
IBM® WebSphere® Commerce
Multiple Approvals Reference

Application

IBM® WebSphere® Commerce
Business Edition

Version 5.4

Last Updated: June 12, 2002

Introduction:

This reference application demonstrates an extended WebSphere Commerce 5.4 BE Approvals flow
for the ‘User Self-Registration’ business process. This functionality would allow the User Registration
transaction to be approved by multiple approvers, prior to being successful.

E.g. A user Self-Registers, depending on the Approvals role setup, his transaction may need to be
approved by ApproverA, ApproverB, ... and ApproverN. (For implementation details refer to latter
sections in this document).

Prerequisite Environment:

Operating System Windows NT / 2000
Commerce Server IBM WebSphere Commerce Business Edition 5.4
Application Server WAS 4.x
WCS Database IBM DB2 (with required fix-patches for WCS 5.4)

Installing the Reference Application:

To install this sample, you must first install and configure IBM WebSphere Commerce V5.4. Next,
unzip the MultipleApprovalsRefApp.zip into a temp directory. Then locate the RefAppdriver-
yyyymmdd.jar file in the packagedDriver directory and copy it to the system that has IBM
WebSphere Commerce installed. Open a command prompt and ensure that java executable is in
your path. Issue java -jar RefAppDriver-yyyymmdd.jar and provide the information that is
requested.

The install utility is part of the driver. It is packaged into the driver jar file and can be run by issuing
java -jar RefAppDriver-yyyymmdd.jar. The install utility source can be found in
java/com/ibm/commerce/multipleapprovals/install/InstallDriver.java. At a high level the utility
performs the following tasks:

�� Unpackages the driver assets into their appropriate directories.

�� Updates the commerce database with configuration information.

Examine this document for further information about what it does.

Restart your Commerce Server for the changes to take effect. You should also refer to the log files
that were created in the logs directory in the IBM WebSphere Commerce root directory for any
problems during the install.

Uninstalling the Reference Application:

To uninstall the Reference Application complete the following steps:

�� Run the uninstallrefapp.bat, with the DatabaseName, DatabaseAdminID,
DatabasePassword. E.g. uninstallrefapp mall db2admin myPassword. This will reset your
database to original configuration.

�� Manually delete the compiled class files under the “…\
\AppServer\installedApps\WC_Enterprise_App_demo.ear\lib\
com\ibm\commerce\multipleapprovals\commands” directory.

�� Manually delete the MultipleApprovals_en_US.properties file under the “…\
\AppServer\installedApps\WC_Enterprise_App_demo.ear\properties” directory.

Building the sample:

Unzipping the MultipleApprovalsRefApp.zip would create the following directory structure for the
build tree:

WCS_Ref_Apps
 buildjars
 MultipleApprovalsRefApp
 driver
 ear
 lib
 META-INF
 wcs
 bin
 schema
 xml
 java
 com
 ibm
 commerce
 multipleapprovals
 install
 commands
 Uninstall
 packagedDriver

Directory Description Contents
WCS_Ref_Apps This is the root directory. buildjars directory

MultipleApprovalsRefApp directory
Readme.htm

buildjars This directory contains ivjejb35.jar

dependency JAR files that
are used to build the
Java™ source in this
project. These JARs are
taken from the current
version of IBM WebSphere
Application Server and IBM
WebSphere Commerce.

j2ee.jar
wcsejbimpl.jar
wcsejsclient.jar
wcslogging.jar
wcsmcruntime.jar
wcsruntime.jar
wcssfc.jar
wcsbusinessflow.jar

MultipleApprovalsRefApp This is the root directory
for the sample application.

driver directory
java directory
Uninstall directory
build.xml

driver This directory contains the
assets that will be built
into the installable archive.

ear directory
META-INF directory
wcs directory

ear This directory contains the
assets that will be copied
to the installed commerce
enterprise archive
directory.

lib directory
properties directory

lib The compiled class files
are contained in this
directory.

Compiled class files for Commands to be
used by this application, in a qualified
Directory structure:
ApprovalMultipleSetUpRecordsCmdImpl.class
HandleMultipleApprovalsCmdImpl.class

properties This directory contains the
property file that will be
copied to the installed
commerce enterprise
archive directory.

MultipleApprovals_en_US.properties

driver/META-INF This directory contains the
MANIFEST.MF file for the
driver JAR file.

MANIFEST.MF - indicates the Java class that
should be invoked when the driver JAR is
executed.

wcs This directory contains
assets that need to be
installed in the root
directory of IBM
WebSphere Commerce.

bin directory
schema directory

bin Executables required to
install and configure this
application.

multipleApprovalsPopulatedb.db2.bat - This
script populates the commerce database
with configuration information. This script is
used if the database is DB2 and the
operating system is Windows.

schema Assets required to
populate the database.

xml directory.

schema/xml Massloader XML
document.

multipleApprovals.xml - Massloader import
document used to populate the commerce
database with configuration information for
this application.

java This directory contains the
Java source.

Java source files are located in directories
that model their package names.

Uninstall The directory contains

batch files to uninstall the
reference application

uninstall.bat
uninstall.sql.bat

packagedDriver This directory contains the
packaged driver.

The RefAppDriver-yyyymmdd.jar file is
located in this directory.

The contents of this source tree are available in the attached MultipleApprovalsRefApp.zip file. This
zip file excludes dependency jars found in the buildjars directory. In order to run the build, you will
need to copy these jars from your installation of IBM WebSphere Commerce Business Edition and
IBM WebSphere Application Server and place them in the buildjars directory. The first two can be
found in the IBM WebSphere Application Server lib directory. The other jars can be found in the lib
and wc.ear/lib directories in the IBM WebSphere Commerce root directory:

�� ivjejb35.jar
�� j2ee.jar
�� wcsejbimpl.jar
�� wcsejsclient.jar
�� wcslogging.jar
�� wcsmcruntime.jar
�� wcsruntime.jar
�� wcssfc.jar
�� wcsbusinessflow.jar

Special attention should be paid to the build.xml document. This example uses Apache Ant to
perform the build. Ant is a Java-based build tool like the make tool. The build.xml document
contains the instructions that Ant uses to build the application. To run this build you will need to
download a copy of Ant and ensure that the ant/bin directory is in your path. Then make the
MultipleApprovalsRefApp directory your current directory and issue ant. (For more information about
Ant refer to http://jakarta.apache.org/ant/index.html.) The build.xml document contains additional
documentation on the build process. The basic build process is to compile the entire Java source
into a lib directory in the driver/ear directory, then finally package the driver up into a jar file and
place the jar in a directory called packagedDriver. Before you start the build you will need to ensure
that java executable is in your path. You should ensure that the JDK you are using is the same as
the one shipped with your version of IBM WebSphere Application Server.

Design and Implementation Overview

Objective:

To design and implement a reference demo application, demonstrating an extended WCS 5.4 BE
Approvals Flow.

Current Business Flow:

Transactions may require that an individual approve some electronic marketplace actions before
they proceed. This individual, called an approver, can accept or reject requests to perform a specific
action. Approvals can be activated for the following WCS 5.4 BE business processes:

�� Order Process
�� User Registration
�� Contract Submit
�� RFQ Response

The current business flow is as follows (for User Self Registration):

http://jakarta.apache.org/

�� Respective Controller Command for the business process is invoked (e.g.
UserRegistrationAdd).

�� A Default implementation intervenes and starts the approval flow.

�� An invoked PreApproval Task Command (e.g. UserRegistrationAddPreApproval) creates
records, sets state to pending_approval and returns control to the default implementation.

�� An invoked CheckApproval (e.g.. UserRegistrationAddCheckApproval) Task Command
checks to determine if approval is required and returns control to the default
implementation.

�� Assuming CheckApproval returns Approval Required, relevant approvers are searched:

�� If no approver group is found, an approval is not required; the state is changed from
pending_approval to approved.

�� If an approver group is found but is empty, exception is thrown.

�� Otherwise the approvers are notified.

�� Approvers logon to either approve or reject, this would invoke HandleApprovalsCmd. This
command starts the default implementation flow, and this would invoke either:

o A PostApproval (e.g. UserRegistrationAddPostApproval) command, in which case
the state is changed to approved; or

o A PostReject (e.g. UserRegistrationAddPostReject) command, in which case the
state is changed to rejected.

�� Control is returned to HandleApprovalsCmd.

Feature Scenario:

This demo application in addition to the ‘out-of-the-box’ approval scenarios, shall demonstrate
Multiple Approvals functionality for the User Self-Registration process. This functionality would allow
a transaction to be approved by multiple approvers, prior to being successful. E.g. A user Self-
Registers, depending on the Approvals role setup, his transaction may need to be approved by
ApproverA, ApproverB, ... and ApproverN.

Design:

This Demo Approval application is designed and packaged on top of WCS 5.4 BE, and incorporates
Multiple Approval functionality.

The APRVSTATUS table for approvals Stores approval requests and their status. It contains multiple
rows for each action awaiting approval, one row for every potential approver. Each entry is unique
per approver, entity tuplet. FLOWTYPE_ID tells us which type of ENTITY_ID is pending approval.

Column Name Column Type Column Description

ACTIONTIME TIMESTAMP
NULL

When the approval record was acted on (that is, the time it
was approved or rejected).

APPROVER_ID BIGINT
NULL

The ID of the user eligible to approve or reject the
requested action.

APRVSTATUS_ID BIGINT
NOT NULL Primary key.

COMMENTS VARCHAR (254)
NULL

Comments entered by approver during approval or
rejection.

ENTITY_ID BIGINT
NOT NULL

Reference to the business object -- that is, which particular
business object instance within the business object type
specified by the FLOWTYPE_ID.

FLOW_ID BIGINT
NOT NULL

Reference to the flow for the steps in the approval process.
Foreign key FLOW_ID.

FLOWTYPE_ID BIGINT
NOT NULL

Foreign key reference to the type of flow which determines
the type of business object included in the approval. There
are different IDs for each RFQ, Orders, User Registration,
Contracts, Organization Registration and so on. Foreign
key to FLOWTYPE_ID.

FLSTATEDCT_ID BIGINT
NOT NULL Current state of the flow instance.

MBRGRP_ID BIGINT
NOT NULL

The ID of the Member Group to which the approver
belongs making her an approver for this record.

STATUS INTEGER
NOT NULL

Approval status of this action:0 = pending, 1 = approved,
2 = rejected.

SUBMITTER_ID BIGINT
NOT NULL ID of the user requesting the action which needs approval.

SUBMITTIME TIMESTAMP
NULL The time that the action requiring approval was requested.

The default implementation incorporates a feature that allows for the flexible creation and alteration
of business processes, this flow allows developers to modify the business flows across the various
subcomponents of WebSphere Commerce. The default implementation manages the Approval
business flow, by making use of a State-Machine; this business flow, however, need not be modified
to incorporate for the new multiple Approvals functionality.

A new controller command ‘HandleMultipleApprovalsCmdImpl’ is created, this command
extends from the current HandleApprovalsCmdImpl and implements the HandleApprovalsCmd
interface (mapped in the CMDREG table). This command would be triggered from within the WCS
AdminConsole when an Approver either rejects or approves the request(s), and would incorporate
the following business logic:

�� Reject, in this case the HandleMultipleApproversCmd is called, it checks for the reject flag,
and runs a super.performExecute() (HandleApprovalsCmd). This would then invoke the
default implementation, set the request status to rejected = 2
(UserRegitrationAddPostRejectCmd) and delete other pending submissions sent to
Approvers. Also the default implementation reaches completion and its State = rejected is
set. Control is returned to HandleApprovals, success is judged, and control returned to
HandleMultipleApprovalsCmd, this command then completes execution.

�� Approve, in this case the HandleMultipleApproversCmd is called, it checks for the Approve
flag. It fetches the multipleApprovalContant constant from the
MultipleApprovals_en_US.properties file and checks if this is the last approval required for
the submission. If it is not the last approval required, the command sets the Status of the
Approval (for the particular Approver) as approved. However, if it is the last required
approval, HandleApprovalsCmd is invoked with appropriate parameters. The default
implementation is invoked, it sets the request status to approved = 1
(UserRegitrationAddPostApproveCmd) and deletes other pending submisions sent to
Approvers. Also as the default implementation reaches completion and it’s State = rejected

is set. Control is returned to HandleApprovals, success is judged, and control returned to
HandleMultipleApprovalsCmd, this command then completes execution, and the finally the
submitter is Approved.

�
� Call-stack snapshot:

Also a task command ‘ApprovalMultipleSetupRecordsCmdmpl’ is created, this command
extends from the current ApprovalSetupRecordsCmdmpl and implements the
ApprovalSetupRecordsCmd interface. This command in addition to checking validity of the Approval
request, and creates the approval record in the APRVSTATUS table. New added functionality
includes the check for enough approvers being assigned. User self-registration is not allowed if
enough approvers (=> multipleApprovalContant parameter) are not assigned, and an
ECSystemException _ERR_NOT_ENOUGH_APPROVERS shall be thrown by the
ApprovalMultipleSetupRecordsCmdImpl. The text for this exception message resides in the
MultipleApprovals_en_US.properties file.

Note: This reference application is implemented for the User Self Registration business process
only; however the code itself contains comments within logic to activate the multiple approval flow
for other approvable business processes also.

Customizations to HandleMultipleApprovalsCmdImpl:

HandleMultipleApprovalsCmdImpl is the name of the controller command that processes approvals
and rejections. This controller command was modified by extending the original implementation
class and registering the new implementation class in the command registry. Refer to
java/com/ibm.commerce/multipleapprovals/commands/HandleMultipleApprovalsCmdImpl.java for
details on how the controller command was customized. Refer to schema/xml/
multipleApprovals.xml for details on how the new implementation was registered in the command
registry.

The approver may either approve or reject one or more approval requests. The command will
handle the updating of the APRVSTATUS table as well as any other activities required. The status of
the approval requests record in the APRVSTATUS table will be updated to 1 for approved or 2 for
rejected. The command treats each approval or rejection as a separate transaction so it is possible
that if the command is invoked to process a batch of approvals or rejections, some may succeed
and others may fail. Upon the last required approval or rejection super.performExecute() will be
called hence raising a business flow event to handle each approval or rejection. The business flow

AdminConsole

HandleMultipleApprovalsCmdImpl

HandleApprovalsCmdImpl

Default Implementation

event will handle the updating of the APRVSTATUS table as well as any other activities which have
been defined for this transition.

The performExecute() method of the command contains the business logic for multiple approval
handling. The current logic enables multiple approval flow for the User Registration business
process, however by minor customization the functionality could be enabled for the flowing business
processes:

�� Order Process

�� Contract Submit

�� RFQ Response

Modifying conditions for the following ‘if’ block would allow for these business processes to be
Multiple Approval enabled:

if (aprvFlag == 2 ||
!flowTypeIdentifier.equalsIgnoreCase(ApprovalConstants.EC_APPROVAL_FLOWTYPE_USER_REGIST
RATION))
{
 …..
 …..
}

Customizations to ApprovalMultipleSetUpRecordsCmdImpl:

ApprovalMultipleSetUpRecordsCmdImpl is the name of the task command that creates an approval
record for each potential approver of the action. This controller command was modified by
extending the original implementation class and registering the new implementation class in the
command registry. Refer to java/com/ibm.commerce/multipleapprovals/commands/
ApprovalMultipleSetUpRecordsCmdImpl.java for details on how the controller command was
customized. Refer to schema/xml/ multipleApprovals.xml for details on how the new
implementation was registered in the command registry.

This command incorporates added logic to check for enough approvers being assigned. User self-
registration is not allowed if enough approvers (multipleApprovalContant parameter) are not
assigned and an ECSystemException _ERR_NOT_ENOUGH_APPROVERS shall be thrown by the
ApprovalMultipleSetupRecordsCmdImpl. The text for this exception message resides in the
MultipleApprovals_en_US.properties file.

To enable this check for other business processes modify conditions to the following ‘if’ block found
in the performExecute () method of the class:

if (approvers.length < multipleApprovalConstant &&
aRequest.getRequestName().equalsIgnoreCase(ApprovalConstants.EC_APPROVAL_FLOWTYPE_USER
_REGISTRATION))
{
 throw new ECSystemException(
 notEnoughApproversEx,
 getClass().getName(),
 methodName,
 ECMessageHelper.generateMsgParms(approverGroupName, orgId));
}

Customizations to the MultipleApprovals_en_US.properties file:

The MultipleApprovals_en_US.properties files is the resource bundle for the Multiple Approvals
Application. The file contains the following two keys:

�� HandleApprovals.multipleApprovalContant: the value of this is set to ‘2’, hence an
approval request would require two approvers to approve the request. Changing the value
of this variable would alter the number of approvals required for the reference application.

�� _ERR_NOT_ENOUGH_APPROVERS: This holds the message to the error key
corresponding to the exception, not enough approvers assigned. This message could be
customized as per requirements, additional keys could be added to this file to handle
exception conditions.

Customization to WCS published store:

The multiple approval reference application is independent to store logic, a published store is not
required. However, a published Tooltech B2B store would help in understanding and utilizing the
multiple approval flow functionality. The UserRegistrationNew.jsp provided with the Tooltech SAR
handles exceptions thrown during user self registration; it provides with an excellent exception
handling logic and does not have to be modified in order to make use of new functionality.

Trademarks and Service Marks

The following are trademarks or registered trademarks of IBM Corporation in the United States and
other countries:

 AIX DB2 IBM VisualAge(R) for Java WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Windows, Windows NT and Windows 2000 are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

**

** © COPYRIGHT INTERNATIONAL BUSINESS MACHINES CORPORATION 2002

** ALL RIGHTS RESERVED.

**

Note to US Government Users -- Documentation related to restricted rights -- Use, duplication, or
disclosure is subject to restriction set forth in GSA ADP Schedule Contract with IBM Corp.

End of document.

	IBM® WebSphere® Commerce Multiple Approvals Refe

