Introduction and Background (version 2.0 17may2006)
WebSphere® Application Server administration (wsadmin) automation scripting has supported both Jacl (Java TCL) and Jython (Java Python) since WebSphere Version-5.1. Jython is the strategic direction for WebSphere administration scripting, and WebSphere scripting future enhancements will focus on the use of Jython. To assist customers to leverage such Jython enhancements and tooling, there is an IBM Jacl To Jython Conversion Assistant (hereafter referred to as "Jacl2Jython").
Jacl2Jython is a program that assists in converting Jacl syntax wsadmin scripts into Jython wsadmin scripts. In most cases the result is syntactically equivalent, and is usually runtime equivalent. However Jacl and Jython language differences can result in a few lines of code that are difficult to automatically convert, and in almost all such cases these preliminary converted lines are flagged #?PROBLEM?. This helps developers focus on manual verification or alteration of these lines to ensure the intended runtime result is maintained. While the developer needs to manually review and verify all the converted script, the #?PROBLEM? comment flags help identify the most likely problem lines.
In summary Jacl2Jython is a conversion assistant which typically does 95-98% of a preliminary conversion, but the developer must manually verify all of the preliminary conversion, and typically must also manually convert or modify some code to make it function as originally intended. Even if the preliminary conversion superficially appears correct, it always requires a complete line-by-line manual review and verification.
This article explains:

Jacl2Jython Operation

Resolving any Jacl2Jython input parser problem(s)

Considerations when verifying the Jacl2Jython converted code

1. Unknown command, unknown (user) method, extra or unknown arguments

2. wsadmin list[index] may require preceding .split()
3. wsadmin Jython AdminTask does not support Jython sub-list parameters

4. Jacl upvar has no equivalent in Jython

5. Jacl vs Jython list insert are very different (almost opposites).

6. Mixed String plus Non-String concatenation

7. Mixed String plus Non-String comparison

8. In-place expression evaluations inside a string

9. Printing a List instead of a String, and printing Objects
10. Overloaded method definitions and invocations

11. Method definitions using a List parameter
12. Empty Jython blocks require pass statement

13. Conditionals may require None check

14. lappend of List appends require List parameter (not Strings)

15. List initialization using empty List (rather than empty String)
16. Jython Debugger inserts the script name as sys.argv[0]
17. Jython EOFError does not work on some platforms

18. Generated Jython import xyz may need to be copied into else blocks

19. regexp using {…} syntactically looks like a list, and must be manually changed
Running Jacl2Jython converted wsadmin Jython code

1. WebSphere v6.1 execution and debugging

2. WebSphere v5.1 or v6.0 execution
3. WebSphere v5.1 or v6.0 debugging
Jacl2Jython Operation

Jacl2Jython is 100% Java and simple to run. The developer just invokes it and passes in the fully qualified name of a Jacl script to be converted.

Jacl2Jython X:\MyPath\MyFile.jacl

Note that when Jacl2Jython is used from within the IBM WebSphere Application Server Toolkit (AST) bin directory, it automatically sets JAVA_HOME to use the AST java. If Jacl2Jython is downloaded and run as a standalone tool, then the user must manually set JAVA_HOME to point to the location of a Java JRE version 1.4.2 or later.

If the parser has no tokenization problems, then it produces a matching Jython script X:\MyPath\MyFile.py
Jacl2Jython internally consists of 2 main components. First is a character scanner+parser that scans the input file and groups characters into Jacl language parser tokens (keywords, strings, braces, operators, etc). After parsing the input Jacl script, each of the parser tokens is then converted into corresponding Jython and is output into the Jython script file.
1. Jacl2Jython is a simple one-pass parse and convert (no look-ahead). As it encounters new method definitions, it saves those method names and adds them into a file Jacl2Jython_UserMethods.txt containing all previously encountered user method definitions. It uses those names to resolve valid commands from unknown commands. Since Jacl2Jython (correctly) flags any command it encounters and does not know about, the parser may encounter a method call for which it has not yet seen the method definition, and it will flag it as an unknown command. The solution is to run Jacl2Jython twice on each Jacl script to be converted. Otherwise the converted Jython script will contain an unnecessary warning:

 #?PROBLEM? (jacl line 123) COMMAND_UNKNOWN? myMethod
2. Because Jacl2Jython is a simple one-pass process, the parser tokens are not context sensitive. In spite of this limitation, most programs can be parsed and converted with no changes, or with only a very few changes to help the Jacl parser (as described in the resolving section below). However there may be cases where a particular Jacl token can have different syntactical meaning in different contexts, but the scanner+parser only handles the most common definition, and this can result in a parser error. Please see the following section on resolving parser problems.
Resolving any Jacl2Jython input parser problem(s)

If there is a problem while running the scan+parse phase, then Jacl2Jython should always stop with a very clear indication of the line+column location of the parse error.

3. The most common Jacl2Jython parse error is due to an unrecognized Jacl default unquoted string xxx, and the resolution is simply to change that Jacl default string into an explicitly quoted string "xxx".
For example, parsing the input line:
set subpaths [split $JavaClasspath :]
will cause the following Jacl2Jython parse error:
###

ERROR: Error during parse of input ParseErrorSample.jacl

... Location: at line=1, column=36.

... Cause: Encountered unexpected token: :

###

Upon examining that line and column and noting the default string at the indicated line+column:
set subPaths [split $JavaClasspath :]
-----------------------------------^-
then the parse error will be eliminated by converting it into an explicitly quoted string:

set subPaths [split $JavaClasspath ":"]
Jacl2Jython is actually quite good at detecting and handling most Jacl default strings, but your Jacl script might contain one or two lines requiring manual editing. However, since the character : is also a valid token for Jacl conditional statements, the Jacl2Jython parser cannot recognize the preceding context sensitive intended use as a default string.

4. If you cannot figure out how to change a parser problem line, simply use #?PROBLEM? to comment out that line. Remember that if that line contains a { opening brace then you must also comment out the matching } close brace line. Since all input Jacl comment lines are written as comment lines in the Jython output, the developer can detect and manually convert any such problem lines when reviewing the entire converted Jython script file.

Considerations when verifying the Jacl2Jython converted code

After the Jacl2Jython conversion runs to completion (typically with no, or very few, input Jacl changes), Jacl2Jython will have produced a preliminary Jython script file which then requires manual verification. Here are some Jacl2Jython conversion considerations which may require manual alteration.
1. Unknown command, unknown (user) method, extra or unknown arguments

Jacl scripts may call user methods in other (or later in the same) user scripts which have not yet had their method definitions processed. This will produce an unknown command warning in the converted Jython since as far as Jacl2Jython knows that command does not exist.
?PROBLEM? (jacl 123) COMMAND_UNKNOWN? someUserMethod(someParam)
The solution, as already described in the previous Operations section, is to run every set of related files through Jacl2Jython once (to ensure that all user method definitions have been processed and recorded), and then to quickly run each program through another time (this typically only takes a few seconds per file) to ensure there are no unnecessary warnings and the converted code is as clean as possible:
someUserMethod(someParam)
There are Jacl scripts which call methods in the Jacl runtime which do not exist in the Jython runtime (or which Jacl2Jython is unaware of or does not handle). Jacl2Jython will still convert the invocation of the command or method, but will flag it as being an unknown command. Typically the user program needs to be modified to call some other runtime command.

?PROBLEM? (jacl 123) COMMAND_UNKNOWN? cd(dir)
?PROBLEM? (jacl 123) COMMAND_UNKNOWN? pwd()
?PROBLEM? (jacl 123) COMMAND_UNKNOWN? setTA(attrib)
?PROBLEM? (jacl 123) COMMAND_UNKNOWN? socket(server, port)

Jacl2Jython knows about most Jacl commands and can convert them into Jython. During the conversion it will output a warning if there appear to be less or more parameters than it expected, and it will attempt to warn if some command option is used which it does not understand. For example most of the Jacl string subcommands are converted, but some less common ones are not handled

#?PROBLEM? (jacl 123) STRING_CMD_UNKNOWN? string "trimleft", myStr
Another example is the Jacl regexp command, which usually takes 2 parameters and which converts nicely into Jython. However, the Jacl regexp command allows extra parameters to receive additional results while the Jython version does not.

JACL: regexp $exp $aJmsServer junk junk2 nodeName
==>
JYTHON: junk = regexp(exp, aJmsServer) #?PROBLEM? (jacl 123)
 _ REGEXP_NUMBER_ARGS "junk2" "nodeName"
2. wsadmin list[index] typically requires preceding .split()
Many Jacl wsadmin commands return a list result which may then be used with lindex or foreach. Unfortunately the same wsadmin Jython commands returns multiple results as a single long string, which user scripts must first explicitly.split() into a functional list.

· Most (but not all) wsadmin multiple items, such as the result from AdminApp.list or AdminConfig.listTemplates, require a Linux.split("\n") or Windows .split("\r\n") to obtain a functional list, but the exact "\n" versus "\r\n" NewLine split charater(s) depends on the platform the WebSphere server is running (not where the client script is running).
· Unfortunately some others commands such as AdminConfig.showAttribute must have the first ("[") and last ("]") character removed from the result and then must be .split(" ") in order to obtain a functional list.
Not knowing the proceeding source of a list variable, but knowing the Jacl versus Jython wsadmin results difference, Jacl2Jython flags any list[index] or any for...in as a potential problem, possibly requiring some form of .split():

apps = AdminApp.list()[0] #?PROBLEM? (jacl 123) previous LINDEX \

 may need variable.split("xx")

serverID = AdminConfig.getid("/Node/myNode/Server:myServer/")

services = AdminConfig.showAttribute(serverID,"services")
for service in services: #?PROBLEM? (jacl 123) previous \
 FOR ITEM IN LIST may need variable.split("xx")
To simplify the conversion of user Jacl wsadmin scripts, Jacl2Jython inserts the following utility method into all converted scripts:

def wsadminToList(inStr):

 outList=[]

 if (len(inStr)>0 and inStr[0]=='[' and inStr[-1]==']'):

 inStr = inStr[1:-1]

 tmpList = inStr.split(" ")

 else:

 tmpList = inStr.split("\n") #splits for Windows or Linux
 for item in tmpList:

 item = item.rstrip(); #removes any Windows "\r"
 if (len(item)>0):

 outList.append(item)

 return outList

#endDef

Example usage (manual script modification) is shown below:

apps = AdminApp.list()
appsList = wsadminToList(apps) #or ...
appsList = apps.split("\n") #if server is on Linux, #or ...

appsList = apps.split("\r\n") #if server is on Windows, #or ...

appsList = apps.split(java.lang.System.getProperty("line.separator")

 #above only works if client and server JVM is same platform type.

app = appsList[0]

serverID = AdminConfig.getid("/Node/myNode/Server:myServer/")

services = AdminConfig.showAttribute(serverID,"services")
servicesList = wsadminToList(services) # or ...
servicesList = services[1:-1].split(" ")

for service in servicesList:

Note that you do not need to use the utility method. You can just edit your Jython scripts to perform appropriate splits where required (assuming you know the server type for NewLine splits), but using the above utility method may be the quickest way to initially get your converted Jython scripts running (and provides server platform portability).
3. wsadmin Jython AdminTask does not support Jython sub-list parameters

If a user Jacl scripts calls $AdminTask methods, parameters (including sub-lists) may be used. However if a Jython script calls AdminTask methods with parameters containing sub-lists, then all the parameters must be combined into a single space-separated parameter (unlike AdminConfig or AdminControl or AdminApp).

Jacl2Jython always converts any input Jacl parameters into output Jython parameters, including any $AdminTask method invocations. The converted Jython script will need to be manually modified to convert any AdminTask method invocations with parameters containing sub-lists to use a single string containing space-separated (no commas) string parameters (no variables). If the Jacl script did not use any v6.x AdminTask methods containing sub-list parameters, then no additional changes are required.
JACL: $AdminTask createCluster [list -clusterConfig [list
 -clusterName $myClusterName]]
==>

JYTHON: AdminTask.createCluster(["-clusterConfig", [
 "-clusterName", myClusterName]] #?PROBLEM? convert to string

JYTHON: AdminTask.createCluster('["-clusterConfig" [
 "-clusterName" "' +str(myClusterName)+ '"]]') #Manual change

4. Jacl upvar has no equivalent in Jython
The Jacl statement upvar n X means "use the variable X from n stack frames up". Making such upvar variables into global variables is by far the simplest initial approach, but it is not syntactically equivalent, and you need to be careful about possible unexpected side-effects.
upvar x

==>

global x #?PROBLEM? (jacl 123) UPVAR_RELATIVE_STACK is always \

 converted as #0 global.
The developer must ensure there is not already an existing global with that name. If there is, you almost certainly have a problem needing manual code changes. Note that Jacl upvar references to absolute stack frame zero are really equivalent to global and should not cause a problem.
upvar #0 x

==>

global x
5. Jacl vs Jython list insert are very different (almost opposites).

Jacl linsert leaves the original list unchanged and only changes the new output list.

wsadmin> set x {1 2 3 4}

1 2 3 4

wsadmin> set y [linsert $x 3 999]

1 2 3 999 4

wsadmin> puts $x

1 2 3 4

wsadmin> puts $y

1 2 3 999 4

Jython list.insert only changes the original list, and produces no output list.

wsadmin> x = [1,2,3,4]

wsadmin> y = x.insert(3,999)

wsadmin> print x

[1, 2, 3, 999, 4]

wsadmin> print y

None

wsadmin>

Here is how Jacl2Jython converts Jacl linsert into Jython list.insert
JACL: set x {1 2 3}

JACL: set x [linsert $x end 4]

==>

JYTHON: x = [1, 2, 3]

JYTHON: x = x.insert(len(x), 4) #?PROBLEM? (jacl 123) Jython \

 list.insert does not produce any output value ('None')

Here is the directly converted Jython runtime behavior:

wsadmin> x = [1, 2, 3]

wsadmin> x = x.insert(len(x), 4)

wsadmin> print x

None

Here is the manually corrected Jython runtime behavior:

wsadmin> x = [1, 2, 3]

wsadmin> x.insert(len(x), 4)

wsadmin> print x

[1, 2, 3, 4]

6. Mixed String plus Non-String concatenation

If your Jacl script does string plus non-string concatenation, then you will need to modify the converted Jython code to use Jython right-slanted quotes. Otherwise you will get a runtime error: "__add__ not defined for these operands"

JACL: str += $int1 + "xyz"

==>

JYTHON: str += int1 + "xyz"

Solution: manually modify the converted Jython with explicit non-string conversion:

JYTHON: str += `int1` + "xyz" #manually modified, or ...
JYTHON: str += str(int1) + "xyz" #manually modified

7. Mixed String plus Non-String comparisons
The problem of comparing a Sting to a non-String (Int, etc) is an application specific problem

· In Jacl everything is really a string, hence such comparisons work as intended

· In Jython there are (dynamic) types and application code must use valid/matching types

If your Jacl script contains an expression with a mix of String and Int types (and Jacl essentially treats everything, including Ints, as Strings during expression evaluation) then you will need to manually modify the converted Jython code to use matching types. Otherwise, the expected conditions will never match. A common source of this is problem that all commandline argv parameters are Strings:

JACL: set argvParam [lindex $argv 0]

JACL: while {i <= argvParam} {

==>

JYTHON: argvParam = sys.argv[0]

JYTHON: while (i <= argvParam):

Solution: manually insert explicit type conversion, wherever required, before comparison operations:

JYTHON: argvParam = int(sys.argv[0]) # manually modified

JYTHON: while (i <= argvParam):

8. In-place expression evaluations inside a String
If your Jacl script contains Strings with embedded expressions, then you will need to manually change the converted Jython code to implement equivalent embedded expressions.

JACL: puts "Number of cells: [llength $cellList]"

==>

JYTHON: print "Number of cells: [llength "+cellList+"]

Solution: manual insertion of appropriate Jython expression:

JYTHON: print "Number of cells: "+`len(cellList)` # manually modified

9. Printing a List instead of a String, and printing Objects
In Jacl, many user scripts (and many examples) rely on the Jacl internal representation of Lists to be space separated Strings. Jython (and almost any other language) does not have this behavior, so scripts need to be manually changed to reflect the intended (language independent) behavior.

JACL: puts {This is a text message.} #relies on Jacl internals
JACL: puts "This is a text message."

==>

JYTHON: print ["This", "is", "a", "text", "message."] #incorrect
JYTHON: print "This is a text message."
Similarly, Jacl will dynamically convert any object into a String during printing. Jython does not, and since the Jacl2Jython conversion assistant does not determine nor track runtime object types, you must manually review every print statement to ensure runtime String compatibility
JACL: puts "myString=$myString"

JACL: puts "myNonString=$myNonString"
==>

JYTHON: print "myString="+myString

JYTHON: print "myNonString="+myNonString #must be `myNonString`
10. Overloaded method definitions and invocations

Overloaded method definitions and invocations are a Jacl specific construct not implemented in Jython. If your Jacl script has 2 or more methods with the same name but different signatures (more parameters) then Jacl2Jython will convert each of the definitions, but this will lead to a runtime error. The developer must manually change each Jython overloaded method names into different names, and must change the matching invocations to correctly use these different names.

11. Method definitions using a List parameter

Special-case handling of method definition with a List parameter is not possible since the Jacl2Jython does not know or track variable types (List, String, etc). If your Jacl program had a method definition with a List parameter, Jacl2Jython will convert it using simple arguments

JACL: proc methodX {svrName args}{

==>

JYTHON: def methodX (svrName, args):

You will need to ensure your Jacl invocations explicitly use a List during invocation, or will need to modify the converted Jython code. Otherwise you will get a Jython runtime error: "too many arguments".
JACL: methodX $svrName application $appName

==>

JYTHON: methodX (svrName, "application", appName)

Solution: manually modify Jacl invocations if not already using an explicit List:

JACL: methodX $svrName [list application $appName] #manually modified

==>

JYTHON: methodX (svrName, ["application", appName])

Or, you must manually modify the converted Jython code:

JYTHON: methodX (svrName, ["application", appName]) #manually modified

################ v1.2 additions: ###############
12. Empty Jython blocks require pass statement

Jacl, like most languages, allows empty code blocks, Jython does not, it requires a pass (do nothing) statement to avoid a runtime error. It is not practical for Jacl2Jython to detect this, so developers must manually review the converted output and manually insert any required pass statements.

JACL: if {123} {

JACL: }else{

JACL: #comment

JACL: }

==>

JYTHON: if (123):

JYTHON: pass #must be manually inserted

JYTHON: else

JYTHON: #comment

JYTHON: pass #must be manually inserted

JYTHON: #endIf
13. Conditionals may require None check

Jacl does not have a null value, but Jython has a None value (similar to Java null). Hence Jacl programs which just check for an empty string may need to have the Jython conversion manually modified to also check for a possible None (depending on whether of not the variable can be None).

JACL: if {x==""}
==>

JYTHON: if (x==None or x=="") #may need manual insertion of None

14. lappend of List appends requires List parameter (not Strings)

This is a problem which will break many converted scripts by causing incorrect runtime results. In Jacl, when you are appending to a List (using either lappend or the + or += operators) you should be appending another List (even though Jacl actually behaves correctly if you append multiple Strings due to its internal implementation of lists). Jython is more rigorous in its expectation that only another List (or a single String which is automatically converted to a one element List) should be appended.
JACL: lappend $x $y

JACL: lappend $x [list "aa" bb $cc]

JACL: lappend $x "aa" #auto converted to list element

JYTHON: x.append(y)

JYTHON: x.append(["aa", "bb", cc])
JYTHON: x.append("aa") #auto converted to list element

The Jacl2Jython conversion assistant will detect and mark incorrect (multiple parameter) lappend usage during conversion.

JACL: lappend $x $y extra

JACL: lappend $x "aa" bb extra

JYTHON: x.append(y, "extra") #?PROBLEM? NUM_ARGS!=2

JYTHON: x.append("aa", "bb", "extra") #?PROBLEM? NUM_ARGS!=2?

Be especially aware if your Jacl code is using the += operator to append a String to a List. While syntactically valid, the equivalent Jython actually appends the strings list of characters to the end of the list. The following variations all work as expected:

list += moreLists

list = list+ string

list.append(string)

list += [string]

HOWEVER, the following (syntactically correct) code behaves incorrectly at runtime:

list += string # INCORRECT. It appends list of chars

In summary, scan your converted Jython code to check every place the += operator is used, and if you intended to add a String to a List, change it to list += [string]
15. List initialization using empty String rather than empty List

Because Jacl internally treats a List as a set of space separated Strings, you can initialize a List object by setting it to an empty String (instead of an empty List or an empty set of {} braces). Following that initialization, all the various List commands are then valid (lappend, +=, etc) for that object. Jython is more rigorous, and you must properly initialize a List object using a set of empty [] brackets if you want to subsequently perform List operations. Since the Jacl2Jython conversion assistant does not determine nor track runtime object types, it retains all empty String initializations in the converted output. Developers must manually scan all their converted script for empty String initializations, and if the object is intended to be a List then they must manually change their script to correctly use an empty bracket [] initialization.

JACL: myString = ""
JACL: myList1 = "" # incorrect, must be manually corrected
JACL: myList2 = {}

JACL: myList3 = [list]

JYTHON: myString = ""
JYTHON: myList1 = [] # was manually corrected

JYTHON: myList2 = []

JYTHON: myList3 = []

16. Jython Debugger inserts the script name as sys.argv[0]

When using the Jython Debugger sys.argv[0] is the script file name being debugged, and sys.argv[1] is the first program parameter. This is not true for non-debugger execution, where sys.argv[0] is the first program parameter (as is the case for most programming languages). One possible way to maintain consistency in program operation is to use code similar to the following Jython code to dynamically adjust for this difference:

base = 0

if(len(sys.argv)>0):

 param1 = sys.argv[0]

 param1 = param1[len(param1)-3:].lower()

 if(param1==".py" or param1==".jy"):

 base = 1

 #endIf

#endIf

if (len(sys.argv) > (base+0)):

 arg0 = sys.argv[base+0]

 if (len(sys.argv) > (base+1)):

 arg1 = sys.argv[(base+1)]

 #endIf

#endIf
17. Jython EOFError does not work on some platforms

The Jacl eof statement is translated to the Jython #eof(fileid) comment and with a note to manually surround all the appropriate code with a try…..EOFError instead. However, the EOFError is not thrown on some platforms (read simply keeps returning an empty line), so your code might have to be modified to use code similar to the following Jython code to test for repeated empty lines:
blankLines = 0

more = true

while (more):

 try:

 #done = eof(fileId) #?PROBLEM? EOF not implemented

 #if (done):

 # more = false

 #endIf

 line = fileId.readline().strip()

 ...
 ... # process

 ...
 if(line==""): blankLines = blankLines +1

 else: blankLines = 0

 if(blankLines>20): more = false

 except EOFError:

 more = false

 #endTry

#endWhile

18 Generated Jython import xyz may need to be copied into else blocks

For Jacl scripts containing code which is converted into Jython scripts using runtime Lib library modules, the Jacl2Jython generated output will contain one import xyz statement (one per def module definition). If the initial code function is inside an if statement, and there is another usage inside an else statement, then another import xyz is required (and not generated since Jacl2Jython does not track runtime structure).

JACL: if {123} {

JACL: set names [glob "/*"]
JACL: }else{

JACL: set names [glob "$distDir/*"]
JACL: }

==>

JYTHON: if (123):

JYTHON: import glob

JYTHON: names = glog.glob("/*")
JYTHON: else

JYTHON: import glob # was manually corrected
JYTHON: names = glog.glob(distDir+"/*")
JYTHON: #endIf
See also the following section “Running Jacl2Jython converted wsadmin Jython code” for information regarding running Jython scripts requiring Jython Lib modules in WebSphere v5.1 and v6.0.

19 regexp using {…} syntactically looks like a list, and must be manually changed
Important note: Jacl syntax normally treats {xxxx} or "{xxxx}" as a list, but Jacl has special runtime syntax processing if such an expression follows regexp and in that special case treats it as a string. The Jacl2Jython syntax token parsing is not context sensitive and cannot do this, and this situation will often cause a token parsing error. The only practical solution is that all such regexp{xxxx} expressions must be manually modified into explicit strings
JACL: #regexp {(.*)(\(cells.*)} $x # will cause parse error
JACL: regexp "(.*)(\(cells.*)" $x
==>

JYTHON: #regexp {(.*)(\(cells.*)} $x # will cause parse error

JYTHON: regexp("(.*)(\(cells.*)", x)

Running Jacl2Jython converted wsadmin Jython code

The Jacl2Jython conversion produces pure Jython code. However, some Jacl runtime functions require matching library modules from the Jython lib directory:

time based clock or after,
regular expression based regexp or regsub
file based exists or isfile or isdirectory or glob

1. WebSphere v6.1 execution and debugging
Because WebSphere v6.1 now includes the complete Jython Lib within <WASROOT>\optionalLibraries\jython, the converted wsadmin Jython scripts have full access to all the Jython library functions. And, because the debugging module pdb.py is in that Lib, the v6.1 Application Server Toolkit (AST) Jython Debugger can debug wsadmin Jython programs using a local WebSphere v6.1 installation, and this is fully supported.
2. WebSphere v5.1 or v6.0 execution

Older WebSphere v5.1 and v6.0 only included the core jython.jar and did not reship the Jython library Lib directory. If your Jacl2Jython converted wsadmin Jython program makes use of any of the above runtime library functions, and if you attempt to run that Jython script on an older WebSphere v5.1 or v6.0 installation, then you will need to manually add a Jython Lib directory to the same location as the WebSphere jython.jar (typically <WASROOT>\lib for version 5.1, <WASROOT>\optionalLibraries for v6.0.0.0, <WASROOT>\optionalLibraries\jython for v6.0.0.2 or later. For maximum compatibility the Jython Lib directory should be copied from a WebSphere v6.1 (which uses the same Jython v2.1.3 distribution). However, since this is not the way the older WebSphere product was shipped, such a change is officially unsupported.
3. WebSphere v5.1 or v6.0 debugging

If you add the following 4 lines into Lib\pdb.py after its import statements

from org.python.core import imp

main = imp.addModule('__main__')

main.__dict__ = globals()

__name__ = '__main__'

then wsadmin can be run with the Jython commandline pdb debugger

@set JYTHON=<JYTHON_HOME>
@set WAS_BIN=<WAS_ROOT>\profiles\MyProfile\bin\

@set TEST_PROG=X:\MyPath\MyProgram.py
%WAS_BIN%\wsadmin.bat -lang jython

-wsadmin_classpath "%JYTHON%\Lib"

-javaoption "-Dpython.home=%JYTHON%"

-f "%JYTHON%\Lib\pdb.py" "IGNORED" "%TEST_PROG%
The AST internal v6.1 Jython Application Debug Launcher can be manually enabled (although this is officially unsupported) to debug wsadmin Jython programs using a local WebSphere v5.1 or v6.0.

· Stop AST,

· Enable the Jython Application Debug Launcher:
cd <ASTROOT>\eclipse\plugins

ren com.ibm.debug.jython_1.0.0.jar com.ibm.debug.jython_1.0.0.jar_OLD

md com.ibm.debug.jython_1.0.0

cd com.ibm.debug.jython_1.0.0

unzip ..\com.ibm.debug.jython_1.0.0.jar_OLD

· Edit plugin.xml to enable the debug launch extension
 (by removing the surrounding <!-- … --> comments)
· Restart AST
- DebugPerspective>Debug...>New>JythonApplication>New> enter name >Apply
- project browse, then main module search >Apply
- click environment tab, and set WAS home and jython home >Apply
 (Jython home is the location of Jython.jar)
- Debug
However, remember that this internal Jython Application Debugger for WebSphere v5.1 or v6.0 is officially unsupported.
Jython Debugger Demo/Test program (DebugTest.py)

#

(C) Copyright IBM Corp. 2004,2006 - All Rights Reserved.

DISCLAIMER:

The following source code is sample code created by IBM Corporation.

This sample code is not part of any standard IBM product and is provided

to you solely for the purpose of assisting you in the development of your

applications. The code is provided 'AS IS', without warranty or condition

of any kind. IBM shall not be liable for any damages arising out of your

use of the sample code, even if IBM has been advised of the possibility of

such damages.

#

CHANGE HISTORE:

2.0 (10feb2006) initial Jython version

#

SUGGESTED DEBUGGER DEMO/TEST:

1) set breakpoint at line 31 ("apps=apps.split..."

2) launch the debugger, specifying this program as its target

... and wait until the debugger stops at the breakpoint line

3) STEP-OVER and watch (in VariablesView) "apps" change into a List

4) set breakpoint at line 55 ("state=displayServerInfo...")

5) CONTINUE and wait until the debugger stops at the breakpoint line

6) STEP-INTO and single step-OVER several lines (output is in ConsoleView)

7) STEP-RETURN and wait until debugger stops at return

8) STEP-OVER to return, then CONTINUE to completion

9) repeat the demo, but target a remote WSebSphere server

(launch debugger with wsadmin parameters -host xx -port yy)

#

print "getting apps..."

apps = AdminApp.list()

apps = apps.split(java.lang.System.getProperty('line.separator'))

print "contains apps:\n"

for app in apps:

print app

print "\nApps done.\n"

def displayServerInfo(wsadminNode):

wsadminSvr = AdminControl.queryNames("node="+wsadminNode+",type=Server,*")

print "svr="+wsadminSvr

wsadminServer = AdminControl.getAttribute(wsadminSvr,"name")

print "ServerName="+wsadminServer

print "wsadminMgmt="+AdminControl.getAttribute(wsadminSvr, "processType")

wsadminSvrId = AdminControl.getConfigId(wsadminSvr)

print "svrId="+wsadminSvrId

if(wsadminSvrId != 0):

print "wsadminServerType="+AdminConfig.showAttribute(wsadminSvrId, "serverType")

#endIf

wsadminState = AdminControl.getAttribute(wsadminSvr, "state")

return wsadminState

#endDef

wsadminNode = AdminControl.getNode()

print "NodeName="+wsadminNode

state = displayServerInfo(wsadminNode)

print "state="+state

print "\nDone.\n"

#
