ Ä Ä Ä Ä ÀÄÄÄÄÄÄÄÙ
³BBF5 ³
ÀÄÄÄÄÄÄÄÄÄÄÄÙ

DSECT BB DSECT AA

AA DSECT
AAF1 DS XL5
AAF2 DS XL8
LAA EQU *ÄAA

BB DSECT
BBF1 DS XL17
BBA1 DS XL(LAA)
BBF3 DS XL11
BBA2 DS XL(LAA)
BBF5 DS XL7
LBB EQU *ÄBB

Example 7: Nesting Two Identical Structures Within a Third
Suppose we have a data structure composed of an “outer” structure, whose components
contain several data items including two identical sub-structures that we prefer to describe
with a single DSECT.

Now, we must manage the “outer” structure described by the DSECT named BB, in which
there are two sub-structures described by the DSECT named AA. First, we will define the
“inner” DSECT AA:

AA DSECT
AAF1 DS XL5 Field 1 in AA
AAF2 DS XL8 Field 2 in AA
LAA EQU *-AA Length of AA

Figure 57. Labeled Dependent USINGs Example 7: Nested DSECT Definition (1)

The “outer” DSECT BB can be defined similarly:

BB DSECT
BBF1 DS XL17 Field 1 in BB
BBA1 DS XL(LAA) Field 2 in BB = 1st copy of AA
BBF3 DS XL11 Field 3 in BB
BBA2 DS XL(LAA) Field 4 in AA = 2nd copy of AA
BBF5 DS XL7 Field 5 in BB
LBB EQU *-BB Length of AA

Figure 58. Labeled Dependent USINGs Example 7: Nested DSECT Definition (2)

The positions at which the two sub-structures defined by AA will be located are named BBA1
and BBA2, respectively. We will examine several approaches to managing the description
and addressing of the data elements in these structures:

New USING Statements 75



first, we will consider ordinary USINGs and the problems they present;

second, we will examine the implications of DSECT “renaming”;

finally, we will show how labeled dependent USINGs provide a solution free of the defects
of the previous approaches.

Example 7a: Nesting Two Identical Structures with Ordinary USINGs

To address these three structures with ordinary USINGs, we would need to provide three
base registers and three USING statements. However, we are faced with the problem
already discussed in “Example 1: With Ordinary USINGs” on page 47 above: we wish to
manage two active instances of the DSECT AA, and only one active instance is allowed by
ordinary USINGs.

Example 7b: Nesting Two Identical DSECTs with DSECT Renaming

The limitations of ordinary USINGs can be bypassed by making a second copy of AA,
addressing it and the “original” copy with separate USINGs.

AB DSECT
ABF1 DS XL5 Field 1 in AA (but named AB)
ABF2 DS XL8 Field 2 in AA (but named AB)
LAB EQU *-AB Length of AA (but named AB)

Figure 59. Labeled Dependent USINGs Example 7b: Renamed DSECT Definition

The three DSECTs can now be addressed with statements like the following:

USING BB,10 R10 points to BB
LA 11,BBA1 R11 points to 1st copy of AA
USING AA,11 USING for 1st copy of AA
LA 12,BBA2 R12 points to 2nd copy of AA
USING AB,12 USING for 2nd copy of AA (named AB)

The defects and difficulties involved in attempting to use ordinary USINGs in this context
have been thoroughly described; maintenance and readability problems are substantially
increased when more than one name is used for the same thing.

Example 7c: Nesting Two Identical DSECTs with Labeled USINGs

A better solution involves labeled USINGs, which allow the two instances of AA to be
addressed using a only a single definition of DSECT AA.

USING BB,10 R10 points to BB
LA 11,BBA1 R11 points to 1st copy of AA

A1 USING AA,11 Labeled USING for 1st copy of AA
LA 12,BBA2 R12 points to 2nd copy of AA

A2 USING AA,12 Labeled USING for 2nd copy of AA

Figure 60. Labeled Dependent USINGs Example 7c: Nesting with Labeled USINGs

Note that the implied addresses in both LA instructions will be resolved with register 10 as
the base register.

The only remaining defect in this example is the requirement to use three addressing regis-
ters when only one is actually needed; labeled dependent USINGs provide the desired
saving.

76 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Example 7d: Nesting Two Identical DSECTs with Labeled Dependent USINGs

Addressing Two Nested Identical Structures

NEWU-25 Copyright IBM Corporation 1993, 2001HLASM

With ordinary USINGs

. .

Labeled USINGs require 3 base registers, “setup” overhead

USING BB,10 R10 points to BB
LA 11,BBA1 R11 points to 1st copy of AA

A1 USING AA,11 Labeled USING for 1st copy of AA
LA 12,BBA2 R12 points to 2nd copy of AA

A2 USING AA,12 Labeled USING for 2nd copy of AA

Labeled dependent USINGs require only one base register

USING BB,10 R10 points to BB
A1 USING AA,BBA1 Labeled dependent USING for 1st copy of AA
A2 USING AA,BBA2 Labeled dependent USING for 2nd copy of AA

Even if BB exceeds 4K bytes, this is still better

the proper solution involves labeled dependent USINGs, which allow the entire structure and
all its components to be addressed with the minimum number of registers, and with proper
naming for all components.

Assume again that the address of the containing structure BB has been placed in R10; then
the appropriate addressing and addressability statements might be written as follows:

USING BB,10 R10 points to BB
A1 USING AA,BBA1 Labeled dependent USING for 1st copy of AA
A2 USING AA,BBA2 Labeled dependent USING for 2nd copy of AA

Figure 61. Labeled Dependent USINGs Example 7d: Nesting with Labeled USINGs

The first instance of AA is “based” at BBA1, and references to its components can be made
using qualifying label A1. Similarly, the second instance of AA is based at BBA2, and its
components can be qualified with A2. References to the various fields in the three structures
can then be made freely, and only a single register is needed to address the entire struc-
ture.

MVC BBF1,A1.AAF2 Move to BBF1 from first instance of AAF2
CLC A2.AAF1,A1.AAF1 Compare AAF1 fields in two instances of AA
UNPK A1.AAF2,BBF5 Unpack from BBF5 to first instance of AA
MVZ A1.AAF1,A2.AAF1 Move zones from second AAF1 to the first

Figure 62. Labeled Dependent USINGs Example 7d: Nesting with Ordinary USINGs

New USING Statements 77



Example 8: Multiple Nesting of Identical Structures
If the number and nesting of data structures increases even slightly, it can be seen that
there can be difficult problems to solve in addressing the components. For example,
suppose we wish to establish a data structure in which an outermost structure E contains
three copies of a structure D, each of which in turn contains three copies of a structure F.
This might look somewhat like the following figure.

ÚÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ¿
³ E ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
³ ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ́
³ ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
³ ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ́
³ ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ́
³ ³ ³ F ³
ÀÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ

Figure 63. Multiply-Nested Data Structures

If we wish to use ordinary USINGs to address all components of this set of structures, we
will have to allocate thirteen registers as base registers. This is beyond the capabilities of
most programs, so that we will be forced to use “unnatural” solutions if we are restricted to
ordinary USING statements. Dependent USINGs will help only a little, because of the high
degree of repetition among the inner structures.

Multiple Nested Structures

NEWU-26 Copyright IBM Corporation 1993, 2001HLASM

ÚÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ¿
³ E ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
³ ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ´
³ ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
³ ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ´
³ ³ D ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
³ ³ ÃÄÄÄÄÄÄÄÄ´
³ ³ ³ F ³
ÀÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÙ

F DSECT ,
X1 DS XL5
X2 DS XL5
LF EQU *ÄF

D DSECT ,
F1 DS XL(LF)
F2 DS XL(LF)
F3 DS XL(LF)
LD EQU *ÄD

E DSECT ,
D1 DS XL(LD)
D2 DS XL(LD)
D3 DS XL(LD)

Problems:
− Multiple instances of structures

D and F
− Ordinary or labeled USINGs

require 13 base registers!

78 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Suppose the DSECTs are named F, D, and E, and are nested so that three copies of F are to
be contained in each D, and three copies of each D are to be contained in E.

F DSECT , Third-level DSECT (bottom level)
X1 DS XL5 First data element
X2 DS XL5 Second data element
LF EQU *-F Length of F

D DSECT , Second-level DSECT (middle level)
F1 DS XL(LF) First third-level DSECT
F2 DS XL(LF) Second third-level DSECT
F3 DS XL(LF) Third third-level DSECT
LD EQU *-D Length of D

E DSECT , First-level DSECT (top level)
D1 DS XL(LD) First second-level DSECT
D2 DS XL(LD) Second second-level DSECT
D3 DS XL(LD) Third second-level DSECT

Figure 64. Labeled Dependent USINGs Example 8: Double Nesting DSECT Definitions

Multiple Nested Structures: Labeled Dependent USINGs

NEWU-27 Copyright IBM Corporation 1993, 2001HLASM

Mapping nested structures with labeled dependent USINGs

USING E,7 1 Top level
* ³
D1E USING D,D1 . . ³ 2 Map D1 into E at D1
D1F1 USING F,D1E.F1 . . ³ ³ 3 Map F1 into D1 at F1
D1F2 USING F,D1E.F2 . . ³ ³ 3 Map F2 into D1 at F2
D1F3 USING F,D1E.F3 . . ³ ³ 3 Map F3 into D1 at F3
* ³ 2 Middle level
D2E USING D,D2 . . ³ ³ Map D2 into E at D2
D2F1 USING F,D2E.F1 . . ³ ³ 3 Map F1 into D2 at F1
D2F2 USING F,D2E.F2 . . ³ ³ 3 Map F2 into D2 at F2
D2F3 USING F,D2E.F3 . . ³ ³ 3 Map F3 into D2 at F3
* ³ 2 Middle level
D3E USING D,D3 . . ³ ³ Map D3 into E at D3
D3F1 USING F,D3E.F1 . . ³ ³ 3 Map F1 into D3 at F1
D3F2 USING F,D3E.F2 . . ³ ³ 3 Map F2 into D3 at F2
D3F3 USING F,D3E.F3 . . ³ ³ 3 Map F3 into D3 at F3

Qualifiers indicate which references apply to which instance

It can be seen that addressing this structure with ordinary USINGs is nearly impossible to do
cleanly, and that a solution with labeled USINGs also requires thirteen registers to address
the thirteen different active DSECTs. The only viable solution is to use labeled dependent
USINGs.

New USING Statements 79



USING E,7 1 Top level
* |
D1E USING D,D1 . . | 2 Map D1 into E at D1
D1F1 USING F,D1E.F1 . . | | 3 Map F1 into D1 at F1
D1F2 USING F,D1E.F2 . . | | 3 Map F2 into D1 at F2
D1F3 USING F,D1E.F3 . . | | 3 Map F3 into D1 at F3
* | 2 Middle level
D2E USING D,D2 . . | | Map D2 into E at D2
D2F1 USING F,D2E.F1 . . | | 3 Map F1 into D2 at F1
D2F2 USING F,D2E.F2 . . | | 3 Map F2 into D2 at F2
D2F3 USING F,D2E.F3 . . | | 3 Map F3 into D2 at F3
* | 2 Middle level
D3E USING D,D3 . . | | Map D3 into E at D3
D3F1 USING F,D3E.F1 . . | | 3 Map F1 into D3 at F1
D3F2 USING F,D3E.F2 . . | | 3 Map F2 into D3 at F2
D3F3 USING F,D3E.F3 . . | | 3 Map F3 into D3 at F3

Figure 65. Labeled Dependent USINGs Example 8: Double Nesting DSECT Definitions

While this example looks somewhat complicated, it has a simple basic structure. First, notice
the three labeled dependent USING statements (tagged with . .) that map the middle-level
DSECT named D into the outermost DSECT named E. Because there will be three instances
of D simultaneously active, the qualifier labels D1E, D2E, and D3E are used to distinguish the
first, second, and third instances of D within E. The three instances of D are anchored at the
positions within E defined by the fields named D1, D2, and D3, respectively. (See Figure 64
on page 79.)

The three innermost instances of the DSECTs described by F are mapped into the three
instances of D in a similar way. For example, the three labeled dependent USING statements
for the first instance of D (tagged with . .) anchor the three instances of F within D at the
positions labeled F1, F2, and F3 respectively. (Again, referring to Figure 64 on page 79 may
help.) Because there will be three different active instances of those labels, we must use the
qualifier label D1E to qualify the references to F1, F2, and F3. Thus the second operand of
each of the three labeled dependent USING statements tagged . . is therefore qualified with
D1E. The labels on those three USINGs − D1F2, D1F2, and D1F3 − will be used to qualify refer-
ences to the first three of the nine possible instances of the fields X1 and X2. (The notation
implied by these qualifiers is that D1F3 means “first D, third F”.) Appropriately chosen qual-
ifiers can also help you to understand your program more easily.

It is interesting to observe that qualified symbols may themselves be used in labeled
dependent USING statements that themselves define other qualifiers!

The mappings of the second and third sets of instances of the DSECT named F are defined
similarly, in the sets of three labeled dependent USINGs tagged . . and . . respectively.
The qualifying labels D2F1 through D3F3 are then used to qualify references to the fields
within the DSECT named F.

80 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Multiple Nested Structures: Referencing Fields

NEWU-28 Copyright IBM Corporation 1993, 2001HLASM

All symbol references to individual fields are qualified:

* Move fields named X within DSECTs described by F
MVC D1F1.X1,D1F1.X2 Within bottomÄlevel DSECT D1F1
MVC D1F3.X2,D1F1.X1 Across bottomÄlevel DSECTs in D1
MVC D3F2.X2,D3F3.X2 Across bottomÄlevel DSECTs in D3
MVC D2F1.X1,D3F2.X2 Across bottomÄlevel DSECTs in D2 and D3

* Move DSECTs named F within DSECTs described by D
MVC D3E.F1,D3E.F3 Within midÄlevel DSECT D3E
MVC D1E.F3,D2E.F1 Across midÄlevel DSECTs D1E, D2E

* Move DSECTs named D within E
MVC D1,D2 Across topÄlevel DSECTs D1, D2

Can address structures as fields, sub-sub-structures, and
sub-structures

We could then write instructions to reference these fields, with appropriate qualifiers:

* Move fields named X within DSECTs described by F
MVC D1F1.X1,D1F1.X2 Within bottom-level DSECT D1F1
MVC D1F3.X2,D1F1.X1 Across bottom-level DSECTs in D1
MVC D3F2.X2,D3F3.X2 Across bottom-level DSECTs in D3
MVC D2F1.X1,D3F2.X2 Across bottom-level DSECTs in D2 and D3

* Move DSECTs named F within DSECTs described by D
MVC D3E.F1,D3E.F3 Within mid-level DSECT D3E
MVC D1E.F3,D2E.F1 Across mid-level DSECTs D1E, D2E

* Move DSECTs named D within E
MVC D1,D2 Across top-level DSECTs D1, D2

Figure 66. Labeled Dependent USINGs Example 8: Putting the USINGs to Work

As you can appreciate, coding instructions such as these with ordinary USING statements
would much more difficult to write and understand.

New USING Statements 81



Example 9: Two MVS Data Control Blocks Within a Program

Two MVS DCBs Within a Program

NEWU-29 Copyright IBM Corporation 1993, 2001HLASM

Program fragment containing two DCBs and code:
part of program must copy input-DCB's LRECL to output DCB

LA 3,OUTDCB Point to Output DCB
LA 2,INDCB Point to Input DCB
USING IHADCB,2
MVC DCBLRECLÄIHADCB(2,3),DCBLRECL Copy IN LRECL to OUT
Ä Ä Ä

INDCB DCB DDNAME=..., etc.
OUTDCB DCB DDNAME=..., etc.

Ä Ä Ä
DCBD DSORG=PS,DEVD=DA,...etc. Generate IHADCB DSECT

ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
USING *,12
Ä Ä Ä

IN . . USING IHADCB,INDCB Labeled dependent USING
OUT . . USING IHADCB,OUTDCB Labeled dependent USING

Ä Ä Ä
MVC OUT.DCBLRECL,IN.DCBLRECL Addresses resolved via R12

. . . .

Only one register needed to address code and two DSECTs!

This small example shows how one might combine the benefits of labeled and dependent
USINGs in a single program, by using the program base register to address two embedded
structures as well.

Assume that there are two MVS Data Control Blocks (DCBs) addressable in the same
program as are its other components. If only ordinary USINGs are available, three registers
must be used for addressability: one for the code, and one for each DCB. Furthermore, only
one of the DCBs can be mapped with the IHADCB DSECT, because both cannot be mapped
simultaneously. Thus, a typical code sequence might look like this:

LA 3,OUTDCB Point to Output DCB
LA 2,INDCB Point to Input DCB
USING IHADCB,2
MVC DCBLRECL-IHADCB(2,3),DCBLRECL Copy IN LRECL to OUT

Figure 67. Labeled Dependent USING Example 9: Addressing With Ordinary USINGs

The defects in this technique are that three registers must be assigned, and one of the oper-
ands in the MVC instruction must be addressed with explicitly assigned base and displace-
ment.

Suppose we also wish to make symbolic references to fields in both DCBs at the same time.
The two labeled dependent USINGs illustrated below permit fully symbolic references to both
DCBs at the same time, and without a need for additional registers.

82 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



USING *,12
- - -

IN . . USING IHADCB,INDCB Labeled dependent USING
OUT . . USING IHADCB,OUTDCB Labeled dependent USING

- - -
MVC OUT.DCBLRECL,IN.DCBLRECL Addresses resolved via R12

. . . .
- - -

INDCB DCB DDNAME=..., etc.
OUTDCB DCB DDNAME=..., etc.

- - -
DCBD ...,etc. Generate IHADCB DSECT

Figure 68. Labeled Dependent USING Example 9: Addressing Everything with One Register

While most of the previous examples have used data structured defined by DSECTs to illus-
trate various uses of dependent and labeled dependent USINGs, this example shows that
you can map a DSECT “almost anywhere”. The base address (in the first USING operand)
may be “anchored” at any addressable location, including the “code” portion of a program.

Example 10: Personnel-File Record with Labeled Dependent USINGs

Personnel-File Employee Record

NEWU-30 Copyright IBM Corporation 1993, 2001HLASM

Example: a “personnel-file” record describing an employee

Employee DSECT , Employee record
EPerson DS CL(LPerson) Person field
EHire DS CL(LDate) Date of hire
EWAddr DS CL(LAddr) Work (external) address
EPhoneW DS CL(LPhone) Work telephone
EPhoneF DS CL(LPhone) Work Fax telephone
EMarital DS X Marital Status
ESpouse DS CL(LPerson) Spouse field
E#Deps DS CL2 Number of dependents
EDep1 DS CL(LPerson) Dependent 1
EDep2 DS CL(LPerson) Dependent 2
EDep3 DS CL(LPerson) Dependent 3
LEmploye EQU *ÄEmployee Length of Employee record

Many fields are described by other DSECTs:

− Person, Date, Addr, Phone

We will now return to the example introduced in “Dependent USINGs Example 5: Disjoint
USING Ranges” on page 68, with with labeled dependent USINGs as our primary tool for
mapping the complex data structures illustrated in Figure 52 on page 72.

Assume that the Employee, Person, Date, Addr, and Phone structures have been defined as
illustrated in Figures 47 through 52 (found on pages 69 through 72).

New USING Statements 83



Personnel-File Employee Record: “Person” Fields

NEWU-31 Copyright IBM Corporation 1993, 2001HLASM

An individual is described by the Person DSECT:

Person DSECT , Define a "Person" field
PFName DS CL20 Last (Family) name
PGName DS CL15 First (Given) name
PInits DS CL3 Initials
PDoB DS CL(LDate) Date of birth
PAddr DS CL(LAddr) Home address
PPhone DS CL(LPhone) Home telephone number
PSSN DS CL9 Social Security Number
PSex DS CL1 Gender
LPerson EQU *ÄPerson Length of Person field

Some fields are described by other DSECTs:

− Date, Addr, Phone

Personnel-File Employee Record: “Date,” “Addr” Fields

NEWU-32 Copyright IBM Corporation 1993, 2001HLASM

Dates and addresses are described by Date, Addr DSECTs:

Date DSECT , Define a calendar date field
Year DS CL4 YYYY
Month DS CL2 MM
Day DS CL2 DD
LDate EQU *ÄDate Length of Date field

ORG Date
DateF DS 0CL(LDate) Full YYYYMMDD date

ORG , End of Date DSECT

Addr DSECT , Define an address field
AStr# DS CL30 Street number
APOBApDp DS CL15 P.O.Box, Apartment, or Department
ACity DS CL24 City name
AState DS CL2 State abbreviation
AZip DS CL9 U.S. Post Office Zip Code
LAddr EQU *ÄAddr Length of Address field

ORG Addr
AddrF DS 0CL(LAddr) Full address

ORG , End of Addr DSECT

Now, we will consider examples that require addressing multiple active instances of the
inner structures in this Employee data structure. For all of the following examples, we will
assume that some other part of the program has placed the Employee record into storage at
an address carried in General Register 10.

84 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Personnel-File Record Example 10a: Comparing Birth Dates

Personnel-File Employee Record: Comparing Birth Dates

NEWU-33 Copyright IBM Corporation 1993, 2001HLASM

Example 1: Compare employee and spouse birth dates

− Requires two active instances of Person DSECT

USING Employee,10 Assume R10 points to the record

PE . . USING Person,EPerson Overlay Person DSECT on Empl. field
PS . . USING Person,ESpouse Overlay Person DSECT on Spouse field

* Example 1: Compare Employee and Spouse Dates of Birth

CLC PE.PDoB,PS.PDoB Compare Employee/Spouse birth dates
. . . .

Employee's Date of Birth (PDoB) qualified by PE (. .), spouse's by PS
(. .)

Suppose our first requirement is to write some code to compare the birth dates of the
employee and the employee's spouse. Because the birth date is a component of the Person
DSECT, we must establish mappings of the two instances of that DSECT. In the following
figure, this is done with two labeled dependent USING statements:

USING Employee,10 Assume R10 points to the record

PE . . USING Person,EPerson Overlay Person DSECT on Empl. field
PS . . USING Person,ESpouse Overlay Person DSECT on Spouse field

* Example 1: Compare Employee and Spouse Family Dates of Birth

CLC PE.PDoB,PS.PDoB Compare Employee/Spouse birth dates
. . . .

Figure 69. Labeled Dependent USINGs: Comparing Dates of Birth

The first labeled dependent USING statement (indicated by key . .) maps the Person struc-
ture onto the Employee record at the position defined by EPerson; this will describe informa-
tion about the employee. The second labeled dependent USING statement (indicated by key
. .) maps the Person structure onto the Employee record at the position defined by ESpouse,
and describes information about the employee's spouse.

The actual comparison operation is done with the CLC instruction. Note that both instances
of the Person structure are nested at the same level within the Employee structure, so that
similar styles of qualification are used for the two occurrences of the symbol PDoB.

New USING Statements 85



Personnel-File Record Example 10b: Comparing Dates

Personnel-File Employee Record: Comparing Dates

NEWU-34 Copyright IBM Corporation 1993, 2001HLASM

Example 2: Compare employee date of hire to dependent 1 birth date

− Two active instances of Date DSECT

* Example 2: Compare Date of Hire to Birthdate of Dependent 1

EHD . . USING Date,EHire Overlay Date DSECT on Date of Hire

PD1 . . USING Person,EDep1 Overlay Person DSECT on Dependent 1
DD1 . . USING Date,PD1.PDoB Overlay Date DSECT on Dependent 1

. .

CLC EHD.DateF,DD1.DateF Compare hire date to Dep 1 DoB
. . . .

DROP EHD,DD1 Remove both date associations

Dependent's Person DSECT qualified by PD1 (. .)

Hire date qualified by EHD (. .), dependent birthdate by DD1 (. .)

Suppose our second requirement is to check the employee record to see of the date of birth
of the first dependent is later than the employee's date of hire. In this case, we must deal
with two different levels of nesting of the Date structure: one (the employee's date of hire) is
nested directly within the Employee DSECT at the position labeled EHire, while the birth date
of the first dependent is nested (in the Employee DSECT at position EDep1) within the first-
dependent Person DSECT at position PDoB. Thus, we will need additional labeled dependent
USINGs to properly establish addressability to the PDoB field.

* Example 2: Compare Date of Hire to Birthdate of Dependent 1

EHD . . USING Date,EHire Overlay Date DSECT on Date of Hire

PD1 . . USING Person,EDep1 Overlay Person DSECT on Dependent 1
DD1 . . USING Date,PD1.PDoB Overlay Date DSECT on Dependent 1

. .

CLC EHD.DateF,DD1.DateF Compare hire date to Dep 1 DoB
. . . .

DROP EHD,DD1 Remove both date associations

Figure 70. Labeled Dependent USINGs: Comparing Date Fields

In order to map the two instances of the Date DSECT, we first issue a labeled dependent
using with label EHD to describe the employee's date of hire (at EHire, with key . .). Then, to
map the first dependent's date of birth, we must first map a Person DSECT onto the
employee record (at EDep1, with key . .) with label PD1. Finally, within that Person DSECT,
we describe the person's date of birth by mapping the Date DSECT onto the Person structure
(at PDoB, key . .) with label DD1.

The comparison instruction CLC refers to two complete date fields DateF, qualified to asso-
ciate one with the date of hire and the other with the first dependent's date of birth.

86 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



This example, while not obvious at first encounter, is worth some study: it shows how you
can utilize labeled dependent USINGs to map very complex structures in a natural, readable
way that does not require you to understand what pointers may have been established in
which registers some pages earlier in the listing.

Note that the DROP statement, by specifying the two qualifiers, removes the mappings of
both Date DSECTs.

Personnel-File Record Example 10c: Copying Addresses

Personnel-File Employee Record: Copying Addresses

NEWU-35 Copyright IBM Corporation 1993, 2001HLASM

Example 3: Copy employee address to dependent 2 address

− Two active instances of Addr DSECT

* Example 3: Copy Employee Address to Dependent 2 address

AE . . USING Addr,PE.PAddr Overlay Addr DSECT on Employee name
. .

PD2 . . USING Person,EDep2 Overlay Person DSECT on Dependent 2
AD2 . . USING Addr,PD2.PAddr Overlay Addr DSECT on Dep. 2 Person

. .

MVC AD2.AddrF,AE.AddrF Copy Employee Addr to Dependent 2
. . . .

DROP PD2 Remove Dependent 2 associations

Dependent's Person DSECT qualified by PD1 (. .)

Employee address qualified by AE (. .), dependent's by AD2 (. .)

Suppose our third requirement is to update the employee record so that the employee's
home address is assigned to be the same as that of the second dependent. In this case, the
addresses are at the same level of nesting: the Addr structure: the person's home address is
nested within the Person DSECT at the position labeled PAddr. This means that we must
provide addressability to two different Addr DSECTs.

* Example 3: Copy Employee Address to Dependent 2 address

AE . . USING Addr,PE.PAddr Overlay Addr DSECT on Employee name
. .

PD2 . . USING Person,EDep2 Overlay Person DSECT on Dependent 2
AD2 . . USING Addr,PD2.PAddr Overlay Addr DSECT on Dep. 2 Person

. .

MVC AD2.AddrF,AE.AddrF Copy Employee Addr to Dependent 2
. . . .

DROP PD2 Remove Dependent 2 associations

Figure 71. Labeled Dependent USINGs: Copying Addresses

The technique used here is like that of the previous example: we establish addressability to
the instances of the Addr DSECT within the two instances of the Person DSECT, one for the
employee (at EPerson, qualified with PE, at key . . in Figure 69 on page 85) and one for the
second dependent (at EDep2, qualified with PD2, key . .). Within the two instances of the

New USING Statements 87



Person DSECT are the two instances of the Addr DSECT, one for the employee at PE.PAddr,
qualified by AE, key . .), and one for the second dependent (at PD2.PAddr, key . .). The move
instruction then uses these “address qualifiers” AE and AD2 to qualify the names of the field
to be moved, AddrF.

The DROP statement specifies the label PD2. Because the labeled dependent USING with the
AD2 qualifier was based (or “anchored”) on that with qualifier PD2, DROPping the latter auto-
matically causes the former to be dropped also.

Summary of USING Statements

NEWU-36 Copyright IBM Corporation 1993, 2001HLASM

USING
Type

La-
bel

Regis-
ter
Usage

Oper-
and 1
Based
on

Operand
2

Operand 2
Location in
Storage

Number of
Instances of
Active
Objects

Ordi-
nary

no 1
register
per
object

register absolute
[ 0,15]

anywhere in
storage

only one
active
instance of
an object at
a time

Label-
ed

yes 1
register
per
object

register absolute
[ 0,15]

anywhere in
storage

as many
active
instances of
an object as
registers
assigned

Summary of USING Statements ...

NEWU-37 Copyright IBM Corporation 1993, 2001HLASM

USING
Type

La-
bel

Regis-
ter
Usage

Oper-
and 1
Based
on

Operand
2

Operand 2
Location in
Storage

Number of
Instances of
Active
Objects

Depen-
dent

no multiple
objects
per
register

operand
2

relocat-
able,
address-
able

within
addressability
range of
ordinary
USINGs

multiple
active
objects of
different
types

Label-
ed
Depen-
dent

yes multiple
objects
per
register

operand
2

relocat-
able,
address-
able

within
addressability
range of
ordinary
USINGs

multiple
active
objects of
the same or
different
types

88 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Summary of USING Statements
We can now summarize the properties and behavior of the four types of USING statement in
the following table:

Figure 72. Summary of USING Statements

USING
Type

Label Register
Usage

Operand
1 Based
on

Operand 2 Operand 2
Location in
Storage

Number of
Instances of
Active Objects

Ordinary no 1 reg-
ister per
object

register absolute
[0,15]

anywhere in
storage

only one active
instance of an
object at a time

Label-
ed

yes 1 reg-
ister per
object

register absolute
[0,15]

anywhere in
storage

as many active
instances of an
object as regis-
ters assigned

Depen-
dent

no multiple
objects
per reg-
ister

operand
2

relocatable,
addressable

within address-
ability range of
ordinary USINGs

multiple active
objects of dif-
ferent types

Label-
ed
Depen-
dent

yes multiple
objects
per reg-
ister

operand
2

relocatable,
addressable

within address-
ability range of
ordinary USINGs

multiple different
active objects of
the same or dif-
ferent types

As the above table indicates, High Level Assembler provides a rich and complete selection
of choices to help you manage addressability concerns in your programs.

DROP Statement Extensions

NEWU-38 Copyright IBM Corporation 1993, 2001HLASM

Examples:

Ordinary: DROP 9
Labeled: DROP QUAL

Dependent: DROP 12
Labeled Dependent: DROP QUAL

USING Type DROP Statement

Ordinary By register number

Labeled By qualifying label (dropping the register has no effect)

Dependent By register number (all sub-dependent USINGs dropped
automatically)

Labeled
Dependent

By qualifying label (dropping the register has no effect)

New USING Statements 89



DROP Statement Extensions
The DROP statement has been extended in support of the above enhancements to the
USING statement.

The properties of the DROP extensions are summarized below:

Figure 73. Summary of DROP Statement Behavior

These may be described as follows:

Ordinary USINGs

The normal rules for DROP statements apply, and the entry for the specified register is
removed from the assembler's Using Table.

Labeled USINGs

The qualifying label from a previous labeled USING is specified as the operand of the
DROP statement. Only the USING with that qualifier is inactivated; other USINGs speci-
fying the same base register (if any) are still active.

Dependent USINGs

The syntax of the ordinary DROP statement is used: a register is specified as the
operand. If any further dependent USINGs are based on the same register, they are auto-
matically dropped at the same time. The assembler's Using Table entry for that register
is removed.

Labeled Dependent

The qualifying label from a previous labeled or labeled dependent USING is specified as
the operand of the DROP statement. Any dependent or labeled dependent USINGs that
relied on the qualifying label are also dropped. Other USINGs specifying the same base
register (if any) are still active.

USING Type DROP Statement

Ordinary By register number

Labeled By qualifying label (dropping the register has no effect)

Dependent By register number (all sub-dependent USINGs dropped automat-
ically)

Labeled
Dependent

By qualifying label (dropping the register has no effect)

Summary
As the examples have illustrated, the capabilities of the new USING statements provided
with High Level Assembler for MVS & VM & VSE can support programming techniques of
considerably greater power, clarity, expressiveness, and accuracy. They can help you to
achieve many of the goals of any programming language.

90 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Generalized Object File Format (GOFF)
When the GOFF option is specified, High Level Assembler will create an object file in a new
“extended” or “generalized” format (GOFF). This new format is considerably more flexible
than the old, familiar “object module” format (OBJ), which suffers from many limitations.

Generalized Object File Format (GOFF)

GOFF-39 Copyright IBM Corporation 1993, 2001HLASM

Removes limitations associated with old object module format:
− External names to 63 characters
− Section sizes up to 2GB (addresses to 31 bits)
− Multi-component, multi-modal modules
− Ability to retain “Assembler Data” with object code
− And much more...

Controlled by GOFF option
− Independent of DECK or OBJECT

— Assembler produces only one type of object file, old or new

− Requires “wide” listing format (LIST(133) or LIST(MAX) option)
− Enables use of CATTR, XATTR statements

— Assign class names and external symbol attributes
— One assembly can create many RMODE(24) and RMODE(31) “segments”
— Entry points can have their own AMODEs

Utilizes enhanced capabilities of DFSMS Binder, Program Objects
− Existing programs can use GOFF transparently

High Level Assembler and all previous IBM assemblers for the System/360/370/390 family of
processors produce the familiar card-image object-module format (OBJ), as requested by
the DECK or OBJECT options. The GOFF option lets you take advantage of the capabilities of
the new object file format and their support by the DFSMS Binder and its new “Program
Object” format for executables. A program object has a two-dimensional structure (whereas
load modules and traditional object modules are intended for one-dimensional structures).

GOFF option
This specifies that the object file should be written in the new format. The GOFF
option simply determines the format of the object file; the DECK and OBJECT options
select its destination. The new and old object module formats are mutually exclusive.

The ADATA sub-option requests that “Assembler Data” be included in the object file,
so it can be placed in program object classes by the Binder.

GOFF requires a “wide” listing format, specified implicitly or explicitly, either by the
LIST(133) option or by LIST(MAX) with a print-line record length of at least 133 charac-
ters.

Among the enhancements provided by the GOFF option are:

External names up to 63 characters long

Section lengths up to 2GB, and addresses and lengths 31 bits long

Multi-component, multi-modal modules, with a single assembly capable of producing
independently loadable “segments” with different RMODEs

AMODE attributes may be assigned to ENTRY points (not just to control section names)

“Assembler Data” (SYSADATA) may be included in the object stream, allowing both the
object code and all associated descriptive data to be kept in one place.

Generalized Object File Format (GOFF) 91



The program object format supported by the binder is more complex than the traditional
load module format. Load modules are essentially a single loadable segment of code (even
when overlay format is used), whereas program objects may contain several loadable seg-
ments. This is best visualized by treating load modules as one-dimensional executables,
while program objects are two-dimensional:

ÚÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄ¿
CSECT A ³ ³ Section A ³ ³ ³ ³ ³ ³

³ ³ ³ ³ ³ ³ ³ ³
ÃÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄ́

CSECT B ³ ³ Section B ³ ³ ³ ³ ³ ³
³ ³ ³ ³ ³ ³ ³ ³
ÀÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÙ ÀÄÄÄÄÄÄÄÙ

Class X Class Y Class Z

Figure 74. Sketch of Load Module vs. Program Object

Because code and data destined for a program object must specify the class and section to
which it belongs, the CATTR statement specifies the class name and the attributes of the
class.

HLASM provides two statements that describe the properties of symbols and generated text
in GOFF files; both require the GOFF option:

CATTR statement
The CATTR statement controls the placement of machine language instructions and
data into specified classes with specified attributes.

XATTR statement
The XATTR statement, when used in combination with the GOFF allows you to assign
special attributes to external symbols.

The default values assigned to class attributes cause programs without CATTR statements to
be bound in the same way as if the GOFF option had not been specified.

External Symbol Dictionary Listing Enhancements
The listing format is modified when the GOFF option is specified:

The ESD listing displays extra data.

The ALIAS statement permits 64-character external names when the GOFF option is
active.

The source and object code listing displays location counter and symbol values using
eight hexadecimal digits.

The RLD listing displays 8-digit address values.

92 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Conditional-Assembly Functions
High Level Assembler provides a large number of enhancements to the functions available
for programming the conditional assembly language. Among the functions available in the
original (pre-HLASM) assembler language are the Boolean connectives AND, OR, and NOT,
and the “substring” function (or, more properly, operator) for character data. These functions
are “internal” in the sense that they have no interaction with the assembly environment.

Internal Conditional-Assembly Functions

CAFN-40 Copyright IBM Corporation 1993, 2001HLASM

All IBM System/360/370/390 assemblers provide four functions:
− Boolean connectives (AND, OR, NOT) and character substrings

&Bool1 SetB (&Bool2 AND (&Bool3 OR NOT &Bool4)) Boolean functions
&Char1 SetC '&Char2'(&Start,&Length) Substring function

High Level Assembler provides 16 internal functions:
− Arithmetic functions for arithmetic (fullword integer) values

— Masking/logical operations: AND, OR, NOT, XOR
— Shifting operations: SLL, SRL, SLA, SRA

− Boolean connective: XOR
− Character functions:

— Unary operations: UPPER, LOWER, DOUBLE, BYTE, SIGNED
— Binary operations: INDEX, FIND

− Extensible to other functions as required

. . . and two statements for invoking external functions:
− Arithmetic-valued functions: SETAF
− Character-valued functions: SETCF

There are two basic classes of new functions: internal and external. The internal functions
are written much like the existing Boolean connectives; we will describe examples in
“Internal Conditional-Assembly Functions”. The external functions supported by High Level
Assembler may perform any desired action; they are invoked by the SETAF and SETCF state-
ments. We will describe examples of external functions in “External Conditional-Assembly
Functions” on page 99.

Internal Conditional-Assembly Functions
There are sixteen internal functions: one for Boolean operations (XOR); eight for arithmetic
operations (AND, OR, NOT, XOR, SLA, SLL, SRA, SRL); and seven for character operations
(UPPER, LOWER, DOUBLE, INDEX, FIND, BYTE, SIGNED). These functions, like the previ-
ously existing Boolean connectives, are a part of the conditional assembly language, not of
the “base” language.

With these enhancements, the conditional-assembly language now supports most of the
fullword binary operations available in the System/360/370/390 hardware: arithmetic,
logic/masking, and shifting.

Conditional-Assembly Functions 93



Internal Arithmetic-Valued Functions

CAFN-41 Copyright IBM Corporation 1993, 2001HLASM

Arithmetic functions operate on fullword integer (SETA) values

Masking/logical operations: AND, OR, NOT, XOR

&A_And SetA ((&A1 AND &A2) AND X'FF')
&A_Or SetA (&A1 OR (&A2 OR &A3))
&A_Xor SetA (&A1 XOR (&A3 XOR 7))
&A_Not SetA (NOT &A1)+&A2
&A SetA (7 XOR (7 OR (&A+7))) Round &A to next multiple of 8

Shifting operations: SLL, SRL, SLA, SRA

&A_SLL SetA (&A1 SLL 3) Shift left 3 bits, unsigned
&A_SRL SetA (&A1 SRL &A2) Shift right &A2 bits, unsigned
&A_SLA SetA (&A1 SLA 1) Shift left 1 bit, signed
&A_SRA SetA (&A1 SRA &A2) Shift right &A2 bits, signed

Any combination...

&Z SetA ((3+(NOT &A) SLL &B))/((&CÄ1 OR 31)*5)

Internal Arithmetic-Valued Functions
The eight arithmetic functions are in two groups: logical (or masking) operations, and shifting
operations. The logical/masking operations include AND, OR, NOT, and XOR functions. For
example:

&A_And SetA ((&A1 AND &A2) AND X'FF') Low-order 8 bits
&A_Or SetA (&A1 OR (&A2 OR &A3)) Or of 3 variables
&A_Xor SetA (&A1 XOR (&A3 XOR 7)) XOR of 7, 2 variables
&A_Not SetA (NOT &A1)+&A2 Complement and add

When used as arithmetic operators, these logical operations act on the fullword binary
values of arithmetic operands, in exactly the same way as the corresponding
System/360/370/390 instructions N, O, and X. The NOT operator produces the bitwise (or
“ones”) complement of its operand, which has the same effect as XORing the operand with
a word of all one-bits (− 1).

Suppose you wish to “round up” the value of &A to a multiple of 8 (if it is not already a mul-
tiple. Using “old code”, you might have written:

&A SetA ((&A+7)/8)*8 Round &A to next multiple of 8

Using the masking operations OR and XOR, you might write instead:

&A SetA (7 XOR (7 OR (&A+7))) Round &A to next multiple of 8
or

&A SetA (&A+7 AND -8) Round &A to next multiple of 8

The shifting operators for arithmetic operands correspond to the shift instructions provided
by the System/360/370/390 hardware: left or right, and arithmetic (signed) or logical
(unsigned).

&A_SLL SetA (&A1 SLL 3) Shift left 3 bits, unsigned
&A_SRL SetA (&A1 SRL &A2) Shift right &A2 bits, unsigned
&A_SLA SetA (&A1 SLA 1) Shift left 1 bit, signed
&A_SRA SetA (&A1 SRA &A2) Shift right &A2 bits, signed

These operators may be used in any combination:

94 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



&Z SetA ((3+(NOT &A) SLL &B))/((&C-1 OR 31)*5)

These functions can be used in places where the previously available capabilities of the con-
ditional assembly language led to clumsy constructions. Because the conditional assembly
language is interpreted by the assembler, there will not always be significant performance
gains in using these new arithmetic operators. However, any simpler expression will almost
always be evaluated more rapidly than an equivalent but more complex expression. For
example, suppose you must “extract” the value of bit 16 (having numeric weight 215) from
the arithmetic variable &A. Previously, you might have written

&Bit16 SetA (&A/16384)-(&A/32768)*2

which involves four arithmetic operations. Using shifting and masking, the same result can
be obtained by writing

&Bit16 SetA ((&A SRL 15) AND 1)

Conditional-Assembly Functions 95



Boolean Operators

CAFN-42 Copyright IBM Corporation 1993, 2001HLASM

Logical operators: AND, OR, NOT previously available

&A SetB (&V gt 0 AND &V le 7) &V between 1 and 7
&B SetB ('&C' lt '0' OR '&C' gt '9') &C not a digit
&Z SetB (&A AND NOT &B)

New operator: XOR

&S SetB (&B XOR (&G OR &D))
&T SetB (&X ge 5 XOR (&Y*2 lt &X OR &D))

Simplifies “either but not both” testing:

&NotBoth SetB ((&J OR &K) AND NOT (&J AND &K)) Previously
&NotBoth SetB (&J XOR &K) With XOR

Evaluation priority: NOT, AND, OR, XOR

Internal Boolean-Valued Functions
The new XOR operator completes the set of Boolean connectives, which previously included
the OR, AND, and NOT operators. For example, you can write statements such as

&A SetB (&V gt 0 AND &V le 7) &V between 1 and 7
&B SetB ('&C' lt '0' OR '&C' gt '9') &C not a digit
&Z SetB (&A AND NOT &B)
&S SetB (&B XOR (&G OR &D))
&T SetB (&X ge 5 XOR (&Y*2 lt &X OR &D))

XOR can also simplify certain evaluations. Suppose you wish to set the Boolean variable
symbol &NotBoth to TRUE if either of &J or &K is TRUE, but not both. Without XOR, you might
write

&NotBoth SetB ((&J OR &K) AND NOT (&J AND &K)) Previously

but using XOR, the expression is very simple:

&NotBoth SetB (&J XOR &K) With XOR

The XOR operator has the lowest priority of all the Boolean operators. Thus, the expression

(&A AND &B OR NOT &C XOR &D)

is evaluated as

((&A AND &B) OR ((NOT &C))) XOR &D

where the nesting depth of the parentheses indicates the priority of evaluation.

96 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Internal Character Functions

CAFN-43 Copyright IBM Corporation 1993, 2001HLASM

Seven internal character-valued functions
Unary functions: UPPER, LOWER, DOUBLE, BYTE, SIGNED
&X_Up SetC (Upper '&X') All letters in &X set to upper case
&Y_Low SetC (Lower '&Y') All letters in &Y set to lower case
&Z_Pair SetC (Double '&Z') Ampersands/apostrophes in &Z doubled
&Blank SetC (Byte 64) Sets &Blank to C' '
&Minus3 SetC (Signed Ä3) Sets &Minus3 to 'Ä3'

Binary arithmetic-valued functions: INDEX, FIND
INDEX returns offset of first match in 1st operand string of 2nd
operand string
&First_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match
&First_Match SetA ('&HayStack' INDEX '&OneLongNeedle')

FIND returns offset of first match in 1st operand string of any
character of the 2nd operand
&First_Char SetA ('&BigStrg' FIND '&CharSet') First char match
&First_Char SetA ('&HayStack' FIND '&ManySmallNeedles')

Internal Character Functions
High Level Assembler supports seven internal character functions that can greatly simplify
handling of character variables and data in conditional assembly expressions. Three of the
functions take a single character string argument:

&X_Up SetC (Upper '&X') All letters in &X set to upper case
&Y_Low SetC (Lower '&Y') All letters in &Y set to lower case
&Z_Pair SetC (Double '&Z') Ampersands/apostrophes in &Z doubled

The UPPER and LOWER functions convert all alphabetic characters in a string to upper case
(capital) or lower case letters, respectively. The DOUBLE function scans a string for all occur-
rences of ampersands and apostrophes, and replaces each such occurrence with pairs of
that character; the result may then be substituted safely as the nominal value of a character
constant or self-defining term.

&S ARead , Read next record into &S
Do's & Dont's
&S SetC (Double &S) Double ampersands and apostrophes
Text DC C'&S' Character constant

The remaining two functions, INDEX and FIND, take two arguments. The INDEX function
searches its first operand string for a substring that matches the second operand string. If a
match is found, the function returns an arithmetic (integer) value giving the character posi-
tion within the first operand where the match begins; if no match is found, the function
returns a zero value. For example:

&First_Match SetA ('&BigStrg' INDEX '&SubStrg') First string match

&Found SetA ('ABCdefg' Index 'de') &Found has value 4
&NotFound SetA ('ABCdefg' Index 'DE') &NotFound has value 0

Two character-valued functions take a single arithmetic argument: BYTE and SIGNED. The
BYTE function creates a string containing a single character whose bit pattern is supplied by
the value of the arithmetic argument; the value must lie between 0 and 255. For example:

&Blank SetC (BYTE 64) Set &Blank to a space character

is equivalent to

Conditional-Assembly Functions 97



&Blank SetC ' ' Works for representable characters

but the BYTE function is more general than SETC in allowing arbitrary bit patterns to be
created, rather than just those easily entered as source-statement characters.

The SIGNED function allows you to convert arithmetic expressions to correctly signed char-
acter string values. A SETC statement with an arithmetic variable argument creates an
unsigned string representing the magnitude of the arithmetic variable, whereas the SIGNED
function supplies a leading minus sign for negative values.

&Val SetA -5
&Mag SetC '&Val' &Mag is '5'
&Signed SetC (Signed &Val) &Signed is '-5'

The INDEX function can greatly simplify searches for a match in a list of strings. For example,
suppose the character variable symbol &Response might contain one of four values: YES, NO,
MAYBE, and NONE, and we wish to set the arithmetic variable symbol &RVal to 1, 2, 3, or 4
respectively (or to zero if no match is found). In the past, you might have written statements
like these:

&RVal SetA 0
.A1 AIf ('&Response' ne 'YES').A2
&RVal SetA 1

AGo .B
.A2 AIf ('&Response' ne 'NO').A3
&RVal SetA 2

AGo .B
- - - etc.

.B ANop

Each alternative is tested in turn until a match is found, and the desired value is then set.
Alternatively, you might have searched a list of subscripted variable symbols:

&OK(1) SetC 'YES','NO','MAYBE','NONE' Initialize valid matches
&RVal SetA 0 Initialize match value
&J SetA 0 Initialize count
.Test AIf (&J ge N'&OK).Done Check for all values tested
&J SetA &J+1 Increment test value

AIf ('&Response' ne '&OK(&J)').Test Loop if not found
&RVal SetA &J Set index of matched value
.Done ANop

Using the INDEX function, the looping can be eliminated and the search for a match can be
done in a single statement:

&OK SetC 'YES NO MAYBENONE' 5 positions per term
&RVal SetA ('&OK' Index '&Response') Search for match
&RVal SetA &RVal/5 Set corrected result

The FIND function searches its first operand string for the first occurrence of any one char-
acter among those in its second operand string. (Unlike INDEX, which requires that every
character in the second operand match — in the order given — identical characters in the
first operand, FIND only searches for a match of any single character.)

The FIND function can greatly simplify string-scanning problems involving searches for one of
a set of specific characters. Previously, string scans had to be written to proceed on a
character-by-character basis, testing each character in turn for a match. For example,
suppose you want to search an “expression string” for the presence of the arithmetic opera-
tors + , − , *, and /. Without the FIND function, you might have written a code fragment like
this:

98 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



.Scan ANop
&C SetC '&String'(&J,1) Pick off &J'th character

AIf ('&C' eq '+').Plus Branch if plus
AIf ('&C' eq '-').Minus Branch if minus
AIf ('&C' eq '*').Mult Branch if asterisk
AIf ('&C' eq '/').Div Branch if slash

&J SetA &J+1 Increment &J
AIf (&J le K'&String).Scan Try again

.NoChar ANop No match found
- - -

Note that every character must be tested inside the loop! With the FIND function, the scan-
ning can be done more simply, and the “selection branch” to handle the desired characters
is done only when such a character has been found:

&OpPosn SetA ('&String' Find '+-*/') Search for operator character
AIf (&OpPosn eq 0).NoChar Skip if no match found
AGo (&OpPosn).Plus,.Minus,.Mult,.Div Branch accordingly
- - - etc.

Using these techniques, complex string-manipulation problems can be coded much more
simply.

External Conditional-Assembly Functions

CAFN-44 Copyright IBM Corporation 1993, 2001HLASM

Two types of external, user-written functions

1. Arithmetic functions: like &A = AFunc(&V1, &V2, ...)
&A SetAF 'AFunc',&V1,&V2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb(&N)

2. Character functions: like &C = CFunc('&S1', '&S2', ...)
&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','&X' Reverse(&X)

Functions may have zero to many arguments

Assembler's call uses standard linkage conventions

− Assembler provides a save area and a 4-doubleword work area

Functions may provide messages for the listing (as may I/O exits)

Return code indicates success or failure

− Failure return terminates the assembly

External Conditional-Assembly Functions
High Level Assembler for MVS & VM & VSE supports a powerful capability for invoking
externally-defined functions during the assembly. These functions are known as “conditional-
assembly functions”, and can perform almost any desired action. They are invoked using the
conditional assembly statements SETAF and SETCF, by analogy with the familiar SETA and
SETC statements.

The syntax of the statements is similar to that of SETA and SETC: a local or global variable
symbol appears in the name field; it will receive the value returned from the function. The
operation mnemonic indicates the type of function to be called, and the type of value to be
assigned to the “target” variable. The first operand in each case is a character expression
(typically a quoted string) giving the name of the function to be called. The remaining oper-
ands are optional, and their presence depends on the function: some functions require no

Conditional-Assembly Functions 99



parameters, others may require several. The type of each of these parameters is the same
as that of the target variable: arithmetic parameters for SETAF, and character parameters for
SETCF.

A compact notational representation of this description is

&Arith_Var SETAF 'Arith_function'[,arith_val]...
&Char_Var SETCF 'Char_function'[,character_val]...

For example, we might invoke the LOG2 and REVERSE functions (to be discussed in detail
below) with these two statements:

&LogN SetAF 'Log2',&N Logb(&N)
&RevX SetCF 'Reverse','&X' Reverse(&X)

When a function is first invoked, the assembler dynamically loads the module containing the
function into working storage, and prepares the necessary control structures for invoking the
function. The call to the function uses standard operating system calling conventions; the
assembler creates the calling sequence using the parameters and the function name sup-
plied in the SETxF statement.

Following normal parameter-passing conventions, the assembler sets R1 to point to a list of
addresses. The first address in this primary list is that of a “Request Information Area”, a
list of fullword integer values which describe the type of function (arithmetic or character),
the version of the interface, the number of arguments, the return code, and either the
returned value and the integer arguments (for SETAF), or the lengths of the respective argu-
ment strings (for SETCF). The remaining items in the primary list pointed to by R1 are
pointers to a 32-byte work area, and (for SETCF) pointers to the result string and each of the
argument strings.

HLASM provides a means whereby an external function can return messages and severity
codes; this allows functions to detect and signal error conditions in a way similar to the
facility provided by I/O exits.

At the end of the assembly, HLASM will check to see if each called external function wants a
final “closing” call so it can free any resources it may have acquired. Finally, the assembler
lists for each function the number of SETAF and SETCF calls, the number of messages
issued, and the highest severity code returned by the function.

SETAF External Function Interface

CAFN-45 Copyright IBM Corporation 1993, 2001HLASM

Primary List Request Info Area
ÚÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ R1 ÃÄÄÄH³ ↑ ReqInfoArea ÃÄÄÄÄÄH³ ParmList Version ³
ÀÄÄÄÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

³ ↑ WorkArea ÃÄÄH ³ Function Type ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ Reserved ³ ³ Number of Params ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ Reserved ³ ³ Return Code ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ ↑ Message Buf ³ ³Flg³ Reserved ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

³ Reserved ³
ÃÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ´
³ Msg Len³ Msg Sev ³
ÃÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ´
³ Function Value ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

(n)³ Parameters 1Än ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

(n) means the
field is
repeated n
times

HLASM
provides a
32-byte work
area

100 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



SETAF External Function Interface
The interface used by High Level Assembler to invoke external arithmetic-valued functions is
a standard calling sequence, with an argument list composed of two structures: the layout
of the Primary Address List and the Request Information Area is shown in Figure 75.

Primary List Request Info Area
ÚÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ R1 ÃÄÄÄÄÄÄÄH³ A(ReqInfoArea) ÃÄÄÄÄÄÄÄÄH³ Parm List Version ³
ÀÄÄÄÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

³ A(WorkArea) ÃÄÄH ³ Function Type ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Reserved ³ ³ Number of Params ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Reserved ³ ³ Return Code ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ ↑ Message Buf ³ ³Flg³ Reserved ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÃÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

³ Reserved ³
ÃÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ́
³ Msg Len ³ Msg Sev ³
ÃÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ́
³ Returned Fn. Value ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Parameter 1 ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
: :
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Parameter n ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 75. Interface for Arithmetic (SETAF) External Functions

SETCF External Function Interface

CAFN-46 Copyright IBM Corporation 1993, 2001HLASM

Primary List Request Info Area
ÚÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ R1 ÃÄÄÄH³ ↑ ReqInfoArea ÃÄÄÄÄÄÄH³ ParmList Version ³
ÀÄÄÄÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

³ ↑ WorkArea ÃÄÄH ³ Function Type ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

(2)³ Reserved ³ ³ Number of Params ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ ↑ Msg Buffer ³ ³ Return Code ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ ↑ Ret. String ÃÄÄH ³ Flg³ Reserved ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ÃÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄ´

(n)³ ↑ Parm 1Än Str. ÃÄÄ¿ ³ Reserved ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ ÃÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄ´

↓ ³ Msg Len ³ Msg Sev³
: ÃÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄ´

³ Ret. Str. Length ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

(n)³ Parm 1Än Str. Len³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

(n) means the
field is
repeated n
times

HLASM
provides a
32-byte work
area

Conditional-Assembly Functions 101



SETCF External Function Interface
The assembler interface for character functions is illustrated in Figure 76, where the layout
of the Primary Address List and the Request Information Area are shown.

Primary List Request Info Area
ÚÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ R1 ÃÄÄÄÄÄÄÄH³ A(ReqInfoArea) ÃÄÄÄÄÄÄÄÄH³ Parm List Version ³
ÀÄÄÄÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

³ A(WorkArea) ÃÄÄH ³ Function Type ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Reserved ³ ³ Number of Parms ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Reserved ³ ³ Return Code ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ ↑ Msg Buffer ³ ³ Flg ³ Reserved ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ A(Return Strg) ÃÄÄH ³ Reserved ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄ́
³ A(Parm 1 Strg) ÃÄÄH ³ Msg Len ³ Msg Sev ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄ́
: : ³ Return String Len. ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ A(Parm n Strg) ÃÄÄH ³ Parm 1 String Len. ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

: :
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Parm n String Len ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 76. Interface for Character (SETCF) External Functions

102 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



System (&SYS) Variable Symbols
System variable symbols are a special class of variable symbols, starting with the charac-
ters &SYS. They are “owned” by the assembler: they may not be declared in LCLx or GBLx
statements, and may not be used as symbolic parameters. Their values are assigned by the
assembler, and never by SETx statements.

System Variable Symbols: History and Overview

SVAR-47 Copyright IBM Corporation 1993, 2001HLASM

Symbols whose value is defined by the assembler

− Three in the OS/360 (1966) assemblers: &SYSECT, &SYSLIST, &SYSNDX

− DOS/TOS Assembler (1968) added &SYSPARM

− Assembler XF (1971) added &SYSDATE, &SYSTIME

− Assembler H (1971) added &SYSLOC

− High Level Assembler provides 39 additional symbols

Symbol characteristics include

− Type (arithmetic, boolean, or character)

− Type attributes (mostly 'U' or 'O')

− Scope (usable in macros only, or in open code and macros)

− Variability (when and where values might change)

High Level Assembler provides 46 system variable symbols that capture useful information
about the state of various aspects of the assembly. Figure 77 summarizes their properties.

System (&SYS) Variable Symbols 103



Content and Use

SYSADATA file data set name

SYSADATA file member name

SYSADATA file volume identifier

Assembler name

Date/time macro was generated

Assembly date, including century, in YYYYMMDD
format

Assembly date in MM/DD/YY format

Current control section name

Current primary input data set name

Current primary input member name

Current primary input data set name volume identifier

Assembly job name

Current library data set name

Current library member name

Current library data set volume identifier

SYSLIN file data set name

SYSLIN file member name

SYSLIN file volume identifier

Macro argument list and sublist elements

Current location counter name

Highest MNOTE severity so far in assembly

Highest MNOTE severity for most recently called macro

Name of current macro and its callers

Macro invocation count

Nesting level of the macro call

Setting of DBCS invocation parameter

Setting of OPTABLE invocation parameter

Vari-
ability

Fixed

Fixed

Fixed

Fixed

Constant

Fixed

Fixed

Constant

Constant

Constant

Constant

Fixed

Constant

Constant

Constant

Fixed

Fixed

Fixed

Constant

Constant

Variable

Variable

Constant

Constant

Constant

Fixed

Fixed

Usage
Scope

Local

Local

Local

Global

Local

Global

Global

Local

Local

Local

Local

Global

Local

Local

Local

Local

Local

Local

Local

Local

Global

Global

Local

Local

Local

Global

Global

Type
Attr.

U

U

U

U

U

N

U

U

U

U,O

U,O

U

U

U,O

U,O

U

U

U

any

U

N

N

U,O

N

N

N

U

Type

C

C

C

C

C

C,A

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

A

C

C,A

A

B

C

Avail-
ability

HLA2

HLA2

HLA2

HLA1

HLA3

HLA1

AsmH

AsmH

HLA1

HLA1

HLA1

HLA1

HLA1

HLA1

HLA1

HLA2

HLA2

HLA2

AsmH

AsmH

HLA3

HLA3

HLA3

AsmH

HLA1

HLA1

HLA1

Figure 77 (Page 1 of 2). Properties and Uses of System Variable Symbols

Variable Symbol

&SYSADATA_DSN

&SYSADATA_MEMBER

&SYSADATA_VOLUME

&SYSASM

&SYSCLOCK

&SYSDATC

&SYSDATE

&SYSECT

&SYSIN_DSN

&SYSIN_MEMBER

&SYSIN_VOLUME

&SYSJOB

&SYSLIB_DSN

&SYSLIB_MEMBER

&SYSLIB_VOLUME

&SYSLIN_DSN

&SYSLIN_MEMBER

&SYSLIN_VOLUME

&SYSLIST

&SYSLOC

&SYSM_HSEV

&SYSM_SEV

&SYSMAC

&SYSNDX

&SYSNEST

&SYSOPT_DBCS

&SYSOPT_OPTABLE

104
H

igh
Level

A
ssem

bler:
B

enefiting
from

its
P

ow
erful

N
ew

Features,
S

H
A

R
E

Feb.
2001



Content and Use

Setting of RENT invocation parameter

Setting of XOBJECT/GOFF invocation parameter

Value provided by SYSPARM invocation parameter

SYSPRINT file data set name

SYSPRINT file member name

SYSPRINT file volume identifier

SYSPUNCH file data set name

SYSPUNCH file member name

SYSPUNCH file volume identifier

Sequence field of current open code statement

Assembly step name

Number of next statement to be processed

Current control section type

System on which assembly is done

SYSTERM file data set name

SYSTERM file member name

SYSTERM file volume identifier

Assembly start time

Assembler version

Vari-
ability

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Constant

Fixed

Variable

Constant

Fixed

Fixed

Fixed

Fixed

Fixed

Fixed

Usage
Scope

Global

Global

Global

Local

Local

Local

Local

Local

Local

Local

Global

Global

Local

Global

Local

Local

Local

Global

Global

Type
Attr.

N

N

U,O

U

U

U

U

U

U

U,O

U

N

U,O

U

U

U

U

U

U

Type

B

B

C

C

C

C

C

C

C

C

C

C,A

C

C

C

C

C

C

C

Avail-
ability

HLA1

HLA3

AsmH

HLA2

HLA2

HLA2

HLA2

HLA2

HLA2

HLA1

HLA1

HLA1

HLA1

HLA1

HLA2

HLA2

HLA2

AsmH

HLA1

Figure 77 (Page 2 of 2). Properties and Uses of System Variable Symbols

Variable Symbol

&SYSOPT_RENT

&SYSOPT_XOBJECT

&SYSPARM

&SYSPRINT_DSN

&SYSPRINT_MEMBER

&SYSPRINT_VOLUME

&SYSPUNCH_DSN

&SYSPUNCH_MEMBER

&SYSPUNCH_VOLUME

&SYSSEQF

&SYSSTEP

&SYSSTMT

&SYSSTYP

&SYSTEM_ID

&SYSTERM_DSN

&SYSTERM_MEMBER

&SYSTERM_VOLUME

&SYSTIME

&SYSVER

S
ystem

(&
S

Y
S

)
V

ariable
S

ym
bols

105



System Variable Symbols: Properties
The symbols have a variety of characterizations:

Availability

Symbols that were available in Assembler H are designated “AsmH”; High Level Assem-
bler provides a rich set of 39 additional system variable symbols, designated “HLAn”
(where “ n” indicates the release of High Level Assembler in which the symbol first
appeared).

Type

Most symbols have character values, and are therefore of type C: that is, they would
normally be used in SETC statements or in similar contexts. A few, however, have arith-
metic values (type A) or boolean values (type B). &SYSDATC and &SYSSTMT are nomi-
nally type C, but may also be used as type A.

Type attributes

Most system variable symbols have type attribute U (“undefined”) or O (“omitted”, usually
indicating a null value); some numeric variables have type N. The exception is &SYSLIST:
its type attribute is determined from the designated list item.

Scope of usage

Some symbols are usable only within macros (“local” scope), while others are usable
both within macros and in open code (“global” scope).

Variability

Some symbols have values that do not change as the assembly progresses. Normally,
such values are established at the beginning of an assembly. These values are denoted
“Fixed”. Note that all have Global scope.

Other symbols have values that may change during the assembly. These values might
be established at the beginning of an assembly or at some point subsequent to the
beginning, and may change depending on conditions either internal or external to the
assembly process.

− Variables whose values are established at the beginning of a macro expansion, and
for this the values remain unchanged throughout the expansion, are designated “Con-
stant”, even though they may have different values in a later expansion of the same
macro, or within “inner macros” invoked by another macro. Note that all have local
scope.

− Variables whose values may change within a single macro expansion are designated
“Variable”. Currently, this designation applies only to &SYSSTMT, &SYSM_HSEV, and
&SYSM_SEV.

These symbols have many uses: helping to control conditional assemblies, capturing envi-
ronmental data for inclusion in the generated object code, providing program debugging
data, and more.

106 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Input-Output Exits

Input-Output Exits

EXIT-48 Copyright IBM Corporation 1993, 2001HLASM

HLASM supports powerful exit interfaces for all user files

− SYSIN, SYSLIB, SYSPRINT, SYSPUNCH, SYSLIN, SYSTERM, SYSADATA

Exits have as little or as much control as desired

− Modify, insert, delete records

− Monitor or assist assembler I/O, or replace it entirely

Exits may produce diagnostic messages with each interaction

Three sample exits provided:

− Print (ASMAXPRT): options page deleted or moved to end of listing;
summary page optionally deleted

− Input (ASMAXINV): accepts V-format SYSIN records
− ADATA (ASMAXADT): extracts/formats macro/COPY members and their

library names

EXITCTL statement provides source-file information to exits

High Level Assembler supports a very powerful and flexible I/O exit interface. An exit
routine may modify, add, or delete records as they pass to and from the assembler; it may
also share I/O activity with the assembler, or replace that activity entirely by its own. All the
exits use the same interface, and a single exit routine may be used to support more than
one type of exit. (An example is illustrated in the High Level Assembler Programmer's
Guide.)

Three sample exits are provided with HLASM (except for the VSE Edition):

a print exit ASMAXPRT: it will optionally move the list of assembly options from the head
to the end of the listing;

an input exit ASMAXINV: it accepts variable-format (V-format) input records, and converts
them to the fixed format required by the assembler;

an ADATA exit ASMAXADT: it extracts information from the SYSADATA file and produces
fixed-format records for each macro or COPY file, indicating the library from which it was
read.

Each of these sample exits provides a useful function while illustrating typical exit coding
techniques.

In this chapter we will illustrate a sample object-file exit for inserting Linkage Editor or
Binder control statements into the object stream, at “Example: A SYSLIN, SYSPUNCH
Object-File Exit” on page 112.

Input-Output Exits 107



Input-Output Exit Communication

EXIT-49 Copyright IBM Corporation 1993, 2001HLASM

ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Register 1 ³ ÚÄH³ PList Version ³
ÀÄÄÂÄÄÄÄÄÄÄÄÄÙ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

³ ³ ³ Exit Type ³
↓ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³ Request Type ³
³ ↑ Request Info List ÃÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ Options ³
³ ↑ Data buffer ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ (4): EXITCTL values 1Ä4 :
³ ↑ ErrorÄmessage buffer ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ (2): Return/reason codes :
³ ↑ ExitÄspecific info ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ (2): Buffer lengths :
³ ↑ DCB ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´ ³ Error severity ³
³ ↑ Assembler Info Block ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ UserÄdefined field ³

ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³ Common exit field ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

All assembler/exit
communication
via I/O Exit
Parameter List

Full control
information

Control
information
Data set
information
Buffers,
message area
Exit anchor word

Assembler, exit
are “coroutines”

Communication and Work Areas
The interface between High Level Assembler and its I/O exits establishes a “coroutine”
interaction: both the assembler and the exit routine must cooperate, with neither being fully
in control of the other. All interactions take place through the I/O exit parameter list illus-
trated in Figure 78 on page 109.

108 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



ÚÄÄÄÄÄÄÄÄÄÄÄÄ¿ ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ Register 1 ³ ÚÄH³ PList Version ³
ÀÄÄÂÄÄÄÄÄÄÄÄÄÙ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

³ ³ ³ Exit Type ³
↓ ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́

ÚÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿ ³ ³ Request Type ³
³ ↑ Request Info List ÃÄÙ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ Options ³
³ ↑ Data buffer ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ EXITCTL value 1 ³
³ ↑ ErrorÄmessage buffer ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ EXITCTL value 2 ³
³ ↑ ExitÄspecific info ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ EXITCTL value 3 ³
³ ↑ DCB ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́ ³ EXITCTL value 4 ³
³ ↑ Assembler Info Block ³ ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ ³ Return code ³

ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Reason code ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Buffer length ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ ErrorÄbuffer length³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Error severity ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ UserÄdefined field ³
ÃÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ́
³ Common exit field ³
ÀÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ

Figure 78. I/O Exit Parameter List

The I/O exit interface uses standard OS linkage conventions, and the parameter list follows
standard OS parameter-passing conventions. (In fact, this interface was designed to allow
exit routines to be written in most high-level languages.) There are five main elements of
this list:

1. The first parameter in the list is a pointer to the Request Information List, an array of
fullword integers:

The first word indicates the version of the parameter list.

The second word indicates the exit type; its value tells the exit routine what file it is
expected to work with.

The third word indicates the request type, such as opening or closing the exit, proc-
essing a record, or performing a read or write.

The fourth word indicates optional additional information about the exit's activity, such
as changes to data set names or types of output records.

The fifth through eighth words contain the EXITCTL values; these are described in
“The EXITCTL Statement” on page 111.

The ninth and tenth words contain the return and reason codes. These are used by
the exit routine to indicate subsequent processing actions to be taken by the assem-
bler.

The eleventh word contains the length of the record in the data buffer.

Input-Output Exits 109



The twelfth word contains the length of an error message placed in the error message
buffer by the exit. The assembler checks this field after each return from an exit, and
a nonzero length indicates the presence of a message.

The thirteenth word is the error severity to be associated with the message.

The fourteenth word is initialized by the assembler to zero before the initial call to the
exit, and is unmodified thereafter. It may be used for any purpose by the exit; a typical
use would be to hold the “anchor address” of additional working storage obtained by
the exit.

The fifteenth word is shared by all I/O exits, and provides a common anchor for data
to be shared among exits.

2. The second parameter is the address of the data buffer used for passing records
between the exit and the assembler.

3. The third parameter is the address of an error-message buffer, where the exit routine can
place messages to be displayed in the assembly's source and object code listing. (The
length of the message is placed in the twelfth word of the Request Information List.)

4. The fourth parameter is the address of an exit-specific information area; its contents
depend on the type of exit being invoked. Typical contents include the data set and
member names of the current file.

5. The last parameter is the address of the assembler's Data Control Block (DCB) for the
file appropriate to the type of exit.

6. The sixth and last parameter is the address of the “Assembler Static Information Block”,
which provides information about the assembler itself:

an 8-byte field of EBCDIC characters contains the version, release, and modification
level of HLASM in V.R.M format. For example, if HLASM Release 4.0 is used, the field
will contain

1.4.0

an 8-byte field of EBCDIC characters contains the current HLASM PTF level. For
example, this field might contain

UQ32700

a 16-byte field of EBCDIC characters contains the name and version and release level
of the operating system under which HLASM is executing. For example, this field
might contain

MVS/ESA SP 5.1.0

The actions to be taken by the exit and the assembler are determined by the values of the
request type (when the assembler calls the exit) and the return and reason code (when the
exit returns to the assembler).

Mapping the Communication and Work Areas
The I/O exit parameter lists are mapped by DSECTs generated by the ASMAXITP macro,
which is supplied by High Level Assembler with the macros used for installing and custom-
izing the assembler.

110 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



The EXITCTL Statement
High Level Assembler for MVS & VM & VSE provides the EXITCTL statement to allow greater
control (by the source program being assembled) over the actions of an I/O exit. It is written
in the form

EXITCTL exit-type,value-1,value-2,value-3,value-4

The four operands of the statement are converted into integer values, and are passed to the
exit in four contiguous words in the Request Information List, as illustrated in Figure 78 on
page 109.

The EXITCTL values are set at the time records are being read or written by the assembler;
this means that input exits are active during the earlier phases of the assembly, and the
output exits are active during the later phases of the assembly. (Thus, you should not expect
to create complex interactions among the exits that depend on a particular sequence of
statements!)

The EXITCTL instruction passes four fullword integer values to the designated exit routine. It
may sometimes be useful to pass character values to the exit. To illustrate, suppose you are
writing a LIBRARY exit routine which is capable of searching multiple sets of libraries (each
set having a different DDname), and you wish to specify the “new” library DDname in the
source program with a ASYSLIB statement. For example,

ASYSLIB ALTDDN2

would instruct the exit to switch to the libraries defined by the ALTDDN2 DD statement.

We could define an ASYSLIB macro to convey the new DDname in the third and fourth
EXITCTL values as shown in Figure 79. Because EXITCTL accepts only decimal terms in its
operands the macro must convert the 8-character DDname to two integers having the same
bit representation.

Macro
&L ASYSLIB &D,&Z

AIf (K'&Z eq 0).Operand
MNote 8,'Only one operand allowed.'
MExit

.Operand AIf (K'&D eq 0).Revert Null operand => SYSLIB
AIf (K'&D le 8).Proceed
MNote 8,'DDname ''&D'' is too long.'
MExit

.Revert ANop
&Name SetC 'SYSLIB '

AGo .DoName
.Proceed ANop
&Name SetC '&D'.' ' Pad with blanks
&Name SetC '&Name'(1,8) Take first 8 characters
.DoName ANop
&N(1) SetC '&Name'(1,4),'&Name'(5,4)
&N(1) SetC 'C''&N(1)''','C''&N(2)''' Make self-defining terms
&V(1) SetA &N(1),&N(2) Arithmetic values
&N(1) SetC (Signed &V(1)) Numerics, in character form
&N(2) SetC (Signed &V(2)) Numerics, in character form
.A3 ExitCtl LIBRARY,0,0,&N(1),&N(2) Data for LIBRARY Exit

MNote *,'Switching to DDname ''&Name.'''
MEnd

Figure 79. Passing character data to I/O exits: ASYSLIB macro

Input-Output Exits 111



Example: A SYSLIN, SYSPUNCH Object-File Exit

Example Object-File Exit: OBJX

EXIT-50 Copyright IBM Corporation 1993, 2001HLASM

Add Linkage Editor-Binder control statements after object modules

− NAME and up to 32 ALIASes, optional SETSSI

— BATCHed assemblies are properly separated by NAME statements

— Can create of PDS members in two assembly-link steps

Invoked by specifying EXIT option:

EXIT(OBJEXIT(OBJX[(exitÄparm)]))
or EX(OBX(OBJX[(exitÄparm)]))

OBJX exit handles four one-character parameters in exit-parm

Q Do not write summary information messages
R Add (R) to NAME statements
S Provide SETSSI statements with YYDDDHHM date/time
T Provide tracing and debugging information

The SYSLIN and SYSPUNCH files produce the object-module records assembled from the
source program, as well as records produced by PUNCH and REPRO statements. You may
monitor these records, adding to them, deleting them, or modifying them, by requesting that
High Level Assembler invoke an exit routine.

Creating Linkage Editor Control Statements
When the assembler is used to create one or more output modules for subsequent proc-
essing by a Linkage Editor, it is typically necessary to place Linkage Editor control state-
ments following each module — for example, to NAME the member of the load module
library, or to assign additional entry points as ALIASes of the member. When several source
modules are assembled with the BATCH option, it can be difficult to provide automated pro-
cedures to separate the output modules and insert the desired control statements.

There are many different techniques that can be used to write an exit; most exits would
emphasize simplicity and small size. The example given here — the object-file exit — is
more elaborate than would normally be necessary: it checks interface parameters carefully,
instead of assuming that the assembler has set them properly. This is done to help you
understand the operation of the assembler interface with its exit routines.

Description of HLASM Object Exit OBJX
This exit, named OBJX, adds Linkage Editor ALIAS and NAME control statements to the
object output stream from the High Level Assembler. The exit is invoked by specifying this
invocation parameter to HLASM:

EXIT(OBJEXIT(OBJX[(exit-parm)]))
or EX(OBX(OBJX[(exit-parm)]))

The allowed values of exit-parm are the lower- or upper-case characters Q, R, S, and T, or
any combination of single occurrences of them.

These mean respectively:

112 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Q Do not write summary information messages

R Add the characters (R) to NAME statements

S Provide SETSSI statements

T Provide tracing information

The exit routine will monitor the object stream and extract CSECT names and ENTRY names,
up to a total number defined by the value of the variable symbol &MaxAlias (set to 32 in this
sample program). When the END record is recognized, it will be followed by up to
(&MaxAlias.− 1) ALIAS statements, a SETSSI statement (if requested), and a NAME statement
for the first non-blank CSECT or entry point name (followed by “(R)” if requested in the exit-
parm).

The SETSSI information will be in the form YYDDDHHM, and is initialized at the first invocation
of the exit. If more than one object module is processed, all SETSSI statements will provide
identical information.

Possible entry names in excess of the number defined by &MaxAlias will be ignored, and (if
the Q exit-parm has not been specified) an appropriate message will be printed.

The exit routine will provide a summary of its actions by writing (zero-severity) information
messages unless the “Q” exit-parm is specified.

If no object-module records are written (for example, the assembly consists only of PUNCH
and REPRO records), then the exit will take no action.

Error Messages

All errors will terminate the assembly. The following error messages will be issued inde-
pendent of the setting of the “Q” flag:

Exit not coded at same level (1) as Assembler

The exit uses version 1 of the High Level Assembler exit definition, but the assembler
invoking this exit uses a different version.

Exit type requested is unrecognizable

The type of the exit requested is not one of the recognized types (PRINT, LIBRARY,
PUNCH, OBJECT, etc.).

Exit called for other than PUNCH or OBJECT

The exit was invoked with a valid type, but that type was not one that this exit can
handle.

Exit not initialized, and not entered for OPEN

The exit has not yet been initialized, but was not entered with an OPEN request. There
may be a failure in communication between the assembler and this exit.

Exit initialized, but was entered for OPEN

The exit has been initialized, but was unexpectedly entered with an OPEN request. There
may be a failure in communication between the assembler and this exit.

Invalid request-list options value

This exit should never have any additional options value supplied in the request list for
an OPEN exit, but a non-zero value was detected.

Invalid parameter-string length

The length of the parm string was not between 0 and 4.

Invalid character in parameter string

Input-Output Exits 113



A character was found in the parameter string that is not one of the permitted values.

Duplicated valid character in parameter string

A valid parameter character appeared in the parameter string more than once.

Invalid action or operation type requested

An action was requested that is inconsistent with the type of action the exit was
expecting to take.

Expecting input record, zero buffer length

The exit was expecting an input record to scan, but the buffer length was found to be
zero.

Information Messages

If the “Q” option has not been requested, the exit will provide one or more of the following
messages at the end of each assembly:

nnn Entry names were processed.
nnn Entry names, mmm were ignored.

At the end of each object module containing usable control section or entry point names,
this message summarizes the number of names recognized and (if there are too many to
handle) the number that were not processed.

Object Module contained no usable SD or LD names

The object module contained no names identifiable as possible module names or aliases.
This may be a valid condition; for example, an assembly with only PUNCH statements
would contain no names.

Coding the OBJECT Exit OBJX
The code for the object exit will be given in segments that correspond approximately to func-
tional units in the program. Each segment is followed by a description of its function.

Title 'High Level Assembler PUNCH/OBJECT Exit for Linkage Edit*
or Control Statements'

* Define the maximum number of ALIAS names to be supported
LCLA &MaxAlias

* Define the environment in which the exit will run
LCLB &EnvMVS,&EnvCMS,&EnvVSE

&EnvMVS SETB 1
&EnvCMS SETB 1 Assume CMS can use OS emulation
&EnvVSE SETB (NOT &EnvMVS)

* Define the external names of the exit routine
LCLC &Csect

&Csect SETC 'OBJX'

&MaxAlias SETA 32
&Csect SETC 'OBJX'

Figure 80. Object exit OBJX: variable symbol definitions

In Figure 80, five local variable symbols are defined:

114 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



&MaxAlias defines the size of the table that will be used to hold the usable external
names scanned from each object module.

&EnvMVS, &EnvCMS, and &EnvVSE define the environment in which the exit is intended
to operate. In this sample program, we assume an MVS environment (or CMS, with OS
emulation). The idea is that future enhancements can use these variables in conditional
logic to determine what system interfaces to use.

&Csect defines the name of the control section containing the exit program, and will
define its entry point. By defining it with a variable symbol, the name of the exit routine
is easy to change if desired.

* Method of operation:

* (1) Initial entry
* (a) validate parameters
* (b) get and initialize working storage, save pointer
* in AXPUSER User Field of Request Information List
* (c) check for and scan parms, set flags
* (d) initialize batch fields

* (2) Process entry
* (a) if not outputting retained names, then
* 1. scan record for ESD or END
* 2. if neither, return to output the record
* 3. if ESD, scan off SD and LD names, keep count
* 4. if END, indicate 'outputting retained names'
* (b) if outputting retained names, then
* 1. if names count = 0, re-init batch, and exit
* 2. if names count > 1, output ALIAS statements
* 3. if names count = 1, then output SETSSI if wanted;
* output NAME record, re-init batch

* (3) Close entry
* (a) if outputting, indicate faulty object deck
* (b) if requested, put out summary message
* (c) free storage and exit

Figure 81. Object exit OBJX: description of method of operation

In Figure 81, the method of operation used by the exit is characterized in simple terms. As
we will see, it is necessary for the exit to save information about its state across entries
from the assembler.

Input-Output Exits 115



&Csect Title 'Object-Editing Exit ''&Csect.'''
&Csect RSect Program is re-entrant
&Csect AMode 24
&Csect RMode 24

* Register Equates (R6,R7 not used)

R0 Equ 0
R1 Equ 1
R2 Equ 2
R3 Equ 3
R4 Equ 4
R5 Equ 5
R8 Equ 8 Work Area Pointer
R9 Equ 9 Request Information List Pointer
R10 Equ 10 Buffer Pointer
R11 Equ 11 Error Buffer Pointer
R12 Equ 12 Program Base
R13 Equ 13
R14 Equ 14
R15 Equ 15

Figure 82. Object exit OBJX: CSECT definition and register EQUates

In Figure 82, the CSECT definition is provided; note that because this exit is re-entrant, the
RSect statement is used to request that High Level Assembler check for obvious violations
of re-enterability. Various register equates used in the program are defined. (Note that no
definitions are provided for registers 6 and 7, as they are not used in the program!)

116 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



* Displacements

D0 Equ 0
D1 Equ 1
D2 Equ 2
D4 Equ 4
D5 Equ 5
D8 Equ 8

* Lengths

L1 Equ 1
L2 Equ 2
L3 Equ 3
L5 Equ 5
L8 Equ 8
L80 Equ 80
L255 Equ 255

* Shift Counts

S3 Equ 3
CEject 10 . .

* Other Equates

No_Reason Equ 0 Null reason code
Max_Parm_Chars Equ 4 Limit on no. of valid parm chars
MSGSEVC Equ 12 Severity code for errors
Obj_Ind Equ X'02' Object-record indicator

Figure 83. Object exit OBJX: other useful EQUates

In Figure 83, various other EQUates used in the program are defined. One aspect of the
programming style used is that absolute (self-defining) terms are avoided wherever their use
might limit one's ability to maintain or modify the exit.

Note (at . .) the use of the CEJECT statement to keep the following group of lines together
on the listing. Other CEJECT statements were used in the program, but they are omitted
elsewhere in this example to help save space.

Input-Output Exits 117



***********************************************************************
* Entry point for all invocations *
***********************************************************************

* Save caller's registers, establish program base

Using *,R15
Save (14,12),,&Csect.-&SysDatC.-&SysTime Save registers
LR R12,R15 R12 will be program base
Drop R15
Using &Csect.,R12

* Validate entry type and interface version

Using AXPXITP,R1 R1 points to primary parm list
LM R9,R11,AXPRIP Addresses of first three items
Using AXPRIL,R9 R9 --> Request Information List

* Using Buffer,R10 R10 --> Working Buffer
Using Err_Buff,R11 R11 --> Error Buffer
Drop R1
SR R8,R8 Clear work area anchor register
CLC AXPLVER,=A(AXPVER1) Check version of exit list
BL Bad_Version Can't continue, version mismatch
CLC AXPLVER,=A(AXPVER3) Check version of exit list
BH Bad_Version Can't continue, version mismatch
L R1,AXPTYPE Check exit type
LTR R1,R1 Verify value non-negative
BNP Bad_Exit_Type Can't continue, illegal exit type
C R1,=A(AXPTAD) Verify value not too large
BH Bad_Exit_Type Can't continue, illegal exit type
BNL Wrong_Exit_Type Can't continue, wrong exit type
C R1,=A(AXPTPUN) Verify value not too small
BL Wrong_Exit_Type Can't continue, wrong exit type

Figure 84. Object exit OBJX: initial entry and interface validation

In Figure 84, control is received from the assembler. After certain registers are initialized,
the various interface parameters are validated to ensure that this exit routine has been
invoked as an object-file exit. The commented USING statement for R10 will not be needed
until later, but is included here to help document base register assignments.

* Have been called as PUNCH or OBJECT exit

L R8,AXPUSER Check User Field for work area
LTR R8,R8 Check if anchor is present
BNE Started Branch if already initialized, to

* check which function is desired.

* Not initialized, validate that entry is for OPEN

CLC AXPRTYP,=A(AXPROPN) Should be OPEN request
BE Open_Request Branch to process OPEN
B Bad_OPEN_Request1 Branch if not an OPEN request

Figure 85. Object exit OBJX: Checking for initial or subsequent entry

118 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



In Figure 85, we check whether this is the initial or a subsequent entry to the exit routine.
The determination is made by testing the contents of the AXPUSER field of the communication
work area: if it is zero, this is an initial entry; if not, that field contains the pointer to the
exit's work area as it was created by the OPEN processing (described in Figure 86 on
page 119 below).

***********************************************************************
* OPEN Request *
***********************************************************************

* Obtain and initialize working storage

Open_Request DS 0H
L R0,=A(Work_Size) Size of work area in R0
LR R3,R0 Size of work area in R3 for zeroing
GETMAIN R,LV=(0) Obtain the storage
ST R1,AXPUSER . . Save work area anchor
LR R8,R1 Work Area base register
Using WorkArea,R8
LR R2,R1 Work Area base for zeroing
SR R4,R4 Second operand addr for zeroing
LR R5,R4 Second operand length and pad byte
MVCL R2,R4 Clear work area to zeros

* Chain save areas

ST R13,Save+D4 Save back pointer to caller
LA R0,Save Point to local save area
ST R0,D8(,R13) Save forward pointer for caller
LR R13,R0 Establish local save area pointer

Figure 86. Object exit OBJX: OPEN processing: obtain and initialize working storage

In Figure 86, the necessary amount of working storage is requested from the operating
system, after which it is initialized to zeros and the exit's save area is chained to that of the
assembler. Note (at . .) that the AXPUSER field in the communication area is set to contain
the (non-zero!) pointer to the exit's work area; this pointer will be used on subsequent
entries, both as the base address for the work area, and to distinguish initial from subse-
quent entries.

Input-Output Exits 119



* Check for presence of input parms, validate them if present

L R0,AXPBUFL Pick up buffer length indicator
LTR R0,R0 Check sign and value
BZ No_Parms Branch if zero, no parms present
BM Bad_Parm_Str Should not be negative
LA R15,Max_Parm_Chars Set max allowed number of chars
CR R0,R15 Compare input length to max
BH Bad_Parm_Str Branch if high, string is too long

* Prepare to check parm string characters

LR R1,R10 Pick up buffer address
Using Buffer,R1 R1 --> Working Buffer
LR R2,R0 Copy character count
BCTR R2,0 Decrement by one for Execute
EX R2,Upper_Parms OR blanks to make parms upper case

Figure 87. Object exit OBJX: initial checks for exit-parm information

In Figure 87, the availability of exit-parms is tested, and if they are present, the characters
are converted to upper case to simplify scanning.

Parm_Loop DS 0H
CLI Buffer,C'Q' Check for 'Q' character: Quiet
BE Parm_Has_Q Branch if present
CLI Buffer,C'R' Check for 'R' character: (R)
BE Parm_Has_R Branch if present
CLI Buffer,C'S' Check for 'S' character: SETSSI
BE Parm_Has_S Branch if present
CLI Buffer,C'T' Check for 'T' character: Trace
BE Parm_Has_T Branch if present
B Bad_Parm_Char Error otherwise

Upper_Parms DS 0H Executed instruction
OC Buffer(*-*),P_Blanks Force letters to upper case

Drop R1 . . No further buffer addressing

Figure 88. Object exit OBJX: scan exit-parm characters

In Figure 88, the characters in the exit-parm string are checked against the four valid values.
If one is present, a branch is taken to the appropriate processing code in Figure 89 on
page 121; if not, an error condition will be indicated. Note (at . .) that code following this
segment no longer requires addressability to the input buffer.

120 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Parm_Has_Q DS 0H
TM Parm_Q,L'Parm_Q . . Check if already specified
BO Parm_Dup_Char Branch if duplicated parm char
OI Parm_Q,L'Parm_Q . . Set indicator
B Parm_Loop_End Step to next character

Parm_Has_R DS 0H
TM Parm_R,L'Parm_R Check if already specified
BO Parm_Dup_Char Branch if duplicated parm char
OI Parm_R,L'Parm_R Set indicator
B Parm_Loop_End Step to next character

Parm_Has_S DS 0H
TM Parm_S,L'Parm_S Check if already specified
BO Parm_Dup_Char Branch if duplicated parm char
OI Parm_S,L'Parm_S Set indicator
B Parm_Loop_End Step to next character

Parm_Has_T DS 0H
TM Parm_T,L'Parm_T Check if already specified
BO Parm_Dup_Char Branch if duplicated parm char
OI Parm_T,L'Parm_T Set indicator
B Parm_Loop_End Step to next character

Figure 89. Object exit OBJX: processing each exit-parm option

In Figure 89, two things are done for each valid exit-parm character: first, a check is made to
see if that character has already been encountered (if so, a message will be issued unless
the “Q” option suppresses it); otherwise, the appropriate flag is set to indicate the presence
of that option.

The addressing technique used for referring to the bit flags (at . . or . ., for example) helps
to avoid situations where a correct bit definition is used to test a bit in a different byte that
doesn't actually contain the desired flag. The definition of the flag itself will be discussed
following Figure 112 on page 133.

Parm_Dup_Char DS 0H
OI Dup_Char,L'Dup_Char Set duplicated-character flag

Parm_Loop_End DS 0H
AL R1,F1 Increment buffer pointer
BCT R0,Parm_Loop And scan again if needed

* Done with parm scan, see if SSI information is needed

TM Parm_S,L'Parm_S Check request for SSI parm
BNO Open_Done Branch if not, OPEN completed

Figure 90. Object exit OBJX: end of exit-parm scan

In Figure 90, duplicate exit-parm characters are flagged, the scan loop is re-executed if nec-
essary, and then a test is made to see if SETSSI-statement information must be prepared.

Input-Output Exits 121



TIME DEC Get time/date info from system

ST R1,FTemp Store '00yydddF' date temporarily
UNPK SSI(L5),FTemp+D1(L3) Unpack 'yydddF' to SSI as 'YYDDD'
ST R0,FTemp Store 'hhmmssth' time temporarily
UNPK DTemp(L3),FTemp(L2) Unpack 'hhmm' to Dtemp as 'HHmm'
OI DTemp+D2,C'0' Set zone on high-order minute
MVC SSI+D5(L3),DTemp Move 'HHM' to end of SSI data

Figure 91. Object exit OBJX: initializing SETSSI information

In Figure 91, the date and time are requested from the operating system, and the returned
data is converted into the format that will be used on SETSSI statements.

No_Parms DS 0H
Open_Done DS 0H

* Indicate assembler opens object file, and proceed normally

TM Dup_Char,L'Dup_Char See if duplicate-char flag set
BZ Open_Done_1 Branch if not
MVC Err_Msg(L'Dup_Prm_Ch_Msg),Dup_Prm_Ch_Msg Move message
MVC AXPERRL,=A(L'Dup_Prm_Ch_Msg) Set length
MVC AXPSEVC,=A(AXPSEV0) Set severity

Open_Done_1 DS 0H
MVC AXPRETC,=A(AXPAOPN) Assembler to open object/punch file
MVC AXPREAC,=A(No_Reason) No reason code info

L R13,Save+D4 Retrieve caller's save area pointer
RETURN (14,12) Return to assembler

Figure 92. Object exit OBJX: completion of OPEN processing

In Figure 92, OPEN processing is completed by checking for (and, if needed, issuing) a
message about duplicated exit-parm characters, and then setting the return and reason
codes to tell the assembler that it should open the object and/or punch files normally.
Control is then returned to the assembler to continue processing the program.

122 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



***********************************************************************
* Exit has been opened (we believe). Check type of action. *
***********************************************************************
Started DS 0H

* Chain save areas

ST R13,Save+D4 Save back pointer to caller
LA R0,Save Point to local save area
ST R0,D8(,R13) Save forward pointer for caller
LR R13,R0 Establish local save area pointer

* Have been initialized, verify type of entry request

CLC AXPRTYP,=A(AXPROPN) Should not be OPEN request
BE Bad_OPEN_Request2 Branch if an OPEN request
CLC AXPOPTS,=A(AXPONA) Should be no options present
BNE Bad_Req_Opts Branch if options are present
CLC AXPRTYP,=A(AXPRCLS) Check if CLOSE request
BE Close_Request Branch to do the CLOSE
CLC AXPRTYP,=A(AXPRPRO) Check if PROCESS request
BE Process_Request Branch if a PROCESS request
B Bad_Type_Request Branch if not a PROCESS request

Figure 93. Object exit OBJX: processing of subsequent (non-initial) entries

In Figure 93, control will have been passed to the label Started if the exit has already been
initialized. (See Figure 85 on page 118 for the test of the AXPUSER field.) The save area of
the exit is chained to the assembler's, and then the type of requested operation is checked
to see if it is a “process” (intermediate) or a “close” (final) request.

***********************************************************************
* PROCESS Request *
***********************************************************************
Process_Request DS 0H

TM Dumping,L'Dumping See if outputting names now
BO Do_Dumping

CLC AXPBUFL,=A(L80) Check to see if record is in buffer
BNE Phase_Error_1 Error if not, we're confused

Using ESD_Rec,R10 Base descriptive Dsect on buffer
CLI ESD_Tag,Obj_Ind Check for actual object record
BNE Return_Rec May have PUNCHed 'ESD' or 'END'
CLC ESD_ESD,=C'ESD' See if it's an ESD record
BNE Check_END If not ESD, check for END

Figure 94. Object exit OBJX: request to process an object record

In Figure 94, the exit has been presented with an object-file record. First, a check is made to
see if the end of the object module has been reached; if so, we begin (or continue) the
process of “dumping” out the collected names. Otherwise, we will check to see if the input
record is “interesting”: if it is other than a valid ESD or END record, a code will simply be
returned to the assembler telling it to output this record and continue processing.

Input-Output Exits 123



* Scan the ESD Record for useful names

LH R0,ESD_Amt Get amount of ESD data
LA R1,ESD_Data Point to first data item
Using ESD_Item,R1 Base description of ESD item

Scan_Item DS 0H
CLI ESD_Type,ESD_Type_LD Check for SD or LD
BH Next_Item No interesting data in this item

* Have an interesting name

L R2,Alias_Count Pick up count of names in table
AL R2,F1 Increment by one
C R2,AliasLim Compare to max allowed number
BH Extra_Name Branch if have too many
ST R2,Alias_Count Store update name count
SLL R2,S3 Shift count left by 3 (*8)
LA R4,Alias_List-D8(R2) Calculate position in table
MVC D0(L8,R4),ESD_Name Put name into table
B Next_Item

Figure 95. Object exit OBJX: scan ESD record for usable external names

In Figure 95, the ESD record in the input buffer is scanned for control section definition (SD)
or entry point (label definition, or LD) names. If found, they are entered into the table of
names at Alias_List. A test is made for table overflow; if this happens, the name is ignored,
and the “overflow count” is incremented.

The names in the table will be output in reverse order of their receipt. This ensures that the
first name received (typically, the main control section name) will be used on the NAME
statement.

Extra_Name DS 0H
L R2,Extra_Count Get overflow counter
AL R2,F1 Increment by one
ST R2,Extra_Count Store back

Next_Item DS 0H
AL R1,=A(ESD_Item_Len) Increment ESD Item pointer
S R0,=A(ESD_Item_Len) Decrement count of data bytes
BP Scan_Item Look for further names on record
B Return_Rec And return the record for output
Drop R1 No ESD-item addressability now

Figure 96. Object exit OBJX: finish processing of ESD record

In Figure 96, the number of “overflow” names that cannot be held in the table of names is
counted, and then the ESD record is scanned for further names, if any. If none are left,
control is returned to the assembler to allow it to output the record.

124 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



* Check for END record

Check_END DS 0H
CLC ESD_ESD,=C'END' See if it's an END record
BNE Return_Rec If not END, return it for output

* Process END Record: return it for output, request re-entry

L R0,Alias_Count Check number of names
LTR R0,R0 If zero, no more to do
BNZ Set_Dumping If not, go set return-to-me info

* Object module has no entry points for aliasing or naming

TM Parm_Q,L'Parm_Q See if quiet mode (no messages)
BO Return_Rec Return with no message if so
MVC AXPSEVC,=A(AXPSEV0) Move severity code zero
MVC Err_Msg(L'Null_Name_Msg),Null_Name_Msg Move message
MVC AXPERRL,=A(L'Null_Name_Msg) Length of message
BAS R14,Batch_Init Re-initialize counters
B Return_Rec And return the END record

Set_Dumping DS 0H
OI Dumping,L'Dumping Set dump flag on
MVC Names_To_Do,Alias_Count Set count of names to output
B Exit_Return Return record to assembler

Figure 97. Object exit OBJX: END of object module processing

In Figure 97, a check is first made for an END record. If the record is of some other type, it
is returned to the assembler for output. Otherwise, a check is made to see if the object
module contained any names usable for Linkage Editor control statements: it is possible
that the object program consists entirely of PUNCH or REPRO records, or that all object code
belongs to unnamed (blank) control sections (also known as Private Code, section type PC;
see Figure 116 on page 136).

Input-Output Exits 125



Do_Dumping DS 0H

* Output the names and other info

Using Buffer,R10 R10 --> Working Buffer
MVI Buffer,C' ' Blank at start of output buffer
MVC Buffer+D1(Buff_Len-L1),Buffer Propagate blanks
L R2,Names_To_Do Get count of names left to do
C R2,F1 Check for last name
BNH Last_Name Last one, output wrap-up statements

Normal_Dump DS 0H
BCTR R2,0 Decrement count by one
ST R2,Names_To_Do Save back
SLL R2,S3 Shift left 3 (*8)
LA R1,Alias_List(R2) Point to name to be output

MVC Buff_Cmd(L'Alias_Cmd),Alias_Cmd Move 'ALIAS'
MVC Buff_Dat,D0(R1) Move name into buffer
B Exit_Return Output record, and request return

Figure 98. Object exit OBJX: prepare an ALIAS statement for output

In Figure 98, pointers to the working buffers are first initialized, and then the number of
remaining names is checked. If more than one name remains, an ALIAS statement for the
current name is inserted into the output buffer, and control is returned to the assembler
requesting output of this record and a return to the exit for further processing.

Last_Name DS 0H

* Check to see if SETSSI statement desired

TM Parm_S,L'Parm_S See if S flag is set
BZ No_SSI Branch if none
TM Flag_S_Done,L'Flag_S_Done See if done already
BO No_SSI Branch if done

MVC Buff_Cmd(L'SSI_Cmd),SSI_Cmd Set command into buffer
MVC Buff_Dat,SSI Move SSI data into buffer
OI Flag_S_Done,L'Flag_S_Done Set flag for SETSSI done
B Exit_Return Output record, and request return

Figure 99. Object exit OBJX: processing of SETSSI statement

In Figure 99, control reaches this point if there is a single name in the table remaining to be
output. First, a check is made to see if a SETSSI statement was requested, and if so it is
constructed in the output buffer and returned to the assembler with a request to return for
the NAME record. A flag is set to indicate processing is completed for the SETSSI record.

126 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



No_SSI DS 0H
MVC Buff_Cmd(L'Name_Cmd),Name_Cmd Set command into buffer
MVC Buff_Dat,Alias_List Move first external name also
TM Parm_R,L'Parm_R Check if '(R)' wanted
BZ Batch_Done Branch if not, batch is done

LA R1,Buff_Dat+L'Buff_Dat-L1 Point to last char of name
LA R0,L8 Count of characters in name

Name_Loop DS 0H
CLI D0(R1),C' ' Check for trailing blank
BNE Put_R Exit loop if found non-blank
BCTR R1,0 Move left 1 place
BCT R0,Name_Loop Count down by 1 and try again
B Phase_Error_2 Should not come here

Put_R DS 0H
MVC D1(L'Rep,R1),Rep Add replace-option indicator

Figure 100. Object exit OBJX: output of NAME statement

In Figure 100, the final exit-produced statement is created. The first name from the
Alias_List table is inserted into a NAME statement, and then (if the “R ” exit-parm was
requested, the characters (R) are appended.

Batch_Done DS 0H

* Update counts for this batch

TM Parm_Q,L'Parm_Q See if messages are to be suppressed
BO No_Msg Branch if yes

MVC Err_Msg(L'Batch_Msg_1),Batch_Msg_1 Move message text
MVC AXPERRL,=A(L'Batch_Msg_1) Set length of message
MVC AXPSEVC,=A(AXPSEV0) Set severity code 0 (Info message)

L R0,Alias_Count Get count of names produced
A R0,Extra_Count Add count of names ignored
CVD R0,DTemp Convert to decimal
ED Err_Msg(L'Batch_Msg_1a),DTemp+D5 Edit count into field
L R0,Extra_Count Count of ignored names
LTR R0,R0 Check to see if there were any
BNZ Bat_Msg_2 Branch if there were some

* Overlay ignored count
MVC Err_Msg+Bat_Mg_1_Offb-1(L'Batch_Msg_2),Batch_Msg_2
MVC AXPERRL,=A(Bat_Mg_1_Offb-1+L'Batch_Msg_2) Set length
B Bat_Msg_3 Continue

Bat_Msg_2 DS 0H
CVD R0,DTemp Convert to decimal
ED Err_Msg+Bat_Mg_1_Offb(L'Batch_Msg_1b),DTemp+D5 Edit

Bat_Msg_3 DS 0H

Figure 101. Object exit OBJX: summary message at end of object module

In Figure 101, if the “Q” option has not been specified, a summary message is constructed
and placed into the message buffer to tell how many names were processed, and how many
(if any) were ignored.

Input-Output Exits 127



No_Msg DS 0H
BAS R14,Batch_Init Re-initialize counters
B Return_Rec Return record to caller

Batch_Init DS 0H
L R0,Batch_Count Get count of decks
AL R0,F1 Increment by 1
ST R0,Batch_Count Save count
XC Batch_Start(Batch_Len),Batch_Start reset flags/counts
BR R14 Return to caller

Exit_Return DS 0H
MVC AXPREAC,=A(AXPEEMP) Come back with empty buffer
MVC AXPRETC,=A(AXPOREC) Indicate assembler outputs record
B Return Return to assembler

Return_Rec DS 0H
MVC AXPREAC,=A(AXPCONT) Indicate continue normally
MVC AXPRETC,=A(AXPOREC) Indicate assembler outputs record

Figure 102. Object exit OBJX: re-initialization and return to the assembler

In Figure 102, the work areas for an individual object module are re-initialized, and control is
returned to the assembler. At the two main processing return points. the appropriate return
and reason codes are set to indicate the disposition of the working buffers and the flow of
control between the exit and the assembler.

Return DS 0H
LTR R8,R8 Check for local work area set up
BZ Return_2 Branch if not, save areas unchained
TM Parm_T,L'Parm_T See if tracing requested
BZ Return_1 Branch if not
OC AXPERRL,AXPERRL See if message is already present
BNZ Return_1 Branch if yes, no trace record

MVC Err_Buff(L80),Buffer Move the record
LA R0,L80 Set its length
ST R0,AXPERRL Save length for message
XR R0,R0 Clear R0
ST R0,AXPSEVC Set message severity 0

Return_1 DS 0H
L R13,Save+D4 Get caller's R13 (if chained)

Return_2 DS 0H
RETURN (14,12) Return to assembler

Drop R10

Figure 103. Object exit OBJX: return to assembler, possibly with tracing

In Figure 103, control is about to be returned to the assembler. A test is first made to see if
the exit's work area has been initialized. If not, return is made directly to the assembler.
Otherwise, a test is made for tracing of all input records. If tracing has been requested, the
input record is copied to the error buffer for output if no other message is there already.
Finally, control is returned to the assembler.

128 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



***********************************************************************
* CLOSE Request *
***********************************************************************
Close_Request DS 0H

* Create summary message if requested

TM Parm_Q,L'Parm_Q See if running in quiet mode
BO Close_Return Branch if yes
MVC Err_Msg(L'Close_Msg),Close_Msg Move message
L R0,Batch_Count Get number of decks
CVD R0,DTemp Convert to decimal
ED Err_Msg(L'Close_Msg_1),DTemp+D5 Edit into message
MVC AXPERRL,=A(L'Close_Msg) Set length
MVC AXPSEVC,=A(AXPSEV0) Set severity zero

Close_Return DS 0H
MVC AXPRETC,=A(AXPCONT) Set return code for 'normal' end
MVC AXPREAC,=A(No_Reason) Set reason code

* Free storage and return

LR R1,R8 R1 points to storage area
L R0,=A(Work_Size) R0 has its length
L R13,Save+D4 Restore pointer to caller's savearea

FREEMAIN R,LV=(0),A=(1) Free the work area

RETURN (14,12) Return to caller, we're done.

Figure 104. Object exit OBJX: CLOSE processing

In Figure 104, a CLOSE request has been made by the assembler. A summary message is
prepared if the “Q” option was not specified. Finally, the exit's working storage is returned
to the operating system, and control returns to the assembler for the last time.

Input-Output Exits 129



Title 'Object-Editing Exit ''&Csect.'': Error Handling'

Bad_Version DS 0H
LA R1,Bad_Vers_Msg Point to error message info
B Proc_Error Branch to process error message

Bad_Exit_Type DS 0H
LA R1,Bad_Exit_Msg Point to error message info
B Proc_Error Branch to process error message

Wrong_Exit_Type DS 0H
LA R1,Wrong_Exit_Msg Point to error message info
B Proc_Error Branch to process error message

Bad_OPEN_Request1 DS 0H
LA R1,Bad_OPEN_Msg1 Point to error message info
B Proc_Error Branch to process error message

Bad_OPEN_Request2 DS 0H
LA R1,Bad_OPEN_Msg2 Point to error message info
B Proc_Error Branch to process error message

Bad_Req_Opts DS 0H
LA R1,Bad_Req_Msg Point to error message info
B Proc_Error Branch to process error message

Figure 105. Object exit OBJX: error processing (1)

In Figure 105, error conditions are handled by setting a pointer to error-message information
and branching to the error processing routine. Further details will be explained following
Figure 107 on page 131.

Bad_Parm_Str DS 0H
LA R1,Bad_Parm_Msg Point to error message info
B Proc_Error Branch to process error message

Bad_Parm_Char DS 0H
LA R1,Bad_Prm_Ch_Msg Point to error message info
B Proc_Error Branch to process error message

Bad_Type_Request DS 0H
LA R1,Bad_Type_Msg Point to error message info
B Proc_Error Branch to process error message

Phase_Error_1 DS 0H
LA R1,Phase_1_Msg Point to error message info
B Proc_Error Branch to process error message

Phase_Error_2 DS 0H
LA R1,Phase_2_Msg Point to error message info
B Proc_Error Branch to process error message

Figure 106. Object exit OBJX: error processing (2)

In Figure 106, the remaining error conditions are handled. Further details will be explained
following Figure 107 on page 131.

130 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



* Handle error conditions and information messages

Proc_Error DS 0H Process error messages
MVC AXPRETC,=A(AXPCONT) Move return code, assume continuing
MVC AXPREAC,=A(No_Reason) Set reason code to zero
BCTR R1,0 Back up pointer to severity
BCTR R1,0 Back up pointer to length
SR R2,R2 Clear register for message length
IC R2,D1(,R1) Get message severity
ST R2,AXPSEVC Store severity code
C R2,=A(MSGSEVC) Compare to max continuable value
BNH Proc_Error_1 Leave 'continue' return code alone
MVC AXPRETC,=A(AXPCBAD) Otherwise set code to 'fail'

Proc_Error_1 DS 0H
IC R2,D0(,R1) Get message length
C R2,=A(Err_Buf_Len) Compare to buffer size
BNH Proc_Text_2 Branch if it will fit
L R2,=A(Err_Buf_Len) Truncate overly wordy messages

Proc_Text_2 DS 0H
ST R2,AXPERRL Store true error message length
BCTR R2,0 Decrement length for executed move
EX R2,Move_Msg Move message to buffer

B Return Return to assembler

Move_Msg MVC Err_Msg(*-*),D2(R1) Move message to error buffer

Drop R8,R9 Pointers to work area, req list
Drop R11 End of error-buffer mapping
Drop R12 Program base

Figure 107. Object exit OBJX: error message processing and output

In Figure 107, the length and severity code of the error message are extracted, the text of
the message is moved to the error buffer, and the message is returned to the assembler.

The final three Drop statements indicate the end of the executable code in the exit; the
remaining statements define constants and working storage.

Input-Output Exits 131



Title 'Object-Editing Exit ''&Csect.'': Messages'

* Error Messages

DC AL1(L'Bad_Vers_Msg,AXPCBAD) Length and severity
Bad_Vers_Msg DC C'Exit not coded at same level as Assembler'

DC AL1(L'Bad_Exit_Msg,AXPCBAD) Length and severity
Bad_Exit_Msg DC C'Exit type requested is unrecognizable'

DC AL1(L'Wrong_Exit_Msg,AXPCBAD) Length and severity
Wrong_Exit_Msg DC C'Exit called for other than PUNCH or OBJECT'

DC AL1(L'Bad_OPEN_Msg1,AXPCBAD) Length and severity
Bad_OPEN_Msg1 DC C'Exit not initialized, and not entered for OPEN'

DC AL1(L'Bad_OPEN_Msg2,AXPCBAD) Length and severity
Bad_OPEN_Msg2 DC C'Exit initialized, but was entered for OPEN'

DC AL1(L'Bad_Req_Msg,MSGSEVC) Length and severity
Bad_Req_Msg DC C'Invalid request-list options value'

DC AL1(L'Bad_Parm_Msg,MSGSEVC) Length and severity
Bad_Parm_Msg DC C'Invalid parm-string length'

DC AL1(L'Bad_Prm_Ch_Msg,MSGSEVC) Length and severity
Bad_Prm_Ch_Msg DC C'Invalid character in parameter string'

DC AL1(L'Bad_Type_Msg,AXPCBAD) Length and severity
Bad_Type_Msg DC C'Invalid action or operation type requested'

DC AL1(L'Phase_1_Msg,AXPCBAD) Length and severity
Phase_1_Msg DC C'Expecting input record, zero buffer length'

DC AL1(L'Phase_2_Msg,AXPCBAD) Length and severity
Phase_2_Msg DC C'Blank-name condition in (R) processing'

Figure 108. Object exit OBJX: error messages

In Figure 108, the error messages are defined. The text of each is preceded by two bytes,
the first containing its length and the second its severity.

* Information Messages

Null_Name_Msg DC C'Object Module contained no usable SD or LD names'
Batch_Msg_1 DC 0C' dddsd Entry Names, dddsd were ignored.'
Batch_Msg_1a DC X'402020202120',C' Entry Names,'
Bat_Mg_1_Offb Equ *-Batch_Msg_1a Length of first message segment
Batch_Msg_1b DC X'402020202120',C' were ignored.'
Batch_Msg_2 DC C' were processed.' 0-ignored appendage.
Dup_Prm_Ch_Msg DC C'Duplicated valid character in parameter string'
Close_Msg DC 0C' dddsd modules processed.'
Close_Msg_1 DC X'402020202120',C' modules processed.'

Figure 109. Object exit OBJX: information messages

In Figure 109, the information messages that may be produced by the assembler are
defined. No severity codes are associated with them, as they will all be issued with severity
code zero. For messages such as Batch_Msg_1 containing mixed character and hexadecimal
text, a readable version of the message is first defined with a zero duplication factor, fol-
lowed by the actual message-text data.

132 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Title 'Object-Editing Exit ''&Csect.'': Constants'
F1 DC F'1' Integer 1
AliasLim DC A(&MaxAlias.) Maximum number of saved names
Alias_Cmd DC C'ALIAS' ALIAS command
Name_Cmd DC C'NAME' NAME command
SSI_Cmd DC C'SETSSI' SETSSI command
Rep DC C'(R)' Replace indicator for NAME
P_Blanks DC CL(Max_Parm_Chars)' ' For upper-casing parm string

LTORG

Figure 110. Object exit OBJX: constants

In Figure 110, The constants used by the exit are defined. Extensive use has been made of
literals, so a LTORG statement is used to request that the assembler insert them into the
program at this point.

Title 'Object-Editing Exit ''&Csect.'': Working Storage'
WorkArea Dsect
Save DS 18F Traditional Register Save Area
DTemp DS D Doubleword temporary work area
DTemp_X DS X Extra byte for UNPK byte-swapping

DS 3X Padding
FTemp DS F Fullword temporary work area
FTemp_X DS X Extra byte for UNPK byte-swapping

DS 3X Padding

* Areas cleared on initial entry

Init_Start DS 0D Start of global work area
Alias_List DS (&MaxAlias.)CL8 Table of names
SSI DS CL8 SSI info for SETSSI statements
Batch_Count DS F Count of assemblies

Figure 111. Object exit OBJX: working storage (1)

In Figure 111, the first portions of the exit's working storage is defined: the save area, some
conversion temporaries, and counters and other items not cleared for each object module.

* Following five items must be kept together

Parm_Q DS 0XL(X'80') Q Flag
Parm_R DS 0XL(X'40') R Flag
Parm_S DS 0XL(X'20') S Flag
Parm_T DS 0XL(X'10') T Flag

DS X Reserve storage for parm bits

Init_End DS 0D End of global work area
Init_Len EQU Init_End-Init_Start Length of global area

Figure 112. Object exit OBJX: working storage (2)

In Figure 112, further working storage is defined, and the end and length of the “global”
work area are marked.

Of interest here is the technique used for defining bit flags, as noted in Figure 89 on
page 121. First, observe that each bit flag is is defined by a DS statement that reserves no

Input-Output Exits 133



storage, but which names whatever the next byte of storage will be. Second, note that the
length attribute of each bit definition is explicitly defined as the position of the bit within the
byte where it will eventually reside; all references to the bit position will be made using
Length Attribute notation. Finally, the byte in which the bit flags will reside is defined without
a name.

Then, by referring to the bit flags using statements like

TM Parm_Q,L'Parm_Q Test Parm_Q bit
OI Parm_T,L'Parm_T Set Parm_T bit

the programmer is assured that bits will never be associated with the wrong byte. It is easy
to check in the assembler's symbol cross-reference listing that all references to bit flags are
correctly paired; if an unpaired reference is found, it is easy to check the code for the
improper reference.

* Areas cleared for every batch

Batch_Start DS 0D Start of batch work area
Extra_Count DS F Names not handled
Alias_Count DS F Count of names in table
Names_To_Do DS F Count of names remaining to output
B_Msg_Count DS F Count of batch messages

* Following four items must be kept together

Dumping DS 0XL(X'80') Dumping-names flag
Flag_S_Done DS 0XL(X'40') SETSSI statement has been output
Dup_Char DS 0XL(X'20') Duplicate (valid) parm character

DS X Reserve storage for flag bits

Batch_End DS 0D End of global work area
Batch_Len EQU Batch_End-Batch_Start Length of batch area

* End of Work_Area

Work_End DS 0D End of Work_Area
Work_Size EQU Work_End-WorkArea Size of work area

Figure 113. Object exit OBJX: working storage (3)

In Figure 113, the remaining items in the exit's working storage are defined, and the end
and length of the area cleared for each object module and for workarea initialization are
defined. The same flag-bit-naming technique described above is also used here.

134 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Title 'Object-Editing Exit ''&Csect.'': Dummy Sections'
Buffer DSect

DS CL9' ' Spaces
Buff_Cmd DS CL8' ' Command name

DS CL2' ' Spaces
Buff_Dat DS CL8' ' Data, names, etc

DS CL(L80-(*-Buffer))' ' Spaces
Buff_Len Equ *-Buffer Should have value 80

Err_Buff DSect
Err_Msg DS CL(L255)' ' Allocated space for messages
Err_Buf_Len Equ *-Err_Buff Buffer length

Figure 114. Object exit OBJX: DSECTs for working buffers

In Figure 114, dummy control sections are defined for the output buffer and for the error-
message buffer.

* Object Module record format: ESD Record

ESD_Rec Dsect
ESD_Tag DC AL1(Obj_Ind) Record indicator
ESD_ESD DC C'ESD' ESD-type record

DC CL6' ' Spaces
ESD_Amt DC Y(0) Count of data bytes in ESD_Data

DC CL2' ' Spaces
ESD_ID_1 DC Y(0) ESD_ID of first SD/XD/CM/PC/ER/WX
ESD_Data DC CL48' ' ESD data (up to 3 entries)

DC CL8' ' Spaces
ESD_Seqf DC CL8' ' Deck-ID and sequence field

Figure 115. Object exit OBJX: object module ESD-record DSECT

In Figure 115, a dummy control section defines the structure of an object module ESD
record. This is used to help manage the scanning of the ESD records provided by the assem-
bler.

Input-Output Exits 135



ESD_Item Dsect
ESD_Name DC CL8' ' Name of ESD item
ESD_Type DC X'00' Type associated with the name

ESD_Type_SD Equ X'00' .. SD
ESD_Type_LD Equ X'01' .. LD
ESD_Type_ER Equ X'02' .. ER
ESD_Type_PC Equ X'04' .. PC
ESD_Type_CM Equ X'05' .. CM
ESD_Type_XD Equ X'06' .. XD/PR
ESD_Type_WX Equ X'0A' .. WX

ESD_Addr DC AL3(0) Address of ESD item
ESD_Flag DC X'00' Flag bits

ESD_Align Equ X'07' Alignment for XD/PR items
ESD_Flag_LD Equ X'40' LD, ER, and WX
ESD_Flag_RS Equ X'08' RSECT
ESD_Flag_RMode Equ X'04' Bit 5 for RMode
ESD_Flag_RM24 Equ X'00' Bit 5 = 0 for RMode = 24
ESD_Flag_RMAny Equ X'04' Bit 5 = 1 for RMode = Any
ESD_Flag_AMode Equ X'03' Bits 6, 7 for AMode
ESD_Flag_AM24 Equ X'00' Bit 6 = 0 for AMode = 24
ESD_Flag_AM31 Equ X'02' Bit 6 = 1 for AMode = 31
ESD_Flag_AMAny Equ X'03' Bits 6,7=1 for AMode = Any

ESD_Len DC AL3(0) Length of ESD name
ESD_Item_Len Equ *-ESD_Item Length of ESD item on record

Figure 116. Object exit OBJX: DSECT for ESD data items

In Figure 116, a description is provided for all the fields in an ESD data item contained in an
ESD record. Although the exit does not refer to all the defined items, they are included in
case further enhancements to the exit are made that might be able to make use of these
other definitions.

Title 'Mapping of Assembler I/O Exit Work Areas'
ASMAXITP PRINT=GEN
End

Figure 117. Object exit OBJX: High Level Assembler communication area mapping

In Figure 117, the ASMAXITP macro is invoked to provide a DSECT mapping the communi-
cation area used by the assembler to communicate with the exit. (The ASMAXITP macro is
provided as one of the sample programs delivered with High Level Assembler.)

Installing the Object Exit OBJX
The statements for the exit are assembled, and the resulting object code is converted into a
loadable module:

on MVS, it is link edited into an appropriate library and given the name OBJX. It may be
marked re-entrant if desired.

on CMS, LOAD the text deck from the assembly with the CLEAR and RLDSAVE options;
then GENMOD to obtain a file with name OBJX and filetype MODULE.

136 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Then, when the assembler is invoked, specify the parameters described in “Description of
HLASM Object Exit OBJX” on page 112 above.

Input-Output Exits 137



Glossary of Abbreviations and Terms
absolute symbol. A symbol whose value
does not change if Location Counter values
change in the program; a non-relocatable
symbol.

ADATA. See SYSADATA file.

address. (1) (n) A number used by the
processor at execution time to locate and
reference operands or instructions in
central processor storage. In the context of
this document, an address is what refer-
ence manuals (such as the Principles of
Operation) would call a virtual address.
(2) (v) To reference; to provide an address
(sense no. 1) that may be used to reference
an item in storage.
(3) Sometimes used to mean an assembly
time location.

address constant. A field in a program con-
taining values calculated at assembly time,
bind time, or execution time, typically con-
taining an address, an offset, or a length.
The operands of an address constant often
are expressions involving internal symbols,
external symbols, or both.

address resolution. The process whereby
the assembler converts implied addresses
into addressing halfwords, using information
in its USING Table.

addressable. (1) At execution time an
operand is addressable if it lies either in the
4096 bytes starting at address zero, or in
any 4096-byte region of storage whose
lowest address is contained in one of
general purpose registers 1 through 15.
(2) At assembly time an implied address is
addressable if it can be validly resolved by
the Assembler into a base-displacement
addressing halfword, using information con-
tained in the USING Table at the time of the
resolution.

addressing halfword. A two-byte field in
the second and/or third halfwords of a
machine language instruction, composed of
a 4-bit base digit and a 12-bit displacement.
An address expressed in base-displacement
format.

anchor. (1) The base location or base reg-
ister specified in the second operand of a
USING statement.
(2) The starting point of a chained list.

Assembler. A program which converts
source statements written in Assembler

Language into machine language, providing
additional useful information such as diag-
nostic messages, symbol usage cross-
references, and the like.

Assembler Language. The symbolic lan-
guage accepted by High Level Assembler,
in which program statements are written.
(Often, these statements describe individual
instructions; this is why Assembler Lan-
guage is frequently characterized as a “low
level” language.) The Assembler translates
these statements to an equivalent represen-
tation of the program in machine language.
Assembler Language is intelligible to
human beings trained in the art, but exces-
sive art may render it unintelligible.
Compare machine language.

In this document, we sometimes distinguish
two components: (1) conditional assembly
language and (2) ordinary assembly lan-
guage. See also Figure 118 on page 143.

assembly language. See Assembler Lan-
guage.

assembly time. The period in the lifetime of
a program when its representation as a
sequence of symbolic statements is being
converted to the desired equivalent machine
language form.

attribute. A property of a symbol known to
the assembler, typically the characteristics
of the item named by the symbol, such as
its type, length, etc. A program may
request the assembler to provide values of
symbol attributes using attribute references.

A variable symbol may have one attribute
specific to the symbol itself (the number
attribute), and many attributes specific to
the value of the variable symbol.

attribute reference. A notation used to
request the value of a symbol attribute from
the assembler's symbol table, or of a vari-
able symbol or its value.

BAL (acronym). Basic Assembler Lan-
guage. Intended to mean Assembler Lan-
guage. The use of this term is deprecated,
due to possible confusions with the BAL
(Branch and Link) instruction and the BASIC
programming language. The Assembler
Language implemented by High Level
Assembler is neither basic nor BASIC.

base. See base register, base address.

138 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



base address. The address in one of
general purpose registers 1 to 15 to which a
displacement is added to obtain an effective
address.

base digit. See base register specification
digit.

base-displacement addressing. A technique
for addressing central storage using a
compact base-displacement format for
representing the derivation of storage
addresses.

base location. (1) In base-displacement
address resolution, the first operand of a
USING statement, from which displacements
are to be calculated. For ordinary USING
statements, the base location is assumed to
be at a relative offset (displacement) of zero
from the address contained in the base reg-
ister; for dependent USING statements, the
base location may be at a positive nonzero
offset from the location specified in the base
register eventually used to resolve an
implied address.
(2) Informally, this term is sometimes used
to mean (a) the origin of a control section,
(b) a base address in a register at execution
time, and (c) whatever the speaker likes.

base register. The General Purpose Reg-
ister specified in the second operand of a
labeled USING or ordinary USING.

base register specification digit. The 4-bit
field in bit positions 0-3 of an addressing
halfword.

bind time. The time following assembly
time during which one or more object
modules are combined to form an execut-
able module, ready for loading into central
storage at execution time. Also known as
“link time”.

COM. A statement declaring the start or
resumption of a common section.

common section. A special dummy control
section whose name is an external symbol.
Common sections receive special treatment
during program linking: space is allocated
for the greatest length received for all
common sections with a given name.

complex relocatability. An attribute of a
symbol indicating that its value is neither
constant nor variable in exactly the same
way as changes to the origin of its con-
taining section. See relocatability attribute.

conditional assembly. A form of assembly
whose input is a mixture of conditional

assembly language and ordinary assembly
language statements, and whose outputs
are statements of the ordinary assembly
language. Statements of the ordinary
assembly language are treated only as
“text”, and are not obeyed during condi-
tional assembly.

conditional assembly language. The
“outer” language that controls the
sequencing, selection, and tailoring of ordi-
nary assembly language statements,
through the use of variable symbols,
sequence symbols, conditional assembly
expressions, and substitutions. See also
Figure 118 on page 143.

conditional assembly function. See
external function and internal function.

control section. The smallest independ-
ently relocatable unit of instructions and/or
data. All elements of a given control section
maintain the same fixed relative positions to
one another at assembly time. These fixed
relative positions at assembly time are
usually (but not necessarily) maintained by
the program after control sections are
placed into storage at execution time.

CSECT. See control section

dependent USING. A form of USING state-
ment in which the first operand is based or
anchored at a relocatable address. May
also take the form of a labeled dependent
USING statement. See also anchor, labeled
USING, and ordinary USING.

displacement. The 12-bit field in bit posi-
tions 4-15 of an addressing halfword. Fre-
quently used to describe the offset
(difference) between a given storage
address and a base address that might be
used to address (sense no. 2) it.

DSECT. See dummy control section and
control section.

dummy control section. A control section
with the additional special property that no
object code is generated for any of its state-
ments. Most DSECT definitions are used as
mappings or templates for data structures.
The three types of dummy control sections
are (1) ordinary dummy control sections, (2)
common sections, and (3) dummy external
control sections.

EAR. See Effective Address Register.

effective address. The storage address or
similar value calculated at execution time

Glossary of Abbreviations and Terms 139



from a base address and a displacement.
See also indexed effective address.

Effective Address Register. An internal reg-
ister used by the processor for calculating
an effective address.

ESD. See External Symbol Dictionary.

execution time. The period in the lifetime
of a program when its representation in
machine language is interpreted by the
processor as a sequence of instructions.
(2) The time at which programmers whose
programs consistently fail to execute cor-
rectly are themselves executed.

explicit address. An instruction address in
which the displacement, and either the base
or index or both, are fully specified in the
instruction, and for which no resolution into
base-displacement format is required.

extended object module. A new general-
ized object file format supporting long
external names, section sizes up to 1GB,
multi-segment modules, and other enhance-
ments. Produced by High Level Assembler
when the XOBJECT or GOFF option is spec-
ified. See also object module.

external dummy section. A dummy control
section (DSECT) whose name is made part
of the External Symbol Dictionary. The
Binder, Linkage Editor or Loader will
resolve the lengths and alignment require-
ments of external dummy sections in such a
way that storage may be allocated to the
entire collection of external dummy sections
(see the definition of the CXD Assembler
Instruction Statement in the Assembler Lan-
guage Reference), and the offset of each
dummy section may be defined to the
program using Q-type address constants
(again, refer to the Assembler Language
Reference).

external function. A function defined by the
user and invoked by the assembler by the
SETAF and/or SETCF statements during
conditional assembly. External functions
may access the assembler's operating
system environment and return either arith-
metic or character values, and optional
messages to be placed into the listing.

external symbol. A symbol whose name
and value are a part of the object module
text provided by the Assembler. Such
names include (1) control section names, (2)
referenced names declared in V-type
address constants or EXTRN statements, (3)
names of common sections, (4) names of
Pseudo Registers or external dummy

sections, (5) referenced names declared on
ENTRY statements, and (6) symbols and
character strings renamed through the use
of the ALIAS statement. Compare to
internal symbol.

External Symbol Dictionary. The set of
external symbols defined or referenced in
an assembly, and provided in the object
module for later use during program linking
or binding.

function. See external function and internal
function.

generalized object file format (GOFF). A
new form of object module produced by
High Level Assembler, providing numerous
enhancements and extensions not sup-
ported by the traditional object module
format.

GOFF. See generalized object file format.

GOFF option. An option that causes High
Level Assembler to generate an object
module using the generalized object file
Format.

General Purpose Registers. A set of 16
32-bit registers used in the
System/360/370/390 family of processors for
addressing, arithmetic, logic, shifting, and
other general purposes. Compare to special
purpose registers such as Access Registers,
Control Registers, and Floating Point Regis-
ters.

GPR. See General Purpose Register

HLASM. High Level Assembler/MVS & VM
& VSE (Release 1); High Level Assembler
for MVS & VM & VSE (Release 2 and later).

High Level Assembler. IBM's most modern
and powerful symbolic assembler for the
System/370 and System/390 series of com-
puters, running on the MVS, VM, and VSE
operating systems. Not necessarily an
oxymoron, as High Level Assembler can do
much more than ordinary (low-level) assem-
blers.

implied address. An instruction address
requiring resolution by the Assembler into
base-displacement format; an address for
which base and displacement are not
explicitly specified. Also implicit address.

index. (1) The contents of that index reg-
ister specified by the index register specifi-
cation digit in an RX-type instruction.
(2) Less frequently, the index register spec-
ification digit itself.

140 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



index digit. See index register specification
digit.

index register specification digit. In an
RX-type instruction, the 4-bit field contained
in bit positions 12 through 15 of the instruc-
tion; the digit which, if not zero, specifies an
index register to be used in calculating the
indexed effective address

indexed effective address. The storage
address or similar value calculated during
program execution from a base address, a
displacement, and an index. The term effec-
tive address is commonly used whether or
not indexing is present.

index register. One of general purpose reg-
isters 1 through 15 specified by the index
register specification digit in an RX-type
instruction.

internal function. A function defined and
executed by the assembler during condi-
tional assembly, which acts on arithmetic,
boolean, and character expressions to
produce arithmetic, boolean, or character
values. Compare external function.

internal symbol. A symbol naming an
element of an Assembler Language
program, which is assigned a single value
by the assembler. Internal symbols are
normally discarded at the end of the
assembly, but may be retained in the
SYSADATA file. Compare to external
symbol.

internal symbol dictionary. See symbol
table.

label. (1) The name field entry of an
assembler or machine instruction state-
ment. Normally, the presence of a label in
the name field of an instruction statement
will define the value of that label.
(2) In common parlance, the name of an
instruction or data definition. This is more
properly called a name field symbol.
(3) In High Level Assembler, the name field
symbol of a USING statement, designating
that statement as a labeled USING.

labeled USING. A form of USING statement
with a qualifier symbol in the name field.
Symbolic expressions resolved with respect
to a labeled USING must use a qualified
symbol with the qualifier of that labeled
USING.

LC. See Location Counter.

Location Counter. A counter used by the
Assembler to determine relative positions of

all elements of a program as it is assem-
bled.

location. A position within the object code
of an assembled program, as determined by
assigning values of the Location Counter
during assembly. An assembly time value,
sometimes confused with an execution time
address.

machine language. The binary instructions
and data interpreted and manipulated by
the processor when the program is exe-
cuted (at execution time). It is not meant to
be intelligible to ordinary or normal human
beings. Compare Assembler Language.

object module. A file produced by the
Assembler, containing the external symbols,
machine language instructions and data,
and other data produced by assembling the
source program. See also extended object
module.

open code. Statements that are not within
a macro definition or expansion. The state-
ments in an assembly source file are typi-
cally in open code. See also ordinary
assembly language.

options. Directives to the Assembler speci-
fying various “global” controls over its
behavior. For example, the PRINT option
specifies that the assembler should produce
a listing file. Options are specified by the
user as a string of characters, as part of the
command or statement that invokes the
assembler, or on *PROCESS statements.

ordinary assembly language. The portion of
the Assembler Language that includes
machine instructions, data definitions, and
assembler controls, but not including state-
ments involved in conditional assembly.
See conditional assembly language. See
also Figure 118 on page 143.

ordinary symbol. See internal symbol.

ordinary USING. The oldest form of USING
statement, in which (a) no entry is present
in the name field, (b) the first operand spec-
ifies a base address, and (c) the second and
successive operands are absolute
expressions designating General Purpose
Registers to be used as base registers.

PR. See Pseudo Register and external
dummy section.

Pseudo Register. The name used by other
processors such as the Linkage Editor and
Loader for what the assembler calls an

Glossary of Abbreviations and Terms 141



external dummy section. See external
dummy section.

qualified symbol. An ordinary symbol pre-
ceded by a qualifier, and separated from the
qualifier by a period.

qualifier. An ordinary symbol, defined as a
qualifier by its appearance in the name field
of a labeled USING statement. It is used
only in qualified symbols to direct base-
displacement addressing resolutions to a
specified register or anchor location.

RA. See relocatability attribute.

reenterable. See reentrant.

reentrant. (1) Capable of simultaneous exe-
cution by two or more asynchronously exe-
cuting processes or processors, with only a
single instance of the code image. Typically,
reentrant programs are expected not to
modify themselves, but this is neither a nec-
essary nor sufficient condition for
reentrancy.
(2) When requested by the RENT option, or
in an RSECT, simple tests are made by High
Level Assembler for conditions of obvious
self-modification of the program being
assembled.

relocatability attribute. Each independently
relocatable element of an Assembler Lan-
guage program (such as a control section
or external symbol) is assigned a distinct
relocatability attribute. Each symbol in the
symbol table is assigned the relocatability
attribute of the element to which it belongs.
An absolute symbol is assigned a zero
relocatability attribute. See also simple
relocatability and complex relocatability.

relocatable. (1) Capable of being placed
into storage at an arbitrary (possibly prop-
erly aligned) address; not requiring place-
ment at a fixed or pre-specified address in
order to execute correctly.
(2) Having a non-zero relocatability
attribute, which can mean either simple
relocatability or complex relocatability.

relocation. The assignment of new or dif-
ferent locations or addresses to a set of
symbols or addresses, by adding or sub-
tracting constants depending on a module's
assigned storage addresses.

relocation ID. Same as relocatability attri-
bute. A numeric value assigned by the
assembler to each independently relocat-
able element of a program such as control
sections and external symbols.

resolution. See address resolution.

resolved. See address resolution.

RSECT. A reentrant control section, distin-
guished from an ordinary control section
(CSECT) only by (a) the presence of a flag
in the External Symbol Dictionary and (b)
that High Level Assembler will perform
reentrant checking of instructions within the
RSECT.

run time. See execution time.

sequence symbol. A conditional assembly
symbol used to mark positions in a state-
ment stream, typically inside a macro defi-
nition.

simple relocatability. An attribute of a
symbol indicating that changes to the value
of the origin location of a control section
will cause the value of the symbol to
change by the same amount. See also
absolute symbol and complex relocatability.

symbol table. A table created and main-
tained by the Assembler, to assign values
and attributes to all symbols in the
program. Except for symbols named in
V-type address constants, the symbol table
contains only a single occurrence of a
symbol.

SYSADATA file. A file created by the High
Level Assembler when the ADATA option is
specified, containing machine-readable
information about all aspects of the assem-
bled program and the assembly process.

system variable symbol. A variable symbol
defined by the assembler;\, containing infor-
mation about the assembly process. Its
value cannot be changed by the pro-
grammer.

USING Table. A table maintained at
assembly time by the Assembler, used for
resolution of implied addresses into base-
displacement form. Each entry contains the
number of a base register and a base
location.

variable symbol. A symbol prefixed with a
single ampersand (&). Used during condi-
tional assembly to assist with substitution,
expression evaluation, and statement
selection and sequencing. Unlike ordinary
symbols, the values of certain variable
symbols may change freely during an
assembly.

142 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



Ordinary and Conditional Assembly

Figure 118. Comparison of Ordinary and Conditional Assembly

Comparison Ordinary Assembly Conditional Assembly

Generality the “ inner” language of instructions
and data definitions

the “outer” language that controls
and tailors the inner language

Usage a language for programming a
machine

a language for programming an
assembler and its language

Inputs statements from primary input, library
(via COPY or macro call), and gener-
ated statements from macros and
AINSERT statements

statements from primary input (and
records via AREAD), library (via
COPY and macro call), external func-
tions

Outputs generated machine language object
code, records (via REPRO, PUNCH)

ordinary assembly statements and
macro instructions, messages (via
MNOTE)

Symbols ordinary symbols (internal and
external)

variable symbols, sequence symbols

Symbol declara-
tion

ordinary symbols appear in the name
field of ordinary assembly statements
(except names in V-type address con-
stants); always explicitly declared

sequence symbols appear in the
name field of any statement; variable
symbols are (a) user-declared
(implicit or explicit declaration), (b)
system, or (c) macro parameters
(both implicit)

Statement labels ordinary symbols take the values of
locations in the ordinary assembly
statement stream, and other assigned
values, or are positional arguments in
macro calls

sequence symbols denote positions in
the conditional assembly statement
stream

Symbol scope internal and external; external
symbols persist in the object code
beyond assembly time

variable symbols have local or global
scope; sequence symbols have local
scope; both discarded at assembly
end

Symbol types
and values

ordinary symbols have no types;
values are normally assigned from
Location Counter values or by EQU
statements

variable symbols have arithmetic,
boolean, or character types and
values

Symbol attri-
butes

ordinary symbols have many attri-
butes

variable symbols have only the prop-
erty of maximum subscript (if dimen-
sioned), but their values may have
attributes

Expression eval-
uation

expressions in ordinary statements,
and in A-type and Y-type address con-
stants

expressions in conditional-assembly
statements

Expression oper-
ators

+, -, *, / +, -, *, /; internal arithmetic shift
and mask functions; internal boolean
functions; internal character functions;
external arithmetic and character
functions

Attribute Opera-
tors

L', I', S' T', L', I', S', D', K', N', O'

(Formatted 12 Feb 01, 1102.)

Ordinary and Conditional Assembly 143



Index

Special Characters

*PROCESS statement 2, 8, 141
OVERRIDE 8
OVERRIDE operand 2

&SYSADATA_DSN 104
ADATA file name 104

&SYSADATA_MEMBER 104
ADATA member name 104

&SYSADATA_VOLUME 104
ADATA volume name 104

&SYSASM 104
assembler name 104

&SYSCLOCK 104
compared to AREAD operands 12
date/time 104

&SYSDATC 104
date 104

&SYSDATE 104
date 104

&SYSECT 104
current control section 104

&SYSIN_DSN 104
SYSIN file name 104

&SYSIN_MEMBER 104
SYSIN member name 104

&SYSIN_VOLUME 104
SYSIN volume name 104

&SYSJOB 104
assembly job name 104

&SYSLIB_DSN 104
SYSLIB file name 104

&SYSLIB_MEMBER 104
SYSLIB member name 104

&SYSLIB_VOLUME 104
SYSLIB volume name 104

&SYSLIN_DSN 104
SYSLIN file name 104

&SYSLIN_MEMBER 104
SYSLIN member name 104

&SYSLIN_VOLUME 104
SYSLIN volume name 104

&SYSLIST 14, 104
&SYSLOC 104

current location counter 104
&SYSM_HSEV 104

highest MNOTE severity 104
&SYSM_SEV 104

recent MNOTE severity 104
&SYSMAC 104

macro and ancestor name 104
&SYSNDX 104

macro invocation counter 104

&SYSNEST 104
macro nesting level 104

&SYSOPT_DBCS 104
DBCS option setting 104

&SYSOPT_OPTABLE 104
OPTABLE option setting 104

&SYSOPT_RENT 105
RENT option setting 105

&SYSOPT_XOBJECT 105
GOFF/XOBJECT option setting 105
XOBJECT/GOFF option setting 105

&SYSPARM 105
SYSPARM parameter value 105

&SYSPRINT_DSN 105
SYSPRINT file name 105

&SYSPRINT_MEMBER 105
SYSPRINT member name 105

&SYSPRINT_VOLUME 105
SYSPRINT volume name 105

&SYSPUNCH_DSN 105
SYSPUNCH file name 105

&SYSPUNCH_MEMBER 105
SYSPUNCH member name 105

&SYSPUNCH_VOLUME 105
SYSPUNCH volume name 105

&SYSSEQF 105
sequence field 105

&SYSSTEP 105
step name 105

&SYSSTMT 105
next statement number 105

&SYSSTYP 105
control section type 105

&SYSTEM_ID 105
assembly system 105

&SYSTERM_DSN 105
SYSTERM file name 105

&SYSTERM_MEMBER 105
SYSTERM member name 105

&SYSTERM_VOLUME 105
SYSTERM volume name 105

&SYSTIME 105
compared to AREAD operands 12
time of assembly 105

&SYSVER 105
assembler version 105

Numerics

64-bit constants 11

144 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



A

absolute implied address 37
absolute USINGs 39

absolute symbol
definition 138

absolute symbols
in conditional assembly 13
ordinary symbols in conditional

assembly 13
absolute USINGs 39
ACONTROL statement 8
ADATA

binder treatment 91
definition 138
GOFF suboption 91
option 4, 142

ADATA file name
&SYSADATA_DSN 104

ADATA member name
&SYSADATA_MEMBER 104

ADATA statement 8
ADATA volume name

&SYSADATA_VOLUME 104
adcon

See address constant
address

assembly time 138
base 140
base address 140
base-displacement format 140
definition 138
displacement 140
effective address 139
execution time 138, 140
explicit address 140
implied address 140
index 140
location 138
resolution 140

address constant 138
definition 138

address constants 11
address resolution 30, 34, 37, 39, 43, 45,

138
absolute address 39
addressing halfword 138
definition 138
implied addresses 138
labeled USINGs 45
multiple 35
resolution rules 35

address resolution rules 37
addressability 34, 38
addressability error 38
addressable 39, 138

addressing halfword 138

addressable (continued)
assembly time 138
base-displacement resolution 138
definition 138
execution time 138
resolution 138

addressing
base-displacement addressing 139
base-displacement format 139

addressing halfword 22, 39, 138
base 138
base-displacement format 138
definition 138
displacement 138

addressing methods 42
goals 42

automatically-assigned bases and dis-
placements 42

clarity 42
efficiency 42
fully symbolic 42
maintainability 42
simplicity 42
understandability 42

improvements with new USINGs 42
with Ordinary USINGs 42

addressing multiple DSECTs
labeled USINGs 58

AEJECT statement 12
AINSERT statement 12
ALIAS statement 8, 140

external symbol renaming 140
in GOFF files 92

ALIGN option 5
AMODE statement 10
ancestor macro name

&SYSMAC 104
anchor 138

base location 138
base register 138
definition 138

AND function 93
AREAD statement 12

CLOCKB operand 12
CLOCKD operand 12

argument list
&SYSLIST 104

arguments to macros
case sensitivity 19

ASA option 4
ASCII character constants

TRANSLATE option 3
ASMAOPT file 2
ASMAXITP macro 110, 136
ASPACE statement 12
Assembler 138

assembler language 138
definition 138

Index 145



Assembler (continued)
machine language 138

assembler data
See ADATA

Assembler H
options 7

assembler I/O 4
assembler instructions

CATTR statement 92
XATTR statement 92

Assembler Language 48, 49
base language 138
conditional assembly language 138
definition 138
machine language 138
ordinary assembly language 138
resolution rules 49
syntax rules 48

assembler name
&SYSASM 104

assembler version
&SYSVER 105

Assembler XF
options 7

assembly job name
&SYSIN_VOLUME 104

assembly language
See assembler language

assembly process 32, 33
Pass 1 32
Pass 2 33

assembly system
&SYSTEM_ID 105

assembly time 24, 34
&SYSTIME 105
base location 34
definition 138

attribute
definition 138

attribute reference
COMPAT(LITTYPE) option 16
definition 138
in open code 15
operation code attribute 15
to literals 16
to literals in macros 16

AXPUSER field of I/O exit work area 119

B

BAL (acronym) 138
definition 138
deprecation 138

base 23
See also base address
See also base register

base (continued)
definition 138

base address 23, 34
definition 139
displacement 139
effective address 139
general purpose register 139

base digit 22
See also base register specification digit
definition 139

base location 29, 34, 39
base-displacement address

resolution 139
definition 139
dependent USING statement 139
displacement 139
ordinary USING statement 139

base register 23, 39
definition 139
general purpose register 139
labeled USING statement 139
ordinary USING statement 139

base register specification digit 22
See also base digit
addressing halfword 139
definition 139

base register zero 37
base-displacement addressing 23

definition 139
base-displacement form 34
base-displacement format 138
base-displacement resolution 40, 44, 47, 53

matching qualifier 44
qualifier match 44

BATCH option 3
bind time

after assembly time 139
before execution time 139
definition 139

binder
program object 91

bit flags 133
boolean connectives

AND 93
NOT 93
OR 93
XOR 96

BYTE function 93, 97

C

carriage control characters 4
CATTR statement 9, 92

defaults 92
with GOFF option 92

146 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



CEJECT statement 9, 117
change to default DXD alignment 15
character-valued functions

BYTE 97
DOUBLE 97
LOWER 97
SIGNED 97
UPPER 97

CLOCKB
operand of AREAD statement 12

CLOCKD
operand of AREAD statement 12

CODEPAGE option 3
Unicode 3

COM statement
common section 139
definition 139

common section 140
as a dummy control section 139
COM statement 139
definition 139
external symbol 139

COMPAT option 3
COMPAT(CASE) option 19
COMPAT(CASE) vs. FOLD 20
COMPAT(LITTYPE) option 16
COMPAT(MACROCASE) option 19, 20
compatibility

attribute references 15
compatibility with previous assemblers 17
complex relocatability 36, 40

definition 139
complex relocatability attribute 34
conditional assembly

absolute symbols 13
conditional assembly language 139
definition 139
substituted sublists 13
substrings 13

conditional assembly enhancements
& in variable symbol declarations 13
declarations of variable symbols 13
macro call name field operands 14

conditional assembly functions
See also external functions
See also internal functions
AND 93
assembler interface

arithmetic functions 101
character functions 102
SETAF functions 101
SETCF functions 102

BYTE 93
definition 139
DOUBLE 93
FIND 93
INDEX 93
LOWER 93

conditional assembly functions (continued)
messages 100
NOT 93
OR 93
severity codes 100
SIGNED 93
SLA 93
SLL 93
SRA 93
SRL 93
UPPER 93
XOR 93

conditional assembly language 138
definition 139
sequence symbol 139
variable symbol

See variable symbols
vs. ordinary assembly language 139

constants
64-bit 11
AD-type 11
CU-type 11
DBCS data 3
FD-type 11
G-type 3
IEEE floating point 10
J-type 11
R-type 11
rounding 10
spaces in nominal value 11
symbolic 10
Unicode 3

continuation-statement checking 5
control section

common control section 139
CSECT 139
definition 139
dummy control section 139
ordinary control section 139
RSECT 139

control section type
&SYSSTYP 105

COPY member usage
MXREF option 6

COPY statement 10
cross-assembler 15
CSECT

See also control section
definition 139

CU-type constants 3
current control section

&SYSECT 104
current location counter

&SYSLOC 104
CXD instruction 140

Q-type address constant 140

Index 147



D

data structure mapping
See also dummy control section
common control section 139
dummy external control section 139
ordinary dummy control section 139

data structure template
See dummy control section

data structures 44
date of assembly

&SYSDATC 104
&SYSDATE 104

date/time
&SYSCLOCK 104

DBCS data 3
DBCS option 3

G-type constants 3
G-type self-defining terms 3

DBCS option setting
&SYSOPT_DBCS 104

DC statement
nominal value omitted 11
zero duplication factor 11

DC/DS statement
64-bit constants 11
address constants 11
binary floating point 10
floating point symbolic constants 11
hexadecimal floating point 10
IEEE floating point 10
spaces in nominal value 11
Unicode constants 11

DECK option 4, 91
defining and referencing bit flags

definition 133
referencing 134

dependent USING
anchor 139
definition 139
labeled dependent USING 139

dependent USINGs 43, 58, 68
DFSMS binder

program object 91
diagnostics

FLAG(RECORD) option 6
LIBMAC option 5
library macros 5
source statement identification 6

disjoint USING ranges 68
displacement 22, 32, 34, 39

addressing halfword 139
definition 139

displacement resolution 40
DOUBLE function 93, 97
DROP statement 11, 38, 90

DROP statement activity
USING(MAP) option 5

DSECT
See also control section
See also dummy control section
definition 139

DSECTs
DXREF option 6

dummy control section 139
COM 140
CXD instruction 140
DSECT 140
DXD 140
external 140
External Symbol Dictionary 140

dummy external section 140
dummy section

See dummy control section
duplicate definition 32
DXD alignment 15
DXREF option 6

E

EAR
See also Effective Address Register
definition 139

effective address 23, 141
definition 139
indexed effective address 141

effective address calculation 22, 23
Effective Address Register 22

definition 140
effective address 140

enhanced assembler instructions
AMODE 10
COPY 10
DC/DS 10
DROP 11
POP 11
PRINT 11
PUSH 11
RMODE 10
RSECT 11
USING 11

ENTRY statement 140
ESD

See also External Symbol Dictionary
definition 140
listing 4, 92
option 4

execution time 24, 34
base address 34
definition 140

exit communication work area
ASMAXITP macro 136

148 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



EXIT option 4
EXITCTL statement 9, 109, 111
explicit address 27

definition 140
execution time 140

expressions
unary minus 15

extended object module
See also generalized object file format
GOFF option 140

external dummy section
definition 140
DXD 140

external functions 13, 101, 102
assembler interface

arithmetic functions 101
character functions 102
SETAF functions 101
SETCF functions 102

definition 140
external symbol 140

ALIAS statement 140
common section 140
definition 140
dummy external section 140

DXD 140
ENTRY statement 140
pseudo register 140
renaming via ALIAS statement 140

external symbol dictionary
See also ESD
definition 140
object module 140

EXTRN statement 140

F

FIND function 93
FLAG option 5
FLAG(ALIGN) option 5
FLAG(CONT) option 5
FLAG(IMPLEN) option 5
FLAG(PAGE0) option 5
FLAG(PUSH) option 5
FLAG(RECORD) option 6
FLAG(SUBSTR) option 6
floating point conversion 10
floating point symbolic constants 11
FOLD option 20

national languages 4
functions

See also external functions
See also internal functions
conditional assembly 140
definition 140
external 99, 140

functions (continued)
initial invocation 100
internal 93, 141
loading by assembler 100
SETAF statement 100, 140
SETCF statement 100, 140

G

G-type constants 3
G-type self-defining terms 3
general purpose register 22
general purpose registers

definition 140
RXREF option 6

generalized object file format
definition 140
object module 140

GOFF
See also generalized object file format
definition 140
object module 140

GOFF option 3, 91
definition 140
GOFF(ADATA) option 91

GPR
See also general purpose register
definition 140

H

High Level Assembler
definition 140

highest MNOTE severity
&SYSM_HSEV 104

HLASM
definition 140

host system
&SYSTEM_ID 105

I

I/O exit communication work area
AXPUSER field 119

I/O exits 4, 112, 119
SYSLIN, SYSPUNCH exit 112
work area 119

IEEE floating point 10
IEV90 assembler

options 7
IFOX00 assembler

options 7

Index 149



implicit address
See implied address

implied address 30, 32, 34, 39
base-displacement format 140
definition 140
resolution 140

implied address resolution 36, 40
index 23

See also Index
definition 140
index register 140
index register specification digit 140

index digit 23
See also index register specification digit
definition 141

INDEX function 93
index register 23

definition 141
general purpose register 141
index register specification digit 141

index register specification digit 23
See also index digit
definition 141
index register 141
indexed effective address 141

indexed effective address 23
base 141
definition 141
displacement 141
index 141

indexing cycle 23
INFO option

service status 4
installation options 2

fixed 2, 6
PESTOP 6

internal functions 19
AND 93
BYTE 93
case sensitivity 19
conditional assembly 141
definition 141
DOUBLE 93
FIND 93
INDEX 93
LOWER 93
NOT 93
OR 93
SIGNED 93
SLA 93
SLL 93
SRA 93
SRL 93
UPPER 19, 93
XOR 93

internal symbol
Assembler Language 141
definition 141

internal symbol (continued)
SYSADATA file 141

internal symbol dictionary
See also symbol table
definition 141

internal symbol tables
TEST option 3

internationalization 3

J

job name
&SYSJOB 104

L

label 44
definition 141
labeled USING statement 141
name field symbol 141
symbol definition 141

labeled dependent USINGs 43, 74
labeled USING

definition 141
qualified symbol 141
qualifier 141

labeled USINGs 43
examples 56

LANGUAGE option 6
LC

See also Location Counter
definition 141

length-specification checking 5
LIBMAC option 5
LINECOUNT option 5
linkage editor 112

control statements 112
LIST option

LIST(121) 4
LIST(133) 91

required by GOFF option 4
LIST(MAX) 91

required by GOFF option 4
listing

ASA option 4
carriage control characters 4
DXREF option 6
ESD 4
External Symbol Dictionary 92

ALIAS information 92
with GOFF option 92

FOLD option 4
INFO option 4
LANGUAGE option 6
LIBMAC option 5

150 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



listing (continued)
LINECOUNT option 5
MXREF option 6
options to control 4
options to control messages 5
options to control XREFs 6
PCONTROL option 5
Relocation Dictionary

with GOFF option 92
RLD 4
RXREF option 6
source and object code

with GOFF option 92
THREAD option 4
USING(MAP) option 5
wide format 91
XREF option 6

literals
as macro operands 16
as relocatable terms 16
attribute references 16
differences from Assembler H 16
in machine instructions 16
indexing 16

load module 92
location

assembly time 141
base location 139
definition 141
execution time address 141
location counter 141

Location Counter 27, 30, 32
definition 141

Location Counter Reference 30
LOCTR name

&SYSLOC 104
LOWER function 93, 97
lowercase characters

ordinary symbols 18
symbolic operation codes 18
variable symbols

global 18
local 18
system (&SYS) 18

M

machine language
definition 141
execution time 141

macro argument list
&SYSLIST 104

macro arguments
case sensitivity 19
macro calls using mixed-case

characters 19

macro call name field operands 14
macro call nesting level

&SYSNEST 104
macro invocation counter

&SYSNDX 104
macro name

&SYSMAC 104
macro sublists

list structures 13
macro argument lists 13
positional arguments 13

macro usage
MXREF option 6

mapping of data structure
See dummy control section

masking functions
AND 94
NOT 94
OR 94
XOR 94

mixed-case input
compatibility with previous assemblers

comment statements 17
macro instruction operands 17
quoted strings 17
remarks fields 17

MNOTE severity
&SYSM_HSEV 104
&SYSM_SEV 104

multiple address resolutions 35
multiple assemblies

BATCH option 3
multiply-defined symbols 32
MXREF option 6

N

national languages
FOLD option 4
German messages 6
Japanese messages 6
LANGUAGE option 6
Spanish messages 6

nesting level
&SYSNEST 104

new assembler instructions
*PROCESS 8
*PROCESS OVERRIDE 8
ACONTROL 8
ADATA 8
AEJECT 12
AINSERT 12
ALIAS 8
AREAD 12
ASPACE 12
CATTR 9

Index 151



new assembler instructions (continued)
CEJECT 9
conditional assembly 12, 13
EXITCTL 9
SETAF 13
SETCF 13
XATTR 9

NOALIGN option
data alignment 5

NOPRINT operand 15
AREAD statement 15
POP statement 15
PRINT statement 15
PUSH statement 15

NOT function 93
nullified base registers 47

O

object file format
GOFF 3
OBJ 3

object module
definition 141
external symbols 141

object module ESD record
ESD data items 136
ESD record 135

object module record 135, 136
END record 123
ESD data: label definition 124
ESD data: LD 124
ESD data: SD 124
ESD data: section definition 124
ESD record 123, 124

object modules 91
compatibility with previous

assemblers 91
OBJECT option 4, 91
object-module record 112
object-module records 113
object-stream exit example

linkage editor control statements 112
object-module records 113

OBJX
object-stream exit example 112

open code
definition 141

operand alignment checking 5
operating system environment 140
operation code attribute 15
OPTABLE option 3
OPTABLE option setting

&SYSOPT_OPTABLE 104
options

*PROCESS statement 2, 141
OVERRIDE operand 2

options (continued)
ADATA 4
ALIGN 5
ASA 4
ASMAOPT file 2
Assembler H 7
Assembler XF 7
BATCH 3
CODEPAGE 3, 11
COMPAT 3
COMPAT(CASE) 19
control of assembler I/O 4
control of listing 4
control of messages 5
control of object file 3
control of source file 3
control of XREFs 6
DBCS 3
DECK 4, 91
definition 141
DXREF 6
ESD 4
EXIT 4
fixed 6
FLAG 5
FLAG(ALIGN) 5
FLAG(CONT) 5
FLAG(IMPLEN) 5
FLAG(PAGE0) 5
FLAG(PUSH) 5
FLAG(RECORD) 6
FLAG(SUBSTR) 6
FOLD 4, 20
GOFF 3, 91

requires LIST(133) or LIST(MAX) 4
INFO 4
installation 2

fixed 2
invocation 2
LANGUAGE 6
LIBMAC 5
LINECOUNT 5
LIST 4
LIST(133) 91
LIST(MAX) 91
MXREF 6
NOALIGN 5
NOLIST 4
OBJECT 4, 91
OPTABLE 3
PCONTROL 5
PCONTROL(MCALL) 11
PESTOP 6
PROFILE 3
RA2 6
RENT 6
RLD 4
RXREF 6

152 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



options (continued)
SIZE 3
sources 2
storage-reference checking 5
SYSPARM 3
TERM 4
TEST 3
THREAD 4
TRANSLATE 3
USING(LIMIT) 6
USING(MAP) 5, 35
USING(WARN) 6
XREF 6

OR function 93
ordinary assembly language 138

definition 141
vs. conditional assembly language 139

ordinary control section
See also control section
common control section 139
CSECT 139
offsets fixed at assembly time 139
positions at execution time 139
relocation at later times 139
RSECT 139

ordinary symbol 141
definition 141

ordinary USING 45
base address 141
definition 141
general purpose register 141

ordinary-USING problems 42
mapping multiple DSECTs with one reg-

ister 42
referencing multiple instances of a

DSECT 42
specifying fixed relationships among

DSECTs 42
OVERRIDE operand of *PROCESS 2

P

PCONTROL option
DATA 5
GEN 5
MCALL 5
MSOURCE 5
ON 5
UHEAD 5

PESTOP option 6
POP statement

ACONTROL status 11
PR

See also external dummy section
See also pseudo register
definition 141

PRINT statement
MCALL 11
MCALL operand 11
MSOURCE operand 11
UHEAD operand 11

PROFILE option 3
program object 91, 92
pseudo register 140, 142

See also external dummy section
definition 141
external dummy section 142

PUSH statement
ACONTROL status 11

PUSH-stack checking 5

Q

Q-type address constant 140
qualified symbol 52

definition 142
labeled USINGs 56
qualifier 142

qualifier 44, 45
anchor 142
and ordinary symbols 45
base-displacement resolution 142
definition 45, 142
formation rules 44
labeled USING statement 142
rules of formation 44

qualifying label 44
quoted strings

character constants 18
character self-defining terms 18

R

RA
See also relocatability attribute
definition 142

RA2 option
two-byte adcons 6

range limits
See USING range limits

recent MNOTE severity
&SYSM_SEV 104

reenterable
See reentrant

reentrant
definition 142
RSECT 142

reentrant control sections
RENT option 11
RSECT statement 11

Index 153



relocatability 33
See also relocatability attribute
complex 139
simple 142

relocatability attribute 33, 34, 36, 40
complex 34
definition 142

relocatable 27
complex relocatability 142
definition 142
relocatability attribute 142
simple relocatability 142

relocatable program 28
relocation

definition 142
relocation dictionary

See RLD
relocation ID

See also relocatability attribute
definition 142

RENT option 6
RENT option setting

&SYSOPT_RENT 105
request information list 109

ASMAXITP mapping macro 110
common exit field 110
EXITCTL values 109
user field 110

resolution
See also address resolution
definition 142

resolution rules 36, 37, 40
implied addresses 36, 40
smallest valid displacement. 37

resolved
See also address resolution
definition 142

RLD
listing 4, 92
option 4

RMODE statement 10
RSECT

control section 142
definition 142
External Symbol Dictionary 142
reentrant 142

RSECT statement 11
run time

See also execution time
definition 142

RXREF option 6

S

scope
system variable symbols 106

section origin
THREAD option 4

self-defining terms
DBCS data 3
G-type 3
no effect from TRANSLATE option 3

sequence field
&SYSSEQF 105

sequence symbol
definition 142

sequence symbols 18
service status

INFO option 4
SETAF statement 13
SETCF statement 13
shift functions

SLA 94
SLL 94
SRA 94
SRL 94

SIGNED function 93, 97
simple relocatability

definition 142
SIZE option 3
SLA function 93
SLAC Mods to Assembler H 43
SLL function 93
source statement identification 6
source-file options

*PROCESS statement 8
spaces in nominal constant value 11
SRA function 93
SRL function 93
statement number

&SYSSTMT 105
step name

&SYSSTEP 105
substituted sublists 13
substring diagnostics 6
substrings 13
symbol

absolute
definition 138

attribute 138
control section name 140
external symbol 140
EXTRN statement 140
internal symbol 141
location counter values 138
non-relocatable symbol 138
ordinary symbol 141
qualified symbol 142
qualifier 142
symbol table 142
variable symbol 142

symbol definition 32
symbol dictionary

See also symbol table

154 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



symbol dictionary (continued)
internal symbol 141

symbol table 18, 32
definition 142
listing 18
ordinary symbols 32

symbol tables
TEST option 3

SYSADATA
See ADATA

SYSADATA file
ADATA option 4, 142
definition 142

SYSIN file name
&SYSIN_DSN 104

SYSIN member name
&SYSIN_MEMBER 104

SYSIN volume name
&SYSIN_VOLUME 104

SYSLIB file name
&SYSLIB_DSN 104

SYSLIB member name
&SYSLIB_MEMBER 104

SYSLIB volume name
&SYSLIB_VOLUME 104

SYSLIN file name
&SYSLIN_DSN 104

SYSLIN member name
&SYSLIN_MEMBER 104

SYSLIN volume name
&SYSLIN_VOLUME 104

SYSLIN, SYSPUNCH output
object-module records 112

SYSPARM option 3
and ASMAOPT file 3

SYSPARM parameter value
&SYSPARM 105

SYSPRINT file name
&SYSPRINT_DSN 105

SYSPRINT member name
&SYSPRINT_MEMBER 105

SYSPRINT volume name
&SYSPRINT_VOLUME 105

SYSPUNCH file name
&SYSPUNCH_DSN 105

SYSPUNCH member name
&SYSPUNCH_MEMBER 105

SYSPUNCH volume name
&SYSPUNCH_VOLUME 105

system variable symbol
definition 142

system variable symbols 12, 13, 14, 103
&SYSADATA_DSN 104

ADATA file name 104
&SYSADATA_MEMBER 104

ADATA member name 104
&SYSADATA_VOLUME 104

ADATA volume name 104

system variable symbols (continued)
&SYSASM 104

assembler name 104
&SYSCLOCK 12, 104

date/time 104
&SYSDATC 104

date 104
&SYSDATE 104

date 104
&SYSECT 104

current control section 104
&SYSIN_DSN 104

SYSIN file name 104
&SYSIN_MEMBER 104

SYSIN member name 104
&SYSIN_VOLUME 104

SYSIN volume name 104
&SYSJOB 104

assembly job name 104
&SYSLIB_DSN 104

SYSLIB file name 104
&SYSLIB_MEMBER 104

SYSLIB member name 104
&SYSLIB_VOLUME 104

SYSLIB volume name 104
&SYSLIN_DSN 104

SYSLIN file name 104
&SYSLIN_MEMBER 104

SYSLIN member name 104
&SYSLIN_VOLUME 104

SYSLIN volume name 104
&SYSLIST 14, 104
&SYSLOC 104

current location counter 104
&SYSM_HSEV 104

highest MNOTE severity 104
&SYSM_SEV 104

recent MNOTE severity 104
&SYSMAC 104

macro name 104
&SYSNDX 104

macro invocation counter 104
&SYSNEST 104

macro nesting level 104
&SYSOPT_DBCS 104

DBCS option setting 104
&SYSOPT_OPTABLE 104

OPTABLE option setting 104
&SYSOPT_RENT 105

&SYSOPT_RENT 105
&SYSOPT_XOBJECT 105

&SYSOPT_XOBJECT 105
&SYSPARM 105

SYSPARM parameter value 105
&SYSPRINT_DSN 105

SYSPRINT file name 105
&SYSPRINT_MEMBER 105

SYSPRINT member name 105

Index 155



system variable symbols (continued)
&SYSPRINT_VOLUME 105

SYSPRINT volume name 105
&SYSPUNCH_DSN 105

SYSPUNCH file name 105
&SYSPUNCH_MEMBER 105

SYSPUNCH member name 105
&SYSPUNCH_VOLUME 105

SYSPUNCH volume name 105
&SYSSEQF 105

sequence field 105
&SYSSTEP 105

step name 105
&SYSSTMT 105

next statement number 105
&SYSSTYP 105

control section type 105
&SYSTEM_ID 105

assembly system 105
&SYSTERM_DSN 105

SYSTERM file name 105
&SYSTERM_MEMBER 105

SYSTERM member name 105
&SYSTERM_VOLUME 105

SYSTERM volume name 105
&SYSTIME 12, 105

time of assembly 105
&SYSVER 105

assembler version 105
availability 106
mixed case 18
scope of usage 106
type attributes 106
type of symbol's value 106
variability 106

constant 106
fixed 106
variable 106

SYSTERM file name
&SYSTERM_DSN 105

SYSTERM member name
&SYSTERM_MEMBER 105

SYSTERM volume name
&SYSTERM_VOLUME 105

T

template for data structure
See dummy control section

TERM option
TERM(NARROW) 4
TERM(WIDE) 4

TEST option 3
THREAD option 4
time 142

assembly 139
definition 138

time (continued)
bind 139
execution 139

definition 140
link 139
machine language 140
run time

See execution time
time of assembly

&SYSTIME 105
TRANSLATE option

ASCII (default) 3
self-defining terms 3
translate table 3

translate table 3
two-byte adcons

RA2 option 6
type attribute incompatibility 16

U

unary minus 15
undefined symbols 32
Unicode

CODEPAGE option 3
constants 11
CU-type constants 3

UPPER function 19, 93, 97
uppercase characters

COMPAT(CASE) option 19
COMPAT(MACROCASE) option 19
UPPER function 19

USING label 44
USING Map 35
USING option

USING(MAP) 35
USING range 37

absolute implied address 37
base register zero 37
disjoint 68
highest-numbered register 37

USING resolution rules 36
USING statement 11, 45

dependent 43, 139
labeled 43, 45, 139, 141
labeled dependent 43, 139
name field entry 45
ordinary 139
qualifying label 45

USING statement activity
USING(MAP) option 5

USING Table 33, 35, 38, 40
assembly time 142
definition 142
implied address 142
USING Map 35

156 High Level Assembler: Benefiting from its Powerful New Features, SHARE Feb. 2001



USING(LIMIT) option 6
USING(MAP) option 5
USING(WARN) option 6

V

valid displacement 40
variable symbols

attribute 138
symbol itself 138
symbol's value 138

declaration without & 13
definition 142
global 18
local 18
macro-instruction keyword

parameters 18
macro-instruction positional

parameters 18
mixed case 18
system 12, 13
system (&SYS) 18

X

XATTR statement 9
with GOFF option 92

XOBJECT/GOFF option setting
GOFF/XOBJECT option setting 105

XOR function 93
XREF option 6

Index 157


