
High Level Assembler:

Toolkit Feature Technical Overview

SHARE 100 (February 2003), Session 8166

February 26, 2003

John R. Ehrman
ehrman@us.ibm.com  or ehrman@vnet.ibm.com

International Business Machines Corporation
Silicon Valley (nee Santa Teresa) Laboratory

555 Bailey Avenue
San Jose, California 95141

 Synopsis: 

This document provides an overview of the IBM High Level Assembler for MVS & VM & VSE Toolkit
Feature and shows how its components can be used at all stages of program development and
deployment. Demonstration and trial versions of some Toolkit components are on the HLASM web
site:

http://www.ibm.com/software/ad/hlasm/

The examples in this document are for purposes of illustration only, and no warranty of correctness
or applicability is implied or expressed.

Permission is granted to SHARE Incorporated to publish this material in the proceedings of the
SHARE 100 (February 2003). IBM retains the right to publish this material elsewhere.

  IBM Corporation 1995, 2003. All rights reserved.



 Notice 

  IBM Corporation 1995, 2003. All rights reserved. Note to U.S. Government Users: Documentation
subject to restricted rights. Use, duplication, or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract with IBM Corp.

Copyright Notices and Trademarks

Note to U.S. Government Users: Documentation subject to restricted rights. Use, duplication, or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

The following terms, denoted by an asterisk (*) in this publication, are trademarks or registered
trademarks of the International Business Machines Corporation in the United States and/or other
countries:

The following are trademarks or registered trademarks of other corporations:

Publications, Collection Kits, Web Sites

The currently available product publications for High Level Assembler for MVS & VM & VSE are:

• High Level Assembler for MVS & VM & VSE Language Reference, SC26-4940
• High Level Assembler for MVS & VM & VSE Programmer's Guide, SC26-4941
• High Level Assembler for MVS & VM & VSE General Information, GC26-4943
• High Level Assembler for MVS & VM & VSE Licensed Program Specifications, GC26-4944
• High Level Assembler for MVS & VM & VSE Installation and Customization Guide, SC26-3494

• High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility User's
Guide, GC26-8709

• High Level Assembler for MVS & VM & VSE Toolkit Feature User's Guide, GC26-8710
• High Level Assembler for MVS & VM & VSE Toolkit Feature Installation and Customization Guide,

GC26-8711
• High Level Assembler for MVS & VM & VSE Toolkit Feature Interactive Debug Facility Reference

Summary, GC26-8712

• High Level Assembler for MVS & VM & VSE Release 2 Presentation Guide, SG24-3910

Soft-copy High Level Assembler for MVS & VM & VSE publications are available on the following IBM
Online Library Omnibus Edition Compact Disks:

• VSE Collection, SK2T-0060
• MVS Collection, SK2T-0710
• Transaction Processing and Data Collection, SK2T-0730
• VM Collection, SK2T-2067
• OS/390 Collection, SK2T-6700 (BookManager), SK2T-6718 (PDF)

HLASM publications are available online at the HLASM web site:

http://www.ibm.com/software/ad/hlasm/

IBM ESA System/370 System/370/390
System/390 MVS/ESA OS/390 VM/ESA
VSE/ESA VSE z/OS z/VM
z/Architecture zSeries OS/2 OS/2 Warp
DFSMS

Windows 95 Windows 98 Windows 2000 Windows NT

ii High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



High Level Assembler Toolkit Feature

1  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Optional priced feature of High Level Assembler for MVS & VM & VSE

• Enhances productivity by providing six powerful tools:

1. A flexible Disassembler

− Creates symbolic Assembler Language source from object code

2. A powerful Source Cross-Reference Facility

− Analyzes code, summarizes symbol and macro use, locates specif ic tokens

3. A workstation-based Program Understanding Tool

− Provides graphic displays of control f low within and among programs

4. A powerful and sophisticated Interactive Debug Facility (IDF)

− Supports a rich set of diagnostic and display facil i t ies and commands

5. A complete set of Structured Programming Macros

− Do, Do-While, Do-Until, If-Then-Else, Search, Case, Select, etc.

6. A versatile File Comparison Utility ( “Enhanced SuperC” )

− Includes special date-handling capabil i t ies

• A comprehensive tool set for Assembler Language applications

High Level Assembler Toolkit Feature
The High Level Assembler Toolkit Feature is an optional, separately priced feature of IBM High Level
Assembler. It provides a powerful and flexible set of six tools to improve application recovery and
development, and to assist in program preparation, analysis, debugging, and maintenance on z/OS*,
z/VM*, OS/390*, MVS/ESA*, VM/ESA*, and VSE/ESA* systems. These productivity-enhancing tools are:

• Disassembler, a tool which converts binary machine language to Assembler Language source
statements. It helps you understand programs in executable or object format, and enables recovery of
lost source code.

• Cross-Reference Facility, a flexible source-code analysis and cross-referencing tool. It helps you
determine variable and macro usage, analyze high-level control flows, and locates specific uses of
arbitrary strings of characters.

• Program Understanding Tool, a workstation-based program analysis tool. It provides multiple and
“variable-magnification” views of control flows within single programs or across entire application
modules.

• Interactive Debug Facility, a powerful and sophisticated symbolic debugger for applications written in
Assembler Language and other compiled languages. It simplifies and speeds the development of
correct and reliable applications. (It is not intended for debugging privileged or supervisor-state
code.)

• Structured Programming Macros, a complete set of macro instructions that implement the most
widely used structured-programming constructs (IF, DO, CASE, SEARCH, SELECT). These macros
simplify coding and help eliminate errors in writing branch instructions.

• File Comparison Utility (known as “Enhanced SuperC”), a versatile file searching and comparison
tool. It can scan or compare single file or groups of files with an extensive set of selection and
rejection criteria. Typical uses include comparing an original source file with a modified source file,
or a pre-migration application output file with a post-migration output file. Newly added functions
include “smart comparisons” of date fields to assist date “windowing”.

Together, these tools provide a powerful set of capabilities to speed application development, diagnosis,
and recovery.

This presentation provides an overview of the features and use of each of the six Toolkit components.
They are based on tools that have been used widely and tested extensively inside IBM before being
“packaged” in the High Level Assembler Toolkit.

  1



Why Use the Assembler Toolkit?

2  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Preserve investments in applications, people, skills, and procedures

− Enhance the productivity of people with specialized skills

• Improve product maintainabil ity and simplify upgrades

− Enhancement and maintenance average 60% of software costs

• Improve application understandabil i ty

− Product understanding typically requires 30% of maintenance time

• Improve application error detection and correction

− Normal testing typically covers only 60% of code paths

− Even 100% coverage can't find the 75% of defects from...

— missing logic paths that should have been there

— combinations of paths that aren't tested by coverage tools

• The Toolkit components can provide savings in many areas

Why Consider Using the Toolkit?

The six components of the High Level Assembler Toolkit Feature help you in managing all stages of
application recovery, understanding, development, test, and maintenance. Among the reasons you may
consider in using the Toolkit are:

1. Preserve investments in applications, people, skills, and procedures

Many organizations have substantial investments in applications or application components written in
Assembler Language. Converting to other languages has many costs (many hidden, and many
significant), so it is important to continue to maintain and enhance existing code. This also helps to
preserve investments in personnel and their knowledge of the applications, as well as in the
organization's established estimation, development, test, and maintenance procedures.

2. Improve application maintainability and understandability

Application maintenance is usually the largest cost element of an application, so several Toolkit
components will be valuable in helping you with understanding and maintaining Assembler Language
code.

3. Improve application error correction

Testing typically detects only a fraction of latent errors in applications before they are deployed;
finding and fixing those problems is helped by the Toolkit.

The components of the High Level Assembler Toolkit Feature can help you save time, reduce costs,
improve product quality, and increase customer satisfaction.

Hardware Requirements

The High Level Assembler Toolkit Feature requires the same hardware environments as IBM High Level
Assembler for MVS & VM & VSE Version 1 Release 4. Requirements for 24-bit Virtual Storage are:

• Disassembler: 100K bytes
• IDF: 600K bytes
• XREF: depends on number and sizes of modules being scanned
• SuperC: depends on number and sizes of modules being scanned
• ...plus working storage (depending on the application)

2 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



The Program Understanding Tool (ASMPUT) component of the High Level Assembler Toolkit Feature
requires a workstation capable of running OS/2, Windows 95, 98, 2000, or NT with a minimum of 16 MB
memory (32 MB recommended) and 80 MB of available hard-drive space, plus a host-sytem connection
or other means of transferring SYSADATA files to the workstation for analysis.

Software Requirements

The High Level Assembler Toolkit Feature operates in all MVS/ESA and VM/ESA environments where
IBM High Level Assembler for MVS & VM & VSE Version 1 Release 4 (MVS & VM Edition) operates. On
MVS, the Interactive Debug Facility's macro facilities require TSO/E V2 or later.

On z/OS and OS/390, the High Level Assembler Toolkit Feature is an optional element; it operates in all
environments where the same level of the High Level Assembler base element operates.

The High Level Assembler Toolkit Feature operates in VSE/ESA Version 2 (or later) environments where
IBM High Level Assembler for MVS & VM & VSE Version 1 Release 4 (VSE Edition) operates. On VSE,
the Interactive Debug Facility requires VSE Version 2.2 or later.

The Toolkit Feature's components can be used independently of High Level Assembler. However, the
most productive uses of many of the Toolkit Feature's components rely on SYSADATA files produced by
High Level Assembler for MVS & VM & VSE.

Note: The SYSADATA files should not be created if the GOFF or XOBJECT option is in effect.

The Program Understanding Tool (ASMPUT) component of the High Level Assembler Toolkit Feature
requires one of:

• OS/2* Version 4 (8H1425) with fixpack 8 or later
• Windows* 95
• Windows 98
• Windows 2000
• Windows NT Version 4.0 with Service Pack 3 or later, on Intel workstations only.

A recommended host-connection software package is eNetwork Personal Communications Version 4.2.1
(8H8735), which supports OS/2 and Windows.

  3



HLASM Toolkit Publications

3  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

GC26-8709 Toolkit Feature Interactive Debug Facility User's Guide

The reference document for all IDF facilities, commands,
windows and messages.

GC26-8710 Toolkit Feature User's Guide

Reference and usage information for the Disassembler, the
Cross-Reference Facility, the Program Understanding Tool,
the File Comparison Utility, and the Structured Programming
Macros

GC26-8711 Toolkit Feature Installation and Customization Guide

Information needed to install all Toolkit Feature components

GC26-8712 Toolkit Feature Interactive Debug Facility Reference
Summary

Quick-reference summary, with syntax of all commands and a
list of all options; for experienced ASMIDF users.

Publications

The four publications for the High Level Assembler Toolkit Feature are:

GC26-8709 Toolkit Feature Interactive Debug Facility User's Guide

The main reference document that describes all IDF facilities, commands, windows and
messages.

GC26-8710 Toolkit Feature User's Guide

Reference and usage information for the Disassembler, the Cross-Reference Facility, the
Program Understanding Tool, the Enhanced SuperC File Comparison Utility, and the
Structured Programming Macros

GC26-8711 Toolkit Feature Installation and Customization Guide

Information needed to install all Toolkit Feature components

GC26-8712 Toolkit Feature Interactive Debug Facility Reference Summary

Quick-reference summary, with syntax for all commands and a list of all the options. This
booklet is intended for experienced ASMIDF users.

For more information about ordering the High Level Assembler Toolkit Feature, refer to Software
Announcement 295-498, dated December 12, 1995.

4 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



HLASM Toolkit Disassembler

4  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Converts object code to Assembler Language source

• Supports latest processor instructions, including z/Architecture

• Input files:

− Object modules; MVS load modules and program objects; CMS modules;
VSE phases

− Control statements (including a COPYLIB)

• Output files:

LISTING control records, messages, source listing, etc.

PUNCH assembler-ready source file, to re-create the object

• Limitations:

− 16MB upper limit on size of module being disassembled
− MVS: no Program Objects containing non-standard classes
− No Generalized Object File Format (GOFF) object fi les
− VSE: phases have no ESD; cannot extract individual CSECTs
− SYM-record information not used, even if present

HLASM Toolkit Disassembler
The High Level Assembler Toolkit Feature's Disassembler lets you extract single control sections
(CSECTs) from object modules or from executables such as MVS load modules, CMS modules, and VSE
phases. It converts them to Assembler Language statements that can be assembled to generate the
same object code. A control file (including a COPYLIB of previously created control statements) supplies
information to guide the Disassembler in producing a more readable and modifiable output source
program.

The Disassembler produces two output files:

Listing Various sections describe the module being disassembled, control records, messages, text
listing and the source listing.

Punch An assembler language source file that can be used directly as input to the assembler to
recreate the object text file.

The Disassembler currently has the following limitations:

• 16MB upper limit on the size of the module being disassembled

• On MVS: Program Objects containing non-standard classes (i.e., classes not defined and owned by
the DFSMS/MVS Binder) cannot be disassembled.

• Generalized Object File Format (GOFF) object files cannot be disassembled.

• On VSE: Because VSE executable phases have no External Symbol Dictionary (ESD), the
Disassembler cannot extract individual CSECTs, nor produce a useful ESD report.

Note: VSE utilities can create an object-module file from a phase; that object module may also be
disassembled.

• SYM-record information is not used, even if present in the object file or load module.

Publication GC26-8710, High Level Assembler for MVS & VM & VSE Toolkit Feature User's Guide
describes all the control records, JCL requirements, and error messages for the Disassembler.

  5



Disassembler Operation

5  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Copyright protection and the COPYRIGHTOK option

• Control statements add symbolic and structure information

DATA, INSTR, DS
designate data, code, and empty areas

DSECT provides symbolic mappings of structures

ULABL assigns user labels to points in the program

USING provides basing data to allow symbolic references in place of
explicit base-displacement operands

COPY includes previously created control statements

• Symbolic names automatically provided for all registers

− Access, Control, Floating-Point, General Purpose, and Vector

• Informative comments on SVCs, STM, EX, BAL, BALR, etc.

• Listing contains ESD, RLD, other useful information

Disassembler Operation

The COPYRIGHTOK option controls the processing of control sections that contain copyright information.
By default, the disassembler will scan the object code for the following data:

• (c)
• (C)
•   (at code point X'B4')
• “Copyright” in any combination of upper case and lower case letters.

If any one of these is found, message ASMD010 will be issued and the disassembly will stop. However, if
you specify the COPYRIGHTOK option, then you are acknowledging that you own the copyright for the
module or that you have obtained permission from the copyright owner to disassemble the module. In
this case the Disassembler will issue message ASMD008 to acknowledge this, and processing will
continue.

The Disassembler operates in two passes: Pass 1 reads and processes all the control records, and
builds storage tables for later use. The main tables are for labels, USINGs and DSECTs. Pass 2 performs
the actual disassembly, analyzing the module's machine language text and writing assembler language
instructions to the listing and punch files.

Your first control statement specifies the module and control section to be disassembled. Additional
control statements provide further guidance and helpful information to the Disassembler, allowing it to
create a more readable program. You can supply sets of control statements in the primary input stream
to the Disassembler, or (as each set is developed) you can save them in a library and direct the
Disassembler to read them using COPY control statements.

• You can describe the layout of the control section with control statements asserting that certain areas
of the module contain data only, instructions only, or are known to be uninitialized.

• You can request symbolic resolutions of halfword base-displacement storage by supplying control
statements giving base addresses and the base registers to be used for addressing.

• You can assign your own labels to designated positions in the program, and define data structures
(DSECTs).

• The Disassembler automatically assigns symbolic names to registers. Branch instructions use
extended mnemonics where possible, and supervisor call (SVC) instructions are identified when
known. (The Disassembler cannot create source programs that recover original macro calls, of
course!)

6 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



• The Disassembler listing provides a full summary of the inputs and outputs of the disassembly, and
the reconstructed Assembler Language source program is placed in a separate PUNCH file.

When the disassembler-generated statements are assembled by High Level Assembler using the ADATA
option, the resulting SYSADATA file (also called the ADATA file) may be used as input to other Toolkit
Feature components. This combination of facilities can help you recover lost source code written in any
compiled language.

Disassembler Usage

6  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Init ial disassembly

− Specify the module and CSECT to be disassembled

• Add USING records

− Specify base registers, contents, and USING ranges

• Add other control records

− Specify areas used for instructions, data, and “empty space”

− Assign your own labels to known instructions, data areas, work areas

− Map data structures with DSECT statements

• Program Understanding Tool helps clarify structure

− Especially useful for compiled HLL code

• Place control records in separate files, include COPY statements

Disassembler Usage Examples

Some examples of the disassembler will use the object file from the program listed in Figure 1 below.
The object text file in each of the following three examples is identical. Each example has its own set of
control records:

1. Initial run (DISASM1)

2. Add USING records (DISASM2)

3. Add other control records (DISASM3)

The control files used for these disassemblies are discussed starting at “Sample Disassembler Control
Files: DISASM1” on page 8. (Note that because the examples were run under CMS, the first operand of
the first control statement is ignored; the name is used only to distinguish the three samples.)

Trace CSect
stm r14,r12,12(r13) Save caller's registers
lr r12,r15 Establish Base
Using trace,r12 and tell the assembler
st r13,savearea+4 Chain
la r2,savearea the
st r2,8(,r13) saveareas
la r15,12 set default return code

Figure 1 (Part 1 of 2). Sample Program for Disassembly

  7



oc myflag,myflag Have we been here?
bz exit Get out now
xc myflag,myflag Clear the flag
st r8,areaaddr Set up address of area
mvc arealen,=f'8192' Set up length of area
la r15,8 Set the return code

exit l r13,savearea+4 Point to previous area
st r15,16(,r13) Store the return code
mvc 24(4,r13),=a(dump_data) Point saved R1 at Parm list
lm r14,r12,12(r13) Restore the registers
br r14 Return
Ltorg

myflag dc F'1'
savearea ds 9d
dump_data dc f'1'
areaaddr dc a(0)
arealen dc f'0'
titlea dc a(title)
title dc cl16'Hello world'
r2 Equ 2
r8 Equ 8
r12 Equ 12
r13 Equ 13
r14 Equ 14
r15 Equ 15

End

Figure 1 (Part 2 of 2). Sample Program for Disassembly

Sample Disassembler Control Files: DISASM1

The initial version of the control file specifies only a single statement, to designate the module name and
the CSECT name. (Under CMS, the module name DISASM1 is ignored.)

DISASM1 TRACE
* This is the minimum requirement - the control record which
* specifies the module (not used on VM) and the CSECT.

Figure 2. Initial Set of Disassembler Control Statements

The output of this disassembly contains no USING statements and no internal labels; all addressing is in
base-displacement form, as illustrated in Figure 3 on page 9 below. (Note that the last statement before
END is a call on the ASMDREG macro: this macro is supplied with the Toolkit Feature, and simply
defines the names of the general purpose registers R0 through R15. It is equivalent to the REGEQU
macro, which unfortunately is not available on all platforms.)

8 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



TRAC TITLE 'Disassembly of CSECT TRACE of Load Module DISASM1 '
* Produced by ASMDASM on 98.120 at 14:06
TRACE CSECT

STM R14,R12,12(R13) Save regs
LR R12,R15
ST R13,92(,R12)
LA R2,88(,R12)
ST R2,8(,R13)
LA R15,12
OC 80(4,R12),80(R12)
BZ 52(,R12)
- - - ...etc...
DC CL16'Hello world '
ASMDREG
END

Figure 3. Sample Disassembly With Minimal Control Statements

Sample Disassembler Control Files: DISASM2

After inspecting the initial disassembly, we have determined that register 12 should be used as a base
register, so we add a USING control statement. (Remember: under CMS, the module name DISASM2 is
ignored.)

DISASM2 TRACE
* Now we have added a USING record which specifies that
* the USING applies to all addresses between X'000000' and X'0000C0',
* register 12 (X'C') is to be used as a Program base register
* and that the value loaded into the register is X'000000'
USING 000000 0000C0 C P 000000

Figure 4. Disassembler Control Statements Specifying USING

The output from this disassembly would use symbolic labels for storage references based on register 12.
The generated names are of the form Annnnnn where nnnnnn is the hexadecimal offset of the label from
the base of the control section. This is illustrated in Figure 5 on page 10 below.

  9



TRAC TITLE 'Disassembly of CSECT TRACE of Load Module DISASM1 '
* Produced by ASMDASM on 96.176 at 14:32
TRACE CSECT

USING *,R12
A000000 EQU *

STM R14,R12,12(R13) Save regs
LR R12,R15
ST R13,A00005C
LA R2,A000058
ST R2,8(,R13)
LA R15,12
OC A000050(4),A000050
BZ A000034
XC A000050(4),A000050
- - - ...etc...

A0000B0 EQU *
DC CL16'Hello world '
ASMDREG
END

Figure 5. Sample Disassembly With USING Control Statement

Sample Disassembler Control Files: DISASM3

For the final disassembly, we observe that there is a save area at offset X'000058' that we will call
SAVEAREA, and this area is uninitialized space; also, there appears to be a fullword at offset X'000050'
used as a FLAG, so we add three new control statements.

DISASM3 TRACE
USING 000000 0000C0 C P 000000
* The following defines a label SAVEAREA for an area which starts at
* offset X'000058' and is 72 bytes long (18 fullwords)
ULABL SAVEAREA 000058 072
* This defines the area from X'000058' to X'00009F' as an
* uninitialized storage area (this will force the use of the DS opcode)
DS 000058 00009F
* another label definition - FLAG at offset X'50' for 4 bytes
ULABL FLAG 000050 004

Figure 6. Disassembler Control Statements Specifying Addit ional Info

The output from this (possibly final) disassembly is shown in Figure 7 on page 11 below:

10 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



TRAC TITLE 'Disassembly of CSECT TRACE of Load Module DISASM1 '
* Produced by ASMDASM on 1998.120 at 17:58
TRACE CSECT

USING *,R12
A000000 EQU *

STM R14,R12,12(R13) Save regs
LR R12,R15
ST R13,SAVEAREA+4
LA R2,SAVEAREA
ST R2,8(,R13)
LA R15,12
OC FLAG(4),FLAG
BZ A000034
XC FLAG(4),FLAG
ST R8,A0000A4
MVC A0000A8(4),A000048
LA R15,8

A000034 L R13,SAVEAREA+4
ST R15,16(,R13)
MVC 24(4,R13),A00004C
LM R14,R12,12(R13) Restore regs
BR R14 Exit
SPACE

A000048 DC F'08192'
A00004C DC A(A0000A0)
FLAG DC F'00001'

DC F'0'
SAVEAREA DS CL72
A0000A0 EQU *

DC F'00001'
A0000A4 DC F'0'
A0000A8 DC F'0'

DC A(A0000B0)
A0000B0 EQU *

DC CL16'Hello world '
ASMDREG
END

Figure 7. Disassembler Output for Sample Program

Further refinements are possible, but the most important features of this simple program are now
evident.

When analyzing the successive disassemblies, many users have found that it helps to analyze the logical
structure of the program using the Program Understanding Tool (described on page 14). It can help you
identify loops, calls, and other major code segments.

  11



HLASM Toolkit Cross-Reference Facility

7  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Scans source, macros, and COPY files for

− symbols, macros, and user-specif ied character strings (“tokens”)

• Full support for Assembler, C/C++, PL/I, REXX

− Extensive support for many other languages, including
COBOL, FORTRAN, JCL, CLIST, ISPF, RPG, SCRIPT, SQL, PL/X, etc.

• Can create a source fi le with token matches “tagged”

− Useful as input to Program Understanding tool

• Recent enhancement! APAR PQ67403 adds:

− 31-bit enablement for larger reports

− New SYMC sort order for SWU reports

− Message limits now apply independently to each severity

HLASM Toolkit Cross-Reference Facility
The High Level Assembler Toolkit cross-reference tool (ASMXREF) supports your maintenance tasks by
analyzing and scanning source programs, macro definitions, INCLUDE and COPY books and other files
for symbols, macro calls, and user-specified tokens. The source programs may be written in Assembler
Language, C/C++, PL/I, or REXX. Other languages supported for a subset of the available reports include
COBOL, FORTRAN, ASM88, CLIST, “Generic”, ISPF panels and skeletons, JCL, MASM, Modula, Pascal,
QMF/SQL, RPG, and SCRIPT.

ASMXREF can also be used for identifying fields of application importance such as DATE, TIME, and YYMMDD.
You additionally specify tokens to be excluded, so that searches for a token such as ″MM″  can reject
matches on tokens such as SUMMER. Furthermore, an arbitrary “match anything” character (sometimes
called a wildcard character) can be used to create generic tokens such as ″YY*″ ; the scan will then
search for occurrences of the token with any other characters allowed in the position of the arbitrary
character.

ASMXREF does not support VSAM files.

12 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



HLASM Toolkit Cross-Reference Facility ...

8  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Produces up to six reports

− Control Flow (CF)

− Lines of Code (LOC)

— Lines of OO code (LOOC) for C/C++

− Macro-Where-Used (MWU)

− Symbol-Where-Used (SWU)

− Token-Where-Used (TWU)

— Supports generic (wi ld-character) matching, “exclusion” tokens

− Spreadsheet-Oriented (SOR)

— Same info as TWU, but in a format useful for identifying crit ical modules and
estimating conversion effort

• Can create a source fi le with token matches “tagged”

− Useful as input to Program Understanding tool

Control Flow Report: The CF report tabulates all intermodule program references as a function of
member or entry point name. Additional language-specific capabilities are provided for selected
languages.

Lines of Code Report: The LOC report provides a count, arranged by part, of the number of source lines
in the part, the executable and non-executable statements and the number of comment lines in the part.
Appropriate tags can be used to indicate lines changed, deleted, added, or moved, as well as to indicate
programmer activity.

Lines of Object Oriented Code Report: There is a special subset of the LOC report for C/C++: the LOOC
(Lines of Object Oriented Code) reports the Lines of Code (LOC) per class and per object, and objects
per class, containing data similar to that in the “standard” LOC report. “Shipped Source Instructions”
(SSI) indicates the number of executable and non-executable instructions that are not blank or
comments.

Macro Where Used Report: The MWU report lists all macros or functions invoked and all segments
copied, including the type and frequency of the invocation or reference.

Symbol Where Used Report: The SWU report lists all symbols referenced within the source members,
and the type of reference. These symbols can be variables or macros.

Token Where Used Report: The TWU report shows for each module scanned the number of lines of code,
the number of occurrences of each token, and the total number of token matches. Tokens may also be
excluded from matching.

When you create the TWU report, a “tagged source program” is also generated. This file contains special
language-specific inserted comment statements where tokens are found. Subsequent assembly of a
“tagged” file helps you track important variables during control-flow analysis using the Program
Understanding Tool.

Spreadsheet Oriented Report: The SOR report contains the same information as the TWU report, as a
comma-delimited file suitable for input into a standard spreadsheet application. This tabular information
helps you identify the critical modules in an application and estimate the effort required for needed
modifications.

  13



HLASM Toolkit Program Understanding Tool

9  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Detailed analysis of Assembler Language programs
− Creates annotated listings
− Displays graphic control f low for single programs and “l inked” modules
− Runs on Windows and OS/2

• Assemble programs with ADATA option
− Download SYSADATA file (in binary) to workstation *.XAA files

• ASMPUT analyzes the SYSADATA (.XAA) files
− Creates component lists, simulated listing, graphs, external l inkages

• Grapher displays many levels of detail, with zoom capability
− Inter-program relationships
− Major program structures
− Full details of internal control flows
− Graph-printing test version available on HLASM web site

• Online tutorial, extensive HELPs throughout
− Windows Help requires Internet Explorer

• Installed from downloaded host files (not diskettes)

HLASM Toolkit Program Understanding Tool
The Program Understanding Tool (ASMPUT) helps you analyze and extract information about Assembler
Language applications, using a graphical user interface to display graphical and source views of an
application's structure. ASMPUT extracts application analysis information from the SYSADATA file
generated during host assembly by HLASM; this ADATA file is downloaded to the workstation for
analysis and display on Windows or OS/2 Warp* 4.

ASMPUT can display linked views of selected programs and modules including:

• a Content view
• an Assembled Listing view
• a graphical Control Flow view
• an Expanded Source Code view.

These views provide complete high, medium, and low level information about Assembler Language
applications.

• At the highest level, you can discover the relationships among programs and modules within an
application.

• A mid-level view displays the calling structures among programs within a module, including routines
external to a program.

• At the lowest level, you can examine details of internal control flows within each program.

ASMPUT lets you display multiple views of a given program or module. These multiple views are linked:
scrolling through one view automatically scrolls through all other open views of that program, module, or
application. Linked views help you see quickly the association between the assembled source code and
the graphical control-flow representations of the program.

At any time, you can narrow or expand the focus of your analysis by zooming in or out on areas of
particular interest. For example, you can use the VIEW CONTENTS window to scroll through the contents
of an application and simultaneously see the change in control flow information displayed in the VIEW
CONTROL FLOW window.

ASMPUT displays several folders which provide a complete inventory of application analysis information,
program samples, tools, documentation, extensive help files, and a detailed online tutorial to help you
learn to use ASMPUT for analyzing Assembler Language applications. Installation is simplified by
packaging all Toolkit components as host files; ASMPUT files are then downloaded to the workstation.

14 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



The initial window gives direct access to all needed files, functions, and information needed to analyze
assembler language programs.

Figure 8. Example of the ASMPUT window

The shaded icons in this window indicate that the Tools and Inventory windows are also open. Following
ADATA analysis, you can display many different views of a program. A view of the initial analysis might
be the source file, as shown in the following figure:

Figure 9. Example of the ASMPUT source listing

The Program Understanding Tool uses different colors to highlight machine, assembler, and macro
instructions. Other listings display the program's components (source, macro, and COPY files), or the
control flow analysis, where “basic blocks” (sequences of instructions ending at a branch) are identified.

  15



The control flow graphs are the heart of ASMPUT. For example, a top-level view of the control flow graph
for the CALCPRG sample program appears like this:

Figure 10. Example of the Control Flow View

16 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



The next level of detail shows the structure of each of the routines called from the main CALCPRG
program:

Figure 11. Example of a More Detailed Control Flow View

Using the View pull-down, you can expand or collapse the “layers” of detail being displayed.

Note the following:

• ASMPUT R4 accepts ADATA files from previous releases of HLASM, but previous releases of
ASMPUT cannot accept ADATA files from later HLASM releases.

• The OS/2 version of ASMPUT shipped with HLASM R3 works only with HLASM R3 ADATA files. If you
have ADATA files generated by HLASM R2 and want to continue to use them, you should retain your
copy of the OS/2-based ASMPUT shipped with HLASM R2.

Note:  HLASM R2 service was withdrawn as of December 31, 2001.

• ASMPUT R4 should apply service for APAR PQ41190.

• ASMPUT R3 should apply service for APARs PQ26063 and PQ20235.

  17



HLASM Toolkit Interactive Debug Facility (IDF)

10  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Supports latest processor enhancements

− 64-bit instructions and AMODE(64)

— APAR PQ51325, Requires HLASM R4 and z/OS 1.2 or later

— New options, commands, and windows

− additional floating point registers and new FP instructions

• Primarily for Assembler Language programs

− Also usable for programs in other languages

— Without source-language support

• Multiple selectable “windows” for address stops, breakpoints, register
displays, disassembled code, register histories, etc.

− Windows may be used in any order or combination

HLASM Toolkit Interactive Debug Facility (IDF) ...

11  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Execution stepping: displays disassembled code (and source, if
available)

− Per instruction, or between breakpoints or routines

− Breakpoints include “watchpoints” (break on specif ied condit ion)

− Instruction counting, execution “history”

• Exit routines (in REXX or other language) invokable at breakpoints

− Capture, analyze, and respond to program conditions

• Storage and register modification by over-typing

• Record/playback facility to re-execute debugging sessions

• Extensive tailoring capabilit ies

• GC26-8709-04, High Level Assembler Toolkit Interactive Debug Facility
User's Guide (Reference Summary  is GC26-8712-03)

− 64-bit debug info is available in softcopy only

HLASM Toolkit Interactive Debug Facility (IDF)
The High Level Assembler Toolkit Feature Interactive Debug Facility (IDF) supports a rich set of
capabilities that speed error detection and correction. While IDF is intended primarily for debugging
Assembler Language programs on MVS, VM, and VSE systems, it can also be used advantageously to
debug programs written in most high level languages, though without the source-language support
facilities provided for Assembler Language code.

• IDF supports all new z/Architecture instructions and the additional floating-point registers introduced
with the G5 processor families. (It also shares a common disassembly routine with the Disassembler
and several other system components, ensuring correct handling of all instructions by each.)

− Support for 64-bit debugging was added via APAR PQ51325 (PTFs MVS UQ57987, CMS UQ57988,
VSE UQ57989). The enhancements include one new option (AMODE64), four new commands
(EPNAMES, GPRG, GPRH, and REGS64), and two new windows (for Entry Point Names and 64-bit
registers). The support is available only in HLASM R4.

18 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



• IDF provides multiple selectable views of a program, including separate windows for address stops,
breakpoints, register displays, object code disassembly, storage dumps, language-specific support,
register histories, non-traced routines, and other information. These views can be used in any order
or combination.

• Execution of a program can be controlled by stepping through individual instructions or between
selected breakpoints or routines.

• If source code is available (which will almost always be the case for programs assembled with High
Level Assembler), IDF can display source statements as the program is executed.

• The power of IDF is greatly magnified by its ability to pass control from any breakpoint to user exit
routines written in REXX or other languages that can capture and analyze program data, and respond
dynamically to program conditions.

• Instruction executions can be counted, and an instruction execution history can be maintained.

• Storage areas and register contents can be modified dynamically during debugging by simply typing
new values on the displays.

• IDF supports a special class of conditional breakpoints called watchpoints, which are triggered only
when a user-specified condition occurs.

• A command-level record and playback facility allows a debugging session to be re-executed
automatically.

• Extensive tailoring capabilities allow you to establish a familiar debugging environment. Most
debugging actions can be easily controlled by PF-key settings.

Interactive Debug Facility (IDF) Overview

12  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Components

− Base Debugger: ASMIDF can be used without source-language support

— On CMS, includes interface module

− ASMLANGX (Extraction Util i ty) prepares HLASM ADATA fi les

• Two breakpoint types: SVC97, invalid opcodes (X'01xx')

• System considerations

− TSO: naming conventions; etc.

— Supports DFSMS/MVS Binder Program Objects (standard classes)
— SVC97 option if application uses ESPIE/ESTAE; subtask of IDF
— NOSVC97 option if application uses TSO TEST; same task as IDF

− CMS: Invalid opcodes only (NOSVC97); PER support

− VSE: Link with ASMLKEDT, specify VTAM terminal

− ISPF: TSOEXEC command (IDF “owns” the screen)

− CICS, DB2, IMS with some limitations

− Debugging authorized code: not supported!

− LE: specify NOSPIE, NOSTAE (or TRAP(OFF))

Interactive Debug Facility (IDF) Overview

The original IDF provided a debugger without any source-language capability. It can still be used in that
way, and any reference to the “base debugger” implies using IDF without its source language
capabilities.

IDF comprises two main components:

1. On TSO, the base debugger is the load module ASMIDF. This is a TSO command processor; it will
only run in that environment with a real terminal.

  19



On CMS, the base debugger consists of two modules; ASMIDF and ASMIDFMA. ASMIDF is a
self-relocating nucleus extension. This loads the main module, ASMIDFMA, as a nucleus extension at
the start of a debugging session, and deletes it at the end.

On VSE, the ASMIDF debugger runs in batch mode. A VTAM terminal must be available.

2. The other component of ASMIDF is ASMLANGX, the extraction utility that reads SYSADATA files and
creates the ASMLANGX files (with source statements, symbols, and type information) for later use by
the language-support component of ASMIDF.

IDF uses two different breakpoint techniques, both of which overlay instructions at the point where the
breakpoint is required:

TSO Invalid opcodes of the form X'01xx' or SVC 97 instructions

CMS Invalid opcodes of the form X'01xx' (SVC 97 not supported)

VSE Invalid opcodes of the form X'01xx'

The implications of these choices will be described shortly. IDF inserts these breakpoint opcodes when it
is about to begin executing the target program. When any “event” occurs, the original instructions are
restored before control is returned to you, so that all displays will show your program without the
breakpoint overlays. Note that some other debuggers depend on having the compiler insert special links
to the debugger, which limits their usefulness for code that is fully optimized for production
environments. IDF, on the other hand, is a lower-level debugger that uses opcode overlays to set
breakpoints.

• TSO considerations

− Debuggable modules

IDF supports debugging of programs in both the old load module format and in the Program Object
formats produced by the DFSMS/MVS or z/OS Binder so long as the Program Object classes are
those assigned and owned by the Binder.

− SVC97 and NOSVC97 options

By default, ASMIDF uses the TSO TEST SVC (SVC97). You must use the SVC97 technique when
debugging an application which itself uses ESTAE or ESPIE. This is because the application's
ESTAE/ESPIE setup will take precedence over IDF's. (This is not available under ISPF unless you
use the standard TSOEXEC command to set up the appropriate environment; the same restriction
applies to the TSO TEST command.)

NOSCV97 works by telling ASMIDF that it is not to use SVC97; it then uses invalid opcodes to set
breakpoints.

− TSO naming conventions

ASMIDF was originally developed as a CMS tool and later ported to TSO, so there are a lot of
CMS conventions throughout the manuals. TSO users must translate their DDNAMES and member
names from a CMS-like file name using the following scheme:

CMS TSO Equivalent

fn PDS member name (ignored if using sequential file)

ft DDNAME, which in turn points to the TSO dataset

fm not used on TSO

− TSO TEST

You MUST use the “invalid opcode” technique (NOSVC97) when debugging an application which
itself uses the TSO TEST facilities. This is because TSO TEST is limited to one use per address
space.

• CMS considerations

IDF/CMS by default uses the invalid opcode technique, which is “full function” on CMS. Instead of
using ESTAE/ESPIE on CMS, IDF steals the Program New PSW. IDF/CMS also uses the CP

20 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



PER/TRACE facilities. This technique is required for debugging read-only code (e.g. within a DCSS)
on CMS. (MVS/TSO unfortunately doesn't expose any PER facilities to an application program.)
Currently, the additional Floating Point Registers (AFPR) are not supported on CMS.

• VSE considerations

The program is first link edited with a special version of the VSE/ESA Linkage Editor (ASMLKEDT) that
captures external symbols and places that information in the librarian member phasename.MAP.

− VSE naming conventions

File naming conventions are derived from their CMS equivalents:

CMS VSE Equivalent

fn VSE librarian member name

ft DLBL name, which in turn points to the VSE dataset name

fm not used on VSE

Currently, the additional Floating Point Registers (AFPR) are not supported on VSE.

• ISPF Considerations

Chapter 21 of the IDF User's Guide briefly discusses using ASMIDF with ISPF (for TSO) applications.
The invocation command is different, depending on whether the application being debugged resides
in the STEPLIB or ISPLLIB allocations. The manual also discusses the use of TSOEXEC, breakpoint
method selection, and an example of debugging ISPF dialogs.

ASMIDF does not use ISPF services. It is a TSO Command Processor and will assume control of the
entire screen. So if you had a split screen under ISPF and started up ASMIDF on one of the logical
screens, the other logical screen(s) would not be available for display until you exited ASMIDF. It may
be useful to look at the SWAP option; there is a short section “Programs performing Full-screen I/O”
on page 44.

• CICS Considerations

IDF may be used to debug CICS only if you run IDF on a TSO logon and run then CICS as a program
within the TSO region. IDF is not intended for debugging CICS transactions in a production
environment.

• DB2 Considerations

The IDF Reference manual discusses using ASMIDF with DB2 applications (for MVS).

1. The IDF option NOSVC97 is required.

2. When testing under LE/370, the LE options NOSPIE and NOSTAE must be used.

• IMS Considerations

While IDF has not been tested in the IMS environment, it should be possible to debug Batch Message
Programs that run under TSO. Care must be taken with DBREAK commands, to ensure that “code”
breakpoints are not overlaid on IMS PSB modules.

• Authorized code

IDF as shipped is not authorized and hence will not debug programs that use authorized services.

• Language Environment (LE)

Just specify the LE option TRAP(OFF) (or the options NOSPIE and NOSTAE), so that Interactive Debug
Facility can gain control on breakpoints and other exceptions.

• Assembler Language Considerations

ASMIDF does not support dependent USINGs (labeled or not), USING-range specifications, or USINGs
that do not cover the base of their range (e.g. USING A+5000,2).

  21



ASMIDF: Preparing a Debug Session

13  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Without source level facilities

− On CMS: LOAD MAP file required

− On VSE: link edit with ASMLKEDT

• With source level facilities

1. Assemble with High Level Assembler for MVS & VM & VSE's ADATA option

2. Run ASMLANGX extraction program against SYSADATA file

− Prepares source and symbolic information for debug use

− Recent APAR PQ61239 enhances performance

3. Keep the ASMLANGX extraction fi le

− Can generate the file on TSO, CMS, or VSE, and ship to the others

4. Create target module from object fi le(s)

− Require LOAD MAP file on CMS; phasename.MAP on VSE

− No need to retain l isting or SYSADATA fi les

Preparing a Debug Session

ASMIDF may be used to debug a program at the assembler object-code level.

• On CMS the LOAD MAP file must be retained; it is used to determine the location of the program's
CSECTs and external symbols. The LOAD MAP file should be renamed so that the file name matches
that of the executable module (MODMAP option)

• On TSO, ASMIDF extracts the required information from the load module itself and no extra
information is required.

• On VSE, link edit the program with the supplied ASMLKEDT link editor, to capture information about
external symbols in the output phase.

To use the source level facilities of ASMIDF, some preparation is required:

1. The assembly must be done with the ADATA option specified and the resultant SYSADATA file used
as input to the next step. (The ADATA option and the characteristics of the SYSADATA file are
described in the HLASM Programmer's Guide, SC26-4941.)

Note: There is no special support in IDF for labeled and dependent USING statements.

2. Run ASMLANGX using the SYSADATA file as input. This will create an extraction ASMLANGX file
that will be used during the debugging session. (The SYSADATA and ASMLANGX files should have
the same name.)

Note: An appendix in the IDF User's Guide describes some useful EXECs.

3. Create the target module from the object-file text as normal; on CMS, retain the (renamed) LOAD
MAP file, and on VSE retain the phasename.MAP file.

4. The only file required by ASMIDF for source level debugging is the ASMLANGX file; you may erase
both the LISTING and SYSADATA files, if desired.

The extraction file produced by ASMLANGX may be created on any MVS, CMS, or VSE system and then
be shipped to any of the others.

22 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



ASMIDF: Invocation

14  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Invocation options vs. dynamic options

− Almost all options may be changed dynamically

• Plan for storage utilization by applications and IDF

• Basic syntax for invoking IDF:

ASMIDF <module> (<ASMIDF options> / <module parameters and options>

− Example: debugging HLASM's CMS interface module:

ASMIDF ASMAHL ( AMODE31 NOPROF / TESTASM (SIZE(1M)

• IDF gains control on program checks, ABENDs, breakpoints, program
completion, break-in interrupts, etc.

• Trace dynamically-loaded modules with deferred breakpoints

DBREAK (loaded_module.csect_name)

• ISPF invocation: Under option 6, use TSOEXEC command

ASMIDF Invocation

While most option settings may be changed while ASMIDF is running, some may only be set on the
command line, for example, AMODE31.

Also note that some programs will consume all available storage, leaving none available for operation of
ASMIDF. There are two ways of dealing with this:

1. Load all required files before allowing the program to commence

2. Reduce the storage that the program will obtain.

The debugger always starts in control, and will set up the traps/intercepts that it needs before handing
over control to the user program. If the user program then sets up its own traps/intercepts, subsequent
actions depend on the underlying operating system.

ASMIDF initializes itself so that if any “interesting event” occurs within the target module, ASMIDF will
receive control. Such an event could be any one of the following:

• Program check
• ABEND
• Breakpoint reached (including Watchpoints)
• Program completion
• Break-in interrupt
• Module load (for deferred breakpoints)
• PER interrupt (CMS only)

Unless one of these events occurs, the target program executes without interference from ASMIDF and
generally without degradation (slightly dependent on PER options used in CMS).

If you are trying to follow execution through a routine that is “unknown” to IDF, it checks to see that the
PSW remains within the program's defined limits and will warn you if you're about to go outside those
bounds. The warning is just to let you know that IDF is about to lose control of the session; you can
choose to continue if you want. There are several ways around this “unknown routine” problem:

1. Ensure that IDF knows about all modules you'd like to trace. Using DBREAK will help, as IDF sets up
the appropriate control blocks itself (TRIGGER LOAD may also help).

2. You can tell IDF about any loaded modules via the SET MODULE command.

  23



SET MODULE name BASE address will tell IDF the start address
SET MODULE name SIZE llllll will tell IDF the length

3. SET TRACEALL ON will al low IDF to trace anywhere.

Under ISPF, it is recommended that you invoke ASMIDF via the TSOEXEC command: from option 6 under
ISPF, issue:

TSOEXEC ASMIDF IEFBR14

You may also invoke ASMIDF with the NOSVC97 option: from option 6 under ISPF, issue:

ASMIDF IEFBR14 (NOSVC97

but this requires certain limitations on the target program's behavior.

ASMIDF: Useful Options

15  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

PROFILE/NOPROFIL
IDF by default looks for PROFILE ASM (a REXX exec)

AMODE24/AMODE31/AMODE64
Sets initial AMODE of target program

AUTOSIZE/NOAUTOSZ
Controls automatic window resizing

PATH, FASTPATH
Counts number of instruction executions

LIBE Specifies library containing target application module

CMDLOG, RLOG
Create or append to or replay command log file

Useful ASMIDF Options

There are over 50 invocation options; most of their settings can be modified dynamically during
debugging by appropriate commands.

• PROFILE/NOPROFIL

By default, ASMIDF will run a REXX EXEC named PROFILE ASM during its initialization. This EXEC
may be used to customize the environment to your particular needs.

The PROFILE option allows you to specify a different filename while the NOPROFIL option disables
any profile invocation. No error messages are issued if the profile is not found.

Note: No profile is provided with the toolkit; however, a sample profile is illustrated in Figure 12 on
page 25.

• AMODE24/AMODE31/AMODE64

If your target program needs to be started in a particular addressing mode, then use one of these
options to set that mode.

• AUTOSIZE/NOAUTOSZ

By default, ASMIDF will AUTOSIZE the displayed windows as windows are opened and closed. You
may decide that you'd like to keep the screen layout consistent with particular windows in specific
places; in this case the NOAUTOSZ option stops ASMIDF re-sizing the windows.

24 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



• PATH, FASTPATH

This option provides the user with two new facilities:

1. ASMIDF will display the number of times that an instruction has been executed.

2. ASMIDF retains a history of the last 1023 instructions executed. This history may be accessed via
the HISTORY command.

There are some additional variations on PATH that may be useful: PATHFILE and FASTPATH.

• LIBE

This option will tell ASMIDF to load the target module from the specified library, rather than using the
default search order. This is useful on TSO if your test library is not in the default search order.

• CMDLOG and RLOG

These two options provide a record and playback facility.

CMDLOG will cause ASMIDF to log each command in a log file (on CMS, ASM CMDLOG fm; on TSO,
the dataset defined by the CMDLOG DD name; and on VSE, the dataset defined by the CMDLOGO
DLBL name).

If RLOG is specified, then once the PROFILE has completed and the target is ready for execution, all
the commands in the log file will be replayed.

Note: CMDLOG will append to an existing log file. This can cause unexpected results when the log
file is then used by RLOG.

/*-------------------------------------------------------------------*/
/* This is a sample PROFILE ASM. To try it, pick your favorite */
/* module and then issue: */
/* */
/* ASMIDF module (profile sampprof */
/*-------------------------------------------------------------------*/

 'SET PFK 2 Macro REGS' /* Define a new PF key - see User */
/* Guide p241 for REGS macro */

 'COLOR WRYG' /* Customize the colors */

 'SHOW SOURCE' /* Suppress disassembly display */

 'SET HEXDISP ON' /* Display all output in hex */

 'SET HEXINPUT ON' /* Numeric input default is hex */

 'SET MSG <<< This is ASMIDF profile SAMPPROF >>>'
 Exit

Figure 12. Sample profi le for ASMIDF

  25



ASMIDF: Debugger Windows

16  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Command Window (always displayed)

• Current Registers: General (32 or 64 bit), Access, Control, Float

− APFR for 16 Floating-Point registers

• Old Registers

• Break (breakpoints and watchpoints)

• Disassembly (multiple)

• Dump (multiple)

• Entry Point Names

• Language Support Module Information

• Minimized Window Viewer

• Options

• Skipped Subroutines

• Target Status

• ADSTOPS (CMS only: uses PER; supports REGSTOPS also)

ASMIDF: Debugger Windows

ASMIDF is cursor sensitive: if an argument is missing from a command then it will use the current cursor
position and attempt to derive the argument from that.

Some commands allow the user to specify which window the command should apply to. This is done by
adding an equal sign followed by the window number. For example, CLOSE =3 will close window number
3. (The window number is displayed as the first part of the title).

Opening and closing of windows is done by:

1. Issuing the appropriate command for that window. These commands act as toggles: if the specified
window is not open it will be opened; otherwise the specified window will be closed.

For example, the command REGS will cause the current register window to be displayed (provided
that the Current Registers window is not already open).

2. Issuing the OPEN command with the desired window type will open the window if possible (for
example, OPEN DUMP).

3. Issuing the CLOSE command against the window.

Most windows will only allow one window of that type to be displayed at a time. However, it is possible
to open multiple disassembly and dump windows at once. (The MINimize, MAXimize and ORDER
commands may be helpful in this situation to improve readability).

An example of a screen containing multiple windows is shown in Figure 13 on page 27.

A brief description of each window type follows. By default, the windows are positioned one after another
vertically, except that the AdStops, Break, and Skipped Subroutines windows are positioned at the right
edge of the screen.

• Command Window (always displayed)

The Command Window contains the command input area, the message display area, and the PF-key
settings (this portion may be customized).

• Current Registers (see window 01 in Figure 13)

The Current Registers Window displays the current PSW, General Purpose, and Floating Point
registers. The Control and Access registers can also be displayed. The contents of the PSW or
registers can be modified simply by overtyping.

26 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



 ┌01─Current Registers── ┌05─Break Points─────────────────────────────────────┐
 │ (TCAT) @PROLOG+44 │ w00057752 (TCAT) @DL00029 │
 │ R0 00009025 R1 0001 │ Condition: = c r3,=f'3' │
 │ R4 FEFEFEFE R5 FEFE │ 00057788 (TCAT) LOCRET │
 │ R8 FEFEFEFE R9 0005 └────────────────────────────────────────────────────┘
 │ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
 ┌02─Old Registers────────────────────────────────────────────────────────────┐
 │ (TCAT) @PROLOG+40 PSW 078D10008005771E (CC mask= 4 L) │
 │ 0005771E 9620 C0BA OI CTGOPTN3,32 │
 │ R0 00009025 R1 000120D4 R2 FEFEFEFE R3 FEFEFEFE FPR0 0000000000000000 │
 │ R4 FEFEFEFE R5 FEFEFEFE R6 FEFEFEFE R7 FEFEFEFE FPR2 0000000000000000 │
 │ R8 FEFEFEFE R9 000577BC R10 FEFEFEFE R11 FEFEFEFE FPR4 0000000000000000 │
 │ R12 800576E0 R13 00012130 R14 000145CC R15 800576E0 FPR6 0000000000000000 │
 ┌03─Disassembly──────────────────────────────────────────────────────────────┐
 │ (TCAT) @PROLOG+32 │
 │ 00057716 92C1 C0CA MVI CTGTYPE,193 │
 │ 0005771A 943F C0BA NI CTGOPTN3,63 │
 │ 0005771E 9620 C0BA OI CTGOPTN3,32 │
 │ 00057722 4190 07D8 LA R9,2008 │
 │ 00057726 5090 C108 ST R9,CATWRK │
 │ 0005772A 1F88 SLR R8,R8 │
 │ 0005772C 5080 C10C ST R8,CATWRKUS │
 │ 00057730 4190 C108 LA R9,CATWRK │
 │ 00057734 5090 C0C4 ST R9,CTGWKA │
 │ 00057738 4170 0002 LA R7,2 │
 ┌04─Storage Dump─────────────────────────────────────────────────────────────┐
 │ (TCAT) CTGOPTN3 │
 │ 0005779A 21 │ . │ │
 │ (TCAT) CTGOPTN4 │
 │ 0005779B 00 │ . │ │
 │ (TCAT) CTGENT │
 │ 0005779C 000577BC │ .... │ │
 │ (TCAT) CTGCAT │
 │ 000577A0 00000000 │ .... │ │
 │ (TCAT) CTGWKA │
 │ 000577A4 00000000 │ .... │ │
 │ (TCAT) CTGDSORG │
 └────────────────────────────────────────────────────────────────────────────┘

 ==> __________________________________________________________________________

 1 Stmtstep 2 Regs 3 Quit 4 Until 5 Run 6 Dump
 7 Previous 8 Next 9 Disasm 10 Break 11 Step 12 Retrieve

Figure 13. Example of Several Open IDF Windows on One Screen

If the REGS64 or GPRG commands are issued, the registers are displayed as 64-bit registers and the
PSW is displayed as a 128-bit field, as shown in Figure 14 on page 27.

 ┌01─Current Registers────────────────────────────────────────────────┐
 │ (TESTVAR) TESTVAR │
 │ EPSW FF00000000000000 000000000000ACC0 (CC mask=8 E) │
 │ R0 00000000 FEFE000F R8 00000000 FEFE080F FPR0 0000000000000000 │
 │ R1 00000000 0000D024 R9 00000000 FEFE090F FPR2 0000000000000000 │
 │ R2 00000000 FEFE020F R10 00000000 FEFE0A0F FPR4 0000000000000000 │
 │ R3 00000000 FEFE030F R11 00000000 FEFE0B0F FPR6 0000000000000000 │
 │ R4 00000000 FEFE040F R12 00000000 0000ACC0 │
 │ R5 00000000 FEFE050F R13 00000000 0000D058 │
 │ R6 00000000 FEFE060F R14 00000000 00090466 │
 │ R7 00000000 FEFE070F R15 00000000 0000ACC0 │
 └────────────────────────────────────────────────────────────────────┘
Figure 14. Current Registers Window, as opened with REGS64

• Additional Floating-Point Registers (AFPR)

Under TSO, if AFPR support is available on the processor, all sixteen floating-point registers and the
Floating-Point Control Register are displayed and may be updated by overtyping.

  27



• Old Registers (see window 02 in Figure 13)

The Old Registers Window shows the value of the PSW and the General and Floating Point registers
the last time IDF was in control. If your program is “single stepping”, the contents of this window are
the “before” values prior to executing the current instruction.

• Break (breakpoints and watchpoints) (see window 05 in Figure 13)

The Break Window lists active breakpoints and watchpoints, along with any commands associated
with them.

• Disassembly (multiple) (see window 03 in Figure 13)

The Disassembly Windows display storage contents as disassembled Assembler Language instruction
statements. Locations at which breakpoints or watchpoints have been set are highlighted.
Modifications can be made by overtyping the instruction.

• Dump (multiple) (see window 04 in Figure 13)

The Dump Windows display storage in dump format (both hexadecimal or character). Modifications
can be made by overtyping either portion of the display.

An example of a screen showing storage dumps of two modules is shown in Figure 15.

┌01─Storage─Dump─────────────────────────────────────────────────────────────┐
│ (ASMXDACP) ASMXDACP │
│ 0015FB18 47F0F0DE D3898385 95A28584 40D481A3 │ å00úLicensed Mat │ │
│ 0015FB28 85998981 93A24060 40D79996 978599A3 │ erials - Propert │ │
│ 0015FB38 A8409686 40C9C2D4 40C1E2D4 D3C1D5C7 │ y of IBM ASMLANG │ │
│ 0015FB48 E7404DC3 5D40C396 97A89989 8788A340 │ X (C) Copyright │ │
│ 0015FB58 C9C2D440 F1F9F9F5 4B40C193 9340D989 │ IBM 1995. All Ri │ │
│ 0015FB68 8788A3A2 40D985A2 8599A585 844B40E4 │ ghts Reserved. U │ │
│ 0015FB78 E240C796 A5859995 948595A3 40E4A285 │ S Government Use │ │
│ 0015FB88 99A240D9 85A2A399 8983A385 8440D989 │ rs Restricted Ri │ │
│ 0015FB98 8788A3A2 406040E4 A2856B40 84A49793 │ ghts - Use, dupl │ │
│ 0015FBA8 898381A3 89969540 96994084 89A28393 │ ication or discl │ │
│ 0015FBB8 96A2A499 85409985 A2A39989 83A38584 │ osure restricted │ │
│ 0015FBC8 4082A840 C7E2C140 C1C4D740 E2838885 │ by GSA ADP Sche │ │
│ 0015FBD8 84A49385 40C39695 A3998183 A340A689 │ dule Contract wi │ │
│ 0015FBE8 A38840C9 C2D440C3 9699974B 400007FE │ th IBM Corp. ..Ú │ │
│ (ASMXMAIN) ASMXMAIN │
│ 0015FBF8 47F0F016 10C1E2D4 E7D4C1C9 D54040F9 │ å00..ASMXMAIN 9 │ │
│ 0015FC08 F54BF2F9 F60090EC D00C18CF 41B0CFFF │ 5.296.°Ö}..õ.[õ. │ │
│ 0015FC18 47F0C028 00163FF8 5870C024 58007690 │ å0{....8ìø{.ì.Î° │ │
│ 0015FC28 181D1B10 5A00D000 47D0C040 00000002 │ ....!.}.å}{ .... │ │
│ 0015FC38 50001000 D20F1048 D04818FD 18D150FD │ &...K..ç}ç.Ù.J&. │ │
│ 0015FC48 000450D0 F00898F1 F010D203 D0581000 │ ..&}0.q10.K.}ì.. │ │
│ 0015FC58 5860D058 58806000 5080D100 58A0D050 │ ì-}ììØ-.&ØJ.ì•}& │ │
│ 0015FC68 4120D212 5020A160 D70C2000 20004190 │ ..K.&..-P......° │ │
│ 0015FC78 D2835090 A164D779 90009000 4130A110 │ Kc&° .ÀP.° . ° . . . . .  │ │
└────────────────────────────────────────────────────────────────────────────┘

Figure 15. Example of IDF DUMP Window

• Entry Point Names

This scrollable window displays the names of entry points in the section currently being debugged. If
the name is longer than 8 characters, up to 64 are displayed; an 8-character contraction of the name
is also shown.

┌03─Entry point name──────────────────────────────────────────────────More:+-─┐
│ Program TESTIDF Entry short name TESTIDF Address 00018EF8 │
│Long name TESTIDF │
└─────────────────────────────────────────────────────────────────────────────┘
Figure 16. Entry Point Names Window

28 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



• Language Support Module Information (multiple)

The Language Support Module (LSM) Window can be opened when language-extraction data is
available. It can display the values of symbolic variables, as well as the status of the available
information.

• Minimized Window Viewer

The MINIMIZE command can be used to temporarily minimize a window, to make more space
available on the screen for other windows. The Minimized Window shows the type and number of the
minimized windows.

• Options

The Options Window displays the current status of IDF options; some of the options can be modified
by overtyping their values.

• Skipped Subroutines

The Skipped Subroutines Window displays the addresses and names of subroutines for which
single-stepping, statement stepping, or instruction counting is being bypassed.

• Target Status

The Target Status Window displays information about all programs known to IDF.

• ADSTOPS (CMS only: uses PER; supports REGSTOPS also)

The AdStops Window displays the storage ranges to be checked for storage alteration events, and the
General Purpose Registers to be checked for register alteration events.

ASMIDF: Useful Debugger Commands

17  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• BREAK: Set a breakpoint, or display the Break Window
• DBREAK: Set a deferred (“sticky”) breakpoint
• DUMP: Display storage in symbolic or “dump” format
• FIND/LOCATE: Locate and display given strings in storage
• HISTORY: Display previously executed instructions
• WATCH: Specify a break-test condition at a “watchpoint”
• DISASM: Disassemble a specified area of storage
• STEP/STMTSTEP/RUN: Control instruction-execution rates
• FOLLOW: Dynamically track contents of a register or word in storage
• LANGUAGE LOAD: Load specified language-extraction files
• HIDE/SHOW: Control display detail of source and disassembly data
• UNTIL: Execute instructions up to a specified address
• ...nearly 190, in all!
• New, for 64-bit debugging: REGS64, GPRG, GPRH, EPNAMES

ASMIDF: Useful Debugger Commands

This list shows some of the commands available within ASMIDF. It is by no means comprehensive (there
are nearly 190 available commands); the complete list is provided in Chapter 2 of the IDF User's Guide.

You can enter instruction and data addresses symbolically if the Language Support Module (language
extraction) is available. This can greatly simplify debugging of “familiar” modules.

  29



Some useful commands are the following:

• BREAK

Set a breakpoint, or display the Break Window. At most 64 active breakpoints can be set. (In practice,
this is many more than normal applications will need.)

• DBREAK

Set a deferred (“sticky”) breakpoint: these can be used for debugging modules not yet loaded into
storage.

• DUMP

Display storage in symbolic or “dump” format, with overtyping modifications in hex or character
format.

• FIND/LOCATE

Locate and display given strings in storage, using a syntax like that of the ISPF editor FIND command
or of the XEDIT LOCATE command.

• HISTORY

Display previously executed instructions when the PATH or PATHFILE option has been specified. This
allows you to review the flow of execution that led to the current instruction.

• WATCH

Specifies a break-test comparison to be checked each time control passes the “watchpoint”; a break
occurs only if the condition is true.

• DISASM

This command requests disassembly of a designated area of storage.

• STEP/STMTSTEP/RUN

These three commands control instruction-execution rates: RUN executes until the next “event”
occurs; STEP executes an instruction at a time; and STMTSTEP executes all instructions associated
with a single source-language statement.

• FOLLOW

The FOLLOW command will cause a Dump Window to automatically track the value of a 4-byte area of
storage, or the contents of a register.

• LANGUAGE LOAD

Loads specified language-extraction files for general or module-specific use.

• HIDE/SHOW

These two commands control the amount of detail when source code and disassembled storage is
being displayed.

• UNTIL

Executes instructions up to (but not including) a specified address.

30 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



ASMIDF: Debugger Macros

18  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• REXX (interpreted or compiled)

− A very powerful extension mechanism

• Default address

• EXTRACT command (almost 90 different items available to macros)

• IMPMacro option for automatic macro search (ON by default)

• MRUN/MSTEP commands to control execution from macros

• PROFILE macro to customize your environment

• EXIT routine may gain control at specified events

ASMIDF: Debugger Macros

ASMIDF provides an extremely flexible and powerful macro facility that you may use to customize your
debugging environment. All the macros used by ASMIDF are written in REXX, but you may also write
them in “compiled REXX”. Some examples are provided in the IDF User's Guide.

ASMIDF provides many useful facilities to assist the macro writer. Some of these are:

• Default address. ASMIDF sets up a REXX environment that allows the user to direct commands to
ASMIDF for processing.

On CMS, there are some restrictions on the address; these are detailed in Chapter 15 of the User's
Guide.

• EXTRACT command. This allows the macro to obtain a great variety of information from ASMIDF
about the current environment (see the example below of the REGS macro). Nearly 90 different types
of debugger and target-program data are available.

• IMPMacro option. This option (which is set on by default) causes ASMIDF to search for a macro if the
entered command is not found in the ASMIDF command table.

• MRUN/MSTEP commands. These cause the target program to immediately resume execution until
the next event; control is then returned to the macro.

There are two special macros within ASMIDF; the PROFILE macro and the EXIT macro.

• The PROFILE macro is driven during ASMIDF initialization and may be used to completely customize
the user environment.

• EXIT is a special purpose routine which, if enabled via the EXITEXEC command, is given control at
various significant events. If the EXIT macro sets a return code of 1, then ASMIDF will NOT display
that event to the user and execution of the target will resume as normal. The EXIT routine (whose
name is set by the SET EXITEXEC command) may be written in a compiled or assembled language for
added convenience or performance, if you specify the CMPEXIT option.

Chapter 17 of the IDF User's Guide describes EXIT routines.

  31



ASMIDF: Debugger Macros, Example 1

19  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

/*==================================================================\
│ TRAP macro: uses DBREAK to load and break on the entry point of │
│ a loadable module │
│ PARAMETERS: name ─ module name │
│ symbol ─ external symbol to set break point on │
\==================================================================*/

arg name symbol .
if name == '' then exit 99
if symbol == '' then symbol = name
'DBREAK ('name'.'symbol')' /* Issue DBREAK at start of CSECT */
'MRUN' /* Program will run until DBREAK is matched */
'QUAL' name /* Change qualifier */
'LAN LOAD' symbol /* Load extraction file */
'BREAK' symbol /* Remove breakpoint at module start */
exit

ASMIDF: Debugger Macros, Example 1

The TRAP macro will set a deferred breakpoint for a module, and then allow the program to RUN until
that breakpoint is reached. At that breakpoint, it will change the qualifier for symbols to match the name
of the routine to be entered, and then will LANGUAGE LOAD the symbol-extraction file for that section.
Finally, it removes the (deferred) breakpoint, and returns control to the user.

ASMIDF: Debugger Macros, Example 2

20  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

/*REXX ────────────────────────────────────────────────────────────*/
/* REGS ─ Toggle the current registers window. */
/* */
/* When the REGS window is opened, it will be moved on the ASMIDF */
/* display so that it is the first window. */
/*─────────────────────────────────────────────────────────────────*/

 'REGS' /* Toggle REGS window */

 'Extract Cursor' /* Obtain window information */
 n = Find(display,'REGS') /* Is REGS window present? */
 If n ¬= 0 Then /* Yes? Force to be 1st window */

'ORDER ='n

 Exit

ASMIDF: Debugger Macros, Example 2

The REGS macro (taken from Chapter 16 of the IDF User's Guide) shows how the EXTRACT command
may be used to obtain information about the current debugging environment. It checks to see if the REGS
window is available, and if so puts it at the top of the display list using the ORDER command.

32 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



HLASM Toolkit Structured Programming Macros

21  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Macro sets can help eliminate test/branch instructions, simplify
program structures:

1. If-Then-Else, If-Then (IF/ELSE/ENDIF) (ELSEIF coming soon)

2. Do, Do-While, Do-Until (DO/ENDDO/DOEXIT) (ITERATE, LEAVE coming soon)

− supports forward/backward indexing, FROM-TO-BY values, etc.

3. Search (STRTSRCH/ORELSE/ENDLOOP/ENDSRCH/EXITIF)

− supports f lexible and powerful choices of loop controls and test condit ions

4. Case (CASENTRY/CASE/ENDCASE)

− provides rapid switching via N-way branch to specif ied cases

5. Select (SELECT/WHEN/OTHRWISE/ENDSEL)

− allows general choices among cases using sequential tests

• All macro sets may be (properly) nested in any order, to any level

• You can use the full instruction set (including the newest ops)

HLASM Toolkit Structured Programming Macros
The High Level Assembler Toolkit Feature Structured Programming Macros simplify the coding and
understanding of complex control flows, and help to minimize the likelihood of introducing errors when
coding test and branch instructions. The macros support the most widely used structured-programming
control structures and eliminate the need to code most explicit branches.

The Toolkit Feature Structured Programming Macros can be used to create the following structures:

• IF/ELSE/ENDIF

One-way or two-way branching, depending on simple or complex test conditions.

• DO/ENDDO and STRTSRCH/ORELSE/ENDLOOP/ENDSRCH

A rich and flexible set of looping structures with a variety of control and exit facilities.

• CASENTRY/CASE/ENDCASE

Fast N-way branching, based on an integer value in a register. Deciding which branch to take is
made at the CASENTRY macro; a direct branch to the selected CASE is then done, followed by an exit
at the ENDCASE macro.

There is no OTHRWISE facility within this macro set.

• SELECT/WHEN/OTHRWISE/ENDSEL

Sequential testing, based on sets of comparisons. These macros create a series of tests that are
evaluated in the order they are specified in the program. If a test is true, the WHEN section of code
for that test will be executed, followed by an exit at the ENDSEL macro.

If no test is satisfied, then the OTHRWISE section (if present) will be performed.

All the macro sets may be nested, and there are no internal limits to the depth of nesting. Tests made by
the various ENDxxx macros ensure that each structure's nesting closure is at the correct level, and
diagnostic messages (MNOTEs) are issued if they are not.

Note: The Structured Programming Macros do not currently generate relative branch instructions. If you
want to use such branches, consider the IEABRC copy file. (See the z/OS Assembler Services Reference
for details.)

  33



Structured Programming Macros: Why Use Them?

22  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

Many users report the following benefits:

• Improved code readabil ity and understandabil ity

• Faster application development

• Cleaner code

• Eliminating extraneous labels makes code easier to revise

• You can use the SP macros when and where appropriate

− Introduce the macros incrementally

• APAR PQ69812 adds extensive generalizations and improvements

Why Use the Structured Programming Macros?

Experience with Structured Programming Macros has shown many benefits, including

• Improved code readability and understandability

Since application understanding and maintenance has significant costs, the improvements provided
by the macros can reduce those costs.

• Faster application development

The macros simplify logic and need fewer statements to write, which can therefore speed your
development tasks.

• Cleaner and more readable code

The macros can help eliminate extraneous statements and statement labels that might clutter the
logic of a program, so the code is easier to write and read.

• Incremental use

You can use as few or as many of the macros as you like, and when you like; they can be introduced
incrementally into existing programs. Thus, you aren't forced to make major changes to your code to
start taking advantage of the macros' benefits.

34 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: Usage

23  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• All macros are contained in a single member, ASMMSP

− Use COPY ASMMSP statement to initialize

− Or specify PROFILE(ASMMSP) option

− Packaging dictated by IBM naming rules/conventions

• User macros have meaningful mnemonics

− Internal (non-user) macro names begin with ASMM

• GC26-8710, High Level Assembler Toolkit User's Guide

Structured Programming Macros: Usage

To use the macros, you must code COPY ASMMSP within the source. This will define all the macros as
inline macros. Once this has been done you can use all the macros described without any further
limitations. Alternatively, the High Level Assembler PROFILE(ASMMSP) option could be used to
automatically include the ASMMSP member into the source without requiring any source changes.

Due to IBM Corporate product-naming standards, all distributed part names must start with the product
prefix. In the case of these macros, this resulted in the creation of the ASMMSP member which contains
all the “high level” user macros such as IF, CASE, etc. All supplied members have a prefix of ASMM.

The “user” macros are grouped in the following five sets:

• IF/ELSE/ENDIF

• DO/DOEXIT/ENDDO

• STRTSRCH/EXITIF/ORELSE/ENDLOOP/ENDSRCH

• CASE/CASENTRY/ENDCASE

• SELECT/WHEN/OTHRWISE/ENDSEL

We will describe each of these sets in turn.

Note: The structured-programming macros generate base-displacement branch instructions, and
therefore assume a base register provides addressability. If you intend to use them in a context where
relative branch instructions are desired, you may need to provide local addressability for the macros.

  35



Structured Programming Macros: IF-THEN-ELSE Set

24  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

IF (x) THEN IF (x) THEN
Process Code A Process Code A

ENDIF ELSE
Process Code B

ENDIF

┌─────┐ ┌─────┐
┌──────�│ A ├────┐ ┌───────�│ A ├────┐
│true └─────┘ │ │true └─────┘ │

 ┌──┴──┐ 
 ┌──┴──┐ 

───�│if(x)├──────────────�• ───� ───�│if(x)│ • ───�
 └─────┘ false └──┬──┘ �

│false ┌─────┐ │
└───────�│ B ├────┘

└─────┘

• The THEN keyword is not syntactic; only a comment
• The (x) operand is usually a list of items

Structured Programming Macros: If-Then-Else

These “IF-THEN-ELSE” macros (IF/ELSE/ENDIF) provide for a one- or two-way branch depending on a
condition. You may select execution of one of two blocks of code depending on a true-false condition.

The one-way branch is illustrated in Figure 17:

┌─────┐
┌────�│ A ├────┐

IF (x) THEN │ └─────┘ │
Process Code A true│ │

ENDIF ┌──┴──┐ 

───�│if(x)├────────────�•───�

└─────┘ false

Figure 17. IF-THEN Control Structure

The two-way branch is illustrated in Figure 18:

┌─────┐
┌───────�│ A ├────┐
│true └─────┘ │

IF (x) THEN ┌──┴──┐ 

Process Code A ───�│if(x)│ •───�

ELSE └──┬──┘ �
Process Code B │false ┌─────┐ │

ENDIF └───────�│ B ├────┘
└─────┘

Figure 18. IF-THEN-ELSE Control Structure

36 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: Example 1

25  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Add absolute value of c(R4) to c(R5); don't change R4

• Unstructured:

LTR R4,R4 Set CC
BM LABEL1 Negative? Branch
AR R5,R4 Positive or zero ─ add to R5
B LABEL2 Skip the negative case

LABEL1 DS 0H
SR R5,R4 Subtract negative value

LABEL2 DS 0H

• Structured:

IF LTR,R4,R4,NM THEN Test R4 for non─negative
AR R5,R4 Positive or zero ─ add to R5

ELSE ,
SR R5,R4 Subtract negative value

ENDIF

• With new instructions:

IF (CHI,15,EQ,−3) Compare with Halfword─Immediate

Structured Programming Macros: Example 1

This assembler program segment shows how to test a variable and then execute one of two paths
depending on the value of the variable. The “problem” requires that we add the absolute value of the
contents of R4 to R5, without disturbing R4.

This IF/ELSE/ENDIF structure is first coded using basic assembler language and then using the toolkit
macros. The unstructured assembler language segment could appear as follows:

LTR R4,R4 Set CC
BM LABEL1 Negative? Branch
AR R5,R4 Positive or zero - add to R5
B LABEL2 Skip the negative case

LABEL1 DS 0H
SR R5,R4 Subtract negative value

LABEL2 DS 0H

The structured equivalent could be written as follows (remember that the THEN “keyword” is only a
comment; it is not part of the syntax of the IF/ELSE macros):

IF LTR,R4,R4,NM THEN Test R4 for non-negative
AR R5,R4 Positive or zero - add to R5

ELSE ,
SR R5,R4 Subtract negative value

ENDIF

and the results would be identical to the original (non-structured) statements:

IF LTR,R4,R4,NM THEN Test R4 for non-negative
+ LTR R4,R4
+ BC 15-11,#@LB1

AR R5,R4 Positive or zero - add to R5
ELSE ,

+ BC 15,#@LB3
+#@LB1 EQU *

SR R5,R4 Subtract negative value
ENDIF

+#@LB3 EQU *

  37



Structured Programming Macros: DO Set

26  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Do, Do-While, Do-Until predicates support mixtures of WHILE, UNTIL,
forward/backward indexing, FROM-TO-BY values, etc.

− DOEXIT macro uses IF-macro syntax to exit loops

− A very  rich and flexible set of facilities

• Simple flow diagrams for DO-WHILE and DO-UNTIL:

DO WHILE=(condition) DO UNTIL=(condition)
Process Code A Process Code A

ENDDO ENDDO

┌─────┐
┌────┤ A ├────┐
│ └─────┘ � ┌────────────────────┐
│ │true │ �false

 
 ┌───────────┴─┐ 
 ┌─────┐ ┌──────┴──────┐
──�• ──�│ condition ├──� ──�• ──┤ A ├───�│ condition ├──�

└─────────────┘false └─────┘ └─────────────┘true

Structured Programming Macros: Do, Do-While, Do-Until

These macros provide for executing a block of code repeatedly until some limit is reached or some
condition is satisfied (DO, DO-WHILE, DO-UNTIL macros). The conditions controlling the looping and the
termination condition may be specified in a rich set of combinations:

• with FROM,TO,BY specifications, or with infinite looping
• by counting
• with forward or backward indexing
• with explicit specification of BXH or BXLE
• DO-WHILE and DO-UNTIL (or mixed with any other DO type)
• DOEXIT macro uses IF-macro syntax to exit loops

We will illustrate only one of the possibilities here. The DO-WHILE and DO-UNTIL control structures are
illustrated in Figure 19 below:

DO WHILE=(condition) DO UNTIL=(condition)
Process Code A Process Code A

ENDDO ENDDO

┌─────┐
┌────┤ A ├────┐
│ └─────┘ � ┌────────────────────┐
│ │true │ �false

 
 ┌───────────┴─┐ 
 ┌─────┐ ┌──────┴──────┐
──�•──�│ condition ├──� ──�•──┤ A ├───�│ condition ├──�

└─────────────┘false └─────┘ └─────────────┘true

Figure 19. DO-WHILE and DO-UNTIL Control Structures

38 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: Example 2

27  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• Search a string for first blank character, or end of string

• Unstructured:

L R5,=A(Start─1) Address start─1 of expression
Top_of_Loop DS 0H

C R5,End Test for end of expression
BNL Leave_Loop and exit if we've reached end
LA R5,1(,R5) Move along one byte
CLI 0(R5),C' ' Test for a blank
BNE Top_of_Loop not yet, repeat loop

Leave_Loop DS 0H

• Structured:

L R5,=A(Start─1) Address start─1 of expression
DO WHILE=(C,R5,LT,End),UNTIL=(CLI,0(R5),EQ,C' ')

LA R5,1(,R5) Move along one byte
ENDDO

Structured Programming Macros: Example 2

This assembler program segment shows a simple loop that scans storage until either a blank is found or
the end-of-string address is reached.

This DO/ENDDO structure is first coded using basic assembler language and then using the toolkit
macros. The unstructured assembler language might appear as follows:

L R5,=A(Start-1) Address start-1 of expression
Top_of_Loop DS 0H

C R5,End Test for end of expression
BNL Leave_Loop and exit if we've reached end
LA R5,1(,R5) Move along one byte
CLI 0(R5),C' ' Test for a blank
BNE Top_of_Loop not yet, repeat loop

Leave_Loop DS 0H

The same example could be coded using the DO and ENDDO macros as follows:

L R5,=A(Start-1) Address start-1 of expression
DO WHILE=(C,R5,LT,End),UNTIL=(CLI,0(R5),EQ,C' ')
LA R5,1(,R5) Move along one byte

ENDDO

Note that in both examples the required COPY ASMMSP statement is not shown.

  39



Structured Programming Macros: SEARCH Set

28  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

STRTSRCH (any DO loop operands)
Process Code A

EXITIF (any IF type operands)
Process Code B

ORELSE
Process Code C

ENDLOOP
Process Code D

ENDSRCH

┌───────────────────────────────────────┐
│ ┌────┴────┐

 ┌───┐ ┌───────────┐ ┌───┐ │test for │ ┌───┐ ENDSRCH

 ────�• ─�│ A ├──�│EXITIF (x) ├──�│ C ├──�│end loop ├──�│ D ├──�• ───�
STRTSRCH └───┘ └─────┬─────┘ └───┘ │condition│ └───┘ �


 true ORELSE └─────────┘ │
┌─────┐ ENDLOOP │
│ B ├────────────────────────────────────┘
└─────┘

Structured Programming Macros: Search Set

These macros provide for executing a search loop with flexible controls over exit and iteration conditions
(SEARCH macros).

The control structure supported by the Search Set is shown in Figure 20 below:

STRTSRCH (any DO-loop operands)
Process Code A

EXITIF (any IF-type operands)
Process Code B

ORELSE
Process Code C

ENDLOOP
Process Code D

ENDSRCH

┌───────────────────────────────────────┐
│ ┌────┴────┐

 ┌───┐ ┌───────────┐ ┌───┐ │test for │ ┌───┐ ENDSRCH

────�•──│ A ├──�│EXITIF (x) ├──�│ C ├──�│end loop ├──�│ D ├──�•───�
STRTSRCH └───┘ └─────┬─────┘ └───┘ │condition│ └───┘ �


 true ORELSE └─────────┘ │
┌─────┐ ENDLOOP │
│ B ├────────────────────────────────────┘
└─────┘

Figure 20. SEARCH Control Structures

40 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: CASE Set

29  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

CASENTRY register │ Example: CASENTRY R1
CASE n1,n2,... │ CASE (1,2,3,5,7)

Process Code A │ MVI Flag,Prime
CASE n3,n4,... │ CASE (4,6,8)

Process Code B │ MVI Flag,NotPrime
─ ─ ─ ─ │
ENDCASE │ ENDCASE

n1,n2.. ┌─────┐
┌────────�│ A ├──────┐
│ └─────┘ │
│n3,n4.. ┌─────┐ │
├────────�│ B ├──────┤

 ┌───────┐ │ └─────┘ 

───�│case(x)├───�│ : : • ────�
 └───────┘ │ : : �

│ ┌─────┐ │
└────────�│ K ├──────┘

└─────┘

Structured Programming Macros: Case Set

These macros provide for executing a block of code selected from a set, based on an integer value
contained in a general register. The integer value may also be a power of two, as specified by the
optional POWER= keyword.

The selected case is branched to directly, using one of two selection mechanisms depending on whether
the branching should use a “vector” of addressable branch instructions (VECTOR=B) or a table of address
constants (VECTOR=BR).

The CASE control structure is illustrated in Figure 21 below:

CASENTRY register CASENTRY R1
CASE n1,n2,... CASE (1,2,3,5,7)
Process Code A MVI Flag,Prime

CASE n3,n4,... CASE (4,6,8)
Process Code B MVI Flag,NotPrime

• • •

ENDCASE ENDCASE

n1,n2.. ┌─────┐
┌────────�│ A ├──────┐
│ └─────┘ │
│n3,n4.. ┌─────┐ │
├────────�│ B ├──────┤

 ┌───────┐ │ └─────┘ 

───�│case(x)├───�│ : : •────�
 └───────┘ │ : : �

│ ┌─────┐ │
└────────�│ K ├──────┘

└─────┘

Figure 21. CASE Control Structures

A simple example of the CASE macros is the following:

  41



CasEntry R1
Case (1,2,3,5,7)

MVI Flag,Prime
Case (4,6,8)

MVI Flag,NotPrime
EndCase
- - -

Flag DC X'0'
Prime Equ X'80'
NotPrime Equ X'40'

Figure 22. CASE Example

Structured Programming Macros: SELECT Set

30  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

 ┌──────────────────┐ ┌──────────────┐ true ┌────┐
──�│SELECT(comparison)├──�│WHEN(values─1)├─────�│ S1 ├──�┐
 └──────────────────┘ └──────┬───────┘ └────┘ │


false │
: :

┌──────┴───────┐ true ┌────┐ │
│WHEN(values─n)├─────�│ Sn ├──�│
└──────┬───────┘ └────┘ │


false │
┌──────────────┐ ┌────┐ 
 ┌──────┐
│ OTHRWISE ├─────�│code├──�• ──�│ENDSEL│
└──────────────┘ └────┘ └──────┘

┌──────┐ ┌──────────────────┐ true ┌────┐
──�│SELECT├──�│WHEN(comparison─1)├─────�│ S1 ├──�┐

└──────┘ └──────┬───────────┘ └────┘ │

false │
: :

┌──────┴───────────┐ true ┌────┐ │
│WHEN(comparison─n)├─────�│ Sn ├──�│
└──────┬───────────┘ └────┘ │


false │
┌───────────────┐ ┌────┐ 
 ┌──────┐
│ OTHRWISE ├───────�│code├──�• ──�│ENDSEL│
└───────────────┘ └────┘ └──────┘

Structured Programming Macros: SELECT Set ...

31  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

SELECT (comparison) Compare instruction & condition
WHEN (list─of─values─1) Values for this comparison

<statements─1> Statements for these cases
WHEN (list─of─values─2) Values for this comparison

<statements─2> Statements for these cases
• • •

WHEN (list─of─values─n) Values for last comparison
<statements─n> Statements for these cases

OTHRWISE
<statements> Executed if no matching WHEN

ENDSEL
────────────────────────────────────────────────────────────────
Example: SELECT C,R1,Eq

WHEN (=F'1',=F'2',=F'3',=F'5',=F'7')
MVI Flag,Prime

WHEN (=F'4',=F'6',=F'8')
MVI Flag,NotPrime

OTHRWISE
MVI Flag,Unknown

ENDSEL

42 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: Select Set

These macros provide for executing a block of code selected from a set of blocks, based on a varied
choice of comparisons.

While they are structurally similar to the CASE set, their behavior is quite different. Each WHEN clause is
tested in the order specified until a “true” condition is found, when the corresponding block of
statements will be executed; the optional OTHRWISE block is executed if no WHEN clause is true. The
structure of one form of the Select Set is illustrated below:

SELECT (comparison) Compare instruction & condition
WHEN (list-of-values-1) Values for this comparison

<statements-1> Statements for these cases
WHEN (list-of-values-2) Values for this comparison

<statements-2> Statements for these cases
• • •

WHEN (list-of-values-n) Values for last comparison
<statements-n> Statements for these cases

OTHRWISE
<statements> Statements executed if no matching WHEN

ENDSEL

 ┌──────────────────┐ ┌──────────────┐ true ┌────┐
──�│SELECT(comparison)├──�│WHEN(values─1)├─────�│ S1 ├──�┐
 └──────────────────┘ └──────┬───────┘ └────┘ │


false │
┌──────────────┐ true ┌────┐ │
│WHEN(values─2)├─────�│ S2 ├──�┤
└──────┬───────┘ └────┘ │


false :
: :

┌──────┴───────┐ true ┌────┐ │
│WHEN(values─n)├─────�│ Sn ├──�┤
└──────┬───────┘ └────┘ │


false │
┌──────────────┐ ┌────┐ 
 ┌──────┐
│ OTHRWISE ├─────�│code├──�•──�│ENDSEL├──�
└──────────────┘ └────┘ └──────┘

Figure 23. SELECT Control Structures

A simple example of the SELECT macros is the following:

  43



Select C,R1,Eq
When (=F'1',=F'2',=F'3',=F'5',=F'7')

MVI Flag,Prime
When (=F'4',=F'6',=F'8')

MVI Flag,NotPrime
Othrwise

MVI Flag,Unknown
EndSel
- - -

Flag DC X'0'
Prime Equ X'80'
NotPrime Equ X'40'
Unknown Equ X'01'

Figure 24. SELECT Example

Structured Programming Macros: Example 3

32  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• An elaborate example is provided in the text

− Il lustrates all of the macros, and all their options

− Nested in various combinations

Source See Appendix A, “Sample structured macro program”

Listing See Appendix B, “Listing of sample program”

Structured Programming Macros: Extended Example

An extensive sample program is provided in Appendix A, “Sample structured macro program” on
page 56. It shows the use of more complicated structures and the nesting of macros. (Note that no
macros from the SELECT set are illustrated.)

The assembly listing is provided in Appendix B, “Listing of sample program” on page 59. The listing
was created by the following (CMS) commands:

1. Access the High Level Assembler Toolkit disk

2. GLOBAL MACLIB ASMSMAC

3. ASMAHL SAMPLE (PROFILE(ASMMSP),NOESD,NORLD,NOXREF,NOMXREF,NOUSING

The expansion of the macros is shown in the listing; if this expansion is not desired then you may use
the PC(NOGEN) option to suppress the generated lines.

44 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Structured Programming Macros: Notes

33  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• To generate relative branches, code ASMMREL

− Base register not required for generated code!

• Continuation statements

− Be very careful about continuations! (Run with FLAG(CONT) option)

• Boolean expressions partially optimized

− Evaluated only as far as necessary to determine result

− Can sometimes be simplified: NOT (A AND B) = ((NOT A) OR (NOT B))

• Limitation to at most 50 operands on any one macro

− Parentheses in operands are optional, but helpful

• Some macro operand “keys” not safely usable as program symbols:

P, M, O, Z, H, L, E, NP, NM, NO, NZ, NH, NL, NE,
GT, LE, EQ, LT, GE, AND, OR, ANDIF, ORIF

Structured Programming Macros: Notes

The Structured Programming Macros can now generate either based or relative branch instructions. To
obtain the latter, just code the ASMMREL macro.

Some minor points are worth remembering:

• Be very careful to place any continued operands in the correct column. The normal assembler rules
apply (along with any changes that the ICTL statement may have introduced). The assembly-time
option FLAG(CONT) can help determine where the rules have not been followed.

• Not only are the instructions generated by the macros nearly optimal, the macros do not need to
evaluate all the terms in a Boolean expression before branching. In the following statement:

IF (LTR,R5,R5,P),AND,(LTR,R6,R7,P)

the second load and test (LTR) instruction will not be executed if the first LTR sets a negative or zero
condition code, as the macros “know” that the expression must return false after only the first part
has been evaluated.

A small reminder about Boolean logic: you can sometime simplify the operands of a test by rewriting
expressions:

NOT (A AND B) is equivalent to ((NOT A) OR (NOT B))

• Most of the original limitations of these macros have been removed. (They were caused by previous
assemblers having fixed array sizes; in HLASM, arrays are dynamic in nature and will grow as
required.) One limitation remains: Boolean expressions are limited to fifty (50) operands. This count
includes any operators such as AND, OR, etc.

• The use of parentheses in Boolean expressions is optional, but may assist with the understanding of
the logic.

• Some “keys” required for correct operand parsing should not be used as ordinary program symbols:
P, M, O, Z, H, L, E, NP, NM, NO, NZ, NH, NL, NE, GT, LE, EQ, LT, GE, AND, OR, ANDIF, ORIF.

• Because the macros do not generate relative branch instructions, a base register is required for the
generated code.

  45



HLASM Toolkit Feature File Comparison Utility

34  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• File Comparison Util ity (“Enhanced SuperC”)

− A powerful and general fi le comparison and search util ity for individual fi les,
or mult iple l ibraries

− Batch mode on MVS and VSE; panel or command line on CMS

• Compares entire files, or individual lines, words, or bytes

− File types include load modules, VSAM ESDS+KSDS

− Include and exclude selected data types, lines, columns, rows, etc.

• Search facility supports multiple search strings, in specified columns

− Search strings may be words, prefixes, or suffixes

− Multiple strings may be forced to match only on single lines

• Date-management support includes

− Fixed or sliding windows

− Multiple date formats and representations

− Automatic “aging” of specified date fields

• Recent enhancements (APAR 66218): 31-bit support, FINDALL option

HLASM Toolkit Feature File Comparison Utility
The High Level Assembler Toolkit Feature File Comparison Utility, also known as Enhanced SuperC, is a
versatile program that can be used to compare two sets of data (using the Comparison Facility) or to
search a specific set of data for a nominated search string (using the Search Facility).

Enhanced SuperC executes in batch mode on MVS and VSE, and on VM via a CMS panel or command
line interface. You can compare sequential files, or select multiple or all members of libraries. You can
also compare VSAM files on MVS and VSE.

Enhanced SuperC's Comparison Facility requires only the names of the two items to be compared. The
Search Facility requires only the name of the item to be searched and the search string to be used. You
can tailor the comparison or search according to your requirements, using process statements and
process options.

With the Comparison Facility, you can:

• compare single files, or multiple files in one or more libraries

• specify the “level” of comparison (file, line, word or byte)

• exclude certain data from the comparison, such as specific sets of rows or columns, or records (such
as page headings) containing specified character strings.

• restrict the comparison to certain types of data

• control the type of listing output produced

• specify that an update file be produced

• compare two files that have been reformatted (reformatted files contain such differences as
indentation level changes, spaces inserted or deleted)

• detect word changes within documents

• stop immediately when a difference is detected.

46 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Enhanced SuperC's Search Facility lets you specify:

• one or more search strings

• if multiple search strings are sought, whether they are independent of each other or if they must be
present on the same line of the member/file being searched

• if the search string is a word, a prefix, or a suffix

• the position in the line of a search string

• the number of lines to be listed which appear before and after the line where the search string was
found.

Enhanced SuperC is also a valuable tool for managing post-Y2K date comparisons (such as for
“windowing” of two-digit years). It supports:

• many different date formats (particularly in regard to 2-digit and 4-digit year representations)

• a fixed “window” where date comparisons will take place within fixed year boundaries

• a sliding “window” where the year range is based on the current year

• the ability to compare files where the fields have different formats, such as one file having 4-digit year
values and the other having 2-digit year values

• comparing year data where a year value is compressed in one file and uncompressed in the other

• the ability to successfully compare data, reports, forms, screens, and panels where data has moved
within a line due to adding century digits to 2-digit years.

Complex date comparisons may be performed on dates in many formats, while including or excluding
specified sets of rows (lines) and/or columns. (The description in the manual section titled “Year 2000
Date Definitions” is very generally useful, despite its title!)

The year Date Aging option “ages” all of the defined dates in either the new or old file: a specified
number of years is added to the “year” portion of each designated date in the file before they are
compared.1

Date Definition statements define the location and format of date fields in the input file. Dates may be
described in a wide variety of formats, including allowing “separator” characters (such as : or /).
Internal representations supported include character, zoned decimal, packed decimal, and unsigned
packed decimal (hex).

The Y2PAST option uses a fixed or sliding window to specify a 100-year period for determining the
century-part of a date when only a 2-digit year appears in the data.

1 Aging dates and comparing them is not always straightforward, due to leap years. See Appendix A (“Other
Matters to Consider Before You Test”) in the Redbook VisualAge 2000 Test Solution: Testing Your Year 2000
Conversion , SG24-2230-01.

  47



HLASM Toolkit Feature Usage Scenarios

35  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

1. Recovery from object/load modules (if original source is lost)

• Disassembler in i t ia l ly produces “raw” Assembler source from “binary”
• Control statements define code, data, USINGs, labels, DSECTs, etc.
• Repeat disassembly/analysis/description/assembly cycle unti l  satisf ied

2. Analysis and understanding of Assembler Language source programs

a. ASMXREF cross-reference token scanner

• Locates important symbols, user-selected “tokens”
• Creates “ impact-analysis” spreadsheet-input f i le for effort estimation

b. ASMPUT Program Understanding tool

• Graphic displays of program structure, control f low, with any level of detail
• Can be used to help  reconstruct (lost) source in HLLs!

3. Modification, testing, and validation of updated programs

• Interactive Debug Facility speeds and simplif ies program testing
• Structured Programming Macros clarify program coding logic
• File Comparison Utility tracks before/after status of source, outputs

HLASM Toolkit Feature Usage Scenarios
We will describe how you might use the High Level Assembler Toolkit Feature for typical program
recovery, development, analysis, conversion, and maintenance tasks. These three scenarios show how
the challenges of such tasks can be completed with greater speed and simplicity using the Toolkit
Feature.

The Toolkit Feature components will be described in three scenarios:

• recovery and reconstruction of symbolic Assembler Language source code
• analysis and understanding of complex Assembler Language programs
• modification, testing, and validation of applications.

┌────────────┐ ┌────────────┐ ┌─────────────────────────┐
│ Recovery ├───────�│ Analysis ├───────�│ Modification, Testing, │
│ Phase │ │ Phase │ │ and Validation Phase │
└────────────┘ └────────────┘ └─────────────────────────┘

Figure 25. Typical Scenarios for Toolkit Feature Usage

1. Recovery and reconstruction of Assembler Language source statements from object/load modules for
which the original source is lost. The Disassembler initially produces non-symbolic Assembler
Language source from object code. You can add control statements iteratively to help define code,
data, USINGs, labels, and DSECTs symbolically.

2. Analysis and understanding of Assembler Language source programs can benefit from three Toolkit
components: the Cross-Reference Facility, the Program Understanding Tool, and the Interactive
Debug Facility.

a. The Cross-Reference Facility source analyzer and token scanner can be used to locate important
symbols, user-selected tokens, macro calls, inter-module references, and other helpful data.
ASMXREF can also create an “impact-analysis” file for input to a spreadsheet application for effort
estimation and impact assessment. Another ASMXREF output is a tagged Assembler Language
source file: when assembled with the ADATA option, this file produces a SYSADATA file for you to
use with the Program Understanding Tool.

b. The Program Understanding Tool provides graphic displays of program structure, control flow, a
simplified listing, and other views with any desired level of detail. With the ADATA file created

48 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



from the tagged source produced by ASMXREF, key areas of the program can be rapidly located
and analyzed.

c. The Interactive Debug Facility is by design a “program understanding” tool that lets you monitor
the behavior of programs at every level of detail. Data flows may be monitored and traced among
registers and storage, even showing the operations of individual instructions!

This scenario is sometimes called the “Discovery” phase of application development, when
program understanding and impact analysis are key activities.

Note that the combination of Disassembler, Cross-Reference Facility, and Program Understanding
Tool can be used to help reconstruct lost source in compiled High Level Languages.

3. Modification and testing of updated programs is simplified by using the powerful Interactive Debug
Facility. At the same time, program logic can be simplified by replacing complex test/branch logic
with the Structured Programming Macros. These activities are typical of the “Development” phase of
application development.

Validation: At each stage where the application has been changed, you will probably want to
compare its “pre-modification” output to its “post-modification” output, retaining the output files
(sometimes called “base logs”) for subsequent validation tests. The File Comparison Utility Enhanced
SuperC is designed specifically for such tasks. Validation, in the form of extensive testing, is the final
important milestone on the road to application “Deployment”.

HLASM Toolkit Feature: Recovery and Reconstruction

36  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

┌───────────┐ ┌──────────────┐ ┌───────────┐ Recovered
│Lost source│ │ │ │ Assembler │ Assembler
│(object or ├──┬─�│ Disassembler ├──�│ Language ├─�─┬──� Language
│executable)│ │ │ │ │ Source │ │ Source Code
└───────────┘ │ └──────────────┘ └───────────┘ │

� 

│ ┌────────────────────┐ ┌────┴────┐
│ │ Inspect assembly, │ │ │
└─�──┤ create appropriate │�─────┤ HLASM │

│ control statements │ │ │
└────────────────────┘ └─────────┘

• Start with object code (object files or executables)

• Disassemble and inspect; create control statements to describe the
program more ful ly

• Repeat this cycle as more of the program is understood

• Readable source is used as input to later phases

Recovery and Reconstruction

During the Recovery and Reconstruction phase, you will typically begin with a program in object or
executable format (except CMS MODULEs). Using the Disassembler and by providing suitable control
statements, you can create an Assembler Language source program with as much structure and
symbolic labeling as you like.

  49



┌───────────┐ ┌──────────────┐ ┌───────────┐ Recovered
│Lost source│ │ │ │ Assembler │ Assembler
│(object or ├──┬─�│ Disassembler ├──�│ Language ├─�─┬──� Language
│executable)│ │ │ │ │ Source │ │ Source Code
└───────────┘ │ └──────────────┘ └───────────┘ │

� 

│ ┌────────────────────┐ ┌────┴────┐
│ │ Inspect assembly, │ │ │
└─�──┤ create appropriate │�─────┤ HLASM │

│ control statements │ │ │
└────────────────────┘ └─────────┘

Figure 26. Toolkit Feature: Recovery and Reconstruction Scenario

The disassembly/analysis/description/assembly cycle may be repeated until satisfactory Assembler
Language source code is obtained.

The initial steps do not require reassembly of the generated Assembler Language source, as appropriate
control statements are usually easy to determine from the Disassembler's listing. As the recovered
program approaches its final form, you should assemble it with HLASM to ensure the validity of your new
source program.

HLASM Toolkit Feature: Analysis and Understanding

37  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

┌────────────────┐
│ control stmts, │
│ token lists │
└───────┬────────┘

┌───────────┐ 

│ Assembler │ ┌────┴────┐ ┌──────────┐ ┌────────┐ List of
│ Language ├──┬─�│ ASMXREF ├──�│ ASMPUT ├──�│ ASMIDF ├──�Desired
│ Source │ │ └────┬────┘ └────┬─────┘ └───┬────┘ Changes
└───────────┘ │ 
 � �

│ Tagged ├─────────────┘
│ Source ADATA
│ │ �

 
 ┌────┴─────┐
└─�─────┴───────�│ HLASM │

└──────────┘

• ASMXREF scans assembler source programs, identifies key items

− Create “tagged” source f i le identi fying important “tokens”

• Assemble; ASMPUT uses ADATA to analyze control flows

• Use IDF to trace data flows in detail

Analysis and Understanding

The most complex aspect of application maintenance and migration is analyzing and understanding the
code. There are three components of Toolkit Feature that can help:

• ASMXREF can locate all uses of a variable name or any character string. A tagged Assembler
Language source program may also be produced.

• ASMPUT provides graphical views of control flows within and among programs and modules.

• The Interactive Debug Facility helps you monitor and track the behavior of individual instructions and
data items.

50 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



┌────────────────┐
│ control stmts, │
│ token lists │
└───────┬────────┘

┌───────────┐ 

│ Assembler │ ┌────┴────┐ ┌──────────┐ ┌────────┐ List of
│ Language ├──┬─�│ ASMXREF ├──�│ ASMPUT ├──�│ ASMIDF ├──�Desired
│ Source │ │ └────┬────┘ └────┬─────┘ └───┬────┘ Changes
└───────────┘ │ 
 � �

│ Tagged ├─────────────┘
│ Source ADATA
│ │ �

 
 ┌────┴─────┐
└─�─────┴───────�│ HLASM │

└──────────┘

Figure 27. Toolkit Feature: Analysis and Understanding Scenario

While each of these components has valuable capabilities, using them in combination can provide great
synergy in analyzing and understanding program behavior.

HLASM Toolkit Feature: Modification and Testing

38  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

┌─────────────────┐
│ Structured Pro─ │
│ gramming Macros │
└────────┬────────┘

┌───────────┐ 
 ┌───────────┐
│ Assembler │ ┌──────┴──────┐ ┌───────┐ ┌────────┐ │Completed, │
│ Language ├─�┬─�│ Source Mods ├──�│ HLASM ├──�│ ASMIDF ├─�┬─�│Revised │
│ Source │ │ └─────────────┘ └───┬───┘ └────┬───┘ │ │Application│
└─────┬─────┘ │ 
 � │ └─────┬─────┘

│ � └──�ADATA───�┘ 
 │
│ │ │ │
│ └�───── modify/assemble/test cycle �─────────┘ │
│ │
│ ┌──────────────────────────────────┐ │
└────────────�│ File Comparison Utility (SuperC) │�────────────┘

└──────────────────────────────────┘

• Modify Assembler Language source at desired points

• Assemble and execute the program, test with IDF

• Make indicated modifications until result is satisfactory

• Compare original and updated source files to validate changes

Modification and Testing

After you have used the Toolkit's disassembler, ASMXREF, and ASMPUT components to determine the
needed modifications, the Structured Programming Macros can be added to simplify the coding and logic
of the program.

The Enhanced SuperC comparison utility can then be used to compare the original and updated source
files to validate the placement and coverage extent of all modifications.

You can then test the updated code using the rich and flexible features of the Interactive Debug Facility.
After each assembly/debug cycle, you can further modify the source code, repeating the process until the
completed application is accepted for installation in a production library.

  51



┌─────────────────┐
│ Structured Pro─ │
│ gramming Macros │
└────────┬────────┘

┌───────────┐ 
 ┌───────────┐
│ Assembler │ ┌──────┴──────┐ ┌───────┐ ┌────────┐ │Completed, │
│ Language ├─�┬─�│ Source Mods ├──�│ HLASM ├──�│ ASMIDF ├─�┬─�│Revised │
│ Source │ │ └─────────────┘ └───┬───┘ └────┬───┘ │ │Application│
└─────┬─────┘ │ 
 � │ └─────┬─────┘

│ � └──�ADATA───�┘ 
 │
│ │ │ │
│ └�───── modify/assemble/test cycle �─────────┘ │
│ │
│ ┌──────────────────────────────────┐ │
└────────────�│ File Comparison Utility (SuperC) │�────────────┘

└──────────────────────────────────┘

Figure 28. Toolkit Feature: Modification and Testing Scenario

HLASM Toolkit Feature: Validation

39  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

 �── Present Date ───� �─── Future Date ────�
┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐
│Old Data│ │Old Data│ │Old Data│ │New Data│
└───┬────┘ └───┬────┘ └───┬────┘ └───┬────┘


 
 
 

┌───┴────┐ ┌───┴────┐ ┌───┴────┐ ┌───┴────┐
│Original│ │Updated │ │Updated │ │Updated │
│Applicn.│ │Applicn.│ │Applicn.│ │Applicn.│
└───┬────┘ └───┬────┘ └───┬────┘ └───┬────┘


 
 
 

┌───┴────┐ ┌───┴────┐ ┌───┴────┐ ┌───┴────┐
│BaseLog1│ │BaseLog2│ │BaseLog3│ │BaseLog4│
└───┬────┘ └───┬────┘ └───┬────┘ └───┬────┘

│ │ │ │

 ┌──────┐ 
 ┌───────┐ 
 ┌───────┐ 

└─�│SuperC│�──┴───�│SuperC │�──┴─�│SuperC │�─┘

└──────┘ │w/Aging│ │w/Aging│
└───────┘ └───────┘

• Create “base logs” with original and updated application, current and
“future” dates, and old and modified data

• Compare results at each stage using “Aging” facilit ies as needed

Validation

After some set of modifications has been made to the application, you will probably need to validate its
operation. Typical steps in such a process include the following:

1. Run the original unmodified program with a representative set of “old data”, and with the current
date set to some manageable “current” date prior to the selected starting date.

2. Run the modified program with the same set of “old data” and the same current date. (There are
many techniques available for setting chosen “current” dates on a system.)

3. Use Enhanced SuperC to compare the outputs to ensure that no regressions have been introduced
into the existing function of the application. If some date fields have been expanded (such as in report
headings), use the date-format facilities of Enhanced SuperC to specify how they should be expanded
and compared.

4. Run the modified program with the same “old data” and a new current date.

52 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



5. Use Enhanced SuperC to compare these new outputs with the previous two, using Enhanced SuperC's
“aging” facilities to ensure correct current-date-dependent behavior.

6. Run the modified program with “new data” and the same new current date.

7. Use Enhanced SuperC to compare the outputs, using “aging” facilities to validate data-dependent
behavior.

While not a complete support plan, the above steps are typical of date-sensitive and date-windowing
migration and maintenance activities. At each stage, the File Comparison Utility can provide powerful
insights into the extent and correctness of code modifications.

HLASM Toolkit Feature: Scenario Summary

40  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

• The Toolkit Feature's components support all phases of Assembler
Language development, maintenance, and migration:

┌───────────┐ ┌───────────────┐ ┌─────────┐ ┌─────────┐
│Lost source│ ┌─────�│Enhanced SuperC│�──────┐ │ SP macs │ │Test Data│
│(obj,load) │ │ └───────────────┘ │ └────┬────┘ └──┬─┬─┬──┘
└─────┬─────┘ � � 
 
 
 

┌─────
──────┐ │ ┌──────┐ ┌──────┐ │ ┌───┴───┐ ┌─────┐ Updated
│Disassembler├──�Source──�│ XRef ├──�│P.U.t.├──�Updated─�│ HLASM ├─�│ IDF │─� Applic'n
└───┬───┬────┘ Code └──┬───┘ └───┬──┘ Source └───┬───┘ └┬─┬──┘ 
 
 


� 
 
 
 � � 
 � │ ┌──┴─┴─┴──┐
┌─┴───┴─┐ │ ┌──┴──┐ │ │ └─ADATA─┘ 
 │Base Logs│
│ HLASM │ └────�│HLASM├──ADATA─┘ │ │ └──┬─┬─┬──┘
└───────┘ └─────┘ └── modifications ──┘ 
 
 


┌─────────┐
│ SuperC │
└─────────┘

�──Recovery──� �─── Analysis ────� �───── Modify/Test/Validation ─────�
Phase Phase Phase

These scenarios illustrate how the High Level Assembler Toolkit Feature provides a varied and powerful
set of tools supporting all aspects of application development, maintenance, enhancement, and testing.
The following figure summarizes these capabilities:

┌───────────┐ ┌───────────────┐ ┌─────────┐ ┌─────────┐
│Lost source│ ┌─────�│Enhanced SuperC│�──────┐ │ SP macs │ │Test Data│
│(obj,load) │ │ └───────────────┘ │ └────┬────┘ └──┬─┬─┬──┘
└─────┬─────┘ � � 
 
 
 

┌─────
──────┐ │ ┌──────┐ ┌──────┐ │ ┌───┴───┐ ┌─────┐ Updated
│Disassembler├──�Source──�│ XRef ├──�│P.U.t.├──�Updated─�│ HLASM ├─�│ IDF │─� Applic'n
└───┬───┬────┘ Code └──┬───┘ └───┬──┘ Source └───┬───┘ └┬─┬──┘ 
 
 


� 
 
 
 � � 
 � │ ┌──┴─┴─┴──┐
┌─┴───┴─┐ │ ┌──┴──┐ │ │ └─ADATA─┘ 
 │Base Logs│
│ HLASM │ └────�│HLASM├──ADATA─┘ │ │ └──┬─┬─┬──┘
└───────┘ └─────┘ └── modifications ──┘ 
 
 


┌─────────┐
│ SuperC │
└─────────┘

�──Recovery──� �─── Analysis ────� �───── Modify/Test/Validation ─────�
Phase Phase Phase

Figure 29. Toolkit Feature: Summary of Usage Scenarios

  53



HLASM Toolkit Feature: Full-Spectrum Application Support

41  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature

Activity Toolkit Feature Components

Inventory, assessment Disassembler helps recover programs

Locating key fields Cross-Reference Facility pinpoints fields, localizes
references

Application
understanding

Program Understanding Tool provides insights into
program structures and control f lows;

Interactive Debug Facility monitors instruction and
data flows at any level of detail

Decide on fixes ...

Implement changes Structured Programming Macros clarify source code;
Enhanced SuperC helps validate source changes

Unit test Interactive Debug Facility provides powerful
debugging and tracing capabilit ies

Debug Interactive Debug Facility debugs complete
applications, including loaded modules

Validation Enhanced SuperC checks regressions, validates
correctness of updates

HLASM Toolkit Feature: Full-Spectrum Application Support
A typical process for managing the full spectrum of application recovery, development, debugging, and
maintenance activities includes several steps. Figure 30 shows the Toolkit Feature tools useful in each
step.

Figure 30. Toolkit Feature Components and Full-Spectrum Application Support

Activity Toolkit Feature Components

Inventory and assessment The Disassembler can help recover programs previously
unretrievable or unmodifiable.

Locating fields and their uses The Cross-Reference Facility pinpoints fields and localizes
references to them.

Application understanding The Program Understanding Tool provides powerful insights into
program structures and control flows. The Interactive Debug
Facility monitors instruction and data flows at any level of detail.

Decide on fixes and methods

Implement changes The Structured Programming Macros clarify source coding by
reducing the need for coding branches and tests, replacing them
with readable structures. Enhanced SuperC helps verify that source
changes are complete.

Unit test The Interactive Debug Facility provides powerful debugging and
tracing capabilities for verifying the correctness of changes.

Debug The Interactive Debug Facility helps debug complete applications,
including dynamically loaded modules.

Validation Enhanced SuperC checks regressions, validates correctness of
updates

54 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



HLASM Toolkit: Summary

42  IBM Corporation 1995, 2003. All  r ights reserved.HLASM Toolk i t  Feature
Fmt. 29 Jan 03, 1339Rev. Rev. 28 Jan 03 1720

• HLASM Toolkit Feature provides a powerful, flexible toolset:

1. Disassembler

2. Cross-Reference Facility

3. Program Understanding Tool

4. Interactive Debug Facility

5. Structured Programming Macros

6. File Comparison Util ity (Enhanced SuperC)

• Supports almost all development and maintenance tasks

− On OS/390, MVS/ESA, VM/ESA, and VSE/ESA

• HLASM web site: demos of ASMPUT, ASMIDF (basic and advanced);
30-day free trial version of ASMPUT

Summary
As the preceding examples have shown, the High Level Assembler Toolkit Feature provides a flexible,
comprehensive, and powerful set of tools that support many of your application development and
maintenance tasks.

  55



Appendix A. Sample structured macro program

SAMPLE CSECT
BALR R12,0
USING *,R12
IF AR,R2,R3,NZ,OR, X

(CLI,WORD1,EQ,X'C1'),ORIF, X
H,AND, X
CLM,R2,M1,LT,DEC(BASEREG)

LA R3,X'01'
DO WHILE=(7),UNTIL=(ICM,R2,M1,D2(B2),NZ)
DOEXIT M
LA R3,X'02'

DOEXIT (CLCL,R2,NL,R4),ANDIF, X
ICM,R2,M1,D2(B2),Z,OR, X
LTR,R2,R3,M,ORIF, X
10,AND, X
(CR,R2,NM,R3)

LA R3,X'03'
STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P
EXITIF Z,AND, X
LTR,R2,R3,O,ORIF, X
(CLC,DEC(L,B),EQ,=C'WORD'),AND, X
NP
LA R3,X'04'

ORELSE
LA R3,X'05'

EXITIF CC=5
LA R3,X'06'

ENDLOOP
LA R3,X'07'

ENDSRCH
DOEXIT CC=10
ENDDO
LA R3,X'08'

IF (5),ORIF, X
(CR,R2,NE,R3),ANDIF, X
P,AND, X
(ICM,R2,M1,D2(B2),O),ORIF, X
CL,R2,LT,D2(B2),OR, X
(LTR,R2,R3,Z)

LA R3,X'09'
ELSE
LA R3,X'0A'

ENDIF
ENDIF

*
IF AR,R2,R3,Z,OR, X

CR,R3,EQ,R4,AND, X
AR,R2,R4,NZ,OR, X
CR,R2,NE,R3

LA R3,X'10'
ENDIF

56 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



*
IF AR,R2,R3,Z,AND, X

CR,R3,EQ,R4,OR, X
AR,R2,R4,NZ,AND, X
CR,R2,NE,R3

LA R3,X'11'
ENDIF

*
IF AR,R2,R3,Z,ORIF, X

CR,R3,EQ,R4,ANDIF, X
AR,R2,R4,NZ,ORIF, X
CR,R2,NE,R3

LA R3,X'12'
ENDIF

*
IF AR,R2,R3,Z,ANDIF, X

CR,R3,EQ,R4,ORIF, X
AR,R2,R4,NZ,ANDIF, X
CR,R2,NE,R3

LA R3,X'13'
ENDIF

*
DO INF
LA R5,X'00'

DOEXIT (O)
LA R5,X'05'
DO FROM=(R3,10),TO=(R4,-1)
LA R5,X'0A'

DOEXIT (CR,R3,E,R5)
LA R5,X'0F'
DO WHILE=(NR,R2,R4,Z)
LA R5,X'10'

DOEXIT (NZ)
LA R5,X'15'

ENDDO
LA R5,X'1A'

ENDDO
LA R5,X'1F'

ENDDO
*

CASENTRY R4,POWER=3
CASE (16,32)
LA R4,X'03'
CASENTRY R4,VECTOR=BR
LA R2,X'10'

CASE 1,3,4
LA R3,X'20'

CASE 5
LA R3,X'30'

ENDCASE
CASENTRY R4,POWER=1,VECTOR=B
CASE 4
LA R3,X'40'

CASE (2)
LA R3,X'50'

ENDCASE

Appendix A. Sample structured macro program 57



CASE 24
CASENTRY R4,POWER=0
CASE 1
SELECT C,R2,GE
WHEN (=F'100')
LA R0,3

WHEN (=F'1000')
LA R0,4

WHEN (=F'10000')
LA R0,5

OTHRWISE
LA R0,10

ENDSEL
LA R3,X'60'

CASE 2
LA R3,X'70'

ENDCASE
ENDCASE

*
SELECT CLC,WORD1,EQ
WHEN (=C'+',=C'-')
LA R0,1

WHEN (=C'*',=C'/')
LA R0,2

OTHRWISE
SR R0,R0
CASENTRY R4,POWER=2
CASE 8
LA R3,X'80'

ENDCASE
ENDSEL

*
WORD1 DC CL1'A'
B EQU 4
BASEREG EQU 5
B2 EQU 6
DEC EQU 16
D2 EQU 32
L EQU 64
LENGTH EQU 4
M1 EQU 6
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R12 EQU 12

END SAMPLE

58 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



Appendix B. Listing of sample program

High Level Assembler Option Summary (PTF UQ72178) Page 1
HLASM R4.0 2003/01/29 12.02

No Overriding ASMAOPT Parameters
Overriding Parameters- Profile(ASMMSP),LineCount(0),List(121)
Process Statements- NoESD,NoRLD,NoXref,NoRXref,NoMXref,NoUsing,PControl(NoUHead)

Options for this Assembly
NOADATA
ALIGN
ASA
BATCH
CODEPAGE(047C)

NOCOMPAT
NODBCS
NODECK
DXREF

5 NOESD
NOEXIT
FLAG(0,ALIGN,CONT,NOEXLITW,NOIMPLEN,PAGE0,PUSH,RECORD,SUBSTR,USING0)

NOFOLD
NOGOFF
NOINFO
LANGUAGE(EN)

NOLIBMAC
3 LINECOUNT(0)
3 LIST(121)
5 NOMXREF

OBJECT
OPTABLE(UNI,NOLIST)

5 PCONTROL(NOUHEAD)
NOPESTOP

3 PROFILE(ASMMSP)
NORA2
NORENT

5 NORLD
5 NORXREF

SIZE(MAX,ABOVE)
SYSPARM()
TERM(NARROW)

NOTEST
NOTHREAD
NOTRANSLATE

5 NOUSING
5 NOXREF

No Overriding DD Names
Page 2

 Loc Object Code Addr1 Addr2 Stmt Source Statement HLASM R4.0 2003/01/29 12.02
1 *PROCESS NoESD,NoRLD,NoXref,NoRXref,NoMXref,NoUsing,PControl(NoUHead)
2 COPY ASMMSP Generated for PROFILE option

1356 * PRINT OFF,NOPRINT
1357 * COPY ASMMSP
1358 * PRINT ON,NOPRINT

000000 00000 002EE 1359 SAMPLE CSECT
000000 05C0 1360 BALR R12,0

R:C 00002 1361 USING *,R12
1362 IF AR,R2,R3,NZ,OR, X

(CLI,WORD1,EQ,X'C1'),ORIF, X
H,AND, X
CLM,R2,M1,LT,DEC(BASEREG)

000002 1A23 1382+ AR R2,R3 03-ASMMP
000004 4770 C01A 0001C 1383+ BC 7,#@LB2 03-ASMMP
000008 95C1 C2D2 002D4 1384+ CLI WORD1,X'C1' 03-ASMMP
00000C 4780 C01A 0001C 1385+ BC 8,#@LB2 03-ASMMP
000010 47D0 C0CC 000CE 1386+ BC 15-2,#@LB1 03-ASMMP
000014 BD26 5010 00010 1387+ CLM R2,M1,DEC(BASEREG) 03-ASMMP
000018 47B0 C0CC 000CE 1388+ BC 15-4,#@LB1 02-ASMMI

Appendix B. Listing of sample program 59



00001C 1389+#@LB2 DC 0H 02-ASMMI
00001C 4130 0001 00001 1390 LA R3,X'01'

1391 DO WHILE=(7),UNTIL=(ICM,R2,M1,D2(B2),NZ)
000020 1397+#@LB4 DC 0H 02-ASMMD
000020 4780 C098 0009A 1405+ BC 15-7,#@LB3 04-ASMMP

1415 DOEXIT M
000024 4740 C098 0009A 1422+ BC 4,#@LB3 02-ASMMI
000028 4130 0002 00002 1423 LA R3,X'02'

1424 DOEXIT (CLCL,R2,NL,R4),ANDIF, X
ICM,R2,M1,D2(B2),Z,OR, X
LTR,R2,R3,M,ORIF, X
10,AND, X
(CR,R2,NM,R3)

00002C 0F24 1449+ CLCL R2,R4 03-ASMMP
00002E 4740 C03E 00040 1450+ BC 15-11,#@LB12 03-ASMMP
000032 BF26 6020 00020 1451+ ICM R2,M1,D2(B2) 03-ASMMP
000036 4780 C098 0009A 1452+ BC 8,#@LB3 03-ASMMP
00003A 1223 1453+ LTR R2,R3 03-ASMMP
00003C 4740 C098 0009A 1454+ BC 4,#@LB3 03-ASMMP
000040 1455+#@LB12 DC 0H 03-ASMMP
000040 4750 C048 0004A 1456+ BC 15-10,#@LB14 03-ASMMP
000044 1923 1457+ CR R2,R3 03-ASMMP
000046 47B0 C098 0009A 1458+ BC 11,#@LB3 02-ASMMI
00004A 1459+#@LB14 DC 0H 02-ASMMI
00004A 4130 0003 00003 1460 LA R3,X'03'

1461 STRTSRCH WHILE=(CLM,R2,M1,GE,D2(B2)),UNTIL=P
00004E 1468+#@LB17 DC 0H 02-ASMMD
00004E BD26 6020 00020 1477+ CLM R2,M1,D2(B2) 04-ASMMP
000052 4740 C088 0008A 1478+ BC 15-11,#@LB16 04-ASMMP

1488 EXITIF Z,AND, X
LTR,R2,R3,O,ORIF, X
(CLC,DEC(L,B),EQ,=C'WORD'),AND, X
NP

000056 4770 C05E 00060 1508+ BC 15-8,#@LB23 03-ASMMP
00005A 1223 1509+ LTR R2,R3 03-ASMMP
00005C 4710 C06C 0006E 1510+ BC 1,#@LB24 03-ASMMP
000060 1511+#@LB23 DC 0H 03-ASMMP
000060 D53F 4010 C2D6 00010 002D8 1512+ CLC DEC(L,B),=C'WORD' 03-ASMMP
000066 4770 C074 00076 1513+ BC 15-8,#@LB25 03-ASMMP
00006A 4720 C074 00076 1514+ BC 15-13,#@LB25 02-ASMMI
00006E 1515+#@LB24 DC 0H 02-ASMMI
00006E 4130 0004 00004 1516 LA R3,X'04'

1517 ORELSE
000072 47F0 C08C 0008E 1520+ BC 15,#@LB15 01-00874
000076 1521+#@LB25 DS 0H 01-00875
000076 4130 0005 00005 1522 LA R3,X'05'

1523 EXITIF CC=5
00007A 47A0 C084 00086 1528+ BC 15-5,#@LB26 02-ASMMI
00007E 4130 0006 00006 1529 LA R3,X'06'

1530 ENDLOOP
000082 47F0 C08C 0008E 1532+ BC 15,#@LB15 01-00628
000086 1533+#@LB26 DS 0H 01-00629
000086 1535+#@LB20 DC 0H 02-ASMMP
000086 47D0 C04C 0004E 1536+ BC 15-2,#@LB17 02-ASMMP
00008A 1537+#@LB16 DC 0H 02-ASMMP
00008A 4130 0007 00007 1538 LA R3,X'07'

1539 ENDSRCH
00008E 1542+#@LB15 DS 0H 01-00758

1543 DOEXIT CC=10
00008E 47A0 C098 0009A 1548+ BC 10,#@LB3 02-ASMMI

1549 ENDDO
000092 1552+#@LB7 DC 0H 02-ASMMP
000092 BF26 6020 00020 1553+ ICM R2,M1,D2(B2) 02-ASMMP
000096 4780 C01E 00020 1554+ BC 15-7,#@LB4 02-ASMMP
00009A 1555+#@LB3 DC 0H 02-ASMMP
00009A 4130 0008 00008 1557 LA R3,X'08'

1558 IF (5),ORIF, X
(CR,R2,NE,R3),ANDIF, X
P,AND, X
(ICM,R2,M1,D2(B2),O),ORIF, X
CL,R2,LT,D2(0,B2),OR, X
(LTR,R2,R3,Z)

00009E 4750 C0A6 000A8 1589+ BC 5,#@LB31 03-ASMMP
0000A2 1923 1590+ CR R2,R3 03-ASMMP

60 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



0000A4 4780 C0B2 000B4 1591+ BC 15-7,#@LB30 03-ASMMP
0000A8 1592+#@LB31 DC 0H 03-ASMMP
0000A8 47D0 C0B2 000B4 1593+ BC 15-2,#@LB30 03-ASMMP
0000AC BF26 6020 00020 1594+ ICM R2,M1,D2(B2) 03-ASMMP
0000B0 4710 C0C0 000C2 1595+ BC 1,#@LB32 03-ASMMP
0000B4 1596+#@LB30 DC 0H 03-ASMMP
0000B4 5520 6020 00020 1597+ CL R2,D2(0,B2) 03-ASMMP
0000B8 4740 C0C0 000C2 1598+ BC 4,#@LB32 03-ASMMP
0000BC 1223 1599+ LTR R2,R3 03-ASMMP
0000BE 4770 C0C8 000CA 1600+ BC 15-8,#@LB33 02-ASMMI
0000C2 1601+#@LB32 DC 0H 02-ASMMI
0000C2 4130 0009 00009 1602 LA R3,X'09'

1603 ELSE
0000C6 47F0 C0CC 000CE 1606+ BC 15,#@LB34 01-00348
0000CA 1607+#@LB33 DS 0H 01-00350
0000CA 4130 000A 0000A 1608 LA R3,X'0A'

1609 ENDIF
0000CE 1612+#@LB34 DS 0H 01-00569

1613 ENDIF
0000CE 1616+#@LB1 DS 0H 01-00569

1617 *
1618 IF AR,R2,R3,Z,OR, X

CR,R3,EQ,R4,AND, X
AR,R2,R4,NZ,OR, X
CR,R2,NE,R3

0000CE 1A23 1639+ AR R2,R3 03-ASMMP
0000D0 4780 C0E4 000E6 1640+ BC 8,#@LB36 03-ASMMP
0000D4 1934 1641+ CR R3,R4 03-ASMMP
0000D6 4770 C0E8 000EA 1642+ BC 15-8,#@LB35 03-ASMMP
0000DA 1A24 1643+ AR R2,R4 03-ASMMP
0000DC 4770 C0E4 000E6 1644+ BC 7,#@LB36 03-ASMMP
0000E0 1923 1645+ CR R2,R3 03-ASMMP
0000E2 4780 C0E8 000EA 1646+ BC 15-7,#@LB35 02-ASMMI
0000E6 1647+#@LB36 DC 0H 02-ASMMI
0000E6 4130 0010 00010 1648 LA R3,X'10'

1649 ENDIF
0000EA 1652+#@LB35 DS 0H 01-00569

1653 *
1654 IF AR,R2,R3,Z,AND, X

CR,R3,EQ,R4,OR, X
AR,R2,R4,NZ,AND, X
CR,R2,NE,R3

0000EA 1A23 1675+ AR R2,R3 03-ASMMP
0000EC 4770 C104 00106 1676+ BC 15-8,#@LB37 03-ASMMP
0000F0 1934 1677+ CR R3,R4 03-ASMMP
0000F2 4780 C100 00102 1678+ BC 8,#@LB38 03-ASMMP
0000F6 1A24 1679+ AR R2,R4 03-ASMMP
0000F8 4780 C104 00106 1680+ BC 15-7,#@LB37 03-ASMMP
0000FC 1923 1681+ CR R2,R3 03-ASMMP
0000FE 4780 C104 00106 1682+ BC 15-7,#@LB37 02-ASMMI
000102 1683+#@LB38 DC 0H 02-ASMMI
000102 4130 0011 00011 1684 LA R3,X'11'

1685 ENDIF
000106 1688+#@LB37 DS 0H 01-00569

1689 *
1690 IF AR,R2,R3,Z,ORIF, X

CR,R3,EQ,R4,ANDIF, X
AR,R2,R4,NZ,ORIF, X
CR,R2,NE,R3

000106 1A23 1715+ AR R2,R3 03-ASMMP
000108 4780 C110 00112 1716+ BC 8,#@LB40 03-ASMMP
00010C 1934 1717+ CR R3,R4 03-ASMMP
00010E 4770 C116 00118 1718+ BC 15-8,#@LB39 03-ASMMP
000112 1719+#@LB40 DC 0H 03-ASMMP
000112 1A24 1720+ AR R2,R4 03-ASMMP
000114 4770 C11C 0011E 1721+ BC 7,#@LB41 03-ASMMP
000118 1722+#@LB39 DC 0H 03-ASMMP
000118 1923 1723+ CR R2,R3 03-ASMMP
00011A 4780 C120 00122 1724+ BC 15-7,#@LB42 02-ASMMI
00011E 1725+#@LB41 DC 0H 02-ASMMI
00011E 4130 0012 00012 1726 LA R3,X'12'

1727 ENDIF
000122 1730+#@LB42 DS 0H 01-00569

1731 *

Appendix B. Listing of sample program 61



1732 IF AR,R2,R3,Z,ANDIF, X
CR,R3,EQ,R4,ORIF, X
AR,R2,R4,NZ,ANDIF, X
CR,R2,NE,R3

000122 1A23 1757+ AR R2,R3 03-ASMMP
000124 4770 C12C 0012E 1758+ BC 15-8,#@LB43 03-ASMMP
000128 1934 1759+ CR R3,R4 03-ASMMP
00012A 4780 C132 00134 1760+ BC 8,#@LB44 03-ASMMP
00012E 1761+#@LB43 DC 0H 03-ASMMP
00012E 1A24 1762+ AR R2,R4 03-ASMMP
000130 4780 C13C 0013E 1763+ BC 15-7,#@LB45 03-ASMMP
000134 1764+#@LB44 DC 0H 03-ASMMP
000134 1923 1765+ CR R2,R3 03-ASMMP
000136 4780 C13C 0013E 1766+ BC 15-7,#@LB45 02-ASMMI
00013A 4130 0013 00013 1767 LA R3,X'13'

1768 ENDIF
00013E 1771+#@LB45 DS 0H 01-00569

1772 *
1773 DO INF

00013E 1779+#@LB48 DC 0H 02-ASMMD
00013E 4150 0000 00000 1781 LA R5,X'00'

1782 DOEXIT (O)
000142 4710 C184 00186 1789+ BC 1,#@LB47 02-ASMMI
000146 4150 0005 00005 1790 LA R5,X'05'

1791 DO FROM=(R3,10),TO=(R4,-1)
00014A 4130 000A 0000A 1797+ LA R3,10 02-ASMMD
00014E 4840 C2E6 002E8 1798+ LH R4,=H'-1' 02-ASMMD
000152 1799+#@LB52 DC 0H 02-ASMMD
000152 4150 000A 0000A 1803 LA R5,X'0A'

1804 DOEXIT (CR,R3,E,R5)
000156 1935 1812+ CR R3,R5 03-ASMMP
000158 4780 C17C 0017E 1813+ BC 8,#@LB51 02-ASMMI
00015C 4150 000F 0000F 1814 LA R5,X'0F'

1815 DO WHILE=(NR,R2,R4,Z)
000160 47F0 C16E 00170 1821+ BC 15,#@LB57 02-ASMMD
000164 1823+#@LB58 DC 0H 02-ASMMD
000164 4150 0010 00010 1832 LA R5,X'10'

1833 DOEXIT (NZ)
000168 4770 C174 00176 1840+ BC 7,#@LB56 02-ASMMI
00016C 4150 0015 00015 1841 LA R5,X'15'

1842 ENDDO
000170 1845+#@LB57 DC 0H 02-ASMMP
000170 1424 1846+ NR R2,R4 02-ASMMP
000172 4780 C162 00164 1847+ BC 8,#@LB58 02-ASMMP
000176 1848+#@LB56 DC 0H 02-ASMMP
000176 4150 001A 0001A 1850 LA R5,X'1A'

1851 ENDDO
00017A 1854+#@LB53 DC 0H 02-ASMMP
00017A 8734 C150 00152 1855+ BXLE R3,R4,#@LB52 02-ASMMP
00017E 1856+#@LB51 DC 0H 02-ASMMP
00017E 4150 001F 0001F 1858 LA R5,X'1F'

1859 ENDDO
000182 47F0 C13C 0013E 1862+ BC 15,#@LB48 02-ASMMP
000186 1863+#@LB47 DC 0H 02-ASMMP

1865 *
1866 CASENTRY R4,POWER=3

000186 8A40 0001 00001 1870+ SRA R4,3-2 01-00190
00018A 5A40 C192 00194 1872+ A R4,#@LB65 01-00203
00018E 5840 4000 00000 1873+ L R4,0(,R4) 01-00204
000192 07F4 1874+ BCR 15,R4 01-00205
000194 00000260 1875+#@LB65 DC A(#@LB63) 01-00206

1876 CASE (16,32)
000198 1879+#@LB66 DS 0H 01-00115
000198 4140 0003 00003 1880 LA R4,X'03'

1881 CASENTRY R4,VECTOR=BR
00019C 8B40 0002 00002 1885+ SLA R4,2-0 01-00188
0001A0 47F4 C1B2 001B4 1886+ BC 15,#@LB67(R4) 01-00219
0001A4 4120 0010 00010 1887 LA R2,X'10'

1888 CASE 1,3,4
0001A8 1891+#@LB69 DS 0H 01-00115
0001A8 4130 0020 00020 1892 LA R3,X'20'

1893 CASE 5
0001AC 47F0 C1CA 001CC 1896+ BC 15,#@LB68 01-00113

62 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



0001B0 1897+#@LB70 DS 0H 01-00115
0001B0 4130 0030 00030 1898 LA R3,X'30'

1899 ENDCASE
0001B4 47F0 C1CA 001CC 1901+#@LB67 BC 15,#@LB68 01-00415
0001B8 47F0 C1A6 001A8 1902+ BC 15,#@LB69 01-00430
0001BC 47F0 C1CA 001CC 1903+ BC 15,#@LB68 01-00440
0001C0 47F0 C1A6 001A8 1904+ BC 15,#@LB69 01-00430
0001C4 47F0 C1A6 001A8 1905+ BC 15,#@LB69 01-00430
0001C8 47F0 C1AE 001B0 1906+ BC 15,#@LB70 01-00430
0001CC 1907+#@LB68 DS 0H 01-00445

1909 CASENTRY R4,POWER=1,VECTOR=B
0001CC 8B40 0001 00001 1913+ SLA R4,2-1 01-00188
0001D0 47F4 C1DE 001E0 1914+ BC 15,#@LB71(R4) 01-00219

1915 CASE 4
0001D4 1918+#@LB73 DS 0H 01-00115
0001D4 4130 0040 00040 1919 LA R3,X'40'

1920 CASE (2)
0001D8 47F0 C1EA 001EC 1923+ BC 15,#@LB72 01-00113
0001DC 1924+#@LB74 DS 0H 01-00115
0001DC 4130 0050 00050 1925 LA R3,X'50'

1926 ENDCASE
0001E0 47F0 C1EA 001EC 1928+#@LB71 BC 15,#@LB72 01-00415
0001E4 47F0 C1DA 001DC 1929+ BC 15,#@LB74 01-00430
0001E8 47F0 C1D2 001D4 1930+ BC 15,#@LB73 01-00430
0001EC 1931+#@LB72 DS 0H 01-00445

1933 CASE 24
0001EC 5840 C25E 00260 1936+ L R4,#@LB63 01-00110
0001F0 07F4 1937+ BCR 15,R4 01-00111
0001F2 1938+#@LB75 DS 0H 01-00115

1939 CASENTRY R4,POWER=0
0001F2 8B40 0002 00002 1943+ SLA R4,2-0 01-00188
0001F6 5A40 C1FE 00200 1945+ A R4,#@LB78 01-00203
0001FA 5840 4000 00000 1946+ L R4,0(,R4) 01-00204
0001FE 07F4 1947+ BCR 15,R4 01-00205
000200 0000024C 1948+#@LB78 DC A(#@LB76) 01-00206

1949 CASE 1
000204 1952+#@LB79 DS 0H 01-00115

1953 SELECT C,R2,GE
1957 WHEN (=F'100')

000204 5920 C2DA 002DC 1961+ C R2,=F'100' 01-01130
000208 4740 C212 00214 1962+ BC 15-11,#@LB81 01-01138
00020C 4100 0003 00003 1963 LA R0,3

1964 WHEN (=F'1000')
000210 47F0 C236 00238 1966+ BC 15,#@LB80 SKIP TO END 01-01106
000214 1967+#@LB81 DS 0H 01-01109
000214 5920 C2DE 002E0 1970+ C R2,=F'1000' 01-01130
000218 4740 C222 00224 1971+ BC 15-11,#@LB83 01-01138
00021C 4100 0004 00004 1972 LA R0,4

1973 WHEN (=F'10000')
000220 47F0 C236 00238 1975+ BC 15,#@LB80 SKIP TO END 01-01106
000224 1976+#@LB83 DS 0H 01-01109
000224 5920 C2E2 002E4 1979+ C R2,=F'10000' 01-01130
000228 4740 C232 00234 1980+ BC 15-11,#@LB85 01-01138
00022C 4100 0005 00005 1981 LA R0,5

1982 OTHRWISE
000230 47F0 C236 00238 1984+ BC 15,#@LB80 SKIP TO END 01-00937
000234 1985+#@LB85 DS 0H 01-00940
000234 4100 000A 0000A 1986 LA R0,10

1987 ENDSEL
000238 1989+#@LB80 DS 0H 01-00702
000238 4130 0060 00060 1991 LA R3,X'60'

1992 CASE 2
00023C 5840 C24A 0024C 1995+ L R4,#@LB76 01-00110
000240 07F4 1996+ BCR 15,R4 01-00111
000242 1997+#@LB87 DS 0H 01-00115
000242 4130 0070 00070 1998 LA R3,X'70'

1999 ENDCASE
000246 5840 C24A 0024C 2001+ L R4,#@LB76 01-00410
00024A 07F4 2002+ BCR 15,R4 01-00411
00024C 00000258 2003+#@LB76 DC A(#@LB77) 01-00412
000250 00000204 2004+ DC A(#@LB79) 01-00428
000254 00000242 2005+ DC A(#@LB87) 01-00428
000258 2006+#@LB77 DS 0H 01-00445

Appendix B. Listing of sample program 63



2008 ENDCASE
000258 5840 C25E 00260 2010+ L R4,#@LB63 01-00410
00025C 07F4 2011+ BCR 15,R4 01-00411
00025E 0000 +
000260 00000274 2012+#@LB63 DC A(#@LB64) 01-00412
000264 00000274 2013+ DC A(#@LB64) 01-00425
000268 00000198 2014+ DC A(#@LB66) 01-00428
00026C 000001F2 2015+ DC A(#@LB75) 01-00428
000270 00000198 2016+ DC A(#@LB66) 01-00428
000274 2017+#@LB64 DS 0H 01-00445

2019 *
2020 SELECT CLC,WORD1,EQ
2024 WHEN (=C'+',=C'-')

000274 D500 C2D2 C2E8 002D4 002EA 2028+ CLC WORD1,=C'+' 01-01130
00027A 4780 C286 00288 2029+ BC 8,#@LB90 01-01134
00027E D500 C2D2 C2E9 002D4 002EB 2030+ CLC WORD1,=C'-' 01-01130
000284 4770 C28E 00290 2031+ BC 15-8,#@LB89 01-01138
000288 2032+#@LB90 DS 0H 01-01141
000288 4100 0001 00001 2033 LA R0,1

2034 WHEN (=C'*',=C'/')
00028C 47F0 C2D2 002D4 2036+ BC 15,#@LB88 SKIP TO END 01-01106
000290 2037+#@LB89 DS 0H 01-01109
000290 D500 C2D2 C2EA 002D4 002EC 2040+ CLC WORD1,=C'*' 01-01130
000296 4780 C2A2 002A4 2041+ BC 8,#@LB92 01-01134
00029A D500 C2D2 C2EB 002D4 002ED 2042+ CLC WORD1,=C'/' 01-01130
0002A0 4770 C2AA 002AC 2043+ BC 15-8,#@LB91 01-01138
0002A4 2044+#@LB92 DS 0H 01-01141
0002A4 4100 0002 00002 2045 LA R0,2

2046 OTHRWISE
0002A8 47F0 C2D2 002D4 2048+ BC 15,#@LB88 SKIP TO END 01-00937
0002AC 2049+#@LB91 DS 0H 01-00940
0002AC 1B00 2050 SR R0,R0

2051 CASENTRY R4,POWER=2
0002AE 5A40 C2B6 002B8 2056+ A R4,#@LB95 01-00203
0002B2 5840 4000 00000 2057+ L R4,0(,R4) 01-00204
0002B6 07F4 2058+ BCR 15,R4 01-00205
0002B8 000002C8 2059+#@LB95 DC A(#@LB93) 01-00206

2060 CASE 8
0002BC 2063+#@LB96 DS 0H 01-00115
0002BC 4130 0080 00080 2064 LA R3,X'80'

2065 ENDCASE
0002C0 5840 C2C6 002C8 2067+ L R4,#@LB93 01-00410
0002C4 07F4 2068+ BCR 15,R4 01-00411
0002C6 0000 +
0002C8 000002D4 2069+#@LB93 DC A(#@LB94) 01-00412
0002CC 000002D4 2070+ DC A(#@LB94) 01-00425
0002D0 000002BC 2071+ DC A(#@LB96) 01-00428
0002D4 2072+#@LB94 DS 0H 01-00445

2074 ENDSEL
0002D4 2076+#@LB88 DS 0H 01-00702

2078 *
0002D4 C1 2079 WORD1 DC CL1'A'

00004 2080 B EQU 4
00005 2081 BASEREG EQU 5
00006 2082 B2 EQU 6
00010 2083 DEC EQU 16
00020 2084 D2 EQU 32
00040 2085 L EQU 64
00004 2086 LENGTH EQU 4
00006 2087 M1 EQU 6
00000 2088 R0 EQU 0
00001 2089 R1 EQU 1
00002 2090 R2 EQU 2
00003 2091 R3 EQU 3
00004 2092 R4 EQU 4
00005 2093 R5 EQU 5
00006 2094 R6 EQU 6
0000C 2095 R12 EQU 12

000000 2096 END SAMPLE
0002D8 E6D6D9C4 2097 =C'WORD'
0002DC 00000064 2098 =F'100'
0002E0 000003E8 2099 =F'1000'
0002E4 00002710 2100 =F'10000'
0002E8 FFFF 2101 =H'-1'

64 High Level Assembler: Toolkit Feature Technical Overview: SHARE February 2003



0002EA 4E 2102 =C'+'
0002EB 60 2103 =C'-'
0002EC 5C 2104 =C'*'
0002ED 61 2105 =C'/'

Diagnostic Cross Reference and Assembler Summary Page 3
HLASM R4.0 2003/01/29 12.02

No Statements Flagged in this Assembly
HIGH LEVEL ASSEMBLER, 5696-234, RELEASE 4.0, PTF UQ72178
SYSTEM: CMS 16 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC)
Datasets Allocated for this Assembly
 Con DDname Dataset Name Volume Member
P1 SYSIN SAMPLE2 ASSEMBLE A1 EHR191
L1 SYSLIB OSMACRO MACLIB S2 $CM019
L2 ASMAFMAC MACLIB A1 EHR191
L3 ASMSMAC MACLIB D1 EHR192
L4 ASMAMAC MACLIB S2 $CM019
L5 CLASSMAC MACLIB L1 EHR195
L6 OSMACRO1 MACLIB S2 $CM019

SYSLIN SAMPLE2 TEXT A1 EHR191
SYSPRINT SAMPLE2 LISTING A1 EHR191
SYSTERM TERMINAL

8176K allocated to Buffer Pool, 373K would be required for this to be an In-Storage Assembly
161 Primary Input Records Read 2663 Library Records Read 0 Work File Reads
0 ASMAOPT Records Read 464 Primary Print Records Written 0 Work File Writes
18 Punch Records Written 0 ADATA Records Written

Assembly Start Time: 12.02.48 Stop Time: 12.02.48 Processor Time: 00.00.00.0609
Return Code 000

Appendix B. Listing of sample program 65


