
IBM® WebSphere® Commerce

Catalog Manager User’s Guide
Version 5.4

���

IBM® WebSphere® Commerce

Catalog Manager User’s Guide
Version 5.4

���

Note
Before using this information and the product that it supports, read the information in “Notices” on page 113.

First Edition, Third Revision (September 2002)

This edition applies to the following product:
v IBM WebSphere Commerce, Version 5.4 (Program 5724-A18)

and to all subsequent releases and modifications of the above listed products until otherwise indicated in new
editions. Make sure that you are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office that serves your locality. Publications
are not stocked at the address given below.

IBM welcomes your comments. You can send your comments by any one of the following methods:
1. Electronically to the e-mail address listed below.

torrcf@ca.ibm.com

Be sure to include your entire network address if you wish a reply.

2. By mail to the following address:

IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way that it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Before you begin v
Conventions used in this book v
Who should read this book vi
Where to find more information vi

Part 1. Overview of the Catalog
Manager 1

Part 2. Transforming, loading, and
extracting data 3

Chapter 1. Introduction 5
Utilities 5
Administrative tools 8

Chapter 2. Transforming text 9
Launching the Text Transformation tool 10
Using the Text Schema Edit View 11

Creating a schema file 11
Opening a schema file 11
Saving a schema file 11
Editing a schema file 11

Adding an element 11
Removing an element 12
Replacing an element 12
Moving an element one row up 12
Moving an element one row down 12
Adding an attribute 12
Removing an attribute 12
Replacing an attribute 12
Moving an attribute one row up 12
Moving an attribute one row down 12

Changing a schema file structure 13
Preparing a schema file to transform data from
an XML to a character-delimited variable format . 13

Using the Transformation Command Edit View . . 14
Creating a command 14
Removing a command. 14
Editing or replacing a command 14
Moving a command one row up 14
Moving a command one row down 15
Clearing a command 15

Using the Transformation Process View 15

Chapter 3. Transforming XML data . . . 17
Launching the XSL Editor 18
Working with mapping rule building areas 19

Creating a mapping rule building area 19
Modifying a mapping rule building area . . . 19
Deleting a mapping rule building area 19

Using the XSL Editor 20
Creating a mapping rule 20

Element-to-element mapping 20

Attribute-to-attribute mapping 20
Creating a custom mapping expression . . . 20

Deleting a mapping rule 21
Processing an XML transformation 21
Customizing the Mapping Rule table 21
Displaying a complete XSL rule/value expression 21

Chapter 4. Generating a DTD and
schema 23
Setting up the DTD Generator 23
Generating a DTD 24
Generating a schema and a detailed XML file . . . 26

Chapter 5. Resolving identifiers 27
Setting up the ID Resolver 27

Setting how the ID Resolver handles timestamps 28
Setting how the ID Resolver handles storage . . 28
Setting how the ID Resolver handles database
drivers 29

Determining how to process data 29
Choosing the load method 29
Choosing the update method 30
Choosing the mixed method. 30

Using the ID-resolution techniques 31
Specifying a properties file with the ID Resolver 31

Using a properties file to generate identifiers 32
Using a properties file with compound keys 33
Using a properties file with cascaded primary
keys 34

Using internal-alias resolution 35
Partial example of using internal-alias ID
resolution 36

Using unique-index resolution 36
Partial example of unique-index resolution . . 37

Loading data into the MEMBER table 38
Creating a foreign relationship using the REFKEYS
table. 39
Troubleshooting errors. 40

Chapter 6. Loading data 41
Setting up the Loader 41

Ignoring elements in the input file. 42
Inserting NULL into a column 42
Loading timestamps and date data 42
Loading current timestamps 43

Example of loading current timestamps . . . 45
Examples of adding durations to current
timestamps 45

Managing event queues 46
Running with different database software and
operating systems 46
Substituting a component. 49
Using Product Advisor search-space
synchronization 50

© Copyright IBM Corp. 2002 iii

Customizing Product Advisor search-space
synchronization 53

Determining how to process data when using the
Loader 54

Choosing the load method 54
Choosing the import method 55
Choosing the SQL import method 55
Other considerations 55

Loading large documents 56
Troubleshooting tip 57

Chapter 7. Extracting data 59
Creating an extraction filter 59
Setting up the Extractor 62

Chapter 8. Using the Loader package
logger 63
Configuring logging in your environment for
Windows NT, Windows 2000, AIX, Linux, and
Solaris systems 63

Example of setting the classpath variable . . . 63
Example of specifying the
com.ibm.wca.logging.configFile system property . 63

Customizing logging for the Loader package . . . 64
Handlers 64
Filters 66
Formats 66
Example: WCALoggerConfig.xml and
WCALogger.dtd 67

WCALoggerConfig.xml 67
WCALogger.dtd 68

Chapter 9. Using the Loader package
error reporter 69

Chapter 10. Configuring Loader
package commands and scripts 71

Part 3. Using the Web editor 73

Chapter 11. Setting up the Web editor 75
Configuring the Web editor 76

Editing the webeditor.properties file 76
Changing the location of the temporary files . . 77

Creating an XML form-description file using the
DTD Generator 78
Customizing the XML form description 80

Editing form names 82

Changing a field description. 83
Adding a drop-down menu 83
Adding field help 84
Customizing search results and the work-session
list 85

Editing the weProcessList file 85
Editing the webeditor.xsl file 88

Chapter 12. Working with catalogs. . . 89
Adding a record to a table using the Web editor . . 89
Modifying a record in a table using the Web editor 90
Deleting a record from a table using the Web editor 91

Part 4. Command Reference 93

Chapter 13. DTD Generate command 95
DTD Generate command for Windows, AIX, Linux,
and Solaris systems. 95
DTD Generate command for iSeries systems . . . 97

Chapter 14. Extract command 99
Extract command for Windows, AIX, Linux, and
Solaris systems 99
Extract command for iSeries systems 100

Chapter 15. ID Resolve command. . . 101
ID Resolve command for Windows, AIX, Linux,
and Solaris systems 101
ID Resolve command for iSeries systems 103

Chapter 16. Load command 105
Load command for Windows, AIX, Linux, and
Solaris systems 105
Load command for iSeries systems 107

Chapter 17. Text Transform command 109
Text Transform command for Windows, AIX,
Linux, and Solaris systems 109
Text Transform command for iSeries systems . . . 110

Chapter 18. XML Transform command 111
XML Transform command for Windows, AIX,
Linux, and Solaris systems 111
XML Transform command for iSeries systems . . 112

Notices 113
Trademarks and service marks. 115

iv Catalog Manager User’s Guide

Before you begin

The IBM WebSphere Commerce Catalog Manager User’s Guide provides information
about the WebSphere Commerce Catalog Manager. In particular, it provides details
on the following topics:
v Transforming, loading, and extracting data using the Catalog Manager’s tools

and utilities
v Using the Catalog Manager Web editor to work with catalog data
v Catalog Manager commands

Conventions used in this book
This book uses the following conventions:

Boldface type indicates commands or graphical user interface (GUI) controls such as
names of fields, buttons, or menu choices.

Monospaced type indicates examples of text that you enter exactly as shown as well as file
names and directory paths.

Italic type is used for emphasis and for variables for which you substitute your
own values.

Windows indicates information that is specific to WebSphere Commerce for
Windows®.

NT indicates information that is specific to WebSphere Commerce for
Windows NT®.

2000 indicates information that is specific to WebSphere Commerce for
Windows 2000®.

AIX indicates information that is specific to WebSphere Commerce for AIX®.

Solaris indicates information that is specific to WebSphere Commerce for
Solaris™ Operating Environment software.

Linux indicates information that is specific to WebSphere Commerce for Linux.

400 indicates information that is specific to WebSphere Commerce for IBM
Eserver

™ iSeries™ (formerly called AS/400®)

indicates information that is specific to DB2® Universal Database.

indicates information that is specific to the Oracle® database.

indicates information that is specific to WebSphere Commerce Business
Edition.

indicates information that is specific to WebSphere Commerce
Professional Edition.

© Copyright IBM Corp. 2002 v

Who should read this book
This book should be read by site developers, administrators, and contributors who
need to understand how to use the WebSphere Commerce Catalog Manager as
well as by other business users who need to understand its functions.

In particular, this guide should be read by WebSphere Commerce Store Developers
and Site Administrators who need to understand how to use the various functions
of the WebSphere Commerce Catalog Manager.

WebSphere Commerce Store Developers and Site Administrators who are
performing programmatic extensions should also have knowledge in the following
areas:
v Database technology
v Enterprise JavaBeans™ component architecture
v Hypertext Markup Language (HTML)
v Java™

v JavaServer Pages™ technology
v VisualAge® for Java™, Enterprise Edition, Version 3.5 or later
v Extensible Markup Language (XML)

Category and Product Managers should read this guide in order to understand
how to communicate catalog, product, and item requirements to Store Developers.
Category and Product Managers should also understand how the Web editor can
be used for updating the store’s catalog.

Where to find more information
This user’s guide is available in Adobe Portable Document Format (PDF) from the
WebSphere Commerce Web site. Please check the WebSphere Commerce Technical
Library Web site for the most recent versions of this document and other
information related to WebSphere Commerce:

v

http://www.ibm.com/software/webservers/commerce/wc_be/lit-tech-general.html

v

http://www.ibm.com/software/webservers/commerce/wc_pe/lit-tech-general.html

vi Catalog Manager User’s Guide

Part 1. Overview of the Catalog Manager

WebSphere Commerce Catalog Manager provides a generic toolkit that provides
various functions that can be strung together in the required sequence to solve
your particular catalog-management problems. It is flexible enough to handle
customizations that are made to the WebSphere Commerce schema.

Catalog Manager provides the ability to aggregate information from multiple
sources into a consolidated WebSphere Commerce system and to remap all that
diverse data into a standard catalog- and product-definition format using XML
files as the standard means of managing information.

Catalog Manager provides the means for you to do the following:
v Import data from multiple input sources in the form of ASCII and XML files into

WebSphere Commerce
v Transform data from ASCII to XML format and back again
v Remap data from one XML format to another
v Aggregate data from multiple input streams into one aggregated database
v Create/edit/delete data through a Web-browser interface

Catalog Manager includes the following:
v Catalog Manager Loader package

This package consists primarily of command utilities for preparing and loading
data into a WebSphere Commerce database. You can use the Loader package to
load large amounts of data and to update data in your WebSphere Commerce
database.
The Loader package also allows you to do the following:
– Extract data from a database as an XML document
– Transform XML data into alternate XML formats
– Transform data between a character-delimited variable format and an XML

data format
v Catalog Manager administrative tools

Catalog Manager also includes the following two tools with a user interface to
assist in the administration of its functions:
– Text Transformation tool
– XSL Editor

v Catalog Manager Web editor
The Web editor enables you to create, delete, and make changes to your catalog
data through a Web browser.

© Copyright IBM Corp. 2002 1

2 Catalog Manager User’s Guide

Part 2. Transforming, loading, and extracting data

© Copyright IBM Corp. 2002 3

4 Catalog Manager User’s Guide

Chapter 1. Introduction

The Catalog Manager Loader package consists primarily of utilities for preparing
and loading data into a WebSphere Commerce database. You can use the Loader
package to load large amounts of data and to update data in your WebSphere
Commerce database. The Loader package also allows you to do the following:
v Extract data from a database as an XML document
v Transform XML data into alternate XML formats
v Transform data between a character-delimited variable format and an XML data

format

The Catalog Manager also includes the following two tools with a user interface to
assist in the administration of its functions:
v Text Transformation tool
v XSL Editor

Utilities
The WebSphere Commerce Loader package includes utilities for preparing and
loading data into a WebSphere Commerce database. You can use these utilities to
load large and small amounts of data as well as to update data in your WebSphere
Commerce database.

The loading process consists of the steps necessary in order to move data into your
WebSphere Commerce database:
1. Generating a DTD using the DTD Generator
2. Resolving identifiers in the input files using the ID Resolver
3. Loading the data using the Loader

The Loader package also includes utilities for extracting data from a database as an
XML document and for transforming XML data into alternate XML formats.

The Loader package consists of the following utilities:
v Text Transformer

The Text Transformer transforms data between a character-delimited variable
format and an XML data format.
See Chapter 2, “Transforming text” on page 9 for more information.

v XML Transformer

The XML Transformer changes, aggregates, and remaps the data in an XML
document to alternate XML formats for use by other users or systems as needed.
See Chapter 3, “Transforming XML data” on page 17 for more information.

v DTD Generator

The DTD specifies structural elements and markup definitions that can be used
within an XML data document. For example, a DTD can list elements to be used
in a document and specify the attributes that each element can take.
The DTD Generator is a utility that creates a DTD for the Loader to use based
on the database schema. This DTD describes the tables and columns into which
the Loader imports data. The DTD Generator can also create a schema and
detailed XML document that can be used with the Catalog Manager Web editor.

© Copyright IBM Corp. 2002 5

The DTD Generator generates a DTD based on the target database to which
your data must conform. This DTD will be used throughout the load process.
The DTD Generator needs to be run only once.
See Chapter 4, “Generating a DTD and schema” on page 23 for more
information.

v ID Resolver

The ID Resolver is a utility that generates identifiers for XML elements that
require them. If your XML content already supplies identifiers, you do not have
to run the ID Resolver.
The ID Resolver updates a set of XML elements with their associated identifiers.
This step is essential because Loader package XML files map directly to the
target database schema. As such, they must have identifiers.
The ID Resolver includes an error reporter that generates an exception document
if there is an error.
See Chapter 5, “Resolving identifiers” on page 27 for more information.

v Loader

The Loader uses valid and well-formed XML as input to load data into the
database. Elements of the XML document map to table names in the database,
and element attributes map to columns. The Loader is the most common means
of loading data into a system.
The Loader allows column-level updates to a table. It also allows you to delete
data from a database.
The following example shows an excerpt from well-formed and valid XML input
to the Loader:

<ADDRBOOK
ADDRBOOK_ID="11801"
MEMBER_ID="100"
DISPLAYNAME="Friends"
DESCRIPTION="All my friends"
TYPE="P"

/>

In the above example, ADDRBOOK is the table name and the columns to be
updated are indicated by attributes of the ADDRBOOK element.

The Loader utility includes the following features:
– Error reporter

The Loader includes an error reporter that generates an exception document if
there is an error.

– Product Advisor search-space synchronization

Product Advisor search spaces are created by extracting information from the
WebSphere Commerce catalog and representing that information in a form
suitable for searching. The search spaces and the catalog become
unsynchronized when the catalog is updated. To avoid delay in synchronizing
the search spaces with the catalog, you can enable the Product Advisor
search-space synchronization feature of the Loader.
If Product Advisor search-space synchronization is enabled, the Loader will
schedule appropriate search-space commands by adding the command
information to the scheduler job table SCHCONFIG and scheduler
job-instance table SCHSTATUS as indicated in the following table.

6 Catalog Manager User’s Guide

Table Mode Search-Space command Condition

CATENTRY Update UpdateSearchSpaces Update publish flag

Delete RemoveProductFromAllSearchSpaces Delete product

CATENTDESC Add UpdateSearchSpaces Add description/language

Update UpdateSearchSpaces Update publish flag

Update description data

Delete UpdateSearchSpaces Remove description/language

LISTPRICE Add UpdateSearchSpaces Add list price

Update UpdateSearchSpaces Update list price

Delete UpdateSearchSpaces Delete list price

ATTRVALUE Add UpdateSearchSpaces Add user-defined value

Update UpdateSearchSpaces Update user-defined value

Delete UpdateSearchSpaces Delete user-defined value

CATENTATTR Add UpdateSearchSpaces Add attribute

Update UpdateSearchSpaces Update attribute

Delete UpdateSearchSpaces Delete attribute

CATGPENREL Add AddProductsToSearchSpace Add product to category

Delete RemoveProductsFromSearchSpace Remove product from category

See Chapter 6, “Loading data” on page 41 for more information.
v Extractor

The Extractor uses a query against a database to extract selected subsets of data
from the database into an XML document. The data to be extracted from the
database is specified using an extraction-filter XML document.
The function of the Extractor is opposite that of the Loader. You use the
Extractor to extract selective subsets of data from the WebSphere Commerce
database in the form of XML files. You can extract data on products related to an
upcoming holiday, for example, or you can extract information from a
consolidated database for use with other systems.
See Chapter 7, “Extracting data” on page 59 for more information.

The Loader package also has a logger feature. Each utility in the Loader package
creates messages to indicate success, failure, and errors as well as to provide
program trace information.

Chapter 1. Introduction 7

Administrative tools
The Catalog Manager includes the following tools to assist in the administration of
its functions:

Text Transformation tool
The Text Transformation tool helps the administrator to prepare the
information needed to process a transformation of data between a
character-delimited variable format and an XML data format.

XSL Editor
The XML Transformer uses Extensible Stylesheet Language (XSL) to define
the rules for transforming an XML file into another XML file. The mapping
function in the XSL Editor gives the administrator a visual interface with
which to establish the association from an element in a source document
type definition (DTD) to an element in a target DTD.

8 Catalog Manager User’s Guide

Chapter 2. Transforming text

The Catalog Manager gives you the ability to convert ASCII-file output from other
tools (such as spreadsheet programs) into an XML data format that can be entered
into the WebSphere Commerce database.

The Text Transformation tool prepares the information needed to process a
transformation of data between a character-delimited variable format and an XML
data format. The following views are provided:
1. The Text Schema Edit View allows you to create and modify the XML schema

file to be used in a transformation.
2. The Transformation Command Edit View allows you to create and modify the

actual commands used to run the transformation process.
3. The Transformation Command Process View allows you to launch the

transformation process.

© Copyright IBM Corp. 2002 9

Launching the Text Transformation tool
To launch the Text Transformation tool, use the appropriate script or command
provided in the WebSphere Commerce directory:

v NT drive:\WebSphere\CommerceServer\bin\TextTrans.cmd

v 2000 drive:\Program Files\WebSphere\CommerceServer\bin\TextTrans.cmd

v AIX /usr/WebSphere/CommerceServer/bin/TextTrans.sh

v Solaris Linux /opt/WebSphere/CommerceServer/bin/TextTrans.sh

400 In iSeries environments, administrators should first copy the files
necessary in order to run the Text Transformation tool to their Windows NT or
Windows 2000 machines. The following is an example of how to do this:
1. Create a new directory on the Windows machine (drive:\TextTrans for

example).
2. Create the following new subdirectories under drive:\TextTrans:

\bin
\lib\loader
\wcsadmin

3. Copy the files from the iSeries machine to these directories according to the
following chart:
From To
/QIBM/ProdData/WebCommerce drive:\TextTrans

/bin \bin
/TextTrans.cmd --------> \TextTrans.cmd

/lib/loader \lib\loader
/wcmxmlp.jar --------> \wcmxmlp.jar
/wcmxslt.jar --------> \wcmxslt.jar

/wcsadmin \wcsadmin
/acsxml.ico --------> \acsxml.ico
/swing.jar --------> \swing.jar
/TextTransformerUI.zip --------> \TextTransformerUI.zip
/TextTransform.cnt --------> \TextTransform.cnt
/TextTransform.hlp --------> \TextTransform.hlp
/TextTransform.reg --------> \TextTransform.reg

4. Modify the TextTrans.cmd file on the Windows machine by inserting the
following text:
set WCS_HOME=drive:\TextTrans

before the following:
set lib=%WCS_HOME%\lib\loader

5. Launch the Text Transformation tool by running TextTrans.cmd on the
Windows machine.

10 Catalog Manager User’s Guide

Using the Text Schema Edit View
The following procedures are related to creating and modifying an XML schema
file for transforming data between a character-delimited variable format and an
XML format.

Creating a schema file
To create a new schema file, do the following:
1. Launch the Text Transformation tool.
2. Select File > New, or click the New icon on the toolbar.
3. Select a path, and type the name of the XML schema file to create.

Note: The default file name is ″Default.xml.″
4. Select CSV Format.

Note: Do not select WebSphere Commerce Suite Format. This option is only
used with earlier versions of WebSphere Commerce.

5. Click OK when you are finished.

Now you can create new elements and attributes by following the steps indicated
below.

Opening a schema file
To open a schema file, do the following:
1. Launch the Text Transformation tool.
2. Select File > Open, or click the Open icon on the toolbar.
3. Select a schema file to be opened.
4. Click OK when you are finished.

Now you can modify the elements and attributes by following the steps described
below.

Saving a schema file
To save a schema file, do the following:
1. Launch the Text Transformation tool.
2. To save any changes that you make to the schema, select File > Save or click

the Save icon on the toolbar.
3. To save a copy of the schema with a new name, do the following:

a. Select File > Save As.
b. Select a path and type the name of the XML file to create.
c. Click OK when you are finished.

Editing a schema file
To edit a schema file, open the schema file as described above and follow these
procedures.

Adding an element
To add an element, do the following:
1. Type a new element name in the Element List field.
2. Click the Add row icon.

Chapter 2. Transforming text 11

Removing an element
To remove an element, do the following:
1. Select an element name.
2. Click the Remove row icon.

Replacing an element
To replace an element, do the following:
1. Type a new element name in the Element List field.
2. Select the name of the element to be replaced.
3. Click the Replace row icon.

Moving an element one row up
To move an element one row up, do the following:
1. Select the name of the element to be moved up.
2. Click the Move row up icon.

Moving an element one row down
To move an element one row down, do the following:
1. Select the name of the element to be moved down.
2. Click the Move row down icon.

Adding an attribute
To add an attribute, do the following:
1. Type a new attribute name in the Attribute List field.
2. Click the Add row icon.

Removing an attribute
To remove an attribute, do the following:
1. Select an attribute name.
2. Click the Remove row icon.

Replacing an attribute
To replace an attribute, do the following:
1. Type a new attribute name in the Attribute List field.
2. Select the name of the attribute to be replaced.
3. Click the Replace row icon.

Moving an attribute one row up
To move an attribute one row up, do the following:
1. Select the name of the attribute to be moved up.
2. Click the Move row up icon.

Moving an attribute one row down
To move an attribute one row down, do the following:
1. Select the name of the attribute to be moved down.
2. Click the Move row down icon.

12 Catalog Manager User’s Guide

Changing a schema file structure
The File Structure view in the lower pane of the Text Schema Edit View describes
the layout of a character-delimited variable file. The following fields are required
in the expected file structure:

Field Separator:
Specifies the delimiter that separates attribute values. The default is a
comma (″,″).

Record Separator:
Specifies the delimiter that separates data records. The default is
″
″ (This is equivalent to an entity reference to \r\n.)

String Delimiter:
Specifies the delimiter that indicates the string start and end boundary. The
default is a single quote (″ ’ ″).

Header Included:
A Boolean value, specified as ″true″ if there is a header line in the text data
file and ″false″ if there is no header line in the text data file. If there is a
header line, it must conform to the XML rules for a tag name because the
header will be used as the XML tag name in this case. The default is
″false.″

Number of header lines:
Specifies the line number header lines that exist in the text data file. The
default is a zero (″0″).

Preparing a schema file to transform data from an XML to a
character-delimited variable format

If you are using an XML schema file that was created using the Text Schema Edit
View to transform data from an XML format to a character-delimited variable
format, you must use a text editor to change the datatype specification in the
schema file from ″CSV Format″ to ″XML Format″ before processing the
transformation.

Chapter 2. Transforming text 13

Using the Transformation Command Edit View
Using the Transformation Command Edit View, you can create a new command
file, open an existing command file, or save changes to a command file. The
default command file is named ″Manifest.txt.″

You can create a new command, remove a command, replace a command with
edited information, or change the order of a command.

Note: The command file is automatically saved whenever the commands table is
updated.

Creating a command
To create a new command, do the following:
1. Specify the source file, either a character-separated variable format file (with a

.csv extension) or an XML format file (with a .xml extension).
2. Specify the XML schema file to be used in the transformation.
3. Specify the name of the output file to be created or modified during the

transformation process (that is, where the new data will be stored), either an
XML format file (with a .xml extension) or a character-separated variable
format file (with a .csv extension).

4. Specify a command mode.
Select Create if the output file is to be created or Append if the output data is
to be appended to an existing data file.

5. Click the Add row icon.

Removing a command
To remove a command, do the following:
1. Select a command.
2. Click the Remove row icon.

Editing or replacing a command
To edit or replace a command, do the following:
1. Click the Edit command icon.

The row data is filled in for the appropriate input fields.
2. Change the text in the appropriate input fields.
3. Click the Replace row icon to update the row.

Moving a command one row up
To move a command one row up, do the following:
1. Select a command.
2. Click the Move row up icon.

Note: This changes the transformation-process sequence.

14 Catalog Manager User’s Guide

Moving a command one row down
To move a command one row down, do the following:
1. Select a command.
2. Click the Move row down icon.

Note: This changes the transformation-process sequence.

Clearing a command
To clear a command, do the following:
1. Select a command.
2. Click the Clear input fields icon.

This clears the text in the source-file, schema-file, and output-file fields.

Using the Transformation Process View
To launch the text-transformation process, do the following:
1. Type or browse to the name of the parameter file in the File field.
2. Click Process.

The output area below the Process button shows information indicating the status
of the transformation process. You can save the output information by clicking the
Save button at the bottom of the text area, or you can clear all status information
by clicking the Clear button.

Chapter 2. Transforming text 15

16 Catalog Manager User’s Guide

Chapter 3. Transforming XML data

The Extensible Stylesheet Language (XSL) provides the following:
1. Language for specifying formatting for XML documents
2. Language that describes how to transform an XML file into another regularly

structured file
The transformation capability of XSL can be used to transform an XML file into
another XML file that conforms to a different XML schema or DTD.

To transform an XML file into an alternate XML format, you must specify the rules
for the transformation using a transform XSL rule file.

The following example transforms the data in MemberSubsystemExtracted.xml
using MemberSubsystem.xsl as the transform XSL rule file with Japanese as the
national language:

v NT 2000 AIX Solaris Linux

java com.ibm.wca.XMLTransformer.XMLTransformer -infile MemberSubsystemExtracted.xml
-transform MemberSubsystem.xsl -outfile TransMbrStr.xml -param ’language="-10"’

v 400

QWEBCOMM/TRNWCSXML INFILE(MemberSubsystemExtracted.xml)
TRANSFORM(MemberSubsystem.xsl) INSTROOT(/QIBM/UserData/WebCommerce/instances/my_inst)
OUTFILE(TransMbrStr.xml) PARAM(’language=-10’)

The XML Transformer uses XSL to define the rules for transforming an XML file
into another XML file. The mapping function in the XSL Editor gives you a visual
interface with which you can establish the association from an element in a source
DTD to an element in a target DTD. Given two DTDs, you can develop XSL rules
that determine how an XML file that conforms to the first (source) DTD is
transformed into a file that conforms to the second (target) DTD.

© Copyright IBM Corp. 2002 17

Launching the XSL Editor
To launch the XSL Editor, use the appropriate script or command provided in the
WebSphere Commerce directory:

v NT drive:\WebSphere\CommerceServer\bin\XSLEditor.cmd

v 2000 drive:\Program Files\WebSphere\CommerceServer\bin\XSLEditor.cmd

v AIX /usr/WebSphere/CommerceServer/bin/XSLEditor.sh

v Solaris Linux /opt/WebSphere/CommerceServer/bin/XSLEditor.sh

400 In iSeries environments, administrators should first copy the files
necessary in order to run the XSL Editor to their Windows NT or Windows 2000
machines. The following is an example of how to do this:
1. Create a new directory on the Windows machine (drive:\XMLTrans for

example).
2. Create the following new subdirectories under drive:\TextTrans:

\bin
\lib\loader
\wcsadmin

3. Copy the files from the iSeries machine to these directories according to the
following chart:
From To
/QIBM/ProdData/WebCommerce drive:\XMLTrans

/bin \bin
/XSLEditor.cmd --------> \XSLEditor.cmd

/lib/loader \lib\loader
/wcmxmlp.jar --------> \wcmxmlp.jar
/wcmxslt.jar --------> \wcmxslt.jar

/wcsadmin \wcsadmin
/config.dtd --------> \acsxml.ico
/swing.jar --------> \swing.jar
/XML_transform.ico --------> \XML_transform.ico
/XMLTransformerUI.zip --------> \XMLTransformerUI.zip
/XMLTransformWP.xml --------> \XMLTransformWP.xml
/XMLTransformWP.dtd --------> \XMLTransformWP.dtd
/XMLRuleConfig.xml --------> \XMLRuleConfig.xml
/XMLTransform.cnt --------> \XMLTransform.cnt
/XMLTransform.hlp --------> \XMLTransform.hlp
/XMLTransform.reg --------> \XMLTransform.reg

4. Modify the XSLEditor.cmd file on the Windows machine by inserting the
following text:
set WCS_HOME=drive:\XMLTrans

before the following:
set lib=%WCS_HOME%\lib\loader

5. Launch the XMLTransformation tool by running XSLEditor.cmd on the
Windows machine.

18 Catalog Manager User’s Guide

Working with mapping rule building areas
When you launch the XSL Editor, it displays the Mapping Rule Building Area
window. Use this window to manage your mapping rule building areas.

Creating a mapping rule building area
To create a mapping rule building area, do the following:
1. Launch the XSL Editor.
2. From the drop-down menu, select [New].
3. In the Name field, type a name for the new mapping rule building area.
4. In the Description field, type a short description of the new mapping rule

building area.
5. In the Source Schema field, type the name of an existing file or navigate to an

existing file to be used as the source schema.
6. In the Target Schema field, type the name of an existing file or navigate to an

existing file to be used as the target schema.
7. In the XSL Rule File field, type a name for the new rule file to be created.

You can specify a complete path here. If you do not give a path, the file is
created in the current working directory.

8. Click Open to create and open the new mapping rule building area.

Modifying a mapping rule building area
To modify a mapping rule building area, do the following:
1. Launch the XSL Editor.
2. Select the mapping rule building area that you want to modify from the

drop-down menu.
3. Click Open to open the mapping rule building area.
4. Update the fields that you wish to change.
5. Click Save to save your changes.

Deleting a mapping rule building area
To delete a mapping rule building area, do the following:
1. Launch the XSL Editor.
2. Select the mapping rule building area that you want to delete from the

drop-down menu.
3. Click the Remove button to remove the entry.

Note: Removing a mapping rule building area does not delete the physical files
from the disk.

Chapter 3. Transforming XML data 19

Using the XSL Editor
When you open a mapping rule building area using the XSL Editor, the mapping
rule building area is displayed in the XSL Editor main window.

In the XSL Editor main window, the left pane shows a hierarchical view of the
source DTD that is labeled ″Source Schema.″ The right pane shows a hierarchical
view of the target DTD that is labeled ″Target Schema.″

Creating a mapping rule

Element-to-element mapping
Select and drag an element from the source hierarchy and drop it onto an element
in the target hierarchy. An XSL rule is generated and displayed in the Mapping
Rule view located at the bottom of the window.

Here is an example of a generated XSL rule:

<xsl:template match="merchant">
<xsl:element name="MERCHANT">
</xsl:element>

</xsl:template>

Note: Any required but non-existing ancestor relationships are automatically
generated.

Attribute-to-attribute mapping
Select and drag an attribute from the source hierarchy and drop it onto an attribute
in the target hierarchy. An XSL rule is generated and displayed in the Mapping
Rule view located at the bottom of the window.

Here is an example of a generated XSL rule:

<xsl:attribute name="MEADDR1">
<xsl:apply-templates select="@mecmail1"/>

</xsl:attribute>

Note: Any required but non-existing ancestor relationships are automatically
generated.

Creating a custom mapping expression
To create a custom mapping expression, first select an element or attribute from the
target hierarchy. Then, right-click and select the Create Custom Expression menu.
The Create Custom Expression window displays with a list of available Templates
and Rule Expressions in two drop-down menus. Complete the custom expression
doing the following:
1. Select a template to which the custom expression is to be added.
2. Select a rule expression to be created (Constant Expression for example).
3. Type a value in the Value column for each parameter listed in the table, and

press Enter to commit the value.
4. Click OK to complete the creation step; or click Cancel to cancel without

creating a rule.

20 Catalog Manager User’s Guide

The generated XSL rule is based on the custom expression defined in the
rule-configuration file (XSLRuleConfig.xml). You can modify the rule-configuration
file and add new rules if needed. To make a rule available for use in the Rule
Expressions list, set the Visibility attribute for that rule to ″true.″

Deleting a mapping rule
To delete a mapping rule, do the following:
1. Select a rule from the Mapping Rule table.
2. Right-click, and select Delete.

The rule and all its descendents are deleted.

Note: The updated mapping rules and generated XSL rules are persisted
automatically.

Processing an XML transformation
To process an XML transformation, do the following:
1. Select Tools > Transform to bring up the Process Transform window.
2. Complete the required fields:

a. In the Input XML File field, type or browse to the path and name of the
source XML data file.

b. In the XSL Rule File field, type or browse to the path and name of the
mapping-rule file to be used for the transformation.
If a mapping rule building area is open, this field is pre-filled with the
mapping-rule file path currently open in the mapping rule building area.

c. In the Output XML File field, type or browse to a path and name for the
new XML data file to be created during the transformation process.

3. Click Start to start the XML transformation process; or click Close to exit the
window without processing a transformation.

Customizing the Mapping Rule table
To customize the Mapping Rule table, do the following:
1. To hide a column in the table, right-click a cell in the table and select Hide

column.
2. To show a hidden column in the table, do the following:

a. Right-click a cell in the table.
b. Select Show columns to bring up the list of hidden columns.
c. Select the column from the list.

Note: To select multiple columns, press and hold Shift then click the
column names.

d. Click OK to show the selected columns or Cancel to cancel the operation.
3. To show all hidden columns in table, right-click a cell in the table and select

Show all columns.
All columns are shown in the default order.

Displaying a complete XSL rule/value expression
From the Value Expression or XSL Rule columns, clicking a cell brings up a
window with the completed rule content for the selected row.

Chapter 3. Transforming XML data 21

22 Catalog Manager User’s Guide

Chapter 4. Generating a DTD and schema

The DTD Generator can create a DTD and a schema to use with the Loader
package. The DTD Generator uses an input file containing database-table names
and generates either a DTD or a DTD and a schema with a detailed XML file
describing the database, depending on how you invoke the DTD Generate
command.

Setting up the DTD Generator
The Loader DTD maps directly to the WebSphere Commerce database schema.
Each table is an element, and each column is an attribute.

Example: Mapping a Loader DTD to a database schema

DDL statements for the CATENTRY table DTD

CREATE TABLE
"CATENTRY" (
"CATENTRY_ID" BIGINT NOT NULL ,
"MEMBER_ID" BIGINT NOT NULL ,
"CATENTTYPE_ID" CHAR(16) NOT NULL ,
"MARKFORDELETE" INTEGER NOT NULL ,
"PARTNUMBER" VARCHAR(64) NOT NULL ,
"MFPARTNUMBER" VARCHAR(64) ,
"MFNAME" VARCHAR(64) ,
"URL" VARCHAR(254) ,
"FIELD1" INTEGER ,
"FIELD2" INTEGER ,
"FIELD3" DECIMAL(20,5) ,
"FIELD4" VARCHAR(254) ,
"FIELD5" VARCHAR(254) ,
"LASTUPDATE" TIMESTAMP ,
"OID" VARCHAR(64) ,
"ONSPECIAL" INTEGER ,
"ONAUCTION" INTEGER ,
"BUYABLE" INTEGER ,
"BASEITEM_ID" INTEGER ,
"CLASSIFGRP_ID" INTEGER ,
"ITEMSPC_ID" INTEGER ,
"STATE" INTEGER

);

<!ELEMENT CATENTRY EMPTY>
<!ATTLIST CATENTRY

CATENTRY_ID CDATA #REQUIRED
MEMBER_ID CDATA #REQUIRED
CATENTTYPE_ID CDATA #REQUIRED
MARKFORDELETE CDATA #REQUIRED
PARTNUMBER CDATA #REQUIRED
MFPARTNUMBER CDATA #IMPLIED
MFNAME CDATA #IMPLIED
URL CDATA #IMPLIED
FIELD1 CDATA #IMPLIED
FIELD2 CDATA #IMPLIED
FIELD3 CDATA #IMPLIED
FIELD4 CDATA #IMPLIED
FIELD5 CDATA #IMPLIED
LASTUPDATE CDATA #IMPLIED
OID CDATA #IMPLIED
ONSPECIAL CDATA #IMPLIED
ONAUCTION CDATA #IMPLIED
BUYABLE CDATA #IMPLIED
BASEITEM_ID CDATA #IMPLIED
CLASSIFGRP_ID CDATA #IMPLIED
ITEMSPC_ID CDATA #IMPLIED
STATE CDATA "1"

>

You can set the way that the DTD Generator functions by doing the following:
1. Create a new DTD Generator customizer property file.

v NT 2000 Solaris Linux

DB2ConnectionCustomizer.properties is located in the DTDGenerator.zip
archive. Extract this file, rename it but keep the .properties extension, and
place it in a directory that is in the classpath. Important: Do not remove or
modify the existing DB2ConnectionCustomizer.properties file.

© Copyright IBM Corp. 2002 23

v 400

ISeries_GENWCSDTD_Customizer.properties is located in the
/QIBM/ProdData/WebCommerce/properties directory. Copy this file to the
/instroot/xml directory, rename the new file but keep the .properties
extension, then make any necessary changes to the new file. Important: Do
not remove or modify the original
ISeries_GENWCSDTD_Customizer.properties file.

2. Modify the database-driver values in the new file. For example:

DBVendorName = DB2
DBDriverName = COM.ibm.db2.jdbc.app.DB2Driver
DBURL = jdbc:db2:

where:
v DBVendorName is used to select the type of database.

The options are the following:
– DB2 Universal Database for iSeries (DB2/iSeries)
– DB2 for other operating systems (DB2)
– Oracle database (Oracle)

v DBDriverName is used to select the JDBC driver.
The options are the following:
– DB2 Universal Database for iSeries (com.ibm.db2.jdbc.app.DB2Driver)
– DB2 for other operating systems (COM.ibm.db2.jdbc.app.DB2Driver)
– Oracle database (oracle.jdbc.driver.OracleDriver)

v DBURL is used to specify the URL to access the database.
The options are the following:
– DB2 Universal Database for iSeries (jdbc:db2://)
– DB2 for other operating systems (jdbc:db2:)
– Oracle database (jdbc:oracle:oci8:@)

3. Specify the new file name as the value of the customizer parameter of the DTD
Generate command.

Generating a DTD
The TableNames.txt input file contains the following database-table names, one on
each line:

MEMBER
ADDRBOOK
ADDRESS

Here is an example of how the DTD Generator can be invoked:

v NT 2000 AIX Solaris Linux

java com.ibm.wca.DTDGenerator.GenerateDTD -dbname MALL -dbuser db2inst1
-dbpwd db2ibm -outfile wc.dtd -infile TableNames.txt

v 400

QWEBCOMM/GENWCSDTD DATABASE(DATABASE_NAME) SCHEMA(MALL)
INSTROOT(/QIBM/UserData/WebCommerce/instances/mser)
PASSWD(mypassword) OUTFILE(wc.dtd) INFILE(TableNames.txt)

24 Catalog Manager User’s Guide

The output file wc.dtd contains the following:

<!ELEMENT MALL ((MEMBER | ADDRBOOK | ADDRESS)*)>
<!ELEMENT MEMBER EMPTY>
<!ATTLIST MEMBER

MEMBER_ID CDATA #REQUIRED
TYPE CDATA #REQUIRED
STATE CDATA #IMPLIED

>
<!ELEMENT ADDRBOOK EMPTY>
<!ATTLIST ADDRBOOK

ADDRBOOK_ID CDATA #REQUIRED
MEMBER_ID CDATA #REQUIRED
TYPE CDATA #IMPLIED
DISPLAYNAME CDATA #REQUIRED
DESCRIPTION CDATA #IMPLIED

>
<!ELEMENT ADDRESS EMPTY>
<!ATTLIST ADDRESS

ADDRESS_ID CDATA #REQUIRED
ADDRESSTYPE CDATA #IMPLIED
MEMBER_ID CDATA #REQUIRED
ADDRBOOK_ID CDATA #REQUIRED
ORGUNITNAME CDATA #IMPLIED
FIELD3 CDATA #IMPLIED
BILLINGCODE CDATA #IMPLIED
BILLINGCODETYPE CDATA #IMPLIED
STATUS CDATA #IMPLIED
ORGNAME CDATA #IMPLIED
ISPRIMARY CDATA #IMPLIED
LASTNAME CDATA #IMPLIED
PERSONTITLE CDATA #IMPLIED
FIRSTNAME CDATA #IMPLIED
MIDDLENAME CDATA #IMPLIED
BUSINESSTITLE CDATA #IMPLIED
PHONE1 CDATA #IMPLIED
FAX1 CDATA #IMPLIED
PHONE2 CDATA #IMPLIED
ADDRESS1 CDATA #IMPLIED
FAX2 CDATA #IMPLIED
NICKNAME CDATA #REQUIRED
ADDRESS2 CDATA #IMPLIED
ADDRESS3 CDATA #IMPLIED
CITY CDATA #IMPLIED
STATE CDATA #IMPLIED
COUNTRY CDATA #IMPLIED
ZIPCODE CDATA #IMPLIED
EMAIL1 CDATA #IMPLIED
EMAIL2 CDATA #IMPLIED
PHONE1TYPE CDATA #IMPLIED
PHONE2TYPE CDATA #IMPLIED
PUBLISHPHONE1 CDATA #IMPLIED
PUBLISHPHONE2 CDATA #IMPLIED
BESTCALLINGTIME CDATA #IMPLIED
PACKAGESUPPRESSION CDATA #IMPLIED
LASTCREATE CDATA #IMPLIED
OFFICEADDRESS CDATA #IMPLIED
SELFADDRESS CDATA "0"
FIELD1 CDATA #IMPLIED
FIELD2 CDATA #IMPLIED
TAXGEOCODE CDATA #IMPLIED
SHIPPINGGEOCODE CDATA #IMPLIED

>

Chapter 4. Generating a DTD and schema 25

Generating a schema and a detailed XML file
In this example, the DTD Generator is invoked as follows:

v NT 2000

java com.ibm.wca.DTDGenerator.GenerateDTD -dbname SAMPLE
-dbuser johndoe -dbpwd password -xmlTableDesc c:\sample\sample.xml
-outfile tables.dtd -tablenames "employee,staff"

v AIX Solaris Linux

java com.ibm.wca.DTDGenerator.GenerateDTD -dbname SAMPLE
-dbuser johndoe -dbpwd password -xmlTableDesc usr/sample/sample.xml
-outfile tables.dtd -tablenames "employee,staff"

v 400

QWEBCOMM/GENWCSDTD DATABASE(MYDB) SCHEMA(SAMPLE)
INSTROOT(/QIBM/UserData/WebCommerce/instances/mser) PASSWD(mypassword)
OUTFILE(tables.dtd) TABNAMES(’employee,staff’) XMLTABDESC(/sample/sample.xml)

The schema file is created in the sample directory and has the file name
WCAWebForm.xsd. The sample.xml output file contains the following:

<?xml version="1.0" encoding="UTF-8"?>
<formList xmlns="WCAWebForm.xsd" dbname="SAMPLE" dtdname="tables.dtd">

<form name="EMPLOYEE">
<uniqueIndex name="U2" columns="FIRSTNME,LASTNAME"/>
<uniqueIndex name="U3" columns="MIDINIT,LASTNAME"/>
<field name="EMPNO" type="string" maxlength="6" minOccurs=’1’

uniqueKey="true" showColumnInList="true" />
<field name="FIRSTNME" type="string" maxlength="32" minOccurs=’1’

showColumnInList="true" />
<field name="MIDINIT" type="string" maxlength="1" minOccurs=’1’

showColumnInList="true" />
<field name="LASTNAME" type="string" maxlength="15" minOccurs=’1’

showColumnInList="true" />
<field name="WORKDEPT" type="string" maxlength="3" showColumnInList="true" />
<field name="PHONENO" type="string" maxlength="4"/>
<field name="HIREDATE" type="date" maxlength="10"/>
<field name="JOB" type="string" maxlength="8"/>
<field name="EDLEVEL" type="integer" maxlength="5" minOccurs=’1’ />
<field name="SEX" type="string" maxlength="1"/>
<field name="BIRTHDATE" type="date" maxlength="10"/>
<field name="SALARY" type="decimal" maxlength="9"/>
<field name="BONUS" type="decimal" maxlength="9"/>
<field name="COMM" type="decimal" maxlength="9"/>

</form>
<form name="STAFF">

<field name="ID" type="integer" maxlength="5" minOccurs=’1’
uniqueKey="true" showColumnInList="true" />

<field name="NAME" type="string" maxlength="9" showColumnInList="true" />
<field name="DEPT" type="integer" maxlength="5" showColumnInList="true" />
<field name="JOB" type="string" maxlength="5" showColumnInList="true" />
<field name="YEARS" type="integer" maxlength="5" showColumnInList="true" />
<field name="SALARY" type="decimal" maxlength="7"/>
<field name="COMM" type="decimal" maxlength="7"/>

</form>
</formList>

26 Catalog Manager User’s Guide

Chapter 5. Resolving identifiers

XML data to be loaded into a target database must contain identifiers for XML
elements that require them. To generate or locate identifiers for catalog entities in
the XML document, invoke the ID Resolve command.

The ID Resolver only resolves identifiers for a primary table. A primary table is
one that is listed in the KEYS or SUBKEYS table. If it is necessary to resolve
identifiers for a table that is not in KEYS or SUBKEYS, add the table to the
SUBKEYS table before running the ID Resolver.

The following are examples of situations in which you may want to use the ID
Resolver:
v Loading new content in XML format when identifiers for the data are required
v Updating content when identifiers already exist for an object in the database

The ID Resolver can supply actual identifiers, or identifiers can be resolved using
the following techniques:
v Internal-alias resolution
v Properties-file specification
v Unique-index resolution

Setting up the ID Resolver
You can set how the ID Resolver handles timestamps, storage, and database
drivers by doing the following:
1. Create a new ID Resolver customizer property file.

v NT 2000 AIX Solaris Linux

DB2ConnectionCustomizer.properties is located in the IdResGen.zip archive.
Extract this file, rename it but keep the .properties extension, and place it in
a directory that is in the classpath. Important: Do not remove or modify the
existing DB2ConnectionCustomizer.properties file.

v 400

ISeries_RESWCSID_Customizer.properties is located in the
/QIBM/ProdData/WebCommerce/properties directory. Copy this file to the
/instroot/xml directory, rename the new file but keep the .properties
extension, then make any necessary changes to the new file. Important: Do
not remove or modify the original ISeries_RESWCSID_Customizer.properties
file.

2. Modify the values of the properties specified in the new file.
3. Specify the new file name as the value of the customizer parameter of the ID

Resolve command.

© Copyright IBM Corp. 2002 27

Setting how the ID Resolver handles timestamps
The following default input-timestamp masks are provided in the ID Resolver
customizer property file:

InputTimeStampFormat.1 = yyyy-DD hh:mm:ss.SSSSSS
InputTimeStampFormat.2 = yyyy-MM-dd hh:mm:ss.SSSSSS
InputTimeStampFormat.3 = yyyy-DD-hh.mm.ss.SSSSSS
InputTimeStampFormat.4 = yyyy-MM-dd-HH.mm.ss.SSSSSS
InputTimeStampFormat.5 = yyyy-MM-dd-hh.mm.ss.SSSSSS
InputTimeStampFormat.6 = yyyy-MM-dd HH:mm:ss.SSSSSS
InputTimeStampFormat.7 = yyyy-DD HH:mm:ss.SSSSSS

You can modify these timestamp masks or add as many masks as you want to
your ID Resolver customizer property file. If you add an input timestamp, you
must use the next number in the current sequence. (For example, the next
input-timestamp mask would be InputTimeStampFormat.8 if you were adding to
the above list.)

You can also customize the output timestamp format, microsecond mask, and
database-specific format by modifying the values of the following properties in
your ID Resolver customizer property file:

TargetTimeStampFormat = yyyy-MM-dd HH:mm:ss.SSSSSS
MicroSecondMask = SSSSSS
DatabaseSpecificFormat = YYYY-MM-DD HH24:MI:SS

Setting how the ID Resolver handles storage
Here is the section in the ID Resolver customizer property file that specifies default
values for the properties relevant to persistent hashmaps:

//
/// 0 = Normal hashmap with no backend storage
/// 1 = JDBM
//

PersistentStorageType = 0

//
/// If PersistentStorageType != 0, set MemoryStorageSize to the maximum size
/// of the hashmap in memory data and after that the hashmap will stream
/// the data to a persistent storage as specified
/// If -1, then it uses the normal hashmap with no backend storage
//

MemoryStorageSize = 1

You can specify how the ID Resolver handles persistent storage by setting a value
for PersistentStorageType in your ID Resolver customizer property file.
v If you set PersistentStorageType = 0, the ID Resolver operates in the ″normal″

manner (where the symbol hashmaps exist in memory).
v If you set PersistentStorageType = 1, JDBM is used to persist the symbols and

keys.

You can specify the number of records stored in memory by setting a value for
MemoryStorageSize in your ID Resolver customizer property file.
v A value of ″1″ for MemoryStorageSize indicates that only one record is kept in

memory.

28 Catalog Manager User’s Guide

v A value of ″-1″ for MemoryStorageSize has a special significance, indicating that
all records are kept in memory.

In this case, the ID Resolver reverts to its ″normal″ behavior.

Setting how the ID Resolver handles database drivers
The following lines in the ID Resolver customizer property file specify the default
values for database drivers:

DBVendorName = DB2
DBDriverName = COM.ibm.db2.jdbc.app.DB2Driver
DBURL = jdbc:db2:

where:
v DBVendorName is used to select the type of database.

The options are the following:
– DB2 Universal Database for iSeries (DB2/iSeries)
– DB2 for other operating systems (DB2)
– Oracle database (oracle)

v DBDriverName is used to select the JDBC driver.
The options are the following:
– DB2 Universal Database for iSeries (com.ibm.db2.jdbc.app.DB2Driver)
– DB2 for other operating systems (COM.ibm.db2.jdbc.app.DB2Driver)
– Oracle database (oracle.jdbc.driver.OracleDriver)

v DBURL is used to specify the URL to access the database.
The options are the following:
– DB2 Universal Database for iSeries (jdbc:db2://)
– DB2 for other operating systems (jdbc:db2:)
– Oracle database (jdbc:oracle:oci8:@)

Determining how to process data
The ID Resolve command lets you choose the load, update, or mixed method to
process the input file.
v Use the load method to process the input file if all records in the file do not

exist in the database.
v Use the update method to process the input file if all records in the file exist in

the database.
v Use the mixed method to process the input file if only some records in the file

exist in the database.

Choosing the load method
The load method for the ID Resolver is used to generate new identifiers for the
records that are loaded into the database. With this method, new identifiers are
created for the records. The following example is used to generate identifiers for
new data:

v NT 2000

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method load -customizer customizer -schemaname mall

The load method is the default.

Chapter 5. Resolving identifiers 29

v AIX Solaris Linux

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method load -customizer customizer -schemaname mall

The load method is the default.

v 400

QWEBCOMM/RESWCSID DATABASE(DATABASE_NAME) SCHEMA(MALL)
INSTROOT(/QIBM/UserData/WebCommerce/instances/mser)
PASSWD(mypassword) INFILE(input.xml) OUTFILE(output.xml)
METHOD(*LOAD)

Choosing the update method
If you specify the update method for the ID Resolver, the records in the input file
should already exist in the database. The ID Resolver locates the identifiers in the
database. If a record does not exist in the database, the ID Resolver will not be able
to resolve the identifier for this record and it will indicate that an error has
occurred. The following example is used to locate identifiers for data that already
exist in the database:

v NT 2000

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method update -customizer customizer -schemaname mall

v AIX Solaris Linux

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method update -customizer customizer -schemaname mall

v 400

QWEBCOMM/RESWCSID DATABASE(DATABASE_NAME) SCHEMA(MALL)
INSTROOT(/QIBM/UserData/WebCommerce/instances/mser) PASSWD(mypassword)
INFILE(input.xml) OUTFILE(output.xml) METHOD(*UPD)

Choosing the mixed method
If the input data file contains records that already exist in the database as well as
some records that are new, the ID Resolver must be run using the mixed method.
With this method, the ID Resolver creates new identifiers for records only if the
records do not exist in the database. Otherwise, the existing identifier is obtained
from the database. The following example is used to generate identifiers for new
data and to locate identifiers for data that already exist in the database:

v NT 2000

idresgen -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method mixed -customizer customizer -schemaname mall

v AIX Solaris Linux

./idresgen.sh -dbname db -dbuser user -dbpwd pwd -infile input.xml
-outfile output.xml -method mixed -customizer customizer -schemaname mall

v 400

QWEBCOMM/RESWCSID DATABASE(DATABASE_NAME) SCHEMA(MALL)
INSTROOT(/QIBM/UserData/WebCommerce/instances/mser) PASSWD(mypassword)
INFILE(input.xml) OUTFILE(output.xml) METHOD(*MIX)

30 Catalog Manager User’s Guide

Using the ID-resolution techniques
The ID Resolver can use a Java properties file to determine which columns of a
primary table should be used as lookups for tables that require the identifier of a
primary table. A table is primary if it is listed in the KEYS or SUBKEYS table.

To use internal-alias resolution with the ID Resolver, an alias is placed in the
primary-key attribute (identifier) in the XML file. The alias can then be used
throughout the XML file to refer to that element. This process eliminates the need
for a program to determine the unique indexes necessary to build the XML file.

The ID Resolver can also analyze the database schema to determine whether there
is a unique index that fulfills its requirements. The ID Resolver looks for a unique
index only when there is no entry in the properties file for the table being
analyzed or when there is no properties file. If these conditions are true, a
unique-index check is performed. The unique index is considered valid if it exists
and does not include the primary key for the table.

Specifying a properties file with the ID Resolver
The ID Resolver lets you use an alternate Java properties file to describe which
columns of a primary entry should be used as lookups for tables that require the
identifier of a primary row.

The default properties file is IdResolveKeys.properties, but you can modify it or
specify your own file when invoking the ID Resolve command if you wish.

v NT 2000 AIX Solaris Linux

IdResolveKeys.properties is located in the following directory:

– NT drive:\WebSphere\CommerceServer\properties

– 2000 drive:\Program Files\WebSphere\CommerceServer\properties

– AIX /usr/WebSphere/CommerceServer/properties

– Solaris Linux /opt/WebSphere/CommerceServer/properties

If you do not place this file is in the current directory when you run the ID
Resolver, you can place it in a directory defined in the classpath environment
variable. You can also specify the full path to this file.

v 400

To change IdResolveKeys.properties, copy it from the
/QIBM/ProdData/WebCommerce/properties directory, save it to the /instroot/xml
directory, then make any necessary changes to the new file.

Note: The above directory is in the classpath used by the RESWCSID command.

Chapter 5. Resolving identifiers 31

Using a properties file to generate identifiers
In the following example, you need to resolve identifiers ADDRBOOK_ID and
ADDRESS_ID for ADDRBOOK and ADDRESS records respectively. The identifiers
for the MEMBER records are already known. Each record requires a valid identifier
for the WebSphere Commerce database. In addition, the ADDRBOOK_ID in the
ADDRESS record requires the identifier from the primary table to satisfy its
foreign-key constraint.

<MEMBER
MEMBER_ID="100"
TYPE="U"
STATE="1"

/>
<MEMBER

MEMBER_ID="101"
TYPE="U"
STATE="1"

/>
<ADDRBOOK

MEMBER_ID="100"
DISPLAYNAME="Friends" Actual value of the DISPLAYNAME column
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRESS

ADDRBOOK_ID="@Friends" Refers to the ADDRBOOK using the DISPLAYNAME
value as a lookup

MEMBER_ID="101"
NICKNAME="Bob"
ADDRESS1="15 Brave Developers St."
CITY="Toronto"
ZIPCODE="A0A0A0"
COUNTRY="Canada"
STATUS="P"

/>

You need a properties file to identify which columns in the primary row will be
used by the relationship rows in resolving the identifier for the foreign-key
column. The following procedure ensures that parsing of the above file proceeds
correctly.

In IdResolveKeys.properties, specify the following:

NAMEDELIMITER=@
SELECTDELIMITER=:

ADDRBOOK=@DISPLAYNAME:DISPLAYNAME
ADDRESS=@NICKNAME:NICKNAME

NAMEDELIMITER and SELECTDELIMITER set the delimiters used throughout
the properties file, and they must be used consistently.

ADDRBOOK=@DISPLAYNAME:DISPLAYNAME states that when an address-book
record is received, the identifier for the address-book row is created. The
DISPLAYNAME field is extracted from the input record and used to form an
association to the new identifier. The DISPLAYNAME string is used to match the
address-book row DISPLAYNAME and resolve the identifier needed by the foreign
key.

32 Catalog Manager User’s Guide

Using the previous input example, in which the DISPLAYNAME is Friends,
assume that the identifier created for this record is 12951. The DISPLAYNAME is
used as a key look-aside for 12951. Processing continues with the next record,
ADDRESS, where ADDRBOOK_ID has the form of ″@...″ (which indicates that
what follows the delimiter is to be used for looking up the address-book
identifier). The string matches the DISPLAYNAME, and 12951 is returned and
placed in the ADDRBOOK_ID attribute.

<MEMBER
MEMBER_ID="100"
TYPE="U"
STATE="1"

/>
<MEMBER

MEMBER_ID="101"
TYPE="U"
STATE="1"

/>
<ADDRBOOK

ADDRBOOK_ID="12951" Generated primary key
MEMBER_ID="100"
DISPLAYNAME="Friends" Value of ADDRBOOK DISPLAYNAME unchanged
DESCRIPTION="All my friends"

TYPE="P"
/>
<ADDRESS

ADDRESS_ID="13051" Generated primary key
ADDRBOOK_ID="12951" ADDRESS refers to correct ADDRBOOK
MEMBER_ID="101"
NICKNAME="Bob"
ADDRESS1="15 Brave Developers St."
CITY="Toronto"
ZIPCODE="A0A0A0"
COUNTRY="Canada"
STATUS="P"

/>

Using a properties file with compound keys
A key made up of more than two columns is a compound key. You can define a
compound-key lookup in the properties file by specifying both NAMEDELIMITER
and SELECTDELIMITER followed by the field names. To have the lookup criteria
for ADDRBOOK records be the compound of the display name and the member
ID, for example, specifying the following in the properties file:

ADDRBOOK=@DISPLAYNAME@MEMBER_ID:DISPLAYNAME MEMBER_ID

then the following XML input-file fragment:

<ADDRBOOK
MEMBER_ID="100"
DISPLAYNAME="Friends" ADDRBOOK "Friends" of MEMBER 100
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRBOOK

MEMBER_ID="101"
DISPLAYNAME="Friends" ADDRBOOK "Friends" of MEMBER 101
DESCRIPTION="All my friends"
TYPE="P"

/>

Chapter 5. Resolving identifiers 33

<ADDRESS
ADDRBOOK_ID="@Friends@100" Lookup the primary key for ADDRBOOK

"Friends" of MEMBER 100
MEMBER_ID="101"
NICKNAME="Bob"
ADDRESS1="15 Brave Developers St."
CITY="Toronto"
ZIPCODE="A0A0A0"
COUNTRY="Canada"
STATUS="P"

/>

would yield the following after resolution:

<MEMBER
MEMBER_ID="100"
TYPE="U"
STATE="1"

/>
<MEMBER

MEMBER_ID="101"
TYPE="U"
STATE="1"

/>
<ADDRBOOK

ADDRBOOK_ID="12951" ADDRBOOK of interest
MEMBER_ID="100"
DISPLAYNAME="Friends"
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRBOOK

ADDRBOOK_ID="12952"
MEMBER_ID="101"
DISPLAYNAME="Friends"
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRESS

ADDRESS_ID="13051"
ADDRBOOK_ID="12951" ADDRESS refers to correct ADDRBOOK
MEMBER_ID="101"
NICKNAME="Bob"
ADDRESS1="15 Brave Developers St."
CITY="Toronto"
ZIPCODE="A0A0A0"
COUNTRY="Canada"
STATUS="P"

/>

Using a properties file with cascaded primary keys
The primary table STOREENT defines a primary key STOREENT_ID. STORE, a
foreign table referencing STOREENT, defines a primary key STORE_ID that is a
foreign key to the primary table STOREENT. This means that the value of
STORE_ID must be one of the STOREENT_ID values. STORE_ID, the primary key
of the foreign table STORE, therefore has a dual role—primary and foreign.

Let us assume that another table, CONTRACT, is a foreign table on STORE and
that the foreign key for CONTRACT, STORE_ID, references the primary key
STORE_ID in STORE. The STORE table is therefore a primary table for the
CONTRACT table.

34 Catalog Manager User’s Guide

Because the STORE table’s STORE_ID is referenced from the STOREENT_ID rather
than created, the ID Resolver does not create an internal-alias and ID-value
association for the STORE table. When the CONTRACT table tries to resolve the
STORE_ID from the STORE table, it gets the empty value.

Because of this special condition, you must explicitly specify the creation of the
internal alias by creating an entry in the properties file. In
IdResolveKeys.properties, specify the following:

"STORE=@STORE_ID:STORE_ID"

This forces the ID Resolver to do the following:
v Create the internal-alias and ID-value association while resolving the STORE_ID

as a foreign reference
v Use the association while resolving the STORE_ID for the CONTRACT table

Using the STORE=@STORE_ID:STORE_ID entry in the properties file and the following
XML input-file fragment:

<STOREENT
IDENTIFIER="Out Fashions"
MEMBER_ID="-2000"
STOREENT_ID="@storeent_id_1"
TYPE="G"

/>
<STORE

STORE_ID="@storeent_id_1"
STOREGRP_ID="1"
STORELEVEL="store_level"

/>
<CONTRACT

CONTRACT_ID="@contract_id_1"
STATE="0"
STORE_ID="@storeent_id_1"

/>

would yield the following after resolution:

<STOREENT
IDENTIFIER="Out Fashions"
MEMBER_ID="-2000"
STOREENT_ID="10501"
TYPE="G"

/>
<STORE

STORE_ID="10501"
STOREGRP_ID="1"
STORELEVEL="store_level"

/>
<CONTRACT

CONTRACT_ID="@contract_id_1"
STATE="0"
STORE_ID="10501"

/>

Using internal-alias resolution
To use internal-alias resolution with the ID Resolver, an alias is placed in the
primary-key attribute (identifier) in the XML file. The alias can then be used
throughout the XML file to refer to that element. This process eliminates the need
for a program to determine the unique indexes necessary to build the XML file.

Chapter 5. Resolving identifiers 35

Internal aliases must be used consistently throughout the file. If an address-book
ID ADDRBOOK_ID is aliased to @addrbook_1, all foreign-key references to that ID
in the file must use @addrbook_1. Note that aliases are transient. They are not
saved; and they cannot be used in a separate XML file without introducing the
aliases again.

Partial example of using internal-alias ID resolution

Before resolution:

<MEMBER
MEMBER_ID="100"
TYPE="U"
STATE="1"

/>
<ADDRBOOK

ADDRBOOK_ID="@addrbook_1" Alias for ADDRBOOK
MEMBER_ID="100"
DISPLAYNAME="Friends"
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRESS

ADDRESS_ID="@address_1" Alias for ADDRESS
ADDRBOOK_ID="@addrbook_1" Refers to the alias for ADDRBOOK
MEMBER_ID="101"
NICKNAME="Bob"
ADDRESS1="1 Brave Developer St."
CITY="Toronto"
ZIPCODE="A3B0F4"
COUNTRY="Canada"
STATUS="P"

/>

After resolution:

<MEMBER
MEMBER_ID="100"
TYPE="U"
STATE="1"

/>
<ADDRBOOK

ADDRBOOK_ID="11801" Generated primary key
MEMBER_ID="100"
DISPLAYNAME="Friends"
DESCRIPTION="All my friends"
TYPE="P"

/>
<ADDRESS

ADDRESS_ID="11901" Generated primary key
ADDRBOOK_ID="11801" Refers to ADDRBOOK entry
MEMBER_ID="100"
NICKNAME="Bob"
ADDRESS1="1 Brave Developer St."
CITY="Toronto"
ZIPCODE="A3B0F4"
COUNTRY="Canada"
STATUS="P"

/>

Using unique-index resolution
Unique-index resolution, the default behavior of the ID Resolver, is used when
there is no entry in the properties file for the table being analyzed or when there is

36 Catalog Manager User’s Guide

no properties file. Unique-index resolution uses any of the specified unique
indexes on a table as a means of locating the identifier. For example, MEMBER_ID
plus IDENTIFIER is a unique index on the CATALOG table and can therefore be
used as a resolution point to the primary key CATALOG_ID of the CATALOGDSC
table.

To update the contents of the database, you need to know the unique key from the
primary table in the database. You can query your database to find this out. For
example, a DB2 command for retrieving a unique key can look like the following:

db2 describe indexes for table schema.tablename show detail

Partial example of unique-index resolution

Before resolution:

<MEMBER
MEMBER_ID="100"
TYPE="O"
STATE="1"

/>

<CATALOG
DESCRIPTION="Winter Catalog"
IDENTIFIER="WC2001"
MEMBER_ID="100"
TPCLEVEL="2"

/>

<CATALOGDSC
CATALOG_ID="@WC2001@100" Refers back to catalog "WC2001" of member

"100" (Note: The order is important.)
FULLIMAGE="c:\store\img\wc.gif"
LANGUAGE_ID="-1"
LONGDESCRIPTION="2001 Winter Catalog"
SHORTDESCRIPTION="2001 Winter Catalog"
NAME="InFashion 2001 Winter Catalog"
THUMBNAIL="c:\store\img\wc_th.gif"

/>

After resolution:

<MEMBER
MEMBER_ID="100"
TYPE="O"
STATE="1"

/>
<CATALOG

CATALOG_ID="10351" Automatically generated primary key
DESCRIPTION="Winter Catalog"
IDENTIFIER="WC2001"
MEMBER_ID="100"
TPCLEVEL="2"

/>
<CATALOGDSC

CATALOG_ID="10351" Refers to the correct catalog
FULLIMAGE="c:\store\img\wc.gif"
LANGUAGE_ID="-1"
LONGDESCRIPTION="2001 Winter Catalog"
SHORTDESCRIPTION="2001 Winter Catalog"
NAME="InFashion 2001 Winter Catalog"
THUMBNAIL="c:\store\img\wc_th.gif"

/>

Chapter 5. Resolving identifiers 37

Loading data into the MEMBER table
The ID Resolver handles resolution for tables that have identifiers generated for
them by the system. This includes any table and column registered in the KEYS or
SUBKEYS table. This resolution has two components:
1. Determining if a primary table (that is, a table listed in KEYS or SUBKEYS)

exists in the database.
This resolution is based on the contents of the XML data for that element using
either unique-index resolution or properties-file specification.

2. Determining if there is a foreign key to a primary table.
This is done with a resolution specification in the foreign-key attribute of the
related table.

The MEMBER table is used as a ″super class″ for the ORGENTITY, MBRGRP, and
USER tables. This creates an ″is-a″ pattern that is useful for maintaining referential
integrity when tables have foreign-key constraints to the subtypes of the MEMBER
table. Because all MEMBER subtypes share a common base type, however, the
identifier must be unique among the subtypes. This means that an
ORGENTITY_ID must be unique in the MBRGRP_ID and USER_ID set. To
accomplish this, the KEYS table refers to only the ORGENTITY, MBRGRP, and
USER tables and specifies mutually exclusive ranges for their identifiers. Each of
the subtypes has a primary key; each of these primary keys is also a foreign key to
the MEMBER table primary key.

The constraints between MEMBER and its subtypes create a situation where a
MEMBER and subtype cannot have a synchronized ID. In order to load the
ORGENTITY, MBRGRP, and USER tables into the system, the ID Resolver
recognizes the ″is-a″ pattern and deals with it appropriately. The following XML
syntax for the ID Resolver:

<ORGENTITY
ORGENTITY_ID="@orgAlias"
ORGENTITYNAME="Test Org"
ORGENTITYTYPE="O">
<ISA>

<MEMBER
TYPE="O"
STATE="1"

/>
</ISA>

</ORGENTITY>

generates the following:

<MEMBER
MEMBER_ID="12345"
TYPE="O"
STATE="1"

/>
<ORGENTITY

ORGENTITY_ID="12345" Synchronized with member element
ORGENTITYNAME="Test Org"
ORGENTITYTYPE="O"

/>

In this way, the ID Resolver handles the <isa> subelement and creates a
synchronized identifier.

38 Catalog Manager User’s Guide

Creating a foreign relationship using the REFKEYS table
The REFKEYS table is created to represent a foreign relationship between tables
that does not already exist in the database. Generally, the database schema
describes the foreign relationship by creating a foreign-key declaration that links a
column of a table to another table. If the database schema does not have a foreign
relationship defined and the identifiers have to be resolved as a foreign key, then
do the following:
1. Create a REFKEYS table as shown in the following example DDL:

CREATE TABLE "REFKEYS" (
"FKTABLE_NAME" CHAR(18) NOT NULL ,
"FKCOLUMN_NAME" CHAR(18) NOT NULL ,
"TABLENAME" CHAR(18) NOT NULL

);

where:

FKTABLE_NAME is the foreign (or ″child″) table name
FKCOLUMN_NAME is the foreign column name
TABLENAME is the primary (or ″parent″) table name

2. Create an entry in the REFKEYS table that describes the required foreign
relationship.

Chapter 5. Resolving identifiers 39

Troubleshooting errors
If errors occur while resolving identifiers, refer to the following table:

Error Method
Used

Possible Cause Possible Solution

Unresolved
primary key

All The ID Resolver does not resolve the primary key
(identifier) in a table that is not specified in either the
KEYS or SUBKEYS table.

Add the name of the table for
which the primary key is to be
resolved to the SUBKEYS table
before running the ID Resolver.

In addition, make sure that the
foreign-key relationship exists in
the database schema.

Update The primary key is resolved by querying the database.
The database query is generated by using either the
properties-file entry information or the unique index
for the given table. The properties-file entry has
priority.

Make sure that the unique-index
information in the input file is
correct.

You may also want to create or
modify the appropriate entry in
the properties file to generate the
appropriate database query to
resolve the primary key.

Unresolved
foreign key

All The ID Resolver does not resolve the foreign key in a
table where the foreign references are to tables that
are not specified in either the KEYS or SUBKEYS
table.

Add the name of the table
referenced to the SUBKEYS table
before running the ID Resolver.

In addition, make sure that the
foreign-key relationship exists in
the database schema.

A foreign key is resolved
by using the internal alias
or by querying the
database. The database
query is made only if the
internal alias fails to
resolve the foreign key.

The internal alias is
generated by using the
primary key and by using
the properties-file entry.

Make sure that the internal-alias
values used as source and target in
the input file are correct.

The database query is
generated by using either
the properties-file entry
information or the unique
index for the given table.
The properties-file entry
has priority.

Make sure that the unique-index
information in the input file is
correct.

You may also want to create or
modify the appropriate entry in
the properties file to generate the
appropriate database query to
resolve the primary key.

40 Catalog Manager User’s Guide

Chapter 6. Loading data

Before you load data, you must do the following:
1. Generate a DTD and schema for use with the Loader (the first time data is

being loaded)

Note: If you are loading data for a store archive and created the XML file using
the DTDs provided with the store archive, this step is not necessary.

2. Resolve identifiers (if necessary)

Data must be in XML format with an associated DTD. To load data, invoke the
Load command.

Setting up the Loader
The Loader package allows you to set up how the Loader functions by doing the
following:
v Ignoring elements in the input file
v Inserting NULL into a column
v Loading timestamps and date data
v Loading current timestamps
v Managing event queues
v Running with different database software and operating systems
v Substituting a component
v Using Product Advisor search-space synchronization

You can customize these features of the Loader by doing the following:
1. Create a new Loader customizer property file.

v NT 2000 AIX Solaris Linux

MassLoadCustomizer.properties is located in the MassLoader.zip archive.
Extract this file, rename it but keep the .properties extension, and place it in
a directory that is in the classpath. Important: Do not remove or modify the
existing MassLoadCustomizer.properties file.

v 400

ISeries_LODWCSDTA_Customizer.properties is located in the
/QIBM/ProdData/WebCommerce/properties directory. Copy this file to the
/instroot/xml directory, rename the new file but keep the .properties
extension, then make any necessary changes to the new file. Important: Do
not remove or modify the original
ISeries_LODWCSDTA_Customizer.properties file.

2. Modify the values of the properties specified in the new Loader customizer
property file.

3. Specify the new file name as the value of the customizer parameter of the
Load command.

© Copyright IBM Corp. 2002 41

Ignoring elements in the input file
If your input file contains elements that do not map to the target database, you can
set the Loader to ignore those elements in the Loader customizer property file. Use
IgnoreElements to specify elements to ignore, and separate these elements with a
semicolon (;). To ignore the import, literals, and ProductRepository elements, for
example, specify the following in the Loader customizer property file:

IgnoreElements = import;literals;ProductRepository

Inserting NULL into a column
You can enable the Loader to insert NULL into a column by setting the
EnableNULLCheck property to ″true″ in the Loader customizer property file. For
example:

EnableNULLCheck = true

For performance reasons, this feature is disabled by default.

Use the NULLStringLiteral property to determine the string representation of a
null value within your data. To set the Loader so that the string ″-″ is used to
represent a null value, for example, specify the following property and value in the
Loader customizer property file:

NULLStringLiteral = -

By default, the value of this property is ″NULL″ (with no quotation marks).

Loading timestamps and date data
The Loader can load data into columns with timestamp and date data types. The
data formats for timestamp and date data in the document are determined by
patterns that can be customized. The user can edit an existing pattern or add more
patterns to the existing list of patterns.

The data for a timestamp or date is checked against the available patterns (masks).
The first pattern that matches the data is used to convert the data to the target
timestamp format before loading it into the database.

There are two customizable output-timestamp patterns, TimeStampFormat.JDBC
and TimeStampFormat.Load.
1. TimeStampFormat.JDBC is used when the Loader uses JDBC connections to

perform an operation.
The SQL import and delete methods of the Loader use JDBC connections for
updating the database.

2. TimeStampFormat.Load is used when the Loader uses the native utilities.
The import and load methods of the Loader use native utilities.

You can customize the timestamp formats by modifying or adding masks in the
Loader customizer property file.

42 Catalog Manager User’s Guide

The following input-timestamp masks are provided:

InputTimeStampFormat.1 = yyyy-DD hh:mm:ss.SSSSSS
InputTimeStampFormat.2 = yyyy-MM-dd hh:mm:ss.SSSSSS
InputTimeStampFormat.3 = yyyy-DD-hh.mm.ss.SSSSSS
InputTimeStampFormat.4 = yyyy-MM-dd-HH.mm.ss.SSSSSS
InputTimeStampFormat.5 = yyyy-MM-dd-hh.mm.ss.SSSSSS
InputTimeStampFormat.6 = yyyy-MM-dd HH:mm:ss.SSSSSS
InputTimeStampFormat.7 = yyyy-DD HH:mm:ss.SSSSSS

The default patterns for input-date formats are as follows:

InputDateFormat.1 = MM-dd-yyyy
InputDateFormat.2 = yyyy-dd-MM
InputDateFormat.3 = yyyy-MM-dd
InputDateFormat.4 = MM/dd/yyyy
InputDateFormat.5 = yyyy/dd/MM
InputDateFormat.6 = yyyy-DD

You can modify these timestamp and date masks or add as many masks as you
want. Specify these masks in the Loader customizer property file in the numeric
sequence in which you want them to be compared with the input timestamp. If
you add an input timestamp, you must use the next number in the current
sequence. (For example, the next input-timestamp mask would be
InputTimeStampFormat.8 if you were adding to the above list.)

The patterns for formatting input data to the output for timestamp and date are as
follows:

TimeStampFormat.JDBC = yyyy-MM-dd hh:mm:ss.SSSSSS
TimeStampFormat.Load = yyyy-MM-dd-hh.mm.ss.SSSSSS

DateFormat.JDBC = yyyy-MM-dd
DateFormat.Load = yyyy-MM-dd

In general, output date and timestamp formats are not customized.

Loading current timestamps
The Loader can insert values into columns with a timestamp data type based on a
reading of the time-of-day clock. For example, the STARTDATE and ENDDATE of
an offer in WebSphere Commerce can have values based on the time at which the
offer is inserted into the table. To support this functionality, the Loader package
uses the MLTIME table to keep the timestamp instances. The schema for this table
is as follows:

table MLTIME
(
INSTANCEID BIGINT not null,
MLTIMESTAMP TIMESTAMP
)

You can customize the name of the table and its columns by changing the
following properties in the Loader customizer property file:

TimestampTableName = MLTIME
TimestampIdColumn = INSTANCEID
TimestampValueColumn = MLTIMESTAMP

Chapter 6. Loading data 43

The input data for specifying current-timestamp values are based on timestamp
string patterns. The following masks are used for specifying the durations for the
timestamp:

%D for days
%M for months
%Y for years
%H for hours
%m for minutes
%s for seconds

You can customize current-timestamp formats by modifying or adding masks in
the Loader customizer property file. The following input masks are provided:

InputCurrentTimestampFormat.1 = CURRENT TIMESTAMP
InputCurrentTimestampFormat.2 = CURRENT TIMESTAMP %D DAYS
InputCurrentTimestampFormat.3 = CURRENT TIMESTAMP %D DAYS %M MONTHS
InputCurrentTimestampFormat.4 = CURRENT TIMESTAMP %D DAYS %M MONTHS %Y YEARS
InputCurrentTimestampFormat.5 = CURRENT TIMESTAMP %Y YEARS %M MONTHS %D DAYS
InputCurrentTimestampFormat.6 = SYSDATE
InputCurrentTimestampFormat.7 = ADDDAYS(SYSDATE,%D)
InputCurrentTimestampFormat.8 = ADDDAYS(ADDMONTHS(SYSDATE,%M),%D)
InputCurrentTimestampFormat.9 = ADDDAYS(ADDMONTHS(ADDYEARS(SYSDATE,%Y),%M),%D)

Input data for the current timestamp is matched with the specified patterns. If the
data matches a specified input pattern, that pattern is used to parse the input data
and the Loader converts the data into the appropriate output format before
inserting it into the database. New patterns can be added to the above list
provided the subscript numbers are ordered sequentially.

There are two target output formats for specifying current timestamps:
1. CurrentTimestampFormat.Load is used when the Loader is operating in load or

import mode.
2. CurrentTimestampFormat.JDBC is used when the Loader uses JDBC to insert,

update, or delete values in the database.

The default target patterns in the Loader are as follows:

CurrentTimestampFormat.Load = CURRENT TIMESTAMP %Y YEARS %M MONTHS %D DAYS
%h HOURS %m MINUTES %s SECONDS

CurrentTimestampFormat.JDBC = CURRENT TIMESTAMP %Y YEARS %M MONTHS %D DAYS
%h HOURS %m MINUTES %s SECONDS

The properties for these patterns can also be customized in the Loader customizer
property file. When you customize the CurrentTimestampFormat.Load and
CurrentTimestampFormat.JDBC properties, you should make sure that the syntax
of the resulting statement is valid for the given database management system.

The CurrentTimestampLiteral property is used by the Loader to make an early
determination of whether the value for the timestamp column is in a
current-timestamp format, thus avoiding expensive computations to determine that
the value is not a string representation of timestamp.

CurrentTimestampLiteral = CURRENT TIMESTAMP

The default value for this property for DB2 is CURRENT TIMESTAMP.

The default value for the Oracle database is SYSDATE.

44 Catalog Manager User’s Guide

Example of loading current timestamps
The Loader is given the information below to update the offer with an OFFER_ID
of 10123. The start date has a value of ″CURRENT TIMESTAMP″, and the end date
has a value of ″CURRENT TIMESTAMP + 14 DAYS.″

<OFFER
OFFER_ID="10123"
STARTDATE="CURRENT TIMESTAMP">
ENDDATE="CURRENT TIMESTAMP + 14 DAYS"

/>

The Loader recognizes that the columns STARTDATE and ENDDATE are of a
timestamp data type in the database. Based on the CurrentTimeStampLiteral
property, the values are determined to have values specified in the
current-timestamp format. The value for STARTDATE matches the
InputCurrentTimeStampFormat.1 pattern, and it is converted to the pattern
specified by the CurrentTimeStampFormat.JDBC property. The value for ENDDATE
matches the format of the InputCurrentTimeStampFormat.2 property, and it is also
converted to the pattern specified by the CurrentTimeStampFormat.JDBC property.

Examples of adding durations to current timestamps
The Loader gives you the ability to add durations to current timestamps. For
example, you may want to load an offer without inputting a specific date. To do
that, you must create an end date that is some duration after the start date. The
following example works well with DB2:

<Offer
Startdate="Current Timestamp"
Enddate="Current Timestamp +14 Days +4 Months +1 Year +0 Hours

+0 Minutes +0 Seconds"
/>

To handle current-timestamp durations in a platform-independent way, however,
you must customize the current-timestamp formats by modifying the masks in the
Loader customizer property file. Here is an example of customized
current-timestamp property specifications:

CurrentTimestampLiteral=Current Timestamp

InputCurrentTimestampFormat.0=Current Timestamp
InputCurrentTimestampFormat.1=Current Timestamp %D Days
InputCurrentTimestampFormat.2=Current Timestamp %M Months
InputCurrentTimestampFormat.3=Current Timestamp %Y Years
InputCurrentTimestampFormat.4=Current Timestamp %D Days %M Months
InputCurrentTimestampFormat.5=Current Timestamp %D Days %M Months %Y Years
InputCurrentTimestampFormat.5=Current Timestamp %H Hours %m Minutes %s Seconds

CurrentTimestampFormat.JDBC=Current Timestamp %D Days %M Months %Y Years
%H Hours %m Minutes %s Seconds

Using the offer example and these property specifications, the end date for the
offer matches the InputCurrentTimestampFormat.5 pattern. This yields the
following offer information using the CurrentTimestampFormat.JDBC.

<Offer
Startdate="Current Timestamp"
Enddate="Current Timestamp +14 Days +4 Months +1 Year +0 Hours +0 Minutes +0 Seconds"

/>

Chapter 6. Loading data 45

The above example shows how the Loader can input multiple current-timestamp
formats and format them appropriately to a desired output format. The following
example shows how you can handle platform-independent formats and map them
to platform-specific output formats.

<Offer
Startdate="Now"
Enddate="Now +14D +4M +1Y"

/>

CurrentTimestampLiteral=Now

InputCurrentTimestampFormat.0=Now
InputCurrentTimestampFormat.1=Now %DD
InputCurrentTimestampFormat.2=Now %MM
InputCurrentTimestampFormat.3=Now %YY
InputCurrentTimestampFormat.4=Now %DD %MM
InputCurrentTimestampFormat.5=Now %DD %MM %YY
InputCurrentTimestampFormat.5=Sysdate %HH %mm %ss

CurrentTimestampFormat.JDBC=AddYears(AddMonths(AddDays(AddHours(AddMinutes(AddSeconds
(Sysdate,%s),%m),%H),%D),%M),%Y)

Note: The above statement is just an example. It is used merely to illustrate the
customization feature for a hypothetical database management system. It is
not valid for DB2 or an Oracle database.

Using the offer example and these property specifications, the end date for the
offer will match the InputCurrentTimestampFormat.5 pattern. This yields the
following offer information using the CurrentTimestampFormat.JDBC.

<Offer
Startdate="Current Timestamp"
Enddate="AddYears(AddMonths(AddDays(AddMinutes(AddSeconds(Sysdate,0),0),0),14),4),1)"

/>

Managing event queues
You can customize the Loader’s event queues by modifying the settings in the
Loader customizer property file. For example:

QueueLowCount = 35
QueueHighCount = 90

The source of the events filling the queue is blocked when the number of elements
in the queue reaches the higher limit, preventing more events from queuing up.
The queue begins accepting events again when the number of elements in the
queue falls below the lower limit.

Running with different database software and operating
systems

You can customize the Loader to run with different database software and
operating systems by modifying the parameters for the following elements in the
Loader customizer property file to specify different database software and
operating systems:
v Database-connection command
v Database load-table command
v Database-import command
v System command that invokes loading

46 Catalog Manager User’s Guide

To customize one of these items, remove the double-slash comment characters (//)
that precede the command in the Loader customizer property file and modify the
defaults.

Database-connection command: You can change the parameters of the
database-connection command if you wish to modify the defaults (which assume
that you are using DB2).

DBConnectCommand = connect to {0} user {1} using {2};

where:

0 = database name
1 = database user
2 = user password

Database load-table command: You can change the parameters of the database
load-table command if you wish to modify the defaults.

DBLoadTableCommand = load from {0} of del modified by coldel{1}
chardel{2} insert into {3} ({4});

where:

0 = file name
1 = column delimiter
2 = character delimiter
3 = table name
4 = column names, separated by commas (,)

Database-import command: You can change the parameters of the database-import
command if you wish to modify the defaults.

DBImportCommand = import from {0} of del modified by coldel{1} chardel{2}
insert_update into {3} ({4});

where:

0 = file name
1 = column delimiter
2 = character delimiter
3 = table name
4 = column names, separated by commas(,)

System command that invokes loading: You can change the parameters of the
system command that invokes loading if you wish to modify the defaults. This
command runs the native load and import scripts generated by the Loader.

v

DBLoadCommand = db2clpex DB2 -z {0} -astvf {1}

Chapter 6. Loading data 47

where:

0 = log file name
1 = command file name

For DB2 running on AIX, for example, the value for the DBLoadCommand
property is as follows:

db2 -tvf {1} -z {0}

v AIX Solaris

DBLoadCommand = sqlldr log={0} control={1} USERID={2}

where:

0 = log file name
1 = command file name
2 = database user name

Use the following settings for the various database and operating-system
combinations:

v NT 2000

Set the classpath system-environment variable to include db2/dbconnect.zip for
DB2 running on Windows NT or Windows 2000 with the sqlimport, load,
import, or delete method.

v AIX Solaris Linux

For DB2 running in AIX, Solaris, or Linux environments, do the following:
– With the sqlimport, load, import, or delete method, set the classpath

system-environment variable to include db2/dbconnect.zip.
– With the load or import method, modify the following properties in the

Loader customizer property file.

/**
* Connection command. (Default is for DB2)
* parameter 0 = dbName
* parameter 1 = dbUser
* parameter 2 = userPasswd

*/

DBConnectCommand = connect to {0} user {1} using {2};

/**
* Load Data into Table command. (Default is for DB2)
* parameter 0 = filename
* parameter 1 = column delimiter
* parameter 2 = character delimiter
* parameter 3 = name of the table
* parameter 4 = name of the columns, separated by comma(,)s

*/

DBLoadTableCommand = load from {0} of del modified by coldel{1}
insert into {3} ({4});

/**
* Insert Data into Table command. (Default is for DB2)
* parameter 0 = filename
* parameter 1 = column delimiter
* parameter 2 = character delimiter

48 Catalog Manager User’s Guide

* parameter 3 = name of the table
* parameter 4 = name of the columns, separated by comma(,)s

*/

DBUpdateTableCommand = import from {0} of del modified by coldel{1}
insert_update into {3} ({4});

/**
* System command to invoke load (Default is for DB2)
* parameter 0 = logFileName
* parameter 1 = commandFileName

*/

DBLoadCommand = db2 -z {0} -tf {1}

v 400 Modify the following properties in the Loader customizer
property file for DB2 running on iSeries with the sqlimport, load, import, or
delete method:
/**

* The connect string.
*/

ConnectStringID = jdbc:db2://

/**
* The JDBC driver information.

*/

JDBCDriverName = com.ibm.db2.jdbc.app.DB2Driver
DbVendorName=DB2/iSeries

/**
* Custom writer for load/import methods.

*/

WriterName=com.ibm.wca.MassLoader.Writer.ISeriesWriter

v NT 2000 AIX Solaris

Set the classpath system-environment variable to include oracle/dbconnect.zip
for the Oracle database running in Windows NT, Windows 2000, AIX, or Solaris
environments with the sqlimport, load, import, or delete method.

Substituting a component
You can substitute for a Loader component by giving the following elements in the
Loader customizer property file the values of classes that you want to substitute
for the default implementations:

ParserName
Name of the parser to be used

ValidatorName
Name of the validator to be used

FormatterName
Name of the formatter to be used

JDBCFormatterName
Name of the formatter when the SQL import method is used

WriterName
Name of the writer to be used

JDBCWriterName
Name of the writer when the SQL import method is used

Chapter 6. Loading data 49

To replace the Loader’s default writer (DefaultWriter) with the writer
com.abc.writer.SpecialWriter, for example, specify the following in the Loader
customizer property file:

WriterName = com.abc.writer.SpecialWriter

The Loader will use ″com.abc.writer.SpecialWriter″ to perform the write function.

Using Product Advisor search-space synchronization
To use Product Advisor search-space synchronization, do the following.
1. Create an XML configuration-information file for the synchronization named

″PASyncInfo.xml.″
2. In PASyncInfo.xml, specify PASync.xsd as the XML schema to be used. For

example:
<PASync

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=’PASync.xsd’

The PASync.xsd file is provided. The following text shows the contents of
PASync.xsd:
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd=’http://www.w3.org/2001/XMLSchema’>

<xsd:element name="PASync">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="SearchScheme" />
<xsd:element ref="Command" minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>
<xsd:attribute name = "member" type="xsd:string" use="required" />
<xsd:attribute name = "store" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="SearchScheme">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="RelatedTable" />

<xsd:element ref="Search" minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name = "tableName" type="xsd:string" use="required" />
<xsd:attribute name = "primary" type="xsd:string" use="required" />
<xsd:attribute name = "colName" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="RelatedTable">
<xsd:complexType>

<xsd:attribute name = "tableName" type="xsd:string" use="required" />
<xsd:attribute name = "from" type="xsd:string" use="required" />
<xsd:attribute name = "to" type="xsd:string" use="required" />

</xsd:complexType>
</xsd:element>

<xsd:element name="Search">
<xsd:complexType>

<xsd:attribute name = "value" type="xsd:string" use="required" />
</xsd:complexType>
</xsd:element>

<xsd:element name="Command">
<xsd:complexType>

50 Catalog Manager User’s Guide

<xsd:attribute name = "tableName" type="xsd:string" use="required" />
<xsd:attribute name = "idColumnName" type="xsd:string" use="required" />
<xsd:attribute name = "addCommand" type="xsd:string" />
<xsd:attribute name = "updateCommand" type="xsd:string" />
<xsd:attribute name = "deleteCommand" type="xsd:string" />

</xsd:complexType>
</xsd:element>

</xsd:schema>

3. In PASyncInfo.xml, specify the member ID and store-entity ID for which the
synchronization needs to be done. For example:
member = "-2000"
store = "10351"

4. Under the search-scheme element in PASyncInfo.xml, specify the CATGROUP
identifiers that make up the search space. For example:
<SearchScheme

tableName = "catgroup"
primary = "CATGROUP_ID"
colName = "identifier" >

<RelatedTable
tableName = "catgpenrel"
from = "CATGROUP_ID"
to = "CATENTRY_ID" />

<Search value="Pants" />
<Search value="Shirts" />

</SearchScheme>

″Pants″ and ″Shirts″ are specified in the example. You can specify as many
CATGROUP identifiers as you want.

5. In PASyncInfo.xml, specify attributes to determine what commands to schedule.
For example:

<Command tableName = "CATENTRY" idColumnName = "CATENTRY_ID"
updateCommand = "UpdateSearchSpaces"
deleteCommand = "RemoveProductsFromAllSearchSpaces"

/>

<Command tableName = "CATENTDESC" idColumnName = "CATENTRY_ID"
addCommand = "UpdateSearchSpaces"
updateCommand = "UpdateSearchSpaces"
deleteCommand = "UpdateSearchSpaces"

/>

<Command tableName = "LISTPRICE" idColumnName = "CATENTRY_ID"
addCommand = "UpdateSearchSpaces"
updateCommand = "UpdateSearchSpaces"
deleteCommand = "UpdateSearchSpaces"

/>

<Command tableName = "ATTRVALUE" idColumnName = "CATENTRY_ID"
addCommand = "UpdateSearchSpaces"
updateCommand = "UpdateSearchSpaces"
deleteCommand = "UpdateSearchSpaces"

/>

<Command tableName = "CATENTATTR" idColumnName = "CATENTRY_ID"
addCommand = "UpdateSearchSpaces"
updateCommand = "UpdateSearchSpaces"
deleteCommand = "UpdateSearchSpaces"

/>

<Command tableName = "CATGPENREL" idColumnName = "CATENTRY_ID"

Chapter 6. Loading data 51

addCommand = "AddProductsToSearchSpace"
deleteCommand = "RemoveProductsFromSearchSpace"

/>

</PASync>

6. In the new Loader customizer property file, specify the XML
configuration-information file. For example:
PASyncDocumentURL = PASyncInfo.xml

7. In the new Loader customizer property file, enable synchronization. For
example:
PASyncEnabled = true

8. Use either the SQL import or the delete method with the Load command. Here
is an example of appropriate XML input to the Loader:
<store-asset>

<catentry
CATENTRY_ID="10351"
MEMBER_ID="-2000"
PARTNUMBER="000051"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000051"
MARKFORDELETE="0"
BUYABLE="1"

/>

<catentry
CATENTRY_ID="10352"
MEMBER_ID="-2000"
PARTNUMBER="000052"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000052"
MARKFORDELETE="0"
BUYABLE="1"

/>

<catentry
CATENTRY_ID="10353"
MEMBER_ID="-2000"
PARTNUMBER="000053"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000053"
MARKFORDELETE="0"
BUYABLE="1"

/>

<catentry
CATENTRY_ID="10358"
MEMBER_ID="-2000"
PARTNUMBER="000058"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000058"
MARKFORDELETE="0"
BUYABLE="1"

/>

<catentry
CATENTRY_ID="10365"
MEMBER_ID="-2000"
PARTNUMBER="000065"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000065"
MARKFORDELETE="0"
BUYABLE="1"

/>

52 Catalog Manager User’s Guide

<catentry
CATENTRY_ID="10372"
MEMBER_ID="-2000"
PARTNUMBER="000072"
CATENTTYPE_ID="ProductBean"
MFPARTNUMBER="m000072"
MARKFORDELETE="0"
BUYABLE="1"

/>

<catgpenrel
CATGROUP_ID="10354"
CATENTRY_ID="10372"
CATALOG_ID="10351"
SEQUENCE="3"

/>

<catgpenrel
CATGROUP_ID="10354"
CATENTRY_ID="10365"
CATALOG_ID="10351"
SEQUENCE="4"

/>

<catgpenrel
CATGROUP_ID="10354"
CATENTRY_ID="10358"
CATALOG_ID="10351"
SEQUENCE="5"

/>

<catgpenrel
CATGROUP_ID="10355"
CATENTRY_ID="10372"
CATALOG_ID="10351"
SEQUENCE="3"

/>

</store-asset>

Note: Disabling Product Advisor search-space synchronization provides better
Loader performance; therefore, use this feature only when it is needed.

Customizing Product Advisor search-space synchronization
The Loader package allows you to customize Product Advisor search-space
synchronization by modifying the Loader customizer property file to do the
following:
v Enable or disable synchronization

You can enable or disable synchronization by specifying true or false as the
value for the following property in the Loader customizer property file:
PASyncEnabled = true

v Specify the configuration-information file for the synchronization

You can specify which XML configuration-information file the synchronization
uses by setting the value for the following property in the Loader customizer
property file:
PASyncDocumentURL = PASyncInfo.xml

Chapter 6. Loading data 53

v Specify the schedule query length

You can specify the schedule query length by setting the value for the following
property in the Loader customizer property file:
PAScheduleQueryLength = 30

The value for this property should be within the range of 20 through 900.
v Specify the scheduled start time

You can specify the scheduled start time by specifying an absolute timestamp, a
current timestamp, or a current timestamp with duration as the value for the
PAScheduledStartTime property in the Loader customizer property file.

Note: The format of the timestamp must be appropriate for your database.

Here is an example for DB2 that will run the scheduled job 5 minutes after the
load:
PAScheduledStartTime = CURRENT TIMESTAMP + 5 MINUTES

Here is an example for the Oracle database that will run the job
immediately:
PAScheduledStartTime = SYSDATE

Determining how to process data when using the Loader
The Loader offers the following options for processing data using the Load
command:
v Loading
v Importing
v Using the SQL import feature

Before loading data, you should determine which method of processing would
produce the best results.

Choosing the load method
Consider the load method in the following situations:
v If you know that the data is clean, and if the database does not contain any data
v If you know that the data is clean, and if you know the database does not

contain the data that is being loaded
v If you know that the data is clean, if the targeted tables do not contain any

primary keys, and if you know that the database does not contain the data that
is being loaded

v If the load time is your primary concern
v If the database is a local DB2 database

400 With the load method, data is loaded into the database. If the data
already exists, the command fails as a result of a duplicate-key error and a
duplicate-error message displays.

54 Catalog Manager User’s Guide

Choosing the import method
NT 2000 AIX Solaris Linux With the import method for DB2,

data is also loaded into the database. If the data already exists, it is not deleted but
is updated with new values. Consider this method in any of the following
situations:
v If the database management system is DB2
v If you do not know whether the data is clean
v If you have to update large sets of homogeneous data at a column level
v If the load time is not your primary concern
v If the table into which data is imported has primary keys

400 With the import method, data is also loaded into the database. If the data
already exists, it is not deleted but is updated with new values. Consider this
method in any of the following situations:
v If you do not know whether the data is clean
v If the data already exists in the database
v If the load time is not your primary concern
v If the table into which data is imported has primary keys

Choosing the SQL import method
With the SQL import method, JDBC or SQL statements are used to update or insert
data into the database. Data is inserted if it does not already exist, and existing
data is updated. Consider this method in any of the following situations:
v If you are updating existing data and require column-level updates

There is better error reporting on constraint violations and data-type errors with
this method.

v If you know that some of the data is not clean
v If database integrity is your primary concern
v If the database is not local
v If you are using Product Advisor search-space synchronization

Other considerations
v Restrictions on using the load method

The load method cannot insert or update data in bit data fields.

With the load method, only new records are inserted to the database;
existing records are not updated.

The load method can only be used for local, not remote, DB2 databases.
v Restrictions on using the import method

The database management system must be DB2 in order to use the import
method.
The import method cannot insert or update data in bit data fields.
With the import method, the Loader only inserts or updates tables that have
primary keys defined on them; the import method cannot insert or update data
in tables that do not have a primary key. If the input record only has values for
columns that are primary, the record is rejected.

v Comparison of the SQL import and load methods

Chapter 6. Loading data 55

The SQL import method checks for data consistency, including foreign
references, and allows you to update existing data. The load method does not.

v Comparison of the import and SQL import methods

The import and SQL import methods perform similar functions. The import
method is typically faster, but it requires disk space for temporary files.
The import method can only insert or update tables that have primary keys
defined on them; whereas, the SQL import method does not require that tables
have primary keys on them.

v Comparison of methods based on database product used

The import and load methods use native utilities that are optimized for DB2,
while the SQL import method uses JDBC calls (which are generic to many
database products).

v Further considerations

The delete method is used to delete data that is in the input XML document
from the database. The element must contain the values for the primary key or
the unique index for the table. If the data being deleted has dependencies to
data in another table with ″cascade on delete″ enabled, the dependent data is
also deleted.
If you are using Product Advisor search-space synchronization, you must use
the SQL import method for loading data.

Loading large documents
When using the Loader package utilities to load large documents into a database,
consider the following items:
v Java Virtual Machine (JVM) heap size

By default, the maximum amount of memory allocated to the JVM heap is 64
MB. If this is not increased, the JVM can eventually run out of memory during
the load process. The maximum amount of memory allocated to the Java heap
can be varied by using the JVM -mx option in the Java command.

v Trace logging

The trace logger can exhaust the JVM heap when loading a large XML
document. Trace information is used mostly for debugging a run if the run fails.
If tracing the load process is not necessary, the trace should be turned off. There
is a significant performance gain when trace is turned off. The trace is turned off
by modifying the logging configuration XML document.

56 Catalog Manager User’s Guide

The default logging configuration file is WCALoggerConfig.xml. To turn off trace
logging, change the trace logger configuration for the Loader from:

<logger type="trace">
<handler type="file">

<filePath>MassLoadTrace.log</filePath>
<filter type="Any">

<messageType name="PUBLIC" />
</filter>

</handler>
</logger>

to:

<logger type="trace">
<handler type="file">

<filePath>MassLoadTrace.log</filePath>
<filter type="Any">
</filter>

</handler>
</logger>

For more information on modifying the WCALoggerConfig.xml file, see
“Customizing logging for the Loader package” on page 64.

v Commit count

The default commit count for the Loader when it is operating in SQL import
mode is 1. By default, therefore, transactions are committed for every update or
insert into the database. To improve the performance of the Loader for large
documents, the commit count should be increased. A value of ″100″ is suggested;
but it can be higher depending on the amount of physical memory on the server,
the DBMS transaction log size, and so forth.
The commit count for the Loader is changed using the -commitcount count
option for the Load command (where count is the number of statements
executed before the transaction is committed).

Troubleshooting tip
If progress is unusually slow when loading data, the logger for the Loader may
have a file handler that is not configured correctly. This could result from one of
the following situations:
v The user invoking the Loader does not have permission to write to the directory

or to update the file specified in the logging configuration document.
v The directory specified as the location of the file in the logging configuration

document does not exist.
v The drive specified as the location of the file in the logging configuration

document does not have enough space.

When you correct any of these problems, you may need to change the specified
location of the file by modifying the logging configuration document
(WCALoggerConfig.xml by default). For more information on file handlers and the
WCALoggerConfig.xml file, see “Customizing logging for the Loader package” on
page 64.

Chapter 6. Loading data 57

58 Catalog Manager User’s Guide

Chapter 7. Extracting data

To extract data from a database using the Extractor, you must specify the data that
you want to extract from the database using an extraction-filter file. The extraction
filter that you use depends on the type of data that you want to extract.

The following example extracts Member subsystem data from a database using
MemberSubsystemFilter.xml as an extraction filter.

v NT 2000 AIX Solaris Linux

java com.ibm.wca.MassExtract.Extract -filter MemberSubsystemFilter.xml
-outfile MemberSubsystemExtracted.xml -dbname mall -dbuser myname
-dbpwd mypassword -customizer MemberSubsystemCustomizer

v 400

QWEBCOMM/EXTWCSDTA FILTER(MemberSubsystemFilter.xml)
OUTFILE(MemberSubsystemExtracted.xml) DATABASE(database_name)
SCHEMA(mall) INSTROOT(/QIBM/UserData/WebCommerce/instances/mser)
PASSWD(mypassword)

Creating an extraction filter
The following example of an extraction filter extracts category and product
information from the CATGROUP, CATGRPDESC, CATGRPREL, CATENTRY,
CATENTSHIP, OFFER, CATENTREL, CATGPENREL, CATENTDESC, and
ATTRVALUE tables:

<sqlx>

<!-- **************************** -->
<!-- extract Category information -->
<!-- **************************** -->

<functionDef id="Category" description="Extract Categories" schemaentity="catgroup">
<paramDef name=":lastRecord" type="string" value="10301" description="Last record
before loading new data" />

<body>
select * from catgroup where catgroup_id > :lastRecord

</body>
</functionDef>

<execute id="Category" description="Extract Categories" schemaentity="catgroup">
<param name=":lastRecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<functionDef id="Category Description" description="Extract Category Descriptions
for a Locale" schemaentity="catgrpdesc">
<paramDef name=":lastRecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catgrpdesc where catgroup_id > :lastRecord

</body>
</functionDef>

<execute id="Category Description" description="Extract Category Descriptions
for a Locale" schemaentity="catgrpdesc">
<param name=":lastRecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<functionDef id="Category Relationship" description="Extract Category-Relations

© Copyright IBM Corp. 2002 59

for a Locale" schemaentity="catgrprel">
<paramDef name=":lastRecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catgrprel where catgroup_id_child > :lastRecord

</body>
</functionDef>

<execute id="Category Relationship" description="Extract Category-Relations for
a Locale" schemaentity="catgrprel">
<param name=":lastRecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<!-- *************************** -->
<!-- extract Product information -->
<!-- *************************** -->

<functionDef id="Product" description="Extract Product" schemaentity="catentry">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catentry where catentry_id > :lastrecord

</body>
</functionDef>

<execute id="Product" description="Extract Product" schemaentity="catentry">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<functionDef id="Product Relationship" description="Extract Product Ship
information" schemaentity="catentrel">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catentrel where catentry_id_child > :lastrecord

</body>
</functionDef>

<execute id="Product Relationship" description="Extract Product Ship information"
schemaentity="catentrel">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<functionDef id="Product Description" description="Extract Product Description"
schemaentity="catentdesc">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catentdesc where catentry_id > :lastrecord

</body>
</functionDef>

<execute id="Product Description" description="Extract Product Description"
schemaentity="catentdesc">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<functionDef id="Product Ship" description="Extract Product Ship information"
schemaentity="catentship">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catentship where catentry_id > :lastrecord

</body>
</functionDef>

<execute id="Product Ship" description="Extract Product Ship information"
schemaentity="catentship">
<param name=":lastrecord" type="string" value="10300" description="Last record

60 Catalog Manager User’s Guide

before loading new data" />
</execute>

<functionDef id="Category Product Relationship" description="Extract Category
Product Relations" schemaentity="catgpenrel">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from catgpenrel where catgroup_id > :lastrecord

</body>
</functionDef>

<execute id="Category Product Relationship" description="Extract Category Product
Relations" schemaentity="catgpenrel">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<!-- ** -->
<!-- Extract Product Attribute Information -->
<!-- ** -->

<functionDef id="Product Attribute Values" description="Extract Product Attribute
values for a Locale" schemaentity="attrvalue">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from attrvalue where catentry_id > :lastrecord

</body>
</functionDef>

<execute id="Product Attribute Values" description="Extract Product Attribute values
for a Locale" schemaentity="attrvalue">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

<!-- *** -->
<!-- Extract Product Price Information -->
<!-- *** -->

<functionDef id="Offer" description="Extract Offer" schemaentity="offer">
<paramDef name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

<body>
select * from offer where catentry_id > :lastrecord

</body>
</functionDef>

<execute id="Offer" description="Extract Offer" schemaentity="offer">
<param name=":lastrecord" type="string" value="10300" description="Last record
before loading new data" />

</execute>

</sqlx>

Chapter 7. Extracting data 61

Setting up the Extractor
You can change the database drivers that the Extractor uses by doing the
following:
1. Create a new Extractor customizer property file.

v NT 2000 AIX Solaris Linux

DB2ConnectionCustomizer.properties is located in the MassExtract.zip
archive. Extract this file, rename it but keep the .properties extension, and
place it in a directory that is in the classpath. Important: Do not remove or
modify the existing DB2ConnectionCustomizer.properties file.

v 400

ISeries_EXTWCSDTA_Customizer.properties is located in the
/QIBM/ProdData/WebCommerce/properties directory. Copy this file to the
/instroot/xml directory, rename the new file but keep the .properties
extension, then make any necessary changes to the new file. Important: Do
not remove or modify the original
ISeries_EXTWCSDTA_Customizer.properties file.

2. Modify the database-driver values in the new file.
3. Specify the new file name as the value of the customizer parameter of the

Extract command.

The following is an excerpt from the Extractor customizer property file:

DBVendorName = DB2
DBDriverName = COM.ibm.db2.jdbc.app.DB2Driver
DBURL = jdbc:db2:

where:
v DBVendorName is used to select the type of database.

The options are the following:
– DB2 Universal Database for iSeries (DB2/iSeries)
– DB2 for other operating systems (DB2)
– Oracle database (Oracle)

v DBDriverName is used to select the JDBC driver.
The options are the following:
– DB2 Universal Database for iSeries (com.ibm.db2.jdbc.app.DB2Driver)
– DB2 for other operating systems (COM.ibm.db2.jdbc.app.DB2Driver)
– Oracle database (oracle.jdbc.driver.OracleDriver)

v DBURL is used to specify the URL to access the database.
The options are the following:
– DB2 Universal Database for iSeries (jdbc:db2://)
– DB2 for other operating systems (jdbc:db2:)
– Oracle database (jdbc:oracle:oci8:@)

62 Catalog Manager User’s Guide

Chapter 8. Using the Loader package logger

Each utility in the Loader package creates messages to indicate success, failure, and
errors as well as to provide program trace information.

The utilities in the Loader package reference the WCALoggerConfig.xml file.

v NT 2000 AIX Solaris Linux

This file exists in a directory specified in the classpath system-environment
variable. It can also be specified by the com.ibm.wca.logging.configFile Java
systems property.

v 400

This file is located in the /instroot/xml directory.

WCALoggerConfig.xml determines what logging information each utility provides
and where the information is displayed or stored. You can customize this file and
specify what types of logs are created as well as what types of messages are
logged.

Configuring logging in your environment for Windows NT, Windows
2000, AIX, Linux, and Solaris systems

To set up logging in your environment, you must either set the classpath
system-environment variable to include the file WCALoggerConfig.xml or specify the
com.ibm.wca.logging.configFile system property.

Example of setting the classpath variable
If the WCALoggerConfig.xml file is in the directory
d:\WebSphere\CommerceServer\xml\loader on a Windows NT machine, for
example, you can use the following statement to set the classpath variable:

SET CLASSPATH=%CLASSPATH%;D:\WebSphere\CommerceServer\xml\loader

Example of specifying the com.ibm.wca.logging.configFile
system property

To specify the com.ibm.wca.logging.configFile system property, use the -D option
when invoking the Java interpreter. An example follows:

java -Dcom.ibm.wca.logging.configFile=D:\ice_tea\src\classlib\logger\xml\WC.xml
com.ibm.wca.DTDGenerator.GenerateDTD

© Copyright IBM Corp. 2002 63

Customizing logging for the Loader package
To customize logging for the Loader package, use the WCALoggerConfig.xml file.

v NT 2000 AIX Solaris Linux

This file exists in a directory specified in the classpath system-environment
variable. It can also be specified by the com.ibm.wca.logging.configFile Java
systems property.

v 400

This file is located in the /instroot/xml directory.

WCALoggerConfig.xml contains one or more component tags, <component
name="DTDGenerator"> for example. Within each of these tags, you can add loggers
and handlers. You should not alter the utility and logger tags provided with the
system, but you can add handler tags to the loggers. For information about what
you can include in this file, see the WCALogger.dtd file.

Loader package logs are located in the messages.txt file in the following
directories:

v NT drive:\WebSphere\CommerceServer\instances\instance_name\logs

v 2000 drive:\Program Files\WebSphere\CommerceServer\instances\
instance_name\logs

v AIX /usr/WebSphere/CommerceServer/instances/instance_name/logs

v Solaris Linux /opt/WebSphere/CommerceServer/instances/
instance_name/logs

v 400 /QIBM/UserData/WebCommerce/instances/instance_name/logs

Handlers
To add a handler to a logger, specify the handler type in the WCALoggerConfig.xml
file. You can add more than one handler to a logger. Note that each handler has its
own attributes and subordinate tags that do not necessarily apply to other
handlers. Handler types include the following:

64 Catalog Manager User’s Guide

Handler type Description and attributes

console Sends messages to standard output, typically the command
line

file Stores messages in a text file

You must add "<filePath>log path</filePath>" to this handler
as subordinate tagging.

multifile Creates a circular log of files

You must specify "<filePath>log path</filePath>". Log files 1
through n are created. You can add the following attributes:

MaxFiles
Integer indicating how many log files to use before
erasing the first log file

MaxKBFileSize
Integer indicating the maximum number of kilobytes
to store in each log file

NT

2000

AIX

Solaris

Linux

database

Stores messages in a DB2 table in a circular log. You can add
the following attributes:

brand Database brand name. DB2 is the only database
currently supported.

maxRows
Maximum number of records to store in a table before
erasing the oldest entry

You can include "<jdbc/>" as a subordinate tag and include the
following attributes:

url URL used in JDBC to access a database (for
example,"Jdbc:db2:"wcm"", where "wcm" is the name
of the database). The database must exist before you
run the utility.

table Name of the database table where messages will be
logged. It must be created with the following DB2
statement:

"CREATE TABLE"tablename (KEY char(13) FOR BIT
DATA NOT NULL, COMPONENTNAME
VARCHAR(30), ENTRY VARCHAR(2000), PRIMARY
KEY(key))""

userid Database user name. The user must be assigned
permissions to update the table. The following DB2
statement will do this:

"GRANT SELECT, UPDATE, INSERT, DELETE ON
TABLE"tablename TO USER userid""

password
Database password for the user name specified

The following example adds a handler of the type ″database″ to a logger:

<handler type="database" brand="DB2" maxRows="50">
<jdbc url="jdbc:db2:wcm"

table="wcm.log"
userid= "wasuser"
password="123456"/>

Chapter 8. Using the Loader package logger 65

<filter type="Any">
<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>

</filter>
</handler>

Filters
Filters can be added to or removed from handlers to include and exclude message
types. If a logger has no filters, no messages are logged. Each filter tag has a
subordinate messageType tag that lists the message type, which is typically one of
the following:
v INFO
v ERROR
v FATAL
v WARNING

Other message types are listed in the WCALogger.dtd file, but most are generally
not used with the Loader package.

Filter types include the following:

Filter type Description and attributes

Any Includes in the log file any message flagged as one of the messageType
types specified

For example, if the messageType list includes ERROR and the
application generates an ERROR type message, the message is logged.

All Requires that a message have all specified messageType type attributes
before it is included in a log

Exclude Logs all messages not specified in the in list of messageType tags

The following example of adding a filter to a handler allows FATAL as well as
ERROR message types to be logged and other messages to be ignored:

<handler type="file">
<filter type="Any">
<messageType name="FATAL"/>
<messageType name="ERROR"/>
</filter>

</handler>

Formats
You can specify one of two formatter types for message formatting:

Formatter type Description and attributes

safe (default) Prevents an exception from being set if a message cannot be found in a
properties file

This formatter creates a message indicating that the resource is missing.

xml Formats the message in XML format

If a message cannot be found, this formatter also writes a message
instead of setting an exception.

66 Catalog Manager User’s Guide

Example: WCALoggerConfig.xml and WCALogger.dtd

WCALoggerConfig.xml

<?xml version="1.0" standalone="no"?>
<!DOCTYPE WCALoggerConfig SYSTEM "WCALogger.dtd">
<WCALoggerConfig>
<component name="MassLoader">
<logger type="message">
<handler type="file">
<filePath>c:\temp\out.txt</filePath>
<filter type="Any">
<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>
<messageType name="INFO"/>
</filter>
</handler>
</logger>
<logger type="trace">
<handler type="file">
<filePath>out2.txt</filePath>
<filter type="Any">
<messageType name="PUBLIC"/>
</filter>

</handler>
</logger>
<logger type="typedMessage">
<handler type="file">
<filePath>tout.txt</filePath>
<filter type="Any">
<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>
<messageType name="INFO"/>
</filter>

</handler>
</logger>
<logger type="progress">
<handler type="console" format="safe">
<filter type="Any">

<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>
<messageType name="INFO"/>

</filter>
</handler>
</logger>
</component>
<component name="DTDGenerator">
<logger type="message">
<handler type="console">
<filter type="Any">

<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>
<messageType name="INFO"/>

</filter>
</handler>
</logger>
<logger type="trace">
<handler type="console">
<filter type="Any">

<messageType name="FATAL"/>
<messageType name="ERROR"/>
<messageType name="WARNING"/>

Chapter 8. Using the Loader package logger 67

<messageType name="INFO"/>
</filter>
</handler>
</logger>
</component>
</WCALoggerConfig>

WCALogger.dtd

<!-- This DTD describes how a WCALoggerConfig XML can be structured.
A WCALoggerConfig XML document is the input configuration file for
the WCALoggerFactory class.
-->

<!ELEMENT WCALoggerConfig (component)+>

<!ELEMENT component (logger)+>
<!ATTLIST component name CDATA #REQUIRED>
<!ELEMENT logger (handler+,messageFile?)>
<!ATTLIST logger type (message | trace | typedMessage | progress) "typedMessage">

<!-- messageFile is an optional default properties files that can be used to
make messages locale specific
-->
<!ELEMENT messageFile (#PCDATA)>
<!ELEMENT handler (filePath?, filter, jdbc?)>
<!ATTLIST handler
type (file|multiFile|console|error|textArea|database|ejbQueue|queue) "console">

<!-- maxFiles & maxKBFileSize only applies to the multiFile type of handler
-->
<!-- filePath & encoding applies only when the handler is of type file or
multiFile
-->
<!ATTLIST handler maxFiles CDATA #IMPLIED>
<!ATTLIST handler maxKBFileSize CDATA #IMPLIED>
<!ATTLIST handler encoding CDATA #IMPLIED>
<!ATTLIST handler format (safe | xml) "safe">
<!-- maxRecords & brand are only applicable to database handler type
-->
<!ATTLIST handler maxRecords CDATA #IMPLIED>
<!ATTLIST handler brand (DB2) #IMPLIED>
<!-- the jdbc tag must be present within a database handler type tag
-->
<!ELEMENT jdbc EMPTY>
<!ATTLIST jdbc url CDATA #IMPLIED>
<!ATTLIST jdbc table CDATA #IMPLIED>
<!ATTLIST jdbc userid CDATA #IMPLIED>
<!ATTLIST jdbc password CDATA #IMPLIED>

<!ELEMENT filter (messageType+)>
<!ATTLIST filter type (Any | All | Exclude) "Any">

<!-- the messageType attribute name is one of these JLog IRecordType
constants
-->
<!ELEMENT messageType EMPTY>
<!ATTLIST messageType name (NONE | ALL | INFO |
INFORMATION | WARN | WARNING | ERR | ERROR |
FATAL | DEFAULT_MESSAGE | API | CALLBACK |
ENTRY_EXIT | ENTRY | EXIT | ERROR_EXC |
MISC_DATA | OBJ_CREATE | OBJ_DELETE |
PRIVATE | PUBLIC | STATIC | SVC | PERF |
LEVEL1 | LEVEL2 | LEVEL3) "ALL">
<!ELEMENT filePath (#PCDATA)>

68 Catalog Manager User’s Guide

Chapter 9. Using the Loader package error reporter

The Loader and ID Resolver include an error reporter that generates an exception
document if there is an error.

By default, the exception document is written to the following directory:

v NT 2000 AIX Solaris Linux the directory where the input
document resides

v 400 /instroot/logs

To specify the directory to which the exception document is written, use the Java
property com.ibm.wcm.ErrorReporterDir. An example for the Loader in a Windows
NT environment would begin as follows:
java -Dcom.ibm.wcm.ErrorReporterDir=d:\massloaderrors
com.ibm.wca.MassLoader.MassLoad -dbname . . .

Note: The user should have permission to write to the specified directory.

The following is a sample DTD (store-all-error.dtd) for the error reporter:
<!ENTITY % TABLE "calrule | catentry">
<!ELEMENT store-asset (error, (%TABLE;)*)>
<!ELEMENT message (#PCDATA) >
<!ELEMENT error (message) >
<!ATTLIST error

locus CDATA #REQUIRED
id CDATA #REQUIRED

>
<!ELEMENT calrule (error)>
<!ATTLIST calrule

identifier CDATA #REQUIRED
calrule_id CDATA #REQUIRED
calcode_id CDATA #REQUIRED
startdate CDATA #IMPLIED
taxcgry_id CDATA #IMPLIED
enddate CDATA #IMPLIED
sequence CDATA #REQUIRED
combination CDATA #REQUIRED
calmethod_id CDATA #REQUIRED
calmethod_id_qfy CDATA #REQUIRED
flags CDATA #REQUIRED
field1 CDATA #IMPLIED
field2 CDATA #IMPLIED

>
<!ELEMENT catentry (error)>
<!ATTLIST catentry

catentry_id CDATA #REQUIRED
member_id CDATA #REQUIRED
catenttype_id CDATA #REQUIRED
partnumber CDATA #IMPLIED
mfpartnumber CDATA #IMPLIED
mfname CDATA #IMPLIED
markfordelete CDATA #REQUIRED
url CDATA #IMPLIED
field1 CDATA #IMPLIED
field2 CDATA #IMPLIED
lastupdate CDATA #IMPLIED
field3 CDATA #IMPLIED
onspecial CDATA #IMPLIED

© Copyright IBM Corp. 2002 69

onauction CDATA #IMPLIED
field4 CDATA #IMPLIED
field5 CDATA #IMPLIED
buyable CDATA #IMPLIED

>

The following is a sample error-report document from the Loader:
<?xml version="1.0"?>
<!DOCTYPE store-asset SYSTEM "store-all-error.dtd">
<store-asset>

<error
locus="Parser"
id="SAXParseFatalError" >
<message>

Error The string "--" is not permitted within comments. : 155 : 18
</message>

</error>
<calrule

calcode_id="30"
enddate="2100-01 10:20:30.000000"
calmethod_id="-47"
identifier="7"
taxcgry_id="9"
calmethod_id_qfy="-46"
startdate="1900-01-01-00.00.00.000000"
flags="1"
combination="2"
calrule_id="44"
sequence="9.0E+1">
<error

locus="Writer"
id="SQLException" >
<message>

A SQL Exception was received [IBM][CLI Driver][DB2/NT] SQL0530N
The insert or update value of the FOREIGN KEY
"JANTONY.CALRULE.F_CALRULE4" is not equal to any value of the
parent key of the parent table. SQLSTATE=23503

</message>
</error>

</calrule>
<catentry

catentry_id="10118"
member_id="-2001"
partnumber="1254"
mfpartnumber="sku-163"
mfname="InFashion"
markfordelete="0"
buyable="1"
field1="abc" >
<error

locus="Formatter"
id="FormattingError" >
<message>

Error when formatting value for CATENTRY.FIELD1 : abc with error
[class java.lang.NumberFormatException(abc)].

</message>
</error>

</catentry>
</store-asset>

70 Catalog Manager User’s Guide

Chapter 10. Configuring Loader package commands and
scripts

To launch the Loader package and run its commands, use the scripts or commands
provided in the WebSphere Commerce directory:

v NT drive:\WebSphere\CommerceServer\bin

v 2000 drive:\Program Files\WebSphere\CommerceServer\bin

v AIX /usr/WebSphere/CommerceServer/bin

v Solaris Linux /opt/WebSphere/CommerceServer/bin

v 400 QWEBCOMM native library

The scripts and commands are as follows:

400

GENWCSDTD
DTD Generate command

RESWCSID
ID Resolve command

EXTWCSDTA
Extract command

LODWCSDTA
Load command

TRNWCSTXT
Text Transform command

TRNWCSXML
XML Transform command

NT 2000

dtdgen.cmd
DTD Generate command

idresgen.cmd
ID Resolve command

massextract.cmd
Extract command

massload.cmd
Load command

txttransform.cmd
Text Transform command

xmltransform.cmd
XML Transform command

© Copyright IBM Corp. 2002 71

AIX Solaris Linux

dtdgen.sh
DTD Generate shell script

idresgen.sh
ID Resolve shell script

massextract.sh
Extract shell script

massload.sh
Load shell script

txttransform.sh
Text Transform shell script

xmltransform.sh
XML Transform shell script

Note:

The scripts and commands provided in WebSphere® Commerce as utilities
for executing the Loader package commands call on scripts and batch files
containing environment-variable settings. These are the setenv.extension,
setdbenv.db2.extension, and setdbenv.oracle.extension files (where
extension is the file extension); and they are located in the following
directories by default:

v AIX /usr/WebSphere/CommerceServer/bin

v 400 QWEBCOMM native library

v Linux Solaris /opt/WebSphere/CommerceServer/bin

v NT drive:\WebSphere\CommerceServer\bin

v 2000 drive:\Program Files\WebSphere\CommerceServer\bin

You may need to modify these files when you customize your system. On a
Windows operating system, for example, you may need to change the
values for one or more of the following paths in setenv.bat:
v JAVA_HOME
v DB2_DRIVER
v ORACLE_HOME
v ORACLE_DRIVER
v ORACLE_CLASSPATH

These environment variables are set in setenv.bat and used in
setdbenv.db2.bat or setdbenv.oracle.bat, depending on the database that
you are using.

72 Catalog Manager User’s Guide

Part 3. Using the Web editor

This section describes how to administer and use the Catalog Manager Web editor.

The Web editor enables you to create, delete, and make changes to your catalog
data through a Web browser. Data-entry forms for viewing and updating
information are central to the Web editor. In the simplest case, the forms
correspond to tables in the WebSphere Commerce database. The administrator can
choose to use the default forms provided or to customize the available forms.

Note: The Web editor uses Internet Explorer 5 and later.

© Copyright IBM Corp. 2002 73

74 Catalog Manager User’s Guide

Chapter 11. Setting up the Web editor

The administrator can configure the Web editor to contribute data to WebSphere
Commerce, including extensions and customizations to the WebSphere Commerce
schema. The Web editor is not designed as a set of Web-entry forms specific to a
particular instance of WebSphere Commerce. The Web editor was designed to be
flexible and customizable to support the individual needs and roles of different
organizations.

A database view is a stored query on one or more tables in the database. During
Catalog Manager installation, a sample file for creating a logical view of a
WebSphere Commerce product is placed in each system-specific subdirectory (db2,
oracle, and os400) of the following directory:

v NT drive:\WebSphere\CommerceServer\schema

v 2000 drive:\Program Files\WebSphere\CommerceServer\schema

v AIX /usr/WebSphere/CommerceServer/schema

v Solaris Linux /opt/WebSphere/CommerceServer/schema

v 400 /QIBM/ProdData/WebCommerce/schema

This sample file, wcs.view.sql, contains a product view that has been created to
combine the information about products from multiple tables. It contains the SQL
data definition of the product view. Administrators can study this file to plan for
developing their own views of a database.

The default XML form-description file (forms51_be.xml) contains forms designed to
make it easy to add, edit, and delete data in a WebSphere Commerce database. A
copy of this file is located in the following directory:

v NT drive:\WebSphere\CommerceServer\xml\wcwebeditor\xml

v 2000 drive:\Program Files\WebSphere\CommerceServer\xml\
wcwebeditor\xml

v AIX /usr/WebSphere/CommerceServer/xml/wcwebeditor/xml

v Solaris Linux /opt/WebSphere/CommerceServer/xml/wcwebeditor/xml

v 400 /instroot/xml/wcwebeditor/xml

This configuration file can be used as is, or it can be changed and enhanced by the
administrator who sets up the Web editor. To customize the XML form-description
file, see the instructions included later in this section.

Note: The DTD Generator can automatically create forms to be used by the Web
editor.

© Copyright IBM Corp. 2002 75

Configuring the Web editor
This section provides information on how to configure the Web editor. Although
the installation process handles this configuration initially, an administrator can use
this information to do things such as reconfiguring the Web editor to use another
database.

Editing the webeditor.properties file
The Web editor has certain application parameters that are set within the
webeditor.properties file. It is located in the following directory:

v NT drive:\WebSphere\AppServer\installedApps\
WC_Enterprise_App_demo.ear\wcwebeditor.war\WEB-
INF\classes\webeditor.properties

v 2000 drive:\Program Files\WebSphere\AppServer\installedApps\
WC_Enterprise_App_demo.ear\wcwebeditor.war\WEB-
INF\classes\webeditor.properties

v AIX /usr/WebSphere/AppServer/installedApps/
WC_Enterprise_App_demo.ear/wcwebeditor.war/WEB-
INF/classes/webeditor.properties

v Solaris Linux /opt/WebSphere/AppServer/installedApps/
WC_Enterprise_App_demo.ear/wcwebeditor.war/WEB-
INF/classes/webeditor.properties

v 400 /QIBM/UserData/WEBASADV4/was_instance_name/
installedApps/WC_Enterprise_App_wcs_instance_name.ear/
wcwebeditor.war/WEN-INF/classes

By editing the webeditor.properties file, an administrator can do things such as
change which file is used to describe the forms that are displayed in the Web
editor. Here is an example of the contents of a webeditor.properties file:
Properties file for WebEditor

(The following specifies where the customized process list and the Catalog Manager
utility configuration envelopes are located.)
URI Location of Process and WCM Subsystem configuration envelopes
ProcessConfigFile=file:///D:/WebSphere/CommerceServer/xml/wcwebeditor/xml/weProcessList.xml

(The following specifies where the forms are defined.)
Location of Forms file
FormsURL=file:///D:/WebSphere/CommerceServer/xml/wcwebeditor/xml/forms51_be.xml

(The following setting specifies where the XML-to-HTML style sheet is located)
Location of XML to HTML StyleSheet
StyleSheetURI=file:///D:/WebSphere/CommerceServer/xml/wcwebeditor/xsl/webeditor.xsl

(The following setting specifies the location for temporary files)
Location of Temporary Directory
#temp.dir=

WebSphere datasource. This is used to build form drop-down lists and field
default values. However, when publishing and searching, the Web Editor utilizes
the WCM subsystems ID Resolver, Mass Loader, and Mass Extractor. Database access
for these WCM subsystems must be configured separately.
Name of WAS database source
dbsource=jdbc/WebSphere Commerce DB2 DataSource demo

Name of WAS database. If specified, this takes preference over the database name
value in the forms XML file. This value will be utilized as a parameter when
invoking the WCM subsystems such as the Mass Loader.
dbname=mall

(The following setting specifies the character set to use. By default, it is

76 Catalog Manager User’s Guide

set to the single-byte character set. For other countries, choose from the values
that are commented out.)
Encoding Character Set
Encoding=ISO-8859-1

CN
#Encoding=gb2312
TW
#Encoding=Big5
KR
#Encoding=EUC-KR
JP
#Encoding=Shift_JIS

(The following setting is used to allow images to be previewed. The hostname of
the server plus any leading directory information before the image information that
is stored in WebSphere Commerce should be specified here. The WebSphere Commerce
catalog information is appended to this value to construct an image URL.)
Specifies the base href location for images
This should be set so that this info plus the info stored in WCS
(e.g. /image/char.gif) combines to create a URL to an image

#imageRootURL=http://%HOSTDOMAIN
imageRootURL=http://localHost/webeditor

(The following setting is used to set a date format for the application. If these
properties are not available (i.e., they are commented out), then the Java-locale
specific format will be used. Below is a reference table for setting these values.)
Use these properties to specify a date format if the Java locale-specific
format is not desired

#dateFormat=yyyy-MM-dd
#dateTimeFormat=yyyy-MM-dd HH:mm:ss

Symbol Meaning Presentation Example
------ ------- ------------ -------
G era designator (Text) AD
y year (Number) 1996
M month in year (Text & Number) July & 07
d day in month (Number) 10
h hour in am/pm (1~12) (Number) 12
H hour in day (0~23) (Number) 0
m minute in hour (Number) 30
s second in minute (Number) 55
S millisecond (Number) 978
E day in week (Text) Tuesday
D day in year (Number) 189
F day of week in month (Number) 2 (2nd Wed in July)
w week in year (Number) 27
W week in month (Number) 2
a am/pm marker (Text) PM
k hour in day (1~24) (Number) 24
K hour in am/pm (0~11) (Number) 0
z time zone (Text) Pacific Standard Time
’ escape for text (Delimiter)
’’ single quote (Literal) ’

Changing the location of the temporary files
The location of temporary files can be changed by removing the comment mark
and adding a value to the temp.dir property in the webeditor.properties file.

Alternatively, the java.io.tmpdir Java property is used to determine where
temporary files are created.

Chapter 11. Setting up the Web editor 77

Creating an XML form-description file using the DTD Generator
The forms51_be.xml file is an example of an XML form-description file. It provides
a set of forms to be used by the Web editor. A copy of this file is located in the
following directory:

v NT drive:\WebSphere\CommerceServer\xml\wcwebeditor\xml

v 2000 drive:\Program Files\WebSphere\CommerceServer\xml\
wcwebeditor\xml

v AIX /usr/WebSphere/CommerceServer/xml/wcwebeditor/xml

v Solaris Linux /opt/WebSphere/CommerceServer/xml/wcwebeditor/xml

v 400 /instroot/xml/wcwebeditor/xml

The following steps describe how the system administrator can use the DTD
Generator to add new XML forms.

Note: Before performing the procedure described below, rename the existing
forms51_be.xml in the Web editor directory. Alternatively, create an output
file during the following procedure with a new name and then reconfigure
the Web editor to use the newly created file. See the previous section for
instructions on how to do this.

To create XML forms, run the DTD Generate command.

The following steps describe how to create the XML forms:
1. Create a temporary file named ″tables.txt″ containing the names of the tables

that you want to use in the forms.
Enter each table name on a single line as in the following example:

catentry
catentdesc
catentship
inventory

2. Save tables.txt to the directory where the DTD Generate command is located.
(See Chapter 10, “Configuring Loader package commands and scripts” on page
71 for the installed location of this command.)

3. At the operating-system command prompt, change to the directory where the
DTD Generate command is located.

78 Catalog Manager User’s Guide

4. Run the DTD Generate command by entering the following:

NT 2000

dtdgen -infile tables.txt -outfile tables51.dtd
-dbname dbname -dbuser userid -dbpwd password
-xmlTableDesc tableFORMS.xml -schemaname schema -propfile filename

AIX Solaris Linux

./dtdgen.sh -infile tables.txt -outfile tables51.dtd
-dbname dbname -dbuser userid -dbpwd password
-xmlTableDesc tableFORMS.xml -schemaname schema -propfile filename

400

QWEBCOMM/GENWCSDTD DATABASE(database) SCHEMA(schema)
INSTROOT(instroot) PASSWD(password) OUTFILE(tables51.dtd)
INFILE(tables.txt) XMLTABDESC(tableFORMS.xml)

The table-description switch (-xmlTableDesc or XMLTABDESC) causes the DTD
Generator to create a new form description of the tables in addition to a DTD.

NT 2000 AIX Solaris Linux The -propfile option specifies
the name of an external properties file where help text, default values, and
field-description information can be stored.

5. Reconfigure the Web editor to use the newly created files as described in the
previous section.

6. Restart the Web editor in the WebSphere Advanced Administrative Console. To
do this, follow these steps:
a. Expand WebSphere Administrative Domain.
b. Expand Enterprise Applications.
c. Right-click WebSphere Commerce Enterprise Application - demo, and

select Stop.
d. Wait until the message indicates that the application has stopped.
e. Right-click WebSphere Commerce Enterprise Application - demo, and

select Start.
f. Wait until the message indicates that the enterprise application has started.

7. To see the new form in a Web browser, open the following URL:

https://host_name:8000/wcm/webeditor

where host_name is the fully qualified HTTP host name of your WebSphere
Application Server.

The Web editor displays in the browser window with a list of all the table
names.

Chapter 11. Setting up the Web editor 79

Customizing the XML form description
This section describes how the administrator can enhance the forms that the Web
editor displays.

The XML form description can be customized and enhanced by setting attributes
and values in ether the XML form-description file itself or in a separate properties
file.

Note: The name of this properties file should be specified as the value of the
resourcePackage attribute in the formList tag. If the file name appears in a
subdirectory of a directory in the class path, it should use the package(dot)
specification.

The following table lists the Web editor form-field attributes that an administrator
can alter.

Field attribute Description

Currency Causes values to be displayed with a locale-specific
numeric separator (such as a comma as a thousands
separator for the United States)

DbColumn Used to map the field name to the properties file key

If locale-specific properties files are being used, then
the value in this entry must match what is entered in
the properties file. The DTD Generator appends a
schema to this entry.

DefaultValue Specifies a value that is shown on the data-entry form
when a user fills out a new form

This attribute can be set by the DTD Generator to the
database default value. It can be a static string, but it
can also include an SQL scalar query against a
single-line table. To retrieve external data, a
user-defined function could be used in the query. For
example:

DefaultValue="SELECT CURRENT TIMETAMP FROM EXEC"

where EXEC is a defined and populated as:

CREATE TABLE EXEC (A CHAR(1));
INSERT INTO A VALUES(’A’);

dynamicSqlSelectionList Causes a drop-down menu to be rebuilt for each form

FieldDescription Provides a description that is displayed next to the
entry field on the form

The DTD Generator uses the comments on the column
if there are any when creating this attribute. If there
are no comments on the column, then the default is
the column name.

This attribute can be set in the locale-specific property
file or in the XML form-description file. If a value is
specified in the properties file, it takes precedence.

80 Catalog Manager User’s Guide

Field attribute Description

FieldHelp Provides a brief help description of the field to be
displayed on the bottom message bar of the browser
when the field is in focus on the form.

By default, this contains a simple message to enter
data for the given field along with the column type of
the data.

This attribute can be set in the locale-specific property
file or in the XML form-description file. If a value is
specified in the properties file, it takes precedence.

formatNumber Used to tell the Web editor not to process a number in
any way

Set the formatNumber attribute to ″false″ to treat the
value entered as a string except during extract queries
(where the value is not placed in quotes as a string
would be). The default of this attribute is ″true.″

Hidden Indicates that the value is not displayed on the form
but is still available as an HTML hidden field

HideOnCreate Indicates that the field is available when a new form
is composed

Similar to showInCreateMode=″false″; but adds the
field name as hidden type.

Maxlength Specifies the length of the database column

It is used to ensure that the user does not enter a
value with a length greater than what can be stored in
the database.

MinOccurs Indicates whether the field is required

A value of ″1″ means required, a value of ″0″ means
optional.

Name Specifies the name of the database column

readOnly

readOnlyForCreate

readOnlyForEdit

Control when a field is available for editing and when
it is only readable by the user

readOnly=″true″ means that a field is always in
read-only mode. readOnlyForCreate=″true″ means
that a field is in read-only mode when a new form is
being composed. readOnlyForEdit=″true″ means that
a field is in read-only mode when an existing form is
being edited.

ShowColumnInList Specifies that the field is one of the columns that
constitute the multi-record view of data when set to
″true″

The DTD Generator sets the first six columns to
″true.″

Chapter 11. Setting up the Web editor 81

Field attribute Description

showInCreateMode Used to hide a field from the created form

Set the showInCreateMode attribute to ″false″ to hide
the field on the displayed created form. The default of
this attribute is ″true.″

ShowInSearchMode Used to hide certain columns from the search-criteria
page

If this attribute is set to ″false,″ the given field is not
displayed on the search form.

SqlSelectionList Creates a drop-down menu for a user to select from
when composing a new form

The query must return a one- or two-column result
set. The first column is the list of labels that the user
can choose from; the second column is the list of
actual values to store in the database table. If only one
column is used, the value that is displayed is stored
in the table. This feature is very helpful in enforcing
foreign-key relationships.

Type Indicates the type of the database column and what
kind of validation checks should be performed on the
data

For example, if the type is ″integer,″ then the
application ensures that only a valid integer is entered
into this field.

UniqueKey Indicates that the field is a primary key for a table

If this attribute is set to ″true,″ then the application
enforces a unique constraint on the data entered for
this column. This check is only performed on the
records loaded in the application. If does not extend
to the records in the database.

ValidateInput Used to turn off validation checking

This attribute allows the user to enter text into a
numeric field that will be handled by the ID Resolver
or XML Transformer.

Editing form names
The form tag in the XML form description has both name and displayName
attributes.
v The name attribute must be set to the name of the database table or view that it

represents.
v The displayName attribute provides an easy-to-use name in the Web editor

application. Alternatively, a displayName attribute for a form can be set in the
properties file specified in the resourcePackage attribute of the formList tag. (The
resourcePackage attribute is used for multi-language support.)

Note: If an entry is present in the properties file, it takes precedence over what
is entered in the XML form-description file.

82 Catalog Manager User’s Guide

Changing a field description
Here is an example of a field description in an XML form-description file:

<form name = "CATALOG.CATENTRY"
.
.
<field name="MEMBER_ID"
showInCreateMode="false"
fieldDescription="MEMBER_ID"
type="integer"
maxlength="19"
defaultValue=""
.
.

<field name="CATENTTYPE_ID"
fieldDescription="CATENTTYPE_ID"
type="string"
maxlength="16"
defaultValue=""
.
.

You may want to change it to the following:

<form name = "CATALOG.CATENTRY"
displayName="Product"
.
.
<field name="MEMBER_ID"

showInCreateMode="false"
fieldDescription="Member Identifier"
type="integer"
maxlength="19"
defaultValue=""
.
.

<field name="CATENTTYPE_ID"
fieldDescription="Product Type"
type="string"
maxlength="16"
defaultValue=""
.
.

Adding a drop-down menu
You can add a selection list in the form of a drop-down menu to a Web editor
form to make the form easier to complete and to limit the user to selecting from a
valid set of choices.

To refresh the selection lists, the administrator can restart the Web editor. There is
also a form-description field attribute, dynamicSqlSelectionList, that the
administrator can set to ″true″ to ensure that a drop-down menu reloads each time.

The query for a selection list can have a result set that returns either one or two
columns. If the result returns two columns, the second column contains the actual
values stored and the first column contains the user labels.

A selection list is created by entering an SQL query in the sqlSelectionList attribute
of the field tag or by creating an enumeration in theXML form-description file.
Both methods are shown in the following example:

Chapter 11. Setting up the Web editor 83

<field name="MEMBER_ID"
showInCreateMode="false"
fieldDescription="Member Identifier"
.
.
readOnly="false"
sqlSelectionList="select orgentityname,orgentity.orgentity_id
from member,orgentity where member.type=’O’
and member.member_id=orgentity.orgentity_id"
.
.
fieldHelp=""
.
.

</field>
<field name="MARKFORDELETE"

fieldDescription="Mark for Delete"
type="NMTOKEN"
sqlSelectionList=""

>
<datatype source="integer">

<enumeration label="No" value="0"/>
<enumeration label="Yes" value="1"/>

</datatype>
</field>

>

There are fields in the WebSphere Commerce database tables that use 1 and 0 for
true and false. To create fields that are more intuitive to the user, enumerations of
these fields can be established. Catalog Manager provides an SQL script to create
an enumeration table named ″NUMDESC.″ This script is named ″createEnum.sql.″
An administrator can edit the sqlSelectionList attribute to make a selection list
using the ENUMDESC table as shown in the example below:

fieldDescription="On Special"
.
.
readOnly="false"
sqlSelectionList="select description,value from

enumdesc where columnname=’ALL’ and type=’YESNO’"
fieldHelp=""
.
.

Adding field help
Field help displays at the bottom of the Web-browser window for the current field
in focus. The attribute fieldHelp on the field tag in the XML form-description file
or the fieldHelp key in the properties file can be used to set this value.

For example, the properties file may contain the following field-help specifications:

CATEGORY.MARKFORDELETE.defaultValue=No
CATEGORY.MARKFORDELETE.fieldDescription=Delete Entry

If no value is specified, a default message of ″Enter a value for field_name here
field_type″ is created.

Note: If there is a properties file containing form information, it takes precedence
over the entries in the XML form-description file.

84 Catalog Manager User’s Guide

Customizing search results and the work-session list
The set of columns that displays on the search-results page can be customized.
There is a showColumnInList attribute of the field tag in the XML form-description
file. To include a field among the search results, set this attribute to ″true″;
otherwise; it will not appear as one of the columns in the search-results view. The
field is present when the form is displayed.

Editing the weProcessList file
The weProcessList file allows an administrator to customize the Catalog Manager
utilities that are run when a Web editor work session is processed.

v NT 2000 AIX Solaris Linux The weProcessList.xml
file is located in the following directory:

– NT drive:\WebSphere\CommerceServer\xml\wcwebeditor\xml

– 2000 drive:\Program Files\WebSphere\CommerceServer\xml\
wcwebeditor\xml

– AIX /usr/WebSphere/CommerceServer/xml/wcwebeditor/xml

– Solaris Linux /opt/WebSphere/CommerceServer/xml/wcwebeditor/xml

v NT 2000 AIX Solaris The weProcessListOracle.xml file
is located in the following directory:

– NT drive:\WebSphere\CommerceServer\xml\wcwebeditor\xml

– 2000 drive:\Program Files\WebSphere\CommerceServer\xml\
wcwebeditor\xml

– AIX /usr/WebSphere/CommerceServer/xml/wcwebeditor/xml

– Solaris /opt/WebSphere/CommerceServer/xml/wcwebeditor/xml

v 400 The weProcessListAS400.xml file is located in the following directory:
– /instroot/xml/wcwebeditor/xml

This file contains envelope templates for the various utilities. It can also contain
references to custom applications that the administrator wishes to run.

There is a set of system variables that can be used in this file. The system variable
%-dbname%, for example, causes the database name to be inserted in the envelope
that is generated for the given invocation of a utility such as the Loader. The XML
form-description file contains references to these processes that indicate which ones
should be invoked for an add, edit, or delete.

Here is an example of a weProcessList.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<processSet>
<!-- Do not change name of extract -->
<process name="extract"

subsystem="com.ibm.wca.MassExtract.extract.ExtractSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-outfile" type="file" reside="local" value="%tempFilePath%"/>
<param name="-filter" type="file" reside="local" value="%tempFileURI1%"/>

</envelope-input>
</process>
<process name="transformer"

subsystem="com.ibm.wca.XMLTransformer.XMLTransformerSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

Chapter 11. Setting up the Web editor 85

<param name="-infile" type="file" reside="local" value="%tempFileURI%"/>
<param name="-transform" type="file" reside="local"
value="%webEditorDir%/xsl/ViewsToWCS51.XSL"/>

<param name="-outfile" type="file" reside="local" value="%tempFilePath1%"/>
<param name="-param" value="root=%-dbname%"/>
<param name="-param" value="dtdname=%-dtdname%"/>

</envelope-input>
</process>
<process name="transformerForDelete"

subsystem="com.ibm.wca.XMLTransformer.XMLTransformerSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-infile" type="file" reside="local" value="%tempFileURI%"/>
<param name="-transform" type="file" reside="local"
value="%webEditorDir%/xsl/ViewsToWCS51.XSL"/>

<param name="-outfile" type="file" reside="local" value="%tempFilePath1%"/>
<param name="-param" value="root=%-dbname%"/>
<param name="-param" value="dtdname=%-dtdname%"/>
<param name="-param" value="forDelete=true"/>

</envelope-input>
</process>
<process name="resolver"

subsystem="com.ibm.wca.IdResGen.IdResGenSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-infile" type="file" reside="local"
value="%previousOutFileAsURI%"/>

<param name="-outfile" type="file" reside="local"
value="%tempFilePath2%"/>

<param name="-propfile" type="file" reside="local"
value="propertyFiles.IdKeys"/>

<param name="-method" type="scalar" value="mixed"/>
</envelope-input>

</process>
<!-- Resolver as first process -->
<process name="resolverFirstProcess"

subsystem="com.ibm.wca.IdResGen.IdResGenSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-infile" type="file" reside="local" value="%tempFileURI%"/>
<param name="-outfile" type="file" reside="local" value="%tempFilePath2%"/>
<param name="-propfile" type="file" reside="local" value="propertyFiles.IdKeys"/>
<param name="-method" type="scalar" value="mixed"/>

</envelope-input>
</process>
<process name="loader"

subsystem="com.ibm.wca.MassLoader.MassLoadSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-commitcount" type="scalar" value="1000"/>
<param name="-infile" type="file" reside="local" value="%previousOutFileAsURI%"/>
<param name="-method" type="scalar" value="sqlimport"/>
<param name="-noprimary" type="scalar" value="insert"/>

</envelope-input>
</process>
<process name="loaderFirstProcess"

subsystem="com.ibm.wca.MassLoader.MassLoadSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-commitcount" type="scalar" value="1000"/>
<param name="-infile" type="file" reside="local" value="%tempFileURI%"/>
<param name="-method" type="scalar" value="sqlimport"/>
<param name="-noprimary" type="scalar" value="insert"/>

</envelope-input>
</process>
<process name="loaderForDelete"

subsystem="com.ibm.wca.MassLoader.MassLoadSubSystem">

86 Catalog Manager User’s Guide

<envelope-input xmlns=’saf_params.xsd’>
<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-commitcount" type="scalar" value="1000"/>
<param name="-infile" type="file" reside="local" value="%previousOutFileAsURI%"/>
<param name="-delete" type="scalar" value=""/>

</envelope-input>
</process>
<process name="loaderForDeleteFirstProcess"

subsystem="com.ibm.wca.MassLoader.MassLoadSubSystem">
<envelope-input xmlns=’saf_params.xsd’>

<param name="-dbname" type="scalar" value="%-dbname%"/>
<param name="-dbuser" type="scalar" value="%-dbuser%"/>
<param name="-dbpwd" type="scalar" value="%-dbpwd%"/>
<param name="-commitcount" type="scalar" value="1000"/>
<param name="-infile" type="file" reside="local" value="%tempFileURI%"/>
<param name="-delete" type="scalar" value=""/>

</envelope-input>
</process>
<process name="saveToFile"

cmd="cmd.exe /c c:\temp\theBatchFile.bat"
args="-infile %tempFilePath% -dbname %-dbname%"

/>
</processSet>

Note: File references are case sensitive.

The following table includes a list of valid substitution variables that the
application understands.

% substitution variable Return

%-dbname% Name of current database

%-dbuser% Name of database user name

%-dtdname% URI location of the DTD for the XML files

%-dbpwd% Password for database user name

%tempFilePath%

%tempFilePath1%

%tempFilePath2%

Full path to temporary file

These are unique temporary file names. They may be
placed in the template syntax of an envelope definition
or command line. For example, if %tempFilePath% is
placed in the value attribute of the -infile parameter in
an envelope template, then the Web editor writes the
data of the work session to the temporary file location.

On SubSystem

%tempFileURI%

%tempFileURI1%

%tempFileURI2%

Temporary URI

The temporary URIs are URI to the same files
represented by %tempFilePath%à%tempFilePath2%. This is
not an additional set of files but a way to retrieve the
same generated temporary file returned with a different
syntax.

%previousOutFileAsURI% Provides a URI representation of the previous tasks
-outfile parameter as a URI

%webEditorDir% Location of the Web editor installation

Chapter 11. Setting up the Web editor 87

Editing the webeditor.xsl file
The Web editor uses the webeditor.xsl file as the default XSL style sheet. It is
located in the following directory:

v NT drive:\WebSphere\CommerceServer\xml\wcwebeditor\xsl

v 2000 drive:\Program Files\WebSphere\CommerceServer\xml\
wcwebeditor\xsl

v AIX /usr/WebSphere/CommerceServer/xml/wcwebeditor/xsl

v Solaris Linux /opt/WebSphere/CommerceServer/xml/wcwebeditor/xsl

v 400 /instroot/xml/wcwebeditor/xsl

By editing the webeditor.xsl file, an administrator can change the format of Web
editor output. Here is a sample of the contents of a webeditor.xsl file:
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output method="html"/>
<!-- Largest single line entry field value for fields larger than this a
TEXTAREA is created -->

<xsl:variable name="maxEntryFieldSize" select="80"/>
<xsl:template match ="/">
<xsl:apply-templates/>

</xsl:template>
<!-- Read Only field -->
<xsl:template match="readOnly" name="readOnly">

<xsl:element name="input">
<xsl:attribute name="name"><xsl:value-of select="@name"/></xsl:attribute>
<xsl:attribute name="type">hidden</xsl:attribute>
<xsl:attribute name="value"><xsl:value-of select="@defaultValue"/></xsl:attribute>
<!--
<xsl:attribute name="onFocus">this.blur()</xsl:attribute>
<xsl:attribute name="style">border-style:groove</xsl:attribute>
-->

</xsl:element>
<table border="1" cellpadding="0" cellspacing="0" width="155" bgcolor="#C0C0C0">

<tr>
<td>

<img border="0" src="/webeditor/image/space.gif" width="1"
height="17"/><xsl:value-of select="@defaultValue"/>

</td>
</tr>

</table>
</xsl:template>
</xsl:stylesheet>

88 Catalog Manager User’s Guide

Chapter 12. Working with catalogs

The following procedures describe how to work with catalogs by using the Web
editor to add, modify, and delete records in the database tables containing catalog
data.

Adding a record to a table using the Web editor
To add a record to a table using the Web editor, follow these steps:
1. From a Web browser, open the following URL:

https://host_name:8000/wcm/webeditor

where host_name is the fully qualified HTTP host name of your WebSphere
Application Server.

The Web editor database logon window appears.
2. Enter your database username and password; then, click Logon.

The Web editor displays in the browser window with a list of table names in
the left menu bar.

3. Click the appropriate hyperlink in the Add submenu of the left menu bar.
The appropriate form is displayed.

4. Type all necessary data in the form.
5. Click Move to work session.

The work-session results for the form are displayed. These results contain all of
the edits, additions, and deletions that you have made but not cleared or
processed during this Web editor work session.

6. If you want to remove any record changes from the work session, check the
box in front of each record change that you want to remove and click Clear
selected.

7. Click Process work session to submit the selected changes to the database.
A status page displays a message stating that the process was successful.

8. Navigate to the Web site, click the appropriate hyperlinks, and verify that your
changes have been made.

© Copyright IBM Corp. 2002 89

Modifying a record in a table using the Web editor
To modify a record in a table using the Web editor, follow these steps:
1. From a Web browser, open the following URL:

https://host_name:8000/wcm/webeditor

where host_name is the fully qualified HTTP host name of your WebSphere
Application Server.

The Web editor database logon window appears.
2. Enter your database username and password; then, click Logon.

The Web editor displays in the browser window with a list of table names in
the left menu bar.

3. Click the appropriate hyperlink in the Search submenu of the left menu bar.
The appropriate search page displays.

4. Specify your search criteria by doing the following:
a. Select the check box beside each attribute that you want to specify in your

search.
b. Use the appropriate drop-down menu for each selected attribute to select

the logic that you want to use in the search.
c. In the next field for each selected attribute, type or select the value that

you want to use in the search.
5. Click Find.

This submits the search criteria to the Web editor.
A status page displays with the number of records meeting your search
criteria.

6. Do one of the following:
v Click Load data to see a list of the records found.

The Web editor displays a list of the records retrieved from your query.
Go to Step 7.

v Click New search to return to the search page.
Go back to Step 4.

7. Select the record that you want to edit.
The appropriate form is displayed.

8. Scroll down to the field that you want to edit, and change its content.
9. Click Move to work session.

The work-session results for the form are displayed. These results contain all
of the edits, additions, and deletions that you have made but not cleared or
processed during this Web editor work session.

10. If you want to remove any record changes from the work session, check the
box in front of each record change that you want to remove and click Clear
selected.

11. Click Process work session to submit the selected changes to the database.
A status page displays a message stating that the process was successful.

12. Navigate to the Web site, click the appropriate hyperlinks, and verify that
your changes have been made.

90 Catalog Manager User’s Guide

Deleting a record from a table using the Web editor
To delete a record from a table using the Web editor, follow these steps:
1. From a Web browser, open the following URL:

https://host_name:8000/wcm/webeditor

where host_name is the fully qualified HTTP host name of your WebSphere
Application Server.

The Web editor database logon window appears.
2. Enter your database username and password; then, click Logon.

The Web editor displays in the browser window with a list of table names in
the left menu bar.

3. Click the appropriate hyperlink in the Search submenu of the left menu bar.
The appropriate search page is displayed.

4. Specify your search criteria by doing the following:
a. Select the check box beside each attribute that you want to specify in your

search.
b. Use the appropriate drop-down menu for each selected attribute to select

the logic that you want to use in the search.
c. In the next field for each selected attribute, type or select the value that

you want to use in the search.
5. Click Find.

This submits the search criteria to the Web editor.
A status page displays with the number of records meeting your search
criteria.

6. Do one of the following:
v Click Load data to see a list of the records found.

The Web editor displays a list of the records retrieved from your query.
Go to Step 7.

v Click New search to return to the search page.
Go back to Step 4.

7. Select the check box beside each record that you want to delete.
8. Click Move to delete list.
9. Click the appropriate hyperlink in the Work Session submenu of the left menu

bar.
The work-session results for the form are displayed. These results contain all
of the edits, additions, and deletions that you have made but not cleared or
processed during this Web editor work session.

10. If you want to remove any record changes from the work session, check the
box in front of each record change that you want to remove and click Clear
selected.

11. Click Process work session to submit the changes to the database.
A status page displays a message stating that the process was successful.

12. Navigate to the Web site, click the appropriate hyperlinks, and verify that
your changes have been made.

Chapter 12. Working with catalogs 91

92 Catalog Manager User’s Guide

Part 4. Command Reference

© Copyright IBM Corp. 2002 93

94 Catalog Manager User’s Guide

Chapter 13. DTD Generate command

This command creates DTD and schema files for use with the Loader package.

DTD Generate command for Windows, AIX, Linux, and Solaris systems

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
underChapter 10, “Configuring Loader package commands and scripts” on
page 71 acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-dbname
Name of the target database

-dbuser
Name of the user connecting to the database

-dbpwd
Password for the user connecting to the database

-outfile
Name of the output DTD file

-infile Name of an input file containing a database-table name on each line

-tablenames
Names of tables, separated by commas

-xmlTableDesc
File path of the schema file to be created

© Copyright IBM Corp. 2002 95

-customizer
Name of the customizer property file to be used.
DB2ConnectionCustomizer.properties is the default file. The customizer
property file can be specified as shown in the following example:
-customizer d:\WebSphere\CommerceServer\prop\dtdgen.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
-customizer dtdgen

-schemaname
Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the name of the database user.

-propfile
File containing properties such as an external properties file where help
text, default values, and field-description information can be stored for a
Web editor form description

96 Catalog Manager User’s Guide

DTD Generate command for iSeries systems

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

DATABASE
Name of the target database, as displayed in the relational database
directory

SCHEMA
Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

OUTFILE
Name of the output DTD file

INFILE
Name of an input file containing a database-table name on each line

TABNAMES
Names of tables, separated by commas

XMLTABDESC
File path of the schema file to be created. This parameter is optional.

CUSTOMIZER
Name of the customizer property file to be used. The default file is
ISeries_GENWCSDTD_Customizer.properties. The customizer property file
can be specified as shown in the following example:
CUSTOMIZER(/wc/prop/dtdgen.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
CUSTOMIZER(dtdgen)

Chapter 13. DTD Generate command 97

98 Catalog Manager User’s Guide

Chapter 14. Extract command

This command extracts a selected subset of data from a database in the form of an
XML file.

Extract command for Windows, AIX, Linux, and Solaris systems

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
underChapter 10, “Configuring Loader package commands and scripts” on
page 71 acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-filter Name of the extraction-filter file

-outfile
Name for the output XML file where the extracted data will be stored

-dbname
Name of the database from which data is being extracted

-dbuser
Database user name for the database from which data is being extracted

-dbpwd
Password associated with the user name for the database from which data
is being extracted

-customizer
Name of the customizer property file to be used.
DB2ConnectionCustomizer.properties is the default file. The customizer
property file can be specified as shown in the following example:
-customizer d:\WebSphere\CommerceServer\prop\extract.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
-customizer extract

© Copyright IBM Corp. 2002 99

-schemaname
Name of the database schema from which data is being extracted. This
parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

Extract command for iSeries systems

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

FILTER
Name of the extraction-filter file

OUTFILE
Name for the output XML file where the extracted data will be stored

DATABASE
Name of the database from which data is being extracted as displayed in
the relational database directory

SCHEMA
Name of the database schema from which data is being extracted; this is
the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

CUSTOMIZER
Name of the customizer property file to be used. The default file is
ISeries_EXTWCSDTA_Customizer.properties. The customizer property file
can be specified as shown in the following example:
CUSTOMIZER(/wc/prop/extract.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
CUSTOMIZER(extract)

100 Catalog Manager User’s Guide

Chapter 15. ID Resolve command

This command generates identifiers for XML elements that require them prior to
loading into a database.

ID Resolve command for Windows, AIX, Linux, and Solaris systems

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
underChapter 10, “Configuring Loader package commands and scripts” on
page 71 acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-dbname
Name of the target database

-dbuser
Name of the user connecting to the database

-dbpwd
Password for the user connecting to the database

-infile Name of the input XML document containing table records

-outfile
Name of the output XML file to be produced; this file can be used as input
to the Loader

-method
Method to be used in processing the input file
v Use the load method to process the input file if all records in the file do

not exist in the database.
v Use the update method to process the input file if all records in the file

exist in the database.
v Use the mixed method to process the input file if only some records in

the file exist in the database.

© Copyright IBM Corp. 2002 101

The default method is load.

-propfile
Text file containing Java properties in the form of name=value pairs. This
property file sets the way in which the ID Resolver resolves identifiers. It is
used to describe which columns of a primary entry should be used as
lookups for tables that require the identifier of a primary row. This file
defines the column names for foreign-key identifier lookup and the select
predicate for main table (such as CATEGORY and PRODUCT) queries. You
can omit entries in this file for tables that have a defined unique index that
does not include the identifier. This parameter is optional.
IdResolveKeys.properties is the default file. This property file can be
specified as shown in either of the following examples:
-propfile d:\WebSphere\CommerceServer\prop\idresprop.properties

-propfile d:\WebSphere\CommerceServer\prop\idresprop

If this file exists in the current directory, the same file can be specified as
shown in the following example:
-propfile idresprop.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
-propfile idresprop

-poolsize
Number of identifiers to be reserved. The default number is 50.

-customizer
Name of the customizer property file to be used.
DB2ConnectionCustomizer.properties is the default file. The customizer
property file can be specified as shown in either of the following examples:
-customizer d:\WebSphere\CommerceServer\prop\idres.properties

-customizer d:\WebSphere\CommerceServer\prop\idres

If this file exists in the current directory, the same file can be specified as
shown in the following example:
-customizer idres.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
-customizer idres

-schemaname
Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

102 Catalog Manager User’s Guide

ID Resolve command for iSeries systems

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

DATABASE
Name of the target database, as displayed in the relational database
directory

SCHEMA
Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

INFILE
Name of the input XML document containing table records

OUTFILE
Name of the output XML file to be produced; this file can be used as input
to the Loader

METHOD
Method to be used in processing the input file
v Use the load method (*LOAD) to process the input file if all records in

the file do not exist in the database.
v Use the update method (*UPD) to process the input file if all records in

the file exist in the database.
v Use the mixed method (*MIX) to process the input file if only some

records in the file exist in the database.

Chapter 15. ID Resolve command 103

PROPFILE
Text file containing Java properties in the form of name=value pairs. This
property file sets the way in which the ID Resolver resolves identifiers. It is
used to describe which columns of a primary entry should be used as
lookups for tables that require the identifier of a primary row. This file
defines the column names for foreign-key identifier lookup and the select
predicate for main table (such as CATEGORY and PRODUCT) queries. You
can omit entries in this file for tables that have a defined unique index that
does not include the identifier. This parameter is optional.
IdResolveKeys.propertiesis the default file. This property file can be
specified as shown in either of the following examples:
PROPFILE(/wc/prop/idresprop.properties)

PROPFILE(/wc/prop/idresprop)

If this file exists in the current directory, the same file can be specified as
shown in the following example:
PROPFILE(idresprop.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
PROPFILE(idresprop)

POOLSIZE
Number of identifiers to be reserved. The default number is 50.

CUSTOMIZER
Name of the customizer property file to be used. The default file is
ISeries_RESWCSID_Customizer.properties. The customizer property file
can be specified as shown in either of the following examples:
CUSTOMIZER(/wc/prop/idres.properties)

CUSTOMIZER(/wc/prop/idres)

If this file exists in the current directory, the same file can be specified as
shown in the following example:
CUSTOMIZER(idres.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
CUSTOMIZER(idres)

104 Catalog Manager User’s Guide

Chapter 16. Load command

This command loads an XML input file into a target database.

Load command for Windows, AIX, Linux, and Solaris systems

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
underChapter 10, “Configuring Loader package commands and scripts” on
page 71 acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-dbname
Name of the target database

-dbuser
Name of the user connecting to the database

-dbpwd
Password for the user connecting to the database

-infile Name of the input XML file

© Copyright IBM Corp. 2002 105

-method
Mode of operation for the Loader to use when inserting data into the
database
v The load method uses the native loader from the database vendor. You

can use the load method for both local and remote Oracle databases; but
the load method can only be used for local DB2 databases.

v Although the import method can be used to load data into local or
remote databases, it is usually used to load data into remote DB2
databases. This method uses the import or update option if it is
available from the database vendor. If you specify this method for a
database in which the import or update option is not available, such as
Oracle, SQL statements using JDBC are used to update the database.

v The SQL import (sqlimport) method can be used with both local and
remote databases.

v The delete method deletes data from the database.

If you are using Product Advisor search-space synchronization, you must
use either the sqlimport or the delete method.

-noprimary
Action the Loader must take when the primary key is missing for a record
in the input file. The error option indicates that it should report the
missing primary key as an error and terminate. The skip option skips any
record in the input file that does not have a primary key. The insert option
tries to process (insert or delete) the data. The default action is error.

-commitcount
Number of records processed before the database commit occurs when
using the SQL update method of operation. The default number is 1.

-maxerror
Number of errors after which the Loader will terminate in the SQL update
method of operation

-customizer
Name of the customizer property file to be used.
MassLoadCustomizer.properties is the default file. The customizer property
file can be specified as shown in the following example:
-customizer d:\WebSphere\CommerceServer\prop\ml.properties

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
-customizer ml

-schemaname
Name of the target database schema. This parameter is optional.

If this parameter is not specified when running the command, the
command looks for a name=value pair in the customizer property file that
specifies the value of SchemaName. If this pair is present in the property
file, the command uses the value specified. If neither a command-line nor a
property-file specification for this parameter exists, the command defaults
to the schema name of the table in the database.

106 Catalog Manager User’s Guide

Load command for iSeries systems

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

DATABASE
Name of the target database as displayed in the relational database
directory

SCHEMA
Name of the target database schema; this is the same as the instance name

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

PASSWD
Password for the WebSphere Commerce instance

INFILE
Name of the input XML file

METHOD
Mode of operation for the Loader to use when inserting data into the
database
v The load method (*LOAD) uses the native loader from the database

vendor. You can use the load method (*LOAD) for both local and remote
Oracle databases; but the load method (*LOAD) can only be used for
local DB2 databases.

v Although the import (*IMP) method can be used to load data into local
or remote databases, it is usually used to load data into remote DB2
databases. This method uses the import or update option if it is
available from the database vendor. If the import or update option is not
available, SQL statements using JDBC are used to update the database.

v The SQL import (*SQL) method can be used with both local and remote
databases.

v The delete (*DLT) method deletes data from the database.

Chapter 16. Load command 107

NOPRIMARY
Action that the Loader must take when the primary key is missing for a
record in the input file. The error option (*ERROR) indicates that it should
report the missing primary key as an error and terminate. The skip option
(*SKIP) skips any record in the input file that does not have a primary key.
The insert option (*INSERT) tries to process (insert or delete) the data. The
default action is error.

COMMITNUM
Number of records processed before the database commit occurs when
using the SQL update method of operation. The default number is 1.

MAXERROR
Number of errors after which the Loader will terminate in the SQL update
method of operation

CUSTOMIZER
Name of the customizer property file to be used. The default file is
ISeries_LODWCSDTA_Customizer.properties. The customizer property file
can be specified as shown in the following example:
CUSTOMIZER(/wc/prop/ml.properties)

If this file exists in a directory specified in the classpath
system-environment variable, the same file can be specified as shown in
the following example:
CUSTOMIZER(ml)

108 Catalog Manager User’s Guide

Chapter 17. Text Transform command

This command transforms data between a character-delimited variable format and
an XML format.

Text Transform command for Windows, AIX, Linux, and Solaris
systems

Note: The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and
listed underChapter 10, “Configuring Loader package commands and
scripts” on page 71 acts as a wrapper to the actual Java command and
accepts the same parameters; therefore, it is recommended that you use the
command file or script rather than invoke the Java command directly.

Parameter values

The following values are specified and separated by commas in a parameter file
(parameter.txt):
v input file

Name of the file to be transformed
v schema file

Name of the XML schema file to be used in the transformation
v output file

Name for the output file in which the transformed data will be stored
v transformation method

Method to be used in adding the data to the output file. Specify Create if a new
file is to be created; or specify Append if the output data is to be appended to
an existing data file.

Note: This file is also referred to as a ″manifest″ or ″command″ file.

© Copyright IBM Corp. 2002 109

Text Transform command for iSeries systems

Parameter values

The following values are specified and separated by commas in a parameter file
(parameter.txt):
v input file

Name of the file to be transformed
v schema file

Name of the XML schema file to be used in the transformation
v output file

Name for the output file in which the transformed data will be stored
v transformation method

Method to be used in adding the data to the output file. Specify Create if a new
file is to be created; or specify Append if the output data is to be appended to
an existing data file.

110 Catalog Manager User’s Guide

Chapter 18. XML Transform command

This command converts an XML file into an alternate XML format.

XML Transform command for Windows, AIX, Linux, and Solaris
systems

Notes:

1. The above diagram is intended primarily as a reference for the command
parameters. The command file or script provided for this command and listed
underChapter 10, “Configuring Loader package commands and scripts” on
page 71 acts as a wrapper to the actual Java command and accepts the same
parameters; therefore, it is recommended that you use the command file or
script rather than invoke the Java command directly.

2. Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

-infile Name of the file to be transformed

-transform
Name of the transform XSL rule file

-outfile
Name for the output XML file in which the transformed data will be stored

-param
Parameter to be passed to the XSL rule file. This parameter is optional.
This parameter can be specified multiple times to pass multiple
″name=value″ pairs.

© Copyright IBM Corp. 2002 111

XML Transform command for iSeries systems

Note: Filenames specified as parameters for this command can be preceded by
relative or absolute paths.

Parameter values:

INFILE
Name of the file to be transformed

TRANSFORM
Name of the transform XSL rule file

INSTROOT
Full name of the WebSphere Commerce instance root path, such as
/QIBM/UserData/WebCommerce/instances/instance_name

OUTFILE
Name for the output XML file in which the transformed data will be stored

PARAM
Parameter to be passed to the XSL rule file. This parameter is optional.
The string can contain multiple values to pass multiple ″name=value″
pairs.

112 Catalog Manager User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2002 113

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Canada Ltd.
Office of the Lab Director
8200 Warden Avenue, Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

114 Catalog Manager User’s Guide

imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

©Copyright International Business Machines Corporation 2001.
Portions of this code are derived from IBM Corp. Sample Programs.
©Copyright IBM Corp. 2000, 2001. All rights reserved.

If you are viewing this information in softcopy, the photographs and color
illustrations may not appear.

Trademarks and service marks
The following terms are trademarks of International Business Machines
Corporation in the United States or other countries or both:

AIX
DB2
DB2 Universal Database
IBM
iSeries
OS/400
WebSphere

Microsoft, Windows, Windows NT, and Windows 2000 are registered trademarks of
Microsoft Corporation in the United States, other countries, or both.

Oracle is a registered trademark of Oracle Corporation in the United States, other
countries, or both.

Solaris, Java, and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 115

116 Catalog Manager User’s Guide

����

Printed in U.S.A.

	Contents
	Before you begin
	Conventions used in this book
	Who should read this book
	Where to find more information

	Part 1. Overview of the Catalog Manager
	Part 2. Transforming, loading, and extracting data
	Chapter 1. Introduction
	Utilities
	Administrative tools

	Chapter 2. Transforming text
	Launching the Text Transformation tool
	Using the Text Schema Edit View
	Creating a schema file
	Opening a schema file
	Saving a schema file
	Editing a schema file
	Adding an element
	Removing an element
	Replacing an element
	Moving an element one row up
	Moving an element one row down
	Adding an attribute
	Removing an attribute
	Replacing an attribute
	Moving an attribute one row up
	Moving an attribute one row down

	Changing a schema file structure
	Preparing a schema file to transform data from an XML to a character-delimited variable format

	Using the Transformation Command Edit View
	Creating a command
	Removing a command
	Editing or replacing a command
	Moving a command one row up
	Moving a command one row down
	Clearing a command

	Using the Transformation Process View

	Chapter 3. Transforming XML data
	Launching the XSL Editor
	Working with mapping rule building areas
	Creating a mapping rule building area
	Modifying a mapping rule building area
	Deleting a mapping rule building area

	Using the XSL Editor
	Creating a mapping rule
	Element-to-element mapping
	Attribute-to-attribute mapping
	Creating a custom mapping expression

	Deleting a mapping rule
	Processing an XML transformation
	Customizing the Mapping Rule table
	Displaying a complete XSL rule/value expression

	Chapter 4. Generating a DTD and schema
	Setting up the DTD Generator
	Generating a DTD
	Generating a schema and a detailed XML file

	Chapter 5. Resolving identifiers
	Setting up the ID Resolver
	Setting how the ID Resolver handles timestamps
	Setting how the ID Resolver handles storage
	Setting how the ID Resolver handles database drivers

	Determining how to process data
	Choosing the load method
	Choosing the update method
	Choosing the mixed method

	Using the ID-resolution techniques
	Specifying a properties file with the ID Resolver
	Using a properties file to generate identifiers
	Using a properties file with compound keys
	Using a properties file with cascaded primary keys

	Using internal-alias resolution
	Partial example of using internal-alias ID resolution
	Before resolution
	After resolution

	Using unique-index resolution
	Partial example of unique-index resolution
	Before resolution
	After resolution

	Loading data into the MEMBER table
	Creating a foreign relationship using the REFKEYS table
	Troubleshooting errors

	Chapter 6. Loading data
	Setting up the Loader
	Ignoring elements in the input file
	Inserting NULL into a column
	Loading timestamps and date data
	Loading current timestamps
	Example of loading current timestamps
	Examples of adding durations to current timestamps

	Managing event queues
	Running with different database software and operating systems
	Substituting a component
	Using Product Advisor search-space synchronization
	Customizing Product Advisor search-space synchronization

	Determining how to process data when using the Loader
	Choosing the load method
	Choosing the import method
	Choosing the SQL import method
	Other considerations

	Loading large documents
	Troubleshooting tip

	Chapter 7. Extracting data
	Creating an extraction filter
	Setting up the Extractor

	Chapter 8. Using the Loader package logger
	Configuring logging in your environment for Windows NT, Windows 2000, AIX, Linux, and Solaris systems
	Example of setting the classpath variable
	Example of specifying the com.ibm.wca.logging.configFile system property

	Customizing logging for the Loader package
	Handlers
	Filters
	Formats
	Example: WCALoggerConfig.xml and WCALogger.dtd
	WCALoggerConfig.xml
	WCALogger.dtd

	Chapter 9. Using the Loader package error reporter
	Chapter 10. Configuring Loader package commands and scripts
	Part 3. Using the Web editor
	Chapter 11. Setting up the Web editor
	Configuring the Web editor
	Editing the webeditor.properties file
	Changing the location of the temporary files

	Creating an XML form-description file using the DTD Generator
	Customizing the XML form description
	Editing form names
	Changing a field description
	Adding a drop-down menu
	Adding field help
	Customizing search results and the work-session list

	Editing the weProcessList file
	Editing the webeditor.xsl file

	Chapter 12. Working with catalogs
	Adding a record to a table using the Web editor
	Modifying a record in a table using the Web editor
	Deleting a record from a table using the Web editor

	Part 4. Command Reference
	Chapter 13. DTD Generate command
	DTD Generate command for Windows, AIX, Linux, and Solaris systems
	DTD Generate command for iSeries systems

	Chapter 14. Extract command
	Extract command for Windows, AIX, Linux, and Solaris systems
	Extract command for iSeries systems

	Chapter 15. ID Resolve command
	ID Resolve command for Windows, AIX, Linux, and Solaris systems
	ID Resolve command for iSeries systems

	Chapter 16. Load command
	Load command for Windows, AIX, Linux, and Solaris systems
	Load command for iSeries systems

	Chapter 17. Text Transform command
	Text Transform command for Windows, AIX, Linux, and Solaris systems
	Text Transform command for iSeries systems

	Chapter 18. XML Transform command
	XML Transform command for Windows, AIX, Linux, and Solaris systems
	XML Transform command for iSeries systems

	Notices
	Trademarks and service marks

